
www.allitebooks.com

http://www.allitebooks.org

Dreamweaver CS5.5 Mobile
and Web Development with
HTML5, CSS3, and jQuery

Harness the cutting edge features of Dreamweaver for
mobile and web development

David Karlins

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Dreamweaver CS5.5 Mobile and Web Development
with HTML5, CSS3, and jQuery

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2011

Production Reference: 1160911

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-158-1

www.packtpub.com

Cover Image by Asher Wishkerman (a.wishkerman@mpic.de)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
David Karlins

Reviewers
Chad Adams

Nelson Therrien

Acquisition Editor
Wilson D'souza

Development Editor
Neha Mallik

Technical Editors
Kavita Iyer

Azharuddin Sheikh

Project Coordinator
Srimoyee Ghoshal

Proofreader
Mario Cecere

Indexer
Rekha Nair

Graphics
Valentina D'silva

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

David Karlins is a consultant, writer, and teacher on digital graphics and
interactive design solutions. He has written or co-authored some fifty books,
professional instruction videos, and apps on web design, vector graphic design,
digital photography, sports photography, project management, digital video,
and animation.

David Karlins' consulting clients have ranged from Hewlett Packard to the
Himalayan Fair, from AAA Health Insurance to the Association of Alternative
Newsweeklies.

David Karlins is the author of Adobe Creative Suite 5 Web Premium How-Tos: 100
Essential Techniques, (Adobe Press), Adobe Dreamweaver CS4 How-Tos: 100 Essential
Techniques (Adobe Press), Adobe lllustrator CS4 How-Tos: 100 Essential Techniques
(Adobe Press). He is also the author of PC Magazine Guide to Printing Great Digital
Photos (PC Magazine Press), Build Your Own Web Site (McGraw Hill), Adobe Illustrator
Gone Wild (Wiley), and Enhancing a Dreamweaver Web Site with Flash Video: Visual
QuickProject Guide (Peachpit).

Thanks to Wilson D'souza, Srimoyee Ghoshal, Priya Mukherji, and
the entire management and staff at Packt Publishing. I would also
like to thank my agent Margot Maley Hutchison.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Chad Adams is a graduate of University of Central Missouri with a B.F.A. in
Commercial Art in Graphic Design, and has been a professional web developer
and user experience designer for over seven years. He has developed websites and
mobile applications for iOS, Android, and Windows Phone 7 as well.

In order to know more about Chad, visit his website at: http://chad-adams.com/.

My amazing wife, Heather, was always so patient with my late
nights studying and working and I want to thank her for her faithful
support during my career. Lastly, I offer my regards to my friends,
family, and thanks to all those who have supported me in any
respect during the completion of the project.

www.allitebooks.com

http://www.allitebooks.org

Nelson Therrien has computer degrees in both multimedia and programming. He
is an ACE (Adobe Certified Expert) with Dreamweaver and has many Brainbench
certifications (HTML, XHTML, Dreamweaver, Flash, Web design, Photoshop,
and so on).

Most of his time is spent in teaching and developing web applications and dynamic
forms. He is teaching at Eliquo, Canada's biggest Apple and Adobe authorized
training center. He is responsible for everything that revolves around the Web
at the Montreal office.

You could see him if you take a course on Dreamweaver, Flash, ActionScript, Flex,
ColdFusion, HTML5, CSS3, XML, JavaScript, jQuery, PHP, LiveCycle Designer, or
accessibility and standards on the Web. He also touched some ASP, .NET, Java, SQL,
Photoshop, Fireworks, and Illustrator.

He also gave a conference for the launch of Adobe CS5 and CS5.5 in Canada as an
Eliquo representative.

He is the father of three young children.

As a way to relax, he is constantly reading and searching to improve his skills and
knowledge, and he can find some time to play Canada's national game: hockey!
He is a goaltender on his own and coaches his two sons.

I would like to thank Craig Boassaly, Eliquo's president, and the
entire team at Eliquo for making my teaching job so much fun.

I would also want to thank my wife, who has the job of taking care of
our three angels when I am too busy to help her. Moreover, I would
like to thank my three kids, Josué, Isaac, and Kaïla for putting so
much sunshine in my life.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital
book library. Here, you can access, read and search across Packt’s entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Creating HTML5 Pages in Dreamweaver 5

HTML5 and Dreamweaver CS5 in the world of web design 6
HTML5—the cutting edge of web design 6

HTML4.1, XHTML, and HTML5 7
Compatibility issues with HTML5 8

HTML5 and Dreamweaver CS5.5 9
Dreamweaver generates code 9
Dreamweaver—catching up to HTML5 11

An introduction to HTML5 layout elements 11
The evolution of HTML layout elements 12

Phase 1: Tables 12
Phase 2: CSS DIV tags 13
Phase 3: HTML5 layout elements 15

Meet the HTML5 layout elements 15
Dreamweaver's HTML5 Pack and design elements 16
Detecting or installing the HTML5 Pack in Dreamweaver 17
Creating a Dreamweaver site 19
Generating new pages from layouts using the HTML5 templates 21
Examining the generated HTML5 layout 23

Toggling between related files 23
Code, Split, and Design views 24
Dissecting design elements with the Inspect Mode 25

Saving a layout as a web page 26
Recipe: Creating and saving a 3-column HTML5 page 27
Summary 29

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Customizing HTML5 Layout–Content and Look 31
Customizing layouts – An overview 32

Embedding content where it belongs 32
Dissecting format 32

Editing content in HTML5 page layout elements 34
HTML text tags versus HTML5 layout elements 34
Organizing content in containers 35
Utilizing Split view for editing content 36
Adding articles and sections 37

Identifying and selecting HTML5 layout elements 38
Copying, pasting, and deleting HTML5 Elements 39

Identifying style rules 40
HTML5 layout elements require styles 40
Examining CSS associated with HTML5 layouts 42

Customizing HTML tag rules 43
Making quick changes to styles in the CSS styles panel 44
The CSS rules definition dialog 45

Editing type styles 45
Editing backgrounds 46
Preview with apply 46

Saving customized HTML5 layouts 47
Recipe: Customize content and look of an HTML5 page 48
Summary 50

Chapter 3: Customizing HTML5 Layout Elements 51
HTML5 layout and browser compatibility challenges 53

Which browsers support HTML5 layout elements? 53
Using CSS to solve browser issues 53

The magic of display:block 54
Disabling a CSS rule 55

Global HTML5 layout element attributes 58
Working with backgrounds 58
Defining size, margins, and padding 60

Assigning a page size 61
Margins versus padding 61
Element padding versus content margins 62

Positioning with float 62
Customizing HTML5 elements 63
Back to the future: ID and class styles 64

Layout with class styles 64
The role of ID styles 65

Recipe: Customizing the HTML5 page layout 65

Table of Contents

[iii]

Recipe: Customizing the size and position for header,
footer, nav, and aside 66
Customizing links in the nav element 69

Summary 74
Chapter 4: Building HTML5 Pages from Scratch 75

Dreamweaver CS5 and HTML5 76
Building an HTML5 page from the top 77

HTML5 structural elements 77
Creating a CSS file 79

Using HTML5 to make content accessible 83
HTML5 layout strategy 85
Using code hints 86
Adding header, header nav, and hgroup 87

Navigation within a header 87
Organizing header content with hgroups 87

Creating articles and sections 88
Adding aside content 90
Creating a footer 91
Adding metadata 92

Defining an address 92
Figures and captions 93
Indicating date and time 93

Recipe Part 1: Build a style sheet for an HTML5 page layout 94
Recipe Part 2: Build an HTML5 layout from scratch 97
Summary 101

Chapter 5: Defining and Implementing Multiscreen
Previews and Media Queries 103

Web design for a multimedia web world 104
CSS3 and Media Queries 105
Styling for mobile devices and tablets 106

Previewing with the Multiscreen Preview 107
Generating a Media Query in Dreamweaver 109

Building alternative style sheets 110
A 3-step protocol for preparing to generate a Media Query 110
Assigning styles to different media 111

Formatting CSS files for Media Queries 113
Caution: Don't delete style rules 115
Styling for mobile devices 115

Troubleshooting for Apple i-Gadgets 117
Exercise: Defining a Media Query for a cell phone 119
Summary 122

Table of Contents

[iv]

Chapter 6: Applying CSS3 Effects and Transforms 123
New in CSS3: Effects and transforms 124

Compatibility challenges 125
CSS3 styles in Dreamweaver's HTML5 Pack 128

CSS3 effects 130
Opacity 131
Border radius 133
Shadows 136

Box shadow 136
Text shadow 137
Text outline 138

CSS3 transforms 139
When to use transforms 140
How to generate transition coding in Dreamweaver 140
Resizing with scale 141
Moving with translate 142
Applying rotation 143
Creating a skew transition 144
Other CS3 transform effects 145
Compound transforms 145

Interactive effects and transforms 145
Effects and JavaScript 146
Interactivity with the :hover pseudo-class 146
Animating CSS3 transforms in Dreamweaver 147

Recipe: Create an animated effect and transform 148
Putting the pieces in place 148

Summary 154
Chapter 7: Embedding HTML5 Audio in Dreamweaver 155

Audio and compatibility 156
Laying the groundwork: HTML5 and page-building 157
Making audio HTML5-ready 157

Audio compression 157
Browser support for audio files 158

Embedding an HTML5 audio element in a Dreamweaver CS5 web page 159
Alternative media options 161

Providing alternative HTML5 audio formats 161
Audio for non-HTML5 browsers 162
Adding play parameters 162

Recipe: Embedding HTML5 audio 164
Summary 166

Table of Contents

[v]

Chapter 8: Embedding HTML5 Video in Dreamweaver 167
HTML5 video and Dreamweaver CS5.5 167

Early formats 168
Flash Video (FLV) 169
Apple devices and the web video 170

The wild world of native videos 172
Native video formats 172
Browsers that do NOT support HTML5 172

Preparing an HTML5 video for every scenario 173
Compressing videos for the Web 173

Video compression—open source and proprietary 174
Converting a video to web formats with open source tools 174

Creating an HTML5 video in Adobe Media Encoder CS5. 5 176
Dreamweaver site management for an HTML5 video 178
Defining the HTML5 <video> element 179

Prerequisites 179
Creating the <video> element 180
Defining video attributes 180
Defining video source(s) 181
Alternate video for non-HTML5 environments 182
Putting it all together 182

Testing HTML5 video pages 182
Previewing a video in the Live View 183
Previewing a video in BrowserLab 183

Recipe: Embedding an HTML5 video 184
Summary 187

Chapter 9: Creating Mobile Pages with jQuery 189
Mobile pages – An overview 190

Mobile pages, apps, and jQuery Mobile 192
The status of jQuery Mobile 193
Using jQuery Mobile starter pages 193

Creating mobile pages from Dreamweaver CS5.5 starters 194
Mobile pages in Split view 195
Previewing jQuery Mobile pages in Live view 197

Customizing mobile page content 199
The HTML5 data-role property 199

Data-role pages 199
Customizing page content 201
Customizing content for different data roles 202

Table of Contents

[vi]

Adding new jQuery Mobile pages and objects 203
Creating new data-role pages by copying code 203
Creating new data-role pages from the menu 205

Customizing mobile page CSS styles 205
Default jQuery Mobile CSS 207
Editing jQuery Mobile CSS 207
Applying and customizing themes 208

Looking ahead: Generating mobile apps 210
Recipe: Build a mobile web page with jQuery Mobile objects 210
Summary 216

Chapter 10: Adding jQuery Mobile Elements 217
Creating jQuery Mobile pages from scratch 218

Interface options 218
Step 1 – Creating an HTML5 page 219
Step 2 – Inserting a jQuery Mobile "page" 220

Inserting a Layout Grid 223
Defining styles for Layout Grids 225

Designing mobile pages into a collapsible block 226
Building a collapsible block 226

Changing initial block state 227
Changing block data-themes and styles 228
Editing Collapsible Block HTML 229

Adding jQuery form objects 230
Forms in Dreamweaver 231
Creating a jQuery Mobile form 232
Special mobile form fields 234

Inserting a text input field 235
Inserting a slider 235
Inserting a toggle switch 236
Formatting jQuery Mobile Form Fields 236

Recipe: Build a page with collapsible blocks and a form 237
Summary 243

Table of Contents

[vii]

Chapter 11: Generating Apps 245
Generating apps from Dreamweaver—an overview 245

Advantage: App vs web page 246
PhoneGap and Dreamweaver CS5.5 247

Configuring application framework(s) 247
The App toolkits 248

Installing the frameworks 248
Defining mobile application settings 249
Building and emulating apps 251
Testing mobile apps on your computer 252
Recipe: Building and emulating a mobile app 254
Summary 256

Index 257

Preface
Dreamweaver is the most powerful and industry-leading web design software that
utilizes innovative web technologies such as HTML5, CSS3, and jQuery for web and
mobile development. These technologies have radically reconfigured the process of
designing the web content and function in the widest possible range of browsing
environments ranging from desktops to mobile devices.

For experienced Dreamweaver designers and for designers who are new to
Dreamweaver, this book explains in detail how to take advantage of the new features
available in the latest releases of Dreamweaver that add support for HTML5, CSS3,
and jQuery. In addition to this, the book also contains detailed systematic directions
for building mobile applications in Dreamweaver CS5.5.

This book starts off by teaching you to create web pages in Dreamweaver using the
latest technology and approaches—HTML5, CSS3, and JavaScript. It demonstrates
how to create or customize pages with HTML5 layouts and add multimedia to these
pages with HTML5 elements. Then, you will learn to add various CSS3 effects to
web pages. This book also covers different techniques of adding interactivity to
web pages. The later chapters show how to optimize web pages with Dreamweaver
for display in various browsing environments. You will also learn to build jQuery-
based mobile apps from scratch in the later chapters. By the time you finish reading
this book, you will have learned several techniques to use the latest features of
Dreamweaver for web and mobile development.

What this book covers
Chapter 1, Creating HTML5 Pages in Dreamweaver, begins with the exploration of
creating HTML web pages with Dreamweaver CS5.

Chapter 2, Customizing HTML5 Layout—Content and Look, provides information about
customizing both the content and the look of HTML5 pages generated with the
HTML5 Layouts in Dreamweaver.

Preface

[2]

Chapter 3, Customizing HTML5 Layout Elements, provides an exploration of using new
HTML5 layout elements, including <header>, <nav>, <article> and <section>,
<aside>, and <footer>.

Chapter 4, Building HTML5 Pages from Scratch, guides you through the process of
building modern standards-complaint pages relying entirely on HTML5 layout tags.

Chapter 5, Defining and Implementing Multiscreen Previews and Media Queries,
guides you through the process of providing media-sensitive content for a
variety of viewports, ranging from large-screen projections of websites to
hand-held devices.

Chapter 6, Applying CSS3 Effects and Transforms, highlights the importance of using
CSS3 to format effects such as drop-shadows, rounded box corners, and opacity
(transparency) along with transforms that change the shape, location, rotation,
and size of objects.

Chapter 7, Embedding HTML5 Audio in Dreamweaver, guides you through the process
of embedding native (browser-based, not plugin-based) audio to web pages using
Dreamweaver CS5.5 tools for HTML5 media.

Chapter 8, Embedding HTML5 Video in Dreamweaver, provides information about
embedding a variety of HTML5-compliant video formats to web pages using
HTML5 and Dreamweaver CS5.5.

Chapter 9, Creating Mobile Pages with jQuery, guides you through the process of
creating jQuery Mobile-based pages—accessible, inviting, animated pages that
work particularly well in mobile devices.

Chapter 10, Adding jQuery Mobile Elements, provides information about building
jQuery Mobile-based pages from scratch with layout grids, and collapsible blocks.

Chapter 11, Generating Apps, guides you through the process of publishing mobile
apps for iOS (iPhone, iPod Touch, and iPad) and Android devices using new tools in
Dreamweaver 5.5.

What you need for this book
In order to work through this book most effectively, you need access to
Dreamweaver CS5.5 or higher. However, the book includes asides and notes to
enable designers using earlier versions of Dreamweaver, back to Version 3, to take
advantage of Adobe-provided tools for creating HTML5 and CSS3-based websites.

Preface

[3]

Who this book is for
This book is geared towards experienced Dreamweaver web designers migrating to
HTML5 and jQuery. It also targets web designers new to Dreamweaver who want
to jump with two feet into the most current web design tools and features. While
focused primarily on Dreamweaver CS5.5, the book includes content of value to
readers using older versions of Dreamweaver with directions on installing a
version of Adobe's HTML5 Pack that updates those packages.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Doing
this opens the Select Image Source dialog".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please
send us a note in the SUGGEST A TITLE form on www.packtpub.com or
e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

www.allitebooks.com

http://www.allitebooks.org

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Creating HTML5 Pages in
Dreamweaver

This chapter begins our exploration of creating HTML5 web pages with
Dreamweaver CS5. The focus here, and throughout this book is on unleashing the
exciting, powerful HTML features for page layout, animation, media, and design
using HTML5. At the same time, we will of necessity, take a concentrated looks at
basic techniques involved in setting up Dreamweaver websites and basic editing
and formatting tools in Dreamweaver.

After briefly introducing HTML5, CSS3, and Dreamweaver CS5, and the way they
work together to create websites, the focus of this chapter will be generating page
layouts in Dreamweaver that avail themselves of HTML5 layout tools. By the end
of this chapter, you will be able to create basic, attractive web pages that use the
improved HTML5 page layout elements. In addition, you will be in a position to
customize those pages with your own content, and formatting, in the next chapter.

In this chapter, we will:

Survey the evolution of HTML5 and understand how it simplifies the web
page design
Explore key HTML5 elements used in web page layouts
Understand how Dreamweaver CS5 generates HTML5 web page layouts
Install the HTML5 Pack as an Extension (for Dreamweaver CS5 and older
versions as well)
Create Dreamweaver CS5/HTML5 sites and files
Generate new pages from layouts using the HTML5 templates
Control views
Generate HTML5 page layouts in Dreamweaver
Create a 3-column HTML5 page layout in Dreamweaver

•

•
•
•

•
•
•
•
•

Creating HTML5 Pages in Dreamweaver

[6]

HTML5 and Dreamweaver CS5 in the
world of web design
We will be working with a few key acronyms in this book and they stand for things,
which are essential to creating innovative websites. So, let's start with introductions:

HTML5 is the latest and most powerful version of the HTML (HyperText
Markup Language). It is the newest and the most powerful language for
creating the basic elements of a web page.
CSS3 is the latest and the most powerful version of CSS (Cascading Style
Sheets—or Style Sheets for short). CSS handles how web pages and
elements on them look.
Dreamweaver CS5 is the most widely used, powerful, and flexible tool for
creating the web page content, including HTML5 and CSS3. Thus, the basic
flow of this book will be exploring the key powerful features of HTML5 and
CSS3 and generating those features using Dreamweaver CS5.

Limited CS4 and CS3 functionality: Some, but not all of the features
explored in this book are available in older versions of Dreamweaver
with the HTML5 Pack installed. In general, you can follow the
same steps indicated here for Dreamweaver CS3 and CS4 and take
advantage of those elements of the HTML5 Pack supported by older
versions of Dreamweaver.

HTML5—the cutting edge of web design
I like to describe HTML5 concisely as solving the 3s: simplifying, standardizing,
and styling. Those terms don't embrace everything new in HTML5, but they
highlight key new features and help break down what HTML5 is all about into
digestible chunks.

HTML5 simplifies the web design by taking frequently used features, such as
the page layout elements we will explore in this chapter, and defining elements
(previously known as tags) for them. Therefore, for example, instead of every
page designer needing to invent a special batch of code to define a page
header—a common element in many web pages—HTML5 has added a
standard, pre-set <header> element.

•

•

•

Chapter 1

[7]

HTML5 is an attempt to standardize how browsers interpret the page layout code.
Now, an obvious question is, who sets the standards and how standard are they?
The answer in this case is complex, contradictory, and a work in progress. However,
suffice to say that an alignment of the most powerful players on the Web, in
particular the makers of all the major browsers (Safari, Firefox, Chrome, Opera, and
Internet Explorer starting with version 9) have all embraced HTML5, to the point
that a critical mass is either now in place, or emerging quickly. That said, it would be
a long time before everyone browsing the Web is doing so in an HTML5-compliant
browser. Therefore, in the course of this book, we will explore approaches for
providing alternative content for visitors using non-HTML5 browsers.

HTML5 also expands what can be done in web design style, without resorting to
plugins (such as JavaScript or Flash). Many of these additional features are accessed
through CSS3—the latest version of Style Sheet formatting that is an enabling,
co-dependent partner (in a good way!) with HTML5.

HTML4.1, XHTML, and HTML5
HTML5 was preceded by XHTML, and before that, HTML 4 (in various versions).
In some ways, HTML5 is not a continuation on that evolutionary line, but a new
synthesis that stands on both HTML and XHTML.

There is no great need here to clutter our heads with the ways in which HTML5
addresses non-standardization in different previous versions of HTML and
browsing environments, but such housekeeping and standardization is a
significant contribution of HTML5.

The new features in HTML5 (and the related features in CSS3) are of more interest
for designers.

HTML5's <video> and <audio> elements provide a much simplified approach to
presenting the online video and audio, without resorting to different and competing
media players (such as Windows Media Player, QuickTime player, or Flash Player).
The new canvas elements open the door to an exciting array of possibilities for
presenting images, interactivity, and media.

Moreover, as we will focus on in this chapter, HTML5 introduces a set of elements
that standardize and simplify the page layout.

Creating HTML5 Pages in Dreamweaver

[8]

Compatibility issues with HTML5
As HTML5 is new, and emerging, designers obviously want to know whether
elements they create using it (such as video, or page design elements) are
supported in different browsers.

The answer is more complicated than you might think. Different HTML5 elements
are supported in different browsing environments and in different ways. For
example, many (but not all) browsers support HTML5's new VIDEO element, but
within that grouping of browsers, there is support for different video formats.

In other cases, older browsers support the HTML5 elements, but some of the features
don't work. In general, these elements still work in older browsers and visitors
simply forego nice but non-essential features. For example, an HTML5 e-mail will be
easier to fill out in an HTML5-complaint browser, but will still work as a plain text
field in older browsers.

This might sound like a messy situation. In some ways it is. However, as I say in
almost every session of my live web design classes, "welcome to the experience."
Compatibility issues with HTML5 are, however, an eminently manageable challenge
that we will address from different angles and with different problems in mind
throughout this book.

Each time we introduce HTML5 elements, we will also look at how to provide
alternatives for visitors viewing the page in a browser that does not support HTML5.

Sometimes, the HTML5 features not supported in non-complaint browsers limit
available features, but do not cause harm. For example, the following screenshot
illustrates the PLACEHOLDER attribute in HTML5 that displays a "hint" text in a form
field that vanishes when a visitor begins typing in that field.

HTML5 allows a placeholder text, in this case, Enter search text here:

In the case of HTML5's placeholder attribute, when this is not supported in a
browser, the form field simply appears without the placeholder text, as shown
in the following screenshot.

Chapter 1

[9]

Viewed in a non-complaint browser, the HTML placeholder text simply disappears,
but the form still works:

In some situations, we will address compatibility issues exploring, on the spot, and
creating an alternative content for older browsers. We will also explore more radical
approaches to provide alternative formatting for different browsers using techniques
such as Media Queries (see Chapter 5, Defining and Implementing Multiscreen Previews
and Media Queries) to provide alternate page layouts for different browsers.

However, the bottom line is, in one way or another, we will take into account
and build into the process by providing alternative content for non-HTML5
environments.

HTML5 and Dreamweaver CS5.5
Having briefly surveyed HTML5, we will now step back and see how Dreamweaver
fits into the whole picture of creating websites using HTML5.

Dreamweaver is the premiere tool for generating web content and design. We will
parse that a bit: First, Dreamweaver produces a range of web content. Dreamweaver
generates HTML (including, as we shall explore in a moment) HTML5. HTML is
the foundation of web pages, but Dreamweaver also generates two other critical
elements of Web design: CSS (Style Sheets) and JavaScript.

Dreamweaver's capacity to generate interactive (objects that interact with visitor
actions) is somewhat limited. We will see these features at times in this book, but in
the main, we will focus on Dreamweaver's very powerful tools for managing CSS,
the styles that control how content appears in web pages.

Dreamweaver generates code
Let's define what we meant when we say Dreamweaver generates HTML, CSS, and
(in a more limited way) JavaScript. Dreamweaver generates this content in three
basic ways that work together.

Creating HTML5 Pages in Dreamweaver

[10]

The first way Dreamweaver generates code is when you edit and format content
in the Design view of the Document window. Second, Dreamweaver generates
CSS and JavaScript using panels such as the CSS Styles panel and the Behaviors
panel (respectively). Finally, you can write HTML and CSS in the code view and
Dreamweaver will assist with code hints.

Dreamweaver's Document window has three views, which we will explore shortly.
However, the most intuitive is the Design view—an environment that approximates
those in other Adobe Creative Suite applications such as InDesign, Photoshop, and
Illustrator. The Design view is used to format text, images, design containers, media,
and other elements. As you use intuitive editing and formatting tools, including the
utilitarian and context-sensitive Properties Manager panel, Dreamweaver generates
HTML, CSS, and JavaScript to match the content and formatting attributes you
create in the Design view. In the following screenshot, for example, the selected
image is having attributes such as an associated link edited in Dreamweaver
CS5.5's Properties inspector and the code (on the left) is updated automatically.

Defining a link in Dreamweaver's Design view, while the code updates in the Code
view (on the left):

The second way Dreamweaver generates code is through panels. There are several
panels which generate different kinds of code. In this book, we will focus on the CSS
Styles panel which generates the critical CSS that controls the page formatting.

Finally, the Dreamweaver's Code View provides code hinting and completion tools
that make writing of the code easier. As much as possible, we will rely on the Design
view and Panels to generate all the code we need to maximize the HTML5 page
design in Dreamweaver. We will resort to the Code view when necessary and
take full advantage of the Dreamweaver's code hinting features.

Chapter 1

[11]

Dreamweaver—catching up to HTML5
We will begin with a candid assessment: Dreamweaver CS5.5 (and even more so
CS4 and CS3) is racing to catch up with HTML5. Why? The answer is a complex mix
of technical factors (HTML5 is, after all, still something of a work-in-progress and
has not been adopted by all browsers), as well as business and what might be called
economic and political factors, including the competition between Adobe and Apple.

This later element involves contending visions for how to implement media on the
Web in particular. Just as Creative Suite 5 was being released, Apple consolidated its
position that Adobe's Flash Video (FLV) and Flash animation/interactivity (SWF)
formats would not be supported on iPhones, iPads, and other Apple mobile devices.
Instead, Apple has backed HTML5's audio and video tools. Without going into this
in any more detail, or "choosing sides," this level of background helps contextualize
the release of Dreamweaver CS5.5 without support for HTML5.

That said, Adobe responded quickly with the release of the HTML5 Pack to add
HTML5 tools to Dreamweaver CS5. The HTML5 Pack represented a significant
upgrade to Dreamweaver. The HTML5 Pack is actually available in a limited edition
for Dreamweaver CS4 and in an even more limited edition for CS3. However, in
order to implement the HTML5 functionality completely, designers will find the
most powerful set of tools in the combination of Dreamweaver CS5.5 and HTML5.
In this chapter, you will learn to test for and—as necessary—install the HTML5 Pack.

In this context, our exploration of the HTML5 design in Dreamweaver will require a
bit more time spent in the Code view than might be usual for a basic-to-intermediate
book like this. However, we will work hard to make those forays in the Code view as
effortless as possible. Moreover, I promise to leave "no stone unturned" to utilize the
friendly Design view and more accessible Dreamweaver panels whenever possible.

An introduction to HTML5 layout
elements
It is often helpful, in understanding something new, to have a sense of where it
came from. The evolution of different versions of HTML and accompanying versions
of CSS (style sheets) has been marked in a fundamental sense by the need to create
more attractive, complex, and creative page designs.

Web page design has evolved radically, but HTML in one version or another
remains the foundation for web page design. HTML pages are the basic containers
in which text, images, media, and animation are packaged. Moreover, HTML5 is the
up-and-coming version of HTML that, as it gradually is adopted and unified across
browsing environments, opens up vast opportunities for more easily creating web
pages that are more inviting.

Creating HTML5 Pages in Dreamweaver

[12]

In the course of this book, we will explore how to use Dreamweaver to create
page layouts, interactive elements, embedded media, and creative design with
HTML5. However, we will start with one of the most basic, and substantial, new
improvements in HTML5: the creation of a set of elements dedicated to the page
layout. These elements ("tags" in earlier incarnations of HTML) are used to define
regions of a page common to many, if not most, web page layouts.

HTML5 elements (like all HTML elements) are enclosed in "<>" characters in the
HTML code. Therefore, for example, in coding books, the footer element is often
written as <footer>. Even though Dreamweaver generates HTML and HTML5 code,
we will use "<>" when referring to elements to make it easier to identify and work
with them, once generated, in Dreamweaver.

The evolution of HTML layout elements
The earliest versions of HTML did not provide for any real page design tools. Web
pages were envisioned as pages to hold very basic content, with some images and
text formatting, but without any real page layout.

Phase 1: Tables
Inventive designers forged a way to use tables—a feature originally created to
present data in columns and rows—as a page design tool. Table columns were
used to layout vertical blocks of content, whereas table rows were used to layout
horizontal bands of content.

Tables are still available as a tool for page design and a large percentage of
older websites that were built using tables still rely on tables for page design.
Moreover, Dreamweaver, including Dreamweaver CS5.5, still provides tools for
designing pages with tables. The following screenshot shows a web page design in
Dreamweaver. The properties inspector (shown in the following figure) identifies
the selected table as having three columns (merged in the top and bottom rows) and
three rows.

Chapter 1

[13]

Phase 2: CSS DIV tags
Tables had (and have) two great limitations as page layout tools.

The first was that they were (and are) a clunky way to design pages. Creative
and unique page layouts with tables required contorting what was essentially a
checkerboard of squares into desired headers, footers, sidebars, navigation spaces,
and so on. Placement of images and text was awkward, requiring unstandardized
combinations of table, row, column, and cell attributes, mixed and matched with
attributes like those that margins assigned to text and images.

The second problem was that it was nearly impossible to orchestrate the global page
designs across a website. The page design was embedded in individual pages—and
thus if a designer wanted to tweak the layout of dozens of pages across a website,
this generally required changing each page layout, one by one.

There is a third; it is a less recognized problem with using tables as page layout tools:
They are not compatible with special reader software that allows vision-impaired
people to experience web pages.

www.allitebooks.com

http://www.allitebooks.org

Creating HTML5 Pages in Dreamweaver

[14]

The solution that emerged to these challenges was just as creative and out-of-the-box
as the original invention of using tables for page layout. Designers began relying
on external (separate) CSS files to control both the attributes of text and images, but
also to define blocks that could be used for the page design. Designers took and
expanded the vaguely defined HTML DIV tag, and used it as a page layout tool.
By attaching rules (attributes) defined in the CSS file to uniquely named DIV tags,
designers concocted a work-around to the lack of real page layout elements
in HTML. This situation existed through all the versions of HTML and XHTML
(an updated, enhanced version of HTML that preceded HTML5).

Working with these blocks was (and is) awkward. There is no uniform or
standardized set of DIV tags for page design, each designer creates and defines his
or her own. This means that designers working in collaborative environments, or
with content created by other designers, have to create their own sets of defined
DIV tags for page layout. Editing other designers' work often requires far too much
unproductive time and energy decoding the unique set of DIV tags used for page
layout in an inherited design.

Therefore, DIV tags provided more flexibility than tables and allowed global editing
(by changing the CSS file, all DIV tags across a site are updated). However, DIV tags
are not standardized and are a clumsy and unnecessarily anarchistic approach to
defining page layout elements.

The following screenshot shows a page designed with DIV tags in Dreamweaver. The
Properties inspector reveals a non-standard DIV tag defining the selected container
on the left side of the page (sidebar1, displayed in the Class pop up):

Chapter 1

[15]

Phase 3: HTML5 layout elements
From this set of demands and constraints, HTML5 evolved a standardized set
of page layout elements. Sections of a web page such as Header, Footer, <nav>
(for navigational elements), or <aside> (sidebars) come pre-named.

Like DIV tags before them, HTML5 layout elements can be updated across a website
quickly and easily.

In addition, like DIV tags before them, HTML5 elements rely on CSS styles to
define their location, size, and other appearance attributes (such as the background
color or padding). Therefore, in the course of this, and following chapters, we'll be
using Dreamweaver to orchestrate a dynamic relationship between HTML5 layout
elements and CSS styles.

Meet the HTML5 layout elements
As alluded to in our journey thus far, HTML5 comes with pre-set elements for
commonly used components of a web page design. Once we have briefly surveyed
the main HTML5 layout elements, we will explore how they are generated and
modified in Dreamweaver with the HTML5 Pack.

Some of these elements are more adapted to laying out particular kinds of web
pages. For example, the <article> and <section> elements are particularly
useful for online periodicals or other publications that have articles, with
(sub)sections within them. The <aside> element defines boxes for sidebars
associated with articles.

The intuitively named <header> element, as you would expect, holds the content
at the top of web pages. The <footer> element holds the content at the bottom of
a page.

The <nav> element is used to layout the navigational content—links to other pages
or locations on the Internet.

Creating HTML5 Pages in Dreamweaver

[16]

The following diagram illustrates a typical page layout using the <header>, <nav>,
<article> and <section>, <aside>, and <footer> HTML5 elements:

Dreamweaver's HTML5 Pack and design
elements
Now that we have introduced the key design elements of HTML5, we are almost
ready to generate pages that use those elements in Dreamweaver. Before we do,
however, it will be helpful to preview briefly, conceptually, how Dreamweaver
generates HTML5 layouts.

The first thing to emphasize is that HTML5 elements such as <header>, <footer>,
<article>, <section>, <aside>, and <nav>, do not really do much if anything "on
their own." Like their DIV tag evolutionary precursors, they are more or less empty
vessels. HTML5 elements take shape, literally, when connected with CSS styles.

For example, a web page might have a <header> defined as stretching the entire
width of the page, at the top of the page, with a set background color, and spacing
that keeps it from bumping into other page elements. All of these attributes (size,
location, background color, and spacing) are defined in a CSS style sheet that
includes a specific CSS style associated with the <header> element. Moreover, this
symbiotic relationship between HTML5 layout elements and CSS styles is required
for each HTML5 layout element.

Chapter 1

[17]

Therefore, when Dreamweaver generates page layouts using HTML5 elements,
it also generates a CSS file that has already built-in style rules for all the HTML5
elements used in the page.

Of course, you can change how HTML5 elements appear. You can edit the generic
content that Dreamweaver provides with the HTML5 layouts. Alternatively, you can
change the appearance of the HTML5 elements by editing the CSS styles. We will
do both of these things in the next chapter of this book. Here and now, we will focus
on setting up Dreamweaver so that it can generate HTML5 pages and then we will
actually create those pages.

With the basic understanding of HTML5 layout elements and the way they interact
with CSS under our belts, the time has come to launch into Dreamweaver and begin
to create HTML5 layouts.

Detecting or installing the HTML5 Pack in
Dreamweaver
If you are working with Dreamweaver CS5.5, then you have the HTML5 editing
features automatically installed. Therefore, you can skip this section of this chapter.

If you are working with an earlier version of Dreamweaver, then you may need to
install the HTML5 Pack separately.

Depending on how recently you have installed Adobe-supplied updates to your
version of Dreamweaver, you may have to install the HTML5 Pack to access
Dreamweaver's new HTML5 tools. A quick test will determine whether the HTML5
Pack is installed in Dreamweaver CS5 (the following test won't work for earlier
versions of Dreamweaver, as the HTML5 Pack features for those versions are
much more limited).

Here it is. Launch Dreamweaver, and choose File | New from the main
Dreamweaver menu (you can do this whether or not the Welcome Screen
is visible). The New Document dialog appears.

Creating HTML5 Pages in Dreamweaver

[18]

In the New Document dialog that appears, choose the Blank Page category in the
far left column. In the Page Type category, choose HTML. At the bottom of the
Layout column, you should see two layouts that begin with HTML5, as shown in
the following screenshot. You can see previews of these layouts if you click (once)
on them in the New Document dialog:

If your New Document dialog does display the two HTML5 layouts, hit the pause
button (figuratively speaking) while we catch up readers who do not have the
HTML5 Pack installed.

If you do not have the HTML5 layouts available in the New Document dialog, then
your installation of Dreamweaver CS5 has not been updated for HTML5 and you
will have to install the HTML5 Pack. In order to do that, use your web browser to go
to http://labs.adobe.com/technologies/html5pack/ and follow the instructions
to update your installation of Dreamweaver CS5 to add the HTML5 Pack.

Older versions of Dreamweaver: In order to add the HTML5 Pack
to older versions of Dreamweaver, follow links to the Dreamweaver
Exchange at the preceding URL.

Chapter 1

[19]

With your installation of Dreamweaver CS5 updated (or if you have upgraded
to CS5.5), or with the HTML5 Pack added as an extension to an older version of
Dreamweaver, you are ready to roll. You now have Dreamweaver enabled to access
HTML5 tools.

Creating a Dreamweaver site
Most of the features associated with creating HTML5 content in Dreamweaver
require that you first define a Dreamweaver site. Dreamweaver sites organize
and manage all the files you create as you generate the content in Dreamweaver.
Moreover, that kind of careful file management is essential in order to make sure
that your HTML5 content works the way it is supposed to. For example, very shortly
we will create web pages using HTML5 page layouts in Dreamweaver CS5.5. Those
page layouts are dependant on CSS files that control how the HTML5 elements
look. By defining a Dreamweaver site, and managing all files through this, you will
ensure that the linked CSS file meshes properly with the HTML file that holds the
page content.

In addition, let me emphasize this: Always work within a Dreamweaver site. Again,
the more complex (and interesting, attractive, and inviting) your HTML5 pages, the
more important it is that Dreamweaver is working its magic to orchestrate how all
the generated files synch up with each other.

In order to create a Dreamweaver site, carry out the following steps:

Planning and Designing a site: With our focus on implementing
HTML5 elements in Dreamweaver, a full exploration of approaches to
aesthetic, content, and audience issues is beyond the scope of what we
can explore. However, as a general point of departure, you will want
to sketch out in some form the pages you wish to create, prepare and
organize text, images, and media content, and define basic thematic
elements such as fonts and a color scheme either before, or during the
process of creating your site. A wide range of online resources can
provide perspectives and advice on web planning and design.

1. Copy and paste all the content you have prepared for your website (text files,
images, and media) into a folder on your computer.

2. From the Dreamweaver CS5 or CS5.5 main menu, select Site | New Site.
3. The Site Definition dialog opens. With Site selected in the category list

on the left, type a name for your site in the Site Name field. This name can
contain spaces, upper and lowercase characters, and special symbols.

Creating HTML5 Pages in Dreamweaver

[20]

4. Click on the Browse for folder icon (the little gray folder) at the right of
the Local Site Folder field and browse to, and select the folder in which
you copied the content that will be used in your website, as shown in the
following screenshot:

5. There are advanced options available, but the default settings will work fine.
Click on Save to complete the process of defining your site.

Connecting to a remote site: In order to publish your website on
the Internet, you have to define a remote site in Dreamweaver. The
techniques explored in this book do not—overwhelmingly—require a
remote site. If you are creating a remote site as you work through this
book, then you will contract with a web hosting service that will provide
you with an FTP address, a username, and a password. Enter this
information in the Servers tab of the Site Setup dialog to connect your
local site to the remote site. In order to upload files from your local site to
your remote site, choose Site | Synchronize Sitewide, and choose upload
options from the intuitive Synchronize Files dialog. For a more detailed
discussion of creating and managing remote sites in Dreamweaver CS5,
see Adobe Creative Suite 5 Web Premium How-Tos: 100 Essential Techniques,
by David Karlins.

Chapter 1

[21]

Generating new pages from layouts
using the HTML5 templates
Now that you have defined a Dreamweaver site, you are ready to generate new page
layouts using HTML5 elements. In subsequent chapters, you will learn to customize
the content, size, shape, colors, fonts, and other elements of these HTML5 elements.
However, the first and foundational step is to generate pages.

In order to do that, choose File | New, and select Blank Page from the categories in
the New Document dialog. Click once on the HTML5: 2 column fixed, right sidebar,
header and footer layout to see a thumbnail preview of that layout in the New
Document dialog and read a description of it, as shown in the following screenshot:

Similarly, you can click once on the HTML5: 3 column fixed, header and footer
layout to see a preview thumbnail of that layout, and read a description of it.

The DocType pop up in the New Document dialog allows you to choose a file
format other than (older than) HTML5 to save your file to. However, choosing any
option other than HTML5 effectively negates the HTML5 elements essential to the
layout (this option is more useful for page layouts using pre-HTML5 elements).

