
www.allitebooks.com

http://www.allitebooks.org


Arduino Essentials

Enter the world of Arduino and its peripherals and start 
creating interesting projects

Francis Perea

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org


Arduino Essentials

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the author, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2015

Production reference: 1200215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-856-9

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org


Credits

Author
Francis Perea

Reviewers
Ladislas de Toldi

Ken Leung

Commissioning Editor
Sarah Crofton

Acquisition Editor
Meeta Rajani

Content Development Editor
Ajinkya Paranjpe

Technical Editor
Sebastian Rodrigues

Copy Editors
Nithya P

Stuti Srivastava

Project Coordinator
Harshal Ved

Proofreaders
Maria Gould

Jonathan Todd

Bernadette Watkins

Indexer
Monica Ajmera Mehta

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.allitebooks.com

http://www.allitebooks.org


About the Author

Francis Perea is a vocational education professor at Consejería de Educación de la 
Junta de Andalucía in Spain with more than 14 years of experience.

He has specialized in system administration, web development, and content 
management systems. In his spare time, he works as a freelancer and collaborates, 
among others, with ñ multimedia, a little design studio in Córdoba, working as a 
system administrator and the main web developer.

He has also collaborated as a technical reviewer on SketchUp 2014 for Architectural 
Visualization Second Edition, Arduino Home Automation Projects, and Internet of Things 
with the Arduino Yún, all by Packt Publishing.

When not sitting in front of a computer or tinkering in his workshop, he can be 
found mountain biking, kite surfing, or working as a beekeeper, taking care of his 
hives in Axarquía County, where he lives.

To Salomé: I owe it all to you.

www.allitebooks.com

http://www.allitebooks.org


About the Reviewer

Ladislas de Toldi is a biotech engineer who has always been passionate about 
computers, robotics, and artificial intelligence.

Ladislas is the CEO at Leka, a young start-up whose goal is to use robotics to help 
exceptional children live a normal life.

He has been working on Arduino for several years and has contributed to several 
open source projects, such as Sudar's Arduino-Makefile (https://github.com/
sudar/Arduino-Makefile).

www.allitebooks.com

https://github.com/sudar/Arduino-Makefile
https://github.com/sudar/Arduino-Makefile
http://www.allitebooks.org


www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF 
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com 
and as a print book customer, you are entitled to a discount on the eBook copy. Get in 
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign 
up for a range of free newsletters and receive exclusive discounts and offers on Packt 
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital 
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view 9 entirely free books. Simply use your login credentials for 
immediate access.

www.allitebooks.com

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/
http://www.allitebooks.org


Table of Contents
Preface 1
Chapter 1: Meeting the Arduino Family 7

A game changer 7
Common features 8

Arduino Uno 9
Arduino Mega 2560 11
Arduino Ethernet 12
LilyPad Arduino 14
Arduino Yún 16
Arduino Mini, Micro, and Nano 18
Other Arduino family members 19

Esplora 19
Arduino Robot 20
Arduino Due 22

Unofficial boards 22
Shields 23

Just one to rule them all 24
Users teaching users 24
Summary 25

Chapter 2: The Arduino Development Environment 27
A multiplatform tool 27
Downloading the package 28

Windows 28
Mac OS X 28
Linux 29
Source code 29

www.allitebooks.com

http://www.allitebooks.org


Table of Contents

[ ii ]

Installing the software 29
Windows 29
Mac OS X 29
Linux 30
In case of trouble 30

Installing the drivers 30
Windows 31
Mac OS X 32
Linux 32

Running the Arduino development environment for the first time 32
The toolbar 34
The code editor 34
The message area 36

Preflight checks 36
Uploading our first sketch 38
Main menus and commands 40
The Arduino language 42
Summary 42

Chapter 3: Interacting with the Environment the Digital Way 43
Digital versus analog signals 43
Our first circuit 44

Using a breadboard 45
The LED circuit 46
Circuit schematic 47
Breadboard connections diagram 48
Asymmetric blinking code 49
C language syntax considerations 52
Troubleshooting faults in the circuit 52
Dealing with multiple outputs 53
Current limit per pin 55

Summary 59
Chapter 4: Controlling Outputs Softly with Analog Outputs 61

Dealing with analog signals 61
The analog output circuit 62
Connections diagram 63
Analog control through code 64

The analogWrite() function 64
The for loop 64
Complete the fading LED code 66

www.allitebooks.com

http://www.allitebooks.org


Table of Contents

[ iii ]

Motor control with a transistor 68
Motor driver 69
Power source considerations 70
The complete circuit 71
Connections diagram 72
Motor varying speed code 73
The assembled circuit 74
Bigger power motors 74

Summary 76
Chapter 5: Sensing the Real World through Digital Inputs 77

Sensing by using inputs 77
Connecting a button as a digital input 78
The momentary push button 80
Complete circuit schematic 82
Breadboard connections diagram 83
Writing code to react to a press 84

Configuring and reading a digital input 85
Taking decisions with conditional bifurcations 86

Timing and debouncing 87
Other types of digital sensors 87
Using an optocoupler as a coin detector 89
The schematic of the coin detector 89
The breadboard connections diagram 90
The complete example code 92
A real working project  93
Summary 94

Chapter 6: Analog Inputs to Feel Between All and Nothing 95
Sensing analog values 95
The Arduino map function 96
An ambient light meter 97

Connecting a variable resistor to Arduino 98
Voltage divider 99

An ambient light meter circuit 99
Breadboard connections 100
Programming to sense the light 101
An ambient light meter code 101
The switch / case control structure 102
Calibrating the sensor 105

www.allitebooks.com

http://www.allitebooks.org


Table of Contents

[ iv ]

DC motor speed control revisited 105
The potentiometer 106
The motor speed control schematic 106
The breadboard connections diagram 107
A simple code to control the motor speed 108

Summary 110
Chapter 7: Managing the Time Domain 111

Time control functions 111
Stopping versus accounting 112

Making some noise 112
Arduino library sound functions 113
Sound hardware connection 114

Direct connection 115
Connection through a transistor 116

A simple timer 118
Dividing your sketch into different files 118
Coding a timer by using delays 119
Coding without delays and blinking an LED while waiting 121

A bigger project – a metronome 124
The metronome circuit 125
The metronome code 126

Summary 129
Chapter 8: Communicating with Others 131

Serial communications concepts 131
The baud rate 133

Other types of serial communication 133
Calibrating sensors serially 134
Sending data to Arduino 138
A computer connected dial thermometer 142

The thermometer circuit 143
The code for the thermometer 145

Summary 148
Chapter 9: Dealing with Interrupts 149

The concept of an interruption 149
The ISR 150

The tachograph project 151
Mechanical considerations 151
A simple interrupt tester 152

Our first interrupt and its ISR 154



Table of Contents

[ v ]

A dial tachograph 156
Breadboard connections diagram 157
The complete tachograph code 158
Modular development 164

Summary 165
Chapter 10: Arduino in a Real Case – Greenhouse Control 167

A greenhouse controller 167
The controller requirements 168
Modular design 168

Temperature control 169
Humidity control 169
Lighting control 169
Manual alarm 170

Input and output devices 170
The relay as a mediator 171

The greenhouse controller circuit 173
Breadboard connections diagram 175

The greenhouse controller code 176
Libraries and constant definitions 176
Global variables 177
The interrupt ISR 178
The alarm routine 178
Initialization and board configuration 180
The main execution loop 180

Temperature subsystem 180
Humidity subsystem 181
Lighting subsystem 182
Alarm subsystem 182
Serial feedback and calibration 183

The complete project code 183
Final considerations 183

Summary 184
Index 185





Preface
The Arduino platform has become a de facto standard when talking about 
microcontrollers. With a wide range of different board models, it can cover  
a wide spectrum of projects, and its ease of use has made it the preferred  
platform for those starting out in the microcontroller world.

If you are a hobbyist wanting to develop projects based on Arduino as its main 
microcontroller platform or an engineer interested in knowing what the Arduino 
platform offers, then this book is ideal for you.

If you have little or no previous experience in these kinds of tools, this book will help 
you get a complete view of the platform and the wide peripherals it has to offer by 
following a carefully designed set of project examples that cover the most important 
platform features.

Whether you have never written a line of code or you already know how to program 
in C, you will learn how to work with Arduino from the point of view of both 
hardware and software thanks to the easily understandable code that accompanies 
every project that has been developed exclusively with that premise in mind.  
This will be easy for those who don't have previous experience in programming.

This book was written with the aim to present the Arduino platform to all 
those wanting to work with Arduino but without any great knowledge of the 
microcontrollers scene. It will gradually develop a wide set of projects that have  
been designed to cover the most important aspects of the Arduino platform,  
from the use of digital and analog inputs and outputs to harnessing the power  
of interrupts.



Preface

[ 2 ]

What this book covers
Chapter 1, Meeting the Arduino Family, introduces you to the Arduino platform, and 
the different board models that integrate the Arduino family are presented, noting 
their common aspects.

Chapter 2, The Arduino Development Environment, shows you how to download, install, 
and set up a working Arduino integrated development environment and gives a 
complete explanation of its use and commands.

Chapter 3, Interacting with the Environment the Digital Way, covers the connection and 
use of digital outputs by dealing with simple devices that can be digitally operated, 
such as LEDs.

Chapter 4, Controlling Outputs Softly with Analog Outputs, shows you how to manage 
analog outputs and the use of transistor drivers to deal with high-current devices, 
such as motors.

Chapter 5, Sensing the Real World through Digital Inputs, explains the use of digital 
inputs by giving examples of typical applications, such as buttons and switches,  
and proposes an optical coin detection device that uses an optocoupler.

Chapter 6, Analog Inputs to Feel between All and Nothing, presents analog inputs and 
their use and offers two new projects: an ambient light meter with a photocell and  
a motor speed controller by using a potentiometer as an input device.

Chapter 7, Managing the Time Domain, introduces you to the different tools the 
Arduino library offers to deal precisely with time by building two more projects:  
a simple timer and a visual and acoustic metronome.

Chapter 8, Communicating with Others, shows you how to connect your Arduino 
projects to other platforms via serial communication and how to use the Serial 
Monitor to read from and send data to Arduino. A computer-controlled motor  
speed driver and a dial thermometer will be built.

Chapter 9, Dealing with Interrupts, shows you how to use interrupts to deal with 
unexpected events and to understand the difference between having to wait for 
something to occur and be called when it occurs. We will use a tachograph as a  
good example to show you all these concepts.

Chapter 10, Arduino in a Real Case – Greenhouse Control, gives you a complete real 
example of a project that summarizes all the concepts learned throughout the book.



Preface

[ 3 ]

What you need for this book
To work on all the projects shown throughout the book, you will need an Arduino 
board with its USB cable and a computer running Windows, Mac OS X, or Linux to 
program your board.

For the electronics circuits that will be built, a breadboard, some jumpers, and an 
assortment of the most common electronic components will be required.

The complete list of components used all along the different projects is as follows:

• A bunch of resistors
• Some LEDs
• Diodes and small transistors
• Switches and push buttons
• An optocoupler or optical switch
• A photocell
• A buzzer or small speaker
• Some potentiometers
• A thermistor
• A servomotor

Regarding previous knowledge, there is no need to know how to program because 
projects come with the entire code ready to run, and I will try throughout the book  
to introduce and clarify every programming aspect in the code.

Who this book is for
This book can be useful to a wide range of readers. It can be really illustrative 
to those wanting to be introduced to the development of projects based on 
microcontrollers and using Arduino in particular for the first time.

It can also be interesting to all those who already know or have worked with 
microcontrollers previously but haven't tried Arduino and still want to know  
the basics about this powerful platform by way of a number of projects that  
will present all important aspects of the platform.



Preface

[ 4 ]

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"Under Mac OS X, the installation of the application consists only of dragging the 
application icon to the Applications folder of your computer."

A block of code is set as follows:

void setup() {
  pinMode(transistorBase, OUTPUT);
  // Init serial communication
  Serial.begin(9600);
}

New terms and important words are shown in bold. Words that you see on  
the screen, for example, in menus or dialog boxes, appear in the text like this:  
"You'll have to go to Control Panel and locate Device Manager."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

www.packtpub.com/authors


Preface

[ 5 ]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you 
purchased this book elsewhere, you can visit http://www.packtpub.com/support 
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or  
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support


Preface

[ 6 ]

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.

Disclaimer
Arduino brand, Arduino logo, design of the website, design of the boards, and all 
the board pictures used in the book are copyright of Arduino SA and cannot be used 
without formal permission. For information about the right way to use them, please 
write to trademark@arduino.cc.

All references in the book to Arduino should be considered as Arduino™.



Meeting the Arduino Family
In this first chapter, we are going to take a look at the microcontroller scene before 
the Arduino platform was presented. We'll see the changes it underwent that have 
made it a great success and that have led to it being widely adopted by hobbyists 
and technology lovers all around the world.

We will also meet some of the more popular Arduino models and compare their 
characteristics and features so that you can decide which model can be used in  
your next project.

A game changer
The introduction, in 2005, of the Arduino platform brought a totally new panorama 
to the microcontroller scene of the moment.

By that time, working with microcontrollers implied to pay quite a big price just 
for the microcontroller-integrated circuit itself and all necessary components and 
circuitry needed to make it work, and even to pay a much bigger price for the 
development tools needed to program it.

These development tools were rarely made publicly available and in most cases, they 
were mostly based on proprietary languages or, in the best of cases, in the assembly 
language, none of which were especially easy to learn for nonadvanced users. On 
the other hand, the user support was normally restricted and limited only to the 
manufacturer's microcontroller.

The Arduino platform changed every one of these aspects.



Meeting the Arduino Family

[ 8 ]

To begin with, it is an open hardware platform that is not only limited to the 
microcontroller integrated circuit, but it also provides a full board with all the 
necessary elements to power it, make it work, and connect it to a computer at a 
fraction of the price of most other microcontrollers available in the market at  
the moment.

On the other hand, the development environment was made freely available from 
the first moment as an open source project, consisting of a very simple and intuitive 
editor with its integrated compiler, based on a subset of the standard, well-known, 
and documented C language, widely available for many other platforms and 
architectures. We could say that the Arduino Integrated Development  
Environment (IDE) is just C with a friendly wrapper around it.

Last but not least, the Arduino online community was born: it allows thousands of 
users to share their ideas, projects, and philosophy, which makes them all support 
each other.

We are going to introduce some of the more popular Arduino models and compare 
their features and technical characteristics so that you can decide which model best 
suits the needs of your project.

Common features
The whole Arduino family, except Arduino Due, is based on 8-bit Atmel AVR 
microcontrollers, specifically those in the megaAVR series, ranging from the basic 
ATmega168 series used in the first Diecimila and Duemilanove models to the 
powerful ATmega2560 series of the latest Mega 2560 boards.

Apart from the ATmega series, the Arduino board incorporates every other 
electronic component necessary to make the microcontroller operate, including a 
crystal oscillator to set the working frequency that makes it run at up to 16 MHz.

Most models come with a USB port that enables you to connect the board directly  
to your computer so that you can program the microcontroller. The smaller models 
replace the USB connector with a direct RS-232 connection, which forces you to use  
a special USB-to-serial cable to connect the board to your computer.



Chapter 1

[ 9 ]

Talking about powering, almost every model offers a power regulator that allows you 
to power the board directly from the USB port or through the jack connector, to power 
the board from an external power source such as a battery pack or a wall cube.

Finally, let's see a characteristic that also was an innovation when it was first 
introduced. The Arduino boards expose the microcontroller pins to the user through 
the use of two rows of female 0.1 inch headers, which makes it very convenient to 
connect the external components of your project, usually mounted on a breadboard, 
to your Arduino board with the simple use of jumper wires.

This distribution of external pin headers has made it possible to develop quite a 
bunch of different shields, which we will talk about later, that allow subassemblies  
to be easily connected to the main Arduino board.

A good number of models share the external footprint that has made the Arduino 
board so easily recognizable, including Arduino Diecimila, Duemilanove, Uno, 
Ethernet, and Yún.

For me as a programmer, one of the most important features is the fact that all 
members of the family share the same integrated development environment and 
language. This is the real common feature for all families.

Given the open hardware conception of the Arduino platform, the Arduino team 
has made publicly available the schematics, reference documentation, and even the 
EAGLE CAD files of all their boards.

For a full comparison of all Arduino boards' features and technical characteristics, 
you can visit the Arduino site at http://arduino.cc/en/Products.Compare.

Let's now take a closer look at the most popular board models and their specific 
features and configurations.

Arduino Uno
The Arduino Uno model is the evolution of the first Arduino board through the 
Arduino Diecimila and Duemilanove models.

A small footprint and a good pack of devices and available pins has made it the 
favorite board for beginners and advanced users who don't need great specifications 
to prototype and develop micro-controlled projects.

http://arduino.cc/en/Products.Compare


Meeting the Arduino Family

[ 10 ]

It is the most basic and cheapest model and is, in some way, the board that has made 
the Arduino platform what it is today.

Arduino Uno

It is based on the ATmega328 series, the descendant of the first ATmega168 series 
used in its older brothers, the Diecimila and the Duemilanove models. It works at  
a frequency of 16 MHz thanks to the use of a ceramic resonator, and offers a total  
of 32 KB of flash memory available to store your programs.

The Arduino Uno model exposes a total of 20 pins, 14 of which are digital input/
output pins and 6 are analog inputs. Of the 14 digital pins, 6 can be used as analog 
output thanks to the included Pulse Width Modulation (PWM) mechanism, but  
we will talk in more detail about this in Chapter 4, Controlling Outputs Softly with 
Analog Outputs.

Some other peripherals offered by the board include serial and SPI communication 
ports, two external interrupts, an integrated LED (connected to pin 13), and an 
external Reset button.

The board comes with a type B USB connector that makes it very convenient to 
connect to your computer or even power it from any USB output, including your 
own PC or any wall cube designed to serve as a USB charger.



Chapter 1

[ 11 ]

As mentioned in the preceding section, it also comes with a jack connector that 
allows it to be powered from an external power source, such as a battery or an  
AC/DC adapter.

In any case, an input voltage between 7V and 12V is recommended to power the 
board, even though 6V to 20V can be accepted.

For a more detailed specification of its characteristics and available peripherals, you 
can visit the Arduino site and take a look at its product page at http://arduino.
cc/en/Main/ArduinoBoardUno.

It is the perfect board to get introduced to the Arduino platform—available through 
a lot of different providers, some of which could be really close to you—or through 
the new Arduino Store at http://store.arduino.cc. Its price is around $25, which 
is quite a cheap price for the brain of your next project.

Arduino Mega 2560
Traditionally, the Arduino Mega 2560 model has been the offer the Arduino team 
made for those who need a more powerful board with a wider number of pins than 
Diecimila or Duemilanove.

Its footprint differs from that of Arduino Uno, making it a little longer than its  
little brother.

Arduino Mega 2560

http://arduino.cc/en/Main/ArduinoBoardUno
http://arduino.cc/en/Main/ArduinoBoardUno
http://store.arduino.cc


Meeting the Arduino Family

[ 12 ]

The Mega 2560 model is based on the super powerful ATmega2560 microcontroller, 
just like Arduino Uno, which works at a clock frequency of 16 MHz. However, 
unlike its little brother, it comes equipped with a vast number of peripherals.

One of the biggest advantages of the Mega 2560 model is the size of its flash memory, 
which goes up to 256 KB, equivalent to eight times the memory space offered by 
Arduino Uno, making the Arduino Mega 2560 model the target platform for those 
projects that need complex software to manage them.

On the other side, it has no less than 54 digital input/output pins, of which you can 
use 15 for analog output through the use of PWM and 16 analog input pins.

Related to its other characteristics, the Mega model comes with four serial 
communication ports, an SPI communication port, and a total of six different 
hardware interrupts.

Just like the Uno model, the Mega model implements one integrated LED and 
external Reset button.

When talking about powering the board, the Mega model can be powered just like 
the Uno model, that is, through the USB connector or through the external jack, 
supporting the same input voltage ranges as the Uno model (7V-12V recommended 
but 6V-20V accepted).

You can find its detailed specifications, schematics, and some more reference 
documentation about its product page on the Arduino site at http://arduino.cc/
en/Main/ArduinoBoardMega2560.

This board is ideal for those who have to deal with projects that have wider 
requirements, in particular, those related to the number of input/output pins to 
interact with external devices and to the flash memory size needed to store the 
programs, allowing for much more complex programs than the Arduino  
Uno model.

Arduino Ethernet
On the lines of the Internet of Things, the Arduino team presented the Arduino 
Ethernet board, which included an Ethernet interface, making it able to develop 
projects that were connected to an Ethernet network or to the Internet itself.

http://arduino.cc/en/Main/ArduinoBoardMega2560
http://arduino.cc/en/Main/ArduinoBoardMega2560


Chapter 1

[ 13 ]

Arduino Ethernet

The board is developed around the same ATmega328 microcontroller that is present 
in the Arduino Uno model, so the memory size and other characteristics are the same 
as in the Uno model.

The inclusion of the Ethernet module, however, forced some restrictions on the 
Arduino Ethernet model.

On one hand—and although the number of digital input/output pins is still 14 just 
like in the Uno board—some of them are reserved to interface with the Ethernet 
module, allowing only the use of nine of them for your project. On the other hand, 
the Arduino Ethernet board doesn't include a USB port. So, you have to use a 
dedicated six-male pin connector to upload your programs to the microcontroller 
through the use of a special USB-to-serial converter, usually known as an FTDI cable, 
due to the use of the FT232RQ chip around which the converter is normally built.



Meeting the Arduino Family

[ 14 ]

The Arduino Ethernet model comes with an integrated Micro SD card reader that 
allows you to store files and resources of a bigger size that are going to be served 
over the network. To get access to the SD card, the use of an external library  
is needed.

The full characteristics list of the Arduino Ethernet is on its product page on the 
Arduino site at http://arduino.cc/en/Main/ArduinoBoardEthernet.

Given that there is no USB port on the Arduino Ethernet board, the possibilities for 
powering the board are a little different. You can power your board through the 
external jack from an external power source by the use of the previously mentioned 
FTDI cable from a USB port or by the additional Power over Ethernet (PoE) module, 
which allows the board to draw current from the Ethernet connection itself, requiring 
your project to only be connected to the Ethernet network in order to start working.

The PoE module is not available as an add-on or as a shield, but it has to be ordered 
with your Arduino Ethernet board when you buy it. You can take a closer look at 
its product page in the Arduino Store at http://store.arduino.cc/product/
A000061.

LilyPad Arduino
Apart from the previously mentioned Internet of Things, currently there is another 
line of product development called wearables, consisting of products you can wear 
as part of your clothing and that constantly interact with you and your environment 
as if they were an enhancement of your own body.

In this line of wearable technologies, the Arduino family incorporated a design by 
Leah Buechley, the LilyPad Arduino board, which is a little, round microcontroller 
device aimed at projects where it could be sewn to textile with conductive thread 
acting like normal wires.

Arduino LilyPad subfamily

http://arduino.cc/en/Main/ArduinoBoardEthernet
http://store.arduino.cc/product/A000061
http://store.arduino.cc/product/A000061


Chapter 1

[ 15 ]

The LilyPad Arduino board is a little subfamily of boards by itself with four different 
models and specifications:

• LilyPad Arduino
• LilyPad Arduino USB
• LilyPad Arduino Simple
• LilyPad Arduino SimpleSnap

All of them come with different microcontrollers, ranging from the ATmega168V 
series to the new Atmega32u4 series with flash memory sizes between 16 KB and  
32 KB.

They all are able to work under low voltages to reduce power consumption, and that 
is why they all work at a clock frequency of 8 MHz, which is half the frequency of its 
bigger brothers.

One thing to consider when choosing one of these models for your project is that 
none of them come with a serial communication port in case you need it.

The small dimension of the LilyPad Arduino board (approximately 50 mm in 
diameter) considerably reduces the number of pins and features it can offer. Only the 
LilyPad Arduino board has the same specifications as the Arduino Uno board with 
respect to the number of available pins, that is, 14 digital input/output pins with six 
PWM and six analog inputs. The rest of the LilyPad boards offer only nine digital 
input/output pins, of which four can be used as the analog output with PWM and 
four others that can be used as analog inputs.

In the case of the LilyPad subfamily, the available pins are not offered via a female 
header as is the case with other Arduino boards; in this case, they offer a number 
of silver-plated holes that allow you to sew the conductive thread to them. In the 
case of the LilyPad Arduino SimpleSnap board, the holes are replaced by snaps that 
easily allow you to connect and disconnect the external devices to and from the main 
Arduino board.

With respect to the connection to your computer, they also have to restrict the USB 
port and change it for a six-male pin header, having to connect the board to the 
computer through the FTDI cable mentioned previously. Only the LilyPad Arduino 
USB offers a micro USB port.



Meeting the Arduino Family

[ 16 ]

As a unique case, the LilyPad Arduino SimpleSnap board also incorporates a lithium 
polymer battery and all the circuitry required to charge it.

All of them can be hand washed except for the LilyPad Arduino SimpleSnap board, 
due to its battery, but in this case, disconnecting it from the textile should be easy, 
thanks to the integrated snaps.

You can find a complete list of features of every model on its own product page on 
the Arduino site at http://arduino.cc/en/Main/ArduinoBoardLilyPad for the 
LilyPad board, http://arduino.cc/en/Main/ArduinoBoardLilyPadUSB for the 
LilyPad USB board, http://arduino.cc/en/Main/ArduinoBoardLilyPadSimple 
for the LilyPad Simple board, and http://arduino.cc/en/Main/
ArduinoLilyPadSimpleSnap for the LilyPad SimpleSnap board.

In definite terms, the small dimensions and reduced power consumption of this 
Arduino board make it ideal to develop wearable projects, where they can be directly 
integrated with clothes and are going to be running for long periods of time.

Arduino Yún
One of the latest incorporations to the family has been the Arduino Yún board, 
bringing a slightly different approach to the concept of the Internet of Things.

In this case, the board incorporates two different interconnected sections. On one 
hand, it has a usual Arduino board with its external pins and all the devices that we 
have already seen, but on the other hand, it is a totally operative Linux device with 
Ethernet and Wi-Fi support.

This way, you can build projects that benefit from both parts: the Arduino ease of 
use to interact with the real world and the power and connectivity options of a Linux 
device in which you can develop your own shell scripts or small programs with 
languages such as Python.

http://arduino.cc/en/Main/ArduinoBoardLilyPad
http://arduino.cc/en/Main/ArduinoBoardLilyPadUSB
http://arduino.cc/en/Main/ArduinoBoardLilyPadSimple
http://arduino.cc/en/Main/ArduinoLilyPadSimpleSnap
http://arduino.cc/en/Main/ArduinoLilyPadSimpleSnap


Chapter 1

[ 17 ]

Arduino Yún

Taking a more detailed look at the technical specifications of this new board, we can 
realize the power we get to develop real Internet of Things projects.

With respect to the Arduino side, it comes equipped with an ATmega32u4 board 
running at 16 MHz, exposing 20 digital input/output pins (seven of which can allow 
PWM to be used as analog outputs) and no less than 12 analog inputs.

On the Linux side, it runs on an Atheros AR9331 chip at a clock frequency of  
400 MHz with an internal flash memory that acts as its main hard disk with a total 
size of 16 MB of which around 9 MB is dedicated to store OpenWrt, the Linux 
operating system inside the Yún. If you need more space to store resources needed 
by your projects, Arduino Yún is also equipped with a micro SD card slot that you 
can use as additional storage.

www.allitebooks.com

http://www.allitebooks.org


Meeting the Arduino Family

[ 18 ]

The whole device can be powered through a micro USB connector, but not having a 
voltage regulator makes it difficult, but not impossible, to power it from an external 
battery pack.

