
Advanced .NET Remoting,
Second Edition

INGO RAMMER AND MARIO SZPUSZTA

www.allitebooks.com

http://www.allitebooks.org

Advanced .NET Remoting, Second Edition

Copyright © 2005 by Ingo Rammer and Mario Szpuszta

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-417-7

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Ewan Buckingham
Technical Reviewer: Kent Sharkey
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason Gilmore,

Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser
Project Manager: Laura E. Brown
Copy Manager: Nicole LeClerc
Copy Editor: Ami Knox
Production Manager: Kari Brooks-Copony
Production Editor: Ellie Fountain
Compositor: Kinetic Publishing Services, LLC
Proofreader: Elizabeth Berry
Indexer: John Collin
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 233 Spring Street, 6th
Floor, New York, NY 10013, and outside the United States by Springer-Verlag GmbH & Co. KG, Tiergartenstr. 17,
69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders@springer-ny.com, or visit
http://www.springer-ny.com. Outside the United States: fax +49 6221 345229, e-mail orders@springer.de,
or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Downloads section.

www.allitebooks.com

http://www.allitebooks.org

To Katja,
Who was courageous enough to marry me

even though she knew I would write another book.
—Ingo

To my parents—I am so happy that I have you!
And to my best friends Dominik and Edi—I enjoy every single moment with you!

—Mario

www.allitebooks.com

http://www.allitebooks.org

Contents at a Glance

About the Authors . xvii

About the Technical Reviewer . xix

Acknowledgments . xxi

Introduction . xxiii

PART 1 ■ ■ ■ Understanding
CHAPTER 1 Introduction to Remoting. 3

CHAPTER 2 .NET Remoting Basics . 9

CHAPTER 3 .NET Remoting in Action . 25

CHAPTER 4 Configuration and Deployment . 75

CHAPTER 5 Securing .NET Remoting . 123

CHAPTER 6 Creating Remoting Clients . 161

CHAPTER 7 In-Depth .NET Remoting . 185

CHAPTER 8 The Ins and Outs of Versioning . 225

CHAPTER 9 .NET Remoting Tips and Best Practices . 275

CHAPTER 10 Troubleshooting .NET Remoting . 303

PART 2 ■ ■ ■ Extending
CHAPTER 11 Inside the Framework. 321

CHAPTER 12 Creation of Sinks . 349

CHAPTER 13 Extending .NET Remoting . 359

CHAPTER 14 Developing a Transport Channel . 421

CHAPTER 15 Context Matters . 469

v

www.allitebooks.com

http://www.allitebooks.org

■CONTENTS AT A GLANCEvi

PART 3 ■ ■ ■ Reference
APPENDIX A .NET Remoting Usage Reference . 487

APPENDIX B .NET Remoting Extensibility Reference . 525

APPENDIX C .NET Remoting Links. 541

INDEX . 549

www.allitebooks.com

http://www.allitebooks.org

Contents

About the Authors . xvii

About the Technical Reviewer . xix

Acknowledgments . xxi

Introduction . xxiii

PART 1 ■ ■ ■ Understanding

■CHAPTER 1 Introduction to Remoting . 3

What Is Remoting? . 3

Scenarios for .NET Remoting. 3

Centralized Business Logic . 4

Physical Separation of Layers . 4

Accessing Other Platforms. 4

Evolution of Remoting. 4

DCE/RPC . 5

CORBA . 5

DCOM. 5

MTS/COM+ . 6

Java RMI . 6

Java EJB . 6

Web Services/SOAP/XML-RPC. 7

.NET Remoting . 7

Summary . 7

■CHAPTER 2 .NET Remoting Basics . 9

Advantages of .NET Remoting. 9

Ease of Implementation . 9

Extensible Architecture . 10

Interface Definitions . 11

Serialization of Data . 12

Lifetime Management . 12

Multiserver/Multiclient . 13
vii

Your First Remoting Application. 13

The First Sample . 14

Extending the Sample . 20

Summary . 23

■CHAPTER 3 .NET Remoting in Action . 25

Types of Remoting. 25

ByValue Objects . 25

MarshalByRefObjects . 26

Types of Invocation . 46

Synchronous Calls . 47

Asynchronous Calls . 51

One-Way Calls . 55

Multiserver Configuration. 59

Examining a Sample Multiserver Application 60

Sharing Assemblies. 67

Shared Implementation. 67

Shared Interfaces. 67

Shared Base Classes. 67

SoapSuds-Generated Metadata . 68

Summary . 74

■CHAPTER 4 Configuration and Deployment. 75

Configuration Files. 76

Watch for the Metadata! . 77

The Problem with SoapSuds . 77

Porting the Sample to Use Configuration Files 82

Standard Configuration Options . 85

What About Interfaces? . 100

Using the IPC Channel in .NET Remoting 2.0 102

Deployment . 108

Console Applications . 108

Windows Services . 108

Deployment Using IIS . 116

Summary . 121

■CONTENTSviii

■CHAPTER 5 Securing .NET Remoting . 123

Building Secure Systems . 123

Authentication Protocols in Windows. 124

NTLM Authentication . 124

Kerberos: Very Fast Track . 126

Security Package Negotiate . 128

Security Support Provider Interface . 128

Identities and Principals: A Short Overview. 129

Securing with IIS . 133

Authentication with IIS . 133

Encryption and IIS . 138

Security Outside of IIS . 140

Using the MSDN Security Samples. 140

Implementing Authorization in the Server . 149

Security with Remoting in .NET 2.0 (Beta) . 151

Summary . 160

■CHAPTER 6 Creating Remoting Clients . 161

Creating a Server for Your Clients. 161

Creating a Console Client. 163

Creating Windows Forms Clients . 167

Creating Back-End–Based Clients . 169

ASP.NET-Based Clients . 169

Remoting Components Hosted in IIS As Clients 172

Security Considerations . 177

Summary . 184

■CHAPTER 7 In-Depth .NET Remoting . 185

Managing an Object’s Lifetime . 185

Understanding Leases. 186

Working with Sponsors . 196

Using the CallContext . 209

Best Practices. 212

Security and the Call Context. 213

Remoting Events . 213

Events: First Take . 214

Refactoring the Event Handling . 217

Why [OneWay] Events Are a Bad Idea . 222

Summary . 224

■CONTENTS ix

■CHAPTER 8 The Ins and Outs of Versioning . 225

.NET Framework Versioning Basics . 225

A Short Introduction to Strong Naming . 225

Versioning in .NET Remoting—Fundamentals . 233

Versioning of Server-Activated Objects . 233

Versioning of Client-Activated Objects . 240

Versioning of [Serializable] Objects . 242

Advanced Versioning Concepts . 246

Versioning with Interfaces . 246

Versioning Concepts for Serialized Types . 256

Summary . 273

■CHAPTER 9 .NET Remoting Tips and Best Practices 275

.NET Remoting Use Cases . 275

Cross-AppDomain Remoting . 276

Cross-Process on a Single Machine. 276

Cross-Process on Multiple Machines in a LAN. 276

Cross-Process via WAN/Internet . 278

Nonusage Scenarios . 279

The Nine Rules of Scalable Remoting . 280

Using Events and Sponsors . 281

How to Notify Nevertheless . 282

Message Queuing to the Rescue. 283

Other Approaches . 286

SoapSuds vs. Interfaces in .NET Remoting . 286

Custom Exceptions . 288

Scaling Out Remoting Solutions . 290

Load Balancing Basics . 290

Taking Nodes Online/Offline. 299

Designing Applications for Static Scalability 299

Summary . 301

■CHAPTER 10 Troubleshooting .NET Remoting. 303

Debugging Hints . 303

Manual Breakpoints. 304

Configuration File Settings. 305

Local or Remote?. 307

Checking Types on Your Server . 308

■CONTENTSx

BinaryFormatter Version Incompatibility . 309

Troubleshooting with a Custom Sink . 310

Changing Security Restrictions with TypeFilterLevel 311

Using Custom Exceptions. 313

Multihomed Machines and Firewalls . 315

Client-Activated Objects Behind Firewalls. 317

Summary . 318

PART 2 ■ ■ ■ Extending

■CHAPTER 11 Inside the Framework . 321

Looking at the Five Elements of Remoting . 321

A Bit About Proxies . 322

Understanding the Role of Messages. 326

Examining Message Sinks . 328

Serialization Through Formatters . 329

Moving Messages Through Transport Channels. 330

Client-Side Messaging . 331

ClientContextTerminatorSink and Dynamic Sinks 332

SoapClientFormatterSink . 333

HttpClientChannel . 333

Server-Side Messaging . 333

HttpServerChannel and HttpServerTransportSink 335

SDLChannelSink. 335

SoapServerFormatterSink and BinaryServerFormatterSink 336

DispatchChannelSink . 336

CrossContextChannel . 336

ServerContextTerminatorSink . 337

LeaseSink . 337

ServerObjectTerminatorSink and StackbuilderSink 337

All About Asynchronous Messaging . 338

Asynchronous IMessageSink Processing . 338

Asynchronous IClientChannelSink Processing 340

Generating the Request . 342

Handling the Response . 345

Server-Side Asynchronous Processing. 347

Summary . 348

■CONTENTS xi

■CHAPTER 12 Creation of Sinks . 349

Understanding Sink Providers . 349

Creating Client-Side Sinks . 350

Creating Server-Side Sinks . 354

Using Dynamic Sinks . 356

Summary . 357

■CHAPTER 13 Extending .NET Remoting. 359

Creating a Compression Sink . 359

Implementing the Client-Side Sink . 361

Implementing the Server-Side Sink . 364

Creating the Sink Providers . 367

Using the Sinks . 369

Extending the Compression Sink . 371

Encrypting the Transfer . 375

Essential Symmetric Encryption . 376

Creating the Sinks . 380

Creating the Providers. 386

Passing Runtime Information . 390

Changing the Programming Model. 402

Using This Sink. 408

Avoiding the BinaryFormatter Version Mismatch . 409

Using a Custom Proxy. 413

Some Final Words of Caution. 419

Summary . 419

■CHAPTER 14 Developing a Transport Channel . 421

Protocol Considerations . 421

The Shortcut Route to SMTP . 422

. . . And Round-Trip to POP3. 423

Character Encoding Essentials . 424

Creating E-Mail Headers. 425

Encapsulating the Protocols . 426

Checking for New Mail . 433

Registering a POP3 Server . 435

Connecting to .NET Remoting . 437

Implementing the Client Channel . 445

Creating the Client’s Sink and Provider . 449

■CONTENTSxii

Implementing the Server Channel . 453

Creating the Server’s Sink . 458

Wrapping the Channel . 462

Using the SmtpChannel . 465

Preparing Your Machine . 467

Some Final Words of Caution. 468

Summary . 468

■CHAPTER 15 Context Matters . 469

Working at the MetaData Level. 471

Creating a Context. 472

Checking Parameters in an IMessageSink . 480

Summary . 483

Conclusion . 484

PART 3 ■ ■ ■ Reference

■APPENDIX A .NET Remoting Usage Reference . 487

System Types . 487

System.Activator Class . 488

System.MarshalByRefObject Class. 488

System.SerializableAttribute Class . 489

System.Delegate Class . 490

System.IAsyncResult Interface . 491

System.Runtime.Remoting . 491

Basic Infrastructure Classes . 491

Configuration Classes . 493

Exception Classes . 497

General Interfaces . 498

System.Runtime.Remoting.Channels. 499

General Interfaces and Classes . 499

System.Runtime.Remoting.Channels.Http . 504

HttpChannel Class . 504

HttpClientChannel Class . 505

HttpServerChannel Class . 506

System.Runtime.Remoting.Channels.Tcp . 506

TcpChannel Class . 506

TcpClientChannel Class . 507

TcpServerChannel Class. 508

■CONTENTS xiii

System.Runtime.Remoting.Lifetime. 508

ILease Interface . 508

ISponsor Interface . 509

ClientSponsor Class. 510

LifetimeServices Class . 511

LeaseState Enumeration. 511

System.Runtime.Remoting.Messaging . 512

AsyncResult Class . 512

CallContext Class . 512

LogicalCallContext Class. 514

OneWayAttribute Class . 514

System.Runtime.Remoting.Metadata . 514

SoapAttribute Class . 515

SoapTypeAttribute Class. 515

SoapFieldAttribute Class. 515

SoapMethodAttribute Class . 516

SoapParameterAttribute Class. 516

SoapOption Enumeration . 516

System.Runtime.Remoting.Services . 516

EnterpriseServicesHelper Class. 516

RemotingClientProxy Class . 517

ITrackingHandler Interface . 517

TrackingServices Class . 517

System.Runtime.Serialization . 518

ISerializable Interface . 519

SerializationInfo Class. 520

StreamingContext Structure. 520

SerializationException Class . 521

System.Runtime.Serialization.Formatters . 521

SoapFault Class . 521

SoapMessage Class . 521

TypeFilterLevel Enumeration . 521

Summary . 523

■APPENDIX B .NET Remoting Extensibility Reference 525

System.Runtime.Remoting.Messaging . 525

IMessage Interface . 525

IMessageSink Interface . 526

IMethodMessage Interface. 527

IMethodCallMessage Interface . 528

■CONTENTSxiv

IMethodReturnMessage Interface . 528

MethodCall Class . 529

MethodResponse Class. 529

System.Runtime.Remoting.Activation . 529

IConstructionCallMessage Interface . 530

IConstructionReturnMessage Interface . 530

System.Runtime.Remoting.Proxies . 530

RealProxy Class . 531

ProxyAttribute Class . 531

System.Runtime.Remoting.Channels. 531

IChannelSinkBase Interface . 532

IClientChannelSink Interface . 532

IClientChannelSinkProvider Interface . 533

IClientFormatterSink Interface . 534

IClientFormatterSinkProvider Interface . 534

IServerChannelSink Interface . 534

IServerChannelSinkProvider Interface . 535

ITransportHeaders Interface. 536

IChannel Interface . 537

IChannelReceiver Interface . 538

IChannelSender Interface . 539

BaseChannelObjectWithProperties Class. 539

BaseChannelWithProperties Class . 540

BaseChannelSinkWithProperties Class . 540

Summary . 540

■APPENDIX C .NET Remoting Links . 541

Ingo’s .NET Remoting FAQ Corner . 541

MSDN and MSDN Magazine Articles . 541

“Improving Remoting Performance” . 541

“.NET Remoting Security” . 541

“Boundaries: Processes and Application Domains”. 542

“.NET Remoting Architectural Assessment” 542

“.NET Remoting Overview” . 542

“Building Secure ASP.NET Applications: Authentication,
Authorization, and Secure Communication” 542

“NET Remoting Authentication and Authorization Sample” 542

“Managed Extensions for C++ and .NET Remoting Tutorial” 543

“.NET Remoting Use-Cases and Best Practices” and
“ASP.NET Web Services or .NET Remoting: How to Choose”. 543

■CONTENTS xv

“Remoting Examples”. 543

“Secure Your .NET Remoting Traffic by Writing an
Asymmetric Encryption Channel” . 543

“Create a Custom Marshaling Implementation Using .NET
Remoting and COM Interop” . 543

.NET Remoting Interoperability . 544

.NET Remoting: CORBA Interoperability . 544

.NET Remoting: Java RMI Bridges . 544

XML-RPC with .NET Remoting. 544

Custom .NET Remoting Channels. 544

Named Pipes Channel for .NET Remoting . 545

TcpEx Channel for .NET Remoting . 545

Jabber Channel . 545

Remoting Channel Framework Extension . 545

“Using MSMQ for Custom Remoting Channel”. 545

“Using WSE-DIME for Remoting over Internet” 546

Interesting Technical Articles . 546

C# Corner: Remoting Section. 546

“Share the ClipBoard Using .NET Remoting” 546

“Chaining Channels in .NET Remoting”. 546

“Applying Observer Pattern in .NET Remoting” 546

“Aspect-Oriented Programming Enables Better Code
Encapsulation and Reuse” and “.NET Remoting Spied On” 547

“Persistent Events in Stateless Remoting Server”. 547

“Intrinsyc’s Ja.NET—Extending the Reach of
.NET Remoting” . 547

“Implementing Object Pooling with .NET Remoting—Part I”. 547

“.NET Remoting Versus Web Services” . 547

“.NET Remoting Central” . 547

“Output Caching for .NET Remoting” . 548

“Abstract Client Formatter Sink”. 548

Remoting Tools. 548

Remoting Management Console . 548

Remoting Probe . 548

■INDEX . 549

■CONTENTSxvi

About the Authors

■INGO RAMMER is cofounder of thinktecture, a company supporting software architects and
developers with architecture and design of .NET and Web Services applications. He is a regular
speaker about these topics at conferences around the world, author of numerous online and
print articles, and winner of the .NET Developer’s Journal’s Readers’ Choice Award for Best .NET
Book of 2003. You can reach him at http://www.thinktecture.com/staff/ingo.

■MARIO SZPUSZTA is working in the Developer and Platform Group of Microsoft Austria. Before
he started working for Microsoft, Mario was involved in several projects based on COM+ and
DCOM with Visual Basic and Visual C++ as well as projects based on Java and J2SE. With Beta 2
of the .NET Framework, he started developing Web applications with ASP.NET. Right now, as
developer evangelist for Microsoft Austria, he is doing workshops, trainings, and proof-of-concept
projects together with independent software vendors in Austria based on .NET, Web Services,
and Office 2003 technologies.

xvii

About the Technical Reviewer

■KENT SHARKEY is currently the content strategist for ASP.NET and Visual Studio content for
MSDN. When not answering e-mail, he occasionally writes, codes, and sleeps. He lives in green,
green Redmond with his wife, and two furry “children,” Squirrel and Cica.

xix

Acknowledgments

First and foremost, I want to thank Mario for taking the challenge to write the second edition
of this book together with me. Without him, this book could not exist.

I especially want to thank those people whom I’ve met in the previous years and whose insight
constantly influenced the way I think about software. A big “thank you” therefore needs to go
to Beat Schwegler, Clemens Vasters, Don Box, and Steve Swartz.

But the biggest “thank you” needs to go to the thousands of software developers and archi-
tects who contacted me by e-mail, who chatted with me at various conferences, and who wrote
thought-provoking Weblog and newsgroup posts. You are the reason why I wrote this book.

Of course, writing a book would not be possible without the support of many people. Even
though only Mario’s and my name appear on the cover, this book would not have been possible
without my fellows at thinktecture: Christian Weyer, Christian Nagel, and Ralf Westphal; my
friend and the technical reviewer for this book, Kent Sharkey; and the fine editorial staff at
Apress: Laura Brown, Ami Knox, and Ellie Fountain. Thank you for making this book a reality!

—Ingo Rammer

The first large project I started working on was one of the most interesting projects I have ever
been part of. The enthusiasm and creativity of the two masterminds in this team, Harald
Leitenmüller and Benedikt Redl, have inspired me. These two persons have shown me what
software development in large projects really means, and they have shown me how interesting
software architecture is! Without them, I would not have progressed even half as far as I have
today. Therefore, my biggest thanks go to Harald and Benedikt.

Without Beat Schwegler, I would not have had the chance to get involved in writing this
book. Thank you, Beat, for this great opportunity and much more for the things I have learned
in the past two years from you. These two years have been a really great time!

Last but not least, I want to thank you, Ingo, for giving me the chance to write this book with
you. It was really great. I learned many things, and right now I recognize that writing concepts
and thoughts down is something that can be really funny and, even more so, interesting.

—Mario Szpuszta

xxi

Introduction

In the time since the first edition of this book has been published, quite a bit has changed in the
world of software development on Microsoft’s platforms. The .NET Framework has become
a tried-and-true development platform, and service orientation gained a larger-than-expected
momentum. The latter especially presents a very challenging task for the developer using .NET
Remoting: the need to avoid possible incompatibilities with future paradigms. If service orien-
tation will, in the next few years, gain the success it deserves, it might be important for your
application to be developed in a way to easily adopt these new ideas.

In this book, I have therefore followed a slightly different approach from the one I did in
the previous edition. While the first book focused only on covering all the features of the .NET
Remoting framework, Mario and I tried to extend this second edition with the best practices
for using this technology. While it still covers nearly each and every feature of the .NET Remot-
ing framework, the largest part of the new chapters of this book—especially Chapters 5, 8, 9,
and 10—deals with security, best practices, and the general avoidance of problems.

What Is Covered in This Book
This book covers the means of cross-process and cross-machine interaction of applications
developed with the .NET Framework. It will provide you with an in-depth understanding of
the remoting capabilities that are built into the .NET Framework.

.NET Remoting is different from most other means of remote object access because it can
be as easy as writing COM components in Visual Basic 6, yet also gives you the option to extend
remoting to include virtually any protocol on any transportation layer you will come across.

Part 1 of the book gives you a thorough introduction to .NET Remoting basics and how
you can use .NET Remoting “out of the box.” This gives you a whole range of possibilities, from
fast binary transfer protocol to a cross-platform SOAP protocol, with the potential to switch
between both without changing a single line in your code. At the end of this part, you will be
able to design and develop remoteable components and know just what you have to do to achieve
your goals. This part also deals with objects’ lifetimes, security, versioning, marshalling, and
deployment.

Part 2 covers the advanced features of .NET Remoting and its extensibility model. At the
end of the second part, you will have an in-depth understanding of the inner workings of
remoting and will know how to extend the framework to meet your requirements. You should
not be afraid, especially as you go through the sample code in the second part of the book, to
either hit F1 or to insert a breakpoint and examine the Locals window in your custom channel
sink to see the exact contents of the objects that get passed as parameters to your methods.

xxiii

What This Book Doesn’t Cover
This book is in no way a rehash of the supplied documentation, but is meant to be used in
conjunction with it. You will only find a small percentage of the information that is covered
in the online documentation in this book and vice versa, so it is very important for you to use
the .NET Framework SDK documentation as well.

I chose this approach to writing a book for one simple reason: I assume that, as an advanced
developer, you don’t have much time to waste going through a 1,000-page book of which 600
pages are a reproduction of the online documentation. Instead, you want to read the informa-
tion that has not been covered before. If you think so as well, this book is right for you.

Who This Book Is For
This book is for the intermediate-to-advanced programmer who wants a hands-on guide to .NET
Remoting. Although this book is not an introduction to .NET, the CLR, or any .NET language,
you nevertheless will be able to use the knowledge and insight you’ll get from this book with
any of these programming languages. All the samples printed in this book are written in Visual
Basic .NET, but you can download each and every sample in both C# and Visual Basic .NET.

If you are a “use-it” developer, Part 1 (Chapters 1 through 10) of this book will serve you well
by providing a general introduction to the possibilities of remoting and giving you in-depth
information on how to use the capabilities that come with .NET Remoting “out of the box.” This
part also includes guidance on security, best practices, and troubleshooting.

If you are more of an “understand-it-and-extend-it” developer, Part 2 of this book is for you.
Chapters 11 through 15 were written for those who want to understand what’s going on behind
the scenes of .NET Remoting and how the framework can be customized using proxies, messages,
channel sinks, and providers. It also demonstrates how a complete transport channel is imple-
mented from scratch.

At the end of the book, you’ll find a collection of appendixes that provide a reference of
the namespaces, classes, and interfaces that comprise the .NET Remoting framework.

How This Book Is Structured
Advanced .NET Remoting is divided into two parts. Part 1 (Chapters 1 through 10) covers every-
thing you need to know for developing distributed applications within the .NET Framework.
Part 2 (Chapters 11 through 15) gives you a thorough technical insight that will allow you to
really understand what’s happening behind the scenes and how you can tap into customizing
the framework to suit your exact needs. Following is a brief chapter-by-chapter summary of
the topics covered in this book.

Chapter 1: Introduction to Remoting
This chapter gives you a short introduction to the world of distributed application development
and the respective technologies. It presents some scenarios in which .NET Remoting can be
employed and includes historical background on the progress and development of various
remoting frameworks during the last ten years.

■INTRODUCTIONxxiv

Chapter 2: .NET Remoting Basics
This chapter gets you started with your first remoting application. Before going directly into the
code, I present the distinctions between .NET Remoting and other distributed application frame-
works. I then introduce you to the basic types of remote objects, which are server-activated
objects and client-activated objects, and show you how to pass data by value. I also give you
some basic information about lifetime management issues and the generation of metadata,
which is needed for the client to know about the interfaces of the server-side objects.

Chapter 3: .NET Remoting in Action
In this chapter, I demonstrate the key techniques you’ll need to know to use .NET Remoting in
your real-world applications. I show you the differences between Singleton and SingleCall objects
and untangle the mysteries of client-activated objects. I also introduce you to SoapSuds, which
can be used to generate proxy objects containing only methods’ stubs.

Chapter 4: Configuration and Deployment
This chapter introduces you to the aspects of configuration and deployment of .NET Remoting
applications. It shows you how to use configuration files to avoid the hard coding of URLs or
channel information for your remote object. You also learn about hosting your server-side
components in Windows Services and IIS.

Chapter 5: Securing .NET Remoting
This chapter shows you how to leverage IIS’s features when it comes to hosting your components
in a secured environment. In this chapter, you learn how to enable basic HTTP sign-on and
the more secure Windows-integrated authentication scheme, which is based on a challenge/
response protocol. You also see how to enable encrypted access by using standard SSL certifi-
cates at the server side.

You will also read about ways to use .NET Remoting in a secure way when not relying on IIS.

Chapter 6: Creating Remoting Clients
Whenever I explain a new feature of the .NET Remoting framework, I tend to present it in an
easily digestible console application to avoid having to show you numerous lines of boilerplate
.NET code.

Of course, most of your real-world applications will either be Windows Forms or ASP.NET
Web applications or Web Services. In this chapter, you therefore learn how to create remoting
clients either as desktop or Web applications.

Chapter 7: In-Depth .NET Remoting
As a developer of distributed applications using .NET Remoting, you have to consider several
fundamental differences from other remoting techniques and, of course, from the development
of local applications. These differences, including lifetime management, versioning, and the
handling of asynchronous calls and events, are covered in this chapter.

■INTRODUCTION xxv

Chapter 8: The Ins and Outs of Versioning
Here you learn how to create .NET Remoting applications that are version resilient in a way
that allows you to support different versions of clients with the same server.

Chapter 9: .NET Remoting Tips and Best Practices
In this chapter, I introduce you to a number of best practices that I’ve learned in more than
three years of using .NET Remoting in numerous projects. This chapter will help you to increase
scalability, performance, and stability of your distributed applications.

Chapter 10: Troubleshooting .NET Remoting
Unfortunately, things can and will go wrong at some point in time. That’s why this chapter gives
you a number of techniques and tools that help you to troubleshoot various issues you might
encounter when using .NET Remoting. But don’t be afraid: most of these can be remedied in
a very brief amount of time.

Chapter 11: Inside the Framework
.NET provides an unprecedented extensibility for the remoting framework. The layered archi-
tecture of the .NET Remoting framework can be customized by either completely replacing the
existing functionality of a given tier or chaining new implementation with the baseline .NET
features.

Before working on the framework and its extensibility, I really encourage you to get a thorough
understanding of the existing layers and their inner workings in this architecture. This chapter
gives you that information.

Chapter 12: Creation of Sinks
This chapter covers the instantiation of message and channel sinks and sink chains. It shows
you the foundation on which to build your own sinks—something you need to know before
tackling the implementation of custom sinks.

Chapter 13: Extending .NET Remoting
This chapter builds on the information from Chapters 7 and 8 and shows you how to implement
custom remoting sinks. This includes channel sinks that compress or encrypt the transported
information, and message sinks to pass additional runtime information from a client to the
server or to change the .NET Remoting programming model. This chapter concludes with show-
ing you how to implement custom remoting proxies that forward method calls to remote objects.

Chapter 14: Developing a Transport Channel
This chapter builds on the information you gained in Chapters 7, 8, and 9 and presents the
development of a custom .NET Remoting channel that transfers messages via standard Internet
e-mail by using SMTP and POP3. It shows not only the implementation of this channel, but
also the necessary phase of analyzing the underlying protocol to combine it with the features
and requirements of .NET Remoting.

■INTRODUCTIONxxvi

■INTRODUCTION xxvii

Chapter 15: Context Matters
This last chapter is about message-based processing in local applications. Here you learn how
you can intercept calls to objects to route them through IMessageSinks. This routing allows you
to create and maintain parts of your application’s business logic at the metadata level by using
custom attributes. You also discover why it might or might not be a good idea to do so.

Appendix A: .NET Remoting Usage Reference
This first appendix includes reference information you’ll need when using .NET Remoting in
your application. You’ll learn about all the namespaces involved when creating clients and
servers, and configuring and troubleshooting your application.

Appendix B: .NET Remoting Extensibility Reference
This second appendix covers the namespaces, classes, and interfaces that allow you to extend
the .NET Remoting framework.

Appendix C: .NET Remoting Links
At the end of this book are collected a number of links to additional .NET Remoting–specific
content on the Web. This includes everything from Microsoft-provided additional articles to
custom channels and remoting extensions.

Source Code Download
You can find all source code presented in this book at the Apress download page at http://
www.apress.com. If you have further suggestions or comments or want to access even more
sample code on .NET Remoting, you are invited to visit thinktecture’s .NET Remoting FAQ,
which is hosted at http://www.thinktecture.com/Resources/RemotingFAQ.

We hope that you will benefit from the techniques and information we provide in this book
when building your distributed applications based on the .NET Framework.

Ingo Rammer and Mario Szpuszta
Vienna, Austria

P A R T 1
■ ■ ■

Understanding

3

C H A P T E R 1

■ ■ ■

1. .NET extends this concept to include the ability to define additional contexts within one running appli-
cation. Object accesses crossing these boundaries will pass the .NET Remoting framework as well.

Introduction to Remoting

This chapter gives you a short introduction to the world of distributed application develop-
ment and its respective technologies. Here you get a chance to examine some scenarios in
which .NET Remoting can be employed and learn some historical background on the progress
and development of various remoting frameworks during the last ten years.

What Is Remoting?
Remoting is the process of programs or components interacting across certain boundaries.
These contexts will normally resemble either different processes or machines.1 In the .NET
Framework, this technology provides the foundation for distributed applications—it simply
replaces DCOM.

Remoting implementations generally distinguish between remote objects and mobile objects.
The former provide the ability to execute methods on remote servers, passing parameters and
receiving return values. The remote object will always “stay” at the server, and only a reference
to it will be passed around among other machines.

When mobile objects pass a context boundary, they are serialized (marshaled) into a general
representation—either a binary or a human readable format like XML—and then deserialized
in the other context involved in the process. Server and client both hold copies of the same
object. Methods executed on those copies of the object will always be carried out in the local
context, and no message will travel back to the machine from which the object originated. In
fact, after serialization and deserialization, the copied objects are indistinguishable from regu-
lar local objects, and there is also no distinction between a server object and a client object.

Scenarios for .NET Remoting
At the beginning of the client/server era, remoting was mostly used for accessing a server’s
resources. Every database or file server is an implementation of some technique that allows code
to be executed remotely. Programming these older frameworks was so difficult a task that few
products except for these server-side core services implemented remoting.

CHAPTER 1 ■ INTRODUCTION TO REMOTING4

Nowadays the building of distributed applications has gotten a lot easier so that it’s quite
feasible to distribute business applications among various machines to improve performance,
scalability, and maintainability.

Centralized Business Logic
One of the key scenarios for implementing remoting is the concentration of business logic on
one or more central servers. This considerably simplifies the maintainability and operability of
large-scale applications. Changes in business logic do not entail your having to roll out an appli-
cation to your organization’s 10,000 worldwide users—you just have to update one single server.

When this centralized business logic is shared among different applications, this labor-saving
effect multiplies considerably; instead of patching several applications, you just have to change
the server’s implementation.

Physical Separation of Layers
The security of a company’s vital databases represents a common concern in this time of
Web-enabled businesses. The general recommendation is against directly connecting from
the Web server to the database because this setup would allow attackers easy access to critical
data after they have seized control of the Web server.

Instead of this direct connection, an intermediate application server is introduced. This
server is placed in a so-called demilitarized zone (DMZ), located between two firewalls. Firewall #1
only allows connections from the Web server to the app server, and Firewall #2 only allows con-
nections from the app server to the databases.

Because the application server doesn’t allow the execution of arbitrary SQL statements, yet
provides object-oriented or function-based access to business logic, a security compromise of
the Web server (which can only talk to the app server) is noncritical to a company’s operations.

Accessing Other Platforms
In today’s mid- to large-scale enterprises, you will normally encounter a heterogeneous combi-
nation of different platforms, frameworks, and programming languages. It is not uncommon to
find that a bunch of tools have been implemented: Active Server Pages (ASP), Java Server Pages
(JSP), PHP, or ColdFusion for Web applications, Visual Basic or Java for in-house applications,
C++ for server-side batch jobs, scripting languages for customizing CRM systems, and so on.

Integrating these systems can be a daunting task for system architects. Remoting architec-
tures like CORBA, SOAP, and .NET Remoting are an absolute necessity in large-scale enterprise
application integration. (CORBA and SOAP are introduced and compared later in this chapter.)

Evolution of Remoting
The scenarios presented thus far have only been possible due to the constant evolution of
remoting frameworks. The implementation of large-scale business applications in a distributed
manner has only been practicable after the technical problems have been taken care of by the
frameworks. CORBA, COM+, and EJB started this process several years ago, and .NET Remoting
simplifies this process even more.

To underscore how far remoting has evolved from its cumbersome beginnings, the following
sections give you a brief history of the various remoting frameworks.

CHAPTER 1 ■ INTRODUCTION TO REMOTING 5

DCE/RPC
Distributed Computing Environment (DCE), designed by the Open Software Foundation (OSF)
during the early 1990s, was created to provide a collection of tools and services that would
allow easier development and administration of distributed applications. The DCE framework
provides several base services such as Remote Procedure Calls (DCE/RPC), Security Services,
Time Services, and so on.

Implementing DCE is quite a daunting task; the interfaces have to be specified in Interface
Definition Language (IDL) and compiled to C headers, client proxies, and server stubs by an IDL
compiler. When implementing the server, one has to link the binary with DCE/Threads, which
are available for C/C++. The use of programming languages other than these is somewhat
restricted due to the dependence on the underlying services, like DCE/Threads, with the result
that one has to live with single-threaded servers when refraining from using C/C++.

DCE/RPC nevertheless is the foundation for many current higher-level protocols including
DCOM and COM+. Several application-level protocols such as MS SQL Server, Exchange Server,
Server Message Block (SMB), which is used for file and printer sharing, and Network File System
(NFS) are also based on DCE/RPC.

CORBA
Designed by the Object Management Group (OMG), an international consortium of about 800
companies, CORBA’s aim is to be the middleware of choice for heterogeneous systems. OMG’s
CORBA, which stands for Common Object Request Broker Architecture, is only a collection of
standards; the implementation of object request brokers (ORBs) is done by various third parties.
Because parts of the standard are optional and the vendors of ORBs are allowed to include addi-
tional features that are not in the specifications, the world has ended up with some incompatible
request brokers. As a result, an application developed to make use of one vendor’s features
could not easily be ported to another ORB. When you buy a CORBA-based program or compo-
nent, you just can’t be sure if it will integrate with your CORBA applications, which probably
were developed for a different request broker.

Aside from this potential problem, CORBA also has quite a steep learning curve. The standard
reads like a complete wish list of everything that’s possible with remoted components—sometimes
it simply is too much for the “standard business.” You’ll probably end up reading documents
for days or weeks before your first request is ever sent to a server object.

Nevertheless, when you have managed to implement your first CORBA application, you’ll
be able to integrate a lot of programming languages and platforms. There are even layers for
COM or EJB integration, and apart from SOAP, CORBA is the only true multiplatform, multi-
programming language environment for distributed applications.

DCOM
Distributed Component Object Model (DCOM) is an “extension” that fits in the Component
Object Model (COM) architecture, which is a binary interoperability standard that allows for
component-oriented application development. You’ll usually come in contact with COM when
using ActiveX controls or ActiveX DLLs.

DCOM allows the distribution of those components among different computers. Scalability,
manageability, and its use in WANs pose several issues that need to be addressed. DCOM uses

CHAPTER 1 ■ INTRODUCTION TO REMOTING6

a pinging process to manage the object’s lifetimes; all clients that use a certain object will send
messages after certain intervals. When a server receives these messages, it knows that the client
is still alive; otherwise it will destroy the object.

Additionally, reliance on the binary DCE/RPC protocol poses the need for direct TCP
connections between the client and its server. Use of HTTP proxies is not possible. DCOM is
available for Microsoft Windows and for some UNIX dialects (ported by the German company
Software AG).

MTS/COM+
COM+, formerly Microsoft Transaction Server (MTS), was Microsoft’s first serious attempt to
reach into the enterprise application domain. It not only serves as a remoting platform, but
also provides transaction, security, scalability, and deployment services. COM+ components
can even be used via Microsoft Message Queue Server to provide asynchronous execution of
methods.

Despite its advantages, COM+ does not yet support the automatic marshalling of objects to
pass them by value between applications; instead you have to pass your data structures using
ADO recordsets or other means of serialization. Other disadvantages that keep people from
using COM+ are the somewhat difficult configuration and deployment, which complicates its
use for real-world applications.

Java RMI
Traditional Java Remote Method Invocation (Java RMI) uses a manual proxy/stub compilation
cycle. In contrast to DCE/RPC and DCOM, the interfaces are not written in an abstract IDL but
in Java. This is possible due to Java being the only language for which the implementation of
RMI is possible.

This limitation locked RMI out of the game of enterprise application integration. Even though
all relevant platforms support a Java Virtual Machine, integration with legacy applications is
not easily done.

Java EJB
Enterprise Java Beans (EJB) was Sun’s answer to Microsoft’s COM+. Unlike CORBA, which is only
a standard, EJB comes with a reference implementation. This allows developers to check if their
products run in any standard-complying EJB container. EJB has been widely accepted by the
industry, and there are several container implementations ranging from free open source to
commercial implementations by well-known middleware vendors.

One problem with EJB is that even though a reference implementation exists, most vendors
add features to their application servers. When a developer writes a component that uses one
of those features, the application will not run on another vendor’s EJB container.

Former versions of EJB have been limited to the Java platform because of their internal
reliance on RMI. The current version allows the use of IIOP, which is the same transfer protocol
CORBA uses, and third parties already provide commercial COM/EJB bridges.

CHAPTER 1 ■ INTRODUCTION TO REMOTING 7

Web Services/SOAP/XML-RPC
Web Services provided the first easy to understand and implement solution to true cross-platform
and cross-language interoperability. Web Services technically are stateless calls to remote compo-
nents via HTTP POST with a payload encoded in some XML format.

Two different XML encodings are currently in major use: XML-RPC and SOAP. XML-RPC can
be described as a poor man’s SOAP. It defines a very lightweight protocol with a specification size
of about five printed pages. Implementations are already available for a lot of programming
environments, ranging from AppleScript to C/C++, COM, Java, Perl, PHP, Python, Tcl, and
Zope—and of course there’s also an implementation for .NET.

SOAP, or Simple Object Access Protocol, defines a much richer set of services; the specification
covers not only remote procedure calls, but also the Web Services Description Language (WSDL)
and Universal Description, Discovery, and Integration (UDDI). WSDL is SOAP’s interface defini-
tion language, and UDDI serves as a directory service for the discovery of Web Services. Those
additional protocols and specifications are also based on XML, which allows all SOAP features
to be implemented on a lot of platforms.

The specifications and white papers for SOAP, WSDL, UDDI, and corresponding technolo-
gies cover several hundred pages, and you can safely assume that this document will grow fur-
ther when topics like routing and transactions are addressed. Fortunately for .NET developers,
the .NET platform takes care of all issues regarding SOAP.

.NET Remoting
At first look, .NET Remoting is to Web Services what ASP has been to CGI programming. It takes
care of a lot of issues for you: contrary to Web Services, for example, .NET Remoting enables you
to work with stateful objects.

In addition to the management of stateful objects, .NET Remoting gives you a flexible and
extensible framework that allows for different transfer mechanisms (HTTP and TCP are supported
by default), encodings (SOAP and binary come with the framework), and security settings (IIS
Security and SSL come out of the box).

With these options, and the possibility of extending all of them or providing completely new
implementations, .NET Remoting is well suited to today’s distributed applications. You can
choose between HTTP-based transport for the Internet or a faster TCP-based one for LAN
applications by literally changing a single line in a configuration file.

Interface description does not have to be manually coded in any way, even though it’s
supported if you like to design your applications this way. Instead, metadata can be extracted
from running servers, or from any .NET assembly.

Summary
This chapter provided a short introduction to the world of distributed application development
and the respective technologies. You now know about the various scenarios in which .NET
Remoting can be applied and understand how it differs from other distributed application
protocols and techniques.

9

C H A P T E R 2

■ ■ ■

.NET Remoting Basics

This chapter gets you started with your first remoting application. Before going directly into
the code, I present the differences between .NET Remoting and other distributed application
frameworks. I then introduce you to the basic types of remote objects, server-activated objects,
and client-activated objects, and show you how to pass data by value. I also give you some basic
information about lifetime management issues and the generation of metadata, which is needed
for the client to know about the interfaces of the server-side objects.

Advantages of .NET Remoting
As you’ve seen in the previous chapter, several different architectures for the development of
distributed applications already exist. You might therefore wonder why .NET introduces another,
quite different way of developing those kinds of applications. One of the major benefits of .NET
Remoting is that it’s centralized around well-known and well-defined standards like HTTP and
that it is directly tied to the .NET Framework and has not been retrofitted later.

Ease of Implementation
Comparing .NET Remoting to other remoting schemas is like comparing COM development in
Visual Basic to C++. Visual Basic 6 allowed developers to concentrate on the business needs their
applications had to fulfill without having to bother with the technical details of COM. The C++
programmers had to know the exact specifications of COM (at least before the introduction of
ATL) and implement truckloads of code for supporting them.

With .NET this concept of absolute ease of implementation has been extended to the devel-
opment of distributed applications. There are no proxy/stub-compilation cycles as in Java RMI.
You don’t have to define your interfaces in a different programming language as you would with
CORBA or DCOM. A unique feature is that you don’t have to decide up front on the encoding
format of remoting requests; instead, you can switch from a fast TCP transport to HTTP by
changing one word in a configuration file. You can even provide both communication channels
for the same objects by adding another line to the configuration. You are not fixed on one plat-
form or programming language as with DCOM, COM+, and Java EJB. Configuration and deploy-
ment is a lot easier than it was in DCOM.

CHAPTER 2 ■ .NET REMOTING BASICS10

Figure 2-1. The .NET Remoting architecture (simplified)

Even though .NET Remoting provides a lot of features, it doesn’t lock you in. Quite the con-
trary: it can be as easy as you like or as complex as you need. The process of enabling remoting
for an object can be as straightforward as writing two lines of code or as sophisticated as imple-
menting a given transfer protocol or format on your own.

Extensible Architecture
.NET Remoting offers the developer and administrator a vastly greater choice of protocols and
formats than any of the former remoting mechanisms. In Figure 2-1, you can see a simplified
view of the .NET Remoting architecture. Whenever a client application holds a reference to
a remote object, it will be represented by a TransparentProxy object, which “masquerades” as
the destination object. This proxy will allow all of the target object’s instance methods to be
called upon it. Whenever a method call is placed to the proxy, it will be converted into a message,
and the message will pass various layers.

The message will pass a serialization layer—the formatter—which converts it into a specific
transfer format such as SOAP. The serialized message later reaches a transport channel, which
transfers it to a remote process via a specific protocol like HTTP or TCP. On the server side, the
message also passes a formatting layer, which converts the serialized format back into the origi-
nal message and forwards it to the dispatcher. Finally, the dispatcher calls the target object’s
method and passes back the response values through all tiers. This architecture is shown in
detail in Chapter 11.

In contrast to other remoting architectures, most layers can either be extended or completely
replaced, and additional layers can be chained to the baseline .NET Remoting Framework to
allow for custom processing of messages. (More about this in Chapters 11, 12, and 13.)

You can easily switch between implementations of the different layers without changing
any source code. A remoting application that’s been written using a binary TCP-based protocol
can be opened for third parties using a SOAP/HTTP-based protocol by changing some lines in
a configuration file to replace the .NET Remoting transport channel.

CHAPTER 2 ■ .NET REMOTING BASICS 11

1. This is partly the same as it was in Visual Basic 6. VB 6 allowed you to create applications without a lot
of up-front design work. This often led to applications that were hardly maintainable in the long run.

Interface Definitions
Most remoting systems like DCE/RPC, RMI, and J2EE demand a manual creation of so-called
proxy/stub objects. The proxy encapsulates the connection to the remote object on the client
and forwards calls to a stub object on the server, which in turn passes them on to the “real”
object. In most of these environments (at least in CORBA, DCE/RPC, and DCOM) the “source
code” for generating these objects has to be written in an abstract Interface Definition Language
and precompiled to generate implementation headers for a certain programming language.

In comparison to this traditional approach, .NET Remoting uses a generic proxy for all kinds
of remote objects. This is possible because .NET is the first framework that has been designed
with remoting in mind; on other platforms these capabilities have been retrofitted and therefore
have to be integrated into the given architecture and programming model.

Such ease of remoting poses the potential problem of your using an incorrect design.1 This
book will help you to make the right architectural decisions. For example, even though you don’t
have to write any interface definitions in IDL, you still should separate interface from implemen-
tation; you can, however, write both in the same language—in any .NET programming language.

.NET Remoting provides several different ways of defining those interfaces, as discussed in
the following sections.

Shared Assembly
In this case, the server-side object’s implementation exists on the client as well. Only during
instantiation is it determined whether a local object or an object on the remote server will be
created. This method allows for a semitransparent switch between invoking the local imple-
mentation (for example, when working offline) and invoking server-side objects (for example,
to make calculations on better-performing servers when connected to the network).

When using this method with “conventional” distributed applications that don’t need to
work in a disconnected scenario, you need to use a lot of care, because it poses some risks due
to easy-to-miss programming and configuration errors. When the object is mistakenly instantiated
as a local object on the client and passed to the server (as a method’s parameter, for example)
you might run into serious troubles, ranging from InvalidCastExceptions to code that works in
the development environment but doesn’t work in the production environment because of
firewall restrictions. In this case the client has in reality become the server, and further calls to
the object will pass from the server to your clients.

Shared Interfaces or Base Objects
When creating a distributed application, you define the base classes or interfaces to your remote
objects in a separated assembly. This assembly is used on both the client and the server. The real
implementation is placed only on the server and is a class that extends the base class or imple-
ments the interface.

The advantage is that you have a distinct boundary between the server and the client
application, but you have to build this intermediate assembly as well. Good object-oriented
practices nevertheless recommend this approach!

CHAPTER 2 ■ .NET REMOTING BASICS12

■Note This is the recommended way of creating .NET Remoting applications.

Generated Metadata Assembly
This approach seems to be the most elegant one at first glance. You develop the server in the
same way as when using the shared assemblies method. Instead of really sharing the DLL or
EXE, you later extract the necessary metadata, which contains the interface information, using
SoapSuds.

SoapSuds will either need the URL to a running server or the name of an assembly as a param-
eter, and will extract the necessary information (interfaces, base classes, objects passed by
value, and so on). It will put this data into a new assembly, which can be referenced from the
client application. You can then continue to work as if you’d separated your interfaces right
from the beginning.

■Caution Even though using SoapSuds might seem intriguing when you look at it for the first time, experi-
ence shows otherwise. Nowadays, Microsoft recommends using this tool in only very specific cases as detailed
in Chapter 9.

Serialization of Data
With the exception of earlier TCP/IP RPC implementations, in which you even had to worry
about little-endian/big-endian conversions, all current remoting frameworks support the
automatic encoding of simple data types into the chosen transfer format. The problem starts
when you want to pass a copy of an object from server to client. Java RMI and EJB support these
requirements, but COM+, for example, did not. The commonly used serializable objects within
COM+ were PropertyBag and ADO Recordsets—but there was no easy way of passing large object
structures around.

In .NET Remoting the encoding/decoding of objects is natively supported. You just need
to mark such objects with the [Serializable] attribute or implement the interface ISerializable
and the rest will be taken care of by the framework.

The underlying .NET runtime formatting mechanism marshals simple data types and
subobjects (which have to be serializable or exist as remote objects), and even ensures that
circular references will be tracked and transferred correctly.

Lifetime Management
In distributed applications there are generally three ways of managing lifetime. The first is to
have an open network connection (for example, using TCP) from the client to the server. When-
ever this connection is terminated, the server’s memory will be freed.

Another possibility is the DCOM approach, where a combined reference counting and
pinging mechanism is used. In this case the server receives messages from its clients at certain
intervals. As soon as no more messages are received, it will free its resources.

CHAPTER 2 ■ .NET REMOTING BASICS 13

2. Called so because every object of this kind has to extend System.MarshalByRefObject, or one of its
children.

In the Internet age, in which you don’t know your users up front, you cannot rely on the
possibility of creating a direct TCP connection between the client and the server. Your users
might be sitting behind a firewall that only allows HTTP traffic to pass through. The same router
will block any pings the server might send to your users. Because of those issues, the .NET Remot-
ing lifetime service is customizable as well. By default an object will get a lifetime assigned to it,
and each call from the client will reset this “time to live.” The .NET Framework also allows a so-
called sponsor to be registered with a server-side object. It will be contacted just before the
lifetime is over and can also increase the object’s time to live.

The combination of these two approaches allows for a configurable lifetime service that
does not depend on any specific connection from the server to the client.

■Note This is one of the core features of .NET Remoting: it never depends on any existing connections.
These are created and destroyed on demand.

Multiserver/Multiclient
When you use remote objects (as opposed to using copies of remotely generated objects that
are passed by value), .NET automatically keeps track of where they originated. So a client can
ask one server to create an object and safely pass this as a method’s parameter to another server.

The second server will then directly execute its methods on the first server, without
a round-trip through the client. Nevertheless, this also means there has to be a direct way of
communication from the second server to the first one—that is, there must not be a firewall in
between, or at least the necessary ports should be opened.

Your First Remoting Application
In the following sections, you create a sample .NET Remoting application that demonstrates
some of the concepts discussed earlier in this chapter. First and foremost, there are two very
different kinds of objects when it comes to remoting: objects that are passed by reference and
those that are passed by value. MarshalByRefObjects2 allow you to execute remote method
calls on the server side. These objects will live on the server and only a so-called ObjRef will be
passed around. You can think of the ObjRef as a networked pointer that shows on which server
the object lives and contains an ID to uniquely identify the object. The client will usually not
have the compiled objects in one of its assemblies; instead only an interface or a base class will
be available. Every method, including property gets/sets, will be executed on the server. The
.NET Framework’s proxy objects will take care of all remoting tasks, so that the object will look
just like a local one on the client.

The second kind of objects will be referred to as ByValue objects or serializable objects
throughout this book. When these objects are passed over remoting boundaries (as method
parameters or return values), they are serialized into a string or a binary representation and
restored as a copy on the other side of the communications channel. After this re-creation,
there is no notation of client or server for this kind of object; each one has its own copy, and

CHAPTER 2 ■ .NET REMOTING BASICS14

both run absolutely independently. Methods called on these objects will execute in the same
context as the origination of the method call. For example, when the client calls a function on
the server that returns a ByValue object, the object’s state (its instance variables) will be transferred
to the client and subsequent calls of methods will be executed directly on the client. This also
means that the client has to have the compiled object in one of its assemblies. The only other
requirement for an object to be passable by value is that it supports serialization. This is imple-
mented using a class-level attribute: [Serializable]. In addition to this “standard” serialization
method, you’ll also be able to implement ISerializable, which I show you how to do in Chapter 6.

The First Sample
This sample remoting application exposes a server-side MarshalByRefObject in Singleton mode.
You will call this object CustomerManager, and it will provide a method to load a Customer
object (which is a ByValue object) from a fictitious database. The resulting object will then be
passed as a copy to the client.

Architecture
When using remote objects, both client and server must have access to the same interface defi-
nitions and serializable objects that are passed by value. This leads to the general requirement
that at least three assemblies are needed for any .NET Remoting project: a shared assembly,
which contains serializable objects and interfaces or base classes to MarshalByRefObjects;
a server assembly, which implements the MarshalByRefObjects; and a client assembly, which
consumes them.

■Note It is not sufficient to copy and paste interface definitions from the server’s source code directly into
the client’s. Instead, they really have to share a reference to the same DLL because the assembly’s name
becomes part of the complete type name. The interface ICustomerManager in the assembly server.exe would
therefore be completely independent from (and different from) the interface ICustomerManager in the assem-
bly client.exe.

In most of the examples throughout this book, you will end up with these three assemblies:

• General: This represents the shared assembly, which contains the interface
ICustomerManager and the ByValue object Customer. As the methods of a Customer
object will be executed either on the client or on the server, its implementation is con-
tained within the General assembly as well.

• Server: This assembly contains the server-side implementation of CustomerManager.

• Client: This assembly contains a sample client.

Defining the Remote Interface
As a first step, you have to define the interface ICustomerManager, which will be implemented
by the server. In this interface, you’ll define a single method, GetCustomer(), that returns a Customer
object to the caller.

CHAPTER 2 ■ .NET REMOTING BASICS 15

public interface ICustomerManager
{

Customer GetCustomer(int id);
}

This interface will allow the client to load a Customer object by a given ID.

Defining the Data Object
Because you want to provide access to customer data, you first need to create a Customer class
that will hold this information. This object needs to be passed as a copy (by value), so you have
to mark it with the [Serializable] attribute.

In addition to the three properties FirstName, LastName, and DateOfBirth, you will also add
a method called GetAge() that will calculate a customer’s age. Next to performing this calculation,
this method will write a message to the console so that you can easily see in which context
(client or server) the method is executing.

[Serializable]
public class Customer
{

public String FirstName;
public String LastName;
public DateTime DateOfBirth;

public Customer()
{

Console.WriteLine(Customer.constructor: Object created);
}

public int GetAge()
{

Console.WriteLine("Customer.GetAge(): Calculating age of {0}, " +
"born on {1}.",
FirstName,
DateOfBirth.ToShortDateString());

TimeSpan tmp = DateTime.Today.Subtract(DateOfBirth);
return tmp.Days / 365; // rough estimation

}
}

Up to this point in the code, there’s not much difference from a local application. Before being
able to start developing the server, you have to put the interface and the class in the namespace
General and compile this project to a separate DLL, which will later be referenced by the server
and the client.

Implementing the Server
On the server you need to provide an implementation of ICustomerManager that will allow
you to load a customer from a fictitious database; in the current example, this implementation
will only fill the Customer object with static data.

CHAPTER 2 ■ .NET REMOTING BASICS16

■Note To create concise samples, I will present throughout the book mostly console applications that focus
on demonstrating one single aspect of .NET Remoting at a time. Using console applications as servers, however,
is not recommended in production environments, and I’ll discuss the more serious hosting options (Windows
services and Internet Information Server) in Chapter 4. It’s important to note that you can still use all the
demonstrated techniques no matter which host you choose—it’s just that console applications are easier to
use as a tool to explain concepts.

To implement the sample server, you create a new console application in Visual Studio .NET
called Server and add a reference to the framework assembly System.Runtime.Remoting.dll and
the newly compiled General.dll from the previous step (you will have to use the Browse button
here, because you didn’t copy the assembly to the global assembly cache [GAC]). The server will
have to access the namespace General and System.Runtime.Remoting plus a remoting channel,
so you have to add the following lines to the declaration:

using System.Runtime.Remoting;
using General;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;

As described previously, you will have to implement ICustomerManager in an object derived
from MarshalByRefObject. The method GetCustomer()will just return a dummy Customer object:

class CustomerManager: MarshalByRefObject, ICustomerManager
{

public CustomerManager()
{

Console.WriteLine("CustomerManager.constructor: Object created");
}

public Customer GetCustomer(int id)
{

Console.WriteLine("CustomerManager.GetCustomer(): Called");
Customer tmp = new Customer();
tmp.FirstName = "John";
tmp.LastName = "Doe";
tmp.DateOfBirth = new DateTime(1970,7,4);
Console.WriteLine("CustomerManager.GetCustomer(): Returning " +

"Customer-Object");
return tmp;

}
}

It still looks more or less the same as a “conventional” nonremoting class would—the only difference
is that the class doesn’t inherit directly from System.Object, but from System.MarshalByRefObject.

Now let’s have a look at the server startup code. This is a very basic variant of registering
a server-side object. It doesn’t yet use a configuration file, but the server’s parameters are hard
coded in void Main().

CHAPTER 2 ■ .NET REMOTING BASICS 17

class ServerStartup
{

static void Main(string[] args)
{

HttpChannel chnl = new HttpChannel(1234);
ChannelServices.RegisterChannel(chnl);
RemotingConfiguration.RegisterWellKnownServiceType(

typeof(CustomerManager),
"CustomerManager.soap",
WellKnownObjectMode.Singleton);

// the server will keep running until keypress.
Console.ReadLine();

}
}

Now take a closer look at the startup sequence of the server:

HttpChannel chnl = new HttpChannel(1234);

A new HTTP channel (System.Runtime.Remoting.Channels.Http.HttpChannel) is created and
configured to listen on port 1234. The default transfer format for HTTP is SOAP.

ChannelServices.RegisterChannel(chnl);

The channel is registered in the remoting system. This will allow incoming requests to be forwarded
to the corresponding objects.

RemotingConfiguration.RegisterWellKnownServiceType(
typeof(CustomerManager),
"CustomerManager.soap",
WellKnownObjectMode.Singleton);

The class CustomerManager is registered as a WellKnownServiceType, which allows the client
to remotely call its methods. The URL will be CustomerManager.soap—whereas this can be
any string you like, the extension .soap or .rem should be used for consistency. This is absolutely
necessary when hosting the components in IIS as it maps these two extensions to the .NET
Remoting Framework (as shown in Chapter 4).

The object’s mode is set to Singleton to ensure that only one instance will exist at any
given time.

Console.ReadLine();

This last line is not directly a part of the startup sequence but just prevents the program
from exiting while the server is running. You can now compile and start this server.

■Note If you look closely at the startup sequence, you’ll notice that the registered class is not directly
bound to the channel. In fact, you’d be right in thinking that all available channels can be used to access
all registered objects.

CHAPTER 2 ■ .NET REMOTING BASICS18

Implementing the Client
The sample client will connect to the server and ask for a Customer object. For the client you
also need to add a reference to System.Runtime.Remoting.dll and the compiled General.dll
from the preceding step (you will again have to use the Browse button, because you didn’t copy
the assembly to the GAC).

■Note The same disclaimer as for the server application applies here. I will use console applications
throughout the book because they allow me to demonstrate a single aspect of .NET Remoting at a time without
cluttering the application code. All the techniques will also work for Windows Forms applications, Windows
services, and ASP.NET applications. In Chapter 5, I’ll show you how to create these other kinds of client
applications.

The same using statements are needed as for the server:

using System.Runtime.Remoting;
using General;
using System;
using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Remoting.Channels;

The void Main() method will register a channel, contact the server to acquire a Customer
object, and print a customer’s age.

class Client
{

static void Main(string[] args)
{

HttpChannel channel = new HttpChannel();
ChannelServices.RegisterChannel(channel);

ICustomerManager mgr = (ICustomerManager) Activator.GetObject(
typeof(ICustomerManager),
"http://localhost:1234/CustomerManager.soap");

Console.WriteLine("Client.Main(): Reference to CustomerManager acquired");

Customer cust = mgr.GetCustomer(4711);
int age = cust.GetAge();
Console.WriteLine("Client.Main(): Customer {0} {1} is {2} years old.",

cust.FirstName,
cust.LastName,
age);

Console.ReadLine();
}

}

CHAPTER 2 ■ .NET REMOTING BASICS 19

3. This is the proxy object that has been returned from the call to Activator.GetObject().

Now let’s take a detailed look at the client:

HttpChannel channel = new HttpChannel();
ChannelServices.RegisterChannel(channel);

With these two lines, the HTTP channel is registered on the client. It is not necessary to specify
a port number here, because the client-side TCP port will be assigned automatically.

ICustomerManager mgr = (ICustomerManager) Activator.GetObject(
typeof(ICustomerManager),
"http://localhost:1234/CustomerManager.soap");

This line creates a local proxy object that will support the interface ICustomerManager.
Let’s examine the call to Activator.GetObject() a little closer:

Activator.GetObject(typeof(ICustomerManager),
"http://localhost:1234/CustomerManager.soap");

Instead of using the new operator, you have to let the Activator create an object. You need to spec-
ify the class or interface of the object—in this case, ICustomerManager—and the URL to the
server. This is not necessary when using configuration files—as shown in Chapter 4—because
in that situation the new operator will know which classes will be remotely instantiated and will
show the corresponding behavior.

In this example, the Activator will create a proxy object on the client side but will not yet
contact the server.

Customer cust = mgr.GetCustomer(4711);

The GetCustomer() method is executed on the TransparentProxy3 object. Now the first con-
nection to the server is made and a message is transferred that will trigger the execution of
GetCustomer() on the server-side Singleton object CustomerManager. You can verify this because
you included a Console.WriteLine() statement in the server’s GetCustomer() code. This line
will be written into the server’s console window.

The server now creates a Customer object and fills it with data. When the method returns,
this object will be serialized and all public and private properties converted to an XML fragment.
This XML document is encapsulated in a SOAP return message and transferred back to the client.
The .NET Remoting Framework on the client now implicitly generates a new Customer object
on the client and fills it with the serialized data that has been received from the server.

The client now has an exact copy of the Customer object that has been created on the server;
there is no difference between a normal locally generated object and this serialized and deseri-
alized one. All methods will be executed directly in the client’s context! This can easily be seen
in Figure 2-2, which shows the included WriteLine() statement in the Customer object’s GetAge()
method that will be output to the client’s console window. Figure 2-3 shows the corresponding
output of the server application.

CHAPTER 2 ■ .NET REMOTING BASICS20

Figure 2-2. Client output for first sample

Figure 2-3. Server output for first sample

Extending the Sample
Quite commonly, data has to be validated against several business rules. It’s very convenient
and maintainable to place this validation code on a central server. To allow validation of Customer
data, you will extend the ICustomerManager interface to include a validate() method. This
method will take a Customer object as a parameter and return another object by value. This
returned object contains the status of the validation and explanatory text. As a sample busi-
ness rule, you will check if the customer has been assigned a first name and last name and is
between 0 and 120 years old.

General Assembly
In the General assembly extend the interface ICustomerManager to include the method
Validate().

public interface ICustomerManager
{

Customer GetCustomer(int id);
ValidationResult Validate (Customer cust);

}

The ValidationResult is defined as follows. It will be a serializable (transfer by value) object
with a constructor to set the necessary values.

[Serializable]
public class ValidationResult
{

public ValidationResult (bool ok, String msg)
{

CHAPTER 2 ■ .NET REMOTING BASICS 21

Console.WriteLine("ValidationResult.ctor: Object created");
this.Ok = ok;
this.ValidationMessage = msg;

}

public bool Ok;
public String ValidationMessage;

}

Server
On the server, you have to provide an implementation of the mentioned business rule:

public ValidationResult Validate(Customer cust)
{

int age = cust.GetAge();
Console.WriteLine("CustomerManager.Validate() for {0} aged {1}",

cust.FirstName, age);
if ((cust.FirstName == null) || (cust.FirstName.Length == 0))
{

return new ValidationResult(false,"Firstname missing");
}

if ((cust.LastName == null) || (cust.LastName.Length == 0))
{

return new ValidationResult(false, "Lastname missing");
}

if (age < 0 || age > 120)
{

return new ValidationResult(false,"Customer must be " +
"younger than 120 years");

}

return new ValidationResult(true,"Validation succeeded");
}

This function just checks the given criteria and returns a corresponding ValidationResult
object, which contains the state of the validation (success/failure) and some explanatory text.

