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CHAPTER 1

Introduction
This book introduces embedded domain-specific languages in R. The 

term domain-specific languages, or DSL, refers to programming languages 

specialized for a particular purpose, as opposed to general-purpose 

programming languages. Domain-specific languages ideally give you 

a precise way of specifying tasks you want to do and goals you want to 

achieve, within a specific context. Regular expressions are one example 

of a domain-specific language, where you have a specialized notation 

to express patterns of text. You can use this domain-specific language to 

define text strings to search for or specify rules to modify text. Regular 

expressions are often considered very hard to read, but they do provide 

a useful language for describing text patterns. Another example of a 

domain- specific language is SQL—a language specialized for extracting 

from and modifying a relational database. With SQL, you have an 

expressive domain-specific language in which you can specify rules as to 

which data points in a database you want to access or modify.

 Who This Book Is For
This book is aimed at experienced R programmers. Some of the concepts 

we cover in this book are advanced, so at the very least you should be 

familiar with functional and object-oriented programming in R (although 

the next chapter will review the object-oriented programming features 
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we will use). It will be helpful to have some experience with  meta- 

programming when it comes to evaluating expressions in contexts that 

interact with the surrounding R code. However, Chapter 7 gives a crash 

course in the techniques we will use in this book, so you should be able to 

pick it up with a little effort from there.

 Domain-Specific Languages
With domain-specific languages we often distinguish between “external” 

and “embedded” languages. Regular expressions and SQL are typically 

specified as strings when you use them in a program, and these strings 

must be parsed and interpreted when your program runs. In a sense, 

they are languages separated from the programming language you use 

them in. They need to be compiled separately and then called by the 

main programming language. They are therefore considered “external” 

languages. In contrast, embedded domain-specific languages provide 

domain-specific languages expressed in the general-purpose language 

in which they are used. In R, the grammar of graphics implemented in 

ggplot2 or the data transformation operations implemented in dplyr 

provides small languages—domain-specific languages—that you can use 

from within R, and you write the programs for these languages in R as well.

Embedded DSLs extend the programming language in which you are 

working. They provide more than what you usually find in a framework 

in the form of functions and classes as they offer a high level of flexibility 

in what you can do with them. They are programming languages, after 

all, and you can express complex ideas and tasks in them. They provide a 

language for expressing thoughts in a specific domain, so they do not give 

you a general programming language as the language you use them from, 

but they do extend that surrounding language with new expressive power. 

However, being embedded in the general-purpose language means that 

they will follow the rules you are familiar with there—or mostly, at least, 

Chapter 1  IntroduCtIon
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since in languages such as R it is possible to modify the rules a bit using 

so-called non-standard evaluation. You can expect the syntax of the 

embedded DSL to follow the rules of the general-purpose language. The 

semantics will be determined by the DSL, but when you write programs 

in the DSL, the syntax is already familiar to you. If you implement a DSL 

yourself, embedding it in a general-purpose language lets you reuse the 

parsing and evaluation done by the general-purpose language so that you 

can focus on designing the domain-specific language.

Implementing embedded domain-specific languages often involves 

meta-programming; that is, it consists of treating the program you 

are writing as data that you can manipulate from within the language 

itself. This might sound more complicated than it is, but quite often, 

it is reasonably straightforward to achieve. Using classes and operator 

overloading, we can use R’s parser to parse embedded languages by simply 

designing the language such that evaluating expressions automatically 

parse them. This leaves us with data structures we, ourselves, have 

defined, without us having to parse anything, and we can rewrite the 

results of such parsed expressions in various ways before we evaluate them 

to run the embedded program. Evaluating expressions can be relatively 

straightforward or involve a deeper analysis of the parsed expressions.

To get a feel for what we can do with embedded domain-specific 

languages, let’s consider a simple DSL: matrix multiplication (an example 

we cover in more detail in Chapter 2). You might not think of matrix 

expressions as much of a programming language, but the arithmetic 

notation is highly efficient for expressing ideas in a limited domain. Just 

imagine having to do mathematics without this notation. Of course, R 

already supports this language—it has infix operators and the semantics 

we associate with arithmetic expressions when we write them in an R 

program. However, since matrix multiplication is a well-known task, it 

serves as an excellent example to illustrate some of the things we can do if 

we extend R with other smaller programming languages.

Chapter 1  IntroduCtIon
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R already supports arithmetic with matrices, and if you use the 

operator %*%, you can do matrix multiplication (if you use *, you will do 

component-wise multiplication instead). Multiplications are done one at a 

time, so if you have a series of them, such as this:

A %*% B %*% C %*% D

then the product will be computed from left to right, like this:

((A %*% B) %*% C) %*% D

For each multiplication, you produce a new matrix that will be used in 

the next multiplication.

Now, matrix multiplication is associative, so you should be able to 

set the parentheses in any way, as long as you respect the left-to-right 

order of the matrices (matrix multiplication is not commutative, after 

all), and you will get the same result. The running time, however, will 

not be the same. We can do a small experiment to see this using the 

microbenchmark package.

A <- matrix(1, nrow = 400, ncol = 300)

B <- matrix(1, nrow = 300, ncol = 30)

C <- matrix(1, nrow = 30, ncol = 500)

D <- matrix(1, nrow = 500, ncol = 400)

library(microbenchmark)

res <- microbenchmark(A %*% B %*% C %*% D,

                      ((A %*% B) %*% C) %*% D,

                      (A %*% (B %*% C)) %*% D,

                      (A %*% B) %*% (C %*% D),

                      A %*% (B %*% (C %*% D)),

                      A %*% ((B %*% C) %*% D))

options(microbenchmark.unit="relative")

print(res, signif = 3, order = "mean")

Chapter 1  IntroduCtIon
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## Unit: relative

##                     expr  min   lq mean median

##  (A %*% B) %*% (C %*% D) 1.00 1.00 1.00   1.00

##  A %*% (B %*% (C %*% D)) 3.92 3.87 3.49   3.84

##      A %*% B %*% C %*% D 6.13 6.06 5.42   6.03

##  ((A %*% B) %*% C) %*% D 6.12 6.05 5.51   6.04

##  A %*% ((B %*% C) %*% D) 7.71 7.62 6.75   7.57

##  (A %*% (B %*% C)) %*% D 9.88 9.76 8.73   9.69

##    uq  max neval

##  1.00 1.00   100

##  3.62 1.41   100

##  5.57 2.06   100

##  5.61 2.35   100

##  7.00 2.30   100

##  8.99 3.71   100

Here, I’ve computed the matrix product in the five different possible 

ways. There are six expressions, but the first two will compute the matrix 

multiplication in the same order. With microbenchmark we compute each 

expression 100 times and collect the time each evaluation takes. We collect 

the time it takes to compute each expression, and here I have displayed 

the running time relative to the fastest expression, sorted by the mean 

evaluation time.

On average, there is almost a factor of ten between the fastest and 

the slowest evaluation (for the slowest evaluations in the two cases the 

difference is a factor of two, which is still a substantial relative difference). 

There is something to be gained by setting parentheses optimally if we 

multiply together several large matrices. The dimensions of matrices are 

not necessarily known before runtime, however, so ideally we want to set 

the parentheses when we evaluate expressions in an optimal way.

Chapter 1  IntroduCtIon
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The approach we take in Chapter 2 is to delay the evaluation of 

matrix multiplication and instead build a data structure for matrix 

expressions, one we can evaluate later when we have the entire matrix 

multiplication expression constructed. It is a simple DSL, but it contains 

all the components we typically need in one: we need code for parsing 

an expression and creating a representation of it, we need to do some 

manipulation of expressions, and then we need to evaluate them.

For parsing expressions, we need to capture matrices and 

multiplications. We wrap matrices in a class to make them objects of our 

language, rather than plain R data.

m <- function(data) {

  structure(data,

            nrow = nrow(data),

            ncol = ncol(data),

            class = c("matrix_expr", class(data)))

}

The class matrix_expr is one we will use to overload the multiplication 

operator, and we want all elements of this class to know their dimensions, 

so when we wrap the data, we save the number of rows, nrow, and the 

number of columns, ncol.

We also want to capture matrix multiplications, where we do not 

evaluate the multiplication but simply save references to the matrices that 

we want to multiply together.

matrix_mult <- function(A, B) {

  structure(list(left = A, right = B),

            nrow = nrow(A),

            ncol = ncol(B),

            class = c("matrix_mult", "matrix_expr"))

}

Chapter 1  IntroduCtIon
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Of course, we do not want to write expressions as follows:

matrix_mult(matrix_mult(m(A), m(B), matrix_mult(m(C), m(D))))

so we overload the * operator:

`*.matrix_expr` <- function(A, B) {

  matrix_mult(A, B)

}

Now, this expression:

m(A) * m(B) * m(C) * m(D)

is our new syntax for the matrix multiplication, shown here:

A %*% B %*% C %*% D

except that the former expression only constructs a data structure 

representing the expression. It does not evaluate it.

When we need to evaluate a matrix multiplication, we want to analyze 

the delayed evaluation and rearrange the multiplication to get the optimal 

performance. In Chapter 2 we will implement the functions rearrange_

matrix_mult and eval_matrix_mult that do this. Here, we just define a 

function, v, for evaluating a matrix multiplication:

v <- function(expr)

    eval_matrix_expr(rearrange_matrix_expr(expr))

We can compare this automatic parentheses setting procedure with 

the default evaluation and the optimal evaluation order we saw earlier.

res <- microbenchmark(A %*% B %*% C %*% D,

                      (A %*% B) %*% (C %*% D),

                      v(m(A) * m(B) * m(C) * m(D)))

options(microbenchmark.unit="relative")

print(res, signif = 3, order = "mean")

Chapter 1  IntroduCtIon
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## Unit: relative

##                          expr  min   lq mean

##       (A %*% B) %*% (C %*% D) 1.00 1.00 1.00

##  v(m(A) * m(B) * m(C) * m(D)) 1.13 1.19 1.37

##           A %*% B %*% C %*% D 6.13 6.09 5.65

##  median   uq  max neval

##    1.00 1.00 1.00   100

##    1.23 1.26 1.19   100

##    6.08 5.99 2.19   100

The automatic solution is only slightly slower than the optimal solution 

and about a factor of six better than the default evaluation.

Chapter 1  IntroduCtIon
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CHAPTER 2

Matrix Expressions
In the next chapter we discuss computer languages in a more theoretical 

way, but here we will consider a concrete case—the matrix expressions 

mentioned in Chapter 1. This example is a relatively simple domain- 

specific language, but parsing matrix expressions, optimizing them, and 

then evaluating them are all the phases we usually have to implement in 

any DSL, and the implementation will also have examples of most of the 

techniques we will cover in more detail later. The example will use some 

tricks that I will not explain until later in the book, so some aspects might 

not be evident at this point, but the broader strokes should be and will 

ideally serve as a sneak peek of what follows in future chapters.

Our goal for writing a language for matrix expressions is to improve 

upon the default performance of the built-in matrix expressions. We 

achieve this by taking a more global view of expressions than R does—R 

will handle each operator one at a time from left to right, but we will 

analyze expressions and rearrange them to improve performance. These 

are the steps we must take to do this:

 1. Parse expressions into data that we can manipulate.

 2. Rearrange the expressions into more efficient 

expressions.

 3. Provide a way to evaluate the expressions.
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In this chapter, we use the following library:

library(microbenchmark)

 Parsing Expressions
To keep things simple, we will only consider matrix multiplication and 

matrix addition. We do not include scalar multiplication or inverting or 

transposing matrices or any other functionality. Adding more components 

of the expression language in the example will follow the same ideas as 

we need for multiplication and addition. It will not teach us anything new 

regarding embedding DSLs in R. When you understand the example, you 

will be able to do this easily yourself.

With these restrictions, we can say that a matrix expression is either 

just a matrix, the product of two matrix expressions, or the sum of two 

matrix expressions. We can represent this as a class hierarchy with one 

(abstract) superclass representing expressions and three (concrete) 

subclasses for actual data, products, and sums. If you are not familiar with 

object-oriented programming in R, we will have a short guide to everything 

you need to know in Chapter 4. Constructors for creating objects of the 

three concrete classes can look like these:

m <- function(data) {

  structure(list(data = data),

            nrow = nrow(data),

            ncol = ncol(data),

            def_expr = deparse(substitute(data)),

            class = c("matrix_data", "matrix_expr"))

}

matrix_mult <- function(A, B) {
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  structure(list(left = A, right = B),

            nrow = nrow(A),

            ncol = ncol(B),

            class = c("matrix_mult", "matrix_expr"))

}

matrix_sum <- function(A, B) {

  structure(list(left = A, right = B),

            nrow = nrow(A),

            ncol = ncol(B),

            class = c("matrix_sum", "matrix_expr"))

}

We just wrap the parameters of the constructors in a list and set 

the appropriate class attributes, and we store the number of rows and 

number of columns because we will need them when optimizing matrix 

multiplication, as we saw in Chapter 1.

The only purpose of the def_expr attribute we set in the m function is 

pretty printing. It makes the output of the expressions we manipulate in 

the following pages easier to follow. Strictly speaking, we do not need any 

pretty printing for manipulating expressions, but it does make debugging 

easier, so I tend always to write some code for that. For the matrix 

expressions, we can use the following code:

toString.matrix_data <- function(x, ...) {

  paste0("[", attr(x, "def_expr"), "]")

}

toString.matrix_mult <- function(x, ...) {

  paste0("(", toString(x$left), " * ", toString(x$right), ")")

}

toString.matrix_sum <- function(x, ...) {

  paste0("(", toString(x$left), " + ", toString(x$right), ")")

}

print.matrix_expr <- function(x, ...) {
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  cat(toString(x), "\n")

}

Using the constructors and the pretty-printing code, we can try to 

construct a small expression.

A <- matrix(1, nrow = 10, ncol = 20)

B <- matrix(1, nrow = 20, ncol = 10)

C <- matrix(1, nrow = 10, ncol = 10)

matrix_sum(matrix_mult(m(A), m(B)), m(C))

## (([A] * [B]) + [C])

There is nothing in what we have done so far that qualifies as providing 

a language as such. We have just implemented a few constructor functions. 

However, if we overload the multiplication and addition operators for matrix 

expressions, we get something that starts to resemble a language at least.

`*.matrix_expr` <- function(A, B) {

  stopifnot(ncol(A) == nrow(B))

  matrix_mult(A, B)

}

`+.matrix_expr` <- function(A, B) {

  stopifnot(dim(A) == dim(B))

  matrix_sum(A, B)

}

With these, we can write the same expression more familiarly.

m(A) * m(B) + m(C)

## (([A] * [B]) + [C])
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I have put some assertions—the calls to stopifnot()—into the code 

for the operators to make sure that the dimensions of the matrices involved 

in operators are valid. We could also have placed these in the constructor 

functions, but later, we will manipulate expressions where we know that 

the dimensions are valid, so we do not need to check them there. We do 

not expect a user to call the constructors directly but use the operators, so 

this is the natural place to put the checks.

We use the dim function for the sanity check in the addition operator, 

so we need a version of this that works on matrix expressions. It could look 

like this:

dim.matrix_expr <- function(x) {

  c(attr(x, "nrow"), attr(x, "ncol"))

}

You might be wondering why we need the m function. After all, it does 

not contribute anything to expressions instead of just wrapping matrices. 

Could we just use the matrices directly? The answer is no, and it has to 

do with how we use operator overloading. For * and + to be the matrix 

expression versions, we need the first arguments given to them to be a 

matrix expression. If we wrote simply this:

A * B + C

## Error in A * B: non-conformable arrays

we would be invoking the operators for R’s matrix class instead. And since 

* is not matrix multiplication (for that you need to use %*% because the * 

operator is component-wise multiplication), you get an error.

We need a way of bootstrapping us from R’s matrices to the matrices in 

our expression language. That is what we use m for.
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 Meta-Programming Parsing
Using an explicit function such as m to bootstrap us into the matrix 

expression language is the simplest way to use R’s own parser for our 

benefits, but it is not the only way. In R, we can manipulate expressions as 

if they were data, a feature known as meta-programming and something we 

return to in Chapter 5. For now, it suffices to know that an expression can 

be explored recursively. We can use the predicate is.name to check whether 

the expression refers to a variable, and we can use the predicate is.call 

to check whether it is a function call—and all operators are function calls. 

So, given an expression that does not use the m function and thus does not 

enter our DSL, we can transform it into one that goes like this:

build_matrix_expr <- function(expr) {

  if (is.name(expr)) {

      return(substitute(m(name), list(name = expr)))

  }

  if (is.call(expr)) {

      if (expr[[1]] == as.name("("))

        return(build_matrix_expr(expr[[2]]))

      if (expr[[1]] == as.name("*") ||

          expr[[1]] == as.name("%*%")) {

          return(call('*',

                      build_matrix_expr(expr[[2]]),

                      build_matrix_expr(expr[[3]])))

      }

      if (expr[[1]] == as.name("+")) {

          return(call('+',

                      build_matrix_expr(expr[[2]]),

                      build_matrix_expr(expr[[3]])))

      }

  }
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  stop(paste("Parse error for", expr))

}

In this implementation, we consider both * and %*% matrix 

multiplication so that we would consider an R expression that uses 

matrix multiplication as such. Notice also that we consider calls that are 

parentheses. Parentheses are also function calls in R, and if we want to 

allow our language to use parentheses, we have to deal with them—like 

here, where we just continue the recursion. We did not have to worry 

about that when we explicitly wrote expressions using m and operator 

overloading because there R already took care of giving parentheses the 

right semantics.

For this function to work, it needs a so-called quoted expression. If 

we write a raw expression in R, then R will try to evaluate it before we 

can manipulate it. We will get an error before we even get to rewrite the 

expression.

build_matrix_expr(A * B)

## Error in A * B: non-conformable arrays

To avoid this, we need to quote the expression.

build_matrix_expr(quote(A * B))

## m(A) * m(B)

We can avoid having to explicitly quote expressions every time we 

call the function by wrapping it in another function that does this for us. 

If we call the function substitute on a function parameter, we get the 

expression it contains so that we can write a function like this:

parse_matrix_expr <- function(expr) {

  expr <- substitute(expr)

  build_matrix_expr(expr)

}
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Now, we do not need to quote expressions to do the rewriting.

parse_matrix_expr(A * B)

## m(A) * m(B)

This isn’t a perfect solution, and there are some pitfalls, among which 

is that you cannot use this function from other functions directly. The 

substitute function can be difficult to work with. The further problem 

is that we are creating a new expression, but it’s an R expression and not 

the data structure we want in our matrix expression language. You can 

think of the R expression as a literate piece of code; it is not yet evaluated 

to become the result we want. For that, we need the eval function, and 

we need to evaluate the expression in the right context. Working with 

expressions, especially evaluating expressions in different environments, 

is among the more advanced aspects of R programming, so if it looks 

complicated right now, do not despair. We cover it in detail in Chapter 7. 

For now, we will just use this function:

parse_matrix_expr <- function(expr) {

  expr <- substitute(expr)

  modified_expr <- build_matrix_expr(expr)

  eval(modified_expr, parent.frame())

}

It gets the (quoted) expression, builds the corresponding matrix 

expression, and then evaluates that expression in the “parent frame,” 

which is the environment where we call the function. With this function, 

we can get a data structure in our matrix language from an otherwise 

ordinary R expression.

parse_matrix_expr(A * B)

## ([A] * [B])
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The approach we take here involves translating one R expression into 

another to use our m function to move us from R to matrix expressions. 

This involves parsing the expression twice, once when we transform it 

and again when we ask R to evaluate the result. The approach is also 

less expressive than using the m function directly. We can call m with any 

expression that generates a matrix, but in the expression transformation, 

we only allow identifiers.

As an alternative, we can build the matrix expression directly using 

our constructor functions. We will use matrix_mult and matrix_sum 

when we have a call that is *, %*%, or +, and otherwise, we will call m. This 

way, any expression we do not recognize as multiplication or addition 

will be interpreted as a value we should consider a matrix. This approach, 

however, adds one complication. When we call function m, we need to call 

it with a value, but what we have when traversing the expression is quoted 

expressions. We need to evaluate such expressions, and we need to do so 

in the right environment. We will need to pass an environment along with 

the traversal for this to work.

build_matrix_expr <- function(expr, env) {

  if (is.call(expr)) {

    if (expr[[1]] == as.name("("))

      return(build_matrix_expr(expr[[2]], env))

    if (expr[[1]] == as.name("*") || expr[[1]] == as.name("%*%"))

      return(matrix_mult(build_matrix_expr(expr[[2]], env),

                         build_matrix_expr(expr[[3]], env)))

    if (expr[[1]] == as.name("+"))

      return(matrix_sum(build_matrix_expr(expr[[2]], env),

                        build_matrix_expr(expr[[3]], env)))

  }

  data_matrix <- m(eval(expr, env))

  attr(data_matrix, "def_expr") <- deparse(expr)

  data_matrix

}
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Most of this function should be self-explanatory, except for where we 

explicitly set the def_expr attribute of a data matrix. This is the attribute to 

be used for pretty printing, and when we call the m function, it is set to the 

literate expression we called m with. This would be eval(expr, env) for all 

matrices we create with this function. To avoid that, we explicitly set it to 

the expression we use in the evaluation.

Once again, we can wrap the function in another that gets us the 

quoted expression and provide the environment in which we should 

evaluate expressions.

parse_matrix_expr <- function(expr) {

  expr <- substitute(expr)

  build_matrix_expr(expr, parent.frame())

}

parse_matrix_expr(A * B + matrix(1, nrow = 10, ncol = 10))

## (([A] * [B]) + [matrix(1, nrow = 10, ncol = 10)])

There is more to know about manipulating expressions, especially 

about how they are evaluated, but we will return to that in later chapters.

 Expression Manipulation
Our goal for writing this matrix DSL is to optimize evaluation of these 

matrix expressions. There are several optimizations we can consider, but 

R’s matrix implementation is reasonably efficient already. It is hard to beat 

if we try to replace any computations by our own implementations—at 

least as long as we implement our alternatives in R. Therefore, it makes 

sense to focus on the arithmetic rewriting of expressions.
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We can rewrite expressions recursively and use a generic function with 

specializations for the three concrete classes we have. A template (that 

does not do anything yet) would look like this:

rearrange_matrix_expr <- function(expr) {

  UseMethod("rearrange_matrix_expr")

}

rearrange_matrix_expr.matrix_data <- function(expr) {

  expr

}

rearrange_matrix_expr.matrix_mult <- function(expr) {

  matrix_mult(rearrange_matrix_expr(expr$left),

              rearrange_matrix_expr(expr$right))

}

rearrange_matrix_expr.matrix_sum <- function(expr) {

  matrix_sum(rearrange_matrix_expr(expr$left),

             rearrange_matrix_expr(expr$right))

}

These functions traverse a matrix expression and return the same 

expression structure. We can modify the functions based on patterns of 

expressions, however, to start rearranging.

We can make some reasonable guesses at how many operations are 

needed to evaluate an expression from these two rules: 1) multiplying an 

n × k matrix to a k × m matrix involves n × k × m operations, and 2) adding 

two n × m matrices together involves n × m operations. If we can do any 

rewriting of an expression that reduces the number of operations we have 

to do, then we are improving the expression.

There are some obvious patterns we could try to match and rewrite. 

For instance, we should always prefer (A + B)C over AC + BC. However, we 

can probably expect that the programmer writing an expression already 

knows this, so we will likely get little to gain from such obvious rewrites. 

Where we might get some performance improvements is when expressions 
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consist of several matrices multiplied together. There, the order of 

multiplications matters for the number of operations we have to perform, 

and the optimal order depends on the dimensions of the matrices; we 

cannot merely look at the arithmetic expression and see the obvious way of 

setting parentheses to get the best performance.

 Optimizing Multiplication
Before we start rewriting multiplication expressions, though, we should 

figure out how to find the optimal order of multiplication. Let’s assume 

that we have this matrix multiplication: A1 × A2 × … × An. We need to set 

parentheses somewhere, say (A1 × A2 × …Ai) × (Ai+1…× An), to select the last 

matrix multiplication. If we first multiply together, in some order, the first i 

and the last n – i matrices, the last multiplication we have to do is the product 

of those two. If the dimensions of (A1 × …Ai) are n × k and the dimensions of 

(Ai+1…× An) are k × m, then this approach will involve n × k × m operations 

plus how long it takes to produce the two matrices. Assuming that the best 

possible way of multiplying the first i matrices involves N1,i operations and 

assuming the best possible way of multiplying the last n – i matrices together 

involves Ni+1,n operations, then the best possible solution that involves setting 

the parentheses where we just did involves N1,i + Ni+1,n +n × k × m operations. 

Obviously, to get the best performance, we must pick the best i for setting 

the parentheses at the top level, so we must minimize this expression for i. 

Recursively, we can then solve for the sequences 1 to i and i + 1 to n to get 

the best performance.

Put another way, the minimum number of operations we need to 

multiply matrices Ai,Ai+1,…,Aj can be computed recursively as Ni,j = 0 when 

i = j and

N N N A A Ai j
k

i k k j i k j, , ,min= + + ( )´ ( )´ ( ){ }+1 nrow ncol ncol
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otherwise. Actually computing this recursively would involve recomputing 

the same values many times, but using dynamic programming we can 

compute the Ni,j table efficiently, and from that table we can backtrack and 

find the optimal way of setting parentheses as well.

In the following implementation, we assume that we have such a list 

of matrices as input. We then collect their dimensions in a table, dims, 

for easy access. Then, we simply create a table to represent the Ni,j values 

and fill it using the previous equation. Once we have filled the table, we 

backtrack through it to work out the optimal way of multiplying together 

the matrices from 1 to n, given the dimensions, table, and matrices.

arrange_optimal_matrix_mult <- function(matrices) {

  n <- length(matrices)

  dims <- matrix(0, nrow = n, ncol = 2)

  for (i in seq_along(matrices)) {

    dims[i,] <- dim(matrices[[i]])

  }

  N <- matrix(0, nrow = n, ncol = n)

  for (len in 2:n) {

    for (i in 1:(n - len + 1)) {

      j <- i + len - 1

      k <- i:(j - 1)

       N[i,j] <- min(dims[i,1]*dims[k,2]*dims[j,2] + N[i,k] + 

N[k + 1,j])

    }

  }

  # Backtrack through the table. This function will

  # be defined shortly.

  backtrack_matrix_mult(1, n, dims, N, matrices)

}
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We use a table of matrix dimensions because it allows us to compute 

the minimum of the expression using a vector expression over k, 

something we could not do using the A list quite as easily. We loop over the 

length of intervals rather than just i and j because we need to compute the 

N[i,j] values in order of increasing lengths for the dynamic programming 

algorithm to work. If we did not do it in this order, we would not be 

guaranteed that the N values we use in the expression are filled out yet. 

Otherwise, though, we just implement the computation sketched earlier.

The backtracking function is equally simple. We want to find the 

optimal way of multiplying matrices i to j, and we have the table that tells 

us what Ni,j is. So, we should find a split point where we can get that value 

from the recursion. That is where we should set the parentheses and then 

solve to the left and right, recursively, until we get to the base case of a 

single matrix, which of course is already the result we should return.

backtrack_matrix_mult <- function(i, j, dims, N, matrices) {

  if (i == j) {

    matrices[[i]]

  } else {

    k <- i:(j - 1)

     candidates <- dims[i,1]*dims[k,2]*dims[j,2] + N[i,k] +  

N[k + 1,j]

    split <- k[which(N[i,j] == candidates)][1]

    left <- backtrack_matrix_mult(i, split, dims, N, matrices)

     right <- backtrack_matrix_mult(split + 1, j, dims, N, 

matrices)

    matrix_mult(left, right)

  }

}

At each step in the backtracking function, we construct a multiplication 

object using matrix_mult, so we rearrange the original expression in 

this way.
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 Expression Rewriting
With the dynamic programming algorithm in place, we know how to 

arrange multiplications in optimal order. We need to have them in a list, 

however, to access them by index in constant time in the backtracking 

function, but what we have as input is an expression that gives us a tree 

of mixed multiplications, addition, and data objects. So, the first step we 

must perform in the rearrangement is to collect the components of the 

multiplication in a list.

It is simple enough to visit all the relevant values in an expression. We 

recurse on all matrix_mult objects but not data or matrix_sum objects 

since it is these that we want to collect. It is inefficient to traverse the tree 

and grow an actual list object one element at a time; whenever you 

extend the length of a list object by one element, you need to copy all 

the old elements. Instead, we can implement a linked list—that we can 

prepend elements to in constant time—and translate that into a list 

object later.

To see this in action, we can consider a simpler tree first.

leaf <- function(x) structure(x, class = c("leaf", "tree"))

inner <- function(left, right)

  structure(list(left = left, right = right),

            class = c("inner", "tree"))

Let’s say we have such a tree as shown here (and we do not a priori 

know that it has four leaves):

tree <- inner(leaf(1), inner(inner(leaf(2), leaf(3)), leaf(4)))

And say we want to construct a list containing the values in the leaves.

One way to implement linked lists is as a list object containing two 

values, which are the head of the list (an actual value) and the tail of the list 

(another list, or potentially NULL representing the empty list).
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Since head and tail are useful built-in functions in R, we will call these 

two elements car and cdr instead. These are the names they have in the 

Lisp programming language and many other functional programming 

languages. We can construct a list from a car and cdr element like this:

cons <- function(car, cdr) list(car = car, cdr = cdr)

To traverse a tree, we use recursion, but we don’t want to test the class 

of subtrees explicitly. Here is what we would usually do: have a test for the 

base case of having a leaf and another case for when we have an inner node. 

This approach would be sensible on this simple tree. However, once we start 

working with expressions where we can have many different node types, it 

might not be obvious what should be considered a base case or a recursive 

case. For any particular traversal, it is better to use generic functions.

collect_leaves_rec <- function(tree, lst)

  UseMethod("collect_leaves_rec")

collect_leaves_rec.leaf <- function(tree, lst) {

  cons(tree, lst)

}

collect_leaves_rec.inner <- function(tree, lst) {

   collect_leaves_rec(tree$left, collect_leaves_rec(tree$right, 

lst))

}

Using a generic function like this is certainly overkill for this simple 

example, but it illustrates the idea, which will be useful for more complex 

trees. Each node type is responsible for handling itself and potentially 

recursing further if this is needed. Here, the leaf handler prepends the tree 

to the list that is passed down the recursion. The tree is just the leaf, so this 

is the value we want to collect. The result is an updated list that we return 

from the recursion. For inner nodes, we first call recursively toward the 
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right, passing along the lst object. This will prepend the elements in the 

right subtree to create a new list that we then pass along to a recursion on 

the left subtree.

The result of this traversal is a linked list containing all the leaves. 

To create a list object out of this, we need to run through the list and 

compute its length, allocate a list of that length, and then run through the 

linked list again to insert the elements in the list. This is one of the few 

tasks in R that is easier done with a loop than a functional solution, so that 

is what we will use.

lst_length <- function(lst) {

  len <- 0

  while (!is.null(lst)) {

    lst <- lst$cdr

    len <- len + 1

  }

  Len

}

lst_to_list <- function(lst) {

  v <- vector(mode = "list", length = lst_length(lst))

  index <- 1

  while (!is.null(lst)) {

    v[[index]] <- lst$car

    lst <- lst$cdr

    index <- index + 1

  }

  v

}

To improve the readability of the example, we will just add a function 

that gives us a vector instead of a list.

lst_to_vec <- function(lst) unlist(lst_to_list(lst))
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Now we can use the combination of the traversal and transformation 

from the linked list to implement the function we want.

collect_leaves <- function(tree) {

  lst_to_vec(collect_leaves_rec(tree, NULL))

}

collect_leaves(tree)

## [1] 1 2 3 4

We can use the same approach to implement a better version of 

the rearrange_matrix_expr.matrix_mult function from earlier—one 

that rearranges the multiplication instead of just returning the original 

expression. We need it to collect the components of the multiplication—

those would be data and sum objects—and then rearrange them using the 

dynamic programming algorithm.

rearrange_matrix_expr.matrix_mult <- function(expr) {

  matrices <- collect_mult_components(expr)

  arrange_optimal_matrix_mult(matrices)

}

The collect_mult_components function can be implemented using a 

traversal with a generic function like this:

collect_mult_components_rec <- function(expr, lst)

  UseMethod("collect_mult_components_rec")

collect_mult_components_rec.default <- function(expr, lst)

  cons(rearrange_matrix_expr(expr), lst)

collect_mult_components_rec.matrix_mult <- function(expr, lst)

    collect_mult_components_rec(expr$left,

              collect_mult_components_rec(expr$right, lst))

collect_mult_components <- function(expr)

    lst_to_list(collect_mult_components_rec(expr, NULL))
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We use the default implementation to prepend expressions that are 

not multiplications to the list we are building, while we call recursively on 

the multiplication objects. Once we have collected all the components we 

need in a linked list, we translate it into a list object that lets us look up 

elements by index, as we need in the dynamic programming algorithm.

To see the rearranging in action, we can create the expression we used 

in the previous chapter. We have four matrices that we multiply together 

without setting any parentheses.