You can visit its product page so that you can get a full picture of this model board at 
http://arduino.cc/en/Main/ArduinoBoardYun.

The Arduino Yún board is, no doubt, a perfect device to develop not only physical 
projects, but also to connect them to the network.

Arduino Mini, Micro, and Nano
Another very popular subfamily inside the bigger Arduino family is the one formed 
by the Arduino Micro, the Arduino Mini, and the Arduino Nano boards; the 
following screenshot follows the same order as the one mentioned:

Arduino Micro, Mini, and Nano

These little boards, not much bigger than a postal stamp (approximately 2 inch 
by 0.75 inch), get, in most cases, very similar characteristics to that of their bigger 
brothers. They are just packaged in such a way that makes them ideal to connect 
directly to the breadboard or in projects where space is a must and the controller  
has to be small enough to be embedded in the general assembly.

http://arduino.cc/en/Main/ArduinoBoardYun


Chapter 1

[ 19 ]

To be more specific with its technical specifications, the Arduino Micro board comes 
with an ATmega32u4 microcontroller and both the Mini and Nano boards come 
with an ATmega328 chip; all of them run at a clock frequency of 16 MHz and come 
equipped with a flash memory of 32 KB to store your sketches.

With respect to the available pins, both the Mini and the Nano boards offer just the 
same number of pins as the Uno board but with two more analog inputs, making 
a total of eight. The Arduino Micro board goes even further with 20 digital input/
output pins, seven of which can use PWM to act as analog outputs, and a total of 12 
analog inputs.

Talking about how to power the boards, the Arduino Mini board simply doesn't 
have any facility, as it's your responsibility to provide a regulated power supply to 
allow the board to run. Both the Arduino Micro and Arduino Nano boards come 
with an integrated USB port with mini and micro USB connectors that you can use  
to power the board or even the final project from a typical USB phone charger.

Finally, except for the Mini board, the Micro and Nano boards come with a serial 
port that you can use to communicate your project with other serial capable devices.

They all share the same philosophy: to develop just the core of the microcontroller so 
that the size of the board can be reduced at a maximum, allowing for smaller boards 
suitable to be incorporated in your projects without using as much space as other 
bigger boards of the family.

Other Arduino family members
If all the boards shown at the moment don't seem enough to you or you still  
haven't found the model that best suits the needs of your next project, don't worry. 
The Arduino team has also developed some other models with very different 
characteristics and orientations, but for the purpose of this book, they are all similar 
to the models already shown. They share the same general philosophy and, perhaps 
more importantly, can be programmed in just the same way with just the same tool.

In any case, we will just show them briefly without entering into too much detail and 
just revealing some of their more remarkable features and uses.

Esplora
The Esplora board is the all-in-one board of the family. The main difference between 
this board and the rest of its brothers is that this board is not only a microcontroller 
board, but also a good selection of different sensors and input devices, such as a 
temperature sensor, accelerometer, microphone, or a joystick and some outputs,  
such as sound and light.



Meeting the Arduino Family

[ 20 ]

It is designed for those who have little or no previous electronic knowledge but want 
to start working with the Arduino platform from the very first moment.

Arduino Esplora

The Esplora product page contains its full characteristics' list and information at 
http://arduino.cc/en/Main/ArduinoBoardEsplora.

Arduino Robot
Robotics is one of the disciplines that is constantly pushing forward and demanding 
for richer and more powerful advances in the microcontrollers arena, because as the 
microcontroller has more features, it is easier to build a robot with it.

As it is a very attractive discipline for kids and students, it is the perfect introduction 
to electronics and their microcontrollers.

This is why the Arduino team developed the Arduino Robot model, a fully featured, 
totally operable robot that shares the microcontroller it is based on with the other 
boards and, of course, the language it will be programmed in and the tool we will 
use to program it.

http://arduino.cc/en/Main/ArduinoBoardEsplora


Chapter 1

[ 21 ]

Arduino Robot

To be precise, the Arduino Robot model is really composed of two interconnected 
boards, a motor and a control board, each with its own microcontroller and 
dedicated to very different tasks.

Among others, it is equipped with LCD, compass, speaker, a bunch of LEDs, five 
buttons in the control board, IR sensors, motor drivers, motors, and wheels in the 
motor board.

You might be interested in taking a look at the Arduino Robot product page at 
http://arduino.cc/en/Main/Robot.

As discussed, Arduino Robot is a totally operative robot that you can program just 
the same way you do with your other Arduino boards by squeezing a little more off 
your budget.

http://arduino.cc/en/Main/Robot


Meeting the Arduino Family

[ 22 ]

Arduino Due
The last board that I will show you is the Arduino Due board, which in some way, 
is the evolution of the Arduino Mega board but with an Atmel SAM3X8E ARM 
Cortex-M3 CPU, making it the only family member capable of 32-bit operation.

It runs at a clock frequency of 84 MHz and has an astonishing list of features among 
which the standout is its 512 KB of flash memory, 54 digital input/output pins,  
or four serial ports.

Another remarkable characteristic of the Due board is that it operates at 3.3V, being 
the only member of the family that operates at this voltage. From the point of view 
of powering the board, you shouldn't care because it comes with a voltage regulator 
that allows you to power the board from the USB port from an external battery or 
power source, but it can be a serious problem if you plan to use a shield designed  
for another member of the family that operates at 5V.

Arduino Due

Unofficial boards
Given the open hardware nature of the Arduino project, there are now a lot of 
different boards. All of them are compatible with the original Arduino board, and 
some of them even extend the characteristics of its predecessor.



Chapter 1

[ 23 ]

In some cases, they can even be found at just a fraction of the price of the original 
Arduino board, and, sadly, also at a fraction of the quality in other cases, so be 
especially careful when choosing your provider.

For a complete list of some of these Arduino clones, you can take a look at this list 
at Wikipedia: http://en.wikipedia.org/wiki/List_of_Arduino_boards_and_
compatible_systems

Shields
There is a group of boards that, not being Arduino boards, are directly related to 
Arduino. They are called shields and are small add-ons that you can directly plug 
onto your Arduino board and that have all the necessary electronic components  
and circuitry to accomplish the mission they have been designed for.

There are hundreds of shields for Arduino out there. Just perform a simple search 
on Google and the number of results will amaze you: the results range from a GPS 
shield that allows our project to be location-aware to shields that link two Arduino 
boards via radiofrequency, passing by GSM/GPRS shields that make our project  
able to establish radio connections.

Some official Arduino shields

Furthermore, when most users finish the development of a project, they opt to create 
this shield to transfer the complementary components out of the breadboard.

The Arduino team has developed some official shields for Arduino, among which 
there is the Arduino GSM Shield that allows GPRS communications, the Arduino 
Wi-Fi shield that enables Wi-Fi connections, or the Arduino Motor shield that eases 
the operation of external motors.

The Arduino platform has grown so much that today, there is a whole market 
around it, with providers developing shields for unimaginable purposes.

http://en.wikipedia.org/wiki/List_of_Arduino_boards_and_compatible_systems
http://en.wikipedia.org/wiki/List_of_Arduino_boards_and_compatible_systems


Meeting the Arduino Family

[ 24 ]

Among the biggest shield developers are Adafruit (http://www.adafruit.
com/category/17_21), SparkFun (https://www.sparkfun.com/
categories/240?page=all), and Cooking Hacks (http://www.cooking-hacks.
com/shop/™Arduino/shields).

Just one to rule them all
I have already shown you all the significant Arduino models you might need to 
develop your project. As they are so different from each other, they all share a very 
important characteristic. They can all be programmed using the same language and 
the same tool.

This is a wonderful thing, because it allows you to program all models once  
you know how to program just one, making the selection of the board your  
unique concern.

In the next chapter, we will prepare our developing environments so that we can 
directly begin to program our boards and test our first assemblies.

Users teaching users
I told you previously that Arduino was not just a board and a compiler. One of the 
things that I personally think has made Arduino become such a big platform is its 
online community.

On the Arduino site, you can find not only a traditional forum (http://forum.
arduino.cc) where lots of users share their projects and troubles and help others, 
but also one of the sections I like the most: the Arduino Playground section.

The Arduino Playground section (http://playground.arduino.cc) is a section 
of the Arduino website where users publish information about ways to connect 
Arduino to other devices of all kinds, linking to their own websites in most cases 
filled with information about the project they have worked on. It is some kind of 
collaborative showroom.

For me, the Playground section is, perhaps, the most valuable site you can go to 
whenever you are beginning to work on your own project. There are plenty of 
possibilities that you can find in that piece of information that can serve you as a 
starting point.

http://www.adafruit.com/category/17_21
http://www.adafruit.com/category/17_21
https://www.sparkfun.com/categories/240?page=all
https://www.sparkfun.com/categories/240?page=all
http://www.cooking-hacks.com/shop/Arduino/shields
http://www.cooking-hacks.com/shop/Arduino/shields
http://forum.arduino.cc
http://forum.arduino.cc
http://playground.arduino.cc


Chapter 1

[ 25 ]

Summary
In this chapter, we took a look at the microcontroller context before and after the 
introduction of the Arduino platform. We met some of the family members and we 
came to know about their most significant features so that you can decide which one 
of them best matches the requirements of the project that you are thinking about.

We also learned about the Arduino extensions, called shields, and saw some of the 
official shields developed by the Arduino team.

In the next chapter, we will download, install, and take a tour of the Arduino IDE, 
and we will finish by uploading our first sketch to our board, so roll up your sleeves 
as we begin to enjoy working with our favorite microcontroller.





The Arduino Development 
Environment

In this chapter, I'll show you how to get up and running with the Arduino 
development environment. We will download and install it, and we will take a  
tour through all its menus and commands. We will finish by uploading a first  
sketch to your board so that you can confirm that all that is needed to begin is 
working correctly.

A multiplatform tool
One of the things I like the most about the Arduino software is that it is truly 
multiplatform, which means that it is exactly the same environment whether you 
run it under OS X, Windows, or Linux. You could find some differences in the 
installation process of every operating system and differences to get it up and 
running, but once you have it up and running, it is just the same in any platform.

So, let's go ahead and present to you the whole process to make it run under the 
operating system of your choice.



The Arduino Development Environment

[ 28 ]

Downloading the package
The first thing you have to do is go to the Arduino site's download section at 
http://Arduino.cc/en/Main/Software and choose the right package for your 
operating system and the software branch that best suits your board.

At the time of writing this, there are two different branches. I'll recommend that you 
use the Arduino 1.0.X stable branch unless you are going to work with Arduino Yún 
or Due; in that case, you'll have to choose the 1.5.X branch that, at the time of writing 
this, is a beta version and, therefore, could be a little unstable or could lead to some 
errors. However, I have to say that I have been working for more than a year with 
the 1.5.X branch to program both Arduino Uno and Arduino Yún, and I haven't seen 
any bugs.

On the Arduino site, you will find precompiled packages for Mac OS X, Windows, 
and Linux and even a source code package.

Let's take a closer look at each of the supported operating systems.

Windows
For Windows, there are two different precompiled packages: one prepared for the 
Windows Installer and another that consists only of a ZIP package that you have to 
uncompress by yourself.

The Windows Installer option is recommended in order to allow multiple users 
in your computer to access the software, but you need administrator privileges to 
install it system-wide.

If you don't have an administrative account, you can download the ZIP compressed 
package and simply uncompress it in any folder where you have permission to do 
so, such as your own desktop.

Mac OS X
For Mac OS X, there is little to consider. There is just one package so that you have 
nothing to choose from. Just download your package and go to the next section to 
see how to install it.

http://Arduino.cc/en/Main/Software


Chapter 2

[ 29 ]

Linux
For Linux, the only consideration to have in mind is the architecture of your computer 
so that you have to choose between the 32- and 64-bit precompiled packages.

In both cases, the package provided in the Arduino site consists only of a compressed 
TGZ file that you have to uncompress by yourself.

Source code
If you use a different operating system, there is even a source code package that 
allows you to compile the Arduino development environment on your own.

Installing the software
We have seen the downloading considerations for every operating system; let's now 
go on to see how to install the package for each of them.

Windows
Under Windows, using the Windows Installer package is quite simple and doesn't 
require any special consideration.

If you opted for the compressed package, you have to only uncompress it with an 
archive uncompressor such as WinZIP to make it available, which is not too hard.

Mac OS X
Under Mac OS X, the installation of the application consists only of dragging the 
application icon to the Applications folder of your computer. Simple.

In the latest versions of Mac OS X, Java may not be preinstalled; if this is the case, 
you should go to the Java official website at http://www.java.com/en/download/ 
and download it.

http://www.java.com/en/download/


The Arduino Development Environment

[ 30 ]

Linux
Given the diversity of different distributions and the packages' dependencies system 
on which Linux relies, you should install some of them before you can run the 
Arduino development environment.

Thanks to the package management systems based on centralized repositories 
present in most Linux distributions nowadays, it is even possible to install the 
Arduino development environment directly from a repository along with all the 
needed dependencies using just a command. It makes this the preferred way of 
installation if the available version in the repository is up to date.

In Debian-based distributions, the Arduino development 
environment could be installed as easily as running the 
following command:
apt-get install arduino

In case of trouble
In case you encounter any problem during the installation process, you could go to 
the Arduino site and take a look at your corresponding operating system's Getting 
Started guide for more detailed step-by-step instructions at http://Arduino.cc/
en/Guide/HomePage.

Installing the drivers
As it is a USB device, the Arduino board might need its own drivers to be installed 
before your computer can talk to it.

The most recent boards, such as the Arduino Uno or the Arduino Mega 2560 board, 
don't need any special drivers to be installed. If you are using an older model, such 
as the Diecimilia board or any other board with an FTDI driver chip like the one 
shown in the following screenshot, you will have to install the specific drivers:

http://Arduino.cc/en/Guide/HomePage
http://Arduino.cc/en/Guide/HomePage


Chapter 2

[ 31 ]

FTDI Chip

You can download the driver's version for your operating system right from the 
FTDI manufacturer page at http://www.ftdichip.com/Drivers/VCP.htm.

We will provide brief instructions on how to install these drivers for the operating 
system of your choice.

Windows
Under Windows, the installation may be a little tricky due to the fact that Windows 
will do its best to recognize the board and locate appropriate drivers for it, failing 
most of the times in doing so. To get the drivers up and running, perform the 
following steps:

1. You'll have to go to Control Panel and locate Device Manager.
2. Once you're there, look for a device with an exclamation sign, usually under 

the Ports section (also, take a look at the Other Devices section if you don't 
find it under Ports).

3. Once you have found it, right-click on it, select the Update Driver 
Software… option, and navigate to the folder on your hard disk where 
you uncompressed the FTDI drivers you downloaded from the previously 
mentioned URL of the FTDI site.

http://www.ftdichip.com/Drivers/VCP.htm


The Arduino Development Environment

[ 32 ]

If you still can't get it correctly installed, take a look at the Getting Started with 
Arduino on Windows section on the Arduino site at http://Arduino.cc/en/
Guide/Windows.

If you are running Windows XP, there is even a step-by-step guide with screenshots 
of every step on how to install the Arduino Uno driver under this operating system 
at http://Arduino.cc/en/Guide/UnoDriversWindowsXP.

Mac OS X
As stated previously, drivers' installation is only needed if you are using an old 
board, such as the Diecimila or Duemilanove board. In this case, you'll have 
to download them from the previously mentioned URL, double-click on the 
uncompressed package installer to install it, and reboot your computer after  
the installation.

Linux
The Linux kernel supports the FTDI drivers without the need to install any 
additional software, but if you are experiencing any trouble, you can take a  
look at the Installing Arduino on Linux section of the Arduino Playground tab 
at http://playground.Arduino.cc/Learning/Linux, where you can find more 
detailed information specific to the more common Linux distributions nowadays 
and, in particular, to the libraries and other' requirements your installation  
should meet.

Running the Arduino development 
environment for the first time
Well, it may have seemed more complicated than it really was, but finally, you have 
your programming environment ready to work. It's time to create our first test, take a 
tour of it, and meet all its parts and structures.

http://Arduino.cc/en/Guide/Windows
http://Arduino.cc/en/Guide/Windows
http://Arduino.cc/en/Guide/UnoDriversWindowsXP
http://playground.Arduino.cc/Learning/Linux


Chapter 2

[ 33 ]

On the first run, the Arduino development environment should look like this:

Arduino development environment

Basically, it's divided into three sections:

• The toolbar at the top with buttons for the more usual commands
• The code editor in the middle, where you will write your sketch, as we 

commonly call an Arduino program's code
• The message area at the bottom, where you will get information about the 

status of your sketch and possible location of errors in it

Let's take a closer look at each one of these zones so that you can begin to use them.



The Arduino Development Environment

[ 34 ]

The toolbar
In the toolbar, you're going to find a total of six buttons to call the more usual 
commands of the development environment.

Buttons on the toolbar

From the left-hand side to the right-hand side, they are as follows:

• Verify: This button is used to verify the syntax in your code and compile it if 
no errors are found.

• Upload: You can click on this button to upload the resulting machine code 
to the Arduino microcontroller. It will compile the code if it has not been 
compiled previously.

• New: This opens a new blank sketch.
• Open…: This loads a previously saved sketch from the disk through the use 

of a pop-up menu.
• Save: This saves the currently edited sketch to the disk.
• Serial Monitor: This opens the Serial Monitor window that allows you to 

visualize the interchange of data in a serial communication between your 
computer and the Arduino board. We will learn more about this in  
Chapter 8, Communicating with Others.

The code editor
The code editor is the zone where most of your work will happen and where you 
will spend most of your time.

It is a multitab editor, which means that you can open more than one document  
at the same time on different tabs. You can find a small downward-pointing arrow  
icon on the right-hand side of the tabs area that unfolds a menu with different  
tab-related options, such as New and Rename, or helps you move along the 
currently opened tabs.



Chapter 2

[ 35 ]

It is not a very powerful editor but has all the features that one can hope to find in 
a modern code editor nowadays, such as syntax highlighting, which means that the 
different parts and words of your code are going to be presented in different colors 
that will help you classify the different elements in it, making it clear what a reserved 
word, a variable, or a constant is.

Another feature I really appreciate and that makes your work much more comfortable 
is the highlighting of parentheses and bracket pairs when you put the cursor over one 
of them so that you can easily view the opening/closing pair of such constructions.

The code editor showing syntax highlighting and the pop-up menu

These features apart, there are some other useful commands, such as Search in 
Reference, that take the word under the cursor and look for it in the Arduino 
Language Reference section on the Arduino website, showing you the help page  
of the reserved word or function.

There are other stylistic commands, such as Increase Indent, Decrease Indent, and 
Comment/Uncomment, which are available through the pop-up menu that is shown 
when you right-click on the editor area.



The Arduino Development Environment

[ 36 ]

The message area
The message area is the zone where the Arduino development environment will  
tell you which errors it has found when trying to compile your code or any other 
issues it has found when trying to accomplish the command you asked for, 
for example, a communication error when uploading the machine code to the 
microcontroller board.

The message area showing a syntax error and line highlighted in the code editor

When the error is related to a line in your code, this will also be highlighted in the 
code editor, as shown in the previous screenshot.

The Arduino development environment will try its best to reference in the message 
area the line number where it thinks the error is. I say thinks, because the mistake is 
not always correctly located and, in some cases, it can be one or two lines before the 
line the message area is reporting. This is a typical situation when programing in C, 
but we will talk about it later on.

Preflight checks
In order to upload your first sketch to the Arduino board, you have to first make sure 
that the Arduino development environment knows two very important things about 
your board:

• The type of Arduino board you have
• The serial port through which it is connected to your computer



Chapter 2

[ 37 ]

Both parameters have to be specified using the Tools menu in the menu bar and by 
selecting the Board and Serial Port commands.

In the next screenshot, you can see all available options when selecting the board type:

All board models available through the Board command in the Tools menu

Being a teacher myself and having worked with Arduino boards with my students 
for some years, I have found that the most common mistake they make the first time 
they try to upload their first sketch to the Arduino board is the wrong selection of the 
serial port. If you are like them and don't know for certain which one of the available 
serial ports in the Serial Port command to select, don't worry. In the worst case, it's 
just a matter of trying them all.

www.allitebooks.com

http://www.allitebooks.org


The Arduino Development Environment

[ 38 ]

When the Arduino development environment can't communicate with your board 
due to an incorrect serial port specification, it will show you a message similar to the 
one you can see here:

A typical message shown when an incorrect serial port is selected

Uploading our first sketch
Once you know how to connect the board to your computer and how to let the 
Arduino development environment know about it, the moment has come to create 
our first real test.

We will upload the simplest sketch to the Arduino board just to confirm that all parts 
are correctly set up and that you can, for sure, begin to work with it and learn how to 
program it.

What we will do is load one of the examples that comes with the Arduino 
development environment, in particular, one called Blink that makes use of the 
onboard integrated LED to make it do just that—blink.

To do this, go to the File menu in the menu bar and select the Examples command, 
navigate to 01.Basics, and select Blink.

The Arduino development environment should open a new window containing the 
following code for that example:

/*
  Blink
  Turns on an LED for one second, then off for one second,  
repeatedly.
 
  This example code is in the public domain.
 */
 
// Pin 13 has an LED connected on most Arduino boards.



Chapter 2

[ 39 ]

// give it a name:
int led = 13;

// the setup routine runs once when you press reset:
void setup() {                
  // initialize the digital pin as an output.
  pinMode(led, OUTPUT);     
}

// the loop routine runs over and over again forever:
void loop() {
  digitalWrite(led, HIGH);   // turn the LED on (HIGH is the  
voltage level)
  delay(1000);               // wait for a second
  digitalWrite(led, LOW);    // turn the LED off by making the  
voltage LOW
  delay(1000);               // wait for a second
}

Downloading the example code
You can download the example code files from your account at http://
www.packtpub.com for all the Packt Publishing books you have 
purchased. If you purchased this  book elsewhere, you can visit http://
www.packtpub.com/support and register to have the files e-mailed 
directly to you.

We will go on with more details about the programming language and its 
characteristics in the coming chapters, but at the moment you just need to know that, 
it simply configures the Arduino board to use the onboard LED as an output in the 
setup function and turns it on and off infinitely, with a little delay in between, in the 
loop function, that is, blink an LED.

Once you have loaded your sketch, you only have to click on the Upload button 
on the toolbar (the one with the rightward-pointing arrow), which will cause the 
Arduino development environment to first compile the sketch if it wasn't already 
compiled and, if it finds no errors, it will upload it to the selected board through  
the specified serial port.

During the uploading process, you can see two other integrated LEDs labeled as 
TX/RX blinking, indicating that the serial communication has been established and 
that the Arduino board is receiving data from the computer and sending back an 
acknowledgment to it.

As soon as the uploading process has finished, the Arduino board will immediately 
begin to run the sketch and as a result, you should see the LED labeled L begin to 
blink at a 1 Hz frequency.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support


The Arduino Development Environment

[ 40 ]

Congratulations, you have completed your first development cycle: edit the sketch 
(load it from the disk, in this case), compile it, upload it to the board, and run it there.

If that wasn't enough for you, perhaps you could try to simply change the two values 
in the delay functions from 1000 to, say, 300 and 500 and reupload it to the board to 
watch how the blinking frequency changes.

Main menus and commands
Before going on to the next chapter where we begin to deal with all the features 
present in the Arduino board, let's take a little tour of the Arduino development 
environment menus and commands.

It has only five menus, and some of them are very similar to those present on any 
other application in your computer, such as File, Edit, or Help.

In the File menu, you will find commands to open a new sketch, load it from the 
disk, save it, or print it. Just as an addition, you can see two commands: Sketchbook 
and Examples.

The Sketchbook submenu will unfold another submenu listing all sketches 
available in the folder you can designate in the Arduino development environment 
preferences as your sketchbook folder. This makes it very easy to load your own 
sketches without the hassle of having to navigate through your entire filesystem 
folder structure to find the particular sketch you are looking for. The only drawback 
of this is that you have to store your sketches in the specified folder.

On the other hand, the Examples command will do something similar by showing all 
examples that come with the environment, which is very convenient when learning 
to program.

In the Edit menu, you'll find options such as Undo, Redo, Copy, Cut, and Paste as 
with every other application in your computer, but you'll also find commands such 
as Copy as HTML to publish the code in a web page or Copy for forum to prepare 
the code in a convenient way to be published in the Arduino Forum.

There are also commands to embellish and tidy up your code, such as the previously 
mentioned Increase Indent / Decrease Indent and Comment/Uncomment 
commands, and, of course, commands to find, and to find and replace, like in  
most editors.



Chapter 2

[ 41 ]

The Sketch menu has just four commands:

• Verify / Compile: This is just the same as the Verify button in the toolbar.
• Show Sketch Folder: This opens the folder in your disk that stores the sketch 

being currently edited.
• Add File…: This allows you to include one more file in the current sketch, 

allowing you to make your code modular by dividing it into different files.
• Import Library…: This shows you another submenu listing all available 

libraries in the libraries folder inside the designated sketchbook folder of 
your hard disk. We will talk in more detail about libraries in other chapters 
of the book.

In addition to the previously mentioned Board and Serial Port commands, the  
Tools menu has commands to format your code for better viewing or to create a  
ZIP package of your sketch to make it easier to send it via e-mail.

The Serial Monitor command is just the same as its corresponding button on the 
toolbar and opens the Serial Monitor window to allow us to communicate serially 
with the board and see what the board is sending us back.

The Serial Monitor window

The Programmer and Burn Bootloader options are for advanced users who want to 
reprogram their Arduino boards' bootloader (a sort of operating system that makes 
the Arduino board run).

Finally, the Help menu contains commands to show different sections and views of 
the Arduino documentation.



The Arduino Development Environment

[ 42 ]

The Arduino language
As you may have noticed, the code you write for your Arduino sketches is very 
similar to the C programming language. It is, in fact, a subset of it, which makes  
it very convenient to use, given that the C programming language is almost a  
de facto standard in most platforms and devices.

Traditionally, the C programming language has been portrayed as not being very 
user friendly, but I prefer to refer to it as being friend-selective.

One of the missions of this book is to introduce you to the C programming language, 
so that if you don't have any previous knowledge of it, you can take your first steps 
in an easy and secure way and ensure you will become good friends with it.

The only thing you should do is strictly respect its syntax and know that in the  
C language, a comma or a semicolon are important and that the case when writing  
is also significant. Perhaps these two things are the origin of half the mistakes  
you will make when programming and that give the C programming language  
its bad reputation.

Summary
This has been a long and, in some ways, an arid chapter, but it's totally necessary  
to prepare your development environment and to allow you to directly jump into  
the real assembly and programming with Arduino.

We installed both the software and the corresponding drivers, and we created the 
first test for the development environment and the board itself.

In the next chapter, we will deal with the real thing and begin to work with digital 
outputs and their corresponding code.

The show is ready to begin.



Interacting with the 
Environment the Digital Way

Now it's time to start working hands on with our Arduino boards by connecting 
electronic circuits to them and programming the microcontrollers to interact with  
the external circuitry.

In this chapter, we are going to deal with digital outputs, as it is the simplest way  
to interact with the outside world, and we will learn about the necessary code to 
drive them.

Let's begin with some considerations regarding digital and analog signals, move on 
to the circuit assembly, and finish by writing some code to make the microcontroller 
command the external circuit.