Client
To run this sample, you also have to change the client to create a new Customer object and let
the server validate it.

static void Main(string[] args)
{

HttpChannel channel = new HttpChannel();
ChannelServices.RegisterChannel(channel);

CHAPTER 2 ■ .NET REMOTING BASICS22

Figure 2-4. Client’s output when validating a customer

ICustomerManager mgr = (ICustomerManager) Activator.GetObject(
typeof(ICustomerManager),
"http://localhost:1234/CustomerManager.soap");

Console.WriteLine("Client.main(): Reference to rem. object acquired");

Console.WriteLine("Client.main(): Creating customer");
Customer cust = new Customer();
cust.FirstName = "Joe";
cust.LastName = "Smith";
cust.DateOfBirth = new DateTime(1800,5,12);

Console.WriteLine("Client.main(): Will call validate");
ValidationResult res = mgr.validate (cust);
Console.WriteLine("Client.main(): Validation finished");
Console.WriteLine("Validation result for {0} {1}\n-> {2}: {3}",

cust.FirstName, cust.LastName,res.Ok.ToString(),
res.ValidationMessage);

Console.ReadLine();
}

As you can see in Figure 2-4, the Customer object is created in the client’s context and then
passed to the server as a parameter of Validate(). Behind the scenes the same thing happens
as when GetCustomer() is called in the previous example: the Customer object will be serialized
and transferred to the server, which will in turn create an exact copy.

This copied object is used for validation against the defined business rules. When looking at the
server’s output in Figure 2-5, you will see that CustomerManager.Validate() and Customer.GetAge()
are executed on the server. The returned ValidationResult is serialized and transferred to the client.

CHAPTER 2 ■ .NET REMOTING BASICS 23

Figure 2-5. Server’s output while validating a customer

Summary
In this chapter, you read about the basics of .NET Remoting. You now know the difference
between MarshalByRefObjects, which allow you to call server-side methods, and ByValue objects,
which have to be serializable and will be passed as copies. You read about the general structure
of a remoting application and implemented a sample application that relied on shared interfaces.

25

C H A P T E R 3

■ ■ ■

.NET Remoting in Action

In this chapter, I demonstrate the key techniques you’ll need to know to use .NET Remoting in
your real-world applications. I show you the differences between Singleton and SingleCall
objects and untangle the mysteries of client-activated objects. I also introduce you to the dif-
ferent techniques to create the necessary metadata for your client applications. This chapter is
somewhat code based, so prepare yourself to start VS .NET quite often!

Types of Remoting
As you have seen in the previous chapter’s examples, there are two very different types of
remote interaction between components. One uses serializable objects that are passed as
a copy to the remote process. The second employs server-side (remote) objects that allow the
client to call their methods.

ByValue Objects
Marshalling objects by value means to serialize their state (instance variables), including all
objects referenced by instance variables, to some persistent form from which they can be
deserialized in a different context. This ability to serialize objects is provided by the .NET
Framework when you set the attribute [Serializable] for a class or implement ISerializable.

When passing the Customer object in the previous chapter’s validation example to the
server, it is serialized to XML like this:

<a1:Customer id="ref-4">
<FirstName id="ref-5">Joe</FirstName>
<LastName id="ref-6">Smith</LastName>
<DateOfBirth>1800-05-12T00:00:00.0000+02:00</DateOfBirth>
</a1:Customer>

This XML document is read by the server and an exact copy of the object is created.

■Note An important point to know about ByValue objects is that they are not remote objects. All methods
on those objects will be executed locally (in the same context) to the caller.. This also means that, unlike with
MarshalByRefObjects, the compiled class has to be available to the client. You can see this in the preceding
snippet, where “age” is not serialized but will be recalculated at the client using the GetAge() method.

CHAPTER 3 ■ .NET REMOTING IN ACTION26

When a ByValue object holds references to other objects, those have to be either serializable
or MarshalByRefObjects; otherwise, an exception will be thrown, indicating that those objects
are not remoteable.

MarshalByRefObjects
A MarshalByRefObject is a remote object that runs on the server and accepts method calls from
the client. Its data is stored in the server’s memory and its methods executed in the server’s
AppDomain. Instead of passing around a variable that points to an object of this type, in reality
only a pointer-like construct—called an ObjRef—is passed around. Contrary to common point-
ers, this ObjRef does not contain the memory address, rather the server name/IP address and
an object identity that identifies exactly one object of the many that are probably running on
the server. I cover this in depth later in this chapter. MarshalByRefObjects can be categorized
into two groups: server-activated objects (SAOs) and client-activated objects (CAOs).

Server-Activated Objects
Server-activated objects are somewhat comparable to classic stateless Web Services. When
a client requests a reference to a SAO, no message will travel to the server. Only when methods
are called on this remote reference will the server be notified.

Depending on the configuration of its objects, the server then decides whether a new
instance will be created or an existing object will be reused. SAOs can be marked as either
Singleton or SingleCall. In the first case, one instance serves the requests of all clients in a
multithreaded fashion. When using objects in SingleCall mode, as the name implies, a new
object will be created for each request and destroyed afterwards.

■Note As Singleton objects will be accessed by multiple threads at the same time, it’s important that you
use correct locking and resource sharing patterns to prevent data corruption. For example, if your objects
access a database, you should never use a class-level member that holds a SqlConnection object. Instead,
you should create and destroy this connection object directly inside the methods.

In the following examples, you’ll see the differences between these two kinds of services.
You’ll use the same shared interface, client- and server-side implementation of the service, and
only change the object mode on the server.

The shared assembly General.dll will contain the interface to a very simple remote object
that allows the storage and retrieval of stateful information in the form of an int value, as shown
in Listing 3-1.

Listing 3-1. The Interface Definition That Will Be Compiled to a DLL

using System;

namespace General
{

public interface IMyRemoteObject
{

CHAPTER 3 ■ .NET REMOTING IN ACTION 27

void SetValue (int newval);
int GetValue();

}
}

The client that is shown in Listing 3-2 provides the means for opening a connection to the
server and tries to set and retrieve the instance values of the server-side remote object. You’ll
have to add a reference to System.Runtime.Remoting.DLL to your Visual Studio .NET project
for this example.

Listing 3-2. A Simple Client Application

using System;
using System.Runtime.Remoting;
using General;
using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Remoting.Channels;

namespace Client
{

class Client
{

static void Main(string[] args)
{

HttpChannel channel = new HttpChannel();
ChannelServices.RegisterChannel(channel);

IMyRemoteObject obj = (IMyRemoteObject) Activator.GetObject(
typeof(IMyRemoteObject),
"http://localhost:1234/MyRemoteObject.soap");

Console.WriteLine("Client.Main(): Reference to rem. obj acquired");

int tmp = obj.GetValue();
Console.WriteLine("Client.Main(): Original server side value: {0}",tmp);

Console.WriteLine("Client.Main(): Will set value to 42");
obj.SetValue(42);

tmp = obj.GetValue();
Console.WriteLine("Client.Main(): New server side value {0}", tmp);

Console.ReadLine();
}

}
}

The sample client will read and output the server’s original value, change it to 42, and then
read and output it again.

CHAPTER 3 ■ .NET REMOTING IN ACTION28

SingleCall Objects

For SingleCall objects the server will create a single object, execute the method, and destroy
the object again. SingleCall objects are registered at the server using the following statement:

RemotingConfiguration.RegisterWellKnownServiceType(
typeof(<YourClass>), "<URL>",
WellKnownObjectMode.SingleCall);

Objects of this kind can obviously not hold any state information, as all internal variables
will be discarded at the end of the method call. The reason for using objects of this kind is that
they can be deployed in a very scalable manner. These objects can be located on different
computers with an intermediate multiplexing/load-balancing device, which would not be pos-
sible when using stateful objects. The complete server for this example can be seen in Listing 3-3.

Listing 3-3. The Complete Server Implementation

using System;
using System.Runtime.Remoting;
using General;
using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Remoting.Channels;

namespace Server
{

class MyRemoteObject: MarshalByRefObject, IMyRemoteObject
{

int myvalue;

public MyRemoteObject()
{

Console.WriteLine("MyRemoteObject.Constructor: New Object created");
}

public MyRemoteObject(int startvalue)
{

Console.WriteLine("MyRemoteObject.Constructor: .ctor called with {0}",
startvalue);

myvalue = startvalue;
}

public void SetValue(int newval)
{

Console.WriteLine("MyRemoteObject.setValue(): old {0} new {1}",
myvalue,newval);

myvalue = newval;
}

CHAPTER 3 ■ .NET REMOTING IN ACTION 29

public int GetValue()
{

Console.WriteLine("MyRemoteObject.getValue(): current {0}",myvalue);
return myvalue;

}
}

class ServerStartup
{

static void Main(string[] args)
{

Console.WriteLine ("ServerStartup.Main(): Server started");

HttpChannel chnl = new HttpChannel(1234);
ChannelServices.RegisterChannel(chnl);
RemotingConfiguration.RegisterWellKnownServiceType(

typeof(MyRemoteObject),
"MyRemoteObject.soap",
WellKnownObjectMode.SingleCall);

// the server will keep running until keypress.
Console.ReadLine();

}
}

}

When the program is run, the output in Figure 3-1 will appear on the client.

What’s happening is exactly what you’d expect from the previous description—even though
it might not be what you’d normally expect from an object-oriented application. The reason
for the server returning a value of 0 after setting the value to 42 is that your client is talking to
a completely different object. Figure 3-2 shows the server’s output.

Figure 3-1. Client’s output for a SingleCall object

CHAPTER 3 ■ .NET REMOTING IN ACTION30

This indicates that the server will really create one object for each call.

■Note If you use the .NET Framework version 1.0, you’ll see that an additional instance is created for the
first remote invocation. This object is used by the framework to check whether the type has been correctly
configured and whether it is accessible by the remoting framework. This first instance will immediately be
thrown away without doing any work. This behavior is different with version 1.1 of the .NET Framework—in
this case, you won’t see this additional object creation.

Singleton Objects

Only one instance of a Singleton object can exist at any given time. When receiving a client’s
request, the server checks its internal tables to see if an instance of this class already exists; if not,
this object will be created and stored in the table. After this check the method will be executed.
The server guarantees that there will be exactly one or no instance available at a given time.

■Note Singletons have an associated lifetime as well, so be sure to override the standard lease time if you
don’t want your object to be destroyed after some minutes. (More on this later in this chapter.)

For registering an object as a Singleton, you can use the following lines of code:

RemotingConfiguration.RegisterWellKnownServiceType(
typeof(<YourClass>), "<URL>",
WellKnownObjectMode.Singleton);

The ServerStartup class in your sample server will be changed accordingly:

class ServerStartup
{

static void Main(string[] args)
{

Console.WriteLine ("ServerStartup.Main(): Server started");

Figure 3-2. Server’s output for a SingleCall object

CHAPTER 3 ■ .NET REMOTING IN ACTION 31

HttpChannel chnl = new HttpChannel(1234);
ChannelServices.RegisterChannel(chnl);
RemotingConfiguration.RegisterWellKnownServiceType(

typeof(MyRemoteObject),
"MyRemoteObject.soap",
WellKnownObjectMode.Singleton);

// the server will keep running until keypress.
Console.ReadLine();

}
}

When the client is started, the output will show a behavior consistent with the “normal”
object-oriented way of thinking; the value that is returned is the same value you set two lines
before (see Figure 3-3).

The same is true for the server, as Figure 3-4 shows.

Figure 3-3. Client’s output for a Singleton object

Figure 3-4. Server’s output for a Singleton object

CHAPTER 3 ■ .NET REMOTING IN ACTION32

An interesting thing happens when a second client is started afterwards. This client
will receive a value of 42 directly after startup without your setting this value beforehand (see
Figures 3-5 and 3-6). This is because only one instance exists at the server, and the instance
will stay alive even after the first client is disconnected.

■Tip Use Singletons when you want to share data or resources between clients. But always keep in mind
that more than one client might access the same object at any given time, so you have to write the server-
side code in a thread-safe way.

Published Objects

When using either SingleCall or Singleton objects, the necessary instances will be created
dynamically during a client’s request. When you want to publish a certain object instance
that’s been precreated on the server—for example, one using a nondefault constructor—
neither alternative provides you with a solution.

In this case you can use RemotingServices.Marshal() to publish a given instance that
behaves like a Singleton afterwards. The only difference is that the object has to already exist at
the server before publication.

YourObject obj = new YourObject(<your params for constr>);
RemotingServices.Marshal(obj,"YourUrl.soap");

Figure 3-5. The second client’s output when calling a Singleton object

Figure 3-6. Server’s output after the second call to a SingleCall object

CHAPTER 3 ■ .NET REMOTING IN ACTION 33

The code in the ServerStartup class will look like this:

class ServerStartup
{

static void Main(string[] args)
{

Console.WriteLine ("ServerStartup.Main(): Server started");

HttpChannel chnl = new HttpChannel(1234);
ChannelServices.RegisterChannel(chnl);

MyRemoteObject obj = new MyRemoteObject(4711);
RemotingServices.Marshal(obj,"MyRemoteObject.soap");

// the server will keep running until keypress.
Console.ReadLine();

}
}

When the client is run, you can safely expect to get a value of 4711 on the first request
because you started the server with this initial value (see Figures 3-7 and 3-8).

Figure 3-7. Client’s output when calling a published object

Figure 3-8. Server’s output when publishing the object

CHAPTER 3 ■ .NET REMOTING IN ACTION34

1. The only exception from this rule lies in the object’s lifetime, which is managed completely differently
from the way it is in .NET generally or in COM.

Client-Activated Objects
A client-activated object (CAO) behaves mostly the same way as does a “normal” .NET
object (or a COM object).1 When a creation request on the client is encountered (using
Activator.CreateInstance() or the new operator), an activation message is sent to the server,
where an instance of the specified class is created. The server then creates an ObjRef, which is
used to uniquely identify this object and returns it to the client. On the client proxy, this ObjRef
will be turned into a TransparentProxy, which points to the underlying server-side instance.

A client-activated object’s lifetime is managed by the same lifetime service used by SAOs,
as shown later in this chapter. CAOs are so-called stateful objects; an instance variable that has
been set by the client can be retrieved again and will contain the correct value. These objects
will store state information from one method call to the other. CAOs are explicitly created by
the client, so they can have distinct constructors like normal .NET objects do.

Direct/Transparent Creation

The .NET Remoting framework can be configured to allow client-activated objects to be created
like normal objects using the new operator. Unfortunately, this manner of creation has one seri-
ous drawback: you cannot use shared interfaces or base classes. This means that you either have
to ship the compiled objects to your clients or use SoapSuds to extract the metadata.

This tool allows you to extract a metadata-only assembly out of a running server or a server-
side implementation assembly. In the past two years, experience has taught me that relying on
this tool is not a good choice for most applications. As of today, Microsoft suggests not to use it
for .NET to .NET distributed applications. I will nevertheless demonstrate the use of SoapSuds.exe
in case you are willing to take the risk.

■Caution If you use the initial version 1.1 of the .NET Framework (without service packs), metadata gener-
ated by SoapSuds cannot be used for client-activated objects. This is a bug that has been detailed in
article 823445 in the Microsoft Knowledge Base. You can find more details about this problem—and how to
contact Product Support Services (PSS) to obtain a hotfix—at http://support.microsoft.com/
default.aspx?scid=kb;en-us;823445.

In the following example, you’ll use more or less the same class you did in the previous
examples; it will provide your client with a SetValue() and GetValue() method to store and
retrieve an int value as the object’s state. The metadata that is needed for the client to create
a reference to the CAO will be extracted with SoapSuds.exe, about which you’ll read more later
in this chapter.

The reliance on SoapSuds allows you to develop the server application without any need
for up-front design of a shared assembly, therefore the server will simply include the CAOs
implementation. You can see this in Listing 3-4.

CHAPTER 3 ■ .NET REMOTING IN ACTION 35

Listing 3-4. A Server That Offers a Client-Activated Object

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Remoting.Channels;

namespace Server
{

public class MyRemoteObject: MarshalByRefObject
{

int myvalue;

public MyRemoteObject(int val)
{

Console.WriteLine("MyRemoteObject.ctor(int) called");
myvalue = val;

}

public MyRemoteObject()
{

Console.WriteLine("MyRemoteObject.ctor() called");
}

public void SetValue(int newval)
{

Console.WriteLine("MyRemoteObject.SetValue(): old {0} new {1}",
myvalue,newval);

myvalue = newval;
}

public int GetValue()
{

Console.WriteLine("MyRemoteObject.GetValue(): current {0}",myvalue);
return myvalue;

}
}

class ServerStartup
{

static void Main(string[] args)
{

Console.WriteLine ("ServerStartup.Main(): Server started");

HttpChannel chnl = new HttpChannel(1234);
ChannelServices.RegisterChannel(chnl);

CHAPTER 3 ■ .NET REMOTING IN ACTION36

RemotingConfiguration.ApplicationName = "MyServer";
RemotingConfiguration.RegisterActivatedServiceType(

typeof(MyRemoteObject));

// the server will keep running until keypress.
Console.ReadLine();

}
}

}

On the server you now have the new startup code needed to register a channel and this class
as a client-activated object. When adding a Type to the list of activated services, you cannot pro-
vide a single URL for each object; instead, you have to set RemotingConfiguration.ApplicationName
to a string value that identifies your server.

The URL to your remote object will be http://<hostname>:<port>/<ApplicationName>.
What happens behind the scenes is that a general activation SAO is automatically created
by the framework and published at the URL http://<hostname>:<port>/<ApplicationName>/
RemoteActivationService.rem. This SAO will take the clients’ requests to create a new instance
and pass it on to the remoting framework.

To extract the necessary interface information, you can run the following SoapSuds com-
mand line in the directory where the server.exe assembly has been placed:

soapsuds -ia:server -nowp -oa:generated_metadata.dll

■Note You should perform all command-line operations from the Visual Studio command prompt, which
you can bring up by selecting Start ➤ All Programs ➤ Microsoft Visual Studio .NET 2003 ➤ Visual Studio
.NET Tools. This command prompt sets the correct “path” variable to include the .NET SDK tools.

The resulting generated_metadata.dll assembly must be referenced by the client. The
sample client also registers the CAO and acquires two references to (different) remote objects.
It then sets the value of those objects and outputs them again, which shows that you really are
dealing with two different objects.

As you can see in Listing 3-5, the activation of the remote object is done with the new oper-
ator. This is possible because you registered the Type as ActivatedClientType before. The runtime
now knows that whenever your application creates an instance of this class, it instead should
create a reference to a remote object running on the server.

Listing 3-5. The Client Accesses the Client-Activated Object

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Activation;
using Server;

CHAPTER 3 ■ .NET REMOTING IN ACTION 37

namespace Client
{

class Client
{

static void Main(string[] args)
{

HttpChannel channel = new HttpChannel();
ChannelServices.RegisterChannel(channel);

RemotingConfiguration.RegisterActivatedClientType(
typeof(MyRemoteObject),
"http://localhost:1234/MyServer");

Console.WriteLine("Client.Main(): Creating first object");
MyRemoteObject obj1 = new MyRemoteObject();
obj1.SetValue(42);

Console.WriteLine("Client.Main(): Creating second object");
MyRemoteObject obj2 = new MyRemoteObject();
obj2.SetValue(4711);

Console.WriteLine("Obj1.GetValue(): {0}",obj1.GetValue());
Console.WriteLine("Obj2.GetValue(): {0}",obj2.GetValue());

Console.ReadLine();
}

}
}

When this code sample is run, you will see the same behavior as when using local
objects—the two instances have their own state (Figure 3-9). As expected, on the server two
different objects are created (Figure 3-10).

Figure 3-9. Client-side output when using CAOs

CHAPTER 3 ■ .NET REMOTING IN ACTION38

Using the Factory Design Pattern

From what you’ve read up to this point, you know that the reliance on SoapSuds might not be
the best choice for your distributed application. You can instead use a ffactory design pattern,
in which you’ll include a SAO providing methods that return new instances of the CAO.

■Note You might also just ship the server-side implementation assembly to the client and reference it
directly. But as I stated previously, this is clearly against all distributed application design principles and will
lead to a number of versioning and deployment issues.

Here, I just give you a short introduction to the factory design pattern. Basically you have
two classes, one of which is a factory, and the other is the real object you want to use. Due to
constraints of the real class, you will not be able to construct it directly, but instead will have to
call a method on the factory, which creates a new instance and passes it to the client.

Listing 3-6 shows you a fairly simple implementation of this design pattern.

Listing 3-6. The Factory Design Pattern

using System;

namespace FactoryDesignPattern
{

class MyClass
{
}

class MyFactory
{

public MyClass GetNewInstance()
{

return new MyClass();
}

}

Figure 3-10. Server-side output when using CAOs

CHAPTER 3 ■ .NET REMOTING IN ACTION 39

class MyClient
{

static void Main(string[] args)
{

// creation using "new"
MyClass obj1 = new MyClass();

// creating using a factory
MyFactory fac = new MyFactory();
MyClass obj2 = fac.GetNewInstance();

}
}

}

When bringing this pattern to remoting, you have to create a factory that’s running as
a server-activated object (ideally a Singleton) that has a method returning a new instance of
the “real class” (the CAO) to the client. This gives you a huge advantage in that you don’t have
to distribute the implementation to the client system and still can avoid using SoapSuds.

■Note Distributing the implementation to the client is not only a bad choice due to deployment issues, it
also makes it possible for the client user to disassemble your object’s codes using ILDASM or some other tool.

You have to design your factory SAO using a shared assembly that contains the interface
information (or abstract base classes) which are implemented by your remote objects. This is
shown in Listing 3-7.

Listing 3-7. The Shared Interfaces for the Factory Design Pattern

using System;

namespace General
{

public interface IRemoteObject
{

void SetValue(int newval);
int GetValue();

}

public interface IRemoteFactory
{

IRemoteObject GetNewInstance();
IRemoteObject GetNewInstance(int initvalue);

}
}

CHAPTER 3 ■ .NET REMOTING IN ACTION40

On the server you now have to implement both interfaces and create a startup code that
registers the factory as a SAO. You don’t have to register the CAO in this case because every
MarshalByRefObject can be returned by a method call; the framework takes care of the neces-
sity to remote each call itself, as shown in Listing 3-8.

Listing 3-8. The Server-Side Factory Pattern’s Implementation

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Messaging;
using General;

namespace Server
{

class MyRemoteObject: MarshalByRefObject, IRemoteObject
{

int myvalue;

public MyRemoteObject(int val)
{

Console.WriteLine("MyRemoteObject.ctor(int) called");
myvalue = val;

}

public MyRemoteObject()
{

Console.WriteLine("MyRemoteObject.ctor() called");
}

public void SetValue(int newval)
{

Console.WriteLine("MyRemoteObject.SetValue(): old {0} new {1}",
myvalue,newval);

myvalue = newval;
}

public int GetValue()
{

Console.WriteLine("MyRemoteObject.GetValue(): current {0}",myvalue);
return myvalue;

}
}

CHAPTER 3 ■ .NET REMOTING IN ACTION 41

class MyRemoteFactory: MarshalByRefObject,IRemoteFactory
{

public MyRemoteFactory() {
Console.WriteLine("MyRemoteFactory.ctor() called");

}

public IRemoteObject GetNewInstance()
{

Console.WriteLine("MyRemoteFactory.GetNewInstance() called");
return new MyRemoteObject();

}

public IRemoteObject getNewInstance(int initvalue)
{

Console.WriteLine("MyRemoteFactory.getNewInstance(int) called");
return new MyRemoteObject(initvalue);

}
}

class ServerStartup
{

static void Main(string[] args)
{

Console.WriteLine ("ServerStartup.Main(): Server started");

HttpChannel chnl = new HttpChannel(1234);
ChannelServices.RegisterChannel(chnl);

RemotingConfiguration.RegisterWellKnownServiceType(
typeof(MyRemoteFactory),
"factory.soap",
WellKnownObjectMode.Singleton);

// the server will keep running until keypress.
Console.ReadLine();

}
}

}

The client, which is shown in Listing 3-9, works a little bit differently from the previous
one as well. It creates a reference to a remote SAO using Activator.GetObject(), upon which it
places two calls to GetNewInstance() to acquire two different remote CAOs.

Listing 3-9. The Client Uses the Factory Pattern

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels.Http;

CHAPTER 3 ■ .NET REMOTING IN ACTION42

using System.Runtime.Remoting.Channels.Tcp;
using System.Runtime.Remoting.Channels;
using General;

namespace Client
{

class Client
{

static void Main(string[] args)
{

HttpChannel channel = new HttpChannel();
ChannelServices.RegisterChannel(channel);

Console.WriteLine("Client.Main(): Creating factory");
IRemoteFactory fact = (IRemoteFactory) Activator.GetObject(

typeof(IRemoteFactory),
"http://localhost:1234/factory.soap");

Console.WriteLine("Client.Main(): Acquiring first object from factory");
IRemoteObject obj1 = fact.GetNewInstance();
obj1.SetValue(42);

Console.WriteLine("Client.Main(): Acquiring second object from " +
"factory");

IRemoteObject obj2 = fact.GetNewInstance(4711);

Console.WriteLine("Obj1.GetValue(): {0}",obj1.GetValue());
Console.WriteLine("Obj2.GetValue(): {0}",obj2.GetValue());

Console.ReadLine();
}

}
}

When this sample is running, you see that the client behaves nearly identically to the pre-
vious example, but the second object’s value has been set using the object’s constructor, which
is called via the factory (Figure 3-11). On the server a factory object is generated, and each new
instance is created using the overloaded method GetNewInstance() (Figure 3-12).

Figure 3-11. Client-side output when using a factory object

CHAPTER 3 ■ .NET REMOTING IN ACTION 43

Managing Lifetime

One point that can lead to a bit of confusion is the way an object’s lifetime is managed in the
.NET Remoting framework. Common .NET objects are managed using a garbage collection
algorithm that checks if any other object is still using a given instance. If not, the instance will
be garbage collected and disposed.

If you would apply a similar scheme to remote objects, it would mean to ping the client-side
proxies to ensure that they are still using the objects and that the application is still running. This
is mainly what DCOM did. The reason for this is that normally a client that has been closed
unexpectedly or went offline due to a network outage might not have decremented the server-
side reference counter. Without some additional measure, these server-side objects would in
turn use the server’s resources forever. Unfortunately, when your client is behind an HTTP
proxy and is accessing your objects using SOAP remoting, the server will not be able to contact
the client in any way.

This constraint leads to a new kind of lifetime service: the lease-based object lifetime. Basi-
cally this means that each server-side object is associated with a lease upon creation. This lease
will have a time-to-live counter (which starts at five minutes by default) that is decremented in
certain intervals. In addition to the initial time, a defined amount (two minutes in the default
configuration) is added to this time to live upon every method call a client places on the remote
object.

When this time reaches zero, the framework looks for any sponsors registered with this
lease. A sponsor is an object running on the server itself, the client, or any machine reachable via
a network that will take a call from the .NET Remoting framework asking whether an object’s life-
time should be renewed or not (more on this in Chapter 6).

When the sponsor decides that the lease will not be renewed or when the framework is
unable to contact any of the registered sponsors, the object is marked as timed out and will be
subject to garbage collection. When a client still has a reference to a timed-out object and calls
a method on it, it will receive an exception.

To change the default lease times, you can override InitializeLifetimeService() in the
MarshalByRefObject. In the following example, you see how to change the previous CAO sample
to implement a different lifetime of only ten milliseconds for this object. Normally LeaseManager
only polls all leases every ten seconds, so you have to change this polling interval as well.

using System.Runtime.Remoting.Lifetime
namespace Server
{

class MyRemoteObject: MarshalByRefObject, IRemoteObject
{

Figure 3-12. Server-side output when using a factory object

CHAPTER 3 ■ .NET REMOTING IN ACTION44

public override object InitializeLifetimeService()
{

Console.WriteLine("MyRemoteObject.InitializeLifetimeService() called");
ILease lease = (ILease)base.InitializeLifetimeService();
if (lease.CurrentState == LeaseState.Initial)
{

lease.InitialLeaseTime = TimeSpan.FromMilliseconds(10);
lease.SponsorshipTimeout = TimeSpan.FromMilliseconds(10);
lease.RenewOnCallTime = TimeSpan.FromMilliseconds(10);

}
return lease;

}

// rest of implementation ...
}

class MyRemoteFactory: MarshalByRefObject,IRemoteFactory
{

// rest of implementation ...
}

class ServerStartup
{

static void Main(string[] args)
{

Console.WriteLine ("ServerStartup.Main(): Server started");

LifetimeServices.LeaseManagerPollTime = TimeSpan.FromMilliseconds(10);

HttpChannel chnl = new HttpChannel(1234);
ChannelServices.RegisterChannel(chnl);

RemotingConfiguration.RegisterWellKnownServiceType(
typeof(MyRemoteFactory),
"factory.soap",
WellKnownObjectMode.Singleton);

// the server will keep running until keypress.
Console.ReadLine();

}
}

}

On the client side, you can add a one-second delay between creation and the first call on
the remote object to see the effects of the changed lifetime. You also need to provide some
code to handle the RemotingException that will get thrown because the object is no longer
available at the server. The client is shown in Listing 3-10.

CHAPTER 3 ■ .NET REMOTING IN ACTION 45

Listing 3-10. A Client That Calls a Timed-Out CAO

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Remoting.Channels.Tcp;
using System.Runtime.Remoting.Channels;
using General;

namespace Client
{

class Client
{

static void Main(string[] args)
{

HttpChannel channel = new HttpChannel();
ChannelServices.RegisterChannel(channel);

Console.WriteLine("Client.Main(): Creating factory");
IRemoteFactory fact = (IRemoteFactory) Activator.GetObject(

typeof(IRemoteFactory),
"http://localhost:1234/factory.soap");

Console.WriteLine("Client.Main(): Acquiring object from factory");
IRemoteObject obj1 = fact.GetNewInstance();

Console.WriteLine("Client.Main(): Sleeping one second");
System.Threading.Thread.Sleep(1000);

Console.WriteLine("Client.Main(): Setting value");
try
{

obj1.SetValue(42);
}
catch (Exception e)
{

Console.WriteLine("Client.Main(). EXCEPTION \n{0}",e.Message);
}

Console.ReadLine();
}

}
}

Running this sample, you see that the client is able to successfully create a factory object
and call its GetNewInstance() method (Figure 3-13). When calling SetValue() on the returned
CAO, the client will receive an exception stating the object has timed out. The server runs nor-
mally (Figure 3-14).

CHAPTER 3 ■ .NET REMOTING IN ACTION46

■Note If you use version 1.0 of the .NET Framework, this exception’s text will look different as it includes
the GUID that has been used to identify the remote service.

2. For the in-depth story about asynchronous calls, please refer to Chapter 7.

Types of Invocation
The .NET Framework provides three possibilities to call methods on remote objects (no matter
if they are Singleton, SingleCall, or published objects). You can execute their methods in a syn-
chronous, asynchronous, or one-way fashion.

Synchronous calls are basically what I showed you in the preceding examples. The server’s
remote method is called like a common method, and the client blocks and waits until the server
has completed its processing. If an exception occurs during execution of the remote invocation,
the exception is thrown at the line of code in which you called the server.

Asynchronous calls are executed in a two-step process.2 The first step triggers the execution
but does not wait for the method’s response value. The program flow continues on the client.
When you are ready to collect the server-side function’s response, you have to call another method
that checks whether the server has already finished processing your request; if not, it blocks
until finalization. Any exception thrown during the call of your method will be rethrown at the
line of code where you collect the response. Even if the server has been offline, you won’t be
notified beforehand.

TThe last kind of function is a little different from the preceding ones. With one-way meth-
ods, you don’t have the option of receiving return values or getting an exception if the server has
been offline or otherwise unable to fulfill your request. The .NET Remoting framework will just
try to call the methods on the remote server and won’t do anything else.

Figure 3-13. The client receives an exception because the object has timed out.

Figure 3-14. The server when overriding InitializeLifetimeService()

CHAPTER 3 ■ .NET REMOTING IN ACTION 47

Synchronous Calls
As I’ve mentioned, synchronous calls are the usual way of calling a function in the .NET
Framework. The server will be contacted directly and, except when using multiple client-side
threads, the client code will block until the server has finished executing its method. If the
server is unavailable or an exception occurs while carrying out your request, the exception will
be rethrown at the line of code where you called the remote method.

Using Synchronous Calls
In the following series of examples for the different types of invocation, you use a common
server and a shared assembly called General.dll (you’ll see some slight modifications in the last
part). This server just provides you with a Singleton object that stores an int as its state and has
an additional method that returns a String. You’ll use this later to demonstrate the collection of
return values when using asynchronous calls.

Defining the General.dll

In Listing 3-11, you see the shared General.dll in which the necessary interface is defined.

Listing 3-11. The Shared Assembly’s Source Code

using System;
using System.Runtime.Remoting.Messaging;

namespace General
{

public interface IMyRemoteObject
{

void SetValue(int newval);
int GetValue();
String GetName();

}
}

Creating the Server

The server, shown in Listing 3-12, implements the defined methods with the addition of mak-
ing the SetValue() and GetName() functions long-running code. In both methods, a five-second
delay is introduced so you can see the effects of long-lasting execution in the different invocation
contexts.

Listing 3-12. A Server with Some Long-Running Methods

using System;
using System.Runtime.Remoting;
using General;
using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Messaging;

CHAPTER 3 ■ .NET REMOTING IN ACTION48

using System.Collections;
using System.Threading;

namespace Server
{

class MyRemoteObject: MarshalByRefObject, IMyRemoteObject
{

int myvalue;

public MyRemoteObject()
{

Console.WriteLine("MyRemoteObject.Constructor: New Object created");
}

public void SetValue(int newval)
{

Console.WriteLine("MyRemoteObject.setValue(): old {0} new {1}",
myvalue,newval);

// we simulate a long running action
Console.WriteLine(" .setValue() -> waiting 5 sec before setting" +

" value");
Thread.Sleep(5000);

myvalue = newval;
Console.WriteLine(" .SetValue() -> value is now set");

}

public int GetValue()
{

Console.WriteLine("MyRemoteObject.GetValue(): current {0}",myvalue);
return myvalue;

}

public String GetName()
{

Console.WriteLine("MyRemoteObject.getName(): called");

// we simulate a long running action
Console.WriteLine(" .GetName() -> waiting 5 sec before continuing");
Thread.Sleep(5000);

Console.WriteLine(" .GetName() -> returning name");
return "John Doe";

}
}

CHAPTER 3 ■ .NET REMOTING IN ACTION 49

class ServerStartup
{

static void Main(string[] args)
{

Console.WriteLine ("ServerStartup.Main(): Server started");

HttpChannel chnl = new HttpChannel(1234);
ChannelServices.RegisterChannel(chnl);

RemotingConfiguration.RegisterWellKnownServiceType(
typeof(MyRemoteObject),
"MyRemoteObject.soap",
WellKnownObjectMode.Singleton);

// the server will keep running until keypress.
Console.ReadLine();

}

}
}

Creating the Client

The first client, which is shown in Listing 3-13, calls the server synchronously, as in all preceding
examples. It calls all three methods and gives you statistics on how long the total execution took.

Listing 3-13. The First Client Calls the Methods Synchronously

using System;
using System.Runtime.Remoting;
using General;
using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Remoting.Channels.Tcp;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Proxies;
using System.Threading;
using System.Reflection;

namespace Client
{

class Client
{

static void Main(string[] args)
{

DateTime start = System.DateTime.Now;

CHAPTER 3 ■ .NET REMOTING IN ACTION50

HttpChannel channel = new HttpChannel();
ChannelServices.RegisterChannel(channel);
IMyRemoteObject obj = (IMyRemoteObject) Activator.GetObject(

typeof(IMyRemoteObject),
"http://localhost:1234/MyRemoteObject.soap");

Console.WriteLine("Client.Main(): Reference to rem.obj. acquired");

Console.WriteLine("Client.Main(): Will set value to 42");

obj.SetValue(42);

Console.WriteLine("Client.Main(): Will now read value");
int tmp = obj.GetValue();
Console.WriteLine("Client.Main(): New server side value {0}", tmp);

Console.WriteLine("Client.Main(): Will call getName()");
String name = obj.GetName();
Console.WriteLine("Client.Main(): received name {0}",name);

DateTime end = System.DateTime.Now;
TimeSpan duration = end.Subtract(start);
Console.WriteLine("Client.Main(): Execution took {0} seconds.",

duration.Seconds);

Console.ReadLine();
}

}
}

As the calls to the long-running methods GetName() and SetValue() are expected to take
roughly five seconds each, and you have to add a little overhead for .NET Remoting (especially
for the first call on a remote object), this example will take more than ten seconds to run.

You can see that this assumption is right by looking at the client’s output in Figure 3-15. The
total client execution takes 12 seconds. When looking at the server’s output in Figure 3-16, note
that all methods are called synchronously. Every method is finished before the next one is called
by the client.

Figure 3-15. Client’s output when using synchronous calls

CHAPTER 3 ■ .NET REMOTING IN ACTION 51

Asynchronous Calls
In the synchronous calls example, you saw that waiting for every method to complete incurs
a performance penalty if the calls themselves are independent; the second call doesn’t need
the output from the first. You could now use a separate thread to call the second method, but
even though threading is quite simple in .NET, it would probably render the application more
complex if you use a distinct thread for any longer lasting remote function call. The .NET Frame-
work provides a feature, called asynchronous delegates, that allows methods to be called in an
asynchronous fashion with only three lines of additional code.

Delegate Basics
A delegate is, in its regular sense, just a kind of an object-oriented function pointer. You will initial-
ize it and pass a function to be called when the delegate is invoked. In .NET Framework, a dele-
gate is a subclass of System.MulticastDelegate, but C# provides an easier way to define
a delegate instead of declaring a new Class.

Declaring a Delegate

The declaration of a delegate looks quite similar to the declaration of a method.

delegate <ReturnType> <name> ([parameters]);

As the delegate will call a method at some point in the future, you have to provide it with
a declaration that matches the method’s signature. When you want a delegate to call the following
method:

public String DoSomething(int myValue)

you have to define it as follows:

delegate String DoSomethingDelegate (int myValue);

■Note The delegate’s parameter and return types have to match those of the method.

Remember that the delegate is in reality just another class, so you cannot define it within
a method’s body, only directly within a namespace or another class!

Figure 3-16. Server’s output when called synchronously

CHAPTER 3 ■ .NET REMOTING IN ACTION52

Asynchronously Invoking a Delegate

When you want to use a delegate, you first have to create an instance of it, passing the method
to be called as a constructor parameter:

DoSomethingDelegate del = new DoSomethingDelegate(DoSomething);

■Note When passing the method to the constructor, be sure not to include an opening or closing parenthe-
sis— (or) —as in DoSomething(). The previous example uses a static method DoSomething in the same
class. When using static methods of other classes, you have to pass SomeClass.SomeMethod, and for
instance methods, you pass SomeObject.DoSomething.

The asynchronous invocation of a delegate is a two-step process. In the first step, you have
to trigger the execution using BeginInvoke(), as follows:

IAsyncResult ar = del.BeginInvoke(42,null,null);

■Note If you use Microsoft Visual Studio 2002, BeginInvoke() behaves a little strangely in the IDE. You
won’t see it using IntelliSense, as it is automatically generated during compilation. The parameters are the
same as the method parameters, according to the delegate definition, followed by two other objects; you
won’t be using these two objects in the following examples, instead passing null to BeginInvoke(). In
Visual Studio 2003, you will see the complete information in the IDE.

BeginInvoke() then returns an IAsyncResult object that will be used later to retrieve the
method’s return values. When ready to do so, you call EndInvoke() on the delegate passing the
IAsyncResult as a parameter. The EndInvoke() method will block until the server has com-
pleted executing the underlying method.

String res = del.EndInvoke(ar);

■Note EndInvoke() will not be visible in the Visual Studio 2002 IDE either. The method takes an
IAsyncResult as a parameter, and its return type will be defined in the delegate’s declaration.

Creating an Example Delegate
In Listing 3-14, a delegate is used to asynchronously call a local function and wait for its result.
The method returns a String built from the passed int parameter.

Listing 3-14. Using a Delegate in a Local Application

using System;

namespace SampleDelegate
{

CHAPTER 3 ■ .NET REMOTING IN ACTION 53

class SomethingClass
{

delegate String DoSomethingDelegate(int myValue);

public static String DoSomething(int myValue)
{

return "HEY:" + myValue.ToString();
}

static void Main(string[] args)
{

DoSomethingDelegate del = new DoSomethingDelegate(DoSomething);
IAsyncResult ar = del.BeginInvoke(42,null,null);
// ... do something different here
String res = del.EndInvoke(ar);

Console.WriteLine("Got result: '{0}'",res);

// wait for return to close
Console.ReadLine();

}
}

}

As expected, the application outputs “HEY:42” as you can see in Figure 3-17.

Implementing the New Client
In the new remoting client, shown in Listing 3-15, you see how to change the calls to GetName()
and SetValue() to use delegates as well. Your client then invokes both delegates and subse-
quently waits for their completion before synchronously calling GetValue() on the server. In
this instance, you use the same server application as in the preceding example.

Listing 3-15. The New Client Now Using Asynchronous Delegates

using System;
using System.Runtime.Remoting;
using General;
using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Remoting.Channels.Tcp;

Figure 3-17. The sample delegate

CHAPTER 3 ■ .NET REMOTING IN ACTION54

using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Proxies;
using System.Threading;

namespace Client
{

class Client
{

delegate void SetValueDelegate(int value);
delegate String GetNameDelegate();

static void Main(string[] args)
{

DateTime start = System.DateTime.Now;

HttpChannel channel = new HttpChannel();
ChannelServices.RegisterChannel(channel);
IMyRemoteObject obj = (IMyRemoteObject) Activator.GetObject(

typeof(IMyRemoteObject),
"http://localhost:1234/MyRemoteObject.soap");

Console.WriteLine("Client.Main(): Reference to rem.obj. acquired");

Console.WriteLine("Client.Main(): Will call setValue(42)");
SetValueDelegate svDelegate = new SetValueDelegate(obj.SetValue);
IAsyncResult svAsyncres = svDelegate.BeginInvoke(42,null,null);
Console.WriteLine("Client.Main(): Invocation done");

Console.WriteLine("Client.Main(): Will call GetName()");
GetNameDelegate gnDelegate = new GetNameDelegate(obj.GetName);
IAsyncResult gnAsyncres = gnDelegate.BeginInvoke(null,null);
Console.WriteLine("Client.Main(): Invocation done");

Console.WriteLine("Client.Main(): EndInvoke for SetValue()");
svDelegate.EndInvoke(svAsyncres);
Console.WriteLine("Client.Main(): EndInvoke for SetName()");
String name = gnDelegate.EndInvoke(gnAsyncres);

Console.WriteLine("Client.Main(): received name {0}",name);

Console.WriteLine("Client.Main(): Will now read value");
int tmp = obj.GetValue();
Console.WriteLine("Client.Main(): New server side value {0}", tmp);

DateTime end = System.DateTime.Now;
TimeSpan duration = end.Subtract(start);

CHAPTER 3 ■ .NET REMOTING IN ACTION 55

Console.WriteLine("Client.Main(): Execution took {0} seconds.",
duration.Seconds);

Console.ReadLine();
}

}
}

When looking in the client’s output in Figure 3-18, you can see that both long-running
methods have been called at nearly the same time. This results in improved runtime perform-
ance, taking the execution time down from 12 seconds to 8 at the expense of making the appli-
cation slightly more complex.

The server output in Figure 3-19 shows that both methods have been entered on the
server at the same time without blocking the client.

One-Way Calls
One-way calls are a little different from asynchronous calls in the respect that the .NET Frame-
work does not guarantee their execution. In addition, the methods used in this kind of call
cannot have return values or out parameters. You can also use delegates to call one-way methods
asynchronously, but the EndInvoke() function will exit immediately without checking whether
the server has finished processing yet. No exceptions are thrown, even if the remote server is

Figure 3-18. Client output when using asynchronous calls

Figure 3-19. Server’s output when called asynchronously

CHAPTER 3 ■ .NET REMOTING IN ACTION56

down or the method call is malformed. Reasons for using these kind of methods (which aren’t
guaranteed to be executed at all) can be found in uncritical logging or tracing facilities, where
the nonexistence of the server should not slow down the application.

Demonstrating a One-Way Call
You define one-way methods using the [OneWay] attribute. This happens in the defining meta-
data (in the General.dll in these examples) and doesn’t need a change in the server or the client.

Defining the General.dll

The attribute [OneWay()] has to be specified in the interface definition of each method that
will be called this way. As shown in Listing 3-16, you change only the SetValue() method to
become a one-way method; the others are still defined as earlier.

Listing 3-16. The Shared Interfaces DLL Defines the One-Way Method.

using System;
using System.Runtime.Remoting.Messaging;

namespace General
{

public interface IMyRemoteObject
{

[OneWay()]
void SetValue(int newval);
int GetValue();
String GetName();

}
}

Implementing the Client

On the server side, no change is needed, so you can directly look at the client. In theory, no
modification is needed for the client as well, but extend it a little here to catch the eventual
exception during execution, as shown in Listing 3-17.

Listing 3-17. Try/Catch Blocks Are Added to the Client.

using System;
using System.Runtime.Remoting;
using General;
using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Remoting.Channels.Tcp;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Proxies;
using System.Threading;

namespace Client
{

CHAPTER 3 ■ .NET REMOTING IN ACTION 57

class Client
{

static void Main(string[] args)
{

HttpChannel channel = new HttpChannel();
ChannelServices.RegisterChannel(channel);
IMyRemoteObject obj = (IMyRemoteObject) Activator.GetObject(

typeof(IMyRemoteObject),
"http://localhost:1234/MyRemoteObject.soap");

Console.WriteLine("Client.Main(): Reference to rem.obj. acquired");

Console.WriteLine("Client.Main(): Will call SetValue(42)");
try
{

obj.SetValue(42);
Console.WriteLine("Client.Main(): Value successfully set.");

}
catch (Exception e)
{

Console.WriteLine("Client.Main(): EXCEPTION.\n{0}",e.Message);
}
// wait for keypress
Console.ReadLine();

}
}

}

When this client is started, you will see the output in Figure 3-20 no matter whether the
server is running or not.

As shown in Listing 3-18, you can now change the method in General.dll back to a standard
method (non-one-way) by commenting out the [OneWay()] attribute.

Listing 3-18. Removing the [OneWay()] Attribute

using System;
using System.Runtime.Remoting.Messaging;

Figure 3-20. Client output when using one-way methods

CHAPTER 3 ■ .NET REMOTING IN ACTION58

namespace General
{

public interface IMyRemoteObject
{

// no more oneway attribute [OneWay()]
void SetValue(int newval);
int GetValue();
String GetName();

}
}

Recompilation and a restart of the client (still without a running server) yields the result in
Figure 3-21: an exception is thrown and a corresponding error message is output.

When you now start the server (and restart the client), you get the output shown in
Figure 3-22, no matter if you used the [OneWay()] attribute or not. The interesting thing is that
when using [OneWay()], the call to SetValue() finishes before the server completes the method.
This is because in reality the client just ignores the server’s response when using one-way
method calls.

■Caution Always remember that the client ignores the server’s output and doesn’t even check whether
the server is running when using one-way methods!

Figure 3-21. Client output when removing the [OneWay()] attribute

Figure 3-22. Output on the server—independent of [OneWay()] attribute

CHAPTER 3 ■ .NET REMOTING IN ACTION 59

Multiserver Configuration
When using multiple servers in an application in which remote objects on one server will be
passed as parameters to methods of a second server’s object, there are a few things you need to
consider.

Before talking about cross-server execution, I show you some details of remoting with
MarshalByRefObjects. As the name implies, these objects are marshaled by reference—instead of
passing a copy of the object over the network, only a pointer to this object, known as an ObjRef,
will travel. Contrary to common pointers in languages like C++, ObjRefs don’t reference a mem-
ory address but instead contain a network address (like a TCP/IP address and TCP port) and an
object ID that’s employed on the server to identify which object instance is used by the calling
client. (You can read more on ObjRefs in Chapter 7.) On the client side these ObjRefs are encap-
sulated by a proxy object (actually, by two proxies, but you also get the chance to read more on
those in Chapter 7).

After creating two references to client-activated objects on a remote server, for example,
the client will hold two TransparentProxy objects. These objects will both contain an ObjRef
object, which will in turn point to one of the two distinct CAOs. This is shown in Figure 3-23.

When a variable referencing a MarshalByRefObject is passed as a parameter to a remote
function, the following happens: the ObjRef is taken from the proxy object, gets serialized
(ObjRef is marked as [Serializable]), and is passed to the remote machine (the second server in
this example). On this machine, new proxy objects are generated from the deserialized ObjRef.
Any calls from the second machine to the remote object are placed directly on the first server
without any intermediate steps via the client.

■Note As the second server will contact the first one directly, there has to be a means of communication
between them; that is, if there is a firewall separating the two machines, you have to configure it to allow
connections from one server to the other.

TransparentProxy

ObjRefindirectly

TransparentProxy

ObjRefindirectly

CAO #2

CAO #1

Client Server

points to

points to

Figure 3-23. ObjRefs are pointing to server-side objects.

CHAPTER 3 ■ .NET REMOTING IN ACTION60

Examining a Sample Multiserver Application
In the following example, I show you how to create a multiserver application in which Server 1
will provide a Singleton object that has an instance variable of type int. The client will obtain
a remote reference to this object and pass it to a “worker object” located on a secondary server.
This worker object is a SingleCall service providing a DoSomething() method, which takes an
instance of the first object as a parameter. Figure 3-24 shows the Unified Modeling Language
(UML) diagram for this setup.

■Note If you use version 1.0 of the .NET Framework, you have to change the approach from using inter-
faces in General.dll to using abstract base classes. This first version of the .NET Remoting framework did not
correctly serialize the interface hierarchy in the ObjRef, so these interface casts would not succeed. This
problem has been fixed with version 1.1.

Figures 3-25 to 3-27 illustrate the data flow between the various components. In Figure 3-25,
you see the situation after the first method call of the client on the first server object. The client
holds a proxy object containing the ObjRef that points to the server-side Singleton object.

■Note I use IDs like MRO#1 for an instance of MyRemoteObject not because that’s .NET-like, but because it
allows me to more easily refer to a certain object instance when describing the architecture.

System.Runtime.Remoting:: MarshalByRefObject

+setValue(in newval : int) : void
+getValue() : int

General:: BaseRemoteObject

+doSomething(in usethis : BaseRemoteObject)

General:: BaseWorkerObject

Server1:: MyRemoteObject
Server2:: MyWorkerObject

Figure 3-24. UML diagram of the multiserver example

CHAPTER 3 ■ .NET REMOTING IN ACTION 61

In the next step, which you can see in Figure 3-26, the client obtains a reference to the
MarshalByRefObject called MyWorkerObject on the second server. It calls a method and passes
its reference to the first server’s object as a parameter. The ObjRef to this object (MRO#1) is
serialized at the client and deserialized at the server, and a new proxy object is generated that
sits on the second server and points to the object on the first (Figure 3-27). When MWO#1 now
calls a method on MRO#1, the call will go directly from Server 2 to Server 1.

Proxy

ObjRef to
MRO#1

MyRemoteObject
(ID: MRO#1)

Client Server 1

Figure 3-25. Client and single server

ObjRef to MRO#1 is
serialized and

passed to server 2

Client Server 1

Server 2

Proxy

ObjRef to
MRO#1

Proxy

ObjRef to
MWO#1

MyRemoteObject
(ID: MRO#1)

MyWorkerObject
(ID: MWO#1)

Calls meth od that ta kesMRO#1 as p arameter

Figure 3-26. Client calls a method on the second server with MRO#1 as parameter.

CHAPTER 3 ■ .NET REMOTING IN ACTION62

Implementing the Shared Assembly
In the shared assembly, which is shown in Listing 3-19, I defined the two interfaces for the
remote object and for the remote worker object.

Listing 3-19. Defining the Two Interfaces in the Shared Assembly

using System;

namespace General
{

public interface IRemoteObject
{

void SetValue(int newval);
int GetValue();

}

public interface IWorkerObject
{

void DoSomething(IRemoteObject usethis);
}

}

Calls to MRO#1 go
directly from Server 2

to Server 1 without
passing the client

Client Server 1

Server 2

Proxy

ObjRef to
MRO#1

Proxy

ObjRef to
MRO#1

Proxy

ObjRef to
MWO#1

MyRemoteObject
(ID: MRO#1)

MyWorkerObject
(ID: MWO#1)

Ca
lls

 o
n

M
RO

#1

Figure 3-27. Calls to the first server will go there directly without passing the client.

CHAPTER 3 ■ .NET REMOTING IN ACTION 63

The IRemoteObject’s implementation is a Singleton located on the first server, and it
allows the client to set and read an int as state information. The IWorkerObject’s implementa-
tion is placed in Server 2 and provides a method that takes an object of type IRemoteObject as
a parameter.

Implementing the First Server
The first server very closely resembles the servers from the other examples and is shown in
Listing 3-20.

Listing 3-20. The First Server

using System;
using System.Runtime.Remoting;
using General;
using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Remoting.Channels;

namespace Server
{

class MyRemoteObject: MarshalByRefObject, IRemoteObject
{

int myvalue;

public MyRemoteObject()
{

Console.WriteLine("MyRemoteObject.Constructor: New Object created");
}

public void SetValue(int newval)
{

Console.WriteLine("MyRemoteObject.SetValue(): old {0} new {1}",
myvalue,newval);

myvalue = newval;
}

public int GetValue()
{

Console.WriteLine("MyRemoteObject.GetValue(): current {0}",myvalue);
return myvalue;

}
}

class ServerStartup
{

static void Main(string[] args)
{

Console.WriteLine ("ServerStartup.Main(): Server [1] started");

CHAPTER 3 ■ .NET REMOTING IN ACTION64

3. I’ll talk more about this setting and the extended constructor for HttpChannel in Chapter 4.

HttpChannel chnl = new HttpChannel(1234);
ChannelServices.RegisterChannel(chnl);
RemotingConfiguration.RegisterWellKnownServiceType(

typeof(MyRemoteObject),
"MyRemoteObject.soap",
WellKnownObjectMode.Singleton);

// the server will keep running until keypress.
Console.ReadLine();

}
}

}

Implementing the Second Server
The second server works differently from those in prior examples. It provides a SingleCall
object that accepts an IWorkerObject as a parameter. The SAO will contact this remote object,
read and output its state, and change it before returning.

For the second server, you have to use a different startup code. The reason is that, starting
with version 1.1 of the .NET Framework, you have to explicitly allow passing of remote references
to your server application by changing the typeFilterLevel.3 This second server is shown in
Listing 3-21.

■Note When running two servers on one machine, you have to give the servers different port numbers.
Only one application can occupy a certain port at any given time. When developing production-quality
applications, you should always allow the user or system administrator to configure the port numbers in
a configuration file, via the registry or using a GUI.

■Note When using version 1.0 of the .NET Framework, you can omit the additional construction information
for the HttpChannel. This is only required starting with version 1.1.

Listing 3-21. The Second Server

using System;
using System.Runtime.Remoting;
using General;
using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Remoting.Channels;
using System.Collections;

CHAPTER 3 ■ .NET REMOTING IN ACTION 65

namespace Server
{

class MyWorkerObject: MarshalByRefObject, IWorkerObject
{

public MyWorkerObject()
{

Console.WriteLine("MyWorkerObject.Constructor: New Object created");
}

public void DoSomething(IRemoteObject usethis)
{

Console.WriteLine("MyWorkerObject.doSomething(): called");
Console.WriteLine("MyWorkerObject.doSomething(): Will now call" +

"getValue() on the remote obj.");

int tmp = usethis.GetValue();
Console.WriteLine("MyWorkerObject.doSomething(): current value of " +

"the remote obj.; {0}", tmp);

Console.WriteLine("MyWorkerObject.doSomething(): changing value to 70");
usethis.SetValue(70);

}
}

class ServerStartup
{

static void Main(string[] args)
{

Console.WriteLine ("ServerStartup.Main(): Server [2] started");
SoapServerFormatterSinkProvider prov =

new SoapServerFormatterSinkProvider();
prov.TypeFilterLevel =

System.Runtime.Serialization.Formatters.TypeFilterLevel.Full;

IDictionary props = new Hashtable();
props["port"] = 1235;

HttpChannel chan = new HttpChannel(props, null, prov);
ChannelServices.RegisterChannel(chan);

RemotingConfiguration.RegisterWellKnownServiceType(
typeof(MyWorkerObject),
"MyWorkerObject.soap",
WellKnownObjectMode.SingleCall);

CHAPTER 3 ■ .NET REMOTING IN ACTION66

// the server will keep running until keypress.
Console.ReadLine();

}
}

}

Running the Sample
When the client is started, it first acquires a remote reference to MyRemoteObject running on
the first server. It then changes the object’s state to contain the value 42 and afterwards reads
the value from the server and outputs it in the console window (see Figure 3-28).

Next it fetches a remote reference to MyWorkerObject running on the second server. The client
calls the method DoSomething() and passes its reference to MyRemoteObject as a parameter. When
Server 2 receives this call, it contacts Server 1 to read the current value from MyRemoteObject
and afterwards changes it to 70. (See Figures 3-29 and 3-30.)

Figure 3-28. The client’s output

Figure 3-29. The first server’s output

Figure 3-30. The second server’s output

CHAPTER 3 ■ .NET REMOTING IN ACTION 67

When the call from the client to the second server returns, the client again contacts
MyRemoteObject to obtain the current value, 70, which shows that your client really has
been talking to the same object from both processes.

Sharing Assemblies
As you’ve seen in this chapter, .NET Remoting applications need to share common informa-
tion about remoteable types between server and client. Contrary to other remoting schemas
like CORBA, Java RMI, and J2EE EJBs, with which you don’t have a lot of choice for writing
these shared interfaces, base classes, and metadata, the .NET Framework gives you at least
four possible ways to do so, as I discuss in the following sections.

Shared Implementation
The first way to share information about remoteable types is to implement your server-side
objects in a shared assembly and deploy this to the client as well. The main advantage here is
that you don’t have any extra work. Even though this might save you some time during imple-
mentation, I really recommend against this approach. Not only does it violate the core princi-
ples of distributed application development, but it also allows your clients, which are probably
third parties accessing your ERP system to automate order entry, to use ILDASM or one of the
upcoming MSIL-to-C# decompilers to disassemble and view your business logic. Unfortu-
nately, this approach is shown in several MSDN examples.

Nevertheless, there are application scenarios that depend on this way of sharing the meta-
data. When you have an application that can be used either connected or disconnected and
will access the same logic in both cases, this might be the way to go. You can then “switch”
dynamically between using the local implementation and using the remote one.

Shared Interfaces
In the first examples in this book, I show the use of shared interfaces. With this approach, you
create an assembly that is copied to both the server and the client. The assembly contains the
interfaces that will be implemented by the server.

■Tip I absolutely recommend this approach for most .NET Remoting applications!

Shared Base Classes
Instead of sharing interfaces between the client and the server, you can also create abstract
base classes in a shared assembly. The server-side object will inherit from these classes and
implement the necessary functionality. I recommend against this approach because it pollutes
the inheritance hierarchy with too many protocol- and framework-specific constructs.

CHAPTER 3 ■ .NET REMOTING IN ACTION68

SoapSuds-Generated Metadata
Another approach is to use SoapSuds.exe to extract the metadata (that is, the type definition)
from a running server or an implementation assembly and generate a new assembly that con-
tains only this meta information. You will then be able to reference this assembly in the client
application without manually generating any intermediate shared assemblies.

■Caution Even though this approach seems intriguing at first glance, I recommend against using it for
most general .NET Remoting applications. SoapSuds is a tool that has been designed earlier in the .NET life-
time, and has been superceded by development since. If you want to work with Web Services, WSDL, and
SOAP, then you should really use ASP.NET instead of .NET Remoting. I will nevertheless show how to use
SoapSuds in the remainder of this chapter, but this should not be interpreted as a recommendation.

Calling SoapSuds
SoapSuds is a command-line utility, therefore the easiest way to start it is to bring up the Visual
Studio .NET Command Prompt by selecting Start ➤ Programs ➤Microsoft Visual Studio .NET
2003 ➤ Visual Studio .NET Tools. This command prompt will have the path correctly set so that
you can execute all .NET Framework SDK tools from any directory.

Starting SoapSuds without any parameters will give you detailed usage information. To gen-
erate a metadata DLL from a running server, you have to call SoapSuds with the -url parameter.

soapsuds -url:<URL> -oa:<OUTPUTFILE>.DLL -nowp

■Note You normally have to append ?wsdl to the URL your server registered for a SOA to allow SoapSuds
to extract the metadata.

To let SoapSuds extract the information from a compiled DLL, you use the -ia parameter.

soapsuds -ia:<assembly> -oa:<OUTPUTFILE>.DLL -nowp

Wrapped Proxies
When you run SoapSuds in its default configuration (without the -nowp parameter) by passing
only a URL as an input parameter and telling it to generate an assembly, it will create what is
called a wrapped proxy. The wrapped proxy can only be used on SOAP channels and will directly
store the path to your server. Normally you do not want this behavior, apart from some rare test-
ing scenarios, in which you’d just like to quickly call a method on a server during development.

Implementing the Server

The server in this example will be implemented without any up-front definition of interfaces.
You only need to create a simplistic SAO and register an HTTP channel to allow access to the
metadata and the server-side object, as shown in Listing 3-22.

CHAPTER 3 ■ .NET REMOTING IN ACTION 69

Listing 3-22. Server That Presents a SAO

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Remoting.Channels;

namespace Server
{

class SomeRemoteObject: MarshalByRefObject
{

public void DoSomething()
{

Console.WriteLine("SomeRemoteObject.doSomething() called");
}

}

class ServerStartup
{

static void Main(string[] args)
{

Console.WriteLine ("ServerStartup.Main(): Server started");

HttpChannel chnl = new HttpChannel(1234);
ChannelServices.RegisterChannel(chnl);
RemotingConfiguration.RegisterWellKnownServiceType(

typeof(SomeRemoteObject),
"SomeRemoteObject.soap",
WellKnownObjectMode.SingleCall);

// the server will keep running until keypress.
Console.ReadLine();

}
}

}

Generating the SoapSuds Wrapped Proxy

To generate a wrapped proxy assembly, use the SoapSuds command line shown in Figure 3-31.
The resulting meta.dll should be copied to the client directory, as you will have to reference it
when building the client-side application.

CHAPTER 3 ■ .NET REMOTING IN ACTION70

Implementing the Client

Assuming you now want to implement the client application, you first have to set a reference
to the meta.dll in the project’s References dialog box in VS .NET. You can then use the Server
namespace and directly instantiate a SomeRemoteObject using the new operator, as shown in
Listing 3-23.

Listing 3-23. Wrapped Proxies Simplify the Client’s Source Code

using System;
using Server;

namespace Client
{

class Client
{

static void Main(string[] args)
{

Console.WriteLine("Client.Main(): creating rem. reference");
SomeRemoteObject obj = new SomeRemoteObject();
Console.WriteLine("Client.Main(): calling DoSomething()");
obj.DoSomething();
Console.WriteLine("Client.Main(): done ");

Console.ReadLine();
}

}
}

Even though this code looks intriguingly simple, I recommend against using a wrapped
proxy for several reasons: the server’s URL is hard coded, and you can only use an HTTP channel
and not a TCP channel.

When you start this client, it will generate the output shown in Figure 3-32. Check the server’s
output in Figure 3-33 to see that DoSomething() has really been called on the server-side object.