Creating HTML5 Pages in Dreamweaver

[22]

The Layout CSS pop up presents an important set of three options. The default,
Create New File, sets up a new CSS file that will hold all the formatting information
for this page. The Add to Head option is not considered best practice because it
embeds styles within the HTML page. CSS files are much more powerful when they
are saved externally—as distinct files—that can be applied to unlimited web pages,
not just one. The final option, Link to Existing File, is used when you already have
a CSS file ready to use with your generated page layout. If you are starting out on
the process of exploring HTML5, then you won't yet have such a page. Later in this
book, we will examine situations where it is useful to link a generated HTML5 layout
to an existing CSS file.

After you have selected one of the two HTML5 layouts, click on the Create button
in the New Document dialog. If you elected to generate a new style sheet, then the
Save Style Sheet File As dialog appears, with a suggested file name as shown in
the following screenshot. By default, if you first created a Dreamweaver site (and
you should have!), the CSS file will be saved to your site folder. It works just fine to
accept the default filename and folder and click on Save in the Save Style Sheet File
As dialog:

Why we are saving a style sheet: The HTML5 layout generated by
Dreamweaver includes HTML5 elements (tags) that, very roughly,
demarcate sections of the page. The formatting of those HTML5
elements is controlled by CSS styles, saved in an external (separate
and distinct) Style Sheet file.

Chapter 1

[23]

Examining the generated HTML5 layout
Carefully examining a generated HTML5 introduces HTML5 elements and enables
editing the content of the layout.

Dreamweaver CS5 and CS5.5 provide a wide array of views and combinations of
views with which we can examine the generated HTML5 layout. Here, we will
survey the most important and useful of those views and the way they work in
various combinations to make it easier to edit the content.

You can view the page content in ways that provide access to the code that
display how the page will look in a browser, or both. You can edit the page content
or lock out the editing features to see how elements, such as links, will appear in a
browser. In addition, you can explore related files that affect the way an open web
page appears.

Toggling between related files
The first component of the page display to be aware of is the related files tab. This
set of tabs provides access to all files related to the main HTML page. When you
generate either of the two available HTML5 layouts, a separate, distinct, but related
(linked) CSS file generates. Both the HTML file and the CSS file are displayed in the
related files tab, as shown in the following screenshot. You can toggle between
them by clicking on either tag.

Toggling between an HTML page (the Source Code tab) and a related CSS file
(indicated by the .css filename extension):

As you create more complex HTML5 layouts, being aware of what related files affect
the appearance of that page opens the door to powerful design techniques. For now,
simply note that the appearance of your generated HTML5 layout is defined by both
the basic HTML web page and the related (linked) CSS file.

www.allitebooks.com

http://www.allitebooks.org

Creating HTML5 Pages in Dreamweaver

[24]

Code, Split, and Design views
Your HTML5 page can be viewed in the Code, Split, or Design view. You can toggle
between these views from the View menu, or by using buttons in the Document
toolbar (if the buttons are not visible, choose View | Toolbars | Document to
display it).

Code view reveals the HTML code that defines the basic page content. The
Design view shows, roughly, how the page will look in a browser. The Split view
splits the screen between the Code view (by default on the left) and the Design
view (on the right).

Only the Code view for CSS pages: CSS pages that are related to
HTML pages are only displayed in the Code view. This is because CSS
pages are just code—they define how the HTML page displays, but
these files themselves are not normally viewed in a web browser and if
they are, they simply appear as lines of code.

The Design view functions in two modes—with the Live View on or off. With
the Live View on, you cannot edit most of the page content, but you can preview
how interactive elements, such as links, will appear in a browser. The following
screenshot shows a link being tested in a Split mode, with the Live View on.

Testing how a link will appear in Split view, with Live View enabled. Note that the
mouse cursor is interacting with a link as it would in a browser:

Chapter 1

[25]

Dissecting design elements with the Inspect
Mode
The Inspect button in the Document toolbar turns on a feature that makes it easier to
identify HTML5 (and other) elements that control how a page looks.

When you hover over any element on a page in the Inspect mode, elements such as
padding (space within an HTML or HTML5 element) appear in purple and spacing
created by margins (spacing outside of an HTML or HTML5 element) displays
in yellow.

The Inspect mode is also of a particular relevance in working with HTML5
elements. When you place the mouse cursor over any part of a web page created
from HTML5 layouts, you can click on the left-arrow key on your keyboard to
"work backwards" in the list of elements that appears in the tag bar at the bottom
of the Dreamweaver window.

The generated HTML5 layouts include elements such as <header>, <nav>,
<section>, <aside>, and <footer>—new HTML5 elements that make page
design simpler. In the following screenshot, the <header> element is identified
in the Tag bar.

Creating HTML5 Pages in Dreamweaver

[26]

Other workspace settings for the Inspect mode: When you click on the
Inspect button, Dreamweaver prompts you to change other workspace
settings as well. Those other workspace changes are not essential, except
for one—do work in the Live View when using the Inspect mode.

Saving a layout as a web page
After you generate an HTML5 layout, the next step is to save the generated web
page as an HTML file. However, before you do that, enter a page title in the Title
box in the Document bar in Dreamweaver. File names should not have spaces,
special characters (such as "?," "/," or "!"), but page titles should be descriptive.
The following screenshot shows the Title field in the Document bar:

In order to save the file, choose File | Save. The Save As dialog opens, with a default
file name assigned, and an HTML filename extension.

Here, it is time to revisit my earlier admonitions in order to be sure to create a
Dreamweaver site, and work within it. One simple way to make sure you are saving
your web page in the proper folder in your Dreamweaver site is to click on the Site
Root button in the Save As dialog. This will ensure that your file is saved at the
proper location.

Having ensured that you are saving your page to a folder defined in your
Dreamweaver site, you can customize the filename for your page. Whatever filename
you select, you should retain the .html filename extension. This is one of the
acceptable filename extensions for web pages. The filename itself should have no
spaces or special characters. In addition, while this is not a requirement for web page
filenames, I recommend keeping filenames all lowercase to prevent confusion in file
management (much of the Web is case sensitive when it comes to filenames).

The Unicode normalization form pop up: The default "C" setting in
this pop up is the most widely supported way of coding characters used
in different languages (such as o, ó, ò, ô, ö, õ) for the World Wide Web.
Dreamweaver allows you to save in other, less widely supported systems
of coding characters, but this is only useful in very specialized situations.

Chapter 1

[27]

After entering a filename in the Filename (Windows) or Save As (Mac) field in the
Save As dialog, click on the Save button. The Save As dialog with a valid filename
is shown in the following screenshot:

Recipe: Creating and saving a 3-column
HTML5 page
This recipe will walk you through the process of generating and saving a 3-column
web page using the key HTML5 Layout elements. We will assume that you have
created a Dreamweaver site (see the section named Creating a Dreamweaver site in
this chapter).

1. Select File | New to open the New Document dialog. Select Blank page on
the left-hand category column. Choose HTML in the Page Type column.
Moreover, select HTML5: 3 column fixed, <header> and <footer> in the
Layout column.

2. Note that HTML5 is now selected in the DocType pop up and Create New
File from the Layout CSS pop up.

3. Click on the Create button. The Save Style Sheet File As dialog appears.
4. Click on the Save button and if prompted to replace an existing file,

click on Replace. A generated HTML5 layout opens in Dreamweaver
Document window.

Creating HTML5 Pages in Dreamweaver

[28]

5. Click on the Inspect button in the Document toolbar to more easily detect
and identify HTML5 Layout elements. With the Inspect button enabled,
hover over different sections of the page, and look for HTML5 Layout
elements such as <header>, <footer>, <aside>, <nav>, <article>, and
<section> in the tag bar at the bottom of the Dreamweaver window, as
shown in the following screenshot:

6. Enter a page title in the Title box in the Document toolbar.
7. Choose File | Save. Replace the default filename with your own

filename—all in lowercase, no spaces, or special characters. Leave
the HTML filename extension in tact. In order to work through the
recipe in Chapter 2, save your file as: chapter1.html:

8. Click on the Site Root button to ensure the file is correctly managed by
Dreamweaver and then click on the Save button.

This is, of course, only the first step in creating a web page using the HTML5 layout
elements in Dreamweaver. The next steps are to customize the content and look of
your page. We will do that next!

Chapter 1

[29]

Summary
In this chapter, we explored how to verify that the HTML5 Pack is installed in
Dreamweaver CS5.

We have focused on generating web pages using the two available HTML5 Layouts
that are part of the HTML5 Pack. We have explored both the HTML (HTML5) file
that is generated from either of these layouts and noted that the formatting of the
HTML5 elements (and other HTML elements) is dependent on a related (linked) CSS
(style sheet) file.

Finally, we began to acclimate to some of the most useful views in Dreamweaver CS5
that will be of great value as we detect and change the attributes of HTML5 elements
in future chapters.

Customizing HTML5
Layout–Content and Look

In the previous chapter, we learned to generate HTML5 Page Layouts using
Dreamweaver's HTML5 Pack. By the end of this chapter, we will have walked
through the first phase of customizing both the content and the look of HTML5
pages generated with the HTML5 Layouts in Dreamweaver.

Customizing the content and look of pages generated from Dreamweaver HTML5
Layouts is best digested as a two-course meal. The first course is customizing the
content, as well as the HTML tags that define the overall look of the page. We will
do that in this chapter.

The second course, which we will see in the next chapter of this book, involves
identifying and customizing the size, shape, location, background, type, and other
attributes of HTML5 Layout elements.

In the course of all that, we will:

Further explore the HTML and CSS tabs of the Properties inspector
Explore the CSS Styles panel
Identify and edit basic HTML tags that define the appearance of text on
the page
Customize page content

•

•

•

•

Customizing HTML5 Layout—Content and Look

[32]

Customizing layouts – An overview
Customizing page layout content in Dreamweaver is not particularly simple. Is
that a bad thing? It depends. If you are not fussy about how your pages look, or if a
"customized" blog with your own font color and logo is sufficient, then the course we
have embarked on is overkill and you can use a WordPress blog for your content.

However, if your content really requires customization, unique page layouts with
your own artwork, media, fine-tuned colors, and interactivity, then the price of
working with Dreamweaver is probably good value.

Embedding content where it belongs
Here is the challenge in conceptual terms: the page designs you generate in
Dreamweaver are actually generated code. Specifically, they are HTML (in our case
HTML5) and CSS (Style Sheets) code. Moreover, the challenge, or the trick, is to be
sure that content you add falls in the proper place within the coding.

Doesn't Dreamweaver's Design view manage this? Kind of. For relatively
simple page design projects, all you need to do is click on the Design view of
Dreamweaver's Document window and type text, embed an image, or place a media
file. However, more complex page layouts, involving the kinds of containers we are
generating with Dreamweaver's HTML5 tools.

All this is highly manageable, and the challenges it poses are eminently solvable.
However, it helps to go into the process with the approach of Sherlock Holmes
(or his modern counterpart, TV's Dr. House). I will walk you through techniques
and tools for making sure your content fits nicely and neatly into Dreamweaver-
generated containers, and with the right élan and attitude, you will be able to both
place content cleanly, and clean up messes when content doesn't quite fit into
containers like it is supposed to.

Styles can be defined within a document (embedded or inline styles), or they can be
defined in a separate (external) style sheet file. If all this seems a bit vague, or even
ominous, don't worry. Again, we will hold hands as we walk through this together
in the course of this chapter.

Dissecting format
Doing the diagnostic work to identify why an element on your web page looks
the way it does is even more of a challenge than getting content placed properly
in containers.

Chapter 2

[33]

That is because there are all kinds of ways to define and apply formatting to
elements on a page. Formatting can be defined and applied via a style sheet (a set of
CSS rules) that is embedded within a single page. Another way to define and apply
is through an external style sheet—a distinct CSS file that is linked to the page.

When CSS styles are defined both within a page, and through a linked external
CSS style sheet file, the local embedded CSS rules (the ones defined in the page itself)
trump those applied via the external style sheet. In this book, we will simplify the
challenge of sorting through which set of styles is doing what by adopting a simple,
best practice. We won't do any CSS style definition within a page. We will do all our
CSS style definitions through external, linked CSS style sheet files. That will simplify
our exploration of formatting HTML5 elements, and it is—for a whole range of
reasons, a full exploration of which is beyond the scope of this book—the best
way to format websites in almost every situation.

However, there is more. Even when all styles are applied through external style
sheets, it is still often complicated to determine where the formatting for an element
comes from. When there are several style sheets attached to a single page, they
can issue conflicting "instructions" as to how a page should look. The best way to
deal with this kind of challenge is to avoid having such conflict within a web page.
However, in the course of this book, we will encounter and surmount situations
where such conflicting style sheets are attached to a page.

Finally, and with direct applicability to the more basic dimensions of page
formatting that are the focus of this and the following chapter, there can be conflicts
between style definitions within a single style sheet. For example, in this chapter we
will learn to apply basic, page-wide styles to manage features such as background
color and font type. However, those basic page-wide styles will come into conflict
with styles associated with specific page design elements created by Dreamweaver's
HTML5 Layouts in some cases. In that case, the general rule is that the more specific
the style, the higher priority it has. For instance, a style that defines the font and font
color for an entire page will be overridden by a font definition that is applied to a
specific container within that page. In the following figure, elements in many HTML
files are defined by a single style sheet.

Linked stylesheets

Styles defined by elements

www.allitebooks.com

http://www.allitebooks.org

Customizing HTML5 Layout—Content and Look

[34]

These formatting and styling challenges will all make more sense as we work through
specific challenges, but it will be helpful to keep the conceptual big picture in mind,
and return to it as needed, as we solve specific formatting challenges one-by-one.

Formatting HTML5 Layout Elements: In the next chapter of this
book, building on the foundation we establish here, we will work
through the specific HTML5 page layout elements that are generated
by Dreamweaver's HTML5 Pack.

Editing content in HTML5 page layout
elements
Obviously, the point of generating HTML5 page layouts is to replace the generated
dummy content with your own, real content! Having explored in a bit of depth
the conceptual challenges of properly embedding custom content in HTML5 page
layouts, we are ready to walk through the specific techniques for embedding your
own real-live content into HTML5 layouts.

In the following discussion, I will be building on the tools and techniques covered
in the previous chapter in this book. I will assume you are familiar with the HTML5
layouts generated using the HTML5 Pack in Dreamweaver. Moreover, I will be
zooming in on specific aspects of those layouts, and how to customize them.

While our focus here is on embedding your actual text and other content
in web pages, if for some reason you need to generate pseudo-Latin type
to use as a place-holder for design wireframing or mockup purposes,
you can generate Lipsum type at http://www.lorem-ipsum.info/
generator3.

HTML text tags versus HTML5 layout elements
When you copy and paste text into the generated HTML5 layouts that come with the
HTML5 Pack, you have to be aware of two things: What HTML5 layout element are
you placing content in

What HTML tag is applicable to that content

Uncovering what elements and tags are in effect does not require us to memorize
HTML code or syntax, but it does require us to figure out what HTML code is
operative for selected text.

Chapter 2

[35]

Organizing content in containers
Both the 2-column and 3-column HTML5 layouts generated from the HTML5 Pack
come with header, footer, article, section, and content boxes. These boxes (and there
can be more than one of each on a page) hold text and other content.

The first step in customizing pages is to replace the generic placeholder content with
your own content. This requires selecting content in a box, and copying and pasting,
or typing your own content into the box, or, embedding images or media.

Some of that process is obvious and intuitive. To replace the logo, for example,
that comes with the 3-column layout; double-click on the placeholder Insert_logo
(180x90), as shown in the following screenshot:

Doing this opens the Select Image Source dialog. Navigate in that dialog to select
your own image and click on Choose.

Customizing HTML5 Layout—Content and Look

[36]

Similarly, you can simply select text in a container, and replace it with your own text,
as shown in the following screenshot:

Utilizing Split view for editing content
Sometimes all that is required to replace template content that comes with the
HTML5 layouts with your own content is to delete the existing text, and copy
and paste (or type) your own text.

However, sometimes the process is more complicated because within the fairly
clearly defined HTML5 layout elements, there are different HTML text tags.
Therefore,, different text within an HTML5 element appears differently.

This is where Dreamweaver's Split view becomes particularly valuable. Split view
is a useful way to sort out which tags and elements are defining how different text
looks. Let's take an example. To replace the first section of text in the 3-column
HTML5 layout generated by the Dreamweaver HTML5 pack (the full name of the
layout is the HTML5: 3 column fixed, header and footer layout), we can replace
either the <p> (paragraph) content, or the <h2> (heading 2) content. In the following
screenshot, the Heading 2 content is selected:

We can determine which HTML tag (paragraph, or Heading 2) is applied to the
selected text by looking at the highlighted code in the Code side of Split view in the
Document window. In the following screenshot, both the Heading 2 content, and the
paragraph content have been edited, separately.

Chapter 2

[37]

Understanding how HTML tags like the paragraph tag, or heading tags (<h1>…
<h6>) intersect with HTML5 layout elements, like <article>, <section>, <aside>
and so on is the key to customizing content. Appreciating and distinguishing
between these two things—layout elements and text tags—opens the door to
understanding and controlling how your pages are customized.

Moreover, you need not be in Split view to manage this. You can also identify which
HTML tags and elements apply to selected content in the tag bar on the bottom of the
Document window. We explored this tag bar in the previous chapter. Particularly, as
you become more comfortable working with HTML5 layouts and HTML in general,
you will be able to rely on the tag bar in Design view. In the following screenshot, for
example, the tag bar reveals that the selected text is within the <section> HTML5
element, and, within that, governed by rules for the <h2> tag.

Adding articles and sections
On the foundation established up to this point, we can walk through the process
of adding articles and sections to the set that come with the HTML5 layouts. Both
layouts come, by default, with one article box, and three section boxes.

Your page content, however, might well contain more than one article, and your
article(s) may well contain more or less than three sections. Deleting sections is easier
than adding them, but even that takes a bit of technique. Let's look now at how to
add, or delete articles and sections.

The first step in adding an article, or a section, is to select an existing article, and then
copy and paste it. That's not quite as simple as one might expect.

Customizing HTML5 Layout—Content and Look

[38]

Identifying and selecting HTML5 layout elements
Dreamweaver CS5.5 (and CS5) has three Visual Aids intended to make it easier to
identify page layout elements (mdash)CSS Layout Backgrounds, CSS Box Model,
and CSS Layout Outlines. All three can be turned off and on from the Visual
Aids popup in the Document toolbar (if that toolbar is not visible, choose View |
Toolbars | Document). In the following screenshot, all three are turned on.

Enabling CSS Layout Backgrounds makes it easier to determine where margins and
spacing are defined for elements on a page. We will look at that piece of the puzzle
in the next chapter of this book, but in the following figure, you can see ten pixels of
padding associated with the <aside> element indicated with diagonal shading.

Finally, and most critically, the CSS Layout Outlines visual aid is very useful in
identifying and selecting HTML5 and other layout elements. In the following
screenshot, a <header> element is selected.

Chapter 2

[39]

Copying, pasting, and deleting HTML5 Elements
In later chapters in this book, we will explore, from different angles, different ways
to build pages from scratch using HTML5 layout elements. However, even when
we do that, copying and pasting plays a big role in quickly and easily duplicating
already existing design elements.

Even with Dreamweaver's visual aid, there is a dimension of trial and error in
selecting distinct HTML5 layout elements in Design view. The reason is that the
borders between elements are a hair's breadth, and it often takes a bit of clicking
to select the element you wish to copy and paste. However, finding and selecting
elements is exactly how you duplicate them.

If, for example, you need to add an <article> container to your page, the easy way
to do that is to start by locating, selecting, and copying to the clipboard an existing
article container, as shown in the following screenshot:

Alternatively, take another example (because this can be a bit confusing until you
practice a bit), to copy an article section you would click on the border of the section
itself and you could double-check in the tag bar (or triple-check using the Code
section of Split view) to be sure you had a single section selected. The following
screenshot shows all three of these methods for confirming that a section is selected,
plus the popup code hint to be absolutely, positively sure a section is selected.

Customizing HTML5 Layout—Content and Look

[40]

Once you have selected and copied any HTML5 layout element, the next step is
to locate the spot to which you want to copy it. This requires some precision, and
at least until you get comfortable with relying on the tag bar at the bottom of the
Design window; you may want to work in Split view.

The trick here is to position your cursor just past the container that precedes where
you wish to position the copied container. Again, particularly until one becomes
comfortable with doing this, it is helpful to rely on the Code in split view. For
example, the following screenshot shows a cursor positioned, both as identified
in the Code side of Split view and in the tag bar, as being just beyond one article
<section> tag and just before the next one. This is the position where it is possible
to paste a copied section, inserting it between the two existing sections.

Identifying style rules
Now that we have explored on how to work with the content of generated HTML5
layouts; let's turn to formatting those pages.

To review, there are two main components of this: formatting the regular HTML
tags that define the look of the page overall; and formatting the HTML5 elements
themselves. In the remainder of this chapter, we will learn to do the former, which
is a substantial part of page design with or without HTML5.

Remember back when you first generated an HTML5 layout? You were asked to
save an associated CSS file with a long name either HTML5_twoColFixRtHdr.css
or HTML5_thrColFixHdr.css.

That supplied CSS file, is what applies formatting to the HTML5 elements and other
layout features of your web page. You can see that attached style sheet in the CSS
Styles panel. In the recipe at the end of this chapter, you will save that CSS file with
your own file name as you customize it.

HTML5 layout elements require styles
Without the CSS style definitions in those linked style sheets, the HTML5 layouts
wouldn't be layouts at all. Don't believe me? Good for you! A healthy dose of
skepticism can be part of critical thinking. So, to see for yourself, try this:

Chapter 2

[41]

Generate either of the HTML5 layouts (review last chapter if you forgot how). If the
CSS Styles panel is not visible, choose Window | CSS Styles to display it. Note that
the CSS Styles panel indicates that one of the two CSS files listed above is linked to
your page (unless you renamed the CSS file in the course of generating the layout).

Now, with that CSS file selected in the CSS Styles panel, click on the Unlink CSS
Style sheet icon, as shown in the following screenshot:

What happened to all the blocks that defined sections of the page? What happened
to all the page formatting? Gone with the style sheet, that's what happened to all
that formatting! Your "naked" page, with the HTML5 and other elements in tact, but
the styles stripped from them, appears as something like an outline, as shown in the
following screenshot:

Customizing HTML5 Layout—Content and Look

[42]

To relink the CSS file, click the Attach Style Sheet icon at the bottom of the CSS
Styles Panel, as shown in the following screenshot:

Doing that opens the Attach External Style Sheet dialog. Use the Browse button to
navigate to the root folder for your site (if you are not sure what is meant by "site", hit
the pause button and review the discussion of Creating a Dreamweaver site in Chapter
1). Select the CSS file you just unlinked, and then click on OK on the Attach External
Style Sheet dialog to relink the style sheet file and restore formatting to your page.

Examining CSS associated with HTML5 layouts
We can examine the CSS styles that come with Dreamweaver's HTML5 layouts
by expanding the attached file in the CSS Styles panel (do that by clicking on the
triangle next to the CSS file name until a list of styles displays. Select the All tab
at the top of the panel to view styles as shown in the following screenshot:

Chapter 2

[43]

Stretch the CSS Styles panel so you can see the whole list of styles. You can adjust
the division between the top of the dialog (that lists the styles) and the bottom
(that displays style attributes) by dragging on the divider between them.

The CSS styles associated that come with the HTML5 page layouts include all the
main types of styles:

HTML5 layout elements like <header>, <section>, <footer>, <aside>,
<nav>, and <article>
Regular HTML tags like <body>, <h1>, <h2>, <h3>…, and <p>
Class styles that can be applied to any element, and can be used multiple
times on a single page. The class styles begin with a period, like .container
or .navbar1
Compound styles that are used for formatting content that includes more
than one element or tag, and are used to define links and link states, such
as a:link or a:visited.

Using styles for page layout: For an overview on the
evolution and role of styles in page layout, see Chapter 1.

We will reserve working with the HTML5 layout elements for next chapter.
However, here and now, we will lay the basis for that with a compressed
survey of designing pages with CSS.

Customizing HTML tag rules
To situate ourselves in the process of customizing HTML5 layouts, it's helpful to
review once again that the properties of these pages are defined by the content
(which we have just learned to customize), and the CSS properties applied to
different HTML tags.

Moreover, to review a bit, those HTML tags include both HTML5 layout elements,
and traditional HTML tags such as Headings (1-6), the paragraph tag, along with
other tags like those for numbered lists and bullet lists.

In Chapter 3, we will focus on the particular challenges of redefining the HTML5
layout elements. Here we will jog through a quick, compressed overview of
defining CSS styles for other HTML tags.

•

•

•

•

www.allitebooks.com

http://www.allitebooks.org

Customizing HTML5 Layout—Content and Look

[44]

Making quick changes to styles in the CSS
styles panel
To define the formatting of any HTML tag, select that CSS rule icon in the CSS Styles
panel. As you do, the properties associated with that tag appear in the bottom half
of the CSS Styles panel. For example, in the following screenshot, the attributes of
the Body tag are displayed, most importantly the font color (black), and the font
(the Verdana family of fonts).

The attributes for a selected tag can be edited in the bottom half of the CSS Styles
panel. For example, in the following screenshot, the attributes of the <body> tag
have been changed so the background is now black, the font Times, and the font
color gray.

Chapter 2

[45]

Basic changes to tag attributes can be made using the color picker swatches in the
bottom half of the CSS Styles panel or by simply typing new attributes (such as
"courier" in the font-family attributes box).

The CSS rules definition dialog
Another way to make changes to the styling rules applied to an attribute is to click
the Edit Rule... icon at the bottom of the CSS Styles panel (it looks like a pencil).
Doing so opens the CSS Rule Definition dialog for the selected attribute,
as shown in the following screenshot:

Throughout this book, we will be returning to the CSS Rule Definition dialog. This
may well be the most powerful element of Dreamweaver. At this stage of the trip,
however, the most important categories to note are the Type category (that opens
by default as shown in the preceding screenshot), and the Background category.

Editing type styles
In the Type category, the Font Family popup allows you to choose a group of fonts
to assign to paragraph text. The Font Size popup defines font size, font weight,
and other features such as boldface and italics. You can assign values and units
of measurement (like 12 points, 10 pixels, or 1 em) or relative sizes ranging from
xx-small to xx-large.

You can change the default values for Line Height to create additional space
between lines of type. The Text Decoration checkboxes are most useful for
defining font links, something we will look at shortly.

Customizing HTML5 Layout—Content and Look

[46]

Editing backgrounds
The Background category of the CSS Rule Definition dialog is where you
choose a background color or background image. The Background-color picker
opens a palette to select a background color. Use the Browse button next to the
Background-image box to browse to an image file on your computer to use as
a background.

Backgrounds can be applied to tags associated with text headings, for example, you
might apply a background to a heading. However, more typically, backgrounds
are assigned to the <body> tag and to an entire page. By default, such background
images tile repeat, as shown in the following screenshot:

Preview with apply
As noted earlier, we will be returning to the Rule Definition dialog repeatedly
throughout this book, and in the course of doing so, we will visit all the categories
and push the limits of how HTML5 elements can be formatted.

The most important thing to be aware of at this stage of the journey is that you can
use the Apply button to preview how the CSS rule you are defining will look when
applied to content on the open web page in Dreamweaver's Document window.

Chapter 2

[47]

Saving customized HTML5 layouts
Up to this point, as we have generated pages using Dreamweaver's HTML5 layouts,
we have attached the CSS style files supplied with those pages by Dreamweaver.

Moreover, as we have edited the CSS on those pages (by making the kinds of
changes just discussed to the <body> tag and so on), we have simply saved those
changes to the default CSS file supplied by Dreamweaver.

In real life, however:

We would want to keep our own, customized CSS file distinct from the
generic one generated each time by Dreamweaver, and
We would want to attach our customized CSS file to the generated HTML5
layouts instead of the one supplied by Dreamweaver.

Let's walk through how this works:

First, as soon as you generate your first HTML5 layout, you will note the
Dreamweaver-supplied CSS file is open in an associated file, displayed in the
associated files bar in the Dreamweaver document window. You can open that file
in its own window by right-clicking (Windows) or Control-clicking (Mac) on the file,
and choosing Open As Separate File from the context menu that appears, as shown
in the following screenshot:

With the CSS file open in its own window (it will appear as a page full of CSS code),
choose File | Save As. The Save As dialog appears. Replace the default file name
with your own file name (avoid upper case characters, spaces, or special characters
such as "!" or "#"), and click on Save.

Choose design view to return to the HTML document you are working on. In the
CSS Styles panel, unlink the default CSS styles file, and use the link icon to link your
own CSS styles file.

•

•

Customizing HTML5 Layout—Content and Look

[48]

From now on, as you generate HTML5 layouts, you can use your own CSS styles
file to apply formatting to those generated pages. Do so when you generate a
new HTML5 document by clicking on the attach style sheet icon in the New
Document dialog as shown in the following screenshot:

Navigate and select the customized CSS file you saved, and attach it to the generated
HTML5 layout.

Recipe: Customize content and look of
an HTML5 page
This recipe will walk you through creating a page with customized content and
formatting from an HTML5 layout. The assumption, and it is a critical one, is that
you have created a Dreamweaver site. If you do not have a Dreamweaver site
already defined, refer back to Chapter 1 and create one.

1. Select File | New to open the New Document dialog. Select Blank Page in
the left-hand category column. Choose HTML in the Page Type column,
and select HTML5: 3 column fixed, header and footer in the Layout
column. Select HTML5 from the DocType popup, and Create New File
from the Layout CSS popup. Click on Create. The Save Style Sheet File
As dialog appears.

Chapter 2

[49]

2. Do not click on Save yet! Change the CSS file name to your own file name
(like mystyle.css). Then click on Save.

3. A generated HTML5 layout opens in Dreamweaver Document window.
Choose File | Save and save this file as index.html to make it the home
page for your website. In the Title box of the Document toolbar, enter a
descriptive title for your page.

4. Double-click on the Insert_logo (180x90) box in the upper-left corner of the
page. The Select Image Source dialog opens. Navigate to your own logo
artwork and click on Choose in the dialog to place your own artwork.

5. Select the text, Instruction at the top of the page, and replace it with your
own page content. Replace other text on the page with your own text, or
select and delete it.

6. Select the Link one text on the page. Enter a title for your own link.
7. In the Properties inspector, enter the URL in the Link box, as shown in the

following screenshot. Include the http:// part of the URL.

8. In the CSS Styles panel, expand your linked CSS file by clicking on the
triangle. Click on the now-visible body tag in the top half of the CSS Styles
panel, and click on the edit rule icon at the bottom of the CSS Styles panel.
The CSS Rule Definition for the body tag dialog opens.

9. In the Type category, choose a type group from the font family popup.
Choose a relative font size (such as small, medium, or large) from the
font-size popup. Choose a font color from the color picker.

10. In the Background category the Background-color color picker, choose a
color for your page background.

Customizing HTML5 Layout—Content and Look

[50]

11. Click on Apply to test your changes, as shown in the following screenshot.
When you are satisfied with your settings, click on OK.

12. Choose File | Save All to save both your HTML5 page and your CSS file.

The final phase of customizing HTML5 layouts is to custom format the HTML5
layout elements such as the header, footer, and content containers. We will do
that next!

Summary
In this chapter, you learned to use HTML5 layouts provided by Dreamweaver's
HTML5 pack to create customized pages. Don't think of these layouts as "templates".
They are highly customizable tools to create really unique page layouts. By the
time you are done customizing content, CSS styles—and by the end of next
chapter—HTML5 layout elements, there will not be anything "templatey"
about your page design.

Along the way, we quickly surveyed the basic HTML tags that define how text looks
on a page, as well as the <body> tag, which controls the basic attributes of page
appearance including page background. And, we replaced placeholder images
and links with our own content.

Customizing HTML5
Layout Elements

In this chapter, we will continue our journey exploring HTML5 layouts in
Dreamweaver CS5.5 (and CS5). In the previous chapter, we customized the content
of the HTML5 layout elements that are generated with the two HTML5 layouts that
come with the HTML5 Pack. In this chapter, we will examine and customize HTML5
layout elements—<header>, <nav>, <article>, <section>, <aside>, and <footer>.

This chapter, and the following one, will together form a double-edged attack on
digesting how HTML5 layout elements are used to design pages. In this chapter,
we will work through something the HTML5 layout elements generated in the
Dreamweaver HTML5 Pack elements in more detail and depth, examining both
specific uses of elements in combination with different kinds of CSS styles and the
logic behind those techniques. In the next chapter, we will build something closer
to an "ideal" HTML5 layout page, relying more consistently on HTML5 layout
elements. By the time you have worked through both of these chapters, you will
have had a chance to assimilate both the art and science of HTML5 layouts to the
point that you can build best practise pages and deconstruct and work with more
typical sites that tend to be a mishmash of HTML5 elements and other components.

What will we accomplish by critically dissecting the two HTML5 layouts provided
by Dreamweaver?

Customizing HTML5 Layout Elements

[52]

First, the two HTML5 layouts that come with the HTML5 Pack are thoughtfully put
together and a very flexible foundation on which to build all kinds of page designs.
If I can editorialize for just a moment: I have been writing books, articles, and so
on about Dreamweaver since before you were born and in the past, I have not had
such positive things to say about the sample layouts included in previous versions
of Dreamweaver, including pre-HTML5 Pack Dreamweaver CS5. That, to be fair
though, has not mainly been the fault of Dreamweaver or the developers at Adobe.
The problem has been with HTML itself. Lacking any standardized page layout
tags, HTML lent itself to anarchy, chaos, and confusion—and I don't mean that
in a good way.

Secondly, in part because Dreamweaver's HTML5 layouts are quite complex,
deconstructing them in rather tenacious detail is a good way to master HTML5
page design with Dreamweaver.

As fair warning, I will alert you to the fact that, more than in previous chapters, the
"recipe" at the end of the chapter will constitute a good chunk of the experience here.
The layouts come with useful documentation, but that documentation assumes quite
a bit of perspective, which we will arm ourselves with before dissecting the layouts.

However, don't skip to the end of the chapter. We will prepare for the excursion
through the layout with some conceptual and specific exploration of formatting
HTML5 elements, including a survey of compatibility challenges presented by
browsers that do not support HTML5 and the ways in which HTML5 layout
elements fit into other layout tools such as the <div> tag and older HTML tags.

In this chapter, we will learn to:

Understand and implement the ongoing need for <div> tags as layout
elements within a framework of HTML5
Identify and address browser compatibility issues for HTML5 layouts
Explore and adapt CSS styles applied to HTML5 layout elements
Understand and manage the class CSS styles to apply formatting across
multiple HTML5 layout elements
Control the element background, margins, padding, float, and other
attributes applicable to many HTML5 layout elements
Manage CSS styles and additional HTML5 elements specific to a particular
layout elements (for example, using the <address> element within footer)

•

•

•

•

•

•

Chapter 3

[53]

HTML5 layout and browser compatibility
challenges
Ready for a not-news flash? Ready or not, here it is, HTML5 is a work in progress.

What does that mean? In historic terms, it means that the standards for HTML5
are still being systematized, although a critical mass has been reached where the
meaning and effect of most HTML5 terms is widely agreed on and browsers either
support HTML5, or they are evolving in that direction in finite terms.

For developers, it means that as we exploit time and stress saving features of HTML5
to build web pages, we have to be aware of and compensate for the fact that some
browsers will not support some aspects of HTML5.

We have addressed this in general terms in previous chapters, but in this chapter,
we will examine exactly how this plays out in relation to HTML5 layout elements.
Moreover, we will inspect and learn from how the HTML5 layout elements in
Dreamweaver address compatibility problems.

Which browsers support HTML5 layout
elements?
As noted, the list of browsers that support HTML5 layout elements that we are
exploring in this chapter is growing. Currently (2011) browser environments using
the Webkit engine are the most fully compliant. Those browsing environments
include Google Chrome, Safari (both the desktop and the mobile versions),
Dreamweaver CS4 and CS5's own Live view, the Android mobile browser,
and the Palm webOS browser.

Firefox, Opera, and Internet Explorer do not completely support HTML5 layout
elements. Overwhelmingly, with exceptions, we will note in the course of this
chapter, those compatibility issues are resolved fairly simply by relying on CSS
styles that provide these browsers with all the information they need to present
the content in HTML5 elements as it should appear.

Using CSS to solve browser issues
We will examine an example of a compatibility issue with the HTML5 layout
elements in Dreamweaver's layouts, and how to solve it. Moreover, in the
process, pick up some valuable trouble-shooting and problem solving methods.

www.allitebooks.com

http://www.allitebooks.org

Customizing HTML5 Layout Elements

[54]

The case in point can be illustrated by looking at the <header> element that is used
in both of the HTML5 layouts. With either of the HTML5 layouts open in the Design
view, the header, with its default kaki-ish green background appears at the top of the
page. As an HTML element, it occupies a full horizontal swath across the top of the
page where it has been placed.

However, browsers such as Firefox and Internet Explorer do not recognize <header>
as an element. They can appreciate that there is something called a "header" on the
page, and they can associate attributes (like that green kaki-ish background) with
that object. However, as they don't appreciate that <header> is an element, they
don't reserve an entire horizontal line for the content.

If we look at the CSS Styles panel for the CSS file that comes with either of the
Dreamweaver HTML5 layouts, then we can see that the background color
(defined by default with the #ADB96E hexadecimal code) is assigned to the
<header> element as shown in the following screenshot:

The magic of display:block
In addition to a background color, the <header> element has another CSS attribute,
which is assigned to it and all the rest of the HTML5 layout elements in the HTML5
layouts. That is found in the CSS Styles panel by examining the CSS rules for header,
section, footer, aside, nav, article, figure, as shown in the following screenshot:

Chapter 3

[55]

The display:block property assigned to all these HTML5 layout elements in the CSS
Style sheet linked to the page instructs non-HTML5 browsers that this box of content
should be handled as a block—it should fill the entire horizontal row in which it
is placed.

Disabling a CSS rule
We can see how this works by disabling the display:block property in the CSS Styles
panel for the set of HTML5 layout elements. In Dreamweaver CS5.5 (and CS5), we
can temporarily disable any defined CSS attribute by clicking to the left of it, as
shown in the following screenshot:

Customizing HTML5 Layout Elements

[56]

Clicking to the left of an attribute in the CSS Styles panel disables the attribute by
turning it into a comment in the CSS code (indicated by /*). Such disabled attributes
display with the international "no" symbol in the CSS styles panel. Both the CSS
code and the CSS Styles panel with display:block disabled are shown in the
following screenshot:

Disabling CSS Attributes: The technique of temporarily disabling CSS
settings in the CSS Styles panel has a wide applicability in testing web
page layouts and in experimenting with different looks for web pages.

We can see how with the CSS style display:block disabled (for the moment), the
header formatting collapses when the page is viewed in the Live view in the Document
window. Moreover, it collapses when viewed in Firefox. If you have Firefox installed
on your computer, then you can test this by selecting File | Preview in Browser |
Firefox. Alternatively, preview in Internet Explorer. In either case, the header does
not appear at all, as it is supposed to, as shown in the following screenshot:

Chapter 3

[57]

By contrast, even with display:block disabled in the CSS Styles panel, the header
displays as it is supposed to in Safari, as shown in the following screenshot:

By the way, if you tried this at home, you may have noticed that the footer content
also collapsed in Firefox, Internet Explorer, or other non-HTML5 browsers.

Again, the reason that the <header> element is handled correctly in Safari and not
in Internet Explorer or Firefox is that we have disabled the CSS style that helps those
non-HTML5 compliant browsers understand how to handle the header content.

If we re-enable the display:block attribute for all the HTML5 layout elements (by
clicking again to toggle the international "no" sign off), then the header and footer
content and formatting appears as intended in non-HTML5 browsers, as shown in
the following screenshot:

Customizing HTML5 Layout Elements

[58]

Global HTML5 layout element attributes
We just examined how the Dreamweaver HTML5 layouts adjust for non-HTML5
compliant browsers with supplemental CSS formatting. However, in the process, we
identified another key piece of the puzzle of understanding how HTML5 elements
acquire formatting attributes—this is done by defining CSS styles that are associated
with those elements.

In order to move on and apply that technique to formatting all the HTML5 elements
on our page, it will be useful to explore the following three essential CSS attributes
that can be applied to nearly all the HTML5 layout elements:

1. Backgrounds
2. Size, margins, and padding
3. Positioning

While there are many attributes that can be assigned to layout elements, a conceptual
handle on these three will prepare you with a foundation from which to dissect,
learn from, and be able to adapt Dreamweaver's HTML5 layouts.