Digital versus analog signals
When working with electronics signals, you will constantly see references to digital 
and analog signals, and it is important that you differentiate between the two and 
know how to make Arduino deal with every type of signal.

A digital signal is one that takes only two clearly different states—no more, no less. 
To give you an example, switching a light on and off can be a typical case of a digital 
signal. You just have these two states, and it is on or it is off; it can't be both at the 
same time and nor can it have any other possible state in between.



Interacting with the Environment the Digital Way

[ 44 ]

In opposition to digital signals, analog ones are those that have a theoretically 
infinite number of possible values between a minimum and maximum one. Looking 
for an example relative to light, such as the one given for digital signals, we can think 
of the light coming from the sun through a window. It has a minimum, when there 
is no sun in the night, and a maximum, when the sun is just in front of your window. 
However, between these two extreme values, there are an infinite number of them, 
differentiating one another in a very small increment as long as the sun goes from the 
minimum position to its maximum.

When working with computers and microcontrollers, digital signals are often 
represented by the 0 and 1 value, 0 being the value used for the off state and  
1 for the on state, which makes them perfect to be represented as binary digits.

In the Arduino language, we even have two more convenient constants to reference 
these two states, HIGH and LOW, as you may remember from the Blink code example 
we saw in the previous chapter. In any case, we will see more about this in  
this chapter.

On the other hand, when dealing with analog signals from the point of view of a 
computer, we usually represent them as real numbers, or floating-point numbers 
in computer science jargon, but we will talk in more detail about this in Chapter 4, 
Controlling Outputs Softly with Analog Outputs.

Our first circuit
To begin working with digital outputs, we are going to connect a very simple circuit 
to our Arduino board and write some code to deal with it.

In the rest of the book, I'll present you with different circuits that we will have 
to assemble and connect to the Arduino board. Regarding the external circuits 
assembly, nowadays we don't really have to solder all parts to a printed circuit  
board to get our circuit up and running. We can simply use a bunch of short  
wires, called jumpers, and a breadboard.

Before going on with our first circuit, let's take a look in detail at what a breadboard 
is and how to use it.



Chapter 3

[ 45 ]

Using a breadboard
A breadboard is a square panel built in such a way that it allows the connection of 
the electronic component plugged into it without the need to solder them together  
or use any other form of connection among them.

A typical half size breadboard

As you can see in the preceding picture, the breadboard has a lot of holes distributed 
in four different areas:

• Two horizontal rails up and down with two rows of holes
• Two blocks for components' connections in the middle, usually with  

columns of five holes

You plug the components' legs into the holes. They are equipped with metallic clips 
inside that fit the electronic components once inserted. They are distributed in the 
breadboard in such a way that it connects all holes in every rail's row and every hole 
in every five-hole columns in the components' area.

To allow you to connect the circuit to the Arduino board or other external components 
not placed in the breadboard, you should use small pieces of wire that go from a hole 
in the breadboard to the external component leg.



Interacting with the Environment the Digital Way

[ 46 ]

For more detailed information, with very illustrative images and examples of  
use, you can visit the excellent Sparkfun tutorial on how to use a breadboard at 
https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard.

At the moment, you don't have to worry about being very capable with a 
breadboard, because I'll give you detailed schematics and diagrams on how  
you should connect every one of the proposed circuits to your breadboard.

The LED circuit
The first circuit we are going to assemble is a simple LED with its current limiting 
resistance, and we will connect it to a digital output of our Arduino board.

Arduino has two different rows of pin headers:

• One with the powering pins and analog inputs in the lower side of the board
• The other in the upper side, with all digital pins

Take a look at the following screenshot:

An Arduino row of digital pin headers

You can see that some of the pins in the digital row are marked with ~, which, as 
stated in the board serigraphy, are available for use as analog outputs through the 
use of Pulse Width Modulation (PWM), about which we will talk more in the next 
chapter. This doesn't mean that you can't use them as digital pins, but it simply 
means that when you are going to use analog outputs, you should use only those 
pins that are marked PWM.

https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard


Chapter 3

[ 47 ]

For our example, we will connect a current limiting resistance of about 220 Ohms to 
the Arduino pin 12, the other leg of the resistance to the LED anode, and finally, the 
LED cathode will be connected to the ground of our Arduino board, available at the 
bottom pin header through any of the two pins marked as GND.

An Arduino row of power and analog pin headers

This way, we will power the LED directly from the Arduino digital output pin in 
a programmatic form, and it will be our code that will determine when to turn the 
LED on and off by just setting that digital output pin HIGH or LOW, which will set it  
to 5V or 0V, respectively, thus providing or not providing current to the LED.

Circuit schematic
I'll always try to give you an electronic schematic of our assemblies so that you can 
understand what we are going to connect when using the breadboard or if you 
prefer any other method to make the necessary connections.

The complete assembly for the connection of the LED is as shown in the  
following schematic:

A schematic of an LED connection through a digital pin



Interacting with the Environment the Digital Way

[ 48 ]

Breadboard connections diagram
Once you have understood what we pretend to connect to the Arduino board,  
it's time to make the real connections using a breadboard.

Here, you have a diagram where you can clearly see the connections that should 
be made to implement the circuit on the breadboard. All these diagrams have been 
made using Fritzing, which is an excellent free application that you can find at 
http://fritzing.org.

A diagram of a connection to the LED assembly in a breadboard

http://fritzing.org


Chapter 3

[ 49 ]

In this diagram, you can appreciate something that you should get accustomed to as 
a good practice when assembling circuits on a breadboard and that you will see in all 
the diagrams in this book.

As you can see, in the preceding diagram, I have connected a wire from the Arduino 
GND pin to the first hole of a rail in the breadboard, and from there, I've used another 
wire to connect that rail's row to the LED cathode. I haven't directly connected the 
LED cathode to the Arduino GND pin, although I could have done so.

This way, and given that all holes in every rail's row are interconnected, I have all 
the rail's connections tied to GND, which allows for a very fast and convenient way 
to connect the negative side of additional components to GND. This is done without 
the need for a wire from every component's negative side to the Arduino GND pin, 
which will be impossible to achieve given that there are only two GND pins in the 
Arduino board.

Later in the book, we will also need to power other electronic components with a 
positive voltage, and we will use the same technique shown here, that is, we will take 
a wire from the Arduino 5V pin to another row of a rail, thus getting a whole row 
with positive voltages ready to power additional components on the breadboard.

Asymmetric blinking code
Once we have assembled the circuit and connected it to our Arduino board, it is 
time to leave the physical part of our project and begin to work on the logical one: 
the software we will program our microcontroller with and that will allow us to 
command the physical side of our project.

For this first example, we will use a modified version of the Blink example you saw 
in the previous chapter, and will blink the LED in an asymmetrical pattern, that is, 
having different durations for the on and off cycle of the blinking:

void setup() {                
  pinMode(12, OUTPUT);     
}

void loop() {
  digitalWrite(12, HIGH);
  delay(500);
  digitalWrite(12, LOW);
  delay(100);
}



Interacting with the Environment the Digital Way

[ 50 ]

Although you have the complete code in the code examples accompanying this book, 
I'd suggest that you type it by yourself, because this is the only way to really learn 
how to code and try to strictly respect the C programming language syntax.

This simple code will help us to analyze and understand the common structure of an 
Arduino sketch.

As you can appreciate, the code is divided into two different sections called 
functions. To be precise, we have a function called setup() and a function called 
loop(), and each one has a very concrete mission in a sketch:

• setup(): The purpose of this function is, as its name indicates, to set up the 
board and its peripherals in the way the sketch needs, for example, setting 
pins as inputs or outputs, assigning a predefined value to a variable, or 
initiating a serial communication with your computer. It's only executed 
once—right at the beginning of the program.

• loop(): This function is where the real code execution occurs. It runs through 
every instruction within it in a sequential way from the top to the bottom 
and begins again once it has reached the last instruction. This function never 
finishes its execution, so the only way to stop running a sketch in Arduino is 
by powering the board off.

The logic of the code is quite simple. In the setup() function, we just tell Arduino 
that we want to use pin 12 as an output using the pinMode(12, OUTPUT) function 
call that, as you can see, takes two parameters:

• The first is the pin we want to configure
• The second is the mode we want it to be in, which is OUTPUT in our case

Once the setup is finished, Arduino enters the loop() function.

The first thing we do there is write a digital HIGH value in pin 12 using the 
digitalWrite(12, HIGH) function, which generates a 5V signal on the pin,  
making the LED turn on.

After that, we wait for 500 milliseconds with the call to the delay(500)  
function and go on by writing a digital LOW value on the pin with the call  
to the digitalWrite(12, LOW) function, thus generating a 0V signal that  
makes the LED turn off.



Chapter 3

[ 51 ]

Finally, we wait again but only for 100 milliseconds with delay(100) in this case, 
just before repeating all the loop code again, that is, turning the LED on again, 
waiting for half a second, turning it off, and waiting for a tenth of a second and  
again forever until we power the board off. Simple, isn't it?

Here, you have a picture of the complete circuit connected to the Arduino board. 
Please note that for the sake of clarity in the photograph, in the final assembly I 
decided to save one wire by directly connecting the LED cathode to the Arduino 
GND pin and not connecting it through the rail, as presented in the connections 
diagram previously.

The complete circuit for the asymmetrically blinking LED



Interacting with the Environment the Digital Way

[ 52 ]

C language syntax considerations
This being our first code, I would like to consider the syntax of the C language used 
in it. This, once understood, will help you minimize the syntax mistakes you could 
make when writing C code, and that would generate compiling errors. They are  
as follows:

• The C language is case-sensitive; this means that it is not the same as a  
word written in uppercase or lowercase: pinMode() is correct whereas 
pinmode() isn't.

• The use of functions includes the accompanying pair of parentheses that 
serve to specify their parameters. Even when they don't have any parameters, 
the parentheses have to be included.

• Every function content or block of code requires the use of a pair of curly 
brackets to delimit the instructions that belong to them and separate them 
from the rest of the program. Missing a closing curly bracket would result in 
a compilation error, which is sometimes hard to detect and correct.

• As you can see, there is a semicolon at the end of every instruction. They are 
required by the C language to know where every instruction ends and where 
the next one begins. A simple carriage return isn't enough.

• Everything after // or between a /* … */ block is considered to be a 
comment and thus, it won't be compiled by the Arduino development 
environment. The use of comments to explain the code is a common  
and very desirable practice that you should adhere to.

Troubleshooting faults in the circuit
It's difficult to have any trouble with such a simple circuit, but who knows, and 
perhaps there is something wrong in your assembly and you don't get the expected 
results. In the case of problems, here is a list of things you should check:

• Go over your connections carefully, especially in the breadboard. The clips 
under the plastic housing of the breadboard tend to open wide gradually and 
sometimes, even when the component or wire is inserted in the hole, it may 
not make a correct contact.

• On the Arduino side, be sure to connect the wire going to the resistance 
to pin 12, which is the one you are referencing in your code to be a digital 
output and the one you are using to turn the LED on and off. It wouldn't 
be the first case, as I've spent plenty of time looking for an error in the 
breadboard's connections when it was just that I had connected the wrong 
pin in the Arduino board.



Chapter 3

[ 53 ]

• The LED is a polarized component. This means that its legs have different 
functions. The anode usually has a longer leg and the cathode has a small 
flat in the plastic capsule to differentiate them. Ensure that it is connected the 
right way, that is, the anode is connected to the resistance and the cathode to 
the wire going to the ground rail.

• If it still doesn't work, try with another LED, unwire everything, and connect 
it once again or try with another breadboard.

Dealing with multiple outputs
Once we have our first real circuit up and running, or blinking if you prefer, and 
once you are a little bit acquainted with the structure of a typical sketch and the C 
language syntax, why don't we try to make something a little more complicated?

It isn't hard to connect two more LEDs and their corresponding current limiting 
resistances and build a traffic light and modify our sketch to make it operate like a 
real one.

Here, you have the schematic of such a circuit:

A traffic light circuit



Interacting with the Environment the Digital Way

[ 54 ]

As you can see, I have connected the resistances to pins 10, 11, and 12. Pins 10 and 
11 are marked as PWM capable, but for the purpose of this circuit, this doesn't 
really matter to us, because we are going to use them digitally by calling the 
digitalWrite() function later in the code.

In the following breadboard connections diagram, you can see what we talked about 
previously regarding the creation of a ground rail that would allow us to connect 
every ground in the circuit in a convenient way. You can see how I've taken different 
wires from the cathode of every LED to the common ground rail at the bottom.

A breadboard connections diagram for the traffic light circuit



Chapter 3

[ 55 ]

Current limit per pin
There is a very important consideration to be made before going into connecting 
bigger external circuitry to our Arduino boards.

The Arduino board is only capable of delivering a maximum current of 
approximately 40 mA per pin and always under a total current delivery of 200 mA 
for all of them at the same time. Above these limits, your Arduino board could be 
seriously damaged and get burnt.

In this circuit, with a total of three LEDs and with a power consumption of around  
20 mA each, we are sure we won't get into any trouble.

If you have to deal with devices that require higher power consumption, you should 
consider using a relay or a transistor as an intermediation between the Arduino 
board and an external power source for the device. In Chapter 4, Controlling Outputs 
Softly with Analog Outputs, I'll show you how to use a transistor to control a DC 
motor for this very reason.

Coming back to our example, the code for this circuit won't be much harder than 
the blinking example used previously, but I'll use it to introduce a very important 
concept of any programming language: the use of variables to store values that we 
will use later in the code. In this case, I'll use these variables just to make the code 
easier to read, but for the purpose of our example, it will be enough.

I'll insert three lines of code before the setup() function that will allow us to declare 
three variables that we will use to store the pin numbers we will reference later in the 
rest of the program:

int redLED = 12;
int yellowLED = 11;
int greenLED = 10;

In the setup() function, we are going to configure the pins we want to use by 
making them all outputs:

pinMode(redLED, OUTPUT);                     
pinMode(yellowLED, OUTPUT);                     
pinMode(greenLED, OUTPUT);



Interacting with the Environment the Digital Way

[ 56 ]

Finally, in the loop() function, we are going to just repeat three times what we have 
done before, but we'll modify the code so that it turns a different LED on and off 
each time:

digitalWrite(redLED, HIGH);
delay(500);
digitalWrite(redLED, LOW);
delay(100);
  
digitalWrite(yellowLED, HIGH);
delay(500);
digitalWrite(yellowLED, LOW);
delay(100);
 
digitalWrite(greenLED, HIGH);
delay(500);
digitalWrite(greenLED, LOW);
delay(100);

Here, you have the complete code including some comments so that you can clearly 
read what is going on:

/*
 Chapter 03 - Interacting with the environment the digital way
 Multiple digital outputs to simulate a traffic light
 By Francis Perea for Packt Publishing
*/

// Global variables
int redLED = 12;
int yellowLED = 11;
int greenLED = 10;

// Configuration of the board.



Chapter 3

[ 57 ]

// All pins are going to be used as outputs
void setup() {                
  pinMode(redLED, OUTPUT);                     
  pinMode(yellowLED, OUTPUT);                     
  pinMode(greenLED, OUTPUT);     
}

// Sketch execution loop
// We repeat the single blink for every LED
void loop() {
  // blink the red LED
  digitalWrite(redLED, HIGH);
  delay(500);
  digitalWrite(redLED, LOW);
  delay(100);
  
  // blink the yellow LED
  digitalWrite(yellowLED, HIGH);
  delay(500);
  digitalWrite(yellowLED, LOW);
  delay(100);
  
  // blink the green LED
  digitalWrite(greenLED, HIGH);
  delay(500);
  digitalWrite(greenLED, LOW);
  delay(100);
  // do it all again
}



Interacting with the Environment the Digital Way

[ 58 ]

Finally, here, you have a photograph of a real assembly, where, once again, I made 
use of a little trick to save some wires and electronic components—resistances, in this 
case. Given that we are not going to turn on more than one LED at a time, I've just 
used a single resistance connected to the cathode of every LED. All LEDs will use it, 
but they'll use just one at a time, so we can save two resistances. On the other hand, 
having just a single connection to ground on the opposite leg of the single resistance, 
I can also save some wires to connect it to the Arduino ground—once again, just for 
the clarity of the picture.

A complete assembly of the traffic light example

Now that you are beginning to master digital outputs, will you be able to make the 
LED in the middle blink a couple of times before turning it off and prior to turning 
the lower one on like we usually see in our streets' real traffic lights?



Chapter 3

[ 59 ]

Summary
This has been our first real work project, and I've shown you quite a good bunch of 
concepts and procedures.

We have considered the breadboard as our sandbox, where we will try to connect 
every circuit we are going to build throughout the book and in your daily work  
with Arduino.

We have connected our first component to the Arduino board through a digital 
output and have met the power connections of our circuit.

Finally, we have had our first real contact with an Arduino program written in  
the C programming language. We have recognized the essential parts of any 
Arduino sketch and learned the basic syntax of the C language and its most 
important particularities.

In the next chapter, we will learn about analog outputs, which will introduce us to a 
very powerful transistor-based circuit that will allow us to deal with no less than a 
DC motor. On the programming side, we will meet another very interesting structure 
to step along a range of values. This is getting interesting, isn't it?





Controlling Outputs Softly 
with Analog Outputs

Interacting with the environment in a digital way is very practical, and you'll use it 
in a different number of situations. In fact, we are very accustomed to these kinds of 
interactions and they are nothing really new.

In this chapter, we will see a very different kind of interaction that not only supports 
an on and an off state but also a number of different states between them. We will 
deal with analog outputs.

We will begin by fading an LED to later see a new circuit that controls the speed of a 
motor through an analog output.

Dealing with analog signals
As an introduction to the connection and programming of analog outputs, we will 
use the simplest circuit we have already seen, that is, we will connect an LED to our 
Arduino board but to deal with it analogically this time.

Before going into the details, I would like to introduce a couple of concepts that will 
help you when working with these kinds of signals.

The first thing you should know is that Arduino isn't really able to generate an 
infinite continuous analog signal, but instead, it uses a little trick to simulate it. 
Digital devices such as microcontrollers usually incorporate a peripheral called 
Digital to Analog Converter (DAC), which they use specially to perform  
this trick.



Controlling Outputs Softly with Analog Outputs

[ 62 ]

When working with a microcontroller, we pass a digital value to the DAC, and it 
converts it to an analog value but in a predefined range of possible values. The DAC 
is unable to generate an infinite set of output values; it has a finite input range of 
digital values and can generate a finite output range of analog voltages.

The number of steps the DAC can generate is called the resolution of the DAC. The 
Arduino DAC has an 8-bit resolution, so it accepts input values ranging from 0 to 
255, which will be converted to analog values between 0V and 5V. If you divide  
the voltage range between the total number of steps the Arduino DAC accepts, you 
will conclude that every step of the input range increments the output voltage by 
almost 0.02V.

To perform this conversion, the DAC uses a method called Pulse Width Modulation 
(PWM) that consists of turning the output at very high frequencies on and off, 
resulting in a medium voltage that is the proportion of the on time with respect to 
the off time.

If you want to learn more about DACs and PWM, you can visit the corresponding 
pages on Wikipedia at http://en.wikipedia.org/wiki/Digital-to-analog_
converter and http://en.wikipedia.org/wiki/Pulse-width_modulation.

The analog output circuit
Once we know what is going to happen when we deal with analog outputs,  
I'll show you the circuit we are going to work with.

The circuit to connect an LED to a PWM pin

http://en.wikipedia.org/wiki/Digital-to-analog_converter
http://en.wikipedia.org/wiki/Digital-to-analog_converter
http://en.wikipedia.org/wiki/Pulse-width_modulation


Chapter 4

[ 63 ]

As you can see in the previous schematic, it's very similar to the circuit we used in 
Chapter 3, Interacting with the Environment the Digital Way, to deal digitally with an 
LED. However, in this case, we have to connect it to a PWM pin of the Arduino, pin 
11 for this example, so that later in the program we can use the corresponding code 
to deal with it analogically.

The rest of the circuit is just the same as the blinking LED one, and we will use the 
same 220 Ohms resistance to limit the current that will flow through the LED to no 
more than 20 mA.

Connections diagram
If you still see connections better in the connections diagram for the breadboard,  
here you have the complete diagram for this example:

The connections diagram for the fading LED



Controlling Outputs Softly with Analog Outputs

[ 64 ]

Analog control through code
The most valuable part of this example is not its physical part but its logical one, 
and I'll show you the associated functions to deal with analog outputs and a very 
important control structure in any programming language called a for loop in the 
code we will be using for this circuit.

The analogWrite() function
Dealing with analog outputs from the programming side is just a matter of using the 
analogWrite() function, which, as its name implies, writes an analog value through 
a pin.

It takes two parameters, similar to the digitalWrite() function:

• The first one is the pin on which we want to operate (remember that it has to 
be one marked as PWM) on

• The second parameter is the value we want to output, and that, as I told you 
previously, can take any value in the range of 0 to 255, 0 meaning 0V and 
255 meaning 5V

The for loop
The other important concept we will come across in this example is a for loop, 
which is a very important control structure present in almost every programing 
language that allows you to repeat a block of code a specific number of times.

For its operation, a for loop needs what is usually called a control variable, that is,  
a variable that is going to take different values in a range for every iteration of the 
loop until it reaches a final value.

The general syntax of a for loop is as follows:

for (initialization; condition; increment) {
  instructions;
}



Chapter 4

[ 65 ]

The three parts inside the parentheses have the following mission:

• Initialization: An initial value has to be given to the control variable.  
The loop will begin to iterate, with the control variable taking this value  
the first time.

• Condition: The loop will go on iterating as long as this condition remains 
true, stopping the iterations and going on with the next instruction as soon as 
the condition evaluates to false. The condition is usually based on the control 
variable remaining under or above an extreme value.

• Increment: This is a sentence where we change the control variable in order 
to continue adopting different values in the range through its way to the 
final value. Normally, we simply increment the control variable, but in some 
cases, as we will see in our example code, we could also decrement it.

An example will greatly clarify the concept. We could write the following block  
of code:

  for(time = 100 ; time <= 1000; time=time+50){ 
    digitalWrite(led, HIGH);
    delay(time);
    digitalWrite(led, LOW);
    delay(time);
  }

In this example code, we will begin by making the time variable take a value  
of 100 and make the loop iterate, executing all instructions inside as long as the  
time variable has a value less than or equal to 1000, incrementing it by 50 in  
every iteration.

This way, we would make an LED blink with lower frequencies for every iteration, 
given that we have used the time variable as the parameter of the delay() calls.

It would result in delay(100) as the first iteration, delay(150) as the second one, 
delay(200) as the third one, and so on until the time variable gets to a value of 
1000, in which case, the condition will evaluate to false and the for loop won't 
continue to iterate. The program execution will follow through the next line of  
code just after the closing curly bracket of the for loop.

For more information and some other examples of the use of a for loop, you  
can go and visit the for loop page on the Arduino site's Reference section at 
http://arduino.cc/en/Reference/For.

http://arduino.cc/en/Reference/For


Controlling Outputs Softly with Analog Outputs

[ 66 ]

Complete the fading LED code
Regarding the rest of the code, I'm going to use three variables; two of them, which 
I've called led and increment, won't really change throughout the execution of the 
program, but they will greatly increase the readability of the code.

The led variable is going to be used to store the pin number I'll use to control the 
LED, pin number 11, in this example. Remember that you can use whichever pin you 
want from those marked as PWM in the Arduino board and that you will have to set 
this variable as per your choice, accordingly.

The increment variable will hold the step size we will use in the for loops that 
we will use later. Using a variable just to use the increment value makes it very 
convenient to make future modifications by just changing its value at the beginning 
of the code without the hassle of having to search throughout the code for every 
occurrence of the pretended value.

The other variable, which is intensity, will be the key of this sketch, as it is going 
to be used as the control variable of two for loops that we are going to use to go 
all along the range of possible values for the analogWrite() calls we will use to 
gradually change the brightness of the LED.

Well, let's see this theory in action. Here is the complete code for the LED  
fading sketch:

/*
 Chapter 04 - Controlling outputs softly with analog outputs
 Single analog output to fade a LED
 By Francis Perea for Packt Publishing
*/

// Global variables we will use
int led = 11;           
int intensity = 0;    



Chapter 4

[ 67 ]

int increment = 5;

// Configuration of the board
void setup()  { 
  // Set the pin we are going to use as an output
  pinMode(led, OUTPUT);
} 

// Main loop
void loop()  { 
  // fade from minimum to maximum
  for(intensity=0; intensity<=255; intensity=intensity+increment){ 
    analogWrite(led, intensity);   
    delay(30);                     
  } 
  
  // fade from maximum to minimum
  for(intensity=255; intensity>0; intensity=intensity-increment){ 
    analogWrite(led, intensity);   
    delay(30);                     
  } 
}

As I have explained previously, we begin by declaring and assigning initial values to 
the three global variables we are going to use all along the program.

In the setup() function, we simply set the pin we are going to use as an output.

In the loop() function, we have just two for loops: one taking values from 0 to 255 
in increments of 5 and the other taking values from 255 to 0 using -5 increments.

In every iteration of each for loop, we simply set the changing value of the control 
variable, which is intensity in our code, as the analog value we want to output to 
the LED and wait for 30 milliseconds to allow our eyes to see the change.

The first loop makes the intensity of the LED increase from 0V to 5V and the second 
one makes the intensity decrease from 5V to 0V, which is just the opposite.



Controlling Outputs Softly with Analog Outputs

[ 68 ]

I'll suggest that you play with this code, and as an exercise, you could make both 
parts of the fading run at different frequencies simply by setting different values for 
the increment variable just before entering the for loops, making it 10 when going 
up and 50 when going down. The resulting code could be as follows:

void loop()  { 
  // fade from minimum to maximum in increments of 10
  increment = 10;
  for(intensity=0; intensity<=255; intensity=intensity+increment){ 
    analogWrite(led, intensity);   
    delay(30);                     
  } 
  
  // fade from maximum to minimum in decrements of 50
  increment = 50;
  for(intensity=255; intensity>0; intensity=intensity-increment){ 
    analogWrite(led, intensity);   
    delay(30);                     
  } 
}

Motor control with a transistor
Analog outputs can be very useful sometimes and not just to change the brightness 
of an LED. There are plenty of devices that operate on an analog signal; motors, for 
example, where you can change its speed by varying the voltage you apply to them.

However, motors can be sometimes tricky to operate, mainly due to the fact that they 
are big current consumers. A typical toy DC motor can easily consume more than 
200 mA when running without a load and up to 1 Amp when stalled.

We mentioned in the previous chapter that an Arduino pin can't give more than  
40 mA, or it could burn. So, how can we deal with a motor using an Arduino? Well, 
usually when dealing with high-current devices, we use a driver circuit that allows 
the device to be powered from an external power source and use the Arduino pin 
just as a regulator.

This way, we can avoid the need to power the device directly from the Arduino pin, 
like we have done till now when dealing with LEDs that operate with under 30 mA 
and can be directly fed from Arduino pins.



Chapter 4

[ 69 ]

Motor driver
This kind of circuit usually uses a transistor as an intermediate device that receives 
the Arduino signal and provides a proportional current coming from an external 
power source to the device.

In the following schematic, you can see a typical assembly when operating a DC 
motor from Arduino:

A motor driver circuit

The key element of this circuit is the transistor component, the one with the arrow 
pointing out that has three legs:

• Base: This is the leg that we connect to the Arduino board through a resistor 
and that acts as the control element

• Collector: This, simply said, is the leg where current comes into the transistor
• Emitter: This is the leg through which current flows out of the transistor

Regarding its operation, I like to compare a transistor with a water tap, where we 
turn the handle and, more or less, water comes out of it. In the transistor case, we set 
a variable voltage on the base, which allows more or less current to flow from the 
collector to the emitter and consequently, through all components we connect  
in between.