Figure 3-31. SoapSuds command line used to generate a wrapped proxy

CHAPTER 3 ■ .NET REMOTING IN ACTION 71

Wrapped Proxy Internals

Starting SoapSuds with the parameter -gc instead of -oa:<assemblyname> will generate C#
ccode in the current directory. You can use this code to manually compile a DLL or include it
directly in your project.

Looking at the code in Listing 3-24 quickly reveals why you can use it without any further
registration of channels or objects. (I stripped the SoapType attribute, which would normally
contain additional information on how to remotely call the object’s methods.)

Listing 3-24. A SoapSuds-Generated Wrapped Proxy

using System;
using System.Runtime.Remoting.Messaging;
using System.Runtime.Remoting.Metadata;
using System.Runtime.Remoting.Metadata.W3cXsd2001;

namespace Server {

public class SomeRemoteObject :
System.Runtime.Remoting.Services.RemotingClientProxy

{
// Constructor
public SomeRemoteObject()
{

base.ConfigureProxy(this.GetType(),
"http://localhost:1234/SomeRemoteObject.soap");

}

public Object RemotingReference
{

get{return(_tp);}
}

Figure 3-32. Client’s output when using a wrapped proxy

Figure 3-33. The server’s output shows that doSomething() has been called..

CHAPTER 3 ■ .NET REMOTING IN ACTION72

[SoapMethod(SoapAction="http://schemas.microsoft.com/clr/nsassem/
Server.SomeRemoteObject/Server#doSomething")]

public void DoSomething()
{

((SomeRemoteObject) _tp).doSomething();
}

}
}

What this wrapped proxy does behind the scenes is provide a custom implementation/
extension of RealProxy (which is the base for RemotingClientProxy) so that it can be used
transparently. This architecture is shown in detail in Chapter 7.

Nonwrapped Proxy Metadata
SoapSuds also allows the generation of nonwrapped proxy metadata as well. In this case, it will
only generate empty class definitions, which can then be used by the underlying .NET Remoting
TransparentProxy to generate the true method calls—no matter which channel you are using.

This approach also gives you the advantage of being able to use configuration files for
channels, objects, and the corresponding URLs (more on this in the next chapter) so that you
don’t have to hard code this information. In the following example, you can use the same server
as in the previous one, only changing the SoapSuds command and implementing the client in
a different way.

Generating the Metadata with SoapSuds

As you want to generate a metadata-only assembly, you have to pass the -nowp parameter to
SoapSuds to keep it from generating a wrapped proxy (see Figure 3-34).

Implementing the Client

When using metadata-only output from SoapSuds, the client looks a lot different from the previ-
ous one. In fact, it closely resembles the examples I show you at the beginning of this chapter.

First you have to set a reference to the newly generated meta.dll from the current SoapSuds
invocation and indicate that your client will be using this namespace. You can then proceed with
the standard approach of creating and registering a channel and calling Activator.GetObject()
to create a reference to the remote object. This is shown in Listing 3-25.

Figure 3-34. SoapSuds command line for a metadata-only assembly

CHAPTER 3 ■ .NET REMOTING IN ACTION 73

Listing 3-25. The Client with a Nonwrapped Proxy

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Remoting.Channels;
using Server;

namespace Client
{

class Client
{

static void Main(string[] args)
{

HttpChannel chnl = new HttpChannel();
ChannelServices.RegisterChannel(chnl);

Console.WriteLine("Client.Main(): creating rem. reference");
SomeRemoteObject obj = (SomeRemoteObject) Activator.GetObject (

typeof(SomeRemoteObject),
"http://localhost:1234/SomeRemoteObject.soap");

Console.WriteLine("Client.Main(): calling doSomething()");
obj.DoSomething();

Console.WriteLine("Client.Main(): done ");
Console.ReadLine();

}
}

}

When this client is started, both the client-side and the server-side output will be the same
as in the previous example (see Figures 3-35 and 3-36).

Figure 3-35. The Client’s output when using a metadata-only assembly

Figure 3-36. The Server’s output is the same as in the previous example.

CHAPTER 3 ■ .NET REMOTING IN ACTION74

Summary
In this chapter you read about the basics of distributed .NET applications using .NET Remoting.
You now know the difference between ByValue objects and MarshalByRefObjects, which can
be either server-activated objects (SAO) or client-activated objects (CAO). You can call remote
methods asynchronously, and you know about the dangers and benefits of one-way methods.
You also learned about the different ways in which a client can receive the necessary metadata
to access remote objects, and that you should normally use shared interfaces as a best practices
approach.

It seems that the only thing that can keep you from developing your first real-world .NET
Remoting application is that you don’t yet know about various issues surrounding configuration
and deployment of such applications. These two topics are covered in the following chapter.

75

C H A P T E R 4

■ ■ ■

Configuration and Deployment

This chapter introduces you to the aspects of configuration and deployment of .NET Remot-
ing applications. It shows you how to use configuration files to avoid the hard coding of URLs
or channel information for your remote object.

You also learn about hosting your server-side components in Windows services or Internet
Information Server (IIS)—the latter of which gives you the possibilities to deploy your components
for authenticated or encrypted connections, which is covered in detail in Chapter 5.

To configure your applications, you can choose to either implement all channel and object
registrations on your own or employ the standard .NET Remoting configuration files. These files
are XML documents, and they allow you to configure nearly every aspect of remoting, ranging
from various default and custom channels (including custom properties for your own channels)
to the instantiation behavior of your objects.

The big advantage, and the main reason you should always use configuration files in pro-
duction applications, is that you can change the application’s remoting behavior without the
need to recompile. For example, you could create a configuration file for users located directly
within your LAN who might use a direct TCP channel, and another file for WAN users who will
use a secured HTTP channel with SSL encryption. All this can be done without changing a sin-
gle line in your application’s source code.

■Note Of course, this also adds the possibility for the user to change your configuration file. If this is not
desired, you should make sure to protect the configuration file with security Access Control Lists (ACL) to
allow only administrators to edit the file.

With other remoting architectures, the choice of deployment and configuration is largely
determined when choosing the framework. With Java EJBs, for example, the “container,” which
can be compared to an application server, defines the means of configuration and locks you
into a single means of deployment. The same is true for the COM+ component, which has to
be hosted in Windows Component services.

In the .NET Remoting framework, you have several possibilities for operation: you can run
your remote objects in a distinct stand-alone application (as shown in the previous examples
in this book), run them in a Windows service, or host them in IIS.

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT76

Configuration Files
.NET Remoting configuration files allow you to specify parameters for most aspects of the
remoting framework. These files can define tasks as simple as registering a channel and speci-
fying a type as a server-activated object, or can be as complex as defining a whole chain of
IMessageSinks with custom properties.

Instead of writing code like this on the server:

HttpChannel chnl = new HttpChannel(1234);
ChannelServices.RegisterChannel(chnl);
RemotingConfiguration.RegisterWellKnownServiceType(

typeof(CustomerManager),
"CustomerManager.soap",
WellKnownObjectMode.Singleton);

You can use a configuration file that contains the following XML document to specify the same
behavior:

<configuration>
<system.runtime.remoting>
<application>
<channels>
<channel ref="http" port="1234" />

</channels>
<service>
<wellknown mode="Singleton"

type="Server.CustomerManager, Server"
objectUri="CustomerManager.soap" />

</service>

</application>
</system.runtime.remoting>

</configuration>

To employ this configuration file in your application, you have to call RemotingConfiguration.
Configure() and pass the filename of your *.config file to it.

String filename = "server.exe.config";
RemotingConfiguration.Configure(filename);

■Note As a convention for .NET applications, the configuration filename should be <applicationname>.config,
whereas an application filename includes the extension .exe or .dll. Visual Studio automates this process for
you, so that you can simply add a file called app.config to your solution. Upon deployment, this file will be
renamed according to the schema presented previously, and will be copied to the appropriate output directory
(debug/release).

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT 77

Watch for the Metadata!
Instead of using Activator.GetObject() and passing a URL to it, you can use the new operator
after loading the configuration file with RemotingConfiguration.Configure().

In terms of the sample application in Chapter 2, this means that instead of the following call:

ICustomerManager mgr = (ICustomerManager) Activator.GetObject(
typeof(ICustomerManager),
"http://localhost:1234/CustomerManager.soap");

you might simply use this statement after the configuration file has been loaded:

CustomerManager mgr = new CustomerManager()

And here the problem starts: you need the definition of the class CustomerManager on the
client. The interface is not sufficient anymore, because you cannot use IInterface x = new
IInterface(), as this would represent the instantiation of an interface, which is not possible.

In Chapter 3, I showed you several tools for supplying the necessary metadata in a shared
assembly: interfaces, abstract base classes, and SoapSuds-generated metadata-only assemblies.
When using the configured new operator, you won’t be able to employ abstract base classes or
interfaces—instead you basically have to resort to shipping the implementation or using
SoapSuds-generated metadata.

■Note I will show you an alternative approach later in this chapter which allows you to take advantage of
configuration files with interface-based remote objects.

The Problem with SoapSuds
When your application includes only SAOs/CAOs (and no [Serializable] objects), you’re usually
fine with using soapsuds -ia:<assembly> -nowp -oa:<meta_data.dll> to generate the necessary
metadata. However, when you are using [Serializable] objects, which not only hold some data
but also have methods defined, you need to provide their implementation (the General.dll in
the examples) to the client as well.

To see the problem and its solution, take a look at Listing 4-1. This code shows you
a [Serializable] class in a shared assembly that will be called General.dll.

Listing 4-1. A Shared [Serializable] Class

using System;
namespace General
{

[Serializable]
public class Customer
{

public String FirstName;
public String LastName;
public DateTime DateOfBirth;

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT78

public int GetAge()
{

TimeSpan tmp = DateTime.Today.Subtract(DateOfBirth);
return tmp.Days / 365; // rough estimation

}
}

}

On the server side you use the following configuration file, which allows you to write
CustomerManager obj = new CustomerManager() to acquire a reference to the remote object.

<configuration>
<system.runtime.remoting>
<application>
<channels>
<channel ref="http" port="1234" />

</channels>
<service>
<wellknown mode="Singleton"

type="Server.CustomerManager, Server"
objectUri="CustomerManager.soap" />

</service>

</application>
</system.runtime.remoting>

</configuration>

The server itself, which is shown in Listing 4-2, implements a MarshalByRefObject that
provides a GetCustomer() method, which will return a Customer object by value.

Listing 4-2. The Server-Side Implementation of CustomerManager

using System;
using System.Runtime.Remoting;
using General;

namespace Server
{

class CustomerManager: MarshalByRefObject
{

public Customer GetCustomer(int id)
{

Customer tmp = new Customer();
tmp.FirstName = "John";

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT 79

Figure 4-1. SoapSuds command line for extracting the metadata

tmp.LastName = "Doe";
tmp.DateOfBirth = new DateTime(1970,7,4);
return tmp;

}
}

class ServerStartup
{

static void Main(string[] args)
{

Console.WriteLine ("ServerStartup.Main(): Server started");

String filename = "server.exe.config";
RemotingConfiguration.Configure(filename);

// the server will keep running until keypress.
Console.WriteLine("Server is running, Press <return> to exit.");
Console.ReadLine();

}
}

}

After compiling, starting the server, and running the SoapSuds command shown in
Figure 4-1, you’ll unfortunately end up with a little bit more output than expected.

The Generated_General.dll file (which you can see in Figure 4-2) contains not only the
metadata for Server.CustomerManager, but also the definition for General.Customer. This is
because SoapSuds generates metadata-only assemblies for all classes and assemblies that are
referenced by your server. You’ll run into the same problems when referencing parts from
mscorlib.dll or other classes from the System.* namespaces.

Comparing Generated_General.dll to the original General.Customer in General.dll (the one
that has been created by compiling the shared project) in Figure 4-3, you can see that although
the generated Customer class contains all defined fields, it does not include the GetAge() method.

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT80

Figure 4-2. The Generated_General.dll that has been created by SoapSuds

Figure 4-3. The original General.dll contains the method Customer.GetAge().

You can now safely assume that using the Generated_General.dll will not be sufficient for
the application; after all, you want access to the GetAge() method.

If you try to reference both General.dll and Generated_General.dll in your client application,
you will end up with a namespace clash. Both assemblies contain the same namespace and the
same class (General.Customer). Depending on the order of referencing the two DLLs, you’ll end
up with either a compile-time error message telling you that the GetAge() method is missing or
an InvalidCastException when calling CustomerManager.GetCustomer().

Using SoapSuds to Generate Source Code
There is, however, a possibility to work around this problem: although SoapSuds can be used
to generate DLLs from the WSDL information provided by your server, it can also generate C#
code files, including not only the definition but also the required SoapMethodAttributes, so
that the remoting framework will know the server’s namespace identifier.

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT 81

To generate code instead of DLLs, you have to specify the parameter -gc instead of
-oa:<someassembly>.dll. This command, shown in Figure 4-4, generates one C# source code
file for each server-side assembly. You will therefore end up with one file called general.cs and
another called server.cs (both are placed in the current directory).

The generated server.cs file is shown in Listing 4-3.

Listing 4-3. The SoapSuds-Generated Server.cs File

using System;
using System.Runtime.Remoting.Messaging;
using System.Runtime.Remoting.Metadata;
using System.Runtime.Remoting.Metadata.W3cXsd2001;
namespace Server {

[Serializable, SoapType(XmlNamespace="http://schemas.microsoft.com/clr/n
sassem/Server/Server%2C%20Version%3D1.0.678.38058%2C%20Culture%3Dneutral%2C%
20PublicKeyToken%3Dnull", XmlTypeNamespace="http://schemas.microsoft.com/clr
/nsassem/Server/Server%2C%20Version%3D1.0.678.38058%2C%20Culture%3Dneutral%2
C%20PublicKeyToken%3Dnull")]

public class CustomerManager : System.MarshalByRefObject
{

[SoapMethod(SoapAction="http://schemas.microsoft.com/clr/nsassem/Ser
ver.CustomerManager/Server#GetCustomer")]

public General.Customer GetCustomer(Int32 id)
{

return((General.Customer) (Object) null);
}

}
}

Generally speaking, these lines represent the interface and the attributes necessary to clearly
resolve this remoting call to the server.

Instead of including the Generated_General.dll file (which also contains the namespace
General), you can include this C# file in the client-side project or compile it to a DLL in
a separate C# project.

You can now safely reference the shared General.dll, without any namespace clashes, in
your project to have access to the Customer class’s implementation.

Figure 4-4. SoapSuds command line for generating C# code

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT82

Porting the Sample to Use Configuration Files

■Note I will use SoapSuds-generated metadata for the following introduction to configuration files. The use
of SoapSuds for your real production applications is not a best practice and should be avoided whenever
possible. I will show you an alternative approach in the section “What About Interfaces?” later in this chapter
that allows you to use configuration files with interface-based remote objects.

Taking the first sample application in Chapter 2 (the CustomerManager SAO that returns
a Customer object by value), I’ll show you here how to enhance it to use configuration files.

Assume that on the server side of this application you want an HTTP channel to listen on
port 1234 and provide remote access to a well-known Singleton object. You can do this with the
following configuration file:

<configuration>
<system.runtime.remoting>
<application>

<channels>
<channel ref="http" port="1234" />

</channels>

<service>
<wellknown mode="Singleton"

type="Server.CustomerManager, Server"
objectUri="CustomerManager.soap" />

</service>

</application>
</system.runtime.remoting>

</configuration>

The server-side implementation will simply load the configuration file and wait for
<Return> to be pressed before exiting the application. The implementation of CustomerManager
is the same as shown previously, and only the server’s startup code is reproduced here:

using System;
using System.Runtime.Remoting;
using General;

namespace Server
{

class ServerStartup
{

static void Main(string[] args)
{

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT 83

String filename = "server.exe.config";
RemotingConfiguration.Configure(filename);

Console.WriteLine("Server is running. Press <Return> to exit.");
Console.ReadLine();

}
}

}

Creating the Client
The client will consist of two source files, one of them being the previously mentioned
SoapSuds-generated server.cs and the second will contain the real client’s implementation.
It will also have a reference to the shared General.dll.

To allow the client to access the server-side Singleton, you can use the following configu-
ration file to avoid hard coding of URLs:

<configuration>
<system.runtime.remoting>
<application>

<client>
<wellknown type="Server.CustomerManager, Client"

url="http://localhost:1234/CustomerManager.soap" />
</client>

</application>
</system.runtime.remoting>

</configuration>

Even before I get to the details of configuration files, I want to mention what the attribute
“type” in the XML tag <wellknown> contains. In the previous example, you can see that on the
server side the tag includes “Server.CustomerManager, Server” and on the client-side it includes
“Server.CustomerManager, Client”.

The format is generally “<namespace>.<class>, <assembly>”, so when a call to the remote
object is received at the server, it will create the class Server.CustomerManager from its Server
assembly.

■Caution Make sure you do not include the .dll or .exe extension here as the .NET Remoting framework will not
give you any error messages in this case. Instead, your application just won’t work as expected. If you want to
be sure that you’re dealing with a remote object, you can call RemotingServices.IsTransparentProxy()
right after the creation of the remote reference.

On the client side the format is a little bit different. The preceding entry, translated into plain
English, more or less reads, “If someone creates an instance of the class Server.CustomerManager,
which is located in the Client assembly, then generate a remote reference pointing to

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT84

http://localhost:1234/CustomerManager.soap.” You therefore have to specify the client’s
assembly name in the type attribute of this tag. This differs when using a SoapSuds-generated
DLL, in which case you would have to include the name of this generated assembly there.

■Caution When a typo occurs in your configuration file, such as when you misspell the assembly name or
the class name, there won’t be an exception during “x = new Something()”. Instead, you will get a reference
to the local object. When you subsequently call methods on it, they will return null.

The C# code of the client application (excluding the SoapSuds-generated server.cs) is
shown in Listing 4-4.

Listing 4-4. The Working Client Application (Excluding server.cs)

using System;
using System.Runtime.Remoting;
using General; // from General.DLL
using Server; // from server.cs

namespace Client
{

class Client
{

static void Main(string[] args)
{

String filename = "client.exe.config";
RemotingConfiguration.Configure(filename);

CustomerManager mgr = new CustomerManager();

Console.WriteLine("Client.Main(): Reference to CustomerManager" +
" acquired");

Customer cust = mgr.getCustomer(4711);
int age = cust.getAge();
Console.WriteLine("Client.Main(): Customer {0} {1} is {2} years old.",

cust.FirstName,
cust.LastName,
age);

Console.ReadLine();
}

}
}

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT 85

When server and client are started, you will see the familiar output shown in Figures 4-5
and 4-6.

Standard Configuration Options
All .NET configuration files start with <configuration>, and this applies to remoting configura-
tion files as well.

A remoting configuration file basically contains the following structure:

<configuration>
<system.runtime.remoting>

<application>
<lifetime />
<channels />
<service />
<client />

</application>
<channels />
<channelSinkProviders />
<debug />

</system.runtime.remoting>
</configuration>

General Configuration Options
Besides the <application> configuration, which is used for our specific clients and services,
there are some general configuration options listed in the following table:

Figure 4-5. Client’s output when using the configuration file

Figure 4-6. Server’s output when using the configuration file

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT86

Option Description

channels Contains channel templates that can be used in the application’s
channel options using the ref attribute as you will see it later in this
chapter. This attribute is used especially when you create your own
channels (see Chapter 14).

channelSinkProviders Contains a list of providers of channel sinks that can be inserted in the
channel sink chain. More information about channel sinks can be
found in Chapter 12.

debug The debug option tells the .NET Remoting infrastructure to load all
types immediately on application startup. That makes it easier catching
typing errors in the configuration file as errors occur immediately after
startup and not only when types are instantiated.

The <debug> element really helps finding errors in configuration early. In my opinion the
best example is misconfiguration of the server. Let’s just take the first example of this chapter
where you saw the simple example from the first chapter modified to make use of configuration
files. Let’s modify the server’s configuration file like the following:

<configuration>
<system.runtime.remoting>
<application>
<channels>
<channel ref="http" port="1234" />

</channels>
<service>
<wellknown mode="Singleton"

type="Server.CustomerManager, ServerMissConfig"
objectUri="CustomerManager.soap" />

</service>
</application>

</system.runtime.remoting>
</configuration>

Actually, the assembly ServerMissConfig doesn’t exist anywhere. But when starting, the
server configuration succeeds with no errors. But when will you see the error? The client gets
the exception when trying to call the server the first time as you can see in Figure 4-7. The reason
is that the server will by default only check for the existence of a given type as soon as a request
is handled.

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT 87

With the next step, let’s add the <debug> configuration option as shown in the following
code snippet:

<configuration>
<system.runtime.remoting>
<application>
<channels>
<channel ref="http" port="1234" />

</channels>
<service>
<wellknown mode="Singleton"

type="Server.CustomerManager, ServerMissConfig"
objectUri="CustomerManager.soap" />

</service>
</application>
<debug loadTypes="true" />

</system.runtime.remoting>
</configuration>

This time the exception is thrown at the right position on the server, as you can see in
Figure 4-8.

Figure 4-7. The error occurs on the client side although server config is wrong.

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT88

Figure 4-8. The error now thrown after RemotingConfiguration.Configure()

Lifetime
Use the <lifetime> tag to configure your object’s default lifetime (as discussed in Chapter 3).
Valid attributes for the <lifetime> tag are listed here:

Attribute Description

leaseTime The initial time to live (TTL) for your objects (default is 5 minutes)

sponsorshipTimeout The time to wait for a sponsor’s reply (default is 2 minutes)

renewOnCallTime The time to add to an object’s TTL when a method is called (default is
2 minutes)

leaseManagerPollTime The interval in which your object’s TTL will be checked whether they
reached zero (default is 10 seconds)

All attributes are optional and may be specified in different time units. Valid units are D for
days, H for hours, M for minutes, S for seconds, and MS for milliseconds. When no unit is spec-
ified, the system will default to S. Combinations such as 1H5M are not supported.

Here is an example for a very short-lived object:

<lifetime
leaseTime="90MS"
renewOnCallTime="90MS"
leaseManagerPollTime="100MS"

/>

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT 89

Channels
The <channels> tag contains one or more channel entries. It only serves as a collection for
these and doesn’t have any XML attributes assigned to it.

To register a server-side TCP channel that listens on port 1234, you can specify the following
configuration section:

<channels>
<channel ref="tcp" port="1234">

</channels>

Channel
The <channel> tag allows you to specify a port number for the server application, to reference
custom channels, and to set additional attributes on channels. When you want to use the
default HTTP channel or TCP channel, this tag does not have to be specified on the client
because these channels will be registered automatically by the framework. On the server, you
have to specify at least a port number on which the server-side channel will listen.

You have basically two ways of referencing channels: using a named reference for
a predeclared channel or specifying the exact type (namespace, class name, and assembly—
and version information, if the assembly is in the GAC) for the channel’s implementation.
Valid attributes for the <channel> tag are as follows:

Attribute Description

ref Reference for a predefined channel (“tcp” or “http”) or reference to
a channel that has been defined in a configuration file.

displayName Attribute only used for the .NET Framework Configuration Tool.

type Attribute that is mandatory when ref has not been specified. Contains
the exact type (namespace, class name, assembly) of the channel’s
implementation. When the assembly is in the GAC, you have to specify
version, culture, and public key information as well. For an example of
this, see the default definition of HTTP channel in your machine.conf file
(which is located in %WINDIR%\Microsoft.NET\Framework\<Framework_
Version>\CONFIG).

port Server-side port number. When using this attribute on a client, 0 should
be specified if you want your client-side objects to be able to receive call-
backs from the server.

In addition to the preceding configuration properties, each channel type can have other
configuration information specific to itself. For the HTTP channel, these are as follows:

Attribute Description

name Name of the channel (default is “http”). When registering more than
one channel, these names have to be unique or an empty string (“”)
has to be specified. The value of this attribute can be used when calling
ChannelServices.GetChannel().

priority Indicator of the likelihood for this channel to be chosen by the framework
to transfer data (default is 1). The higher the integer, the greater the
possibility. Negative numbers are allowed.

Continues

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT90

Attribute Description

clientConnectionLimit Number of connections that can be simultaneously opened to a given
server (default is 2).

proxyName Name of the proxy server.

proxyPort Port number for your proxy server.

suppressChannelData Directive specifying whether the channel will contribute to the
ChannelData that is used when creating an ObjRef. Takes a value of
true or false (default is false).

useIpAddress Directive specifying whether the channel shall use IP addresses in the
given URLs instead of using the hostname of the server computer.
Takes a value of true or false (default is true).

listen Directive specifying whether activation shall be allowed to hook into
the listener service. Takes a value of true or false (default is true).

bindTo IP address on which the server will listen. Used only on computers
with more than one IP address.

machineName A string that specifies the machine name used with the current channel.
This property overrides the useIpAddress property.

In addition, there are some security-related properties that are only supported by the
HTTP channel that can be used in conjunction with remoting servers hosted in IIS.

Attribute Description

useDefaultCredentials When you use this property on the client side, the security credentials
of the currently logged in user are passed to the remoting server hosted
in IIS for authentication purposes (actually, it automatically gets the
credentials from System.Net.CredentialCache.DefaultCredentials).

useAuthenticated This attribute can be used together with the useDefaultCredentials
ConnectionSharing attribute of the channel on the client side. It enables the server to reuse

authenticated connections rather than authenticating each incoming
call. This feature is improving performance significantly and works
only with default credentials.

unsafeAuthenticated While the useAuthenticatedConnectionSharing attribute works only
ConnectionSharing with the default credentials, setting this attribute to true allows connection

sharing for credentials passed by your own to the server (which means
not the default credentials). The goal is avoiding authentication with
each call, but this time with credentials other than default credentials.
This attribute must be used together with the connectionGroupName
attribute described next. But pay attention, if you set it to true,
unauthenticated clients can possibly authenticate to the server using the
credentials of a previously authenticated client. This setting is ignored
if the useAuthenticatedConnectionSharing property is set to true.

connectionGroupName The connection group name specifies the name for the connection
pool that is used by the server for authenticated clients when the
unsafeAuthenticatedConnectionSharing attribute is set to true. This
name/value pair is ignored if unsafeAuthenticatedConnectionSharing
is not set to true. If specified, make sure that this name maps to only
one authenticated user.

The TCP channel, which is created by specifying <channel ref=“tcp”>, supports the same prop-
erties as the HTTP channel (except the security properties) and the following additional property:

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT 91

Attribute Description

rejectRemoteRequests Indicator specifying whether the server will accept requests from remote
systems. When set to true, the server will not accept such requests, only
allowing interapplication communication from the local machine.

On the server side, the following entry can be used to specify an HTTP channel listening
on port 1234:

<channels>
<channel ref="http" port="1234">

</channels>

On the client, you can specify an increased connection limit using the following section:

<channels>
<channel ref="http" port="0" clientConnectionLimit="100">

</channels>

ClientProviders/ServerProviders
Underneath each channel property, you can configure nondefault client-side and server-side
sink providers and formatter providers.

■Caution When any of these elements are specified, it’s important to note that no default providers will be
created by the system. This means that appending ?WSDL to the URL will only work if you explicitly specify
<provider ref="wsdl" />; otherwise you’ll receive an exception stating that “no message has been deserialized.”

The .NET Remoting framework is based on messages that travel through various layers. Those
layers can be extended or replaced and additional layers can be added. (I discuss layers in more
detail in Chapter 11.)

These layers are implemented using so-called message sinks. A message will pass a chain
of sinks, each of which will have the possibility to work with the message’s content or to even
change the message.

Using the ClientProviders and ServerProviders properties in the configuration file, you can
specify this chain of sinks through which you want a message to travel and the formatter with
which a message will be serialized.

The structure for this property for the server side is as follows:

<channels>
<channel ref="http" port="1234">

<serverProviders>
<formatter />
<provider />

</serverProviders>
</channel>

</channels>

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT92

You may only have one formatter entry but several provider properties. Also note that
sequence does matter.

The following attributes are common between formatters and providers:

Attribute Description

ref Reference for a predefined SinkProvider (“soap”, “binary”, or “wsdl”) or reference to
a SinkProvider that has been defined in a configuration file.

type Attribute that is mandatory when ref has not been specified. Contains the exact type
(namespace, class name, assembly) of the SinkProvider’s implementation. When the
assembly is in the GAC, you have to specify version, culture, and public key informa-
tion as well.

Here are additional attributes that are optional for formatters:

Attribute Description

includeVersions Indicator of whether version information should be included in the requests.
Takes a value of true or false (defaults to true for built-in formatters). This
attribute changes behavior on the client side.

strictBinding Indicator of whether the server will look for the exact type (including version)
or any type with the given name. Takes a value of true or false (defaults to false
for built-in formatters).

In addition to these attributes, both formatters and providers can accept custom attributes,
as shown in the following example. You have to check the documentation of your custom sink
provider for the names and possible values of such properties:

<channels>
<channel ref="http" port="1234">

<serverProviders>
<provider type="MySinks.SampleProvider, Server" myAttribute="myValue" />

<sampleProp>This is a Sample</sampleProp>
<sampleProp>This is another Sample</sampleProp>

</provider>
<formatter ref="soap" />

</serverProviders>
</channel>

</channels>

typeFilterLevel Attribute on Formatters

Last but not least, there is one additional attribute I have to mention, the typeFilterLevel attribute,
which can be applied on formatters on the server side as well as the client side. Although the
attribute already existed in version 1.0 of the .NET Framework, with the trustworthy comput-
ing initiative of Microsoft and the principle of Secure By Default, the behavior of this attribute
from version 1.0 to 1.1 of the .NET Framework has changed.

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT 93

1. APTCA is the acronym for AllowPartiallyTrustedCallersAttribute. This attribute can be applied on
strong-named assemblies so that they can be called from partially trusted code, which is not allowed
by default.

When objects are sent across the wire using .NET Remoting, they have to be serialized and
deserialized. That’s true for both MarshalByRef objects, whereby an ObjRef is serialized,
and MarshalByValue objects, whereby the whole object is serialized and deserialized.

Theoretically an unauthorized and malicious client could try to exploit the moment of
deserialization. Here you can find an outline of threats that might happen with deserialization
of objects:

• If a remoting server exposes a method or member that takes a delegate, this delegate
may be used to invoke methods on other types that have the same method signature.

• When the remoting server takes a MarshalByRef object from the client, the URL stored
in the ObjRef passed from the client to the server can be tampered with so that the server
calls back to malicious clients.

• Implementing the ISerializable interface on a serializable type means that code is exe-
cuted on this type each time it is serialized and deserialized. If a malicious client passes
potentially dangerous data on such types, which leads to code execution on the server
during deserialization, this can result in security vulnerabilities.

• Often remote servers enable clients to register sponsors. But the number of sponsors that
can be registered is not limited, which can lead to denial of service attacks.

These are just a few threats that can be (partially) mitigated using the typeFilterLevel
attribute. Basically this attribute has two possible values for type filtering by the runtime: low
and full. The effects of each value are described in the following table.

Attribute Description

Low With .NET 1.1 this is the default value. The default level permits deserialization of
the following types:
Remoting infrastructure objects necessary for doing basic remoting tasks
Primitive types and reference and value types composed of only primitives
Reference- and value-types that are marked as [Serializable] but don’t implement
ISerializable
System-provided types that implement ISerializable but don’t make further
permission demands
System-provided, serializable types in assemblies that are not marked with the
APTCA1 attribute
Custom types in strong-named assemblies that are not marked with APTCA
Custom types that implement ISerializable without making further demands
outside serialization
Types that implement ILease but are not MarshalByRef objects
ObjRef objects needed for activation of CAO, which can be deserialized on clients
but not on servers

Full The full setting allows deserialization of any remoted types sent across the wire.
This means ObjRef objects passed as parameters, objects that implement ISponsor,
as well as objects that are inserted between the proxy and client pipeline by the
IContributeEnvoySink interface are supported in addition to supported types of the
Low deserialization level.

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT94

Concrete things like callbacks to clients through delegates and vice versa will not work by
default when deploying .NET Remoting solutions with .NET 1.1. In this case, you have to con-
figure the typeFilterLevel attribute to the full setting manually. This means threats mentioned
previously are not mitigated any more, and you have to include strong authentication and
encryption mechanisms for your .NET Remoting applications to mitigate the threats with other
techniques. Security in .NET Remoting solutions is discussed in the next chapter.

You can configure the typeFilterLevel either manually in code or through configuration
files. The attribute itself is applied at the formatter level. This means a configuration file with
the typeFilterLevel attribute configured might look like the following (the setting must be con-
figured for each channel and each formatter):

<configuration>
<system.runtime.remoting>
<application>
<channels>
<channel ref="tcp" port="1234">
<serverProviders>
<formatter ref="binary"

typeFilterLevel="Low" />
<formatter ref="soap"

typeFilterLevel="Low" />
</serverProviders>

</channel>
</channels>
<service>
<wellknown type="Server.ServerImpl, Server"

objectUri="MyServer.rem"
mode="Singleton" />

</service>
</application>

</system.runtime.remoting>
</configuration>

■Note The preceding configuration file shows the configuration of a remoting server. If you have to config-
ure a client that needs to receive callbacks from the server through delegates, the client’s channel receives
those callbacks through its own receiving port. It acts as a server for the callbacks. Therefore, if the client
wants to be able to receive callbacks, you have to include the <serverProviders> configuration tag for each
channel configured in the client to set the typeFilterLevel property.

If you want to configure the typeFilterLevel in code, you have to apply the setting on either
the BinaryServerFormatterSinkProvider or the SoapServerFormatterSinkProvider through their
generic property collection. The following code snippet demonstrates configuration through code:

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT 95

// configure the formatters for the channel
BinaryServerFormatterSinkProvider formatterBin =

new BinaryServerFormatterSinkProvider();
formatterBin.TypeFilterLevel = TypeFilterLevel.Full;

SoapServerFormatterSinkProvider formatterSoap =
new SoapServerFormatterSinkProvider();

formatterSoap.TypeFilterLevel = TypeFilterLevel.Low;

formatterBin.Next = formatterSoap;

// register the channels
IDictionary dict = new Hashtable();
dict.Add("port", "1234");

TcpChannel channel = new TcpChannel(dict, null, formatterBin);
ChannelServices.RegisterChannel(channel);

// register the wellknown service
RemotingConfiguration.RegisterWellKnownServiceType(typeof(ServerImpl),

"MyServer.rem", WellKnownObjectMode.Singleton);

The preceding code leads to the same configuration as the configuration file with the
typeFilterLevel configured shown previously. But never forget that the typeFilterLevel is just
one method for mitigating attacks. It doesn’t mean that you don’t have to employ other security
techniques for mitigation of attacks. And very often you have to configure the typeFilterLevel
to full because perhaps you need callbacks to the client or similar things. In this case, you have
to include additional security gatekeepers to protect against threats like strong authentication
and encryption of traffic. You can find more about security and .NET Remoting in Chapter 5.

Versioning Behavior

Depending on the setting of the includeVersion attribute on the client-side formatter and the
strictBinding attribute on the server-side formatter, different methods for creating instances of
the given types are employed:

includeVersions strictBinding Resulting Behavior

true true The exact type is loaded, or a TypeLoadException is thrown.

false true The type is loaded using only the type name and the assembly
name. A TypeLoadException is thrown if this type doesn’t exist.

true false The exact type is loaded if present; if not, the type is loaded
using only the type name and the assembly name. If the
type doesn’t exist, a TypeLoadException is thrown.2

false false The type is loaded using only the type name and the assembly
name. A TypeLoadException is thrown if this type doesn’t exist.

2. The strictBinding attribute works only if the assemblies with the seralizable types are installed in the
Global Assembly Cache. If they are not installed in the GAC, you get a TypeLoadException even if you
configure the includeVersions and strictBinding settings like that.

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT96

Binary Encoding via HTTP

As you already know, the default HTTP channel will use a SoapFormatter to encode the messages.
Using configuration files and the previously mentioned properties, you can easily switch to
a BinaryFormatter for an HTTP channel.

On the server side, you use the following section in your configuration file:

<channels>
<channel ref="http" port="1234">

<serverProviders>
<formatter ref="binary" />

</serverProviders>
</channel>

</channels>

And on the client side, you can take the following configuration file snippet:

<channels>
<channel ref="http">

<clientProviders>
<formatter ref="binary" />

</clientProviders>
</channel>

</channels>

■Note The server-side entry is not strictly necessary, because the server-side HTTP channel automatically
uses both formatters and detects which encoding has been chosen at the client side.

Service
The <service> property in the configuration file allows you to register SAOs and CAOs that will
be made accessible by your server application. This section may contain a number of <wellknown>
and <activated> properties.

The main structure of these entries is as follows:

<configuration>
<system.runtime.remoting>

<application>
<service>

<wellknown />
<activated />

</service>
</application>

</system.runtime.remoting>
</configuration>

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT 97

Wellknown
Using the <wellknown> property in the server-side configuration file, you can specify SingleCall and
Singleton objects that will be provided by your server. This property supports the same attributes
that can also be specified when calling RemotingConfiguration.RegisterWellKnownServiceType(),
as listed here:

Attribute Description

type The type information of the published class in the form “<namespace>.
<classname>, <assembly>”. When the assembly is in the GAC, you have to
specify version, culture, and public key information as well.

mode Indicator specifying object type. Can take “Singleton” or “SingleCall”.

objectUri The endpoint URI for calls to this object. When the object is hosted in IIS
(shown later in this chapter), the URI has to end with .soap or .rem to be
processed correctly, as those extensions are mapped to the .NET Remoting
framework in the IIS metabase.

displayName Optional attribute that specifies the name that will be used inside the .NET
Framework Configuration Tool.

Using the following configuration file, the server will allow access to a CustomerManager
object via the URI http://<host>:1234/CustomerManager.soap.

<configuration>
<system.runtime.remoting>
<application>
<channels>
<channel ref="http" port="1234" />

</channels>
<service>
<wellknown mode="Singleton"

type="Server.CustomerManager, Server"
objectUri="CustomerManager.soap" />

</service>

</application>
</system.runtime.remoting>

</configuration>

Activated
The <activated> property allows you to specify CAOs in the server-side configuration file. As
the full URI to this object is determined by the application name, the only attribute that has to
be specified is the type to be published.

Attribute Description

type The type information of the published class in the form “<namespace>.<classname>,
<assembly>”. When the assembly is in the GAC, you have to specify version, culture,
and public key information as well.

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT98

The following example allows a client to create an instance of MyClass at http://
<hostname>:1234/:

<configuration>
<system.runtime.remoting>

<application>
<channels>

<channel ref="http" port="1234" />
</channels>
<service>

<activated type="MyObject, MyAssembly"/>
</service>

</application>
</system.runtime.remoting>

</configuration>

Client
The client-side counterpart to the <service> property is the <client> configuration entry. Its
primary structure is designed to look quite similar to the <service> entry:

<configuration>
<system.runtime.remoting>

<application>
<client>

<wellknown />
<activated />

</client>
</application>

</system.runtime.remoting>
</configuration>

When using CAOs, the <client> property has to specify the URI to the server for all underlying
<activated> entries.

■Note When using CAOs from more than one server, you have to create several <client> properties in your
configuration file.

Attribute Description

url The URL to the server, mandatory when using CAOs

displayName Attribute that is used in the .NET Framework Configuration Tool

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT 99

Wellknown
The <wellknown> property is used to register SAOs on the client and allows you to use the new
operator to instantiate references to remote objects. The client-side <wellknown> entry has the
same attributes as the call to Activator.GetObject(), as listed here:

Attribute Description

url The full URL to the server’s registered object.

type Type information in the form “<namespace>.<classname>, <assembly>”. When
the target assembly is registered in the GAC, you have to specify version, culture,
and public key information as well.

displayName Optional attribute that is used in the .NET Framework Configuration Tool.

When registering a type to be remote, the behavior of the new operator will be changed.
The framework will intercept each call to this operator and check whether it’s for a registered
remote object. If this is the case, a reference to the server will be created instead of an instance
of the local type.

When the following configuration file is in place, you can simply write CustomerManager
x = new CustomerManager() to obtain a remote reference.

<configuration>
<system.runtime.remoting>
<application>

<client>
<wellknown type="Server.CustomerManager, Client"

url="http://localhost:1234/CustomerManager.soap" />
</client>

</application>
</system.runtime.remoting>

</configuration>

Activated
This is the client-side counterpart to the <activated> property on the server. As the URL to the
server has already been specified in the <client> entry, the only attribute to specify is the type
of the remote object.

Attribute Description

type The type information in the form “<namespace>.<classname>, <assembly>”. When
the target assembly is registered in the GAC, you have to specify version, culture, and
public key information as well.

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT100

Data from this entry will also be used to intercept the call to the new operator. With a con-
figuration file like the following, you can just write MyRemote x = new MyRemote() to instantiate
a server-side CAO.

<configuration>
<system.runtime.remoting>
<application>

<client url="http://localhost:1234/MyServer">
<activated type="Server.MyRemote, Client" />

</client>

</application>
</system.runtime.remoting>

</configuration>

What About Interfaces?
In the previous chapters, and earlier in this chapter, I stated that using SoapSuds.exe is not the
best choice for your real-world applications for a number of reasons. However, if you want to
use configuration files in the way I’ve described them earlier, then you will unfortunately have
to resort to shipping your complete implementation assembly or to using SoapSuds.exe. Neither
of these solutions is really favorable for most applications.

There is, however, a middle-ground solution for this problem: you can define interfaces in
a shared DLL and use a little helper class to acquire remote references to these interfaces without
hard coding any information. It’s still not as transparent as if you were using just an overloaded
new operator, but it’s as close as you can get.

It will allow you for example to use code like the following together with a matching
configuration file to create a remote reference (proxy) to an IRemoteCustomerManager object:

IRemoteCustomerManager mgr = (IRemoteCustomerManager)
RemotingHelper.CreateProxy(typeof(IRemoteCustomerManager));

You can see the code for this helper class in Listing 4-5. Its method, InitTypeCache(), iterates
over the configured interfaces and adds each found interface to an internal dictionary object.
As soon as CreateProxy() is called, it checks this dictionary for the specified type to create
a remote reference based on the configured URL.

Listing 4-5. The RemotingHelper

using System;
using System.Collections;
using System.Runtime.Remoting;

class RemotingHelper
{

private static IDictionary _wellKnownTypes;

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT 101

public static Object CreateProxy(Type type)
{

if (_wellKnownTypes==null) InitTypeCache();
WellKnownClientTypeEntry entr =

(WellKnownClientTypeEntry) _wellKnownTypes[type];
if (entr == null)
{

throw new RemotingException("Type not found!");
}
return Activator.GetObject(entr.ObjectType,entr.ObjectUrl);

}

public static void InitTypeCache()
{

Hashtable types= new Hashtable();
foreach (WellKnownClientTypeEntry entr in

RemotingConfiguration.GetRegisteredWellKnownClientTypes())
{

if (entr.ObjectType == null)
{

throw new RemotingException("A configured type could not " +
"be found. Please check spelling in your configuration file.");

}
types.Add (entr.ObjectType,entr);

}
_wellKnownTypes = types;

}
}

The following is a sample configuration file that can be used with the RemotingHelper to
configure the interface IRemoteCustomerManager to use a remote implementation:

<configuration>
<system.runtime.remoting>
<application>
<client>
<wellknown type="General.IRemoteCustomerManager, General"

url="http://localhost:1234/CustomerManager.rem" />
</client>

</application>
</system.runtime.remoting>

</configuration>

You have to take care when using configuration files like these because the .NET Framework
by default doesn’t support the creation of remote references for configured interfaces. This is
only possible when using the RemotingHelper class, and someone who reads your code for the
first time might not know about this.

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT102

■Note Most of the remaining samples in this book will use this RemotingHelper class to create remote
references.

Using the IPC Channel in .NET Remoting 2.0
With the next version, the .NET Framework 2.0 and Visual Studio 2005, Microsoft adds two very
important features to the .NET Remoting infrastructure. First of all, security is an integral part
of .NET Remoting 2.0 as you will see in the next chapter, and secondly, a new channel is included.
In this chapter, I want to focus on the new channel and the configuration options coming
with it.

The new channel, the so-called IPC channel, is a channel optimized for interprocess com-
munication between two processes running on the same machine. That’s something that is
missing in .NET Remoting 1.x—without custom implementations, you have to use either the
TCP or the HTTP channel for interprocess communication. Actually, opening a TCP or a HTTP
port and communicating through the “networking infrastructure,” although both applications
run on the same machine, constitute a really unnecessary overhead. Regardless of performance
reasons, furthermore for security reasons you have to make sure that the port is blocked so that
communication is really limited to the local machine.

In .NET Remoting 2.0, you can use the IpcChannel for implementing interprocess com-
munication between processes running on the same machine. With this you can get a perform-
ance boost for your applications as well as better security because the IpcChannel works only
within machine boundaries. In the following sample, I will show you how to use the IPC channel
with .NET 2.0.

■Note For .NET Remoting 1.x, a so-called Named Pipe channel sample, which can be used for opti-
mized interprocess communication between processes running on the same machine, is available for
download at http://www.gotdotnet.com/Community/UserSamples/Details.aspx?SampleGuid=
43a1ef11-c57c-45c7-a67f-ed68978f3d6d. This sample has been developed by a Microsoft employee with
close ties to the .NET Remoting team, but is not officially supported.

In my example, I will configure the IpcChannel programmatically on the client side and
using configuration files on the server side so that you can see both ways of working with the
channel. Let’s start with the shared assembly for the client and the server, which can be seen in
Listing 4-6.

Listing 4-6. The Shared Assembly Defining Interfaces

using System;
using System.Collections.Generic;
using System.Text;

namespace RemotedType
{

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT 103

public interface IRemotedType
{

void DoCall(string message, int counter);
}

}

The server is going to implement this fairly simple interface and will do nothing other
than taking the message passed through the method parameters and outputting it the number
of times specified in the counter parameter (see Listing 4-7).

Listing 4-7. The Server Implementation

using System;
using System.Collections.Generic;
using System.Text;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Ipc;
using System.Runtime.Remoting.Messaging;
using System.Runtime.Remoting.Contexts;
using System.Runtime.Remoting.Activation;

using System.Security;
using System.Security.Principal;

namespace RemotingServer
{
public class MyRemoteObject : MarshalByRefObject, RemotedType.IRemotedType
{
public void DoCall(string message, int counter)
{
// get some information about the caller's context
IIdentity remoteIdentity =

CallContext.GetData("__remotePrincipal") as IIdentity;
if (remoteIdentity != null)
{
System.Console.WriteLine("Authenticated user:\n-){0}\n-){1}",

remoteIdentity.Name,
remoteIdentity.AuthenticationType.ToString());

}
else
{
System.Console.Write("!! Attention, not authenticated !!");

}

// just do the stupid work
for (int i = 0; i < counter; i++)
{

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT104

System.Console.WriteLine("You told me to say {0}: {1}!",
counter.ToString(), message);

}
}

}

public class RemoteServerApp
{
static void Main(string[] args)
{
try
{
System.Console.WriteLine("Configuring server...");
System.Runtime.Remoting.RemotingConfiguration.Configure(

"RemotingServer.exe.config");

System.Console.WriteLine("Configured channels:");
foreach (IChannel channel in ChannelServices.RegisteredChannels)
{
System.Console.WriteLine("Registered channel: " + channel.ChannelName);
if (channel is IpcChannel)
{
if (((IpcChannel)channel).ChannelData != null)
{
ChannelDataStore dataStore =

(ChannelDataStore)((IpcChannel)channel).ChannelData;
foreach (string uri in dataStore.ChannelUris)
{
System.Console.WriteLine("-) Found URI: " + uri);

}
}
else
{
System.Console.WriteLine("-) No channel data");

}
}
else
{
System.Console.WriteLine("-) not a IpcChannel data store");

}
}

System.Console.WriteLine("--- waiting for requests...");
System.Console.ReadLine();
System.Console.WriteLine("Finished!!");

}
catch (Exception ex)
{

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT 105

System.Console.WriteLine("Error while configuring server: " + ex.Message);
System.Console.ReadLine();

}
}

}
}

The first class is the server implementation itself. More interesting are the parts in the
main method of the application where the configuration is loaded. After the configuration file
has been configured through RemotingConfiguration.Configure(), the server determines the
configured channels and outputs the details (that’s something that works with .NET 1.x, too).

All registered channels are iterated, and for each registered IpcChannel details like the name
or its URI will be printed to the screen. When starting the server, the output looks like the one
in Figure 4-9.

■Note When working with Visual Studio 2005, the first console application launched for debugging in your
solution is started in the console window. Any further console applications launched afterwards will be started
in their own console window as usual.

In the following code snippet, you can see the server’s configuration. The configuration is
not much different from usual .NET Remoting configurations.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.runtime.remoting>
<application name="MyServer">
<service>
<wellknown type="RemotingServer.MyRemoteObject, RemotingServer"

objectUri="MyObject.rem"
mode="SingleCall" />

</service>
<channels>
<channel ref="ipc" portName="MyIpcChannel" />

</channels>

Figure 4-9. The console output window of Visual Studio 2005

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT106

3. If you end the pipe’s name with "$", other users have to know the exact name and cannot search for it.

</application>
</system.runtime.remoting>

</configuration>

There is just one thing to note: instead of configuring a port number for an IPC channel, it
gets a unique name. This name identifies the IPC port (that said, each named pipe port needs
its own unique name) and is used by the client to connect to the server as you will see in the
client’s implementation in Listing 4-8.3 Therefore, the name must be unique at the machine
level to avoid conflicts between your application and other applications running on the same
machine.

In the client application, the IPC channel is manually configured in the source code.
Listing 4-8 shows the client’s implementation.

Listing 4-8. The .NET 2.0 Client Implementation

using System;
using System.Collections.Generic;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Ipc;
using System.Runtime.Remoting.Activation;
using System.Text;

using RemotedType;

namespace RemotingClient
{
class Program
{
static void Main(string[] args)
{
try
{
System.Console.WriteLine("Configuring channel...");
IpcClientChannel clientChannel = new IpcClientChannel();
ChannelServices.RegisterChannel(clientChannel);

System.Console.WriteLine("Configuring remote object...");
IRemotedType TheObject = (IRemotedType)Activator.GetObject(

typeof(RemotedType.IRemotedType),
"ipc://MyIpcChannel/MyObject.rem");

System.Console.WriteLine("Please enter data, 'exit' quits the program!");
string input = string.Empty;

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT 107

do
{
System.Console.Write(">> Enter text: ");
input = System.Console.ReadLine();
if (string.Compare(input, "exit", true) != 0)
{
System.Console.Write(">> Enter number: ");
int c = Int32.Parse(System.Console.ReadLine());
TheObject.DoCall(input, 2);

}
} while (string.Compare(input, "exit", true) != 0);

}
catch (Exception ex)
{
System.Console.WriteLine("Exception: " + ex.Message);
System.Console.ReadLine();

}
}

}
}

First of all, the client creates a client channel and registers it through the ChannelServices.
Afterwards it connects to the server using Activator.GetObject(). Instead of using the tcp or
http protocol prefix in the URL, it uses ipc. You don’t need to specify a machine name in the
URL because communication happens on the local machine. The first part of the URL is the
name of the IPC port as it has been specified in the server’s configuration. The second part is
the object URI as usual for remoting objects.

Basically that’s it. The most important difference between the IPC channel and the other
channels is that you have to specify a unique name for the channel as well as the type of URL
used for connecting to the channel. In Figures 4-10 and 4-11 you can see the client and server
in action.

Figure 4-10. The client application in action

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT108

Figure 4-11. The server application in action

Deployment
In contrast to some other frameworks (Java RMI, J2EE EJB, COM+, and so on), .NET Remoting
allows you to choose quite freely how you want to deploy your server application. You can pub-
lish the objects in any kind of managed application—console, Windows Forms, and Windows
services—or host them in IIS.

Console Applications
Deploying servers as .NET console applications is the easiest way to get started; every example
up to this point has been designed to run from the console. The features are easily observable:
instant debug output and starting, stopping, and debugging is possible using the IDE.

Production applications nevertheless have different demands: when using console appli-
cations, you need to start the program after logging on to a Windows session. Other possible
requirements such as logging, authentication, and encryption are hard to implement using
this kind of host.

Windows Services
If you don’t want to host the objects in IIS, classic Windows services are the way to go. Visual
Studio .NET, and the .NET Framework in general, make it easy for you to develop a Windows
service application. They take care of most issues, starting from the installation of the service
to encapsulating the communication between the service control manager and your service
application.

Integrating remoting in Windows services can also be viewed from another standpoint: when
your primary concern is to write a Windows service—for example, to provide access to privileged
resources—you can easily implement the communication with your clients using .NET Remot-
ing. This is somewhat different from conventional approaches in the days before .NET, which
forced you to define distinct communication channels using named pipes, sockets, or the
COM ROT.

Cross-process remoting on a local machine using a TCP channel ought to be fast enough
for most applications.

Porting to Windows Services
In the .NET Framework, a Windows service simply is a class that extends System.ServiceProcess.
ServiceBase. You basically only have to override OnStart() to do something useful.

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT 109

A baseline Windows service is shown in Listing 4-9.

Listing 4-9. A Baseline Windows Service

using System;
using System.Diagnostics;
using System.ServiceProcess;

namespace WindowsService
{

public class DummyService : System.ServiceProcess.ServiceBase
{

public static String SVC_NAME = "Some dummy service";

public DummyService ()
{

this.ServiceName = SVC_NAME;
}

static void Main()
{

// start the service
ServiceBase.Run(new DummyService());

}

protected override void OnStart(string[] args)
{

// do something meaningful
}

protected override void OnStop()
{

// stop doing anything meaningful ;)
}

}
}

A service like this will not be automatically installed in the service manager, so you have to
provide a special Installer class that will be run during the execution of installutil.exe (from the
.NET command prompt).

Listing 4-10 shows a basic service installer that registers the service to be run using the
System account and started automatically during boot-up.

Listing 4-10. A Basic Windows Service Installer

using System;
using System.Collections;
using System.Configuration.Install;

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT110

using System.ServiceProcess;
using System.ComponentModel;
using WindowsService;

[RunInstallerAttribute(true)]
public class MyProjectInstaller: Installer
{

private ServiceInstaller serviceInstaller;
private ServiceProcessInstaller processInstaller;

public MyProjectInstaller()
{

processInstaller = new ServiceProcessInstaller();
serviceInstaller = new ServiceInstaller();

processInstaller.Account = ServiceAccount.LocalSystem;
serviceInstaller.StartType = ServiceStartMode.Automatic;
serviceInstaller.ServiceName = DummyService.SVC_NAME;

Installers.Add(serviceInstaller);
Installers.Add(processInstaller);

}
}

The installer has to be in your main assembly and has to have [RunInstallerAttribute(true)]
set. After compiling the preceding C# files, you will have created a baseline Windows service
that can be installed with installutil.exe.

When porting the remoting server to become a Windows service, you might want to extend
the base service to also allow it to write to the Windows event log. Therefore, you have to add
a static variable of type EventLog to hold an instance acquired during void Main(). As an
alternative, you could also set the AutoLog property of the service and use the static method
EventLog.WriteEntry(). You will also have to extend onStart() to configure remoting to allow
the handling of requests as specified in the configuration file. The complete source code for
the Windows service–based remoting server is shown in Listing 4-11.

Listing 4-11. A Simple Windows Service to Host Your Remote Components

using System;
using System.Diagnostics;
using System.ServiceProcess;
using System.Runtime.Remoting;

namespace WindowsService
{

public class RemotingService : System.ServiceProcess.ServiceBase
{

private static EventLog evt = new EventLog("Application");
public static String SVC_NAME = ".NET Remoting Sample Service";

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT 111

public RemotingService()
{

this.ServiceName = SVC_NAME;
}

static void Main()
{

evt.Source = SVC_NAME;
evt.WriteEntry("Remoting Service intializing");
ServiceBase.Run(new RemotingService());

}

protected override void OnStart(string[] args)
{

evt.WriteEntry("Remoting Service started");
String filename =

AppDomain.CurrentDomain.SetupInformation.ConfigurationFile;
RemotingConfiguration.Configure(filename);

}

protected override void OnStop()
{

evt.WriteEntry("Remoting Service stopped");
}

}
}

In two separate classes, you’ll then provide the implementation of the MarshalByRefObject
CustomerManager and an installer, following the preceding sample.

When this program is run in the IDE, you’ll see the biggest disadvantage to developing
Windows services, the message box that will pop up, telling you that you won’t get automatic
debugging support from Visual Studio .NET IDE (see Figure 4-12).

To install this application as a Windows service so that it can be started and stopped via
the Services MMC snap-in or Server Explorer, you have to run installutil.exe, which is best done
from a .NET command prompt. Running this application without the option /LogToConsole=false
will produce a lot of information in case something goes wrong. You can see the command line
for installing the service in Figure 4-13.

Figure 4-12. Trying to start a Windows service from the IDE

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT112

After successfully installing the service, you will be able to start it using the Microsoft
Management Console, as shown in Figure 4-14.

After starting the service, you can see the output in the EventLog viewer, which is shown in
Figure 4-15.

Figure 4-13. Installing a service using installutil.exe

Figure 4-14. The service has been installed successfully.

Figure 4-15. The server’s output in the EventLog

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT 113

You can now use the same client as in the previous example to connect to the server. After
stopping it in the MMC, you can uninstall the service with the installutil.exe /U option, as shown
in Figure 4-16.

Debugging a Windows Service
As you’ve seen previously, Windows services cannot be automatically started in debug mode
from within VS .NET. Instead, you’d have to resort to one of two possible workarounds to debug
your service. Your first option is to change your server application’s void Main() to accept
additional parameters that specify whether or not the application should run as a service at all.
This is shown in Listing 4-12.

Listing 4-12. This Main() Allows Switching Between Service/Nonservice.

static void Main(string[] args)
{

evt.Source = SVC_NAME;
evt.WriteEntry("Remoting Service intializing");
if (args.Length>0 && args[0].ToUpper() == "/NOSERVICE")
{

RemotingService svc = new RemotingService();
svc.OnStart(args);
Console.WriteLine("Service simulated. Press <enter> to exit.");
Console.ReadLine();
svc.OnStop();

}
else
{

System.ServiceProcess.ServiceBase.Run(new RemotingService());
}

}

You can then right-click your project in Visual Studio .NET to set its properties. To pass
a command-line parameter to your application in debug mode, you have to go to Configuration
Properties ➤ Debugging ➤ Command Line Arguments and enter the value you expect, which
is /NOSERVICE in the preceding sample. This is illustrated in Figure 4-17.

Figure 4-16. Uninstalling a service using installutil.exe

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT114

You can also change your application’s type in Common Properties to run as a console
application so that you can see its output. After these changes, you can simply hit F5 to debug
your program.

Note, however, that this program will behave differently from a real Windows service. It will,
for example, run with the currently logged-on user’s credentials. If you use a highly privileged
account for your work, such as a member of the Administrators group, then your service will
also inherit these access rights during debugging. As soon as you deploy your application as
a real Windows service, it might run with a limited set of security privileges and might therefore
react differently.

If you want to debug a service in its real runtime state, you have to use a slightly more
complex approach. First, you have to install your service using installutil.exe, and start it via
the Services MMC. After the service is running, you can switch to your project in Visual Studio
.NET, and select Debug ➤ Processes. This allows you to attach the VS .NET debugger to a running
process, including Windows services.

In the Processes dialog box, which is shown in Figure 4-18, you first have to select the checkbox
option Show system processes. After this, you can select your newly created Windows service
from the list of running processes and click the Attach button.

Figure 4-17. Configuring the command-line parameters

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT 115

When attaching to a running process, you have to inform Visual Studio .NET about the
kind of debugging you’d like to perform. For debugging Windows services, you’ll make sure
that at least the Common Language Runtime option is checked as shown in Figure 4-19.

After this selection, the Visual Studio .NET debugger will be attached to your Windows
service process. This means that you can now set breakpoints, view variable contents, and so

Figure 4-18. Attaching to a running process

Figure 4-19. Selecting the type of program for debugging

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT116

on, just as if you’d started the debugging session using F5. You have to mind, however, that
a clean detachment of the debugger is not possible: as soon as you stop the debugger, the
debuggee will be forcefully terminated.

Deployment Using IIS
Choosing IIS to host .NET Remoting components allows you to focus closely on application
design without wasting any time with developing your own servers, authentication, and secu-
rity channels, because IIS will take care of these features for you. In addition, IIS will support
an optimized threading and HTTP processing model.

■Tip Use Internet Information Server to host your remote components for best scalability and ease of
maintenance.

IIS can be configured to take care of a lot of aspects of real-world remoting. Authentication,
including the use of Thread.CurrentPrincipal to employ role-based security checks, can be pro-
vided with standard Web-based methods. Depending on your architecture and security needs,
either basic authentication or NT challenge/response can be chosen. Encryption can be imple-
mented in a secure and simple way using SSL certificates, which need to be installed in IIS.

Hosting in IIS forces you to use the HTTP channel, which—even though you can use the
binary formatter instead of the SOAP formatter—will be slower than the TCP channel. In prac-
tice however, the performance difference is negligible for most business applications and the
increased scalability definitely offsets this initial drawback.

Of course, your needs will dictate the solution to choose. If you expect several thousand
calls per second, be sure to check whether any version will meet your demands on the given
hardware. If you’re going to use the same server-side classes in your in-house LAN application
and for outside access via HTTP, you can still set up a different server application using TCP
channel for local use and handle the public access via IIS.

Nothing beats hosting of remote objects in IIS in terms of ease of use. You just implement
a MarshalByRefObject in a class library project, create a virtual directory in IISAdmin (MMC),
create a virtual subdirectory called bin, and put your DLL there. You then have to create a con-
figuration file called web.config and put this in your virtual directory. You don’t even need to
restart IIS when deploying your remoting components. When you want to update your server-side
assembly, you can just overwrite it in the bin subdirectory, as neither the DLL nor the configu-
ration file is locked by IIS.

When the configuration is changed by updating web.config, IIS will automatically reread
this information and adopt its behavior. Moving from a staging or testing server to your production
machine only involves copying this subdirectory from one host to the other. This is what Microsoft
means when talking about xcopy deployment!

Designing and Developing Server-Side Objects for IIS
For the following examples, I also use the RemotingHelper as shown before. The server-side
implementation is a little bit easier than the former ways of deployment because you only have
to implement the interface in a MarshalByRefObject without any startup code for the server.

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT 117

Listing 4-13 shows everything you need to code when using IIS to host your components.

Listing 4-13. Server-Side Implementation of the SAO

using System;
using General;

namespace Server
{

class CustomerManager: MarshalByRefObject, IRemoteCustomerManager
{

public Customer GetCustomer(int id)
{

Customer tmp = new Customer();
tmp.FirstName = "John";
tmp.LastName = "Doe";
tmp.DateOfBirth = new DateTime(1970,7,4);
return tmp;

}
}

}

After compiling this assembly to a DLL, you can proceed with setting up Internet Informa-
tion Server.

Preparing Internet Information Server
Before being able to use IIS as a container for server-side objects, you have to configure several
aspects of IIS. At the very least you have to create a new virtual root and set the corresponding
permissions and security requirements.

Creating a Virtual Root

An IIS virtual root will allow a certain directory to be accessed using a URL. You can basically
specify that the URL http://yourhost/yourdirectory will be served from c:\somedirectory,
whereas the standard base URL http://yourhost/ is taken from c:\inetpub\wwwroot by default.

You create virtual roots using the MMC, which you bring up by selecting Start ➤ Programs
➤ Administrative Tools ➤ Internet Services Manager. In the Internet Services Manager you will
see Default Web Site if you’re running workstation software (when using server software, you’ll
probably see more Web sites).