Working with backgrounds
The rules for <header>, <section>, <footer>, <aside>, <nav>, and <article>
design elements all, at times, have backgrounds applied to them. While an
examination of aesthetic and accessibility aspects of applying backgrounds to
design elements is beyond the scope of this book, it would be irresponsible not
to note them at all.

Very briefly, colors (and even more so images) can pose serious accessibility
issues. One of the most widely noted accessibility problems for websites is the high
percentage of people, whose color-blindness makes it impossible to distinguish text
when placed on top of various colors, including when those colors appear in photos
or other images or artwork. If accessibility is an issue for your web pages, then do
sufficient research into dos and don'ts for mixing background colors and foreground
text. Inexplicably, The Dreamweaver accessibility validation report feature has
been deprecated as of Dreamweaver CS5. However, you can find multiple sites
online that test your site for color accessibility issues.

While less potentially troublesome, aesthetic concerns are obviously something
to consider when defining colors (or patterns) for layout elements. You will
find valuable resources for creating color schemes at Adobe's Kuler site
(http://kuler.adobe.com/) shown in the following screenshot:

Chapter 3

[59]

With that ultra-compressed survey of aesthetic and accessibility issues down the
hatch, let's look at how to change the background color of any HTML5 layout
element in the CSS Styles panel.

The most reliable and flexible way to change the background color is to open
the CSS Rule definition dialog for any selected style using the Edit Rule icon at
the bottom of the CSS Styles panel. For example, in order to open the CSS Rule
definition dialog for the style associated with the <footer> element, select that
element in the CSS Styles panel, and click on the Edit Rule... icon, as shown in the
following screenshot:

Customizing HTML5 Layout Elements

[60]

In the CSS Rule definition dialog, the background category displays options for
defining color and pattern background. Colors are selected from the background
color picker. You can enter a hexadecimal value in the Background-color box, or use
the eyedropper tool to select a color from the palette that appears when you click on
the color picker box.

Alternatively, you can select a background image using the Browse button to
navigate to and select that image from your computer or a connected drive. By
default, background images tile, that is, they repeat horizontally and vertically to fill
the assigned space. In the following screenshot, a tiling image has been applied to the
<header> element and clicking on the Apply button displays how that tiled image
will appear when applied:

Defining size, margins, and padding
If you think about translating a design to a webpage, the heart of the process is to
create some kind of positioning containers to hold the content. Those containers are
defined essentially by their size and location.

However, here things get complicated. First, positioning on the Web is positioning
for a moving target. A layout element that is inviting and accessible on a laptop may
be hidden and uninviting on an iPhone. We will address that challenge in Chapter 5,
Defining and Implementing Multiscreen Previews and Media Queries.

Typically, both page size and position are defined by one, master container, often
with an element name like "container." The page content is typically centered by
creating a single such container whose main function is to constrain the size and
positioning of all the page content. We will explore how this is done briefly here,
and shortly in more detail when we dissect one of the HTML5 layouts.

Chapter 3

[61]

Assigning a page size
The size of a web page is defined, as alluded to earlier, by the master container
that holds all the page content. In recent years, a standard page size of 960 pixels
has emerged. This size fits in and works well with both laptops and popular
handheld devices.

The 960 pixel wide page also has mathematical advantages. It can be divided into
as many as 16 evenly sized columns. This allows web designers to collaborate easily
with graphic designers who can layout pages in programs such as Adobe Illustrator,
Adobe Flash Catalyst, or even programs designed for other purposes such as Adobe
Photoshop with which some designers might be more comfortable. As long as
everyone in the workflow is using a 960 pixel wide grid, designs can be translated
from wireframes and design files to HTML5 page layouts.

The following screenshot shows a container <div> generated by a Dreamweaver
HTML5 layout with a defined width of 960 pixels:

Margins and padding are also part of positioning elements on the page and we will
explore that next.

Margins versus padding
Margins define the space between any layout element and other content that element
abuts. So, for example, if a vertical margin of 10 pixels is defined for a <header>
element, then a space of 10 pixels high will be generated under the header, before
any content that follows it.

Padding defines a space within an element, between the edges of an element, and the
content within it.

Customizing HTML5 Layout Elements

[62]

Sometimes, either a margin or padding produces the same effect. At other times,
the effect is more subtle. For example, using a margin combined with a border to
separate content from other content will place space outside the border, while using
padding to create space within the same element and border would create space
between element content and the border.

Margins play a particular role in centering page content. Assigning a margin of auto
to an HTML element used as a page container, as shown in the previous screenshot,
is the standard technique for centering page content within a browser window.

Element padding versus content margins
One specific area where two approaches to spacing can be used is in creating space
between the content of a layout element and the border of the element (or the outer
edges of the element, whether or not a visible border is displayed).

As noted earlier, this spacing can be created with padding between the content (such
as text) and the edge of the element. The same spacing can be created, alternatively,
by assigning margins to the content itself. Therefore, for example, a 10-pixel margin
applied to a text within an element creates more or less the same result as 10 pixels of
padding applied to the element itself.

When to use which? This is often a decision involving more art, convention, and
custom than anything else.

Positioning with float
As noted earlier, the page content is macro-positioned by defining the margin of the
container holding all page content. Within that container, the content is often best
positioned by using the float attribute.

In the following screenshot, for example, the .sidebar1 element used in
the Dreamweaver HTML5 layouts includes float settings that align it on the
left-hand side of the page (in the 3-column layout) or the right-hand side
(in the 2-column layout):

Chapter 3

[63]

Customizing HTML5 elements
As a final referential segue before diving into the HTML5 elements used in the
Dreamweaver layouts, it will be helpful to identify particular design and formatting
issues specific to the <header>, <section>, <footer>, <aside>, <nav>, and
<article> elements.

For the <header> and <footer>, it will often be the case that you want to define a
customized background, along with tweaked padding.

The formatting for <section> and <article> elements is often inherited from
parent elements, that is, the global HTML tags such as the <body> tag, or enclosing
tags such as a container tag, discussed earlier. However, within that, <section>
and <article> elements might well have unique margin or padding, and specific
formatting applied to text only within those elements.

The <nav> element, containing links, might well have a specific link formatting
(colors, underlining, and so on). The <aside> element will have either a float
attribute assigned to it or will inherit a float (right or left) from an enclosing
<div> tag.

Customizing HTML5 Layout Elements

[64]

Back to the future: ID and class styles
Up to this point, we have alluded to two possible, different approaches to page
design with HTML5 elements. The first is to assign actual layout attributes (size,
position, float, and so on) to HTML5 elements. This is a basic, simple, intuitive,
and potentially very powerful way to use HTML5 elements to design pages.

When we build HTML5 pages from scratch in the next chapter, we will use that
approach. Moreover, as we will see then, such an approach has specific applicability
for HTML5-friendly environments such as iPhones, iPod Touchs, and iPads.

However, that is not the approach taken in the Dreamweaver layouts, and for
arguably valid reasons. In those layouts, much (not all) of formatting and
positioning is defined by old-fashioned <div> tags that envelope (surround,
and supply inherited formatting and positioning to) the HTML5 elements.

There are three basic advantages to this approach:

1. They solve compatibility issues by rendering HTML5 elements supplemental
to page design.

2. They allow designers who have not yet acclimated to HTML5 elements to
work with familiar techniques.

3. They "plan ahead" for dimensions of HTML5 elements that are works in
progress, including the use of HTML5 elements in indexing the page content
for search engines.

So, prepare yourself to find this approach applied as we examine the HTML5
layouts. We will look more specifically at the ubiquitous <div> tags, both with
class and ID styles applied.

Layout with class styles
Class styles are the wildcard of web design. They can be used multiple times within
a single document. Moreover, multiple class styles can be applied to a single element.

Let's walk through both these dimensions of class styles. As they can be used
multiple times on a page, class styles have traditionally been used for layout
elements such as boxes for pictures and captions, sidebar text boxes, boxes for
media, and so on (elements that are often used more than once on a page).

Chapter 3

[65]

Moreover, because multiple class styles can be applied to a single element and used
repeatedly on a page, they are often used to "batch" formatting attributes that are
then applied to more than one element.

The role of ID styles
ID styles are applied only once on a page, to a single element. They can and often are
used to define <div> tags used for page layout, like a container <div>.

The big advantage of using ID styles instead of class styles for formatting is that
the DIV tags with ID styles are programmable. Other books I have written on
web and interactive design with Adobe Creative Suite explore programming
interactive elements (elements that respond to visitor actions) in detail by generating
JavaScript. That won't be a focus of this book, but you should be aware that this is a
consideration in choosing which type of <div> tags to use in formatting.

Recipe: Customizing the HTML5 page
layout
In the course of customizing the HTML5 layout elements that are generated with
Dreamweaver, we learned to control foundational components of modern web
page design.

In this recipe, we will focus on formatting HTML5 layout elements generated with
the 2-column HTML 5 layout. Therefore, we will work with the generic content
supplied with the layouts (for a systematic recipe for customizing the content,
see the previous chapter).

Our recipe here, as promised, is somewhat extensive and is divided into two parts.
The first part focuses on defining the position and size of the <header>, <footer>,
<nav>, and <aside> elements. The second deals with changing the way links are
displayed in the <nav> element.

In order to complete this recipe, you will need to have a few things in place. One
is a defined Dreamweaver site. This is necessary and if you are not positive that
you have defined and are working within a Dreamweaver site, please review the
discussion of that in Chapter 1.

Customizing HTML5 Layout Elements

[66]

Recipe: Customizing the size and position for
header, footer, nav, and aside
With a site defined, and open, the following steps walk through the process of
inspecting and customizing the key layout elements in the HTML5 2-column layout:

1. Generate a page by choosing File | New. In the New Document dialog, choose
the Blank Page category. Select the HTML5: 2 column fixed, right sidebar,
header and footer layout. Note that the DocType is HTML5 by default and
the Layout CSS is set to Create New File. Click on the Create button.

2. The Save Style Sheet File As dialog opens. Change the name of the saved
CSS file to 2col.css, as shown in the following screenshot, and click on Save:

3. Save the file as 2col.html, and add a title, "2 column layout."
4. Examine the <body> tag definition in the CSS Styles panel (as shown in the

following screenshot). While the <body> tag is not an HTML5 layout element,
HTML5 elements will inherit attributes assigned to this tag unless the
HTML5 elements, or CSS styles attached to them, overwrite those attributes.
So, note that the background color, font (including 1.4 line spacing, which
creates 40% extra vertical spacing between lines of type), font color, padding,
and margins are defined by the <body> tag:

5. The second global defining element is the .container style. Examine it in the
Global to note the background color (#FFF=gray), the margin (the operative
attribute being auto (for left and right), which centers the container), and the
960 pixel width, which adheres to current design standards.

Chapter 3

[67]

6. Now we will change the alignment of the <nav> and <aside> elements from
the right-hand side of the page to the left. As discussed in the chapter, the
attributes for these elements are defined in an enclosing class style, not the
elements themselves. Click anywhere within either the layout links or the
sidebar content below them. In the tag bar at the bottom of the Document
window, click on the div.sidebar1 tag in the tag bar to see elements defined
by that style highlighted in the Design view of the Document window, as
shown in the following screenshot:

7. In the CSS Styles panel, change the Float for the .sidebar1 style from right
to left, as shown in the following screenshot:

Customizing HTML5 Layout Elements

[68]

8. Next, we will change the size and background of the page header by editing
the <header> element. First, click on the Insert_logo (180 x 90) box and press
your Delete key. Customized sites created in Dreamweaver should have
customized header content not generically sized and placed logos that stamp
a page as being constructed using out-of-the-box templates from a blogging
app like WordPress. Without the placeholder image to expand the height of
the header, we will define our own header height. In the CSS styles panel,
click on the Add Property link and enter height in the first column and a
value of 100 px, as shown in the following screenshot:

9. Examine the style attributes for the <footer> element. The height of the
footer is undefined—the footer expands (or contracts) to accommodate the
content placed within it. Defining a fixed height for the footer can be done
in the same way we just defined a height for the header. No width definition
is necessary, as the footer expands to fill the space available. The position:
relative attribute backs up the clear:both code for Internet Explorer 6.
While the position attribute is only necessary to present the page correctly
in IE6, the clear attribute is essential in any environment—it keeps the page
from collapsing—by "turning off" any float attributes that are inherited from
other page elements. In order to see for yourself how this works, click to the
left of the clear attribute for the footer style in the CSS Styles panel to disable
it (as shown in the following screenshot) and examine the disastrous result
this has on how the different page elements fit together. Then, of course, click
again to enable the clear attributes and restore the page.

Chapter 3

[69]

Customizing links in the nav element
In examining and changing the appearance of content in the nav element, we will
have a chance to dig rather deeply into how CSS styles are applied to specific tags
within an element. In this case, we are going to solve the challenge of turning off
the default underlining that appears in the <nav> element for unvisited links. The
documentation that comes with the layout justifies this underlining as necessary to
make it clear these are links. For the purposes of posing an instructive resolution to
that, we will maintain underlining for links elsewhere on the page, but redefine links
within the <nav> element.

Customizing HTML5 Layout Elements

[70]

1. As defined by the HTML5 layout, unvisited links throughout the page are
displayed with underlining, while visited links, hovered links, active links
(that display while a link is being selected), and focused links (links clicked in
devices where hovering is inoperative, such as mobile devices) display with
no underlining. There are several ways to test this, but the most effective way
is to view the Style Rendering toolbar (View | Toolbars | Style Rendering).
Use the link, visited (shown in the following screenshot), hover, active, and
focus buttons to see how links display in each of these modes. Note that in
the visited mode, links display with underlining outside the <nav> element,
but without underlining within the <nav> element. Our mission in this
second recipe is to identify why that is, and change the formatting, so that
unvisited links inside the <nav> element also display without underlining,
while allowing links outside the <nav> element to continue to display
with underlining:

Fr

2. There are almost countless approaches we could take to identifying why,
within the <nav> element, unvisited links are underlined, while visited links
are not. However, often a good place to start on detective work such as this is
the Current tab of the CSS Styles panel. With one of the links selected in the
<nav> element and the link selected in the Style Rendering toolbar, note that
the underlining style for links is defined in the style attached to a:link, as
shown in the following screenshot:

Chapter 3

[71]

3. Now, let's compare the style rules in effect for unvisited links within the
<nav> element, to the rules in effect for visited links. Select the :v (visited)
button in the Style Rendering toolbar and note that here, a different, specific
rule is in effect defining text-decoration:none for visited links (see the
following screenshot). This rule has been defined to apply to visited links
(a:visited) within an unordered list (ul) within a <nav> element:

Unordered lists: We will explore the generalized
implementation of unordered lists (aka bullet lists) in
defining and styling menus in <nav> elements in the
next chapter of this book, when we build pages from
scratch relying on HTML5 layout elements.

Customizing HTML5 Layout Elements

[72]

4. To sum up what we have learned from this investigation so far: the style
sheet provided with the HTML5 layout includes specific styles that turn
off underlining within the unordered list in the <nav> element for visited
links. If we did further, similar investigation, we would learn as well that
underlining is turned off for other link states (hovered, active, and focused)
throughout the page. Therefore, our mission is to duplicate the CSS rule that
turns off underlining for visited links in the <nav> element, but tweak the
duplicate, so that it applies to unvisited links as well. There are many ways
to do that; for example, we could go into the code for the CSS file and copy,
paste, and edit. Alternatively, we could start from scratch and create a new
CSS rule, jumping back and forth to remember what attributes we want to
steal from the rule for visited links in the <nav> element. The first option
is too code-centric, the second too tedious. So instead, we can switch to the
All tab in the panel and select the rule nav ul a, nav ul a:visited. With
that rule selected, right-click (Windows) or Control-click (Mac), and choose
Duplicate from the context menu, as shown in the following screenshot:

5. Selecting Duplicate opened the Duplicate CSS Rule dialog. Edit the selector
name to nav ul a, nav ul a:link as shown in the following screenshot. By
doing this, the new (duplicate) rule will apply to links within the same
parameters as the original (links in the nav element, in unordered lists):

Chapter 3

[73]

6. Verify the results of this recipe by examining the new style in the CSS Styles
panel: nav ul a, nav ul a:link. With a regular link selected in the Style
Rendering toolbar, note that unvisited links in the <nav> element no longer
display with underlining, while unvisited links elsewhere (such as the link
to adobe in the sample text) do display with underlining, as shown in the
following screenshot:

Customizing HTML5 Layout Elements

[74]

Tracking down the source of the CSS definitions for a link displayed within the
<nav> element was a good experience. We actually solved what I consider one of
the most difficult problems to solve in changing Dreamweaver HTML5 layouts.
Moreover, beyond that, we explored how formatting can be applied within an
HTML5 element through multiple layers of CSS styles.

Summary
In the course of dissecting and customizing the size, position, background, and other
attributes of HTML5 layout elements generated with the HTML5 Pack, we learned to
format the key design components of these foundational elements of a modern web
page design.

In addition, we prepared ourselves to construct web pages from scratch using
HTML5 elements using truly next generation design techniques. We will do that
in the next chapter.

Building HTML5 Pages
from Scratch

In the previous chapter, we completed our journey through the HTML5 layouts
generated by Dreamweaver CS5. In the process, we learned to customize both
the look and content of these layouts, and accomplished two things: we can build
attractive, flexible pages; and we got an insight into real world application of HTML5
layout elements in combination with older HTML tags and older DIV tags.

In this chapter, we will learn to build web pages in Dreamweaver relying entirely on
HTML5 layout tags. There are four things we will accomplish by learning to do that:

Building page layouts relying exclusively on HTML5 layouts will hone our
skills at using these new tools for page design, and introduce HTML5 Code
Hints in Dreamweaver
Relying on standardized, defined HTML5 layout elements (as opposed to
custom-defined, irregularly implemented Div tags) streamlines page design
There are actual, significant real-world scenarios where building pages
relying exclusively on HTML5 layout elements is the best way to design
them (for example, when designing pages for iPhones or iPads)
There are functional advantages beyond design considerations for organizing
page content in HTML5 layout elements. We will examine those advantages
as we build HTML5 pages

In the course of building pages using just HTML5 layout elements, in this chapter,
we will explore all four advantages of relying on HTML5 as listed above.

•

•

•

•

Building HTML5 Pages from Scratch

[76]

Dreamweaver CS5 and HTML5
Before diving in to create HTML5 pages from scratch, let's survey how we are going
to get our money's worth out of Dreamweaver in the process.

All recent versions of Dreamweaver (CS3, CS4, and CS5) with the HTML5 Pack
installed can assist our work in creating HTML5 pages from scratch in three ways.

First, with the HTML5 Pack installed, code hints that automatically prompts us in
completing HTML5 coding are updated in Code view for HTML5 elements. Those
code hints will help us avoid mistakes in spelling elements or constructing the
(minimalist) coding syntax that we will need to place HTML5 elements.

Second, we will avail ourselves of Split view, so that we will see our layout
congealing in Design view as we sketch out what code we need to create in
Split view.

Third, we will take advantage of what is arguably the single most valuable panel in
Dreamweaver—the CSS Styles panel. We will be defining CSS Style rules to associate
with each of the HTML5 layout elements we use. Without styles, HTML5 layout
elements are nothing, so the interplay between the HTML5 elements we create and
formatting we do with the CSS Styles panel will drive our page design process.

Moreover, here it is important to review, or at least reinforce two foundational
techniques in building any professional-quality website in Dreamweaver:

Do nothing without first defining a Dreamweaver site. Review Chapter 1 of
this book if you are not currently working within a defined site.
Secondly, and not quite so essential but still pretty foundational, we always
work with external style sheets. This allows the styles we define to be applied
globally, across an entire website, and makes updating sites possible. As
we begin to coordinate styling in the CSS Styles panel and constructing
pages with HTML5 elements, I will be reminding you and when necessary
walking you through the steps required to make sure all styles are saved to
an external style sheet.

With this as a preview, and cautionary reminder, let's dive in to creating pages with
HTML5 layout elements.

•

•

Chapter 4

[77]

Building an HTML5 page from the top
If you have been working through this book sequentially (which is not a
requirement), you have assimilated the basic concept behind building pages with
HTML5 layout elements. As opposed to laying out pages with tables (grids of rows
and columns), or non-standardized Div tags (layout blocks you name and define
yourself), we will use HTML5's new, standardized layout elements.

The most basic of these are self-explanatory <header>, <nav>, <article> and
<section>, <aside>, and <footer> tags.

In addition, as alluded to in the introduction to this chapter, we will use additional
elements to help make content more accessible to search engines. For example,
within articles, we will use new HTML5 elements that make it easy for people
looking for online content (or those making such online content accessible through
various forms of search engines) to find things such as the publication date of
content, or the date of an upcoming event.

HTML5 structural elements
In order to alert browsers that we are presenting HTML5 content, we need to
indicate at the top of our HTML5 code that this is an HTML5 page. As for those
browsers that respond, "huh, what's that?", we will address that challenge shortly.
However, first use the following steps to create a new HTML5 page from scratch:

1. With your Dreamweaver site defined, choose File | New. In the New
Document dialog, choose Blank Page from the category list on the left of
the dialog. Choose HTML in the Page Type column. Choose None in the
Layout column.

2. In the Layout CSS popup if you already have a CSS file you use with HTML
layouts, you can choose Link to Existing File, and select your existing
HTML5-related CSS file as the styles file for your page.

Building HTML5 Pages from Scratch

[78]

3. From the DocType popup choose HTML5 as shown in the
following screenshot:

4. Click on Create to generate the blank page.

A blank page appears in Design view of the Document window. In Split view, we
can see some basic code has been generated:

<!DOCTYPE HTML>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8">
 <title>Untitled Document</title>
 </head>
 <body>
 </body>
</html>

Let's briefly walk through this to situate ourselves. The <!DOCTYPE HTML> and
<html> tags are sort of evolutionary holdovers from previous versions of HTML, and
not actually required for HTML5 browsers. This code though, might be useful when
taking into account non-HTML5 browsers, as we will examine shortly.

The <head> and </head> tags demarcate head content that is not displayed on the
page, but serves as instructions to browsers.

Chapter 4

[79]

In this case, the content inside identifies that the current, most widely applicable
character set, UTF-8, is implemented. This character set allows the display of
characters from a wide range of languages.

All the content we create for the page will be placed within the <body> and </body>
tags. For this reason, our first step in creating our CSS styles for this page, will be to
define a couple of basic attributes for the </body> tag.

Finally, save this page as an HTML file. Choose File | Save. In the Save As dialog,
make sure the folder selected in the Where popup is your Dreamweaver site folder
(or a subfolder within that). Give the file a name, like html5_test, and click on Save.

While we are at it, enter a descriptive title in the Title box of the Document toolbar.
Resave periodically.

Creating a CSS file
Hand-in-hand with our HTML5 file, we will create and use a CSS file to organize and
manage all the styling in the page. Therefore, let's create that CSS file now, and as we
do, add a line that will make our HTML5 page compatible with all current browsers,
and most older ones.

To do that, follow these steps:

1. Choose File | New, and in the New Document dialog, choose the Blank
Page category on the left, and CSS from the Page Type category. Click on
Create to generate, and open a new CSS file.

2. The file opens in Code view. We will be editing it in the CSS Styles panel,
so except as a learning experience we won't need to view this page again.
However, we do need to save it. Choose File | Save, and give the file a name
like html5_layout.css. Make sure the site folder is selected in the Where pop
up, and click on Save as shown in the following screenshot:

Building HTML5 Pages from Scratch

[80]

3. In the tab bar at the top of the document window, toggle back to the HTML
file you created, as shown in the following screenshot:

4. View the CSS STYLES panel if it is not visible (choose Window | CSS
Styles), and click on the Attach Style Sheet icon as shown in the
following screenshot:

5. The Attach External Style Sheet dialog appears. Use the Browse button to
navigate to the CSS file you just created, and click on OK to attach the style
sheet. The CSS file appears in the CSS Files panel (use the All tab in the CSS
Styles panel as the norm, unless you are doing particular styles detective
work that requires the Current tab). You will also see the link to the CSS file
in Code view if you look.

Next, we will add a single attribute that enables most browsers to interpret the
HTML5 elements, even if they are not HTML5 compliant. Here, we will be revisiting
the technique we noted in the previous chapter, when we saw how Dreamweaver
CS5's HTML5 layouts use the display:block CSS attribute to keep HTML5 layouts
from collapsing in non-HTML5 browsers.

Chapter 4

[81]

To do that, follow these steps:

1. Click on the New CSS Rule icon at the bottom of the CSS Styles panel, it
is just to the right of the Attach Style Sheet icon identified in the preceding
screenshot. The New CSS Rule dialog opens.

2. In the New CSS Rule dialog, choose Compound from the first popup. We
are creating a rule that will apply to more than one HTML5 layout element.
These are HTML5 tags that we want to prevent from collapsing when viewed
in non-HTML5 browsers.

3. In the Choose or Enter a Name for Your Selector field, enter header. We
actually want to apply the rule we are working on to additional HTML5
elements, but we will add those shortly. In the Rule Definition section of
the dialog, make sure your attached CSS file is selected (it will be by default).
Click on OK.

4. In the CSS Rule Definition for header dialog, select the Block category, and
choose block from the display popup as shown in the following screenshot,
then click on OK.

5. The Header style appears in the CSS Styles panel when you expand the CSS
Styles file linked to the page. You can see that the display property for the
header style has a block attribute associated with it in the CSS styles panel.

Building HTML5 Pages from Scratch

[82]

6. We want to expand the list of HTML5 elements to which this display:block
attribute is assigned. The long, slow way to do that is to duplicate steps we
have traversed so far for each additional element. To do that the quick, easy
way, click once in the header row, in the top half of the CSS Styles panel, and
edit the list of elements to include address, article, footer, nav,
section. Use commas (",") to separate the additional elements as you type
them in. These are HTML5 tags that we want to prevent from collapsing
when viewed in non-HTML5 browsers. The CSS Styles panel should now
look like the following screenshot:

With the preceding set of steps, we have told most non-HTML5 browsers to keep our
basic HTML5 building-block elements on their own distinct horizontal row, so they
don't smush into each other.

Our basic model and scenario here is creating pages that are intended only for
HTML5 browsers (like iPhones or iPads). In Chapter 5, Defining and Implementing
Multiscreen Previews and Media Queries, we will learn to apply other style sheets when
visitors come to our page content with non-HTML5 browsers. However, as a backup,
we have also made one quick change to our CSS code that will make our HTML5
elements work in all current generation browsers.

Chapter 4

[83]

Using HTML5 to make content accessible
Having set up our HTML5 document with basic web page coding, we are now ready
to create and format the HTML5 layout elements that will define how the page looks.

But wait… as the TV pitchmen say… there's more! Before diving into the page design
dimension of HTML layout elements, it will be helpful to quickly survey another
reason to use HTML layout elements to organize content: accessibility.

As alluded to in the introduction to this chapter, there are advantages beyond design
considerations for relying on HTML5 layout elements to organize page content.
These advantages revolve around the way HTML5 layout elements package content
for metadata compilers (such as search engines). This emerging connection can make
content organized into HTML5 layout elements more searchable, easier to organize
and access. Moreover, this will be even more the case in the future as search engines
and other web content organizing tools integrate HTML5 layout elements.

We will take a rather simple, but interesting example of how this works right
now. If you have ever copied and pasted the content between apps on an iPhone
(for example, the address of a web page into an app that helps you find public
transportation options or content from an article or posting that you read online in
an e-mail), then you maybe familiar with the routine where you hold your finger
down on the screen and are prompted with a Copy prompt. The next step is to use
the somewhat awkward process of using one's fingers to define the content to copy
to the clipboard, as shown in the following screenshot:

Building HTML5 Pages from Scratch

[84]

On the other hand, when content is organized into articles (or sections), a touch on
the iPhone screen instantly selects an article or article section for copying, as shown
in the following screenshot:

Now, in terms of added value to a website, the convenience associated with iPhone
users easily selecting articles or article sections probably isn't going to turn the world
upside down, although visitors are likely to note positively the convenience they
experience selecting articles from your page to share. However, the fact that the
iPhone browser recognizes sections (and articles, and other HTML5 layout elements)
also gives a sense of the potential for the associations between content and HTML5
layout elements to make content more accessible. We can expect, for example, that in
the not-so-far-off-future, people will be able to tune their search engine queries for
"articles" about this or that topic.

Chapter 4

[85]

HTML5 layout and search engines: By relying on HTML5 layout
elements to organize page content, you are building (in advance) support
for search tools and other ways that HTML5 will facilitate finding content.

HTML5 layout strategy
Having surveyed the emerging value of organizing content into HTML5 layout
elements, we turn to the more dramatically impactful aspect of using HTML5 layout
elements: design. However, keep in mind; design and content are linked in HTML5.
Unlike previous generations of web page markup language, HTML5 organizes
content both to facilitate displaying that content, and to facilitate accessing
that content.

A basic HTML5 page layout is illustrated in the following screenshot, with
self-explanatory placeholder text:

The visible borders in the preceding screenshot, by the way, are a product of
Dreamweaver CS5's CSS Layout Outlines (if they are not functioning, choose
View | Visual Aids | CSS Layout Outlines).

Building HTML5 Pages from Scratch

[86]

Again, before diving into an exploration of the specific elements in HTML5 layouts,
and how they are implemented, keep in mind they both define design components of
the page, and organize content.

Using code hints
Dreamweaver, with the HTML5 Pack, is HTML5-friendly, but not exactly
HTML5-compatible. By this, I mean that it is necessary to resort to Code view
to apply HTML5 elements. However, within that, you get help.

As noted earlier, Dreamweaver CS5 helps create the coding for HTML5 code
hints. As you begin typing HTML5 elements in Code view, beginning with "<",
Dreamweaver prompts you with a set of tags that begin with the letter you type. So,
for example, typing <he produces the following code hints, from which you can click
on <>header and press Enter (Windows) or Return (Mac) to place the code.

You can use control spacebar on Mac or PC to bring up the full
code hinting list.

To close (define the end of) an HTML5 layout element, simply type </. When you do
that, Dreamweaver auto-enters the close coding for the open element, as shown in
the following screenshot:

As we walk through the coding involved in defining different HTML5 layout
elements in the remainder of this chapter, you can enter the necessary code in Split
view, utilizing code hints, and seeing the results in the Design half of Split view.

Chapter 4

[87]

Adding header, header nav, and hgroup
The <header> element is used to organize all the content that goes at the top of
a page. As you saw in the preceding screenshot, this includes a main heading, a
subheading (where that is used), and the navigation structure.

Navigation within a header
So, the <nav> content—the links at the top of a page—are included in the <header>
element when they are placed at the top of a page. Navigation elements placed in
sidebars are also enclosed within the <nav> element, but as—in this case—they are
not part of the header, they are not enclosed in the <header> element.

Within a <header> element, CSS styles associated with tags (such as <h1>, <h2>, and
so on), or with class Div tags can be used to supply additional formatting rules for
how content will be displayed.

Organizing header content with hgroups
With the aim of making content within a header more easily categorized, HTML5
includes the hgroup element. The formal requirements for hgroup content is that it
be content with heading tags applied (<h1>, <h2>, <h3> , <h4>, <h5>, or <h6>).

The concept is that heading content such as subheadings, alternative titles, or
taglines all be grouped, within a header, for easy access. So, for example, in the
following screenshot, the two heading lines have been wrapped in an <hgroup>
element. However, the navigation content, although part of the header, is not
included in the <hgroup> element.

In the following code, an <h1> heading and an <h2> heading, along with a <nav>
element, with its own <h5> heading (and three placeholder links) are all part of a
<header> element.

<header>
 <hgroup>
 <h1>Page header</h1>
 <h2>Header 2 </h2>
 </hgroup>
 <nav>
 <h5>Navigate: link 1 | link 2 |
 link 3</h5>
 </nav>
</header>

Building HTML5 Pages from Scratch

[88]

The following screenshot illustrates how this looks in Split view in Dreamweaver
(with Live view on in the Design view side of Split view).

Creating articles and sections
If you write for a living, as I do, you learn to organize content into chunks, and
sub-chunks, concepts and sub-concepts, ideas and more detailed ideas, and so on.
The basic rule for organizing content in this way is that if you create a sub-section,
you have to create two sub-sections. Otherwise, there is no point in creating a
sub-section.

In line with our recurring theme of the unity between content and design in HTML5
layout, content in HTML5 pages (where it has to be broken down) is broken down
into articles. Moreover, where there is a need for distinct sub-sections within an
article, those sub-sections are sections.

As you create a CSS file to match your HTML layout elements, you might well
assign specific formatting to articles, and to sections. For example, you might choose
to indent section content, or place a unique background behind it. In the following
example, article content is set off with a unique background and text color, and
within articles, sections are indented.

Chapter 4

[89]

The code for the <article> and <section> elements in the preceding illustration,
including placeholder text and headings is:

<article>
 <h3>First article</h3>
 <p>First article content</p>
 <p>more content....</p>
 <section>
 <h3>1st section heading</h3>
 <p>1st section content</p>
 </section>
 <section>
 <h3>2nd section heading</h3>
 <p>2nd section content</p>
 </section>
</article>

Or… you might not apply specific CSS rules to articles and sections, and simply
wrap content in the <article> and <section> elements for content organizing
purposes, while relying on the <body> tag, the <p> (paragraph) tag, or custom class
styles that you define in Dreamweaver for formatting article and section content.

Building HTML5 Pages from Scratch

[90]

Adding aside content
Aside content is reserved for sidebar content that is dependent on content in an
article or section of an article. The <aside> element is not intended, for example,
to serve as a container for navigation content (navigation content is supposed to be
identified by, and wrapped in the <nav> element discussed earlier).

Given that aside content is generally formatted as a sidebar, there is a particular style
generally associated with the use of <aside> elements: Float.

The CSS Float attribute moves a container to the left (Float:left) or right (Float:
right) of other content, and flows other content around the container.

Defining CSS Attributes: In Chapter 3 of this book, we explored
the routine for defining CSS styles that apply to HTML5
elements and other tags in some depth. Therefore, in this
chapter, we will simply note CSS attributes that are assigned
to HTML5 elements without walking through the steps to
implement those attributes. The short version, however, is to
create a new CSS Rule for each HTML5 element, and define
those rules, all using the New CSS Rule in the CSS Styles
panel. For another angle on defining and applying CSS Styles
to HTML5 elements, see the Recipe at the end of this chapter
where we will walk through that process step-by-step.

The following screenshot shows an <aside> element defined at 33% of the page
width, and floated left.

Chapter 4

[91]

Creating a footer
The final piece of an HTML5 page layout is usually a <footer> element. Early in
this chapter, when we walked through standard HTML5 page coding, we noted the
<footer> element (along with <header> elements and others have the display:
block attribute assigned to them). That attribute, which prevents other content from
"sharing" the horizontal row on which the footer content is displayed, is pretty much
the main, and only essential formatting element required for footer.

Beyond that, you can apply features such as height, background color, and so on by
defining a CSS Style rule for the <footer> element. Do that by clicking on the New
CSS Rule icon at the bottom of the CSS Styles Panel. Choose Tag from the Selector
Type popup, choose Footer in the Selector Name popup, in the Rule Definition
popup, choose the external style sheet file to which you are saving your CSS rules,
as shown in the following screenshot, and then click on OK to define rules for the
<footer> element.

As with all HTML5 layout elements, <footer> elements have content assignments.
Footers usually include content site author information, legal notices (such as
copyright information), and so on. While it is technically allowable to have more
than one footer on a page, it is difficult to envision a situation where more than
one footer would be appropriate—the point of the element to organize all the
information that should be available at the bottom of a page.

Building HTML5 Pages from Scratch

[92]

Adding metadata
The HTML5 layout elements that we have explored thus far have—as we have
seen—a dual function: they serve as stylable elements that can control how content
is displayed, and they organize content for accessibility.

Both the style and content dimensions of HTML5 layout elements are evolving,
but they already serve as tools for designing pages, and for delivering content. The
example we explored earlier of selecting an article, or an article section easily for
copying in an iPhone gives a taste of how this is likely to evolve in the near future.

In addition to the key layout elements explored so far, it is worth briefly noting a few
HTML5 elements whose main role is to index content (even as they can be used to
apply styles as well).

Defining an address
Often, one of the first things a visitor to a site is seeking is contact information—an
URL if the page is not a site home page, an e-mail address, a physical address, if he
or she is looking to locate the hottest underground club or nearest highly rated
shish-kabob stand.

A <footer> element can be associated with (placed within) an <article> element
if it is providing contact information for the author of (or topic of) the article.
Alternatively, an <address> element can be associated with (placed within) a
<footer> element if it is providing contact information for the entire page. The
following shows an <address> element embedded in a footer along with the
associated HTML5 code, in Dreamweaver's Split view.

Chapter 4

[93]

Figures and captions
The <figure> and <figcaption> elements identify (intuitively enough) a figure
and an associated caption. Again, assigning these elements to content helps content
aggregators and indexing programs (such as search engines) interpret your page
content, and make it more accessible. Moreover, you can use these elements to style
figures and/or captions as well.

The following screenshot, for example, has a <figure> element wrapped around
both an image, and the caption (<figcaption>). Moreover, as is illustrated in the
CSS Styles panel (as shown in the following screenshot), some basic styling has
been applied to the <figure> element, including float: right (which right aligns
the <figure> element and everything within it), a width, a background color, and
margins and padding. Note the coding in the Code side of Split view.

Indicating date and time
Speaking of using HTML5 elements to convey content, there are different HTML5
elements associated with different kinds of time and date information.

The <time> element is used to mark off times and dates for upcoming events, along
with other date-specific content. It is not intended to define every reference to a
date and time. For example, you would not, use the <time> element when writing a
historical article citing dates for different historical events.

The <time> element can be used to set off a specific time, as in the following
HTML5 code:

The show starts at <time>12:00 midnight</time>.

Building HTML5 Pages from Scratch

[94]

Alternatively, date and time information can be encoded within text using the
datetime parameter, as shown in the following example:

<time datetime="2012-01-01">all night jam session!</time>

The format for time and date is: YYYY-MM-DDThh:mm:ssTZD, where TZD is the
time zone.

You are unlikely to use the <time> element as a styling tool. Instead, it is best used to
demarcate dates and times of upcoming events.

Recipe Part 1: Build a style sheet for an
HTML5 page layout
In this two-part recipe, we will first define a CSS style sheet that will supply
formatting for the HTML5 elements we need for our page, and then we will build a
page, applying those CSS styles as we associate HTML5 elements with page content.

At this stage of our journey, we can rather quickly walk through the process for
creating a CSS file, and defining CSS rules for HTML5 elements. We can focus more
on which parameters we are applying in this recipe, and why.

As always, before embarking on this recipe, be sure you have a Dreamweaver site
defined. If you are not sure what that means, or whether you are working in one,
review the discussion of sites in Chapter 1. Working within a Dreamweaver site is
essential in coordinating the HTML5 page and CSS style sheet that need to work
together here.

1. To begin, choose File | New to open the New Document dialog. From the
Page Type category, choose CSS, and click on Create. A new CSS file opens
in Code view (which is the only way you can view a CSS page, as it is just
code).

2. Save the CSS file (choose File | Save), name it html5_layout.css. A blank
CSS page appears (with the exception of two lines of code, one defining the
character set and the other a comment).

3. Let's create our first style for the <body> tag using the CSS Styles panel:
Click on New CSS Rule in the CSS Styles Panel (if it is not open,
choose Window | CSS Styles).

°

Chapter 4

[95]

In the Selector Type popup, choose Tag. In the Selector Name
popup, choose Body. In the Rule Definition popup, leave the
setting at (This Document Only). Click on OK to open the Rule
Definition dialog.
In the Type category of the Rule Definition dialog, select the
Verdana group. In the Background category, select a background
color of medium gray (#999). Click on Apply to generate CSS code
for the <body> tag. You can see the code in the CSS file, as shown in
the following screenshot. Then click on OK.

4. Having defined the <body> tag using the CSS Styles Panel, let's use a
different technique to define style attributes that will apply to most of the
HTML5 layout elements—display:block to prevent content from different
elements from appearing on the same line; and padding: 10px (10 pixels) to
create spacing within each of these elements. Do this by simply typing the
code into the CSS page, after the "}" character that closed the definition of the
<body> tag:

header, address, article, footer, nav, section{
 display: block;
 padding: 10px;
}

°

°

Building HTML5 Pages from Scratch

[96]

Your CSS page will look like this:

Now that we have reviewed two ways to generate CSS code, choose one or the other
to create the following additional CSS code, and save the page:

header {
 color: #FFF;
 background-color: #CCC;
}
footer {
 color: #000;
 background-color: #FFF;
}
article {
 color: #000;
}
aside {
 float: right;
 width: 25%;
 border: thin solid #FFF;
 background-color: #999;
 padding: 10px;
 margin: 10px;
}
figure {
 background-color: #CCC;
 margin: 10px;
 padding: 10px;
 float: right;
 width: 160px;
 height: 180px;
}
section {
 padding: 0px;
}

Chapter 4

[97]

A few notes on the CSS we created: We are using very minimalist
background and text colors (shades of gray plus white and black) both to
make a minimalist aesthetic statement and to keep our project simple.