Controlling Outputs Softly with Analog Outputs

[ 70 ]

Keeping this in mind and taking a closer look at the previous schematic, we can 
realize that by connecting the base to an Arduino analog output, we can make a 
varying current flow through the motor, thus making its speed vary.

When dealing with transistors, it is important that you know which of the three legs 
is the base, collector, and emitter of your transistor. You should refer to its datasheet, 
which you can easily find on sites such as http://octopart.com.

There are two more components on the circuit that deserve a short explanation:

• The resistor: This allows the connection between the Arduino pin and  
the transistor base. Without going into too much detail, we will use a 1K 
resistance here.

• The diode: Without going into too much detail, you should know that 
a motor acts much like a big electromagnet and thus, when turned off, 
generates what is called a back Electromagnetic Force (EMF), which can 
even be 100 volts and with an opposite direction from the main voltage 
applied to the motor, which could damage your circuit. By placing a diode in 
the opposite direction of the main voltage, you help suppress this dangerous 
back EMF. Any protection diode will do, such as the 1N4007, but if you  
don't have one to hand, you could even use an LED as long as you connect  
it correctly.

Power source considerations
There is a last question to consider before going hands on with our motor control 
circuit, and that is the powering of the motor.

For the purposes of this example, I'll suppose that you are going to connect a small 
DC motor that consumes no more than 250 mA when operating without a load.  
This way, we could take current directly from the 5V pin of the Arduino board.

It's important to keep this in mind, because the power regulator present in your 
Arduino board takes current in the last instance from your USB port, which can't 
typically support more than 500 mA.

http://octopart.com


Chapter 4

[ 71 ]

You should take some precautions before connecting a bigger motor to your Arduino 
board by measuring its typical power consumption. You can do this by placing an 
ammeter in the serial with a battery or another external power source and take note 
of the current it needs to run.

If the motor doesn't need more than the maximum 500 mA that your USB port 
and Arduino voltage regulator can give, then you can safely power it from the 5V 
Arduino pin. In other cases, you will have to provide another power source for the 
motor and connect both grounds: the one for your external power source and the one 
for your Arduino board.

The complete circuit
Well, that is enough theory for the moment; let's go into the real nuts and bolts of our 
circuit. Here, you have the complete schematic of the motor speed control circuit we 
are going to assemble for this example:

A motor speed control circuit



Controlling Outputs Softly with Analog Outputs

[ 72 ]

Connections diagram
For the breadboard connections, we can save some wires by placing the diode just in 
contact with the transistor collector.

Notice that for the transistor used in this diagram, the legs are looking at it with the 
plain side in front from the left to the right, collector, base, and emitter, or, as you 
will usually find, CBE.

A breadboard connections diagram for the motor speed control circuit



Chapter 4

[ 73 ]

Motor varying speed code
The code for this circuit is very similar to the LED fading one, but instead of using 
the for loop to go all over the range of values of the analog output, we will just use it 
to generate a three-iterations loop that will give us just three different speeds for the 
motor, which will make its changing state more evident.

Further, I couldn't make my motor spin with a voltage lower than 1V, so I will 
configure the loop to take the values 150, 200, and 250, which made my transistor 
deliver voltages of 1.5V, 2.5V, and 3.5V.

Here, you have the complete code I used for this example:

/*
 Chapter 04 - Controlling outputs softly with analog outputs
 Motor speed control
 By Francis Perea for Packt Publishing
*/

// Global variables we will use
int base = 6;
int speed = 0;

// Configuration of the board
void setup() {   
  // Set the pin that we will connect to the transistor base as an  
output
  pinMode(base,OUTPUT);
}

// Main loop
void loop() {
  // Increment the speed of the motor in three steps, each for 3  
seconds
  for (speed=150; speed<=250; speed=speed+50){
   analogWrite(base, speed);
   delay(3000);
  }
  // Stop the motor for 1 second and begin again
  analogWrite(base, 0);
  delay(1000);
}

Notice that every change in speed lasts three seconds and that once the three steps' 
loop ends, we stop the motor for one second before beginning all over again.



Controlling Outputs Softly with Analog Outputs

[ 74 ]

The assembled circuit
I'd like to show you a picture of the complete assembly that could perhaps clarify 
even more what we are doing:

A real assembly for the motor speed control circuit

As you can see, I've used a little piece of tape around the motor axle in order to make 
it clear when it changes its speed.

Bigger power motors
As I told you previously, when dealing with motors, this can consume more  
current than the maximum 500 mA your USB port can give. You will have to  
provide another power source just for the motor, such as an external battery  
or DC transformer.



Chapter 4

[ 75 ]

I have used an excellent and totally recommendable free software called EAGLE 
(http://www.cadsoftusa.com) to prepare a schematic for this kind of circuit that 
can perhaps help you understand what we pretend.

A circuit to power the motor from an external power source

Here, you can see how the motor gets its current from the big battery and the only 
component between both circuits is the transistor, which is connected through its 
base to the Arduino board, its collector to the external power source, and the emitter 
to both grounds: the battery one and the Arduino one.

This way, you can not only provide a bigger current but also a different voltage 
to the motor that could, for example, operate at 12V as opposed to the 5V of the 
Arduino board.

One final consideration with respect to this circuit is that you should look for an 
appropriate transistor, because every transistor has a maximum current that it  
can support, so be careful if you don't want to see a little fireworks show on  
your desktop.

http://www.cadsoftusa.com


Controlling Outputs Softly with Analog Outputs

[ 76 ]

Summary
In this chapter, we met analog outputs and saw two different circuits to deal  
with two kinds of components that can operate on a variable voltage, an LED,  
and a motor.

On the hardware side, these circuits have helped us to learn about analog signals, 
DACs, and some of its characteristics. We also learned what a driver circuit is and 
how to use a transistor to create one, helping us know something more about this 
component. We even saw a very practical way to deal with high currents from 
Arduino without providing them from the Arduino board voltage regulator.

From the logical point of view, we met the for loop, a very handy control structure 
that has helped us go over ranges of values and loop iterations.

By now, there's been enough about outputs, and in the next chapter, we are going  
to begin to work with inputs—digital inputs, to be precise, which will serve us as  
the base of all kinds of sensor connections. This will open us to a totally new way  
of looking at microcontrollers. Are you ready?



Sensing the Real World 
through Digital Inputs

Dealing with outputs is really just the half of the pie. Inputs are the other half, and 
if I may, I'd say they are the most interesting part of any project you will work on. 
In this chapter, I'll introduce you to the use of digital inputs as a way to make your 
project sense their environment through the assembly and programming of two 
different examples that I'm sure you will like.

Sensing by using inputs
Inputs, whether they are digital or analog, are the way through which Arduino can 
sense what is happening around it. In some cases, they are used as an interface with 
the user, such as when we connect buttons and switches. In other cases, we use 
inputs to measure a physical variable that will make our project react in some way  
or other.

Nowadays, we can find almost a different sensor for every physical variable we want 
to measure and an endless number of devices that allow humans to interact with 
electronic devices. So, the first thing we will have to consider is the type of sensor we 
will need for our project and, most importantly, from the point of view of connection 
and programming, the type of signal it generates, digital or analog. This is because it 
will affect the way in which we have to connect it to our Arduino board, by way of a 
digital or analog input, and program our sketch accordingly.



Sensing the Real World through Digital Inputs

[ 78 ]

Digital sensors usually give us a 0V or 5V voltage or any way to obtain it, which can 
be easily traduced into HIGH or LOW values in the Arduino code. In other cases, they 
provide a different value that we will have, by means of additional circuitry, to adapt 
to the Arduino digital input allowed voltage, that is, 0V to 5V.

Regarding analog sensors, their main characteristic is that they provide a continuous 
value between a range, and we will also have to adapt them to our Arduino allowed 
range, but we will talk deeply about analog inputs and sensors in Chapter 6, Analog 
Inputs to Feel between All and Nothing.

At the moment, let's see the simplest digital input circuit, a switch, and how to 
program it.

Connecting a button as a digital input
The simplest circuit that we can prepare to be used as a digital input is that 
consisting of a switch connected to a digital input of the Arduino board.

A typical momentary push button usually has two states, open or closed, and 
acts like a switch that, when not pressed, keeps the circuit open, preventing the 
connection between the two parts of the circuit it connects, and when pressed,  
makes these two parts connected.

Keeping in mind that an Arduino digital input can sense values of 0V and 5V, 
we have to prepare our circuitry in such a way that it provides a 0V signal to the 
Arduino digital input when we want to consider it LOW and a 5V signal when we 
want to consider it HIGH.

To be precise, the Arduino microcontroller can sense anything between 3V and 5V as 
a HIGH value and something between 1.5V and 0V as a LOW value, the range between 
1.5V and 3V undetermined and, thus, not valid.

For the purposes of our first digital input example, we will use a very simple circuit 
that you can see in the next schematic:



Chapter 5

[ 79 ]

A basic switch connection to Arduino

Although it is a simple circuit, it may deserve some explanation. It basically exposes 
two different states: the button or switch pressed or released:

• Released: When the button is not pressed, the two parts of the circuit remain 
unconnected, thus not flowing any current through that branch of the circuit. 
In this case, the Arduino board only senses a GND or 0V value through the 
digital input by which we connect this circuit to it due to the fact that it is 
physically connected to the ground through the resistor.

• Pressed: When we press the button or close the switch, what we are 
internally doing is connecting both parts of the circuit, that is, the 5V upper 
side to the GND lower side, allowing current to flow from one to the other 
through the 10K resistor. This is precisely why we use the 10K resistor: 
to provide some load to this branch of the circuit, preventing the short 
circuiting of the power source. From the point of view of the Arduino board, 
it senses a 5V signal in the pin we use to connect this circuit to the board.



Sensing the Real World through Digital Inputs

[ 80 ]

The momentary push button
In the next screenshot, you can see a bunch of different momentary push buttons of 
two kinds:

• Printed circuit board (PCB) soldering: These used to be smaller, really  
tiny in some cases, and they come with little legs that allow them to be 
soldered through holes in a PCB. In the screenshot, they are the three on  
the left-hand side.

• Panel mounting: These are the three on the right-hand side in the picture. 
Usually, they come in a much bigger size than the PCB kind and come with 
bigger connections so that wires can be soldered to them. They usually come 
with some kind of nut so that they can be fixed to a panel.

Different momentary push buttons

Physical differences apart and looking at them from the connection point of view,  
we have to notice an important difference between both groups.

If you take a closer look at the PCB group or, even better, if you perform a simple 
search on the Internet, you will notice that these kinds of momentary buttons usually 
come with a total of four legs instead of simply two. Usually, the reason is to give a 
stronger union to the PCB group by allowing up to four soldering points, but also 
because they have their connections duplicated to provide a more reliable connection 
between both points of the switch.



Chapter 5

[ 81 ]

This means that usually, momentary push buttons with four legs have them internally 
connected two by two, which looks like what is shown in the next diagram:

An internal wiring connection of a typical momentary push button

This simple feature has to be taken into serious consideration when connecting  
one of these buttons through a breadboard, because if we connect them in the  
wrong way, we could easily short-circuit the Arduino board, with subsequent  
bad consequences.

The first thing you should do when using one of these momentary push buttons is 
to identify every leg so that you know which of them are internally connected. They 
usually come with some kind of indication or diagram, but if they don't, you could 
always use a voltmeter or continuity tester to find out.

Once you have determined which legs are connected, you should always connect 
the momentary push button just above the centerline of the breadboard, which 
divides the two groups of holes in such a way that you leave two of the replicated 
connections out of use and ensure that the other two corresponding to the two 
contact points of the switch are always connected in different columns of the 
breadboard connections block. This way, they prevent a short circuit when you 
connect them to the positive rail (5V) and ground.

Also remember that this kind of circuit needs a current limiting resistor in a part of 
the branch that gets closed between V+ and the ground to prevent a short circuit 
again. A value of 10K is more than sufficient.



Sensing the Real World through Digital Inputs

[ 82 ]

Complete circuit schematic
Here, you have the complete circuit schematic for this example. As you can see, the 
connection point between the switch and the resistor is connected to the Arduino pin 
number 7 in this example, and we will use pin number 9 as an output to connect the 
LED that we will use to blink or fade.

Given that we will deal with the LED as a digital or analog device up to the pressing of 
the button, we have to connect it to the Arduino board through any of the PWM pins 
that will allow us to use it with the digitalWrite() or analogWrite() functions.

The only consideration to be made about this circuit is regarding the right  
connection of the momentary button we will use, and we have talked about  
this in the previous paragraph.

A blink or fade circuit schematic diagram



Chapter 5

[ 83 ]

Breadboard connections diagram
All that said, I'm sure you will see it clearly in the breadboard connections diagram, 
where you can notice how the two upper legs of the momentary push button are left 
on the upper-side connections block of the breadboard without connecting anything 
to them and separating them from the other two legs, thanks to the central space of 
the breadboard.

You can also see how once we push the button, the current flows from the positive 
rail to the ground through the switch and the current limiting resistor, and it is in 
just this point, after the switch and before the resistor, where we take a wire to the 
Arduino pin that we will use as a digital input.

A breadboard connections diagram of the digital input circuit



Sensing the Real World through Digital Inputs

[ 84 ]

Writing code to react to a press
Before we go into the details of the programming of such a circuit, we'll have to 
decide what behavior we will unchain in our project once the event of a press is 
detected. For the sake of simplicity, we will make an LED blink or fade depending  
on the press of the button.

This way, we can test all that we have already learned in a simple example and 
this will also lead us to meet another very important control structure of any 
programming language, called a conditional bifurcation, which some say is  
the basic structure that makes any program a logical structure and not a simple 
sequence of instructions.

Once the circuit is assembled, let's take a look at the code we are going to write to 
detect and react to the button press as a digital input. Here, you have the complete 
code for this example:

/*
 Chapter 05 - Sensing the real world through digital inputs
 Sensing a switch
 By Francis Perea for Packt Publishing
*/

// Global variables we will use
int led = 9;
int button = 7;
int pressed = 0;
int intensity = 0;
int increment = 10;

// Configuration of the board: one output and one input
void setup() {
  pinMode(led, OUTPUT);
  pinMode(button, INPUT);
}

// Sketch execution loop
void loop(){
  // We read the button pin
  pressed = digitalRead(button);
  // if it is not pressed lets blink digitally
  if (pressed == LOW) {  
    digitalWrite(led, LOW);
    delay(50);



Chapter 5

[ 85 ]

    digitalWrite(led, HIGH);
    delay(50);
  }
  // otherwise lets fade analogly
  else { 
    for(intensity=0; intensity<=255;  
intensity=intensity+increment){ 
      analogWrite(led, intensity);   
      delay(30);                     
    }
    for(intensity=255; intensity>0; intensity=intensity- 
increment){ 
      analogWrite(led, intensity);   
      delay(30);                     
    } 
  }
}

Configuring and reading a digital input
From the point of view of programming, there are basically two main new concepts 
in this example regarding the use of a digital input:

• pinMode(button,INPUT): In the setup() function, we have to set the pin we 
are going to sense as an input so that Arduino can read from it. The function 
is just the same pinMode() function we have been using so far, but instead of 
using the OUTPUT constant, this time, we use INPUT to set the pin accordingly.

• digitalRead(button): When we deal with an input whether it is a digital 
or analog one, we are going to receive the read value instead of setting 
a value like how we have been using outputs. This means that we only 
pass a parameter indicating the pin to be read to the reading function, 
analogRead() in this case, but it also means that this function, as opposed  
to writing functions, is going to return us a value that we have, in some cases, 
to store in a variable for later use.

Being realistic, in this example, it isn't really necessary to store the read value in a 
variable because we are not going to use it anymore in the rest of the code, and we 
could simply have used the digitalRead() function inside the if parentheses like 
if(digitalRead(button) == LOW), but for the sake of clarity in this first example,  
I preferred to use a variable this time.



Sensing the Real World through Digital Inputs

[ 86 ]

Taking decisions with conditional bifurcations
Beside the differences between the use of inputs and outputs, there is an even more 
important concept in this example, and it is the use of the if control structure to 
decide what has to be done depending on the state of a previous event.

The if control structure is the basis of any programming language, giving them the 
power to decide and act on consequences.

The simplest syntax of the if sentence is as follows:

if (condition) {
  Block of instructions to be executed
}

Being a condition, any logic expression is one that evaluates as true or false and that 
can use logical operators such as == (is equal to), > (is bigger than), < (is less than),  
or != (is different).

In a more complex format, the if control structure can even include a block of 
instructions to be executed in case the condition evaluates as false, in which case,  
its syntax is as follows:

if (condition) {
  instructions to be executed in case the condition evaluates as  
true
}
else {
  instructions to be executed in case the condition evaluates as  
false
}

As you can see in the code for our example, this format is the one we have used to 
get two different reactions on the pressing of the button:

• If the pressed == LOW condition is true, being pressed the value read  
from the digital input and meaning no press on the button, we execute a 
simple blink

• In the case of the condition being false, which means that there has been a 
press on the button, we execute the block of instructions contained in the 
else branch of the code

For a deeper reference with respect to the if control structure in the Arduino 
programming language, you can visit the Arduino website's Reference section, 
particularly the pages related to if and if … else at http://arduino.cc/en/
Reference/If and http://arduino.cc/en/Reference/Else.

http://arduino.cc/en/Reference/If
http://arduino.cc/en/Reference/If
http://arduino.cc/en/Reference/Else


Chapter 5

[ 87 ]

Timing and debouncing
If you play a little with the previous circuit once programmed, you can easily 
conclude that the reaction to the button press is not immediate, and it is due to  
the fact that in the code, the button press is only read once the reaction, blinking  
or fading, has concluded and both of them take their time, even if short.

In Chapter 9, Dealing with Interrupts, we will see another way to react immediately to 
these kinds of events through the use of a very powerful procedure called interrupts.

There is another final consideration with respect to this example that is called 
debouncing, and that is due to the physical way in which electrical contacts are  
made when pressing a button.

Although it's hard to imagine, when you press a button, the state oscillates between 
on and off before the contact settles down, which can lead to incorrect readings of a 
sensor in the code.

You can learn more about switches and debouncing them on the Wikipedia page for 
switches at http://en.wikipedia.org/wiki/Switch.

The Arduino site also has a very interesting page exclusively dedicated to buttons 
debouncing at http://arduino.cc/en/pmwiki.php?n=Tutorial/Debounce,  
which deserves a reading.

Other types of digital sensors
Switches are perhaps the most used devices as digital input sensors but obviously 
not the only ones. Any device that can open or close a circuit branch can be easily 
configured and connected to Arduino to act like a digital input sensor, from a reed 
relay (http://en.wikipedia.org/wiki/Reed_relay) to a PIR motion detector 
(http://en.wikipedia.org/wiki/Passive_infrared_sensor).

One of those devices that are very cheap and easy to acquire are optocouplers or,  
as they are sometimes referred to, optical switches.

An optocoupler is a very simple device that has two parts:

• An infrared light emitter: This is a simple infrared LED in a housing that 
directs its light emission in a precise direction

• A phototransistor: This is a special kind of transistor whose base is activated 
by the reception of light, infrared light in this case, and also in a special case 
that ensures that the phototransistor gets excited only with light coming from  
a concrete direction—that of the infrared LED on the other part of the housing

www.allitebooks.com

http://en.wikipedia.org/wiki/Switch
http://arduino.cc/en/pmwiki.php?n=Tutorial/Debounce
http://en.wikipedia.org/wiki/Reed_relay
http://en.wikipedia.org/wiki/Passive_infrared_sensor
http://www.allitebooks.org


Sensing the Real World through Digital Inputs

[ 88 ]

In the following couple of images, you can see the schematic of the internal structure 
of a typical optocoupler and a real picture of the one I used for my own assembly of 
the next project:

The internal structure of an optocoupler and a real one

If you take a closer look at the picture, you may even notice the indications on the 
plastic housing of the emitter part with its diode sign to reference the anode and 
cathode and the collector and emitter markings on the phototransistor part.

If we connect the phototransistor part to our Arduino board, we could easily detect 
whether it is being excited or not, thus indicating whether there is something placed 
just in the middle of the plastic housing or not.

This was the same principle that used the first mechanical computer mice to detect 
and count the X and Y movement, and for that, they used a very recognizable small 
slotted wheel that allowed for its internal microcontroller to account for every step 
the mouse took in every axis.

If you are too young, perhaps you have never seen one of this kind 
of mice, but you could take a look at the Wikipedia entry for mouse 
under the Mechanical mice section at http://en.wikipedia.org/
wiki/Mouse_(computing).

In the next example, we will use an optocoupler as a light barrier that when 
interrupted, triggers a digital input.

http://en.wikipedia.org/wiki/Mouse_(computing)
http://en.wikipedia.org/wiki/Mouse_(computing)


Chapter 5

[ 89 ]

Using an optocoupler as a coin detector
If we take advantage of the fact that there is a small space between the emitter and 
receptor part of a typical optocoupler that allows a coin to pass through, we could 
easily use one of them to create a simple coin detector that could be used for a  
bigger project—who knows, perhaps a candy vending machine or your next  
arcade game cabinet.

From the point of view of the circuit, we will have to provide little additional 
circuitry—only a pair of resistors: one to limit the current through the infrared LED 
and another to act as a load for the phototransistor between its emitter and collector.

Regarding the reaction we will get once the coin has been detected, I'll simply turn 
on an LED for the sake of simplicity in this example project and to allow you to focus 
on the digital input side of the circuit and corresponding code.

The schematic of the coin detector
In the following diagram, you can see the complete schematic for the circuit we will 
use in this example:

The complete circuit for an optical coin detector



Sensing the Real World through Digital Inputs

[ 90 ]

As you can see, from the optocoupler side, I have only added the two resistors  
I mentioned previously: a 10K to act as a load for the phototransistor and a  
470 Ohms one to limit the current through the infrared LED.

There is just an additional consideration. If you take a closer look, you could notice 
that in this case, I have connected the LED that is going to be used as the output side 
of our project in a different way than in other examples in the book.

In this case, I haven't connected the LED from the Arduino pin to ground but just the 
opposite way, that is, from 5V to the Arduino pin, just to show you that you can also 
operate the LED in a negative way. This means that setting the Arduino pin to HIGH 
won't allow any current to flow through the LED, and setting the pin to LOW will 
allow approximately 10 mA to flow through the LED and into the Arduino board.

I've done it this way just to show you that it is not always necessary to provide 
current to output devices, but they can also can be powered from the V+ voltage 
source and use the Arduino pin as a virtual ground as long as the total current 
doesn't exceed the 20 mA limit of the total current capacity of any Arduino pin.

The breadboard connections diagram
Regarding the breadboard connections, they are a little more complex this time due 
to the fact that the optocoupler housing of the Fritzing part I used was a little too big 
for the breadboard, so I've had to use some extra wires.

That apart, please keep in mind that the exact optocoupler you may find might not 
have the same pin distribution as the one used in this diagram, and you should  
refer to your specific component datasheet to adapt the wiring connections to  
your optocoupler or you could easily damage it.



Chapter 5

[ 91 ]

A breadboard connections diagram for the optical switch example

In the optocoupler used in the diagram, the upper connections correspond to the 
phototransistor and the lower ones to the infrared LED emitter.



Sensing the Real World through Digital Inputs

[ 92 ]

The complete example code
There is nothing really new in the code that we will use for this example. We will, 
just like in the previous one, simply read the digital input corresponding to the 
phototransistor and only if it is a HIGH value, which means it is not receiving any 
light and thus not conducting, will we make the output LED blink.

Once again, just for the sake of simplicity, and given that now we know that we don't 
really need to store the value read with digitalRead() and we can simply call the 
functions inside the if condition, I have opted this time to save up this variable and 
simplify even a little more of the code:

/*
 Chapter 05 - Sensing the real world through digital inputs
 Optical coin detector
 By Francis Perea for Packt Publishing
*/

// Global variables we will use
int led = 13;
int phototransistor = 8;

// Configuration of the board: one output and one input
void setup() {
  pinMode(led, OUTPUT);
  pinMode(phototransistor, INPUT);
}

// Sketch execution loop
void loop(){
  // We read the optocoupler pin
  // and if the phototransistor doesn't receive light keep  
blinking
  if(digitalRead(phototransistor)==HIGH){  
    //simply blink
    digitalWrite(led, LOW);
    delay(50);
    digitalWrite(led, HIGH);
    delay(50);
  }
}



Chapter 5

[ 93 ]

A real working project 
Finally, here you have a real picture of the complete circuit assembled with the 
optocoupler I had and a coin being detected:

A complete assembly detecting a coin



Sensing the Real World through Digital Inputs

[ 94 ]

Summary
In this chapter, we had an introduction to the use of digital inputs by working with 
two different examples, each one showing different devices that can be used as 
digital sensors.

We saw what a momentary push button is and its particularities and also learned the 
right way to connect one to Arduino to be used as a digital input.

We also saw that there are lots of other devices that can be used as digital sensors 
and, in a second example, we used an optocoupler as an optical switch to build a  
coin detector.

From the point of view of programming, we met the if control structure in its two 
versions, simple and with a negative else branch, and learned that it can be the basis 
of any logical decision in our code.

In the next chapter, we are going to dive into the amazing world of analog sensors 
and meet two of them that will allow us to measure physical variables, which will 
enrich the field of application of our projects.

We will, of course, also learn how to program them and learn how to constrain their 
values to valid ranges in an easy way and multiply the possible execution branches 
of our code.

So, roll up your sleeves because this is going to get interesting.



Analog Inputs to Feel 
Between All and Nothing

We have come a long way up to this point, learning to deal with digital and analog 
outputs and also digital inputs. It is now the moment to show you how to manage 
analog inputs, as they are what enrich the microcontroller field of application  
the most.

In this chapter, I have prepared two projects to help you understand how to connect, 
configure, and program analog inputs and what kind of things we can do with them. 
I'm sure you will be totally amazed once you get the point.

Sensing analog values
In Chapter 4, Controlling Outputs Softly with Analog Outputs, we talked about digital to 
analog conversion and the use Arduino makes of its internal DAC when generating 
analog outputs. In this chapter, we need to know about the DAC cousin, the Analog 
to Digital Converter (ADC).

An ADC is a device with just the opposite mission of a DAC, that is, a device that 
takes a signal that can theoretically have an infinite number of states and convert it to 
just a few concrete values, or in Arduino jargon, takes an analog signal and converts 
it to a digital value.

Just like the DAC, the Arduino board comes with a six-channel ADC with a 10-bit 
resolution for each channel. This means that we can deal with up to six different 
analog signals ranging from 0V to 5V that will be converted to values between 0  
and 1024.



Analog Inputs to Feel Between All and Nothing

[ 96 ]

If you remember from Chapter 4, Controlling Outputs Softly with Analog Outputs,  
the DAC had just an 8-bit resolution, allowing for values between 0 and 255, so we 
will have to keep this little difference in mind when working on projects that sense 
and act in an analog way, and we will have to make some kind of correspondence 
between the 1024 possible input values and the 255 maximum output values:  
a usual operation commonly called mapping.

The Arduino map function
Mapping a value from one range to another is a very simple thing. It's just a matter 
of finding which value will be at the same point of the output range as compared to 
the input range. Let's see it with a simple example.