Right-click Default Web Site and choose New ➤ Virtual Directory. The Virtual Directory
Creation Wizard appears. Use this wizard to specify an alias and the directory it will point to.
For usage as a remoting container, the default security permissions (Read and Run scripts) are
sufficient.

In the directory to which the new IIS virtual directory points, you have to place your .NET
Remoting configuration file. As the server will automatically watch for this file and read it, you
have to call it web.config—you cannot specify a custom name.

Below this directory you can now create a folder called bin\ and place your assemblies there.
As an alternative, you can place your assemblies in the GAC using gacutil.exe, but remember

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT118

that you have to specify the SAO assemblies’ strong names in the configuration file in this case.
This is normally not recommended if your server-side DLL is just used by a single application,
but is needed to provide versioning services for CAOs, as you’ll see in Chapter 8.

Deployment for Anonymous Use
Before being able to convert the former example to IIS-based hosting, you have to create a new
directory and an IIS virtual directory called MyServer (this will be used in the URL to the remote
objects) according to the description previously given.

In the Internet Services Manager MMC, access the properties by right-clicking the newly
created virtual directory, choosing the Directory Security tab, and clicking Edit. The window
shown in Figure 4-20 will open, enabling you to set the allowed authentication methods. Make
sure that Allow Anonymous Access is checked.

In the configuration file, it’s important that you don’t specify an application name, as this
property will be automatically determined by the name of the virtual directory.

■Note When specifying channel information in a configuration file that will be used in IIS—for example, to
provide a different sink chain—be sure not to include port numbers, as they will interfere with IIS’s internal
connection handling. When the server’s load reaches a certain point, IIS may start more than one instance for
handling a remote object. If you have bound to a secondary port in your configuration file, this port will already
be locked by the previous instance.

Figure 4-20. Configuring authentication methods

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT 119

<configuration>
<system.runtime.remoting>
<application>
<service>
<wellknown mode="Singleton"

type="Server.CustomerManager, Server"
objectUri="CustomerManager.rem" />

</service>
</application>

</system.runtime.remoting>
</configuration>

After putting the configuration file in your virtual directory, you have to copy the assemblies
(both the shared one and the server’s implementation) into its bin subdirectory. The resulting
structure should be like this:

Directory Contents

x:\<path_to_your_virtual_dir> web.config

x:\<path_to_your_virtual_dir>\bin Assemblies that contain your remote objects and assem-
blies upon which your objects depend if they are not in
the GAC

The client is basically the same as in the previous examples. I use a shared interface approach
and reference the assembly in which it is contained. The client itself is quite simple, as shown
in Listing 4-14.

Listing 4-14. An Anonymous Client

using System;
using System.Runtime.Remoting;
using General; // from General.DLL
using Server; // from server.cs

namespace Client
{

class Client
{

static void Main(string[] args)
{

String filename =
AppDomain.CurrentDomain.SetupInformation.ConfigurationFile;

RemotingConfiguration.Configure(filename);

IRemoteCustomerManager mgr = (IRemoteCustomerManager)
RemotingHelper.CreateProxy(typeof(IRemoteCustomerManager));

Console.WriteLine("Client.Main(): Reference to CustomerManager " +
"acquired");

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT120

Customer cust = mgr.GetCustomer(4711);
int age = cust.GetAge();
Console.WriteLine("Client.Main(): Customer {0} {1} is {2} years old.",

cust.FirstName,
cust.LastName,
age);

Console.ReadLine();
}

}
}

In contrast to the examples earlier in this chapter, the client’s configuration file needs to
be changed to contain the correct URL to the newly deployed components.

<configuration>
<system.runtime.remoting>
<application>
<client>
<!-- This entry only works with the RemotingHelper class -->
<wellknown type="General.IRemoteCustomerManager, General"

url="http://localhost/MyServer/CustomerManager.rem" />
</client>

</application>
</system.runtime.remoting>

</configuration>

Debugging in IIS
To debug your server application in IIS, you could follow the same approach presented earlier
for the Windows service. You could select Debug ➤ Processes and manually attach the debugger
to the ASP.NET worker process (aspnet_wp.exe or w3wp.exe, depending on the OS).

There is, however, an easier but not very obvious solution to debugging your remoting
server inside of IIS. In essence, you have to “trick” Visual Studio .NET into attaching itself auto-
matically to the ASP.NET worker process. To do this, you add a new ASP.NET Web Application
Project to your solution. This project will host your remoting configuration information and
server-side assemblies.

In this project, you can add the <system.runtime.remoting> section to your web.config file
as discussed previously. To add server-side implementation and interface assemblies, you just
have to reference them using the Add Reference dialog box. These will be automatically deployed
to the correct subdirectory.

You must not delete the default WebForm1.aspx, as this will be used by Visual Studio to start
the debugger. Now as soon as you hit F5, VS .NET will open an Internet Explorer window that
displays this empty WebForm1.aspx. You can ignore this IE window, but you must not close it
as this would stop the debugger. Instead, you can go to your server-side implementation code
in VS .NET and simply set breakpoints, view variables, and so on as if you were running in a normal
remoting host.

CHAPTER 4 ■ CONFIGURATION AND DEPLOYMENT 121

Summary
In this chapter, you learned about the different settings that can be employed in a configuration
file. You now also know why configuration files are important and why you shouldn’t hard code
the connection information in your .NET Remoting clients.

You know how to use configuration files to allow for transparent use of configuration files for
all types of remote objects. I also demonstrated a possible workaround for some problems that
you might encounter when using [Serializable] objects in combination with SoapSuds-generated
metadata. In the section “What About Interfaces?” in this chapter I also introduced an approach
for using configuration files with an interface-based remote object, which eliminates the need
for SoapSuds.exe.

I showed you different deployment scenarios, including managed applications such as
a console application or a Windows service. You also read about the benefits of using IIS to host
your remote objects and how to debug Windows services and IIS as remoting hosts.

In the next chapter, I show you how to build .NET Remoting clients for various technologies:
Windows Forms, ASP.NET Web sites, and Web Services.

123

C H A P T E R 5

■ ■ ■

Securing .NET Remoting

Unfortunately .NET Remoting does not incorporate a standard means of authentication.
Instead, Microsoft opened the interfaces so that any authentication (and encryption) variant
can be used by implementing custom sinks and sink providers. The effort to implement these
sinks may be reasonable when developing large-scale distributed applications that have to inte-
grate with already installed third-party sign-on solutions, but is definitely cumbersome, too.

In this chapter, I will go through the basic concepts for securing .NET Remoting components
when hosted within Internet Information Services (IIS) as well as outside of IIS. You will learn
how to enable authentication through IIS by leveraging basic HTTP sign-on as well as the more
secure Windows-integrated authentication. Furthermore, you will see how to secure commu-
nication between the client and the server by enabling SSL at the server side.

Afterwards you will learn how to leverage additional components offered by Microsoft to
secure .NET Remoting when not hosted within IIS, which is a little bit more complicated because
you have to configure the security channels within the configuration.

Last but not least, you will learn about the security enhancements that will come with the
.NET Framework 2.0 and Visual Studio 2005.

Building Secure Systems
Some of the major basic concepts for building secure systems are authentication, authorization,
confidentiality, and integrity. Authentication and authorization are concepts that deal with an
identity like a user or machine. Authentication is the process of determining who an actor is,
and authorization is the process of permitting or denying access to resources to the actor.

CHAPTER 5 ■ SECURING .NET REMOTING124

1. For more information about threat modeling, take a look at Michael Howard and David LeBlanc’s
Writing Secure Code, Second Edition (Microsoft Press, 2002) or Frank Swiderski and Window Snyder’s
Threat Modeling (Microsoft Press, 2004).

When it comes to secure message exchange between two actors, you have to know about
confidentiality and integrity. Message confidentiality means that a message sent between the
client and the server cannot be read by anyone else but the sender and the receiver—the message
can only be read by the client and the server and nobody else because it is encrypted with a key
only known by those two actors. Integrity ensures that the messages do not change while being
transmitted from the sender to the receiver. Techniques for ensuring integrity are message
authentication codes and digital signatures.

But keep in mind, security is far more than just adding a couple of “security features” like
encrypting messages. For example, while encryption ensures confidentiality, it does not protect
you from replay attacks or denial of service attacks in any way. Furthermore, many security bugs
can be application design issues at an architectural level (SSL does not solve all your problems).

Therefore, a very good understanding of the application’s environment and potential threats
in this environment is absolutely necessary. It’s the only way of securing the architecture of your
application. An example of a structured method for understanding the environment and poten-
tial threats is threat modeling.1

Authentication Protocols in Windows
In my opinion the most important authentication protocols that can be used in Windows are
NTLM, Kerberos, and Negotiate. I want to give you a brief overview of how these protocols
conceptually work so that you know the differences and you are able to select the appropriate
authentication protocol for your solutions.

Although each of the authentication protocols works differently, they share one common
thing: they require you to trust an authority that knows all the details about valid users and
machines. When logging on to a machine using a local machine account, this authority is the local
security authority subsystem (LSASS). If you log on to a domain using your domain user account,
the domain controller acts as an authority who knows the details about the user account—in
this case the actual authentication is performed by the domain controller and therefore the local
machine has to trust the domain controller.

NTLM Authentication
NTLM, also known as NT LAN manager authentication or Windows NT challenge/response, is
a very old authentication protocol that has been built into Windows since it has had networking
support dating back to the good old LAN manager days. NTLM works only when both the client
and the server are running on Windows. It implements a three-way authentication handshake
between the client and the server as you can see in Figure 5-1.

CHAPTER 5 ■ SECURING .NET REMOTING 125

Server MachineClient Machine

Server User’s / Service’s
Logon Session

SAMPLE
Domain Authority

MyClient.exe MyServer.exe

Negotiate

Challenge

Response with
Username

Encrypt
NONCE from

challenge

Newly Created Logon Session for
Client User

Return success of
authentication

Re-create encrypted
NONE and compare

with client’s response

Create a logon
session for the

client user

Send username and
NONCE and client

response to authority

Client User’s Logon Session

1

2
3

4

5

6

8

7

Figure 5-1. NTLM authentication

Both machines in the preceding diagram are in the same domain, SAMPLE. The client first
starts the communication by sending a negotiate message to the server that contains just the
username. The server responds with a challenge that consists of a NONCE—a random 64-bit
value which is guaranteed to be unique for this particular communication session. When the
client receives the challenge, it encrypts NONCE with the client user’s master key (hashed
password of the user), bundles it together with the principal name as well as the authority, and
sends it back to the server.

Now the server can verify the client’s credentials by sending the whole response as well as
the original NONCE to the domain controller (remember, the server has generated the NONCE
for the challenge, therefore it still knows it). The authority retrieves the hashed password from
the security account manager database to again encrypt the clear text NONCE. If the result equals
the encrypted NONCE sent in the client’s response, authentication is successful and the server
can create a network logon session for the client user on the server.

CHAPTER 5 ■ SECURING .NET REMOTING126

In case of an interactive logon where a user tries to access a server resource through a local
account of the server, a logon screen will capture the username and password before sending
the first negotiate message. Immediately after the username and password are entered Windows
creates a one-way hash for the password (which will be used as the master key) and purges the
original entries. This master key is used for encrypting the NONCE as described earlier.

Kerberos: Very Fast Track
Kerberos is a publicly well-known authentication protocol standardized by the IETF, and it is
currently the most secure mechanism for authenticating users. It also has support for delegation,
which means if the client allows it, the server can perform actions across the network on behalf
of the client (although if possible avoid that because it always means some additional admin-
istrative overhead). On the Microsoft platform Kerberos has been available since Windows 2000.
Covering Kerberos in detail would definitely require a book on its own, but I want to introduce the
basic concepts briefly so that you understand the major differences.

The core of Kerberos consists of a set of ticket-based subprotocols that are used during the
authentication process and, of course, an authority called the Key Distribution Center (KDC).
Every actor within an authentication process has to trust the KDC (on Windows systems that is
the domain controller). Kerberos requires the notion of a central authority and therefore can only
be used in domains, while NTLM can be used for machine-to-machine communication, too.

As you can see in Figure 5-2, the client again wants to authenticate to the server. This time
authentication is primarily based on tickets. Before the client can start a communication session
with the server, it has to acquire a so-called Ticket Granting Ticket (TGT). Only if the client has
a TGT can it request access to a server resource through the KDC. Therefore, to get a TGT the
client has to authenticate at the KDC through the authentication service—basically the client
provides his identity, and the KDC returns the TGT encrypted with the client’s master key. That
means only the valid client is able to decrypt the TGT. The TGT contains a session key used for
further communication with the KDC and, of course, expires after a specific time defined by
the KDC.

Next the client needs to request a ticket that permits access to the server resource it wants
to access. Therefore it sends a request to the Ticket Granting Service (TGS). This request consists
of the Ticket Granting Ticket received in the previous step, an authenticator, and the server the
client wants to talk to. The authenticator is used to ensure the identity of the client requesting
access to the server—it is nothing other than a time stamp encrypted with the client’s master
key (remember, the master key is the hashed version of the client user’s password).

CHAPTER 5 ■ SECURING .NET REMOTING 127

The TGS responds with two parts. One part just contains the session key for the client
encrypted with the client’s master key and a Session Ticket (ST) encrypted with the server’s
master key that subsequently will be forwarded to the server. This ST also contains the session
key as well as an expiration time and information about the client that wants to talk to the server.

Sample
Domain Authority

(KDC)

Authentication
Service

Authentication
Request

Client Machine

MyClient.exe

Newly Created Logon Session for
Client User

Client User’s Logon Session

Server Machine

Server User’s / Service’s
Logon Session

Create logon
session for

client if session
ticket valid

Ticket Granting
Ticket issued if
authentication
was successful

Return session
ticket if TGT is

valid

Request
session

ticket
for server

Request session with
issued session ticket

Accept session
response or reject

Ticket Granting
Service

6

2
3

4

5

7

1

Figure 5-2. Kerberos authentication actors

CHAPTER 5 ■ SECURING .NET REMOTING128

When the server receives the ST, it decrypts it using its own master key (remember, the author-
ity encrypted the ST using the server’s master key). As the server and the KDC are the only parties
that know the server’s master key, they are the only ones that can decrypt the Session Ticket.
Therefore, if decryption of the Session Ticket is successful on the server, the server knows that
this ticket has been issued by a trusted authority (the KDC) and communication between the
client and the server can start. Messages sent between the client and the server are encrypted
using the session key issued by the TGS before (remember, the client got the session key as
a response from its request to the TGS and the server found the session key in the Session Ticket
received from the client).

Again, my intention in giving you this brief introduction was to outline the differences
between NTLM and Kerberos so that you know what the prerequisites for using one of these
protocols are. In general, you are always better off when using Kerberos because it is more secure,
but as you have seen, this is not always possible (Windows 2000 and above required; active
directory domain required). For more information about Kerberos version 5, take a look at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secauthn/security/
microsoft_kerberos.asp.

Security Package Negotiate
The last authentication protocol I want to mention is the easiest one to understand—the security
package negotiate (SPNEGO) authentication protocol. Basically this protocol is not doing the
actual authentication itself, it just figures out the best (most secure) security package to use for
the authentication process.

The idea of SPNEGO is fairly simple. Let’s assume that both the client and the server select
SPNEGO (negotiate) as their authentication protocol. SPNEGO always tries the most secure
authentication package available. Therefore the client starts by selecting Kerberos and just sends
the Kerberos authentication request across the wire to the server. If the server accepts the request,
it directly responds with the corresponding Kerberos authentication reply (in this case the server
accepts because SPNEGO has been selected on the server as well). If the server does not under-
stand (or does not want to understand) the request, additional roundtrips are necessary for
figuring out the next available security package (e.g., NTLM).

Security Support Provider Interface
As you have seen in the previous chapters, Windows supports a bunch of authentication
protocols, and each of these protocols has its own specifics. Now imagine you want to develop
an application that needs to support all of those protocols. Basically it means implementing
a library for each authentication protocol that can be used from within the application, which
is really cumbersome.

That’s exactly where the Security Support Provider (SSP) and the Security Support Provider
Interface (SSPI) become important. SSPI basically is an abstraction layer provided by Windows
for encapsulating the specifics of authentication and secure conversation. As an application
developer, you can appreciate how it enables you to authenticate a user across process and
machine boundaries by just specifying the authentication protocol you want to use, and all the
details of the protocol are handled by SSPI.

CHAPTER 5 ■ SECURING .NET REMOTING 129

2. Going into details of code access security would definitely require a book on its own. One of the best
references for code access security I know is the book .NET Framework Security by Brian A. LaMacchia
et al. (Addison-Wesley, 2002). For now, it is enough to know that code access security enables you to
give permissions to code based on evidence like author, digital signature of the code, assembly origin,
assembly name, or assembly version.

Unfortunately, SSPI does not exist as a managed API. But Microsoft provides a managed wrap-
per sample downloadable from MSDN (http://msdn.microsoft.com/library/en-us/dndotnet/
html/remsec.asp) that encapsulates the Win32 SSPI API functions in a set of managed classes
(see the section “Security Outside of IIS” later in this chapter).

Identities and Principals: A Short Overview
Before you can read about the details of securing .NET Remoting components, you have to
understand how the .NET Framework supports implementing authentication and authorization.

Basically the .NET Framework differentiates between two types of security mechanisms:
code access security (CAS) and role-based security (RBS). While code access security manages
permissions on a code level by permitting or denying access to resources on a code basis,
role-based security deals with user identification and authorization.2

The foundation for role-based security is laid by two interfaces that can be found in the
System.Security.Principal namespace: IIdentity and IPrincipal. The identity can be seen as the
result of an authentication process and identifies the user as well as the way the user has authen-
ticated against the system. The principal is something like the account description for the user.
Created with an identity, it connects the user with the roles assigned to the user. Based on the
identity as well as the principal, you can implement your own authorization system. Out of
the box the .NET Framework comes with four identities and two types of principals as you can
see in Figure 5-3.

<<interface>>
IIdentity

<<interface>>
IPrincipal

GenericPrincipal

WindowsPrincipal

GenericIdentity

FormsIdentity PassportIdentity

WindowsIdentity

-IsAuthenticated : bool
-AuthenticationType : string
-Name : string

-Ticket -HasTicket
-TicketAge
-HexPUID
-...

-Token
-IsAnonymous
-IsGuest
-IsSystem

-Identity : IIdentity
+IsInRole() : bool

* 1

Figure 5-3. IIdentity and IPrincipal

CHAPTER 5 ■ SECURING .NET REMOTING130

When working with identities and principals, you first need to authenticate the user with
your preferred method. After authenticating successfully, you have to create an identity object
based on the username and the authentication type. The principal object is then created based
on the previously created identity object and optionally a list of roles.

The following table explains the differences between the types of identities shown in
Figure 5-3.

Identity Description

WindowsIdentity WindowsIdentity is used for Windows authentication. This identity
object is retrieved through a static method of the WindowsIdentity
class called GetCurrent(). Therefore through WindowsIdentity.
GetCurrent() you get an identity of the current process (the user
account under which the process is running).

PassportIdentity Passport is used for Passport authentication. ASP.NET supports
passport authentication through configuration. Passport provides
a single sign-on solution for Web-based applications.

FormsIdentity If you configure your ASP.NET application using forms authen-
tication and using the System.Web.Security.FormsAuthentication.
RedirectFromLoginPage() method, a FormsIdentity will be created by
the ASP.NET infrastructure for you and automatically assigned to
HttpContext.Current.User.Identity.

GenericIdentity You can use a GenericIdentity if none of the other identity objects fits
into your solution. The GenericIdentity object has to be created man-
ually with a username and authentication method as constructor
parameters. Usually you create the GenericIdentity after you have
authenticated the user through your own authentication mode (e.g.,
through a users table in your SQL Server database).

Note that you also can create your own identity by just creating a class and implementing
the IIdentity interface. This might be interesting if you want to create your own identity object
with additional functionality. The next table shows the different types of principals and their
usage scenarios.

Principal Description

WindowsPrincipal WindowsPrincipal is used in conjunction with WindowsIdentity.
Created based on a WindowsIdentity, it figures out the Windows
groups for the WindowsIdentity and allows performing authorization
based on the Windows groups.

GenericPrincipal As its name implies, GenericPrincipal can be used in cases where
you don’t want to leverage the Windows infrastructure through the
WindowsIdentity and WindowsPrincipal objects. A GenericPrincipal is
created based on a previously created IIdentity and an array of strings
that represent the roles for the user.

The following sample demonstrates the usage of WindowsIdentity and WindowsPrincipal in
a simple console application project. It simply outputs the identity’s name as well as the authen-
tication type and whether the account is a guest account or not as you can see in Listing 5-1.

CHAPTER 5 ■ SECURING .NET REMOTING 131

Listing 5-1. A Simple Identity and Principal Sample

using System;
using System.Security.Principal;

namespace WindowsIdentitySample
{

class TestApplication
{

[STAThread]
static void Main(string[] args)
{

// get the current windows identity and apply it to the managed thread
WindowsIdentity identity = WindowsIdentity.GetCurrent();
WindowsPrincipal principal = new WindowsPrincipal(identity);

// output the identity's name as well as authentication method
System.Console.WriteLine("User: " + identity.Name);
System.Console.WriteLine("Authenticated through: " +

identity.AuthenticationType);
System.Console.WriteLine("Is Guest: " + identity.IsGuest);

}
}

}

If you take a look at the output of the application, it should resemble Figure 5-4.

Of course, just identifying the user is not all you want to do. In the next step, you want to
permit or deny access to application resources based on the user’s identity or group and role
membership. This can be achieved by simply querying the identity name or calling the
Principal.IsInRole(role name) method. Modify the code from the previous sample so that it
looks like Listing 5-2.

Listing 5-2. The Modified Principal Excample with a Role Permission Check

using System;
using System.Security.Principal;
using System.Security.Permissions;

Figure 5-4. WindowsIdentity sample in action

CHAPTER 5 ■ SECURING .NET REMOTING132

namespace WindowsIdentitySample
{

class TestApplication
{

[STAThread]
static void Main(string[] args)
{

// get the current windows identity and apply it to the managed thread
WindowsIdentity identity = WindowsIdentity.GetCurrent();
WindowsPrincipal principal = new WindowsPrincipal(identity);

// output the identity's name as well as authentication method
System.Console.WriteLine("User: " + identity.Name);
System.Console.WriteLine("Authenticated through: " +

identity.AuthenticationType);
System.Console.WriteLine("Is Guest: " + identity.IsGuest);

// set the identity to the managed thread's CurrentPrincipal
System.Threading.Thread.CurrentPrincipal = principal;

// first of all demonstrate imperative security
System.Console.WriteLine("\nTesting imperative security...");
if(principal.IsInRole(@"BUILTIN\Administrators"))
{

System.Console.WriteLine(">> Administrative task performed <<");
}
else
{

System.Console.WriteLine("!! You are not an administrator !!");
}

// at last test declarative security
try
{

System.Console.WriteLine("\nTesting declarative security...");
DeclarativeSecurity();
System.Console.WriteLine("Test succeeded!\n");

}
catch(System.Security.SecurityException ex)
{

System.Console.WriteLine("Security exception occured: " +
ex.Message);

}
}

[PrincipalPermission(SecurityAction.Demand, Role=@"BUILTIN\Users")]
static void DeclarativeSecurity()
{

CHAPTER 5 ■ SECURING .NET REMOTING 133

System.Console.WriteLine("Function called successfully!");
}

}
}

In the preceding sample, you can see one important fact: the .NET Framework role-based
security distinguishes between two types of authorization checks! Authorization checks based
on Principal.IsInRole() are called imperative security checks; you can also enforce security
checks through the CLR itself by adding a permission demand attribute to the function as you
can see with the DeclarativeSecurity function.

When using declarative security, the CLR itself enforces the permission as specified in the
permission attribute. But to make declarative security work, the # for the executing managed
thread must be initialized correctly (otherwise access is denied per default). When working with
ASP.NET and IIS or the .NET Remoting security samples (see the section “Securing with IIS”
in this chapter) the thread’s CurrentPrincipal will be initialized automatically. In other appli-
cations you have to initialize the CurrentPrincipal yourself on each launched thread or call
AppDomain.CurrentDomain.SetThreadPrincipal(your principal) to automatically let the CLR
initialize the CurrentPrincipal for the threads of the AppDomain automatically.

■Note For more information on identities and principals, refer to the MSDN documentation (http://
msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/

cpconRole-BasedSecurity.asp).

Now that you know how the .NET Framework supports different security models, I can show
you the details of securing .NET Remoting solutions. First of all, I dive into the authentication
within IIS and outside of IIS, and last but not least I will leverage the knowledge of principals and
identities to perform simple authorization tasks.

Securing with IIS
The easiest way for securing .NET Remoting components is hosting them in Internet Information
Services, or IIS. IIS provides you with authentication against Windows accounts as well as
transport-level security through SSL. It allows you to restrict your callers through IP address
restrictions, too.

Authentication with IIS
The functionality of IIS is not tailored to remoting, but applies to all IIS applications, including
static HTML pages and ASP.NET Web applications. Actually, .NET Remoting components are
hosted within the ASP.NET runtime infrastructure. Because SSL will be configured through the
IIS management console the same way as for any other IIS application without any effects on
the code of your .NET Remoting application, the focus will be on authentication. The following
table lists the authentication modes supported by IIS.

CHAPTER 5 ■ SECURING .NET REMOTING134

Authentication Mode Description

Anonymous access Configures the Web application so that the client does not need to
authenticate to the server when doing requests. In this case, the
application defaults to a user account called IUSR_MACHINENAME.

Basic authentication Basic authentication is a standard authentication mode defined by
the W3C. When using basic authentication, the client has to send user
credentials in the HTTP header to the server. The server afterwards
authenticates the user and grants or denies access based on the
authenticated credentials. Basic authentication sends the username
and password in clear text across the wire and therefore should be
used only together with SSL.

Digest authentication Digest authentication is a more secure authentication mode. It hashes
the password before sending it across the wire. Therefore, the password
is not sent clear text across the wire. However, a hacker can still try to
break the password using brute force attacks or dictionary attacks.

Windows authentication Windows authentication is the most secure authentication protocol
available for IIS because it uses NTLM or, if possible, Kerberos
authentication (see the section “Authentication Protocols in Windows”
earlier in this chapter). Windows authentication is the best case for
any intranet scenarios or extranet scenarios, but it does not work in
any case for Internet scenarios because some proxies and firewalls
block the authentication requests as well as necessary ports. Win-
dows authentication has to be supported by the client, server, and
any proxy server in between.

It doesn’t matter which of these authentication modes you are using. Whether basic, digest,
or Windows, for any user who wants to access the Web application or .NET Remoting component
hosted in IIS, a valid Windows user account must be available (either a local machine or Active
Directory account). That is different from, for example, ASP.NET forms authentication, which
can be used with ASP.NET Web applications and provides developers with the possibility of
validating credentials against a custom store like a SQL Server database.

The security properties can be specified in the IIS snap-in to the MMC. You can see a ver-
sion of the previous server configured for authenticated use in Figure 5-5.

■Caution The basic authentication scheme, which is usable for remoting components, is not at all secure.
Using a TCP/IP packet sniffer, one can easily capture the authentication tokens and resend them with their
own requests to “impersonate” the original user. For really secure applications, encryption using SSL is highly
recommended, and may even be a necessity.

CHAPTER 5 ■ SECURING .NET REMOTING 135

Figure 5-5. Authentication is necessary when accessing remote objects.

When using authentication within IIS, a change in the client code is necessary to send
usernames and passwords to your server. Before running the following example, you have to
create a new local user called DummyRemotingUser with the password 12345 on your system.

To transfer the logon information to the server, you have to set properties on the channel
sink. Unfortunately, there is no direct way to specify a valid username/password combination
for a given hostname (but I’ll show you how to do this using a custom sink in Chapter 12). In
the meantime, you have to call the static method ChannelServices.GetChannelSinkProperties(),
which takes the proxy to the remote object as a parameter. This function returns an IDictionary
that allows you to set extended properties including username and password.

IDictionary props = ChannelServices.GetChannelSinkProperties(mgr);
props["username"] = "dummyremotinguser";
props["password"] = "12345";

You should also extend the client to contain code to catch possible exceptions. These can
occur due to misconfigurations on the server side or when passing an incorrect username/
password combination. The complete source code for an authenticated client is shown in
Listing 5-3.

CHAPTER 5 ■ SECURING .NET REMOTING136

Listing 5-3. Client That Uses IIS’s Built-In Authentication Methods

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Collections;
using System.Runtime.Remoting.Services;
using General; // from General.DLL
using Server; // from server.cs

namespace Client
{

class Client
{

static void Main(string[] args)
{

try
{

String filename = "client.exe.config";
RemotingConfiguration.Configure(filename);

CustomerManager mgr = new CustomerManager();

Console.WriteLine("Client.Main(): Reference to CustomerManager " +
" acquired");

IDictionary props = ChannelServices.GetChannelSinkProperties(mgr);
props["username"] = "dummyremotinguser";
props["password"] = "12345";

Customer cust = mgr.getCustomer(4711);
int age = cust.getAge();
Console.WriteLine("Client.Main(): Customer {0} {1} is {2} " +

"years old.",
cust.FirstName,
cust.LastName,
age);

}
catch (Exception e)
{

Console.WriteLine("EX: {0}",e.Message);
}

Console.ReadLine();
}

}
}

CHAPTER 5 ■ SECURING .NET REMOTING 137

Figure 5-6. Incorrect username/password combination

Figure 5-7. Enabling Windows authentication

This client now connects to the server and authenticates the user against the specified
Windows user account on the server machine. You can see in Figure 5-6 what happens when
you change the password for DummyRemotingUser.

Securing the Sign-On Process
In the preceding examples, I used the so-called HTTP basic authentication. This enables a great
deal of interoperability between various Web servers and proxies. Unfortunately, this type of
authentication allows a playback attack, which means that someone who uses software or a device
to monitor all network traffic can later incorporate the transferred username/password combi-
nation in his or her own requests.

When both the client and the server are based on Windows XP, 2000, or NT, you can use
Windows integrated authentication, which results in either NTLM or Kerberos (see “Authentication
Protocols in Windows” earlier in this chapter). But remember that NTLM is a nonstandard
mechanism that unfortunately does not work with all HTTP proxies. Furthermore, it requires
you to open some ports on your firewall. However, if it is supported by the proxies of your users
or your work in an intranet scenario, it nevertheless provides considerably higher security against
playback attacks.

You can switch to this authentication scheme using Internet Services Manager MMC, as shown
in Figure 5-7. Neither the client’s code nor the server’s code has to be changed after this switch.

CHAPTER 5 ■ SECURING .NET REMOTING138

■Note You can also enable both basic and Windows authentication at the same time. The remoting frame-
work (as well as standard Internet Explorer) will choose the most secure method that has been announced by
the server.

Enabling Single Sign-On
When your user is authenticated against the same Windows domain in which your server is
located, you finally can use integrated security. This will log your users on to the server without
further need of specifying usernames or passwords.

The HTTP channel has a property called useDefaultCredentials. When this property is set to
true via the configuration file and no username or password is specified within the ChannelSink’s
properties, the credentials of the currently logged-on user will be passed to the server. Because
Windows 2000 can’t get to a user’s cleartext password, this scheme is only possible when using
Windows authentication on your Web server.

When you want to switch to this authentication scheme, you just have to remove all calls
to the channel sink’s properties, which set the username or password, and instead include the
following configuration file:

<configuration>
<system.runtime.remoting>
<application>
<channels>

<channel ref="http" useDefaultCredentials="true" />
</channels>

<client>
<wellknown type="Server.CustomerManager, Client"

url="http://localhost:8080/MyAuthServer/CustomerManager.soap" />
</client>

</application>
</system.runtime.remoting>

</configuration>

Encryption and IIS
Using authentication, especially the Windows NT challenge/response authentication method,
will give you a somewhat secured environment. Nevertheless, when transferring sensitive data
over the Internet, authentication is just not enough—encryption needs to be applied as well.

Hosting your components in IIS gives you a head start when it comes to encryption, as
you can easily leverage the built-in SSL capabilities. All it takes is installing a server-side

CHAPTER 5 ■ SECURING .NET REMOTING 139

3. Hint: you can get free certificates for development purposes from VeriSign (http://www.verisign.com).
You can also download and install the IIS resource kit from http://www.microsoft.com/downloads,
which includes a tool called selfssl.exe that can be used for creating a SSL certificate as well as enabling
SSL on IIS with just one step. SelfSSL is intended for installing SSL on development and/or test
machines.

4. To get to the Windows certificate store, log on as administrator and start a management console
through Start ➤ Run ➤ mmc.exe. Afterwards select File ➤ Add/Remove Snap In and add the Certifi-
cates MMC snap-in. This snap-in allows you to manage the certificates of your local machine as well
as the current user profile. Actually, certificates are stored in the Documents and Settings\All Users\
Application Data\Microsoft directory.

certificate3 and changing the URL in the client-side configuration file. After making an edit to
just one line (changing “http:” to “https:”), all traffic will be secured—including the HTTP headers,
authentication information, and, of course, the transferred data.

The changed configuration file looks like this:

<configuration>
<system.runtime.remoting>
<application>
<client>
<wellknown type="Server.CustomerManager, Client"

url="https://localhost/MyAuthServer/CustomerManager.soap" />
</client>

</application>
</system.runtime.remoting>

</configuration>

SSL encryption is sometimes accused of imposing a somewhat huge overhead. This is not
always true, because the “real” asymmetric cryptography only takes place during the process
of establishing the secured HTTP connection. This secure connection will be reused, and the
overhead thus minimized.

■Note You can get certificates either through buying them from a well-known authority like VeriSign or you
can set up your own certificate authority (Windows 2000 Server or Windows Server 2003 includes certificate
services that can be installed). When using your own certificate authority or using selfssl.exe of the IIS
resource kit for issuing a server certificate, you have to configure the client to trust your certificate authority
by installing the authority’s certificate in the Trusted root Certification Authorities area in your Windows certifi-
cate store.4

When testing the example in Chapter 2 using both HTTPS and HTTP, you’ll see that a binary
formatter via HTTPS/SSL is faster, and fewer bytes are transferred over the network than when
using a SOAP formatter via conventional HTTP.

CHAPTER 5 ■ SECURING .NET REMOTING140

5. I discuss these sinks and how to create them in Chapter 13.

Security Outside of IIS
Even though IIS provides a secure and scalable hosting environment for .NET applications, you
might want or need to host your components in a custom Windows service. In this case, there
is no built-in support for security in the .NET Remoting framework.

Of course, the first idea would be to manually serialize and transfer the user’s credentials
across the wire, but that is definitely insecure as the server has no way to figure out whether trust-
ing the information received is a good idea or not. Furthermore, information is not encrypted so
you would have to provide your own encryption and digital signature functionality, which leads to
key exchange issues. (When and how to exchange keys? Where should you store the keys?)

Instead, there are other cryptographically safe methods for exchanging these credentials.
Microsoft for example released an additional component in 2003 that provides for new security
features for .NET Remoting. This component is now available in version 2.0 including complete
source code and extensive documentation from http://msdn.microsoft.com/library/en-us/
dndotnet/html/remsec.asp. To compile and use this component, you also have to download
a managed wrapper of the SSPI features, which provide access to the underlying security
infrastructure of the Windows operating system. You can download the SSPI component—also
including source code and lots of documentation—from http://msdn.microsoft.com/library/
en-us/dndotnet/html/remsspi.asp.

■Note Please be aware that this component is not officially supported by Microsoft, the publisher of this
book, or its authors. Version 2.0 of .NET will, however, include similar security functions that can be used
independently of the chosen transport protocol.

Using the MSDN Security Samples
After downloading and extracting these components, you will find two new DLLs in subdirec-
tories of the installation folders:

• Microsoft.Samples.Security.SSPI.DLL

• Microsoft.Samples.Runtime.Remoting.Security.DLL

The first component is a managed wrapper around the SSPI Win32 API functions, while
the second component is a set of remoting extensibility classes (remoting sinks5) that leverages
the SSPI wrapper for providing the security features to .NET Remoting.

For using the components provided with the sample, you have to complete two steps: first
of all you have to add a reference to both assembly DLLs in the client as well as the server through
the Visual Studio .NET Add Reference dialog box. In a second step, you have to configure the
extensions through configuration files.

Let’s start with implementing a sample that leverages the security samples provided by
Microsoft. At first you will get a short look at the shared assembly that defines the serializable
types that will be sent across the wire as well as the interface for the server-side singleton object
as you can see in Listing 5-4.

CHAPTER 5 ■ SECURING .NET REMOTING 141

Listing 5-4. The Shared Assembly for the .NET Remoting Security Sample

using System;

namespace General
{

public interface IPersonFactory
{

Person GetPerson();
}

[Serializable]
public class Person
{

private int _age;
public string Firstname, Lastname;

public Person(string firstname, string lastname, int age)
{

this.Age = age;
this.Firstname = firstname;
this.Lastname = lastname;

}

public int Age
{

get { return _age; }
set
{

if(value >= 0)
_age = value;

else
throw new ArgumentException("Age must be zero or positive!");

}
}

}
}

Implementing the client is fairly easy as it does nothing other than retrieve a person from the
server and show its content. For enabling security in the client, configuring the security sample
provider correctly is the only thing you have to do. Listing 5-5 shows the client implementation.

Listing 5-5. The Security Sample Client

using System;
using System.Security.Principal;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Activation;

CHAPTER 5 ■ SECURING .NET REMOTING142

using General;

namespace Client
{

class ClientApp
{

[STAThread]
static void Main(string[] args)
{

// startup information
System.Console.WriteLine("Starting client...");
System.Console.WriteLine("Current identity: " +

WindowsIdentity.GetCurrent().Name);

// configure the remoting runtime
RemotingConfiguration.Configure(

AppDomain.CurrentDomain.SetupInformation.ConfigurationFile);

// instantiate the type
try
{

IPersonFactory personCreator =
RemotingHelper.CreateProxy(

typeof(IPersonFactory)) as IPersonFactory;
Person p = personCreator.GetPerson();
System.Console.WriteLine("Got the person: {0} {1} {2}",

p.Firstname, p.Lastname, p.Age);
System.Console.ReadLine();

}
catch(Exception ex)
{

System.Console.WriteLine("Exception occured: " + ex.Message);
}

System.Console.WriteLine("Press key to stop...");
System.Console.Read();

}
}

}

The client at first retrieves the identity of its host process through WindowsIdentity.GetCurrent()
and afterwards instantiates the proxy and calls the server. A little bit more interesting is the
configuration for the client because of the additional configuration required for enabling secu-
rity in the application. Don’t forget to add a reference to the security sample DLLs through the
Add Reference dialog box of Visual Studio .NET.

CHAPTER 5 ■ SECURING .NET REMOTING 143

<configuration>
<system.runtime.remoting>
<application>
<channels>
<channel ref="tcp">
<clientProviders>
<formatter ref="binary" />
<provider type="Microsoft.Samples.Runtime.

Remoting.Security.SecurityClientChannelSinkProvider,
Microsoft.Samples.Runtime.Remoting.Security"

securityPackage="negotiate"
impersonationLevel="identify"
authenticationLevel="packetPrivacy" />

</clientProviders>
</channel>

</channels>
<client>
<wellknown type="General.IPersonFactory, General"

url="tcp://localhost:1234/MyPersonManager.rem" />
</client>

</application>
</system.runtime.remoting>
</configuration>

Within the clientProviders section of the configuration you add the security provider
immediately after the binary formatter. The security provider supports a set of additional
properties that you can see in the following table.

Setting Values Description

securityPackage ntlm, kerberos, negotiate Client and server; specifies the security protocol
that will be used for the authentication handshake.
Currently only NTLM, Kerberos, or SPNEGO are
supported by this implementation.

impersonationLevel identify, impersonate, Client only; specifies the capabilities of the
delegate security token passed over to the server. The

option identify means that the server is able to
identify the client while the option impersonate
allows the server to identify as well as impersonate
the security token of the client to act on behalf of
the client on the local machine. Finally the option
delegate makes it possible to identify the client,
impersonate the security token, as well as delegate
the token to act on behalf of the client across
network hops.

Continues

CHAPTER 5 ■ SECURING .NET REMOTING144

Setting Values Description

authenticationLevel call, packetIntegrity, Client and server; essentially the authentication
packetPrivacy level specifies the level of protection for mes-

sages being exchanged between the client and
the server (therefore I think that the name is
a little bit misleading): call means that the client
gets authenticated on each method call. Mes-
sages are sent unprotected across the wire. With
the option packetIntegrity the client gets authen-
ticated on each method call and the sender adds
a digital signature to the message. On the
receiver’s side the digital signature will be veri-
fied. The last option, packetPrivacy, means that
the client gets authenticated on each method
call and the message will be encrypted by the
sender. The receiver decrypts and subsequently
processes the message. The reason why you can
select these different levels is that you have to
make a performance vs. security decision. The
more secure your application becomes, the
more processing power is needed.

The Kerberos security package can only be used when working within a domain and hav-
ing a connection to the domain controller (KDC). Otherwise, NTLM must be used (you can
also use negotiate, which will result in NTLM in this case and in Kerberos if you are working
within the domain having a connection to the KDC).

■Note Windows 2000 and above supports cached credentials, which allow you to log on to your machine
with your Active Directory domain account even if you don’t have a connection to the KDC (on Windows this
is the domain controller). If you are testing or developing .NET Remoting components under your domain user
account using the SSPI security solution, you will not be able to impersonate credentials from your client
(running under your domain user account) to a .NET Remoting server running in a different logon session
under a different user account because you either don’t have a ticket for impersonation or the ticket is expired.

The authentication level must be set on both the client and the server. But what happens
if the level on the client does not match the level on the server? Similar to DCOM, the behavior
is as follows: if the authentication level on the client is lower than the authentication level on
the server, then an exception will be thrown. If the authentication level on the client is higher
than on the server, the server will switch to the higher authentication level. Of course, the low-
est authentication level is call and the highest authentication level is packetPrivacy.

Essentially, this means that a minimum authentication level can be enforced by the server.
If the client exceeds this level, the server is okay; if not, it rejects the request and throws an excep-
tion. For example, if the server is configured for packetIntegrity and the client for call, then the
server will not accept the message and throws an exception. On the other hand, if the client is
configured to packetPrivacy, in this case the server switches to the higher authentication level
and also uses packetPrivacy.

CHAPTER 5 ■ SECURING .NET REMOTING 145

Now let’s switch to the implementation of the server that will only accept authenticated
requests. The server outputs information about the client user calling the server as well as the
identity of the process in which the server is hosted. Listing 5-6 shows the complete implemen-
tation of the server.

Listing 5-6. The Server for the Security Sample

using System;
using System.Security.Principal;
using System.Runtime.Remoting;

namespace Server
{

public class PersonManager : MarshalByRefObject, General.IPersonFactory
{

public General.Person GetPerson()
{

try
{

WindowsIdentity identity = WindowsIdentity.GetCurrent();

System.Console.WriteLine("\nIncoming request...");
System.Console.WriteLine("Current windows identity: " +

identity.Name);
System.Console.WriteLine("Current thread identity: " +

System.Threading.Thread.CurrentPrincipal.Identity.Name);
}
catch(Exception ex)
{

System.Console.WriteLine("Exception occured: " + ex.Message);
}

System.Console.WriteLine("Returning a new person...");
return new General.Person("Mini", "Coperground", 50);

}
}

public class ServerApp
{

[STAThread]
static void Main(string[] args)
{

string configFile =
AppDomain.CurrentDomain.SetupInformation.ConfigurationFile;

RemotingConfiguration.Configure(configFile);
System.Console.WriteLine("Server started, waiting for requests...");
System.Console.WriteLine("Server's process user: " +

WindowsIdentity.GetCurrent().Name);

CHAPTER 5 ■ SECURING .NET REMOTING146

System.Console.ReadLine();
}

}
}

Essentially the server is a Singleton object that acts as a factory for the person object.
When a client requests a new person, the server retrieves the current identity of the applica-
tion’s host process through WindowsIdentity.GetCurrent(). Afterwards it retrieves the princi-
pal identity of the managed thread that will be set by the security solution components and
identifies the client credentials. Just take a look at Figure 5-8 to see what happens if the server
is called by a client running in a different logon session.

■Note If you want to run the client as well as the server in different logon sessions, you can use the
runas.exe command to start either the client or the server or Visual Studio .NET in a different logon session
without logging on and off from your machine.

Next, take a look at the configuration for the server, which looks similar to the client’s
configuration:

<configuration>
<system.runtime.remoting>
<application>
<channels>
<channel ref="tcp" port="1234">
<serverProviders>
<provider type="Microsoft.Samples.Runtime.

Remoting.Security.SecurityServerChannelSinkProvider,
Microsoft.Samples.Runtime.Remoting.Security"

securityPackage="negotiate"
authenticationLevel="packetPrivacy" />

<formatter ref="binary" />
</serverProviders>

</channel>

Figure 5-8. The server sample in action

CHAPTER 5 ■ SECURING .NET REMOTING 147

</channels>
<service>
<wellknown type="Server.PersonManager, Server"

objectUri="MyPersonManager.rem"
mode="Singleton" />

</service>
</application>

</system.runtime.remoting>
</configuration>

The only difference between the configuration of the client and the configuration of
the server is that the serverProviders configuration option is used this time, and the
SecurityServerChannelSinkProvider is used instead of the SecurityClientChannelSinkProvider.
Also the formatter is specified after the security provider to verify security before deserializing
the message.

■Note The impersonationLevel option is not used by the server as it gives the client the capability to spec-
ify the capabilities of the token sent from to the server. As only the client should be able to specify the capa-
bilities of the security token sent to the server, this option is not useful for the server at all.

Specifying an impersonationLevel of impersonate or delegate allows the client to specify
the capabilities of the security token sent to the server. The server authenticates the user but
takes no further action—this means it does not impersonate the caller automatically. To verify
and test this, append the following code within the try block of the GetPerson() method of the
PersonManager class in the server:

// get the client's identity and impersonate the token
identity = System.Threading.Thread.CurrentPrincipal.Identity as WindowsIdentity;
WindowsImpersonationContext impCtx = identity.Impersonate();

// now output the current windows identity
System.Console.WriteLine("Identity impersonated...");
System.Console.WriteLine("Current identity: {0}",

WindowsIdentity.GetCurrent().Name);

// revert the identity to itself and again output the current windows identity
impCtx.Undo();
System.Console.WriteLine("Identity reverted: {0}",

WindowsIdentity.GetCurrent().Name);

Now let’s test the application again and take a look at the output of the server. Notice that
you originally configured the impersonationLevel in the first version of the client to the setting
identify, which only allows the server to identify the client but not impersonate or delegate the
security token. Therefore you are running in an exception this time, as you can see in Figure 5-9.

CHAPTER 5 ■ SECURING .NET REMOTING148

In the next step, change the impersonationLevel setting on the client to impersonate and
run the sample again. This time the server is able to impersonate the client as you can see in
the output shown in Figure 5-10.

With each incoming request, the server outputs its current Windows identity (which is
the identity of the host process), and afterwards the identity of the managed thread, which is the
identity passed from the client to the server. Without impersonating, the process would access
external resources like files or a database through the process identity, which means that
access control is verified against the process identity, too. If the server impersonates the client,
then the identity will be applied to the unmanaged thread, which means that each access to exter-
nal resources happens with the client’s identity. Therefore, in the case of file system ACLs or in
the case of the database, logins must be configured to permit access for the client’s identity.

■Note To really see the difference in impersonating the client on the server side, you should run the client
and the server under different user accounts. You can do that by either running Visual Studio .NET or the
applications in a separate login session using the runas command.

Finally, although not supported by Microsoft or the authors of this book, it makes sense to
use the security samples for .NET Remoting. Also, most of the code you are writing when using
these samples is still valid with Visual Studio .NET 2005 and .NET Framework 2.0, as you will
see in the next chapters.

Figure 5-9. Impersonation error

Figure 5-10. Successful impersonation of the client

CHAPTER 5 ■ SECURING .NET REMOTING 149

Implementing Authorization in the Server
Now that you know how to authenticate the user, you can implement authorization based
in the user’s identity as well as the principal. The solutions introduced in the previous
chapters, the IIS as well as the MSDN security sample solution, automatically initialize the
System.Threading.Thread.CurrentPrincipal property with a WindowsPrincipal of the authen-
ticated user. That enables you to allow only certain users to use your service or even assign
different privileges to different users.

■Tip Be sure to pass not only the name of the group but also the name of your machine or domain, as in
IsInRole(@“YOURMACHINE\ThisGroup”) or IsInRole(@“YOURDOMAIN\ThisGroup”). You can get the name of
the current computer from Environment.MachineName.

You accomplish the security by just retrieving the CurrentPrincipal and verifying group
memberships for the user.

■Caution The standard group names are not language agnostic. For example, on a German version of
Windows the administrators group is called “YOURMACHINE\Administratoren”, while on an English version
of Windows it is called “YOURMACHINE\Administrators”. Even the notation “BUILTIN\groupname”, which
can be used for standard Windows groups (like Administrators or Power Users), is not language agnostic
and also reflects changes of the group names (for example, if you rename the Administrators group to
Admins, then you have to use BUILTIN\Admins in your application, too). The only way for doing language and
name-change-safe verifications on Windows groups is through the WindowsBuiltInRole enumeration.

■Tip For custom application authorization, I’d suggest defining application-specific roles and map any
Windows accounts or Windows groups to those roles in your application data store (of course, assuming you
want to use Windows authentication). This enables decoupling the application from the local Windows
account and domain account as well as group structures and makes the application more reusable.

In Listing 5-7, I show you how to extend the server to check whether the remote user is in
the group RemotingUsers.

■Note You can create a group and assign users to it using the MMC (access this by right-clicking My
Computer and selecting Manage ➤ System Tools ➤ Local Users and Groups).

Listing 5-7. Checking the Membership in Windows Groups When Hosting in IIS

using System;
using General;
using System.Security.Principal;

CHAPTER 5 ■ SECURING .NET REMOTING150

namespace Server
{

class CustomerManager: MarshalByRefObject
{

public CustomerManager()
{

Console.WriteLine("CustomerManager.constructor: Object created");
}

public Customer getCustomer(int id)
{

String machinename = Environment.MachineName;

IPrincipal principal =
System.Threading.Thread.CurrentPrincipal;

if (! principal.IsInRole(machinename + @"\RemotingUsers"))
{

throw new UnauthorizedAccessException(
"The user is not in group RemotingUsers");

}

Console.WriteLine("CustomerManager.getCustomer): Called");
Customer tmp = new Customer();
tmp.FirstName = "John";
tmp.LastName = "Doe";
tmp.DateOfBirth = new DateTime(1970,7,4);
Console.WriteLine("CustomerManager.getCustomer(): Returning " +

"Customer-Object");
return tmp;

}
}

}

You can use the same client as in the earlier example with this server. Depending on the
group membership of the user, you will see the output in Figure 5-11 when DummyRemotingUser
is a member of RemotingUsers, or the output in Figure 5-12 when DummyRemotingUser is
not a member of this group.

■Note Updates to group membership or users’ passwords are not reflected online in IIS. You might have to
either wait a little or restart IIS before such changes will take effect.

CHAPTER 5 ■ SECURING .NET REMOTING 151

Figure 5-11. The user is in the correct group.

Figure 5-12. The user is not a member of the required group.

6. All the security-related enumerations are defined in the System.Runtime.Remoting.Channels namespace.

Security with Remoting in .NET 2.0 (Beta)
With the next version of the .NET Framework, version 2.0 (codename Whidbey), security is an
integral part of the .NET Remoting framework. The security infrastructure for .NET Remoting
2.0 includes authentication as well as channel security similar to the SSPI sample solution
described earlier in this chapter.

Security in .NET Remoting 2.0 will be configured directly for the channel. Therefore, all
you have to know about for leveraging the security infrastructure is a couple of new channel
properties as well as enumerations used in conjunction with those properties. Take a look at
the following table for an overview of the new properties and their associated enumerations.6

Property Enumeration Description

impersonationLevel ClientImpersonationLevel Client only; the impersonation level gives the
client the possibility to specify the capabilities
of the security token sent to the server. This
allows the client to define whether the server
is allowed to identify, impersonate, or delegate
the client’s security token. Possible values are
Identify, Impersonate, Delegate, or None.

authenticationMode AuthenticationMode Server only; the authentication mode is
used by the server to define the capabilities the
security token sent from the client to the server
must have so that the server can perform its
work properly. If the capabilities of the client
token do not match the requirements specified
in this option, an exception will be thrown by
the server.

Continues

CHAPTER 5 ■ SECURING .NET REMOTING152

Property Enumeration Description

encryption Encryption Client and server; the encryption option
specifies the transport-level security for the
messages sent between the client and the
server. Both the client and the server must be
configured with the same encryption set-
tings. Possible options are None, Sign, and
EncryptAndSign.

The first major difference between the SSPI security solution sample for .NET Remoting 1.x
and the security infrastructure of .NET Remoting 2.0 is the fact that the server can specify the
requirements for the client security token so that these requirements can be verified up front
and not at the moment when the server, for example, tries to impersonate the client (as is the
case with the SSPI sample solution).

Secondly, with .NET 2.0 the server automatically impersonates the client’s identity if both
the server and the client are configured for impersonation. You can see this when retrieving the
Windows identity through WindowsIdentity.GetCurrent() without calling WindowsIdentity.
Impersonate() up front.

Next you’ll see a code sample that will give you a closer look at the new .NET Remoting
infrastructure. You will develop a client as well as a server but will configure the client’s channel
programmatically and the server through the configuration file so that you can see both ways.
The server of the sample offers a simple method that takes a string message as well as an inte-
ger counter. For this purpose, you’ll define the server’s interface in a shared assembly as you
can see in the following code snippet:

namespace RemotedType
{

public interface IRemotedType
{

void DoCall(string message, int counter);
}

}

Listing 5-8 contains the server’s implementation. The server offers a simple remote object
that implements the interface. For each request the server outputs the authenticated user as
well as the managed and the unmanaged thread’s identity.

Listing 5-8. A Server Using the .NET Remoting 2.0 Security Infrastructure

using System;
using System.Collections.Generic;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Messaging;

using System.Security;
using System.Security.Principal;

namespace RemotingServer
{

CHAPTER 5 ■ SECURING .NET REMOTING 153

public class RemoteServerApp
{

static void Main(string[] args)
{

try
{

System.Console.WriteLine("Configuring server...");
System.Runtime.Remoting.RemotingConfiguration.Configure(

"RemotingServer.exe.config");
System.Console.WriteLine(

"Server configured, waiting for requests...");
System.Console.ReadLine();

}
catch (Exception ex)
{

System.Console.WriteLine("Error while configuring server!");
System.Console.ReadLine();

}
}

}

public class MyRemoteObject : MarshalByRefObject, RemotedType.IRemotedType
{

public void DoCall(string message, int counter)
{

// get some information about the caller's context
IIdentity remoteIdentity = CallContext.GetData(

"__remotePrincipal") as IIdentity;
if (remoteIdentity != null)
{

System.Console.WriteLine("Authenticated user:\n-){0}\n-){1}",
remoteIdentity.Name,

remoteIdentity.AuthenticationType.ToString());

// is the principal set on the managed thread?
IIdentity threadId =

System.Threading.Thread.CurrentPrincipal.Identity;
System.Console.WriteLine(

"Current threads identity: {0}!", threadId.Name);

// get the identity of the process
WindowsIdentity procId = WindowsIdentity.GetCurrent();
System.Console.WriteLine("Process-Identity: {0}", procId.Name);

}
else
{

CHAPTER 5 ■ SECURING .NET REMOTING154

System.Console.Write("!! Attention, not authenticated !!");
}

// just do the work
for (int i = 0; i < counter; i++)
{

System.Console.WriteLine("You told me to say {0}: {1}!",
counter.ToString(), message);

}
}

}
}

All you have to do for enabling security on the server is configure the authenticationMode
setting for the server channel. Optionally you can configure the encryption setting for ensuring
transport-level security.

<configuration>
<system.runtime.remoting>

<application name="MyServer">
<service>

<wellknown
type="RemotingServer.MyRemoteObject, RemotingServer"
objectUri="MyObject.rem"
mode="SingleCall" />

</service>
<channels>

<channel ref="tcp"
port="9001"
encryption="None"
authenticationMode="IdentifyCallers" />

</channels>
</application>

</system.runtime.remoting>
</configuration>

In this case the server requires the client to authenticate itself. Encryption is not required.
To encrypt the traffic or to sign the messages sent across the wire, just specify the encryption
option Sign or EncryptAndSign. For other authentication modes, configure the server with one
of the options available in the AuthenticationMode enumeration.

Before you start changing the configuration, you create the client and test the solution with
authentication through the TCP channel. This example demonstrates using the TCP channel
instead of the IPC channel so that network traffic can be traced to see the effect of the options
on the wire. In the client you configure the security options programmatically as you can see in
Listing 5-9.

CHAPTER 5 ■ SECURING .NET REMOTING 155

Listing 5-9. A Client Using Code to Configure Security with .NET Remoting 2.0

using System;
using System.Collections.Generic;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Tcp;
using System.Runtime.Remoting.Activation;
using System.Text;

using RemotedType;

namespace RemotingClient
{

class Program
{

static void Main(string[] args)
{

try
{

Dictionary<string, string> dict =
new Dictionary<string, string>();

dict.Add("impersonationLevel", "Identify");
dict.Add("encryption", "None");

System.Console.WriteLine("Configuring channel...");
TcpClientChannel clientChannel =

new TcpClientChannel(dict, null);
ChannelServices.RegisterChannel(clientChannel);

System.Console.WriteLine("Configuring remote object...");
IRemotedType TheObject = (IRemotedType) Activator.GetObject(

typeof(RemotedType.IRemotedType),
"tcp://localhost:9001/MyObject.rem");

System.Console.WriteLine(
"Please enter data, 'exit' quits the program!");

int c = 0;
string input = string.Empty;
do
{

System.Console.Write("Enter message: ");
input = System.Console.ReadLine();
if (string.Compare(input, "exit", true) != 0)
{

System.Console.Write("Enter counter: ");
c = Int32.Parse(System.Console.ReadLine());

CHAPTER 5 ■ SECURING .NET REMOTING156

Figure 5-14. The .NET Remoting 2.0–based server

Figure 5-13. The .NET Remoting 2.0–based client

TheObject.DoCall(input, c);
}

} while (string.Compare(input, "exit", true) != 0);
}
catch (Exception ex)
{

System.Console.WriteLine("Exception while processing contents!");
System.Console.ReadLine();

}
}

}
}

The security configuration is done through channel properties, as you can see in the first
lines of the preceding code. In this case, the client is configured to identify when calling the
server and to not use any transport security through encryption or signature.

Figures 5-13 and 5-14 show the client and server in action. Notice that the server outputs
the client’s identity as well as the process identity. The server can retrieve the client identity in
two ways: through the thread’s CurrentPrincipal property or through the __remotePrincipal
property of the CallContext data collection.

■Note As you can see in Figure 5-14, the server outputs nothing for the managed thread’s identity. This
means the .NET Remoting security infrastructure does not automatically initialize the managed thread’s
CurrentPrincipal property. You have to read the principal from the CallContext’s __remotePrincipal
property and manually assign this principal to System.Threading.Thread.CurrentPrincipal. But as you will see
later, when the server is configured for impersonation, the thread’s CurrentPrincipal will be automatically
initialized.

CHAPTER 5 ■ SECURING .NET REMOTING 157

Figure 5-15. Network sniffing of the unencrypted versions of the applications

The reason for selecting the TCP and not the (faster) IPC channel for this sample was to
get an easy means for tracing the traffic between the client and the server to see how encryp-
tion works. Before changing any settings, let’s use a trace tool for sniffing the traffic between
the two applications.

I have selected the SOAP Trace Utility included in the Microsoft SOAP Toolkit 3.0 because
it makes it really very easy to set up a tracing environment that works on the local machine.
The SOAP Trace Utility acts as an intermediary proxy between the client and the server. It
captures requests on a specific port, displays them, and forwards them to another port.

Therefore, when starting a trace, the trace utility asks you on which port to listen and to
which port the requests should be forwarded. In this case, configure the tool for listening on
port 8080 and forwarding to your server’s port 9001. Furthermore, you have to use an unfor-
matted trace because you are not using the SOAP formatter. The client’s code must be modified
so that the client sends the request to port 8080 instead of 9001 as you can see in the following
code snippet:

System.Console.WriteLine("Configuring remote object...");
IRemotedType TheObject = (IRemotedType) Activator.GetObject(

typeof(RemotedType.IRemotedType),
"tcp://localhost:8080/MyObject.rem");

In Figure 5-15 you can see a screen shot of the running SOAP Toolkit sniffing the traffic
between the client and the server. Take a close look at the text representation of the trace on
the right side where you can see the clear text of your message (“hello world”).

Now test the behavior of your applications when changing some of the security-related
properties. First of all, change the client’s encryption setting to EncryptAndSign. After recom-
piling the client and testing it again (see Figure 5-16), the call to the server will fail, as you can
see in Figure 5-17 (the server doesn’t even start processing the request).

CHAPTER 5 ■ SECURING .NET REMOTING158

Figure 5-18. The client does not fullfill the security requirements for the server.

Figure 5-17. Application logic of the server is not touched due to failed authentication.

On the other hand, if the client is configured for no encryption (encryption=“None”) and
the server requires encryption, the call fails, and the server returns an exception telling the
client that security requirements are not fulfilled, as you can see in Figure 5-18.

If you configure both the client and the server for the same encryption option, communi-
cation succeeds. To see the difference to the original configuration of the applications, take a look
at the encrypted network trace in Figure 5-19—you can’t see the “hello world” data string anymore.

Figure 5-16. The client after the encryption setting changes—authentication failed

CHAPTER 5 ■ SECURING .NET REMOTING 159

Figure 5-19. Sniffing the encrypted network traffic

Figure 5-20. The client runs under the current user’s account.

7. The impersonationLevel option on the client must be configured to either impersonate or delegate to
allow the server to impersonate or delegate the client’s security token.

Next, change the configuration settings for the impersonation level. If you change the server
setting for the authenticationMode to ImpersonateCallers the server tries to impersonate each
client. If the client’s token does not allow the server to impersonate or delegate the security
token7 the server rejects the call and you get an exception on the client. If the client and the
server are configured properly, impersonation (or delegation) works. To test delegation on
a single machine, run the client under a different identity using the runas.exe command.
Figures 5-20 and 5-21 show the two applications in action when the client’s impersonationLevel
property is set to impersonate and the server’s authenticationMode is set to ImpersonateCallers.

CHAPTER 5 ■ SECURING .NET REMOTING160

Figure 5-21. The server runs as DemoUser and impersonates the client.

If you take a close look at the server’s output, you can see that it automatically imperson-
ates the client (remember, the server outputs the current unmanaged thread identity through
WindowsIdentity.GetCurrent()). Also notice that the client is running under a different identity
(take a look at the title of the command window).

Finally, the security classes in .NET Remoting 2.0 have all the features required for build-
ing secure .NET Remoting components based on the Windows security infrastructure and are
easier to use than the SSPI sample for .NET Remoting 1.0, too.

Summary
In this chapter, I showed you how to leverage IIS’s built-in authentication and encryption fea-
ture. You now know how to set up the IIS virtual root to allow certain authentication protocols
and how to check a user’s role membership in your components. I also showed you how to
encrypt the HTTP traffic using SSL certificates.

You’ve also learned how you can use an additional component from Microsoft to secure
and authenticate remoting traffic independently from the chosen transport format.