The float attribute on the <aside> element aligns the aside (sidebar) box with the
right side of the page, flowing content around it to the right. The extra padding and
margin enforce spacing between both the aside content and the border of the box,
and between the box and content that flows around it. We will see how this works
out in Part 2 of this recipe, shortly.

Similarly, the float and margin attributes assigned to the <figure> element align the
box that will hold images and captions to the right side of the page.

Setting the margin to zero for the article sections keeps that content from indenting
further, beyond the indent inherited from the margin assigned to the <article> and
<section> elements in step 4.

Recipe Part 2: Build an HTML5 layout
from scratch
Having defined and saved CSS styles, we are ready to create a page that can serve as
a customized, fully HTML5, customizable page layout of our own.

A trick to have up your sleeve before we start: We will be working in
Split view, and doing much of our work in the Code side of the split. Take
advantage of code hints. Start typing a tag as indicated, and press Enter
(Windows) or Return (Mac) when the code hint settles on the code you
need. To close the code, simply type </, and press Enter (Windows) or
Return (Mac).

With Dreamweaver's code hinting at the ready, create a new HTML5 file and connect
your CSS file with placeholder text using the following steps:

1. Choose File | New. In the New Document dialog, choose Blank Page in the
first column, HTML from the Page Type column, <none> from the Layout
column, and HTML5 in the DocType pop up. However, do not click on
Create quite yet!

Building HTML5 Pages from Scratch

[98]

2. Click on the Attach Style Sheet link next to the Attach CSS File box.
Navigate and select the html5_layout.css file created in the first half of this
recipe. Don't worry about the warning message that the file should be saved
to ensure the validity of the link between the HTML file and the CSS style
sheet. We will address that in the next step. Now click on Create.

3. Save your new file as html5_layout.html.
4. Under the first <body> tag, avail yourself of code hints to enter the following

code that will generate a <header> element, an <hgroup> element within the
header with placeholders for a heading 1 title and heading 2 subtitle, and a
<header> element with placeholder links:
<header>
 <hgroup>
 <h1>Page header</h1>
 <h2>Header 2 </h2>
 </hgroup>
 <nav>
 <h5>Navigate: link 1 |
 link 2 | link 3</h5>
 </nav>
</header>

5. Now comes the heart of the page layout—an article, with an aside, a figure,
and two sub-sections. Any of these elements can be duplicated when the
page is used as a template layout, and customized actual content pages are
created. The article code is:
<article>
 <aside>
 <h3>sidebar content
 </h3>
 <p>placeholder text
 </p>
 </aside>
 <h1>First article headline
 </h1>
 <h3>Subhead for first article...
 </h3>
 <p>placeholder text.
 <section>
 <figure>
 <img src="" alt="fig goes here"

Chapter 4

[99]

 name="figure_placeholder" width="160"
 height="120" style="background-color: #FFFFFF">

Caption here
 <figcaption>
 </figcaption>
 </figure>
 </section>
 </p>
 <section>
 <h3>1st section heading
 </h3>
 <p>placeholder text
 </p>
 </section>
 <section>
 <h3>2nd section heading
 </h3>
 <p>placeholder text
 </p>
 </section>
</article>

A few notes on this code: Within the <figure> element,
we are using a placeholder to save space for a figure that will
be inserted. The figure size is defined at 160 px wide, and 120
px high—a nice setting for thumbnails that will appear in our
target browsing environment, an iPhone screen.

6. After closing the <figure> element, we can complete our page with coding
for a footer that includes an <address> element by adding the final code:
<footer>
 <h4>Footer content here</h4>
 <address>
 contact this site at
 http://www.xyz.com
 </address>
</footer>

Building HTML5 Pages from Scratch

[100]

After you save your page, you can view a rough preview of how the page will
look in an iPhone by defining a 480 pixel wide by 320 pixel high iPhone preview
screen (for an iPhone turned sideways). Do this by first choosing Edit | Preferences
(Windows) or Dreamweaver | Preferences (Mac), and selecting the Status Bar
category in the Preferences dialog. Create a new preview size of 480 pixels wide
and 320 pixels high, as shown in the following screenshot, and then click on OK.

Once defined, this Status Bar setting can be used to preview your page in
Dreamweaver as you experiment and tweak the layout, as shown in the
following screenshot:

Chapter 4

[101]

Summary
In this chapter, we completed a survey of building HTML5 pages, using HTML5
layout elements. We saw how these elements function as both design containers, and
as content identifiers. We also saw how, for some environments, an entire page could
be built using only a few basic HTML tags, plus HTML layout elements.

Based on what we have covered so far, we are ready to design HTML5 pages that
work, differently, in different media such as iPhones, iPads, and laptops.

Defining and Implementing
Multiscreen Previews and

Media Queries
It is a multimedia world. What we mean by this is that people experience and
interact with the web content with a variety of media, ranging from large-screen
projections of websites to hand-held devices. This presents specific challenges for
web designers.

One of those challenges revolves around designing pages that are accessible,
inviting, and functional at extremely different sizes. A page with centered content
(left and right side sidebars) and text flowing around images may be inviting on a
laptop, but a jumbled mess on an iPhone.

With the advent of HTML5 and its companion CSS3 (the latest iteration of style
sheets), it is possible to design pages that detect the size of a viewing device and to
present pages customized for that device. Therefore, for example, you can create
three alternative views of a page: one for cell phones, one for tablets, and one for
full-sized monitors.

In this chapter, we will learn to design pages in Dreamweaver that detect media
automatically by using Dreamweaver-generated Media Queries and present
appropriate page designs tailored to the visitor's viewing environment.

Defining and Implementing Multiscreen Previews and Media Queries

[104]

In the course of that, we will:

Introduce CSS3—the companion to HTML5
Use Dreamweaver's Multiscreen Preview
Customize Multiscreen Preview for specific devices
Create multiple styles for different sized viewing devices with
Dreamweaver's Media Queries
Troubleshoot Media Queries for Apple's i-gadgets

Web design for a multimedia web world
As discussed in the introduction of this chapter, recent times have seen an explosion
in the variety of media through which people interact with websites, particularly
the explosion of "smart phones" and tablets. Moreover, as discussed, a web page
design that is appropriate, even necessary for a wide-screen experience, is often
inappropriate, overly cluttered, or just plain dysfunctional in a tiny screen.

The solution to this is Media Queries, a new element of CSS introduced with
CSS3. However, before we examine new media features in CSS3, it will be helpful
to understand the basic evolutionary path that led to CSS3 Media Queries. That
background will be useful both in getting our hands around the concepts involved,
and because, in the crazy wild-west state of browsing environments these days (with
emerging and yet-unresolved standards conflicts), designing for the widest range of
media requires combining new CSS3 Media Queries with older CSS Media detection
tools. We will see how this plays out in real life at the end of this chapter, when we
examine particular challenges of creating Media Queries that can detect an Apple
iPhone, for example.

Therefore, stepping back in time a bit, the current (pre-CSS3) version of CSS
already can detect media and enable different style sheets depending on the media.
Moreover, Dreamweaver CS5.5 (and to lesser degrees CS5, CS4 and CS3) provide
very nice, intuitive support for these features.

The way this works in Dreamweaver is when you click on the Attach Style sheet
icon at the bottom of the CSS Styles panel (with a web page open in Dreamweaver's
Document window), the Attach External Style sheet dialog appears.

The Media pop up in the dialog allows you to attach a style sheet specifically
designed for print, aural (to be read aloud by reader software), Braille, handheld
devices, and other output options, as shown in the following screenshot:

•

•

•

•

•

Chapter 5

[105]

So, to summarize the evolutionary path, detecting media and providing a
custom-designed style for that media is not new to HTML5, its companion CSS3,
and support for those features in Dreamweaver. Detecting and synchronizing styles
with defined media has been available in Dreamweaver.

However, what is new is the ability to detect and supply defined style sheets for
specific screen sizes. Moreover, that new feature opens the door to new levels of
customized page design for specific media.

CSS3 and Media Queries
With CSS3, Media Queries have been expanded. Now we can define all kinds of
criteria for selecting a style sheet to apply to a viewing environment This includes
orientation irrespective of whether a mobile phone, tablet, and so on are held in
portrait ("up and down") or in landscape ("sideways") view, or whether the device
displays color, the shape of the viewing area, and—of most value—the width and
height of the viewing area.

All these options present a multitude of possibilities for creating custom style sheets
for different viewing environments. In fact, they open up a ridiculous array of
possibilities. However, for most designers, simply creating three appropriate style
sheets, one for laptop/desktop viewing, one for mobile phones, and one for tablets,
is sufficient.

In order to define criteria for which style sheet will display in a set environment,
CSS3 allows us to use "if-then" statements. Therefore, for example, if we are
assigning a style sheet to tablets, we might specify that if the width of the viewing
area is greater than that of a cell phone, but smaller than that of a laptop screen, we
want the tablet style sheet to be applied.

Defining and Implementing Multiscreen Previews and Media Queries

[106]

Dreamweaver's Media Query tools generate such criteria and coding automatically!
Moreover, as we will see, Dreamweaver CS5.5 and CS5 suggest appropriate criteria
for different viewing environments.

Styling for mobile devices and tablets
While a full exploration of the aesthetic dimensions of creating styles for different
media is beyond the scope of our mission in this book, it is worth noting a few basic
"dos and don'ts" vis-à-vis styling for mobile devices.

In a word, the challenge is: simplify.

In general, this means applying many or all of the following adjustments to
your pages:

Smaller margins
Larger (more readable) type
Much less complex backgrounds, no image backgrounds
No sidebars or floated content (content around which other content wraps)
Often no containers that define the page width

The HTML5 page layout we created in the previous chapter is a positive example of
this kind of layout, and you can refer back to that, with our new understanding of
the challenges of designing for mobile devices in mind.

The following screenshot, for example, shows a page in a laptop browser window
that includes a number of elements, including a sidebar that should be reconfigured
for display on a 320 pixel wide mobile device:

•
•
•
•
•

Chapter 5

[107]

In the following screenshot, the background for the header has been removed, the
navigation elements have been moved from a sidebar to the top of the page, and
the color scheme has been simplified, making it easier to navigate the site with a
mobile device:

Design advice online: If you search for "css for mobile
devices", then you will find thousands of articles with different
perspectives and advice on designing web pages that can be
easily accessed with handheld devices.

Previewing with the Multiscreen Preview
Dreamweaver's Multiscreen Preview provides an instant (if not precise) preview of
how an open web page will look in three different viewing environments.

Defining and Implementing Multiscreen Previews and Media Queries

[108]

In order to view an open page in the Multiscreen Preview, either click on the
Multiscreen Preview button in the Document toolbar (if not visible, then select
View | Toolbars | Document), or select Window | Multiscreen Preview from the
Document window menu. When you do, the MULTISCREEN PREVIEW window
opens, with three views, as shown in the following screenshot:

Multiscreen Preview is a form of a Live view. You cannot edit the content here you
can only preview it.

You can, however—as we shall see—edit the style sheets associated with each view,
and observe the effect in Multiscreen Preview.

The three preset viewport sizes in the Multiscreen Preview window provide a widely
applicable set of screen sizes for previewing how an open page will look in a cell
phone, a tablet, and on a desktop (or full sized laptop, with a screen width of 1024
pixels or more). In particular, the width settings are a good, general way to preview
how your page will look in different media.

On the other hand, if you are designing for a specific viewing environment, you can
customize these settings. In order to do that, click on the Viewport Sizes button in
the upper right-hand corner of the Multiscreen Preview window. That opens the
Viewport Sizes dialog. You can change the width and (in the case of phones and
tables) the height of any of the three available views by changing the values in the
Width or Height boxes, and then clicking on OK.

Chapter 5

[109]

The most useful adjustment you make in Viewport Sizes might
actually be the height of the Phone preview. By making that
value a bit larger, you can get more of a sense of how pages will
look in smartphones with longer viewing screens.

In the following screenshot, the height of the Phone preview window is being
changed to 400 pixels:

Most likely, when you first preview a page, you won't like the way it looks in the
phone and tablet preview windows. At that point, you can do one of the following
two things:

1. Elect not to worry about how the page looks and works in mobile devices
under the assumption that this mobile device thing is a passing fad that will
soon go away.

2. You can use Dreamweaver to generate a Media Query to present more
inviting, accessible content in mobile devices.

Assuming that you chose the second option, let's move on to explore how to
create style sheets for phone and tablet display and to apply these style sheets in
appropriate environments.

Generating a Media Query in
Dreamweaver
There are a number of valid approaches and possible protocols, which you can
use to generate sets of styles for a Media Query in Dreamweaver CS5.5 and CS5.
Before walking through one that works well, let's survey what it is we are trying
to accomplish.

Defining and Implementing Multiscreen Previews and Media Queries

[110]

Essentially, we need three sets of style sheets: one for phones, one for tablets, and
one for full-sized monitors. Both because full-sized monitors are still, at this point,
a "standard" in terms of how the web content is viewed, and because the phone and
tablet styles will likely have less complex styles, it makes sense to start by creating a
style sheet for a full-sized page.

In other words, the first step is to create a basic CSS Style sheet that works well
with the page when it is opened in a full-sized desktop or laptop monitor. Then,
variations on that page can be generated with simplified layouts that work on
phones and tablets.

Building alternative style sheets
As noted, from a style and accessibility perspective, it makes sense to start with a
"full-sized" web page style and then build permutations of that style that work with
phones, and on tablets.

There is also a technical reason to use that workflow. Keep in mind that all three CSS
Style sheet files will be providing styling rules for the same page. This means that all
three alternative CSS files have to provide rules for the same set of HTML elements
and tags.

For example, if a <div> tag defines a main container on a page, then the style sheets
for all three media (phone, tablet, and desktop) have to define how that <div> tag
should appear. The rules for the phone CSS might include a narrower width, a
simpler background color, and other attributes. However, the point is, all three style
sheets will have rules for this main container div. Moreover, that must be the case
for all the layout elements, whether HTML5 layout elements, <div> tags, or some
combination of the two.

A 3-step protocol for preparing to generate a
Media Query
One effective protocol for preparing to generate a Media Query is to have three CSS
files ready to assign to different media.

Chapter 5

[111]

A simple protocol for doing that is as follows:

1. Create a basic CSS file for your page that works for desktop/laptop-sized
monitors. If you are generating pages from Dreamweaver's HTML5 layouts,
then you can use the CSS file that comes with the respective layout as this
"main" layout.

2. Save the "main" CSS file with a file name query_fullsize.css and then
resave it twice, with two different file names (such as query_phone.css
and query_tablet.css), creating three identical style sheets.

3. With the three alternative style sheets saved, you can customize them right in
the Multiscreen Preview menu.

With three alternative CSS files available for assignment and editing, you are now
ready to define Media Queries. We will walk through that process next.

Assigning styles to different media

The best way to avail ourselves of Dreamweaver's new HTML5/CSS3
tools for building Media Queries is work in Multiscreen Preview mode.
Remember, this means we will not be editing content as we adjust styles.
However, that constraint is something we can definitely live with, and
in fact, as a general approach, adjusting the content and style should be
thought of and approached as distinct processes.

Therefore, our scenario is that we have opened Multiscreen Preview for an opened
web page. Moreover, we have the three different CSS files ready—the ones discussed
in the "3-step" protocol identified just a bit earlier in this chapter.

With the three CSS files saved as part of your Dreamweaver site and with a web
page open in Multiscreen Preview, carry out the following steps to define custom
styles for each view:

1. Click on the Media Queries button to open the Media Queries dialog.

We will start with the "Desktop" view, which will function for
us as a desktop/laptop view aimed both at desktops and full
sized laptops, but also those tiny Netbook computers, since
their normal 1024 pixel wide screens fall within the scope of
"full sized" screens for most design purposes.

Defining and Implementing Multiscreen Previews and Media Queries

[112]

2. Select Use Existing CSS File from the pop up, in the Large (Desktop) row.
Click on the folder icon as shown in the following screenshot:

3. The Select File dialog opens. Navigate to the CSS file you prepared to
display the full-sized version of your web page. Navigate to and choose
the CSS file you prepared for full-sized devices.

A couple of notes here: First, just to be clear, we are
operating on the assumption that you have prepared three
CSS files to apply to the full sized, phone, and tablet versions
of your site. In order to review the point of that and the
way to do this, you can jump back to the "3-step protocol"
discussion a bit earlier in this chapter. The other point to
emphasize is that at this point in the process, we are not at
all worried about how each version of our site will look. All
we want to do at this stage of the game is assign separate CSS
files to each of the three target screen sizes. We will format
these styles shortly.

4. Similarly, attach the CSS files you prepared for tablets and phones in the
Media Queries dialog. Your completed screen will look something like the
one shown in the following screenshot (with your own file names of course):

Chapter 5

[113]

One more option: If, for some reason, you want to tweak
the target screen sizes for the phone and tablet styles,
then you can do at this point. If you do so, however,
Dreamweaver will make sure that you do not leave any
"gaps" in the sizing. So, for example, if you up the Phone
Max Width value to 480, Dreamweaver will change the
Tablet Minimum Width to 481.

5. At this point, you have completed the first part of defining a Media Query
for your page. You have identified the CSS files to link to the page. Click
on OK. Dreamweaver will generate the HTML code that diverts different
browser sizes to different CSS files. You can examine that code in the Split or
Code view in the Document window. The generated code will be something
similar to the following:
<link href="query_phone.css" rel="stylesheet" type="text/css"
 media="only screen and (min-width: 0px) and
 (max-width: 320px)" >
<link href="query_tablet.css" rel="stylesheet" type="text/css"
 media="only screen and (min-width: 321px) and
 (max-width: 768px)" >
<link href="query_fullsize.css" rel="stylesheet" type="text/css"
 media="only screen and (min-width: 769px)" >

In the preceding example code, the three CSS styles are query_phone.css, query_
tablet.css, and query_fullsize.css.

With the criteria for each style sheet defined and the links created, we can now edit
each of the three CSS files.

Formatting CSS files for Media Queries
With a Media Query defined for a web page, we can now interactively create and
adjust the styles for each targeted browsing environment. In order to do this we will
re-open the Multiscreen Preview for the page.

Wait! You might exclaim, how can we edit the page in Multiscreen Preview, when
that window functions like the Live view in the Document window—locking out
any content editing. A thoughtful concern, but here we will be only editing the CSS
styles, not the page content. Moreover, we can do in Multiscreen Preview.

Defining and Implementing Multiscreen Previews and Media Queries

[114]

In order to edit styles in Multiscreen Preview, view the CSS Styles panel (Window
| CSS Styles). The three attached styles, along with parenthetical notes helping us
remember which style is which, appear in the top half of the CSS Styles panel. You
can expand any of those three styles by clicking on the triangle next to the style name
in the top half of the CSS Styles panel. In the following screenshot, the query_phone.
css style is expanded. Moreover, clicking on a style rule within the style (in this case
the body tag style) reveals the parameters for that style in the bottom half of the CSS
Styles panel:

Chapter 5

[115]

Caution: Don't delete style rules
You can edit the parameters for different rules within each style sheet. In order to
take one very simple example that helps illustrate how this works (in the following
screenshot) a different background color has been applied to the <body> tag for each
style sheet: white for the phone, gray for the tablet, and black for full-sized browsers:

As pointed earlier, the art of designing styles for mobile devices is an art. In
addition, as suggested earlier, there are tons of online resources opining and
advising on what to include in phone and tablet styles. However, before highlighting
a few widely agreed on elements of mobile device styling, it is important to issue a
warning: Don't delete style rules from any of your style sheet files.

Our protocol for creating the three alternative style sheets for a Media Query started
with one style sheet from which we created two copies. Those style sheets "came into
the world" with identical sets of style rules.

Styling for mobile devices
It is fine and necessary to change the parameters of those style rules. You can have
different formatting for containers, text, backgrounds, and so on in your phone style
than you have in your tablet style. No problem, but keep in mind that all three of
your styles have to mesh with the same HTML file, with the same CSS style names
used to define formatting and layout tags and elements.

Defining and Implementing Multiscreen Previews and Media Queries

[116]

As for styling mobile devices, the following techniques are widely applicable:

Keep the type size large
Keep links easy to find. Underlined links are passé in full-sized web pages,
but helpful on cell phones
Use nice large margins and/or padding in containers to make it easier for big
stubby fingers to select tiny content on cell phone screens
Avoid sidebars (don't use the float attribute)
Use visibility: none to hide non-essential elements in phone styles. In the
following screenshot, the visibility has been set to hidden for the header in
the phone style and the height of the header reduced to 1 pixel so as to not
occupy precious space on a cell phone screen.

The following screenshot shows three style sheets applied to the same page in
Multiscreen Preview. The tablet view only required a few adjustments: reducing the
widths of the layout elements (the main container, the sidebar, and the header). The
phone style sheet took more trial-and-error experimentation, including removing
all float attributes and reducing the width of different elements. Different color
schemes were applied to each style sheet as well, with a very basic color scheme
(black and white) applied to the cell phone style.

As they say in the commercials for weight-loss products, "your results may vary."
Here, this means that tweaking a style sheet for a phone does require some trial and
error. Again, the basic rule is simpler. Eliminating floats (so no content appears in a
second column) is usually the first step.

•

•

•

•

•

Chapter 5

[117]

Troubleshooting for Apple i-Gadgets
Every element of web design, including working with HTML5 and CSS3 has its
bugs, exceptions, and things that just don't work right. Our aim here is to provide
tools, approaches, and techniques so that you can dissect and solve as many of those
issues as possible, without addressing every likely hurdle specifically.

However, Apple's iPhone is both the dominant and defining player in the
smartphone realm and as you might have guessed, the resolution-based media query
technique that we have explored here (that is supposedly "standardized" in CSS3)
does not work on iPhones.

The reason is, put somewhat over-simply, that Apple has decreed that the tiny screen
on an iPhone is actually a full-sized screen. Here is the math behind that assertion:
A typical laptop computer might display something like 130 pixels per inch (ppi).
Resolutions vary significantly, but that 130 pixels per inch standard is a useful mean
for understanding the iPhone challenge. Calculated by the screen resolution in this
range, the 320 pixel wide cutoff point that Dreamweaver defines as the default width
of a phone screen is pretty reasonable, about a quarter the width of a laptop screen.

However, small devices, such as iPhones, have smaller pixels. According to Apple,
the resolution of the screen on an iPhone 4 is 326 ppi and so, the entire screen width
figures out to be the same—measured in pixels—as a regular laptop screen.

The problem, of course, is that those tiny pixels on the iPhone screen are tiny. Thus,
even if an entire web page designed for a full-sized monitor fits on an iPhone screen,
the content is still likely to be too small to be accessible, much less inviting.

In short, in designing for iPhones, we face this problem: Media Queries based on
monitor width in pixels will interpret an iPhone screen as a full-sized screen and
display the content with style sheets designed for full-sized monitors. However, the
content designed for a cell phone will be more accessible and definitely more inviting
for iPhone browsers.

In various niches of cyberspace, innovative designers are debating on how to handle
this challenge. One emerging solution is to go back, before CSS3 Media Queries and
create Media Queries based not on screen width in pixels, but on the type of media.

iPhones and iPads use weird ways of counting screen resolution to show full-sized
screens, so you have to detect them specifically. Here is how:

Defining and Implementing Multiscreen Previews and Media Queries

[118]

Within the <head> and </head> tags (and typically after the <title> and </title>
tags), enter the following code:

<link href="full.css" rel="stylesheet" type="text/css">
<link media="only screen and (max-device-width: 960px)" href="ipad.
css" type="text/css" rel="stylesheet" />
<link media="only screen and (max-device-width: 480px)" href="iphone.
css" type="text/css" rel="stylesheet"/>

This code displays an attached style sheet (full.css) unless either a smaller
viewport is detected, or an iPhone is detected.

Ever changing challenges: There are varieties of this code online
and as Apple upgrades its phones, you will find new solutions by
searching for "media query iPhone 4" (or "media query iPhone 5"
when that comes out, and so on).

By the way, when you "code your own" media queries, the display in the Multiscreen
Preview window will be unreliable and editing Media Queries with the Media
Queries button in Multiscreen Preview will be disabled. In the following screenshot,
you can see that (for the code we just noted) the tablet style sheet (white type on
the black background) is supported in Multiscreen Preview. So is the tablet style
sheet (the black type on a gray background). The hand-coded iPhone Media Query,
however, is not supported in Multiscreen Preview and the Media Queries button
is blocked:

Chapter 5

[119]

Exercise: Defining a Media Query for a
cell phone
In this recipe, we will take our old friend, the flexible and highly useful 2-column
HTML5 layout, and create a Media Query to display this two-column content in a
layout more appropriate for cell phones—without columns or sidebars.

As always, the starting assumption is that you are working in a Dreamweaver site
(refer back to Chapter 1 if that does not register). With a site defined, the following
steps will produce a nice, appropriately minimalist layout for your page in a
cell phone:

1. Select File | New. In the New Document dialog, select the Blank Page
category. Select HTML from the Page Type column; and choose the first
HTML5 layout, the 2-column fixed… layout from the Layout column. In the
New Document dialog, leave the Layout CSS pop up selection at Create
New File. Make sure that there are no files selected in the Attach CSS file
box (if there are, use the Trashcan icon to delete them). With these settings in
place, click on Create.

2. The Save Style sheet File As dialog opens. Change the saved style sheet name
to fullsize.css and click on Save to save the style sheet to your site folder.

3. The web page opens in the Dreamweaver Document window. We will make
one edit to the content. Delete the rather long link http://www.adobe.com/
go/adc_css_layouts. This link is inappropriately long, particularly for a cell
phone. If (in real life) we wanted to link to a site with a long URL, then we
could assign the link to much shorter text using the Insert | Hyperlink
menu option.

Customizing the content for layouts: For an in-depth
exploration of customizing the content in a Dreamweaver-
generated layout, see Chapter 2, Customizing HTML5
Layout—Content and Look.

4. Select File | Save to save the edited HTML page as 2_views.html.
5. Next, we will create an empty CSS file to build from to display the content in

a mobile device. Select File | New. In the New Document dialog, select CSS
from the Page Type list, and click on the Create button. Select File | Save
and save the new blank CSS file as mobile.css.

6. Return to the 2_views.html page in the Document window. You can do that
either by clicking on the file in the files tab bar at the top of the Document
window, or by using the Window menu.

Defining and Implementing Multiscreen Previews and Media Queries

[120]

7. Click on the Multiscreen button in the Document window. Click on
the Media Queries button in Multiscreen Preview to open the Media
Queries dialog.

8. In the Small (phone) row of the Media Queries dialog, select Use Existing
CSS file in folder from the pop up. Use the folder icon in the first row to
navigate to and select the mobile.css file.

9. For tablets and full-sized computers, for the sake of this recipe, we will
simply display the already attached CSS file (fullsize.css), so use the
same routine you used in the previous step to assign the fullsize.css
file to both of these viewports. Then, click on OK to see the results in
Multiscreen Preview.

10. Viewing our page layouts in Multiscreen Preview, the layout for the phone
viewport is not bad. It is clean and simple, but probably a bit too simple. We
can do a bit of editing to make it more inviting. View the CSS Styles panel
right in Multiscreen Preview by selecting Window | CSS Styles. Select
mobile.css in the CSS Styles panel, and click on the New CSS Rule icon in
the toolbar at the bottom of the panel. In the New CSS Rule dialog, select
Tag for the Selector Type, Body (already selected) as the Selector Name, and
leave the Rule Definition pop up set to mobile.css. Click on OK to open the
CSS Rule Definition for Body in Mobile.css dialog. Select Verdana from
the Font-Family pop up and in the Font-size pop up, select Large (for easier
viewing on cell phones). Click on OK to survey the results, which will look
something similar to the following screen:

Chapter 5

[121]

11. We are close! Add the following tags to the mobile.css style sheet, with the
following parameters:

h1, with font-size: smaller
ul, with list-style-type: none; and margin-left: -40px

The preceding setting is depicted in the following screenshot:

°

°

Defining and Implementing Multiscreen Previews and Media Queries

[122]

The smaller font size for Heading 1 reduces the size of headings
in the page, solving the problem of the horizontal scrollbar that
appeared. Removing a list style from the unordered list tag
removes the bullet point symbols and the negative left margin
undoes the indenting that comes with the list.

12. That is it! There is more tweaking we could do, but remember, in designing
for mobile devices, less really is more. Exit the Multiscreen Preview by
selecting Window | Multiscreen Preview to deselect this view. Save
your page with changes to the CSS.

Summary
Older versions of HTML and CSS allowed Media Queries to identify output devices
including printers, Braille readers, and audio reader devices. New additions in
HTML5 and CSS3 allow Media Queries to detect screen size (in pixels), as well as
other more esoteric properties of a browsing environment.

Dreamweaver's Multiscreen Preview and Media Queries dialogs work together to
preview and edit how the same HTML page content will display differently in a
smartphone, a tablet, and a full-sized monitor.

In the next chapter, we will explore new tools in Dreamweaver, which provide
for applying CSS3 effects such as rounded rectangles, drop shadows, and rotated,
scaled, and skewed boxes.

Applying CSS3 Effects
and Transforms

CSS3—the current version of style sheets—provides easy access to effects such as
drop-shadows, rounded box corners, and opacity (transparency). In addition, CSS3
introduces transforms that change the shape, location, rotation, and size of objects.
Together, CSS3 effects and transforms open the door to making web pages more
dynamic, more inviting, less "boxy", and more interactive.

Effects and transforms can be made interactive by changing the appearance of objects
as he/she hovers over them with a mouse. Together, effects and transforms, with
or without animation, make it much easier than previous tools to add accessible,
inviting design elements, and dynamism to web pages.

CSS3 effects and transforms are defined through style sheets and thus we can take
advantage of Dreamweaver's CSS Styles panel to avoid much recourse to hand
coding to create them, if any.

In this chapter, we will explore:

Defining and applying CSS3 transforms: translate, scale, rotate, and skew

Defining and applying CSS3 effects: border radius, shadows, opacity

Combining multiple transforms and effects

Making CSS3 transforms and effects interactive with hover pseudo-classes

•

•

•

•

Applying CSS3 Effects and Transforms

[124]

New in CSS3: Effects and transforms
CSS3 effects such as shadows, rounded corners, and opacity can make web pages
more stylish, less harsh, and more welcoming. Used with discretion (that is, not
overused), they give web pages that nice je ne sais quoi that visitors can't exactly
put their finger on, but that make their experience at a web page more intriguing
and positive.

Effects and transforms can be, and often should be combined to produce
eye-catching elements. For example, the following text, has both a skew
transform and a shadow (box-shadow) effect applied.

Transitions, such as skewing, rotation, scaling, and translation (moving) objects are
particularly engaging when combined with interactivity. For example, a visitor to a
website who hovers over an object experiences a subtle but inviting change in it.

In the pre-CSS3 era, these kinds of effects or transitions required some combination
coding, and embedding Flash objects, relied on (and programming with) JavaScript,
substituting images with Photoshop effects for features such as shadows or outlining.
The other tools that there were (are!) expensive and/or have a high learning curve.

In the course of this chapter, we will explore several new effects, and all the new
2D (two-dimensional) transforms in CSS3. Beyond the scope of our survey are the
3D transforms that are much less widely supported in browsing environments,
and that—in general—require additional scripting (usually JavaScript) to make
them effective.

The bulk of this chapter will consist of walking through how to create particular
CSS3 effects and transforms.

Chapter 6

[125]

Compatibility challenges
Within parameters, we will now introduce and explore in more detail the
compatibility challenges in the course of this chapter. CSS3 effects and transitions
are widely supported without the need for plugins (such as JavaScript or Flash).

On the other hand, it is important to emphasize that HTML5 and CSS3 feature all this
as work in progress. In searching for a formulation to describe the state of support
for CSS3 in browsers, I bumped into the formulation: irregular standardization. I
realized that's an oxymoron, but what I mean is that the CSS3 effects and transforms
we are creating in this chapter are—generally speaking—supported in current
versions of all major browsers (and yes, that generally includes Internet Explorer 9,
along with Safari for mobile and desktop; Firefox, and Opera).

However, Safari, Firefox, and Opera all require unique code prefixes. For example,
the CSS3 code to apply rounded corners to a 150 pixel square box with a thick red
border might look like the following:

#box {
height: 150px;

width: 150px;
border: thick solid #F00;

-webkit-border-radius: 10px;

-moz-border-radius: 10px;

-o-border-radius: 10px

border-radius: 10px;
}

The -webkit-border-radius code applies to Safari and other browsers that adhere
to the webkit standard (which includes, by the way, Dreamweaver's Live View). The
-moz-border-radius code applies to Mozilla Firefox. The -o-border-radius code
applies to the Opera browser. Moreover, the generic border-radius code applies
to "everyone else" including Internet Explorer 9, which does not require a browser
prefix to interpret these (or other) effects. These standards are, as noted, work in
progress, and by the time you read this book, they will have evolved in one form or
another. However, at this stage of the game, we need to provide alternative code for
different browsers.

The lack of standardized coding is not as big a problem as it might seem. It just
requires a bit of redundancy as we define and apply effects and transforms.

Applying CSS3 Effects and Transforms

[126]

What about browsing environments, like older versions of Internet Explorer, that
do not support CSS3 effects and transforms at all? There is an easy and a hard
answer to that challenge. The hard solution is to patch together JavaScript and other
coding solutions that can be found online or concocted to simulate the effects and
transforms that were not supported in CSS3. This means, you can revert to tools and
techniques such as JavaScript and Flash that were required to produce these effects
before the advent of CSS3.

The easier and probably more sensible solution in most cases it to employ transforms
and effects in ways that do not require a browser to support the effect in order for
a visitor to absorb page content. For example, look at the rounded rectangle in the
following screenshot that is created using the border-radius effect.

In the preceding example, if someone visits this page in an older version of Internet
Explorer like IE6 he/she will forgo the experience of seeing the type in a circle
(defined by the border-radius effect). Not quite as inviting an experience, but
they will still be able to read the text, as shown in the following screenshot:

Chapter 6

[127]

Cutting edge… but accessible: Here we should emphasize a theme that
has been alluded to throughout this book. Design sites and pages so
that they take advantage of new HTML5 and CSS3 tools to provide an
inviting, modern experience for visitors using browsers up to current
standards, while making sure content is still accessible for visitors with
out-of-date browsers.

Before diving into how to apply transforms and effects, let's reflect for a moment on
the advantages involved in using these CSS3 features to format the examples we
have previewed so far:

No Flash or JavaScript was created, injured, mistreated, or worse in creating
these effects. All that was required was a few lines of CSS that we will
generate in Dreamweaver's CSS Styles panel.

It was not necessary to use "image text", type saved as an image, to create
these effects. The page can load almost instantly, without waiting for an
image to download.

In the absence of plugins or images, the shaping and formatting downloads
more or less instantly, without browsers having to mess with plugins or
downloaded images.

•

•

•

Applying CSS3 Effects and Transforms

[128]

Finally, the text is still selectable. Meaning that text to which transforms
or effects have been applied can still be copied and pasted into a map
program, a calendar event, or selected as a text link as shown in the
following screenshot:

CSS3 styles in Dreamweaver's HTML5 Pack
Having surveyed the advantages of using CSS3 styles, let's explore the best way to
generate them in Dreamweaver.

Dreamweaver's HTML5 Pack provides some features for defining and applying CSS3
effects. While not the most powerful tools in Dreamweaver, they do make it possible
to create and apply new CSS3 techniques without resorting to coding, or where
coding is essential Dreamweaver with the HTML5 Pack helps out with
code hints.

Dreamweaver CS5.5 introduces interactive dialogs in the CSS Styles panel for
defining border radius and box shadow parameters, and we will explore how
those work.

There are essentially two options for getting our money's worth out of Dreamweaver
as we generate CSS3 transforms and effects. If we enter CSS code in Code view,
Dreamweaver (with the HTML5 Pack) will help with the coding by supplying
code hints.

•

Chapter 6

[129]

For example, the following screenshot shows a code hint being offered after
–moz-bor has been entered in Code view, code hints for the style sheet provide
easy access to the border-radius attribute.

Redundant CSS code: The preceding screenshot shows what is a big
part of an ongoing dimension of defining and applying CSS3 transforms
and effects. You have to create four versions of the code, one for Webkit
(Safari), one for Mozilla (Firefox), and one for Opera (a browser with a
large user base in Europe), and a generic version (with no browser prefix)
that is recognized by Internet Explorer 9. We will return to this challenge
shortly in this chapter.

The other option is to generate CSS3 effects and transforms in the CSS Styles panel.
The downside to this is that these new CSS3 style rules do not show up in the CSS
Rule Definition dialog, normally the most user-friendly and intuitive environment
for defining CSS Styles in Dreamweaver.

Applying CSS3 Effects and Transforms

[130]

You can however, enter CSS3 effects and transforms through the Add Property
link at the bottom of the CSS Styles panel. Moreover, Dreamweaver CS5 (or older
versions with the HTML5 Pack installed) will generate CSS code based on the
style rules and parameters you enter in the CSS Styles panel. With this option,
Dreamweaver will at least "bust" you if you attempt to enter an invalid CSS3 rule
as shown here (in the following example, I should be entering –moz-transform and
then defining the skew transform in the right column in the CSS Styles panel).

Beyond these tools, Dreamweaver CS5.5 has added intuitive features for defining
CSS3 effects, which we will look at shortly.

CSS3 effects
As noted already, support for CSS3 effects and transforms is irregular, and a work in
progress. Within that framework, the four available transforms (scale, translate,
rotate, and skew) are relatively stable and widely supported. Effects, on the other
hand, are even less consistently supported, and less finite in the sense of there being
a "list" of available effects that are supported (albeit with unique coding prefixes)
across browsing environments.

Chapter 6

[131]

Part of the reason for this is that a number of effects are very flexible. For example,
the text-shadow effect can be tweaked to produce outlined type, as shown in the
following screenshot:

With what has been discussed so far about the flexible and open-ended nature of
CSS3 effects, let's examine three of the most useful effects: opacity, border radius,
and shadow (for both boxes and text).

Opacity
The opacity effect in CSS3 allows you to apply varying degrees of opacity /
transparency to objects. Full opacity (a value of 1) is normal; the object to which
opacity is applied covers over everything else. Full transparency (a value of 0) makes
an object invisible. An opacity value of .6 makes an object 60% opaque, and so on.

In spite of all the preceding warnings that CSS3 effects have to be defined specifically
for different browsers, the opacity effect is one that does not require a prefix for
identifying target browsers.

Simple… or Complicated: With CSS3, implementing opacity
(transparency) is quite simple…. or, rather hopelessly complex,
depending on what one is aiming for. If you are trying to use the opacity
effect to create a complex set of layered objects, with various elements
having their own assigned opacity, then that requires coding that is
complex, and not supported with any uniformity at all among browsers.

Applying CSS3 Effects and Transforms

[132]

Opacity can be applied to a tag (conceivably, for example, the img tag that defines
how images appear). Of more efficacy is the technique of defining a class style that
applies opacity. You can do that with the following steps:

In the CSS Styles panel, click on the New CSS Rule icon at the bottom of the
panel to launch the New CSS Rule dialog. Choose Class from the Selector
Type popup; enter a name (no spaces or special characters – semi_opaque
would work) and select your external style sheet from the Rule Definition
popup. Click on OK.
The CSS Rule Definition dialog opens. Sadly, as discussed earlier, CSS3
effects cannot be defined in the CSS Rule Definition dialog. So, simply click
on OK to create a new CSS rule with no properties at this point. However,
the new rule will appear in the CSS Styles panel and here we will define
opacity settings.
With your newly created class style selected in the CSS Styles panel, click on
the Add Property link in the bottom half of the CSS Styles panel. In the first
column, type opacity and press the Tab key to move to the second column.
In the second column, type a value between 0 (for complete transparency)
and 1 (for full opacity). The value .5, for example, as shown here, defines
50% transparency.

With the class style defined, you can apply it to selected objects (like an image)
by choosing the class style from the Properties inspector, as shown in the
following screenshot:

1.

2.

3.

Chapter 6

[133]

You can test opacity effects in different browsers. While opacity is not supported in
all browsers, particularly older versions of browsers, usually its application is such
that if it works, it can enhance a page, but if it doesn't work, no essential content is
lost. The following screenshot shows an image with full opacity, and again (on the
left) with .5 opacity applied, viewed in Firefox. The image with the .5 opacity setting
allows visitors to see some page background behind the semi-opaque second version
of the graphical text.