A <- matrix(1, nrow = 400, ncol = 300)

B <- matrix(1, nrow = 300, ncol = 30)

C <- matrix(1, nrow = 30, ncol = 500)

D <- matrix(1, nrow = 500, ncol = 400)

expr <- m(A) * m(B) * m(C) * m(D)

This implicitly sets parentheses such that the expression will be 

evaluated by multiplying from left to right.

expr

## ((([A] * [B]) * [C]) * [D])

This, however, is not the optimal order. Instead, it is better to first 

multiply A with B and C with D and then multiply the results.

rearrange_matrix_expr(expr)

## (([A] * [B]) * ([C] * [D]))

 Expression Evaluation
We want to do more than manipulate matrix expressions; we want to 

evaluate them. This is something we can do easily in a recursive way, using 

a generic function to handle the different cases once again.
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eval_matrix_expr <- function(expr) UseMethod("eval_matrix_expr")

eval_matrix_expr.matrix_data <- function(expr) expr$data

eval_matrix_expr.matrix_mult <- function(expr)

  eval_matrix_expr(expr$left) %*% eval_matrix_expr(expr$right)

eval_matrix_expr.matrix_sum <- function(expr)

  eval_matrix_expr(expr$left) + eval_matrix_expr(expr$right)

The base case, the matrix_data case, gives us an R object that should 

be a matrix. In the recursive calls, we use matrix multiplication (%*%) and 

addition (+) on the results of recursive calls, so what we apply to these 

operators on are R objects—which means that the + operator is not the 

operator we wrote to create matrix_sum objects.

Since we are explicitly delaying the evaluation of matrix expressions 

so we can rearrange them for optimal evaluation, we need a way to trigger 

the actual evaluation, and this would be the natural place to rearrange an 

expression as well, so we write a function for that.

v <- function(expr) eval_matrix_expr(rearrange_matrix_expr(expr))

Of course, we can also combine the parsing—the meta-programming 

approach that we looked at earlier—and an evaluation of the expression. 

We can write a function for doing faster evaluation of an expression like 

this:

fast <- function(expr) {

  v(build_matrix_expr(substitute(expr), parent.frame()))

}

As long as we stick to %*% and + operators, this function will evaluate to 

the same value as a plain matrix expression.

all(A %*% B %*% C %*% D == fast(A %*% B %*% C %*% D))

## [1] TRUE
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However, it is not generally usable because we have changed the 

definition of *. You can modify the parser, though, and you have an 

optimizer for speeding up your matrix multiplications.

res <- microbenchmark(A %*% B %*% C %*% D,

                      fast(A %*% B %*% C %*% D))

options(microbenchmark.unit="relative")

print(res, signif = 3, order = "mean")

## Unit: relative

##                       expr min   lq mean median

##  fast(A %*% B %*% C %*% D) 1.0 1.00 1.00   1.00

##        A %*% B %*% C %*% D 5.8 5.79 5.09   5.85

##    uq  max neval

##  1.00 1.00   100

##  5.41 2.36   100

The recursion in build_matrix_expr stops the first time it does not 

recognize a call object and creates a data object. A better implementation 

would try to go deeper and optimize as much of the expression as it could, 

but this is more an exercise in meta-programming than in domain-specific 

languages.

As a DSL, matrix algebra is really simple. It’s so simple that you might 

not consider it a language at all perhaps, but it is; algebraic notation is 

a DSL that is so useful that we get so familiar with it that we forget how 

amazing it is compared to the alternative—prose. Still, what we have 

implemented in this chapter is very simple, and while we might use the 

meta-programming techniques for code optimization, we probably would 

not write a DSL for something as simple as this. Nevertheless, the example 

illustrates the phases in reading, analyzing, and evaluating expressions 

we see in most DSLs. The three phases can be simpler or more complex 

in other DSLs (the “analysis” step might be entirely missing), and they 

might be merged so parsing and evaluation are done as a single step, but 

conceptually these are the steps we usually see.

Chapter 2  Matrix expressions
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CHAPTER 3

Components 
of a Programming 
Language
While this is not a book about compilers and computer languages in 

general, it will be helpful to have some basic understanding of the 

components of software that parse and manipulate computer languages—

or at least domain-specific computer languages.

When we write software for processing languages, we usually structure 

this such that the input gets manipulated in distinct phases from the 

raw input text to the desired result, a result that is often running code 

or some desired data structures. When processing an embedded DSL, 

however, there is not necessarily a clear separation between parsing your 

DSL, manipulating expressions in the language, and evaluating them. In 

many cases, embedded DSLs describe a series of operations that should 

be executed sequentially—this is, for example, the case with graphical 

transformations in ggplot2 or data manipulation in magrittr and dplyr. 

When this is the case, you wouldn’t necessarily split evaluations of DSL 

expressions into a parsing phase and an evaluation phase; you can 

perform transformations one at a time as they are seen by the R parser. 

Conceptually, though, there are still two steps involved—parsing a DSL 

statement and evaluating it—and you have to be explicit about this with 
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more complex DSLs. Even with simple DSLs, however, there are benefits 

to keeping the different processing phases separate. It introduces some 

overhead in programming as you need to represent the input language 

in some explicit form before you can implement its semantics, but it also 

allows you to separate the responsibility of the various processing phases 

into separate software modules, making them easier to implement and test.

This chapter describes the various components of computer languages 

and the phases involved in processing a domain-specific language. We will 

use the following packages:

library(magrittr) # for the %>% operator

library(Matrix)   # for the `exam` function

 Text, Tokens, Grammars, and Semantics
First, we need to define some terminology. Since this book is not about 

language or parser theory, I will stick with a few informal working 

definitions for terms we will need later.

When we consider a language, we can look at it at different levels 

of detail, from the most basic components to the meanings associated 

with expressions and statements. For a spoken language, the most basic 

elements are the phonemes—the distinct sounds used in the language. 

When strung together, phonemes become words, words combine to 

make sentences, and sentences have meanings. For a written language, 

the atomic elements are glyphs—the letters in languages that are written 

using alphabets, such as English. Sequences of letters can form words, but 

a written sentence contains more than just words—we have punctuation 

symbols as well. Together, we can call these tokens. A string of tokens forms 

a sentence, and again, we assign meanings to sentences.

For computer languages, we have the same levels of abstractions 

on strings of symbols. The most primitive level is just a stream of input 

characters, but we will have rules for translating such character sequences 
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into sequences of tokens. This process is called tokenization. The formal 

definition of a programming language will specify what the available 

tokens in the language are and how a string of characters should be 

translated into a string of tokens.

Consider the following string of R code:

foo(x, 2*x)

This is obviously a function call, but seen by the tokenizer it is a string 

of characters that it needs to translate into a sequence of tokens. It will 

produce this:

identifier["foo"] '(' identifier["x"],

                      number[2], '*', identifier["x"]

                   ')'

I am using a home-brewed notation for this, but the idea is that a 

tokenizer will recognize that there are some identifiers and numbers (and 

it will identify what those identifiers and numbers are) and then some 

verbatim tokens such as '(', '*', and ')'.

The tokenizer, however, will be equally happy to process a string such 

as this:

foo x ( 2 ) x *

into the following sequence:

identifier["foo"] identifier["x"] '('

                  number[2] ')' identifer["x"] '*'

This is obviously not a valid piece of R code, but the tokenizer does 

not worry about this. It merely translates the string into a sequence of 

tokens (with some associated data, such as the strings “foo” and “x” for 

the identifiers and the number 2 for the number). It does not worry about 

higher levels of the language.
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When it comes to tokenizing an embedded language, we are bound 

to what that language will consider as valid tokens. We cannot create 

arbitrary kinds of tokens since all languages we write as embedded DSLs 

must also be valid R. The tokens we can use are either already R tokens or 

variables and functions we define to have special meaning. Mostly, this 

means creating objects through function calls and defining functions for 

operator overloading.

What a language considers a valid string of tokens is defined by its 

grammar.1 A parser is responsible for translating a sequence of tokens 

into an expression or a language statement. Usually, what a parser does is 

translate a string of tokens into an expression tree—often referred to as an 

abstract syntax tree (AST).2 The tree structure associates more structure 

to a piece of code than the simple sequential structure of the raw input 

and the result of the tokenization. An example of how an abstract syntax 

tree for the function call we tokenized earlier could look like Figure 3-1. 

Here, the italic labels refer to a syntactic concept in the grammar, while 

the monospace font labels refer to verbatim input text. Tokens are shown 

in gray boxes. As we see, these can either be verbatim text or have some 

grammatical information associated with them, describing what type of 

token they are (in this example, this is either an identifier or a number). 

1 Technically, what I refer to as grammar is syntax. Linguists use grammar to refer 
to both morphology and syntax, where syntax is the rules for stringing words 
together. In computer science, though, the term grammar is used as I use it here. 
Therefore, I will use syntax and grammar interchangeably.

2 The purists might complain here and say that a parser will construct a parse tree 
and not an AST. The difference between the two is that a parse tree contains 
all the information in the input (such as parentheses, spaces, and so on) but 
not the meta-information about which grammatical structures it represents. 
The AST contains only the relevant parts of the input but includes grammatical 
information on top of that. If you want, you can consider first parsing and then 
translating the result into an AST as two separate steps in handling an input 
language. I consider them part of the same and will claim that a parser constructs 
an AST.
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When there is information associated, I have chosen to show this as two 

nodes in the tree: one that describes the syntactical class the token is 

(identifier or number) and a child of that node that contains the actual 

information (foo, x, and 2 in this case).

Figure 3-1. Example of an abstract syntax tree for a concrete function 
call

Grammatical statements are those a parser will consider valid. Such 

sentences are, if we return to natural languages, those sentences that 

follow the grammatical rules. This set of grammatical sentences is distinct 

from the set of sentences that have some associated meaning. It is entirely 

possible to construct meaningless but grammatically correct sentences. 

The sentence “Colourless green ideas sleep furiously” is such a sentence, 

created by the linguist Noam Chomsky. It is entirely grammatical and also 

completely meaningless. Semantics is the term we use to link grammatical 

sentences to their meaning. You will know this distinction in programming 
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languages when you run into runtime exceptions. If you get an exception 

when you run a program, you will have constructed a grammatical 

sentence—otherwise, the parser would have complained about syntactical 

errors—but the sentence is violating language rules in some other way. A 

grammatical sentence does not need to have a well-defined meaning. For 

example, an expression that adds two variables, x + y, is grammatical, 

but if the variables contain two incompatible types (x could be a string 

while y is a number), the sentence violates the language’s type rules. 

Semantics, when it comes to programming languages, define what actual 

computations a statement describes. A compiler or an interpreter—the 

latter for R programs—gives meaning to grammatical statements.3

For embedded DSLs, the semantics of a program is what we do to 

evaluate an expression once we have parsed it. We are not going to formally 

specify semantics or implement interpreters, so for this book, the semantics 

part of a DSL is plain old R programs. More often than not, what we use 

embedded DSLs for is an interface to some library or framework. It is the 

functionality of this framework that provides the semantics of what we do 

with the DSL; the actual language is just an interface to the framework.

 Specifying a Grammar
Since we are using R to parse expressions, we do not have much flexibility 

in what can be considered tokens, and we have some limitations in the 

kinds of grammars we can implement. However, we have some flexibility 

for the grammars in how we combine functions and operators.

3 Notice, however, that there is a distinction between giving a statement meaning 
and giving it the correct meaning. Just because your program computes something 
doesn’t mean it computes what you intended it to compute. When we construct 
a language, domain-specific or general, we can give meaning to statements, but 
we cannot—this is theoretically impossible—guarantee that it is the intended 
meaning. That will always be the responsibility of the programmer.
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To specify grammars in this book, I will take a traditional approach and 

describe them in terms of “rules” for generating sentences valid within a 

grammar. Consider the following grammar:

EXPRESSION ::= NUMBER

            |  EXPRESSION '+' EXPRESSION

            |  EXPRESSION '*' EXPRESSION

            |  '(' EXPRESSION ')'

This grammar describes rules for generating expressions consisting 

of the addition and multiplication of numbers, with parentheses to group 

expressions.

You should read this as “An expression is either a number, the sum 

of two expressions, the product of two expressions, or an expression in 

parentheses.” The definition is recursive—an expression is defined in 

terms of other expressions—but we have a base case, a number, that lets 

us create a base expression, and from such an expression we can generate 

more complex expressions.

The syntax I use here for specifying grammars is itself a grammar—a 

meta-grammar if you will. The way you should interpret it is thus: the 

grammatical object we are defining is to the left of the ::= object. After 

that, we have a sequence of one or more ways to construct such an 

object, separated by |. These rules for constructing the object we define 

will be a sequence of other grammatical objects. These can be either 

objects we define by other rules (I will write those in all capitals and refer 

to them as meta-variables) or concrete lexical tokens (I write those in 

single quotes, as with the '+' in the second rule for creating a sum). This 

notation contains the same information as the graphical notation I used 

in Figure 3-1 where meta-variables are shown in italics and concrete 

tokens are put in gray boxes.
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Meta-grammars like this are used to define languages formally, and 

there are many tools that will let you automatically create parsers from 

a grammar specification in a meta-grammar. I will use this home-made 

meta-grammar much less formally. I use it as a concise way to describe the 

grammar of DSLs we create or simply a pseudo-code for grammar.

To create an expression, we must follow the meta-grammar rules by 

using one of the four alternatives provided: either reduce an expression 

to a number (a sum or product) or create another in parentheses. For 

example, we can apply the rules in turn and get the following:

EXPRESSION > EXPRESSION '*' EXPRESSION                     (3)

           > '(' EXPRESSION ')' '*' EXPRESSION             (4)

           > '(' EXPRESSION '+' EXPRESSION ')' '*' EXPRESSION (2)

           > '(' number[2] '+' number[2] ')' '*' number[3]  (1x3)

This lets us construct the expression (2 + 2) * 3 from the rules.

If there are different ways to go from meta-variables to the same 

sequence of terminal rules (there are rules that lead to the exact 

sequence of lexical tokens), then we have a problem with interpreting 

the language. The same sequence of tokens could be interpreted 

as specifying two different grammatical objects. For the expression 

grammar, we have ambiguities when we have expressions such as  

2 + 2 * 3. We can parse this in two different ways, depending on 

which rules we apply to get from the meta-variable EXPRESSION to the 

concrete expression. We can apply multiplication first and get what 

amounts to (2 + 2) * 3, or we can apply the addition rule first and get 

2 + (2 * 3). We know from the traditional mathematical notation that 
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we should get the second expression because multiplication has higher 

precedence4 than addition, so the * symbol binds 2 and 3 together 

tighter than + does 2 and 2, but the grammar does not guarantee this. 

The grammar is ambiguous.

It is possible to fix this by changing the grammar to this:

EXPRESSION ::= TERM '+' EXPRESSION | TERM

TERM ::= TERM '*' FACTOR | FACTOR

FACTOR ::= '(' EXPR ')' | NUMBER

This is a more complex grammar that lets you create the same 

expressions, but through three meta-variables that are recursively defined 

in terms of each other. It is structured such that products will naturally 

group closer than sums—the only way to construct the expression 2 + 2 

* 3 is the parse tree shown in Figure 3-2. The order in which we apply the 

rules can vary, but the tree will always be this form and group the product 

closer than the sum.

4 Operator precedence is a term we use to describe how “tightly” different operators 
bind, i.e., which operators are invoked before others, or put in another way, 
where we implicitly set parentheses in an expression. Multiplication binds 
tighter than addition—has a higher precedence—so the expression 2*x + 4*y is 
interpreted as (2*x) + (4*y) rather than, for example, 2*(x + (4*y)). Precedence 
also tells us whether operators are evaluated left to right or right to left, so x + 
y + z is evaluated as (x + y) + z rather than x + (y + z) because + evaluates left to 
right. For addition, the left-to-right or right-to-left order doesn’t matter because 
we will end up with the same result, but for some operators it does, for example, 
exponentiation, which is evaluated left to right. So, x**y**z is x**(y**z), which 
(usually) is different from (x**y)**z. If you use operators in a domain-specific 
language, the precedence of the operators will affect your language.
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An unambiguous grammar is preferable over an ambiguous one for 

obvious reasons, but creating one can complicate the specification of the 

grammar, as we see for expressions. This can be alleviated by making a 

smarter parser that takes such things as operator precedence into account 

or keeps track of context when parsing a string. Regardless of whether we 

write smarter parsers or unambiguous grammars, we would never work 

long with expression trees as complex as that shown in Figure 3-2—this 

tree explicitly shows all grammar meta-variables, but in practice, we would 

simplify it after parsing it and before processing the expression.

When writing embedded DSLs, we are stuck with R’s parser, and we 

must obey its rules. If you are writing your own parser entirely, you can 

pass context along as you parse a sequence of tokens, but if you want to 

exploit R’s parser and create an embedded DSL, you are better off ensuring 

that all grammatically valid sequences of tokens unambiguously refer to 

one grammatical meta-variable. Precedence ambiguities will be taken 

Figure 3-2. Parse tree for 2 + 2 * 3
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care of by R as will associativity—the rules mean that 1 + 2 + 3 + 4 is 

interpreted as (((1 + 2) + 3) + 4). Exploiting R’s parsing rules will 

allows us to construct languages where each expression uniquely matches 

a parser meta-variable if we are a little careful with designing the language.

As an example grammar that isn’t just expressions, imagine that we want 

a language for specifying graphs—graphs as in networks or state machines, 

not plots. We can define a grammar for directed acyclic graphs (DAGs) by 

saying that a DAG is either an empty graph or a graph followed by an edge.

DAG ::= 'dag()' | DAG '+' EDGE

We use a function, dag(), to create an empty DAG. Calling this 

function brings us into the graph specification DSL and gives us an object 

we can use to program the grammar operations in R. We will use the plus 

operator to add edges to a DAG. That is a somewhat arbitrary choice, 

but it makes it easy to implement the parser since we simply will have to 

overload the generic + function. For edges, we will keep it simple and just 

require that we have a “from” node and a “to” node. We can define our own 

infix operator to create them.

EDGE ::= NODE '%=>%' NODE

We cannot define any infix operator we want—we would be out of 

luck, for example, if we wanted the operator to be ==> since R’s parser 

would interpret that as two tokens, == and >. We can always define our 

own, however, if we name them something starting and ending with the 

percentage sign. We can also reuse the existing infix operators through 

overloading, as we will do with the plus sign to add edges to a DAG, but for 

this graph grammar, we can run into some problems if we attempt this, as 

we will see next. For nodes, we will not expand them more now. They are 

atomic tokens—we can, for example, require them to be strings.5

5 We haven’t formally defined how we would specify non-literate tokens in the 
syntax we use for specifying grammars, and doing so will not make the example 
any clearer, so let’s just state that informally.
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We will dig more into writing parsers in the next chapter, but for this 

simple language we can quickly create one. The parser needs to collect 

edges, so we will use linked lists for this, and it is natural to make an empty 

DAG contain an empty list of edges. Then, adding edges to a DAG means 

prepending them to this list. Such an implementation is as simple as this:

cons <- function(car, cdr) list(car = car, cdr = cdr)

dag <- function() structure(list(edges = NULL), class = dag")

`%=>%` <- function(from, to) c(from, to)

`+.dag` <- function(dag, edge) {

    dag$edges <- cons(edge, dag$edges)

    dag

}

With only these four functions, we can create a DAG using syntax like this:

dag() +

  "foo" %=>% "bar" +

  "bar" %=>% "baz"

It might not be the best syntax we can come up with, but it’s easier to 

read than nested function calls.

add_edge <- function(dag, from, to) {

  dag$edges <- cons(c(from, to), dag$edges)

  dag

}

add_edge(add_edge(dag(), "foo", "bar"), "bar", "baz")

Using the pipe operator from magrittr might be even more readable, 

though, for people familiar with it.

dag() %>% add_edge("foo", "bar") %>% add_edge("bar", "baz")
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In any case, we have built a small language that we can parse by 

defining only four functions—three if we discount the list cons function, 

which isn’t specific to the language.

We used %=>% to construct edges. Could we use => instead? The short 

answer is no. R’s parser will consider this two tokens, = and >, and although 

we could define a function with that name, using backquotes to make it a 

valid identifier, we wouldn’t get an infix operator.

`=>` <- function(from, to) c(from, to)

`=>`("foo", "bar")

"foo" => "bar"

## Error: <text>:3:8: unexpected '>'

## 2: `=>`("foo", "bar")

## 3: "foo" =>

##           ^

If we want to have an infix operator that does not use percentage signs, 

we have to overload one of the operators that R already has—and => is not 

one of them (greater-than-or-equal is >=).

Could we use > instead then? This is an R infix operator, and, therefore, 

we can overload it. We just need a type for a node to do this. If we keep 

nodes specified as strings, we would have to change the string operator, 

and we do not want to do that—it could potentially break a lot of existing 

code—so the best approach would be to define a node class to work with.

node <- function(name) structure(name, class = "node")

`>.node` <- function(from, to) c(from, to)

With these functions, we can create an edge with this syntax:

node("foo") > node("bar")

## [1] "foo" "bar"
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Changing a % infix operator to > changes the precedence, however. 

A % operator has higher precedence than +, which is why we got edges that 

we could add to the DAG earlier, but > has lower precedence than +, so we 

add the left node to the DAG first and only then invoke the > operator.

dag() + node("foo") > node("bar")

## $edges

## $edges$car

## [1] "foo"

## attr(,"class")

## [1] "node"

##

## $edges$cdr

## NULL

##

##

## [[2]]

## [1] "bar"

We can fix this using parentheses, of course.

dag() + (node("foo") > node("bar"))

## $edges

## $edges$car

## [1] "foo" "bar"

##

## $edges$cdr

## NULL

##

##

## attr(,"class")

## [1] "dag"

Chapter 3  Components of a programming Language



45

It is not particularly safe to rely on programmers to remember 

parentheses, so a better solution is to get the precedence right. We can 

do that by choosing a different operator for adding edges to DAGs. If we 

replace + with |, for example, we get the right behavior since | has lower 

precedence than >.

`|.dag` <- function(dag, edge) {

  dag$edges <- cons(edge, dag$edges)

  dag

}

dag() | node("foo") > node("bar")

## $edges

## $edges$car

## [1] "foo" "bar"

##

## $edges$cdr

## NULL

##

##

## attr(,"class")

## [1] "dag"

There are pros and cons to using operator overloading. Having to 

change string tokens into node tokens requires more typing, but on the 

other hand, we can use this to validate expressions while we parse them 

and make sure that nodes are strings.

Alternatively, we could use meta-programming and explicitly traverse 

expressions to make sure that the > operator will be the edge-creating 

operator instead of string comparison, similar to how we rewrote matrix 

expressions in the previous chapter.
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Returning to the magrittr solution for a brief moment, I think it is 

worth mentioning that designing a language is not all about defining new 

syntax. The language we are defining here, for specifying graphs, is doing 

the same as the pipe operator does, so in this particular case, we do not 

need to specify a new grammar to get all the benefits we want to achieve. 

When using pipes, we avoid the nested function calls that would make our 

code hard to read, and we can specify a DAG as a list of edges that we add 

to it. The pipe operator will be familiar to most programmers, and best 

of all, if we use it, we do not need to implement any parsing code. We are 

still creating a DSL, though, when we define the functions to manipulate 

a DAG. Providing functions that give you a vocabulary to express domain 

ideas is also language design. The dplyr package is an example of this—

it is used together with the pipe operator to string various operations 

together, so it does not provide much in terms of new syntax, but it 

provides a very strong language for specifying data manipulation.

Of the various solutions we have explored, I prefer the pipe-based. 

It makes it easy to extend edge information to more than a “from” node 

and a “to” node—which is hard with a binary operator—and we can 

implement it without any language code; we just have to make the DAG 

the first argument to all the manipulation functions we would add to the 

language. Of course, this solution is possible only because the language we 

considered was a simple string of operations. This is not always the case, so 

sometimes we do need to do a bit more work.

 Designing Semantics
The reason we write domain-specific languages is to achieve some effect—

we want to associate meaning, or semantics, to expressions in the DSL, 

and we want our DSL expressions to achieve some result, whether that is 

by executing some computations or by building some data structures. The 

purpose of a DSL merely is to provide a convenient interface to whatever 

semantics we want the language to have.
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If we always make our parsing code construct a parse tree, then the 

next step in processing the DSL involves manipulating this tree to achieve 

the desired effect. There might be several steps involved in this—for 

example, we rewrote expressions in the matrix expression example to 

optimize computations—but at the end of the processing we will execute 

the commands the DSL expression describes.

Executing the DSL is sometimes straightforward and can be done 

as a final traversal of the parse tree. This is what we did with the matrix 

expressions where the purpose of the DSL was to rewrite expressions 

rather than evaluate them—the latter being a simple matter of multiplying 

and adding matrices. In other cases, it makes sense to separate the 

semantic model and the DSL by having a framework for the actions we 

want the language to execute. Having a framework for the semantics of the 

language lets us develop and test the semantic model separately from the 

language we use as an interface for it; it even allows us to have different 

input languages for manipulating the same semantic model—not that I 

recommend having many different languages to achieve the same goals.

To illustrate this, we can consider a language for specifying a finite 

state continuous time Markov chain (CTMC).6 I chose this example 

because we have already implemented several versions of a finite state 

system when we implemented the graph DSL, and for a CTMC we just 

6 If you are not familiar with continuous time Markov chains an informal 
description could be this: A CTMC is a graph where nodes represent states and 
edges transition between states, and each edge is annotated with the rate at 
which changes happen. The model is stochastic, so rates should be thought of 
as expectations of change over time. If we have a rate of 1 between states s and t, 
then for each time unit, we would expect to see one change from s to t. If we want 
to know the probability of being in state t at some time t if we are in state s at  
time =0, we cannot consider the states s and t in isolation. There might be other 
states we can go to from s and if we go to those, it might take a longer or shorter 
time to reach t, or there might be states we can continue to from t so we might 
go through t before time t but no longer be there. We have to take all edges and 
all rates into account. Figuring out the probability of being at state t at time t is 
therefore dependent on matrix operations, in particular matrix exponentiation.
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have to associate rates with all the edges. Continuous time Markov chains 

are used many places in mathematical modeling, and the implementation 

mostly comes down to specifying an instantaneous rate matrix. This is a 

matrix that specifies the rate at which we move from one state to another. 

Such a matrix should have non-negative values on all off-diagonal entries, 

and on the diagonal, we should have minus the sum of the other entries in 

the rows. In a framework where we use CTMCs, we would likely implement 

the functionality to work on rate matrices, but for specifying the CTMCs, a 

domain-specific language might be easier to use.

Calling it the “semantics” of the language to translate graph 

specifications into a matrix might be stretching the word, but if we 

consider the DSL as a way of specifying models and the (imagined) 

framework that manipulates them as part of the language, then I think 

we can justify it. Using the language will consist of specifying the CTMC, 

translating it into the corresponding rate matrix, and then manipulating it 

as intended. The language part of it is the translation from the specification 

into a matrix.

As for the graphs shown previously, we need to specify the edges in 

the chain. We need to have a rate associated with each edge, so the most 

natural syntax will be the pipe version—with this version it is simpler to 

specify three values for an edge: the “from” and “to” states and the rate. 

I will keep these in three different linked lists, just because it makes it 

easier to construct the matrix this way.

We reuse these two functions we wrote in the previous chapter:

cons <- function(car, cdr) list(car = car, cdr = cdr)

lst_length <- function(lst) {

  len <- 0

  while (!is.null(lst)) {

    lst <- lst$cdr

    len <- len + 1

  }
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  len

}

lst_to_list <- function(lst) {

  v <- vector(mode = "list", length = lst_length(lst))

  index <- 1

  while (!is.null(lst)) {

    v[[index]] <- lst$car

    lst <- lst$cdr

    index <- index + 1

  }

  v

}

We then define the following functions for specifying CTMCs:

ctmc <- function()

  structure(list(from = NULL,

                 rate = NULL,

                 to = NULL),

            class = "ctmc")

add_edge <- function(ctmc, from, rate, to) {

  ctmc$from <- cons(from, ctmc$from)

  ctmc$rate <- cons(rate, ctmc$rate)

  ctmc$to <- cons(to, ctmc$to)

  ctmc

}

Translating the lists into a rate matrix is now simply a normal 

programming job. We collect the nodes from the “from” and “to” lists—we 

translate them into R lists first since those are easier to work with once we 

are done collecting elements—and we then get the unique node names. 
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These become the rows and columns of the rate matrix, and we iterate 

through all the edges to insert the rates. After that, we set the diagonal, and 

we are done.

rate_matrix <- function(ctmc) {

  from <- lst_to_list(ctmc$from)

  to <- lst_to_list(ctmc$to)

  rate <- lst_to_list(ctmc$rate)

  nodes <- c(from, to) %>% unique %>% unlist

  n <- length(nodes)

  Q <- matrix(0, nrow = n, ncol = n)

  rownames(Q) <- colnames(Q) <- nodes

  for (i in seq_along(from)) {

    Q[from[[i]], to[[i]]] <- rate[[i]]

  }

  diag(Q) <- - rowSums(Q)

  Q

}

Constructing a CTMC rate matrix using this small language is now as 

simple as this:

Q <- ctmc() %>%

  add_edge("foo", 1, "bar") %>%

  add_edge("foo", 2, "baz") %>%

  add_edge("bar", 2, "baz") %>%

  rate_matrix()

Q
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##     bar foo baz

## bar  -2   0   2

## foo   1  -3   2

## baz   0   0   0

Once we have translated the CTMC into this matrix, we can consider 

the language design over. However, integrating CTMC construction and 

the operations that we can do on a CTMC will be important for ease of 

use of the DSL and can be considered part of the language as well. In this 

particular case, the good news is that the actual language design is done 

for us. The pipe operator tells us how to combine our CTMCs with further 

processing—we just have to write functions that can be used in a pipe. For 

example, if we want to know the transition probabilities of the CTMC over 

a time interval—i.e., we want to know the probability of going from any 

one state to any other over a given time—we can add a function for that. 

The probabilities can be computed using matrix exponentiation (if you 

are not familiar with CTMC theory, just trust me on this). To make such 

a function compatible with a pipeline, we simply have to make the most 

likely data to come from the left in a pipe the first argument of the function. 

So, we could write this:

transitions_over_time <- function(Q, t) expm(Q * t)

P <- Q %>% transitions_over_time(0.2)

P

## 3 x 3 Matrix of class "dgeMatrix"

##           bar       foo     baz

## bar 0.6703200 0.0000000 0.32968

## foo 0.1215084 0.5488116 0.32968

## baz 0.0000000 0.0000000 1.00000
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Even with the language constructions in place—the pipe operator—

there is still some language design to be done. It is not always obvious what 

the flow of data will be through a pipe after all. An example is when we 

want to evolve vectors of state probability.

probs <- c(foo=0.1, bar=0.9, baz=0.0)

Is it more natural to have the probability vectors flow through the 

pipeline?

evolve <- function(probs, Q, t) {

  probs <- probs[rownames(Q)]

  probs %*%transitions_over_time(Q, t)

}

probs %>% evolve(Q, 0.2)

## 1 x 3 Matrix of class "dgeMatrix"

##            bar        foo     baz

## [1,] 0.6154389 0.05488116 0.32968

Or, would it be more natural to always have the CTMC (or its rate 

matrix) flow through the pipeline?

evolve <- function(Q, t, probs) {

  probs <- probs[rownames(Q)]

  probs %*%transitions_over_time(Q, t)

}

Q %>% evolve(0.2, probs)

## 1 x 3 Matrix of class "dgeMatrix"

##            bar        foo     baz

## [1,] 0.6154389 0.05488116 0.32968
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The former might feel more natural if we think of the system evolving 

over time, but the latter would fit better with a pipeline where we construct 

the CTMC first, then translate it into a rate matrix, and finally evolve the 

system.

ctmc() %>%

  add_edge("foo", 1, "bar") %>%

  add_edge("foo", 2, "baz") %>%

  add_edge("bar", 2, "baz") %>%

  rate_matrix() %>%

  evolve(0.2, probs)

## 1 x 3 Matrix of class "dgeMatrix"

##            bar        foo     baz

## [1,] 0.6154389 0.05488116 0.32968

Only use cases and experimentation will tell us what the best language 

design is. But then, that is also what makes designing languages so 

interesting.
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CHAPTER 4

Functions, Classes, 
and Operators
Everything you do in R, you do with functions. Consequently, if you want 

to implement a domain-specific language, you must do so by writing 

functions. All the actions that your new DSL should support must be 

implemented using functions, and should you want a special syntax for 

your DSL, you will have to write functions for parsing this syntax. When 

implementing an embedded DSL, as we shall see, much of the parsing 

can be outsourced to R’s parser. The price for this is some restrictions to 

the syntax for the DSL—the DSL must be syntactically valid R code. We 

cannot construct arbitrary syntaxes for embedded languages, but by using 

operator overloading or meta-programming and by defining new infix 

operators, we do have some flexibility in designing our DSLs.

In the previous two chapters, we saw examples of how to use both 

operator overloading and meta-programming to treat R expressions 

as expressions in an embedded language. The purpose of this chapter 

is to go into the details of the operator option, while the next chapter 

will cover the possibility of explicitly manipulating expressions through 

 meta- programming.
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 The S3 Object-Oriented Programming 
System
You could write a whole book about the object-oriented programming 

systems supported by R—I know because I have written such a book—but 

for operator overloading and implementing DSL parsers, we need only a 

few of the object orientation features, and this section will give you a quick 

introduction to those. We will use only the simplest object orientation 

system in this book, the S3 system. If you are already familiar with the S3 

system, feel free to skip ahead to the next section.

 Objects and Classes
The S3 system has a straightforward approach to object orientation. It 

lets us associate classes with any object (except for NULL). Classes are text 

strings with no structure, and you can get the classes associated with an 

object by calling the function class.

class(4)

## [1] "numeric"

class("foo")

## [1] "character"

class(TRUE)

## [1] "logical"

class(sin)

## [1] "function"
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You can set the class of an object with the corresponding assignment 

function, shown here:

class(sin) <- "foo"

class(sin)

## [1] "foo"

without affecting what the object is or does.

sin(0)

## [1] 0

There are some limits to which objects you can change the class of—

you cannot change the class of literal numbers and strings, for example, so 

if you attempted this:

class(2) <- "character"

class("foo") <- "numeric"

you would get errors. Still, you are free to modify the classes of objects 

any time you want. The class associated with an object is just an attribute 

containing one or more class names—in the previous cases, all the objects 

have a single class, but the matrix expressions we created Chapter 2, for 

example, had multiple classes. Vectors of class names are used both for 

multiple inheritance and for single inheritance, and there is no formal 

class structure at all. You can set the classes any way you want. The class 

attribute is just a vector of strings that are interpreted as class names.