If we have a possible input value of 0 to 100 and an allowed output range of 0 to 500 
and we take a sample value of 75, we can say that it is at 75 percent of its input range, 
can't we? Well, which value will be at 75 percent of the output range, then? We will 
usually just make a simple correspondence:

Output Value = (Input Value x Maximum Output Value) / Maximum Input Value

Or, we will use the values in our example:

Output Value = (75 x 500) / 100 = 375

Here, 375 is just 75 percent of 500. Simple, isn't it?

It is so simple but also so common in the Arduino environment that we have a 
specific function to make this kind of mapping in the Arduino language, which is 
appropriately called the map() function.

As you can see by following the previous example, the map() function takes no less 
than five parameters: map(value, fromLow, fromHigh, toLow, toHigh) and 
returns us another value. The map() function parameters' meanings are as follows:

• value: This is the value we already have and want to map into a new range
• fromLow: This is the lower limit of the possible input range
• fromHigh: This is the upper limit of the possible input range
• toLow: This is the lower limit of the possible output range
• toHigh: This is the upper limit of the possible output range



Chapter 6

[ 97 ]

Finally, the function simply returns to us the mapped value corresponding to the 
output range.

Perhaps all this seems a little complex, and you don't want to make so many 
mathematical operations, but in just a moment, when we see our first example  
using analog inputs and outputs, you will immediately get the point and will  
love the map() function; believe me.

An ambient light meter
For our first example using analog inputs, I'd propose that you build an ambient 
light meter: a device that indicates the amount of ambient light it can sense from 
its environment in some way and shows it in a visual manner, which is a perfect 
beginning for your next burglar detector.

For the purpose of this example, we will use a very interesting electronic device called 
a photocell or light-dependent resistor. A photocell is simply a specific type of resistor 
that varies the resistance it offers according to the amount of light it receives from its 
environment, exhibiting a photoconductive behavior, that is, lowering its resistance 
as the light increases and vice versa, commonly ranging between a few ohms when 
exposed to a bright light and up to some mega ohms when totally in darkness.

In the following picture, you can see a typical photocell and the usual schematic 
symbols you can find to refer to it:

A real photocell and its most common schematic symbols

Unlike any other resistor, a photocell doesn't have a polarity, which means that 
you don't have to observe the way you connect it in your circuit. It does its job 
equally in one way or the other, but being a variable device it makes us give some 
considerations when connecting it to our Arduino board.



Analog Inputs to Feel Between All and Nothing

[ 98 ]

Connecting a variable resistor to Arduino
As mentioned previously, a photocell can decrease its internal resistance up to only a 
few ohms when exposed to a bright light and theoretically, it could even reduce it to 
zero when in the presence of a very bright light; in this case, it acts like just a simple 
wire with 0 ohms resistance.

With this in mind, we need to modify our circuit to prevent a short circuit in case this 
situation arrives.

Given that connecting variable resistors as analog input sensors to Arduino is a very 
common case, let's see a simple circuit that will ensure we will never damage the 
Arduino board.

A general variable resistor circuit to connect to Arduino can be like what is shown in 
the following diagram:

A typical circuit to connect a variable resistor to an Arduino analog input

As you can see, in some way, the circuit is very similar to the one used when 
connecting a digital input to Arduino. It also uses a 10K ohm load resistor to  
prevent a short circuit in case the photocell internal resistance decreases down  
to zero.

This is not a typical situation but it could happen, especially when connecting other 
types of variable resistors.



Chapter 6

[ 99 ]

Voltage divider
This kind of circuit is commonly known in electronic jargon as a voltage divider, 
because it splits the provided voltage in two steps according to the proportion of the 
value of the first resistor to the other. We should keep this in mind when selecting 
the resistance we are going to use as protection.

We should always try to select a protection resistor of a value lower than the main 
variable resistor; this way, the main voltage drop will be placed just in the variable 
resistor acting as a sensor, that is, the photocell in our case.

This way, we allow Arduino to sense what is happening in the variable resistor with 
greater precision and use only the load resistor as protection.

In Chapter 8, Communicating with Others, we will revisit this special circuit to test and 
try different load resistor values, but for the moment, let's leave aside the theory 
and begin to work hands on with our next project: a device to measure the light 
surrounding Arduino.

An ambient light meter circuit
Here, you have my proposed circuit to be used as our first analog input example:

An ambient light meter circuit schematic



Analog Inputs to Feel Between All and Nothing

[ 100 ]

It has a voltage divider consisting of the photocell and a 10K ohm load resistor as the 
input circuit, just like the one I showed you in the previous section.

Regarding the output part of this circuit and trying to keep things simple, I have 
reused the assembly of the traffic light, but this time, we will use it as a level indicator 
with four possible states: low, medium, high, and maximum, being represented by 
none, one, two, or three turned-on LEDs.

From the point of view of used pins, I have connected the three LEDs to digital pins 
11, 12, and 13 and the voltage divider to analog input 0.

Breadboard connections
At this point in our work, I assume that you will be very accustomed to working 
with the breadboard, but in case you still have some doubts or the schematic is not 
clear enough for you, here you have the breadboard connection diagram of the 
ambient light meter project:

A breadboard connections diagram of the ambient light meter circuit



Chapter 6

[ 101 ]

Programming to sense the light
From the point of view of programming, dealing with an analog input is not that 
different when compared to dealing with a digital one.

Just like when reading a digital input, we are going to receive a value from the 
reading function, analogRead(pin) in this case.

We will read from a pin that we have previously set as an input in the setup() 
function of our sketch by a call to the pinMode() function.

There is just one important difference. As we know from Chapter 3, Interacting with 
the Environment the Digital Way, the Arduino board has different pin headers for 
digital and analog input connections. When connecting something to your board that 
is going to be read in an analog way, you have to mandatorily use one of the Analog 
In pins of the Arduino board—those on the lower side of the board close to the 
Power pin headers.

You can only read an analog value through the use of the analogRead(pin) function 
from one of the Analog In pins of your board; definitely take this into consideration.

Due to the fact that the analog inputs have their own exclusive pins, 
it is not compulsory to configure them as INPUT in the setup() 
function, because they are always inputs, but for the sake of clarity 
and learning purposes, I'll include this pinMode(pin, INPUT) 
function call in the examples.

An ambient light meter code
This example is a typical case that resolves a common situation when working with 
microcontrollers: it is common to have to action in a set of ways depending on an 
input value.

In our case, the project aims to turn on zero, one, two, or three LEDs depending on 
the magnitude of the ambient light surrounding the photocell.

Just for this typical case, most of today's programming languages have a similar 
control structure commonly known as switch / case.



Analog Inputs to Feel Between All and Nothing

[ 102 ]

The switch / case control structure
The general syntax of a switch / case control structure in the Arduino 
programming language is as follows:

switch (var) {
  case label:
    // statements
    break;
  case label:
    // statements
    break;
  default: 
    // statements
}

The operation of this sentence allows us to opt for a branch of code execution 
depending on the value of a variable. In the preceding general syntax, we can end up 
executing any of the statements of the three case branches depending on the value of 
the var variable enclosed in parentheses following the switch word.

If none of the labels equal the variable value, the optional default section will be 
used, if present.

In our example, we will manage to obtain a variable that represents the light level 
divided into four possible states that will be used to separate the code in four 
different branches, each one turning on the LEDs accordingly.

Well, enough of theory for the moment. Let's take a look at the complete code of this 
project, and I'm sure you will get a clearer picture:

/*
 Chapter 06 - Analog Inputs to Feel Between All and Nothing
 Ambient light level
 By Francis Perea for Packt Publishing
*/

// Global variables we will use
// One for each pin we will use and 
// two for the value reading and conversion
int redLED = 13;
int yellowLED = 12;
int greenLED = 11;



Chapter 6

[ 103 ]

int photocell = 0;
int value = 0;
int state = 0;

// Configuration of the board: three outputs and one input
void setup() {
  pinMode(redLED, OUTPUT);
  pinMode(yellowLED, OUTPUT);
  pinMode(greenLED, OUTPUT);
  pinMode(photocell, INPUT); //optional
}

// Sketch execution loop
void loop(){
  // Read the sensor and convert the value to
  // one of the four states we will use
  value = analogRead(photocell);
  state = map(value,0, 200, 1, 4);
  // acts depending on the obtained states
  switch(state){
      case 1:
        digitalWrite(greenLED,LOW);
        digitalWrite(yellowLED,LOW);
        digitalWrite(redLED,LOW);
        break;
      case 2:
        digitalWrite(greenLED,HIGH);
        digitalWrite(yellowLED,LOW);
        digitalWrite(redLED,LOW);
        break;
      case 3:
        digitalWrite(greenLED,HIGH);
        digitalWrite(yellowLED,HIGH);
        digitalWrite(redLED,LOW);
        break;
      case 4:
        digitalWrite(greenLED,HIGH);
        digitalWrite(yellowLED,HIGH);
        digitalWrite(redLED,HIGH);
        break;
  }
}



Analog Inputs to Feel Between All and Nothing

[ 104 ]

Most of this code has already been explained, but let's make it clearer.

We begin by declaring some variables we will use all around the code: four just to 
reference the pins' numbers (redLED, yellowLED, greenLED, and photocell), two 
more to store the analog sensor read value (value), and the converted one to meet 
our need in the switch / case control structure (state), as follows:

int redLED = 13;
int yellowLED = 12;
int greenLED = 11;
int photocell = 0;
int value = 0;
int state = 0;

In the setup() function, we just configure the pins we are going to use. Remember 
that it is not compulsory to declare the analog input pins as INPUT, but it doesn't hurt:

pinMode(redLED, OUTPUT);
pinMode(yellowLED, OUTPUT);
pinMode(greenLED, OUTPUT);
pinMode(photocell, INPUT); //optional

In the main loop of our sketch, we simply read the analog value given by the  
sensor (value) and convert it to the desired output range (1 to 4 in our case) in  
the state variable:

value = analogRead(photocell);
state = map(value,0, 200, 1, 4);

Finally, we use this mapped returned value as the conditional element of the  
switch / case structure to select one out of four possible code branches:

switch(state){
      case 1:
        digitalWrite(greenLED,LOW);
        digitalWrite(yellowLED,LOW);
        digitalWrite(redLED,LOW);
        break;
      case 2:
        digitalWrite(greenLED,HIGH);
        digitalWrite(yellowLED,LOW);
        digitalWrite(redLED,LOW);
        break; 
      case 3:
        digitalWrite(greenLED,HIGH);



Chapter 6

[ 105 ]

        digitalWrite(yellowLED,HIGH);
        digitalWrite(redLED,LOW);
        break;
      case 4:
        digitalWrite(greenLED,HIGH);
        digitalWrite(yellowLED,HIGH);
        digitalWrite(redLED,HIGH);
        break;
  }

Calibrating the sensor
If you take a closer look at the previous code, you should notice the two parameters 
corresponding to the input range in the state = map(value,0, 200, 1, 4); 
sentence.

I found these values valid for my photocell by using a technique to calibrate our 
sensors that I'll show you in Chapter 8, Communicating with Others; for the sake of 
simplicity for this example, I won't show you until then.

For this project, you'll have to find the valid range of values that your photocell is 
returning by trial and error. If you still aren't able to find valid values, perhaps you'll 
want to skip to Chapter 8, Communicating with Others, and come back later.

Once you've correctly set the valid input range for the map function, the ambient light 
meter should turn off every LED with a normal ambient light and turn the LEDs on 
sequentially as you cover the photocell with your hand, turning the LEDs completely 
when you completely cover the photocell with your finger; isn't it a good way to 
detect someone approaching?

DC motor speed control revisited
For the second example of using analog inputs, I have to use a very common 
electronic component in almost any project: a potentiometer, or simply, a variable 
resistor, which is a component that by the use of some kind of knob, allows us to 
change the resistance it offers.

Potentiometers are all around us, from the volume knob on your sound equipment to 
the temperature regulator of your heating system.

For this project, I'll combine a potentiometer with the motor speed controller we built 
in Chapter 4, Controlling Outputs Softly with Analog Outputs, in such a way that we can 
easily change the motor speed by acting on the potentiometer.



Analog Inputs to Feel Between All and Nothing

[ 106 ]

The potentiometer
Two typical potentiometers along with their corresponding schematic symbol are 
shown as follows:

Two typical potentiometers and their schematic symbol

The component itself has three legs. If you measure the resistance between the 
external two legs, you should get the total resistance of the potentiometer, but if you 
take the measure between the central leg, usually called cursor, and any other, you 
will get a resistance proportional to the rotational angle of the potentiometer.

In our project, we will use it as a kind of a throttle for our DC motor by making the 
speed of the motor a function, or dependent, of the potentiometer position.

The motor speed control schematic
Here, you have the project schematic. It's nothing new, as you can see. The input side 
of the circuitry is similar to the input part of the ambient light meter, and the output 
side is similar to that of the motor driver in Chapter 4, Controlling Outputs Softly with 
Analog Outputs.

I have once again used pin A0 to read the input and in this case, I will act on PWM 
pin 6 to control the motor speed though a transistor.



Chapter 6

[ 107 ]

The DC motor speed control schematic

The breadboard connections diagram
Next, you can find the breadboard connections diagram for the proposed circuit.

The only components you should care about are the diode and the transistor.

The diode should be correctly placed because of its polarity. The bar indicating its 
cathode should be in contact with 5V.



Analog Inputs to Feel Between All and Nothing

[ 108 ]

Regarding the transistor, I used a BC547 with its legs ordered as CBE in my 
assembly; keep this in mind or refer to your transistor datasheet to know its  
own pin out before connecting it.

The DC motor speed control breadboard connections diagram

A simple code to control the motor speed
The code for this project couldn't be simpler. Just read, convert, and output the 
mapped value to the motor. Here is the code:

/*
 Chapter 06 - Analog Inputs to Feel Between All and Nothing
 DC Motor speed control
 By Francis Perea for Packt Publishing
*/

// Global variables we will use



Chapter 6

[ 109 ]

// One for for the potentiometer
// and another to command the transistor
// Two variables to store read and converted values
int pot = 0;
int base = 6;
int potvalue = 0;
int motorspeed = 0;

// Configuration of the board: three outputs and one input
void setup() {
  pinMode(base, OUTPUT);
  pinMode(pot, INPUT); //optional
}

// Sketch execution loop
void loop(){
  // Read the sensor and convert to the 
  // allowed output range for an analog output
  potvalue = analogRead(pot);
  motorspeed = map(potvalue, 512, 1023, 100, 255);
  analogWrite(base, motorspeed);
}

Once again, I have used a little bit of calibration to get to the best values for the input 
and output ranges of the map() function.

By using a 10K ohm potentiometer and a 10K ohm protection resistor, I got values 
from 512 to 1024 from the potentiometer.

Regarding the motor, outputting less than 100 was unable to make it spin, so finally, 
my conversion is motorspeed = map(potvalue, 512, 1023, 100, 255);.

As I told you previously, if you can't wait to know how to calibrate your sensor 
readings, you can take a look at Chapter 8, Communicating with Others.



Analog Inputs to Feel Between All and Nothing

[ 110 ]

Summary
This was a well-packed chapter. We have learned a lot of concepts in this chapter, 
both in terms of software and hardware.

From the point of view of concepts, we came to know about ADCs, their resolution, 
and the problem they bring when having to change values from one range to 
another. The map() function came to our help.

Regarding the physical side, we met two very practical electronic components:  
the photocell and the potentiometer. Both will help us when developing our projects. 
We also learned about what a voltage divider is and how it can help us when 
connecting external sensors to our Arduino board.

Finally, on the programming side, we saw how to read from an analog input  
with the analogRead() function, and we learned about the use of the powerful 
switch / case function to allow us to take different ways of execution.

Arduino still has some features that deserve a play, so let's go ahead to the next 
chapter where we will try to conquer the domain of time.



Managing the Time Domain
We have come a long way, and at this point we have seen almost everything 
regarding digital and analog inputs and outputs. But Arduino still has some unseen 
characteristics that come in very handy when developing our projects. Controlling 
the time is one of them and a very important feature for a good number of projects.

In this chapter, we will learn about the functions in the Arduino library to control the 
time and will also discover sound generation and the use of speakers and buzzers. 
Every timer has an alarm, doesn't it?

Time control functions
The Arduino library has four functions that allow us to manage the time. We have 
already seen one of them, the delay() function, which we have used from our first 
sketch to stop the execution of the code for a short period of time.

As we saw in Chapter 3, Interacting with the Environment the Digital Way, the delay() 
function accepts only one parameter: the desired number of milliseconds to pause. 
For most projects, this resolution will be fine, but there can be situations where a 
millisecond is too much.

For these kinds of problems, the Arduino library also offers the delayMicroseconds() 
function that, as you can imagine, pauses the code execution for just the number of 
microseconds that you set as its only parameter.

A microsecond is a millionth of a second, or to put it another way, there are a 
thousand microseconds in a millisecond and a million microseconds in a second.

Due to restrictions in the Arduino architecture, the maximum delay the 
delayMicroseconds() function can produce is around 16,000 ms. In case you should 
need a larger delay, you can always use your old friend, the delay() function.



Managing the Time Domain

[ 112 ]

Stopping versus accounting
Both functions that we already know, delay() and delayMicroseconds(), stop the 
code execution for a desired amount of time, but we don't always want to stop. In 
some cases, we just want to know what time is it, or if a certain amount of time has 
passed by.

For accounting purposes, the Arduino library offers two other functions that don't 
stop the code, but simply return a value representing a time. We can use this to  
store in a variable to operate with it by making calculations or by taking decisions 
based on this time.

These two functions are as follows:

• millis(): It returns us the number of milliseconds since the sketch  
execution began

• micros(): It returns the number of microseconds elapsed from the  
beginning of the sketch execution

Both return a value of type unsigned long, which means that they use 4 bytes (32 bits) 
to store it and that the maximum value they can store is 4,294,967,295 or 2^32 - 1.

Due to this maximum value, if we keep our sketch running for a very long time, the 
value returned by these functions may overflow, that is, may return to 0 and start 
counting again.

In the case of the millis() function, the overflow will happen after approximately 
50 days and in the case of the micros() function around 70 minutes after the 
beginning of the sketch execution, so take this into consideration when using these 
functions in long runner projects.

Making some noise
We usually associate time with sound, from the tick-tock of an old analog clock to 
the sound of an alarm in our latest digital clock.

From the hardware point of view, in this chapter I'll take advantage of this association 
to show you how to connect a speaker or a buzzer to our Arduino board and the way 
Arduino can generate sounds.

Being able to produce some sounds allows us to account for time in a more  
sensorial way.



Chapter 7

[ 113 ]

Arduino library sound functions
Because it is a very common task, once again the Arduino library comes to our help 
with the tone() function that will help us produce those electrical signals that we 
need to generate different sounds.

The tone() function accepts up to three parameters:

• pin: The pin number through which we want to generate the sound signal
• frequency: The frequency in hertz at which we want the signal to oscillate
• duration: An optional parameter that specifies the total duration of  

the sound

Everything is almost as expected, but perhaps the duration parameter needs a  
little explanation.

The tone() function permits two ways of calling it, with or without the duration 
parameter. If you specify the duration parameter, the sound will be generated just 
for that time; once the time has passed by, the sound stops.

In its other format, that is, without the duration parameter, it's your responsibility 
to stop the sound by calling the tone() counterpart function, noTone(), which takes 
the pin as its only parameter where you want the sound to stop.

You should also know that Arduino can only generate a sound at a time through 
the same pin. This means that if you call the tone() function on a pin that is already 
generating a sound, the former will be stopped and the latter one will be produced.

Let's see this more clearly with a pair of examples.

Suppose we included a code like the following in our sketch:

…
tone(pin, 440, duration);
tone(pin, 220, duration);
…

We will simply hear the second tone, the one of 220 Hz, because despite having set a 
duration parameter, we execute just another tone() call in the next sentence, which 
will directly override the previous tone generation.

The duration parameter will make the tone last for the specified time provided that 
we don't produce another tone in the same pin before reaching this duration.



Managing the Time Domain

[ 114 ]

The correct way of generating more than one sound in a sequence could be 
something like the following code:

…
tone(pin, note1, duration);
delay(duration)
tone(pin, note2, duration);
delay(duration);
…

The other way of generating more than one sound is directly without the use of the 
duration parameter and turning the tone off after the desired duration by calling the 
noTone() function:

…
tone(pin, note1);
delay(duration)
noTone(pin);
tone(pin, note2);
delay(duration);
noTone(pin);
…

This way, we ensure that no other tone is being generated until the previous one has 
been finished.

The major disadvantage of programming sound generation this way is that you 
can't do anything else while a sound is being produced. In the next project, I'll show 
you a more elaborate technique that uses the millis() function and allows you to 
continue working while waiting for the note to finish.

Sound hardware connection
The next thing we should look for when trying to generate a sound is a speaker or a 
buzzer, a device that when electrically excited can produce a sound that varies with 
the frequency of the electrical signal we use.

To connect a speaker to Arduino, the only thing you need is a free pin through which 
we can generate an electrical signal of a specific frequency by calling the tone() 
function. Even so, there are two different ways to connect the speaker to Arduino:

• Directly
• Through a transistor that acts as a driver

Let's see both cases along with their advantages and disadvantages.



Chapter 7

[ 115 ]

Direct connection
In case you are using a small speaker, you could drive it directly from one Arduino 
pin without the need of additional circuitry as shown in the following schematic:

Direct connection of a speaker to Arduino

Clearly, the main advantage of this way of connecting the speaker is its simplicity. 
Just a small 100 Ω resistor is all you need to make it sound.

The biggest disadvantage of this way of connecting the speaker is that, as we have 
talked about earlier, Arduino can only deliver up to 40 mA current per pin, and with 
such a small current, a typical speaker won't produce an adequate sound.

If your project simply needs a way to give small sound signals, then this is your 
circuit, but if you need a powerful alarm with a sound loud enough to be heard 
several meters away, you should definitely opt for the transistor driver connection 
that we will see in the next section.



Managing the Time Domain

[ 116 ]

Connection through a transistor
A speaker is no more than a coil around a magnet, that is, an inductive load. We 
have already dealt with other inductive loads in other projects, motors to be precise, 
in Chapter 4, Controlling Outputs Softly with Analog Outputs.

Just like when dealing with motors, we will use a transistor as a device to regulate 
the current that flows through our load, the speaker in this case. Big speakers 
consuming bigger currents can produce considerable back electromotive spikes 
when powered off, just like motors, and to prevent them we will use a diode as  
you can see in the following circuit schematic:

Connection of a speaker to Arduino through a transistor

Compared with the previous circuit, the main advantage of this way of connecting 
the speaker is its output power. The sound we can produce with such a circuit is 
much louder than with the previous direct connection.

Obviously, it is a slightly more complicated circuit to assemble, but not too much.



Chapter 7

[ 117 ]

In case you still aren't able to assemble this circuit on your breadboard, here you 
have the breadboard connections diagram for the preceding schematic using a 
transistor with an EBC pinout as shown in the following image:

Breadboard connections diagram to connect a speaker to Arduino through a transistor

To make use of all of the concepts that we have learned about so far, I would like to 
propose to you a project that manages time and produces some sounds.



Managing the Time Domain

[ 118 ]

A simple timer
We are going to build a timer that once it reaches a predefined amount of time, 
generates a simple chord, repeating this behavior three times.

First, I'll show you a sketch that uses the delay() function to wait for the time 
lapse to pass by and also to wait for every note to be played. Obviously, with this 
technique we can't do anything but wait in the time between chords.

In a more advanced example, we will see another sketch that uses the millis() 
function to accomplish just the same task but this will allow us to do other things 
while waiting for the time to pass by, blinking an LED in this case.

Dividing your sketch into different files
I will also use this code example to introduce you to the possibility of including  
other files in our code, so that we can create modular sketches dividing the sketch  
into various files.

In this case, I've created a file with the definition of every musical note frequency,  
so that I can call the tone() function with the note name directly, instead of using  
a frequency.

You have to create a new tab in your sketch by using the down-pointing arrow at  
the right side of the current tab name and selecting New Tab as shown in the 
following screenshot:

New Tab command

You can find the complete file in the accompanying source code, but for the sake of 
clarity, its contents are as follows:

#define NOTE_B0  31
#define NOTE_C1  33
#define NOTE_CS1 35
#define NOTE_D1  37
#define NOTE_DS1 39
#define NOTE_E1  41
…



Chapter 7

[ 119 ]

As you can see, we are just defining a series of replacements of the note names for 
their frequency and the Arduino programming environment will substitute them  
just before compiling our code. This makes the sketch much more easily readable 
and maintainable.

I have called this file pitches.h and I have to include this in the main file by simply 
using a line of code like this:

#include "pitches.h"

Coding a timer by using delays
Here, you have the complete code for the main file of this first sketch for our timer  
as follows:

/*
 Chapter 07 - Managing Time Domain
 Timer with delays
 By Francis Perea for Packt Publishing
*/
// Load the notes frequencies definitions
#include "pitches.h"

// Set some global constants
// Total amount of time to wait
#define lapse 3000
// Time to play every note of the chord
#define noteDuration 500

// Global variables we will use
// Speaker pin
int buzzer = 7;
// The number of chords played
int numberOfSounds = 0;

// Configuration of the board: just one output
void setup() {
  pinMode(buzzer, OUTPUT);
}

// Sketch execution loop



Managing the Time Domain

[ 120 ]

void loop(){
  
   // If less than 3 chords played
   if (numberOfSounds < 3) {
     // Wait for the desired lapse
     delay(lapse);
     // Play every notes and wait 
     tone(buzzer, NOTE_G4, noteDuration);
     delay(noteDuration);
     tone(buzzer, NOTE_A5, noteDuration);
     delay(noteDuration);
     tone(buzzer, NOTE_C5, noteDuration);
     delay(noteDuration);
     tone(buzzer, NOTE_D5, noteDuration);
     delay(noteDuration);
     
    // Incremet the number of played chords   
     numberOfSounds += 1;
   }
}

At this stage of our journey, I'm almost sure you can understand easily what this 
sketch does, but let's take a general look.

We just maintain the numberOfSounds variable with the number of chords played 
and in the case it is less than three, we simply wait for the desired lapse and play 
every note in sequence waiting for each one to finish.

Notice that the comparison in the if sentence says numberOfSounds < 3, and not 
numberOfSounds = 3, because in the first loop, the numberOfSounds variable will 
have a value of 0 and if we wait for it to reach a value of 3, we will do four iterations 
of the loop instead of the desired three.

I have also included a little facility in the code. To increment the numberOfSounds 
variable just after playing the chord, I have used the sentence numberOfSounds += 
1, which is simply an abbreviation of numberOfSounds = numberOfSounds + 1,  
a very common construction in C programming.



Chapter 7

[ 121 ]

Coding without delays and blinking an LED  
while waiting
To show you how to work with the millis() function, I would like to show you 
another sketch to accomplish just for the same task of the previous section but 
without the need to stop code execution while waiting, so that we can do other 
things, like blinking an LED to reflect time passing by.