Last but not least you have had a close look at the new .NET Remoting security infrastruc-
ture included with the next version of the .NET Framework, which allows you to authenticate
and/or impersonate the client’s identity as well as securing traffic between the client and the
server through digital signatures and encryption.

In the next chapter, you’ll learn about some specialties of .NET Remoting. The chapter covers
more advanced lifetime management issues, versioning, asynchronous calls, and events.

161

C H A P T E R 6

■ ■ ■

Creating Remoting Clients

Now that you know how to create, deploy, and secure basic .NET Remoting components, this
chapter will focus on creating different types of client applications. The reason for doing this is
to show you how to configure .NET Remoting for each different type of client. Also, the hosting
environment for the client has some implications on security—especially when it comes to
authenticating against the server or accessing system resources.

Creating a Server for Your Clients
Before you start digging into the details for creating different types of .NET Remoting clients,
you need a server that you can call. To keep things simple, your server will run in a console
application itself, as you have already seen creation of different types of servers in Chapter 4.

For all your applications, you will use the same shared assembly named General where you
put the server interfaces as well as the classes serialized across the network. For simplicity, also put
the RemotingHelper, which you know from Chapter 4, into the shared assembly. The shared
assembly defines two server interfaces: IRemoteFactory, which will be used for your primary
server, and IRemoteSecond, which will be used later (for now it is not important). Also, a person
class similar to the one of Chapter 5 is defined as you can see in Listing 6-1.

Listing 6-1. The Shared Assembly for the Sample Applications

using System;

namespace General
{
public interface IRemoteFactory
{
Person GetPerson();

}

CHAPTER 6 ■ CREATING REMOTING CLIENTS162

public interface IRemoteSecond
{
int GetNewAge();

}

[Serializable]
public class Person
{
public int Age;
public string Firstname, Lastname;

public Person(string first, string last, int age)
{
this.Age = age;
this.Firstname = first;
this.Lastname = last;

}
}

}

Your primary server is a console application and just implements the IRemoteFactory
interface and is configured in the application’s configuration file. Listing 6-2 shows the imple-
mentation of the server.

Listing 6-2. The Implementation of the Primary Server

using System;
using System.Runtime.Remoting;

using General;

namespace Server
{
public class ServerImpl : MarshalByRefObject, IRemoteFactory
{
private int _ageCount = 10;

public Person GetPerson()
{
System.Console.WriteLine(">> Incoming request...");
System.Console.WriteLine(">> Returning person {0}...", _ageCount);

Person p = new Person("Test", "App", _ageCount++);
return p;

}
}

class ServerApp
{

CHAPTER 6 ■ CREATING REMOTING CLIENTS 163

[STAThread]
static void Main(string[] args)
{
System.Console.WriteLine("Starting server...");
RemotingConfiguration.Configure("Server.exe.config");

System.Console.WriteLine("Server configured, waiting for requests!");
System.Console.ReadLine();

}
}

}

The server will be configured with a TCP channel listening on port 1234 and runs as a server-
activated Singleton object as you can see via the following configuration file:

<configuration>
<system.runtime.remoting>
<application>
<channels>
<channel ref="tcp" port="1234" />

</channels>
<service>
<wellknown type="Server.ServerImpl, Server"

objectUri="MyServer.rem"
mode="Singleton" />

</service>
</application>

</system.runtime.remoting>
</configuration>

For all the clients you will create in the following sections, you will use this server. Just for
testing purposes, you start with creation of a console client to verify whether the server works
or not. You should already know how to implement a console client, so I will go through the
steps very briefly.

Creating a Console Client
The simplest .NET Remoting clients you can create are console applications. That was the reason
for using them in the previous chapters. Configuration is put into the application configuration
(Exename.exe.config) but can be put in any other file, too. In your console application project,
which you can create with Visual Studio, just add references to System.Runtime.Remoting.dll
and to your shared assembly General.dll. Afterwards, add a new item to your application—an
application configuration file. In Listing 6-3, you can see the very simple implementation of
the console client.

Listing 6-3. Console Client Implementation

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Activation;

CHAPTER 6 ■ CREATING REMOTING CLIENTS164

using General;
using General.Client;

namespace ConsoleClient
{
class ClientApp
{

[STAThread]
static void Main(string[] args)
{
System.Console.WriteLine("Configuring client...");
RemotingConfiguration.Configure("ConsoleClient.exe.config");

System.Console.WriteLine("Calling server...");
IRemoteFactory factory =

(IRemoteFactory)RemotingHelper.CreateProxy(typeof(IRemoteFactory));
Person p = factory.GetPerson();
System.Console.WriteLine(">> Person retrieved: {0} {1}, {2}",

p.Firstname, p.Lastname, p.Age.ToString());
System.Console.WriteLine();

}
}

}

You can see the client configuration file in the following code excerpt. The client configures
the TCP channel as well as the well-known server object running on localhost on port 1234.

<configuration>
<system.runtime.remoting>
<application>
<channels>
<channel ref="tcp" />

</channels>
<client>
<wellknown type="General.IRemoteFactory, General"

url="tcp://localhost:1234/MyServer.rem" />
</client>

</application>
</system.runtime.remoting>

</configuration>

In the client code just shown, the RemotingHelper class introduced in Chapter 4 is used
for instantiating the client proxy class. Now that you have created the client, you can test the
application. In Figures 6-1 and 6-2 you can see the client as well as the server.

CHAPTER 6 ■ CREATING REMOTING CLIENTS 165

Figure 6-1. The running client

Figure 6-2. The server in action

But there is one issue with this easy kind of configuration that is important when configuring
.NET Remoting clients in general. You cannot configure more than one server object in your
client configuration with partially different settings for several reasons:

• First of all, you can have only one <application> element in your configuration file.
Although you can register a channel of the same type multiple times with different set-
tings (this means different formatters and providers) in your configuration, you cannot
specify which channel to use with which <client> configuration part. Therefore, the chan-
nel with the highest priority will be taken by the runtime automatically. And if the settings
of this channel do not fit with the server’s channel, you’ll run into an exception. The only
way of solving this issue is manually configuring channels in your application.

• If your application wants to use two different servers providing objects based on the same
interface, you cannot do so with one single client configuration because each type (e.g.,
the IRemoteFactory interface) can only be registered once. If you try registering a type
more than once (for example, through the <wellknown /> configuration element), you’ll
get an exception with the following error message: “Attempt to redirect activation of type
‘General.IRemoteFactory, General’ which is already redirected.”

In any of these cases, you either encapsulate communications with different servers in differ-
ent application domains (remoting configuration works per AppDomain) or configure your
channels and objects manually. If you decide to use a manual remoting configuration, you can use
either a custom configuration file, the <appSettings> section within the application configuration,
or your own configuration section (which means that you have to implement a configuration sec-
tion handler) to avoid hard coding any server address parts in your code.

Imagine that you have the following configuration file for your client application that
configures the server URLs through the app.config’s <appSettings> configuration section:

<configuration>
<appSettings>

CHAPTER 6 ■ CREATING REMOTING CLIENTS166

<add key="Server1" value="tcp://localhost:1234/MyServer.rem" />
<add key="Server2"

value="http://localhost/ClientWebRemoting/SecondIntermed.soap" />
</appSettings>

</configuration>

In this case, you can use the following code for getting the URLs of the two servers from
the configuration files when using manual configuration of .NET Remoting:

// calling first server
Console.WriteLine("\r\nCalling first server...");
url = ConfigurationSettings.AppSettings["Server1"];

ChannelServices.RegisterChannel(new TcpChannel());
factory = (IRemoteFactory)Activator.GetObject(

typeof(IRemoteFactory), url);

p = factory.GetPerson();
System.Console.WriteLine(">> Person retrieved: {0} {1}, {2}",

p.Firstname, p.Lastname, p.Age.ToString());
System.Console.WriteLine();

// calling second server
Console.WriteLine("Calling second server...");
url = ConfigurationSettings.AppSettings["Server2"];
ChannelServices.RegisterChannel(new HttpChannel());
factory = (IRemoteFactory)Activator.GetObject(

typeof(IRemoteFactory), url);

p = factory.GetPerson();
System.Console.WriteLine(">> Person retrieved: {0} {1}, {2}", p.Firstname,
p.Lastname, p.Age.ToString());
System.Console.WriteLine();

For client-activated objects, you have to use the Activator.CreateInstance() method
instead of the Activator.GetObject() method. When doing so, you have to specify the type as
well as an activation URL within the parameters as can be seen in the following code snippet:

string Url = ConfigurationSettings.AppSettings["Server1"];
System.Runtime.Remoting.Activation.UrlAttribute urlattr =

new System.Runtime.Remoting.Activation.UrlAttribute (Url);

object[] actparams = {urlattr};
server = (YourServerType)Activator.CreateInstance(

typeof(YourServerType),null, actparams);

The UrlAttribute class can be found in the System.Runtime.Remoting.Activation namespace
and specifies the activation URL for the client-activated object in that case.

CHAPTER 6 ■ CREATING REMOTING CLIENTS 167

Creating Windows Forms Clients
Creating a Windows Forms application that is a .NET Remoting client is nearly as simple as creating
a console application client. First of all, just create a new Windows Forms project using Visual
Studio, and then add the references to the shared assembly (General) as well as the .NET
Remoting assemblies (System.Runtime.Remoting.dll) as you did before.

The first thing I always do when creating Windows Forms applications is to modify the
project created with Visual Studio so that the Main function is in a different source file and not
encapsulated directly into the form. This is a personal preference, but it allows me to more easily
find the application’s entry point. Therefore, I open the source file of the form created by Visual
Studio and remove the public static void Main() method. Afterwards I create a new source
file (usually called ApplicationName.cs) where I add the application general code. The content
of this file is shown in Listing 6-4.

Listing 6-4. The Application General Code

using System;
using System.Windows.Forms;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Activation;

using General;
using General.Client;

namespace WinClient
{
public class WinApplication
{
private static IRemoteFactory _factory = null;

public static IRemoteFactory ServerProxy
{
get
{
if(_factory == null)
{
_factory = (IRemoteFactory)RemotingHelper.CreateProxy(

typeof(IRemoteFactory));
}

return _factory;
}

}

public static void Main(string[] args)
{
// first of all, configure remoting services
RemotingConfiguration.Configure(

CHAPTER 6 ■ CREATING REMOTING CLIENTS168

Figure 6-3. The Windows application in action

AppDomain.CurrentDomain.SetupInformation.ConfigurationFile);
RemotingConfiguration.Configure("WinClient.exe.config");

// create the windows form and start message looping
Application.Run(new MainForm());

}
}

}

The important thing you can see in the preceding code is the fact that I call
RemotingConfiguration.Configure() at application startup. In general, it is unnecessary to call
this method before each method call (and if you call it a second time afterwards, you will get
an exception because channels and application URLs are already configured). Therefore, my
configuration, which acts as a template for each proxy generation, is done exactly once.

The other thing I am using in the preceding code is a factory method for the proxy to the
server. This way I can use one proxy for the server-activated object for the whole application
without creating dozens of different proxies (if my application would use the proxy at several
positions in code). This strategy can be used especially with SAOs of type single call because
they are activated on the server, and a connection from the client to the server is established
on a per-call basis (except you return MarshalByRefObjects).

In general, whether you can use this pattern for proxy creation or not depends on your
situation. If you need to isolate communication of each form in your application with a .NET
Remoting server, creating proxies at a per-form level might be more useful. I just wanted to
show you another pattern that might be useful in some cases.

Now that you have created the application’s main method, you can focus on creating
a form that executes the calls to the server. The form I want to use consists of just two controls,
a multiline text box named TextResults and a command button named ActionCall. Figure 6-3
shows the layout of the form (in the running application).

The .NET Remoting server will be called in the click event of the command button, as you
can see in the following code snippet:

private void ActionCall_Click(object sender, System.EventArgs e)
{

CHAPTER 6 ■ CREATING REMOTING CLIENTS 169

1. On Windows 2000 or Windows XP with IIS 5.x, any ASP.NET application usually runs in an external
process called aspnet_wp.exe (ASP.NET worker process). The identity of the worker process can be
configured in the processModel, too. On Windows Server 2003 with IIS 6.0, you can configure application
pools. Each pool results in a separate process running under its own identity (default is NetworkService).

// get the transparent proxy for the factory
IRemoteFactory proxy = WinApplication.ServerProxy;
Person p = proxy.GetPerson();

TextResults.AppendText(
string.Format("{0} {1}, {2}\r\n", p.Firstname, p.Lastname, p.Age));

}

The server proxy is retrieved from the static ServerProxy property of the application class
WinApplication introduced in Listing 6-4. Afterwards the application calls the server’s method
and appends the results to the text box of the form.

The rules for configuring .NET Remoting in Windows clients are exactly the same as for
console application. The only difference that you have to keep in mind is to not configure .NET
Remoting for each call—you can do that once at application startup, and the best way for doing
so is in the application’s main method.

■Note If you keep state on the server and don’t call the server for a while, you have to keep lifetime man-
agement in mind. In my example, the server keeps a counter state that is used for initializing the person’s
age property. If you wait a while (five minutes is the default), the state is lost because the .NET Remoting
infrastructure releases the server’s resources and automatically creates a new server instance, and, of
course, any information stored in the previous instance of the server is lost. You can configure lifetime, too.
For more information about lifetime management, take a look at Chapter 7.

Creating Back-End–Based Clients
The client applications you have seen so far are all “front-end” based. This means they are
typically started by an end user and running within the end user’s logon session. In the follow-
ing two chapters, I want to go into details about creating clients that typically run on a server
within the logon session of a service account. Examples of such clients are ASP.NET-based
applications (which run either as ASPNET within the Web server process or a worker process
if IIS 6.0 is used).1

Basically, configuration and calls work the same way with front-end clients as shown earlier.
But when it comes to configuration in ASP.NET-based applications, as well as to security, there
are some differences that I want to show you now.

ASP.NET-Based Clients
The first thing I want to show you is creating an ASP.NET-based application (either Web appli-
cation or Web service) that calls the .NET Remoting server created at the very beginning of this
chapter.

CHAPTER 6 ■ CREATING REMOTING CLIENTS170

Figure 6-4. Designer for your Web application client

All you need to do is create an ASP.NET Web application project using Visual Studio .NET
and add the references to your System.Runtime.Remoting.dll and General.dll assemblies as
you did before. Your Web application will contain a Default.aspx page with just a list box and
a button Web control as you can see in Figure 6-4.

ASP.NET-based applications are usually configured through a web.config file that is auto-
matically created when creating a new Web application project with Visual Studio. Generally, if
you add .NET Remoting configuration to your web.config file, <service> tags are configured
automatically while <client> configurations are ignored. For clarity, it is recommended to con-
figure your .NET Remoting client configuration outside of web.config.

Just take a look at the following configuration, which you will use for configuring your
ASP.NET client. I have included the configuration in web.config for the first step and will show
you the problems with that afterwards.

<configuration>

<system.runtime.remoting>
<application>
<channels>
<channel ref="tcp" />

CHAPTER 6 ■ CREATING REMOTING CLIENTS 171

2. As you have seen before, the host process can be the Web server itself, the ASP.NET worker process
aspnet_wp.exe, or on machines with an IIS 6.0 worker process for the application pool.

</channels>
<client>
<wellknown type="General.IRemoteFactory, General"

url="tcp://localhost:1234/MyServer.rem" />
</client>

</application>
</system.runtime.remoting>

<system.web>
<compilation defaultLanguage="c#" debug="true" />
<customErrors mode="RemoteOnly" />
<authentication mode="Windows" />
<authorization>
<allow users="*" />

</authorization>
<sessionState mode="InProc"

stateConnectionString="tcpip=127.0.0.1:42424"
sqlConnectionString=

"data source=127.0.0.1;Trusted_Connection=yes"
cookieless="false" timeout="20" />

<globalization requestEncoding="utf-8" responseEncoding="utf-8" />
</system.web>

</configuration>

But why configure the application now? The naïve way would simply configure remoting
in the Page_Load or in the event procedure of the button where the server component will be
called. But if you do this, you will fail with the second request—but why?

Actually, the reason is very simple. As mentioned before, RemotingConfiguration.Configure()
configures .NET Remoting on an AppDomain basis. This means within the application domain
channels and remote objects are registered. Of course, each channel must have a unique name,
and each type can be configured only once within one AppDomain.

In ASP.NET, for each virtual root in IIS an instance of HttpApplication is launched by the
ASP.NET runtime. Each HttpApplication on its own resides in a separate application domain.
The application itself exists as long as the host process2 is alive—this means the application
stays the same between different browser requests. If you configure .NET Remoting in one of
the page-level events, you try to configure the same channels and well-known objects multiple
times for the application domain of the HttpApplication (which stays alive between the requests).

The solution again is fairly simple. ASP.NET has the capability to catch application-wide
events within the Global.asax, which is created automatically when creating an ASP.NET project
with Visual Studio. The Global.asax actually is a class for your own Web application that inherits
from System.Web.HttpApplication. The important event in this case is the Application_Start event
of the application. The following code fragment shows how to configure your application within
this event, which you can find in the code-behind for the Global.asax file (Global.asax.cs):

CHAPTER 6 ■ CREATING REMOTING CLIENTS172

protected void Application_Start(Object sender, EventArgs e)
{
// configure the remoting server
RemotingConfiguration.Configure(Server.MapPath("web.config"));

}

The path to the web.config file is retrieved through Server.MapPath(), which returns the
physical path to the file on the local system. The call to your server component is again fairly
simple. The following code snippet shows the event handler for the command button you have
seen previously in Figure 6-4:

private void ActionCall_Click(object sender, System.EventArgs e)
{
IRemoteFactory proxy = (IRemoteFactory)RemotingHelper.CreateProxy(

typeof(IRemoteFactory));
Person p = proxy.GetPerson();

ListResults.Items.Add(string.Format("{0} {1}, {2}",
p.Firstname, p.Lastname, p.Age));

}

That’s it, now you have created an ASP.NET-based client for a .NET Remoting server com-
ponent. Most importantly, remember to configure .NET Remoting within the Application_Start
event of the Global.asax code-behind file.

Remoting Components Hosted in IIS As Clients
As you already know from the previous chapters, it is possible to host .NET Remoting compo-
nents in IIS, too. In this case, the ASP.NET runtime itself hosts the server component, and
configuration of the server is done through web.config.

Any <service> configuration found in web.config is automatically handled by ASP.NET, which
means that you don’t need to call RemotingConfiguration.Configure() for your server configu-
ration. If a client configuration is found in web.config, it will be ignored by the ASP.NET runtime—
therefore clients must be configured manually.

Although configuring clients in web.config is basically possible, I will not recommend
doing so for reasons discussed in the last chapter. It is better to add another configuration file
to your solution (even if you are writing simple ASP.NET Web applications or Web servers that
don’t host remoting components) and do your client configuration in this file.

So you can see how to configure a .NET Remoting component hosted in IIS as a client for
another server (the server you created at the very beginning of the chapter), start with creating
a Web application project with Visual Studio that you will use for your .NET Remoting server
component. Because you don’t need it, you can delete the ASPX page that is created automatically
after Visual Studio has created the project. The other files, especially web.config and Global.asax,
will be necessary for your component.

After you have added the references to System.Runtime.Remoting as well as General.dll, you
can add a class to your project that will be the server. The server’s implementation is shown in
Listing 6-5.

CHAPTER 6 ■ CREATING REMOTING CLIENTS 173

Listing 6-5. An Intermediary .NET Remoting Server Hosted in IIS

using System;
using System.Runtime.Remoting;

using General;
using General.Client;

namespace ClientWebRemoting
{
public class SecondServer : MarshalByRefObject, IRemoteSecond
{
private int _counter = 1;
private IRemoteFactory _proxy;

public SecondServer()
{
System.Diagnostics.Debug.WriteLine("Initializing server...");

_proxy = (IRemoteFactory)RemotingHelper.CreateProxy(
typeof(IRemoteFactory));

System.Diagnostics.Debug.WriteLine("Server initialized!");
}

public int GetNewAge()
{
Person p = _proxy.GetPerson();
int ret = p.Age + (_counter++);

System.Diagnostics.Debug.WriteLine(
">> Incoming request returns " + ret.ToString());

return ret;
}

}
}

Remember that in the preceding code you don’t use any client-side remoting configu-
ration because you are hosting the component in ASP.NET and IIS. Therefore, you have to do
the same thing as you did before—perform the client configuration within the Global.asax
Application_Start event. I’ll show the configuration for this component as client of the other
server later in this chapter.

Now you know why you need to define the interface IRemoteSecond in the shared assembly
at the very beginning of this chapter—your second server is implementing exactly this inter-
face now.

CHAPTER 6 ■ CREATING REMOTING CLIENTS174

■Note Because you don’t have a console window for viewing what happens on the server, use
Debug.WriteLine() so that you can view activity in the output window from Visual Studio when
debugging the solution.

Because the component is hosted in IIS, you can use the HTTP channel only. Therefore,
the configuration of the server component in the web.config file looks like the following:

<configuration>

<system.runtime.remoting>
<application>
<channels>
<channel ref="http" />

</channels>
<service>
<wellknown type="ClientWebRemoting.SecondServer, ClientWebRemoting"

objectUri="SecondServer.soap"
mode="Singleton" />

</service>
</application>

</system.runtime.remoting>

<system.web>
<compilation defaultLanguage="c#" debug="true" />
<authentication mode="None" />

</system.web>
</configuration>

The service configuration is done automatically by the ASP.NET runtime. You want to call
your other remoting server component from within this server, so you need to add the client
configuration. Adding the client configuration to the web.config would be a very bad idea in
this case. Remember that RemotingConfiguration.Configure() configures anything in the
<system.runtime.remoting> section. If you just add your client’s configuration and try to call
RemotingConfiguration.Configure(), an exception will occur because the .NET Remoting
runtime tries to configure the client and the server. Remember that the server has already
been configured by the ASP.NET runtime. Therefore, in this situation you would register the
server as well as the server’s channel twice, which is not possible within an application domain.

A simple, effective, and in my opinion much more readable solution is to add another
configuration file (e.g., RemotingClient.config) to the project and add the client configuration
to this file. The client configuration is shown in the following code snippet:

<configuration>
<system.runtime.remoting>
<application>
<channels>
<channel ref="tcp" />

CHAPTER 6 ■ CREATING REMOTING CLIENTS 175

</channels>
<client>
<wellknown type="General.IRemoteFactory, General"

url="tcp://localhost:1234/MyServer.rem" />
</client>

</application>
</system.runtime.remoting>

</configuration>

■Note I’d also recommend creating your own client configuration files for ASP.NET Web applications and
Web services.

As you did before in the ASP.NET client application, you perform client configuration
within the Application_StartUp event of the Global.asax code behind as you can see in the
following code snippet:

protected void Application_Start(Object sender, EventArgs e)
{

RemotingConfiguration.Configure(Server.MapPath("RemotingClient.config"));
}

This time you are using your own configuration file RemotingClient.config, which is
placed in the application’s root directory.

■Note The file that contains the configuration can be any file; the file extension doesn’t matter. Nevertheless,
it is a good idea to use files with a .config extension because they are protected by the ASP.NET runtime by
default and not returned to the client, while other files with extensions like .txt are by default not protected
by the ASP.NET runtime and therefore can be browsed using the browser when the URL is known.

Because you have created a Web application project, you can debug without manually
attaching to the ASP.NET worker process or the IIS 6.0 worker process. But Visual Studio wants
you to select a start page for debugging. Now you have two possibilities: either add a dummy
page that is used as a start page for debugging or just select the Global.asax or another file as
the start page. In this case, you will see an error in the browser, but debugging works anyway.

For testing your intermediary .NET Remoting server, you will need to create another client
that calls this server through the IRemoteSecond interface. For simplicity, create a console
client. Take a look at the client’s implementation in Listing 6-6.

Listing 6-6. A Client for Your Second Server Component

using System;
using System.Runtime.Remoting;

CHAPTER 6 ■ CREATING REMOTING CLIENTS176

using General;
using General.Client;

namespace ClientOfWebRemoting
{
class ClientApp
{

[STAThread]
static void Main(string[] args)
{
System.Console.WriteLine("Configuring client...");
RemotingConfiguration.Configure("ClientOfWebRemoting.exe.config");

System.Console.WriteLine("Calling server...");
IRemoteSecond second = (IRemoteSecond)RemotingHelper.CreateProxy(

typeof(IRemoteSecond));
for(int i=0; i < 5; i++)
{
System.Console.WriteLine("Result: {0}", second.GetNewAge());

}

System.Console.ReadLine();
}

}
}

The client itself, of course, is configured with the HTTP channel. This time you don’t have to
specify any port information because the server is hosted in IIS and can be reached at port 80.

<configuration>
<system.runtime.remoting>
<application>
<channels>
<channel ref="http" />

</channels>
<client>
<wellknown type="General.IRemoteSecond, General"

url="http://localhost/ClientWebRemoting/SecondServer.soap" />
</client>

</application>
</system.runtime.remoting>

</configuration>

Now that you have implemented the intermediary service and a client for the service, you can
test the application. Just start debugging the .NET Remoting component and the client (for server
activity take a look at the Visual Studio output window because you are using Debug.WriteLine()
for logging activity). Figures 6-5, 6-6, and 6-7 demonstrate the activities in the client, the inter-
mediary server, and the final server, respectively.

CHAPTER 6 ■ CREATING REMOTING CLIENTS 177

Figure 6-5. The end-user client for the IIS hosted component

Figure 6-6. The output window for the IIS hosted server

Figure 6-7. The console window for your final server

Security Considerations
The last thing I want to discuss is the difference of security between end-user clients and
back-end–based clients. Primarily, you have to keep in mind that end-user clients are running
under the end-user’s identity, whereas back-end–based clients run under a service account.

If the .NET Remoting server from Chapter 1 requires authentication, the primary question
is which users are accepted. In the case of end users, you need to flow the identity from your
client front end to your server back end through each intermediary. That’s not a big deal if all
runs on one machine, but I think you agree with me that this is not the usual situation.

In most cases, the client, intermediary servers, and back-end servers are all running on
different machines. To flow the end user’s identity from the very front end to the very back end,
you need Kerberos. Furthermore, Kerberos must be configured properly. Remember the concept
of delegation I mentioned in Chapter 5? When using Windows-based systems, delegation is

CHAPTER 6 ■ CREATING REMOTING CLIENTS178

Server A Server B

Map users to
roles

Role 1

Role 2

Authorize based on
Role 1 and Role 2

Figure 6-8. Impersonation, flowing the user to the back end

a separate privilege. To enable delegation, you must specifically allow machines to delegate
tickets they get from the client. That’s a configuration option that must be set at Active Directory
domain and machine level.

On the other hand, flowing the identity from the very front end to the very back end is
something that leads to extensive management tasks and potential risks as you now have to
trust all your end users to adhere to sensible password management practices. As soon as the
very back end accesses resources and impersonates the client (that’s necessary for the inter-
mediary to pass the token to the back end), you have to configure all access control lists on the
intermediary as well as the back end properly. Figure 6-8 demonstrates the situation described
earlier.

And it’s exactly the intense configuration overhead that makes impersonation and delegation
fragile and dangerous. Any misconfiguration can lead to a potential security hole (although the
application itself might be secure—configuration and applications have to work together for
really secure systems). Therefore, it should only be used if it is inherently necessary.

A better way would be using roles for logically related groups of users and letting the
service impersonate a specific user for each role. Doing so makes management much easier
because you don’t have to think about hundreds of users but only about a couple for roles you
have to manage. This strategy is called trusted subsystem. The concept is shown in Figure 6-9.

CHAPTER 6 ■ CREATING REMOTING CLIENTS 179

Server A Server B

User 2

User 3

Authorize each
user separately

User 1

User 4

Figure 6-9. Trusted subsystem

If you don’t impersonate specific users (or users for roles as you would do in the trusted
subsystem), on the other hand, you have to keep in mind that service accounts are often just
accounts of the local machine. Therefore, authentication of a service account on another machine
will fail (the ASPNET account on machine A is not the same as the ASPNET account on machine B).
In this case, you have two possibilities: either create domain accounts for the services or flow
identity through impersonation (but do that based on roles, not for each user!).

■Caution If you are configuring service accounts at a domain level, keep the principle of least privilege in
mind. Never configure too many privileges for such accounts to limit damage if one of your services gets
hacked. Configure as few privileges as possible.

The last option for flowing identities across machines would be manually implementing
your own protocols. But never underestimate the effort to build such protocols that are as secure
as, for example, Kerberos is.

Now that you have seen the concepts you have to keep in mind, just take a short look at how
security behaves by configuring the back-end server using the SSPI security solution demon-
strated in the last chapter.

Let’s start with the simplest example, the Windows Forms client created in the previous chap-
ter calling the .NET Remoting server directly with SSPI configured. First of all, you have to add
references to the Microsoft.Samples.Security.SSPI.dll and Microsoft.Samples.Remoting.Security.dll
assemblies as explained in Chapter 5.

CHAPTER 6 ■ CREATING REMOTING CLIENTS180

Next, change the server to output the security information sent from the client to the server.
For this purpose, you will modify the server’s configuration as you can see in the following
code snippet:

<configuration>
<system.runtime.remoting>
<application>
<channels>
<channel ref="tcp" port="1234">
<serverProviders>
<provider type="Microsoft.Samples.Runtime.Remoting.

Security.SecurityServerChannelSinkProvider,
Microsoft.Samples.Runtime.Remoting.Security"

securityPackage="negotiate"
authenticationLevel="packetPrivacy" />

<formatter ref="binary" />
</serverProviders>

</channel>
</channels>
<service>
<wellknown type="Server.ServerImpl, Server"

objectUri="MyServer.rem"
mode="Singleton" />

</service>
</application>

</system.runtime.remoting>
</configuration>

Next, you change the server’s code to output the authenticated user after being called. The
following code snippet shows the changed GetPerson() method of the server:

public Person GetPerson()
{
System.Console.WriteLine(">> Incoming request...");
System.Console.WriteLine(">> Returning person {0}...", _ageCount);

IPrincipal user = System.Threading.Thread.CurrentPrincipal;
if(user != null)
{
System.Console.WriteLine(">> >> Authenticated user: {0}, {1}",

user.Identity.Name, user.Identity.AuthenticationType);
}
else
{
System.Console.WriteLine(">> >> Unauthenticated user!!");

}

CHAPTER 6 ■ CREATING REMOTING CLIENTS 181

Figure 6-10. The server called from a simple client

Person p = new Person("Test", "App", _ageCount++);
return p;

}

With the next step you change the configuration of the client to enable the .NET Remoting
security solution. In the client, you have to change the configuration only. The following code
snippet shows how to change the channel configuration in the Windows Forms client’s application
configuration file:

<channel ref="tcp">
<clientProviders>
<formatter ref="binary" />
<provider type="Microsoft.Samples.Runtime.Remoting.

Security.SecurityClientChannelSinkProvider,
Microsoft.Samples.Runtime.Remoting.Security"

securityPackage="negotiate"
impersonationLevel="identify"
authenticationLevel="packetPrivacy" />

</clientProviders>
</channel>

■Note In both configuration files, the client’s and the server’s file, the type attribute of the <provider> tag
may not have line breaks. I have added them just for readability.

Not very surprisingly, the output of the server looks like what appears in Figure 6-10 after
you have called the server from the client started with the test user account.

Now modify the ASP.NET application client for your .NET Remoting server by just changing
the Remoting client configuration as you did with the Windows Forms version of the client, only
add the SSPI provider as you can see in the preceding code snippet. Run the client and take a look
at the server’s output (don’t forget to add the reference to the Microsoft sample assemblies as
you did before), which should resemble what you see in Figure 6-11.

CHAPTER 6 ■ CREATING REMOTING CLIENTS182

As you can see, now the server has authenticated the ASP.NET account. Remember that
this would not work across machine borders because the ASP.NET account of machine A is not
known on machine B. The solution for this would be to configure a domain account (with least
privileges) and configure to run ASP.NET under this account (either through <processModel>
in machine.config on IIS 5.x or through the application pool identity on IIS 6.0).

The last option I want to show you is the case when the ASP.NET application impersonates
the client. For this reason, add the following tag to your web.config file of your ASP.NET client
application:

<identity
impersonate="true" />

In Figure 6-12, you can see how this affects your authentication. In this case, the identity
flows from the browser to the Web server and from the Web server to the .NET Remoting server
component.

But when you take a look at Figure 6-12, you can see that the user seems to be definitely
not the real end user. When you take a closer look at the web.config file of the ASP.NET client,
you see that it is configured with Windows authentication. But what is wrong with the configu-
ration now? Well, the solution can be found in the IIS configuration where you have enabled
anonymous access, as you can see in Figure 6-13.

Figure 6-11. The server called from the ASP.NET client application

Figure 6-12. Identity flows from the client through the Web server to the remoting server.

CHAPTER 6 ■ CREATING REMOTING CLIENTS 183

If you change the configuration to just enable Windows authentication, the result will be
quite different. Now let’s take a last look at the output of the server after you have disabled
anonymous authentication in IIS and started a browser with your test user account (see
Figure 6-14).

■Note When creating ASP.NET projects using Visual Studio .NET, anonymous access is automatically
enabled by Visual Studio. If you share a directory as a virtual directory using Windows Explorer, anonymous
access is by default enabled on Windows XP SP1 but disabled on Windows XP SP2 or Windows Server 2003
by default.

Figure 6-13. IIS configuration of your application

Figure 6-14. Server output after IIS anonymous authentication is disabled

CHAPTER 6 ■ CREATING REMOTING CLIENTS184

Don’t forget that delegation must be enabled if you want to flow the identity of the end user
through the Web server to the back-end remoting server across machine boundaries. For the
purposes of this example, I tried all the samples running on the same machine for simplicity.

Summary
In this chapter, you took a look into the details for creating different types of .NET Remoting
clients. You saw the different ways for configuring clients and also saw that you have to be careful
when configuring .NET Remoting in ASP.NET-based client applications.

In the last section of this chapter, you took a closer look at some security concerns—especially
how you can flow the identity from the client to the server. In general, a very good strategy for
flowing identities is having separate accounts for roles of users to not flow all the end users
through all tiers of your distributed applications for easier management. Don’t forget that
Kerberos must be configured properly when identities flow across machine borders.

185

C H A P T E R 7

■ ■ ■

In-Depth .NET Remoting

As you’ve already seen in the previous chapters, developers of distributed applications using
.NET Remoting have to consider several fundamental differences from other remoting tech-
niques and, of course, from the development of local applications. One of the major issues you
face in any distributed object framework is the decision of how to manage an object’s lifetime.
Generally you have two possibilities: using distributed reference counting/garbage collection
or using time-to-live counters associated with each object.

Managing an Object’s Lifetime
Both CORBA and DCOM have employed distributed reference counting. With DCOM, for example,
the server’s objects keep counters of referrers that rely on the AddRef() and Release() methods
in the same way as it’s done for common COM objects. Unfortunately this has some serious
drawbacks: each call to increase or decrease the reference counter has to travel to the remote
object without any “real” application benefit (that is, the remote call does not do any “real” work).
In DCOM, the clients will also ping the server at certain intervals to signal that they are still alive.

Both pinging and the calls to change the reference counter result in an increased network
load, and the former will very likely not work with some firewalls or proxies that only allow state-
less HTTP connections to pass through.

Because of those implications, Java RMI introduced a lease-based lifetime service that bears
a close resemblance to what you can see in .NET Remoting today. The lease-based concept
essentially assigns a time-to-live (TTL) count to each object that’s created at the server. A Lease-
Manager then polls all server-side objects at certain intervals and decrements this TTL. As soon
as this time reaches zero, the object is marked as timed out and will be marked for garbage col-
lection. Additionally, for each method call placed on the remote object, the TTL is incremented
again to ensure that objects currently in use will not time out.

In reality, though, there are applications in which objects may exist that are not used all the
time. A pure TTL-based approach would time-out these objects too soon. Because of this, the .NET
Remoting framework also supports a concept called sponsorship. For each object, one or more
sponsors might be registered. Upon reaching zero TTL, the LeaseManager contacts each sponsor
and asks if it wants to increase the object’s lifetime. Only when none of them responds positively
in a given time is the object marked for garbage collection.

A sponsor itself is a MarshalByRefObject as well. It can therefore be located on the client, the
server, or any other machine that is reachable via .NET Remoting.

CHAPTER 7 ■ IN-DEPTH .NET REMOTING186

Understanding Leases
A lease holds the time-to-live information for a given object. It is therefore directly associated
with a certain MarshalByRefObject’s instance. At the creation of a lease, the following informa-
tion is set (all of the following are of type TimeSpan):

Property Default Description

InitialLeaseTime 5 minutes The initial TTL after an object’s creation.

RenewOnCallTime 2 minutes The grace time for a method call that is placed on the
object. Mind, though, that these times are not additive—
for instance, calling a method a thousand times will not
result in a TTL of 2,000 minutes, but one of 2 minutes.

SponsorShipTimeout 2 minutes When sponsors are registered for this lease, they will be
contacted upon expiration of the TTL. They then can
contact the LeaseManager to request additional lease
time for the sponsored object. When no sponsor reacts
during the time defined by this property, the lease will
expire and the object will be garbage collected.

Both the ILease interface and the Lease class that provides the standard implementation
are located in System.Runtime.Remoting.Lifetime. Whenever a MarshalByRefObject is instan-
tiated (either as a CAO or as a SAO—even when using Singleton mode), the framework calls
the object’s InitializeLifetimeService() method, which will return an ILease object. In the
default implementation (that is, when you don’t override this method), the framework calls
LifetimeServices.GetLeaseInitial(), which returns a Lease object containing the defaults
shown in the preceding table.

■Tip Whenever I mention some class for which you don’t know the containing namespace, you can use
WinCV.exe, which is in the Framework SDK, to locate the class and get some information about its public interface.
An even better (free) tool is .NET Reflector, available for download at http://www.aisto.com/roeder/dotnet.

The Role of the LeaseManager
The LeaseManager runs in the background of each server-side application and checks all
remoted objects for their TTL. It uses a timer and a delegate that calls its LeaseTimeAnalyzer()
method at certain intervals.

The initial value for this interval is set to 10 seconds. You can change this interval by using
either the following line of code:

LifetimeServices.LeaseManagerPollTime = TimeSpan.FromSeconds(1);

or, when using configuration files, you can add the following settings to it:

<configuration>
<system.runtime.remoting>

<application>
<lifetime leaseManagerPollTime="1s" />

CHAPTER 7 ■ IN-DEPTH .NET REMOTING 187

</application>
</system.runtime.remoting>

</configuration>

You may specify different time units for the leaseManagerPollTime attribute. Valid units are
D for Days, H for hours, M for minutes, S for seconds, and MS for milliseconds. When nothing
is specified, the system will default to S; combinations such as “1H5M” are not supported.

Changing the Default Lease Time
You can easily change the default TTL for all objects in a given server-side app-domain in two
ways. First, you can use the following code fragment to alter the application-wide initial lease
times:

LifetimeServices.LeaseTime = System.TimeSpan.FromMinutes(10);
LifetimeServices.RenewOnCallTime = System.TimeSpan.FromMinutes(5);

As the preferred alternative, you can add the following sections to your configuration files:

<configuration>
<system.runtime.remoting>

<application>
<lifetime

leaseTimeout="10M"
renewOnCallTime="5M"

/>
</application>

</system.runtime.remoting>
</configuration>

However, you have to be aware of the fact that this change affects each and every remote
object that is published by the server application which uses this configuration file. Increasing
the TTL therefore can have negative effects toward the memory and resource utilization of your
application, whereas decreasing it can lead to objects being prematurely destroyed.

■Caution Whenever a client places a method call to a remote object with an expired TTL, an exception will
be thrown.

Changing the Lease Time on a Per-Class Basis
For certain MarshalByRefObjects (especially Singleton-mode services or objects published by
RemotingServices.Marshal()), it is desirable to have either an “unlimited” TTL or a different
lease time from that of other objects on the same server.

You can implement this functionality by overriding MarshalByRefObject’s
InitializeLifetimeService(). This method is defined to return an object, but later uses in
the framework will cast this object to Lease, so make sure not to return anything else. For
example, to provide a Singleton with unlimited lifetime, implement the following:

CHAPTER 7 ■ IN-DEPTH .NET REMOTING188

class InifinitelyLivingSingleton: MarshalByRefObject
{

public override object InitializeLifetimeService()
{

return null;
}
// ...

}

To set a custom lifetime different from “infinity,” you can call base.
InitializeLifetimeService() to acquire the reference to the standard ILease object
and set the corresponding values afterwards.

class LongerLivingSingleton: MarshalByRefObject
{

public override object InitializeLifetimeService()
{

ILease tmp = (ILease) base.InitializeLifetimeService();
if (tmp.CurrentState == LeaseState.Initial)
{

tmp.InitialLeaseTime = TimeSpan.FromSeconds(5);
tmp.RenewOnCallTime = TimeSpan.FromSeconds(1);

}
return tmp;

}
}

Examining a Basic Lifetime Example
In the following example, I show you how to implement the different changes in an object’s
lifetime in one application. The server will therefore export three MarshalByRefObjects as
Singletons: DefaultLifeTimeSingleton, which will use the “base” lifetime set by a configuration
file; LongerLivingSingleton, which will override InitializeLifetimeService() to return
a different lease time; and finally InfinitelyLivingSingleton, which will just return null from
InitializeLifetimeServices().

As you can see in the following configuration file, I change the default lifetime to a consid-
erably lower value so that you can observe the effects without having to wait five minutes until
the objects time out:

<configuration>
<system.runtime.remoting>
<application>

<channels>
<channel ref="http" port="1234" />

</channels>

CHAPTER 7 ■ IN-DEPTH .NET REMOTING 189

<lifetime
leaseTime="10MS"
renewOnCallTime="10MS"
leaseManagerPollTime = "5MS"

/>

<service>

<wellknown mode="Singleton"
type="Server.DefaultLifeTimeSingleton, Server"
objectUri="DefaultLifeTimeSingleton.soap" />

<wellknown mode="Singleton"
type="Server.LongerLivingSingleton, Server"
objectUri="LongerLivingSingleton.soap" />

<wellknown mode="Singleton"
type="Server.InfinitelyLivingSingleton, Server"
objectUri="InfinitelyLivingSingleton.soap" />

</service>
</application>

</system.runtime.remoting>
</configuration>

In the server-side implementation shown in Listing 7-1, I just include some Console.
WriteLine() statements so that you can see when new objects are created by the framework.
These components can be hosted by a simple .NET EXE that calls RemotingConfiguration.
Configure() to read the preceding configuration file.

Listing 7-1. Implementation Showing the Effects of Different Lifetime Settings

using System;
using System.Runtime.Remoting.Lifetime;
using System.Runtime.Remoting;

namespace Server
{

class DefaultLifeTimeSingleton: MarshalByRefObject
{

public DefaultLifeTimeSingleton()
{

Console.WriteLine("DefaultLifeTimeSingleton.CTOR called");
}

public void DoSomething()
{

CHAPTER 7 ■ IN-DEPTH .NET REMOTING190

Console.WriteLine("DefaultLifeTimeSingleton.DoSomething called");
}

}

class LongerLivingSingleton: MarshalByRefObject
{

public override object InitializeLifetimeService()
{

ILease tmp = (ILease) base.InitializeLifetimeService();
if (tmp.CurrentState == LeaseState.Initial)
{

tmp.InitialLeaseTime = TimeSpan.FromSeconds(5);
tmp.RenewOnCallTime = TimeSpan.FromSeconds(1);

}
return tmp;

}

public LongerLivingSingleton()
{
Console.WriteLine("LongerLivingSingleton.CTOR called");

}

public void DoSomething()
{

Console.WriteLine("LongerLivingSingleton.DoSomething called");
}

}

class InfinitelyLivingSingleton: MarshalByRefObject
{

public override object InitializeLifetimeService()
{

return null;
}
public InfinitelyLivingSingleton()
{

Console.WriteLine("InfinitelyLivingSingleton.CTOR called");
}

public void DoSomething()
{

Console.WriteLine("InfinitelyLivingSingleton.DoSomething called");
}

}

}

CHAPTER 7 ■ IN-DEPTH .NET REMOTING 191

1. You could also use soapsuds -ia:server -nowp -oa:generated_meta.dll to generate a metadata
assembly that will be referenced by the client application, but this is not recommended.

To develop the client, I simply referenced the server-side implementation DLL from the
client.1 In the example shown in Listing 7-2, the different Singletons will be called several times
with varying delays.

Listing 7-2. The Client Calling the Various SAOs with Different Delays

using System;
using System.Runtime.Remoting;
using System.Threading;
using Server;
namespace Client
{

class Client
{

static void Main(string[] args)
{

String filename = "client.exe.config";
RemotingConfiguration.Configure(filename);

DefaultLifeTimeSingleton def = new DefaultLifeTimeSingleton();
LongerLivingSingleton lng = new LongerLivingSingleton();
InfinitelyLivingSingleton inf = new InfinitelyLivingSingleton();

/*** FIRST BLOCK ***/
Console.WriteLine("Calling DefaultLifeTimeSingleton");
def.DoSomething();
Console.WriteLine("Sleeping 100 msecs");
Thread.Sleep(100);
Console.WriteLine("Calling DefaultLifeTimeSingleton (will be new)");
def.DoSomething(); // this will be a new instance

/*** SECOND BLOCK ***/
Console.WriteLine("Calling LongerLivingSingleton");
lng.DoSomething();
Console.WriteLine("Sleeping 100 msecs");
Thread.Sleep(100);
Console.WriteLine("Calling LongerLivingSingleton (will be same)");
lng.DoSomething(); // this will be the same instance
Console.WriteLine("Sleeping 6 seconds");
Thread.Sleep(6000);
Console.WriteLine("Calling LongerLivingSingleton (will be new)");
lng.DoSomething(); // this will be a new same instance

CHAPTER 7 ■ IN-DEPTH .NET REMOTING192

Figure 7-1. Client-side output when dealing with different lifetimes

/*** THIRD BLOCK ***/
Console.WriteLine("Calling InfinitelyLivingSingleton");
inf.DoSomething();
Console.WriteLine("Sleeping 100 msecs");
Thread.Sleep(100);
Console.WriteLine("Calling InfinitelyLivingSingleton (will be same)");
inf.DoSomething(); // this will be the same instance
Console.WriteLine("Sleeping 6 seconds");
Thread.Sleep(6000);
Console.WriteLine("Calling InfinitelyLivingSingleton (will be same)");
inf.DoSomething(); // this will be a new same instance

Console.ReadLine();
}

}
}

In the first block, the client calls DefaultLifetimeSingleton twice. As the delay between
both calls is 100 milliseconds and the object’s lifetime is 10 milliseconds, a new instance of the
SAO will be created.

The second block calls LongerLivingSingleton three times. Because of the increased lifetime
of five seconds, the first two calls will be handled by the same instance. A new object will be cre-
ated for the third call, which takes place after a six-second delay.

In the last block, the client executes methods on InfinitelyLivingSingleton. Regardless of
which delay is used here, the client will always talk to the same instance due to the fact that
InitializeLifetimeService() returns null, which provides infinite TTL. Figures 7-1 and 7-2
prove these points.

CHAPTER 7 ■ IN-DEPTH .NET REMOTING 193

Figure 7-2. Server-side output when dealing with different lifetimes

Extending the Sample
The .NET Remoting framework only allows the default lifetime to be changed for all objects,
which might invite you to hard code changes for class-specific TTLs. The problem here is that
you might not necessarily know about each possible deployment scenario when developing
your server-side components, so nondefault lifetimes should in reality be customizable by
configuration files as well.

You can therefore change your applications to not directly derive from MarshalByRefObjects,
but instead from an enhanced subtype that will check the application’s configuration file to read
and set changed lifetime values.

■Tip I think it’s good practice to use an extended form of MarshalByRefObject for your applications, as you
might not always know which kind of common functionality you’ll want to implement later.

The ExtendedMBRObject will override InitializeLifetimeService() and check the
appSetting entries in the configuration file for nondefault lifetime information on a class-by-class
basis. It is shown in Listing 7-3.

Listing 7-3. Base Class for the Following Examples

using System;
using System.Configuration;
using System.Runtime.Remoting.Lifetime;

namespace Server
{

public class ExtendedMBRObject: MarshalByRefObject
{

public override object InitializeLifetimeService()
{

String myName = this.GetType().FullName;

CHAPTER 7 ■ IN-DEPTH .NET REMOTING194

String lifetime =
ConfigurationSettings.AppSettings[myName + "_Lifetime"];

String renewoncall =
ConfigurationSettings.AppSettings[myName + "_RenewOnCallTime"];

String sponsorshiptimeout =
ConfigurationSettings.AppSettings[myName + "_SponsorShipTimeout"];

if (lifetime == "infinity")
{

return null;
}
else
{

ILease tmp = (ILease) base.InitializeLifetimeService();
if (tmp.CurrentState == LeaseState.Initial)
{

if (lifetime != null)
{

tmp.InitialLeaseTime =
TimeSpan.FromMilliseconds(Double.Parse(lifetime));

}

if (renewoncall != null)
{

tmp.RenewOnCallTime =
TimeSpan.FromMilliseconds(Double.Parse(renewoncall));

}

if (sponsorshiptimeout != null)
{

tmp.SponsorshipTimeout =
TimeSpan.FromMilliseconds(Double.Parse(sponsorshiptimeout));

}
}
return tmp;

}
}

}
}

In the following example, all server-side objects are changed to inherit from ExtendedMBRObject
instead of MarshalByRefObject. You’ll also have to remove the calls to InitializeLifetimeService(),
as this is currently done by the superclass. You can now add the following properties for each
class (all of them are optional) to the server-side configuration file:

CHAPTER 7 ■ IN-DEPTH .NET REMOTING 195

Property Description

<Typename>_Lifetime Initial TTL in milliseconds, or “infinity”

<Typename>_RenewOnCallTime Time to add to a method call in milliseconds

<Typename>_SponsorshipTimeout Maximum time to react for sponsor objects in milliseconds

To make this example behave the same as the previous one, you can use the following
server-side configuration file:

<configuration>
<system.runtime.remoting>
<application>

<channels>
<channel ref="http" port="5555" />

</channels>

<lifetime
leaseTime="10MS"
renewOnCallTime="10MS"
leaseManagerPollTime = "5MS"

/>

<service>

<wellknown mode="Singleton"
type="Server.DefaultLifeTimeSingleton, Server"
objectUri="DefaultLifeTimeSingleton.soap" />

<wellknown mode="Singleton"
type="Server.LongerLivingSingleton, Server"
objectUri="LongerLivingSingleton.soap" />

<wellknown mode="Singleton"
type="Server.InfinitelyLivingSingleton, Server"
objectUri="InfinitelyLivingSingleton.soap" />

</service>
</application>

</system.runtime.remoting>
<appSettings>

<add key="Server.LongerLivingSingleton_LifeTime" value="5000" />
<add key="Server.LongerLivingSingleton_RenewOnCallTime" value="1000" />
<add key="Server.InfinitelyLivingSingleton_LifeTime" value="infinity" />

</appSettings>
</configuration>

CHAPTER 7 ■ IN-DEPTH .NET REMOTING196

Figure 7-3. The configured server behaves as expected.

When the new server is started (the client doesn’t need any changes for this), you’ll see the
server-side output shown in Figure 7-3, which demonstrates that the changes were successful
and the newly created server objects really read their lifetime settings from the configuration file.

Working with Sponsors
Now that I’ve covered the primary aspects of lifetime management in the .NET Remoting
framework, I next show you the probably most confusing (but also most powerful) part of it:
the sponsorship concept.

Whenever a remote object is created, a sponsor can be registered with it. This sponsor is
contacted by the LeaseManager as soon as the object’s time to live is about to expire. It then has
the option to return a TimeSpan, which will be the new TTL for the remote object. When a spon-
sor doesn’t want to extend an object’s lifetime, it can simply return TimeSpan.Zero.

The sponsor object itself is a MarshalByRefObject that has to implement the interface
ISponsor. The only other requisite for a sponsor is to be reachable by the .NET Remoting framework.
It can therefore be located either on the remoting server itself, on another server application, or
on the client application.

■Caution Be aware, though, that when using client-side sponsors, the server has to be able to contact the
client directly (the client becomes a server itself in this case, as it’s hosting the sponsor object). When you are
dealing with clients behind firewalls, this approach will not work.

Implementing the ISponsor Interface
Sponsors have to implement the ISponsor interface, which is defined in System.Runtime.
Remoting.Lifetime. It contains just one method, which will be called by the LeaseManager
upon expiration of a lease’s time to live.

public interface ISponsor
{

TimeSpan Renewal(System.Runtime.Remoting.Lifetime.ILease lease)
}

CHAPTER 7 ■ IN-DEPTH .NET REMOTING 197

The sponsor has to return a TimeSpan that specifies the new TTL for the object. If the
sponsor decides not to increase the LeaseTime, it can return TimeSpan.Zero. A basic sponsor
can look like the following:

public class MySponsor: MarshalByRefObject, ISponsor
{

private bool NeedsRenewal()
{

// check some internal conditions

return true;
}

public TimeSpan Renewal(System.Runtime.Remoting.Lifetime.ILease lease)
{

if (NeedsRenewal())
{

return TimeSpan.FromMinutes(5);
}
else
{

return TimeSpan.Zero;
}

}
}

Using Client-Side Sponsors
When using client-side sponsors, you are basically mimicking the DCOM behavior of pinging,
although you have more control over the process here. After acquiring the reference to a remote
object (you’ll do this mostly for CAOs, as for SAOs the lifetime should normally be managed
only by the server), you contact its lifetime service and register the sponsor with it.

You can get an object’s LifetimeService, which will be an ILease object, using the following
line of code:

ILease lease = (ILease) obj.GetLifetimeService();

■Note If you used an interface-based remoting approach, you might first have to cast your proxy object to
MarshalByRefObject before you can call GetLifetimeService(). The preceding line would in this case
read ILease lease = (ILease) ((MarshalByRefObject) obj).GetLifetimeService();.

The ILease interface supports a Register() method to add another sponsor for the under-
lying object. When you want to hold a reference to an object for an unspecified amount of time
(maybe while your client application is waiting for some user input), you can register a client-side
sponsor with it and increase the TTL on demand.

CHAPTER 7 ■ IN-DEPTH .NET REMOTING198

Calling an Expired Object’s Method

In the example shown in Listing 7-4, you see the result of calling an expired object’s method. This
happens because the server-side lifetime is set to one second, whereas the client uses a five-
second delay between two calls to the CAO. Please note that, contrary to the previous example,
I decided that I will only share two interfaces between client and server. I have used a so-called
object factory approach in which the client contacts a SAO which will in turn create an instance
of the requested object and hand back a reference to this explicitly created CAO. In addition,
I’ll use the RemotingHelper class, which I’ve introduced in Chapter 4.

I will use the following interfaces for this communication:

interface IRemoteFactory
{
IRemoteObject CreateInstance();

}

interface IRemoteObject
{
void DoSomething();

}

The output is shown in Figure 7-4.

Listing 7-4. Catching the Exception When Calling an Expired Object

using System;
using System.Runtime.Remoting;
using System.Threading;
using Server;
namespace Client
{

class Client
{
static void Main(string[] args)
{
String filename =

AppDomain.CurrentDomain.SetupInformation.ConfigurationFile;
RemotingConfiguration.Configure(filename);

IRemoteFactory fact =
(IRemoteFactory) RemotingHelper.CreateProxy(typeof(IRemoteFactory));

IRemoteObject cao = fact.CreateInstance();

try
{
Console.WriteLine("{0} CLIENT: Calling doSomething()", DateTime.Now);

CHAPTER 7 ■ IN-DEPTH .NET REMOTING 199

cao.DoSomething();
}
catch (Exception e)
{
Console.WriteLine(" --> EX: Timeout in first call\n{0}",e.Message);

}

Console.WriteLine("{0} CLIENT: Sleeping for 5 seconds", DateTime.Now);
Thread.Sleep(5000);

try
{
Console.WriteLine("{0} CLIENT: Calling doSomething()", DateTime.Now);
cao.DoSomething();

}
catch (Exception e)
{
Console.WriteLine(" --> EX: Timeout in second call\n{0}",e.Message);

}

Console.WriteLine("Finished ... press <return> to exit");
Console.ReadLine();
Console.ReadLine();

}
}

}

■Note Starting with .NET Framework 1.1, you will receive the generic message “Requested Service not found”
whereas previous versions of the .NET Framework included the complete ObjectURI in the error message.

There are two ways of correcting this application’s issues. First, you can simply increase the
object’s lifetime on the server as shown in the previous examples. In a lot of scenarios, however,
you won’t know which TTL will be sufficient. Just imagine an application that acquires a refer-
ence to a CAO and will only call another method of this object after waiting for user input. In
this case, it might be desirable to add a client-side sponsor to your application and register it
with the CAO’s lease.

Figure 7-4. You’ve been calling an expired object’s method.

CHAPTER 7 ■ IN-DEPTH .NET REMOTING200

As the first step in enabling your application to work with client-side sponsors, you have to
include a port="" attribute in the channel section of the configuration file. Without this attribute,
the channel will not accept callbacks from the server.

Because you might not know which port will be available at the client, you can supply a value
of 0, which allows the .NET Remoting framework to choose a free port on its own. When the spon-
sor is created and passed to the server, the channel information that gets passed to the remote
process will contain the correct port number.

<configuration>
<system.runtime.remoting>
<application>

<channels>
<channel ref="http" port="0" />

</channels>
<!-- client entries removed -->

</application>
</system.runtime.remoting>

</configuration>

In the client’s code, you then add another class that implements ISponsor. To see the exact
behavior of the client-side sponsor, you might also want to add a boolean flag that indicates
whether the lease time should be extended or not.

public class MySponsor: MarshalByRefObject, ISponsor
{

public bool doRenewal = true;

public TimeSpan Renewal(System.Runtime.Remoting.Lifetime.ILease lease)
{

Console.WriteLine("{0} SPONSOR: Renewal() called", DateTime.Now);

if (doRenewal)
{

Console.WriteLine("{0} SPONSOR: Will renew (10 secs)", DateTime.Now);
return TimeSpan.FromSeconds(10);

}
else
{

Console.WriteLine("{0} SPONSOR: Won't renew further", DateTime.Now);
return TimeSpan.Zero;

}
}

}

In Listing 7-5 you can see a client application that registers this sponsor with the server
object’s lease. When the application is ready to allow the server to destroy the instance of the
CAO, it will tell the sponsor to stop renewing. Normally you would call Lease.Unregister()
instead, but in this case I want to show you that the sponsor won’t be contacted further after
returning TimeSpan.Zero to the lease manager.

CHAPTER 7 ■ IN-DEPTH .NET REMOTING 201

Listing 7-5. Registering the Sponsor to Avoid Premature Termination of the Object

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Lifetime;
using System.Threading;
using Server;

class ClientApp
{

static void Main(string[] args)
{

String filename =
AppDomain.CurrentDomain.SetupInformation.ConfigurationFile;

RemotingConfiguration.Configure(filename);

IRemoteFactory fact =
(IRemoteFactory) RemotingHelper.CreateProxy(typeof(IRemoteFactory));

IRemoteObject cao = fact.CreateInstance();

ILease le = (ILease) ((MarshalByRefObject) cao).GetLifetimeService();
MySponsor sp = new MySponsor();
le.Register(sp);

try
{

Console.WriteLine("{0} CLIENT: Calling doSomething()", DateTime.Now);
cao.DoSomething();

}
catch (Exception e)
{

Console.WriteLine(" --> EX: Timeout in first call\n{0}",e.Message);
}

Console.WriteLine("{0} CLIENT: Sleeping for 5 seconds", DateTime.Now);
Thread.Sleep(5000);

try
{

Console.WriteLine("{0} CLIENT: Calling doSomething()", DateTime.Now);
cao.DoSomething();

}
catch (Exception e)
{

Console.WriteLine(" --> EX: Timeout in second call\n{0}",e.Message);
}

CHAPTER 7 ■ IN-DEPTH .NET REMOTING202

Console.WriteLine("{0} CLIENT: Unregistering sponsor", DateTime.Now);
le.Unregister(sp);

Console.WriteLine("Finished ... press <return> to exit");
Console.ReadLine();
Console.ReadLine();

}
}

If you were to run this application as-is with the previous client-side and server-side
configuration files, you would receive an exception telling you that this operation is not allowed
at the current security level. This is due to a new security setting that has been introduced with
version 1.1 of the .NET framework. If you want to use sponsors, you now have to specifically
allow this feature in your client- and server-side configuration files. To allow it, you have to
explicitly state the formatters that should be used to communicate with the other party. In
addition, you have to set the attribute typeFilterLevel to “Full” for each server-side formatter.

A valid server-side configuration file could therefore look like this:

<configuration>
<system.runtime.remoting>
<application>

<channels>
<channel ref="http" port="5555">

<serverProviders>
<formatter ref="binary" typeFilterLevel="Full" />

</serverProviders>
<clientProviders>

<formatter ref="binary" />
</clientProviders>

</channel>
</channels>

<!-- Services removed -->
</application>

</system.runtime.remoting>
</configuration>

On the client side, a similar change is necessary:

<configuration>
<system.runtime.remoting>
<application>
<channels>

<channel ref="http" port="0">
<clientProviders>

<formatter ref="binary" />
</clientProviders>
<serverProviders>

<formatter ref="binary" typeFilterLevel="Full" />

CHAPTER 7 ■ IN-DEPTH .NET REMOTING 203

</serverProviders>
</channel>

</channels>
<!-- client entries removed -->
</application>

</system.runtime.remoting>
</configuration>

When you run this application, you will see the output in Figure 7-5 at the client.

As you can see in this figure, during the time the main client thread is sleeping for five
seconds, the sponsor is contacted by the server. It renews the lease for another ten seconds. As
soon as the client has finished its work with the remote object, it unregisters the sponsor from
the lease by using the following line of code to allow the server to destroy the object:

le.Unregister(sponsor);

■Caution When you decide to use client-side sponsors, you have to make sure that the client is reachable
by the server. Whenever you are dealing with clients that may be located behind firewalls or proxies, you have
to choose another approach!

Using Server-Side Sponsors
Server-side sponsors that are running in the same process as the target CAOs can constitute
a solution to the preceding problem, but you have to keep in mind several things to make your
application run stably.

First, remote sponsors are MarshalByRefObjects themselves. Therefore, they also have an
assigned lifetime, and you may want to manage this yourself to provide a consistent behavior.
Generally you will want your server-side sponsor to be active as long as the client application
is “online.” You nevertheless will have to make sure that the resources will be freed as soon as
possible after the client application is ended.

Figure 7-5. Client-side output when using a sponsor

CHAPTER 7 ■ IN-DEPTH .NET REMOTING204

One possible approach is to continuously send a command to the sponsors so that they
stay alive. This can be accomplished with a simple KeepAlive() method that is called periodi-
cally from a background thread of the client application.

Another thing to watch out for is that the sponsor will be called from the .NET Remoting
framework’s LeaseManager. This call might well increase the time to live of your sponsor, depend-
ing on the RenewOnCallTime set in the configuration file. Without taking special care here, you
might end up with sponsors that keep running forever when Unregister() has not been called
correctly for each and every sponsored object. This could happen, for example, when the client
application crashes or experiences a network disconnect.

To remove this potential problem, I suggest you add a DateTime instance variable that holds
the time of the last call to the sponsor’s KeepAlive() method. When the LeaseManager calls
Renew(), the difference between the current time and the last time KeepAlive() has been called
will be checked, and the sponsored object’s lease will only be renewed when the interval is below
a certain limit. As soon as all objects that are monitored by this sponsor are timed out, no further
calls will be placed to the sponsor itself, and its own lease will therefore expire as well.