Border radius
The CSS3 border-radius effect is used to define rounded corners. At the time
of this writing, it was necessary to use browser-specific prefixes when defining a
border radius.

Dreamweaver CS5.5 provides new interface tools for defining a border-radius
effect interactively, using a simple popup dialog. If you are working in an older
version of Dreamweaver, you will type the parameters directly into the CSS Styles
panel. Let's dive right into an example and examine both options.

In this case, we will create and apply a class style that applies 12 pixel radius
rounded corners to a 150 pixel square box with a yellow background, and a thick,
solid red line around it. In the previous discussion of creating a class style to apply
opacity effects, we used the technique of building the class style in the CSS Styles
panel. That worked well because opacity effects are pretty simple. Here, let's build
the style in a CSS style sheet. Assuming you have an external style sheet linked to
an open web page in Dreamweaver, you can add this code to the CSS file to define a
border-radius class style:

.box {
 background-color: yellow;
 height: 150px;
 width: 150px;

Applying CSS3 Effects and Transforms

[134]

 border-radius: 12px;
 border: thick solid red;
 -webkit-border-radius: 12px;
 -moz-borer-radius: 12px;
}

The following screenshot shows this class style applied to selected text
in Dreamweaver:

In a browser, the preceding screenshot looks like the following screenshot:

BOX

In Dreamweaver CS5.5, border-radius parameters can be defined with a popup in the
CSS Styles panel that appears when you click on the arrow in the right-side column
in the bottom half of the panel. The coolest thing about this is that you can adjust the
parameters of an external CSS file (style sheet) in the CSS Styles panel, and examine
the effect on the page in Live view, as shown in the following screenshot:

Chapter 6

[135]

One fun technique to try is to create a circle effect by making the rounded-radius
value equal to half the height (and width) of a square box. The following example
shows the effect, with the values adjusted from the earlier example so that the
rounded-radius is 75 pixels, half the 150 pixels that define the dimensions of the
original square.

Applying CSS3 Effects and Transforms

[136]

Shadows
Drop-shadows may well be the most widely applied effect in graphic design. Don't
quote me on that, but certainly shadows are a ubiquitous element in many designs,
and now they are easy to apply to selected objects using CSS3.

There are two different shadow effects: box-shadow, and text-shadow. The
application of them is pretty self-explanatory, box shadows apply to boxes,
and text shadows to text.

Both box-shadow and text-shadow effects are defined with a minimum of two
parameters: x-offset (vertical distance), and y-offset (horizontal distance). In addition,
they usually include a blur parameter (the thickness of the blur gradient) and a color
(if no color is specified, a browser default color appears).

The x and y offset values can be positive or negative. Positive values generate a
shadow to the right of the text, while negative values generate a shadow to the left
of the text. For the offset-y values, positive values generate a shadow below the text,
while negative values create a shadow above the text. Values are normally defined
in pixels.

Before examining how this works for boxes, text, and outlines, it is useful to note
that multiple shadow definitions can be combined. So, for example, if you wish to
generate a shadow under and over text (and you will want to do this when you
define an outline style), you can combine two, or even three shadow definitions,
and they stack on top of each other.

Box shadow
As noted, box-shadow effects, are usually defined with four parameters: offset-x
(horizontal distance), offset-y (vertical distance), blur (width in pixels), and the color
of the shadow.

The following code, for example, defines a box shadow with 5 pixels of horizontal
and vertical offset, a blur length of 5 pixels, and a gray shadow—and does so for four
different browsers, Safari, Firefox, (using the un-prefixed code) Internet Explorer 9,
and Opera.

.shadow {
 box-shadow: 5px 5px 5px gray;
 -webkit-box-shadow: 5px 5px 5px gray;
 -moz-box-shadow: 5px 5px 5px gray;
}

Opera and Internet Explorer 9 support the box-shadow effect with no prefix.

Chapter 6

[137]

Dreamweaver CS5.5 has added an interactive popup for defining parameters for
the box-shadow effect. Here's how that looks in the CSS Styles panel (and you could
define the class style in the CSS Styles panel).

Text shadow
The text-shadow effect is very similar to the box-shadow effect except that it is
applied to text, not boxes. Moreover, for whatever reason, unlike the box-shadow
effect, which requires a special prefix for Firefox, the text-shadow effect does not
require vendor-prefixes.

The parameters for the text-shadow effect are the same as those of box shadows:
you define four values: x-offset, y-offset, blur distance, and color. Without the hassle
of creating three versions of the effect, the following CSS code can be used to define
a text shadow with 5 pixels of horizontal and vertical offset, a blur value of 5, and a
gray color.

.text_shadow {

 text-shadow: 5px 5px 5px gray;
}

Applying CSS3 Effects and Transforms

[138]

The text-shadow effect settings in the preceding example produce an effect as
shown in the following screenshot:

Text outline
As alluded to earlier in this chapter, there is no such thing as a "text outline" effect.
However, there is a way to apply text outlines using the text-shadow effect. In
general, this involves matching the text color of the "outlined" type with the page
background, and then defining a particularly thin, black "shadow" with no blur
at all that looks like an outline.

Creating effective outline effects requires stacking additional defining parameters,
in order to stack up very thin "shadows" both above and below, and to the right, and
left of text to which the style is applied. For example, applied to text that sits on a
white page background, the following class style combines (stacks) three different
sets of parameters to create an outline effect.

.outline {
text-shadow: 0 1px 0 black, 0 -1px 0 black, 1px 0 0 black,

 -1px 0 0 black;
color: white;

}

Chapter 6

[139]

This level of detail is not supported by the new popup feature in the CSS Styles panel
of Dreamweaver CS5.5. Therefore, we have to enter the parameters by hand in the
right column in the bottom half of the CSS Styles panel. Here's how that looks in a
browser, and in the CSS Styles panel.

Essentially the preceding code generates a thin (1 pixel) "shadow" below the text,
another one below the text, and a third 1 pixel thick "shadow" above the text. For
a thicker outline, you could increase the pixel values uniformally to two pixels.

CSS3 transforms
The four CSS3 transitions resize, translate (move), rotate, and skew are applied
to selected content as effects. That is to say, they change the display or appearance of
objects, but not their underlying properties.

These transformations make it possible to present distortions of text or images that,
before the advent of CSS3, normally was done through images using an image of text
to present that text skewed, rotated, or scaled.

Rather than pushing my written communication skills beyond their limits, let's take
advantage of the following screenshot to illustrate these four transitions:

Scale

x:1, y:1.5

Rotate

15 degrees
Translate

15 px right, 15
px down

Skew

15deg/0deg

Applying CSS3 Effects and Transforms

[140]

When to use transforms
The skew and rotate transforms can be used to present text or images in an
intriguing and unique way, while maintaining the user's ability to select (and copy,
paste, click on, and so on) text. The translate transform can be used to place one
block of content over another (as in the illustration above). The scale transform can
be used to stretch, or resize type or images.

When images overlap: When two div tags overlap, the one that appears
in front will be the one with the highest z-index value. You can set z-index
in the CSS Styles Panel.

In many instances, these effects work well as interactive animation, where a visitor
triggers the transform by hovering over an object with his or her mouse. We will
explore that technique as the final element of this chapter.

As with the CSS3 effects explored earlier in this chapter, transitions can be applied
to tags such as a heading (h1, h2, and so on) and images (using the img tag).
Alternatively, more typically, class styles are defined to apply these transitions.

How to generate transition coding in
Dreamweaver
Before examining the relatively basic syntax necessary for defining a transform, a bit
of disappointing news to Dreamweaver CS5.5 users, those cool pop ups that helped
define at least some effect parameters in the CSS Styles panel for CSS3 transitions
are not available for transforms. That means we’ll be entering those parameters
from our keyboards.

You cannot define transforms in the CSS Rule Definition dialog. You can apply CSS2
(earlier) styles that way, rules such as background color, font definition, and so on.
However, we would search in vain though the categories in Dreamweaver's CSS
Rule Definition dialog for skew, scale, transform, or rotate. Therefore, our two
choices remain a) type CSS code in Split or Code view, directly into the CSS file;
or b) use the limited resources of the CSS Styles panel to define transforms.

I will let you jump back and review the more detailed discussion earlier in the
chapter for a more step-by-step walk-through of how to either enter code in the
CSS file you are working with, or define styles using the CSS Styles panel. But
there is one, new factor to examine here, you get a bit more help in the CSS Styles
panel defining transform parameters than you do for the effects (such as shadows)
explored earlier in this chapter.

Chapter 6

[141]

Here's how that additional help works. In the course of adding a rule to a style in
the CSS Styles panel, if you enter one of the transform options (-webkit-transform,
--moz-transform, or - transform) in the bottom of the CSS Styles panel,
Dreamweaver supplies a popup in the second column of the panel with
various transform options, as shown in the following screenshot:

Bottom line is you have to decide which environment is more comfortable for you in
generating the CSS3 code for transforms. In the exploration of the specific transforms
in the remainder of this chapter, I will give away my own choice (just typing coding
in Code view). However, when you are becoming familiar with the CSS3 code for
transforms, you might find the popup help in the CSS Styles panel helpful.

Resizing with scale
Scaling is defined by two parameters, x, and y. The x value defines how much to
increase or (with a value less than one) decrease width, and the y value applies to
height. Values are normally multipliers, so that a value of 2 = 200%, or doubling the
size, and a value of .5 = 50% or reducing the size to half of the original value.

Applying CSS3 Effects and Transforms

[142]

The following lines of code apply a scale transform that leaves the width of the
object unchanged, but increases the height by 50%:

transform: scale(1,1.5);
 -webkit-transform: scale(1,1.5);
 -moz-transform: scale(1,1.5);
 -o-transform: scale(1,1.5);

Here's a sample of a class style (called .scale) that incorporates the preceding code,
and defines a class style that generates a 125 pixel square (before rescaling) box
with scaling:

.scale {
 height: 125px;
 width: 125px;
 background-color: yellow;
 transform: scale(1,1.5);
 -webkit-transform: scale(1,1.5);
 -moz-transform: scale(1,1.5);
 -o-transform: scale(1,1.5);
 float: left;
 margin: 15px;
 padding:5px;
 border:1px solid #F00
}

Floating the box: In the preceding example, the float attribute allows
us to arrange a bunch of these, or similar boxes, in a single row.

Moving with translate
The translate transform moves objects relative to the position they are inserted
in a web page. As noted earlier, this can be an effective technique for having boxes,
including boxes of selectable text, overlapped on a page.

The syntax for the translate transform is similar to that for the scale transform
except that the first parameter, the x value, defines how far to the right (left, if you
use a negative value); the y value defines how far down (up if you use a negative
value) the object will move. Values are normally defined in pixels.

Chapter 6

[143]

Here's the same class style we used as an example for the scale transform in the
preceding section, but with the translate transform set to move the object 35 pixels
to the left, and 15 pixels down:

.translate {
 height: 125px;
 width: 125px;
 background-color: yellow;
 transform: translate(-35px,15px);
 -webkit-transform: translate(-35px,15px);
 -moz-transform: translate(-35px,15px);
 -o-transform: translate(-35px,15px);
 float: left;
 margin: 15px;
 padding:5px;
 border:1px solid #F00
}

Applying rotation
The rotate transform is perhaps the simplest to define, as there is only one
parameter, rotation angle. That angle can be positive (rotates clockwise) or
negative (rotates counter-clockwise).

Here's an example of code that rotates an object 15 degrees clockwise:

 transform: rotate(15deg);
 -webkit-transform:rotate(15deg);
 -moz-transform:rotate(15deg);
 -o-transform:rotate(15deg);

Moreover, the following code is an example of a class style that rotates an object
15 degrees, with the same size and other attributes of the examples we have
used previously:

.rotate {
 height: 125px;
 width: 125px;
 background-color: yellow;
 transform: rotate(15deg);
 -webkit-transform:rotate(15deg);
 -moz-transform:rotate(15deg);
 -o-transform:rotate(15deg);
 float: left;

Applying CSS3 Effects and Transforms

[144]

 margin: 15px;
 padding:5px;
 border:1px solid #F00
}

Caution – Leave space for rotate (and skew): When you rotate an
object (or, as we will see, if you skew it), the object will overlap with
nearby objects. Typically (unless such overlap is part of the design), this
is addressed by adding margin values to the object style large enough to
prevent overlap.

Creating a skew transition
The skew transform is defined by two parameters, separated by a comma. The
first defines the x-axis (horizontal) transform in degrees; the second value defines
vertical distortion. If you use zero as a value for one of the two axes, the result is a
parallelogram, as shown in the following screenshot:

Skew

15deg/0deg

Here's an example of code for a class tag that applies the yellow background, red
border, and other attributes of our preceding examples, that skews an object 15
degrees on box axes:

 transform: skew(15deg);
 -webkit-transform:skew(15deg);
 -moz-transform:skew(15deg);
 -o-transform:skew(15deg);

In addition, the following code is an example of a class style that rotates, skews an
object 15 degrees, with the same size and other attributes of the examples we have
used previously:

.skew {
 height: 125px;
 width: 125px;

Chapter 6

[145]

 background-color: yellow;
 transform: skew(15deg,15deg);
 -webkit-transform: skew(15deg,15deg);
 -moz-transform: skew(15deg,15deg);
 -o-transform: skew(15deg,15deg);
 float: left;
 margin: 25px;
 padding:5px;
 border:1px solid #F00
}

Other CS3 transform effects
In addition to the two dimensional (2D) transform effects of CSS3 that we have
explored in this chapter, there are other three-dimensional (3D) transforms in
emerging states of support. They are, in general, not supported by any browsers
except the webkit set (Safari and Chrome), and from what I have been able to
understand, at this point they are not that applicable without additional JavaScript
that animates them.

That said; stay tuned. The world of CSS3 transforms is one of constant motion and
development, and 3D transforms may gain broader support and become more
accessible to developers.

Compound transforms
You can combine as many as all four transforms into a single transform rule. For
example, to create a transform that applies skew (5 degrees on both the x and y axes),
scale (1.5 multiple on both the x and y axes), and rotate (45 degrees), with a prefix
that works with webkit browsers, you would use this code:

-webkit-transform: skew(5deg,5deg) scale(1.5, 1.5) rotate(45deg);

As transforms tend to apply rather radical changes to objects, and given that
skew and rotate create similar effects, the aesthetic and accessibility that warrant
combining multiple transforms in a single object are limited; however, available.

Interactive effects and transforms
Having surveyed and walked through the process of creating and applying CSS3
effects and transforms, we now turn to one of the most exciting, dynamic aspects of
these new style features: interactivity.

Applying CSS3 Effects and Transforms

[146]

By interactivity, we mean that an object or elements of a page react to a visitor's
action with their own action. A visitor hovers over an object, and that object moves,
resizes, rotates, skews, develops a shadow, becomes semi-transparent, or some
undergo some other change.

There are two basic techniques for combining interactivity with effects and
transforms. One of these techniques is to use JavaScript along with transforms
and effects to create interactivity.

The other, more accessible technique is to avail ourselves of the widely supported,
and easy to use :hover pseudo-class. If you are familiar with defining a "hover" state
for a link, where a link takes on a unique appearance when hovered over, you have a
basic idea of how this is going to work. Moreover, we will walk through that in more
detail in the following section.

Effects and JavaScript
There are several definite limitations to creating interactive effects and transforms
with JavaScript that place it beyond the scope of what we can address in this book.
The first is that in order to implement this approach, one needs to know JavaScript,
and while that knowledge is available in thick books, massive online resources, and
pay-to-use tools that generate JavaScript, it is well beyond what I could cover in this
chapter, let alone this book. Further, JavaScript is not universally supported

in browsing environments, and much of the appeal of HTML5 and CSS3 is
that, with proper accounting for non-HTML5 environments, nearly everything
we are exploring in this book will work, or at least not cause harm in any
browsing environment.

Dreamweaver's under-rated but also under-supported tool for generating JavaScript,
the Behaviors panel, does not support CSS3 effects and transforms, and thus is, yet,
impotent when it comes to combining JavaScript and effects and transforms.

We have enumerated the drawbacks (and plusses) for combining JavaScript with
CSS3 effects and transforms in part because you are likely to encounter examples,
models, and much discussion on the Web among developers exploring the cutting
edge of CSS3, and combining their work with JavaScript.

Interactivity with the :hover pseudo-class
There is, however, a much more accessible tool for applying interactive effects and
transforms: the :hover pseudo-class.

Chapter 6

[147]

Pseudo-classes are CSS modifiers that define the appearance of a web page object
depending on the state of an object. They are best known for—and most widely
applied as— modifiers on links.

By default, for example, unvisited links on a web page are displayed as underlined
blue, visited links as underlined purple, and active links as underlined red. These
parameters are easily changed in Dreamweaver's CSS Styles panel. Moreover, they
are supported in every modern and even older browser.

But in addition to the :visited, and :active pseudo-class styles (pseudo-classes),
there is another, more dynamic state, :hover. This definable state applies to anything
on a page that a visitor hovers his or her mouse over.

By applying effects and transforms to the hover state of an object, you can make it
interact in a defined way with a visitor's mouse actions.

Animating CSS3 transforms in Dreamweaver
Let's now walk through exactly how CSS transforms and effects work with :hover
pseudo-class.

The basic concept is that you define a :hover pseudo-class for the object you wish
to transform when hovered over. That object can be an HTML tag (like img) or, a div
tag (either a class or ID div).

In the case of the img tag, for instance, this line of code in the CSS file would define a
scale transform increasing height and width by 10% when the image is hovered over:

img:hover {
 -webkit-transform: scale(1.1,1.1);
}

Alternatively, to take another example, a div tag, the following code would cause a
class style container named .box to rotate 45 degrees when hovered over:

.box:hover {
 -webkit-transform:rotate(45deg)
}

It will produce an effect as shown in the following screenshot:

box

Applying CSS3 Effects and Transforms

[148]

Recipe: Create an animated effect and
transform
This recipe creates a class style box that can be reused repeatedly on a page that
displays with a CSS3 effect, and a CSS3 transform when hovered over. As such, it is
an easily adaptable recipe, you can use the information in this chapter to substitute
different effects and transforms that we will use in the recipe.

In our particular scenario, we will apply rounded corners and slightly enlarge the
box when it is hovered over.

Putting the pieces in place
Here's what you need to have in place before diving into this recipe: You need to
have defined a Dreamweaver site. Jump back to Chapter 1, and review the discussion
and steps there for creating a Dreamweaver site.

With your site defined you are ready! Everything we need is right in Dreamweaver
CS5. Let's first set up the files we need:

Choose File | New to open the New Document dialog. Choose Blank Page
in the Category column, HTML in the Page Type column, and <none> in
the Layout column. From the DocType popup, choose HTML5. The Attach
CSS File box should be blank at this point. With the new file defined, click on
Create to create a new, blank Dreamweaver page.
Enter Hover in the title area of the Document toolbar. Choose File | Save
and assign a filename. Let's use hover.html.
Next, we will create the CSS file that will hold our styles, particularly the
CSS3 effect and transform styles we will be using. Choose File | New. The
New Document dialog opens.
Select CSS in the Page Type category and click on the Create button. Save
the CSS file, use the filename hover.css. A blank CSS page opens.
Select the HTML file. You can do this from the files tabs at the top of the
Dreamweaver Document window, or to avoid any possible confusion (given
we have two similarly named files open), click on the Window menu and
click on the hover.html file.
In the HTML page (you can be in any of the three views, but Design view
works fine), choose Window | CSS Styles to display the CSS Styles panel
(if that panel is not visible).

1.

2.

3.

4.

5.

6.

Chapter 6

[149]

Click the Attach Style Sheet link icon at the bottom of the CSS Styles panel,
and navigate to and link the hover.css style sheet file. The (empty) style
sheet file appears in the CSS Styles panel. You can see all the elements we
have defined so far, and your screen should look at this point like the one
shown in the following screenshot:

Setup: With our HTML page and CSS style sheet file defined, saved, and
linked, it's showtime! We will define two elements to make our hoverable
box operative: the box itself, and a hover pseudo-class that activates the
scale transform and the rounded corners effect. We will do that next…

8. Click the New CSS Rule icon at the bottom of the CSS Styles panel to open
the New CSS Rule dialog. From the Selector Type pop-up, choose class in
the Selector Name box, type box. In the Rule Definition area (if hover.css
is not already selected) choose it from the Rule Definition pop up). Click on
OK to open the CSS Rule Definition dialog for .box in hover.css.

7.

Applying CSS3 Effects and Transforms

[150]

9. In the Background category of the CSS Rule Definition dialog, choose a
light colored background color (such as yellow). In the Box category, apply
the following rules as illustrated below. Don't click on OK yet! We will define
a border next.

Width: 200 px
Height: 200 px
Float: left
Padding: 25 (for all)
Margin: 50 (for all)

A note on the settings: We are creating a 200 pixel square box, which
is a nice size to hold a sidebar message or picture and caption. We floated
it left so other content can wrap around the box on the right. The large
margin and padding provides plenty of flexibility for effects that might
expand box, or impinge on the space of nearby elements.

10. Next, let's create kind of a fun border. In the Border category of the CSS Rule
Definition dialog, define the border as dashed, thick, and red as shown in the
following screenshot. Then click on OK to create the style rule.

°
°
°
°
°

Chapter 6

[151]

11. Let's now place one (or your option, more than one) instance of this class
style on the page. Choose Insert | Layout Objects to open the Insert Div Tag
dialog. Choose box from the Class popup and click on OK. Note that you
can do this repeatedly if you wish to use this box as a page design element,
as shown in the following screenshot. You can also use this figure to
double-check the rules for the .box class style in the CSS Styles panel.

Applying CSS3 Effects and Transforms

[152]

Final steps: We can now define the hover pseudo-class style to animate
this box with scaling and rounded corners. We were able to create a
sized, floated box with a defined border using Dreamweaver CS5's CSS
Styles panel and dialogs. For the CSS3 styles required in the next step we
won't be quite so lucky. We will define a style using the CSS Styles panel.
However, we will have to enter the CSS3 style code ourselves using just
Dreamweaver CS5's code hints.

12. Click on the New CSS Rule icon at the bottom of the CSS Styles panel to
open the New CSS Rule dialog. From the Selector Type popup, choose
Compound; in the Selector Name box, type .box:hover. In the Rule
Definition area, if hover.css is not already selected, choose it from the Rule
Definition pop up). Click on OK to open the CSS Rule Definition dialog for
.box:hover in hover.css.

13. As the rules we need are not available in the CSS Rule Definition dialog,
click on OK to save the style .box:hover with no rules as yet.

14. Choose Window | hover.css to open the CSS styles file in Dreamweaver's
code view. Refer to the figure below for coding to define a scale transition
that bumps the size of the box up a noticeable but not obnoxious 2%, and
applies subtle rounded corners. The code makes this effect accessible for
Safari (-webkit); IE9 (generic); Opera (-o); and Firefox (-moz) users.

Chapter 6

[153]

The code here specifically for the .box:hover style is:
.box:hover {
 -webkit-transform:scale(1.02);
 -webkit-border-radius: 10px;
 -o-transform:scale(1.02);
 -o-border-radius: 10px;
 -moz-transform:scale(1.02);
 -moz-border-radius: 10px;
 transform:scale(1.02);
 border-radius: 10px;
 }

15. Save the CSS file (choose File | Save). Use the Window menu to return to the
hover.html page. Test the effect and transform in Live view, as well as other
browsers using the File | Preview in browser. The following screenshot
shows the effect in Firefox, the middle box displays slightly larger with
rounded corners.

Once again, this is a highly adaptable recipe and can be the basis for creating
page layout elements that interact with visitors hovering over them. You could,
for example, replace scale with rotate, skew, or even translate to alter the
transform. Moreover, you could replace the border-radius effect with shadows
or opacity changes.

Applying CSS3 Effects and Transforms

[154]

Summary
In this chapter, we covered a wide range of effects and transforms available with the
emergence of the CSS3 standards for style sheets. Those "standards" are inconsistent,
thus a need to provide alternate (prefixed) rules for different browsers.

These transforms and effects are useful as design tools in their own right. And they
are even more dynamic design factors when made interactive by defining :hover
pseudo-class elements that cause them to appear when (and only when) an object is
hovered over.

It cannot be said that at this point Dreamweaver CS5 with the HTML5 Pack fully
supports these innovative design techniques. However, we explored how the
Dreamweaver framework provides a solid structural backdrop for defining and
applying CSS3 transforms and effects. Moreover, we examined Dreamweaver's
limited CSS3 tools like the ability to use code hints in Code view, and useful
prompts for transforms in the CSS Styles panel.

In the next chapter, we will venture into the world of HTML5 audio, how to create it
and how to embed it so that it plays with native (browser-defined) players.

Embedding HTML5 Audio in
Dreamweaver

In this chapter, we will learn how to add audio to web pages using HTML5. The
advantage to embedding audio using HTML5 in Dreamweaver CS5 is that it does
not require any external player to work. For browsers that support the HTML5
Audio element, it is the most elegant way to present an audio online.

The Dreamweaver CS5 HTML5 Pack makes adding HTML5 audio painless, without
having extensive knowledge of or worrying about HTML coding.

We will learn how to use the HTML5 audio element through several steps:

1. We will make sure that we are prepared to add HTML5 audio files using
Dreamweaver CS5.

2. We will prepare HTML5-ready digital audio files.
3. We will embed audio elements in web pages with Dreamweaver CS5.
4. We will provide alternative audio for non-HTML5 compatible browsers.
5. We will define additional audio parameters.

We need to perform each of these steps to make sure that the HTML5 audio that we
include in our site will work for every visitor.

Embedding HTML5 Audio in Dreamweaver

[156]

Audio and compatibility
Before launching our journey to embedding audio with HTML5, we will step back
for just a moment to survey the terrain. Students of the Web ecosystem, including
me, have extensive online collections of commentary on the weird state of online
audio and video, and you can look that up if you wish. Here, I will provide the
most compressed overview of online audio and the framework from which HTML5
audio emerged.

Until HTML5, if you wanted to listen to audio from a website, you had to do so
through the agency of a browser plugin of one kind or another. That plugin might
have been QuickTime Player (typically on a Mac), Windows Media Player (typically
on a Windows computer), Real Media Player, a plugin supplied by your hardware
manufacturer, or some other program. This meant that the visual dimension, at least,
of experiencing the web audio was almost completely out of the control of the web
designer. HTML5 provides what is called native audio (as well as native video, as we
will see in the next chapter). Native video does not require a plugin. The player and
controls still vary depending on the browsing environment, but with HTML5, the
audio player is relatively standardized.

There are two compatibility issues in presenting HTML5 audio, which are as follows:

1. A visitor's browser must be HTML5-complaint.
2. A visitor's browser must support the particular audio format to which the

audio is saved.

Therefore, in walking through the process of presenting HTML5 audio, we will
explore how to handle both of these compatibility issues.

To elaborate a bit more on compatibility issues: embedding the audio is complicated
because of several factors:

There are competing methods of presenting media online, such as HTML5
versus Flash
As we saw in Chapter 4, Building HTML5 Pages from Scratch, there are different
browser standards which support different elements of HTML5
There are a wide variety of audio formats—WAV, MP3, AIFF, Ogg Vorbis
(or OGG) being the main ones

Fortunately, these issues are solvable. So let's get started.

•

•

•

Chapter 7

[157]

Laying the groundwork: HTML5 and
page-building
Support for HTML5 audio in Dreamweaver—of any version to date—is primitive.
Essentially, the help you get, whether you are working in Dreamweaver CS3 or CS4
with the HTML5 Pack, or versions 5 or 5.5, is code hinting in the Code View.

Let me quickly review the essential things you need to work with HTML5 audio
in Dreamweaver:

Make sure that you have the HTML5 Pack installed and loaded.
If you have not yet, make sure that you have a Dreamweaver site defined.
This is an essential first step. In order to learn how to define a site, you can
take a look at Chapter 1 of this book to find out how to do so.
Make sure that you have a blank Dreamweaver site to use during the tutorial.
Learn more about setting up a blank HTML5 site in Chapter 4.
Collect MP3, OGG, and WebM format audio files. Keep in mind that many
sites have free MP3 and OGG files which you can use as samples, such as the
"Free Music from Artists on the Rise" on Amazon. Put the MP3 and OGG files
in your site folder.
View Dreamweaver CS5's Document window in Split mode. We will need
to be able to see the code because you cannot use the Design view menu to
insert HTML5 Audio into your page.

Making audio HTML5-ready
The first thing we need to do, before we can put them on our website, is make our
audio files HTML-5 ready.

Before sifting through various audio formats to figure out which one goes with
which browser, let me provide a very basic overview of audio compression.

Audio compression
You probably are familiar with at least some of the popular audio formats such as
MP3, WAV, AIFF, and so on.

•

•

•

•

•

Embedding HTML5 Audio in Dreamweaver

[158]

Raw, uncompressed audio files, in the WAV (for Windows) and AIFF (for Macs)
formats, provide the highest available online audio sound quality. However, these
files are very large, and download too slowly for most users. MP3 audio files, on the
other hand, are substantially smaller in file size. A compression algorithm is used
to squeeze extra data out of files as they are converted to MP3. Moreover, for most
listeners, and most audio files, MP3 quality is sufficient. Thus, when we talk about
making audio files available online, we are often talking about compressed audio
files in formats such as MP3. Another compressed file format is the OGG format.

Browser support for audio files
What audio format works in all browsers? Unfortunately, and oddly enough, no
one format can be used to embed HTML5 audio for every browser. The four popular
browsers Firefox, Chrome, Safari, and Opera all support HTML5 audio, but the
different browsers support different formats.

Which audio formats are supported by which browsers changes over time, but as
this book goes to press, the breakdown was:

Firefox 3.6+, Safari 5+, and Opera 10.5+ support WAV format
Safari 5+ and Chrome 6 support MP3 format
Firefox 3.6+, Chrome 6, and Opera 10.5+ support the open source, but less
common OGG format
Google (and Google's Chrome browser) are promoting the WebM format

Internet Explorer 9 supports MP3 and WAV through HTML5.

So which format should we use? There is not really a "right" answer to this question,
and you can decide for yourself, but if I have to choose just one format, I tend to
choose MP3. When you embed HTML5 audio into a page, you are mostly targeting
users of Apple products such as the iPhone that uses Apple's own browser, Safari.
Moreover, Safari supports the MP3 audio. You could also use WAV, which Safari
also supports, as Firefox (a very popular browser) supports WAV as well, but this
leads to a problem with the file size. As WAV files are not compressed the way MP3
files are, they take much longer to load. In the meantime, the average visitor will give
up, especially if it is a large audio file.

You can choose another file type if you prefer, but be aware that any file type will
only work for some browsers. MP3 files are just one solution, and they will also
work using alternative audio options.

•

•

•

•

Chapter 7

[159]

The most reliable and "standards compliant" solution to presenting HTML5 audio is
to provide the option of all three HTML5 supported audio formats, MP3, OGG,
and WebM.

Embedding an HTML5 audio element in a
Dreamweaver CS5 web page
Once we have laid the groundwork, we are ready to get started. Carry out the
following steps to embed an audio element into your open Dreamweaver CS5
HTML5 page:

1. In the Code part of the Split View, place your cursor right after the <body>
tag and hit Enter on a PC or Return on a Mac to create a new line of code.

2. Start typing <au and press Tab and the HTML5 pack will auto-complete that
into the beginning of the <audio> tag, as shown in the following screenshot:

3. Placing your cursor right after the word audio, press the spacebar and
a pop-up menu will appear again. Type the letter "s" and then double-click
on src in the list. This is the code for "source" as in, where the file will
come from.

Embedding HTML5 Audio in Dreamweaver

[160]

4. When you select src A Browse link will appear. Double-click on the Browse
link to open the Select File dialog, as shown in the following screenshot:

5. Find the audio file you copied before, in our case an MP3 file (but it could be
WAV or OGG). Select that file by double-clicking on it.

6. You want to have a controller, or player, for this audio, so we will set a
parameter to display one. Press the spacebar key again and this time, type
"c," which in this case will be for controls. Double-click on controls and
when a pop-up box appears, double click on controls again as shown in the
following screenshot:

Chapter 7

[161]

7. Finally, type "</" and it will auto-complete to </audio> which will close
the code.

Now we want to preview the file, which we can only do in Safari or Opera, assuming
that you chose an MP3. In order to preview in Safari, select File | Preview in
Browser | Safari. It should look similar to one shown in the following screenshot:

If we had used a WAV or OGG file, then we could perform the same steps, but
preview in Firefox instead.

Alternative media options
So now, you have audio on your page. However, three things are missing:

First, your audio player does not have many special features
Second, not everyone who visits the site will be able to access the audio file
Finally, you could provide different HTML5 supported audio formats as
options for different browsing environments, as we have identified earlier,
not all HTML5-friendly browsers support the same audio file formats

Providing alternative HTML5 audio formats
Let's start with providing alternate audio file formats. As we have noted, some
HTML5-complaint browsing environments support the MP3 file format, others
support the OGG format, and others support WebM.

Therefore, we can make our audio more accessible by providing multiple source
files. That way, an HTML5-compliant browser can find and play the file format
that meshes with those browsers.

In order to do this, we will vary the HTML we created earlier to separate the player
control code from the audio source code. Here is how that code looks:

<audio controls="controls">
 <source src="audio.ogg" type="audio/ogg" />
 <source src="audio.mp3" type="audio/mpeg" />
</audio>

In the preceding code, you replace audio.ogg or audio.mp3 with your own audio
file names.

•

•

•

Embedding HTML5 Audio in Dreamweaver

[162]

Audio for non-HTML5 browsers
For those users whose browsers don't interpret HTML5, such as users using older
versions of Internet Explorer or users using other older browsers, we will want to
provide an alternative method of accessing the audio. In order to do this, we can
create a link to our audio file. If we do this, when the link is clicked, the audio file
will open in its own browser. The browser will then use a plugin player such as
QuickTime, Flash, or Windows Media to play the audio file. It is not the most
elegant solution, but it will work.

In order to do this, we can add a line of code to the HTML we just explored. This line
of code creates a text that will appear in browsers that do not interpret (support) the
HTML5 <audio> tag and can link to a page that presents an audio in a legacy format
such as QuickTime, Windows Media, or Flash Video (FLV).

Here is how that code looks:

<audio controls="controls">
 <source src="sound.ogg" type="audio/ogg" />
 <source src="sound.mp3" type="audio/mpeg" />
 Your browser does not support the HTML5 audio element but you
 can hear the audio file here.
</audio>

This last line of code, that begins "Your browser…," links to an HTML page (sound.
html) that can be used to present the legacy audio format that will play in plugin
software on older browsers.

Adding play parameters
Now that (almost) everyone can access our audio, let's look at what other parameters
we can use to add features to our audio element.

When we added the code controls="controls" in defining our source file, we
added a control parameter. If you played with the controller in Safari when you
tested it out, you have already discovered that this controller will let you play, pause,
mute, and restart your MP3. We can also use the bar, or scrubber, to move around in
the audio track, rewind, or fast-forward.

There are four significant HTML5 audio parameters we might want to use. To enable
each of these parameters, we will want to use the HTML5 code hints the same way
we did to enable controls:

Chapter 7

[163]

1. Controls, which we already discussed.
2. Loop plays the audio file repeatedly, or in a loop. In order to enable this

looping, place your cursor after the code controls="controls" and press
the spacebar key to activate the code hints. Type "l" and then double-click on
loop to add the code loop.

3. Autoplay starts the audio file immediately when someone opens the page,
as opposed to the viewer having to press play the way we did with the
controller. You can have both loop and autoplay enabled at the same time.
In order to make the audio play automatically, place your cursor after the
code controls="controls" and press the spacebar key to activate the code
hints. Double-click on autoplay to add the code autoplay ="". For auto
playing, you don't need to put anything between the quotation marks in the
code, the way we did with controls and loop. Just adding the code enables
it, as shown below.

A note on autoplay: Mobile devices (including iOS
Apple devices) and some versions of Android mobile
operating system do not support autoplay, which
argues for including controls.

Embedding HTML5 Audio in Dreamweaver

[164]

4. Preload starts downloading the audio file when the page is opened,
before Play is clicked. This is not relevant if we are using autoplay, as it
will load immediately either way, but when we are not using autoplay,
it allows the audio file to launch quicker when a visitor clicks Play. If you
want to preload the track, then simply place your cursor after the code
controls="controls" once again and press the spacebar key to activate the
code hints. Type "p" and then double-click on preload, and then double-click
on auto to add the code preload="auto".

You can enable multiple parameters at the same time. Just press space after the code
controls="controls" each time to activate HTML5 code hints, and then repeat for
whatever other code you want. Therefore, you can have a track that both autoplays
and loops, for example.

Remember to about what will make the most sense for the audio you have and
the preferences of visitors to your site. Keep in mind that many visitors will not
appreciate sound automatically playing when they enter the main page of your site.
They may be at work, or just not want the sound on. Unless it is a linked page, they
expect sound on (it is more considerate to your visitors to have audio be something
they can choose to turn on) rather than something they must choose to turn off.

Recipe: Embedding HTML5 audio
In the following recipe, we will embed an MP3 audio file using the HTML5 audio
element and provide an option for visitors whose browsers do not support HTML5.
I will assume that you are working in a Dreamweaver site and that you have a file
open, saved as an HTML5 web page (saving the file first is important to ensure the
integrity of the link to the audio file). Moreover, it is assumed that you have an MP3
audio file ready to embed.

With those pieces in place, carry out the following steps:

1. In the Dreamweaver Document window, jump into the Split view and in the
Code side of the Split view; click where you wish to create a new line of code.
This can be anywhere in between the <body> and </body> tags.

2. Start typing <audio> element. A couple of letters into the process, you can
press the Tab key to complete the beginning of the element. Then press the
spacebar key.

3. Double-click on src in the pop-up list, as shown in the following screenshot.
A Browse link appears:

Chapter 7

[165]

4. Double-click on the Browse link to open the Select file dialog, navigate and
select the MP3 audio file.

5. Press the spacebar key once again, and double-click on controls in the code
hints that appear. Double-click on controls again in the next code hint, so
that your line of code looks similar to one shown in the following screenshot,
except that you'll have your own audio file selected:

6. Type </ and the HTML5 Pack will complete the closing element </audio>.
7. Now, to support non-HTML browsers, add a line of text in your web page

with a link to the audio file you just embedded with the HTML5 <audio>
tag. In order to do that, locate an insertion point (click with the mouse in
the Code side of the Split view) just before </audio> that closes the audio
element. Type a closing angle bracket (>) to complete the element. Then,
type "Listen to the audio file" – as regular HTML text, and use the Property
inspector to attach a link to the audio file for the text you embedded with the
HTML5 <audio> tag.

This code provides seamless HTML5 audio for HTML5-enabled browsers that can
handle MP3 files and a link to the MP3 file for everyone else.

Embedding HTML5 Audio in Dreamweaver

[166]

Summary
In this chapter, we saw how to embed an audio file directly into a web page to play
in the browser window, rather than using a new window and a browser plugin.
We also saw how to have a link to a browser window that will use a media-playing
plugin for those browsers not compatible with HTML5. We covered adding more
properties to an embedded audio file. Finally, we saw how to use the HTML5 Pack
in Dreamweaver CS5's pop-up hints to help us with all the code and make it easier.

Based on what we have covered so far, we are ready to explore other dimensions
of HTML5, including how it works with its companion, CSS3, to create effects and
provide access to graphics and video in new and exciting ways.

Embedding HTML5 Video
in Dreamweaver

In this chapter, we will learn how to add different kinds of video to web pages using
HTML5 and Dreamweaver CS5.5.

Online video is undergoing a radical evolution. Those changes can be very briefly
summed up as the following: You don't need a plugin player anymore. Dreamweaver
CS5.5 provides limited but valuable support for embedding this native video (so-called
because it plays in the native browser environment without plugins).

We will learn how to use the HTML5 video element through several steps:

Understanding the concept of native video and the way it relates to early
evolutionary steps in the development of web video and also, which video
formats work in which browsers
Creating HTML5-ready digital video files
Using the <video> tag to embed a video with Dreamweaver CS5
Providing alternative options for non-HTML5 compatible browsers
Defining additional video display parameters

We need to perform each of the preceding steps to make sure that the HTML5 video
we include in our site will work in every browsing environment.

HTML5 video and Dreamweaver CS5.5
In order to understand the challenges of presenting an online video today, it is
illuminating to frame things in the evolution of web video to this point. For one
thing, older web video is still an issue, as are older browsers. We have to address the
challenge of presenting a video in both new browsers that support current standards
and older browsers that do not.

•

•
•
•
•

Embedding HTML5 Video in Dreamweaver

[168]

Moreover, the current rather crazy state of competing online video formats won't
make much sense without being anchored in an understanding of how this current
state of things emerged.