The only thing that makes the class attribute interesting, compared to 

any other attributes you could associate with objects, is how it is used for 

dispatching generic functions. When you call a generic function, the actual 

function that gets called depends on the class of one of its arguments, 

usually the first (if you do not provide the argument explicitly, it will always 

be the first).
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 Generic Functions
The generic function mechanism in the S3 system is implemented in the 

UseMethod and NextMethod functions. To define a generic function, foo, 

you would, for example, write the following:

foo <- function(x, y, z) UseMethod("foo")

Calling foo would then invoke UseMethod that would search for 

concrete implementations of foo. Such functions are identified by their 

name alone—any function whose name starts with foo. is considered an 

implementation of foo, and the one that will be chosen depends on the 

class of the argument x. We haven’t done any implementations of foo yet, 

so calling the function will just give us an error for now.

foo(1, 2, 3)

## Error in UseMethod("foo"): no applicable method for 'foo' 

applied to an object of class "c('double', 'numeric')"

However, we can make a default implementation. The default 

implementation for a generic function—the one that will be used if 

UseMethod can find no better matching implementation—has a name that 

ends with .default. We can implement the following:

foo.default <- function(x, y, z) {

   cat("default foo\n")

}

and this function will be invoked if we call foo with an object that doesn’t 

have a better implementation.

foo(1, 2, 3)

## default foo
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To specialize a generic function to specific classes, we just have to 

define functions with appropriate names. Any function name that begins 

with foo. can be used and will be called if we call foo with an object of 

the appropriate class. To specialize foo to numeric values, for example, we 

could write the following:

foo.numeric <- function(x, y, z) {

   cat("numeric\n")

}

Now the following function will be called if x is numeric.

foo(1, 2, 3)

## numeric

A quick note before we continue to explore how dispatching is done 

on generic functions for user-defined classes: when we used UseMethod in 

the definition of foo, we called it with the name foo. This is why it looks for 

that name when it searches for implementations of the generic function. 

We could have asked it to search for other functions. The name we gave 

the generic function when we defined foo is not what determines what we 

search for when we call the function—that is determined by the name we 

give UseMethod. Further, we have seen it dispatches on the first argument 

of foo, but this is just a default. We could give UseMethod another object to 

dispatch on.

bar <- function(x, y, z) UseMethod("foo", y)

I do not recommend doing this—it goes against the conventions used 

in R—but it is possible, and with this function, we would dispatch on the y 

argument (and search for the generic function foo, not bar).
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foo("foo",2,3)

## default foo

bar("foo",2,3)

## numeric

bar(1,"bar",3)

## default foo

Going back to the rules for dispatching, when UseMethod is called, it 

starts to search for functions based on their name. It will take the classes 

of an object and search those in order. If it doesn’t find any matching 

function, it will call the default, if it exists.

So, let’s consider again foo where we have a numeric and a default 

implementation.

x <- 1

foo(x, 2, 3)

## numeric

Here, we have created the object x that is numeric, so when we call 

foo, we match the numeric function. But we can change the class of x and 

see what happens.

class(x) <- c("a", "b", "c")

foo(x, 2, 3)

## default foo

Now, since x has the classes a, b, and c but not numeric, UseMethod 

does not find the numeric version but hits the default one. We can, of 

course, define functions for the other classes and see what happens.
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foo.a <- function(x, y, z) cat("a\n")

foo.b <- function(x, y, z) cat("b\n")

foo.c <- function(x, y, z) cat("c\n")

foo(x, 2, 3)

## a

Because we now have functions for x’s classes, we can find them, and 

because a is the first class, that is the one that will be called. If we change 

the order of x’s classes, we call the other functions—UseMethod always calls 

the first it finds.

class(x) <- c("b", "a", "c")

foo(x, 2, 3)

## b

class(x) <- c("c", "b", "a")

foo(x, 2, 3)

## c

When calling UseMethod, we will find and call the first matching 

function. The related NextMethod function can be invoked to find and call 

the next function in the chain of classes. To see it in action, we can redefine 

the three a, b, and c foo implementations and make them call the next 

function in line.

foo.a <- function(x, y, z) {

  cat("a\n")

  NextMethod()

}

foo.b <- function(x, y, z) {

  cat("b\n")

  NextMethod()

}
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foo.c <- function(x, y, z) {

  cat("c\n")

  NextMethod()

}

They will all call the next function in line, and since we have a default 

implementation of foo, the last in line will call that one. The order in which 

the functions are called depends entirely on the order of x’s classes.

class(x) <- c("a", "b", "c")

foo(x, 2, 3)

## a

## b

## c

## default foo

class(x) <- c("b", "a", "c")

foo(x, 2, 3)

## b

## a

## c

## default foo

class(x) <- c("c", "b", "a")

foo(x, 2, 3)

## c

## b

## a

## default foo

This generic dispatch mechanism is extremely flexible, so it will 

require some discipline to ensure a robust object-oriented design. To 

implement domain-specific languages, though, we are interested in how 

we can use it to add operators to our language.
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 Operator Overloading
Most operators, with exceptions of arrow assignments (<- and ->) and slot 

and component access (@ and $), behave as generic functions and can be 

overloaded. The mechanism for overloading operators is not different from 

the mechanism for implementing a new version of a generic function—

if you name a function the right way, it will be invoked when a generic 

function is called.

For example, to define addition on a objects, we need to define the +.a, 

which we could do like this:

`+.a` <- function(e1, e2) {

  cat("+.a\n")

  NextMethod()

}

x + 2

## +.a

## [1] 3

## attr(,"class")

## [1] "c" "b" "a"

Here, we print some output and then invoke the underlying numeric 

addition—since the object x here is a numeric value as well as an object of 

class a—by invoking NextMethod. It is important that we use NextMethod 

here. If we use addition, we would be calling +.a once again. So do not 

attempt this:

`+.a` <- function(e1, e2) {

  cat("+.a\n")

  e1 + e2

}

This function causes infinite recursion, and it is not what you want.
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You overload operators in the same way as you would define 

specializations of generic functions, but there are differences between the 

two and how they dispatch. With standard generic functions, you would 

dispatch based on the first argument. With operators, there are heuristics 

that are there to make sure that the same function is called regardless of 

the order of the operands. You could easily imagine the pain to debug 

programs where switching the order of the operands would also call 

entirely different functions. That doesn’t happen in R because operations 

are not exactly the same as other generic functions.

If we have defined +.a and we try to add a number to x, then we can do 

that in either order, and it will be the +.a function that is called.

x + 3

## +.a

## [1] 4

## attr(,"class")

## [1] "c" "b" "a"

3 + x

## +.a

## [1] 4

## attr(,"class")

## [1] "c" "b" "a"

This is also the case if we add to x an object of a different class.

x <- 1 ; y <- 3

class(x) <- "a"

class(y) <- "b"

x + y

Chapter 4  FunCtions, Classes, and operators



65

## +.a

## [1] 4

## attr(,"class")

## [1] "a"

y + x

## +.a

## [1] 4

## attr(,"class")

## [1] "b"

unless we have also defined an addition operator for that class.

`+.b` <- function(e1, e2) {

  cat("+.bn")

  NextMethod()

}

x + y

## Warning: Incompatible methods ("+.a", "+.b") for

## "+"

## [1] 4

## attr(,"class")

## [1] "a"

y + x

## Warning: Incompatible methods ("+.b", "+.a") for

## "+"

## [1] 4

## attr(,"class")

## [1] "b"
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If both a and b have their own version of addition, then we need a way 

to resolve which version x+y and y+x should call. Here, the first operand 

takes precedence, so it determines which function is called—and you get a 

well-deserved warning for getting up to such shenanigans.

You might be able to come up with other rules on how to resolve such 

situations. For example, you could say that the most abstract method 

should be called, so if both x and y were of class b but only x was also of 

class a, then we should call +.b.

class(x) <- c("a","b")

class(y) <- "b"

Unfortunately, you cannot make such rules in the S3 system. It is 

possible with the S4 system, where you can dispatch generic functions 

based on multiple arguments, but that goes beyond the scope of this 

book. We will make sure to avoid situations where we have to add different 

classes of objects that define the same operators by constructing grammars 

appropriately.

Notice, though, that the combination of multiple classes and 

NextMethod still works as before. In the S3 system, we cannot define 

generic methods that dispatch based on multiple arguments, but we can 

use NextMethod to invoke several methods as we evaluate an operator. 

If we invoke +.a on object x, which now has classes a and b, the call to 

NextMethod in the implementation of that function will invoke +.b before 

that function invokes the numeric addition.

class(x) <- c("a", "b")

x + 2

## +.a

## +.bn

## [1] 3

## attr(,"class")
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## [1] "a" "b"

x + y

## Warning: Incompatible methods ("+.a", "+.b") for

## "+"

## [1] 4

## attr(,"class")

## [1] "a" "b"

R has unary operators as well as binary operators. The negation 

operator, !, only exists in a unary operator, and you can specialize it for a 

given class by defining a function that takes a single argument.

`!.a` <- function(x) {

  cat("Not for a\n")

  NextMethod()

}

!x

## Not for a

## [1] FALSE

For the - and + operators, though, we use the same symbol for both 

unary and binary operators. Here, we have to use the same function for 

both since the only way we identify operator functions is through their 

name, and that would be the same for the unary and binary operators. The 

way we can determine whether the function is called as part of a unary or 

binary operator is to test whether the second argument is missing. If it is, 

we have a unary operator; otherwise, it is binary.

`+.a` <- function(e1, e2) {

  if (missing(e2)) {

    cat("Unary\n")
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  } else {

    cat("Binary\n")

  }

  NextMethod()

}

class(x) <- "a"

+x

## Unary

## [1] 1

## attr(,"class")

## [1] "a"

2+x

## Binary

## [1] 3

## attr(,"class")

## [1] "a"

 Group Generics
There is another way you can overload operators based on their operands’ 

class: group generics. Group generics, as the name suggests, group several 

operators. They provide a way for us to define a single function that 

handles all operators of a given type. For arithmetic and logical operators 

(+, -, *, /, ^, %%, %/%, &, |, !, ==, !=, <, <=, >=, and >), the relevant group 

generic is Ops.

If we define Ops.c, then we define a function that will be called for all 

of these operators when used on an element of class c.
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Ops.c <- function(e1, e2) {

  cat(paste0("Ops.c (", .Generic, ")\n"))

  NextMethod()

}

z <- 2

class(z) <- "c"

z + 1

## Ops.c (+)

## [1] 3

## attr(,"class")

## [1] "c"

1 + z

## Ops.c (+)

## [1] 3

## attr(,"class")

## [1] "c"

z ^ 3

## Ops.c (^)

## [1] 8

## attr(,"class")

## [1] "c"

The “magical” variable .Generic contains the name of the operator 

that is called, and calling NextMethod will dispatch to the relevant next 

implementation of the operator.
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If you implement both the Ops group generic and concrete 

implementations of some individual operator generics, then the latter 

takes precedence. If, for example, we have an object of class a and c, where 

we have defined addition for class a and have the group generic for c, the 

addition will invoke the +.a function. All other operators will invoke the 

Ops.c function.

class(z) <- c("a", "c")

1 + z

## Binary

## [1] 3

## attr(,"class")

## [1] "a" "c"

2 * z

## Ops.c (*)

## [1] 4

## attr(,"class")

## [1] "a" "c"

With Ops you have a method for catching all operators for which you 

do not explicitly write specialized generics.

 Precedence and Evaluation Order
As soon as we start working with operators, their precedence becomes 

important. The syntax for normal function calls makes the evaluation order 

relatively clear—with nested function calls we have inner and outer functions 

in an expression. While that does not give us guarantees about which order 

parameters to a function will be evaluated in, we do know that arguments 

Chapter 4  FunCtions, Classes, and operators



71

to a function will be evaluated before the function itself is evaluated.1 With 

operators, the syntax does not tell us in which order functions will be called. 

To know that, we need to know the precedence rules.

Precedence rules tell us the order in which operator functions get 

called by ordering the operators from highest to lowest precedence and by 

specifying whether operators are evaluated from left to right or from right 

to left. In an expression such as this:

x + y * z

we know that the multiplication, y * z, is evaluated before the addition, so 

the expression is equivalent to the following:

x + (y * z)

because multiplication has higher precedence than addition. With 

operators at the same level of precedence, we might be less aware of the 

order, but here, the left-to-right or right-to-left order is also guaranteed 

by precedence rules. Of the operators you can overload, only the 

exponentiation operator evaluates right to left, while all the others evaluate 

left to right. Therefore, the following:

x ^ y ^ z

is equivalent to this:

x ^ (y ^ z)

And this:

x * y / z

will be evaluated as follows:

(x * y) / z

1 I am not entirely honest here. R has lazy evaluation, so there is no guarantee 
that arguments to a function will be evaluated at all—but if they are, they will 
be evaluated before we return from the function they are arguments to, so 
conceptually we can think of them as being evaluated before we call the function.
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The operators you can use are listed, from highest to lowest 

precedence, here:

Operator Usual Meaning

[ [[ indexing

^ exponentiation (evaluates right to left)

- + unary minus and plus

%any% special operators

* / Multiply, divide

+ - Binary add and subtract

< >

<= >= ordering and comparison

== !=

! negation

& && and

| || or

:= assignment

-> ->> assignment

<- <<- assignment (right to left)

? help

Of these, you cannot overload the “arrow” assignment operators, only 

the := operator.2

2 The last operator in the table, the := assignment operator, is special in the list. It 
is not really an operator that is defined in R. You cannot use it as an assignment 
operator—for that, you should use <- or ->—but the R parser recognizes it as an 
infix operator, which means you can use it when you design a domain-specific 
language.
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In the graph specifications language from the previous chapter, 

we could use addition and %=>% together because user-defined infix 

operators—those defined using percentages symbols—have higher 

precedence than +, so we would construct edges before we would add 

them to a graph. Using > and | together works for the same reason. Further, 

because addition (as well as logical or) is evaluated from left to right, the 

dag() object we created at the beginning of a graph specification would 

be added to the first edge, which would produce another graph that then 

would be added to the next edge and so forth. If the evaluation of addition 

were right to left, we would be adding edges to edges, instead of graphs to 

edges, which would complicate the implementation of the parser.

 Code Blocks
A final syntactical component that can be useful when designing a 

domain-specific language is not an operator but the braces that construct 

a block of code. We cannot overload how these are interpreted, but we 

can certainly find a use for them when we create a new language. Before 

we can exploit them fully, we need to know both how to manipulate 

expressions and how to evaluate them in different contexts—which we 

cover in the next chapter and in Chapter 7—but as a quick example, 

consider creating an index operator that repeats a statement a number of 

times. We can define it this way:

`%times%` <- function(n, body) {

  body <- substitute(body)

  for (i in 1:n)

    eval(body, parent.frame())

}
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The following takes the body argument and changes it to an expression 

so we can evaluate it repeatedly:

  body <- substitute(body)

If we did not do this, we would evaluate it only the first time we 

accessed body—this is how R’s lazy evaluation works—but using 

substitute we can get the verbatim expression out of the argument. To 

evaluate it, we then have to use the eval function, and to evaluate it in the 

context where we call the %times% operator, we need the calling frame, 

which we get using parent.frame (see Chapter 7 for more details on 

evaluation and environments).

The body argument to %times% can be a single statement, like this:

4 %times% cat("foo\n")

## foo

## foo

## foo

## foo

However, since braces ({}) are considered expressions as well, we can 

also use a sequence of statements as long as we wrap them in braces.

2 %times% {

  cat("foo\n")

  cat("bar\n")

}

## foo

## bar

## foo

## bar
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Because we can use braces to pass blocks of code as arguments to 

functions, we can use these to create new control structures, like the %times% 

operator shown previously. To fully exploit this, we need to understand how 

we evaluate general expressions in R and how we control the environment in 

which we evaluate them. We also need to parse and manipulate expressions 

to analyze blocks of code and maybe modify them. We will leave further 

discussion of braces until we have covered those topics.
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CHAPTER 5

Parsing 
and Manipulating 
Expressions
A powerful feature of the R programming language is that it readily 

allows us to treat expressions in the language itself as data that we 

can examine and modify as part of a program—so-called meta-

programming. From within a program we can take a piece of R code 

and computationally manipulate it before we evaluate it. We need to 

get hold of the code before it is evaluated, and there are several ways to 

do that. The simplest is to “quote” expressions, which leaves them as 

unevaluated expressions.

In this chapter, we will use the following libraries:

library(purrr)

library(rlang)

library(magrittr)
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 Quoting and Evaluating
If you write an expression such as the following, R will immediately try to 

evaluate it:

2 * x + y

It will look for the variables x and y in the current scope, and if it finds 

them, it will evaluate the expression; if it does not, it will report an error. 

By the time R has evaluated the expression, we have either a value or an 

error. If it is the former, the expression is essentially equivalent to the 

result of evaluating the expression (computation time notwithstanding). 

A literate expression as this one is not something we can get a hold on to 

in a program—we get either an error or the value the expression evaluates 

to. If we want to get hold of the actual expression, we need to “quote” it. 

If we wrap the expression in a call to the function quote, then we prevent 

the evaluation of the expression and instead get a data structure that 

represents the unevaluated expression.

quote(2 * x + y)

## 2 * x + y

The class of an expression is a “call.”

expr <- quote(2 * x + y)

class(expr)

## [1] "call"

It is a call because infix operators are syntactic sugar for function calls, 

and all function call expressions will have this type. For “call” objects, 

we can get their components by indexing as we would a list. The first 

element will be the function name, and the remaining elements will be the 

arguments to the function call. For binary operators, of course, there will 

be two arguments.
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For this expression, the function call is an addition:

expr[[1]]

## `+`

expr[[2]]

## 2 * x

expr[[3]]

## y

It is an addition because multiplication has higher precedence than 

addition, so the expression is equivalent to the following:

(2 * x) + y

This is because the multination is nested deeper in the expression than 

the addition. The multiplication can be accessed as the first argument to 

the addition call, so the second element in the object is as follows:

expr[[2]][[1]]

## `*`

expr[[2]][[2]]

## [1] 2

expr[[2]][[3]]

## x

To evaluate a quoted expression, we can use the function eval. The 

following expression:

eval(quote(2 * x + y))
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is equivalent to writing the literate expression shown here:

2 * x + y

The eval function provides more flexibility in how an expression is 

evaluated since we can modify the scope of the evaluation, something we 

return to in more detail in Chapter 7.

Combining quoted expressions and functions introduces additional 

complications, at least if we want to handle the quoting within a function 

call. We can, however, pass quoted expressions as parameters to a 

function, as shown here:

f <- function(expr) expr[[1]]

f(quote(2 * x + y))

## `+`

However, it gets more complicated if we want to provide the literate 

expression to the function.

f(2 * x + y)

## Error in f(2 * x + y): object 'x' not found

In the function f, when we return expr[[1]], R will first attempt to 

evaluate the expression, but the expression depends on the variables x 

and y, which are undefined. Even if we define x and y, we still do not get 

a “call” object that we can manipulate. We get the result of evaluating the 

expression.

x <- 2

y <- 3

f(2 * x + y)

## [1] 7

Chapter 5  parsing and Manipulating expressions



81

Using quote inside the function doesn’t help us. If we write 

quote(expr), we get the expression expr—a single symbol—as a result, not 

the argument we give to f.

f <- function(expr) {

  expr <- quote(expr)

  expr[[1]]

}

f(2 * x + y)

## Error in expr[[1]]: object of type 'symbol' is not subsettable

To get the actual argument as a quoted expression, we need to use the 

function substitute.

f <- function(expr) {

  expr <- substitute(expr)

  expr[[1]]

}

f(2 * x + y)

## `+`

Two things come together to make this work. First, function arguments 

in R are lazily evaluated, so the expr argument is never evaluated if we do 

not use it in an expression. So, even though x and y are not defined, we do 

not get any errors as long as we do not evaluate the argument to f. Second, 

substitute does not evaluate its argument, but it returns a quoted object 

where variables are replaced with the value they have in the current 

scope.1 The argument to substitute does not have to be a single variable 

1 The substitute function will replace variables by the value they contain in the 
current scope or the value they have in an environment you provide as a second 
argument, except for variables in the global environment. Those variables are left 
alone. If you experiment with substitute, be aware that it behaves differently 
inside the scope of a function from how it behaves in the global scope.
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name. It can be any expression that will be considered quoted after which 

variable substitution is done, and the return value will be the modified 

quoted expression.

f <- function(expr) {

  expr <- substitute(expr + expr)

  expr

}

f(2 * x + y)

## 2 * x + y + (2 * x + y)

Another complication appears if we attempt to evaluate a quoted 

expression inside a function. You might expect these two functions to be 

equivalent since eval(quote(expr)) should be the same as expr, but they 

are not equivalent.

f <- function(expr) {

  expr + expr

}

g <- function(expr) {

  x <- substitute(expr + expr)

  eval(x)

}

If we make sure that both x and y are defined, then the function f 

returns twice the value of the expression.

x <- 2; y <- 3

f(2 * x + y)

## [1] 14
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Function g, on the other hand, raises an error because the type of x is 

incorrect.

g(2 * x + y)

## Error in 2 * x: non-numeric argument to binary operator

By default, the eval function will evaluate an expression in the 

current scope, which inside a function will be that function’s evaluation 

environment. Inside g, we have defined x to be the expression we get 

from the call to substitute, so it is this x that is seen by eval. If you 

want eval to evaluate an expression in another scope, you need to give 

it an environment as a second argument. If you want it to evaluate the 

expression in the scope where the function is called, rather than inside 

the function scope itself, then you can get that using the parent.frame 

function.

g <- function(expr) {

  x <- substitute(expr + expr)

  eval(x, parent.frame())

}

g(2 * x + y)

## [1] 14

We will discuss environments, scopes, and how expressions are 

evaluated in more detail in Chapter 7. For the remainder of this chapter, 

we will focus on manipulating expressions and not on evaluating them.
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 Exploring Expressions
An expression is a recursive data structure, and you can explore it as such. 

We can define expressions in a grammar like this:

EXPRESSION ::= CONSTANT

            |  NAME

            |  PRIMITIVE

            |  PAIRLIST

            |  CALL EXPRESSION_LIST

EXPRESSION_LIST

           ::= EXPRESSION

            |  EXPRESSION EXPRESSION_LIST

We will not expend the grammar of expressions further, but just agree 

that they will be any legal R expressions. All expressions are one of the five. 

The first four are terminals in the grammar, while call expressions are 

recursive; a call is constructed from a function and its arguments, and all 

these are other expressions.

We can explore expressions using recursive functions where the first 

three meta-variables, CONSTANT, NAME, and PRIMITIVE, are basis cases that 

do not contain other expressions, while PAIRLIST might and CALL will 

contain other expressions and must be handled in recursive calls.

Of the meta-variables, CONSTANT refers to any literal data such as 

numbers or strings, NAME refers to any variable name, PRIMTIVE refers 

to a function written in C as part of the implementation of R, PAIRLIST 

refers to formal arguments in function definitions (more on this below), 

and CALL refers to function calls. Function calls capture everything more 

complicated than the first four options. Since everything in R that does 

anything is considered a function call, including such statements as 

function definitions and control structures, these are captured in the 

CALL case. As we saw earlier, calls are list-like and always have at least one 

element. The first element is the function that is called, and the remaining 

components are the arguments to that function.
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To recursively explore an expression, we can write functions that test 

the four cases. Constants are recognized by the is.atomic function, names 

by the is.name function, primitives by the is.primitive function, pair 

lists by the is.pairlist, and calls by the is.call function. A function for 

printing out an expression’s structure can look like this:

print_expression <- function(expr, indent = "") {

  if (is.atomic(expr)) {

    if (inherits(expr, "srcref")) {

      expr <- paste0("srcref = ", expr)

    }

    cat(indent, " - ", expr, "\n")

  } else if (is.name(expr)) {

    if (expr == "") {

      expr <- "MISSING"

    }

    cat(indent, " - ", expr, "\n")

  } else if (is.primitive(expr)) {

    cat(indent, " - ", expr, "\n")

  } else if (is.pairlist(expr)) {

    cat(indent, " - ", "[\n")

    new_indent <- paste0(indent, "       ")

    vars <- names(expr)

    for (i in seq_along(expr)) {

      cat(indent, "    ", vars[i], " ->\n")

      print_expression((expr[[i]]), new_indent)

    }

    cat(indent, "    ]\n")
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  } else {

    print_expression((expr[[1]]), indent)

    new_indent <- paste0("  ", indent)

    for (i in 2:length(expr)) {

      print_expression(expr[[i]], new_indent)

    }

  }

}

Here, we do not explicitly test for the type of calls; if the expression is 

not one of the first four cases, it must be the fifth. There are two special 

cases we handle in this printing expression—source references for function 

definitions and missing expressions in pair lists. We discuss these next.

We can see the function in action by calling it on the expression we 

explored earlier.

print_expression(quote(2 * x + y))

##   -  +

##     -  *

##       -  2

##       -  x

##     -  y

The pretty-printed expression shows the structure we explored 

explicitly in the previous section.

Declaring a function is considered a function call—a call to the 

function function.

print_expression(quote(function(x) x))

##   -  function

##     -  [

##         x  ->

##            -  MISSING
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##        ]

##     -  x

##     -  srcref = function(x) x

For a function definition, we have a call object where the first 

argument is function, the second argument is the pair list that defines the 

function parameters, and the third element is the function body—another 

expression. There is also a fourth element called srcdef, an atomic vector 

that captures the actual code used to define the function. In the printing 

function, we just print the text representation of the source definition, 

which we get by pasting the expression.

The argument list of a function we declare is where the pair list data 

structure is used. We can get the names of the formal parameters using 

the names function and the default arguments by indexing into the pair 

list. Parameters without default arguments are a special case here, and the 

expression they contain is an empty string. In the printing function, we 

make this explicit by changing the empty string to the string MISSING. If we 

have default arguments, then those are represented as expressions we can 

explore recursively.

print_expression(quote(function(x = 2 * 2 + 4) x))

##   -  function

##     -  [

##         x  ->

##            -  +

##              -  *

##                -  2

##                -  2

##              -  4

##        ]

##     -  x

##     -  srcref = function(x = 2 * 2 + 4) x
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print_expression(quote(function(x, y = 2 * x) x + y))

##   -  function

##     -  [

##         x  ->

##            -  MISSING

##         y  ->

##            -  *

##              -  2

##              -  x

##        ]

##     -  +

##       -  x

##       -  y

##     -  srcref = function(x, y = 2 * x) x + y

The usual case for function calls is that the first element in the “call” 

list is a symbol that refers to a function, and any expression that returns 

a function can be used as a function in R. This means the first element of 

calls can be any expression. For example, if we define a function and call it 

right after, the first element of the call object will be the function definition.

expr <- quote((function(x) x)(2))

print_expression(expr)

##   -  (

##     -  function

##       -  [

##           x  ->

##              -  MISSING

##          ]

##       -  x

##       -  srcref = function(x) x

##     -  2
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expr[[1]]

## (function(x) x)

expr[[2]]

## [1] 2

As an example of doing something non-trivial with expressions, we can 

write a function that collects all unbound variables in an expression. If we 

recurse through an expression, we can collect all the bound and unbound 

symbols. To get the unbound variables, we can keep track of those that are 

bound and not collect those. Ignoring, at first, those variables that might 

be bound outside of the expression itself—in the scope where we will call 

the function—the variables that are bound are those that are named in 

a function definition. We can identify those from the pair list that is the 

second argument to calls to function. When recursing over expressions, 

we capture those and pass them on down the recursion. Aside from that, 

we simply collect the symbols. In the following implementation, I use 

the linked lists we saw earlier to collect the symbols, and I translate the 

symbols into characters as I collect them. I do this because I can use the 

character representation of symbols to check whether a symbol exists in an 

environment later. I use the cons function to collect symbols in a linked list.

cons <- function(car, cdr) list(car = car, cdr = cdr)

collect_symbols_rec <- function(expr, lst, bound) {

  if (is.symbol(expr) && expr != "") {

    if (as.character(expr) %in% bound) lst

    else cons(as.character(expr), lst)

  } else if (is.pairlist(expr)) {

    for (i in seq_along(expr)) {

      lst <- collect_symbols_rec(expr[[i]], lst, bound)

    }

    lst
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  } else if (is.call(expr)) {

    if (expr[[1]] == as.symbol("function"))

      bound <- c(names(expr[[2]]), bound)

    for (i in 1:length(expr)) {

      lst <- collect_symbols_rec(expr[[i]], lst, bound)

    }

    lst

  } else {

    lst

  }

}

For processing the lists, it is easier to work with list than with linked- 

lists objects, so we need the lst_to_list function from earlier as well.

lst_length <- function(lst) {

  len <- 0

  while (!is.null(lst)) {

    lst <- lst$cdr

    len <- len + 1

  }

  len

}

lst_to_list <- function(lst) {

  v <- vector(mode = "list", length = lst_length(lst))

  index <- 1

  while (!is.null(lst)) {

    v[[index]] <- lst$car

    lst <- lst$cdr

    index <- index + 1

  }

  v

}
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We explicitly avoid the empty symbol when we collect symbols. 

The empty symbol is the symbol we get when we recurse on a pair list 

for a function parameter without a default value. We do not consider 

this a variable, bound or otherwise. The way we handle symbols is 

straightforward. For pair lists, we collect the parameters that will be 

bound and recurse through the default arguments to collect any unbound 

variables there. As for calls, we handle the function definitions by 

extending the list of bound variables and then recursing. For anything 

else—which in practice means for any atomic value—we just return the list 

we called the function with. There are no unbound variables in constant 

values after all.

The recursive function works on a quoted expression and collects 

all symbols that are not bound within the expression itself. We wrap it 

in a function that does the quoting of the expression, call the recursive 

function, and then remove the symbols that are defined in the calling 

scope (the parent.frame).

collect_symbols <- function(expr) {

  expr <- substitute(expr)

  bound <- c()

  lst <- collect_symbols_rec(expr, NULL, bound)

  lst %>% lst_to_list() %>% unique() %>%

          purrr::discard(exists, parent.frame()) %>%

          unlist()

}

Here, I use the discard function from the purrr package to remove 

all elements that satisfy a predicate. For the predicate, I use the function 

exists with a second argument that is the calling environment,  parent.

frame. This gets rid of symbols that are defined in the scope where we call 

collect_symbols, including globally defined functions such as *, +, and 

function.
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I pipe the final result through unlist to translate the list into a 

character vector. This is only for pretty-printing reasons. It gives nicer 

output when printed in the console. For programming, you can work with 

lists as well as with vectors.

If we get rid of variables x and y that we defined earlier, the expression 

2 * x + y + z should have three unbound variables, x, y, and z. This is 

indeed what we find:

rm(x) ; rm(y)

collect_symbols(2 * x + y + z)

## [1] "z" "y" "x"

If we define one of the variables, for example, z, then it is no longer 

unbound.

z <- 3

collect_symbols(2 * x + y + z)

## [1] "y" "x"

Function definitions also bind variables, so those are not collected.

collect_symbols(function(x) 2 * x + y + z)

## [1] "y"

collect_symbols(function(x) function(y) f(2 * x + y))

## NULL

Default values can contain unbound variables; we collect those values.

collect_symbols(function(x, y = 2 * w) 2 * x + y)

## [1] "w"
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We are not entirely done learning about how to explore expressions 

yet. The actual recursive exploration of expressions is simple, as shown 

previously. But often, it must be combined with an evaluation of 

expressions. And often, this evaluation does not follow the usual rules 

for how expressions are evaluated because we have to evaluate some 

expressions while we keep others quoted. When we start manipulating 

how expressions are evaluated, we call it non-standard evaluation, which 

is the topic of Chapter 7. Here, however, I want to give you a taste of what it 

involves.

If we write a simple function such as this:

f <- function(expr) collect_symbols(expr)

we might expect it to give us the unbound variables in an expression, 

but it returns an empty list, as shown here:

f(2 + y * w)

## NULL

This is because of the combination of the two issues we will have when 

we try to program the functions of the so-called non-standard evaluation. 

First, when we use substitute in the collect_symbols function, we get 

the literal expression that substitute was called with. The argument we 

give to substitute in f is expr. The expression that f itself is called with 

does not get passed along. Second, the environment in which we test for a 

bound variable inside collect_symbols is the calling environment. When 

we call the function from f, the calling environment is the body of f. In this 

environment, the variable expr is defined—it is the formal argument of the 

function—so it will be considered bound.

We will explore environments and how to program with non-standard 

evaluation in some detail later, but the general solution to these problems 

is to avoid using non-standard evaluation in functions you plan to call from 

other functions. It is a powerful technique for writing a domain-specific 
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language, but keep it to the interface of the language and not the internal 

functions. For collect_symbols, we can get around the problem by writing 

another function that takes as arguments a quoted expression and an 

environment we should look for variables in. We can then call this function 

from collect_symbols when we want a non-standard evaluation and call 

the other function directly if we want to use it from other functions.

collect_symbols_ <- function(expr, env) {

  bound <- c()

  lst <- collect_symbols_rec(expr, NULL, bound)

  lst %>% lst_to_list() %>% unique() %>%

    purrr::discard(exists, env) %>%

    unlist()

}

collect_symbols <- function(expr) {

  collect_symbols_(substitute(expr), parent.frame())

}

 Manipulating Expressions
We can do more than simply inspect expressions. We can also modify 

them or create new ones from within programs. You cannot modify the 

two primitive expressions, constants and symbols. They are simply data. 