The circuit is very similar to the previous one but just includes an LED to blink.  
Here, you have the circuit schematic and the breadboard connections diagram:

Circuit schematic and breadboard connections diagram for an LED blinking timer

You have the complete code for this example as follows, which is a little more 
complex than the previous one, but in a moment you will understand it:

/*
 Chapter 07 - Managing Time Domain
 Timer without delay
 By Francis Perea for Packt Publishing
*/

// Load the notes frequencies definitions
#include "pitches.h"

// Set some global constants



Managing the Time Domain

[ 122 ]

// Total amount of time to wait
#define lapse 3000
// Time to play every note of the chord
#define noteDuration 300
// Time to blink the LED
#define blinkDuration 500

// Global variables we will use
// Speaker pin
int buzzer = 7;
// The number of chords played
int numberOfSounds = 0;
// LED pin
int LED = 13;
// Initial LED staus
int LEDStatus = LOW;
// The time when the LED blinked last time
unsigned long blinkMark;

// Configuration of the board: two outputs
void setup() {
  pinMode(buzzer, OUTPUT);
  pinMode(LED, OUTPUT);
  // Set the LED initially off
  digitalWrite(LED, LEDStatus);
  // Record the first blink
  blinkMark = millis();
}

// Sketch execution loop
void loop(){
  // If less than 3 chords played
  if (numberOfSounds < 3) {
    // Wait for the desired lapse but blink in the meantime
    myActiveDelay(lapse);
    
    // Play every note and wait blinking
    tone(buzzer, NOTE_G4, noteDuration);



Chapter 7

[ 123 ]

    myActiveDelay(noteDuration);
    
    tone(buzzer, NOTE_A5, noteDuration);
    myActiveDelay(noteDuration);
       
    tone(buzzer, NOTE_C5, noteDuration);
    myActiveDelay(noteDuration);
       
    tone(buzzer, NOTE_D5, noteDuration);
    myActiveDelay(noteDuration);
    
    // Incremet the number of played chords   
    numberOfSounds += 1;
  }
}

void myActiveDelay(int timeLapse){
 // Record the time 
 unsigned long delayMark = millis();
 // wait for the desired timelapse to reach doing something
 while (millis() - delayMark < timeLapse){
   tryToBlinkaLED();
   } 
 }
 
void tryToBlinkaLED(){
   // if the blinking duration has arrived
   if (millis() - blinkMark > blinkDuration){
     // invert the LED status
     LEDStatus = !LEDStatus;
     // turn the LED accordingly
     digitalWrite(LED,LEDStatus);
     // record new blink time
     blinkMark = millis();
   }
}



Managing the Time Domain

[ 124 ]

The first thing I'd like to note is that I have divided the code into different functions 
that I've created to make the complete code more easily understandable. I have 
created the following two functions:

• myActiveDelay(): This function just waits for the time to pass by and in the 
meantime makes other things; in our example, it simply calls the function 
that blinks the LED. We store the value of millis() in the delayMark 
variable just at the beginning of the function and wait for millis() to be 
bigger than this stored value in just the desired time lapse. To wait for 
the time to pass by, we use the while control structure that executes the 
instructions inside as long as the condition inside the parentheses is true. 
You can learn more about this kind of loop in the while page at the Arduino 
site reference section at http://arduino.cc/en/Reference/While. Also, 
please note that the variable I have used to store the time mark is of the type 
unsigned long, just like the returned value of the millis() function.

• tryToBlinkaLED(): In a very similar way to the previous function, it simply 
checks if the blinking time has passed by and in that case changes the LED 
status and records the new blinking time. To record the status of the LED, 
we use a global variable called LEDStatus and inside this function, we 
commute its value from LOW to HIGH and vice versa by using a very common 
C language construction, LEDStatus = !LEDStatus, that makes LEDStatus 
pass from 0 to 1 and from 1 to 0, or from HIGH to LOW and from LOW to HIGH in 
the same way.

Once you understand the mission of these two functions, you could see that the 
main loop is practically identical to the one of the previous examples. We simply 
check if less than three chords have been played, in which case we play every note in 
sequence and wait for them to finish in an active manner, which is blinking an LED.

Perhaps, you should play a little with this code, and try to replace the 
tryToBlinkaLED() function by any other function you consider of interest or  
change the lapses and durations to see their influence in the final result.

A bigger project – a metronome
Being a saxophonist myself, one of the tools I use the most when practicing is my 
metronome. A metronome is a device that gives pulses at a selectable frequency  
and that helps us maintain the correct tempo when playing music.

The metronome has a double indication; it produces clearly audible ticks and also 
swings a pendulum to give us visual feedback.

http://arduino.cc/en/Reference/While


Chapter 7

[ 125 ]

With the next project, I'd like to propose that you build a digital metronome with 
Arduino. If you think about it carefully, you will notice that we have almost created 
the core of the metronome in the previous example.

We will only add a pair of buttons to allow us to change the tempo and another LED 
to simulate the pendulum swing by oscillating between two LEDs.

Let's go on and try to finally conquer the time domain.

The metronome circuit
The circuit of this project is a bit more complicated than any other so far, because it has 
to deal with up to five peripherals: two LEDs, two buttons, and a transistor to drive the 
speaker, but if you take a look at it carefully and take only a device at a time, it is not 
much more difficult to understand than any of the previous circuits in this book.

Here, you have both the circuit schematic and the breadboard connections diagram 
shown, which will also help you to understand the complete project:

Circuit schematic and breadboard connections diagram for a digital metronome



Managing the Time Domain

[ 126 ]

The metronome code
The complete code for the proposed metronome project is as follows:

/*
 Chapter 07 - Managing Time Domain
 Metronome
 By Francis Perea for Packt Publishing
*/

// Load the notes frequencies definitions
#include "pitches.h"

// Define constants we will use
#define buzzer 9
#define decButton 7
#define incButton 6
#define redLED 5
#define greenLED 4
#define tickDuration 100
#define minBPM 50
#define maxBPM 220
#define pressIncrement 10

// Global variables we will use
// The initial tempo 
int bpm = 60;
int beatDuration;
boolean readButtons;

// Configuration of the board
void setup() {
  pinMode(buzzer, OUTPUT);
  pinMode(decButton, INPUT);
  pinMode(incButton, INPUT);
  pinMode(redLED, OUTPUT);
  pinMode(greenLED, OUTPUT);
}

// Sketch execution loop
void loop(){
  // Allow buttons to be read
  readButtons = true;



Chapter 7

[ 127 ]

  // Compute new beat duration
  beatDuration = ((float)60 / bpm) * 1000;
  // Make beat
  beat();
}

void beat(){
   // Turn LED on
   digitalWrite(redLED, HIGH);
   // Generate half beat sound
   tone(buzzer, NOTE_C3, tickDuration);
   // Wait for sound to finish while looking at the buttons
   myActiveDelay(beatDuration);
   // Turn LED off
   digitalWrite(redLED, LOW);
   
   //Repeat for the other beat half
   digitalWrite(greenLED, HIGH);
   tone(buzzer, NOTE_B4, tickDuration);
   myActiveDelay(beatDuration);
   digitalWrite(greenLED, LOW);
}

void myActiveDelay(int timeLapse){
 // Record the time 
 unsigned long delayMark = millis();
 // wait for the desired timelapse to reach 
 while (millis() - delayMark < timeLapse){
   //and look at the buttons in the meantime
   if (readButtons == true){
     checkButtons();
   } 
 } 
}
 
void checkButtons(){
  // If haven't reached minimum tempo and decrement button pressed
  if ((digitalRead(decButton) == HIGH) && (bpm > minBPM)){
   // Decrement tempo
   bpm -= pressIncrement;
   // Disable buttons so they are not read again until next beat
   readButtons = false;



Managing the Time Domain

[ 128 ]

  }
  //The same for increment button and maximum tempo
  if ((digitalRead(incButton) == HIGH) && (bpm < maxBPM)){
   bpm += pressIncrement;
   readButtons = false;
  }
}

There are some small considerations to be taken into account in respect of this code.

You will notice that I have used definitions instead of declaring variables. Given that 
these values won't change during the code execution, we can substitute them for 
#define instructions that don't consume any memory space.

Regarding the variables, I have declared three:

• bpm: This will store the current tempo and will allow us to modify it when 
the corresponding button is pressed.

• beatDuration: This will simply help us make the needed calculation to 
convert from beats per minute (bpm) to the corresponding duration of  
a beat.

• readButtons: This variable is what is usually called a flag, so I have declared 
it as a boolean, a type of variable that will only store values of true and 
false. I will use it to prevent multiple pressings of the buttons, and limiting 
to just one press in a beat. It is set to false once a button has been pressed 
and again to true in the next beat. This way, we only check for button 
pressings while waiting for the time to pass by when this variable is true.

There is also an important consideration regarding variable types and operations. 
You may have noticed the line where I compute the beatDuration value in every 
main loop iteration as follows:

beatDuration = ((float)60 / bpm) * 1000;

The (float) before 60 is to force the result of the operation to be a floating point 
number. If you don't include it, the result of, for example, 60 / 65 will be simply 0 
and not 0.92.

The rest of the code should be easily understood simply by following the comments, 
as it has quite a lot of common code with the previous examples.

Don't hesitate to assemble the circuit and play with the code, by changing some of 
the defined constants and even trying to enhance the functionality of the project.



Chapter 7

[ 129 ]

Summary
We have seen lots of concepts related to not only time in this chapter, but also some 
hardware and programming concepts.

Mainly, we have learned about the different time functions the Arduino library  
gives us to use in our sketches and the difference between waiting with delay()  
and delayMicroseconds() and accounting with millis() and micros().

From the hardware point of view, we have connected a speaker to Arduino in two 
different ways: directly and through a transistor.

To use a speaker, we saw the use of the tone() and noTone() functions and  
their features.

Talking about programming, we learned to divide our code into different files and 
into different functions inside a file, which is a very common technique that will help 
you construct modular code.

We even met the while control structure, a new kind of conditional loop that 
evaluates a condition before executing the corresponding instructions.

Perhaps, you think that there can't be much more to learn from such a small board, but 
in the next chapter, I'll show you one of the most used facilities in the Arduino board, 
its Universal Asynchronous Receiver-Transmitter (UART), which allows Arduino to 
communicate with a wide number of devices, including your own computer.

Let's go ahead and open a door that will lead you to a brand new level and that will 
enable you to create projects that speak to others.





Communicating with Others
Until now, all our projects have been designed to be standalone and independent, 
but there will be occasions where we will have to integrate our project with other 
external devices, and this means that we will have to make our Arduino talk with 
these other elements. Usually, this communication is made via a very practical and 
extended standard called serial communication.

In this chapter, we will see how to connect and program Arduino so that it is capable 
of serially talking to our computer as the simplest and most common type of serial 
communication, but what you will learn here is directly applicable to any other 
connection you have to establish to another device that can talk serially.

So, let's give up talking and let's make our projects talk.

Serial communications concepts
All through this chapter, when we talk about serial communication, we will be 
referring to RS-232 standard protocol communication based on the Universal 
Asynchronous Receiver/Transmitter (UART) that the Arduino microcontroller 
incorporates. It is the most common communication type for most Arduino projects 
in comparison to other serial protocol communications that can also be established 
with Arduino and that we will briefly introduce in the next section.

The first thing we should know is why all these communication systems are called 
serial as opposed to parallel communications.

In the case of a serial communication, every bit of the data being transmitted is sent 
one piece at a time, through just a single line of the communication channel. In a 
parallel communication, data bits are sent in groups all at once, which makes it 
necessary to have a bigger number of communication lines in the channel.



Communicating with Others

[ 132 ]

This is perhaps the main reason to use serial communications in Arduino, due to the 
limited number of pins available to establish the communication channel, allowing 
using just two pins in the case of RS-232 communications.

If you take a closer look at your Arduino board, you should notice a pair of pins 
marked as TX and RX in the digital pins row, pins 0 and 1 to be precise, as you  
can also see in the following image:

TX and RX pins in the digital pins row

When connecting Arduino to your computer, you don't really have to use these pins; 
instead, you can establish a serial connection through the USB port thanks to the 
UNO ATmega16U2 chip, or the FTDI chip in older boards, which tunnels the serial 
communication over the USB.

In case you want to connect your Arduino to any other kind of serially capable 
device, you should use the TX/RX pins instead.

This facility requires a little consideration when connecting external circuitry to 
your Arduino board through these pins. Since they are going to be used even when 
uploading your sketches to the microcontroller, you may have to disconnect what 
you have attached to these pins when uploading the code and connect them back 
again once the communication has finished.

My personal advice is to avoid using these pins as long as you have others available, 
and use them only if you don't have any more free or exclusively available when 
developing projects in which you have to establish serial communication with other 
serial devices.

All these pin considerations apart, I won't go much deeper into the technical features 
of a serial communication, precisely because of its implicit simplicity, but there is just 
one specific parameter relating to serial communications that is necessary to know: 
the baud rate.



Chapter 8

[ 133 ]

The baud rate
The baud rate in a serial communication specifies the data rate in bits per second that 
both communicating devices must comply with to be able to understand each other. 
Typical values range from 300 to 115,200, depending on the connected devices.

There are also other parameters to be specified that affect the communication but are 
optional, like the number of data bits, parity, and stop bits.

If you are interested in the internal mechanisms that regulate a serial communication, 
you could visit the Wikipedia page for the serial communication at http://
en.wikipedia.org/wiki/Serial_communication and from the point of view of 
Arduino, you could also take a look at the Serial part of the Reference section of the 
Arduino site at http://arduino.cc/en/Reference/Serial.

Other types of serial communication
Arduino does not only support RS-232 serial communication, but also supports two 
more communication protocols:

• Serial Peripheral Interface (SPI): A special master/slave serial communication 
protocol used in short distance communications and very popular among 
different types of sensors. Its main disadvantage is the need for four pins to 
establish the communication channel.

• Inter-Integrated Circuit (I2C): A bus-based master/slave communication 
protocol allowing for multimasters and multislaves. It is mainly aimed at 
connecting low speed devices.

They are out of the scope of this book and I will simply give you some links in case 
you want to investigate a little more by yourself:

• Regarding SPI, you can read its Wikipedia page at http://en.wikipedia.
org/wiki/Serial_Peripheral_Interface_Bus

• To know how to deal with SPI from Arduino, there is a special dedicated 
page to this protocol at the Arduino Reference section of the Arduino site at 
http://arduino.cc/en/Reference/SPI

• If you are interested in connecting your Arduino to an I2C bus, you should 
first read the I2C page of the Wikipedia website at http://en.wikipedia.
org/wiki/I²C

http://en.wikipedia.org/wiki/Serial_communication
http://en.wikipedia.org/wiki/Serial_communication
http://arduino.cc/en/Reference/Serial
http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
http://arduino.cc/en/Reference/SPI
http://en.wikipedia.org/wiki/I�C
http://en.wikipedia.org/wiki/I�C


Communicating with Others

[ 134 ]

• And to learn how to program I2C, you could visit the Arduino Reference 
section and read about the Wire library at http://arduino.cc/en/
reference/wire

Arduino easily supports both of these protocols by using dedicated libraries that 
come included in the Arduino programming environment. The use of external 
libraries is a topic that we will see in a later section of this chapter.

Calibrating sensors serially
In Chapter 6, Analog Inputs to Feel between All and Nothing, I promised you that I'd 
show you how we can use a serial communication to calibrate the analog sensors you 
could connect to your projects, in particular in the ambient light meter and the motor 
speed control projects.

The time has now come to revisit these projects and finally unveil how we got the 
correct output range for the mapping we made in these projects.

If you remember, we used the following circuit for the ambient light meter as shown 
in the following image:

Ambient light meter circuit schematic

http://arduino.cc/en/reference/wire
http://arduino.cc/en/reference/wire


Chapter 8

[ 135 ]

In the sketch, we had to read the photocell value and map it to a four-state output 
range with the following lines of code:

…
void loop(){
  // Read the sensor and convert the value to
  // one of the four states we will use
  value = analogRead(photocell);
  state = map(value,0, 200, 1, 4);
  // acts depending on the obtained states
  switch(state){
      case 1:
...

At that time, I didn't tell you how I got that input range of 0–200, but now I will 
cover this.

By using just the input part of this circuit, the photocell, and the 10K Ohm  
protecting resistor, we are going to use the following sketch to be introduced  
to serial communication with Arduino and read the values generated by the 
photocell so that we can get an idea of the possible range of values to expect  
from it:

/*
 Chapter 08 - Communicating with others
 Serial sensor reading
 By Francis Perea for Packt Publishing
*/

// Photocell pin as a define doesn't consume memory
#define photocell 0

// Global variables we will use
// A variable to store the read value
int value = 0;
// A variable to convert the read value to our output range
int state = 0;

// Configuration of the board: just one output
void setup() {



Communicating with Others

[ 136 ]

  pinMode(photocell, INPUT); //optional
  // Init serial communication
  Serial.begin(9600);
}

// Sketch execution loop
void loop(){
  // Read the sensor and convert the value to
  // one of the four states we will have
  value = analogRead(photocell);
  state = map(value,300, 550, 1, 4);
  // Send the read value and converted state through 
  // the serial communication in a fancy way
  Serial.print(value);
  Serial.print(" : ");
  Serial.println(state);
}

The code is quite simple, and as you should have noticed it only reads the 
sensor value, and maps it to a new range. However, it also includes all necessary 
instructions to establish and maintain a serial communication with the computer  
to send the read and converted values to it so that you can know them and adapt 
your input range in response.

To begin, in the setup() function, we simply establish a serial communication at 
9,600 bauds by using the following line of code:

Serial.begin(9600);

At this moment, it really doesn't matter to you, but to establish a serial 
communication we are going to use the Serial object, and thus we have  
to use the object.method syntax, Serial.begin() in our case.

For our purposes in this chapter, all we have to know is that with this instruction we 
begin the serial protocol to make the Arduino board communicate with any serial 
device, the computer in our example.

Once the serial communication is established, we have to just send whatever value 
we want through it to the other part. To make this in the previous code, we have 
used three different lines of code:

Serial.print(value);
Serial.print(" : ");
Serial.println(state);



Chapter 8

[ 137 ]

The only difference between the Serial.print() and Serial.println() methods 
is that the former simply sends the value enclosed in the parentheses, while the latter 
sends the value and a carriage return, which comes in very handy when trying to 
format the serial output.

In our case, I've even included a delimiter between the read value and the converted 
one, so that the final result will be something like 508 : 3.

To see it in action, all you have to do is upload the code to the Arduino board 
and open, as we saw in Chapter 2, The Arduino Development Environment, the Serial 
Monitor from the last icon on the Arduino programming environment toolbar, 
the one at the top right separated from the rest and whose icon represents a loupe 
looking at bits as shown in the following image:

The Serial Monitor icon at the right most part of the Arduino toolbar

Once the window opens, the first thing you have to look at is that the select baud  
rate option at the bottom right of the window is the same as that you have set in 
the code the Arduino runs. This ensures that both the Arduino and your computer 
are talking at just the same speed. In our case, we set the Arduino to begin the 
communication at 9,600 bauds, so your window should look similar to the one 
shown in the following image:

The Serial Monitor window showing incoming data at 9,600 bauds



Communicating with Others

[ 138 ]

Once the correct baud rate is set, you will begin to see a constant flow of data 
appearing on the window. In our case, the data will represent the read value  
from the sensor and the corresponding mapped value separated by a colon.

If data is not constantly appearing, ensure that you have checked the Autoscroll 
checkbox that allows the window to always scroll down to the new incoming  
data automatically.

In the next section, we will see how to use the upper textbox to send data from the 
computer to Arduino.

Once you are able to read the data flow the Arduino is sending to your computer, 
you can cover your photocell to see how this data changes immediately to reflect  
the ambient light variation.

If you take the photocell to its two extreme situations, totally covered and highly 
illuminated, you can take note of the minimum and maximum values the sensor 
gives and these values, as you will have supposed, correspond to the minimum  
and maximum values of our input range for the mapping into the new output range.

In this example, I got values from 300 to 550, but they depend on my particular 
photocell, the place where I placed the photocell, and even the time of day,  
so take note of your readings and adapt your code in response.

In most of the projects, once the calibration has been made you simply comment out 
the lines corresponding to the serial communication to disable them and not make 
Arduino work on it if you're not going to need them anymore. Don't permanently 
delete them in case you need to later take a new look at the sensor readings.

Sending data to Arduino
What we have seen till now is just one half of a serial communication; we have 
simply sent data from the Arduino to our computer. In this new example, we will 
revisit the motor speed control project of Chapter 6, Analog Inputs to Feel between All 
and Nothing, and replace the potentiometer by our computer in the sense to use it as 
a way to vary the motor speed, and take advantage of this new control method to 
incorporate two new possibilities:

• Totally stop the motor
• Make it run at full throttle



Chapter 8

[ 139 ]

Since we are not going to use the input side of the previously mentioned project, we 
only need to connect a motor to Arduino as we already saw in Chapter 4, Controlling 
Outputs Softly with Analog Outputs, and I'll include that schematic here again for 
better understanding:

Connection of a motor to Arduino to be controlled via a serial communication

The complete code of the sketch we are going to use for this data-sending example is 
as follows:

/*
 Chapter 08 - Communicating with others
 Sending data to Arduino
 By Francis Perea for Packt Publishing
*/

// Global Definitions
// The pin used for the transistor base
#define transistorBase 6
// The increment for the motor speed
#define motorIncrement 10

// Global variables we will use
// A variable to store the received value
int dataReceived;



Communicating with Others

[ 140 ]

// and another to set the motor speed
int speed = 0;

// Configuration of the board: three outputs and one input
void setup() {
  pinMode(transistorBase, OUTPUT);
  // Init serial communication
  Serial.begin(9600);
}

// Sketch execution loop
void loop(){
  // check if data has been sent from the computer:
  if (Serial.available()) {
    // read the next char
     dataReceived = Serial.read();
     // Act depending on it
     switch (dataReceived){
       // Increment speed
       case '+':
         if (speed<250) {
           speed += motorIncrement;
         }
         break;
       // Decrement speed
       case '-':
         if (speed>5) {
           speed -= motorIncrement;
         }
         break;         
       // Stop motor
       case '0':
         speed = 0;
         break;     
       // Full throttle    
       case '*':
         speed = 255;
         break;
     }
    // Send back the actual speed
    Serial.println(speed); 



Chapter 8

[ 141 ]

    // Set the speed motor
    analogWrite(transistorBase, speed);
  }
}

To begin, we have set two definitions, transistorBase for the pin that we'll use 
to connect the transistor base and motorIncrement to specify the increment or 
decrement we'll use when changing the motor speed.

Once done, we declared two variables, dataReceived to hold the data received 
through the serial communication and speed to account for the current motor speed.

In the setup() function, we simply set the transistor base pin as an output and 
began a serial communication at 9,600 bauds.

The main loop is where all the action is taking place and where the interesting part 
regarding serial data sending occurs. We just look if any new data has come through 
the serial communication with a call to the Serial.available() method, which 
returns true in case new data has been sent.

If we have new data, we get it 1 byte at a time by storing it in the dataReceived 
variable with a call to the Serial.read() method, and based on the value of this 
variable, we set a switch control structure to act depending on the received character.

The code considers four different situations:

• Increment of the motor speed when it receives a + character
• Decrement of the motor speed when it receives a - character
• Full halt of the motor if a 0 is received
• Set the motor at full throttle in case a * is received

In every case, we simply change the value of the speed variable accordingly.

Just after the switch case, we send the current updated speed back to the computer 
via serial communication and finally set the motor speed.

The Serial.read() method will return 1 byte at a time while there is incoming data; 
this means that if you send from the Serial Monitor window a list of chars like ++++, 
it will increase the speed by four times.

It is like a computer-controlled motor with Arduino acting as a physical bridge.

Since the two projects we have seen in this chapter aren't really new, I would like to 
finish this chapter with a totally new example which, by the way, will introduce you 
to two new electronic components and a very powerful programming concept.



Communicating with Others

[ 142 ]

A computer connected dial thermometer
For this final example, I would like to build a device that displays the current 
temperature by using a dial and we will use two new components for it:

• A thermistor or temperature-dependent resistor as a sensor
• A servomotor as an output device to move the dial needle

Dealing with the thermistor is nothing new as it is just another kind of variable 
resistor and we will connect it to Arduino by once again creating a voltage divider. 
There is nothing new here.

Servomotors are a special kind of motors that don't freely spin, but are able to 
position at a specific angle and stay there instead thanks to a feedback mechanism 
and additional circuitry included in the motor case, and are depicted in the  
following image:

A thermistor and a small servomotor

The use of servomotors is very common in a multitude of projects but their 
management may be a bit tricky due to the fact that they need a specially  
forged train of pulses to operate.



Chapter 8

[ 143 ]

The Arduino language comes here to our rescue once again by incorporating a 
library to deal with servomotors, which makes connecting and programming  
one of these devices a breeze.

A library is simply a set of functions already elaborated and tested to accomplish a 
task. In this example, we will use the servo Arduino library to deal with the one we 
are going to connect.

The thermometer circuit
Here, you have the circuit we will use and its corresponding breadboard  
connections diagram.

As you see, we connect the thermistor just like the photocell or the potentiometer in 
our previous examples and this has been shown in the following image:

A thermometer with a dial circuit



Communicating with Others

[ 144 ]

The servomotor has three wires: V+, GND, and signal. We will connect the V+ wire 
(usually red) to 5V and the GND (black) wire to GND from the Arduino power pin 
header, and finally the signal one (usually yellow or white) to pin 7.

Perhaps you can see it better in the following breadboard connections diagram:

Breadboard connections diagram for the thermometer project



Chapter 8

[ 145 ]

The code for the thermometer
Here, you have the complete code for the dial thermometer project. It shouldn't be 
hard to understand:

/*
 Chapter 08 - Communicating with others
 Dial thermometer
 By Francis Perea for Packt Publishing
*/

#include <Servo.h>

// Global Definitions
// The pin used for the transistor base
#define servoPin 7
// The increment for the motor speed
#define thermistor 0

// Global variables we will use
// A variable to store the read temperature
int temperature;
// and another to store the servo angle
int angle = 0;
// A  servo object
Servo aServo;

// Configuration of the board: three outputs and one input
void setup() {
  // Set the thermistor pin as an output
  pinMode(thermistor,INPUT); // optional
  // Init serial communication
  Serial.begin(9600);
  aServo.attach(7);
}

// Sketch execution loop
void loop(){
  // We read the value of the thermistor
  temperature = analogRead(thermistor); 



Communicating with Others

[ 146 ]

  // Map it to a valid angle
  angle = map(temperature, 750, 850, 0, 179);
  // Send both back to the serial monitor
  Serial.print(temperature);
  Serial.print(" : ");
  Serial.println(angle);

  // Position the servomotor accordingly
  aServo.write(angle);

  // Wait some time to avoid the servo to vibrate
  delay(100);
}

The only new thing in this code is the programming of the servomotor.

We begin by including the library with the following:

#include <Servo.h>

This allows us to declare a new instance of a servo object in the aServo variable  
with this:

Servo aServo;

In the setup() function, we call the aServo.attach(7) method of our new object to 
specify through which pin the servomotor will be commanded.

Finally in the main loop, we simply map the received value from the thermistor 
into a valid angle in the range 0–179 and use the obtained value to position the 
servomotor with a call to aServo.write(angle).

By sending the read value of the thermistor back to the computer via a serial 
communication, you can estimate the range of temperatures you want to control and 
allow the servo to represent. The proposed values 750–850 are the ones I found valid 
for my thermistor and the temperature ranges in my room, but I'm sure you will 
have to adapt to your specific configuration.



Chapter 8

[ 147 ]

Here, you have an image of my particular assembly with a small gradient I printed 
to be used as the dial background:

A thermistor and a small servomotor

A very simple project but also a very visual one that I'm sure will make a perfect 
introduction to the use of servos and the servo library.