In the following example, I used very short lease times to show you the implications in
greater detail. In production applications, you should probably keep this in the range of the default
TTL, which is five minutes. The source code in Listing 7-6 (which has to be defined in the shared
DLL) shows you the implementation of a sponsor that supports the described functionality.

Listing 7-6. The Server-Side Sponsor That Is Pinged by the Client

using System;
using System.Runtime.Remoting.Lifetime;
using System.Runtime.Remoting;
using Server; // for ExtendedMBRObject

namespace Sponsors
{

public class InstanceSponsor: MarshalByRefObject, ISponsor
{

public DateTime lastKeepAlive;

public InstanceSponsor()
{

Console.WriteLine("{0} SPONSOR: Created ", DateTime.Now);
lastKeepAlive = DateTime.Now;

}

public void KeepAlive()
{

Console.WriteLine("{0} SPONSOR: KeepAlive() called", DateTime.Now);
// tracks the time of the last keepalive call
lastKeepAlive = DateTime.Now;

}

public TimeSpan Renewal(System.Runtime.Remoting.Lifetime.ILease lease)
{

Console.WriteLine("{0} SPONSOR: Renewal() called", DateTime.Now);

CHAPTER 7 ■ IN-DEPTH .NET REMOTING 205

// keepalive needs to be called at least every 5 seconds
TimeSpan duration = DateTime.Now.Subtract(lastKeepAlive);
if (duration.TotalSeconds < 5)
{

Console.WriteLine("{0} SPONSOR: Will renew (10 secs) ",
DateTime.Now);

return TimeSpan.FromSeconds(10);
}
else
{

Console.WriteLine("{0} SPONSOR: Won't renew further", DateTime.Now);
return TimeSpan.Zero;

}
}

}
}

When implementing this concept, I have also added the following object-factory interface
to the shared DLL to facilitate communication between the client and the sponsor. Its imple-
mentation will just return a new instance of the InstanceSponsor class.

public interface IRemoteSponsorFactory
{

InstanceSponsor CreateSponsor();
}

When employing the following configuration file, the sponsor will act like this: a call to
KeepAlive() is needed at least every five seconds (determined from the call’s time of arrival at
the server, so you better call it more often from your client). When this call is received, lastKeepAlive
is set to the current time using DateTime.Now and (due to the RenewOnCall time set in the con-
figuration file) its own lease time will be increased to five seconds as well.

Whenever the LeaseManager asks for a renewal, the sponsor will compare the current time
to lastKeepAlive, and only when the difference is fewer than five seconds will it extend the
sponsored object’s lease.

<configuration>
<system.runtime.remoting>
<application name="SomeServer">

<channels>
<channel ref="http" port="5555" />

</channels>

<lifetime
leaseTime="1S"
renewOnCallTime="1S"
leaseManagerPollTime = "100MS"

/>

CHAPTER 7 ■ IN-DEPTH .NET REMOTING206

<service>
<wellknown mode="Singleton"

type="Server.RemoteFactory, Server"
objectUri ="RemoteFactory.rem"/>

<wellknown mode="Singleton"
type="Sponsors.SponsorFactory, Server"
objectUri ="SponsorFactory.rem"/>

</service>

</application>
</system.runtime.remoting>
<appSettings>
<add key="Sponsors.InstanceSponsor_Lifetime" value="5000" />
<add key="Sponsors.InstanceSponsor_RenewOnCallTime" value="5000" />
<add key="Server.RemoteObject_Lifetime" value="4000" />

</appSettings>
</configuration>

■Note The preceding sample only works with the ExtendedMBRObject shown earlier in this chapter.

As this sponsor’s KeepAlive() method needs to be called at regular intervals, you have to
add another class to the client application. It will spawn a new thread that periodically calls
the sponsor. This class takes an InstanceSponsor object as a constructor parameter and will
call the server every three seconds until its StopKeepAlive() method is called.

class EnsureKeepAlive
{

private bool _keepServerAlive;
private InstanceSponsor _sponsor;

public EnsureKeepAlive(InstanceSponsor sponsor)
{

_sponsor = sponsor;
_keepServerAlive = true;
Console.WriteLine("{0} KEEPALIVE: Starting thread()", DateTime.Now);
Thread thrd = new Thread(new ThreadStart(this.KeepAliveThread));
thrd.Start();

}

public void StopKeepAlive()
{

_keepServerAlive= false;
}

public void KeepAliveThread()
{

CHAPTER 7 ■ IN-DEPTH .NET REMOTING 207

while (_keepServerAlive)
{

Console.WriteLine("{0} KEEPALIVE: Will KeepAlive()", DateTime.Now);
_sponsor.KeepAlive();
Thread.Sleep(3000);

}
}

}

To use this sponsor and its factory from a client-side project, I’ve added the following line
to the client-side remoting configuration file:

<wellknown type="Shared.IRemoteSponsorFactory, Shared"
url="http://localhost:5555/SponsorFactory.rem" />

In the application itself, you have to add calls to create the server-side sponsor and to start
the client-side keepalive thread:

IRemoteFactory fact =
(IRemoteFactory) RemotingHelper.CreateProxy(typeof(IRemoteFactory));

IRemoteObject cao = fact.CreateInstance();

IRemoteSponsorFactory sf =
(IRemoteSponsorFactory)

RemotingHelper.CreateProxy(typeof(IRemoteSponsorFactory));

// create remote (server-side) sponsor
InstanceSponsor sp = sf.CreateSponsor();

// start the keepalive thread
EnsureKeepAlive keepalive = new EnsureKeepAlive(sp);

ILease le = (ILease) ((MarshalByRefObject) cao).GetLifetimeService();

// register the sponsor
le.Register(sp);

// ... rest of implementation removed

When you are finished using the CAO, you have to unregister the sponsor using ILease.
Unregister() and stop the keepalive thread:

le.Unregister(sp);
keepalive.StopKeepAlive();

Even though in the preceding example I just used a single CAO, you can register this sponsor
with multiple leases for different CAOs at the same time. When you run this application, you’ll
see the output shown in Figures 7-6 and 7-7 on the client and the server, respectively.

CHAPTER 7 ■ IN-DEPTH .NET REMOTING208

Figure 7-6. Client-side output when running with server-side sponsors

Figure 7-7. Server-side output when running with server-side sponsors

Figure 7-8. Server-side output when the client is stopped during execution

In both figures, you can see that KeepAlive() is called several times while the client’s main
thread is sleeping. The server-side sponsor renews the lease two times before it’s finally about
to expire.

To see if the application behaves correctly when a client “crashes” while holding instances
of the remote object, you can just kill the client after some calls to KeepAlive() and look at the
server-side output, which is shown in Figure 7-8.

CHAPTER 7 ■ IN-DEPTH .NET REMOTING 209

Here you can see that the sponsor processed three calls to KeepAlive() before the client
stopped pinging. It received the call to Renewal() more than five seconds later than the last call
to KeepAlive(), and therefore refused to further prolong the object’s lease time. Hence you can
be sure that both objects (the CAO and its sponsor) are timed out and correctly marked for
garbage collection.

Using the CallContext
When creating distributed applications, one of the recurring requirements is to transfer runtime
information between server and client. This is information that allows you to determine the
context in which a piece of code is running.

When you call a method locally, for example, the called code will immediately know about the
caller’s security permissions based on the thread’s security token, and based on .NET’s own code
access security. When you call code remotely, however, the called code cannot do a simple stack-
based lookup to get access to this information. Instead, the information has to be somehow
transferred to the server.

Information like this can be transferred in two different ways: as a method parameter or via
some other means. The latter case is what we call “out-of-band” (OOB) data—information that
is transferred alongside the real method call, but which helps to create the server-side context.

Some parts of these OOB data are transferred automatically by the protocol. If you host your
components in IIS, for example, and activate Windows-Integrated security as discussed earlier
in this book, then you don’t have to manually pass username/password information. The under-
lying HTTP protocol and the .NET Remoting framework will automatically take care of securely
transferring this OOB information for you.

In addition to security, applications can have the more generic need to pass out-of-band
information between client and server. To facilitate this, the .NET Remoting framework provides
the CallContext class. The call context is essentially a dictionary with a special behavior: all items
that implement ILogicalThreadAffinative will travel alongside your method calls between server
and client. If your client, for example, stores one of these items in the call context, then your
server-side code will be able to retrieve the item from its call context.

Both the CallContext class and the interface are defined in the namespace System.Runtime.
Remoting.Messaging.

An example of OOB data is to enable/disable logging based on a client-side setting. Globally
enabling/disabling of server-side logging is usually not enough if you have hundreds of con-
current clients and want to isolate problems with only one of them. In this case, you can create
a command-line or menu option for the client application which would then pass the necessary
information to the server.

In the following application, I will again present the CustomerManager class, which I’ve
been using throughout the book. I will extend it to include additional logging information (which
is, admittedly, simulated by just using Console.WriteLine()). This logging information should
only be written if the client has been started with the command-line switch “/enablelog”. For all
other concurrent clients, no information should be written to the log file.

I first need to define an object that is [Serializable] and that implements
ILogicalThreadAffinative in a DLL that is shared between client and server. I use the same
DLL that also contains the definition of the IRemoteCustomerManager interface and the
Customer object as you can see in Listing 7-7.

CHAPTER 7 ■ IN-DEPTH .NET REMOTING210

Listing 7-7. Defining the Logical Thread Affinative Objects

using System;
using System.Runtime.Remoting.Messaging;

namespace General
{

[Serializable]
public class LogSettings: ILogicalThreadAffinative
{

public bool EnableLog;
}

public interface IRemoteCustomerManager
{

Customer GetCustomer(int id);
}

[Serializable]
public class Customer
{
// implementation removed

}
}

On the client side, you can now check for the command-line switch, and if necessary create
a new LogSettings object and store it in the CallContext using its SetData() method, as shown
in Listing 7-8.

Listing 7-8. Storing the LogSettings in the CallContext

static void Main(string[] args)
{

String filename = AppDomain.CurrentDomain.SetupInformation.ConfigurationFile;
RemotingConfiguration.Configure(filename);

if (args.Length > 0 && args[0].ToLower() == "/enablelog")
{

LogSettings ls = new LogSettings();
ls.EnableLog = true;
CallContext.SetData("log_settings", ls);

}

IRemoteCustomerManager mgr =
(IRemoteCustomerManager)

RemotingHelper.CreateProxy(typeof(IRemoteCustomerManager));

// the callcontext will be transferred automatically
Customer cust = mgr.GetCustomer(42);

CHAPTER 7 ■ IN-DEPTH .NET REMOTING 211

Console.WriteLine("Done");
Console.ReadLine();

}

■Note The CallContext is scoped on the level of a thread. If your application has multiple threads, you will
have independently operating call context objects.

On the server side, you can access the CallContext’s data by calling GetData() and casting
the resulting object to the corresponding type as shown in Listing 7-9.

Listing 7-9. Accessing the CallContext on the Server Side

class CustomerManager: MarshalByRefObject, IRemoteCustomerManager
{

public Customer GetCustomer(int id)
{

LogSettings ls = CallContext.GetData("log_settings") as LogSettings;

if (ls!= null && ls.EnableLog)
{

// simulate write to a logfile
Console.WriteLine("LOG: Loading Customer " + id);

}

Customer cust = new Customer();
return cust;

}
}

If you run the application without specifying a command-line switch, you will receive the
server-side output in Figure 7-9. If you however specify “/enablelog” when starting the client,
the server-side output will look like what appears in Figure 7-10.

Figure 7-9. Server-side output when client has been started without switches

CHAPTER 7 ■ IN-DEPTH .NET REMOTING212

Figure 7-10. Server-side output when client has been started with “/enablelog”

■Note You can set the command-line switches that should be used during debugging in Visual Studio .NET
by right-clicking your project and navigating to Configuration Properties ➤ Debugging. The field you are looking
for is called “Command Line Arguments”.

As the call context is valid for more than one method call, you will have to manually remove
elements that you do not need anymore (otherwise they will travel back and forth with every
method call). You can do this by using CallContext.FreeNamedDataSlot().

Best Practices
In your application code, you should normally avoid directly accessing the call context, as it
ties your business code to the .NET Remoting framework. I usually recommend using certain
strongly typed wrapper classes like the ones shown in Listing 7-10 instead. This will allow you
to later (with future versions of the .NET Framework) move your implementation to a different
protocol without any dependencies to the .NET Remoting framework. In this case, you will
only need to change the wrapper class, which provides for a clean separation between your
business logic and the transport layer.

You can define such a wrapper similar to the one in Listing 7-10.

Listing 7-10. A Wrapper for Log Settings

public class LogSettingContext
{

public static bool EnableLog
{

get
{

LogSettings ls = CallContext.GetData("log_settings") as LogSettings;

if (ls!= null)
{

return ls.EnableLog;
}
else
{

return false;
}

CHAPTER 7 ■ IN-DEPTH .NET REMOTING 213

}
set
{

LogSettings ls = new LogSettings();
ls.EnableLog = value;
CallContext.SetData("log_settings", ls);

}
}

}

You can then set the call context flag on the client side like this:

if (args.Length > 0 && args[0].ToLower() == "/enablelog")
{

LogSettingContext.EnableLog=true;
}

and read it on the server side with code similar to the following:

if (LogSettingContext.EnableLog)
{

// simulate write to a logfile
Console.WriteLine("LOG: Loading Customer " + id);

}

Security and the Call Context
Please note that you should never use the CallContext to transfer the thread’s current principal
(i.e., information about the currently logged-in user) between client and server. This would be
insecure, and a malicious client application could easily send whatever information it would like.

Remoting Events
With the remoting of events, you are now reaching an area of .NET Remoting where the intuitive
way of solving a problem might not be the correct one.

■A Serious Warning Before I show you how to work with remoting events, let me please state that these
events are mostly useful for cross-application communication on a single machine. An example of such
a scenario is to have a Windows service that does some background processing and that communicates
with a Systray application/icon or with a conventional Windows Forms application. Remoting events can
be used in LAN-based environments with a limited number of listeners. They will, however, not scale up to
support hundreds of receivers or to support WAN-based environments. This is not directly a fault of the .NET
Remoting system, but of the way the underlying TCP connections are used. In the next chapter, I’ve detailed
the reasons for this and present some non-remoting-based solutions for asynchronous notifications in differ-
ent environments.

CHAPTER 7 ■ IN-DEPTH .NET REMOTING214

ServerClient

Client

calls
Callback
Object

Callback
Object

Event Delegate

calls

Figure 7-11. The clients will be contacted by the server.

Events: First Take
Let’s say you have to implement a type of broadcast application in which a number of clients
(always according to the preceding warning!) register themselves at the servers as listeners, and
other clients can send messages that will be broadcast to all listening clients.

You need to take into account two key facts when using this kind of application. The first
one is by design: when the event occurs, client and server will change roles. This means that the
client in reality becomes the server (for the callback method), and the server will act as a client
and try to contact the “real” client. This is shown in Figure 7-11.

■Caution This implies that clients located behind firewalls are not able to receive events using any of the
included channels!

The second issue can be seen when you are “intuitively” developing this application. In this
case, you’d probably start with the interface definition shown in Listing 7-11, which would be
compiled to General.dll and shared between the clients and the server.

Listing 7-11. The IBroadcaster Interface (Nonworking Sample)

using System;
using System.Runtime.Remoting.Messaging;

namespace General {

public delegate void MessageArrivedHandler(String msg);

public interface IBroadcaster {
void BroadcastMessage(String msg);
event MessageArrivedHandler MessageArrived;

}
}

CHAPTER 7 ■ IN-DEPTH .NET REMOTING 215

This interface allows clients to register themselves to receive a notification by using the
MessageArrived event. When another client calls BroadcastMessage(), this event will be invoked
and the listening clients called back. The server-side implementation of this interface is shown
in Listing 7-12.

Listing 7-12. The Server-Side Implementation of IBroadcaster

using System;
using System.Runtime.Remoting;
using System.Threading;
using General;

namespace Server
{

public class Broadcaster: MarshalByRefObject, IBroadcaster
{

public event General.MessageArrivedHandler MessageArrived;

public void BroadcastMessage(string msg) {
// call the delegate to notify all listeners
Console.WriteLine("Will broadcast message: {0}", msg);
MessageArrived(msg);

}

public override object InitializeLifetimeService() {
// this object has to live "forever"
return null;

}
}

class ServerStartup
{

static void Main(string[] args)
{

String filename = "server.exe.config";
RemotingConfiguration.Configure(filename);

Console.WriteLine ("Server started, press <return> to exit.");
Console.ReadLine();

}
}

}

The listening client’s implementation would be quite straightforward in this case. The only
thing you’d have to take care of is that the object that is going to be called back to handle the
event has to be a MarshalByRefObject as well. This is shown in Listing 7-13.

CHAPTER 7 ■ IN-DEPTH .NET REMOTING216

Listing 7-13. The First Client’s Implementation, Which Won’t Work

using System;
using System.Runtime.Remoting;
using General;
using RemotingTools; // RemotingHelper

namespace EventListener
{

class EventListener
{

static void Main(string[] args)
{

String filename = "eventlistener.exe.config";
RemotingConfiguration.Configure(filename);

IBroadcaster bcaster =
(IBroadcaster) RemotingHelper.CreateProxy(typeof(IBroadcaster));

Console.WriteLine("Registering event at server");

// callbacks can only work on MarshalByRefObjects, so
// I created a different class for this as well
EventHandler eh = new EventHandler();
bcaster.MessageArrived +=

new MessageArrivedHandler(eh.HandleMessage);

Console.WriteLine("Event registered. Waiting for messages.");
Console.ReadLine();

}
}

public class EventHandler: MarshalByRefObject {
public void HandleMessage(String msg) {

Console.WriteLine("Received: {0}",msg);
}

public override object InitializeLifetimeService() {
// this object has to live "forever"
return null;

}
}

}

When implementing this so-called intuitive solution, you’ll be presented with the error
message shown in Figure 7-12.

CHAPTER 7 ■ IN-DEPTH .NET REMOTING 217

Figure 7-12. An exception occurs when combining the delegate with the remote event.

This exception occurs while the request is deserialized at the server. At this point, the dele-
gate is restored from the serialized message, and it tries to validate the target method’s signature.
For this validation, the delegate attempts to load the assembly containing the destination method.
In the case presented previously, this will be the client-side assembly EventListener.exe, which
is not available at the server.

You’re probably thinking, “Great, but how can I use events nevertheless?” I show you how
in the next section.

Refactoring the Event Handling
As always, there’s the relatively easy solution of shipping the delegate’s destination assembly to
the caller. This would nevertheless mean that the client-side application has to be referenced at
the server—doesn’t sound that nice, does it?

Instead, you can introduce an intermediate MarshalByRefObject (including the implemen-
tation, not only the interface) that will be located in General.dll and will therefore be accessible
by both client and server.

public class BroadcastEventWrapper: MarshalByRefObject {
public event MessageArrivedHandler MessageArrivedLocally;

[OneWay]
public void LocallyHandleMessageArrived (String msg) {

// forward the message to the client
MessageArrivedLocally(msg);

}

public override object InitializeLifetimeService() {
// this object has to live "forever"
return null;

}
}

■Note This is still not the final solution, as there are some problems with using [OneWay] events in real-world
applications as well. I cover this shortly after the current example!

CHAPTER 7 ■ IN-DEPTH .NET REMOTING218

ServerClient

LocallyHandleMessageArrived()
Event Delegate BroadcastEventWrapper

Client Application

Ha
nd

le
M

es
sa

ge
()

Figure 7-13. Event handling with an intermediate wrapper

This wrapper is created in the client’s context and provides an event that can be used to call
back the “real” client. The server in turn receives a delegate to the BroadcastEventWrapper’s
LocallyHandleMessageArrived() method. This method activates the BroadcastEventWrapper’s
MessageArrivedLocally event, which will be handled by the client. You can see the sequence in
Figure 7-13.

The server’s event will therefore be handled by a MarshalByRefObject that is known to it
(as it’s contained in General.dll) so that the delegate can resolve the method’s signature. As the
BroadcastEventWrapper runs in the client context, its own delegate has access to the real
client-side event handler’s signature.

The complete source code to General.dll is shown in Listing 7-14.

Listing 7-14. The Shared Assembly Now Contains the BroadcastEventWrapper.

using System;
using System.Runtime.Remoting.Messaging;

namespace General {

public delegate void MessageArrivedHandler(String msg);

public interface IBroadcaster {
void BroadcastMessage(String msg);
event MessageArrivedHandler MessageArrived;

}

CHAPTER 7 ■ IN-DEPTH .NET REMOTING 219

public class BroadcastEventWrapper: MarshalByRefObject {
public event MessageArrivedHandler MessageArrivedLocally;

[OneWay]
public void LocallyHandleMessageArrived (String msg) {

// forward the message to the client
MessageArrivedLocally(msg);

}

public override object InitializeLifetimeService() {
// this object has to live "forever"
return null;

}

}
}

The listening client’s source code has to be changed accordingly. Instead of passing the
server a delegate to its own HandleMessage() method, it has to create a BroadcastEventWrapper
and pass the server a delegate to this object’s LocallyHandleMessageArrived() method. The client
also has to pass a delegate to its own HandleMessage() method (the “real” one) to the event
wrapper’s MessageArrivedLocally event.

The changed listening client’s source code is shown in Listing 7-15.

Listing 7-15. The New Listening Client’s Source Code

using System;
using System.Runtime.Remoting;
using General;
using RemotingTools; // RemotingHelper

namespace EventListener
{

class EventListener
{

static void Main(string[] args)
{

String filename = "eventlistener.exe.config";
RemotingConfiguration.Configure(filename);

IBroadcaster bcaster =
(IBroadcaster) RemotingHelper.CreateProxy(typeof(IBroadcaster));

// this one will be created in the client's context and a
// reference will be passed to the server
BroadcastEventWrapper eventWrapper =

new BroadcastEventWrapper();

CHAPTER 7 ■ IN-DEPTH .NET REMOTING220

Figure 7-14. The client is waiting for messages.

// register the local handler with the "remote" handler
eventWrapper.MessageArrivedLocally +=

new MessageArrivedHandler(HandleMessage);

Console.WriteLine("Registering event at server");
bcaster.MessageArrived +=

new MessageArrivedHandler(eventWrapper.LocallyHandleMessageArrived);

Console.WriteLine("Event registered. Waiting for messages.");
Console.ReadLine();

}

public static void HandleMessage(String msg) {
Console.WriteLine("Received: {0}",msg);

}
}

}

Before you can start this application, you also have to use a server-side configuration file
that sets the typeFilterLevel to “Full” as shown here:

<configuration>
<system.runtime.remoting>
<application>
<channels>
<channel ref="http" port="5555">

<serverProviders>
<formatter ref="binary" typeFilterLevel="Full" />

</serverProviders>
<clientProviders>

<formatter ref="binary" />
</clientProviders>

</channel>
</channels>
<!-- service entries removed -->

</application>
</system.runtime.remoting>

</configuration>

When this client is started, you will see the output in Figure 7-14, which shows you that
the client is currently waiting for remote events. You can, of course, start an arbitrary number
of clients, because the server-side event is implicitly based on a MulticastDelegate.

CHAPTER 7 ■ IN-DEPTH .NET REMOTING 221

To start broadcasting messages to all listening clients, you’ll have to implement another
client. I’m going to call this one EventInitiator in the following examples. The EventInitiator will
simply connect to the server-side SAO and invoke its BroadcastMessage() method. You can see
the complete source code for EventInitiator in Listing 7-16.

Listing 7-16. EventInitiator Simply Calls BroadcastMessage().

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Activation;
using General;
using RemotingTools; // RemotingHelper

namespace Client
{

class Client
{

static void Main(string[] args)
{

String filename = "EventInitiator.exe.config";
RemotingConfiguration.Configure(filename);

IBroadcaster bcast =
(IBroadcaster) RemotingHelper.CreateProxy(typeof(IBroadcaster));

bcast.BroadcastMessage("Hello World! Events work fine now . . . ");

Console.WriteLine("Message sent");
Console.ReadLine();

}
}

}

When EventInitiator is started, the output shown in Figure 7-15 will be displayed at each
listening client, indicating that the remote events now work as expected.

Figure 7-15. Remote events now work successfully!

CHAPTER 7 ■ IN-DEPTH .NET REMOTING222

Why [OneWay] Events Are a Bad Idea
You might have read in some documents and articles that remoting event handlers should be
defined as [OneWay] methods. The reason is that without defining remote event handlers this
way, an exception will occur whenever a client is unreachable or has been disconnected with-
out first unregistering the event handler.

When just forwarding the call to your event’s delegate, as shown in the previous server-side
example, two things will happen: the event will not reach all listeners, and the client that initi-
ated the event in the first place will receive an exception. This is certainly not what you want to
happen.

When using [OneWay] event handlers instead, the server will try to contact each listener
but won’t throw an exception if it’s unreachable. This seems to be a good thing at first glance.
Imagine, however, that your application will run for several months without restarting. As a result,
a lot of “unreachable” event handlers will end up registered, and the server will try to contact
each of them every time. Not only will this take up network bandwidth, but your performance
will suffer as well, as each “nonworking” call might take up some seconds, adding up to minutes
of processing time for each event. This, again, is something you wouldn’t want in your broad-
cast application.

Instead of using the default event invocation mechanism (which is fine for local applica-
tions), you will have to develop a server-side wrapper that calls all event handlers in a try/catch
block and removes all nonworking handlers afterwards. This implies that you define the event
handlers without the [OneWay] attribute! To make this work, you first have to remove this
attribute from the shared assembly.

public class BroadcastEventWrapper: MarshalByRefObject {
public event MessageArrivedHandler MessageArrivedLocally;

// don't use OneWay here!
public void LocallyHandleMessageArrived (String msg) {

// forward the message to the client
MessageArrivedLocally(msg);

}

public override object InitializeLifetimeService() {
// this object has to live "forever"
return null;

}
}

In the server-side code, you remove the call to MessageArrived() and instead implement
the logic shown in Listing 7-17, which iterates over the list of registered delegates and calls each
one. When an exception is thrown by the framework because the destination object is unreach-
able, the delegate will be removed from the event.

Listing 7-17. Invoking Each Delegate on Your Own

using System;
using System.Runtime.Remoting;
using System.Threading;
using General;

CHAPTER 7 ■ IN-DEPTH .NET REMOTING 223

namespace Server
{

public class Broadcaster: MarshalByRefObject, IBroadcaster
{

public event General.MessageArrivedHandler MessageArrived;

public void BroadcastMessage(string msg) {
Console.WriteLine("Will broadcast message: {0}", msg);
SafeInvokeEvent(msg);

}

private void SafeInvokeEvent(String msg) {
// call the delegates manually to remove them if they aren't
// active anymore.

if (MessageArrived == null) {
Console.WriteLine("No listeners");

} else {

Console.WriteLine("Number of Listeners: {0}",
MessageArrived.GetInvocationList().Length);

MessageArrivedHandler mah=null;

foreach (Delegate del in MessageArrived.GetInvocationList()) {
try {

mah = (MessageArrivedHandler) del;
mah(msg);

} catch (Exception e) {
Console.WriteLine("Exception occured, will remove Delegate");
MessageArrived -= mah;

}
}

}
}

public override object InitializeLifetimeService() {
// this object has to live "forever"
return null;

}
}

class ServerStartup
{

static void Main(string[] args)

CHAPTER 7 ■ IN-DEPTH .NET REMOTING224

{
String filename = "server.exe.config";
RemotingConfiguration.Configure(filename);

Console.WriteLine ("Server started, press <return> to exit.");
Console.ReadLine();

}
}

}

When using events in this way, you ensure the best possible performance, no matter how
long your server application keeps running. But you still have to keep in mind that the use of
.NET Remoting events might not be the best choice to broadcast information to a large num-
ber of clients! You can read more about these scenarios in the following chapter.

Summary
In this chapter you learned about the details of .NET Remoting–based applications. You now
know how lifetime is managed and how you can dynamically configure an object’s time to live.
If this doesn’t suffice, implementing client- or server-side sponsors gives you the opportunity
to manage an object’s lifetime independently of any TTLs.

You also read about versioning, and you can now look at the whole application’s lifecycle
over various versions and know what to watch out for in regard to SAOs and CAOs, and know
how the ISerializable interface can help you when using [Serializable] objects.

On the last pages of this chapter, you read about how you can use delegates and events,
and what to take care of when designing an application that relies on these features. In partic-
ular, you learned that using [OneWay] event handlers the intuitive way certainly isn’t the best
practice.

You should now be able to solve most challenges that might confront you during design
and development of a .NET Remoting application. In the next two chapters, I will share some
additional tips, best practices, and troubleshooting guides that you should take into account
before designing your .NET Remoting–based solution.

225

C H A P T E R 8

■ ■ ■

The Ins and Outs of Versioning

In most distributed applications, it’s of uttermost importance to look at the application’s life-
cycle right from the beginning. You might have to ensure that your already deployed clients
will keep working, even when your server is available in newer versions and will be providing
more functionality.

Generally speaking, .NET Remoting supports the base .NET versioning services, which
also implies that you have to use strong names for versioning of CAOs or serializable objects,
for example. Nevertheless, in details the means of lifecycle management differ quite heavily
between .NET Remoting and common .NET versioning and also differ between the various
types of remoteable objects.

.NET Framework Versioning Basics
Versioning itself is an integral part of the .NET Framework and the common language runtime
itself. Although versioning of distributed applications is different, the basic concepts of version-
ing .NET Framework are still valid. Therefore, let’s start with a short introduction of versioning
with .NET.

Basically, each .NET component has a version attribute stored in the assembly manifest.
This version consists of four parts: major and minor version as well as build number and revision
number (major.minor.build.revision). When it comes to versioning, a general rule is that com-
ponents with different major and/or minor version might be incompatible with previous versions,
whereas components with the same major or minor version and different build or revision num-
bers leave interfaces intact to stay compatible with previous versions of the component.

The ffull assembly name consists of the simple, unencrypted assembly name, the version
as described previously, the assembly culture, and a public key signature. As soon as an assem-
bly is signed with a private key, we are talking about a so-called strong name.

A Short Introduction to Strong Naming
A strong name consists of the assembly’s name, version, culture information, and a fingerprint
from the publisher’s public/private key pair. This scheme is used to identify an assembly “with-
out doubt,” because even though another Person could possibly create an assembly having the
same name, version, and culture information, only the owner of the correct key pair can sign
the assembly and provide the correct fingerprint. Furthermore, the signature avoids tampering
of code when it gets downloaded, for example, from a Web server.

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING226

Figure 8-1. Running sn.exe to generate a key pair

Creation of a Strongly Named Assembly
To generate a key pair to later sign your assemblies with, you have to use sn.exe with the follow-
ing syntax:

sn.exe -k <keyfile>

■Note All command-line tools should be accessed from the Visual Studio .NET command prompt, which is
located in Start ➤ Programs ➤ Microsoft Visual Studio .NET ➤ Visual Studio.NET Tools. This version of the
command prompt will set the environment variables that are needed for the use of these tools.

For example, to create a key pair that will be stored in the file mykey.key, you can run sn.exe,
as shown in Figure 8-1.

■Caution You absolutely have to keep this key secret. If someone else acquires your key, he or she can
sign assemblies in your name. When using a publisher-based security scheme, this might compromise your
enterprise security measures.

When you want to generate a strongly named assembly, you have to put some attributes in
your source files (or update them when using VS .NET, which already includes those attributes
in the file AssemblyInfo.cs, which is by default added to every project):

using System.Reflection;
using System.Runtime.CompilerServices;

[assembly: AssemblyCulture("")]
[assembly: AssemblyVersion("1.0.0.1")]
[assembly: AssemblyDelaySign(false)]
[assembly: AssemblyKeyFile("mykey.key")]

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING 227

1. The * in this case means that this part of the version number is assigned automatically.
2. This rule can be overridden by configuring an assembly redirection in your application configuration

using <dependentAssembly> together with a <bindingRedirect> or with an assembly publisher policy
through the .NET Framework configuration utility.

3. Using assemblies in a shared directory requires the <codeBase> option to be configured in the applica-
tion that is using the shared assembly. This can be done in the application configuration file (app.config).

As the AssemblyVersion attribute defaults to “1.0.*”1 in VS .NET, you’ll have to change this
to allow for definite assignment of version numbers for your components. Make sure, though,
to change it whenever you distribute a new version of your DLL.

The attributeA AssemblyKeyFile has to point to the file generated by sn.exe. When using
Visual Studio .NET, you have to place it in the directory that contains your project file (<proj-
ect>.csproj for C# projects).

Upon compilation of this project, no matter whether you’re using VS .NET or the command-
line compilers, the keyfile will be used to sign the assembly, and you’ll end up with a strongly
named assembly that can be installed in the GAC.

How the CLR Locates Assemblies
When an assembly is loaded, the CLR determines all referenced assemblies through the meta-
data. The CLR takes the exact version of the referenced assemblies and, if available on the target
machine, loads them. An application always automatically runs with the versions of referenced
assemblies against which it has been compiled.2 Therefore, the CLR needs a mechanism for
locating these assemblies.

For this purpose, basically the CLR differentiates between private and shared assemblies.
Private assemblies are stored in the same directory as the application using the assembly. Only
other assemblies running in the same directory can use the assembly, as others won’t find it.

A shared assembly can be used across multiple A shared assembly can be used across
multiple assemblies stored in different directories. Shared assemblies are either stored in
a shared directory3 or in the Global Assembly Cache (GAC). The GAC is a central directory in the
Windows system directory that can store multiple versions of the same assembly—but all
assemblies in the GAC must have a strong name so that they can be identified uniquely.

If an assembly gets loaded, the CLR resolves assembly references in the following order:

1. First of all, for all sstrongly named assemblies the CLR looks into the GAC, and if the
referenced assembly in the correct version can be found there, it uses this version of
the assembly.

2. If no assembly has been found in the GAC, the CLR verifies whether there are any
publisher policies or <codeBase> configurations available. If yes, these will be used for
locating the referenced assemblies.

3. When the referenced assemblies are not found in the <codeBase> or through publisher
policies, the CLR starts a so-called probing process. This means that the CLR tries to find the
referenced assemblies within the application base directory and well-defined subdirec-
tories (either determined by the assembly name, the culture, or through configuration).
More about pprobing can be found on MSDN at http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/cpguide/html/cpconHowRuntimeLocatesAssemblies.asp.

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING228

After the CLR has resolved the assembly reference based on its (full) assembly name, it
can locate the referenced assemblies through the process described previously and load them.
Whereas private assemblies and <codeBase> configuration basically enables xcopy deployment,
putting an assembly into the Global Assembly Cache requires an extra installation step.

Installation in the GAC
To manipulate the contents of the GAC, you can use either Explorer to drag and drop your
assemblies to %WINDOWS%\Assembly or GacUtil from the .NET Framework SDK. Here are
the parameters you’ll use most:

Parameter Description

/i <assemblyname> Installs the specified assembly in the GAC. <assemblyname> has to
include the extension (.DLL or .EXE).

/l [<filter>] Lists the contents of the GAC. If <filter> is present, only assemblies
matching the filter will be listed.

/u <assembly> Unregisters and removes a given assembly from the GAC. When <assembly>
contains a weak name (that is, it contains only the assembly’s name), all
versions of this assembly will be uninstalled. When using a strong name,
only the matching assembly will be removed from the GAC.

A Simple Versioning Example
FFor demonstrating the versioning concepts of the .NET Framework, I will walk you through
a simple example. The example will consist of an assembly DLL doing some simple calculations
and a client application using this component. The component will be installed in the GAC.

Afterwards, you’ll see how to create a new version of the assembly component without
recompiling the old client. The new version will be installed in the GAC, too. When two versions
of the component exist on your machine, you can create another client using the new version. Both
clients will run side by side, without any problems. Last but not least, you will configure your
first client for using the newer version of the component via a binding redirect. Of course, that
only works when the interface of the component will not be broken.

Start by creating a new class library project. In the project directory, create a strong name
key pair for the component using sn -k SimpleComponent.snk. After you have created the strong
name key pair, you can sign the assembly using the AssemblyKeyFile attribute, as you see
in Listing 8-1.

Listing 8-1. A Simple Component—Version 1.0

using System;
using System.Reflection;

[assembly: AssemblyDelaySign(false)]
[assembly: AssemblyKeyFile(@"..\..\SimpleComponent.snk")]
[assembly: AssemblyVersion("1.0.0.0")]

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING 229

Figure 8-2. Configuring the properties for the reference correctly

namespace SimpleComponent
{
public class SimpleClass
{
public SimpleClass()
{
}

public string DoSomething(string a)
{
return string.Format("First version {0}", a);

}
}

}

When you have created and compiled the component, you install them in the global
assembly cache using gacutil /i SimpleComponent.dll.

Next, start a new Visual Studio solution and create the first client application. This will be
a console application. For referencing the previously created component, you now have to
browse manually to the component DLL (SimpleComponent.dll) with the Add References dialog
box. After you’ve added the reference, you have to set the CopyLocal property for the reference
to false because you’ve installed the component in the GAC and will use the shared assembly
(see Figure 8-2).

The code for the first client is fairly simple and can be seen in Listing 8-2.

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING230

Listing 8-2. The First Client of Your Component

using System;
using SimpleComponent;

namespace FirstClientApp
{
class ClientOne
{
[STAThread]
static void Main(string[] args)
{
Console.WriteLine("Client 1");

SimpleClass cls = new SimpleClass();
Console.WriteLine(cls.DoSomething("Called from client 1"));
Console.ReadLine();

}
}

}

Now that you have the first version of your component as well as the first client in place,
you can start creating a new version of the component. For this purpose, you change the code
of the component as shown in Listing 8-3.

Listing 8-3. The Changed (Version 2) of the Component

using System;
using System.Reflection;

[assembly: AssemblyDelaySign(false)]
[assembly: AssemblyKeyFile(@"..\..\SimpleComponent.snk")]
[assembly: AssemblyVersion("2.0.0.0")]

namespace SimpleComponent
{
public class SimpleClass
{
public SimpleClass()
{
}

public string DoSomething(string a)
{
return string.Format("Second version {0}", a);

}
}

}

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING 231

Figure 8-3. The Global Assembly Cache with two versions of the component

The new version of your simple component must again be installed in the GAC. When you
take a look at the installed assemblies in the GAC now, you should see two versions of your
SimpleComponent class in the Global Assembly Cache, as appears in Figure 8-3.

Now you can create a new client that uses the new version. For this purpose, create a new
solution with Visual Studio .NET (again a console application) that looks very similar to the first
version of the client as you can see in Listing 8-4.

■Note After you have recompiled the second version of the SimpleComponent, don’t recompile the first
client, because in that case the first client will be compiled against the new version of SimpleComponent. You
can avoid this by copying the different versions of SimpleComponent into separate directories after you have
built them and reference them from these directories instead of directly from the bin directory of the
SimpleComponent.

Listing 8-4. The Second Client—As Simple As the First Client

using System;
using SimpleComponent;

namespace SecondClientApp
{
class SecondClientApp
{
[STAThread]
static void Main(string[] args)
{
Console.WriteLine("Second Client started!");

SimpleClass cls = new SimpleClass();
string result = cls.DoSomething("Called from 2nd client...");

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING232

Figure 8-4. The first client works with the first version.

Figure 8-5. The second client works with the second version.

Console.WriteLine("Result: " + result);
}

}
}

Figures 8-4 and 8-5 show the output of the two applications. You can see that they are
using the versions of SimpleComponent they have been built with.

The last thing I want to show you is doing a binding redirect for the first client so that it
uses the second version, too. For this purpose, you have to add an application configuration
file for the first client (FirstClientApp.exe.config in the same directory as the application itself)
with the following content:

<configuration>
<runtime>
<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
<dependentAssembly>
<assemblyIdentity name="SimpleComponent"

publicKeyToken="4bb94794cb2f4ab2"
culture="neutral" />

<bindingRedirect oldVersion="1.0.0.0"
newVersion="2.0.0.0" />

</dependentAssembly>
</assemblyBinding>

</runtime>
</configuration>

When you have this configuration file in place, the client uses the second version of the
assembly, although it has been compiled against the first version, as you can see in the assem-
bly manifest. Figure 8-6 shows an ILDASM extract with the contained metadata (still referenc-
ing version 1.0.0.0 of SimpleComponent), whereas Figure 8-7 shows that the application is
already using the new version.

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING 233

Figure 8-6. Metadata shows that FirstClient still references version 1.0.0.0.

Figure 8-7. The first client calls the second version because of the bindingRedirect.

■Caution Generally, the GAC should be used as infrequently as possible because of the additional man-
agement and deployment actions that are necessary. Only very general components used by most of your
different applications should be installed in GAC. In other cases, it is better to deploy assemblies in the
assembly directory. (Why deploy them in GAC if they are used by just one application?)

Versioning in .NET Remoting—Fundamentals
Although versioning is built into the Common Language Runtime, versioning for distributed
applications is still (and will ever be) a hard challenge. Before I share some architectural and
design thoughts, let’s take a look at how versioning can be implemented technically with .NET
Remoting.

Versioning of Server-Activated Objects
As SAOs are instantiated on demand by the server itself, there is no direct way of managing their
lifecycle. The client cannot specify to which version of a given SAO a call should be placed. The

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING234

only means for supporting different versions of a SAO is to provide different URLs for them. In
this case, you would have to tell your users about the new URL in other ways, as no direct support
of versioning is provided in the framework.

Depending on your general architecture, you may want to place SAOs in a different assembly
or have them in two strongly named assemblies that differ only in the version number. In the
remoting configuration file, you can specify which version of a SAO is published using which URL.

Lifecycle of a Versioned SAO
Lifecycle management for a SAO becomes an issue as soon as you change some of its behavior
and want currently available clients that use the older version to continue working.

In the following example, I show you how to create a SAO that’s placed in a strongly named
assembly. You then install the assembly in the GAC and host the SAO in IIS. The implementa-
tion of the first version 1.0.0.1, shown in Listing 8-5, returns a string that later shows you which
version of the SAO has been called.

Listing 8-5. Version 1.0.0.1 of the Server

using System;
using System.Runtime.Remoting.Lifetime;
using System.Runtime.Remoting;
using System.Reflection;
using System.Runtime.CompilerServices;

[assembly: AssemblyCulture("")] // default
[assembly: AssemblyVersion("1.0.0.1")]
[assembly: AssemblyDelaySign(false)]
[assembly: AssemblyKeyFile("mykey.key")]

namespace VersionedSAO
{

public class SomeSAO: MarshalByRefObject
{

public String getSAOVersion()
{

return "Called Version 1.0.0.1 SAO";
}

}
}

After compilation, you have to put the assembly in the GAC using gacutil.exe /i, as shown
in Figure 8-8.

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING 235

Figure 8-8. Registering the first version in the GAC

Figure 8-9. Displaying the strong name for an assembly

This DLL does not have to be placed in the /bin subdirectory of the IIS virtual directory but
is instead loaded directly from the GAC. You therefore have to put the complete strong name in
web.config.

You can use gacutil.exe /l <assemblyname> to get the strong name for the given assembly,
as shown in Figure 8-9.

When editing web.config, you have to put the assembly’s strong name in the type attribute
of the <wellknown> entry as follows:

<configuration>
<system.runtime.remoting>
<application>
<service>
<wellknown mode="Singleton"

type="VersionedSAO.SomeSAO, VersionedSAO,
Version=1.0.0.1,Culture=neutral,PublicKeyToken=84d24a897bf5808f"

objectUri="MySAO.soap" />

</service>
</application>

</system.runtime.remoting>
</configuration>

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING236

■Note The type entry may only be line wrapped between the class name and the assembly’s strong
name—no breaks are allowed within the name!

Building the First Client

For the implementation of the client, you can extract the metadata using SoapSuds.

soapsuds-ia:VersionedSAO -nowp -oa:generated_meta_V1_0_0_1.dll

In the following example, I show you the implementation of a basic client that contacts the
SAO and requests version information using the getSAOVersion() method. After setting a refer-
ence to generated_meta_V1_0_0_1.dll, you can compile the source code shown in Listing 8-6.

Listing 8-6. Version 1.0.0.1 of the Client Application

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Lifetime;
using System.Threading;
using VersionedSAO; // from generated_meta_xxx.dll

namespace Client
{

class Client
{

static void Main(string[] args)
{

String filename = "client.exe.config";
RemotingConfiguration.Configure(filename);

SomeSAO obj = new SomeSAO();
String result = obj.getSAOVersion();

Console.WriteLine("Result: {0}",result);

Console.WriteLine("Finished ... press <return> to exit");
Console.ReadLine();

}
}

}

As the metadata assembly (generated_meta_V1_0_0_1.dll) does not have to be accessed
using its strong name, the configuration file for the client looks quite similar to the previous
examples.

<configuration>
<system.runtime.remoting>
<application>

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING 237

Figure 8-10. Output of the client using the version 1.0.0.1 SAO

<client>
<wellknown

type="VersionedSAO.SomeSAO, generated_meta_V1_0_0_1"
url="http://localhost/VersionedSAO/MySAO.soap" />

</client>

</application>
</system.runtime.remoting>

</configuration>

When this client is started, you will see the output shown in Figure 8-10.

Enhancing the Server

Assume you now want to improve the server with the implementation of additional application
requirements that might break your existing clients. To allow them to continue working correctly,
you will have to let the clients choose which version of the SAO they want to access.

In the new server’s implementation, shown in Listing 8-7, you first have to change the
AssemblyVersion attribute to reflect the new version number, and you will also want to change
the server’s only method to return a different result from that of the version 1.0.0.1 server.

■Note When compiling the project, you will use the exact same keyfile (mykey.key) for generating the
assembly’s strong name!

Listing 8-7. Version 2.0.0.1 of the Server

using System;
using System.Runtime.Remoting.Lifetime;
using System.Runtime.Remoting;
using System.Reflection;
using System.Runtime.CompilerServices;

[assembly: AssemblyCulture("")] // default
[assembly: AssemblyVersion("2.0.0.1")]
[assembly: AssemblyDelaySign(false)]
[assembly: AssemblyKeyFile("mykey.key")]

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING238

Figure 8-11. GAC contents after installing the second assembly

namespace VersionedSAO
{

public class SomeSAO: MarshalByRefObject
{

public String getSAOVersion()
{

return "Called Version 2.0.0.1 SAO";
}

}
}

After compiling and installing the assembly in the GAC using GacUtil, you can list the contents
of the assembly cache as shown in Figure 8-11.

To allow a client to connect to either the old or the new assembly, you have to include
a new <wellknown> entry in web.config that also points to the newly created SAO and uses
a different URL.

<configuration>
<system.runtime.remoting>
<application>
<service>

<wellknown mode="Singleton"
type="VersionedSAO.SomeSAO, VersionedSAO,

Version=1.0.0.1,Culture=neutral,PublicKeyToken=84d24a897bf5808f"
objectUri="MySAO.soap" />

<wellknown mode="Singleton"
type="VersionedSAO.SomeSAO, VersionedSAO,

Version=2.0.0.1,Culture=neutral,PublicKeyToken=84d24a897bf5808f"
objectUri="MySAO_V2.soap" />

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING 239

Figure 8-12. Version 1 client running

Figure 8-13. Version 2 client running

</service>
</application>

</system.runtime.remoting>
</configuration>

Developing the New Client

To allow a client application to access the second version of the SAO, you again have to generate
the necessary metadata using SoapSuds.

soapsuds -ia:VersionedSAO -nowp -oa:generated_meta_V2_0_0_1.dll

After adding the reference to the newly generated metadata assembly, you also have to
change the client-side configuration file to point to the new URL.

<configuration>
<system.runtime.remoting>
<application>

<client>
<wellknown

type="VersionedSAO.SomeSAO, generated_meta_V2_0_0_1"
url="http://localhost/VersionedSAO/MySAO_V2.soap" />

</client>

</application>
</system.runtime.remoting>

</configuration>

You can now start both the new and the old client to get the outputs shown in Figure 8-12
for the first version and in Figure 8-13 for the second.

Both clients are running side by side at the same time, accessing the same physical server.
You can also see that there was no change needed to the first client, which is the primary req-
uisite for consistent lifecycle management.

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING240

Versioning of Client-Activated Objects
Now that you know about the lifecycle management issues with SAOs, I have to tell you that
versioning of CAOs is completely different. But first, let’s start with a more general look at the
creation of client-activated objects.

When CAOs are instantiated by the client (using the new operator or Activator.CreateInstance),
a ConstructionCallMessage is sent to the server. In this message, the client passes the name of
the object it wants to be created to the server-side process. It also includes the strong name (if
available) of the assembly in which the server-side object is located. This version information
is stored in the [SoapType()] attribute of the SoapSuds-generated assembly. SoapSuds does this
automatically whenever the assembly, passed to it with the -ia parameter, is strongly named.

Let’s have a look at the C# source shown in Listing 8-8, which is generated by soapsuds
-ia -nowp -gc from a simplistic CAO. I’ve inserted several line breaks to enhance its readability.

Listing 8-8. The SoapSuds-Generated Nonwrapped Proxy’s Source

using System;
using System.Runtime.Remoting.Messaging;
using System.Runtime.Remoting.Metadata;
using System.Runtime.Remoting.Metadata.W3cXsd2001;
namespace Server {

[Serializable,
SoapType(SoapOptions=SoapOption.Option1|

SoapOption.AlwaysIncludeTypes|SoapOption.XsdString|
SoapOption.EmbedAll,

XmlNamespace="http://schemas.microsoft.com/clr/nsassem/Server/Server%2C%20 ➥

Version%3D2.0.0.1%2C%20Culture%3Dneutral%2C%20PublicKeyToken%3D84d24a897bf ➥

5808f",
XmlTypeNamespace="http://schemas.microsoft.com/clr/nsassem/Server/Server%2 ➥

C%20Version%3D2.0.0.1%2C%20Culture%3Dneutral%2C%20PublicKeyToken%3D84d24a8 ➥

97bf5808f")]

public class SomeCAO : System.MarshalByRefObject
{

[SoapMethod(SoapAction=
"http://schemas.microsoft.com/clr/nsassem/Server.SomeCAO/Server#doSomething")]

public void doSomething()
{

return;
}

}
}

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING 241

The strings in the XmlNamespace and XmlTypeNamespace attributes are URLEncoded variants of
the standard version information. In plain text, they read as follows (omitting the base namespace):

Server, Version=2.0.0.1, Culture=neutral, PublicKeyToken= 84d24a897bf5808f

Doesn’t look that scary anymore? In fact, this is the common .NET representation of a strong
name as seen before.

What you can see now is that this proxy assembly will reference a server-side object called
Server.SomeCAO, which is located in the assembly server with the strong name shown previously.
Whenever a client creates a remote instance of this CAO, the server will try to instantiate the
exact version of this type.

What the server does when the requested version is not available is to take the highest version
of the specified assembly. When versions 1.0.1.0 and 2.0.0.1 are available in the GAC, and version
1.0.0.1 is requested, the server will choose 2.0.0.1 to instantiate the requested object—even
though the versions differ in the major version number.

■Note This behavior differs from the standard .NET versioning approach, in which the highest version with
the same major and minor version is chosen.

To emulate the standard behavior for resolving assembly versions, or to redirect to a completely
different version, you can use the assemblyBinding entry in the application’s configuration file.

<configuration>
<system.runtime.remoting>
<application name="SomeServer">

<channels>
<channel ref="http" port="5555" />

</channels>

<service>
<activated type="Server.SomeCAO, Server" />

</service>

</application>
</system.runtime.remoting>
<runtime>
<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

<dependentAssembly>
<assemblyIdentity name="server"

publicKeyToken="84d24a897bf5808f"
culture="neutral" />
<bindingRedirect oldVersion="1.0.0.1"
newVersion="1.0.1.1" />

</dependentAssembly>
</assemblyBinding>
</runtime>

</configuration>

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING242

In this case, the server will take any requests for version 1.0.0.1 and use version 1.0.1.1
instead. Remember that this only works when the assembly is registered in the GAC and that
you have to use soapsuds -ia:<assembly> -nowp -oa:<meta.dll> for each server-side version,
as the [SoapType()] attribute defines this behavior.

Versioning of [Serializable] Objects
Because a [Serializable] object is marshaled by value and its data is passed as a copy, versioning
behavior is once more different from SAOs or CAOs. First let’s again have a look at the transfer
format of the Customer object (and not the complete message) from a server similar to the one
in the first example in Chapter 1.

<a1:Customer id="ref-4" xmlns:a1="http://schemas.microsoft.com/clr/nsassem/ ➥

VersionedSerializableObjects/VersionedSerializableObjects%2C%20Version%3D1. ➥

0.0.1%2C%20Culture%3Dneutral%2C%20PublicKeyToken%3D84d24a897bf5808f">
<FirstName id="ref-5">John</FirstName>
<LastName id="ref-6">Doe</LastName>
<DateOfBirth>1950-12-12T00:00:00.0000000+01:00</DateOfBirth>
</a1:Customer>

AAs you can see here, the complete namespace information, including the assembly’s
strong name, is sent over the wire. When the client that fetched this Customer object using
a statement like Customer cust = CustomerManager.getCustomer(42) does not have access to this
exact version, a SerializationException (“Parse Error, no assembly associated with Xml key”)
will be thrown.

To enable a “one-way relaxed” versioning schema, you can include the attribute
includeVersions = "false" in the formatter’s configuration entry as shown here:

<configuration>
<system.runtime.remoting>
<application name="SomeServer">
<channels>
<channel ref="http" port="5555">
<serverProviders>

<formatter ref="soap" includeVersions="false"/>
</serverProviders>

</channel>
</channels>

</application>
</system.runtime.remoting>

</configuration>

After this change, the server will return a different serialized form of the object, which
does not contain the assembly’s strong name.

The newly returned Customer object’s data will look like this:

<a1:Customer id="ref-4" ➥

xmlns:a1="http://schemas.microsoft.com/clr/nsassem/VersionedSerializable/ ➥

Objects/VersionedSerializableObjects">
<FirstName id="ref-5">John</FirstName>

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING 243

<LastName id="ref-6">Doe</LastName>
<DateOfBirth>1950-12-12T00:00:00.0000000+01:00</DateOfBirth>
</a1:Customer>

This last step, however, has not yet solved all issues with versioned [Serializable] objects.
Let’s get back to the original need for versioning in the first place: functionality is added to an
application, and you want the currently available clients to keep working. This leads to the
question of what will happen when you add another property to either the client or the server
side’s shared assembly (in the example, I’ll use public String Title for the property). The
Customer class now looks like this:

[Serializable]
public class Customer
{

public String FirstName;
public String LastName;
public DateTime DateOfBirth;
public String Title; // new!

}

When the new Customer object (let’s call it version 2.0.0.1 or just version 2 for short) is
available at the client, and the old object (1.0.0.1, or just version 1, without the Title property)
at the server, the client is able to complete the call to Customer cust = CustomerManager.
getCustomer(42). The client simply ignores the fact that the server did not send a value for the
Customer object’s Title property.

It won’t work the other way though. When the server has version 2 of the Customer
object and the client only has version 1, a SerializationException (“Member name ‘Versioned-
SerializableObjects.Customer Title’ not found”) will be thrown when the client tries to interpret
the server’s response. This is exactly what you wanted to avoid. To work around these limitations,
you have to have a look at the ISerializable interface, which allows you to specify custom seri-
alization methods.

public interface ISerializable
{

void GetObjectData(SerializationInfo info, StreamingContext context);
}

When implementing ISerializable, you simply have to call the SerializationInfo object’s
AddValue() method for each field you want to include in the serialized form of the current object.

To serialize the Customer object’s properties from version 1 of the preceding example
(without the Title property), you can do the following:

public void GetObjectData(SerializationInfo info, StreamingContext context) {
info.AddValue("FirstName",FirstName);
info.AddValue("LastName",LastName);
info.AddValue("DateOfBirth",DateOfBirth);

}

In addition to this implementation of GetObjectData(), you have to provide a special construc-
tor for your object that takes a SerializationInfo and a StreamingContext object as parameters.

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING244

public Customer (SerializationInfo info, StreamingContext context) {
FirstName = info.GetString("FirstName");
LastName = info.GetString("LastName");
DateOfBirth = info.GetDateTime("DateOfBirth");

}

This constructor is called whenever a stream that contains a Customer object is about to
be deserialized.

■Note It’s also possible to include nested objects when using ISerializable. In this case, you have to call
info.GetValue(String name, Type type) and cast the result to the correct type. All of those additional
objects have to be [Serializable], implement ISerializable, or be MarshalByRefObjects as well.

You can see version 1 of the Customer object, which is now implemented using the ISerializable
interface, in Listing 8-9.

Listing 8-9. The First Version of the Serializable Object

using System;
using System.Runtime.Serialization;

namespace VersionedSerializableObjects
{

[Serializable]
public class Customer: ISerializable
{

public String FirstName;
public String LastName;
public DateTime DateOfBirth;

public Customer (SerializationInfo info, StreamingContext context)
{

FirstName = info.GetString("FirstName");
LastName = info.GetString("LastName");
DateOfBirth = info.GetDateTime("DateOfBirth");

}

public void GetObjectData(SerializationInfo info,
StreamingContext context)

{
info.AddValue("FirstName",FirstName);
info.AddValue("LastName",LastName);
info.AddValue("DateOfBirth",DateOfBirth);

}
}

}

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING 245

When the fields of this object have to be extended to include a Title property, as in the
preceding example, you have to adopt GetObjectData() and the special constructor.

In the constructor, you have to enclose the access to the newly added property in a try/catch
block. This enables you to react to a missing value, which might occur when the remote appli-
cation is still working with version 1 of the object.

In Listing 8-10, the value of the Customer object’s Title property is set to “n/a” when the
SerializationInfo object does not contain this property in serialized form.

Listing 8-10. Manual Serialization Allows More Sophisticated Versioning

using System;
using System.Runtime.Serialization;

namespace VersionedSerializableObjects {
[Serializable]
public class Customer: ISerializable {

public String FirstName;
public String LastName;
public DateTime DateOfBirth;
public String Title;

public Customer (SerializationInfo info, StreamingContext context) {
FirstName = info.GetString("FirstName");
LastName = info.GetString("LastName");
DateOfBirth = info.GetDateTime("DateOfBirth");
try {

Title = info.GetString("Title");
} catch (Exception e) {

Title = "n/a";
}

}

public void GetObjectData(SerializationInfo info,
StreamingContext context)

{
info.AddValue("FirstName",FirstName);
info.AddValue("LastName",LastName);
info.AddValue("DateOfBirth",DateOfBirth);
info.AddValue("Title",Title);

}

}
}

Using this serialization technique will ensure that you can match compatible server and
client versions without breaking any existing applications.

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING246

Advanced Versioning Concepts
When performing versioning, you have to take several parts of your application into considera-
tion. Of course, you have to think of your server-side implementation and the interfaces of the
remoteable objects, as well as the messages sent across the wire between the client and the server.

All these different aspects require some different ideas in terms of application design, which
have to be taken into consideration from the very first version of the application. When it comes
to server-side implementation, you have to think about the possibility that a change in the server’s
implementation breaks client applications. But I think that this happens only under specific
circumstances, for example, if the client is dependent on the state of the server’s object. The
easiest way to avoid this is to not use stateful objects on the server—for both ease of implemen-
tation as well as scalability (think of load balancing).

Much more often interfaces on the server’s objects have to be broken, or the format of
messages sent across the wire will change over time. These are really hard problems that have
to be solved when versioning distributed applications, because in large enterprise applications
you have to make sure that even old client applications that won’t be updated for any reason will
continue working with your application.

This basically means you still have to support the old interfaces on your server application,
and you still have to understand old serializable messages (I will go into detail about this issue
later in this chapter).

Versioning with Interfaces
In my opinion, the best way for versioning is definitely through interfaces. If you think of inter-
faces serving as the contract between clients and the server, this represents the most explicit
way of versioning. A new version of the server is exposed through new interfaces, either com-
pletely new or inherited from the first version. Of course, if necessary the old interfaces still stay
valid to support old clients.

IIn this way, you can avoid having several URLs for the different versions of SAO objects
and avoid additional management and deployment tasks. Let’s go through an example to
examine how versioning through interfaces looks and how it differs from the way of versioning
SAO objects through different URLs as you’ve seen it in the previous chapter.

Start with the first version of your shared assembly, which defines the first version of the
interfaces for using your server. Listing 8-11 shows the code of the assembly.

Listing 8-11. The First Version of the Shared Assembly

using System;
using System.Reflection;
using System.Runtime.CompilerServices;

[assembly: AssemblyTitle("Shared Assembly")]
[assembly: AssemblyVersion("1.0.0.0")]
[assembly: AssemblyDelaySign(false)]
[assembly: AssemblyKeyFile(@"..\..\..\Server.snk")]

namespace General
{

public interface IRemoteFactory

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING 247

{
int GetAge();
Person GetPerson();
void UploadPerson(Person p);

}

[Serializable]
public class Person
{
public int Age;
public string Firstname, Lastname;

public Person(string first, string last, int age)
{
this.Age = age;
this.Firstname = first;
this.Lastname = last;

}
}

}

The server component will be a server-activated object that supports three operations:
getting the current age, getting a Person, and uploading a Person. The shared library uses the
strong name key pair of the server for signing the assembly. Remember that strong names are
a good idea for versioning, although versioning with interfaces does not require strong names
(but you will see how to extend the sample later in terms of changing the serialized type and
then strong naming is necessary).

The first version of the server’s implementation can be seen in Listing 8-12. It just implements
the preceding interface.

Listing 8-12. The First Version of the Server

using System;
using System.Runtime.Remoting;
using System.Reflection;
using System.Runtime.CompilerServices;

using General;

[assembly: AssemblyTitle("Server Assembly")]
[assembly: AssemblyVersion("1.0.0.0")]
[assembly: AssemblyDelaySign(false)]
[assembly: AssemblyKeyFile(@"..\..\..\Server.snk")]

namespace Server
{

public class ServerImpl : MarshalByRefObject, IRemoteFactory
{
private int _ageCount = 10;

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING248

public int GetAge()
{
Console.WriteLine(">> GetAge {0}", _ageCount);
return _ageCount;

}

public Person GetPerson()
{
Console.WriteLine(">> GetPerson()");
Console.WriteLine(">> Returning person {0}...", _ageCount);

Person p = new Person("Test", "App", _ageCount++);
return p;

}

public void UploadPerson(Person p)
{
Console.WriteLine(">> UploadPerson()");
Console.WriteLine(">> Person {0} {1} {2}", p.Firstname, p.Lastname, p.Age);

_ageCount += p.Age;
}

}

class ServerApp
{
[STAThread]
static void Main(string[] args)
{
Console.WriteLine("Starting server...");
RemotingConfiguration.Configure("Server.exe.config");

Console.WriteLine("Server configured, waiting for requests!");
System.Console.ReadLine();

}
}

}

The server itself is configured as a server-activated object of type Singleton, which can be
reached through the binary formatter and a TCP channel, as you can see in the following code
snippet. Remember that you are trying to upload custom strongly named types. Therefore,
you have to adjust the typeFilterLevel to allow deserialization of such types.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.runtime.remoting>
<application>
<channels>
<channel ref="tcp" port="1234">

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING 249

<serverProviders>
<formatter ref="binary" typeFilterLevel="Full" />

</serverProviders>
</channel>

</channels>
<service>
<wellknown type="Server.ServerImpl, Server"

objectUri="MyServer.rem"
mode="Singleton" />

</service>
</application>

</system.runtime.remoting>
</configuration>

■Caution Setting the typeFilterLevel tto full as you can see in the preceding code snippet means that you
need strong authentication and encryption to secure your .NET Remoting component. You can find more
about security in Chapter 5.