We can, however, modify calls and pair lists, although the second is not 

something we would usually do. We work with pair lists when we create 

new functions, but usually we either create new pair lists to set the formal 

arguments of a function or take the arguments from another function; we 

rarely modify existing pair lists. In any case, both pair lists and calls can be 

assigned to by indexing into their components.
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To get it out of the way with, the following is an example where we 

modify a pair list. We can construct the expression for defining a function 

like this:

f <- quote(function(x) 2 * x)

f

## function(x) 2 * x

This is an expression of the type “call”—it is a call to the function 

function that defines functions (try saying that fast)—and its second 

argument is the pair list that defines its arguments.

f[[2]]

## $x

If we assign to the elements in this pair list, we provide default 

arguments to the function. The values we assign must be quoted 

expressions.

f[[2]][[1]] <- quote(2 * y)

f

## function(x = 2 * y) 2 * x

To change the names of function arguments, we must change the names 

of the pair list components. We can do this using the names<- function.

names(f[[2]]) <- c("a")

f[[3]] <- quote(2 * a)

f

## function(a = 2 * y) 2 * a

In this example, we also saw how we could modify the function body 

through its third component.
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Through this example, we have already seen all we need to know 

about how to modify call expressions. What we were modifying was simply 

a particular case of a call—the call to function. Any other call can be 

changed the same way.

expr <- quote(2 * x + y)

expr

## 2 * x + y

expr[[1]] <- as.symbol("/")

expr

## 2 * x/y

expr[[2]][[1]] <- as.symbol("+")

expr

## (2 + x)/y

We can construct new call objects using the call function. As its first 

argument, this function takes the function to call. This can be a symbol 

or a string and will automatically be quoted. After that, you can give it a 

variable number of arguments that will be evaluated before they are put 

into the constructed expression.

call("+", quote(2 * x), quote(y))

## 2 * x + y

call("+", call("*", 2, quote(x)), quote(y))

## 2 * x + y

If you are creating a call to a function with named arguments, rather 

than an operator, you can provide those to the call function as well.

call("f", a = quote(2 * x), b = quote(y))

## f(a = 2 * x, b = y)
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It is essential that you quote the arguments if you do not want them 

evaluated. The call function will not do it for you.

z <- 2

call("+", 2 * z, quote(y))

## 4 + y

In the rlang package you have two additional functions for creating 

calls. The function lang works as the call function except that you can 

specify a namespace in which the called function should be found. The 

new_language function lets you provide the call arguments as an explicit 

pair list.

library(rlang)

lang("+", quote(2 * x), quote(y))

## 2 * x + y

new_language(as.symbol("+"), pairlist(quote(2 * x), quote(y)))

## 2 * x + y

The rlang package is worth exploring if you plan to do much meta- 

programming in R. It provides several functions for manipulating and 

creating expressions and functions and for managing environments. We 

will explore the package more in Chapter 8.

There is one extra complication if the call you are making is to 

function. This function needs a pair list as its second argument, so you 

will have to make such an object. If you want to create a function without 

default parameters, you need to make a list with “missing” elements 
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at named positions. The way to make a missing argument is by calling 

substitute without arguments, so a function that creates a list of function 

parameters without default arguments can look like this:

make_args_list <- function(args) {

  res <- replicate(length(args), substitute())

  names(res) <- args

  as.pairlist(res)

}

We can use it to construct a call to function like this:

f <- call("function",

          make_args_list(c("x", "y")),

          quote(2 * x + y))

f

## function(x, y) 2 * x + y

Remember, however, that this is an expression for creating a function; 

it is not the function itself, and it does not behave like a function.

f(2, 3)

## Error in f(2, 3): could not find function "f"

The error message here looks a bit odd. R is not complaining that f is 

not a function but that the function f cannot be found. This is because R 

will look for functions when you use a symbol for a function call and will not 

confuse the value f with the function f. Here, we only have a value- version 

of f. Anyway, to get the actual function, we need to evaluate the call.

f <- eval(f)

f

## function (x, y)

## 2 * x + y
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f(2, 3)

## [1] 7

A more direct way of creating a function is by using the new_function 

function from the rlang package.

f <- new_function(make_args_list(c("x", "y")),

                  quote(2 * x + y))

f

## function (x, y)

## 2 * x + y

f(2, 3)

## [1] 7

As a final example, we can combine the expression creating 

methods we have seen with the expression exploration functions from 

the previous section to translate expressions with unbound variables 

into functions. We can collect all unbound variables in an expression 

using the collect_symbols_ function from earlier and then use new_

function to create the function.

expr_to_function <- function(expr) {

  expr <- substitute(expr)

  unbound <- collect_symbols_(expr, caller_env())

  new_function(make_args_list(unbound), expr, caller_env())

}

Here, I have used another function from rlang, caller_env. This 

function does the same as the parent.frame we have used earlier but with 

a more informative name. I recommend using caller_env over parent.

frame for that reason.

Chapter 5  parsing and Manipulating expressions
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We provide more arguments in this call to new_function than in 

the previous example where we used it. There, we provided only two 

arguments, the parameters of the function and its body. Here, we also 

provide its environment. This will be the function’s enclosing environment. 

It is here that the function will find the value of variables that are not local 

to the function itself or parameters to the function. Since we consider 

variables found in the caller environment as bound, we have to make sure 

that the function we create can also find them, so we put the function in 

the same environment. If this explanation is unclear to you, then return to 

this example after you have read Chapter 7 where we go into environments 

in much more detail. It should, ideally, be clearer then.

expr_to_function does exactly what we intended it to do. It creates a 

function from an expression, whose arguments are the unbound variables.

f <- expr_to_function(2 * x + y)

f

## function (y, x)

## 2 * x + y

f(x = 2, y = 3)

## [1] 7

g <- expr_to_function(function(x) 2 * x + y)

g

## function (y)

## function(x) 2 * x + y

g(y = 3)(x = 2)

## [1] 7

The order of the variables in the function will depend on the order in 

which they appear in the expression and in whatever order the unique 

function will leave them in. Therefore, calling the resulting function is best 

done with named arguments.
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CHAPTER 6

Lambda Expressions
With the techniques we have seen so far, we are now able to implement 

some useful domain-specific languages. In this chapter, we examine a toy 

example, lambda expressions. It is perhaps not something we would use 

in real-world code, as it simply gives an alternative syntax to anonymous 

functions, which are already supported in R. However, it is an excellent 

example of code that is potentially useful and gives us a chance to 

experiment with syntax.

We will use the rlang package.

library(rlang)

 Anonymous functions
Lambda expressions are Anonymous functions, in other words, functions 

we have not named. We already have anonymous functions in R. This is 

the default kind of functions since a function is anonymous until we assign 

it to a variable. If we do not want to save a function in a variable to get 

access to it later, we can just use the function expression to create it where 

we need it. For example, to map over a vector of numbers, we could write 

the following:

sapply(1:4, function(x) x**2)

## [1]  1  4  9 16
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This is a toy example since vector expressions are preferable in 

situations like the following, but it illustrates the point.

(1:4)**2

## [1]  1  4  9 16

Using function expressions is verbose, so we might want to construct 

an alternative syntax for anonymous functions. We can then use it as an 

exercise in constructing a domain-specific language. Our goal is to change 

the previous sapply syntax into this syntax:

sapply(1:4, x := x**2)

We use the := assignment operator for two reasons. One, we can 

overload it, something we cannot do with -> or <-. Two, it has the lowest 

precedence of the operators, so the operator we create will be called with 

the left- and right-hand sides before these are evaluated.

To implement this syntax, we need to make the left-hand side of 

assignments into function headers, which means pair lists of arguments. 

We also need to make the right-hand side into a function body we can 

evaluate in the environment where we define the lambda expression. The 

good news is that this only involves techniques we have already seen. We 

can write a function for turning a list of arguments into a pair list that we 

can use to define the formal arguments of a function like this:

make_args_list <- function(args) {

  res <- replicate(length(args), substitute())

  names(res) <- args

  as.pairlist(res)

}

For the assignment operator, we need to use substitute to avoid 

evaluating the two arguments. We then use make_args_list to turn the 

left-hand side into formal arguments, but we keep the right-hand side 
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expression as it is. After that, we turn the combination into a function using 

new_function from the rlang package. Since we want to evaluate the new 

function in the scope where we define the lambda expression, we use 

caller_env to get this environment and provide it to new_function. The 

entire implementation is as simple as this:

`:=` <- function(header, body) {

  header <- substitute(header)

  body <- substitute(body)

  args <- make_args_list(as.character(header))

  new_function(args, body, caller_env())

}

Now, we can use the new syntax as syntactic sugar for anonymous 

functions.

sapply(1:4, x := x**2)

## [1]  1  4  9 16

What about lambda expressions with more than one argument? We 

might want syntax similar to this:

mapply(x,y := x*y, x = 1:6, y = 1:2)

However, this is not possible since we cannot override how R interprets 

commas. If we want to group some parameters, we need to put them in a 

function call. We can do something like this:

mapply(.(x,y) := x*y, x = 1:6, y = 1:2)

## [1]  1  4  3  8  5 12

What happens here is that the make_args_list translates all the 

components of the left-hand expression into function parameters. A 

function call object is just like any other expression list, so in this particular 
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example, we create a function with three arguments, ., x, and y. Since 

. is not used inside the function body, it does not matter that we do not 

provide it when the function is called. However, if we reuse one of the 

parameter names as the function name in the call, this happens:

mapply(x(x,y) := x*y, x = 1:6, y = 1:2)

## Error in (function (x, x, y) : argument 1 matches multiple 

formal arguments

We can get rid of the function name in calls by removing the first 

element in the list.

`:=` <- function(header, body) {

  header <- substitute(header)

  if (is.call(header)) header <- header[-1]

  body <- substitute(body)

  args <- make_args_list(as.character(header))

  new_function(args, body, caller_env())

}

Now the earlier example will work.

mapply(x(x,y) := x*y, x = 1:6, y = 1:2)

## [1]  1  4  3  8  5 12

 Experiments with Alternatives to the Syntax
Using an assignment operator to define a function in this way might not be 

the most obvious syntax you could choose, but we have plenty of options 

for playing around with alternatives.
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We could start with the functionality that we have implemented as a 

single function. There is no reason to have a special syntax if all we need 

is a single function, so instead, we could implement lambda expressions 

like this:

lambda <- function(...) {

  spec <- eval(substitute(alist(...)))

  n <- length(spec)

  args <- make_args_list(spec[-n])

  body <- spec[[n]]

  new_function(args, body, caller_env())

}

The idea here is that the lambda function will take a list of arguments 

where the last element in the list is the function body and the preceding 

are the parameters of the lambda expression.

sapply(1:4, lambda(x, 4 * x**2))

## [1]  4 16 36 64

mapply(lambda(x, y, y*x), x = 1:4, y = 4:7)

## [1]  4 10 18 28

The eval(substitute(alist(...))) expression might look a little 

odd if you are not used to it. What we do is take the variable number of 

arguments, captured by the three dots argument, and create an expression 

that turns those into a list. The function alist, unlike list, will not 

evaluate the expressions but keep the arguments as they are, which is 

what we want in this case. The substitute expression only creates the 

expression, so we need to evaluate it with eval to get the actual list. Once 

we have the list, we make the first arguments into function parameters and 

the last into the body of the lambda expression and create the function.
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In production code, we should add some checks to make sure that the 

lambda expression parameters are symbols and not general expressions. 

However, the full functionality for lambda expressions is present in the 

function we have just written.

Of course, the lambda function does not behave like a normal function. 

The non-standard evaluation (NSE) we apply to make a function out of 

the arguments to lambda is very different from how functions normally 

behave, where the arguments we provide are considered values rather than 

symbols and expressions. To make it clear from the syntax that something 

different is happening, you could change the syntax. For example, we 

could go for square brackets instead of parentheses. We can implement a 

version that uses those like this:

lambda <- structure(NA, class = "lambda")

`[.lambda` <- function(x, ...) {

  spec <- eval(substitute(alist(...)))

  n <- length(spec)

  args <- make_args_list(spec[-n])

  body <- spec[[n]]

  new_function(args, body, caller_env())

}

We use it like this:

sapply(1:4, lambda[x, 4 * x**2])

## [1]  4 16 36 64

mapply(lambda[x, y, y*x], x = 1:4, y = 4:7)

## [1]  4 10 18 28
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The approach here is to make lambda an object with a class we can use 

for defining a special case of the subscript operator. The sole purpose of 

lambda is to dispatch the subscript function to the right specialization, and 

that specialization of the subscript operator is the one that creates the new 

function. The only difference is that it takes an extra first argument, which 

is the lambda object. We do not use it for anything, so we just ignore it.

 Don’t Do This at Home
Implementing syntactic sugar for lambda expressions as we have done 

only saves us minimal typing compared to using function expressions. 

Those familiar with function expressions should know that this will 

potentially do more harm than good, but it might not be the case with our 

home-made syntax for them. Consequently, I do not recommend that 

you construct a new syntax for language constructions that are already 

implemented in R. We implemented the lambda expressions here to 

illustrate how we can construct new syntax with very little code.
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CHAPTER 7

Environments 
and Expressions
We have already used environments in a couple of examples to evaluate 

expressions in a different context than where we usually evaluate them, 

which is known as non-standard evaluation. Many domain-specific 

languages that we could implement in R will need some variety of non- 

standard evaluation, but getting the evaluation to occur in the right context 

can be problematic. The rules for how expressions are evaluated are 

simple, while evaluation contexts, which are chains of environments, can 

be complicated.

We will use the rlang package.

library(rlang)

Scopes and Environments
R evaluates an expression in a scope that determines which value any 

given variable refers to. In the standard evaluation, R uses what is known 

as lexical scope. This essentially means that variables in an expression are 

referring to the variables defined in the blocks around the expression. If you 

write an expression at the outermost level of an R script, or in the global 

environment, then variable names in the expression refer to global variables. 

An expression inside a function, on the other hand, is evaluated in the scope 

of a function execution, which means that variable symbols refer to local 
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variables or function parameters if they are defined; only if they are not 

defined do they refer to global variables. A function defined inside another 

function will have a nested scope—variables in an expression there will first 

be searched for in the innermost function, then the surrounding function, 

and only if they are not found either place, in the global environment.

Consider this abstract example:

x <- 1

f <- function(y) {

  z <- 3

  function() x + y + z

}

g <- f(2)

h <- f(3)

g()

## [1] 6

h()

## [1] 7

In the example, we define four variables in the global environment, 

x, f, g, and h. In the function f we have one formal parameter, y, and one 

local variable, z. Whenever we call f, a scope where y exists is created, and 

the first statement in the function call adds z to this scope. The function 

returns another function, a closure, that contains an expression that refers 

to variables x, y, and z. If we call this function, which we do when we call 

functions g and h that are the results of two separate calls to f, we will 

evaluate this expression. When R evaluates the expression, it needs to find 

the three variables. They are neither formal arguments nor local variables in 

the functions we call (g and h), but since the functions were created inside 

calls to f, they can see y and z in their surrounding scope. Both can find x in 

the global environment. Since g and h are the results of separate calls to f, the 

surrounding scope of calls to them are different instances of local scopes of f.
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Scopes are implemented through environments, and even though 

the rules that guide environments and evaluation are straightforward, 

you have to be careful if you start manipulating them. You can think of 

environments as tables that map variables to values. Also, all environments 

have a parent environment, an enclosing scope, that R will search in if a 

variable is not found when it searches the first environment. Environments 

thus have a tree structure that usually follows nested scopes, and that ends 

in a root in the empty environment. Packages you load are put on top of this 

environment, and on top of all loaded environments, we have the global 

environment—which is why you can find variables defined in packages if 

you search in the global environment.

Strictly speaking, there are a few other details on how packages and 

environments interact that I do not include in this view on environments, 

but they are not important for the discussion here. If you are interested, 

you can find these details in my other book, Meta-programming in R 

(Mailund, 2017c). For this book, we will simply assume that everything we 

define at the global level or any package is found in the global environment 

and consider this the root of the environment tree.

When we define new functions, we do not create new environments, 

but we do associate the functions with one—the environment in which we 

define the function. When we defined function f in the previous example, 

it got associated with the global environment, because that is where we 

defined it. We can get the environment a function is associated with using 

the environment function.

environment(f)

## <environment: R_GlobalEnv>

Since f is defined at the global level, its environment is the global 

environment. When we make a function call, we create a new environment 

called the execution environment. This environment is where we store 

parameters and local variables. The environment associated with the 

function will be the parent environment for this execution environment. 
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When we call function f, we thus create an environment where we get a 

mapping from y and z to their values and with a parent environment that is 

the global environment, in which we can find the variable x. Inside the call 

to f, we create a new (anonymous) function and return it. This function 

will also have an environment associated with it, but this time it is the 

local environment we created when we called f. Thus, the environments 

associated with g and h are two different environments as they are the 

result of two different calls to f.

environment(g)

## <environment: 0x7fdd80b25f08>

environment(h)

## <environment: 0x7fdd80a7f468>

Functions defined inside other functions thus carry along with them 

the environments that were created when the surrounding function was 

called, and if we return them from the surrounding function, they still 

carry this enclosing scope along with them. Since they remember the local 

variable and parameters from the enclosing scope, we call such functions 

closures.

In Figure 7-1, I have drawn a simplified graph that shows which 

environments exist and how they are wired together in the example at 

the point where we call function g. I show environments with a gray 

background, variables as circles with pointers to the values the variables 

refer to, and functions as the three components that define a function: 

the formal parameters, the function body, and the enclosing scope—the 

environment associated with the function.

The enclosing environment for function f is the global environment, 

while the enclosing scopes of g and h are the two different instances of 

calls to f. These instance or execution environments have the global 

environment as their parents since that is the enclosing scope of f. 

Because they are two different instances of f, the variables in them can 
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point to different values, as we see for the variable y. For function g, y 

points to 3, while for function h, y points to 2. In a call to function g, we 

create a local environment for the function call—shown at the bottom right 

in the figure. We do not have any local variables in g, so this environment 

does not contain any variables, but it has a parent that is the f instance 

where we created g.

When we evaluate the expression x + y + z inside the call to g, 

we need to map variables to values. The search will start in the local 

environment and then progress up the parent links until it finds a 

matching variable. For variables y and z we find values in the parent of the 

g call, the instance of the f call that created g. For x we find the value in the 

grandparent, the global environment.

Figure 7-1. Environment graph when calling g
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The rule for evaluating expressions is always the same: we look for 

variables by searching in environments, starting with the immediate 

environment where we evaluate the expression and search along the chain of 

parent environments. We check each environment in the chain in turn until 

we find the variable we are looking for. We get the standard evaluation rules 

of lexical scoping because functions get associated with the environment 

where they are created and since this environment is set as the parent 

environment of execution environments. The only trick to understanding 

how expressions are evaluated in R is to understand which environments are 

used. For the body of functions, it is as simple as I have just explained, but for 

function parameters, there are a few more rules to consider.

 Default Parameters, Lazy Evaluation, 
and Promises
When you pass primitive values such as numbers to a function parameter, 

there is nothing we need to evaluate, so there are no complications. This 

is why we didn’t have to worry about the environment of the arguments 

in the previous example. If we pass expressions along as parameters, 

however, we need to know how they should be evaluated.

Most of the time, R behaves as if expressions are evaluated before 

a function is called, but this not what happens. If we passed values 

to functions rather than expressions, we would not be able to get the 

expressions using substitute as we have done in previous chapters. 

When we call a function in R, the parameters will refer to unevaluated 

expressions; such expressions are known as promises. Promises are 

evaluated the first time we use a parameter variable but not before—an  
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approach to parameter evaluation known as lazy evaluation. If we 

never refer to an argument, the corresponding expression will never be 

evaluated, so we can write code such as this without raising exceptions:

f <- function(x, y) x

f(2, stop("error!"))

## [1] 2

We never refer to the parameter y inside the body of f, so we never 

evaluate it. Consequently, we never call stop to raise the error.

So, since parameters can contain expressions, we need a rule for how 

to evaluate them. Here, there is a difference between default parameters, 

defined when the function is created, and parameters provided when the 

function is called. The former is evaluated in the local scopes of function calls, 

while the latter is evaluated in the environment where the function is called.

Consider this function:

f <- function(y, z = 2 * y) y + z

The function takes two parameters, y and z.

f(2, 1)

## [1] 3

But if we only provide y, then z will be set to 2 * y.

f(2)

## [1] 6

When we evaluate the promise that z points to when the function 

is called—we do this in the expression where we use the variable—the 

promise expression is evaluated. This means that R needs to find the 

variable y. If we try to evaluate the expression 2 * y in the scope where the 

function is defined—the global environment—then we would get an error, 

as there is no y variable defined there. The semantics of default parameters 
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could be such that we evaluated them in the scope where we define a 

function. If so, we wouldn’t be able to make default parameters depend on 

other parameters, which is what we want here—we want z to depend on 

y if we do not explicitly provide a value to it. The actual semantics is that 

the promise is evaluated in the function-call environment. When we call 

f, before we evaluate the y + z expression, the situation is therefore as 

shown in Figure 7-2. Here, I have drawn the promise for z as the expression 

passed along as the function argument together with the environment in 

which it should be evaluated.

When we call f with a parameter that is an expression, we do not want 

to evaluate this expression in function-call scope. Consider this:

y <- 2

f(2 * y)

## [1] 12

Figure 7-2. Default parameter promise
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The intent is to call f with 2 * y, which should be 4 since y is 2. If 

we tried to evaluate it inside the function call, however, we would have a 

circular dependency. Inside the function call, y is a variable, and if it points 

to 2 * y, we cannot evaluate the expression without knowing what y is, 

which we cannot know until we have evaluated the expression, which we 

cannot because we do not know what y is….

When we call a function with an expression as an argument, the 

corresponding promise will be evaluated in the environment where we 

call the function, so before we evaluate y + z inside f, the situation is as 

shown in Figure 7-3. Inside the environment of the function call, both y 

and z refer to promises, but these promises are associated with different 

environments. To evaluate the expression y + z, we need to evaluate both 

promises. To get the value for y, we need to evaluate 2 * y in the global 

scope, which gives us 4, and to get the value for z we need to evaluate 2 * 

y in the local scope, which gives us 8.

Figure 7-3. Calling f with an expression for y
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At the risk of taking the example a step too far, let’s consider the 

situation where we call f from another function.

g <- function(x) f(2 * x)

g(2 * y)

## [1] 24

Before we evaluate the expression y + z inside function f, the state of 

the environment graph is as shown in Figure 7-4. It takes a little effort to 

see what happens when we want to evaluate y + z, but doing this exercise 

will go a long way toward understanding environments.

Figure 7-4. Calling g with an expression for x that depend on 
variable y

Chapter 7  environments and expressions



119

We have not yet evaluated the promises y and z. Since z depends on y, 

we need to evaluate y first. To do this, we need to evaluate the expression 

2 * x in the scope of the call to g. Here, we need to evaluate x, which is 

another promise: the expression 2 * y that should be evaluated in the 

global scope (where y refers to a different variable than the local variable 

inside the f instance). In the global scope, y refers to the value 2, so we can 

evaluate 2 * y directly and get the value 4. This value then replaces the 

promise in the scope of the call to g. Once we have evaluated a promise, the 

variable refers to the value and no longer the expression. This now means 

that we can evaluate 2 * x in the scope of the g call to get 8. So now y in the 

call to f refers to 8. This means we can evaluate 2 * y to get 16, which we 

assign the variable z. Finally, we can evaluate y + z to get 8 + 16 = 24.

To summarize this section, parameters we pass to functions, if they are 

not primitive values, are considered expressions that must be evaluated at 

some point. Associated with the expressions, we have a scope in which to 

evaluate the them. There is one more caveat, though, which I hinted to in the 

previous example: parameters are considered expressions only until the first 

time we evaluate them. After that, they are the result of this evaluation.

There are pros and cons with these semantics—though predominantly 

cons. We can avoid computing values we do not need because promises 

are not evaluated until we refer to the variable that holds them. Moreover, 

we can make default parameters that depend on some computation inside 

a function call as long as we do those computations before we use the 

variable that needs them. For example, we can define a default parameter 

in terms of a variable we set inside a function.

h <- function(x, y = 2 * w) {

  w <- 2

  x + y

}

h(1)

## [1] 5
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However, this will fail if we refer to the promise that needs the variable 

before we compute it.

h <- function(x, y = 2 * w) {

  res <- x + y

  w <- 2

  res

}

h(1)

## Error in h(1): object 'w' not found

We have to be careful if a promise depends on a variable that we 

update during a computation. Note that a promise is evaluated only once; 

after the evaluation, the variable that used to hold it now holds the result 

of the evaluation and no longer the promise expression. If we change 

variables that occurred in the promise, we do not update the value that the 

variable now holds.

h <- function(x, y = 2 * w) {

  w <- 1

  res <- x + y

  w <- 2

  res

}

h(1)

## [1] 3
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The promises held by default parameters do not usually cause 

problems. It is simple to follow which local variables will change in the 

function and at what point the promise will be evaluated. Lazy evaluation 

of arguments, however, is a common source of problems when combined 

with closures. Consider this function:

make_adder <- function(n) function(m) n + m

This returns a closure that will add n to its argument, m. We can use it 

like this:

add_1 <- make_adder(1)

add_2 <- make_adder(2)

add_1(1)

## [1] 2

add_2(1)

## [1] 3

No problems here, but now consider this:

adders <- vector("list", 3)

for (i in 1:3) adders[[i]] <- make_adder(i)

The intent here is to create three adder functions that add 1, 2, and 3, 

respectively, to their argument. When we call the first function, though, we 

get an unpleasant surprise.

adders[[1]](1)

## [1] 4
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The expression n + m inside the closure is not evaluated until we call it. 

Before we evaluate the body in the adders[[1]](1) call, the environment 

graph looks like Figure 7-5. All three adders are closures that refer to 

different instances of make_adders, but all these instances have n refer to 

a promise that is the expression i. The variable i is found in the global 

environment and not in the closure environment. After we have created all 

three closures, i refers to the number 3. To evaluate n + m inside the adder, 

we must first evaluate the promise that n refers to. We search for n and find 

it in the parent environment of the function call (the closure environment) 

where n refers to i that should be evaluated in the global environment. We 

evaluate it and now n refers to 3, as shown in Figure 7-6. This is why the 

result of calling adders[[1]] with m set to 1 returns 4 and not 2.

Figure 7-5. Adders before evaluating the body of the adders[[1]](1) 
call
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After we have called this closure, the variable n no longer refers to a 

promise but to the value 3, so changing i at this point will not affect the 

closure.

i <- 1

adders[[1]](1)

## [1] 4

It will, however, affect the closures where we haven’t evaluated the 

promise yet, so if we call one of the other closures after changing i, we will 

see the result of the change.

adders[[2]](1)

## [1] 2

Figure 7-6. Adders after evaluating the n promise in adders[[1]]
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This is a problem that can occur only when you create closures, but 

every time you do, the risk is there. You can avoid the problem by explicitly 

evaluating promises before you return the closure; this is what the function 

force is for.

make_adder <- function(n) {

  force(n)

  function(m) n + m

}

for (i in 1:3) adders[[i]] <- make_adder(i)

for (i in 1:3) print(adders[[i]](0))

## [1] 1

## [1] 2

## [1] 3

 Quotes and Non-standard Evaluation
What we have seen so far in this chapter is the standard way to evaluate 

expressions, but as you can probably guess, the reason we call it the 

standard way is because there are alternatives to it—non-standard 

evaluation. That would be any other way we could evaluate expressions.

Non-standard evaluation follows the same rules from looking up 

variables to value mappings that standard evaluation follows. We have a chain 

of environments, and we search them in turn. What makes it non- standard 

evaluation is that we chain together environments in alternative ways.

To implement non-standard evaluation, we first need an expression 

to evaluate—rather than the value that is the result of evaluating one. We 

have already seen two ways of obtaining such an expression: we have 

used quote to get an expression from a literal expression, or we can use 

substitute to translate a function argument into an expression. There 

are other ways to create quoted expressions—see, for example, functions 
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expression and bquote—and substitute can be used for more than 

simply translating function arguments into expressions, but quote 

and substitute on arguments suffice for most uses of non-standard 

evaluation. They both give us a quoted expression with no environment 

associated with it.

ex1 <- quote(2 * x + y)

ex1

## 2 * x + y

f <- function(ex) substitute(ex)

ex2 <- f(2 * x + y)

ex2

## 2 * x + y

When implementing lambda expressions, we used such expressions to 

create new functions.

g <- rlang::new_function(alist(x=, y=), body = ex1)

g

## function (x, y)

## 2 * x + y

g(1,3)

## [1] 5

A more direct way to evaluate an expression is using eval.

x <- 1

y <- 3

eval(ex1)

## [1] 5
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With eval, we will evaluate the expression in the environment where 

we call eval by default, so previously we evaluated ex1 in the global 

environment, and in the following example we evaluate it in the local 

environment of calls to function h.

h <- function(x, y) eval(ex1)

h

## function(x, y) eval(ex1)

h(1,3)

## [1] 5

If we use the default environment in calls to eval, we get the standard 

evaluation, but we do not have to use the default environment. We can 

provide an environment to eval, which is the one we want it to evaluate 

the expression in. For example, we can make function h evaluate ex1 in the 

calling environment instead of its own local environment.

h <- function(x, y) eval(ex1, rlang::caller_env())

x <- y <- 1

h(4,4)

## [1] 3

Here, we call h from the global environment where x and y are set to 1. 

Even though the local variables in the call to h are 4 and 4, 2 * x + y evaluates 

to 3 because it is the values of x and y in the global environment that are used.

Similarly, we can use an alternative environment for functions we 

create. By default, new_function will use the environment where we create 

the function, so for example, we can create a function that creates a closure 

this way:

f <- function(x) rlang::new_function(alist(y=), ex1)

f(2)
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## function (y)

## 2 * x + y

## <environment: 0x7fdd819805f8>

f(2)(2)

## [1] 6

We can provide an environment to new_function, however, to change 

this behavior. Consider, for example, this function:

g <- function(x) {

  rlang::new_function(alist(y=), ex1, rlang::caller_env())

}

g(2)

## function (y)

## 2 * x + y

g(2)(2)

## [1] 4

When we call g, we get a new function, but this function will be 

evaluated in the scope where we call g, not the scope inside the call to g. 

Thus, the argument x to g will not be used when evaluating 2 * x + y. In 

this example, we instead use the global variable x, which we set to 1 earlier.

With eval, the environment parameter doesn’t have to be an 

environment. You can use a list or a data.frame (which is strictly 

speaking also a list) instead.

eval(ex1, list(x = 4, y = 8))

## [1] 16

df <- data.frame(x = 1:4, y = 1:4)

eval(ex1, df)

## [1]  3  6  9 12
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Evaluating expressions in the scope of lists and data frames is a 

powerful tool exploited in domain-specific languages such as dplyr. But 

lists and data frames do not have the graph structure that environments 

have, which leads us to ask: if we do not find a variable in the list or data 

frame, where do we find it when we call eval? To answer this, eval takes 

a third argument that determines the enclosing scope. If variables are 

not found in the environment parameter, then eval will search in the 

enclosing scope parameter.

Consider the functions f and g defined here:

f <- function(expr, data, y) eval(expr, data)

g <- function(expr, data, y) eval(expr, data, rlang::caller_env())

They both evaluate an expression in a context defined by data, but f 

then uses the function call scope as the enclosing scope, while g uses the 

calling scope as the enclosing environment in the call to eval. Both take 

the parameter y, but if we use y in the expression we pass to the functions, 

only f will use the parameter; g, on the other hand, will look for y in the 

calling scope if it is not in data.

df <- data.frame(x = 1:4)

y <- 1:4

f(quote(x + y), df, y = 5:8) == 1:4 + 5:8

## [1] TRUE TRUE TRUE TRUE

g(quote(x + y), df, y = 5:8) == 1:4 + 1:4

## [1] TRUE TRUE TRUE TRUE

The combination of quoted expressions and non-standard evaluation 

is undoubtedly a powerful tool for creating domain-specific languages. 