In order to sort all this out, it is useful to divide the emergent online video into
three phases.

Early formats
The first stage of the online video was characterized by a diffusion of different,
non-compatible video formats and players. Apple's QuickTime video played in
QuickTime player, which came with Apple's Safari browser. Microsoft's Internet
Explorer played various Microsoft video formats such as AVI or WMF. Typically,
web designers included QuickTime video in a site with the expectation that only
users on Macs would be able to see the video, or included Windows Media Formats
such as WMV or AVI, with the expectation that only users with Windows Media
Player (appropriately updated) could handle the video. During this phase, other
formats, such as Real Media's video and player gained traction for a time.

In this early phase, the lack of a single online video format was one marginalizing
factor affecting web video. In addition, the absence of a critical mass of users with
high-speed connections made online video less attractive. Low quality video and
audio display in laptops and digital devices was another factor that kept web video
from being the integral component of websites that it is today and a corresponding
lack of quality online video content made web video something of a marginal
element in web design.

Culturally and technically, web video was, at this point, something of an "outsider"
in web browsing experience, requiring long waits for downloads, and explanation to
users on how to watch video, as illustrated in the following screenshot that I created
for the Himalayan Fair in 2002:

Chapter 8

[169]

In terms of HTML and Dreamweaver technique, the <embed> tag was used to place
a video on a page. This tag allowed some designer control over player controls and
other parameters (such as autoplay) but how (and if) the video played was mainly
defined by a user's browser, and the plugins he/she had installed in that browser.

Flash Video (FLV)
Phase two in the evolution of online video, as we are delineating things here, marked
the integration of video into every realm of every kind of website.

One critical factor in the move of video into the mainstream on the web was the
emergence of Adobe's Flash Video (FLV) format and the widespread acceptance
of the Flash Player. FLV presents video in a highly compressed form—radically
reducing the file size (often by half compared to QuickTime) while maintaining
good video and audio quality.

Flash Video (FLV) files required the Flash Player, but during this phase of the Web,
installation of the Flash Player was almost universal. Dreamweaver, particularly in
CS4 and CS5, included nice, customizable menu-driven Flash Player design tools.
Dreamweaver designers could choose from a variety of Flash Player skins as they
embedded Flash Video. The following screenshot shows a minimalist player skin:

Intersecting with the rise of FLV and near-universal support for the Flash Player was
the availability of high-speed Internet connections and the proliferation of the video
content. The instant popularity of YouTube, which featured FLV videos, was an
expression of and an engine of these phenomena. These developments—which still
are a major element of web video—transformed the web video from marginal
to mainstream.

Embedding HTML5 Video in Dreamweaver

[170]

In terms of HTML and Dreamweaver, Flash Video (FLV) would be embedded in
pages using the <object> tag. However, the appearance of the video player and the
properties of parameters, such as autoplay or looping, are defined in the Properties
panel in Dreamweaver's Document window for a selected FLV video, as shown in
the following screenshot:

The main disadvantage of using FLV video is that it is not supported on the iPhone,
iPod Touch, or iPad (or iPods). I will explain how that situation developed next,
along with the implications for web designers using video.

Apple devices and the web video
The parameters of an online video—with Flash Video as the cohering
element—seemed defined, relatively stable, and globally accepted. Until…

Steve Jobs published "Thoughts on Flash" in April, 2010. The essence of that letter
was stating and making permanent Apple's position that it would never support
the Flash Player on its i-gadgets: "The mobile era is about low power devices, touch
interfaces and open web standards – all areas where Flash falls short. The avalanche
of media outlets offering their content for Apple's mobile devices demonstrates that
Flash is no longer necessary to watch video or consume any kind of web content."

This decision came at a time when, despite Jobs' pronouncement, the bulk of
online videos, at sites such as Hulu and YouTube for example, was in Flash Video.
Moreover, people who tried to watch videos from these sites typically got and still
do get messages like the one shown in the following screenshot:

Chapter 8

[171]

Apple threw its considerable weight behind the h.264 format for packaging
compressed videos. This format essentially uses the same compression technology as
Flash Video, but comes in a package that adapts the player display and controls from
a browser, not from a plugin player.

Setting aside the power politics and economic dimensions of this decision, the
essential technical and design issues were that Apple did not want to expand
limited energy resources in their digital devices on the Flash Player. Apple argued
that video players should be "native" to viewing environments, rather than global
cross-platform interfaces like those in the Flash Player (that look essentially the
same on every operating system and browser).

Within a year of Apple's announcement, the critical mass in providing online videos
had begun to tip towards native videos. However, Flash Video (FLV) remains widely
distributed online. Thus, web designers using Dreamweaver CS5.5 face the challenge
of embedding native videos.

Embedding HTML5 Video in Dreamweaver

[172]

The wild world of native videos
A native video is presented in HTML5 with the <video> element (tag).
Accomplishing that is our mission in this chapter, and shortly, we will explore
tools available in Dreamweaver CS5.5 for embedding video using this tag.

Before we do that, let's identify the two big challenges to developers in providing
native videos. One is that there is not one but three native video formats. The second
challenge is that the older versions of Internet Explorer (8 and earlier) do not support
the HTML5 <video> element.

Native video formats
The three widely supported native video formats are: MP4 (h.264), supported by
Safari; Theora OGG, an open source video format supported by Mozilla Firefox;
and WebM, supported by Google Chrome, Opera, and reportedly soon in Firefox.

Here is a more detailed breakdown of which browsers currently support which
video formats:

Ogg: Firefox, Chrome, Opera 10.5+
h.264 (MP4): Internet Explorer 9+, Safari, Older versions of Chrome, Apple's
mobile devices, Android devices
Web M: Chrome 6+, Opera 10.6+

However, keep in mind, all this is a moving target.

As you can see, there is no video format supported by all major browsers.
In particular, Firefox and Chrome (with a combined substantial share of the
browser market) do not support h.264 video.

We will solve this challenge by providing alternate videos, all with the same
parameters (location, player control display, and so on).

Browsers that do NOT support HTML5
Providing alternate video formats will solve the problem of making our native video
display in all HTML5 browsers. However, older visions of Internet explorer (pre-IE
9) do not support HTML5!

In the course of walking through the nits and grits of embedding native video, we
will build in backup support for browsers that do not support the HTML5 <video>
tag. We will do this by making a version of our video available in the FLV format.

•

•

•

Chapter 8

[173]

Preparing an HTML5 video for every
scenario
If you choose to provide only one of the available popular video formats for the Web,
then you are going to exclude a large chunk of people from seeing your video. For
example, if you elect to use the h.264 format supported on Apple mobile devices, that
video cannot be viewed by the 30% or so of all users who are navigating the Web
with Firefox. Conversely, if you provide Flash Video (FLV), then your video can be
watched in Firefox, but not by the highly valued 5% of web browsers browsing on
their i-devices.

Our challenge, then, is to supply a fast-downloading, compressed web video that is
supported in every browser (or at least every significant browsing environment).

No problem, by the end of this chapter, you will be able to do that in Dreamweaver
CS5.5.

Compressing videos for the Web
Let's go back to our earlier discussion of the evolution of the video for the Web. A
key link in the chain was the development of powerful, effective compression for
web video. It might be helpful to explain very briefly how this works.

Video animation—whether digital or old school analog (like films)—is presented in
frames. The more frames displayed per second, the smoother the animation.

Video compression reduces the size of a digital video not by reducing the number
of frames, but by rationalizing the way frame data is saved. Say, for example, that
you have a video of a person speaking against a background. It might well be the
case that the background does not change throughout the video. Video compression
software compresses the digital data necessary to present that video by organizing
the data used to depict the background in such a way that it does not have to be
repeated for each frame of the video.

I am using a very simple example here to help make a point, but the
point is more broadly applicable, even to video with more complex
backgrounds. Moreover, as a general rule of thumb, compression reduces
file size by about a half, while maintaining the original quality.

Embedding HTML5 Video in Dreamweaver

[174]

In a typical workflow, you might start with video files in QuickTime's MOV format
(or Microsoft's AVI format). These videos, straight from a video camera, or from
video editing software, are not compressed. They could be presented directly online
except that:

They are unnecessarily large and double the download time
They are not all supported by browsers unless those browsers have
plugins added, and we are trying to get away from that

Therefore, after you or someone else has created the video in an uncompressed
format, a key step in the process of preparing that video for the Web is to
compress it.

Video compression—open source and
proprietary
The four popular compressed digital video formats used on the Web roughly divide
into two groups: open source and proprietary.

WebM and Theora OGG are free, open source video formats. In order to create them,
you can use a variety of free encoding programs.

Flash Video (FLV) and h.264 are not open source but proprietary. In order to
generate them, we can use Adobe Media Encoder CS5.5.

While creating four additional (compressed) versions of an original uncompressed
video (from a QuickTime or Windows Media format) is a bit of a hassle, it is doable.

Converting a video to web formats with open
source tools
There are a number of free downloadable applications that convert your (raw)
QuickTime or Windows Media files to compressed Theora OGG or WebM.

I am currently using one named Miro Video Converter, a nice, free
downloadable application available at the following URL:
www.mirovideoconverter.com

°

°

Chapter 8

[175]

Whichever free video compression application you end up using, the process
involves two steps: Adding your video to the cache to be converted and choosing
an output format (like h.264), as shown in the following screenshot (in this case with
Micro Video Converter):

Of course, those two general steps will be performed differently depending on
which open source video conversion program you end up using. In general, these
free video compression applications are pretty no-frills. They don't provide options
for editing, resizing, or tweaking the quality of compressed video. Thus, I advise
using them to convert the open source versions of your web video (Theora OGG
and WebM), but not the Flash Video (FLV) and h.264 (MP4) version of your video.

For that, I suggest taking advantage of Adobe Media Encoder CS5.5 that ships with
nearly every version of the Creative Suite.

Embedding HTML5 Video in Dreamweaver

[176]

Creating an HTML5 video in Adobe Media
Encoder CS5. 5
The h.264 (MP4) is the most dynamic HTML5-compatible video format. It is the
exclusive compressed video format used in Apple's i-devices, and is or will be
supported by other browsing environments. Further, as h.264 is a proprietary
(not open source) format, it is difficult (if not impossible) to create free open
source applications that generate h.264 video.

Thus, it is appropriate and valuable that Adobe Media Encoder CS5.5 generates
h.264 video. Moreover, it generates Adobe's own FLV video.

As noted, most packages of Creative Suite 5.5 ship with Media Encoder 5.5.
Moreover, Media Encoder, while far from a full-featured video editing program,
does provide a substantial set of features for adjusting the audio and video of a
compressed video.

The following steps convert a video from other formats to FLV or H.264:

1. Launch Adobe Media Encoder CS5.5. Before you do anything else, disable
the almost dangerously irresponsible default setting that launches the
compression process before you are finished defining output settings.
Select Edit | Preferences (Windows) or Adobe Media Encoder CS5.5 |
Preferences (Mac) and deselect the Start queue automatically when idle
for checkbox, as shown in the following screenshot:

2. This is the only essential preference setting that needs to be adjusted before
you use Media Encoder 5.5. Once you have made this change, click on
OK on the Preferences dialog to return to Media Encoder CS5.5's
uber-minimalist "interface."

3. Click on the Add button. In the Open dialog that appears, navigate to and
double-click on a video from another format (such as QuickTime MOV,
Flash FLV, or Microsoft AVI) to add it to the Media Encoder queue.

Chapter 8

[177]

4. In the Format column, choose H.264 or FLV as the export format. There
are other export options, but they are for audio files (MP3), less supported
and non-essential newer versions of FLV (FV4), or versions of h.264 for
non-web use.

5. The Preset pop up provides a wide range of preset sizes and compression
quality options that are basically self-explanatory. For example, if your target
audience is most likely to be watching the video on an Apple iPad, turned
landscape, with a very fast Internet connection (for example, a super-agent
reviewing your video clip in his or her office), you would choose the 640x480
pixel display with the fastest download speed available, as shown in the
following screenshot:

6. Click on the link in the Output File column. The Save As dialog opens.
Navigate to the folder you defined earlier as the local site folder for your
Dreamweaver website, and click on Save to designate this folder as the
target for your video output.

7. If you are making more than one version of your compressed video
(something you might well want to do, for example to create both an FLV
and h.264 version of the video), then use the Duplicate button to create a
second version of your video, as shown in the following screenshot. Define
different compression settings for that video:

Embedding HTML5 Video in Dreamweaver

[178]

8. Click on the Start Queue button (as shown in the following screenshot) to
convert the entire queue of videos to the compression options you defined.
The compressing video is very demanding on your computer's resources
and this process will take some time. When it is complete, you are ready to
embed the h.264 video in a web page using HTML5:

Dreamweaver site management for an
HTML5 video
Having now explored the process of preparing a video for HTML5, let's briefly
examine how to prepare to take maximum advantage of Dreamweaver CS5.5 in
this process.

There are two ways Dreamweaver CS5.5 will assist in embedding the HTML5 video.
One way, which we will get to shortly, is that Dreamweaver will provide helpful
code hints that facilitate creating the HTML5 code we need.

However, the other value of Dreamweaver in this process is that the Site
management tools will keep track of all the files we need, and most importantly,
maintain the integrity of links we create between the embedded video and the other
files (CSS, possible JavaScript, embedded images, and so on) needed to make our
page work properly in browsers.

So, as a critical next step, make sure that you are working in a Dreamweaver CS5.5
website. As we have addressed this in previous chapters, I will just review the bare
bones basics involved in doing that here in three easy steps:

1. If you are not working in a defined Dreamweaver site, select Site | New Site.
In the Site Setup dialog, give your new site a name and define a local site
folder. Doing this defines a Dreamweaver site. Defining the Servers element
of a site is not essential to embedding HTML5 video in Dreamweaver web
pages, but defining the local site is.

Chapter 8

[179]

2. Now create a new file, and save it within your defined site. To do that,
choose File | New to open the New Document dialog. Select Blank Page in
the Category column, HTML in the Page Type column, and <none> in the
Layout column. Select HTML5 from the DocType pop up. Click on Create to
create a new, blank Dreamweaver page.

3. For good housekeeping purposes to avoid the "Untitled" page title,
enter a title in the Title area of the Document window (this can be any
descriptive text).

4. Select File | Save and assign a filename.

By saving a file, we will be able to link a video using relative paths.

Defining the HTML5 <video> element
Once you have prepared a Dreamweaver site and created H.264, OGG, WebM,
and Flash Video (FLV) versions of your video, you have all the elements you need
to embed native HTML5 video, and provide an alternative for browsers without
support for HTML5.

In the following steps, you will complete the process of placing a video in an HTML5
web page.

We cannot, regrettably, do this in the Design view. Dreamweaver CS5.5 does not
have Design view menu options for embedding HTML5 native video. However, we
can take advantage of the two useful features in Dreamweaver's Document window:
Code hinting and the Split view. Code hinting will help us generate the HTML5
code we need, whereas the Split view will allow us to preview at least some of the
possible ways in which visitors will see our video as we create it.

Prerequisites
In order to review and re-emphasize the things, you need the following in place
before creating HTML5 video in Dreamweaver CS5.5:

You should have prepared an h.264 (mp4); Theora (OGG); WebM (webm)
and Flash Video (FLV) version of your video. You can elect to provide
support for just one, or some of the first three HTML5-compatible formats.
If you provide support for h.264 and OGG, then you will have almost all
modern browsers covered.
You must create a Dreamweaver site and have an open page in the
Dreamweaver Document window saved as an HTML5 file within
your site. View the page in the Split view.

•

•

Embedding HTML5 Video in Dreamweaver

[180]

Copy all your video files into a folder within the site folder you defined. If
you save your video files elsewhere, then Dreamweaver will prompt you
to make copies of the videos within your site folder, but it saves a step and
simplifies things to create copies of the video files in the site folder at
this stage.

Creating the <video> element
In your saved HTML5 page, place your cursor after the opening <body> tag. If you
are embedding a video in a page with existing content, then place your insertion
point where the video should appear.

1. Type <vi and the code hinting will then show the video tag, as shown in the
following screenshot:

2. Press Tab to complete the beginning of the <video tag.
3. Use code hinting to add parameters for height, width, and controls. The

height and width values can either match the original values of your video
or be larger or smaller. If the values are larger than the original video, the
resolution of the video will be degraded. Including the controls parameter
displays player controls (for play, pause, stop, and volume). The resulting
code is as follows:
<video width="xxxpx" height="yyypx" controls>

(Where, xxx is the width of the video and yyy is the height)

As we are going to support multiple video formats, we closed the video tag by
typing here.

Defining video attributes
The HTML5 video controller normally displays a play button, a pause button, and a
mute button, as well as a scrubber (a horizontal bar with a movable thumb to scroll
backwards or forwards within video playback).

Moreover, by default, HTML5 video controls display only when the user hovers his
or her mouse pointer over the video, or when the video begins to play.

The most important video parameters are height, width, and controls.

•

Chapter 8

[181]

The controls parameter displays these player controls. The height and width values
are followed by units of measurement, almost always pixels.

There are other useful HTML5 Video parameters, which are as follows:

Audio: Muted turns off volume when the video begins to play
Autoplay: Autoplay launches the video automatically
Loop: Loop repeats the video
Preload: Preload loads the video when the page is opened, even before it
is played
Poster: [filename] displays artwork before the video is played

Settings for iOS: iPads cannot autoplay HTML5 videos, Apple does not
allow it on its iOS devices, so don't rely on autoplay if your audience
includes visitors on those devices. Also, preloading is appropriate for
desktops and laptops, but too resource-intensive for mobile devices.

Even though preparing an HTML5 video usually means presenting multiple video
source files, the other attributes can be defined for all of them all together. Moreover,
normally, that is what you will want to do, as attributes such as video size, autoplay
status, and so on will be the same regardless of the video file format a visitor views.

Each of these parameters is supported by code hinting, and we will explore how that
works in detail in the recipe at the end of this chapter.

Defining video source(s)
Each video source requires a separate line of HTML5 code. That code is generated in
Dreamweaver (any version with the HTML5 Pack installed) with code hints.

In order to define a video source, type <sour, as you do, code hinting suggests the
<source tag. Press Tab to complete the code. Press the Spacebar. Type sr – as you
do, code hinting suggests <src>. Then, press the Tab key. A Browse link appears,
as shown in the following screenshot:

•

•

•

•

•

Embedding HTML5 Video in Dreamweaver

[182]

In order to locate a source video file, double-click on the Browse link provided by
code hinting to open the Select File dialog. Then, navigate to the h.264 video file
you exported from Media Encoder CS5.5 into your Dreamweaver site folder.
Double-click on that file to select it.

Alternate video for non-HTML5 environments
The upcoming release of Internet Explorer 9 will include HTML5 video support.
However, many folks are still watching online videos in older versions of Internet
Explorer—IE 8, 7, and 6. Therefore, it is important to include alternative access to
online video that does not require HTML5 support.

In order to do that, you can add a line of code that provides a link to a Flash Video
(FLV) file. This line of code should be at the end of the set of parameters for the
<video> tag, right before the </video> closing tag.

Putting it all together
As discussed, we will walk through an example in the recipe at the end of this
chapter that uses all the important <video> tag parameters, incorporates all the
three HTML5 video formats, and provides accessibility for non-HTML5 browsers.

However, as a short course in that, the following lines of code display a 320 x 240
video with controls, with all the three HTML5 video formats, and an option for folks
with older versions of IE to watch the video as a Flash Video (FLV) video:

<video width="320px" height="240px" controls>
<source src="Video/on_record.mp4">
<source src="Video/on_record.theora.ogv">
<source src="Video/on_record.webm">
Click to watch this video using
 Flash Player
</video>

Testing HTML5 video pages
It is more than clear, at this point in our exploration of HTML5 video, that presenting
an online video in HTML5 presents major compatibility issues. Will a video really
play in the whole range of browsing environments out there, ranging from an iPad
to Internet Explorer 6.0 on a Windows machine?

Chapter 8

[183]

If you supply all three HTML5 video format options and include a link to a Flash
Video page for visitors without HTML5 video support, then your video should play
in any environment.

Previewing a video in the Live View
There are three options for testing your video in Dreamweaver CS5.5. One of them,
File | Preview in Browser, simply opens your page in one of the browsers installed
on your own computer. This is effective and useful for testing a video in browsers
you already have installed.

A quicker way to see if your video works, at least in Safari and other browsers that
follow the Webkit standard (and this includes Apple mobile devices) is to simply
look at, and test the video in the Live View. If you are working in the Split view
(pretty much a necessity for working with HTML5 video in Dreamweaver), then you
can click on the Live View button, and test your video even as you see (and edit)
code on the code side of Split view, as shown in the following screenshot:

Previewing a video in BrowserLab
It is relatively easy to test Dreamweaver-created HTML5 pages with a video on
modern devices and browsers. I have been known to spend an hour in the Apple
store or at a friendly Android cell phone vendor testing pages.

A bigger challenge is testing pages in older browsers. Most of us don't, for example,
have Internet Explorer 6 installed on our testing computers.

Embedding HTML5 Video in Dreamweaver

[184]

However, Adobe's BrowserLab does. BrowserLab does not provide a preview
for mobile devices (in some mobile devices, preview is available through
Dreamweaver's File | Preview in Browser | Device Central). However, it is
particularly useful in previewing a video in older browsers.

In order to test any web page (including those with a video) in BrowserLab, select
File | Preview in Browser| Adobe BrowserLab. The first time you do this, you will
be led through a fairly clear registration process.

If you are previewing a page that has not been uploaded to a remote server, then
Dreamweaver uploads a temporary copy of your page to the BrowserLab site. There,
you can select a browser and see how your page looks. Here, for example, I am
previewing my page in IE 6.

Recipe: Embedding an HTML5 video
The following recipe makes an HTML5 video available in all three available
compressed video formats, along with a link to a Flash Video (FLV) page for
older versions of Internet Explorer (versions 6-8).

As with all our recipes in this book, the first step is to ensure that you have
defined the Dreamweaver website. With that in place, create and save a page
named video.html in the site.

Chapter 8

[185]

The sample code here uses real video files I uploaded to my site that you can use to
experiment. Alternatively, substitute your own files in the appropriate file format.

Therefore, with your site defined, your page (video.html) saved—with a title—you
are ready for the following steps:

1. In the Dreamweaver Document window, jump into the Split view, and in the
Code side of the Split view, click where you wish to create a new line of code.
This can be anywhere in between the <body> and </body> tags. As we are
working with a brand new document, place your cursor after the first <body>
tag and press Enter (Windows) or Return (Mac) to create a new line of code.

2. Start typing the <video> element. A couple of letters into the process, you
can press the Tab key to complete the beginning of the element.

3. Add video parameters to define the height, width, and to display controls
as follows:
width="320px" height="240px" controls

4. Close the <video> tag by typing > and pressing Return to create a new line
of code.

5. Define the first video source with this line of code as follows:
<source src="http://davidkarlins.com/video/on_record.mp4">

6. At this stage, you can see (and hear!) the video in the Live View in the
Design side of the Split View, as shown in the following screenshot:

7. In a new line of the code, enter the HTML5 code to define the Theora OGG
video as a second video source as follows:
<source src="http://davidkarlins.com/video/on_record.ogv">

Embedding HTML5 Video in Dreamweaver

[186]

8. You can test this second line of code by previewing your page in Google
Chrome, if you have that browser installed. The current version of Chrome
does not support h.264 video, so the .mp4 file will not be recognized, but the
.ogv (OGG) file will be.

9. Add a line of code defining the third video source as follows:
<source src="http://davidkarlins.com/video/on_record.webm">

10. On a new line of code, simply type: Click here to watch the video. You
can preview this by turning off the Live View in the Design side of the Split
View. Select the text, and use the Insert Hyperlink dialog to define a link
to http://davidkarlins.com/video/flv.html that opens in a new
browser window (choose _blank from the Target pop up) as shown
in the following screenshot:

11. Feel free to touch up the page with text or styles. Or not. Save your file. If you
have access to IE 6, 7, or 8, then you can test the non-HTML version, or you
can test that using Adobe BrowserLab (File | Preview in Browser | Adobe
BrowserLab).

Chapter 8

[187]

Summary
In this chapter, we explored the process of creating and presenting an HTML5 video.
We examined the evolving, different, and competing options for compressing video
supported by HTML5. Moreover, we noted the need to provide a way to present our
video for non-HTML5 browsing environments by creating a Flash Video (FLV) file
that will work in those pre-HTML5 browsing environments.

Then, we walked through Dreamweaver CS5.5's tools for embedding an HTML5
video. Those tools are essentially code hints, which provide help in writing HTML5
<video> tags and their properties, and the Live View which previews at least the
Webkit (Safari) version of the video as we write the code.

Creating Mobile Pages
with jQuery

As a web design consultant, I am immersed for periods of time in studying statistical
trends—who is using the Web? For what? In what environments? However, you
probably don't need a summary of my research to know that both in numbers, and in
impact, people using mobile devices constitute the dynamic factor in web activity. I'll
share one statistic compiled from a number of surveys I have been sifting through:
by 2013, about half of all visits to websites will be from mobile devices. Moreover, in
categories such as entertainment and restaurants, the overwhelming amount of web
browsing is already done using mobile devices.

Are they using web browsers for this? Or apps? Or both. However, from a
design perspective, there is not much difference between a mobile page and an
app. By the time you finish this book, you will be able to generate both apps and
mobile-friendly HTML pages in Dreamweaver CS5.5. Nevertheless, at this stage
of the game, focus on designing pages. The techniques we will explore in this,
and the following chapter will generate mobile-friendly content that works in
either environment.

This is not our first engagement with the challenges of designing for multiple media.
In Chapter 4, Building HTML5 Pages from Scratch we began to explore pages built
with basic HTML5 tags. Those simpler pages are easier for mobile devices to digest.
Then, of course, in Chapter 5, Defining and Implementing Multiscreen Previews and
Media Queries, we specifically explored designing mobile and tablet-sized pages, and
added code so that browsers detect appropriate media, and present different CSS
style sheet-based pages depending on the size of the viewport in the viewing media.
Moreover, the preceding chapters that have explored HTML5 audio and video have
prepared you to embed mobile-friendly (non-Flash) video in web pages. In short, we
are approaching these last three chapters on a solid foundation. You have got tools in
your skill set that will be helpful in managing web pages for mobile devices.

Creating Mobile Pages with jQuery

[190]

Here's what's new. In this chapter, create jQuery Mobile based pages—accessible,
inviting, animated pages that work particularly well on mobile devices. In the next
chapter, we will add additional jQuery objects such as expanding sections, layout
grids, and forms. Moreover, in the final chapter in this book, you will learn to build
applications—applications that run native, without a browser, in iOS (for Apple
iPhones and iPads) and Android (for Google Android phones and tablets).

In this chapter we will see:

Design for mobile – An overview
Apps and mobile pages
3 components of mobile web: HTML5, CSS, and jQuery Mobile
jQuery mobile in Dreamweaver CS5.5
Generating mobile ready pages from starter pages
Customizing mobile starter page content
Adding "Pages"
Customizing mobile page CSS
Recipe: Build a jQuery-driven mobile page

Mobile pages – An overview
The principles involved in designing mobile sites can boil down to one word: simple.

There is more to explore now, for sure! Mobile sites have to be simple in design
as people are viewing and interacting with them on small devices, and columns,
sidebars, and complex backgrounds that are not only appropriate for, but also a part
of a positive experience on a laptop or desktop, make the experience uninviting and
inaccessible on mobile devices.

The second dimension of "simple" when it comes to design for mobile devices is
that sites cannot be loaded up with plugins (like Flash), server-side scripting (like
PHP) or complicated navigation schemes. Some of these features are supported in
some mobile devices (Flash is supported in new versions of the Android operating
system), but most are not. Moreover, mobile devices are limited in processing power,
battery time, and other constraints that take us back to the watchword: simple.

Laptops and desktops on the one hand, and mobile devices on the other, have quite
different interface features. Laptops have a mouse that can hover over an object;
mobile devices have touch screens that can be resized or scrolled.

•

•

•

•

•

•

•

•

•

Chapter 9

[191]

Mobile devices, by contrast, have much smaller screens, touch screens, touch
scrolling and resizing, and on-screen keyboards.

Creating Mobile Pages with jQuery

[192]

And, as noted, the rules for designing applications are pretty much the same as those
for designing mobile-friendly web pages.

Mobile pages, apps, and jQuery Mobile
In the introduction to this chapter I alluded to the fact that pages that are designed
to be highly mobile-friendly also convert well to apps. There are three elements used
to create pages that work well in any mobile operating system or device, and convert
well to apps. Those three elements are HTML5 for layout, CSS3 for formatting, and…
and here comes a new factor… jQuery Mobile for animation and interactivity.

jQuery Mobile tools are one of the two radically new elements of Dreamweaver
CS5.5 (building apps, which we will explore in the final chapter of this book, is the
second). What is jQuery Mobile? What's the big deal about it? Moreover, how does
Dreamweaver CS5.5 implement it?

jQuery is a library of JavaScript objects. JavaScript has been part of Dreamweaver
as long as there has been a Dreamweaver. The rather abandoned Behaviors panel
generates JavaScript. Spry widgets introduced in earlier versions of Dreamweaver
are JavaScript-based. Another dimension of web design that is, outside of
Dreamweaver jQuery has evolved as a relatively accessible set of customizable
JavaScript objects. Now, when I say relatively accessible, I mean that to implement
JavaScript through the jQuery library still requires editing JavaScript code.

With the emergence of mobile devices, a distinct JavaScript library emerged—jQuery
Mobile—with a set of objects particularly useful in designing for mobile devices.

Chapter 9

[193]

The status of jQuery Mobile
Like much of the technology used to develop mobile layouts and apps, jQuery
Mobile is a work in progress. As I write this book, it is officially in the "beta" stage
of development.

However, "beta" stage doesn't mean what it used to in the fast-moving world of web
design technology. By the time, a technology is fully tested and mature, something
else has come along to replace it. That may be a slight exaggeration, but it still pretty
accurately characterizes the way things work. CSS3, for example, is still evolving out
of the stage of requiring prefixes (like –moz or –webkit) before some of the effects we
explored in Chapter 6, Applying CSS3 Effects and Transforms.

Part of what is driving this pace is rapid developments in mobile hardware and
operating systems. Again, if one waits until a design tool is fully tested on a
particular combination of hardware and operating system, that hardware and
operating system will have changed.

In short, there is a consensus among reviewers and designers that jQuery Mobile
is stable and usable. Rather than providing a list of devices and operating systems
that support it —a list that would be out of date by the time you read this—I will
refer you to the Mobile Graded Browser Support page that lists the current state of
support for jQuery Mobile: http://jquerymobile.com/gbs.

Using jQuery Mobile starter pages
A small but very substantial set of jQuery Mobile objects are now available, in
Design view, in Dreamweaver CS5.5 without coding! The most widely used of these
objects have been bundled into a very handy set of customizable starter pages. In this
chapter, we will create pages using these starters, examine them, and customize the
HTML and CSS that controls the content and look of these pages.

The jQuery objects that come with mobile starter pages in Dreamweaver CS5.5 are
not, themselves, customizable. In this way, they differ a bit from the Spry widgets in
Dreamweaver where you can often customize some of the JavaScript itself. However,
as we will see, this isn't going to be much of a problem because you can do most of
the customizing you can imagine doing by editing the HTML and CSS associated
with jQuery Mobile objects.

Creating Mobile Pages with jQuery

[194]

How does that work? On one level, our answer here is: who cares?! Dreamweaver
CS5.5 has set up tools that allow us to customize jQuery Mobile objects without
worrying about what is happening under the surface. However, as a foundation, it
is helpful to understand that JavaScript (and this applies to both Spry and jQuery
Mobile objects) works on HTML objects (like tags, including often div tags) or
on defined CSS Style properties. For example, a jQuery object might change its
background color when clicked on (or tapped on a mobile device). However, the
colors—both before and after—are defined in an associated CSS rule that is accessible
in the CSS Styles panel. Moreover, the content (text, images, media) in that object is
defined by the HTML you create in Dreamweaver's Design view.

Creating mobile pages from
Dreamweaver CS5.5 starters
Dreamweaver CS5.5 comes with three jQuery Mobile-based starter pages: jQuery
Mobile (CDN), jQuery Mobile (Local), and jQuery Mobile (PhoneGap).

The content of each of the three is identical, which is reasonable since there are a
few basic jQuery Mobile elements you need for mobile pages and apps, and they are
included in all three.

All three jQuery Mobile Sample Pages require, and include, links to a specific CSS
file that supports and integrates with the jQuery Mobile objects. As you will see
when we begin working with jQuery Mobile pages, there is a very complex and
essential interdependency between jQuery Mobile and the particular CSS file that
enables it.

The most substantial difference between the three Sample Page options is in how the
linkage is defined between the jQuery Mobile page you generate, and the required
CSS file.

The jQuery Mobile (CDN) Sample Page links to a version of the CSS file at the jQuery
Mobile site. Therefore, you cannot, edit this CSS file.

The jQuery Mobile (Local) Sample Page uses a version of the CSS file that is included
in Dreamweaver. That CSS file is editable.

The third option, jQuery Mobile (PhoneGap) uses a local version of the CSS file, but
also generates a JavaScript file required for converting your mobile page to an app.
However, as you will learn in Chapter 11, Dreamweaver provides an easy option for
adding this JavaScript file later, as you generate an app, so it really isn't necessary to
choose the (PhoneGap) option unless you are certain you will be using your mobile
page to generate an app.

Chapter 9

[195]

All three starter pages are accessed by choosing File | New and choosing Page from
Sample in the left column of the New Document dialog. Select Mobile Starters in
the Sample Folder column.

As our final objective (to be achieved in a couple more chapters of this book) is
to create both a mobile web page, and an app using PhoneGap technology—the
PhoneGap option works fine.

After you click on the Create button in the New Document dialog, a jQuery
Mobile-based web page opens in the Dreamweaver CS5.5 document window.

Mobile pages in Split view
You will find it most useful to examine the page in Split view for two reasons.
One—and there's no new revelation here—is that in Split view you can both examine
HTML code and see the page previewed as it will appear in a browser. What's new is
that it's actually easier and more helpful to see a narrower preview window that will
more closely simulate how your page will look in a mobile device.

Creating Mobile Pages with jQuery

[196]

It's particularly useful in designing for mobile to avail yourself of the Window size
popup at the bottom of the Design half of Split view, and size the Preview window
at 480 pixels wide—a dimension that corresponds to many popular mobile devices.

By the way, when you set a page width, you will note a Media Queries option at the
bottom of the popup list. Defining Media Queries for jQuery Mobile based pages is
very similar to the process we explored in depth in Chapter 5. We won't go back to
that discussion now, but you can indeed define different jQuery Mobile based pages
for different media.

I should forewarn you that as we develop jQuery Mobile content, I will be directing
you to a bit more work in the code side of Split view (and Code view in general). All
the jQuery Mobile objects you need to create pages are available from the regular
document Window menu in Dreamweaver's Design view. But you will find that it is
often much less time consuming to simply copy and paste a chunk of code to create
new objects than to generate them from scratch using menu options in Design view.
I will try to provide figures that show both the code and design side of Split view
when I direct you to use this approach.

Chapter 9

[197]

Previewing jQuery Mobile pages in Live view
As you explore the template page generated by any of the jQuery Mobile starter
pages, you will note one thing right away that is very different than other pages
you have worked with in Dreamweaver: until you flip on Live view (click on the
Live View button in the Document toolbar), hardly any formatting is visible. Try
it toggling back and forth, turning Live View on and off to see what is, and is not
displayed with Live View off.

You will note right away that with Live View disabled, you don't see even basic CSS
properties like font family, font color, and background colors. There is a CSS style
sheet that is installed automatically with the jQuery Mobile pages, you can see
it in the CSS Styles panel.

Creating Mobile Pages with jQuery

[198]

For example, a class style, CSS rule .ui-bar-a defines the bars at the top of each
page (like the one that says Page 1 with a dark background, and white type, but
those properties aren't visible with Live View turned off).

You can see the effect of the CSS styles in Live View. However, in normal web pages,
basic CSS style properties are reflected without Live View enabled. So, what's up
with that?

The answer is that jQuery Mobile pages depend not just on CSS, but the interaction
of CSS with JavaScript to produce the look and feel of the pages. Moreover, you will
see more and more as we explore how this works; you really get no idea of how
jQuery Mobile pages will look until you kick into Live View.

Chapter 9

[199]

Therefore, as you can see, there is a more radical, definitive, complete separation
between working with content and style in jQuery Mobile pages than in
normal pages.

Later in this chapter, we will decipher and decode the complicated set of styles in the
jQuery Mobile page, but for now it will be sufficient to digest the fact that in general,
styles are not reflected until you turn on Live View.

Customizing mobile page content
In a basic sense, you customize jQuery Mobile page content the same way you
customize any starter page-generated content. Remember back… way back… to
Chapter 1 and Chapter 2 of this book? Let's review the basic concept: starter pages
come with template content, and you replace that with your own real content.

Isn't it simple enough? Kind of. As we have noted, there is a different order of gap
between content and layout in jQuery Mobile pages. To put it another way, nothing
is even close to how it appears with Live View turned off. Yet, you can't edit content
in Live View. This emphasizes, again, the role of toggling back and forth between
Live View off (to edit content) and on (to preview how that content will appear).

The HTML5 data-role property
Div tags associated with jQuery Mobile script can function as different kind of
elements, including ones that appear to be, and act like pages in a mobile device.
This is done by implementing the data-role property in HTML5 tags, and then
defining CSS (style sheet) rules to go with each data-role.

Typically, and this is the case for the starter pages in Dreamweaver CS5.5 j-Query
Mobile pages are organized and laid out using four data-roles:

Page
Header
Content
Footer

Data-role pages
It is often, even usually the case, that data-role pages play the role of basic content
organizing elements in a jQuery Mobile page.

•

•

•

•

Creating Mobile Pages with jQuery

[200]

Let's distinguish a data-role page from an HTML page. Within a single HTML page,
there will be several data-role pages. These data-role pages will look and feel to a
user like different "pages".

If you have worked with other JavaScript elements in Dreamweaver, like Spry
Tabbed Panels for example, you have seen the way JavaScript can make page
elements (objects within a single HTML page) appear to be separate pages. These
"pages" usually have distinct, unique headers and footers, and of course distinct and
unique content.

Data-role pages, in short, look and feel like pages, but are defined within a single
HTML page.

You can see how this works if you take a look at both the code, and page layout
generated from a Dreamweaver CS5.5 jQuery Mobile starter.

Organizing content into what are actually div tags with an HTML5 property called
"data-role" allows people to navigate through what feel and act like web pages.
However, these divs, acting like pages, allow visitors to hop back and forth between
"pages" without having to wait for a new page to load in their browser. The use of
such data-page divs is central to how the tiny space on a mobile device can be best
used to present a lot of content.

People navigate between "data-role" pages in mobile devices by tapping, dragging,
or otherwise navigating in a way that essentially shows, or hides different "pages".
You can familiarize yourself with how this works by navigating around the "pages"
in a jQuery Mobile starter page in Live View.

Chapter 9

[201]

Customizing page content
Now that you understand how jQuery Mobile pages are organized and function
within an HTML page, customizing the content of the "pages" in the starter page will
flow naturally. We are, now, back to the lessons of Chapter 1 and Chapter 2, when we
customized the content of HTML5 starter pages.

One way to approach this process is to ignore everything else, and simply replace the
content in jQuery "pages" with your own content. Then, try the content out in Live
View, see how it flows, edit, move, break up, and revise the content as necessary.

Use your own content to replace the header, content, and footer for each page.
Identify this code in each generated page:

 <div data-role="page" id="page2">

 <div data-role="header">
	
	 	 <h1>Page	Two</h1>

 </div>
 <div data-role="content">
	
	 Content	 	 	

 </div>

 <div data-role="footer">
	
	 	 <h4>Page	Footer</h4>

 </div>

 </div>

The highlighted code here indicates placeholder text that you customize by entering
your own content. Replace the content in the highlighted lines of code with any
HTML5 content (including if you wish HTML5 audio or video).

Creating Mobile Pages with jQuery

[202]

Remember: use only HTML5 content in your jQuery Mobile pages.
Avoid plugins, like Flash Video, use the HTML5 <audio> and <video>
tags instead (review Chapter 7 and Chapter 8 to do that).

Also, avoid server-side include content if that is something you work with.
Server-side live data is not something we explore in this book, but if you are
using PHP scripting, that won't fly in jQuery Mobile pages. Again, the basic
rule is, stick to HTML, CSS, and JavaScript content.

Moreover, while I am an advocate for maximizing the use of Design view in
Dreamweaver, in part because of the great gap between content and formatting in
jQuery Mobile pages, I have to confess I generally resort to creating HTML content
in the Code side of Split view, with Live View turned on in the Design side.