If you want to know more about servos and the Arduino servo library, you could 
visit the servomotor entry at the Wikipedia site at http://en.wikipedia.org/
wiki/Servomotor and the Arduino Reference page for the servo library at  
http://arduino.cc/en/Reference/Servo.

http://en.wikipedia.org/wiki/Servomotor
http://en.wikipedia.org/wiki/Servomotor
http://arduino.cc/en/Reference/Servo


Communicating with Others

[ 148 ]

Summary
Now you know how to make your Arduino talk serially to others, and use this 
commodity to help you correctly calibrate your sensors or let your projects receive 
data or even commands from your computer or other serial devices.

From the point of view of hardware, we have seen that almost every physical 
variable can be easily sensed into Arduino by using variable resistors in a voltage 
divider configuration.

We have also met the friendly servomotors and we have seen how easy it can be to 
incorporate one of these helpful motors in our projects.

And finally when talking about programming, we have seen what a library is  
and how much it can ease the work with different types of devices by providing 
ready-made functions, objects, and their methods at our disposal.

In the next chapter, we are going to meet interrupts that will allow our projects to 
immediately respond to external events, so let's not interrupt here and let's move on!



Dealing with Interrupts
In all our previous projects, we have been constantly looking for events to occur.  
We have been polling, but looking for events to occur involves a relatively big  
effort and a waste of CPU cycles to only notice that nothing happened.

In this chapter, we will learn about interrupts as a totally new way to deal with 
events, being notified about them instead of looking for them constantly.

Interrupts may be really helpful when developing projects in which fast or unknown 
events may occur, and thus we will see a very interesting project that will lead us to 
develop a digital tachograph for a computer-controlled motor.

Are you ready? Here we go!

The concept of an interruption
As you may have intuited, an interrupt is a special mechanism the CPU incorporates 
to have a direct channel to be noticed when some event occurs.

Most Arduino microcontrollers have two of these:

• Interrupt 0 on digital pin 2
• Interrupt 1 on digital pin 3

But some models, such as the Mega2560, come with up to five interrupt pins.

Once an interrupt has been notified, the CPU completely stops what it was doing 
and goes on to look at it, by running a special dedicated function in our code called 
Interrupt Service Routine (ISR).



Dealing with Interrupts

[ 150 ]

When I say that the CPU completely stops, I mean that even functions such as 
delay() or millis() won't be updated while the ISR is being executed.

Interrupts can be programmed to respond on different changes of the signal 
connected to the corresponding pin and thus the Arduino language has four 
predefined constants to represent each of these four modes:

• LOW: It will trigger the interrupt whenever the pin gets a LOW value
• CHANGE: The interrupt will be triggered when the pins change their values 

from HIGH to LOW or vice versa
• RISING: It will trigger the interrupt when the signal goes from LOW to HIGH
• FALLING: It is just the opposite of RISING; the interrupt will be triggered 

when the signal goes from HIGH to LOW

The ISR
The function that the CPU will call whenever an interrupt occurs is so important to 
the micro that it has to accomplish a pair of rules:

• They can't have any parameter
• They can't return anything
• The interrupts can be executed only one at a time

Regarding the first two points, they mean that we can neither pass nor receive any 
data from the ISR directly, but we have other means to achieve this communication 
with the function.

We will use global variables for it. We can set and read from a global variable inside 
an ISR, but even so, these variables have to be declared in a special way. We have to 
declare them as volatile as we will see later on in the code.

The third point, which specifies that only one ISR can be attended at a time, is what 
makes the function millis() not able to be updated. The millis() function relies 
on an interrupt to be updated, and this doesn't happen if another interrupt is already 
being served.

As you may understand, ISR is critical to the correct code execution in a 
microcontroller. As a rule of thumb, we will try to keep our ISRs as simple as 
possible and leave all heavyweight processing that occurs outside of it, in the  
main loop of our code.



Chapter 9

[ 151 ]

The tachograph project
To understand and manage interrupts in our projects, I would like to offer you a 
very particular one, a tachograph, a device that is present in all our cars and whose 
mission is to account for revolutions, normally the engine revolutions, but also in 
brake systems such as an Anti-lock Brake System (ABS) and others.

Mechanical considerations
Well, calling it mechanical perhaps is too much, but let's consider how we are going 
to make our project account for revolutions.

For this example project, I have used a small DC motor driven through a small 
transistor and, like in lots of industrial applications, an encoded wheel is a perfect 
mechanism to read the number of revolutions. By simply attaching a small disc of 
cardboard perpendicularly to your motor shaft, it is very easy to achieve it.

By using our old friend, the optocoupler, we can sense something between its  
two parts, even with just a piece of cardboard with a small slot in just one side  
of its surface.

Here, you can see the template I elaborated for such a disc; the cross in the middle 
will help you position the disc as perfectly as possible, that is, the cross may be as 
close as possible to the motor shaft. The slot has to be cut off of the black rectangle  
as shown in the following image:

The template for the motor encoder

Once I printed it, I glued it to another piece of cardboard to make it more resistant 
and glued it all to the crown already attached to my motor shaft. If yours doesn't 
have a surface big enough to glue the encoder disc to its shaft, then perhaps you can 
find a solution by using just a small piece of dough or similar.

Once the encoder disc is fixed to the motor and spins attached to the motor shaft, 
we have to find a way to place the optocoupler in a way that makes it able to read 
through the encoder disc slot.



Dealing with Interrupts

[ 152 ]

In my case, just a couple of drops of glue did the trick, but if your optocoupler or 
motor doesn't allow you to apply this solution, I'm sure that a pair of zip ties or a 
small piece of dough can give you another way to fix it to the motor too.

In the following image, you can see my final assembled motor with its encoder disc 
and optocoupler ready to be connected to the breadboard through alligator clips:

The complete assembly for the motor encoder

Once we have prepared our motor encoder, let's perform some tests to see it working 
and begin to write code to deal with interruptions.

A simple interrupt tester
Before going deep inside the whole code project, let's perform some tests to confirm 
that our encoder assembly is working fine and that we can correctly trigger an 
interrupt whenever the motor spins and the cardboard slot passes just through  
the optocoupler.

The only thing you have to connect to your Arduino at the moment is the 
optocoupler; we will now operate our motor by hand and in a later section,  
we will control its speed from the computer.



Chapter 9

[ 153 ]

The test's circuit schematic is as follows:

A simple circuit to test the encoder

Nothing new in this circuit, it is almost the same as the one used in the optical coin 
detector of Chapter 5, Sensing the Real World through Digital Inputs, with the only 
important and necessary difference of connecting the wire coming from the detector 
side of the optocoupler to pin 2 of our Arduino board, because, as said in the 
preceding text, the interrupt 0 is available only through that pin.

For this first test, we will make the encoder disc spin by hand, which allows us to 
clearly perceive when the interrupt triggers.

For the rest of this example, we will use the LED included with the Arduino  
board connected to pin 13 as a way to visually indicate that the interrupts have  
been triggered.



Dealing with Interrupts

[ 154 ]

Our first interrupt and its ISR
Once we have connected the optocoupler to the Arduino and prepared things to 
trigger some interrupts, let's see the code that we will use to test our assembly.

The objective of this simple sketch is to commute the status of an LED every time 
an interrupt occurs. In the proposed tester circuit, the LED status variable will be 
changed every time the slot passes through the optocoupler:

/*
 Chapter 09 - Dealing with interrupts
 A simple tester
 By Francis Perea for Packt Publishing
*/

// A LED will be used to notify the change
#define ledPin 13

// Global variables we will use
// A variable to be used inside ISR
volatile int status = LOW;

// A function to be called when the interrupt occurs
void revolution(){
  // Invert LED status
  status=!status;
}

// Configuration of the board: just one output
void setup() {
  pinMode(ledPin, OUTPUT); 
  // Assign the revolution() function as an ISR of interrupt 0
  // Interrupt will be triggered when the signal goes from 
  // LOW to HIGH
  attachInterrupt(0, revolution, RISING);
}

// Sketch execution loop
void loop(){  
  // Set LED status 
  digitalWrite(ledPin, status);
}



Chapter 9

[ 155 ]

Let's take a look at its most important aspects.

The LED pin apart, we declare a variable to account for changes occurring. It will be 
updated in the ISR of our interrupt; so, as I told you earlier, we declare it as follows:

volatile int status = LOW;

Following which we declare the ISR function, revolution(), which as we already 
know doesn't receive any parameter nor return any value. And as we said earlier, it 
must be as simple as possible. In our test case, the ISR simply inverts the value of the 
global volatile variable to its opposite value, that is, from LOW to HIGH and from HIGH 
to LOW.

To allow our ISR to be called whenever an interrupt 0 occurs, in the setup() 
function, we make a call to the attachInterrupt() function by passing three 
parameters to it:

• Interrupt: The interrupt number to assign the ISR to
• ISR: The name without the parentheses of the function that will act as  

the ISR for this interrupt
• Mode: One of the following already-explained modes that defines when 

exactly the interrupt will be triggered

In our case, the concrete sentence is as follows:

attachInterrupt(0, revolution, RISING);

This makes the function revolution() be the ISR of interrupt 0 that will be triggered 
when the signal goes from LOW to HIGH.

Finally, in our main loop there is little to do. Simply update the LED based on the 
current value of the status variable that is going to be updated inside the ISR.

If everything went right, you should see the LED commute every time the slot passes 
through the optocoupler as a consequence of the interrupt being triggered and the 
revolution() function inverting the value of the status variable that is used in the 
main loop to set the LED accordingly.



Dealing with Interrupts

[ 156 ]

A dial tachograph
For a more complete example in this section, we will build a tachograph, a device 
that will present the current revolutions per minute of the motor in a visual manner 
by using a dial.

The motor speed will be commanded serially from our computer by reusing some of 
the codes in our previous projects.

It is not going to be very complicated if we include some way to inform about an 
excessive number of revolutions and even cut the engine in an extreme case to 
protect it, is it?

The complete schematic of such a big circuit is shown in the following image.  
Don't get scared about the number of components as we have already seen  
them all in action before:

The tachograph circuit

As you may see, we will use a total of five pins of our Arduino board to sense and 
command such a set of peripherals:

• Pin 2: This is the interrupt 0 pin and thus it will be used to connect the output 
of the optocoupler.

• Pin 3: It will be used to deal with the servo to move the dial.
• Pin 4: We will use this pin to activate the sound alarm once the engine 

current has been cut off to prevent overcharge.
• Pin 6: This pin will be used to deal with the motor transistor that allows us to 

vary the motor speed based on the commands we receive serially. Remember 
to use a PWM pin if you choose to use another one.



Chapter 9

[ 157 ]

• Pin 13: Used to indicate with an LED an excessive number of revolutions per 
minute prior to cutting the engine off.

There are also two more pins that, although not physically connected, will be used, 
pins 0 and 1, given that we are going to talk to the device serially from the computer.

Breadboard connections diagram
There are some wires crossed in the previous schematic, and perhaps you can see the 
connections better in the following breadboard connection image:

Breadboard connection diagram for the tachograph



Dealing with Interrupts

[ 158 ]

The complete tachograph code
This is going to be a project full of features and that is why it has such a number of 
devices to interact with. Let's resume the functioning features of the dial tachograph:

• The motor speed is commanded from the computer via a serial 
communication with up to five commands:

 ° Increase motor speed (+)
 ° Decrease motor speed (-)
 ° Totally stop the motor (0)
 ° Put the motor at full throttle (*)
 ° Reset the motor after a stall (R)

• Motor revolutions will be detected and accounted by using an encoder and 
an optocoupler

• Current revolutions per minute will be visually presented with a dial 
operated with a servomotor

• It gives a visual indication via an LED of a high number of revolutions
• In case a maximum number of revolutions is reached, the motor current will 

be cut off and an acoustic alarm will sound

With such a number of features, it is normal that the code for this project is going to 
be a bit longer than our previous sketches. Here is the code:

/*
 Chapter 09 - Dealing with interrupt
 Complete tachograph system
 By Francis Perea for Packt Publishing
*/

#include <Servo.h>

//The pins that will be used
#define ledPin 13
#define motorPin 6
#define buzzerPin 4
#define servoPin 3

#define NOTE_A4 440
// Milliseconds between every sample
#define sampleTime 500



Chapter 9

[ 159 ]

// Motor speed increment
#define motorIncrement 10
// Range of valir RPMs, alarm and stop
#define minRPM  0
#define maxRPM 10000
#define alarmRPM 8000
#define stopRPM 9000

// Global variables we will use
// A variable to be used inside ISR
volatile unsigned long revolutions = 0;
// Total number of revolutions in every sample
long lastSampleRevolutions = 0;
// A variable to convert revolutions per sample to RPM
int rpm = 0;
// LED Status
int ledStatus = LOW;
// An instace on the Servo class
Servo myServo;
// A flag to know if the motor has been stalled
boolean motorStalled = false;
// The current dial angle
int dialAngle = 0;
// A variable to store serial data
int dataReceived;
// The current motor speed
int speed = 0;
// A time variable to compare in every sample
unsigned long lastCheckTime;

// A function to be called when the interrupt occurs
void revolution(){
  // Increment the total number of 
  // revolutions in the current sample
  revolutions++;
}

// Configuration of the board
void setup() {
  // Set output pins
  pinMode(motorPin, OUTPUT);



Dealing with Interrupts

[ 160 ]

  pinMode(ledPin, OUTPUT); 
  pinMode(buzzerPin, OUTPUT);
  // Set revolution() as ISR of interrupt 0
  attachInterrupt(0, revolution, CHANGE);
  // Init serial communication
  Serial.begin(9600);
  // Initialize the servo
  myServo.attach(servoPin);
  //Set the dial
  myServo.write(dialAngle);
  // Initialize the counter for sample time
  lastCheckTime = millis();
}

// Sketch execution loop
void loop(){  
  // If we have received serial data
  if (Serial.available()) {
    // read the next char
     dataReceived = Serial.read();
     // Act depending on it
     switch (dataReceived){
       // Increment speed
       case '+':
         if (speed<250) {
           speed += motorIncrement;
         }
         break;
       // Decrement speed
       case '-':
         if (speed>5) {
           speed -= motorIncrement;
         }
         break;         
       // Stop motor
       case '0':
         speed = 0;
         break;     
       // Full throttle    
       case '*':
         speed = 255;
         break;



Chapter 9

[ 161 ]

       // Reactivate motor after stall
       case 'R':
         speed = 0;
         motorStalled = false;
         break;
     }
    //Only if motor is active set new motor speed 
    if (motorStalled == false){
      // Set the motor speed
      analogWrite(motorPin, speed);
    }
  }
  // If a sample time has passed
  // We have to take another sample
  if (millis() - lastCheckTime > sampleTime){
    // Store current revolutions 
    lastSampleRevolutions = revolutions;
    // Reset the global variable
    // So the ISR can begin to count again
    revolutions = 0;
    // Calculate revolution per minute
    rpm = lastSampleRevolutions * (1000 / sampleTime) * 60;
    // Update last sample time
    lastCheckTime = millis();
    // Set the dial according new reading
    dialAngle = map(rpm,minRPM,maxRPM,180,0);
    myServo.write(dialAngle);
  }
  // If the motor is running in the red zone
  if (rpm > alarmRPM){
    // Turn on LED
    digitalWrite(ledPin, HIGH);
  }
  else{
    // Otherwise turn it off
    digitalWrite(ledPin, LOW);
  }
  // If the motor has exceeded maximum RPM
  if (rpm > stopRPM){
    // Stop the motor
    speed = 0;
    analogWrite(motorPin, speed);



Dealing with Interrupts

[ 162 ]

    // Disable it until an 'R' command is received
    motorStalled = true;
    // Make alarm sound
    tone(buzzerPin, NOTE_A4, 1000);
  }
  // Send data back to the computer
  Serial.print("RPM: ");
  Serial.print(rpm);
  Serial.print(" SPEED: ");
  Serial.print(speed);
  Serial.print(" STALL: ");
  Serial.println(motorStalled);
} 

It is the first time in this book that I think I have nothing to explain regarding the 
code that hasn't been already explained before.

I have commented everything so that the code can be easily read and understood.

In general lines, the code declares both constants and global variables that will be 
used and the ISR for the interrupt.

In the setup section, all initializations of different subsystems that need to be set up 
before use are made: pins, interrupts, serials, and servos.

The main loop begins by looking for serial commands and basically updates the 
speed value and the stall flag if command R is received.

The final motor speed setting only occurs in case the stall flag is not on, which will 
occur in case the motor reaches the stopRPM value.

Following with the main loop, the code looks if it has passed a sample time, in which 
case the revolutions are stored to compute real revolutions per minute (rpm), and 
the global revolutions counter incremented inside the ISR is set to 0 to begin again.

The current rpm value is mapped to an angle to be presented by the dial and thus the 
servo is set accordingly.



Chapter 9

[ 163 ]

Next, a pair of controls is made:

• One to see if the motor is getting into the red zone by exceeding the max 
alarmRPM value and thus turning the alarm LED on

• And another to check if the stopRPM value has been reached, in which case 
the motor will be automatically cut off, the motorStalled flag is set to true, 
and the acoustic alarm is triggered

When the motor has been stalled, it won't accept changes in its speed until it has 
been reset by issuing an R command via serial communication.

In the last action, the code sends back some info to the Serial Monitor as another way 
of feedback with the operator at the computer and this should look something like 
the following screenshot:

Serial Monitor showing the tachograph in action



Dealing with Interrupts

[ 164 ]

Modular development
It has been quite a complex project in that it incorporates up to six different 
subsystems: optocoupler, motor, LED, buzzer, servo, and serial, but it has also helped 
us to understand that projects need to be developed by using a modular approach.

We have worked and tested every one of these subsystems before, and that is the 
way it should usually be done.

By developing your projects in such a submodular way, it will be easy to assemble 
and program the whole of the system.

As you may see in the following screenshot, only by using such a modular way of 
working will you be able to connect and understand such a mess of wires:

A working desktop may get a bit messy



Chapter 9

[ 165 ]

Summary
I'm sure you have got the point regarding interrupts with all the things we have seen 
in this chapter.

We have met and understood what an interrupt is and how the CPU attends to it 
by running an ISR, and we have even learned about their special characteristics and 
restrictions and that we should keep them as few as possible.

On the programming side, the only thing necessary to work with interrupts is to 
correctly attach the ISR with a call to the attachInterrupt() function.

From the point of view of hardware, we have assembled an encoder that has been 
attached to a spinning motor to account for its revolutions.

Finally, we have the code. We have seen a relatively long sketch, which is a sign that 
we are beginning to master the platform, are able to deal with a bigger number of 
peripherals, and that our projects require more complex software every time we have 
to deal with these peripherals and to accomplish all the other necessary tasks to meet 
what is specified in the project specifications.

In the next and final chapter, we will see another real-case application for Arduino, 
controlling a greenhouse this time.





Arduino in a Real Case – 
Greenhouse Control

At this point in the book, we have already seen every important aspect of the Arduino 
platform, from its inputs and outputs to the use of interrupts and communications.

For this final chapter, I would like to propose a complete project that uses as many 
concepts as possible that have been seen until now, and I thought that a greenhouse 
controller could be a good example.

We will even meet a final component, the relay, which will help us deal with external 
devices not directly connected to our circuitry.

So, let's go into our final project and see how much Arduino can do by simply 
connecting a bunch of electronic components and writing a little sketch.

A greenhouse controller
This project aims to control and automate all aspects in a theoretical greenhouse that 
has a number of sensors, which provide information regarding the environment and 
act on a number of devices as a reaction to changes in its environment.

To begin designing, connecting, and programming our controller, let's begin by 
clearly setting out what we expect of such a system by creating a simple list of the 
functions it should accomplish.



Arduino in a Real Case – Greenhouse Control

[ 168 ]

The controller requirements
In general terms, the controller should monitor and control the most common 
variables that could affect such an installation:

• Air temperature
• Soil humidity
• Direct solar lighting

Secondly, the controller will also offer an alarm mechanism that could be manually 
triggered by a person inside the greenhouse in case of an emergency.

Modular design
To accomplish the previous requirements, we will divide the complete greenhouse 
controller into four main different modules or subsystems:

• Temperature: It is perhaps the most important subsystem. Its main objective 
is to constantly monitor the temperature inside the greenhouse and operate a 
different number of devices to maintain the temperature between the limits 
of a pre-established secure range.

• Watering: It will be responsible for keeping the humidity of the soil between 
the preset limits by operating an external water pump.

• Lighting: The controller will open a retractable roof during the day and close 
it at night by using a big servomotor that will rotate an arm that moves the 
roof panels.

• Alarm: In case a greenhouse operator needs it, he/she could press a button  
to activate a visual and acoustics alarm to indicate an emergency situation  
to others.

Let's take a deeper look at every one of these subsystems to try to understand their 
functioning and the electronic components we will use to accomplish these tasks.



Chapter 10

[ 169 ]

Temperature control
The temperature control subsystem will receive information through a simple 
thermistor and acts on up to four different devices to control the temperature:

• Visual indicator: The temperature should be constantly announced via a 
visual panel. In our case, the panel is going to be replaced by three simple 
LEDs that will act as a visual level of the temperature inside the greenhouse.

• Fan: As the temperature goes up, the controller will act on a fan's speed,  
a motor in our example, to allow the greenhouse to be ventilated.

• Retractable roof: The greenhouse roof can be opened or closed, and thus the 
temperature control subsystem can open it in case the temperature is getting 
too hot.

• Watering pump: In case of an excessive temperature, the control system can 
activate the watering to increase the humidity of the greenhouse or try to 
avoid a fire inside the greenhouse.

Humidity control
The monitoring of the soil's humidity can be done thanks to special humidity sensors 
that can be bought in any major gardening store (around $2) or built by simply using 
a pair of nails as you can see, for example, in http://www.instructables.com/id/
Garduino-Gardening-Arduino/step4/Build-Your-Moisture-Sensor/, but for 
the sake of simplicity in the project schematic and code, I will replace it by a simple 
potentiometer that will represent any generic resistive sensor.

We will also consider that the greenhouse counts on an external watering system that 
has its own pump. From the point of view of our controller, we only have to switch it 
on, and for this purpose we will use a new electronic component, a relay, that will be 
introduced in the The relay as a mediator section.

Lighting control
Thanks to the retractable roof, the greenhouse allows you to expose the plants to direct 
solar light during the day. In the night hours, the roof will be closed to avoid freezing.

From the point of view of the controller, we will only have to position the servo at 0 
degrees to close the roof or at 180 degrees to open it.

http://www.instructables.com/id/Garduino-Gardening-Arduino/step4/Build-Your-Moisture-Sensor/
http://www.instructables.com/id/Garduino-Gardening-Arduino/step4/Build-Your-Moisture-Sensor/


Arduino in a Real Case – Greenhouse Control

[ 170 ]

Manual alarm
By using a simple push button, the greenhouse operator can activate the system 
alarm in case of an emergency.

The alarm routine will trigger up to four actions:

• A loud sound will be produced to give an acoustic indication of the  
alarm situation

• Panel LEDs will blink instead of indicating the temperature level
• The retractable roof will be closed in case it is open to prevent air from 

flowing in case a fire breaks out
• The watering system will be activated to try to increase the humidity in  

the greenhouse

Input and output devices
Once we know what is expected of such a system, let's make an account of the 
input and output devices that will be needed to accomplish the aforementioned 
requirements.

From the point of view of inputs, we will need to connect the following components 
to act as sensors:

• Thermistor: To allow for temperature monitoring in a similar way as we 
have already seen in Chapter 8, Communicating with Others.

• Photocell: To sense direct sunlight over the greenhouse and allow opening or 
closing of the retractable roof.

• Humidity resistive sensor: To sense the soil's humidity and trigger the 
watering pump. As mentioned before, this sensor will be replaced in the 
schematics and code by a simple potentiometer to allow for simple testing.

• Push button: This will allow the greenhouse operator to trigger the  
general alarm.

On the other side, talking about outputs, our project will use the following components 
connected to Arduino outputs:

• Motor: To operate the fan that will ventilate the greenhouse
• Servomotor: To open or close the retractable roof
• Relay: To activate the watering pump, as we will see in the next section
• Buzzer: To produce the alarm sound



Chapter 10

[ 171 ]

The relay as a mediator
A relay is an electromechanical device also known as an electric switch that, thanks 
to the magnetic field generated by any electrical current, allows opening or closing a 
mechanical switch placed very close to a small coil just by powering the coil.

In a typical relay, the coil and the switch are encapsulated in a small case, offering 
usually four terminals, two for powering the coil and two for the switch.

Some types of relays even offer three terminals for the switch side as follows:

• A normally closed terminal
• A normally open terminal
• A common terminal

In the next figure, you can see the schematic symbol of a relay and an image of the 
relay I've used for assembling the current project:

A relay symbol and a picture of a real relay

The most common use of relays is to operate external or different voltage circuits 
without connecting and powering them to the controller circuit. In our case, we 
will use it to activate an alternate current watering pump by simply connecting the 
switch part of the relay as a usual manual switch inserted in one of the power wires 
of the watering pump.



Arduino in a Real Case – Greenhouse Control

[ 172 ]

From the point of view of managing a relay from Arduino, a coil is just a new 
inductive load, like that on a motor or a speaker, so we will connect it just the  
same way as we did with these other components as you can see in the  
following schematic:

Connecting a relay through a transistor

I have also used a diode to protect against the possible counter-electromotive force 
peaks that could be produced as we did with the motor and the speaker.

For the sake of simplicity in the schematic and breadboard connections diagram,  
I will use only two-wire terminal connectors in the switch part of the relay so that  
the two wires coming from the watering pump can be easily connected to the relay.

Regarding its programming, we can power the coil on and off by simply setting the 
pin to which the transistor driver base is connected to HIGH or LOW. It doesn't have 
to be a PWM pin; any digital pin can do the work, because we are not going to use 
different voltage levels, just on or off.

For more detailed information relating to relays, its functioning, use, and  
different types, you could go and visit the Wikipedia entry for the relay  
at http://en.wikipedia.org/wiki/Relay.

http://en.wikipedia.org/wiki/Relay


Chapter 10

[ 173 ]

The greenhouse controller circuit
Once we have met the relay as the new component that we will use in this project, 
here you have the complete schematic of the project.

Once again, don't let the number of components scare you. If you study the circuit 
one component at a time, you will immediately notice that they are all already 
known and their connections have been explained and tested before. This has  
been shown in the following image:

Complete greenhouse controller circuit schematic



Arduino in a Real Case – Greenhouse Control

[ 174 ]

At this point and before entering the code explanation of this project, I would like to 
make a compilation of the pins we will be using for the project, in the assembly of 
the circuit and in the code, to have a clear understanding about which kind of pin is 
necessary for every one of the connected components.

Regarding inputs, we will have the photocell, thermistor, and potentiometer 
connected to analog inputs because they are going to be read as analog values.

The other input device, the push button, will be connected to digital pin 2 because 
we will read it by using Arduino interrupt 0, which is only available through this 
pin. This way, we give total preference to the alarm by stopping anything else that 
the processor would be doing when the button is pressed, and we ensure that the 
button pressing is recorded even if Arduino is doing anything else.

Talking about outputs, the only device that requires an analog output and thus will 
be connected to a PWM pin is the motor, because we will be varying its speed in an 
analog way.

The other devices (relay, speaker, servomotor, and LEDs) can be connected to any 
digital pin, be it PWM or not, because we will be dealing with them as simple digital 
outputs and only generating values of HIGH or LOW with the digitalWrite() function.