However, it has its pitfalls: complications on who is responsible for quoting 

expressions and complications on stringing environments together 

correctly.
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Let’s consider these in turn. Some code must be responsible for 

turning an expression into a quoted expression. The simplest solution to 

this is to leave it up to the user to always quote expressions that must be 

quoted. This would be the solution in a function like this:

f <- function(expr, data) eval(expr, data, rlang::caller_env())

f(quote(u + v), data.frame(u = 1:4, v = 1:4))

## [1] 2 4 6 8

It is, however, a bit cumbersome to explicitly quote every time you call 

such a function, and it goes against the spirit of domain-specific languages 

where we want to make new syntax for easier code writing. However, if we 

let the function quote the expression using substitute, as in this function:

fq <- function(expr, data) {

  eval(substitute(expr), data, rlang::caller_env())

}

fq(u + v, data.frame(u = 1:4, v = 1:4))

## [1] 2 4 6 8

then we potentially run into problems if we want to call this function from 

another function. We can try just calling fq with an expression.

g <- function(expr) fq(expr, data.frame(u = 1:4, v = 1:4))

g(u + v)

## Error in eval(substitute(expr), data, rlang::caller_env()): 

object 'u' not found

This doesn’t work because expr is now considered a promise that 

should be evaluated in the global scope, so inside fq we try to evaluate 

the expression, which we cannot do because u and v are not defined. We 

would be even worse off if we used an expression that we actually can 

evaluate because it wouldn’t be obvious that we were evaluating it in the 

wrong scope and thus on the wrong data.
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u <- v <- 5:8

g(u + v)

## [1] 10 12 14 16

We could try to get the expression quoted using substitute inside g.

g <- function(expr) {

  fq(substitute(expr), data.frame(u = 1:4, v = 1:4))

}

g(u + v)

## expr

This fails in a different way. The expression that we get inside fq 

when that function calls substitute is the expression the function 

was called with, which is substitute(expr). So, it evaluates 

substitute(substitute(expr)) and gets expr, not u + v. The same 

would happen if we used quote, in this case because quote(expr) doesn’t 

substitute the function argument into expr.

g <- function(expr) {

  fq(quote(expr), data.frame(u = 1:4, v = 1:4))

}

g(u + v)

## expr

There is no good way to resolve this problem. If you call a function that 

quotes an expression, you should give it a literal expression to quote. Such 

functions are essentially not useful for programming—they provide an 

interface to a user of your domain-specific language, but you cannot use 

them to implement the language by calling them from other functions.
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The solution is to have functions that expect expressions to be quoted, 

like the function f we wrote before fq, and use them when you call one 

function from another.

g <- function(expr) {

  f(substitute(expr), data.frame(u = 1:4, v = 1:4))

}

g(u + v)

## [1] 2 4 6 8

If you want some functionality to be available for programming—in 

other words, calling a function from another function—and also as an 

operation in your language, then write one that expects expressions to be 

quoted and another that wraps it.

f <- function(expr, data) eval(expr, data, rlang::caller_env())

fq <- function(expr, data) f(substitute(expr), data)

fq(u + v, data.frame(u = 1:4, v = 1:4))

## [1] 2 4 6 8

This, however, brings us to the second pitfall—getting environments 

wired up correctly. Consider these two functions:

g <- function(x, y, z) {

  w <- x + y + z

  f(quote(w + u + v), data.frame(u = 1:4, v = 1:4))

}

h <- function(x, y, z) {

  w <- x + y + z

  fq(w + u + v, data.frame(u = 1:4, v = 1:4))

}
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Function g explicitly quotes the expression w + u + v and calls f; 

h instead calls fq that takes care of the quoting for it. The first function 

works, the second does not.

g(1:4, 1:4, 1:4) == (1:4 + 1:4 + 1:4) + 1:4 + 1:4

## [1] TRUE TRUE TRUE TRUE

h(1:4, 1:4, 1:4) == (1:4 + 1:4 + 1:4) + 1:4 + 1:4

## Error in eval(expr, data, rlang::caller_env()): object 'w' 

not found

This time, the problem is not quoting. Both functions attempt to 

evaluate the same expression, w + u + v, inside function f. The problem 

is that the variable w is available to f only when we call it from g. To see 

why, consider the environments in play. We do not define any nested 

functions, so all four functions (f, fq, g, and h) only have access to their 

local environment and the global environment. The expression that f 

gets as its argument, however, is not evaluated in f’s local environment 

but in its caller’s environment. When f is called directly from g, the caller 

environment is the local environment of the g call, where w is defined. 

When f is called from h, however, it is not called directly. Since h calls fq 

that then calls f, the caller of f in this case is fq. The variable w is defined in 

the local scope of h, but this is not where f tries to evaluate the expression; 

f tries to evaluate the expression in the scope of fq where w is not defined.

It is less obvious how we should resolve this issue. It is possible to pass 

environments along with expressions as separate function parameters, 

but this becomes cumbersome if we have to work with more than one 

expression. What we want is to associate expressions with the environment 

in which we want to look up variables we do not explicitly override, for 

example by getting them from a data frame.
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Expressions do not carry along with them any environment, so 

we cannot get there directly. Formulas, however, do. Instead of using 

expressions, we can use one-sided formulas. Quoting would now involve 

making a formula out of an expression. If the formula is one-sided, we can 

get the expression as the second element in it, and the environment where 

the formula is defined is available using the environment function. We can 

rewrite the f and fq functions to be based on formulas.

ff <- function(expr, data) {

  eval(expr[[2]], data, environment(expr))

}

ffq <- function(expr, data) {

  expr <- eval(substitute(~ expr))

  environment(expr) <- rlang::caller_env()

  ff(expr, data)

}

With ff you need to explicitly create the formula—similar to how you 

had to quote expressions in f explicitly—and this automatically gives 

you the environment associated with the formula. With ffq we translate 

an expression into a formula using substitute and explicitly set its 

environment to the caller environment. We can now define g and h similar 

to before, except that g uses a formula instead of quote.

g <- function(x, y, z) {

  w <- x + y + z

  ff(~ w + u + v, data.frame(u = 1:4, v = 1:4))

}

h <- function(x, y, z) {

  w <- x + y + z

  ffq(w + u + v, data.frame(u = 1:4, v = 1:4))

}

Chapter 7  environments and expressions



134

This time, both functions will evaluate the expressions in the right scope.

g(1:4, 1:4, 1:4) == (1:4 + 1:4 + 1:4) + 1:4 + 1:4

## [1] TRUE TRUE TRUE TRUE

h(1:4, 1:4, 1:4) == (1:4 + 1:4 + 1:4) + 1:4 + 1:4

## [1] TRUE TRUE TRUE TRUE

Associating environments to expressions is the idea behind quosures 

from the rlang package. The word is a portmanteau created from quotes 

and closures—similar to how closures are functions with associated 

environments, quosures are quoted expressions with associated 

environments. Quosures are based on formulas, and we could use 

formulas as in the example we just saw, but the rlang package provides 

functionality that makes it much simpler to program domain-specific 

languages using quosures. The rlang package implements so-called tidy 

evaluation, which is the topic of the next chapter.
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CHAPTER 8

Tidy Evaluation
The so-called tidyverse refers to a number of R packages designed to work 

well together and based on similar designs that can all be considered 

domain-specific languages in themselves. These packages include dplyr, 

tidyr, and ggplot2 and mainly consist of functions that do non-standard 

evaluation. The way they manage non-standard evaluation is consistent 

among the packages and based on what they call tidy evaluation, which 

primarily relies on two features implemented in the rlang package: 

quosures and quasi-quotation.

We will use the rlang package once more, but to make it explicit when 

we use this package and not basic R non-standard evaluation, I will usually 

use fully qualified names. In other words, I will write rlang::quo instead 

of quo and not load the package. We will also use the purrr package, but 

here as well I will use fully qualified names. I will load magrittr to get 

the pipeline operator, however, and the tibble and dplyr packages for 

working with data frames.

library(magrittr)

library(dplyr)

library(tibble)
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 Quosures
The rlang package provides functions to replace quote and substitute 

that create quosures—expressions based on formulas that carry with them 

their environment—instead of quoted expressions. To create a quosure 

from an expression, you use quo.

q <- rlang::quo(2 * x)

q

## <quosure>

##   expr: ^2 * x

##   env:  global

Inside a function call, the quosure analog to substitute is enquo.

f <- function(expr) rlang::enquo(expr)

q <- f(2 * x)

q

## <quosure>

##   expr: ^2 * x

##   env:  global

In both examples, the scope associated with the quosure is the global 

environment because this is the level at which the expression is written.

A quosure is just a special type of formula, so we can access one as we 

did in the previous section to get the environment and expression,

q[[2]]

## 2 * x

environment(q)

## <environment: R_GlobalEnv>
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However, rlang provides functions for working with quosures that 

make the intent of our code clearer. To get the expression out of a quosure, 

we use the function get_expr.

rlang::get_expr(q)

## 2 * x

The term is ironic since the unquote function returns a quoted 

expression, but it does strip away the quosure-ness and gives us a raw 

expression. There is another unquote function, UQ, that does unquote an 

expression in the sense of evaluating it, but it has a different purpose that 

we get to in the next section.

Getting the environment associated with a quosure can be done using 

environment as we saw earlier, but the rlang function for this is get_env.

rlang::get_env(q)

## <environment: R_GlobalEnv>

With quosures, you can no longer evaluate them with eval. A quosure 

is a formula, and the result of evaluating a formula is the formula itself.

eval(q)

## <quosure>

##   expr: ^2 * x

##   env:  global

Instead, you need to use the function eval_tidy.

x <- 1

rlang::eval_tidy(q)

## [1] 2
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x <- 2

rlang::eval_tidy(q)

## [1] 4

The quosure is evaluated inside the environment it is associated with. 

We created quosure q inside function f, but its environment is the global 

environment, so when we modify this, by changing x, it affects the result of 

evaluating q.

If we create a quosure inside a local function scope, it will remember 

this context—just like a closure. For example, if we define function f as this

f <- function(x, y) rlang::quo(x + y + z)

the quosure will know the function parameters x and y from when f is 

called but will have to find z elsewhere. Consider the contrast between 

evaluating the quosure and the expression x + y + z directly, shown here:

q <- f(1, 2)

x <- y <- z <- 3

rlang::eval_tidy(q) # 1 + 2 + 3

## [1] 6

x + y + z # 3 + 3 + 3

## [1] 9

Just like eval, eval_tidy lets you provide a list, data frame, or 

environment with bindings from variables to values. When you do 

this, the values you provide will overrule the variables in the quosure’s 

environment—an effect known as over-scoping. Consider this:

x <- 1:4

y <- 1:4

q <- quo(x+y)
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rlang::eval_tidy(q)

## [1] 2 4 6 8

rlang::eval_tidy(q, list(x = 5:8))

## [1]  6  8 10 12

The quosure q is bound to the global environment, so when we 

evaluate it, x and y are both 1:4. However, when we provide the second 

argument to eval_tidy, we can override the value of x to 5:8. You will 

recognize this feature from dplyr where you have access to columns in 

data frames in arguments you provide to the functions there, and these 

columns overrule any global variable that might otherwise have been used.

This can also be used to override variables in a function call with 

function parameters. Consider these two functions:

f <- function(expr,x) {

  q <- rlang::enquo(expr)

  rlang::eval_tidy(q)

}

g <- function(expr,x) {

  q <- rlang::enquo(expr)

  rlang::eval_tidy(q, environment())

}

f(x + y, x = 5:8)

## [1] 2 4 6 8

g(x + y, x = 5:8)

## [1]  6  8 10 12
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The function f evaluates the quosure in its scope, which doesn’t 

contain the function parameter x, while the function g over-scopes with 

the function environment. This makes the variable x refer to the function 

parameter rather than the global parameter.

The expression you evaluate with eval_tidy doesn’t have to be a 

quosure. The function is equally happy to evaluate bare expressions, and 

then it behaves just like eval.

rlang::eval_tidy(quote(x + y))

## [1] 2 4 6 8

Just like eval, eval_tidy takes a third argument that will behave as 

the enclosing scope. This is used for bare expressions—those created with 

quote.

rlang::eval_tidy(quote(xx), env = list2env(list(xx = 5:8)))

## [1] 5 6 7 8

It is not used with quosures.

rlang::eval_tidy(quo(xx), env = list2env(list(xx = 5:8)))

## Error in rlang::eval_tidy(quo(xx), env = list2env(list 

(xx = 5:8))): object 'xx' not found

The list2env function I have used here translates a list into an 

environment—as strongly hinted by the name. It is a quick way to 

construct an environment and populate it with variables.

If you want to create a closure with over-scoping (in other words, you 

want to create a function that evaluates a quosure where it first finds local 

variables and then look in the quosure’s environment), you cannot directly 

call eval_tidy when creating the function. This would ask R to attempt 

to evaluate the closure, but you do not yet have the variables you need—
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those are provided when you call the closure. Instead, you can separate the 

bare expression and the environment of the quosure using get_expr and 

get_env, respectively. Consider the function make_function shown here:

make_function <- function(args, body) {

  body <- rlang::enquo(body)

   rlang::new_function(args, rlang::get_expr(body), rlang::get_

env(body))

}

f <- function(z) make_function(alist(x=, y=), x + y + z)

g <- f(z = 1:4)

g

## function (x, y)

## x + y + z

## <environment: 0x7f9b0154b808>

g(x = 1:4, y = 1:4)

## [1]  3  6  9 12

Here, make_function takes two arguments, a pair list of arguments 

and an expression for the body of a function. It is slightly more primitive 

than the lambda expressions we wrote in the previous chapter, but it is 

essentially doing the same thing. In this example, I am focusing on the 

closure we create rather than on language design issues. We translate 

the function body into a quosure, which guarantees that we have an 

environment associated with it. In the function we create using new_

function, however, we strip the environment from the quosure to create 

the body of the new function, but we assign the function’s environment to 

be the quosure environment.
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In the function f we have a local scope that knows the value of z, and we 

create a new function in this scope. The quosure we get from this is associated 

with the local f scope, so it also knows about z. We provide variables x and y, 

when calling g, but the z value is taken from the local scope of f.

If called directly, there is no difference between using the caller’s 

environment or the quosure’s environment.

make_function_quo <- function(args, body) {

  body <- rlang::enquo(body)

   rlang::new_function(args, rlang::get_expr(body), rlang::get_

env(body))

}

make_function_quote <- function(args, body) {

  body <- substitute(body)

  rlang::new_function(args, body, rlang::caller_env())

}

g <- make_function_quo(alist(x=, y=), x + y)

h <- make_function_quote(alist(x=, y=), x + y)

g(x = 1:4, y = 1:4)

## [1] 2 4 6 8

h(x = 1:4, y = 1:4)

## [1] 2 4 6 8

However, consider a more involved example, where we collect 

expressions in a list and have a function for translating all the expressions 

into functions that we can then apply over values using the invoke_map 

function from the purrr package. We can construct the expressions like 

this, using the linked lists structure we have previously used:

cons <- function(elm, lst) list(car=elm, cdr=lst)

lst_length <- function(lst) {

  len <- 0
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  while (!is.null(lst)) {

    lst <- lst$cdr

    len <- len + 1

  }

  len

}

lst_to_list <- function(lst) {

  v <- vector(mode = "list", length = lst_length(lst))

  index <- 1

  while (!is.null(lst)) {

    v[[index]] <- lst$car

    lst <- lst$cdr

    index <- index + 1

  }

  v

}

expressions <- function() list(ex = NULL)

add_expression <- function(ex, expr) {

  ex$ex <- cons(rlang::enquo(expr), ex$ex)

  ex

}

Translating the expressions into functions is straightforward. We need 

to reverse the resulting list only if we want the functions in the order we 

add them since we prepend expressions when we use the linked lists.

make_functions <- function(ex, args) {

  results <- vector("list", length = lst_length(ex$ex))

  i <- 1; lst <- ex$ex

  while (!is.null(lst)) {

    results[[i]] <-
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      rlang::new_function(args, rlang::get_expr(lst$car),

                           rlang::get_env(lst$car))

    i <- i + 1

    lst <- lst$cdr

  }

  rev(results)

}

With this small domain-specific language for collecting expressions, we 

can write a function that creates expressions for computing y-coordinates 

of a line given an intercept.

make_line_expressions <- function(intercept) {

  expressions() %>%

    add_expression(coef + intercept) %>%

    add_expression(2*coef + intercept) %>%

    add_expression(3*coef + intercept) %>%

    add_expression(4*coef + intercept)

}

The expressions know the intercept when we call make_line_

expressions—that is the intent at least—but the coefficient should 

be added later in a function call. We can create the functions for the 

expressions using another function.

eval_line <- function(ex, coef) {

  ex %>% make_functions(alist(coef=)) %>%

    purrr::invoke_map(coef = coef) %>% unlist()

}

The invoke_map function is similar to the various map functions from 

purrr, but instead of mapping a function over several values, it takes a 

sequence of functions and applies each to a value.
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We can now pipe these functions together to get points on a line.

make_line_expressions(intercept = 0) %>% eval_line(coef = 1)

## [1] 1 2 3 4

make_line_expressions(intercept = 0) %>% eval_line(coef = 2)

## [1] 2 4 6 8

make_line_expressions(intercept = 1) %>% eval_line(coef = 1)

## [1] 2 3 4 5

Everything works as intended here, but what would happen if we used 

quotes instead? It is simple to write the corresponding functions.

add_expression <- function(ex, expr) {

  ex$ex <- cons(substitute(expr), ex$ex)

  ex

}

make_functions <- function(ex, args) {

  results <- vector("list", length = lst_length(ex$ex))

  i <- 1; lst <- ex$ex

  while (!is.null(lst)) {

     results[[i]] <- rlang::new_function(args, lst$car, 

rlang::caller_env())

    i <- i + 1

    lst <- lst$cdr

  }

  rev(results)

}

We will get an error if we try to use them as before, however.

make_line_expressions(intercept = 0) %>% eval_line(coef = 1)

## Error in (function (coef) : object 'intercept' not found
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The reason for this is obvious once we consider which environments 

contain information about the intercept. This variable lives in the scope 

of calls to make_line_expressions, but when we create the functions, we 

do so by calling make_functions from inside eval_line. The functions 

are created with eval_line local environments as their closures, and 

intercept is not found there.

In general, it is safer to use quosures than bare expressions for non- 

standard evaluation exactly because they carry their environment with 

them, alleviating the problems we have with keeping track of which 

environment to evaluate expressions in.

One thing to mention before we move on to the next topic is the 

function quos. This function works as quo but for a sequence of arguments 

that are returned as a list of quosures.

rlang::quos(x, y, x+y)

## [[1]]

## <quosure>

##   expr: ^x

##   env:  global

##

## [[2]]

## <quosure>

##   expr: ^y

##   env:  global

##

## [[3]]

## <quosure>

##   expr: ^x + y

##   env:  global
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The primary use of quos is to translate the three-dots argument into a 

list of quosures.

f <- function(...) rlang::quos(...)

f(x, y, z)

## [[1]]

## <quosure>

##   expr: ^x

##   env:  global

##

## [[2]]

## <quosure>

##   expr: ^y

##   env:  global

##

## [[3]]

## <quosure>

##   expr: ^z

##   env:  global

 Quasi-quoting
The final topic of this chapter involves quasi-quoting. This is a mechanism 

by which we can work with quoted expressions but at the same time 

substitute some parts of the expression by the value that subexpressions 

evaluate to. When we directly call functions that do non-standard 

evaluation, we can usually provide expressions exactly as we want them, 

but as soon as we start using such non-standard evaluation functions 

in programs where we call them from other functions, we need some 

flexibility in how we construct expressions. We can do this with meta- 

programming where we modify call objects, but a better approach is 

implemented in the rlang package, the so-called quasi-quoting.
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Consider this simple example. We have a data frame, and we want to 

filter away rows where a given column has missing data. We can do this 

using dplyr’s filter function like this:

df <- tribble(

  ~x, ~y,

   1,  1,

  NA,  2,

   3,  3,

   4, NA,

   5,  5,

  NA,  6,

   7, NA

)

df %>% dplyr::filter(!is.na(x))

## # A tibble: 5 x 2

##       x     y

##   <dbl> <dbl>

## 1    1.    1.

## 2    3.    3.

## 3    4.   NA

## 4    5.    5.

## 5    7.   NA

df %>% dplyr::filter(!is.na(y))

## # A tibble: 5 x 2

##       x     y

##   <dbl> <dbl>

## 1    1.    1.

## 2   NA     2.

## 3    3.    3.

## 4    5.    5.

## 5   NA     6.
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Here, we use the same code for two different variables. It is 

straightforward code, so we would not write a function to avoid the 

duplication, but for more complicated pipelines, we would. Therefore, for 

the sake of argument, let’s imagine that we want to replace the pipeline 

with a function. We could attempt to write it like this:

filter_on_na <- function(df, column) {

  column <- substitute(column)

  df %>% dplyr::filter(!is.na(column))

}

df %>% filter_on_na(x)

## Warning in is.na(column): is.na() applied to non-

## (list or vector) of type 'symbol'

## # A tibble: 7 x 2

##       x     y

##   <dbl> <dbl>

## 1    1.    1.

## 2   NA     2.

## 3    3.    3.

## 4    4.   NA

## 5    5.    5.

## 6   NA     6.

## 7    7.   NA

We use substitute to translate the column name into a symbol 

and then apply the filter pipeline. It doesn’t work, of course, and the 

reason is that filter does non-standard evaluation as well and translates 

the predicate !is.na(column) into this exact expression. So, it needs to 

know the variable column. Now, since filter evaluates its argument as a 

quosure, it can find the variable column, but it finds that this is a symbol—it 

is, in this case, the symbol x—but that is not what we want it to see. We 

want filter to see the column x, but that is not how filter works.
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What we want to do is to substitute the symbol held in the variable 

column into the expression/quosure that filter sees. We can do this with 

the “bang-bang” operator !!.

filter_on_na <- function(df, column) {

  column <- rlang::enexpr(column)

  df %>% dplyr::filter(!is.na(!!column))

}

df %>% filter_on_na(x)

## # A tibble: 5 x 2

##       x     y

##   <dbl> <dbl>

## 1    1.    1.

## 2    3.    3.

## 3    4.   NA

## 4    5.    5.

## 5    7.   NA

df %>% filter_on_na(y)

## # A tibble: 5 x 2

##       x     y

##   <dbl> <dbl>

## 1    1.    1.

## 2   NA     2.

## 3    3.    3.

## 4    5.    5.

## 5   NA     6.

This operator unquotes the following expression, evaluates it, and 

puts the result into the quoted expression that filter sees. So the 

value of column, rather than the symbol column, gets inserted into!is.

na(!!column).
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You will have noticed that I used a different function, rlang::enexpr, to 

create the quoted column name. In the rlang package there are two functions 

that behave like quote and substitute in that they create bare expressions, 

but they allow quasi-quoting with the bang-bang operator, something 

substitute and quote do not. Consider the functions f and g defined like this:

f <- function(x) substitute(x)

g <- function(x) rlang::enexpr(x)

When called directly, both will return the expression we give as the 

parameter x, but consider the case where we call them from another 

function, h, where we want to substitute its parameter for the parameter x.

h <- function(func, var) func(!!var)

h(f, quote(x))

## !(!var)

h(g, quote(x))

## x

In f, where we use substitute, we get the expression !!var back, but 

in function g, where we use enexpr, we get the substitution done and get 

the desired result x.

The function enexpr works like enquo to translate function parameters 

into expressions, but it translates them into bare expressions rather than 

quosures. As the analog to quo, which takes an expression directly and 

creates a quosure, we have expr, which creates a bare expression—like 

quote—but allows quasi-quotation.

x <- y <- 1

quote(2 * x + !!y)

## 2 * x + (!(!y))

rlang::expr(2 * x + !!y)
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## 2 * x + 1

rlang::quo(2 * x + !!y)

## <quosure>

##   expr: ^2 * x + 1

##   env:  global

You have to be a little bit careful when using the bang-bang operator, 

depending on which version of the rlang package you use. It is built from 

the negation operator, !, which has a low precedence. The only operators 

with lower precedence are the logical operators and assignments. This 

means if you try to unquote x in the expression x + y, you might, in fact, 

be unquoting the entire expression if you simply write !!x + y. You only 

get !! bound to x if the operator you use in the expression is a logical 

operator.

If you try to evaluate this express, you will see whether you have an old 

version or a new version of the package. If you have an old version, the first 

expression will evaluate x + y since ! has lower precedence than +; if you 

have a newer version of rlang, then only the value of x will be substitute 

into the expression.

x <- y <- 2

rlang::expr(!!x + y)

## 2 + y

The most recent version of the package, at the time of writing, has 

resolved this; instead of relying on R’s precedence rules, it will examine 

the expression before it evaluates unquoted expressions, and it gives the 

bang-bang operator a much tighter precedence than the negation operator 

has. If you do not have the latest version of the package, however, you can 

get around this problem using parentheses, or you can use the function- 

variant of unquoting, UQ.
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rlang::expr(UQ(x) + y)

## 2 + y

When we translate a function argument into an expression, with 

enexpr, or a quosure, with enquo, the bang-bang operator or the UQ function 

will substitute the results of expressions into the expressions/quosures we 

create, which is why the second filter_on_na function worked.

You can unquote on the left-hand side of named parameters in function 

calls as well, but the R parser does not allow you to write code such as this:

f(UQ(var) = expr)

This is because the left-hand side in function call arguments must 

be symbols. To get around this problem, the rlang package provides an 

implementation of the := operator that does allow such assignments. 

Consider the following:

f <- function(df, summary_name, summary_expr) {

  summary_name <- rlang::enexpr(summary_name)

  summary_expr <- rlang::enquo(summary_expr)

  df %>% mutate(UQ(summary_name) := UQ(summary_expr))

}

tibble(x = 1:4, y = 1:4) %>% f(z, x + y)

## # A tibble: 4 x 3

##       x     y     z

##   <int> <int> <int>

## 1     1     1     2

## 2     2     2     4

## 3     3     3     6

## 4     4     4     8
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The named function call in the following:

  df %>% mutate(UQ(summary_name) := UQ(summary_expr))

behaves like a usual function call with named parameters after the quasi-

quotation substitution has taken place.

A final quasi-quotation function you must know is UQS. This function 

behaves as UQ in that it evaluates its arguments and puts the result into a 

quoted expression, but it is intended for splicing a list of quosures into a 

function call.

Consider this example:

args <- rlang::quos(x = 1, y = 2)

q <- rlang::expr(f(rlang::UQS(args)))

q

## f(x = ~1, y = ~2)

Here, we create a list of quosures for arguments x and y and create an 

expression that calls the function f with these arguments. The UQS function 

is what splices the arguments into the expression for the function call. 

Using UQ, we would get a different expression.

q <- rlang::expr(f(rlang::UQ(args)))

q

## f(list(x = ~1, y = ~2))

As for UQ, though, there is an operator version of UQS, the triple-bang 

operator: !!!.

q <- rlang::expr(f(!!!args))

q

## f(x = ~1, y = ~2)
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To see UQS in action, we consider another toy example. We write a 

function for evaluating the mean of an expression given a data frame. 

Imagine that we want to map over several data frames and compute 

the mean of the same expression or something like that. We construct a 

function for this that evaluates an expression we capture as a quosure and 

computes the mean of the expression in a data frame, using additional 

arguments to modify the call to mean.

mean_expr <- function(ex, ...) {

  ex <- rlang::enquo(ex)

  extra_args <- rlang::dots_list(...)

  mean_call <- rlang::expr(with(

      data,

      mean(!!rlang::get_expr(ex), !!!extra_args))

  )

  rlang::new_function(args = alist(data=),

                      body = mean_call,

                      env = rlang::get_env(ex))

}

mean_sum <- mean_expr(x + y, na.rm = TRUE)

mean_sum

## function (data)

## with(data, mean(x + y, na.rm = TRUE))

There are a few new things to observe here. We use dots_list to 

evaluate the arguments in the ... parameter. We could deal with this in 

other ways, but we don’t necessarily want them to be evaluated lazily, and 

we just want a list to use as extra arguments to a call to mean. We create an 

expression from the ex parameter. Here, we wrap the bare expression in 

ex inside an expression that involves the with function to include data in 

the form of a data frame. We use the !!! operator to splice the additional 
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parameters into the call to mean. We then construct a new function that 

takes a single argument, data; evaluates the with(mean(...)) expression 

in its body; and is evaluated in the scope where ex was defined.

We can test it with the data frame we created earlier:

df

## # A tibble: 7 x 2

##       x     y

##   <dbl> <dbl>

## 1    1.    1.

## 2   NA     2.

## 3    3.    3.

## 4    4.   NA

## 5    5.    5.

## 6   NA     6.

## 7    7.   NA

mean_sum(df)

## [1] 6

To see that the environment we evaluated the expression in is where 

it was defined, we can write a function to capture a parameter in a local 

scope and see that this scope is available when we call the mean function.

f <- function(z) mean_expr(x + y + z, na.rm = TRUE, trim = 0.1)

g <- f(z = 1:7)

g

## function (data)

## with(data, mean(x + y + z, na.rm = TRUE, trim = 0.1))

## <environment: 0x7f9b02d4ab88>

g(df)

## [1] 9
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Using quosures and quasi-quotes adds to the problems you can  

have with keeping track of environments for non-standard evaluation.  

I strongly suggest you use these instead of the bare R quote and 

substitute approach. They do not, however, fix the problem with deciding 

when to quote arguments and with calling functions that translate 

arguments into expressions. If you call a function that uses enquo from 

a function where you have already quoted the argument, then you get it 

double-quoted.

f <- function(expr) rlang::enquo(expr)

g <- function(expr) f(rlang::enquo(expr))

f(x + y)

## <quosure>

##   expr: ^x + y

##   env:  global

g(x + y)

## <quosure>

##   expr: ^rlang::enquo(expr)

##   env:  0x7f9b016be9c8

rlang::eval_tidy(f(x + y), list(x = 1, y = 2))

## [1] 3

rlang::eval_tidy(g(x + y), list(x = 1, y = 2))

## <quosure>

##   expr: ^x + y

##   env:  global

Here, the solution is as before: if you need to call functions with already 

quoted expressions, make two versions—one that expects its argument to 

be quoted and one that does it for you.
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CHAPTER 9

List Comprehension
We will now use what we have learned to implement a valuable 

language construction that is not built into R: list comprehension. List 

comprehensions provide a syntax for mapping and filtering sequences. In 

R we would use functions such as Map or Filter, or the purrr alternatives, 

for this, but in languages such as Haskell or Python, there is syntactic sugar 

to make combinations of mapping and filtering easier to program.

Take an algorithm such as quicksort. Here, the idea is to sort a list by 

picking a random element in it, called the pivot, splitting the data into 

those elements smaller than the pivot, equal to the pivot, and larger than 

the pivot. We then sort those smaller and larger elements recursively 

and concatenate the three lists to get the final sorted list. One way to 

implement this in R is to use the Filter function.

qsort <- function(lst) {

  n <- length(lst)

  if (n < 2) return(lst)

  pivot <- lst[[sample(n, size = 1)]]

  smaller <- Filter(function(x) x < pivot, lst)

  equal <- Filter(function(x) x == pivot, lst)

  larger <- Filter(function(x) x > pivot, lst)

  c(qsort(smaller), equal, qsort(larger))

}
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(lst <- sample(1:10))

##  [1]  3  7  8  2  1  4 10  5  9  6

unlist(qsort(lst))

##  [1]  1  2  3  4  5  6  7  8  9 10

This is readable if you are familiar with functional programming, but 

it does take some decoding to work out the Filter expression and decode 

the predicate used in it. Compare this to a Python implementation that 

does the same thing (except that the pivot is not chosen randomly because 

sampling is required in Python).

def qsort(lst):

    if len(lst) < 2:

        return lst

    pivot = lst[0]

    return qsort([x for x in lst if x < pivot]) +

                 [x for x in lst if x == pivot] +

           qsort([x for x in lst if x > pivot])

Or consider a similar Haskell implementation, shown here:

qsort lst =

    if length lst < 2 then

        lst

    else

        let pivot = lst !! 0

        in qsort([x | x <- lst, x < pivot]) ++

                 [x | x <- lst, x == pivot] ++

           qsort([x | x <- lst, x > pivot])

Expressions such as the following in Python:

    [x for x in lst if x < pivot]
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or the following in Haskell:

    [x | x <- lst, x < pivot]

is what we call list comprehension. List comprehensions consist of three 

components, first an expression that will be evaluated for each element 

in the list (or lists if we use more than one), then one or more lists to map 

over, and finally zero or more predicates we use to filter over. It is thus a 

combination of Map and Filter calls in one expression.

Using non-standard evaluation, we can write an R function that 

provides a similar list comprehension syntax. We will write it such that its 

first argument must be an expression that we evaluate for all elements in 

the input list (or lists) and such that its remaining elements identify either 

lists or predicates. We will use named arguments to identify when an 

argument defines a list and unnamed arguments for predicates.

The function will work as follows: we take the first argument and make 

it into a quosure, so we have the expression plus the environment we 

define it in. We do the same with the rest of the arguments, captured by 

the three-dots parameter since we want the function to take an arbitrary 

number of arguments. We create the first quosure with enquo and the list 

of additional arguments with quos. We then split these into list arguments 

and predicates based on whether they are named arguments. While doing 

this, we evaluate the named arguments to get the data in the input lists and 

extract the expressions for the predicates using get_expr.

With the functions we create, both predicates and the function we 

use to map over the lists, we have to be a careful about which context the 

expression should be evaluated in. We want the expressions to be the body 

of functions we can map over the lists, so we can’t evaluate them in the 

quosures’ environments directly, but we do want those environments to 

be in scope so the expression can see variables that are not part of the list 

comprehension. We, therefore, get the raw expression from the quosure 

using the get_expr function, but functions we create from them will have 

the quosure environment as their enclosing scope.
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We create one function per predicate and one for the main expression 

of the list comprehension. It is not straightforward to combine all 

the predicates in a filter expression to map over all the lists, but it is 

straightforward to use them to update a boolean vector where we keep 

track of which values to include in the final result. We can mask these 

together while applying the predicates one at a time. We can then map 

over the input lists and subset each of them—in the following code I use 

a lambda expression because these are defined in the purrr package as 

formulas where .x refers to the first argument. After filtering the lists, we 

can apply the main function over them and get the final results.