The first version of the client just references the shared library created previously and calls
several methods on the server. This client will not be touched anymore later on. This means it
is going to play the role of the client that should continue working after changing the interfaces
on the server’s implementation (see Listing 8-13).

Listing 8-13. The Client Using the First Version of the Server

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Activation;
using System.Reflection;
using System.Runtime.CompilerServices;

using General;
using General.Client;

[assembly: AssemblyVersion("1.0.0.0")]
[assembly: AssemblyDelaySign(false)]
[assembly: AssemblyKeyFile(@"..\..\..\Client.snk")]

namespace ConsoleClient
{

class ClientApp
{
[STAThread]
static void Main(string[] args)
{
Console.WriteLine("Configuring client...");
RemotingConfiguration.Configure("ConsoleClient.exe.config");

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING250

Console.WriteLine("Creating proxy...");
IRemoteFactory factory =

(IRemoteFactory)RemotingHelper.CreateProxy(
typeof(IRemoteFactory));

Console.WriteLine("Calling GetAge()...");
int age = factory.GetAge();
Console.WriteLine(">> Call successful: " + age.ToString());

Console.WriteLine("Calling GetPerson()...");
Person p = factory.GetPerson();
Console.WriteLine(">> Person retrieved: {0} {1}, {2}",

p.Firstname, p.Lastname, p.Age.ToString());

Console.WriteLine("Calling UploadPerson()...");
factory.UploadPerson(new Person("Upload", "Test", 20));
Console.WriteLine(">> Upload called successfully!");

Console.ReadLine();
}

}
}

Although not necessary, the client is signed with a strong name key pair. The configuration
for the client looks as follows:

<configuration>
<system.runtime.remoting>
<application name="FirstClient">
<channels>
<channel ref="tcp">
<clientProviders>
<formatter ref="binary" />

</clientProviders>
</channel>

</channels>
<client>
<wellknown type="General.IRemoteFactory, General"

url="tcp://localhost:1234/MyServer.rem" />
</client>

</application>
</system.runtime.remoting>

</configuration>

Now that you have created both the client and the server, you can test them. The output of
the two applications is shown in Figures 8-14 and 8-15.

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING 251

Figure 8-14. The first version of the client in action

Figure 8-15. The first version of the server in action

Now assume that the requirements for new clients are changing—a new method called
SSetAge() is necessary. But your old client should still be able to work with the server. There-
fore, you have to leave the old interfaces intact. The solution is fairly easy: you will create
a new shared assembly for the new clients where you define an interface that inherits from
the base interface, implement this interface on the second version of your server, and use this
interface from your second client to call the server. Listing 8-14 shows the content of the new
shared library for the new clients.

Listing 8-14. New Shared Library for the Next Generation of Your Clients

using System;
using System.Reflection;
using System.Runtime.CompilerServices;

[assembly: AssemblyTitle("Shared Assembly")]
[assembly: AssemblyVersion("2.0.0.0")]

[assembly: AssemblyDelaySign(false)]
[assembly: AssemblyKeyFile(@"..\..\..\Server.snk")]

namespace GeneralV2
{

public interface IRemoteFactory2 : General.IRemoteFactory
{
void SetAge(int age);

}
}

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING252

Of course, the shared library has to reference the old version of your shared library—
General.dll—to be able to extend the old interface. This also means new clients have to reference
both the old and the new thshared assembly to be able to call the old methods, too. If interfaces
and types are completely independent of the old interfaces, of course, this isn’t necessary.

The second version of your server, shown in Listing 8-15, now implements the new interface,
which actually inherits from the old interface. Therefore, you are not breaking compatibility and
still supporting old clients.

Listing 8-15. The New Version of Your Server

using System;
using System.Runtime.Remoting;
using System.Reflection;
using System.Runtime.CompilerServices;

using General;
using GeneralV2;

[assembly: AssemblyTitle("Server Assembly")]
[assembly: AssemblyVersion("2.0.0.0")]
[assembly: AssemblyKeyFile(@"..\..\..\Server.snk")]

namespace Server
{

public class ServerImpl : MarshalByRefObject, IRemoteFactory2
{
private int _ageCount = 10;

public void SetAge(int age)
{
_ageCount += age;
Console.WriteLine(">> SetAge {0}", _ageCount);

}

public int GetAge()
{
Console.WriteLine(">> GetAge {0}", _ageCount);
return _ageCount;

}

public Person GetPerson()
{
Console.WriteLine(">> GetPerson()");
Console.WriteLine(">> Returning person {0}...", _ageCount);

Person p = new Person("Test", "App", _ageCount++);
return p;

}

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING 253

public void UploadPerson(Person p)
{
Console.WriteLine(">> UploadPerson()");
Console.WriteLine(">> Person {0} {1} {2}", p.Firstname, p.Lastname, p.Age);

_ageCount += p.Age;
}

}

class ServerApp
{
[STAThread]
static void Main(string[] args)
{
Console.WriteLine("Starting server...");
RemotingConfiguration.Configure("Server.exe.config");

Console.WriteLine("Server configured, waiting for requests!");
System.Console.ReadLine();

}
}

}

In this case it’s quite easy—as the new interface inherits from the old one and just adds
new functionality, you have ensured that old clients are still supported. If an interface would
really break the signature of existing methods, you cannot create an interface that inherits from
the old version. In this case, you have to create a completely new interface that defines the
contract for the new clients.

But this still means you are avoiding changes in configuration of your server components,
making version management and updating server components in any case (not only new inter-
faces but also bug fixes and patching) much easier than deploying multiple versions of your
server component under different URLs.

The second client just references the two shared assemblies (General.dll and GeneralV2.dll)
and uses the new interface for calling the remoting server, as you can see in Listing 8-16.

Listing 8-16. The Implementation of the Second Client

using System;
using System.Runtime.Remoting;

using General;
using GeneralV2;
using General.Client;

namespace ClientConsole2
{

class Class1
{

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING254

[STAThread]
static void Main(string[] args)
{
Console.WriteLine("Configuring client...");
RemotingConfiguration.Configure("ClientConsole2.exe.config");

Console.WriteLine("Creating proxy...");
IRemoteFactory2 factory =

(IRemoteFactory2)RemotingHelper.CreateProxy(
typeof(IRemoteFactory2));

Console.WriteLine("Calling GetAge()...");
int age = factory.GetAge();
Console.WriteLine(">> Call successful: " + age.ToString());

Console.WriteLine("Calling SetAge()...");
factory.SetAge(age * 2);
Console.WriteLine(">> Call successful!");

Console.WriteLine("Calling GetPerson()...");
Person p = factory.GetPerson();
Console.WriteLine(">> Person retrieved: {0} {1}, {2}",

p.Firstname, p.Lastname, p.Age.ToString());

Console.ReadLine();
}

}
}

The second client performs quite the same tasks as the first one. But it imports the name-
space of both shared assemblies, General and GeneralV2, and in addition it calls the SetAge()
function, which has been added with the second version of the interface. The configuration of
the second client looks very similar to the first one despite the fact that you are using the new
interface in your well-known client configuration.

<configuration>
<system.runtime.remoting>
<application name="SecondClient">
<channels>
<channel ref="tcp">
<clientProviders>
<formatter ref="binary" />

</clientProviders>
</channel>

</channels>
<client>
<wellknown type="GeneralV2.IRemoteFactory2, GeneralV2"

url="tcp://localhost:1234/MyServer.rem" />

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING 255

Figure 8-16. The old client in action—still works

Figure 8-17. The new client in action—leverages new functionality

Figure 8-18. The new version of the server after both clients have submitted requests

</client>
</application>

</system.runtime.remoting>
</configuration>

Now you can run all three applications. The output is shown in Figures 8-16, 8-17, and 8-18.

Basically the interface-based approach cannot be adapted to client-activated objects directly
because CAO works with an activation message sent by the client. This request includes the
necessary version information for instantiating the right object on the server as you have seen
earlier in this chapter.

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING256

Server A

Version 2

Name
Age
Date

Server A serializes
version 2 of the

message, which contains
a date field in

addition to name and age.

Server B deserializes
data received as

version 1. Version 1
doesn't know about date
and therefore ignores it.

Server C deserializes
version 2 of the

message. But the date
is missing because it

is not present in version 1.

Name
Age

Name
Age

Date - ?

Version 1 Version 2

Server B Server C

Figure 8-19. An extended versioning scenario

But if you need an instance of a MarshalByRef object per client on the server, you can solve
this problem differently by implementing a factory object as a Singleton running on the server,
which instantiates the client-activated objects and returns them to the client. In this case, the
interface-based approach works again, and you can start versioning the contract of your
client-activated objects through interfaces.

Versioning Concepts for Serialized Types
Earlier in this chapter, you have been introduced to a way for versioning [Serializable] objects.
The things you have seen there will be the foundation for the concepts you are using now. But
what do you have to keep in mind when versioning objects sent serialized across the wire?
Well, if you have only a couple of clients talking directly to the server, versioning is easier and
can be done as described previously in the section “Versioning of [Serializable] Objects.”

But think about a situation in which servers are exchanging data and different servers
require different versions of the serializable object exchanged. What if server A works with
version 2 of an object and sends this object across the wire to server B, which requires version 1?
You have already seen how to solve this problem easily, but if server B sends the object across
the wire to another server, server C, that understands version 2 and requires the data from the
original message sent by server A, you have a problem. With the original strategy on deserial-
ization of the extended version, the additional data of version 2 is lost on server B in the middle.
Server B sends the message without the new data to server C, and therefore information for server
C is missing. The scenario is described in Figure 8-19.

Such a situation requires you to have versioning in mind from the very first moment of your
application development process. Therefore, if the probability of getting in such a situation is
high, you should think about the concepts being discussed in this section.

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING 257

■Very Important The concepts I am introducing in this chapter should only be used if they are really
necessary—this means a situation like the one described previously can potentially become reality. In any
other cases, avoid the additional effort of implementing versioning in this way. Furthermore, in such situations,
Web Services might be more appropriate than .NET Remoting solutions. My primary intention with this
chapter is to show you that versioning of serializable types is not easy and needs to be kept in mind
from the very first moment of the application design and development process!

■Note The next generation of messaging runtime, codename IIndigo, has such concepts built into the infra-
structure through data contracts. This means with Indigo you really can concentrate on your data contract
design and not—as is happening here—digging into some details of runtime serialization.

In the next example, you’ll see how to implement a similar situation to the one described
in Figure 8-19. Your starting position will be the first version of the client and the server from
the previous example. This time you’ll add an intermediary remoting server, and the client will
communicate with this server instead of the original server. As you know that you are going to
version your message sent across the wire—the Person object introduced in the shared library
in Listing 8-11 of the first version of your interface versioning sample—you are going to change
this class a little bit. Modify the Person object to support custom serialization as follows:

[Serializable]
public class Person : ISerializable
{
public int Age;
public string Firstname;
public string Lastname;

public Person(string first, string last, int age)
{
this.Age = age;
this.Firstname = first;
this.Lastname = last;

}

public Person(SerializationInfo info, StreamingContext context)
{
Age = info.GetInt32("Age");
Firstname = info.GetString("Firstname");
Lastname = info.GetString("Lastname");

}

public void GetObjectData(SerializationInfo info, StreamingContext context)
{
info.AddValue("Age", Age);

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING258

info.AddValue("Firstname", Firstname);
info.AddValue("Lastname", Lastname);

}
}

This will be the first version of your Person object. You’ll see later on that this kind of seri-
alization will not be sufficient for scenarios described at the beginning of this chapter. But for
the moment, you will leave it to see what the problem is. Next, create your intermediary server.
For simplicity, the intermediary implements the same interface as your final back-end server and
just routes messages from the client to the server. The complete code for the intermediary server
can be seen in Listing 8-17.

Listing 8-17. The Intermediary Server

using System;
using System.Runtime.Remoting;
using System.Reflection;
using System.Runtime.CompilerServices;

using General;
using General.Client;

[assembly: AssemblyTitle("Intermediary Server Assembly")]
[assembly: AssemblyVersion("1.0.0.0")]
[assembly: AssemblyKeyFile("")]

namespace IntermedServer
{

public class IntermedImpl : MarshalByRefObject, IRemoteFactory
{
private IRemoteFactory _server;

public IntermedImpl()
{
_server = (IRemoteFactory)RemotingHelper.CreateProxy(

typeof(IRemoteFactory));
}

public int GetAge()
{
Console.WriteLine(">> Routing GetAge()...");
int ret = _server.GetAge();
Console.WriteLine(">>>> GetAge() returned {0}", ret);
return ret;

}

public Person GetPerson()
{
Console.WriteLine(">> Routing GetPerson()...");

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING 259

Person p = _server.GetPerson();
Console.WriteLine(">>>> GetPerson() returned {0} {1} {2}",
p.Firstname, p.Lastname, p.Age);

return p;
}

public void UploadPerson(Person p)
{
Console.WriteLine(">> Routing UploadPerson()...");
_server.UploadPerson(p);
Console.WriteLine(">>>> UploadPerson() routed successfully");

}
}

class IntermedApp
{
[STAThread]
static void Main(string[] args)
{
Console.WriteLine("Starting intermediary...");
RemotingConfiguration.Configure("IntermedServer.exe.config");

Console.WriteLine("Intermediary configured, waiting for requests!");
System.Console.ReadLine();

}
}

}

The intermediary is configured to listen on port 1235 for the object URI MyIntermed.rem,
as you can see in the following configuration code. Furthermore, the intermediary is configured
as a client for your original server.

<configuration>
<system.runtime.remoting>
<application>
<channels>
<channel ref="tcp" port="1235">
<serverProviders>
<formatter ref="binary" typeFilterLevel="Full" />

</serverProviders>
</channel>

</channels>
<service>
<wellknown type="IntermedServer.IntermedImpl, IntermedServer"

objectUri="MyIntermed.rem"
mode="Singleton" />

</service>
<client>

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING260

Figure 8-20. The output of the intermediary server

<wellknown type="General.IRemoteFactory, General"
url="tcp://localhost:1234/MyServer.rem" />

</client>
</application>

</system.runtime.remoting>
</configuration>

On the client you don’t need to change any code. All you have to do is change the well-known
client configuration to use the intermediary instead of the back-end server as you see in the
following snippet:

<wellknown type="General.IRemoteFactory, General"
url="tcp://localhost:1235/MyIntermed.rem" />

If you now run all three programs, starting the server first, then the intermediary, and last
but not least the client, the output of the client and the server will not change, while the output
of the intermediary does, as can be seen in Figure 8-20.

Now create a new version of your Person object with two additional properties, birth date
and additional comments. The new version will be used only by the client and the back-end
server. The intermediary still uses the old version of the Person object.

■Tip For testing the applications with the different versions of the shared assembly, I have created a separate
directory for each version of the shared assembly. Each application references the assembly from the direc-
tory where the corresponding version of the shared assembly is located. This means for this sample I have
created a subdirectory, GeneralV1, where I have copied the shared assembly from the version you have seen
earlier. Both the client and the intermediary server references the assembly from this directory instead of
project references or directly referencing from the General’s bin directory. For the second version, I have cre-
ated another subdirectory, GeneralV2, where I have put the second version of the assembly. The intermediary
server still references the version from the directory GeneralV1, whereas the client will know to reference the
version from the directory GeneralV2.

The new version of the shared assembly, version 2.0.0.2, adds those two properties to the
Person class as you can see in the following code snippet. Don’t forget to change the version
number in the assembly.

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING 261

[Serializable]
public class Person : ISerializable
{
public int Age;
public string Firstname;
public string Lastname;
public DateTime Birthdate;
public string Comments;

public Person(string first, string last, int age)
{
this.Age = age;
this.Firstname = first;
this.Lastname = last;

}

public Person(SerializationInfo info, StreamingContext context)
{
Age = info.GetInt32("Age");
Firstname = info.GetString("Firstname");
Lastname = info.GetString("Lastname");

try
{
Birthdate = info.GetDateTime("Birthdate");
Comments = info.GetString("Comments");

}
catch { }

}

public void GetObjectData(SerializationInfo info, StreamingContext context)
{
info.AddValue("Age", Age);
info.AddValue("Firstname", Firstname);
info.AddValue("Lastname", Lastname);
info.AddValue("Birthdate", Birthdate);
info.AddValue("Comments", Comments);

}
}

The implementation of the Person object exactly follows the strategy you’ve already seen
in the section “Versioning of [Serializable] Objects” earlier in this chapter. On serialization, it
just adds the new information, whereas on deserialization it tries to retrieve the new informa-
tion, but if it fails it just leaves it empty. Of course, the client and the back-end server must be
modified to initialize these properties. For example, the server’s GetPerson() and UploadPerson()
methods could be modified as follows:

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING262

public Person GetPerson()
{
Console.WriteLine(">> GetPerson()");
Console.WriteLine(">> Returning person {0}...", _ageCount);

Person p = new Person("Test", "App", _ageCount++);
p.Birthdate = DateTime.Now;
p.Comments = "Try to find this info on the client!";

return p;
}

public void UploadPerson(Person p)
{
Console.WriteLine(">> UploadPerson()");
Console.WriteLine(">> Person {0} {1} {2}", p.Firstname, p.Lastname, p.Age);
Console.WriteLine(">>>> Additional properties {0} {1}",

p.Birthdate, p.Comments);

_ageCount += p.Age;
}

Of course, the original client’s code must read or initialize the properties, too. Therefore,
the code of the client could be modified as demonstrated in the following code snippet:

Console.WriteLine("Calling GetPerson()...");
Person p = factory.GetPerson();
Console.WriteLine(">> Person retrieved: {0} {1}, {2}",

p.Firstname, p.Lastname, p.Age.ToString());
Console.WriteLine(">>>> Additional properties: {0} {1}",

p.Birthdate, p.Comments);

Console.WriteLine("Calling UploadPerson()...");
Person up = new Person("Upload", "Test", 20);
up.Birthdate = DateTime.Now.AddDays(2);
up.Comments = "Person. Two days older.";
factory.UploadPerson(up);
Console.WriteLine(">> Upload called successfully!");

If you now let the client talk directly to the back-end server by configuring the well-
known entry in the configuration of the client with the port and URL for the back-end server
(<wellknown type="General.IRemoteFactory, General" url="tcp://localhost:1234/
MyServer.rem" />) and test your solutions, you will see that the new properties are accepted
as shown in Figures 8-21 and 8-22.

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING 263

Figure 8-21. The client with the new version of Person directly talking to the server

Figure 8-22. The server with the new version of Person called directly from the client

Figure 8-23. The client with the new version of Person calling the intermediary

Now you’ll change the client to use the intermediary server by again changing the well-known
client configuration in its configuration file to call to port 1235 and to the server MyIntermed.rem
as in the original situation. If you take a look at the running applications now, you’ll recognize
that any additional data is lost when sent through the intermediary. The reason for this should
be obvious: the intermediary still works with version 1 of your Person class and therefore ignores
the additional information on the deserialization process. And, of course, when it serializes the
Person object for sending to the back-end server, it just serializes the data known from version 1.
Therefore, the output of the three applications looks like what you see in Figures 8-23, 8-24,
and 8-25.

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING264

Figure 8-24. The intermediary retrieving and sending messages of the old version

Figure 8-25. The server with the new version of Person called from the intermediary

■Note To make the flow between the three participants with different versions of the message possible,
I had to configure the option includeVersions="false" for all three participants. If this option is config-
ured to true, you would get an exception either in the intermediary or in your client and server. The reason is
that the runtime tries to bind serialized data always to its original version of the type. This means if your client
serializes version 2.0 of Person, then the serialization runtime tries to find version 2.0 on the intermediary. But
the intermediary doesn’t know anything about version 2.0, and therefore the runtime throws an exception. And
even if the intermediary knows about the type (for example, because it is installed in GAC), you would get an
exception because the intermediary is not built for using the newer version.

Now you’ve seen the problem. The comment as well as the birth date are lost (take a look
at the output—no comment and an empty default date). But how can you solve it? Well, the
preceding sample is a typical example of having not known the versioning requirements for
the application and therefore implementing a simplistic versioning strategy. The only way to
fix this problem is fixing both version 1 and version 2 of the shared assembly. So what you have
to do is step back to your original version—version 1 of the client, the intermediary, and the
back-end server—and restart your implementation again.

The requirements of the original scenario say that messages must be able to be sent to
intermediaries not understanding the newer version without losing any data. Therefore, you
have to implement your very first version of Person with that in mind. If the first version retrieves
information from the serialization stream that it doesn’t understand, it has to still keep this infor-
mation. The changed implementation of your first version for Person looks like the code in
Listing 8-18.

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING 265

Listing 8-18. The New Shared Assembly for the First Version

using System;
using System.Collections;
using System.Reflection;
using System.Runtime.Serialization;
using System.Runtime.CompilerServices;

[assembly: AssemblyTitle("Shared Assembly")]
[assembly: AssemblyVersion("1.0.0.20")]
[assembly: AssemblyKeyFile(@"..\..\..\Server.snk")]

namespace General
{

public interface IRemoteFactory
{
int GetAge();
Person GetPerson();
void UploadPerson(Person p);

}

[Serializable]
public class Person : ISerializable
{
public int Age;
public string Firstname;
public string Lastname;
private ArrayList Reserved=null;

public Person(string first, string last, int age)
{
this.Age = age;
this.Firstname = first;
this.Lastname = last;

}

public Person(SerializationInfo info, StreamingContext context)
{
ArrayList values = (ArrayList)info.GetValue(

"personData", typeof(ArrayList));

this.Age = (int)values[0];
this.Firstname = (string)values[1];
this.Lastname = (string)values[2];

Console.WriteLine("[Person]: Deserialized person: {0} {1} {2}",
Firstname, Lastname, Age);

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING266

if(values.Count > 3)
{
Console.WriteLine("[Person]: Found additional values...");

Reserved = new ArrayList();
for(int i=3; i < values.Count; i++)
Reserved.Add(values[i]);

Console.WriteLine("[Person]: Additional values saved!");
}

}

public void GetObjectData(SerializationInfo info, StreamingContext context)
{
ArrayList data = new ArrayList();

Console.WriteLine("[Person]: serializing data...");
data.Add(Age);
data.Add(Firstname);
data.Add(Lastname);

if(Reserved != null)
{
Console.WriteLine("[Person]: storing unknown data...");

foreach(object obj in Reserved)
data.Add(obj);

}

info.AddValue("personData", data, typeof(ArrayList));
}

}
}

As you can see in this listing, you need to change the custom serialization and deserialization
quite heavily. Now the Person uses an ArrayList for storing its own data as well as additional
data. All data objects that are not understood bye the Person class are stored in a private
object array Reserved.

More exactly, in the special constructor of the Person class, all information understood by
this version is read from the ArrayList stored in the SerializationInfo and directly assigned to
the Person’s members. If there is any further information present, it will be stored in a pri-
vate object array called Reserved. If the runtime serializes the Person object by calling the
ISerializable.GetObjectData() method, it serializes its own data at first and then—if present—
any data from the reserved field (which is not understood by this version), too. Therefore, you
don’t lose any data when a newer version introduces additional fields.

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING 267

Figure 8-26. The new version 1 client calling the intermediary

Figure 8-27. The new version 1 intermediary using the new version 1 of Person

■Warning The implementation of such serialization ffunctions can get very hard. In this sample it’s very
simple. The implementation assumes that future versions of the Person class never change the serialization
order of the old members! If you do so, this code will fail. Also, if you remove members in future versions,
your old version will be broken. You can either develop more complex serialization logic or keep it as simple
as possible (which I would suggest) for supporting your scenarios.

■Warning This solution furthermore does not consider whether fields are required or not in the serializa-
tion process. Imagine the following situation: you add a third version of your Person instance that removes
a field from the Person that was mandatory for older versions (version 1 or version 2) of Person. In this case,
you have broken compatibility, too.

Now that you have made the changes, you can run the first versions of your sample. The
output doesn’t differ from the first version despite the fact that I’ve added some additional
Console.WriteLine statements to see when and how serialization and deserialization of the
Person takes place. Take a look at Figures 8-26, 8-27, and 8-28.

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING268

Figure 8-28. The server called by the intermediary using the new version 1 of Person

When you take a look at Figure 8-28, the new version 1 of your server using this new imple-
mentation of Person, you can see the two lines written by the Person class to the console. The
first one, “[Person]: serializing data”, is the serialization of Person by the runtime when return-
ing Person as a result of the GetPerson() method from the server. For clarification, here is the
code of this method on the server:

public Person GetPerson()
{
Console.WriteLine(">> GetPerson()");
Console.WriteLine(">> Returning person {0}...", _ageCount);

Person p = new Person("Test", "App", _ageCount++);
return p;

}

The second output from the Person class, “[Person]: Deserialized Person: Upload Test 20”,
is when the Person object gets deserialized when it is received from the client. For clarity, here
is the code of the UploadPerson() method on the server:

public void UploadPerson(Person p)
{
Console.WriteLine(">> UploadPerson()");
Console.WriteLine(">> Person {0} {1} {2}", p.Firstname, p.Lastname, p.Age);

_ageCount += p.Age;
}

You can see that neither the GetPerson() nor the UploadPerson() method outputs some-
thing like the text mentioned previously. That happens when the Person object gets serialized
or deserialized by the runtime and when the runtime calls your special constructor on deseri-
alization (before calling UploadPerson()) and serialization (after GetPerson() returns the new
Person instance).

Now you can create version 2 of your shared library, client, and server and extend your
Person object again adding the two additional fields as you did before. The intermediary will
still use the old version of Person and will not be changed (therefore, you will keep its reference
to the first version of the general assembly). Take a look at the following code, which outlines
the changes in the Person object for version 2 of your shared library:

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING 269

[Serializable]
public class Person : ISerializable
{
public int Age;
public string Firstname;
public string Lastname;
public DateTime Birthdate; // new !!
public string Comments; // new !!
private ArrayList Reserved=null;

public Person(string first, string last, int age)
{
this.Age = age;
this.Firstname = first;
this.Lastname = last;

}

public Person(SerializationInfo info, StreamingContext context)
{
ArrayList values = (ArrayList)info.GetValue("personData", typeof(ArrayList));

this.Age = (int)values[0];
this.Firstname = (string)values[1];
this.Lastname = (string)values[2];

try
{
if(values.Count >= 5)
{
this.Birthdate = (DateTime)values[3];
this.Comments = (string)values[4];

}
}
catch { }

Console.WriteLine("[Person]: Deserialized person: {0} {1} {2}",
Firstname, Lastname, Age);

if(values.Count > 5)
{
Console.WriteLine("[Person]: Found additional values...");

Reserved = new ArrayList();
for(int i=5; i < values.Count; i++)
Reserved.Add(values[i]);

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING270

Console.WriteLine("[Person]: Additional values saved!");
}

}

public void GetObjectData(SerializationInfo info, StreamingContext context)
{
ArrayList data = new ArrayList();

Console.WriteLine("[Person]: serializing data...");
data.Add(Age);
data.Add(Firstname);
data.Add(Lastname);
data.Add(Birthdate);
data.Add(Comments);

if(Reserved != null)
{
Console.WriteLine("[Person]: storing unknown data...");

foreach(object obj in Reserved)
data.Add(obj);

}

info.AddValue("personData", data, typeof(ArrayList));
}

}

Let’s start with examining the deserialization of the Person object in the special constructor.
Because the new object has new information, it tries to get this information from the serializa-
tion context—of course with the two new fields. Any further information is stored in the private
field Reserved as with the first version of Person. The difference here is that it assumes that the
first five (instead of the first three) elements belong to itself and the rest constitute some unknown
additional information.

The serialization of the object works similarly to the first version, too. It just adds the two new
fields to the serialized ArrayList and then adds any additional unknown information to the
ArrayList.

■Note I have experienced some problems with Visual Studio .NET updating the references to the new ver-
sion of my shared assembly throughout all the samples. It sometimes has not updated the reference on my
client application with the new version of the assembly. Therefore, I’d suggest always changing version num-
bers in the assembly and verifying whether the reference uses the right version of the shared assembly.

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING 271

Now that you have the new version in place, you can modify the client and the server as
you already did before. In GetPerson()on the server, you add some code to initialize the new
properties, whereas in UploadMethod() on the server you output the new properties as you can
see in the following code snippet:

public Person GetPerson()
{
Console.WriteLine(">> GetPerson()");
Console.WriteLine(">> Returning person {0}...", _ageCount);

Person p = new Person("Test", "App", _ageCount++);
p.Birthdate = DateTime.Now;
p.Comments = "Additional properties";
return p;

}

public void UploadPerson(Person p)
{
Console.WriteLine(">> UploadPerson()");
Console.WriteLine(">> Person {0} {1} {2}", p.Firstname, p.Lastname, p.Age);
Console.WriteLine(">>>> New properties {0} {1}", p.Birthdate, p.Comments);

_ageCount += p.Age;
}

Of course, your client must initialize the properties so that you receive some useful values
on the server. The following code snippet shows the additional modifications in the client
application:

Console.WriteLine("Calling GetPerson()...");
Person p = factory.GetPerson();
Console.WriteLine(">> Person retrieved: {0} {1}, {2}",

p.Firstname, p.Lastname, p.Age.ToString());
Console.WriteLine(">>>> New properties: {0} {1}", p.Birthdate, p.Comments);

Console.WriteLine("Calling UploadPerson()...");
Person up = new Person("Upload", "Test", 20);
up.Birthdate = DateTime.Now.AddDays(2);
up.Comments = "Two days older person!";
factory.UploadPerson(up);
Console.WriteLine(">> Upload called successfully!");

The intermediary will not be changed in any way. It still uses the old version of Person, and
you don’t need to change anything in its code. When you now run the application and test the
serialization behavior, you will get the output shown in Figures 8-29, 8-30, and 8-31.

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING272

Figure 8-29. The new version 2 client calling the intermediary using the new Person object

Figure 8-30. The new version 1 intermediary using your new version 1 of Personn

Figure 8-31. The server called by the intermediary but itself using version 2 of Person

As you can see in the preceding figures, the client and the back-end server understand the
new information. The interesting part is the output of the intermediary, which still uses the first
version of the Person class. For the first version of Person, the additional information of birth
date and comments are unknown. Therefore, it serializes these new fields in its additional
Reserved data field. Person always outputs information when that happens. This information
can be seen in Figure 8-30 of the intermediary (look at messages like “Found additional values”
or “Storing unknown data”).

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING 273

With those changes in your custom serialization logic in the serializable Person class, you
support the scenario of sending newer versions to remoting objects supporting older versions
only, without losing any additional information.

■Security Warning If data added to newer versions of the serializable type should not be readable by
older versions, you have to encrypt them during serialization as well as decrypt them when deserializing the
data. With this, only the newer version will be able to read potentially confidential data.

Summary
In the last sections, you have explored the details for versioning .NET components in general as
well as versioning .NET Remoting components in distributed application scenarios. Independent
of how you are implementing it technically, versioning must be kept in mind from the very first
moment you start designing and developing the first version of your application.

Although .NET Remoting offers you several possibilities for versioning server-activated
objects and client-activated objects, the most explicit and therefore safest way for versioning
remoteable components is through interfaces. A new version of a remoteable object usually
continues supporting the old interface, and just adding a new interface allows newer clients to
use new functionality offered by the remoteable object.

When it comes to versioning of serializable objects, you have to define exactly the require-
ments for versioning in the future: will exchanging serializable objects between two different
remoting objects be necessary without losing any new information introduced by newer versions
of the serializable object? If yes, the very first implementation of the serializable object has to
take this into consideration to not lose new information just because it doesn’t understand it.
But this will only happen if you cannot or are not allowed to update software based on an older
version of your serializable object. Usually this happens when it comes to interaction between
applications of two different departments within organizations or even more likely between
two companies. In both cases, you don’t have detailed control over what happens with the other
application. But in this case, I think Web Services might definitely be a better choice for doing
application communication—except you have some requirements for using .NET Remoting
(e.g., if you rely on specific types of the runtime that cannot be transmitted through Web services,
or if you rely on callback—in both cases I would really encourage you to rethink the architecture
and try to find some more loosely coupled solutions for such scenarios).

Also, don’t forget to use the includeVersions="false" option on sending formatters if
a remote object (either client or server) requires receiving different versions of the serializable
type. Otherwise, the runtime always tries to load the exact assembly version for the serialized
object, and if it doesn’t find it, it throws an exception. Remember that if you don’t use include-
Versions and install more than one version of the assembly in the Global Assembly Cache, the
runtime definitely will find the right version of the assembly for deserialization. But because
your application has potentially been built against a different version—different version means
different type—in this case you will get an exception when assigning the deserialized instance
to a variable of the wrong type. Therefore, on a machine that runs two clients with different
versioning requirements for serialized objects, I’d suggest you avoid installing assemblies in
Global Assembly Cache to steer clear of this problem. Last but not least, in general I’d avoid
putting assemblies in GAC if possible and really only add them if it’s really necessary.

CHAPTER 8 ■ THE INS AND OUTS OF VERSIONING274

One thing you should never forget is that versioning is not easy. It is not easy for a simple
application, although it has become much easier with the .NET Framework because of its built-
in support for versioning. And it is even harder for distributed applications, because outside of
detailed technological aspects, you have to keep in mind all implications on operational manage-
ment and organizational challenges, too. Therefore, again, keep versioning in mind from the
very first moment in your software development process.

275

C H A P T E R 9

■ ■ ■

.NET Remoting Tips and Best
Practices

In Ithis chapter, I’d like to share some additional experiences that I’ve encountered in the
past years using .NET Remoting. I will do this as a series of tips or “best practices.” But first,
I’d like to discuss some of the use cases and—maybe even more important—nonuse cases
for .NET Remoting in your applications.

.NET Remoting Use Cases
In the previous eight chapters, you’ve gotten to know all features of .NET Remoting as you
might encounter them in a typical distributed application. I have tried to write these chapters
as objectively as possible without making any judgments on whether or not using a feature in
a certain circumstance is a good idea.

First, let me assure you that every feature of .NET Remoting has a certain place.1 If you’re
developing an application for 10,000 users in your corporation, however, you might have to
choose a different feature set from the one you’d use when creating a remoting solution in which
two Windows Forms applications communicate with each other on the same machine. With the
former type of application, you might have take care to avoid using some of the .NET Remoting
features as they would negatively affect scalability.

If you don’t know me personally, you might be tempted to assume that I value .NET Remot-
ing above all other means of developing distributed applications. You might also assume that
I’ll use .NET Remoting as a catch-all solution to any distributed application. I have to admit that
you would be wrong. I’m a true believer of choosing the right tool for the given task. Beside .NET
Remoting, you’ll find a number of different technologies for the development of distributed
applications, and each one has its particular use: Enterprise Services and COM+, direct TCP/IP
socket connections, UDP datagrams, MSMQ messages, Web Services via HTTP, the Web Services
Enhancements (WSE), SOAP messages via reliable infrastructures, SQL XML, and probably more.

1. Although I have to admit that the place for SoapSuds.exe seems to be quite limited these days.

CHAPTER 9 ■ .NET REMOTING TIPS AND BEST PRACTICES276

But let’s first look at some of the areas in which you can find .NET Remoting. The four main use
cases in terms of remoting boundaries are as follows. It can be used if you want your method calls to

• Cross AppDomain boundaries.

• Cross process boundaries on a local machine.

• Cross a LAN.

• Cross a WAN or the Internet.

Cross-AppDomain Remoting
As soon as you create a new application domain in .NET, you are automatically using remoting
behind the scenes to communicate between the two AppDomains. In this case, the remoting
framework will set up all channels and sinks for you—and in fact it will use a highly optimized
formatting process and an in-memory channel.

This provides for two different implications: a) you can’t change formatters or add channel
sink chains, and b) you don’t have to care too much about it. It just works. You can use all .NET
Remoting features without any problems.

In fact, cross-AppDomain calls are one of the primary use cases for .NET Remoting. They
are so well integrated in the framework that you usually don’t even notice you’re using remoting.

Safe Features

• All

Cross-Process on a Single Machine
Let’s assume you have two Windows Forms applications running on a single machine, and you
want the two applications to be able to communicate with each other. Or suppose you have
a Windows service that should exchange data with your GUI application. Which protocol can
you use? Remoting!

This is one of the cases where the TCPChannel is extremely helpful as it allows you to specify
rejectRemoteRequests="true" upon its construction, which limits all incoming connections to
the ones originating from your own machine. No need to take too many precautions about
security in this case. (However, if you use fixed port numbers for WinForms-to-WinForms com-
munication, you might encounter trouble when running on Windows Terminal Services with
two or more users trying to use your application at the same time.)

I have good news regarding the features of .NET Remoting—all of them work as expected
on a local machine.

Safe Features

• All

Cross-Process on Multiple Machines in a LAN
OK, now we start to get real. This is your usual distributed LAN application. Applications of this
kind can be separated into two additional categories:

CHAPTER 9 ■ .NET REMOTING TIPS AND BEST PRACTICES 277

• Single-server applications

• Applications that need to scale to multiple hosts in a network load balancing (NLB)
cluster

Don’t Use Events or Callbacks
No matter which category your application belongs to, I heavily recommend not using events,
callbacks, or client-side sponsors for networked applications. Yes, it’s possible to use them. Yes,
they might work after applying one or another workaround. The real trouble is that they aren’t
exactly stable and don’t really perform that nicely.

The reason for this stability/performance drawback lies in the invocation model. First, you
have to make a decision on whether to invoke events synchronously or asynchronously from
the server’s point of view. In the first case, your server has to wait until all clients acknowledge
(and process) the callback, which increases the request time by a magnitude. If, however, you
decide to use them asynchronously, you might run into a number of different issues—of which
ThreadPool starvation is only the smallest and lost events is the more critical.

But what if you need notification of clients? In this case, you should either look into User
Datagram Protocol (UDP) or message queuing, depending on your need for reliability. The use
of Microsoft Message Queue Server (MSMQ) allows your server-side application to send messages
to listening clients without having to wait for acknowledgements of reception (or even wait for
processing at the client). This allows for way better turnaround times for your requests.

I will cover asynchronous notifications in more depth later in this chapter in the section
“Using Events and Sponsors.”

How About Client-Activated Objects?
The main problem with CAOs is that they are always bound to the machine on which they have
been created. This means that you can’t use load balancing or failover clustering for these objects.
If, on the other hand, you use SingleCall SAOs designed with clustering in mind, you could use
Windows Network Load Balancing (NLB) quite easily to randomly dispatch the method invo-
cations to one out of a number of available servers.

If you are running a single-server application, this doesn’t matter too much for you. If,
however, there is the slightest chance that the application has to scale out to a server-side
cluster, than CAOs might limit its scalability.

But you shouldn’t just be concerned about scalability: CAOs also affect you on a single server.
When running SingleCall SAOs (and when strictly keeping all state information in a database),
you can shut down and restart your server on demand. For example, you could upgrade to
a newer version or apply some bug fix without having to tell any user to close and restart your
client-side application. As soon as you use CAOs, however, you instantly lose this feature. If you
restart a server in which you host CAOs, the client application will receive exceptions when
calling any methods on these objects. CAOs aren’t restored after restarting your server. Don’t
use them if you care about high availability and transparent failover, unless you want to write
these features yourself.

I’ll talk about clustering in more depth later in this chapter in the section “Scaling Out
Remoting Solutions.”

CHAPTER 9 ■ .NET REMOTING TIPS AND BEST PRACTICES278

What’s the Best Channel/Formatter?
I recommend the use of the HttpChannel with the binary formatter for any application that
spans multiple hosts. The reason is quite simple: you can develop and debug your application
in a standard Visual Studio .NET project, but when it comes to deployment, you can easily
host your server-side components in IIS, which provides you with a number of advantages—
a reasonable process model, built-in authentication (HTTP Basic or Windows integrated),
built-in encryption (SSL), and the ability to disable HTTP KeepAlives, which further increases
the scalability of your application because it reduces dependencies on single servers.

Safe Features

• SingleCall SAOs hosted in IIS with HttpChannel and BinaryFormatter

That’s it. If you want to be on the safe side, don’t use more than these features. Also, please
keep in mind that whenever you return a MarshalByRefObject from a server-side method, you
are actually creating an object that behaves like a CAO and should therefore be avoided.

Cross-Process via WAN/Internet
As soon as your application grows and you leave the boundaries of your local area network,
a number of additional issues have to be taken care of. The absolute number one issue is network
latency. You have to take care to reduce the number of cross-network calls by using chunky
interfaces. In a chunky interface, you will try to transfer as much data as possible (and necessary)
in a single network roundtrip. If your client application, for example, works with customer
objects and addresses, then you should definitely transfer all known addresses for a given
customer whenever the client application requests information about a customer. The alternative
of having two different methods, GetCustomer() and GetAddresses(), will simply double the num-
ber of network roundtrips and will therefore heavily decrease your application’s response times.

But keep in mind that you have to strike a balance here. It might not be the best idea to
transfer all of the customer’s orders or the complete contact history at the same time, if you
don’t need that data in 99 percent of the cases. It’s really all about balance here.

I guess the most important advice I can give you for applications like this is to actually
develop them with a low-bandwidth, high-latency network. Run your server and client on
different machines not connected by a LAN. Instead, connect the client to the Internet with
a plain old modem or ISDN line, if this is what you expect your users to use. This will allow you
to see and experience the performance hot spots during development—nothing is more embar-
rassing than having a user call you up and tell you that your application is way too slow, right?

Regarding the use of remoting features, I can give you basically the same advice as for the
LAN environment: use SingleCall SAOs hosted in IIS with HttpChannel and BinaryFormatter.
In addition, you have to make absolutely sure that you don’t use events, callbacks, or client-side
sponsors, as these might not work whenever a firewall, proxy, or NAT device is used between
the client computer and your server. Whereas the use of events in a LAN environment might
“just” render your application instable, they will simply prevent it from working in WAN
environments.

When using .NET Remoting on a WAN or the Internet, it is very important to develop with
a sound versioning strategy. In practice, this for example means that you shouldn’t use [Serializable]
without implementing ISerializable. The reason is that you usually cannot force all worldwide
users who run your application to install a new version right at the instant it becomes available.

CHAPTER 9 ■ .NET REMOTING TIPS AND BEST PRACTICES 279

You will usually have to support multiple versions of your client software at the same time. Even
if the WAN is completely controlled by your own organization, you will still have a hard time
convincing your traveling salespeople to download a new 5- to 10-megabyte installer if they only
connect via GPRS from their cell phones.

Whenever you use .NET Remoting on the Internet, however, you have to be aware of the
issue with HTTP proxying, as discussed in the section “Authenticating HTTP Proxying.”

Safe Features

• SingleCall SAOs hosted in IIS with HttpChannel and BinaryFormatter

Nonusage Scenarios
After presenting four different application scenarios for remoting in the previous sections, I’d
also like to point out some environments in which I wouldn’t use remoting at all.

Let’s Do SOAP
If you plan on using SOAP Web Services to integrate different platforms or different companies,
I really urge you to look into ASP.NET Web Services (ASMX) instead of remoting. These Web Services
are built on top of industry standards, and together with additional frameworks like the Web
Services Enhancements, will allow you to use additional infrastructure-level and application-
level specifications (WS-Security, WS-Routing, WS-Policy, WS-Trust, WS-SecureConversation,
etc.) in a platform-independent and message-oriented way.

ASMX Web Services provide essential features for Web Services like WSDL-first development,
the use of doc/literal, easier checking of SOAP headers, and so on.

So let me repeat: if you want SOAP, the use of ASP.NET Web Services together with WSE is
the only way to go!

Service-Oriented Architectures
One of the current industry buzzwords is Service-Oriented Architecture (SOA), which provides
platform-independent, message-oriented, and loosely coupled services in Enterprise environ-
ments. As you might already have guessed, remoting is not the right choice for these. Think
about going ASMX and WSE here as well.

The reason is that remoting depends on the .NET runtime and on the availability of a binary
interface contract (in the form of the “real” server-side classes or in the form of .NET interfaces)
on the client machine. These are two requirements that essentially bind this framework to .NET.

Authenticated HTTP Proxying
.NET Remoting generally supports HTTP proxies with both the SoapFormatter and the Binary-
Formatter. Unfortunately, it isn’t possible to use proxies that require any form of authentication
before allowing to send any data to remote hosts.

You can, however, look into the third-party product Genuine Channels,2 which provides
an HTTP channel with support for authenticated proxy traffic.

2. Genuine Channels is an independently developed product. The author has no relationship with this
company. You can reach them at http://www.genuinechannels.com.

CHAPTER 9 ■ .NET REMOTING TIPS AND BEST PRACTICES280

Distributed Transactions, Fine-Grained Security Requirements, Etc.
A completely different no-go scenario for remoting is the necessity for distributed transactions,
fine-grained security requirements, configurable process isolation, publish-and-subscribe events,
and so on. Yes, you could in fact develop your own channel sinks and plug them into the .NET
Remoting framework to enable these features. But why would you want to do so? Why should
you spend your time on these features instead of implementing your application’s business
requirements? There already is another framework in .NET that includes all these features:
Enterprise Services.

If your application can make use of any of the following services, you should really think
about using Enterprise Services instead of .NET Remoting:

• Distributed declarative transactions

• Highly flexible, configurable means of authentication and authorization

• Role-based security with roles independent of Windows user accounts

• Just-in-time activation of objects

• Object pooling

• Process isolation

• Server-side components as Windows Services

• Automatic queuing of component interactions with MSMQ

In addition, COM+ 1.5, as it is available with Windows Server 2003, provides the added
benefit of so-called Services Without Components (SWC). This allows you to use most of the
services of the Enterprise Services framework without the necessity to derive your component
from System.EnterpriseServices.ServicedComponents and without having to register your
components in the COM+ catalog.

To learn more about Enterprise Services and COM+, I’d like to point you to Juval Löwy’s
book, COM and .NET Component Services (O’Reilly, 2001).

The Nine Rules of Scalable Remoting
As you’ve seen previously, remoting provides a number of features whose applicability differs
for a number of usage scenarios. To ensure that your application is reliable, stable, and scalable,
you should follow these nine rules if you want to create highly scalable remoting solutions:

• Use only server-activated objects configured as SingleCall.

• Use the HttpChannel with the BinaryFormatter. Host your components in IIS if you need
scalability, authentication, and authorization features.

• Use IIS’s ability to deactivate HTTP KeepAlives for maximum scalability.

• Use a Network Load Balancing cluster of servers during development if you want to
achieve scalability. Make sure to deactivate any client affinity and make sure that you
deactivate HTTP KeepAlives during development!

CHAPTER 9 ■ .NET REMOTING TIPS AND BEST PRACTICES 281

• Don’t use client-activated objects, and don’t pass any MarshalByRefObject over a remoting
boundary. Starting with version 1.1 of the .NET Framework, a SecurityException or
a SerializationException would be thrown in this case. (Yes, you could change the under-
lying TypeFilterLevel setting—but you shouldn’t!)

• Don’t use events, callbacks, and client-side sponsors.

• Use static fields and other forms of caching with caution. If you keep state in memory, you
might run into problems if you try to scale your application out to a cluster of servers.
Cache information only if it’s not going to change or if you can anticipate the level and
number of changes in advance. Otherwise, you will run into cache-synchronization
nightmares on your cluster.

• Don’t use remoting for anything else apart from .NET-to-.NET communications. Use
ASP.NET Web Services and WSE for anything related to SOAP, Service-Oriented Architec-
tures, and platform independence.

• Don’t try to fit distributed transactions, security, and such into custom channel sinks.
Instead, use Enterprise Services if applicable in your environment. .NET Remoting isn’t
a middleware, it is just a transport protocol—if you need services, use a service-oriented
framework!

Please keep in mind that these guidelines are only for remoting solutions that should scale
out. If you communicate between two applications on a single server, it is usually perfectly sound
to use some of the more advanced features of .NET Remoting.

Using Events and Sponsors
When looking at the remoting of events for the first time, it seems like a perfect solution for
a recurring design question: what if I need to notify a number of clients of important changes
in data? Can’t they just subscribe to a certain server-side event that will be invoked later?

The theoretical answer is yes. In practice, however, the way .NET Remoting handles these
kinds of events might not be up to your requirements of stability and reliability. Actually, it’s
not really all the fault of the .NET Remoting framework, but is partly caused by the way the TCP
protocol works. But let’s start with the basics: let’s assume that you have a few hundred clients that
subscribe to a server-side event. From the previous chapters, you already know that whenever
an event is invoked, a TCP connection originating from the server to the client is established.
The invocation of the event is transferred to the client as if it were a normal .NET Remoting
method call. In fact, it is just this: a normal method call with the main distinction that client and
server have changed their roles.

Knowing this, you now have basically two options: you can notify all clients sequentially
or in parallel. If you want to notify them in sequence, you have to take into account that the
distribution of data might take a while, as some clients might react more slowly than others. In
fact, if a client couldn’t respond in time, then this might in turn cause your server application
to hang.

However, if you decide to notify all clients in parallel—for example, by using BeginInvoke()—
you can run into another issue. The .NET Remoting framework uses the underlying standard
.NET thread pool to handle incoming requests. This pool consists of 25 threads per CPU.

CHAPTER 9 ■ .NET REMOTING TIPS AND BEST PRACTICES282

Unfortunately, the same thread pool is employed whenever you use BeginInvoke(). This means
that your server will not be able to handle incoming requests while it is processing the out-
going events 25 at a time.

As you can see, the support for events in the .NET Remoting framework has not been designed
for global broadcast operations. Listeners should be confined to applications running on the
same machine, for example, in communication with a local Windows service that uses .NET
Remoting as its preferred protocol.

How to Notify Nevertheless
But what if you nevertheless have to notify a number of clients? I am afraid that .NET Remoting
might not be the best solution for the notification scenario (although you can, of course, still
use it for all client-to-server communication.) Instead, you should take a look at technologies
like UDP, MSMQ, or IP Multicasting, which allow you to broadcast events efficiently to a num-
ber of subscribers.

UDP broadcasts can be used if all clients are located in the same IP subnet and if you don’t
need reliable delivery (i.e., if the events are not critical and when it wouldn’t matter whether a small
percentage of them are never received at all clients). In addition, UDP limits the payload to
64KB. The main advantage of using UDP broadcasts is that only a single IP packet will be sent
to your network, no matter how many applications are listening.

A simple UDP client that listens for broadcast packets on port 10000 will look like this:

using System;
using System.Text;
using System.Net.Sockets;
using System.Net;

public class Receiver
{
public static void Main()
{
Socket sck = new Socket(
AddressFamily.InterNetwork,
SocketType.Dgram,
ProtocolType.Udp);

sck.Bind(new IPEndPoint(IPAddress.Any, 10000));

byte[] buf = new byte[65000];

while (true)
{
int size = sck.Receive(buf);
String str = Encoding.ASCII.GetString(buf,0,size);
Console.WriteLine("Received: {0}", str);

}
}

}

CHAPTER 9 ■ .NET REMOTING TIPS AND BEST PRACTICES 283

3. If you are interested in more details, I’d recommend having a look at the book Pro .NET 1.1 Network
Programming, Second Edition by Christian Nagel et al. (Apress, 2004).

The following application is a matching sender that allows the user to enter a string that
should be broadcast:

using System;
using System.Text;
using System.Net;
using System.Net.Sockets;

public class Sender
{
public static void Main()
{
Console.Write("Enter String to broadcast:");
String str = Console.ReadLine();
byte[] data = Encoding.ASCII.GetBytes(str);

Socket sck = new Socket(
AddressFamily.InterNetwork,
SocketType.Dgram,
ProtocolType.Udp);

sck.Connect(new IPEndPoint(IPAddress.Broadcast,10000));
sck.Send(data);
sck.Close();

}
}

When using broadcasting schemes based on UDP, you have to be aware that events might be
lost and that a single packet might be received multiple times if the code binds the socket to all
existing network interfaces. This has been done in the preceding code by using IPAddress.Any
at the receiving side, and by using IPAddress.Broadcast on the sending side.3

Message Queuing to the Rescue
Contrary to UDP, MSMQ is the technology of choice if you need guaranteed asynchronous
delivery of notifications.

■Note MSMQ is a built-in part of Windows XP, Windows 2000, and Windows Server 2003 that has to be
selected during installation and might not be available on all client machines by default. There are no addi-
tional licensing costs for using MSMQ in your applications.

CHAPTER 9 ■ .NET REMOTING TIPS AND BEST PRACTICES284

By default, MSMQ does not use broadcasting or multicasting, but instead requires that the
data for each client be sent in a separate connection. This sending is, however, performed in
the background by the MSMQ Server running on the sending machine. (Machines using the
current version of MSMQ are server and client at the same time!) The sending application basi-
cally only needs to tell the messaging framework to take care of delivering the messages but does
not have to wait for completion.

Whenever you want to use MSMQ for notifications, you will usually create a destination
queue on each of your clients. This can be done programmatically during installation or use of
your application (if the user has the necessary permissions to create queues).

A very simple receiving application can, for example, look like this (you have to add
a reference to System.Messaging.DLL):

using System;
using System.Messaging;

class Receiver
{
static void Main(string[] args)
{
String queuename = @".\private$\NOTIFICATIONS";

if (!MessageQueue.Exists(queuename))
{
MessageQueue.Create(queuename);

}

MessageQueue que = new MessageQueue(queuename);
que.Formatter = new BinaryMessageFormatter();

while (true)
{
using (Message msg = que.Receive())
{
String str = (String) msg.Body;
Console.WriteLine("Received: {0}", str);

}
}

}
}

This application creates an incoming private queue called “NOTIFICATIONS” and waits
for incoming messages.

■Note “Private” queues can be reached from other machines if the sender knows their exact name. They
simply do not appear in the Active Directory (AD).

CHAPTER 9 ■ .NET REMOTING TIPS AND BEST PRACTICES 285

A matching sender application that can send notifications to multiple receivers could, for
example, look like this:

using System;
using System.Text;
using System.Collections;
using System.Messaging;

class Sender
{
static void Main(string[] args)
{
Console.Write("Enter String to broadcast:");
String str = Console.ReadLine();

ArrayList clients = new ArrayList();
clients.Add("localhost");
clients.Add("client1");
clients.Add("client2");

String formatName = BuildFormatName(clients);
MessageQueue que = new MessageQueue(formatName);

Message msg = new Message();
msg.Formatter = new BinaryMessageFormatter();
msg.Body = str;
que.Send(msg);

Console.ReadLine();
}

static string BuildFormatName(ArrayList clients)
{
if (clients.Count == 0)
throw new ArgumentException("List of clients empty.", "clients");

StringBuilder bld = new StringBuilder();
bld.Append("FormatName:");
foreach (String cli in clients)
{
bld.Append("direct=os:");
bld.Append(cli);
bld.Append("\\private$\\NOTIFICATIONS");
bld.Append(",");

}
bld.Remove(bld.Length-1,1);
return bld.ToString();

}
}

CHAPTER 9 ■ .NET REMOTING TIPS AND BEST PRACTICES286

In this example, the method BuildFormatName() takes a list of clients that should receive
the notification and builds a destination name containing all the individual queues.

If you don’t want to hard code the queue names on the client side (for example, if multiple
instances of your application can be started on one host), it is advisable to create a new queue
upon application startup, giving it a random or GUID-based name. You would then contact the
server (by either using MSMQ or maybe also using .NET Remoting) to have it add the newly
created queue to its list of subscribers. You would then also have to include mechanisms for
unsubscribing, deleting the dynamically created queues, and detecting stale entries in the list
of subscribers.

Other Approaches
Delivering notifications to a large number of clients is a very complex topic for which a number
of additional strategies have been developed depending on the usage scenario. An approach
not discussed previously is, for example, the use of TCP connections that have been created by
a client solely for the purpose of allowing a server to use it for notifications. Point-to-point UDP
connections and HTTP-based “polling” are other approaches that might be necessary depend-
ing on the number and kinds of clients your application should support.

SoapSuds vs. Interfaces in .NET Remoting
Whenever people have approached me in the previous years to ask for my opinion on SoapSuds,
I have been recommending using interfaces to access remote objects instead. My exact words
might even have been close to “I’d generally recommend avoiding SoapSuds whenever possible.”

The idea behind SoapSuds is to run it on an existing assembly to extract the metadata for
all MarshalByRefObjects so that you don’t need to deploy the complete implementation assem-
bly to your clients. This goal is pretty ambitious, and in fact, I truly believe that it just can’t work.
As soon as you have [Serializable] or ISerializable classes in your assembly, you are pretty much
on your own because SoapSuds will only extract the metadata (i.e., the fields) but not the imple-
mentation. Even if it would extract the implementation, this might also not match your expec-
tation because it might contain source code that should only run on the server side.

Just imagine that you have a class like this:

[Serializable]
public class Foo
{

private String _bar;

public String Bar
{
get { return _bar; }

set
{

if (value.Length > 30)
{

throw new ApplicationException(
"Bar might not be longer than 30 chars");

CHAPTER 9 ■ .NET REMOTING TIPS AND BEST PRACTICES 287

}
_bar = value;

}
}

}

When running SoapSuds here, it will extract only the metadata, which basically leaves you
with the following class, which is quite a bit different:

[Serializable]
public class Foo
{

public String Bar;
}

But even if you can work around this issue (by including your [Serializable] classes in a dif-
ferent assembly that is shared between server and client), you might still run into some issues.

As soon as your application increases in complexity, you encounter one or more of the
following problems, depending on the version of the .NET Framework and its service packs:

• Typed DataSets are not supported by SoapSuds.

• If you use System.ComponentModel.Component (and some others), SoapSuds will simply
throw an exception instead of generating anything.

• Various conditions trigger the generation of non-compilable code (duplicate using
statements in a file, and so on).

• Async calls via Delegate.BeginInvoke() won’t work.

One of the reasons for using SoapSuds is the ability to register these metadata-only classes
at the client side so that you can basically use the new operator to instantiate remote references.
But at the end of the day, location transparency—as it is implied in this case—might even turn
out to be dangerous for an application’s stability. It can affect your application’s performance
in negative ways (for example, when using way too chatty interfaces). Normally, you should
know exactly which method will be executed remotely and which class will run in a remote
context—therefore my conclusion:

• Use explicitly defined remote interfaces.

• Use a helper class like the one shown here if you want to go with configuration files.

• Use factory SAOs instead of CAOs (“activated” types don’t work with interfaces, therefore,
factory). Or even better: avoid CAOs if possible, especially if your application should
support transparent failover on a cluster.

Let me give you one more reason why I definitely advocate the use of explicit interfaces to
access remote objects. Just imagine that you inherit client-side code written by someone else
and you see code like the following.

private double CalculateSum(Order o)
{

double sum = 0;
foreach (OrderDetail od in o.Details)

CHAPTER 9 ■ .NET REMOTING TIPS AND BEST PRACTICES288

{
sum = sum + od.LineTotal;

}
return sum;

}

Your user complains that the “application is too slow,” but you just can’t find any problems.
You didn’t instantly notice that Order and OrderDetail are actually configured as remote objects
and a single execution of this method might result in a dozen or more network roundtrips.

If you would have used interfaces instead, problems like this can be much more obvious.

private double CalculateSum(IRemoteOrder o)
{

double sum = 0;
foreach (IRemoteOrderDetail od in o.Details)
{

sum = sum + od.LineTotal;
}
return sum;

}

Actually, if the initial developer would have used interfaces right from the start, the code
might have looked differently. As soon as he or she noticed that this method would involve
multiple roundtrips, he or she might have changed the interface and calculated the complete
value at the server.

private double CalculateSum(IRemoteOrder o)
{

return o.CalculateSum();
}

That’s why I use interfaces. They help me to avoid mistakes.

Custom Exceptions
Even though remoting supports high type fidelity, transferring custom exceptions over remoting
boundaries comes with its very own challenge: using [Serializable] is not enough because the
base class System.Exception already implements ISerializable. If you want to pass your custom
exceptions over remoting boundaries, you therefore have to override GetObjectData() and pro-
vide a custom constructor for deserialization. And don’t forget to call base.GetObjectData().

Please also note that your custom exception has to be deployed to a shared DLL that is
copied to, and referenced from, your client and server applications. It doesn’t suffice to simply
copy and paste the source code to your client and server project!

Any custom exception you develop should be based on the following skeleton:

[Serializable]
public class MyException: ApplicationException

CHAPTER 9 ■ .NET REMOTING TIPS AND BEST PRACTICES 289

{
public MyException(): base()
{
}

public MyException(String msg): base(msg) {}

public MyException(SerializationInfo info,
StreamingContext context): base(info, context)

{
}

public override void GetObjectData(SerializationInfo info,
StreamingContext context)

{
base.GetObjectData (info, context);

}
}

If you want to transfer custom information with your exception, you have to add it to
the SerializationInfo object on the call to GetObjectData() and to take it from this object in the
secondary constructor.

[Serializable]
public class ConcurrencyException: ApplicationException
{
string _databaseTable;

public ConcurrencyException(): base()
{
}

public ConcurrencyException(String msg, String databaseTable): base(msg)
{
_databaseTable = databaseTable;

}

public ConcurrencyException(SerializationInfo info,
StreamingContext context): base(info, context)

{
_databaseTable = info.GetString("table");

}

public override void GetObjectData(SerializationInfo info,
StreamingContext context)

{
base.GetObjectData (info, context);
info.AddValue("table", _databaseTable);

}

CHAPTER 9 ■ .NET REMOTING TIPS AND BEST PRACTICES290

4. It is, of course, also possible to run your remoting solution using Application Center 2000 or third-
party TCP/IP load-balancing appliances, but this is beyond the scope of this book.

public String DatabaseTable
{
get { return _databaseTable; }

}

}

If you don’t override GetObjectData() and/or don’t provide the additional constructor
ConcurrencyException(info, context), you would instead end up with a very different excep-
tion in your Catch block:

The constructor to deserialize an object of type General.ConcurrencyException was
not found.

This exception simply indicates that the client-side of the remoting framework has not
been able to correctly deserialize your custom exception (called ConcurrencyException in this
sample).

Scaling Out Remoting Solutions
As .NET Remoting is a TCP/IP-based RPC mechanism, you can scale out remoting solutions onto
a cluster using standard Windows Network Load Balancing (NLB) without the need to purchase
and implement additional software.4

Load Balancing Basics
Network Load Balancing is an easy way to distribute incoming requests amongst a number of
worker servers. Windows NLB—as it is built into Windows 2000 Server and Windows Server 2003—
is a load-balancing implementation that works for up to 32 nodes without the necessity to define
a dedicated “gatekeeper” machine. This means that you can take advantage of load balancing
with as little as two standard server machines.

To illustrate the behavior of a cluster, let’s assume that you have two servers, SERVER01 and
SERVER02, with the following IP addresses:

• SERVER01: 192.168.0.41

• SERVER02: 192.168.0.42

Using Windows NLB, you can now create a cluster with a so-called virtual IP Address (VIP)
of, for example, 192.168.0.40, resulting in the configuration shown in Figure 9-1.

CHAPTER 9 ■ .NET REMOTING TIPS AND BEST PRACTICES 291

Cluster: 192.168.0.40

SERVER01 - 192.168.0.41

SERVER02 - 192.168.0.42

Figure 9-1. A cluster’s IP addresses

To leverage the load-balancing capabilities of Windows, you will now have to deploy the exact
same remoting services on both machines. You can, for example, copy the same server-side
configuration files and bin\ subdirectory to an IIS virtual directory on both machines.