To simply summarize the pins used for this project, here you have the full 
connections list:

• Analog 0: Photocell
• Analog 1: Thermistor
• Analog 2: Humidity sensor, the potentiometer in our schematic
• Digital 2: Button to be read through interrupt 0
• Digital 3: Servomotor
• Digital 4: Speaker
• Digital 6: Motor to be used with PWM
• Digital 8: Relay
• Digital 11: Green LED
• Digital 12: Yellow LED
• Digital 13: Red LED

It may seem a big number of used pins, but let me say that we still have nine 
available pins:

• Three more free inputs in the analog input side
• Six digital pins, three of which are PWM



Chapter 10

[ 175 ]

You could still include some more subsystems to the controller like, for example, a 
fire extinguisher operated through a relay just like the watering pump, by using just 
another digital pin.

Who said Arduino had few available pins? And, of course, you can still use an 
Arduino Mega if your projects need even more pins.

Breadboard connections diagram
Here, you have the breadboard connections diagram for the complete greenhouse 
controller project:

Greenhouse controller project breadboard connections diagram



Arduino in a Real Case – Greenhouse Control

[ 176 ]

For this project diagram, I had to use a full-sized breadboard, and even so there are 
some components that aren't correctly seen because they are beside others. In any 
case, I'm sure that at this point of the book you don't really need this diagram and 
you will be able to assemble your circuit directly from the schematic.

Please notice the two wires connecting the two halves of the power rails just in the 
middle. In a full-sized breadboard, the upper and lower rails are not connected all 
along. They are divided into two halves to allow for different power sources. In our 
example, we don't need this and will power all the different devices from the same 
power source, so you have to connect both halves of the rails by simply using a  
small wire or a jumper; otherwise, all the components on the other half won't  
receive any power.

The greenhouse controller code
Since the code of this project is perhaps a little longer than the previous examples,  
I will present it first by sections without comments and include the complete code  
for reference at the end of this chapter.

Libraries and constant definitions
We begin our code by including the servo library that we will use to deal with the 
servomotor that will operate the retractable roof. We define constants that will be 
used all along the code as follows:

#include <Servo.h>

#define redLedPin 13
#define yellowLedPin 12
#define greenLedPin 11
#define relayPin 8
#define motorPin 6
#define buzzerPin 4
#define servoPin 3
#define buttonPin 2
#define potentiometerPin 2
#define thermistorPin 1
#define photocellPin 0
#define NOTE_A4 440
#define NOTE_A3 220
#define TEMPMIN 820



Chapter 10

[ 177 ]

#define TEMPMAX 850
#define MEDIUMPOWER 128
#define FULLPOWER 255
#define BEGINWATERING 700
#define ENDWATERING 550
#define DAYLIGHT 400

Here is a breakdown of the 20 constants used in the preceding code:

• The first 11 constants are simply to reference the pins that we will use to 
connect the different devices. They are all lowercase with every word's first 
letter in uppercase and they all finish in Pin.

• From there on, there are some constants that will be used mainly to compare 
their values in conditional statements all along the code.

• NOTE_A3 and NOTE_A4 define the frequency of the notes that will be produced 
in the acoustic alarm.

• TEMPMAX and TEMPMIN represent the range of temperatures in which the 
controller can operate. You will have to adapt them to the readings your 
thermistor gives.

• MEDIUMPOWER and FULLPOWER are the values at which the motor will spin in 
the medium and high temperatures.

• BEGINWATERING and ENDWATERING are the values between which the 
watering will occur. We will activate the water pump when the soil humidity 
sensor or the potentiometer gives a value of 700 and end the watering when 
the humidity raises and makes the sensor lower its internal resistance to give 
a value of 550.

• Finally, DAYLIGHT is the photocell value that indicates that the night is off 
and that we can open the retractable roof.

Global variables
There aren't really too many variables in this example, just those needed to read the 
analog sensors and three more:

volatile boolean buttonPressed = false;
int tempValue;
int humidityValue;
int lightValue;
Servo myServo;
int state;



Arduino in a Real Case – Greenhouse Control

[ 178 ]

Here is a breakdown of the variables used in the preceding code:

• The volatile Boolean buttonPressed is, as you may have guessed, the one 
we will be using inside the Interrupt Service Routine (ISR) for the button 
press. It is simply a Boolean that we will use to flag up the button pressing.

• tempValue, humidityValue, and lightValue are used, as I said before, to 
store the values read from every one of the analog sensors.

• The myServo variable is an instance of the Servo class that will allow us to 
operate the servomotor.

• Finally, state is a variable used in a switch control structure to activate each 
subsystem depending on its value. We will see it later in action when we 
study the main loop code.

The interrupt ISR
As mentioned before, the button pressing will be managed via an interrupt and thus 
an ISR has to be written. We saw in Chapter 9, Dealing with Interrupts, that the code 
inside the ISR should be as concise as possible avoiding big processing inside this 
critical function.

In our case, we simply set the buttonPressed Boolean variable to true, which will 
execute some code inside the main loop once this is detected.

The complete code of this function is as follows:

void buttonPress(){
  buttonPressed = true;
}

The alarm routine
We talked before about all the things that should be unchained once an alarm 
situation is detected.

Since this alarm situation may occur in more than one place in the code, I have 
decided to include all these actions in a function and call it whenever it is needed.



Chapter 10

[ 179 ]

The alarmRoutine() function code is as follows:

void alarmRoutine(){
  myServo.write(0);
  digitalWrite(relayPin,HIGH);
  tone(buzzerPin,NOTE_A4);
  digitalWrite(greenLedPin,HIGH);
  digitalWrite(yellowLedPin,HIGH);
  digitalWrite(redLedPin,HIGH);
  delay(1000);
  tone(buzzerPin,NOTE_A3);
  digitalWrite(greenLedPin,LOW);
  digitalWrite(yellowLedPin,LOW);
  digitalWrite(redLedPin,LOW);
  delay(1000);
  noTone(buzzerPin);
}

As you may have understood at this point, we simply execute sequentially all the 
actions of the alarm routine, that is:

1. Close the roof by setting the servo at 0 degrees.
2. Activate the watering system by setting a HIGH value at the relay pin, or to 

be precise at the pin that connects to the base of the transistor that acts as a 
driver to the relay.

3. Produce a tone.
4. Turn all the three LEDs on.
5. Wait for a second.
6. Produce a different tone in a similar way to a real alarm.
7. Turn all the three LEDs off.
8. Wait for another second.
9. Turn the sound off.



Arduino in a Real Case – Greenhouse Control

[ 180 ]

Initialization and board configuration
The next step in our code is to configure the used pins and other necessary  
setup routines for all used devices. Here is the complete setup() function  
of our project sketch:

void setup() {
  pinMode(redLedPin, OUTPUT);
  pinMode(yellowLedPin, OUTPUT);
  pinMode(greenLedPin, OUTPUT);
  pinMode(relayPin,OUTPUT);
  pinMode(motorPin, OUTPUT); 
  pinMode(buzzerPin, OUTPUT);
  myServo.attach(servoPin);
  attachInterrupt(0, buttonPress, RISING);
  Serial.begin(9600);
}

The pinMode() functions call apart, we simply initialize our servo instance, set the 
ISR for the interrupt 0, and begin a serial communication that will help us calibrate 
our sensors.

There is nothing new here.

The main execution loop
Finally, here is the main loop of our sketch where it all happens. You will 
immediately notice that I simply check every subsystem in sequence and trigger 
every action needed, so let's analyze every one of the four subsystems in the code.

Temperature subsystem
The code corresponding to the temperature control is as follows:

tempValue = analogRead(thermistorPin);
  state =map(tempValue, TEMPMIN, TEMPMAX, 1, 4);
  switch (state){
    case 1: 
     digitalWrite(greenLedPin,HIGH);
     break;
    case 2:
      digitalWrite(yellowLedPin,HIGH);
      analogWrite(motorPin, MEDIUMPOWER);
      break;
    case 3:



Chapter 10

[ 181 ]

      digitalWrite(redLedPin, HIGH);
      analogWrite(motorPin,FULLPOWER);
      myServo.write(180);
      break;
    case 4:
      alarmRoutine();
      break;
  }

We begin by reading the sensor and storing its value in the tempValue variable.

From now on, we map the read value into the state variable. The mapping will 
convert the read value, valid between the TEMPMIN and TEMPMAX constants that we 
presented earlier, into a new range of 1 to 4 that will ease the process of selecting 
what to do depending on one of the four possible states.

We use this variable to select a case up of four in the switch control structure  
that will represent the four possible states of our system and which will trigger 
different actions:

• State 1: It is all under control, and we simply set the green LED on.
• State 2: The temperature is rising, so we turn yellow LED on and the motor 

at MEDIUMPOWER.
• State 3: The temperature is getting too hot, so we indicate it by turning the 

red LED on, power the motor at FULLPOWER, and open the retractable roof to 
try to lower the temperature by setting the servo at 180 degrees.

• State 4: This state represents an emergency, so, we simply call the already 
presented alarmRoutine() function.

Humidity subsystem
After the temperature control has been made, we are going to see how the humidity 
control is made. This case is quite simple because it only has two possible situations: 
if the reading is above the BEGINWATERING value, we open the watering pump and 
we close it when the reading is below the ENDWATERING value:

humidityValue=analogRead(potentiometerPin);
  if (humidityValue>BEGINWATERING){
    digitalWrite(relayPin,HIGH);
  }
  if (humidityValue<ENDWATERING){
    digitalWrite(relayPin,LOW);
  }



Arduino in a Real Case – Greenhouse Control

[ 182 ]

Notice how these two conditionals are independent, meaning that the one that 
activates the watering will be true first and quite a good number of loops later  
the other will be true.

This is so because most resistive humidity sensors offer a lower resistance when  
the humidity increases. This way, when the soil is really dry, we will trigger the 
water pump and will leave it on for as much time as needed until a new reading  
of the sensor confirms that the humidity has increased and so the sensor reading  
has decreased.

Lighting subsystem
The photocell control is very similar to the humidity one, but in this case both possible 
cases are exclusive, which means that either it is day or it is night; there is no range 
here, it is only a simple cutoff value we all have, and thus we either open the roof or 
we close it.

Here, there is only an if conditional statement with two exclusive branches, a totally 
different approach to the humidity control:

lightValue = analogRead(photocellPin);
  if (lightValue>DAYLIGHT){
    myServo.write(0);
  }
  else{
    myServo.write(180);
  }

Just as in the previous section, we read the sensor and compare it with the DAYLIGHT 
cutoff value to open or close the roof by setting the servomotor at 0 or 180 degrees.

Alarm subsystem
The alarm control is quite simple; it just checks the buttonPressed variable  
to see if it was changed in the ISR, in which case it resets it and calls the 
alarmRoutine() function:

if (buttonPressed){
    buttonPressed = false;
    alarmRoutine();  
  }



Chapter 10

[ 183 ]

Serial feedback and calibration
To allow for calibrating the sensor, we finish the main loop by sending back the 
reading of every analog sensor and the mapped state to the Serial Monitor.

Once the project runs, this code can be simply commented out to avoid working on 
unneeded instructions:

  Serial.print(" S: ");
  Serial.print(state);
  Serial.print(" T: ");
  Serial.print(tempValue);
  Serial.print(" H: ");
  Serial.print(humidityValue);
  Serial.print(" L: ");
  Serial.println(lightValue);

The complete project code
You can download the complete code for this project from the Packt Publishing 
website. The name of the file is _17_greenhouse.ino inside the 8569_10_Code 
folder.

Final considerations
This was a relatively simple project based on a theoretical situation, but if you are 
really interested in working on a real gardening project, you should take a look  
on the Internet because there are plenty of similar projects and ideas that might  
help you.

In particular, I liked the initiative of the GardenBot project at http://gardenbot.
org, an open source initiative to build a complete monitoring and automation 
gardening system.

I'm sure you will like to take a look at it; you will enjoy seeing how much you can 
understand of such a project after reading this book and it could even give you some 
ideas to improve the project in this chapter.

http://gardenbot.org
http://gardenbot.org


Arduino in a Real Case – Greenhouse Control

[ 184 ]

Summary
With this chapter, we finish our journey through the Arduino platform, but even in 
this last chapter, we have met some new components such as the relay.

Once again, we have seen the importance of a modular design when developing these 
kinds of projects and how much the code benefits from such an approach.

I'm sure that with all that you have learned in this book, you will be ready to develop 
your own Arduino-based projects and that you will have developed your own ideas 
for projects while you read this book.

So, don't put this book too far away from your working desktop, so that you can use 
it as a reference and begin to enjoy working on all these projects by yourself.



Index
A
accounting

micros() function  112
millis() function  112
versus stopping  112

Adafruit
URL  23

alarm, greenhouse controller
manual alarm  170

ambient light meter
about  97-100
breadboard connections  100
circuit  134-138
code  101

analog
analogWrite() function  64
connections diagram  63
controlling, through code  64
fading LED code, completing  66-68
for loop  64, 65
output circuit  62, 63
signals  61, 62

analog sensors  78
analog signals

versus digital signals  43, 44
Analog to Digital Converter (ADC)  95
analog values

sensing  95
analogWrite() function  64
Anti-lock Brake System (ABS)  151
Arduino

about  7, 8
data, sending  139-141
development environment, running  32, 33
download section, URL  28

drivers, installing  30
Esplora  19
family members  19
features  8, 9
features, URL  9
Getting Started guide, URL  30
Integrated Development  

Environment (IDE)  8
language  42
LilyPad Arduino  14-16
micro board  18, 19
mini board  18, 19
nano board  18, 19
package, downloading  28
playground section, URL  24
playground tab, URL  32
rules  24
shields  23
software, installing  29
store, URL  11
time control, functions  111
traditional forum, URL  24
unofficial boards  22, 23
users, teaching users  24
variable resistor, connecting to  98

Arduino Due  22
Arduino Ethernet

about  12, 13
URL  14

Arduino Mega 2560
about  11
URL  12

Arduino Robot
about  20, 21
product page, URL  21



[ 186 ]

Arduino Uno
about  9, 10
URL  11

Arduino Yún
about  16-18
URL  18

attachInterrupt() function  155
Interrupt  155
ISR  155
Mode  155

B
beats per minute (bpm)

URL  128
breadboard connections, diagram

for ambient light meter circuit  100
for DC motor speed control  107
for digital input  83
for LED circuit  48, 49
for optical switch  90, 91
using  45, 46

button
connecting, as digital input  78, 79
pressed  79
released  79

C
circuit

about  44
asymmetric blinking code  49-51
breadboard connections, diagram  48, 49
breadboard, using  45
C language, syntax considerations  52
faults, troubleshooting  52, 53
LED circuit  46, 47
limit per pin  55-58
multiple outputs, dealing with  53, 54
schematic  47

circuit schematic  82
C language

syntax, considerations  52
code

writing, for press reaction  84
code editor  34, 35
coin detector

optocoupler, using as  89

schematic  89, 90
conditional bifurcation

about  84
decisions, making with  86

Cooking Hacks
URL  24

D
DAC

code  95
data

sending, to Arduino  138-141
DC motor speed control

about  105
breadboard connections diagram  107
code  108
potentiometer  106
schematic  106

debouncing
about  87
URL  87

development environment, Arduino
code editor  34, 35
message area  36
running  32, 33
toolbar  34

dial tachograph
about  156, 157
breadboard connections, diagram  157
code  158-163
modular development  164

dial thermometer
circuit  143, 144
code  145-147
computer connected  142, 143

digital input
breadboard connections, diagram  83
button, connecting as  78, 79
configuring  85
decisions, making with conditional  

bifurcations  86
digitalRead(button)  85
example code  92
pinMode(button,INPUT)  85
reading  85



[ 187 ]

digital sensors
about  78
types  87, 88

digital signals
versus analog signals  43, 44

Digital to Analog Converter (DAC)
about  61
URL  62

drivers, installing
about  30
for Linux  32
for Mac OS X  32
for Windows  31, 32

E
EAGLE software

URL  75
Electromagnetic Force (EMF)  70
Esplora

about  19
URL  20

Examples command  40

F
for loop

about  64, 65
Condition  65
Increment  65
Initialization  65
URL  65

Fritzing
URL  48

FTDI
manufacturer page, URL  31
Uno driver, URL  32

G
GardenBot project

URL  183
GND  144
greenhouse controller

about  167
breadboard connections, diagram  175, 176
circuit  173-175

input and output devices  170
modular design  168
requisites  168
temperature control  169

greenhouse controller, code
about  176
alarm control  182
alarm routine  178, 179
considerations  183
execution loop  180
global variables  177, 178
humidity control  181, 182
initialization and board configuration  180
interrupt ISR  178
libraries and constant definitions  176, 177
lighting control  182
project code  183
serial feedback and calibration  183
temperature control  180, 181

I
infrared light emitter  87
input and output devices,  

greenhouse controller
about  170
Buzzer  170
humidity resistive sensor  170
Motor  170
photocell  170
push button  170
Relay  170
relay, as mediator  171, 172
Servomotor  170
thermistor  170

inputs
used, for sensing  77, 78

Inter-Integrated Circuit (I2C)
about  133
URL  133, 134

interrupts  87, 149, 150
Interrupt Service Routine (ISR)

about  150
CHANGE  150
FALLING  150
LOW  150
RAISING  150



[ 188 ]

L
LED circuit  46, 47
LED code

fading LED code, completing  66-68
library sound functions  113, 114
light

programming, for sensing  101
lighting control, greenhouse controller  169
LilyPad Arduino  14-16
LilyPad board

URL  16
LilyPad Simple board

URL  16
LilyPad SimpleSnap board

URL  16
LilyPad USB board

URL  16
Linux

drivers, installing for  32
package, downloading for  29
software, installing for  30

loop() function  50

M
Mac OS X

drivers, installing for  32
package, downloading for  28
software, installing for  29

map() function, parameters
fromHigh  96
fromLow  96
toHigh  96
toLow  96
value  96

Mechanical mice section
URL  88

menus
about  40
Edit menu  40
File menu  40
Help menu  41
Sketch menu, commands  41

message area  36
metronome

about  124

beatDuration variable  128
bpm variable  128
circuit  125
code  126-128
readButtons variable  128

micros() function  112
millis() function  112
modular design, greenhouse controller

humidity control  169
lighting control  168, 169
manual alarm  168-170
temperature control  168
watering  168

momentary push buttons
about  81
Panel mounting  80
Printed Circuit Board (PCB) soldering  80

motor driver circuit
about  69
assembled  74
base  69
collector  69
completed  71
connections, diagram  72
diode  70
emitter  69
power motors  74, 75
power source, considerations  70, 71
resistor  70
speed code, varying  73
with transistor  68-70

motor speed control schematic  106
multiplatform tool  27
multiple outputs, circuit

dealing with  53, 54
myActiveDelay() function  124

O
optical switch

breadboard connections, diagram  90, 91
optocoupler

about  88, 152
infrared light emitter  87
phototransistor  87
using, as coin detector  89



[ 189 ]

P
package, downloading

about  28
for Linux  29
for Mac OS X  28
for Windows  28
source code  29

panel mounting  80
phototransistor  87
PIR motion detector

URL  87
potentiometer  106
Power over Ethernet (PoE) module

URL  14
preflight checks  36-38
Printed Circuit Board (PCB) soldering  80
Pulse Width Modulation (PWM)  

about  10, 46
URL  62

R
reed relay

URL  87
Reference 

page, URL  147
section, URL  86, 124

relay
URL  172

revolutions per minute (rpm)  162

S
sensor

calibrating  105
serial communication

baud rate  133
concepts  131, 132
Inter-Integrated Circuit (I2C)  133
Serial Peripheral Interface (SPI)  133
types  133, 134
URL  133

Serial Monitor command  41
Serial Peripheral Interface (SPI)

about  133
URL  133

setup() function  50
shields

about  23
URL  24

sketch
preflight checks  37, 38
uploading  38-40

Sketch menu
Add File   41
Import Library   41
Show Sketch Folder  41
Verify / Compile  41

software, installing
about  29
for Linux  30
for Mac OS X  29
for Windows  29

sound
about  112
connection, direct  115
connection, through transistor  116, 117
hardware connection  114
library sound functions  113, 114

SparkFun
URL  24

stopping
versus accounting  112

switch / case control structure
syntax  102-104

switches
URL  87

T
tachograph project

about  151
interrupt, and ISR  154, 155
interrupt tester  152, 153
mechanical considerations  151, 152

temperature control, greenhouse controller
about  169
Fan  169
Retractable roof  169
Visual indicator  169
Watering pump  169

time control functions  111



[ 190 ]

timer
about  118
coding, delays used  119, 120
coding, without delays  121-124
LED, blinking while waiting  121-124
myActiveDelay() function  124
sketch, dividing into different files  118
tryToBlinkaLED() function  124

timing  87
tone() function

duration parameter  113
frequency parameter  113
pin parameter  113

toolbar, buttons
New  34
Open   34
Save  34
Serial Monitor  34
Upload  34
Verify  34

transistor
used, for connection  116, 117

tryToBlinkaLED() function  124

U
Universal Asynchronous  

Receiver/Transmitter (UART)  131

V
variable resistor

connecting, to Arduino  98
voltage divider  99

W
Windows

drivers, installing for  31
package, downloading for  28
software, installing for  29
URL  32



Thank you for buying  
Arduino Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective 
MySQL Management, in April 2004, and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution-based books 
give you the knowledge and power to customize the software and technologies you're using 
to get the job done. Packt books are more specific and less general than the IT books you have 
seen in the past. Our unique business model allows us to bring you more focused information, 
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,  
cutting-edge books for communities of developers, administrators, and newbies alike.  
For more information, please visit our website at www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should 
be sent to author@packtpub.com. If your book idea is still at an early stage and you would 
like to discuss it first before writing a formal book proposal, then please contact us; one of our 
commissioning editors will get in touch with you. 

We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.



Arduino Robotic Projects
ISBN:  978-1-78398-982-9             Paperback: 240 pages

Build awesome and complex robots with the power 
of Arduino

1. Develop a series of exciting robots that can sail, 
go under water, and fly.

2. Simple, easy-to-understand instructions to 
program Arduino.

3. Effectively control the movements of all types of 
motors using Arduino.

Arduino Networking
ISBN: 978-1-78398-686-6            Paperback: 118 pages

Connect your projects to the Web using the Arduino 
Ethernet library 

1. Learn to use the Arduino Ethernet shield and 
Ethernet library.

2. Control the Arduino projects from your 
computer using the Arduino Ethernet.

3. This is a step-by-step guide to creating  
Internet of Things projects using the Arduino 
Ethernet shield.

Please check www.PacktPub.com for information on our titles



Arduino Home Automation 
Projects
ISBN: 978-1-78398-606-4              Paperback: 132 pages

Automate your home using the powerful  
Arduino platform

1. Interface home automation components  
with Arduino.

2. Automate your projects to communicate 
wirelessly using XBee, Bluetooth and WiFi.

3. Build seven exciting, instruction-based home 
automation projects with Arduino in no time.

Internet of Things with the  
Arduino Yún
ISBN: 978-1-78328-800-7             Paperback: 112 pages

Projects to help you build a world of smarter things 

1. Learn how to interface various sensors and 
actuators to the Arduino Yún and send this 
data in the cloud.

2. Explore the possibilities offered by the Internet 
of Things by using the Arduino Yún to upload 
measurements to Google Docs, upload pictures 
to Dropbox, and send live video streams to 
YouTube.

3. Learn how to use the Arduino Yún as the brain 
of a robot that can be completely controlled  
via Wi-Fi.

Please check www.PacktPub.com for information on our titles


	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Meeting the Arduino Family
	A game changer
	Common features
	Arduino Uno
	Arduino Mega 2560
	Arduino Ethernet
	LilyPad Arduino
	Arduino Yún
	Arduino Mini, Micro, and Nano
	Other Arduino family members
	Esplora
	Arduino Robot
	Arduino Due

	Unofficial boards
	Shields

	Just one to rule them all
	Users teaching users
	Summary

	Chapter 2: The Arduino Development Environment
	A multiplatform tool
	Downloading the package
	Windows
	Mac OS X
	Linux
	Source code

	Installing the software
	Windows
	Mac OS X
	Linux
	In case of trouble

	Installing the drivers
	Windows
	Mac OS X
	Linux

	Running the Arduino development environment for the first time
	The toolbar
	The code editor
	The message area

	Preflight checks
	Uploading our first sketch
	Main menus and commands
	The Arduino language
	Summary

	Chapter 3: Interacting with the Environment the Digital Way
	Digital versus analog signals
	Our first circuit
	Using a breadboard
	The LED circuit
	Circuit schematic
	Breadboard connections diagram
	Asymmetric blinking code
	C language syntax considerations
	Troubleshooting faults in the circuit
	Dealing with multiple outputs
	Current limit per pin

	Summary

	Chapter 4: Controlling Outputs Softly with Analog Outputs
	Dealing with analog signals
	The analog output circuit
	Connections diagram
	Analog control through code
	The analogWrite() function
	The for loop
	Complete the fading LED code

	Motor control with a transistor
	Motor driver
	Power source considerations
	The complete circuit
	Connections diagram
	Motor varying speed code
	The assembled circuit
	Bigger power motors

	Summary

	Chapter 5: Sensing the Real World through Digital Inputs
	Sensing by using inputs
	Connecting a button as a digital input
	The momentary push button
	Complete circuit schematic
	Breadboard connections diagram
	Writing code to react to a press
	Configuring and reading a digital input
	Taking decisions with conditional bifurcations

	Timing and debouncing
	Other types of digital sensors
	Using an optocoupler as a coin detector
	The schematic of the coin detector
	The breadboard connections diagram
	The complete example code
	A real working project 
	Summary

	Chapter 6: Analog Inputs to Feel Between All and Nothing
	Sensing analog values
	The Arduino map function
	An ambient light meter
	Connecting a variable resistor to Arduino
	Voltage divider

	An ambient light meter circuit
	Breadboard connections
	Programming to sense the light
	An ambient light meter code
	The switch / case control structure
	Calibrating the sensor

	DC motor speed control revisited
	The potentiometer
	The motor speed control schematic
	The breadboard connections diagram
	A simple code to control the motor speed

	Summary

	Chapter 7: Managing the Time Domain
	Time control functions
	Stopping versus accounting

	Making some noise
	Arduino library sound functions
	Sound hardware connection
	Direct connection
	Connection through a transistor

	A simple timer
	Dividing your sketch into different files
	Coding a timer by using delays
	Coding without delays and blinking an LED 
while waiting


	A bigger project – a metronome
	The metronome circuit
	The metronome code

	Summary

	Chapter 8: Communicating with Others
	Serial communications concepts
	The baud rate

	Other types of serial communication
	Calibrating sensors serially
	Sending data to Arduino
	A computer connected dial thermometer
	The thermometer circuit
	The code for the thermometer

	Summary

	Chapter 9: Dealing with Interrupts
	The concept of an interruption
	The ISR

	The tachograph project
	Mechanical considerations
	A simple interrupt tester
	Our first interrupt and its ISR


	A dial tachograph
	Breadboard connections diagram
	The complete tachograph code
	Modular development

	Summary

	Chapter 10: Arduino in a Real Case – Greenhouse Control
	A greenhouse controller
	The controller requirements
	Modular design
	Temperature control
	Humidity control
	Lighting control
	Manual alarm

	Input and output devices
	The relay as a mediator

	The greenhouse controller circuit
	Breadboard connections diagram

	The greenhouse controller code
	Libraries and constant definitions
	Global variables
	The interrupt ISR
	The alarm routine
	Initialization and board configuration
	The main execution loop
	Temperature subsystem
	Humidity subsystem
	Lighting subsystem
	Alarm subsystem
	Serial feedback and calibration

	The complete project code
	Final considerations

	Summary

	Index