Customizing content for different data roles
Generally speaking, the process of customizing content for "pages" will consist of
going through and customizing the header, content, and footer sections of the pages.

jQuery Mobile pages also use the "listview" data role to organize sets of links. Those
links are—again, generally speaking—links within the HTML page, to other data
role "pages". In more conventional HTML terms, these are links to named anchors.
You can see how these are set up by examining the default set of (internal) listview
links that come with the starter page. As you will see, by default, they link to #page2,
#page3. and #page4 and you can copy and paste these links to create more links to
more "pages". Next, we will explore that process in detail.

Chapter 9

[203]

Adding new jQuery Mobile pages and
objects
The jQuery Mobile starter page comes with four pages, and links to four pages.
A nice number, but what if you want to have five, six, or seven pages?

If you need to add more "pages", copy, paste, and slightly edit (change the page
numbers) the fairly easily recognizable sections of HTML code that define each
"page". As you customize the content, toggle Live View on and off to see how the
page will look in a browser, or as an app, using the Window Size popup to define
the preview environment.

Creating new data-role pages by copying
code
Here are the things you need to do to as you copy and paste to create new pages:

Copy and paste a link in the list at the top of the page, and change the link so that
the link target is the new "page". So, for example, when you create a page 5, that
code will be added to the list after page 4, like this:

 Page Four

 Page Five

As you can see, there are two changes in the copied code in the list.

Creating Mobile Pages with jQuery

[204]

Then, you need to create a new page by copying and pasting the generated page 4,
and changing <div data-role="page" id="page4" to <div data-role="page"
id="page5".

Obviously, you will want to create custom content in the header, content, and footer
sections of your new page. However, in order for the link you created in the list at
the top of the page to work, you also need to be sure to change the page ID to match
the href link you defined in the list at the top of the page.

Chapter 9

[205]

If you exhaust the potential to present content simply using "pages", as we have
explored here, there are other jQuery Mobile containers you can experiment with
to present content. We will walk through those options in the next chapter.

Creating new data-role pages from the menu
Before moving on, I should note that you could have also accomplished the process
of creating a new page by choosing menu options from the Dreamweaver Document
Window menu.

To accomplish it locate your insertion point at the end of the last data-role page in
your HTML page, and choose Insert | jQuery Mobile | Page. The jQuery Mobile
Page dialog opens, and prompts you to define a page ID that is sequential, so if you
do this after page 5, you will be prompted to make the ID of your new page page6 .

After you insert a new data-role page from the menu, you customize the content
in the same way you would if you created the new data-role page by copying and
pasting code.

Customizing mobile page CSS styles
You can edit the content of jQuery Mobile pages by editing the HTML as we have
just seen. However, you can customize the look of jQuery Mobile pages by changing
the CSS styles associated with different jQuery Mobile objects.

This is complicated. The complications arise from the fact that there are a gazillion
(roughly speaking) CSS styles that make up the jQuery Mobile style sheet.

The developers of jQuery Mobile have addressed this challenge by providing a set
of themes. Themes are a formatting tool used in different kinds of auto-generated
content environments. Blog generators such as WordPress or Drupal (these
programs can be stretched beyond designing blogs, but that is their essential role)
provide developers with a variety of themes that apply sets of colors, fonts, and
background images.

Creating Mobile Pages with jQuery

[206]

As such, themes are, in general, something of an anathema to creative web page
designers who want uniquely formatted pages, not paint-by-numbers pages that are
clearly formatting with "out of a box" themes. Yet, themes provide an over-arching
way to apply sets of formatting to pages. Therefore,, in formatting jQuery Mobile
pages in Dreamweaver, we will both have to live within, and bust out beyond
themes as a formatting technique.

For a demonstration of all the standard jQuery Mobile themes, go to http://
jquerymobile.com/test/docs/pages/docs-pages.html#/test/docs/pages/
pages-themes.html.

Again, clearly, if you apply a jQuery Mobile theme to your page content, your
mobile site won't have a unique look. There are five standard jQuery Mobile themes
at the time of this writing (more are sold by vendors), and even if you mix and match
different elements of the themes within a single site, your pages will have a highly
recognizable cookie-cutter themed look. Not just other web designers, but savvy web
surfers or app users will say, "Oh, I see someone created this site with an out-of-the-
box theme… I have seen that one a million times before!"

Therefore, there are three options: One, you can live with the options available
in themes, which is not an option for creative designers. Two, you can dispose
of themes all together and hack your way through the massive set of CSS styles,
formatting them one at a time. That might be a noble goal in theory, but far too
time consuming, tedious, unmanageable and frustrating.

Chapter 9

[207]

Or… you can apply a theme, and then customize it by defining custom CSS for the
really important page elements. That will be our basic approach here.

Default jQuery Mobile CSS
Before you start experimenting or working with the CSS file that comes with
jQuery Mobile pages you might find it useful to keep the following URL handy:
http://code.jquery.com/mobile/latest/jquery.mobile.css.

This URL leads to the jQuery Mobile CSS file. A version of the jQuery Mobile CSS
file is included when Dreamweaver CS5.5 generates a jQuery Mobile starter page.
If you look at the CSS file that opens when you generate a jQuery Mobile page in
Dreamweaver CS5.5, you will see that it is 1.0a3/jquery.mobile-1.0a3.min.
css. Alternatively, an updated version of the CSS file that has been released since
Dreamweaver CS5.5 incorporated this CSS file.

There are two good reasons to go online and grab the latest version of the jQuery
Mobile CSS if that is an option. For one thing, it is periodically updated. The other
is that if you corrupt the version of the CSS file that comes with Dreamweaver,
something I have found quite easy to do, you can simply go to the link above, copy
and paste the CSS code, and use that to create a "clean" CSS file to use when you
build jQuery Mobile pages from scratch.

The CSS file you download will have a slightly different file name than the one
provided with Dreamweaver, reflecting the current version. Once you download the
new CSS file, you can save that CSS file with your own name to create customized
CSS for your jQuery Mobile pages.

Editing jQuery Mobile CSS
If you examine the CSS file that comes with jQuery Mobile pages, you will see that
many of the class come in sets of five, indicated with "-a", "-b", "-c", "-d", or "-e" in the
class style name.

Creating Mobile Pages with jQuery

[208]

You can identify these styles either in the CSS code itself, or in the friendly
environment of Dreamweaver's CSS Styles panel. Many of these class styles displays
in the CSS Styles panel are more or less grouped together. For example, the class
styles that define the look of Theme A are listed in the beginning of the set of styles,
and have "-a" at the end of, or in their style names.

Much as it conflicts with the philosophical approach associated with Dreamweaver
that is creating unique web page color schemes, font sets, and so on. If we are going
to take advantage of jQuery Mobile, we have to live with jQuery Mobile themes,
then, within that construct, we can stretch the envelope, distort the paradigm,
bend the rules…, and so on to create fully customized pages.

Applying and customizing themes
First, let's examine how themes are applied. You can define which jQuery Mobile
theme is applied to any element by using the data-theme property in HTML5. For
example, to apply theme "e" to a page with a div ID of "page", use this code:

 <div data-role="page" id="page" data-theme="e">

Chapter 9

[209]

Alternatively, to take a second example, if you wish to apply theme "a" to a content
element on a page, use this code:

<div data-role="content" data-theme="a">

Understanding that there are, in many cases, five different sets of class styles
that define how objects are formatted in the jQuery Mobile pages demystifies the
massive set of styles, and makes "trial and error" formatting less of a guessing game.
Whatever approach you take towards combining formatting with jQuery Mobile
themes on the one hand, and editing CSS on the other, you do need to understand
which theme is in effect for your page, or element of a page.

For example, if you have applied Theme "a" to a section of a page, then any
adjustments you wish to make to how that content looks will be made by editing
the CSS for Theme "a" elements.

After that, again we are back to the basic lessons of Chapter 1 and Chapter 3 in this
book: identifying CSS that is matched with page elements, and editing that CSS in
the CSS Properties panel. All the CSS detective skills you picked up working through
Chapter 2 in particular will pay off now.

Creating Mobile Pages with jQuery

[210]

Without rehearsing all that, let's review a few points of approach:

You can identify and edit div tag styles—mostly class styles—to reformat
content containers and other objects
You can identify and edit element (tag) rules in the CSS dialog. For example,
you can redefine the heading and paragraph tags
In applying both of the preceding methods, you can draw on and apply the
techniques explored in Chapter 2, except that you have to—additionally—
take into account that many objects (class styles) in the jQuery Mobile page
have specific rules for each of the five themes.

With these three bits of advice, you are equipped to take the CSS style sheet provided
with the jQuery Mobile page, and customize it to create a fully unique look.

Looking ahead: Generating mobile apps
There are more jQuery objects left to explore, especially the ones that are not part of
the starter page. We will examine those in the next chapter. However, we can pause
and reflect here on the obvious fact that in creating customized content and styling,
you have done the bulk of the work necessary to define an app!

If only Dreamweaver CS5.5 had tools to export our page to an app… Oh, right, it
does! You will learn to use those in the final chapter of this book.

But the point of bringing this into the conversation now is that, as you design your
mobile pages with jQuery Mobile in Dreamweaver CS5.5, be conscious of the fact
that your page might well become an app. Moreover, examine your design, the
navigation structure, and the accessibility of content in that light. For example,
as much as possible, avoid external links that would take a visitor out of your
ecosystem, and onto the Web. Such external links are more appropriate in regular
websites than they are in apps. Similarly, pay more attention to consistency within
your page than you might for a full-sized web page that will not become an app.

Recipe: Build a mobile web page with
jQuery Mobile objects
In this recipe, we will reload the jQuery Mobile CSS style sheet file, generate a new
local jQuery Mobile page (on our own computer), and customize the content and
style of the page.

•

•

•

Chapter 9

[211]

As with every recipe in this book, the prerequisite is that you are working in a
defined Dreamweaver site. I am calling mine jq01, but in any case if while creating
a site, the essential nature of that is not clear, review Chapter 1 and create a site.

1. In a browser, go to http://code.jquery.com/mobile/latest/jquery.
mobile.css. This link opens the CSS file. Download the CSS file. Copy the
entire content of the page, and save it as jq.css. One reliable technique
for doing this is to choose File | New in Dreamweaver. When the New
Document dialog opens, select Blank page in the Category column, CSS
in the Page Type column, and click on Create. Delete the default code, and
paste in the CSS you copied from the preceding link. Save the file in your
Dreamweaver site as jq.css.

2. Create a new jQuery Mobile page by choosing File | New. In the New
Document dialog, choose Page from Sample in the Category column,
Mobile Starters from the Sample Folder column, and jQuery Mobile
(PhoneGap) from the Sample Page column. Click on Create. Save the
page as index.html, and copy files as prompted by the dialog.

3. In the CSS Styles panel, delete the default CSS file, and link jq.css. Resave
your HTML page, and all dependant pages as prompted.

Creating Mobile Pages with jQuery

[212]

4. Set up a convenient workspace by choosing Split view, setting the Design
view Window Size to 480 pixels wide by 800 high, and viewing your CSS
Styles panel.

5. Create a link to a new, fifth jQuery Mobile page by copying and pasting the

following code
Page Four

And editing the pasted new line of code to read:

Page Five

6. Create a new, fifth jQuery Mobile page by copying and pasting the code:
<div data-role="page" id="page4">
 <div data-role="header">
 <h1>Page Four</h1>

Chapter 9

[213]

 </div>
 <div data-role="content">
 Content
 </div>
 <div data-role="footer">
 <h4>Page Footer</h4>
 </div>
</div>

Edit the pasted code to read:
<div data-role="page" id="page5">
 <div data-role="header">
 <h1>Page Five</h1>
 </div>
 <div data-role="content">
 Content
 </div>
 <div data-role="footer">
 <h4>Page Footer</h4>
 </div>

</div>

Creating Mobile Pages with jQuery

[214]

7. Customize the content of the first page, and replace the placeholder header,
content, and footer on each page with your own content as shown in the
following screenshot:

8. Apply a theme to the entire data-page by entering the code data-theme="x"
where x is a letter from a-f. Note that Dreamweaver supplies code hints for
the available data-themes. Examine the results of each theme in Live View,
and select one.

Chapter 9

[215]

9. As you become familiar with the styles in jQuery Mobile pages, you might
want to rely on the All tab in the CSS Styles panel. But as you familiarize
yourself with these styles, experiment with using the Current tab in the
CSS Styles panel to identify and modify styles that are applied to various
elements in your page layout.

10. Continue to customize the look of your site through a combination of
assigning themes to various elements using data-theme coding, and
customizing CSS. Save your page.

Creating Mobile Pages with jQuery

[216]

Summary
In this chapter, we covered the basic elements of creating complete jQuery Mobile
pages in Dreamweaver CS5.5. Those "pages" are pages on two levels. On one level,
they are regular HTML pages, using HTML5 (combined with CSS and JavaScript
supplied via jQuery Mobile). On the other level, this HTML page has jQuery
data-pages which are basically pages within a page. This technique allows us
to create a mobile web page that allows visitors to navigate without having to
wait for their mobile device to load additional pages.

In creating this jQuery Mobile page (with a set of data-pages), we relied on the
Dreamweaver CS5.5 starter page. This page includes many of the most widely used
jQuery Mobile elements. There are other useful jQuery Mobile page elements as well,
and we will explore them in the next chapter.

You edit the content of jQuery Mobile pages just as you would any HTML5 page.
Thus, all the blood, sweat, and tears you poured into mastering the basic techniques
involved in customizing content of HTML5 pages in earlier chapters is paying off
here. However, because page formatting and navigation rely so heavily on JavaScript
(the jQuery Mobile library of scripts in particular), you need to rely more on Live
View to see how pages will look compared to normal HTML5 pages.

Editing the CSS in jQuery Mobile pages also involves the basic skills you have
learned to this point, and new challenges. Those new challenges are defined by the
fact that jQuery Mobile pages involve many CSS rules, and that jQuery Mobile CSS
is organized into themes. Creating truly customized pages involves some assignment
of themes, along with customizing CSS associated with those themes.

In the basic jQuery Mobile page you have learned to create in this chapter, you have
the foundation of mobile and tablet apps. You will learn to create those in the final
chapter of this book.

Adding jQuery
Mobile Elements

In this chapter, you will learn to build jQuery Mobile-based pages from scratch.
Moreover, you will learn additional techniques for designing those pages—layout
grids, and collapsible blocks.

In the previous chapter, you learned to build a mobile-device-friendly page based
on jQuery Mobile. That page, in turn, was organized into jQuery Mobile data-pages,
which feels like distinct pages to a visitor. However, they have the advantage of
actually being part of a single HTML page. This has a number of advantages, the
two most important being that a) the "pages" (the data-pages) all load at once, giving
a visitor a seamless, wait-less browsing experience; and b) this setup facilitates
converting the entire page to a mobile device app—a process we will explore in
the final chapter of this book.

One reason why it is valuable to sum up and reflect on this is that in this chapter, the
two new page design techniques you will learn are alternative ways to pack content
into the tiny environment of a mobile device browsing viewport. Like data-pages,
these jQuery Mobile objects also function within a single HTML page.

In addition, we will explore some dimensions of using forms in jQuery Mobile pages,
taking advantage of, and addressing unique possibilities and challenges in collecting
form data in mobile pages.

The topics that we will cover in this chapter are:

Creating a new jQuery Mobile page from scratch
Inserting a layout grid
Inserting collapsible blocks
Using input forms with jQuery Mobile (Jump menu, Input form, Special
Mobile form elements)
Recipe: Build a page with collapsible blocks

•
•
•
•

•

Adding jQuery Mobile Elements

[218]

Creating jQuery Mobile pages from
scratch
jQuery Mobile pages include HTML, JavaScript from the jQuery Mobile library,
and CSS. In the previous chapter, you created jQuery Mobile pages using one of the
(essentially identical) jQuery Mobile starter pages in Dreamweaver CS5.5. That page
came with the three essential elements, plus template and placeholder content.

In many cases, that starter page is a good place to start in creating jQuery Mobile
pages. However, there are other ways to design pages using different jQuery Mobile
layout techniques, specifically layout grids and collapsible blocks. In general,
given small viewport in mobile devices, you will choose one of these approaches to
designing mobile pages. Therefore, if you are using layout elements other than data-
pages, you will want to start by creating a blank jQuery Mobile page, and populating
it from scratch.

Interface options
Before embarking on the process of building jQuery Mobile pages more or less from
scratch, let me introduce you to two interface options for adding jQuery Mobile
objects in Dreamweaver's Design view.

The first, which I will be relying on from here on, is to insert jQuery Mobile objects
from the Document menu. Choosing Insert | jQuery Mobile opens a submenu from
which you can insert any of the available jQuery Mobile objects in Dreamweaver
CS5.5. As noted, this is the technique we will rely on for the rest of this chapter so I
won't linger on that approach here.

However, there is an alternate technique for inserting jQuery Mobile objects, and
that is to use the Insert panel. Choosing Window | Insert from the Document menu
opens the Insert panel. Moreover, choosing jQuery Mobile from the select menu in
that panel provides access to jQuery Mobile insert options.

Chapter 10

[219]

The reason I prefer to use the menu options instead of the Insert panel is that I do
much of my work on a laptop, and thus operate with constrained workspace on
my screen. I like to keep my workspace free of unnecessary panels. Moreover, even
when I work in a desktop environment, I prefer an uncluttered look on my screen.
But to each his or her own, and if you feel more comfortable with the Insert panel
on your screen, feel free to insert jQuery Mobile objects from there by placing your
insertion point, and clicking on an object in the Insert panel to insert that object.

Step 1 – Creating an HTML5 page
jQuery Mobile pages should be HTML5 pages. Remember, any device that is new
enough to support a browser is new enough to support HTML5, so support for
HTML5 is not an issue when designing for mobile devices.

Once again, it is important to emphasize the critical role of working within a
defined Dreamweaver site. Without that, the multiple HTML, JavaScript, and CSS
files required for jQuery Mobile pages (not to mention the image, media, and other
files needed for a regular web page) won't mesh properly.

So, the first step in creating a jQuery Mobile page from scratch is to choose
File | New, and in the New Document dialog select Blank Page from the category
column on the left, HTML from the Page Type column, None from the Layout
column, and HTML5 from the DocType popup. Then click on Create.

Adding jQuery Mobile Elements

[220]

As soon as you begin to insert jQuery Mobile objects, Dreamweaver will open pages
that should be linked to your page. Therefore, it is a good idea to save your page
right away, before adding any jQuery Mobile objects.

Moreover, because we are working within various models based on a single HTML
page, it makes sense to name the page index.html. That way, the page will open
directly when the URL that it is saved to is addressed in a browser.

Step 2 – Inserting a jQuery Mobile "page"
As we saw in the previous chapter, the basic framework for jQuery Mobile content
is the data-page. This jQuery Mobile object encloses everything else; including
what might appear to be additional "pages." In this chapter, we will be employing
different jQuery Mobile objects to present (and hide) content, but we still want to
start with a jQuery Mobile "page".

To emphasize and expand on this point: jQuery widgets, objects that supply content,
have to be inserted within jQuery Mobile pages. Otherwise, they lack framing code
that makes them work.

Therefore, the second step in preparing to present jQuery Mobile objects is to insert
a jQuery Mobile Page. Moreover, as we do that—in the form of the Dreamweaver
jQuery Mobile Page widget, Dreamweaver CS5.5 will generate essential jQuery
Mobile files in your defined Dreamweaver site.

If you try to skip this step, you won't have the essential jQuery Mobile framework
installed, and the jQuery objects you try to install won't work. In fact, Dreamweaver
(reasonably) won't let you embed jQuery Mobile objects outside of the framework of
a jQuery Mobile page, with the attendant files.

Generate the jQuery Mobile Page widget by choosing Insert | jQuery Mobile |
Page. The jQuery Mobile Files dialog appears. The Remote (CDN) option links
versions of the required files at the jQuery Mobile site, and the Local option links
local versions of those same files to your pages. In the previous chapter, I explained
the minor differences between these options for generating the CSS and other files
required for jQuery Mobile pages. The short version is that the Remote (CDN)
option attaches a remote CSS file maintained by jQueryMobile.com, while the

Chapter 10

[221]

Local option attaches a local version of that style sheet file (a version that is installed
as part of Dreamweaver CS5.5). The Remote (CDN) option only works if you are
working with an Internet connection. If you elect to use the Remote (CDN) option,
you won't be able to edit the CSS file until you download it, and save it in your
site folder.

Three of the four boxes in the dialog are not really editable. Dreamweaver does
indicate where it is getting the JavaScript files (files with .js filename extensions)
and CSS file used in the widget, along with the folder on your own computer where
Dreamweaver CS5.5 stores these files.

As we began to explore in the previous chapter, the jQuery development community
periodically updates these jQuery Mobile files. If you wish, you can download these
files yourself from jquery.com. In the previous chapter, we walked through how to
download and replace the .css file that is part of the jQuery Mobile widget. If you
have a compelling reason to do so, you can also download the latest version of the
JavaScript files in the jQuery Mobile Files dialog, but in foreseeable circumstances,
you can simply rely on Dreamweaver to download the appropriate files. The
jQuery Mobile Updates link takes you to an Adobe page that includes some
update information for jQuery files.

However, in short, you can choose the Local option in the Link Type area, and click
on OK to generate a jQuery Mobile Page widget. When you do, the jQuery Mobile
Page dialog appears. Naming the jQuery page "page" is default choice for the ID box.
Later, as you customize and add content, you can change this, but the default option
works fine to start with.

Adding jQuery Mobile Elements

[222]

Normally you will want a header and footer on your jQuery Mobile page. You can
elect to generate header and/or footer objects using the respective checkboxes.
We explored these elements of jQuery Mobile pages in the previous chapter.

When you click on OK on the jQuery Mobile Page dialog, a basic, jQuery Mobile
page is generated with placeholder text. This page is similar to the jQuery Mobile
starter page you learned to generate in the previous chapter, but much simpler. It
will be helpful to refresh your memory of techniques we explored in the previous
chapter for viewing and editing the content of this page, including the nature and
role of toggling Live View on and off, using the Window Size popup to size a
mobile-sized Design view, and editing HTML in Split view with Live View on.

Also applicable is the discussion of replacing the default CSS file with your own
(updated and safely backed up) jQuery Mobile CSS file, using the CSS Styles panel.

All the discussion of these techniques in the previous chapter applies to working
with a custom-built jQuery Mobile page in Dreamweaver CS5.5.

Chapter 10

[223]

One thing that is immediately different from the experience of using a jQuery Mobile
starter page is that there are, yet, no interactive or animated jQuery Mobile objects
active on the page—just a basic page layout. We will add interactive, animated
objects next.

Inserting a Layout Grid
As we have discussed, columns play a greatly diminished role in pages designed for
mobile devices. The reason is obvious: there isn't much width in the viewport of a
mobile phone, and even tables have a narrower screen than laptops. Nevertheless,
there are plenty of situations where it is useful to lay out content in columns in
mobile-friendly pages. When that is appropriate, the tool is jQuery grids.

Can we use the good old <div> tags that served us so well in HTML to lay out page
content in columns? Yes. What about using tables for layout? Well, that technique is
actually supported within jQuery Mobile pages.

In addition, just to elaborate a bit, the only reason we don't use tables for page
layout in jQuery pages is the same reason we don't use them anywhere else: they are
clunky, hard to apply global styles to, hard to update, and don't support a lot of the
attributes div containers support. That said, table design enthusiasts take note—you
can design page layouts with tables in jQuery Mobile pages.

Adding jQuery Mobile Elements

[224]

Moreover, again, regular divs can be used to create columns in jQuery Mobile pages.

However, there is a more flexible, standard way to design column layouts within
a jQuery Mobile page: The standard jQuery Mobile CSS file comes with a set of
defined class styles called ui-block and ui-grid. Moreover, there are two sets of
these styles, one for two-column layouts, and one for three-column layouts.

Dreamweaver's jQuery Mobile widget for a Layout Grid does a very complete
job of generating a wide variety of grids, with definable numbers of columns and
rows. Remember, as you generate such grids, that you are designing for a relatively
narrow viewport of one kind or another and will want to be restrained in how many
columns (and rows) you generate.

However, as you are vigilant from a design standpoint, you can relax on the
technical front. The Layout Grid widget in Dreamweaver strings together fairly
complex combinations of the 2-column and 3-column grids to create grids of 4, 5, 6,
and more columns if you choose to do that.

In order to generate a layout grid in a jQuery Mobile page, make sure your insertion
point is in the content div data-role. An easy way to do that is to select the text
"content" in the code that is generated when you create a jQuery Mobile "page",
and replace it with the layout grid, or, to place your cursor after the "content"
placeholder text.

Chapter 10

[225]

Then, choose Insert | jQuery Mobile | Layout Grid. The jQuery Mobile Layout
Grid dialog opens. Choose a number of rows and columns, and click on OK to
generate the layout grid.

Defining styles for Layout Grids
The jQuery Mobile Layout Grid uses two class styles—.ui-grid-a for two
column grids, and .ui-grid-b for three column grids. Dreamweaver, as noted,
will generate HTML from the jQuery Mobile Layout Grid dialog to string together
combinations of these two grids to create grids of more than three columns. In
addition, Dreamweaver CS5.5 generates .ui-grid class styles to define specific
block formatting.

The point? By editing the properties of .ui-grid and .ui-block class styles, you
can define the appearance of elements of layout grids.

As you do that, avoid editing the widths of the grids or blocks, or the margins,
padding or border dimensions. Changing those properties will destroy the
generated layout. However, you can edit background colors and images.

Adding jQuery Mobile Elements

[226]

Designing mobile pages into amobile pages into a pages into a
collapsible block
jQuery Mobile Pages, as you saw in the previous chapter, essentially create the
sense of navigating from page to page while relying on JavaScript to actually display
and hide content. That is the technique used in the sample jQuery Mobile pages
generated in Dreamweaver CS5.5.

Expandable blocks operate on a similar principle—they show and hide content
depending on a visitor's actions. However, with expandable panels, this takes
place through sections of the page appearing to expand or shrink.

Building a collapsible block
Like other jQuery Mobile objects, collapsible panels require the framework of a
jQuery Mobile page. Therefore, the first step in implementing them is to create a
jQuery Mobile page. This is done by choosing Insert | jQuery Mobile | Page. We
explored the options for generating jQuery Mobile pages in Dreamweaver a bit
earlier in this chapter.

Once you have generated a jQuery Mobile page, with all the attendant CSS and
JavaScript files that make that work, you can define collapsible panels. Do that by
setting your insertion point (this is most easily done in the code side of Split view,
with Live View turned on).

Choose Insert | jQuery Mobile | Collapsible Block. No dialog appears;
Dreamweaver CS5.5 generates HTML code for a set of three collapsible sections
within the block.

After our experience with starter pages in the previous chapter, and Layout Grids
in this chapter, and with your background in HTML5 and CSS, you have already
conceptualized how we will customize the look and content of the collapsible block.
We can change the formatting by using a combination of jQuery Mobile data-theme
sets and customized CSS styles. Moreover, we can change the content by editing the
HTML, including by copying and pasting collapsible blocks.

Chapter 10

[227]

Changing initial block stateblock state state
The entire set of collapsible elements is defined by this code:

<div data-role="collapsible-set">

In between the opening and closing <div> tags for a collapsible set are individual
expandable blocks:

<div data-role="collapsible" data-collapsed="true"> </div>

Alternatively, blocks that are expanded by default when the page opens, are defined
with this code:

<div data-role="collapsible">

By default, the first of the three expandable sections is expanded when
the page opens, and the other two are collapsed. Adding the parameter
data-collapsed="true" to the initially open panel changes it to collapsed
when the page opens.

Conversely, removing data-collapsed="true" from a panel changes it to display
expanded when the page opens.

Adding jQuery Mobile Elements

[228]

Changing block data-themes and styles
We can add a data-theme parameter to any data block. For example, changing
<div data-role="collapsible"> to <div data-role="collapsible" data-
theme="e"> applies data-theme e (a yellow and red color scheme) to that block.

I won't rehearse the whole discussion / rant about the limitations of themes, but
clearly to achieve any level of uniqueness, you will want to combine customized CSS
with themes. The CSS styles associated with the collapsible panels, styles generally
starting with .ul-collapsible, can be customized in the CSS Styles panel.

You will want to be cautious in changing dimensions; including padding, margins,
and borders, as messing with these parameters might wreck the collapsible columns.
However, you can customize fonts, colors, font sizes, background colors, and
other properties.

The .ui-collapsible-contain style, for example, controls many of the properties
of the content of an expanded block.

Chapter 10

[229]

Editing Collapsible Block HTMLCollapsible Block HTML Block HTML
Depending on your inclinations, you can edit the content of collapsible blocks in
Design view, with Live View turned either off, or in Live View, by editing the
content on the Code side of Split view. In either case, you just add HTML tags (like
headings, paragraph tags, ordered or unordered list), and text, images, and media.

If you edit content in the Code side of Split View, click the Refresh button in the
Document toolbar periodically to update the Design side of the view.

At this stage of the game, you have figured out on your own how to add a collapsible
block to a set: just copy, paste, and edit an existing block.

Moreover, since you asked (I read your mind), yes, you can embed collapsible
blocks within a collapsible block. But the point, remember, is to keep mobile page
layouts fairly simple, so—as the saying goes—when organizing content for mobile,
less is more.

Adding jQuery Mobile Elements

[230]

Adding jQuery form objects
The experience of filling out a form in a mobile device environment is substantially
different from filling out a form on a laptop or desktop. There is no mouse, or even
(often) a Tab key to navigate between form fields. Big fingers and tiny options in
popup menus make for a bad match. A form that might work fine in a full-sized
browser may well be terribly uninviting and inconvenient in a mobile device.

Part of the solution to that challenge is that mobile devices often convert form fields
to more accessible elements. For example, options in a select menu might display
much larger when tapped, making it easier to make a selection.

Chapter 10

[231]

The other part of the solution for making forms accessible and inviting in mobile
devices is to implement new form fields, such as sliders (where visitors can choose
from a range of values by sliding a thumb on a bar) or flip toggle switches (with easy
to use "on" and "off" switch options) to make filling out forms online more functional
and more fun.

Forms in Dreamweaver
Dreamweaver has historically provided three methods for creating forms. You can,
of course, define forms and form fields using HTML in Code view. You can generate
forms by choosing Insert | Form, defining a form, and then—within it—inserting
form fields (like a text field) and the requisite buttons (like a Submit button to
make the form do something). Recent versions of Dreamweaver have added Spry
Validation form fields that first test data (for example, to see if it looks like an e-mail
address) before allowing a visitor to submit the form. I note this history because
a) you can't get where you are going if you don't know where you have been, or
whatever that saying is; and b) all these techniques still work in mobile devices, so if
you know any or all of them, you can supplement the new jQuery Mobile form tools
in Dreamweaver CS5.5 with those tools.

Here, however, we will focus on the jQuery Mobile form tools that are geared to
create mobile-friendly forms, and include form fields like the slider, and the toggle
switch, that until now have not been easily accessible in Dreamweaver.

Adding jQuery Mobile Elements

[232]

Before diving into those tools, here is the world's most compressed course in creating
forms in Dreamweaver (in general, not just using jQuery Mobile form tools):

1. All form fields (like a text field, or a Submit button) have to be enclosed
within a single set of <form> tags.

2. In order to work, forms must have a defined action. For forms that connect
to server side scripts (scripts written in programming languages like PHP
or Perl, and reside on a server), the action is a link to post the data to the
location of that script at a server. There are many free, fairly intuitive online
resources for generating such scripts, with directions for how to upload them
to your server and connect them to a form. A very simple, but functional
action is to simply e-mail form content to an e-mail address using the action
mailto:xxx@xxx.xx where xxx@xxx.xxx is an e-mail address. This simple
solution then launches an e-mail client (program) and prompts the user to
e-mail the form content to the provided e-mail address.

With those two basic rules in mind, let's examine new tools in Dreamweaver CS5.5
for creating forms with particularly mobile-friendly form fields.

Creating a jQuery Mobile form
Like the other jQuery Mobile objects we have examined in this chapter, jQuery
Mobile form elements can only be inserted into an already generated jQuery Mobile
page. However, beyond that, it is also necessary to create both a form and a submit
button using more traditional form features in Dreamweaver. Therefore, the process
of setting up a form that will enclose jQuery Mobile form elements is:

1. Create a jQuery Mobile Page
2. Insert a form inside that jQuery Mobile Page with a Submit (button)
3. Then you can add specifically mobile-friend jQuery Mobile form fields

to that form

That three-step process is not the only way to create jQuery Mobile forms, and it
does not incorporate every possible option for such forms. However, it is a basic
foundation for making it possible to implement jQuery Mobile form elements.

Let us work through an example, creating a basic form that, when submitted, will
send content to an e-mail address through an e-mail client. These steps assume—of
course—that you are working in a defined Dreamweaver site, and that you have
created an HTML5 page with a jQuery Mobile Page. With those pieces in place, the
following steps flesh out the "three-step process" outlined in rougher strokes above:

Chapter 10

[233]

1. Inside the jQuery Mobile Page (you can select the placeholder "content" text
in either Code view or Design view to make sure you are doing this right),
choose Insert | Form | Form. The Tag Editor – form dialog appears. Only
the options in the General tab are essential to creating a form.

2. In the Action field, enter mailto:[an email address] using, of course, a
real e-mail address. If you were working with a form linked to a server-side
script, you would enter the URL of that script here.

3. Choose Post from the Method dropdown, this is the method almost always
used to send form data to a location.

4. The Encoding Type parameters are defined by the script that is managing
the data. If you are uploading via e-mail, enter text/plain

5. Enter a name for your form in the Name box.
6. The Target dropdown allows you to choose _blank if you want to

open the linked form script in a new browser window—generally that
is not necessary.

7. After completing the Tag Editor – form dialog, click on OK to generate
the form.

The set of steps above simply defined a form. There are no form fields in that form
yet, so nothing in Live View indicates there even is a form. You can see the form code
in Code view of course, and you can see the form itself, indicated by a red outline, in
Design view with Live View turned off.

Remember "rule #1" from earlier in this section: All form fields have to be inside a form.
So make sure you are clear on where your form is on your page, even though it has
no content as of yet.

Adding jQuery Mobile Elements

[234]

With your cursor inside your form, choose Insert > Form > Button. We are not
(quite) yet at the stage of integrating special jQuery Mobile form fields, so this
option is available simply from the Insert | Form submenu. When the Input Form
Accessibility Attributes dialog appears, you do not need to enter anything in any of
the fields, simply click on OK to generate a Submit button.

You now have the basic elements of a form: the form itself with a defined action, and
a Submit button. Now it's time to add jQuery Mobile form fields.

Special mobile form fields
I noted earlier that mobile devices often have built-in interface tools to make form
content more accessible. So does jQuery Mobile. When you place standard HTML
form fields, like text boxes, checkboxes, and buttons, jQuery Mobile substitutes
custom form fields that are more accessible in mobile devices. Checkboxes are made
larger, select menus pop up lists of large buttons, form field labels and field names
are resized to maximize screen real-estate.

So, some of the "special" form fields available from the jQuery Mobile submenu are
simply adaptations of standard HTML form fields. Others are new to the HTML
form field set. In either case the jQuery Mobile form fields include, as noted, special
formatting that makes them more mobile-friendly.

Let us examine three of these form fields, and based on those examples, you will be
able to work with additional form fields in the jQuery Mobile set. In each of these
examples, be sure that you are inserting the jQuery Mobile form fields within the set of
<form> tags.

Chapter 10

[235]

Inserting a text input field
Text fields are the most flexible way of collecting data in forms. They are used to
collect user names, passwords, e-mail addresses, shipping addresses, and more.

To insert a jQuery Mobile text input field in a form, choose Insert | jQuery Mobile
| Text Input. (If you want to allow multiple line input, choose Text Area instead).
The jQuery Mobile text input field is automatically sized, but you have to replace
the label placeholder text (Text Input) with your own text. You can do this in Design
view (with Live View off) or in Split view.

You can also replace the input name by changing the default field name for the text
field by editing the code name="textinput" with another field name inside the
quotes. However, avoid spaces and special characters (stick to letters and numbers).
So, for example, to rename a text input field "email" you would change this code to
name="email"

Inserting a slider
Everybody is rating everything these days. You might not have read much physics,
but how would you rate Bosonic string theory on a scale of 1-100? Well, OK… there
are valid reasons to include rating options in a mobile form. Moreover, if you are
going to including a "rate this … (whatever)" in your form, you should make it easy
for people to do that.

Enter the slider—a particularly handy way to input values in a mobile form.

To insert a slider in a jQuery Mobile form, choose Insert | jQuery Mobile | Slider.
Customize the slider as follows:

1. Replace the Slider label text with your own text.
2. Replace the value="0" code with a value that will display by default
3. Replace the min="0" code with a value that will be the minimum value

Adding jQuery Mobile Elements

[236]

4. Replace the max="100" code with a value that will be the maximum value

Inserting a toggle switch
Toggle switches provide a handy way for large fingers to easily choose "yes" or "no";
"in" or "out"; or make some other two-option choice in a mobile device.

To insert a toggle switch in a jQuery Mobile form, choose Insert | jQuery Mobile |
Flip Toggle Switch.

Customize the toggle switch as follows:

1. Replace the Option label text with your own text.
2. Replace Off (not in quotes) in the code <option value="off">Off</

option> code with your own text
3. Replace On (not in quotes) in the code <option value="on">On</option>

code with your own text

Formatting jQuery Mobile Form Fields
As you have seen in the preceding three examples, inserting jQuery Mobile form
fields is pretty intuitive. And, in addition to adjusting field parameters (like labels,
or values for fields like sliders) in Code view, you can also adjust some of the field
properties in the Properties panel.

That said, the less you mess with the parameters of these jQuery Mobile form fields
the better. Some work has gone into configuring them so that they fit well in, and
work well with mobile devices. Avoid, for example, tweaking the display width of
the fields—something you would probably do if you were designing for laptops and
desktops. The jQuery Mobile form fields do a nice job of fitting themselves, and their
associated labels, into mobile viewports.

Chapter 10

[237]

You can customize the look of jQuery Mobile form fields by using data-theme
settings, and by customizing CSS—using the same basic approach we have used
throughout this chapter to identify CSS classes and tweak or radically redesign them
in the CSS Styles panel.

Without reviewing that in detail, you can apply a data theme by inserting the code
data-theme=(x) (where x is a letter, at this writing a-e, that defines a jQuery Mobile
data theme) after the <div> tag, that opens the form area of the page. Moreover,
you can simply define an appropriate class style, and apply it to some or all of the
form elements.

Recipe: Build a page with collapsible
blocks and a form
In this recipe, we will use a specific example to make the experience a bit more real.
Surveys tell us that a huge percentage of people looking to grab a taco somewhere
search online for a place to get one—on their mobile devices. So let us use my non-
existent taco stand at Coney Island as a model for this recipe, and you can easily
adapt it to your own needs.

The mobile page we build will have four collapsible blocks: menu, location, place
orders, and a bit about the taco shop. In the course of building it, we will walk
through creating four collapsible blocks, and embedding a form within one of the
blocks. Here we go:

1. Of course, we are assuming you are working within a Dreamweaver site. If
not, create a new one or open an existing one. Then choose File | New and
in the New Document dialog, choose Blank Page in the Category column,
HTML in the Page Type column, <none> in the Layout column, and HTML5
from the DocType popup. Then click on Create.

Adding jQuery Mobile Elements

[238]

2. Choose File | Save, and save the file as index.html. As this is going to be
a one-page site, the index.html filename will open the page when the site's
URL is addressed in a browser. Assign a page title of "Mobile Tacos".

3. At this stage of the process, by default, your cursor is in between the set of
<body> tags. That is right where it should be. Insert a jQuery Mobile page by
choosing Insert | jQuery Mobile | Page. As we are going to be keeping this
project relatively simple and standard (but not too simple, or standard—don't
worry), you can choose the Remote (CDN) Link Type option, and we will
avail ourselves of the online version of the jQuery Mobile CSS file. With
Remote (CDN) selected, click on OK.

4. The jQuery Mobile Page dialog opens. Click on OK with the default settings.
5. Replace the original Header placeholder text with "Coney Island Tacos".

Alternatively, you can depart from my recipe right from the start, and
freelance your own content from here on in. Replace the footer text with the
imaginary website of Coney Island Tacos – www.coneyislandtacos.com.
Use the Insert | Hyperlink menu option if you wish to define the hyperlink.

6. Define a work environment: Select Split View and choose 480x800 from the
Window Size popup at the bottom of Design view. Turn on Live View.