Putting all this together gives us this function:

library(rlang)

library(purrr)

lc <- function(expr, ...) {

  expr <- enquo(expr)

  rest <- quos(...)

  lists <- map(rest[names(rest) != ""], eval_tidy)

  predicates <- map(rest[names(rest) == ""], get_expr)

  keep_index <- rep(TRUE, length(lists[[1]]))

  for (pred in predicates) {

    p <- new_function(lists, body = pred, env = get_env(expr))

    keep_index <- keep_index & unlist(pmap(lists, p))

  }

  filtered_lists <- map(lists, ~.x[keep_index])

   f <- new_function(lists, body = get_expr(expr), env = get_

env(expr))

  pmap(filtered_lists, f)

}
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We can use it to implement quicksort like this:

qsort <- function(lst) {

  n <- length(lst)

  if (n < 2) return(lst)

  pivot <- lst[[sample(n, size = 1)]]

  smaller <- lc(x, x = lst, x < pivot)

  equal <- lc(x, x = lst, x == pivot)

  larger <- lc(x, x = lst, x > pivot)

  c(qsort(smaller), equal, qsort(larger))

}

(lst <- sample(1:10))

##  [1]  9  5  7  8 10  2  1  4  3  6

unlist(qsort(lst))

##  [1]  1  2  3  4  5  6  7  8  9 10

In this function, we only use the filtering aspects of the list 

comprehension, but we can use the lc function in more complex 

expressions. As a cute little example, we can use lc to compute the primes 

less than a given number n.

not_primes <- lc(seq(from = 2*x, to = 100, by = x), x = 2:10) %>%

    unlist %>% unique

not_primes

##  [1]   4   6   8  10  12  14  16  18  20  22  24

## [12]  26  28  30  32  34  36  38  40  42  44  46

## [23]  48  50  52  54  56  58  60  62  64  66  68

## [34]  70  72  74  76  78  80  82  84  86  88  90
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## [45]  92  94  96  98 100   9  15  21  27  33  39

## [56]  45  51  57  63  69  75  81  87  93  99  25

## [67]  35  55  65  85  95  49  77  91

primes <- lc(p, p = 2:100, !(p %in% not_primes)) %>% unlist

primes

##  [1]  2  3  5  7 11 13 17 19 23 29 31 37 41 43 47

## [16] 53 59 61 67 71 73 79 83 89 97

This is a variant of the sieve of Eratosthenes algorithm. We compute 

all the numbers that are not primes (because they are multiples of the 

numbers), and then we identify the numbers that are not in that list. We let x 

go from two to 10—to identify the primes less than n it suffices to do this up 

to n , and for each of those we create a list of the various multiples of x.  

We then get rid of duplicates to make the next step faster; in that step, we 

simply filter on the numbers that are not primes.

A solution for general n would look like this:

get_primes <- function(n) {

   not_primes <- lc(seq(from = 2*x, to = n, by = x),  

x = 2:sqrt(n)) %>%

      unlist %>% unique

  lc(p, p = 2:n, !(p %in% not_primes)) %>% unlist

}

get_primes(100)

##  [1]  2  3  5  7 11 13 17 19 23 29 31 37 41 43 47

## [16] 53 59 61 67 71 73 79 83 89 97

Traditionally, the algorithm doesn’t create a list of non-primes first 

but rather starts with a list of candidates for being primes—all numbers 

from 2 to n. Iteratively, we then take the first element in the list, which is 
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a prime, and remove as candidates all elements divisible by that number. 

We can also implement this version using a list comprehension to remove 

candidates:

get_primes <- function(n) {

  candidates <- 2:n

  primes <- NULL

  while (length(candidates) > 0) {

    p <- candidates[[1]]

    primes <- cons(p, primes)

    candidates <- lc(x, x = candidates, x %% p != 0)

  }

  primes %>% lst_to_list %>% unlist %>% rev

}

get_primes(100)

## Error in cons(p, primes): could not find function "cons"

As another example, where we have more than one list as input and 

where we use a list comprehension to construct new values rather than 

filter the lists, we can implement a function for zipping two lists like this:

zip <- function(x, y) {

  lc(c(x,y), x = x, y = y) %>% { do.call(rbind,.) }

}

zip(1:4,1:4)

##      [,1] [,2]

## [1,]    1    1

## [2,]    2    2

## [3,]    3    3

## [4,]    4    4
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Here, we pair up elements from lists x and y in the list comprehension, 

and we then merge the lists using bind. The combination of do.call 

and bind is necessary to get a table out of this, and the curly braces 

are necessary to make the result of lc into the second and not the first 

argument of do.call. See the magrittr documentation for how curly 

braces are used together with the pipeline operator.

List comprehension is another example of how very little code can 

create a new language construct. It might be stretching it a bit to call this a 

language, but we are creating a new syntax to help us write more readable 

code, that is, if you consider list comprehension more readable than 

combinations of map and filter, of course.
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CHAPTER 10

Continuous-Time 
Markov Chains
We now turn to an example of a domain-specific language where we 

combine tidy evaluation and the magrittr pipe operator. We will write 

a language for specifying continuous-time Markov chains (CTMCs) and 

for computing the likelihood of parameters in such CTMCs given a trace 

of which states the chain is in at different time points. As with the list 

comprehension example in the previous chapter, we are not going to use 

operators to create a new syntax for the language but will create a DSL by 

providing functions that can be strung together to construct “sentences.”

We will use the packages magrittr and rlang to construct the 

language, the package tibble for data frames, and the package expm for 

matrix exponentiation.

library(magrittr)

library(rlang)

library(tibble)

library(expm)

We will reuse the linked list code plus the functions collect_symbols_

rec and make_args_list we implemented in previous chapters.
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cons <- function(car, cdr) list(car = car, cdr = cdr)

lst_length <- function(lst) {

  len <- 0

  while (!is.null(lst)) {

    lst <- lst$cdr

    len <- len + 1

  }

  len

}

lst_to_list <- function(lst) {

  v <- vector(mode = "list", length = lst_length(lst))

  index <- 1

  while (!is.null(lst)) {

    v[[index]] <- lst$car

    lst <- lst$cdr

    index <- index + 1

  }

  v

}

collect_symbols_rec <- function(expr, lst, bound) {

  if (is.symbol(expr) && expr != "") {

    if (as.character(expr) %in% bound) lst

    else cons(as.character(expr), lst)

  } else if (is.pairlist(expr)) {

    for (i in seq_along(expr)) {

      lst <- collect_symbols_rec(expr[[i]], lst, bound)

    }

    lst

  } else if (is.call(expr)) {

    if (expr[[1]] == as.symbol("function"))

      bound <- c(names(expr[[2]]), bound)
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    for (i in 1:length(expr)) {

      lst <- collect_symbols_rec(expr[[i]], lst, bound)

    }

    lst

  } else {

    lst

  }

}

make_args_list <- function(args) {

  res <- replicate(length(args), substitute())

  names(res) <- args

  as.pairlist(res)

}

We will use these functions to construct functions from a CTMC 

specification by extracting the unbound symbols in expressions we 

associate with transition rates. We will not use the collect_symbols 

function we implemented to collect unbound variables but instead a 

version that expects its expression is quoted already.

collect_symbols_q <- function(expr, env) {

  bound <- c()

  lst <- collect_symbols_rec(expr, NULL, bound)

  lst %>% lst_to_list() %>% unique() %>%

    purrr::discard(exists, env) %>%

    unlist()

}

This is because we plan to quote expressions in the DSL functions and 

then call this function with these quoted expressions.
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 Constructing the Markov Chain
We explored several approaches to design a language for CTMCs in 

Chapter 3. In this chapter, we will use the variation that uses the pipe 

operator, %>%, together with an add_edge function. We will collect edges in 

three lists: one list for the “from” states, one for the “to” states, and one for 

the rates associated with the transitions. Also, we will collect the unbound 

variables in the rate expressions when we create new edges, so later 

changes to scopes will not affect the parameters of the CTMC model. To 

represent a CTMC, we create a class and a list that holds the “from” state, 

“to” state, rates, and parameters lists.

ctmc <- function()

  structure(list(from = NULL,

                 rate = NULL,

                 to = NULL,

                 params = NULL),

            class = "ctmc")

We want the syntax for constructing a CTMC to look like this:

m <- ctmc() %>%

  add_edge(foo, a, bar) %>%

  add_edge(foo, 2*a, baz) %>%

  add_edge(foo, 4, qux) %>%

  add_edge(bar, b, baz) %>%

  add_edge(baz, a + x*b, qux) %>%

  add_edge(qux, a + UQ(x)*b, foo)

Therefore, we need to implement the add_edge such that it takes four 

arguments: the CTMC, the “from” state, the rate of the transition, and the 

“to” state. The CTMC is implicitly provided to the function calls when we 

are using the pipe operator. The other three arguments should be provided 

as expressions, and the add_edge function will implement a non-standard 

evaluation to handle them.
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We want the “from” and “to” states to be single symbols, but we will 

translate these into strings that we can use as row and column names 

in the rate matrix for the CTMC. The rate associated with a transition 

should be an expression, and to get the scope of the expression right, 

we will translate it into a quosure. We will then extract the unbound 

variables in this expression—unbound in the environment in which the 

quosure is defined—and add them to the parameters of the model. The 

implementation looks like this:

add_edge <- function(ctmc, from, rate, to) {

  from <- enexpr(from); stopifnot(is_symbol(from))

  to <- enexpr(to); stopifnot(is_symbol(to))

  from <- as_string(from)

  to <- as_string(to)

  ctmc$from <- cons(from, ctmc$from)

  ctmc$to <- cons(to, ctmc$to)

  r <- enquo(rate)

  ctmc$rate <- cons(r, ctmc$rate)

  ctmc$params <- cons(collect_symbols_q(get_expr(r), get_env(r)),

                       ctmc$params)

  ctmc

}

We use enexpr for from and to since we want these symbols to be just 

that, symbols, and not something we will want to evaluate in any context. 

We use enquo for the rate parameter, on the other hand, because we do 

want to have its environment available when we evaluate the expression. 

We do not evaluate it yet, though. We cannot evaluate it until we know the 

parameters for the model, and we do not want those to be fixed inside the 

CTMC object. We use the rate environment, however, when extracting the 

unbound variables in the rate expression.
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Generally, it is a good idea to be able to get some information about 

an object we construct by printing it, but the default print function for a 

ctmc object will show the list of lists. This representation, especially for the 

linked lists, can be hard to decipher. Instead, we can implement a print 

function for this class by defining a function with the name print.ctmc. 

The information we want to display is the parameters of the model and the 

edge structure, and we can implement this function like this:

print.ctmc <- function(x, ...) {

  from <- lst_to_list(x$from) %>% rev()

  to <- lst_to_list(x$to) %>% rev()

  rate <- lst_to_list(x$rate) %>% rev()

  parameters <- lst_to_list(x$params) %>%

    unlist() %>% unique() %>% rev()

  cat("CTMC:\n")

  cat("parameters:", paste(parameters), "\n")

  cat("transitions:\n")

  for (i in seq_along(from)) {

    cat(from[[i]], "->", to[[i]],

        "\t[", deparse(get_expr(rate[[i]])), "]\n")

  }

  cat("\n")

}

The implementation is straightforward. We translate the linked lists 

into lists to make them easier to work with when we loop over the edges, 

and we reverse them so we will display them in the order in which they 

were added to the model. With the linked lists, we prepend new edges, so 

they are represented in the opposite order than the one in which they were 

added. For the parameters, we remove duplications using unique as well. 

After that, we simply print the parameters as a list and print a line for each 

edge, showing the “from” and “to” states together with the rate expression 
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on the edge. For the latter, we use get_expr to get the bare expression, 

rather than the quosure, and we use the function deparse to translate the 

expression into a string that we can print.

With the three functions we have defined so far, we can now create and 

print a continuous time Markov chain.

x <- 2

m <- ctmc() %>%

  add_edge(foo, a, bar) %>%

  add_edge(foo, 2*a, baz) %>%

  add_edge(foo, 4, qux) %>%

  add_edge(bar, b, baz) %>%

  add_edge(baz, a + x*b, qux) %>%

  add_edge(qux, a + UQ(x)*b, foo)

m

## CTMC:

## parameters: a b

## transitions:

## foo -> bar   [ a ]

## foo -> baz   [ 2 * a ]

## foo -> qux   [ 4 ]

## bar -> baz   [ b ]

## baz -> qux   [ a + x * b ]

## qux -> foo   [ a + 2 * b ]

This example shows that we can have expressions on the edges that are 

constants, such as the edge from foo to qux that has the rate four. We can 

have expressions with unbound variables, a, b, and 2*a. And we can have 

expressions that involve a bound variable, the last two edges. Notice here 

that the second-to-last edge, from baz to qux, has a rate expression that 

includes the (unevaluated) variable x, while the last edge, from qux to foo, 

contains the expression a + 2*b, where the value of x has been inserted. 

This is the difference between including a bound variable and unquoting 

Chapter 10  Continuous-time markov Chains



174

it in the expression. Since x is a bound variable, it is not considered a 

parameter of the model, but in the second-to-last expression, it will be 

used when we evaluate the rate. If we change its value, we also change the 

value of the rate expression. For the last rate expression, we have already 

inserted the value of x, so here we will not change the expression by 

changing the value of x.

 Constructing a Rate Matrix
We saw how we could translate a list of edges into a rate matrix in 

Chapter 3, but in this chapter, we want to do a little more. In Chapter 3, 

we had numeric rates on the edges; we now have expressions. Instead 

of translating the CTMC into a rate matrix, we will create a function for 

generating rate matrices—a function that, given values for the parameters 

of the Markov model, will provide us with the corresponding rate matrix.

We implement this functionality via a closure. We write a function 

that extracts the information we need to build the rate matrix from the 

ctmc object and then define a function for computing the rate matrix 

given the model’s parameters. It then returns this closure function. The 

implementation can look like this:

get_rate_matrix_function <- function(ctmc) {

  from <- lst_to_list(ctmc$from) %>% rev()

  to <- lst_to_list(ctmc$to) %>% rev()

  rate <- lst_to_list(ctmc$rate) %>% rev()

  nodes <- c(from, to) %>% unique() %>% unlist()

  parameters <- lst_to_list(ctmc$params) %>%

    unlist() %>% unique() %>% rev()

  n <- length(nodes)
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  f <- function() {

    args <- as_list(environment())

    Q <- matrix(0, nrow = n, ncol = n)

    rownames(Q) <- colnames(Q) <- nodes

    for (i in seq_along(from)) {

      Q[from[[i]], to[[i]]] <- eval_tidy(rate[[i]], args)

    }

    diag(Q) <- -rowSums(Q)

    Q

  }

  formals(f) <- make_args_list(parameters)

  f

}

Once again, we translate the linked lists into list objects and reverse 

them. We then get a list of unique nodes in the model by combining the 

from and to lists, removing duplicates, and we translate the resulting list 

into a vector that we will later use to set row and column names of the rate 

matrix. We extract the parameters for the model by translating the linked 

list into a list, and we then translate that into a vector, remove duplicates, 

and reverse the result to get the parameters in the order in which they were 

added to the edges.

The closure we define initially takes no formal arguments. We set those 

from the CTMC arguments after we have defined the function. We do it 

this way only because it is an easier way to define the function compared 

to constructing expressions and using something like the new_function 

construction we used earlier. Before we return the closure, it will have a list of 

formal arguments. Since we don’t know what these will be, we use a trick to get 

hold of them inside the closure: we get the local environment before we define 

any local variables—so at this point it will contain only the parameters passed 

to the function call—and make a list out of them. That list, we can use later to 

over-scope the evaluation of the rate expressions inside the closure.
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For the actual construction of the rate matrix, there is little to surprise. 

We get the size of the matrix from the number of states in the CTMC. We 

then create the matrix and name rows and columns according to the nodes 

they represent. Then we (tidy) evaluate all the rate expressions to fill in the 

cells of the matrix, and finally, we adjust the diagonal so all rows sum to zero.

We now have a command in our language for getting a rate matrix 

function.

Qf <- m %>% get_rate_matrix_function()

Qf

## function (a, b)

## {

##     args <- as_list(environment())

##     Q <- matrix(0, nrow = n, ncol = n)

##     rownames(Q) <- colnames(Q) <- nodes

##     for (i in seq_along(from)) {

##         Q[from[[i]], to[[i]]] <- eval_tidy(rate[[i]], args)

##     }

##     diag(Q) <- -rowSums(Q)

##     Q

## }

## <environment: 0x7fdf6e76fed8>

When we provide the model parameters to this function, we get the 

rate matrix.

Qf(a = 2, b = 4)

##     foo bar baz qux

## foo -10   2   4   4

## bar   0  -4   4   0

## baz   0   0 -10  10

## qux  10   0   0 -10

Chapter 10  Continuous-time markov Chains



177

Remember that the edge from baz to qux holds an expression that 

refers to the global variable x. If we change the value of this variable, we 

also change the result of evaluating the Qf function.

x <- 1

Qf(a = 2, b = 4)

##     foo bar baz qux

## foo -10   2   4   4

## bar   0  -4   4   0

## baz   0   0  -6   6

## qux  10   0   0 -10

The edge from qux to foo, where we substitute the value for x at the 

time we created the edge, using UQ, does not change.

 Traces
An observation for a continuous-time Markov chain is a trace—a sequence 

of states and at which time points we observe the states. In any real data 

analysis, we would probably write functions to obtain data from files, 

but since we are exploring domain-specific languages, let’s write one for 

specifying traces. We will make traces depend on the CTMC that we want 

to use them with so we can test that the states in a trace are also states in 

the CTMC. If you want to use several CTMCs to analyze the same trace, 

you could remove these tests, or you could make the trace object depend 

on a list of legal states instead of a ctmc object.

We take the same approach as for the ctmc class: we write a function 

for creating an object to represent traces, and we then have functions for 

adding information to a trace. The information we want to store in a trace 
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is a list of states and a list of time points in which we observe the states. For 

the consistency checks between CTMC and trace, we will also store the 

nodes in the CTMC. The constructor for the trace class looks like this:

ctmc_trace <- function(ctmc) {

  nodes <- c(lst_to_list(ctmc$from), lst_to_list(ctmc$to)) %>%

    unique %>% unlist

  structure(list(nodes = nodes, states = NULL, at = NULL),

            class = "ctmc_trace")

}

We add a verb to the language, a function adding observations of 

states at specific time points. This function mainly checks the consistency 

between states and the ctmc object and then adds states and time points to 

the ctmc_trace object’s lists.

add_observation <- function(trace, state, at) {

  state <- enexpr(state)

  stopifnot(is_symbol(state))

  state <- as_string(state)

  stopifnot(state %in% trace$nodes)

  stopifnot(is.numeric(at))

  stopifnot(is.null(trace$at) || at > trace$at$car)

  trace$states <- cons(state, trace$states)

  trace$at <- cons(at, trace$at)

  trace

}

As for CTMC objects, we want a printing function for traces. Here, I 

will take a different approach than what we did for the ctmc print function. 

I will translate traces into data frames—tibble objects to be precise—

and print the result. If I was writing a package for CTMCs, I might take 

a different approach, but I will use the transformation into data frames 
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later to compute likelihoods, so I exploit the transformation in the print 

function as well. To translate a ctmc_trace object into a tibble object, 

we specialize the as_tibble function. After that, we specialize the print 

function.

as_tibble.ctmc_trace <- function(x, ...) {

  states <- x$states %>% lst_to_list() %>% unlist() %>% rev()

  at <- x$at %>% lst_to_list() %>% unlist() %>% rev()

  tibble(state = states, at = at)

}

print.ctmc_trace <- function(x, ...) {

  df <- as_tibble(x)

  cat("CTMC trace:\n")

  print(df)

}

We now have the functionality to create and print traces.

tr <- ctmc_trace(m) %>%

  add_observation(foo, at = 0.0) %>%

  add_observation(bar, at = 0.1) %>%

  add_observation(baz, at = 0.3) %>%

  add_observation(qux, at = 0.5) %>%

  add_observation(foo, at = 0.7) %>%

  add_observation(baz, at = 1.1)

tr

## CTMC trace:

## # A tibble: 6 x 2

##   state    at

##   <chr> <dbl>

## 1 foo   0.

## 2 bar   0.100

## 3 baz   0.300
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## 4 qux   0.500

## 5 foo   0.700

## 6 baz   1.10

 Computing Likelihoods
The final functionality we will implement for this example is for computing 

the likelihood of parameters given a CTMC and a trace. In Chapter 3, we 

saw how to translate a rate matrix into a transition-probability matrix 

by first multiplying the rate matrix by a scalar—the time period that has 

passed between two observations—and then (matrix-)exponentiating the 

result. We will reuse the function we implemented there.

transition_probabilities <- function(Q, t) expm(Q * t)

For computing the likelihood, we will create a verb in our domain- 

specific language that translates a CTMC and a trace into a function. This 

function will take the parameters of the CTMC as arguments—as the 

function for creating rate matrices we wrote earlier—and then return the 

likelihood for those parameters. This is a function we could then use for 

maximum-likelihood estimation by combining it with an optimization 

algorithm, of which there are several available in various R packages.

The implementation is straightforward. We get the rate matrix function 

from the ctmc object and translate the trace into a data frame and store 

the results in the closure of the function. Then we use the same trick 

as we used earlier to get the arguments inside the closure, evaluate the 

rate-matrix function to get the rate-matrix, and put the data from the data 

frame into a format we need for the computation. That computation is 

just running through the trace and computing the transition probabilities 

from two consecutive observations. Since it is a Markov model, the joint 

probability is the product of them. After we have created the closure, we set 

its formal arguments, similar to what we did with the rate-matrix function.
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get_likelihood_function <- function(ctmc, trace) {

  rate_func <- ctmc %>% get_rate_matrix_function()

  trace_df <- as_tibble(trace)

  lhd_function <- function() {

    args <- as_list(environment())

    Q <- do.call(rate_func, args)

    n <- length(trace_df$state)

    from <- trace_df$state[-n]

    to <- trace_df$state[-1]

    delta_t <- trace_df$at[-1] - trace_df$at[-n]

    lhd <- 1

    for (i in seq_along(from)) {

      P <- transition_probabilities(Q, delta_t[i])

      lhd <- lhd * P[from[i],to[i]]

    }

    lhd

  }

  formals(lhd_function) <- formals(rate_func)

  lhd_function

}

That is it; we can now compute likelihoods for a CTMC.

lhd <- m %>% get_likelihood_function(tr)

lhd(a = 2, b = 4)

## [1] 0.00120108
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In an actual data analysis context, we probably would want to 

compute the log likelihood instead. For traces of any useful length, the 

actual likelihood will lead to underflow since we are dealing with finite- 

bit floating-point numbers. Modifying the likelihood function to a log- 

likelihood function is a simple matter of changing the product to a sum 

and taking the log of P[from[i],to[i]].

There might be more functionality you would like to add to a language 

like this, but even with the few functions we have implemented so far, we 

have a useful domain-specific language. We have not used any operator 

overloading to implement it; we didn’t have to do that. We have used tidy 

evaluation extensively, though, to implement the non-standard evaluation 

we use for rate expressions.
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CHAPTER 11

Pattern Matching
In languages such as ML or Haskell, you can define data types by 

specifying functions you will use to construct values of any given type. In 

itself, that is not that interesting, but combined with a pattern matching 

feature of these languages, you can write very succinct functions for 

transforming data structures.

In my book Functional Data Structures in R (Mailund, 2017a),  

I describe several algorithms that depend on the transformation of various 

trees based on their structure. Such transformations involve figuring out 

the current structure of a tree—does it have a left subtree? Is that tree a 

leaf? If it is a red-black search tree, what is the color of the tree? And the 

color of its right subtree? In the algorithms I presented in that book, most 

of the functions contained tens of lines of code just for matching such a 

tree structure.

With the language we implement in this chapter, we will make writing 

such transformation functions vastly more efficient. We will write two main 

constructions. The first is for defining a data structure, which we can use to 

define red-black search trees like this:

colour := R | B

rb_tree := E | T(col : colour, left : rb_tree, value, right : 

rb_tree)
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The second construction is used to match values of such types and 

then perform actions accordingly. A balancing function for red-black 

search trees can be implemented succinctly like this:

balance <- function(tree) {

  cases(tree,

         T(B,T(R,a,x,T(R,b,y,c)),z,d) -> T(R,T(B,a,x,b),y, 

T(B,c,z,d)),

         T(B,T(R,T(R,a,x,b),y,c),z,d) -> T(R,T(B,a,x,b),y, 

T(B,c,z,d)),

         T(B,a,x,T(R,b,y,T(R,c,z,d))) -> T(R,T(B,a,x,b),y, 

T(B,c,z,d)),

         T(B,a,x,T(R,T(R,b,y,c),z,d)) -> T(R,T(B,a,x,b),y, 

T(B,c,z,d)),

        otherwise -> tree)

}

This function is a mere eight lines, compared to the 42 lines of code 

used in Functional Data Structures in R, where I also use some pattern 

matching tricks but not a domain-specific language uniquely designed for 

it. Such a language is what we will implement in this chapter.

For the chapter, we will need to use the following packages:

library(rlang)

library(magrittr)

library(dplyr)

We will also need the make_args_list function we defined in Chapter 6.

make_args_list <- function(args) {

  res <- replicate(length(args), substitute())

  names(res) <- args

  as.pairlist(res)

}
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For a package that implements the functionality described in this 

chapter, and more, see https://mailund.github.io/pmatch/.

 Constructors
The key feature of this domain-specific language is the type constructors—

how we define values of a given type. The pattern matching aspect of the 

DSL will consist of nested constructor calls, so it is how we define the 

constructors that is the essential aspect of the language.

Here, we are inspired by function calls. We will use a syntax for 

constructors that matches variables and function calls.

TYPEDEF ::= TYPENAME ':=' CONSTUCTORS

CONSTUCTORS ::= CONSTUCTOR | CONSTUCTOR '|' CONSTRUCTORS

CONSTRUCTOR ::= NAME | NAME '(' ARGS ')'

ARGS ::= ARG | ARG ',' ARGS

ARG ::= NAME | NAME : TYPE

TYPE ::= NAME

We define a new type by giving it a name, to the left of a := operator, 

and by putting a sequence of constructors on the right of the := operator. 

Constructors, then, are separated by | and are either single names or a 

name followed by arguments in parentheses, where an argument is either 

a single name or a name followed by : and then a type, where we require 

that a type is a name.

We implement this grammar by implementing the := operator. An 

assignment has the lowest precedence, which means that whatever we 

write to the left or right of this operator will be arguments to the function. 

We do not have to worry about an expression in our language being 

translated into some call object of a different type. We cannot override the 

other assignment operators, <-, ->, and =, so we have to use :=. Since this is 

also traditionally used to mean “defined to be equal to,” it works quite well.
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The approach we take in implementing this part of the pattern 

matching DSL is different from the examples we have seen earlier. We 

do not create a data structure that we can analyze nor do we evaluate 

expressions directly from expressions in our new language. Instead, we 

combine parsing expressions with code generation—we generate new 

functions and objects while we parse the specification. We add these 

functions, and other objects for constants, to the environment in which 

we call :=. Adding these objects to this environment allows us to use the 

constructors after we have defined them with no further coding, but it does 

mean that calling := will have side effects.

The construction function will expect a type name as its left-hand 

parameter and an expression describing the different ways of constructing 

elements of the type on its right-hand side. We will translate the left-hand 

side into a quosure because we want to get its associated environment. 

The right-hand side we will turn into an expression. For the construction 

specification, we do not want to evaluate any of the elements (unless 

the user invokes quasi-quotations). The left-hand side—the type we are 

defining—is just treated as a string since that is how the S3 system deals 

with types, so we will make sure it is a single symbol and then get the string 

representation of it. For this, we can use the quo_name function from rlang. 

The right-hand side we have to parse, but we delegate this to a separate 

function that we define next. Finally, we specify a function for pretty- 

printing elements of the new type we define.

`:=` <- function(data_type, constructors) {

  data_type <- enquo(data_type)

  constructors <- enexpr(constructors)

  stopifnot(quo_is_symbol(data_type))

  data_type_name <- quo_name(data_type)

  process_alternatives(

    constructors,

    data_type_name,
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    get_env(data_type)

  )

  assign(paste0("toString.", data_type_name),

         deparse_construction, envir = get_env(data_type))

  assign(paste0("print.", data_type_name),

         construction_printer, envir = get_env(data_type))

}

The last two statements in this function, the calls to assign, create 

functions for printing elements of the type we are creating. We will 

implement the deparse_construction and construction_printer 

functions in a moment. They extract information about values from 

meta-information we will store in objects of the new type, and we can 

use the same functions for all types we define in our language. We use 

them to specialize the toString and print functions for this specific type. 

The paste0 calls create the names of the specializations of the generic 

toString and print functions. The assign function then stores deparse_

construction and construction_printer under the appropriate names 

in the environment we get from get_env(data_type), in other words, the 

environment where we define the type.

The expression on the right-hand side of := defines how we construct 

elements of the new type. We allow there to be more than one way to do 

this, and we separate the various choices using the or operator, |. This 

approach resembles how we describe different alternatives when we 

specify a grammar, so it is a natural choice. To process the right-hand side, 

we use the function process_alternatives.

process_alternatives <- function(constructors,

                                 data_type_name,

                                 env) {

  if (is_lang(constructors) && constructors[[1]] == "|") {

    process_alternatives(
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      constructors[[2]],

      data_type_name,

      env

    )

    process_alternatives(

      constructors[[3]],

      data_type_name,

      env

    )

  } else {

    process_constructor(

      constructors,

      data_type_name,

      env

    )

  }

}

In addition to the constructor expression, we pass the name of the 

type and the environment we are defining it in as parameters. We do not 

use these directly in this function but merely pass them along. We will use 

them later when we create the actual constructors.

The process_alternatives function recursively parse the expression 

to get all alternatives separated by |. The actual constructors will be either 

a function or a symbol, so the constructor specifications will not have 

higher precedence than the or operator. The first time we see something 

that isn’t a call to |, then, we have a constructor. We handle those using the 

process_constructor function.

process_constructor <- function(constructor,

                                data_type_name,

                                env) {
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  if (is_lang(constructor)) {

    process_constructor_function(

      constructor,

      data_type_name,

      env

    )

  } else {

    process_constructor_constant(

      constructor,

      data_type_name,

      env

    )

  }

}

This function figures out whether what we are looking at is a function 

constructor or a constant, in other words, a symbol. We use the is_lang 

function to test whether we are looking at a function. It does the same as 

is.call from the base package; I just prefer the rlang functions for this 

chapter.

Constant constructors are the simplest. They are merely symbols, so 

to make them available for programmers, we need to define a value for 

each such symbol. We will use NA as the value of these variables and store 

some meta-information with them. We set the class, so the construction_

printer function will be called when we try to print the object, and we 

set the attribute constructor_constant that we will later need for pattern 

matching.

process_constructor_constant <- function(constructor,

                                         data_type_name,

                                         env) {
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  stopifnot(is_symbol(constructor))

  constructor_name <- as_string(constructor)

  constructor_object <- structure(

    NA,

    constructor_constant = constructor_name,

    class = data_type_name

  )

  assign(constructor_name, constructor_object, envir = env)

}

For the function constructors, we need to create, you guessed 

it, functions. We analyze the arguments given to the constructor 

specification and build a function out of that, and this function we then 

store in the environment where the constructor is defined. We permit 

two kinds of parameters to a constructor: either a symbol or a symbol 

with a type. For the latter, we use the : operator. If a parameter is a : call, 

then we consider the left-hand side the parameter and the right-hand 

side the type. We use the types to guarantee that values we construct 

are of the expected kind. If there is no type specified, we will allow a 

parameter to hold any value. We use the following function to translate 

the list of parameters from a function constructor expression into a data 

frame where the first column holds the argument names and the second 

column holds their type. We use NA to indicate that we allow any type. The 

function works by first translating the arguments—that are in the form 

of a call object—into a list. We have to use the base as.list function 

for this, rather than the rlang as_list, since the latter will not translate 

call objects into lists. Once we have the arguments as a list, we map the 

process_arg function over the elements. This function creates a row for 

the data frame per element, and we combine the rows using the bind_

rows function from dplyr.
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process_arguments <- function(constructor_arguments) {

  process_arg <- function(argument) {

    if (is_lang(argument)) {

      stopifnot(argument[[1]] == ":")

      arg <- quo_name(argument[[2]])

      type <- quo_name(argument[[3]])

      tibble::tibble(arg = arg, type = type)

    } else {

      arg <- quo_name(argument)

      tibble::tibble(arg = arg, type = NA)

    }

  }

  constructor_arguments %>%

    as.list %>%

    purrr::map(process_arg) %>%

    bind_rows

}

The process_constructor_function translates a function 

construction specification into a function. The first element of the 

specifications, which is a call object, is the name of the function. For 

the remaining elements, we translate them into a data frame using the 

function we just saw. After that, we need to create the function that will 

work as the constructor. Here, we create a closure without arguments and 

then add formal parameters afterward, as we did in the previous chapter, 

and we get the actual parameters that the closure is called with using the 

as_list(environment()) trick.

The value we return from the closure is just the list of arguments that 

are provided to it but tagged with a constructor attribute we can use for 

pattern matching and a class set to the type we are defining, something 

we use for type checking. The type checking is the chief part of the 

constructor. Here, we check that we get the right number of arguments and 

that they have the right type if a type was specified.

Chapter 11  pattern MatChing



192

Once we have created the closure and set its formal arguments, we 

also update its class, so it is both a constructor and a function. Giving 

constructor functions the class constructor is also something we will 

need when pattern matching. Then we assign it to the environment 

associated with the specification to make it available to the programmer.

process_constructor_function <- function(constructor,

                                         data_type_name,

                                         env) {

  stopifnot(is_lang(constructor))

  constructor_name <- quo_name(constructor[[1]])

  constructor_arguments <- process_arguments(constructor[-1])

  # Create the constructor function

  constructor <- function() {

    args <- as_list(environment())

    # Type check!

    stopifnot(length(args) == length(constructor_arguments$arg))

    for (i in seq_along(args)) {

      arg <- args[[constructor_arguments$arg[i]]]

      type <- constructor_arguments$type[i]

      stopifnot(is_na(type) || inherits(arg, type))

    }

    structure(args,

              constructor = constructor_name,

              class = data_type_name)

  }

   formals(constructor) <- make_args_list(constructor_

arguments$arg)
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  # Set meta information about the constructor

  class(constructor) <- c("constructor", "function")

  # Put the constructor in the binding scope

  assign(constructor_name, constructor, envir = env)

}

The only remaining function to write for the constructors is the 

function for printing them. Here, we write a function that translates a 

constructed object into a string; this function we can then use recursively 

to translate any constructed element into a string. We then just call this 

function in construction_printer, which is the function that is assigned 

to the specialized print function for any type we define.

There is nothing complicated in the function. We first check whether 

the object has an attribute constructor. Strictly speaking, only the 

function constructors have this—the constant constructors have the 

attribute constructor_constant, but the attire function will pick an 

attribute if it gets a unique prefix, so we also get that. If we do not have 

a constructor attribute, then it isn’t an element constructed from 

something we have defined from our language, so it must be a value of 

some other type—we just convert it into a string and return this. We use 

the generic toString function for this. This function converts any object 

into a string. It’s not necessarily a beautiful representation of the object, 

but you can specialize it if you need to do so.

If the object we have is a constructor, it is either a constant or the 

result of a constructor function call. If the latter, it will be a list. If it is 

a list, then we must convert all the elements in the list into strings and 

paste them together. Otherwise, the name of the constructor is the string 

representation of the object.

deparse_construction <- function(object) {

  constructor_name <- attr(object, "constructor")

  if (is_null(constructor_name)) {
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    # This is not a constructor, so just get the value

    return(toString(object))

  }

  if (is_list(object)) {

    components <- names(object)

     values <- as_list(object) %>% purrr::map(deparse_

construction)

     print_args <- vector("character", length = length(components))

    for (i in seq_along(components)) {

      print_args[i] <- paste0(components[i], "=", values[i])

    }

    print_args <- paste0(print_args, collapse = ", ")

    paste0(constructor_name, "(", print_args, ")")

  } else {

    constructor_name

  }

}

construction_printer <- function(x, ...) {

  cat(deparse_construction(x), "\n")

}

As an example of using the construction language, we can define a 

binary tree as either a tree with a left and right subtree or a leaf.

tree := T(left : tree, right : tree) | L(value : numeric)

We can use the constructors to create a tree:

x <- T(T(L(1),L(2)),L(3))

x

## T(left=T(left=L(value=1), right=L(value=2)), 

right=L(value=3))
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Values we create using these constructors can be accessed just as 

lists—which, in fact, they are—using the variable names we used in the 

type specification.

x$left$left$value

## [1] 1

x$left$right$value

## [1] 2

x$right$value

## [1] 3

The type checking is rather strict, however. We demand that the 

values we pass to the constructor functions are of the types we give in 

the specification—in the sense that they must inherit the class from the 

specification—and this can be a problem in some cases where R would 

otherwise ordinarily just convert values. In the specification for the L 

constructor, for example, we require that the argument is numeric. We will 

get an error if we give it an integer.

L(1L)

## Error: is_na(type) || inherits(arg, type) is not TRUE

This situation is where we can use the variant of parameters without a 

type:

tree := T(left : tree, right : tree) | L(value)

L(1L)

## L(value=1)
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An alternative solution could be to specify more than one type in the 

specification. If you are interested, you can play with that. I will just leave it 

here and move on to pattern matching.

 Pattern Matching
We want to implement pattern matching such that an expression like this:

cases(L(1),

      L(v) -> v,

      T(L(v), L(w)) -> v + w,

      otherwise -> 5)

## [1] 1

should return 1, since the pattern L(v) matches the value L(1) and 

we return v, which we expect to be bound to 1. Likewise, we want this 

expression to return 9 since v should be bound to 4 and w to 5 and we 

return the result of evaluating v + w.

cases(T(L(4), L(5)),

      L(v) -> v,

      T(L(v), L(w)) -> v + w,

      otherwise -> 5)

## [1] 9

We want the otherwise keyword to mean anything at all and use it as a 

default pattern, so in this expression, we want to return 5.

cases(T(L(1), T(L(4), L(5))),

      L(v) -> v,

      T(L(v), L(w)) -> v + w,

      otherwise -> 5)

## [1] 5
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The syntax for pattern matching uses the right-arrow operator. 

This operator is usually an assignment. We cannot specialize arrow 

assignments, but we can still use them in a meta-programming function. 

We use an assignment operator for the same reasons as we had for using 

the := operator for defining types. Since assignment operators have the 

lowest precedence, we don’t have to worry about how tight the operators 

to the left and right of the operator binds. We could also have used that 

operator here, but I like the arrow more for this function. It shows us what 

different patterns map to. You need to be careful with the -> operator, 

though, since it is syntactic sugar for <-. This means that once we have an 

expression that uses ->, we will actually see a call to <-, and the left- and 

right-hand sides will be switched.

The cases function will take a variable number of arguments. The 

first is the expression we match against, and the rest are captured by 

the three-dots operator. The expressions there should not be evaluated 

directly, so we capture them as quosures. We then iterate through them, 

split them into left-hand and right-hand sides, and test the left-hand side 

against the expression. The function we use for testing the pattern will 

return an environment that contains bound variables if it matches, and 

NULL otherwise. If we have a match, we evaluate the right-hand side in 

the quosure environment over-scoped by the environment we get from 

matching the pattern.

cases <- function(expr, ...) {

  matchings <- quos(...)

  for (i in seq_along(matchings)) {

    eval_env <- get_env(matchings[[i]])

    match_expr <- quo_expr(matchings[[i]])

    stopifnot(match_expr[[1]] == "<-")

    test_expr <- match_expr[[3]]

    result_expr <- match_expr[[2]]
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    match <- test_pattern(expr, test_expr, eval_env)

    if (!is_null(match))

       return(eval_tidy(result_expr, data = match, env =  

eval_env))

  }

  stop("No matching pattern!")

}

In the test_pattern function we create the environment where we 

will bind matched variables. If the pattern is otherwise, we return the 

empty environment—no variables are bound there. Otherwise, we need to 

explore both pattern and expression recursively.

We use the function test_pattern_rec to do this, but we do not call it 

directly. Instead, we use a function called callCC. The name stands for call 

with current continuation, and it is a function that sometimes causes some 

confusion for people not intimately familiar with functional programming. 

There is no need for this confusion, however, because all the function does 

is provide us with a way to return to the point where we called callCC.

We wrap the test_pattern_rec function in a closure, tester, that is 

called with a function that we call escape. This is the function that callCC 

will provide. If, at any point, we call the function escape, it will terminate 

whatever we are doing and return to the point where we called callCC. 

This means we can use escape to get out of deep recursions if we find out 

at some point that the pattern doesn’t match the expression. We do not 

need to propagate a failed match up the call stack through the recursive 

function calls. As soon as we call escape, we are taken back to the end of 

test_pattern. Whatever we called escape with—it is a function of a single 

parameter—will be the return value of the callCC call. So, if we find that a 

pattern doesn’t match, we will call escape with NULL. This will then be the 

result of test_pattern. If we never call escape but instead return normally 

from test_pattern_rec, then what we return from that function will also 
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be the return value of the callCC call. So, if we match the pattern and 

return an environment from test_pattern_rec, this will also be the return 

value of the test_pattern call.

test_pattern <- function(expr, test_expr, eval_env) {

  # Environment in which to store matched variables

  match_env <- env()

  if (test_expr == quote(otherwise))

    return(match_env)

  # Test pattern

  tester <- function(escape)

    test_pattern_rec(escape, expr, test_expr,

                     eval_env, match_env)

  callCC(tester)

}

It is in test_pattern_rec the real work is done. It analyzes the pattern 

expression, stored in the test_expr variable, and matches it against 

the value stored in the expr variable. It also takes two environments as 

parameters. One is the environment where the expression and pattern are 

defined; it needs this environment to look up variables to check what they 

are. The other is the environment in which it should bind variables from 

the pattern. It, of course, also knows the escape function that it can use if it 

finds out that the pattern isn’t matching.

test_pattern_rec <- function(escape, expr, test_expr,

                             eval_env, match_env) {

  # Is this a function-constructor?

  if (is_lang(test_expr)) {

    func <- get(as_string(test_expr[[1]]), eval_env)
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    if (inherits(func, "constructor")) {

      # This is a constructor.

      # Check if it is the right kind

      constructor <- as_string(test_expr[[1]])

      expr_constructor <- attr(expr, "constructor")

      if (is_null(expr_constructor) ||

          constructor != expr_constructor)

        escape(NULL) # wrong type

      # Now check recursively

      for (i in seq_along(expr)) {

        test_pattern_rec(

          escape,

          expr[[i]], test_expr[[i+1]],

          eval_env, match_env

        )

      }

      # If we get here, the matching was successfull

      return(match_env)

    }

  }

  # Is this a constant-constructor?

  if (is_symbol(test_expr) &&

      exists(as_string(test_expr), eval_env)) {

    constructor <- as_string(test_expr)

    val <- get(constructor, eval_env)

    val_constructor <- attr(val, "constructor_constant")

    if (!is_null(val_constructor)) {

      expr_constructor <- attr(expr, "constructor")

      if (is_null(expr) || constructor != expr_constructor)

        escape(NULL) # wrong type
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      else

        return(match_env) # Successfull match

    }

  }

  # Not a constructor.

  # Must be a value to compare with or a variable to bind to

  if (is_symbol(test_expr)) {

    assign(as_string(test_expr), expr, match_env)

  } else {

    value <- eval_tidy(test_expr, eval_env)

    if (expr != value) escape(NULL)

  }

  match_env

}

There are three cases to consider. The test_expr is a constructor 

function, a constructor constant, or something else.

If test_expr is a function call, we test this using is_lang from rlang, 

then it might be a function constructor. To figure out whether it is, we look 

the function name up in the evaluation environment, in other words, the 

environment where the test pattern was written. We then test whether the 

function inherits a constructor. The functions we create in our DSL will 

also be constructor objects, so if it does inherit constructor, we know we 

have such one. We then check whether expr has an attribute constructor. 

If it was generated by a call to a constructor, it will. If it doesn’t, then we 

cannot have a match, and we escape with NULL. We also escape if the 

names of the constructors do not match. If they do, we iterate through all 

the elements in the pattern and expression calls and attempt to match 

these. If they do not match, we will never return from a recursive call—they 

will have used the escape function to jump directly to the callCC point in 
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test_pattern. If they return, the pattern did match the expression, and we 

return the match_env that now contains any variables that were bound in 

the matching.

If test_expr is not a function call, it might still be a constructor. If it is, 

then it will be a symbol, and the symbol will be a variable in the eval_env 

scope—we test this with the exists function. These two tests tell us only 

that there is a variable with the name from test_expr in eval_env. Not 

that it is a constant constructor. To test this, we get the value the variable 

evaluates to, using the get function, and check if it has an attribute called 

constructor_constant. If it does, then that is the name of the constructor, 

and we can test that against the value in expr that either will be the object 

that represents the constant (in which case we have a match) or will be 

something else (in which case we escape).

If we get past the first two tests, we do not have a constructor. We now 

either have a value that we must test against expr or have a variable that 

we should bind to the value of expr. Here, I have decided that any symbol 

will be interpreted as a variable that should be bound, and anything else 

should be a value that we evaluate and compare against expr. We could 

also have checked if the variable was bound and used its value in that case, 

but that could clearly lead to hard-to-fix bugs. In any case, you can always 

use quasi-quoting to achieve the same effect.

x <- 1

y <- 2

cases(L(1),

      L(!!x) -> "x",

      L(!!y) -> "y")

## [1] "x"

So, we bind any variable by assigning the value of expr to the symbol in 

the match_env environment. Anything that isn’t a symbol should be a value 

that is the same as expr. To get this value, we evaluate the test_expr in the 

eval_env.
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That was the entire implementation of pattern matching. It might 

not be trivial code, but it is not horribly complicated either, and we have 

created an efficient language in less than 200 lines of code.

We can try it, now, by implementing a depth-first traversal of the 

binary tree type we defined earlier. The following function is a simple 

traversal that adds together all the values found in leaves. The match call 

considers the basis case (a leaf) and the recursive case (a tree with a left 

and right subtree) and doesn’t need an otherwise case.

dft <- function(tree) {

  cases(tree,

        L(v) -> v,

        T(left, right) -> dft(left) + dft(right))

}

dft(L(1))

## [1] 1

dft(T(L(1),L(2)))

## [1] 3

dft(T(T(L(1),L(2)),L(3)))

## [1] 6

 Lists
We have used linked lists many places in this book, but the functions we 

have used had to access the list elements in a list. We can define linked 

lists using our new language like this:

linked_list := NIL | CONS(car, cdr : linked_list)
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A list either is empty (we use the constant NIL to represent that) or 

has a head element (car) and a tail (cdr). Since we implement values we 

construct from our language as list objects, we automatically get the 

linked-list implementation from this specification.

With pattern matching, we can write simple functions for manipulating 

lists. For example, the following function reverses a list using an 

accumulator list. In the base case, when the first list is empty, we return 

the accumulator. Otherwise, we take the head of the list and prepend 

it to the accumulated list and then recurse. We force evaluation of the 

accumulator to avoid lazy evaluation. With lazy evaluation, we would be 

building larger and later CONS expressions that would not be evaluated 

until the end of the recursion. At this point, we might have built the 

expression too large for the stack space needed to evaluate the functions. 

See, for example, Mailund (2017b) and Mailund (2017a) for explanations 

of how recursion and lazy evaluation can collide to exceed the stack space.

reverse_list <- function(lst, acc = NIL) {

  force(acc)

  cases(lst,

        NIL -> acc,

        CONS(car, cdr) -> reverse_list(cdr, CONS(car, acc)))

}

We can write a similar function to compute the length of a list. This will 

follow the same pattern of using an accumulator, which we return in the 

base case and update in the recursive case.

list_length <- function(lst, acc = 0) {

  force(acc)

  cases(lst,

        NIL -> acc,

        CONS(car, cdr) -> list_length(cdr, acc + 1))

}
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A function for translating a linked list into a list object is a little more 

involved but can still be written succinctly using pattern matching. We 

need to figure out the length of the list object first, then allocate it, and 

finally iterate through the linked list to update the list. We use a closure, 

f, to recursively traverse the linked list. In the base case, I return NULL. It 

doesn’t matter what we return here since we only do the recursion for its 

side effects, which are handled in the recursive case. Here, I use a code 

block—the curly braces operator—to evaluate two statements. The first 

updates the list v, and the second continues the recursion. It is precisely 

because we use tidy evaluation that this function works. It is essential that 

the assignment we do in the recursive case is evaluated in the environment 

where we write the expression. Otherwise, we would not be updating the 

correct list.

list_to_vector <- function(lst) {

  n <- list_length(lst)

  v <- vector("list", length = n)

  f <- function(lst, i) {

    force(i)

    cases(lst,

          NIL -> NULL,

          CONS(car, cdr) -> {

            v[[i]] <<- car

            f(cdr, i + 1)

            }

          )

  }

  f(lst, 1)

  v %>% unlist

}
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Translating a list to a linked list is simple enough and doesn’t use any 

pattern matching—we cannot pattern match on list objects after all.

vector_to_list <- function(vec) {

  lst <- NIL

  for (i in seq_along(vec)) {

    lst <- CONS(vec[[i]], lst)

  }

  reverse_list(lst)

}

With these few functions, we can translate to and from vectors and 

work with lists.

lst <- vector_to_list(1:5)

list_length(lst)

## [1] 5

list_to_vector(lst)

## [1] 1 2 3 4 5

lst %>% reverse_list %>% list_to_vector

## [1] 5 4 3 2 1

Extending the functionality of linked lists with additional functions, 

I will leave as an exercise to the interested reader. You can experiment to 

your heart’s desire.
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Search Trees
As another example, we can implement search trees. These are trees, 

containing ordered values, that satisfy the recursive property that all 

elements in the left subtree of a search tree will have values less than the 

value stored at the root of the tree, and all elements in the right subtree of a 

search tree will have values larger than the value in the root.

To define search trees, we try a different approach than the binary trees 

from earlier. We define an empty tree, E, and a tree with two subtrees, left 

and right, and a value.

search_tree :=

  E | T(left : search_tree, value, right : search_tree)

We will just implement two functions for the example, insertion and 

test for membership. For more functions on search tree, I will refer to 

Mailund (2017a, Chapter 6).

Both functions search recursively down the tree until they either find 

the value they want to insert or the value we want to check membership for 

is in the tree, respectively. For insertion, the base case, when it hits a leaf, 

is to insert the element there. It will create a tree, with two empty subtrees, 

containing the value. The recursive function builds a tree in the recursion 

by using the T constructor to create new trees in each recursive call. Thus, 

the tree created at a leaf will be put into the updated tree that the insert 

function creates. For the member function, we do not need to update the 

tree. If we hit a leaf, we know that the element is not in the tree, and we can 

just return FALSE. In both functions, the search checks the value in the tree 

they see in the recursive case. If the value there is greater than x, then the 

only place x could be found would be in the left subtree, so we continue 

the search there. If, on the other hand, x is greater than the value, then we 

must search in the right subtree. If it is neither smaller than nor greater 

than the value, it must be equal to the value. For insertion, this means we 

do not have to do anything, and we can just return the tree that already 

contains x. For the membership test, we can return TRUE.
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insert <- function(tree, x) {

  cases(tree,

        E -> T(E, x, E),

        T(left, val, right) -> {

          if (x < val)

            T(insert(left, x), val, right)

          else if (x > val)

            T(left, val, insert(right, x))

          else

            T(left, x, right)

        })

}

member <- function(tree, x) {

  cases(tree,

        E -> FALSE,

        T(left, val, right) -> {

          if (x < val) member(left, x)

          else if (x > val) member(right, x)

          else TRUE

        })

}

We can build a tree like this:

tree <- E

for (i in sample(2:4))

  tree <- insert(tree, i)

Once the tree is built, we can test membership like this:

for (i in 1:6) {

  cat(i, “ : “, member(tree, i), “\n”)

}
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## 1  :  FALSE

## 2  :  TRUE

## 3  :  TRUE

## 4  :  TRUE

## 5  :  FALSE

## 6  :  FALSE

The worst-case time usage for both of these functions is proportional 

to the depth of the tree, and that can be linear in the number of elements 

stored in the tree. If we keep the tree balanced, though, the time is reduced 

to logarithmic in the size of the tree. A classical data structure for keeping 

search trees balanced is so-called red-black search trees. Implementing 

these using pointer or reference manipulation in languages such as C/C++ or 

Java can be quite challenging, but in a functional language, balancing such 

trees is a simple matter of transforming trees based on local structure. See, 

for example, Okasaki (1999), Germane and Might (2014), or Mailund (2017a).

Red-black search trees are binary search trees where each tree 

has a color associated, either red or black. We can define colors using 

constructors like this:

colour :=

  R | B

We add a color to all nonempty trees like this:

rb_tree :=

  E | T(col : colour, left : rb_tree, value, right : rb_tree)

Except for including the color in the pattern matching, the member 

function for this data structure is the same as for the plain search tree.

member <- function(tree, x) {

  cases(tree,

        E -> FALSE,

        T(col, left, val, right) -> {
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          if (x < val) member(left, x)

          else if (x > val) member(right, x)

          else TRUE

        })

}

tree <- T(R, E, 2, T(B, E, 5, E))

for (i in 1:6) {

  cat(i, “ : “, member(tree, i), “\n”)

}

## 1  :  FALSE

## 2  :  TRUE

## 3  :  FALSE

## 4  :  FALSE

## 5  :  TRUE

## 6  :  FALSE

What keeps red-black search trees balanced is that we always enforce 

these two invariants:

• No red node has a red parent.

• Every path from the root to a leaf has the same number 

of black nodes.

If every path from root to a leaf has the same number of black nodes, 

then the tree is perfectly balanced if we ignored the red nodes. Since no red 

node has a red parent, the longest path, when red nodes are considered, 

can be no longer than twice the length of the shortest path.
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These invariants can be guaranteed by always inserting new values in 

red leaves, potentially invalidating the first invariant, and then rebalancing 

all subtrees that invalidate this invariant and at the end setting the root 

to be black. The rebalancing is done when returning from the recursive 

insertion calls that otherwise work as insertion in the plain search tree.

insert_rec <- function(tree, x) {

  cases(tree,

        E -> T(R, E, x, E),

        T(col, left, val, right) -> {

          if (x < val)

            balance(T(col, insert_rec(left, x), val, right))

          else if (x > val)

            balance(T(col, left, val, insert_rec(right, x)))

          else

            T(col, left, x, right) # already here

        })

}

insert <- function(tree, x) {

  tree <- insert_rec(tree, x)

  tree$col <- B

  tree

}
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Figure 11-1. Rebalancing transformations when inserting into a 
red- black search tree
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Figure 11-1 shows the transformation rules for the balance function. 

Whenever we see any of the four trees on the edges, we have to transform 

it into the one in the middle. The implementation I presented in Mailund 

(2017a) contained mostly code for testing the structure of the tree to match 

and very little to construct the modified tree. With pattern matching, we 

can implement these rules by matching for each of the four cases like this:

balance <- function(tree) {

  cases(tree,

         T(B,T(R,a,x,T(R,b,y,c)),z,d) -> T(R,T(B,a,x,b),y, 

T(B,c,z,d)),

         T(B,T(R,T(R,a,x,b),y,c),z,d) -> T(R,T(B,a,x,b),y, 

T(B,c,z,d)),

         T(B,a,x,T(R,b,y,T(R,c,z,d))) -> T(R,T(B,a,x,b),y, 

T(B,c,z,d)),

         T(B,a,x,T(R,T(R,b,y,c),z,d)) -> T(R,T(B,a,x,b),y, 

T(B,c,z,d)),

        otherwise -> tree)

}

This is the function we used to motivate the domain-specific language, 

and so we come full circle, having implemented the language we wanted.
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CHAPTER 12

Dynamic 
Programming
As yet another example, we will create a domain-specific language for 

specifying dynamic programming algorithms. Dynamic programming is 

a technique used for speeding up recursive computations. When we need 

to compute a quantity from a recursion that splits into other recursions 

and these recursions overlap—so the computation involves evaluating the 

same recursive calls multiple times—we can speed up the computation 

by memorizing the results of the recursions. If we a priori know the values 

we will need to compute, we can build up a table of these values from the 

basic cases up to the final value instead of from the top-level recursion and 

down where we need more bookkeeping to memorize results.

Take a classical example such as Fibonacci numbers. The Fibonacci 

number F(n) = 1 if n is 1 or 2; otherwise, F(n) = F(n – 1) + F(n – 2) . To 

compute F(n), we need to recursively compute F(n – 1) and F(n – 2). 

To compute F(n – 1), we need to compute F(n – 2) and F(n – 3), which 

obviously overlap the recursions needed to compute F(n – 2), which is 

computed from F(n – 3) and F(n – 4).

We could compute the n’th Fibonacci number recursively, but we 

would have to compute an exponential number of recursions. Instead, we 

could memorize the results of F(m) for each m we use in the recursions to 

avoid recomputing values. A much more straightforward approach is to 

compute F(m) for m = 1,…,n in that order and store the results in a table.
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n <- 10

F <- vector("numeric", length = n)

F[1] <- F[2] <- 1

for (m in 3:n) {

    F[m] <- F[m-1] + F[m-2]

}

F[n]

## [1] 55

Another, equally classical, example is computing the edit distance 

between two strings, x and y, of length n and m, respectively. This is the 

minimum number of transformations—character substitutions, deletions, 

or insertions—needed to translate x into y and can be defined recursively 

for i n= ¼ +1 1, ,  and j m= ¼ +1 1, ,  as follows:
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There are two base cases, capturing the edit distance of a prefix of x 

against an empty string or an empty string against a prefix of y, and then 

there are three cases for the recursion: one for insertion, where we move 

from x i= ¼ -[ ]1 2, ,  to x i1 1, ,¼ -[ ]  against y j1 1, ,¼ -[ ] ; one for deletion, 

where we move from y j1 2, ,¼ -[ ]  to y j1 1, ,¼ -[ ]  against x i1 1, ,¼ -[ ]
; and finally substitution, where we move from x i= ¼ -[ ]1 2, ,  against 

y j1 2, ,¼ -[ ]  to x i= ¼ -[ ]1 2, ,  against y j1 2, ,¼ -[ ] . The cost of this is 0 

if x i y j-[ ] = -[ ]1 1  and 1 if x i y j-[ ] ¹ -[ ]1 1 , which is captured by the 

indicator variable 1 1 1x i y j-[ ]¹ -[ ] .
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This recursion is also readily translated into a dynamic programming 

algorithm. For test purposes, we can construct these two sequences:

x <- c("a", "b", "c")

y <- c("a", "b", "b", "c")

where we can go from x to y by inserting one b, so the edit distance is 1.

Computing the recursion, using dynamic programming, could look 

like this:

n <- length(x)

m <- length(y)

E <- vector("numeric", length = (n + 1) * (m + 1))

dim(E) <- c(n + 1, m + 1)

for (i in 1:(n + 1))

    E[i, 1] <- i - 1

for (j in 1:(m + 1))

    E[1, j] <- j - 1

for (i in 2:(n + 1)) {

    for (j in 2:(m + 1)) {

        E[i, j] <- min(

            E[i - 1, j] + 1,

            E[i, j - 1] + 1,

            E[i - 1, j - 1] + (x[i - 1] != y[j - 1])

        )

    }

}

E

##      [,1] [,2] [,3] [,4] [,5]

## [1,]    0    1    2    3    4

## [2,]    1    0    1    2    3

## [3,]    2    1    0    1    2

## [4,]    3    2    1    1    1
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The edit distance can be obtained by the bottom-right cell in this table:

E[n + 1, m + 1]

## [1] 1

For both of these examples, it is straightforward to translate the 

recursions into dynamic programming algorithms, but the declarations 

of the problems—expressed in the recursions—are lost in the 

implementations, which are the loops where we fill out the tables.

We want to construct a domain-specific language that lets us specify a 

dynamic programming algorithm from a recursion and lets the language 

build the loops and computations for us. For example, we should be able 

to specify a recursion like this:

fib <- {

    F[n] <- 1 ? n <= 2

    F[n] <- F[n - 1] + F[n - 2]

} %where% {

    n <- 1:10

}

and have this expression build the Fibonacci table:

fib

##  [1]  1  1  2  3  5  8 13 21 34 55

In the recursion, we use the ? operator to specify the case in which 

a given rule should be used. You are probably familiar with ? used to get 

documentation for functions, but the R parser also considers it an infix 

operator and one with the lowest precedence at all—lower than even  

<- assignment. This, as it turns out, is convenient for this DSL. We specify 

the recursion cases as assignments, and by having an operator with lower 

precedence than an assignment, we will always have a ? call at the top level 

of the call expression if the rule has a condition associated with it.
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Similarly to the Fibonacci recursion, we should be able to specify the 

edit-distance computation like this:

x <- c("a", "b", "c")

y <- c("a", "b", "b", "c")

edit <- {

  E[1,j] <- j - 1

  E[i,1] <- i - 1

  E[i,j] <- min(

      E[i - 1,j] + 1,

      E[i,j - 1] + 1,

      E[i - 1,j - 1] + (x[i - 1] != y[j - 1])

 ) ? i > 1 && j > 1

} %where% {

    i <- 1:(length(x) + 1)

    j <- 1:(length(y) + 1)

}

and get the table computed:

edit

##      [,1] [,2] [,3] [,4] [,5]

## [1,]    0    1    2    3    4

## [2,]    1    0    1    2    3

## [3,]    2    1    0    1    2

## [4,]    3    2    1    1    1

Here, the first two cases are valid only when I or j is 1, respectively. We 

could specify this using ?, but I’m taking another approach. I use the index 

pattern on the left-hand side of the assignments to specify that an index 

variable should match a constant. This gives us semantics similar to the 

pattern matching in the previous chapter.
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We could also have used this syntax for the Fibonacci recursion, like this:

{

    F[1] <- 1

    F[2] <- 1

    F[n] <- F[n - 1] + F[n - 2]

} %where% {

    n <- 1:10

}

##  [1]  1  1  2  3  5  8 13 21 34 55

For the semantics of evaluating the recursion, I will use the first rule 

where both index patterns and ? conditions are satisfied to compute a 

value. Since we always pick the first such expression, we don’t need to 

explicitly specify the conditions for the general case in the edit-distance 

specification, for example.

{

  E[1,j] <- j - 1

  E[i,1] <- i - 1

  E[i,j] <- min(

      E[i - 1,j] + 1,

      E[i,j - 1] + 1,

      E[i - 1,j - 1] + (x[i - 1] != y[j - 1])

 )

} %where% {

    i <- 1:(length(x) + 1)

    j <- 1:(length(y) + 1)

}
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##      [,1] [,2] [,3] [,4] [,5]

## [1,]    0    1    2    3    4

## [2,]    1    0    1    2    3

## [3,]    2    1    0    1    2

## [4,]    3    2    1    1    1

 Parsing Expressions
The examples give us an idea about what grammar we want for the 

language. We want it to look somewhat like this:

DYNPROG_EXPR ::= RECURSIONS '%where%' RANGES

RECURSIONS ::= '{' PATTERN_ASSIGNMENTS '}'

RANGES ::= '{' RANGES_ASSIGNMENTS '}'

At the top level, the language is implemented using the user-defined 

infix operator %where%. On the left-hand side of the operator, we want 

a specification of the recursion, and on the right-hand side, we want 

a specification of the ranges the algorithm should loop over. We can 

implement the operator like this:

`%where%` <- function(recursion, ranges) {

    parsed <- list(

        recursions = parse_recursion(rlang::enquo(recursion)),

        ranges = parse_ranges(rlang::enquo(ranges))

    )

    eval_dynprog(parsed)

}

We simply parse the left-hand and right-hand sides and then call the 

function eval_dynprog to run the dynamic programming algorithm and 

return the result.
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The simplest aspect of the language is the specification of the ranges. 

Here, we define variables and associate them with sequences they should 

iterate over.

RANGES_ASSIGNMENTS ::= RANGES_ASSIGNMENT

                    |  RANGES_ASSIGNMENT ';' RANGES_ASSIGNMENTS

We want one or more assignments. Here, I’ve specified that we 

separate them by ;, but we will also accept newlines; we simply use what R 

uses to separate statements.

Assignments take the following form:

RANGES_ASSIGNMENT ::= RANGE_INDEX '<-' RANGE_EXPRESSION

I won’t break this down further, but just specify that RANGE_INDEX 

should be an R variable and RANGE_EXPRESSION an R expression that 

evaluates to a sequence.

In the %where% operator, we translate the ranges specification into a 

quosure, so we know in which scope to evaluate the values for the ranges, 

and then we process the result like this:

parse_ranges <- function(ranges) {

    ranges_expr <- rlang::get_expr(ranges)

    ranges_env <- rlang::get_env(ranges)

    stopifnot(ranges_expr[[1]] == "{")

    ranges_definitions <- ranges_expr[-1]

    n <- length(ranges_definitions)

    result <- vector("list", length = n)

    indices <- vector("character", length = n)

    for (i in seq_along(ranges_definitions)) {

        assignment <- ranges_definitions[[i]]
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        stopifnot(assignment[[1]] == "<-")

        range_var <- as.character(assignment[[2]])

        range_value <- eval(assignment[[3]], ranges_env)

        indices[[i]] <- range_var

        result[[i]] <- range_value

    }

    names(result) <- indices

    result

}

First, we extract the expression and the environment of the quosure. 

We will process the former and use the latter to evaluate expressions. We 

expect the ranges to be inside curly braces, so we test this and extract 

the actual specifications. We iterate over them, expecting each to be an 

assignment, where we can get the index variable on the left-hand side and 

the expression for the actual ranges on the right-hand side. We evaluate 

the expressions, in the quosure scope, and build a list as the parse result. 

This list will contain one item per range expression. The name of the item 

will be the iterator value, and the value will be the result of evaluating the 

corresponding expression.

parse_ranges(rlang::quo({

    n <- 1:10

}))

## $n

##  [1]  1  2  3  4  5  6  7  8  9 10

parse_ranges(rlang::quo({

    i <- 1:(length(x) + 1)

    j <- 1:(length(y) + 1)

}))
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## $i

## [1] 1 2 3 4

##

## $j

## [1] 1 2 3 4 5

The recursion specifications are slightly more complicated.

PATTERN_ASSIGNMENTS ::= PATTERN_ASSIGNMENT

                     |  PATTERN_ASSIGNMENT ';'  PATTERN_

ASSIGNMENTS

where

PATTERN_ASSIGNMENT ::= PATTERN '<-' RECURSION

                    |  PATTERN '<-' RECURSION '?' CONDITION

PATTERN ::= TABLE '[' INDICES ']'

We won’t break the grammar down further than this. Here TABLE 

is a variable, INDICES is a comma-separated sequence of variables or 

expressions, and both RECURSION and CONDITION are R expressions.

With this grammar, we need to extract three different pieces of 

information: the index patterns, so we can match against that; the ? 

conditions, such that we can check those; and finally the actual recursions. 

The parser doesn’t have to be much more complicated than for the ranges, 

though, as long as we just collect these three properties of each recursive 

case and put them in lists.

parse_recursion <- function(recursion) {

    recursion_expr <- rlang::get_expr(recursion)

    recursion_env <- rlang::get_env(recursion)

    stopifnot(recursion_expr[[1]] == "{")

    recursion_cases <- recursion_expr[-1]
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    n <- length(recursion_cases)

    patterns <- vector("list", length = n)

    conditions <- vector("list", length = n)

    recursions <- vector("list", length = n)

    for (i in seq_along(recursion_cases)) {

        case <- recursion_cases[[i]]

        condition <- TRUE

        stopifnot(rlang::is_call(case))

        if (case[[1]] == "?") {

            # NB: The order matters here!

            condition <- case[[3]]

            case <- case[[2]]

        }

        stopifnot(case[[1]] == "<-")

        pattern <- case[[2]]

        recursion <- case[[3]]

        patterns[[i]] <- pattern

        recursions[[i]] <- recursion

        conditions[[i]] <- condition

    }

    list(

        recursion_env = recursion_env,

        patterns = patterns,

        conditions = conditions,

        recursions = recursions

    )

}
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The function is not substantially different from the parser for the 

ranges. We extract the quosure environment and the expression, check 

that it is a call to curly braces, and then loop through the cases.