7. Start with applying one of the jQuery Mobile themes for formatting. In the
code side of Split view, enter the code data-theme="e"—or experiment with
other themes (try a, b, c, d, or e).

Chapter 10

[239]

8. Next, let us create four expandable panels. Select the placeholder content
text, and choose Insert | jQuery Mobile | Collapsible Block. Copy and
paste one of the sets of collapsible block code to create a forth block. That
code is:
<div data-role="collapsible" data-collapsed="true">
 <h3>Header</h3>
 <p>Content</p>
 </div>

9. Customize the headers for all four blocks. You will find the headers enclosed
in <h3> codes. I am going with: Menu; Email Order; Find / Call Us; and
About Coney Island Tacos as headers, but feel free to improvise.

10. Customize the content of all the collapsible blocks except the Email Order
block—we will create a form for that next.

11. In the Email Order block (or whichever block you are using in a custom
project for an input form), select the placeholder content text and choose
Insert | Form | Form. In the Tag Editor – form dialog, make the action
mailto:youremail@youremail.xxx (substituting your own e-mail address).
Change the method to Post. Enter text/plain in the Encoding Type field
and click on OK in the dialog. Here, it might be helpful to pop out of Live
View to create the input form. Enter text "Order Form" inside the form and
press Return or Enter to create a new line.

Adding jQuery Mobile Elements

[240]

12. Making sure your insertion point is inside the form, choose Insert | jQuery
Mobile | Select Menu. Change the label to Taco. Click on the Select menu
itself, and use the List Values button in the Properties Inspector to open the
List Values dialog. Enter labels (which appear in the form) and values (which
are sent via e-mail when the form is submitted), using the + button to add
new rows, and the up and down arrows to reorder items as necessary.

13. Add additional select menu to allow people to choose a taco shell.

Chapter 10

[241]

14. Still within the form, choose Insert | jQuery Mobile | Checkbox. In the
jQuery Mobile Checkbox dialog, enter Sides in the Name box, and choose
4 checkboxes and a horizontal layout, and click on OK. Edit the labels right
in Design view in the Document window, and use the Properties inspector to
define values for each checkbox that match the labels.

15. Complete the form by inserting a Submit button. Again, make sure your
insertion point is inside the form, and choose Insert | Form | Button. Click
on OK in the dialog without making any selections as a Submit button
is the default.

Adding jQuery Mobile Elements

[242]

16. To customize the look of the page, create a new class style. Use the New CSS
Rule at the bottom of the CSS Styles panel to create a new CSS rule. Name
the class style Format. As we are using a remote version of the associated
CSS file, and as this is a one-page site, we can break the rule of relying
exclusively on linked, external style sheets, so choose (This Document Only)
from the popup at the bottom of the New CSS Rule dialog, and click on OK
in the dialog. Define some custom properties, like font family, font size, and
font color. Use the Properties inspector to apply the class style to selected
elements on your page.

You can further customize the project by creating additional class styles, and
applying them.

You can test the order form in a browser.

Chapter 10

[243]

Summary
In this chapter, you learned to create jQuery Mobile content from scratch by creating
a regular HTML5 blank page, and then using a jQuery Mobile Page as a foundation.

Inserting a jQuery Mobile Page connects the page to jQuery Mobile JavaScript and
CSS – either at a remote or local location.

With the jQuery Mobile Page generated, you can use additional page layout
techniques, beyond the "pages" approach that comes with the sample jQuery Mobile
pages we built pages from in the previous chapter.

One of those page design techniques is a Layout Grid, which is essentially div style
columns, but with special properties that make the columns display effectively in
mobile devices. We also learned, incidentally, that tables and regular divs work in
jQuery Mobile pages as well.

The two most important jQuery Mobile techniques we introduced in this chapter are
collapsible blocks, and jQuery Mobile form objects. Collapsible Blocks expand and
collapse, and provide a very comfortable way to present content in a small viewport.
Adding jQuery form objects creates more mobile-friendly versions of familiar input
form objects (like text boxes), but also enables new form fields like sliders and Toggle
flip switches. You will find a detailed exploration of every available jQuery Mobile
form object and their properties at http://jquerymobile.com/test/docs/forms/
index.html.

To customize the look and feel of jQuery Mobile-based pages, we can utilize the
broad brush formatting of data-themes, supplemented with custom CSS.

Generating Apps
Up to this point, we have covered every dimension of creating iOS and Android
apps in Dreamweaver CS5.5, except… creating the apps themselves! We will do
this now.

Particularly in the last two chapters, we have explored the design dimension of
Dreamweaver CS5.5 for mobile, using jQuery Mobile tools. In this chapter, we won't
review the entire journey we took to get here; I will assume that you can build a
mobile-ready jQuery Mobile-based web page.

What we will cover here is the following:

Generating apps from Dreamweaver—an overview
Configuring application framework(s)
Customizing mobile application settings
Building apps
Emulating mobile apps
Recipe: Build and emulate a mobile app

Generating apps from Dreamweaver—an
overview
Let's return to a question we have explored in other chapters: What is the difference
between a mobile-friendly web page, and an app? There is an ongoing debate over
the answer to this question, and the general trend is that apps are getting to be more
like well-designed mobile-friendly websites, and vice versa.

•

•

•

•

•

•

Generating Apps

[246]

Advantage: App vs web page
However, there are differences, beyond the underlying technology (apps are written
in Objective-C programming language, not HTML5, JavaScript and CSS).

Among the advantages of packaging mobile web content as an app:

Apps run on mobile devices even when the device is offline
Related to the preceding point, apps load more quickly, particularly when
there is a slow Internet connection
Once installed, apps are easier to access on mobile devices—they display on
the device desktop and do not require going through a browser
Apps run in mobile devices without the encumbrance of a browser interface
that takes up viewport space and distorts the presentation of the content
Last and not least, you can sell apps online through Apple and Android's
online stores

Apps have other advantages over mobile web pages, but generally, they involve
programming techniques that are beyond the scope of features that can be easily
generated from Dreamweaver CS5.5.

•

•

•

•

•

Chapter 11

[247]

However, not every web presence needs to have an app version, and there are
arguments for web pages over apps. As we have seen in the two previous chapters,
mobile-friendly web pages with HTML5, CSS3, and JQuery Mobile objects run
quickly and smoothly in mobile devices compared to "regular" web pages. Moreover,
even with Dreamweaver CS5.5's new capacity to generate apps, it is still easier to
develop and much easier to post a website than it is to submit an app.

PhoneGap and Dreamweaver CS5.5
Apps for iOS and Android mobile devices are written in the Objective-C
programming language. For some time, developers have been working on
technology that would convert HTML5, CSS, and JavaScript to Objective-C apps.

The most widely supported and advanced technology for doing this is PhoneGap.
The apps that result from PhoneGap conversion do not have all the functionality
of apps written from scratch in Objective-C. Apps developed with PhoneGap are
allowed by Apple for distribution through iTunes.

In addition, Dreamweaver CS5.5 relatively seamlessly integrates PhoneGap, with
one major caveat: You can generate Android apps—for Google Android mobile
devices—with Dreamweaver CS5.5 for Windows or on a Mac. However, you can
only generate apps for iOS using Dreamweaver CS5.5 on a Mac. This limitation is not
something inherent in Dreamweaver CS5.5. It is a product of the fact that Apple does
not make the required tools for converting web pages to apps available for Windows
computers. However, it does mean that if creating iOS apps is important to your web
development work, you are constrained to, or stuck with, using Dreamweaver on
a Mac.

Configuring application framework(s)
Before you can use PhoneGap with Dreamweaver CS5.5 to generate mobile apps,
you have to download, install, and connect Dreamweaver with the SDKs (software
developer kits) for each operating system. This takes a couple of hours, but most
of that time can be spent stir-frying vegetables, jogging, or watching a basketball
game—the time involved is taken up by downloading rather massive files. This is
particularly true if you install the iOS SDK, which—remember—is only available
for Macs.

While downloading the Apple SDK files takes time, the process overall is very
simple. Moreover, you only do it once. Once you install these tools and connect
Dreamweaver to them, they stay ready to use.

Generating Apps

[248]

The App toolkits
Our exploration of using the respective toolkits for generating iOS and Android apps
is constrained by two things. First, we are not high-level professional coders and
second, these toolkits operate behind the scenes in Dreamweaver CS5.5, and for
most of us, that is just fine.

However, it is worth taking a moment to identify what will be going on behind
the scenes when we use Dreamweaver CS5.5 to generate Android and (on Macs)
iOS apps.

The Xcode suite of tools was developed and is distributed by Apple. The entire
set of tools can be used to write software for Mac OS X and iOS. The subset of
these tools applicable here creates iOS apps—we are not going to be using
Dreamweaver to write applications for desktops and laptops. Xcode 4 is the
current version of Xcode. Apple sells it and it can be downloaded directly from
Apple. However, Dreamweaver CS5.5 is configured, so that Mac users can install
the Xcode4 seamlessly.

Eclipse is the toolset for creating apps for Google's Android mobile operating
system. Like Xcode, it can be used for applications beyond mobile devices.
It can be downloaded independently from Google.

As alluded to earlier, the third piece of the puzzle is PhoneGap, an open source set
of tools supported by Adobe that uses the preceding toolkits (and others) to convert
web pages to apps.

With this as a minimalist conceptual background, let's see how all this works in
Dreamweaver CS5.5 to generate apps from web pages.

Installing the frameworks
To configure the application framework(s) available for your system, choose
Site | Mobile Applications | Configure Application Framework. You do not
have to have any Dreamweaver files open, nor do you have to have a Dreamweaver
site defined to do this. You do have to be connected to the Internet, as you will be
downloading files.

When the Configure Application Framework dialog opens, click on the Easy Install
button to download and install the SDK files for Android. This process really is easy,
simply follow the prompts to download, install, and define the path to the Android
SDK files.

Chapter 11

[249]

If you are using Dreamweaver CS5.5 on a Mac, then you can use the provided link in
the dialog to the Apple iOS Dev Center. You need to have an Apple account to do
this, but they are free and you can sign up for one on the spot if you don't have one.
Follow links to download the newest available version of Xcode and the iOS SDK.
Once the download is complete, double-click on the installer on your computer.
Download the SDK from there, and install it on your Mac the same way you install
any application—double-click on the .dmg file and accept all installation defaults.
After you install the programs, return to Dreamweaver's Configure Application
Framework dialog (you should just leave Dreamweaver and this dialog open while
you download the Apple SDK). Use the Browse for file next to the iOS Developer
Tools Path text box and navigate to and select the OS X 10.6.x / Developer folder.

When you finish either or both of these processes, links will appear in the boxes in
the Configure Application Framework dialog. Click on Save and Dreamweaver
will be able to access these programs to generate apps for the applicable operating
system, as shown in the following screenshot:

Defining mobile application settings
Dreamweaver CS5.5 has conveniently packaged all the various settings required to
define an app in a single dialog. These, range from technical information required by
Apple and/or Android to choosing which image to use as an application icon, or in
the startup screen (those images are optional).

Generating Apps

[250]

Of course, the actual content of the app is defined by the mobile-friendly web page
you design. However, the properties in the Mobile Applications dialog define
elements of the app beyond the page content.

Before launching the Mobile Application Settings dialog, you must have
the page open that is to be exported to an app. Yes; I said the page, not the
pages. As I think will be clear at this stage of the process, all the content
that is to be exported into an app has to be on a single HTML page, even
though that page can have multiple jQuery Mobile "pages" within it.

1. So, with your page open and saved select Site | Mobile Applications |
Application Settings. The dialog opens.

2. The Bundle ID field satisfies technical requirements for both Android
and iOS apps. Read the instructions in the dialog carefully and be sure, as
you replace the template content with your own, not to delete the periods.
The format is com.company.appname with your own company with your
company name in the company space, and your own app name in the
appname space. This information is not accessible to the public.

3. Enter the application name in the Application Name field, and your name in
the Author Name field.

4. You can define an application icon to display on the mobile desktop by using
the browse for file icons next to that field to select files on your computer.
The file does not have to be embedded in your open page and it will
automatically be scaled to the appropriate dimensions. The file does have
to be in PNG format. Moreover, for iOS, you can similarly select a Startup
Screen PNG.

5. In the Target Path field, use the Browse for File icon to navigate to and select
an output folder.

6. Unless you have reasons not to, accept the default settings in the Select
Target OS Version area of the dialog.

7. When you have defined these settings, click on Save, as shown in the
following screenshot:

Chapter 11

[251]

Don't rush out to call Steve Jobs (or his counterpart at Google) just yet to pressurize
them to approve your app quickly. First, you don't have Steve's number and second,
your app is not packaged (exported) yet.

What you have done is defined the settings that will be applied when your app is
packaged. Moreover, you added a file named phonegap.js to your Dreamweaver
site. You can see that file in your Files panel. You will need it when you take the
next step and package your page as an app.

Building and emulating apps
Having defined Native Application Settings, you can now package your open
(and saved) page as an Android app. Moreover, if you are on a Mac, as an iOS
app for either iPhone, iPad, or both.

When you installed the SDKs for Android and/or iOS, you also installed emulation
software that replicates how apps will run in the target environments. It is hard
to imagine a situation where you will not want to emulate and test your app
immediately after generating it. In addition, you can (by choosing Site | Mobile
Applications | Build and Emulate).

Generating Apps

[252]

If you don't want to emulate your app(s), then you can simply choose Site | Mobile
Applications | Build, to build, but not emulate the app.

When you select Site | Mobile Applications | Build and Emulate, a submenu
provides options for each SDK you installed. If you installed the full set, on
a Mac, then that set of options is iPhone, iPad, and Android, as shown in the
following screenshot:

Choose one of your available apps. Packaging the app and launching the appropriate
emulator takes some processing time and resources.

Testing mobile apps on your computer
After an app is generated, a dialog appears displaying the path to your application,
as shown in the following screenshot:

You can preview and test it in the emulator that is launched from Dreamweaver
(but is a distinct, different application running on your computer).

Obviously, unless you have a touch screen on your laptop or desktop computer,
you cannot fully simulate the experience of navigating the app in a touch
screen environment.

1. Click and drag with your mouse to simulate that same experience with a
finger on the screen.

Chapter 11

[253]

2. After you test your app, you can change it in Dreamweaver, resave it, and
rebuild the app. If you choose Build and Emulate, then the updated app will
appear in the emulator

Generating Apps

[254]

3. Again, the settings you defined in the Application Settings dialog apply to
all apps you package. Therefore, if you are on a Mac and installed the iOS
and Android SDKs in the Configure Application Framework dialog, then
you can—one-by-one—package and test iPhone, iPad, and Android apps
from the same Dreamweaver HTML page.

What remains is to sign up as a developer with Android and/or Apple and
follow their rules for registering and submitting apps for sale at their respective
online stores.

Recipe: Building and emulating a
mobile app
For this recipe, we will start with the assumption that you have:

Created and are working within a Dreamweaver site
Generated a single, mobile-ready HTML5 page using only HTML5 (including
images and media); CSS (CSS3 effects are OK); and jQuery Mobile JavaScript
(other JavaScript works, but the jQuery Mobile library has scripts specially
configured to work well in mobile devices)

•

•

Chapter 11

[255]

Saved your page
Created an application icon—an image saved in a PNG format (it can be of
any size)

Given that the process is very similar for Android and iOS apps and that half of you
cannot install the Apple iOS SDK (it is not available in Windows), we will package
our page into an Android app for this recipe. However, you can follow almost the
exact same steps with minor substitutions to package the page as an iPhone or iPad
app as well.

1. Configure the Android Application Framework by selecting Site | Mobile
Applications | Configure Application Framework. In the Configure
Application Framework dialog click on the Easy Install button in order to
download and install SDK files for Android.

2. If your HTML5 page is not open, and saved, open and save it now. Select
Site | Mobile Applications | Application Settings. The Native Application
Settings dialog opens. Define the following settings:

In the Bundle ID field, replace com.company.appname with your
own company name in the company space, and your own app name
in the appname space. Do not delete the periods.
In the Application Name field, enter the application name.
Enter your name in the Author Name field.
Use the browse for file icons next to the Application Icon PNG field
to select an image file from your computer.
In the Target Path field, use the Browse for File icon to navigate to a
select an output folder.
Accept the default settings in the Select Target OS Version area of
the dialog and click on Save.

3. Select Site | Mobile Applications | Build and Emulate | Android. Wait
while the app is built and opened in the Android emulator.

4. Test the app in the Android emulator. Note any changes you wish to make.
Close the emulator, and edit the page in Dreamweaver. Re-build and emulate
the app and test it again.

•

•

°

°

°

°

°

°

Generating Apps

[256]

Summary
Not all mobile web presences require an app. However, some do. Moreover, you can
build apps from HTML5 pages right in Dreamweaver CS5.5.

Building and emulating apps is simple. The hard part was designing a
mobile-friendly web page that will become the app.

Once you use Dreamweaver's tools for downloading and hooking up the Android
and/or Apple iOS SDKs (software development kits), you can define Native
Application Settings for any page, and use the same settings to build an app for
Android and/or iOS devices.

You will almost certainly want to both build and emulate apps. Emulation allows
you to test the app in a program supplied as part of the SDK that simulates how the
app will run in the target device. Once you have tested the app in an emulator, you
can edit it in Dreamweaver and re-build the app to apply changes.

The apps generated and saved by Dreamweaver use the PhoneGap framework,
which is approved by both Google Android and Apple for developing apps. From a
technical standpoint, the apps are ready to distribute and you do that by submitting
them to the distribution networks for the respective systems—Android Market and/
or iTunes.

Index
Symbols
.box

hover style 153
.sidebar1 element 62
.ui-collapsible-contain style 228
.ui-grid class 225
-moz-transform 130
</head> tag 78
</title> tags 118
</video> tags 182
<address> element 92
<aside> element 90

about 90
CSS Float attribute 90

<audio> tag 165
<body> tag 44, 115, 185
<div> tags 65, 227
<embed> tag 169
<figure> element 99
<footer> element

using 91
<h2> tag 37
<head> tag 78
<header> element

about 6, 38
adding 87
content organizing, with hgroups 87, 88
navigating 87

<hgroup> element
adding 87

<nav> element 74
<object> tag 170
<section> elements 63
<section> tag 40
<source> tag 181

<title> tag 118
<video> element 185
<video> tag 182
3-column HTML5 page

creating 27-29
saving 27-29

A
Add Property link 68, 130
Adobe's Flash Video. See FLV
Adobe Media Encoder CS5

HTML video, creating 176-178
All tab 215
animated CSS3 effect

creating 148-153
settings 150

animated transform effect
creating 148-153
settings 150

Apple i-Gadgets
troubleshooting 109, 110, 117, 118

Apple iOS Dev Center 249
application framework

configuring 247
Application Settings dialog 254
Apply button 46
apps

building 251
emulating 251, 252
generating, from Dreamweaver 245
mobile apps, computer-testing 252-254

apps generation, Dreamweaver
overview 245
packaging mobile web content as app,

advantage 246, 247

[258]

PhoneGap 247
App toolkits

about 248
application framework, configuring

248, 249
articles

about 88
creating 88, 89

aside content
adding, <aside> element used 90

Attach External Style sheet dialog 104
Attach Style Sheet icon 80
attributes, global HTML5 layout elements.

See global HTML5 layout elements
attributes

autoplay 163

B
border-radius attribute 129
border-radius class style 133
Browse button 42
Browse for Folder icon 20
Browse link 165, 181
browser compatibility challenges

for HTML5 layout elements 53
browsers issues solving, CSS used

about 54
CSS Attributes, disabling 56
CSS rule, disabling 55-57
display:block property 54, 55

Bundle ID field 250

C
Cascading Style Sheets. See CSS3
class styles

about 64
advantages 64
layouting with 64

Code hinting 179
code hints

using 86, 87
collapsible block design, in jQuery Mobile

pages
building 226, 228
creating 226
data-theme, modifying 228

HTML, editing 229
Initial Block State, modifying 227
style, modifying 228

Configure Application Framework dialog
249

content accessibility
with HTML5 83-85

content editing, HTML5 page layout
elements

about 34
and organizing, in containers 35
articles, adding 37
sections, adding 37
Split view, utilizing 36, 37
versus text tags 34

controls parameter 180
CSS3

about 6, 123
effects 123, 124
interactivity 145
pre-CSS3 124
styles, in Dreamweavers HTML Pack

128-130
transforms 123, 124

CSS3 effects
about 124, 130
border radius 133-135
compatibility challenges 125-128
opacity 131-133
shadows 136
transforms 130, 131

CSS3 transforms
about 124
animating, in Dreamweaver 147
compatibility challenges 125-128
compound transforms 145
float attribute 142
image, overlapping 140
other effects 145
resize 139, 140
resizing, scale used 141, 142
rotate 139, 140
rotate transform, using 140, 143
scale transform, using 140
screenshot 139
skew 139, 140
skew transform, using 140

[259]

skew transition, creating 144
transition coding generation, in

Dreamweaver 140, 141
translate 139, 140
translate transform, using 140, 142
using 140

CSS Attributes
defining 90

CSS code 129
CSS file format, for Media Query

about 113, 114
mobile devices, styling 115, 116
style rule deletion, avoiding 115

CSS Rule Definition dialog
about 132
backgrounds, editing 46
previewing, Apply button used 46, 47
type styles, editing 45, 46

CSS styles, mobile pages
customizing 205, 206
default jQuery Mobile CSS 207
default jQuery Mobile CSS, editing 207
themes, applying 208-210
themes, customizing 208-210

Current tab 215
customized HTML5 layouts

saving 47, 48

D
data-theme property 208
Delete key 68
display

block attribute 57
block property 55

Dreamweaver
apps, generating 245
CS5 HTML5 Pack 155
CSS3 transforms, animating 147
HTML5 Pack, CSS3 styles 128-130
HTML5 audio, using 155
HTML5 video element, embedding 167
layouts, customization 32
Media Query 106
Media Query, generating 110
pages, designing 103

Dreamweaver accessibility validation report
feature 58

Dreamweaver CS5
about 5, 6
and HTML5 76
design elements 16, 17
DIV tags 14
HTML5 Pack 16, 17
HTML5 Pack, detecting 17-19
HTML5 Pack, installing 17-19
versions 19

Dreamweaver CS5.5
and HTML5 9
and PhoneGap 247
apple video 170, 171
code content, generating 9, 10
comparing, with HTML5 11
early formats 168, 169
FLV 169, 170
HTML video 167, 168
starter pages 194
web video 170, 171

Dreamweaver CS5 web page
HTML5 audio element, embedding in

159, 160
Dreamweaver site

creating 19
designing 19, 21
planning 19, 21
remote site, connecting to 20

E
Easy Install button 248
Edit Rule icon 59
effects, CSS3. See CSS3 effects
exercise

HTML5 page content, customizing 48-50
HTML5 page look, customizing 48-50

F
File | Preview in Browser | Adobe

BrowserLab 187
Flash animation/interactivity (SWF) 11
float attribute 62, 116
FLV 11, 169

[260]

footer
creating, <footer> element used 91

G
generated HTML5 layout

Code view 24
Code view, for CSS pages 24
design elements dissecting, Inspect Mode

used 25
Design view 24
examining 23
Inspect mode, workshop settings 26
related files, toggling between 23
Split view 24

global HTML5 layout element attributes
about 58
backgrounds, applying 58-60
element padding, versus content margins

62
float attribute, using 62, 63
margin, versus padding 61
margins, defining 60, 61
padding, defining 60, 61
page size, assigning 61
size, defining 60, 61

H
hover.html file 148
hover pseudo-class

interactivity 146
HTML5

<audio> elements 7
<video> elements 7
about 6, 7
and Dreamweaver CS5 76
and Dreamweaver CS5.5 9
compatibility issues 8, 9
HTML4.1 7
HTML5 7
importance, in web design 6, 7
layout 85
layout strategy 85, 86
search engines 85
using, for content accessibility 83, 84
XHTML 7

HTML5 <video> element
about 179
alternate video, for non-HTML elements

182
attributes, defining 180
creating 180
example 182
prerequisites 179, 180
sources, defining 181, 182

HTML5 audio, Dreamweaver
compatibility issues 156
embedding, issues 156
requirements 157

HTML5 audio element
embedding 164, 165
embedding, in Dreamweaver CS5 web page

159, 160
HTML5 audio files

audio compression 157
browser support 158
preparing 157, 158

HTML5 data-role property, mobile page
content

about 199
data-role pages 199, 200
different data role content, customizing 202
page content, customizing 201, 202

HTML5 elements
customizing 63

HTML5 layout, elements
<article> element 15
<aside> element 28
<div> tag 52
<footer> element 28
<header> element 15
<nav> element 15, 28
<section> elements 15
about 11, 12
browser compatibility challenges 53
browsers, selecting 53
browsers issues solving, CSS used 53, 54
copying 39, 40
CSS DIV tags 13, 14
customizing 51, 52
deleting 39, 40
evolution 12
identifying 38

[261]

page elements 15
pasting 39, 40
selecting 38
tables 12, 13
versus text tags 34

HTML5 layout
building, from scratch 97-100
style sheet, saving 22

HTML5 Pack, Dreamweaver CS5
CSS3 styles 128-130
detecting 17-19
installing 17-19

HTML5 page
building 77

HTML5 page, building
about 77
CSS file, creating 79-82
from scratch 77-79
structural elements 77, 78

HTML5, page layout elements
appearance customizing, example 48-50
associated CSS, examining 42, 43
content, editing 34
customized elements, saving 47, 48
required styles 40-42

HTML5 page layout
customizing 65
links customizing, in nav element 69-74
position customizing, for aside 67
position customizing, for footer 68
position customizing, for header 66, 68
position customizing, for nav 67
size customizing, for aside 67
size customizing, for footer 68
size customizing, for header 66, 68
size customizing, for nav 67
style sheet, building 94-97

HTML5 templates
using, for new pages from layouts

generation 21, 22
HTML5 video

and Dreamweaver CS5.5 167, 168
apple video 170, 171
creating, in Adobe Media Encoder CS5.5

176-178
Dreamweaver site, managing 178, 179
early formats 168, 169

embedding 184-186
FLV 169, 170
parameters 181
preparing, for every scenario 173
using 167
web video 170, 171

HTML5 video pages
previewing, in BrowserLab 183, 184
previewing, in Live View 183
testing 182, 183

HTML layout
saving, as web page 26, 27

HTML tag rules
CSS rules definition dialog 45
customizing 43
customizing, in CSS styles panel 44, 45

HTTP 6
HyperText Markup Language. See HTTP

I
ID styles

about 64, 65
advantage 65

Insert | Hyperlink 119
Insert | jQuery Mobile | Collapsible Block

239
Insert | jQuery Mobile | Flip Toggle

Switch 236
Insert | jQuery Mobile | Select Menu 240
Insert Div Tag dialog 151
interactivity, CSS3

combining, with transforms and effects 146
effects, with JavaScript 146
transforms, with JavaScript 146
with hover pseudo-class 146

iOS
settings 181

J
jQuery Form Objects

about 230, 231
forms, in Dreamweaver 231, 232
Mobile Form, creating 232
special Mobile Form fields 234

jQuery Mobile
about 192, 193

[262]

elements, adding 217
jQuery Mobile (CDN) 194
jQuery Mobile (Local) 194
jQuery Mobile (PhoneGap) 194
pages, creating from scratch 218
starter pages, using 193, 194
status 193
URL 193

jQuery Mobile pages
building, with collapsible blocks 237-243
building, with Form 237-243
creating, from scratch 218
designing, into collapsible block 226

jQuery Mobile pages, creating from scratch
about 218
HTML 5 page, creating 219, 220
interface options 218, 219
page, inserting 220-223

K
key, Tab key 181

L
layout customization

content, embedding to proper location 32
format, dissecting 32-34
overview 32

Layout Grid
about 223
inserting 223-225
styles, defining for Layout grids 225

layout elements, HTML5. See HTML5
layout, elements

layout strategy, HTML5 85, 86
Live view 113

M
media options

alternate HTML5 audio file formats,
providing 161

non-HTML5 browsers, audio 162
play parameters, adding 162-164

Media Queries dialog 112, 120
Media Queries option 196

Media Query
CSS files, formatting 113, 114
for cell phone, defining 119-122

Media Query, Dreamweaver
3-step protocol 110
generating 110
styles, assigning to different media 111-113

metadata
<figcaption> element 93
<figure> element 93
<time> element 93, 94
adding 92
address, defining 92
datetime parameter, using 94

Miro Video Converter 174
mobile.css style sheet 121
mobile app

building 254, 255
emulating 254, 255
testing, on computer 252, 254

Mobile Applications dialog 250
mobile application settings

defining 250
mobile apps

generating 210
mobile page content

customizing 199
HTML5 data-role property 199

mobile page creating, Dreamweaver CS5.5
about 194, 195
in Split view 195, 196
jQuery Mobile pages preview, in Live view

197-199
mobile pages

about 192
CSS styles, customizing 205, 206
desktops 191, 192
jQuery Mobile 192, 193
laptops 190
overview 190

mobile web page
building, with jQuery Mobile objects

211-216
multimedia web world

web designing 104

[263]

Multiscreen Preview
about 108, 109
previewing with 107, 108

N
native video formats

h.264 (MP4) 172
MP4 172
OGG 172
Web M 172

native videos
about 172
formats 172
non-supported HTML5 browsers 172, 173

New CSS Rule icon 149
New Document dialog 18, 48, 195
new jQuery Mobile pages

adding 203
data-role pages creating, by copy-paste

method 203, 204
data-role pages creating, from menu 205

P
page layout elements, HTML5. See HTML5,

page layout elements
PhoneGap

and Dreamweaver CS5.5 247
PLACEHOLDER attribute 8
position

relative attribute 68

R
Rule Definition dialog 150

S
Save As dialog 47
Save Style sheet File As dialog 119
SDKs 247
sections

about 88
creating 88, 89

Select File dialog 112, 160
Select Image Source dialog 35

shadows, CSS3 effects
box shadow 136
text-shadow 137
text outline 138, 139

Site | Mobile Applications | Build 252
Site | Mobile Applications | Build and

Emulate | Android 255
site management, HTML5 video 178, 179
Site Root button 26
software developer kits. See SDKs
special filelds, jQuery Form Objects

formatting 236, 237
Slider, inserting 235
Text Input Field, inserting 235
Toggle Switch, inserting 236

Split view 179
Spry widgets 192
Start Queue button 178
Style Rendering toolbar 70
style rules

associated CSS, examining 42, 43
identifying 40
requirements, in HTML 5 layout elements

40-42
Submit button 241

T
Tab key 132, 230
text-shadow effect 131, 138
Type category 49
transforms, CSS3. See CSS3 transforms

U
Unicode normalization form pop up 26
unordered list 71

V
videos compressing, for Web

about 173
converting, to web formats 174-176
open source 174
open source tools, using 174-176
proprietary 174

Viewport Sizes button 108

[264]

W
web design

Dreamweaver CS5 6
HTML5 6

web designing, for multimedia web world
about 104
Attach External Style sheet dialog 104, 105
CSS 105, 106
Media Queries 105, 106
mobile devices, styling 106, 107
online, designing 107
tablets, styling 106, 107

Window | Multiscreen Preview 108, 122

X
Xcode suite 248
x-offset 136

Y
y-offset 136

X
z-index values

setting 140

Thank you for buying
Dreamweaver CS5.5 Mobile and Web
Development with HTML5, CSS3,
and jQuery

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

jQuery Mobile First Look
ISBN: 978-1-849515-90-0 Paperback: 216 pages

Discover the endless possibilities offered by jQuery
Mobile for rapid Mobile Web Development

1. Easily create your mobile web applications
from scratch with jQuery Mobile

2. Learn the important elements of the framework
and mobile web development best practices

3. Customize elements and widgets to match your
desired style

3. Step-by-step instructions on how to use
jQuery Mobile

HTML5 Multimedia Development
Cookbook
ISBN: 978-1-849691-04-8 Paperback: 288 pages

Recipes for practical, real-world HTML5
multimedia-driven development

1. Use HTML5 to enhance JavaScript
functionality. Display videos dynamically and
create movable ads using JQuery

2. Set up the canvas environment, process
shapes dynamically and create interactive
visualizations

3. Enhance accessibility by testing browser
support, providing alternative site views and
displaying alternate content for non supported
browsers

Please check www.PacktPub.com for information on our titles

jQuery 1.4 Reference Guide
ISBN: 978-1-849510-04-2 Paperback: 336 pages

A comprehensive exploration of the popular
JavaScript library

1. Quickly look up features of the jQuery library

2. Step through each function, method, and
selector expression in the jQuery library with
an easy-to-follow approach

3. Understand the anatomy of a jQuery script

4. Write your own plug-ins using jQuery’s
powerful plug-in architecture

5. Written by the creators of learningquery.com

Learning jQuery, Third Edition:
RAW
ISBN: 978-1-849516-54-9 Paperback: 468 pages

Create better interaction, design, and web
development with simple JavaScript techniques

1. An introduction to jQuery that requires
minimal programming experience

2. Detailed solutions to specific client-side
problem

3. Revised and updated version of this popular
jQuery book

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Creating HTML5 Pages in Dreamweaver
	HTML5 and Dreamweaver CS5 in the world of web design
	HTML5—the cutting edge of web design
	HTML4.1, XHTML, and HTML5
	Compatibility issues with HTML5

	HTML5 and Dreamweaver CS5.5
	Dreamweaver generates code
	Dreamweaver—catching up to HTML5

	An introduction to HTML5 layout elements
	The evolution of HTML layout elements
	Phase 1: Tables
	Phase 2: CSS DIV tags
	Phase 3: HTML5 layout elements

	Meet the HTML5 layout elements

	Dreamweaver's HTML5 Pack and design elements
	Detecting or installing the HTML5 Pack in Dreamweaver
	Creating a Dreamweaver site
	Generating new pages from layouts using the HTML5 templates
	Examining the generated HTML5 layout
	Toggling between related files
	Code, Split, and Design views
	Dissecting design elements with the Inspect Mode

	Saving a layout as a web page
	Recipe: Creating and saving a 3-column HTML5 page
	Summary

	Chapter 2: Customizing HTML5 Layout–Content and Look
	Customizing layouts – An overview
	Embedding content where it belongs
	Dissecting format

	Editing content in HTML5 page layout elements
	HTML text tags versus HTML5 layout elements
	Organizing content in containers
	Utilizing Split view for editing content
	Adding articles and sections
	Identifying and selecting HTML5 layout elements
	Copying, pasting, and deleting HTML5 Elements

	Identifying style rules
	HTML5 layout elements require styles
	Examining CSS associated with HTML5 layouts

	Customizing HTML tag rules
	Making quick changes to styles in the CSS styles panel
	The CSS rules definition dialog
	Editing type styles
	Editing backgrounds
	Preview with apply

	Saving customized HTML5 layouts
	Recipe: Customize content and look of an HTML5 page
	Summary

	Chapter 3: Customizing HTML5 Layout Elements
	HTML5 layout and browser compatibility challenges
	Which browsers support HTML5 layout elements?
	Using CSS to solve browser issues
	The magic of display:block
	Disabling a CSS rule

	Global HTML5 layout element attributes
	Working with backgrounds
	Defining size, margins, and padding
	Assigning a page size
	Margins versus padding
	Element padding versus content margins

	Positioning with float

	Customizing HTML5 elements
	Back to the future: ID and class styles
	Layout with class styles
	The role of ID styles

	Recipes: Customizing the HTML5 page layout
	Recipe: Customizing the size and position for header, footer, nav, and aside
	Customizing links in the nav element

	Summary

	Chapter 4: Building HTML5 Pages from Scratch
	Dreamweaver CS5 and HTML5
	Building an HTML5 page from the top
	HTML5 structural elements
	Creating a CSS file

	Using HTML5 to make content accessible
	HTML5 layout strategy
	Using code hints
	Adding header, header nav, and hgroup
	Navigation within a header
	Organizing header content with hgroups

	Creating articles and sections
	Adding aside content
	Creating a footer
	Adding metadata
	Defining an address
	Figures and captions
	Indicating date and time

	Recipe Part 1: Build a stylesheet for an HTML5 page layout
	Recipe Part 2: Build an HTML5 layout from scratch
	Summary

	Chapter 5: Defining and Implementing Multiscreen Previews and Media Queries
	Web design for a multimedia web world
	CSS3 and Media Queries
	Styling for mobile devices and tablets

	Previewing with the Multiscreen Preview
	Generating a Media Query in Dreamweaver
	Building alternative style sheets
	A 3-step protocol for preparing to generate a Media Query
	Assigning styles to different media

	Formatting CSS files for Media Queries
	Caution: Don't delete style rules
	Styling for mobile devices

	Troubleshooting for Apple i-Gadgets
	Exercise: Defining a Media Query for a cell phone
	Summary

	Chapter 6: Applying CSS3 Effects and Transforms
	New in CSS3: Effects and transforms
	Compatibility challenges
	CSS3 styles in Dreamweaver's HTML5 Pack

	CSS3 effects
	Opacity
	Border radius
	Shadows
	Box shadow
	Text shadow
	Text outline

	CSS3 transforms
	When to use transforms
	How to generate transition coding in Dreamweaver
	Resizing with scale
	Moving with translate
	Applying rotation
	Creating a skew transition
	Other CS3 transform effects
	Compound transforms

	Interactive effects and transforms
	Effects and JavaScript
	Interactivity with the :hover pseudo-class
	Animating CSS3 transforms in Dreamweaver

	Recipe: Create an animated effect and transform
	Putting the pieces in place

	Summary

	Chapter 7: Embedding HTML5 Audio in Dreamweaver
	Audio and compatibility
	Laying the groundwork: HTML5 and page-building
	Making audio HTML5-ready
	Audio compression
	Browser support for audio files

	Embedding an HTML5 audio element in a Dreamweaver CS5 web page
	Alternative media options
	Providing alternative HTML5 audio formats
	Audio for non-HTML5 browsers
	Adding play parameters

	Recipe: Embedding HTML5 audio
	Summary

	Chapter 8: Embedding HTML5 Video in Dreamweaver
	HTML5 video and Dreamweaver CS5.5
	Early formats
	Flash Video (FLV)
	Apple devices and the web video

	The wild world of native videos
	Native video formats
	Browsers that do NOT support HTML5

	Preparing an HTML5 video for every scenario
	Compressing videos for the Web
	Video compression—open source and proprietary
	Converting a video to web formats with open source tools

	Creating an HTML5 video in Adobe Media Encoder CS5. 5
	Dreamweaver site management for an HTML5 video
	Defining the HTML5 <video> element
	Prerequisites
	Creating the <video> element
	Defining video attributes
	Defining video source(s)
	Alternate video for non-HTML5 environments
	Putting it all together

	Testing HTML5 video pages
	Previewing a video in the Live View
	Previewing a video in BrowserLab

	Recipe: Embedding an HTML5 video
	Summary

	Chapter 9: Creating Mobile Pages with jQuery
	Mobile pages – An overview
	Mobile pages, apps, and jQuery Mobile
	The status of jQuery Mobile
	Using jQuery Mobile starter pages

	Creating mobile pages from Dreamweaver CS5.5 starters
	Mobile pages in Split view
	Previewing jQuery Mobile pages in Live view

	Customizing mobile page content
	The HTML5 data-role property
	Data-role pages
	Customizing page content
	Customizing content for different data roles

	Adding new jQuery Mobile pages and objects
	Creating new data-role pages by copying code
	Creating new data-role pages from the menu

	Customizing mobile page CSS styles
	Default jQuery Mobile CSS
	Editing jQuery Mobile CSS
	Applying and customizing themes

	Looking ahead: Generating mobile apps
	Recipe: Build a mobile web page with jQuery Mobile objects
	Summary

	Chapter 10: Adding jQuery Mobile Elements
	Creating jQuery Mobile pages from scratch
	Interface options
	Step 1 – Creating an HTML5 page
	Step 2 – Inserting a jQuery Mobile "page"

	Inserting a Layout Grid
	Defining styles for Layout Grids

	Designing mobile pages into a collapsible block
	Building a collapsible block
	Changing initial block state
	Changing block data-themes and styles
	Editing Collapsible Block HTML

	Adding jQuery form objects
	Forms in Dreamweaver
	Creating a jQuery Mobile form
	Special mobile form fields
	Inserting a text input field
	Inserting a slider
	Inserting a toggle switch
	Formatting jQuery Mobile Form Fields

	Recipe: Build a page with collapsible blocks and a form
	Summary

	Chapter 11: Generating Apps
	Generating apps from Dreamweaver—an overview
	Advantage: App vs web page
	PhoneGap and Dreamweaver CS5.5

	Configuring application framework(s)
	The App toolkits
	Installing the frameworks

	Defining mobile application settings
	Building and emulating apps
	Testing mobile apps on your computer
	Recipe: Building and emulating a mobile app
	Summary

	Index