If a case is a call to ?, we know it has a condition. Since ? has the lowest 

precedence of all operators, it will be the top-level call if a condition 

exists—unless, at least, users get cute with parentheses, but then they get 

what they deserve. As a default condition, we use TRUE. This way, we don’t 

have to deal with special cases when there is no ? condition specified; but 

if there is, we replace TRUE with the expression. Otherwise, we just collect 

all the information for each recursive case.

We do not evaluate the recursions in the parser, so we do not use the 

quosure environment in the parser. Instead, we return it together with the 

parsed information. We will need it later when we evaluate the recursion 

expressions.

We can test the parser on the Fibonacci recursion to see how it 

behaves.

parse_recursion(rlang::quo({

  F[n] <- n * F[n - 1] ? n > 1

  F[n] <- 1            ? n <= 1

}))

## $recursion_env

## <environment: R_GlobalEnv>

##

## $patterns

## $patterns[[1]]

## F[n]

##

## $patterns[[2]]

## F[n]

##

##
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## $conditions

## $conditions[[1]]

## n > 1

##

## $conditions[[2]]

## n <= 1

##

##

## $recursions

## $recursions[[1]]

## n * F[n - 1]

##

## $recursions[[2]]

## [1] 1

Similarly, we can use it to parse the edit-distance recursions.

parse_recursion(rlang::quo({

  E[1,j] <- j - 1

  E[i,1] <- i - 1

  E[i,j] <- min(

      E[i - 1,j] + 1,

      E[i,j - 1] + 1,

      E[i - 1,j - 1] + (x[i - 1] != y[j - 1])

  ) ? i > 1 && j > 1

}))

## $recursion_env

## <environment: R_GlobalEnv>

##

## $patterns

## $patterns[[1]]

## E[1, j]
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##

## $patterns[[2]]

## E[i, 1]

##

## $patterns[[3]]

## E[i, j]

##

##

## $conditions

## $conditions[[1]]

## [1] TRUE

##

## $conditions[[2]]

## [1] TRUE

##

## $conditions[[3]]

## i > 1 && j > 1

##

##

## $recursions

## $recursions[[1]]

## j - 1

##

## $recursions[[2]]

## i - 1

##

## $recursions[[3]]

## min(E[i - 1, j] + 1, E[i, j - 1] + 1, E[i - 1, j - 1] + (x[i -

##     1] != y[j - 1]))
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 Evaluating Expressions
To evaluate a dynamic programming expression, we need to iterate over all 

the ranges, compute the first value associated with satisfied conditions and 

patterns, and put the result in the dynamic programming table. We could 

construct expressions with nested loops for the ranges to do this, but there 

is a simpler way. We can construct all combinations of ranges using the 

expression do.call(expand.grid, ranges). For the Fibonacci example, 

we get this:

ranges <- parse_ranges(rlang::quo({

    n <- 1:10

}))

head(do.call(expand.grid, ranges))

##   n

## 1 1

## 2 2

## 3 3

## 4 4

## 5 5

## 6 6

Except that we have a name associated with the range, this is just the 

input. For the edit-distance example, we see the full use of this expression 

here:

ranges <- parse_ranges(rlang::quo({

    i <- 1:(length(x) + 1)

    j <- 1:(length(y) + 1)

}))

head(do.call(expand.grid, ranges))
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##   i j

## 1 1 1

## 2 2 1

## 3 3 1

## 4 4 1

## 5 1 2

## 6 2 2

Here, we get all combinations of i and j from the ranges. Instead of 

constructing expressions with nested loops, we can iterate through the 

rows of the table we get from this invocation. If we extract a row, we get a 

vector with named range indices.

edit_ranges <- do.call(expand.grid, ranges)

edit_ranges[1,]

##   i j

## 1 1 1

edit_ranges[2,]

##   i j

## 2 2 1

Using the with function, we can exploit this to create an environment 

where range indices are bound to values, and it is in precisely such 

environments we want to evaluate the recursions.

with(edit_ranges[3,],

    cat(i, j, "\n")

)

## 3 1

Looping over the rows in a table we create this way will be the core of 

our algorithm. Before we get to implementing this, however, we need to 

construct the expressions to insert into the body of the loop.
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We start with creating code for testing patterns against range-index 

variables. Here, we will keep the syntax simpler than the pattern matching 

from the previous chapter. We assume that the indices in the left-hand 

side of recursions consist of index variables or constants, and we build a 

test that simply compares the index-variable names, which we get from 

the ranges parser, against the values in the recursion specification. We can 

construct the function as simply as this:

make_pattern_match <- function(pattern, range_vars) {

    matches <- vector("list", length = length(range_vars))

    stopifnot(pattern[[1]] == "[")

    for (i in seq_along(matches)) {

        matches[[i]] <- call(

            "==",

            pattern[[i + 2]],

            range_vars[[i]]

        )

    }

    rlang::expr(all(!!! matches))

}

We construct a list of == comparisons between the index patterns used 

in the specification and the values the range indices can iterate over. For 

the latter, we first need to translate strings into symbols, so we are sure 

to compare the values of pattern variables and not check that constants 

match the name of the variables. We do not perform that conversion inside 

this function; we will expect that the caller has already done this. The 

reason that we use index i + 2 for the patterns is that patterns are in the 

form of a call to the [ operator, so index 1 is the [ symbol and index 2 is the 

table name. The indices follow after those two argument-elements.

A couple of examples should illustrate how the pattern-matching 

predicates are constructed.
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make_pattern_match(rlang::expr(F[1]), list(as.symbol("n")))

## all(1 == n)

make_pattern_match(rlang::expr(F[n]), list(as.symbol("n")))

## all(n == n)

make_pattern_match(rlang::expr(E[1,j]),

                    list(as.symbol("i"), as.symbol("j")))

## all(1 == i, j == j)

We test all range variables, even when they are completely free to take 

any values. When they are, we simply check that they equal themselves, 

which they will always do unless they are NA—and if they are, there isn’t 

anything useful we can do about them anyway. Creating the test this way 

makes the code for testing patterns simpler, and testing that variables 

equal themselves does not change the result the conditions end up with.

We map this expression construction over all the patterns to get test- 

code for all recursive cases.

make_pattern_tests <- function(patterns, range_vars) {

    tests <- vector("list", length = length(patterns))

    for (i in seq_along(tests)) {

        tests[[i]] <- make_pattern_match(

            patterns[[i]],

            range_vars

        )

    }

    tests

}
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Given these Fibonacci parser results:

fib_ranges <- parse_ranges(rlang::quo({

    n <- 1:10

}))

fib_recursions <- parse_recursion(rlang::quo({

  F[n] <- F[n - 1] + F[n - 2] ? n > 2

  F[n] <- 1                   ? n <= 2

}))

we can construct the pattern tests for all cases like this:

make_pattern_tests(

    fib_recursions$patterns,

    Map(as.symbol, names(fib_ranges))

)

## [[1]]

## all(n == n)

##

## [[2]]

## all(n == n)

We want to know if both pattern and ? condition match before we 

evaluate an expression, so we combine the two lists. We simply construct 

a new list where we combine the pattern matching with the ? conditions 

using &&.

make_condition_checks <- function(

    ranges,

    patterns,

    conditions,

    recursions

) {
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    test_conditions <- make_pattern_tests(

        patterns,

        Map(as.symbol, names(ranges))

    )

    for (i in seq_along(conditions)) {

        test_conditions[[i]] <- rlang::call2(

            "&&", test_conditions[[i]], conditions[[i]]

        )

    }

    test_conditions

}

To verify that this works as intended, we can, again, use the Fibonacci 

recursions.

fib_ranges <- parse_ranges(rlang::quo({

    n <- 1:10

}))

fib_recursions <- parse_recursion(rlang::quo({

  F[n] <- F[n - 1] + F[n - 2] ? n > 2

  F[n] <- 1                   ? n <= 2

}))

make_condition_checks(

    fib_ranges,

    fib_recursions$patterns,

    fib_recursions$conditions,

    fib_recursions$recursions

)

## [[1]]

## all(n == n) && n > 2
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##

## [[2]]

## all(n == n) && n <= 2

So, the status is now that we have all the test conditions. We can take 

these test conditions, combine them with the expressions for evaluating 

the recursions, and construct a sequence of if-else expressions. If we 

construct an if call with two arguments, this is interpreted as the test 

condition and the value to compute when the test is true. If we construct 

a call with three arguments, the third is considered the else part of the 

statement. The simplest way to construct a sequence of if-else statements 

is, therefore, to start from the end of the list. We can translate the last case 

into an if statement without an else part—or we can make an else part 

that throws an error if we prefer. We can then iterate through the cases, at 

each case constructing a new if expression that takes the previous case as 

the else part. This idea can be implemented like this:

make_recursion_case <- function(

    test_expr,

    value_expr,

    continue

) {

    if (rlang::is_null(continue)) {

        rlang::call2("if", test_expr, value_expr)

    } else {

        rlang::call2("if", test_expr, value_expr, continue)

    }

}

make_update_expr <- function(

    ranges,

    patterns,
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    conditions,

    recursions

) {

    conditions <- make_condition_checks(

        ranges,

        patterns,

        conditions,

        recursions

    )

    continue <- NULL

    for (i in rev(seq_along(conditions))) {

        continue <- make_recursion_case(

            conditions[[i]], recursions[[i]], continue

        )

    }

    continue

}

For the Fibonacci recursion, the result is this expression:

make_update_expr(

    fib_ranges,

    fib_recursions$patterns,

    fib_recursions$conditions,

    fib_recursions$recursions

)

## if (all(n == n) && n > 2) F[n - 1] + F[n - 2] else if (all(n ==

##     n) && n <= 2) 1
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What remains to be done is to evaluate this expression for each 

combination of range indices. To do this, we create the table using the do.

call expression we saw earlier, loop over all table rows, and insert the 

update expression inside the body of the loop. A function for creating the 

entire loop function looks like this1:

make_loop_expr <- function(tbl_name, update_expr) {

    rlang::expr({

        combs <- do.call(expand.grid, ranges)

        rlang::UQ(tbl_name) <- vector(

            "numeric",

            length = nrow(combs)

        )

        dim(rlang::UQ(tbl_name)) <- Map(length, ranges)

        for (row in seq_along(rlang::UQ(tbl_name))) {

            rlang::UQ(tbl_name)[row] <- with(

                combs[row, , drop = FALSE], {

                    rlang::UQ(update_expr)

                }

            )

        }

        rlang::UQ(tbl_name)

    })

}

In addition to the update_expr, the code needs to know the table 

name. This is because the update_expr will be referring to the table in the 

recursive cases. The table name is easy to get from the patterns, though.

1 The drop=FALSE in the row subscript ensures that we get a row with a named 
variable even when there is only one.
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get_table_name <- function(patterns) {

    p <- patterns[[1]]

    stopifnot(p[[1]] == "[")

    p[[2]]

}

get_table_name(fib_recursions$patterns)

## F

The loop, expanded with expressions from the Fibonacci recursion, 

looks like this:

make_loop_expr(get_table_name(fib_recursions$patterns),

                make_update_expr(

                    fib_ranges,

                    fib_recursions$patterns,

                    fib_recursions$conditions,

                    fib_recursions$recursions

                ))

## {

##     combs <- do.call(expand.grid, ranges)

##     F <- vector("numeric", length = nrow(combs))

##     dim(F) <- Map(length, ranges)

##     for (row in seq_along(F)) {

##         F[row] <- with(combs[row, , drop = FALSE], {

##             if (all(n == n) && n > 2)

##                 F[n - 1] + F[n - 2]

##             else if (all(n == n) && n <= 2)

##                 1

##         })

##     }

##     F

## }
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For the edit-distance recursion, we get the following:

edit_ranges <- parse_ranges(rlang::quo({

    i <- 1:(length(x) + 1)

    j <- 1:(length(y) + 1)

}))

edit_recursions <- parse_recursion(rlang::quo({

  E[1,j] <- j - 1

  E[i,1] <- i - 1

  E[i,j] <- min(

      E[i - 1,j] + 1,

      E[i,j - 1] + 1,

      E[i - 1,j - 1] + (x[i - 1] != y[j - 1])

  )

}))

make_loop_expr(get_table_name(edit_recursions$patterns),

                make_update_expr(

                    edit_ranges,

                    edit_recursions$patterns,

                    edit_recursions$conditions,

                    edit_recursions$recursions

                ))

## {

##     combs <- do.call(expand.grid, ranges)

##     E <- vector("numeric", length = nrow(combs))

##     dim(E) <- Map(length, ranges)

##     for (row in seq_along(E)) {

##         E[row] <- with(combs[row, , drop = FALSE], {

##             if (all(1 == i, j == j) && TRUE)

##                 j - 1
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##             else if (all(i == i, 1 == j) && TRUE)

##                 i - 1

##             else if (all(i == i, j == j) && TRUE)

##                 min(E[i - 1, j] + 1, E[i, j - 1] + 1, E[i - 1,

##                   j - 1] + (x[i - 1] != y[j - 1]))

##         })

##     }

##     E

## }

All that remains now is to evaluate this loop expression, and the only 

trick to this is to make sure we evaluate it in the right environment. The 

with statement inside the loop ensures that we over-scope the expression 

with the relevant index variables, so we do not have to worry about the 

ranges and range indices. The expressions we evaluate in the update 

expression, however, should be evaluated in the scope where we define 

the expression, which we captured in the quosures when we parsed the 

expressions. Ideally, we would just evaluate the loop in this quosure 

environment, but the loop expression needs to know about the ranges, so 

we need to put those in the scope as well. One way to do this is to put a 

local function-call environment between the quosure scope and the loop 

and evaluate the expression this way:

eval_recursion <- function(ranges, recursions) {

    loop <- make_loop_expr(

                get_table_name(recursions$patterns),

                make_update_expr(

                    ranges,

                    recursions$patterns,

                    recursions$conditions,

                    recursions$recursions

                ))
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    eval_env <- rlang::env_clone(

        environment(), # this function environment

        recursions$recursion_env # quosure environment

    )

    eval(loop, envir = eval_env)

}

For the Fibonacci expressions, we get the following:

eval_recursion(fib_ranges, fib_recursions)

##  [1]  1  1  2  3  5  8 13 21 34 55

The %where% operator, as we saw earlier in this chapter, simply parses 

the ranges and recursions and then evaluates the result in a function 

called eval_dynprog. This function does nothing more than call the eval_

recursion function we just wrote.

eval_dynprog <- function(dynprog) {

    eval_recursion(dynprog$ranges, dynprog$recursions)

}

Providing the parsed pieces directly to the eval_dynprog function, 

instead of going through %where%, we see that this is indeed what is 

happening.

eval_dynprog(list(

    ranges = fib_ranges,

    recursions = fib_recursions

))

##  [1]  1  1  2  3  5  8 13 21 34 55

eval_dynprog(list(

    ranges = edit_ranges,

    recursions = edit_recursions

))
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##      [,1] [,2] [,3] [,4] [,5]

## [1,]    0    1    2    3    4

## [2,]    1    0    1    2    3

## [3,]    2    1    0    1    2

## [4,]    3    2    1    1    1

 Fixing the Evaluation Environment
The solution so far works, but there is one slightly unsatisfactory aspect 

of the solution. When we evaluate the loop, we place an environment 

between the quosure environment and the expression we evaluate, and 

this environment contains several local variables that can potentially 

conflict with variables in the quosure scope.

We can avoid this and make sure that we only over-scope with the 

range-index variables and nothing else, but we will then have to take 

a slightly different approach. Instead of constructing the loop as an 

expression and then evaluating it in the function-plus quosure-scope, we 

loop over the range-index combinations immediately. In the body of the 

loop, we construct and evaluate the update expressions.2

The alternative solution is listed next. As in the previous solution, we 

get the name of the dynamic-programming table first, and we construct 

the update expression. This time, though, we also get hold of the table 

name as a string. We need this to access the name in the evaluation 

environment, which we construct as an empty environment with the 

quosure environment as the parent. That way, we can modify the 

evaluation environment without affecting the quosure environment, but 

we still have access to all variables we can get from there.

2 Depending on your taste, you might prefer this solution over the previous just 
because we keep evaluation of generated code to a minimum. The new solution 
involves generating and evaluating more expressions, though, and some hacks to 
update the table in the scope where we evaluate recursions, so the first solution 
has some merits over the second.
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We don’t need any meta-programming to construct the table. We 

can get its size and dimensions from the ranges. We need to put it in the 

evaluation environment for the update expressions to see, though, and 

we do that using the [[ operator on environments. After constructing the 

table and putting it in the evaluation environment, we loop through all the 

range-index combinations as before.

We want to over-scope the update expression with the index 

variables when we compute the recursion values, so we need to evaluate 

the expression in an environment that contains combs[row,]. We 

cannot evaluate the actual assignment if we use this row as the second 

argument to eval, however. R considers the second argument to eval 

the environment where expressions are evaluated, and an assignment 

in an environment that is really a list will not work. You will not get an 

error, but you will not assign to any variable either. So, we need to split 

the evaluation of the recursion and the assignment to the table in two. We 

evaluate the recursion expression in an environment where combs[row,] 

over-scopes the evaluation environment, and we evaluate the assignment 

in the evaluation environment without any other over-scoping.

You might think that once we have the value to insert in the table, 

we could just update the table, and we wouldn’t have to construct an 

assignment expression to achieve this. It is not that simple, however. R 

tries very hard to make data immutable, and if we assign to an element 

in a table that is referenced from two different places, R will copy the 

table, update only one of the copies, and set the modified copy in the 

environment where we did the assignment, leaving the original in the 

other scope. To update the table, such that the recursion expressions 

can use it, we need to do the update in the evaluation environment (or 

alternatively, update the table and then assign the copy into the evaluation 

environment).
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The alternative evaluation function thus looks like this:

eval_recursion <- function(ranges, recursions) {

    tbl_name <- get_table_name(recursions$patterns)

    tbl_name_string <- as.character(tbl_name)

    update_expr <- make_update_expr(

        ranges,

        recursions$patterns,

        recursions$conditions,

        recursions$recursions

    )

    eval_env <- rlang::child_env(recursions$recursion_env)

    combs <- do.call(expand.grid, ranges)

    tbl <- vector("numeric", length = nrow(combs))

    dim(tbl) <- Map(length, ranges)

    eval_env[[tbl_name_string]] <- tbl

    for (row in seq_along(tbl)) {

        val <- eval(

            rlang::expr(rlang::UQ(update_expr)),

            combs[row, , drop = FALSE],

            eval_env

        )

        eval(rlang::expr(

                rlang::UQ(tbl_name)[rlang::UQ(row)]

                    <- rlang::UQ(val)

            ), eval_env)

    }

    eval_env[[tbl_name_string]]

}
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It behaves exactly like the previous one, though.

eval_dynprog(list(

    ranges = fib_ranges,

    recursions = fib_recursions

))

##  [1]  1  1  2  3  5  8 13 21 34 55

eval_dynprog(list(

    ranges = edit_ranges,

    recursions = edit_recursions

))

##      [,1] [,2] [,3] [,4] [,5]

## [1,]    0    1    2    3    4

## [2,]    1    0    1    2    3

## [3,]    2    1    0    1    2

## [4,]    3    2    1    1    1

At least, unless your recursions referenced variables that would be 

over-scoped by local variables in the previous version.
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CHAPTER 13

Conclusion
Embedding domain-specific languages into R enriches the language by 

providing flexible ways to construct data structures or process data. In this 

book, we have seen how to use techniques such as operator overloading, 

meta-programming, and non-standard evaluation to implement small 

domain-specific languages. Through examples, we have explored several 

language designs for various problems.

The flexibility of the R language—flexibility both in how we can 

override operators and functions and specialize generic functions and 

flexibility in how we evaluate expressions—makes domain-specific 

languages a natural approach to designing package interfaces. The 

packages in the widely popular tidyverse exploit this to a great degree. The 

ggplot2 package uses the plus operator to combine graphical commands 

in the “grammar of graphics.” The magrittr pipe operator, %>%, is used 

to create sequences of transformation verbs in packages such as dplyr 

and tidyr. The tidyverse packages also exploit non-standard evaluation 

to over-scope expressions with data frame columns. As is evident from 

the popularity of the tidyverse, the use of well-designed domain-specific 

languages can improve the productivity of a programmer considerably. 

This happens as a consequence of improved readability and increased 

flexibility over more traditional interfaces to analysis frameworks.
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A key word here is well-designed. When we implement a domain- 

specific language, rather than rely on standard R syntax, we demand of the 

user that he or she can use the language more efficiently than they could 

use a more traditional interface. This will be the case only if the language is 

designed to be consistent in how you combine its components and how it 

interacts with the surrounding R code.

Designing a language requires some trial and error. With experience, 

you will reduce the number of errors, of course, but you will always benefit 

from experimenting with alternative ways of expressing the same ideas. It 

is via experiments you will learn how different components of a language 

combine to express ideas. A good approach to designing a new domain- 

specific language is to consider various use cases and write down how you 

would ideally want to express the computations you want to implement 

in your new language. You don’t have to implement any of the language 

constructs yet; you can just try to write down expressions in various ways.

Once you are satisfied with how you would ideally want the language 

to look, you can start to worry about how you would implement it. It might 

not be possible to implement the language to accept exactly the syntax you 

came up with in the design phase. Since you are embedding the language 

in R, expressions in the language must also be valid R code. This puts some 

restrictions on what you can do. But starting from the ideal design, you 

can modify your use cases until the examples are valid expressions both in 

your language and in R, and from there, you can exploit the techniques you 

have learned in this book to implement your language.

Good luck.

Chapter 13  ConClusion



249© Thomas Mailund 2018 
T. Mailund, Domain-Specific Languages in R,  
https://doi.org/10.1007/978-1-4842-3588-1

 References

Germane, K, and M Might. 2014. “Deletion: The Curse of the Red-Black 

Tree.” Journal of Functional Programming 24 (04): 423–33.

Mailund, T. 2017a. Functional Data Structures in R: Advanced 

Statistical Programming in R. Apress.

———. 2017b. Functional Programming in R: Advanced Statistical 

Programming for Data Science, Analysis and Finance. Apress.

———. 2017c. Metaprogramming in R: Advanced Statistical 

Programming for Data Science, Analysis and Finance. Apress.

Okasaki, C. 1999. “Red-Black Trees in a Functional Setting.” Journal of 

Functional Programming 9 (4). Cambridge University Press: 471–77.

https://doi.org/10.1007/978-1-4842-3588-1


251© Thomas Mailund 2018 
T. Mailund, Domain-Specific Languages in R,  
https://doi.org/10.1007/978-1-4842-3588-1

Index

A, B
Abstract syntax tree (AST), 34–35
Assignment operator, 104

C
Constructors

as_list(environment()), 191
binary tree, 194
bind_rows function, 190
construction_printer function, 

189, 193
constructor_constant  

function, 189
deparse_construction and 

construction_printer 
functions, 187

DSL, 186
environment, 192
is_lang function, 189
pretty-printing elements, 186
process_alternatives function, 

187–188
process_arg function, 190
process_constructor_function, 

188–189, 191
string representation, 193

toString function, 193
variables and function, 185

Continuous-time Markov chains 
(CTMCs)

add_edge function, 170–171
class creation, 170
collect_symbols function, 169
collect_symbols_rec and 

make_args_list, 167, 169
expm package, 167
foo to qux edges, 173
functions, 49
likelihood function, 180, 182
magrittr package, 167
mathematical modeling, 48
parameters, 171–172
probability vectors flow, 52
rate matrix, 48–50, 53,  

174–175, 177
tibble package, 167
trace, 177–178, 180
transition probabilities, 51

D
Default environment, 126
Default parameters

https://doi.org/10.1007/978-1-4842-3588-1


252

computations, 119
promises, 116, 121
semantics, 115

Directed acyclic graphs (DAGs), 
41–42, 44–46

Domain-specific languages (DSLs)
classes and operator 

overloading, 3
“external” and “embedded” 

languages, 2
functions, 55
grammar of graphics, 2
matrix multiplication

automatic parentheses, 7
class matrix_expr, 6
evaluation, 6
microbenchmark  

package, 4–5
parsing expressions, 6
rearrange_matrix_mult and 

eval_matrix_mult, 7
meta-programming, 3
non-standard evaluation, 3
object-oriented programming, 1
programming language, 2
regular expressions, 1
S3 system (see S3 system)

Dynamic programming
construct, 217
edit distance, 218, 220
evaluating expressions

do.call(expand.grid,  
ranges), 229

edit-distance recursion, 
239–240

eval_dynprog function,  
241, 242

eval_recursion function, 241
Fibonacci expressions, 241
Fibonacci parser, 233
Fibonacci recursions, 234, 

236, 238–239
if-else statements, 235
loop expression, 240–241
loop function, 237
pattern-matching, 231–232
pattern tests, 233
range index variable, 230–231
update_expr, 237
with function, 230

evaluation environment, 
242–243, 245

Fibonacci numbers, 215–216
Fibonacci recursion, 219
parsing expressions

edit-distance recursions, 
227–228

eval_dynprog function, 221
Fibonacci recursion, 

226–227
index patterns, 224, 226
iterator value, 223
range assignments, 222
RANGE_EXPRESSION, 222
RANGE_INDEX, 222
recursion specifications, 224
%where% operator, 221, 222

Default parameters (cont.)

Index



253

recursion, 217–218
strings, 216

E, F
Empty environment, 110
Environment

default, 126
empty, 110
execution, 111
functions, 111, 112
global (see Global environment)
graph, 113
new_function, 127
parent, 111, 114

Exploring expressions
bound and unbound  

symbols, 89
call expressions, 84
collect_symbols, 91, 93–94
cons function, 89, 90
CONSTANT, NAME, and 

PRIMITIVE, 84
discard function, 91
empty symbol, 91
function calls, 84, 88
function definition, 87–88
grammar, 84
is.atomic function, 85
is.call function, 85
is.pairlist, 85
is.primitive function, 85
lst_to_list function, 90
names function, 87

non-standard evaluation, 93
parent.frame, 91
printing expression, 86
recursive function, 91
unbound variables, 93
variables, 92

Expression manipulation
arithmetic rewriting, 18
call function, 96–97
caller_env, 99
calls and pair lists, 94
error message, 98
expression rewriting

car and cdr element, 24
collect_mult_components 

function, 26
generic functions, 24
head and tail, 24
list object, 23, 25, 27
matrix_mult objects, 23
rearrange_matrix_expr.

matrix_mult function, 26
sets parentheses, 27
tree traversal, 24
vector function, 25

expr_to_function, 100
function f, 98
function definition, 95
generic function, 19
names<-function, 95
new_function, 99–100
operations, rules, 19
optimizing multiplication, 20–22
pair list, 95

Index



254

rlang package, 97, 99
substitute, 98

Expressions, evaluating, 113

G, H, I, J, K
Global environment, 109

execution environments, 112
defined function f, 111
function f, 112
variable i, 122
parent environment, 111
variables, 110
values of x and y, 126

L
Lambda function, 105–106
Lambda expressions, 125

anonymous functions, 103
assignment operator, 102
environments and  

expressions, 107
eval(substitute(alist(…))) 

expression, 105
formal arguments, 102
function expressions, 101, 102
make_args_list, 103
new_function, 103
substitute expression, 105
syntax, 104–106

Lazy evaluation, 114, 121
Lexical scope, 109

List comprehension
argument, 161
Eratosthenes algorithm, 164
filter function, 159–160
get_expr function, 161–162
Haskell implementation, 

160–161
Haskell/Python, 159
lc function, 163–164
list of candidates, 164–165
map function, 161–162
non-standard evaluation, 161
pivot, 159
purrr package, 162
Python implementation, 160
quick sort implementation, 163
zipping function, 165

M
magrittr pipe operator, 247
Matrix expressions

description, 9
evaluation, 27–29
manipulation (see Expression 

manipulation)
parsing (see Parsing 

expressions)
Meta-programming, 3, 77, 247
Meta-programming parsing

bootstrap, 14
def_expr attribute, 18
eval function, 16
is.call, 14

Expression manipulation (cont.)

Index



255

is.name, 14
matrix_mult and matrix_sum, 17
quoted expressions, 15, 17
R expression, 15
substitute function, 15–16

N
Nested scope, 109
Non-standard evaluation (NSE), 3, 

106, 107, 124, 128, 247

O
Operator overloading, 247

P
Parent environment, 111, 114
Parsing expressions

addition operators, 12
constructors, 10–12
def_expr attribute, 11
dim function, 13
language, 12
meta-programming (see Meta-

programming parsing)
operator overloading, 13
product of matrix expressions, 10
scalar multiplication, 10
stopifnot(), 13

Pattern matching
callCC function, 198
cases function, 197, 198

depth-first traversal, 203
functional data structures in  

R, 183
implementation, 196
lists, 203–206
make_args_list function, 184
meta-programming  

function, 197
otherwise keyword, 196
red-black search trees, 184
test_expr function, 201–203
test_pattern function, 198, 199
test_pattern_rec function, 

198–201
transformation functions, 183

Programming language
ggplot2, 31
glyphs, 32
grammars

cons function, 43
create edge, 43
DAGs, 41–42, 44–46
dplyr package, 46
grammatical sentences, 35
infix operator, 43
magrittr, 42, 46
meta-grammar, 37–38
meta-variables, 37–39
nested function calls, 42
nodes, 43
operator precedence, 40
parser, 35
parse tree for 2 + 2 * 3, 39–40
rules, 37

Index



256

semantics, 35–36
unambiguous, 40

data manipulation, magrittr and 
dplyr, 31

phonemes, 32
semantics

CTMC, 47–53
matrix expressions, 47
parsing code, 47

software, 31
tokens

AST, 34–35
character sequences, 32
function call, 33
identifiers and numbers, 33
parser, 34
string of, 33
variables and functions, 34

Promises
adders, 123
computing values, 119
default parameters, 116, 121
definition, 114
evaluate, 117, 119
expression, 115, 120
function call, 117
function-call environment, 115
global scope, 129
variable, 120, 123

Q, R
Quasi-quotation functions

data frame, 156

dots_list, 155
dplyr’s Filter function,  

148–149
enexpr function, 151–153
enquo function, 157
filter function, 149–150
rlang package, 147, 153–154
UQS function, 154

Quosure functions
adding expression, 145–146
caller’s environment, 142
creation expressions, 144
environment and  

expression, 136
eval, eval_tidy expressions, 140
eval_tidy expression, 140
invoke_map function, 144
linked lists structure, 142–143
list2env function, 140
make_function, 141
make_line_expressions, 146
over-scoping, 138–139
quote and substitute 

expressions, 136
rlang function, 137
rlang package, 136
sequence of arguments, 146
three-dots argument, 147

Quote and eval functions
addition, 79
“call” objects, 78
data structure, 78
expr argument, 81, 82
flexibility, 80
literate expression, 80

Programming language (cont.)

Index



257

multiplication, 79
parameters, 80
parent.frame, 83
quote(expr), 81
substitute, 81, 83

Quoted expressions, 128, 130, 
132–134

S
S3 system

code blocks, 73–75
generic functions

NextMethod, 61–62
UseMethod, 58–61

group generics, 68–70
objects and classes, 56–57
operator overloading

slot and component access 
(@ and $), 63

function +.a, 64
abstract method, 66
addition operator, 65

arrow assignments  
(<-and->), 63

NextMethod, 63, 66
unary and binary  

operators, 67–68
operators, precedence, 71–73
precedence and evaluation 

order, 70–73
Search trees

definition, 207
functions, 207
insert function, 207–208
member function, 207–208, 210
nonempty trees, 210
rebalancing transformations, 212
red-black, 209–210, 212
transformation rules, 211

Standard evaluation, 126

T, U, V, W, X, Y, Z
Tidy evaluation, 134
Tidyverse packages, 247

Index


	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Introduction
	Who This Book Is For
	Domain-Specific Languages

	Chapter 2: Matrix Expressions
	Parsing Expressions
	Meta-Programming Parsing

	Expression Manipulation
	Optimizing Multiplication
	Expression Rewriting

	Expression Evaluation

	Chapter 3: Components of a Programming Language
	Text, Tokens, Grammars, and Semantics
	Specifying a Grammar
	Designing Semantics

	Chapter 4: Functions, Classes, and Operators
	The S3 Object-Oriented Programming System
	Objects and Classes
	Generic Functions
	Operator Overloading
	Group Generics

	Precedence and Evaluation Order
	Code Blocks

	Chapter 5: Parsing and Manipulating Expressions
	Quoting and Evaluating
	Exploring Expressions
	Manipulating Expressions

	Chapter 6: Lambda Expressions
	Anonymous functions
	Experiments with Alternatives to the Syntax
	Don’t Do This at Home

	Chapter 7: Environments and Expressions
	Scopes and Environments
	Default Parameters, Lazy Evaluation, and Promises
	Quotes and Non-standard Evaluation

	Chapter 8: Tidy Evaluation
	Quosures
	Quasi-quoting

	Chapter 9: List Comprehension
	Chapter 10: Continuous-Time Markov Chains
	Constructing the Markov Chain
	Constructing a Rate Matrix
	Traces
	Computing Likelihoods

	Chapter 11: Pattern Matching
	Constructors
	Pattern Matching
	Lists
	Search Trees

	Chapter 12: Dynamic Programming
	Parsing Expressions
	Evaluating Expressions
	Fixing the Evaluation Environment

	Chapter 13: Conclusion
	References
	Index