Instead of accessing this service using one of the two servers’ real IP address, you will then
configure the clients to use the cluster’s virtual IP address as the server’s location. You can, for
example, access a correctly configured service on the cluster presented earlier using the fol-
lowing line of code:

ICustomerManager mgr = (ICustomerManager) Activator.GetObject(
typeof(ICustomerManager),
"http://192.168.0.40/Remoting/CustomerManager.rem");

Whenever a client establishes a TCP/IP connection to the cluster’s virtual IP address, Windows
NLB selects one of the cluster’s nodes to handle the connection request.

■Note There are essentially two different kinds of load-balancing infrastructures. One is based on IP-level
load-balancing devices that sit right in front of your network (from the client’s point of view) and that distrib-
ute the load among the nodes in a cluster. In the second way, which is implemented by Windows Network
Load Balancing, however, there is no such need for an additional device. Request distribution is instead han-
dled by a distributed algorithm running on all nodes in a cluster.

NLB for Throughput and High Availability
Using Network Load Balancing as illustrated previously provides a great way to increase your
application’s throughput (if you reach CPU limits) and availability. Most people unfortunately
look at NLB only if they need the additional throughput, which can be achieved by scaling out
a solution onto a cluster of machines. However, I personally recommend the use of NLB clusters
even for smaller setups in which the performance requirements could easily be fulfilled with
a single server.

CHAPTER 9 ■ .NET REMOTING TIPS AND BEST PRACTICES292

The reason for this is simple: increased availability. If you design your application correctly,
then it is possible to take nodes offline from your cluster without affecting a single running
client. All future requests will then be handled by the remaining node(s). This allows you to
install new versions of your application or service packs or even update operating systems
without taking your application offline.

After you’ve finished administrative work on one node, you allow it to join the cluster again;
you can then proceed to take the next node offline.

■Note Windows NLB is compatible across all supported operating systems. You could have some nodes
running on Windows NT 4.0, and a few on Windows 2000, while at the same time updating the remaining
part of your cluster to Windows Server 2003. As I personally believe that this will also be true for future
operating systems, it essentially means that you will never again have to take your application offline for
scheduled maintenance—even if you upgrade your operating system. Your system administrators will love
you for not having to work during late night and weekend maintenance timeslots.

HTTP, TCP, Connections, and Sessions
I am sure that you are already looking forward to getting your hands dirty with your first NLB
cluster configuration. But before I show you how to set up an NLB cluster (which shouldn’t take
much more than about 15 clicks), there is one more important technical peculiarity that I have
to tell you: as briefly mentioned earlier, NLB actually only balances connection requests. As soon
as a TCP connection has been established, all future communication using the specific socket
link will take place between the client and the originally selected cluster node. If a single cluster
node fails, all clients that currently have open communication links to it will therefore receive
an exception, telling them that the connection has been dropped. This wouldn’t be that big of
a problem if it weren’t for .NET Remoting reusing the underlying TCP connection.

Remoting uses the so-called HTTP 1.1 KeepAlive functionality. This means that multiple
HTTP requests will be sent using a single TCP/IP connection. The connection will be kept open
for a certain period of time (usually around two minutes), and all further requests occurring dur-
ing that time window will be sent over the same connection. This is usually a good thing because
it eliminates the need for reestablishing dozens of TCP connections whenever you open a con-
ventional Web page containing multiple images. Otherwise, the client would have to open
separate TCP connections for each and every image file.

In cases when you want to provide maximum availability for your application, this Web-
originating optimization in the HTTP protocol actually causes a number of problems. As soon
as a node fails, all clients who currently have an open (cached) connection to this node will
receive exceptions whenever they invoke a method on the server-side object. In this case, it
would actually be beneficial if no connections were cached at all so that every single remoting
request causes a new TCP connection that could then be load balanced on its own.

Fortunately, this is easily possible when hosting your remoting components in IIS—which is
actually the only load-balancing configuration that is officially supported by Microsoft. You just
have to open an IIS management console and navigate to the Web site that contains your remot-
ing servers. After right-clicking, you will be presented with the dialog box shown in Figure 9-2
in which you can uncheck the checkbox option “HTTP Keep-Alives Enabled.”

CHAPTER 9 ■ .NET REMOTING TIPS AND BEST PRACTICES 293

Figure 9-2. Disabling HTTP KeepAlives

Please note that you should not run any “real” Web sites on the same virtual roots, as their
performance usually depends on this setting. For remoting applications, the only drawback on
a LAN environment is a small performance degradation of around 2 msecs per remote proce-
dure call. Given the gained advantage of scalability, higher throughput, and higher availability,
this is usually by a magnitude worth it.

■Note This is also the reason why all scalability features are currently only supported when using the HTTP
channel hosted in IIS. Neither the TcpChannel nor the HttpChannel, when hosted in a custom application, allow
you to disable these connection caches.

Creating Your Cluster
In the following section, I’ll work with you step by step on creating a cluster that you can use
to develop scalable systems. I do this primarily for one reason: these applications cannot be
developed or tested without one. It is nearly impossible to successfully create an application on
a single machine and deploy it on a cluster without any issues. That’s why I generally recommend
doing all your development tests on a cluster if you plan to deploy on one.

CHAPTER 9 ■ .NET REMOTING TIPS AND BEST PRACTICES294

Figure 9-3. Starting the NLB manager

■Caution Before showing you how easy it is to create an NLB cluster, let me give you some words of cau-
tion. There are a number of options and trade-offs that have to be made when creating NLB clusters. I would
recommend that you look in the documentation of this feature, which contains a detailed checklist of things
to consider before creating a production-level cluster. If in doubt, please contact an experienced system
administrator, as the functionality of an NLB cluster not only depends on your computer hardware, but might
also—in a few instances—be affected by your network hardware or layout. Your system or network adminis-
trators will usually be able to help you.

I will in addition assume a certain level of knowledge about setting up IP networks using the
Windows operating system. And as a fair bit of warning: if you run in a corporate environment,
please check with your system and network administrators whether it’s OK to do the following.
Administrators of large networks tend to get somewhat mad at people who pick and choose
their own IP addresses and similar.

Let’s Get Started

The cluster you are about to build runs with two PCs, each containing a single network inter-
face card (NIC). It can be built out of any off-the-shelf standard hardware; for demonstration
purposes, you can even build a cluster using a couple of laptop computers running Windows
Server 2003.

As in the earlier example, I assume that your servers are currently configured for the IP
addresses 192.168.0.41 and 192.168.0.42, and that your future cluster’s virtual IP address should
be 192.168.0.40. The first step in building your cluster is to go to a machine running Windows
Server 2003 and navigate to Start ➤ Administrative Tools ➤ Network Load Balancing Manager.
The tool doesn’t have to be run on one of the future cluster’s node. NLB Manager opens with the
user interface shown in Figure 9-3.

CHAPTER 9 ■ .NET REMOTING TIPS AND BEST PRACTICES 295

Figure 9-4. The cluster’s basic information

To create a new cluster, please navigate to Cluster ➤ New. In the dialog box that is opened
(shown in Figure 9-4), you have to specify the cluster’s future IP address, its subnet mask, and
domain name. In addition, you have to select an operation mode. Describing the subtle differ-
ences between these two modes is definitely beyond the scope of this section, but let me simply
rephrase the documentation: use Multicast if possible. If your network infrastructure does not
support it, fall back to Unicast.5

5. I would seriously suggest that you refer to the online documentation for NLB to fully understand the
implications and limits of using Unicast load balancing.

After you click the Next button, you will be presented with an option to specify additional
virtual IP addresses. For most clusters, a single IP address should be enough, so that you can
skip this step by clicking Next.

As you can see in the following dialog box, which is shown in Figure 9-5, the process is getting
more interesting. It allows you to specify “port rules” that define the policy (or policies) that
will be used to determine which nodes in a cluster will be asked to handle a certain connection
request.

CHAPTER 9 ■ .NET REMOTING TIPS AND BEST PRACTICES296

Figure 9-5. Specifying port rules for your cluster

Figure 9-6. Disabling client/server affinity

If you double-click the default rule that has been created for you, you will get a dialog box
that allows you to define port ranges which govern the load distribution. As you can see in
Figure 9-6, I’ve made a small adjustment to the session affinity setting by changing it from
Single to None.

CHAPTER 9 ■ .NET REMOTING TIPS AND BEST PRACTICES 297

This setting determines whether or not subsequent incoming requests originating from
a same single IP address or Class C IP subnet will always be routed to the same node in a cluster.
This is, for example, necessary if you run a Web site that uses the old ASP Session model of pre-
.NET times. In this case, the session state has been stored in memory and is therefore tied to
a single machine. Using session affinity allows the developer to be relatively sure that all incom-
ing requests from a client will always be forwarded to the same machine that contains the
session data.

■Note This has never been a reliable setting because some—especially larger—providers employ trans-
parent HTTP proxy arrays, which can cause subsequent requests from a single client to be tunneled via
different HTTP proxies (maybe even in different class C subnets). From a server’s or cluster’s point of view,
each request would therefore be originating from a different client without any kind of session affinity. As an
alternative, there are third-party network appliances that can, for example, look at an HTTP cookie instead
to determine the correct host to handle an incoming session. But this is mostly only relevant for Web sites but
not for application servers.

After clicking OK and confirming the underlying dialog box, you can proceed to add nodes
to your cluster. To do so, you need to specify a future node’s IP address, click Connect, select
a LAN interface on the node, and click Next as illustrated in Figure 9-7.

Figure 9-7. Adding a node to a cluster

CHAPTER 9 ■ .NET REMOTING TIPS AND BEST PRACTICES298

The final step before a node is added to a cluster is to specify a unique host ID and confirm
the remaining settings as shown in Figure 9-8.

As soon as you finish this dialog box, the cluster will be built. The Network Load Balancing
Manager will use Windows Management Instrumentation (WMI) to connect to the specified
nodes to configure the cluster settings. Please note that it might take a few seconds or minutes
for these changes to be performed.

After the first node has been added, you will be presented with the cluster overview as shown
in Figure 9-9. Here you can right-click the cluster node and choose Add Host To Cluster to add
the second node by performing the last two steps again for a different IP address.

Figure 9-8. Node details

Figure 9-9. Overview of your new cluster

CHAPTER 9 ■ .NET REMOTING TIPS AND BEST PRACTICES 299

As soon as the configuration process has been completed, you can send requests to the
cluster’s virtual IP address.

Taking Nodes Online/Offline
I have previously told you about the fact that using NLB clusters to host your remoting components
allows you to update your running server systems without affecting any client. Simply unplug-
ging a node from the network (which would in fact simulate the failure of a node) would result
in the currently executing requests being cancelled.

To reduce the effect on your clients to an absolute minimum, you can instead “drain” the
connections. To do this, right-click a cluster host in NLB Manager and select Control Hosts ➤
Drainstop. As soon as you choose this option, the selected node in the cluster will not accept fur-
ther connection requests, but will still complete all currently running interactions. Once all
connections have been closed, the node will automatically be temporarily removed from the
cluster.

After stopping a node, you can essentially apply any kinds of updates and system changes
as the selected node will not respond to incoming requests. As soon as your administrative
work has been completed, you can allow the node to rejoin the cluster by clicking Control
Hosts ➤ Start in NLB Manager.

Designing Applications for Static Scalability
To ensure that your application runs correctly in a cluster, you have to take a number of precau-
tions during design and development. If you don’t watch out for the following, then your appli-
cation will appear to run correctly but might produce incorrect results.

The most important design and development consideration for scalable applications is to
take special care about all in-memory state of your application. More formally speaking, you
have to make a distinction between shared storage and local storage. Shared storage, like a data-
base, is used by multiple nodes at the same time so that each node can reasonably assume that
the content is correct and current. However, if you keep in-memory copies of your data at each
node, then each modification is processed independently so that the node-specific caches can
divert, resulting in the situation that each node has a different value in its cache.

But let’s look at an example. Let’s assume that you’ve designed a system that manages
customer information using an interface containing the following two methods:

interface ICustomerManager
{
Customer GetCustomer();
void StoreCustomer(Customer cust);

}

To increase performance, you decide that customer information wouldn’t necessarily need
to be read from the database. Instead, you simply cache this information in memory. Whenever
StoreCustomer() is called, you first update the database and, if successful, afterwards also update
the server’s in-memory cache.

This might seem like a reasonable way to approach this problem if your application only
runs on a single server and if nobody else directly accesses your database. As soon as you scale
out onto a cluster, this application will, however, produce incorrect results. Let’s assume that
the name of customer #123 is originally “John Doe”. As soon as a request to change this name

CHAPTER 9 ■ .NET REMOTING TIPS AND BEST PRACTICES300

reaches one of the nodes, it will update the database and its in-memory cache to reflect the
new value of, say, “John Moe”. If a second request to retrieve the customer information for
customer #123 hits a different node, the returned data will, however, still contain the old—and
meanwhile incorrect—value of “John Doe”.

Does this mean that you cannot use any in-memory caches when planning to deploy your
application in a cluster? No, definitely not. It just means that you have to look quite carefully at
the type of data you are working with.

Therefore, one of the first steps in creating scalable applications is to analyze the different
kinds of data that is used by your application. It can be advantageous to split the list of database
tables into three groups:

• Group 1: Static data.

• Group 2: Near-static, seldom changed data. Data that is updated in advance or that is
only changed during certain time windows (for example, daily at midnight).

• Group 3: Operative, dynamic data.

If you look at an online shop as a sample, static data are usually lists of zip codes, cities, pay-
ment terms, or the list of acceptable means of payment (various credit cards, bank transfer, check,
cash, etc.). More often than not, this is also data that cannot be changed by the application itself
but that is statically defined or altered using specific administrative tools.

In the second group, you will find data that usually doesn’t change more often than once
a day. These are things like a list of articles, prices, etc. This group can also contain data that is
changed at certain intervals, like once a day or once every hour. It is only important that you
know exactly when and how often this data is changed. The last group of operative data contains
all your real transaction data, the “meat” of your business. This is usually the most heavily changed
data in your application, like customer information, inventory levels, and orders.

You will see that, in practice, most of the tables in your database will contain data of the
first two groups, and only few tables actually contain data that is changed on a regular basis by
business transactions. If you notice during the analysis process that some tables in your system
actually contain data of different categories, you can change the database model or simply treat
the two kinds of data differently in your application. This happens, for example, if you originally
decided to store your article’s inventory levels (which change all the time) together with the static
data in the same table. You would have to separate this (either in the database or just in your
object model) into the “real” product information on one hand and the transactional information
(the inventory level) on the other hand.

Based on these three categories, you can now quite easily define matching caching strate-
gies. The decision of whether or not to cache static data is made quite easily: you can usually
cache everything that fits in terms of memory usage. Equally easy is the decision of whether or
not to cache the operative data of the third group: you shouldn’t store this data in memory, but
instead always read/write the data to shared storage, for example, a database. Of course, there
are exceptions for very specific applications, for example, if you can create fixed assignments
between a number of customers and a number of hosts. In these applications, for example, you
would store the complete customer data for all customers with names from A to G on one server,
the data from H to N on a second, and the data from O to Z on a third one. But for most general
applications, you should assume that these kinds of data should not be cached.

The most complex category in terms of caching strategies is the second group of seldom
changed data, as there are two different types. On one hand, you’ll find information that is usu-
ally very stable for a longer period of time and that will be changed over a longer period of time,

CHAPTER 9 ■ .NET REMOTING TIPS AND BEST PRACTICES 301

6. Starting with .NET 2.0 and SQL Server 2005, you will in addition find features to let your server applica-
tion be notified whether critical data changes. For example, you will be able subscribe to a query like
select userid, locked_out from users in a way that SQL Server automatically informs you whether
any of the corresponding records have been changed.

but that will become active at a previously known reference date (for example, “price list valid
from July 4, 2004 00:00 am”). As you know the effective date up front, data of this kind will usu-
ally be easy to cache. You just have to make sure to remove any old copies at the correct point
in time.

The second kind of data in this group is more complex. This is data that is usually not changed,
but once it is changed it has to become effective immediately. This includes user permissions
or similar user or customer lockout flags. Normally, this flag will never be set, but if someone
decides to lock out a certain user, you have to make absolutely sure that it is done right now. If
you cache this kind of data, you have to make sure to provide a sound cache-invalidation strat-
egy as well. You can, for example, expose an additional remoting service on each node in your
cluster that can be used to explicitly tell every machine on its own (and not just “the cluster”)
to remove some pieces of data from its in-memory cache.6

■Note Please keep in mind that this refers not only to explicit caches, but generally to any information that is
stored in memory, no matter whether it is a static field or a private member of a remoting server in Singleton
mode.

Summary
In this chapter, you’ve seen some of the most important best practices for developing .NET
Remoting applications. This list is, of course, not complete, but it reflects the most common
points I have encountered on consulting projects, and in personal e-mail exchanges with
several hundred developers who are using .NET Remoting in their daily projects.

Apart from a detailed look at several scenarios for .NET Remoting, you’ve learned that
there are also numerous cases for which remoting is not the right solution. I have briefly introduced
you to UDP and MSMQ, which can be used for scalable delivery of asynchronous notifications.

At the end of this chapter, you’ve seen how easy it is to configure a Windows Network Load
Balancing cluster, which provides your applications with transparent failover and the possibility
to scale out.

In the following chapter, I’ll discuss the most common causes—and solutions—for problems
and issues when using .NET Remoting.

303

C H A P T E R 1 0

■ ■ ■

Troubleshooting .NET Remoting

Whenever you develop applications spanning multiple processes, machines, networks, and
maybe even versions of the .NET runtime, you might have to deal with a number of potential
development or deployment issues. In this chapter, I present to you the most common problems,
their causes, and how to resolve them. Some of these issues and workarounds will also be
mentioned in chapters covering related topics throughout the book, but here I want to provide
an additional concise section that you can refer to during your debugging and troubleshooting
efforts.

Debugging Hints
Before going into the details of these common mistakes, I’d like to show you how to debug remot-
ing applications. As you’ve seen in the previous chapters, any .NET application can be a server for
.NET Remoting. The recommended way, however, is to host your remoting components in Internet
Information Server (IIS).

The following is a reiteration of what I stated in Chapter 4, repeated here in case you’ve come
directly to this chapter instead for debugging and troubleshooting guidance.

To debug a server application in IIS, you can select Debug ➤ Processes and manually attach
the debugger to the ASP.NET worker process. This process is called w3p.exe on machines running
Windows Server 2003 and aspnet_wp.exe on Windows XP. If you host your remoting compo-
nents in a Windows service, you can use the same Debug ➤ Processes command to attach to
your running service.

For IIS-hosted applications, however, there is also an easier but not very obvious solution to
debugging your remoting server. In essence, you have to “trick” Visual Studio .NET into attaching
itself automatically to the ASP.NET worker process. To do this, you add a new ASP.NET Web
application project to your solution. This project will host your remoting configuration infor-
mation and server-side assemblies.

In this project, you can add the <system.runtime.remoting> section to your web.config file
as discussed previously. To add server-side implementation and interface assemblies, you just
have to reference them using the Add Reference dialog box. These will be automatically deployed
to the correct subdirectory.

CHAPTER 10 ■ TROUBLESHOOTING .NET REMOTING304

You must not delete the default WebForm1.aspx as this will be used by Visual Studio to start
the debugger. Now as soon as you hit F5, VS .NET will open an Internet Explorer window that
displays this empty WebForm1.aspx. You can ignore this IE window, but you must not close it,
because this would stop the debugger. Instead, you can go to your server-side implementation
code in VS .NET and simply set breakpoints, view variables, and so on as if you were running in
a normal remoting host.

Manual Breakpoints
Especially when troubleshooting applications running as Windows services or inside another
host like IIS, you might want to set explicit breakpoints that should be triggered without first
attaching a debugger. You can do this by including a call to System.Diagnostics.Debugger.
Break() inside your server-side code.

This allows you to create conditional breakpoints that, for example, will only be triggered
when some application-specific condition is met.

class CustomerManager: MarshalByRefObject, IRemoteCustomerManager
{

public Customer GetCustomer(int id)
{
if (id == 42)
{
System.Diagnostics.Debugger.Break();

}

// ... implementation removed
}

}

Please note that a call to Debugger.Break() will execute even if your application has been
compiled in Release mode. To adapt this behavior to be consistent with your generic debugging
requirements, it is recommended that you include this code in an #if/#endif if you intend to
keep this code in your application.

class CustomerManager: MarshalByRefObject, IRemoteCustomerManager
{

public Customer GetCustomer(int id)
{
#if DEBUG
if (id == 42)
{
System.Diagnostics.Debugger.Break();

}
#endif

// ... implementation removed
}

}

CHAPTER 10 ■ TROUBLESHOOTING .NET REMOTING 305

Figure 10-1. Just-In-Time Debugging has been triggered.

If you create code like this, build the application in Debug mode, and deploy it to IIS or
another remoting host, you don’t have to explicitly attach a debugger. As soon as the breakpoint
condition is met and Debugger.Break() is invoked, the Just-In-Time Debugging dialog box shown
in Figure 10-1 will be displayed.

1. Please check the previous chapter on more reasons why this might not be a good idea in general.

In this dialog box, you will see a list of debuggers that have been registered on your current
system. You can now choose to debug using an instance of Visual Studio .NET or the CLR Debugger.
The latter will start up considerably faster and can be especially interesting if you want to debug
on a production system that contains the .NET SDK, but not Visual Studio .NET.

If you select No in this dialog box, the application will simply continue to run.

Configuration File Settings
A considerable number of .NET Remoting issues are caused by incorrect configuration settings.
Because most of these settings are case sensitive, a minor typo will yield unexpected results.
Configuration mistakes like these happen, for example, if you’ve chosen a deployment scenario
in which you copy the complete server assembly to your client application and create your remot-
ing proxies using a combination of RemotingConfiguration.Configure() and the new operator.1

Let’s assume that you’ve created a class called CustomerManager in the namespace
ServerImpl, and compiled it to a library called ServerImpl.DLL. In this case, the server-side
configuration file may look similar to this one:

CHAPTER 10 ■ TROUBLESHOOTING .NET REMOTING306

<configuration>
<system.runtime.remoting>
<application>
<channels>
<channel ref="http" port="1234" />

</channels>
<service>
<wellknown mode="Singleton"

type="ServerImpl.CustomerManager, ServerImpl"
objectUri="CustomerManager.rem" />

</service>
</application>

</system.runtime.remoting>
</configuration>

If you were to now—mistakenly—create a client-side configuration like the following, your
application would expose a strange behavior:

<configuration>
<system.runtime.remoting>
<application>
<client>
<wellknown type="ServerImpl.Customermanager, ServerImpl"

url="http://localhost:1234/CustomerManager.rem" />
</client>

</application>
</system.runtime.remoting>

</configuration>

To complete this example, let’s have a look at the respective snippet of your client
application:

class Client
{
static void Main(string[] args)
{

String filename =
AppDomain.CurrentDomain.SetupInformation.ConfigurationFile;

RemotingConfiguration.Configure(filename);

CustomerManager mgr = new CustomerManager();
Customer cust = mgr.GetCustomer(43);

}
}

When the line CustomerManager mgr = new CustomerManager() is executed, you won’t receive
a remoting proxy pointing to your server as expected. Instead, the .NET Framework will create
a local object of this type, and any further calls will be handled by the local object. The reason
for this is that a small typo occurs in the client-side configuration file. Instead of specifying

CHAPTER 10 ■ TROUBLESHOOTING .NET REMOTING 307

“CustomerManager”, you used “Customermanager”. This is a mistake that happens quite
often, especially because the .NET Remoting framework doesn’t throw an exception during
RemotingConfiguration.Configure() when it encounters an incorrectly specified type attribute.
This usually leads to a larger debugging session, as your configuration file might contain a large
number of configured types.

■Note This is especially true because some remoting objects might even work if they are instantiated in
your client application and not on the server as desired. They could, however, cease to work as soon as your
application is deployed to your user’s PC. A very common cause for this is a remoting component accessing
a database, which might work directly on your (the developer’s) machine because you have correct credentials
to access your database server, but might not work on the user’s machine because that user isn’t known to
SQL Server’s integrated security system.

Local or Remote?
To verify whether or not a certain instance contains a “real” local object or a proxy pointing to
a server, you can call RemotingServices.IsTransparentProxy() as illustrated in the following
snippet:

String filename = AppDomain.CurrentDomain.SetupInformation.ConfigurationFile;
RemotingConfiguration.Configure(filename);
CustomerManager mgr = new CustomerManager();

if (! RemotingServices.IsTransparentProxy(mgr))
{
throw new Exception("CustomerManager has not been correctly configured");

}

Checking each object after a call to new is, however, rather cumbersome and error
prone, so you may want to use an alternative solution that checks the configured types after
your application has read its remoting configuration file. To do this, you can simply iterate
over the result of RemotingConfiguration.GetRegisteredWellKnownClientTypes(). For each
WellKnownClientTypeEntry, you would then check whether its ObjectType property has been
set to an existing type object. If this property is null, this means that the remoting framework
could not find the type you have specified in your configuration file. In practice, this helps you
to pinpoint potential typos in your client-side configuration file. This solution also works if
you have chosen to use a purely interface-based method of remoting!

If you like to use this approach in your applications, you can simply follow a pattern similar
to the following in your client-side code:

static void Main(string[] args)
{
String filename = AppDomain.CurrentDomain.SetupInformation.ConfigurationFile;
RemotingConfiguration.Configure(filename);
VerifyRemotingConfiguration();

CHAPTER 10 ■ TROUBLESHOOTING .NET REMOTING308

CustomerManager mgr = new CustomerManager();
// ... implementation removed ...

}

static void VerifyRemotingConfiguration()
{
foreach (WellKnownClientTypeEntry en in

RemotingConfiguration.GetRegisteredWellKnownClientTypes())
{
if (en.ObjectType == null)
{
throw new Exception("Could not find type " +

en.TypeName + " in assembly " + en.AssemblyName);
}

}
}

The call to VerifyRemotingConfiguration() will only succeed if you’ve previously called
RemotingConfiguration.Configure() and if all type attributes contained in this configuration
file could be correctly resolved.

Checking Types on Your Server
A solution like the one presented previously, whereby you call a certain method to ensure a cor-
rect remoting configuration, unfortunately can’t help you with your debugging efforts if you
host your components in IIS. In this case, however, the solution is even easier: a special config-
uration setting, <debug>, can be used in server-side configuration files to verify the existence of
all specified server-side type entries.

After including this setting in your server-side web.config file as shown in the following
example, you will receive an exception as soon as the server tries to read this configuration file:

<configuration>
<system.runtime.remoting>
<application>
<channels>
<channel ref="http" port="1234" />

</channels>
<service>
<wellknown mode="Singleton"

type="ServerImpl.CustomerManager, ServerImpl"
objectUri="CustomerManager.rem" />

</service>
</application>
<debug loadTypes="true" />

</system.runtime.remoting>
</configuration>

CHAPTER 10 ■ TROUBLESHOOTING .NET REMOTING 309

Figure 10-2. Exception with <debug loadTypes="true" />

Figure 10-3. The BinaryFormatter version incompatibility information

When contacting a server for which this setting has been included, but which contains a typo
or misconfiguration in web.config, you’ll receive the exception shown in Figure 10-2 on the client
side. This is usually more desirable than hitting an exception later on when you try to access one
of your many configured types.

BinaryFormatter Version Incompatibility
When hosting your server-side components in IIS while communicating with a BinaryFormatter
(which is the recommended combination), you might experience a strange exception—a special
form of the SerializationException as shown in Figure 10-3.

2. Free from http://www.pocketsoap.com.

I have to admit that I was quite stumped when this exception occurred for the first time in
one of my applications. After all, I was sure that the version of the formatter—and indeed the
version of the complete .NET Framework—was the same for the client and server machines.

When I started to investigate by using TcpTrace,2 I looked at the response message from
IIS, which you can see in Figure 10-4.

CHAPTER 10 ■ TROUBLESHOOTING .NET REMOTING310

As you can see in the bottom-right window, the actual response message from server to client
is a System.IO.FileNotFoundException. After more investigation about why the BinaryFormatter
would interpret this as a version incompatibility, I noticed that the formatter simply does not
look at the content type. When you host remoting components in IIS, you can basically get three
different response types: text/plain, text/HTML, and application/octet stream. The first two will
be returned if some misconfiguration triggers an internal server error in IIS. Only the latter,
however, really contains a binary stream that can be read by the BinaryFormatter.

The formatter, however, does not check the content-type header, and always tries to dese-
rialize the response stream according to its internal binary format definition. The formatter starts
with reading the first few bytes from the stream to verify the version numbers. Somehow the string
“System.IO.FileNotFoundException” is therefore interpreted as the version number 1818838574.
1953451621. When the formatter compares this to the expected version number 1.0, it notices the
mismatch and throws the corresponding exception.

Troubleshooting with a Custom Sink
As you will see in the second part of this book starting with the next chapter, the .NET Remoting
framework provides an extensive set of extensibility hooks. This allows you to use a so-called
custom sink to intercept the response message before it reaches the binary formatter. This sink—
whose source code you will find in Chapter 11—is called HttpErrorInterceptor and will react
according to the Content-Type header. To use it, you only have to modify your client-side con-
figuration file to include an additional <provider> element.

<configuration>
<system.runtime.remoting>

<application>
<channels>

Figure 10-4. The BinaryFormatter version incompatibility information in TcpTrace

CHAPTER 10 ■ TROUBLESHOOTING .NET REMOTING 311

Figure 10-5. The custom sink produces correct error messages.

Figure 10-6. Security restrictions prevent sponsors and events.

<channel ref="http" >
<clientProviders>

<formatter ref="binary" />
<provider

type="HttpErrorInterceptor.InterceptorSinkProvider, HttpErrorInterceptor" />
</clientProviders>

</channel>
</channels>

<!-- details removed -->
</application>

</system.runtime.remoting>
</configuration>

As soon as you use this configuration file, you will receive correct error messages as shown
in Figure 10-5.

Changing Security Restrictions with
TypeFilterLevel
If you pass objects that derive from MarshalByRefObject as method parameters to a remote
server-side object without any further attention, you will trigger a security exception. The same
thing is true whenever you subscribe to remote events on a server or register as a sponsor for
a server-side object. You can see this exception in Figure 10-6.

CHAPTER 10 ■ TROUBLESHOOTING .NET REMOTING312

■Note I include this here, in the troubleshooting chapter of this book, because this problem happens quite
frequently when you take code from the Internet or from other sources that have been written for version 1.0
of the .NET Framework. The typeFilterLevel has been introduced only with version 1.1.

The reason for this exception is that these three operations can cause security or stability
problems in remoting servers. In the first case, a malicious remote user could pass an incorrect
URL to your remoting components that could point to resources inside a protected intranet
zone. This way, the attacker might be able to invoke operations on internal servers that are not
directly accessible to him or her.

For events and delegates, ,this same problem is true, but a malicious user might in addition
negatively affect stability, performance, or scalability of your server by registering multiple—
maybe even nonexistent—sponsors or events with your server-side objects. Whenever one of
these implicit callbacks is invoked, the server will have to wait for all registered clients to acknowl-
edge its requests. A malicious client could just keep the connection open without ever sending
any response and therefore tie up valuable server-side resources. As remoting by default uses
25 threads per CPU, this would mean that a malicious client would only need to keep 25 callback
connections open to halt your server.

This stability risk only applies to callbacks, events, and sponsors but not to regular method
calls. A client only has the power to halt a server whenever the server invokes one of these callbacks.
That’s why you’ve received the exception mentioned earlier: to protect your server.

However, if you decide that you can ultimately trust all your client applications—for example,
because you are running in an intranet and use corresponding authentication and authoriza-
tion before allowing a client to subscribe to events—you can disable this security check. To do
so, you have to specify the property typeFilterLevel as “Full” (default is “Low”) for your
server-side formatters. You can do this using a configuration file like the following:

<configuration>
<system.runtime.remoting>
<application>
<channels>
<channel ref="http" port="1234" >

<serverProviders>
<formatter ref="binary" typeFilterLevel="Full" />

</serverProviders>
<clientProviders>

<formatter ref="binary" />
</clientProviders>

</channel>
</channels>
<service>
<wellknown mode="Singleton"

type="Server.RemoteFactory, Server"
objectUri="Factory.rem" />

</service>
</application>

</system.runtime.remoting>
</configuration>

CHAPTER 10 ■ TROUBLESHOOTING .NET REMOTING 313

■Note Please note that this is a server-side configuration file that nevertheless includes a <clientProviders>
section to specify which formatter should be used when invoking the callback to the client. As you can see,
you do not need to specify typeFilterLevel for the client-side formatters.

Using Custom Exceptions
In the previous chapter, I discussed how custom exceptions have to be implemented so that
you can use them in the remoting framework with cross-process method calls.

If you host these components in IIS, however, you have to be especially aware of the
<customErrors> setting in your web.config file. This is a frequent source of confusion, because
this configuration file may contain two different <customErrors> entries: one for general ASP.NET
and one for remoting. However, they share a fundamental behavior: if the <customErrors>
setting is set to “on”, custom exception information and stack traces will not be sent to clients.
If it is set to “remoteOnly”, then clients from localhost will receive the complete exception infor-
mation, whereas remote users will receive filtered information. If “off” is entered as a value for
this setting, filtered exception information is sent to all clients. This also means that they will,
for example, not receive any stack traces. The default value is “remoteOnly”.

<configuration>
<system.runtime.remoting>
<customErrors mode="off" />
<application>
<service>
<wellknown mode="Singleton"

type="Server.ExceptionTest, Server"
objectUri="ExceptionTest.rem" />

</service>
</application>

</system.runtime.remoting>
</configuration>

Please note that this setting is configured directly underneath <system.runtime.remoting>
and not underneath <application> like most other remoting-specific settings. Please also note
that this setting for <customErrors> is not the same as the one in <system.web>. The latter only
affects ASP.NET applications.

■Note The naming of the setting “customErrors” can be slightly confusing. “Custom” in this regard means
that the framework intercepts the exceptions thrown by an application and supplies “custom” information (which
contains less data) instead. Here “on” means to filter all exceptions, whereas “off” allows the application-
specific exceptions to pass through to the caller.

CHAPTER 10 ■ TROUBLESHOOTING .NET REMOTING314

When a custom exception is thrown by your application, you will afterwards receive either
the information shown in Figure 10-7, if customErrors has been set to “off”, or the information
shown in Figure 10-8, with customErrors set to “on.”

■Caution In a try/catch block, the first exception will be of the “real” type thrown at the server-side appli-
cation, whereas in the second case you will receive a generic RemotingException. You have to take this into
account when designing exception-handling strategies.

Figure 10-7. Detailed exception information with <customErrors mode="off" />

Figure 10-8. The same exception with <customErrors mode="on" />

CHAPTER 10 ■ TROUBLESHOOTING .NET REMOTING 315

Multihomed Machines and Firewalls
A multihomed machine is a computer that contains more than one network interface, or, in the
context of remoting, more than one IP address. This includes routers, firewalls, and also servers
that act as VPN gateways or that are connected to a dial-up line.

If your remoting services run on a multihomed machine, you might have to take some extra
precautions to enable correct functionality. If your application only contains server-activated
objects and if you never pass MarshalByRefObjects method parameters or return values, then
you do not need the following.

To support client-activated objects and MarshalByRefObject as ref/out parameters for your
return values, you have to specify the server’s IP address or machine name in the configuration
file. The reason for this is that, whenever you return a MarshalByRefObject, the server will return
the complete URL for the given object to the client. The client will in turn use this URL to con-
tact the remote object in subsequent calls.

To illustrate this, let’s have a look at the data that is returned from the server when you
create a client-activated object with a factory pattern. To do so, the example reuses the following
interfaces to the remote components originally presented in Chapter 3:

public interface IRemoteFactory
{
IRemoteObject GetNewInstance();

}

public interface IRemoteObject
{
// ... removed

}

The implementation of the server-side IRemoteFactory just returns a new instance of
a remote MarshalByRefObject.

class MyRemoteFactory: MarshalByRefObject,IRemoteFactory
{
public IRemoteObject GetNewInstance()
{
return new MyRemoteObject();

}
}

class MyRemoteObject: MarshalByRefObject, IRemoteObject
{
// ... removed

}

When a client calls GetNewInstance() on the factory, the server will create a new object
instance and marshal it to the client’s process upon return on the method call. During this
marshalling process, an ObjRef will be created that looks similar to the following (note though
that this sample is simplified):

CHAPTER 10 ■ TROUBLESHOOTING .NET REMOTING316

<ObjRef>
<uri>/a34e3c81_66de_44a5_93c8_283add24d2cd/jhv+d3JpXxV69M431d+cInTK_1.rem</uri>
<!-- parts removed -->

</ObjRef>
<!-- parts removed -->
<SOAP-ENC:Array id="ref-14" SOAP-ENC:arrayType="xsd:string[1]">

<item>http://192.168.0.54:1234</item>
</SOAP-ENC:Array>

The complete URL to a remote object consists of the destination channel’s base URL as
shown in the <item> element at the end of this capture. The value that is contained in the ObjRef’s
<uri> property is subsequently appended to this base URL. As you can see, the server transfers
its own IP address inside of this response packet.

Now imagine that your server has two IP addresses: an official Internet IP of 212.24.125.14
and an internal IP of 192.168.0.54. If you were to now marshal a MarshalByRefObject from this
server to a client (for example, as a return value of a remote procedure call), the transferred ObjRef
might either contain the internal or the external IP address. You may be tempted to expect that
the remoting framework automatically uses the IP address on which the server has received the
call to create this object, but this is not the case. Quite the contrary: you have to explicitly state
which IP address or machine name should be returned to clients. Otherwise, a client outside
your local network could receive the server’s internal IP address and would not be able to call
any method on the server-side objects.

To configure this setting, you can specify either the bindTo or the machineName property in
your configuration file. In the first case, you can bind the remoting server to a specific IP address,
whereas in the second case the system will use the specified machine name when returning
MarshalByRefObjects to your clients. The framework does not check whether this machine
name is associated with your machine or whether it even resolves to the same IP address as
your server machine. This is a good thing as you will see shortly.

These two properties are specified on the <channel> level in your server-side configuration
file, for example:

<channel ref="http" port="5555" bindTo="212.24.125.14" />

or

<channel ref="http" port="5555" machineName="yourserver.domain.com" />

Alternatively, you can use the following server-side code if you do not want to use configu-
ration files:

Hashtable chnlProps = new Hashtable();
chnlProps["port"] = 1234;
chnlProps["machineName"] = "yourserver.domain.com";
// chnlProps["bindTo"] = "212.24.125.14";
HttpChannel chnl = new HttpChannel(chnlProps,null,null);
ChannelServices.RegisterChannel(chnl);

In the latter case, for example, the server will return the following information in the
ObjRef (again, simplified):

CHAPTER 10 ■ TROUBLESHOOTING .NET REMOTING 317

<ObjRef>

<uri>/a34e3c81_66de_44a5_93c8_283add24d2cd/jhv+d3JpXxV69M431d+cInTK_1.rem</uri>
<!-- parts removed -->

</ObjRef>
<!-- parts removed -->
<SOAP-ENC:Array id="ref-14" SOAP-ENC:arrayType="xsd:string[1]">

<item>http://yourserver.domain.com:1234</item>
</SOAP-ENC:Array>

When the client now tries to call a method of the returned MarshalByRefObject, it will con-
tact it using the official address http://yourserver.domain.com:1234/.../..InTK_1.rem instead of
trying to contact the nonroutable private IP address 192.168.0.54.

Client-Activated Objects Behind Firewalls
If you look at the preceding description, you will notice that it is also applicable to scenarios
that involve firewalls, NATs with port forwarding, or reverse HTTP proxies. In all of these cases,
a client will send its HTTP requests to an intermediary that will in turn forward it on to the actual
Web server that is located in a DMZ as illustrated in Figure 10-9.

In this case, the client directs its request to the gateway at fw.example.com and does not
even know that this is not the final destination. The gateway can use simple TCP-based port
forwarding to forward all incoming requests on port 80 (the default HTTP port) to the same
port on 192.168.0.54.

In this case, you would have to specify the machineName property as described earlier if you
use client-activated objects. Otherwise, the server would again return its internal IP address,
which is unreachable from any machine outside its private network. In this case, you have to
set this property to the name of the external gateway, i.e., to the only host the client can
actually reach.

<channel ref="http" port="80" machineName="fw.example.com" />

■Note You have to set the same port number on your firewall/gateway as you use on the destination
machine, as it is not possible to dynamically adjust the port number that is returned as part of the ObjRef.

http://fw.example.com/myobj.rem

example.com Private Network

Client
64.233.161.99

Gateway/Firewall
fw.example.com

Server
192.168.0.54

Figure 10-9. Remoting with TCP port-forwarding firewalls

CHAPTER 10 ■ TROUBLESHOOTING .NET REMOTING318

Summary
The .NET Remoting framework offers a big number of features with a relatively small number
of “well-known pitfalls.” In this chapter, I’ve illustrated the most common issues that turn up
when remoting applications are developed or deployed.

You’ve seen how to debug different kinds of remoting application, and how to make sure
that your configuration files are correct. This is especially important because most remoting-
related problems stem from incorrect configuration files—a small typo or case mismatch in them
can result in several hours of searching for a bug.

In addition, you’ve learned how to enable custom exceptions when hosting in IIS, and how
to use client-activated objects behind firewalls.

This chapter is the last of the first part of this book. In the next five chapters, I’ll show you
how you can hook into the .NET Remoting framework to intercept remote procedure calls or
even implement your own transport protocols.

Extending

P A R T 2

■ ■ ■

321

C H A P T E R 1 1

■ ■ ■

Inside the Framework

As I stated in the introduction to this book, .NET provides an unprecedented extensibility for
the remoting framework. The layered architecture of the .NET Remoting framework can be
customized by either completely replacing the existing functionality of a given tier or chaining
new implementation with the baseline .NET features.

Before working on the framework and its extensibility, I really encourage you to get a thorough
understanding of the existing layers and their inner workings in this architecture. This chapter
will give you that information. But be forewarned: this chapter contains some heavy stuff. It
shows you how .NET Remoting really works. Some of the underlying concepts are quite abstract,
but you don’t necessarily need to know them if you just want to use .NET Remoting. If you want
to understand or extend it, however, the information contained in this chapter is vital.

If you’re only interested in the use of additional sinks, you’ll find information pertaining to
that topic in Chapter 12.

Looking at the Five Elements of Remoting
The .Net Remoting architecture, as you can see in Figure 11-1, is based on five core types of
objects:

• Proxies: These objects masquerade as remote objects and forward calls.

• Messages: Message objects contain the necessary data to execute a remote method call.

• Message sinks: These objects allow custom processing of messages during a remote
invocation.

• Formatters: These objects are message sinks as well and will serialize a message to
a transfer format like SOAP.

• Transport channels: Message sinks yet again, these objects will transfer the serialized
message to a remote process, for example, via HTTP.

CHAPTER 11 ■ INSIDE THE FRAMEWORK322 CHAPTER 11 ■ INSIDE THE FRAMEWORK

Msg

MessageSink

Proxy

Client Server

Server-Side
Object

A Message object is generated by
the proxy and passed through a
chain of MessageSinks.

A Message object is generated by a special MessageSink (the
ChannelSink) and passed through a chain of MessageSinks.
When received by the Dispatcher, it will be translated into a
method call on the server-side.

Method Call

MessageSink

Dispatcher

Msg

Figure 11-1. Simplified version of the .NET Remoting architecture

A Bit About Proxies
Instead of dealing with “real” object references (memory references, pointers, and so on), when
using remote objects, the client application can only perform methods on object proxies. These
proxies masquerade, and therefore provide the same interface, as the target object. Instead of
executing any method on their own, the proxies forward each method call to the .NET Remoting
framework as a Message object.

This message then passes through the sinks shown previously, until it is finally handled by
the server, where it passes through another set of message sinks until the call is placed on the
“real” destination object. The server then creates a return message that will be passed back to
the proxy. The proxy handles the return message and converts it to the eventual out/ref param-
eters and the method’s return value, which will be passed back to the client application.

Creating Proxies
When using the new operator or calling Activator.GetObject() to acquire a reference to a remote
object, the .NET Remoting framework generates two proxy objects. The first is an instance of
the generic TransparentProxy (from System.Runtime.Remoting.Proxies). This is the object that
will be returned from the new operator for a remote object.

Whenever you call a method on the reference to a remote object, you will in reality call it
on this TransparentProxy. This proxy holds a reference to a RemotingProxy, which is a descen-
dent of the abstract RealProxy class.

CHAPTER 11 ■ INSIDE THE FRAMEWORK 323

TransparentProxy

RemotingProxy
[RealProxy]

Identity

First sink in chain
[IMessageSink]

_rp

_identity

_channelSink

Figure 11-2. Proxies with identity

During the creation stage, references to the client-side message sink chains are acquired
using the sink providers passed during channel creation (or the default, if no custom providers
have been specified). These references are stored in the Identity object contained in the RealProxy.

After using the new operator or calling GetObject(), as shown in the following example, the
variable obj will point to the TransparentProxy (see Figure 11-2):

HttpChannel channel = new HttpChannel();
ChannelServices.RegisterChannel(channel);
SomeClass obj = (SomeClass) Activator.GetObject(

typeof(SomeClass),
"http://localhost:1234/SomeSAO.soap");

Creating Messages
When a call is placed on a remote object reference, the TransparentProxy creates a MessageData
object and passes this to the RealProxy’s PrivateInvoke() method. The RealProxy in turn
generates a new Message object and calls InitFields(), passing the MessageData as a param-
eter. The Message object will now populate its properties by resolving the pointers inside the
MessageData object.

For synchronous calls, the RealProxy places a chain of calls on itself, including Invoke(),
InternalInvoke(), and CallProcessMessage(). The last one will look up the contained Identity
object’s sink chain and call SyncProcessMessage() on the first IMessageSink.

When the processing (including server-side handling) has completed, the call to this
method will return an IMessage object containing the response message. The RealProxy will
call its own HandleReturnMessage() method, which checks for out/ref parameters and will call
PropagateOutParameters() on the Message object.

You can see a part of this client-side process when using the default HTTP channel, shown
in Figure 11-3. If the client were to use the TCP channel instead, the channel would consist of
a BinaryClientFormatterSink and a TcpClientTransport sink.

CHAPTER 11 ■ INSIDE THE FRAMEWORK324

Returning Values
After this handling of the response, the RealProxy will return from its PrivateInvoke() method,
and the IMessage is passed back to the TransparentProxy. Now a lot of “magic” happens behind
the scenes: the TransparentProxy will take the return values and out parameters from the Message
object and return them to the calling application in the conventional, stack-based method return
fashion of the CLR. From the perspective of the client application, it will look as if a normal
method call has just returned.

A Bit About the ObjRef Object
When working with CAOs, the client needs the capability to identify distinct object instances. When
passing references to CAOs from one process to another, this identity information has to “travel”
with the call. This information is stored in the serializable ObjRef object.

Client

TransparentProxy, masquerading as
a MarshalByRegObject

The TransparentProxy converts the ReturnMessage
to a method's return value

someMethod()

TP

new

SerializeMessage (msg)

DeSerializeMessage (retmsg)

ProcessMessage (msg) HTTP req

HTTP resp
ret: Stream & TransportHeaders

new

MessageData

Message

IMessageSink IClientChannelSink

return: retmsg

return: retmsg
return: sth

Message (retmsg)

PrivateInvoke(msgdata)

SyncProcessMessage(msg)

RemotingProxy SoapClientFormatterSink HttpClientTransportSink

Figure 11-3. Client-side synchronous message handling (partial)

CHAPTER 11 ■ INSIDE THE FRAMEWORK 325

Figure 11-4. Browsing to the ObjRef ’s properties in the Locals window

When instantiating a CAO (either by using a custom factory SAO as shown in Chapter 3 or
by using the default RemoteActivation.rem SAO that is provided by the framework when the
CAO is registered at the server side), a serialized ObjRef will be returned by the server.

This ObjRef is taken as a base to initialize the Identity object, and a reference to it will also
be kept by the Identity. The ObjRef stores the unique URL to the CAO. This URL is based on
a GUID and looks like the following:

/b8c0c989_68be_40d6_97b2_0c3fda5bb7ad/1014675796_1.rem

Additionally, the ObjRef object stores the server’s base URL, which has also been returned
by the server.

■Caution This behavior is very different from that of SAOs, whereby the URL to the server is specified at
the client. With CAOs, only the URL needed for the creation of the CAO is known to the client. The real con-
nection endpoint URL for the CAO will be returned when creating the object. This can also mean that a host
that’s behind a firewall might return its private IP address and will therefore render the CAO unusable. To
prevent this behavior, make sure to use either the machineName or bindTo attribute in the channel’s configu-
ration section as shown in Chapter 4.

You can check the ObjRef (or any other properties of the proxies) in a sample project sim-
ply by setting a breakpoint after the line where you acquire the remote reference of a CAO (for
example, SomeObj obj1 = new SomeObj() when using configuration files). You can then open
the Locals window and browse to the obj1’s properties as show in Figure 11-4.

You’ll find the ObjRef shown in Figure 11-5 at obj1/_TransparentProxy/_rp/_identity/_objRef.

CHAPTER 11 ■ INSIDE THE FRAMEWORK326

Understanding the Role of Messages
A message is basically just a dictionary object hidden behind the IMessage interface. Even though
every message is based on this interface, the .NET Framework defines several special types
thereof. You’ll come across ConstructionCall and MethodCall messages (plus their respective
return messages). The main difference between these message types is a predefinition of several
entries in the internal dictionary.

While traveling through the chain of sinks, the message passes at least two important points:
a formatter and a transport channel. The formatter is a special kind of sink that encodes the
internal dictionary into some sort of wire protocol such as SOAP or a binary representation.

The transport channel will transfer a serialized message from one process to another. At the
destination, the message’s dictionary is restored from the wire protocol by a server-side formatter.
After this, it passes through several server-side MessageSinks until it reaches the dispatcher.
The dispatcher converts the message into a “real” stack-based method call that will be executed
upon the target object. After execution, a return message is generated for most call types (exclud-
ing one-way calls) and passed back through the various sinks and channels until it reaches the
client-side proxy, where it will be converted to the respective return value or exception.

Figure 11-5. Locating the ObjRef in the Locals window

CHAPTER 11 ■ INSIDE THE FRAMEWORK 327

What’s in a Message?
There are several kinds of messages, and each of them is represented by a distinct class, depend-
ing on what kind of call it stands for. This object implements the IDictionary interface to provide
key/value-based access to its properties.

A partial definition of MethodCall is shown here:

public class System.Runtime.Remoting.Messaging.MethodCall
{

// only properties are shown

public int ArgCount { virtual get; }
public object[] Args { virtual get; }
public bool HasVarArgs { virtual get; }
public int InArgCount { virtual get; }
public object[] InArgs { virtual get; }
public LogicalCallContext LogicalCallContext { virtual get; }
public MethodBase MethodBase { virtual get; }
public string MethodName { virtual get; }
public object MethodSignature { virtual get; }
public IDictionary Properties { virtual get; }
public string TypeName { virtual get; }
public string Uri { virtual get; set; }

}

These values can be accessed in two ways. The first is by directly referencing the properties
from the message object, as in methodname = msg.MethodName. The second way is to access the
properties using the IDictionary interface with one of the predefined keys shown in the table
that follows.

When doing this, a wrapper object (for example a MCMDictionary for MethodCallMessages)
will be generated. This wrapper has a reference to the original message so that it can resolve
a call to its dictionary values by providing the data from the underlying Message object’s prop-
erties. Here you will see the dictionary keys and corresponding properties for a sample method
call message:

Dictionary Key Message’s Property Data Type Sample Value

__Uri Uri String /MyRemoteObject.soap

__MethodName MethodName String setValue

__MethodSignature MethodSignature Object null

__TypeName TypeName String General.BaseRemote
Object, General

__Args Args Object[] {42}

__CallContext LogicalCallContext Object null

The second kind of message, used during the instantiation of CAOs, is the ConstructionCall.
This object extends MethodCall and provides the following additional properties:

CHAPTER 11 ■ INSIDE THE FRAMEWORK328

public class System.Runtime.Remoting.Messaging.ConstructionCall
{

// only properties are shown
public Type ActivationType { virtual get; }
public string ActivationTypeName { virtual get; }
public IActivator Activator { virtual get; virtual set; }
public object[] CallSiteActivationAttributes { virtual get; }
public IList ContextProperties { virtual get; }

}

Examining Message Sinks
The transfer of a message from a client application to a server-side object is done by so-called
message sinks. A sink will basically receive a message from another object, apply its own process-
ing, and delegate any additional work to the next sink in a chain.

There are three basic interfaces for message sinks: IMessageSink, IClientChannelSink, and
IServerChannelSink. As you can see in the following interface description, IMessageSink defines
two methods for processing a message and a property getter for acquiring the reference for the
next sink in the chain:

public interface IMessageSink
{

IMessageSink NextSink { get; }

IMessageCtrl AsyncProcessMessage(IMessage msg,
IMessageSink replySink);

IMessage SyncProcessMessage(IMessage msg);
}

Whenever an IMessageSink receives a message using either SyncProcessMessage() or
AsyncProcessMessage(), it may first check whether it can handle this message. If it’s able to do
so, it will apply its own processing and afterwards pass the message on to the IMessageSink
referenced in its NextSink property.

At some point in the chain, the message will reach a formatter (which is also an
IMessageSink) that will serialize the message to a defined format and pass it on to a secondary
chain of IClientChannelSink objects.

■Note Formatters implement IClientFormatterSink by convention. This interface is a combination of
IMessageSink and IClientChannelSink.

public interface IClientChannelSink
{

// properties
IClientChannelSink NextChannelSink { get; }

CHAPTER 11 ■ INSIDE THE FRAMEWORK 329

1. Current prerelease information as of late 2004 mentions a possible future deprecation of the SoapFormatter
with Version 2.0 of the .NET Framework.

// methods
void AsyncProcessRequest(IClientChannelSinkStack sinkStack,

IMessage msg,
ITransportHeaders headers,
Stream stream);

void AsyncProcessResponse(IClientResponseChannelSinkStack sinkStack,
object state,
ITransportHeaders headers,
Stream stream);

Stream GetRequestStream(IMessage msg,
ITransportHeaders headers);

void ProcessMessage(IMessage msg,
ITransportHeaders requestHeaders,
Stream requestStream,
ref ITransportHeaders responseHeaders,
ref Stream responseStream);

}

The main difference between IMessageSink and IClientChannelSink is that the former can
access and change the original dictionary, independent of any serialization format, whereas the
latter has access to the serialized message as a stream.

After processing the message, the IClientChannelSink also passes it on to the next sink in
its chain until it reaches a transport channel like HttpClientTransportSink (which also imple-
ments IClientChannelSink) for the default HTTP channel.

Serialization Through Formatters
A Message object needs to be serialized into a stream before it can be transferred to a remote
process, a task which is performed by a formatter. The .NET Remoting framework provides you
with two default formatters, the SoapFormatter1 and the BinaryFormatter, which can both be
used via HTTP, IPC, or TCP connections.

■Note In the samples that follow, you get a chance to take a look at the SoapFormatter, but the same infor-
mation applies to BinaryFormatter (or any custom formatter) as well.

After the message completes the preprocessing stage by passing through the chain of
IMessageSink objects, it will reach the formatter via the SyncProcessMessage() method.

CHAPTER 11 ■ INSIDE THE FRAMEWORK330

On the client side, the SoapClientFormatterSink passes the IMessage on to its
SerializeMessage() method. This function sets up the TransportHeaders and asks its NextSink
(which will be the respective IClientChannelSink—that is, the HttpClientTransportSink) for the
request stream onto which it should write the serialized data. If the request stream is not yet
available, it will create a new ChunkedMemoryStream that will later be passed to the channel sink.

The real serialization is started from CoreChannel.SerializeSoapMessage(), which creates
a SoapFormatter (from the System.Runtime.Serialization.Formatters.Soap namespace) and calls
its Serialize() method.

You can see the SOAP output of the formatter for a sample call to obj.setValue(42) in the
following excerpt. Remember that this is only the serialized form of the request—it is not yet
transfer dependent (it does not contain any HTTP headers, for example).

<SOAP-ENV:Envelope
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:i2="http://schemas.microsoft.com/clr/nsassem/General.BaseRemoteObj ➥

ect/General">
<SOAP-ENV:Body>
<i2:setValue id="ref-1">

<newval>42</newval>
</i2:setValue>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Moving Messages Through Transport Channels
After the last IClientChannelSink (which can be either the formatter or custom channel sink)
has been called, it forwards the message, stream, and headers to the ProcessMessage() method
of the associated transfer channel. In addition to the stream generated by the formatter, this
function needs an ITransportHeaders object, which has been populated by the formatter as
well, as a parameter.

The transport sink’s responsibility is to convert these headers into a protocol-dependent
format—for example, into HTTP headers. It will then open a connection to the server (or check
if it’s is already open, for TCP channels or HTTP 1.1 KeepAlive connections) and send the headers
and the stream’s content over this connection.

Following the previous example, the HTTP headers for the SOAP remoting call will look
like this:

POST /MyRemoteObject.soap HTTP/1.1
User-Agent: Mozilla/4.0+(compatible; MSIE 6.0; Windows 5.0.2195.0; MS .NET
Remoting;
MS .NET CLR 1.0.2914.16)
SOAPAction:
"http://schemas.microsoft.com/clr/nsassem/General.BaseRemoteObject/General#
setValue
Content-Type: text/xml; charset="utf-8"

CHAPTER 11 ■ INSIDE THE FRAMEWORK 331

Content-Length: 510
Expect: 100-continue
Connection: Keep-Alive
Host: localhost

This leads to the following complete HTTP request for the setValue(int) method of
a sample remote object:

POST /MyRemoteObject.soap HTTP/1.1
User-Agent: Mozilla/4.0+(compatible; MSIE 6.0; Windows 5.0.2195.0; MS .NET Remoting;
MS .NET CLR 1.0.2914.16)
SOAPAction:
"http://schemas.microsoft.com/clr/nsassem/General.BaseRemoteObject/General#
setValue"
Content-Type: text/xml; charset="utf-8"
Content-Length: 510
Expect: 100-continue
Connection: Keep-Alive
Host: localhost

<SOAP-ENV:Envelope
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:i2=
"http://schemas.microsoft.com/clr/nsassem/General.BaseRemoteObject/General">

<SOAP-ENV:Body>
<i2:setValue id="ref-1">
<newval>42</newval>

</i2:setValue>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

I highlighted the important parts in this request so that you can see the values that have
been taken from the message object’s dictionary.

Client-Side Messaging
As you know by now, the message is created by the combination of the TransparentProxy and
RemotingProxy, which send it to the first entry of the message sink chain. After this creation,
the message will pass four to six stages, depending on the channel’s configuration. You can see
this in Figure 11-6.

CHAPTER 11 ■ INSIDE THE FRAMEWORK332

The contents of the preprocessing, formatting, and transfer layers are customizable
during the creation of the channel. When creating a default HTTP channel, for example, only
a SoapClientFormatterSink (as the formatting layer) and an HttpClientTransportSink (as the
transport layer) will be created; by default neither a preprocessing layer nor any dynamic con-
text sinks are registered.

■Note I show the processing of synchronous messages in these examples. Asynchronous messages will be
handled later in this chapter.

ClientContextTerminatorSink and Dynamic Sinks
The ClientContextTerminatorSink is automatically registered for all channels. It is the first sink
that gets called and in turn notifies any dynamic context sinks associated with the current
remoting context. These dynamic sinks will receive the message via the IDynamicMessageSink
interface.

TransparentProxy

RealProxy

ClientContextTerminatorSink
[IMessageSink]

Optional dynamic sinks
[IDynamicMessageSink]

Optional prepocessing
[IMessagesSink]

Formatter
[IClientFormatterSink/IMessageSink]

Optional preporcessing
[IClientChannelSink]

Transfer channel
[IClientChannelSink]

Message emission

Notification of dynamic
sinks

Registration via
Context.RegisterDynamicProperty()

Optional preprocessing
of the message

Formatting

Optional preprocessing
of the serialized message

Transfer

Customizable during
channel creation

Figure 11-6. Client-side layers and message stages

CHAPTER 11 ■ INSIDE THE FRAMEWORK 333

public interface IDynamicMessageSink
{

void ProcessMessageStart(IMessage reqMsg, bool bCliSide, bool bAsync);
void ProcessMessageFinish(IMessage replyMsg, bool bCliSide, bool bAsync);

}

These sinks don’t need to pass the information to any other sink in a chain. Instead, this is
done automatically by the context terminator sink, which will call the relevant methods on
a list of registered dynamic sinks before passing the message on to the next IMessageSink.

You’ll find more on the creation and implementation of dynamic sinks in Chapter 12.

SoapClientFormatterSink
After passing through optional custom IMessageSink objects, the message reaches the format-
ter. As shown previously, the formatter’s task is to take the message’s internal dictionary and
serialize it to a defined wire format. The output of the serialization is an object implementing
ITransferHeaders and a stream from which the channel sink will be able to read the serialized data.

After generating these objects, the formatter calls ProcessMessage() on its assigned
IClientChannelSink and as a result starts to pass the message to the secondary chain—the
channel sink chain.

HttpClientChannel
At the end of the chain of client channel sinks, the message ultimately reaches the transfer
channel, which also implements the IClientChannelSink interface. When the ProcessMessage()
method of this channel sink is called, it opens a connection to the server (or uses an existing
connection) and passes the data using the defined transfer protocol. The server now processes
the request message and returns a ReturnMessage in serialized form. The client-side channel
sink will take this data and split it into an ITransferHeader object, which contains the headers,
and into a stream containing the serialized payload. These two objects are then returned as out
parameters of the ProcessMessage() method.

After this splitting, the response message travels back through the chain of
IClientChannelSinks until reaching the formatter, where it is deserialized and an IMessage
object created. This object is then returned back through the chain of IMessageSinks until it
reaches the two proxies. The TransparentProxy decodes the message, generates the method return
value, and fills the respective out or ref parameters.

The original method call—which has been placed by the client application—then returns
and the client now has access to the method’s responses.

Server-Side Messaging
During the creation of the server-side channel (I use the HttpServerChannel in the following
description, but the same applies to other server channels as well), the server-side sink chain is
created and a TcpListener is spawned in a new thread. This object starts to listen on the speci-
fied port and notifies the HttpServerSocketHandler when a connection is made.

The message then passes through the layers shown in Figure 11-7.

CHAPTER 11 ■ INSIDE THE FRAMEWORK334

One of the main differences between client-side and server-side message processing is
that on the server side, each sink’s ProcessMessage() method takes a parameter of type
ServerChannelSinkStack. Every sink that is participating in a call pushes itself onto this stack
before forwarding the call to the next sink in the chain. The reason for this is that the sinks do
not know up front if the call will be handled synchronously or asynchronously. Every sink that’s
been pushed onto the stack will get the chance to handle the asynchronous reply later.

You can see the IServerChannelSink interface here:

HttpServerSocketHandler

HttpServerTransportSink
[IServerChannelSink]

SDLChannelSink
[IServerChannelSink]

Optional preprocessing
[IServerChannelSink]

Reception of the
serialized message

?WSDL requests

Optional preprocessing
of the serialized message

Deserialization

Optional preprocessing
of the message

Dispatching of the
message

Notification of
context sinks

Registration via
Context.RegisterDynamicProperty()

Last "real" sink

Increasing lifetime
during each call

Forwarding the call
to StackBuilderSink

Execution call
on destination object

Customizable during
channel creation

From the Message's
ServerIdentity

Optional preprocessing
[IServerChannelSink]

Formatter
[IServerChannelSink]

DispatcherChannelSink
[IServerChannelSink]

CrossContextChannel
[IMessageSink]

Optional dynamic sinks
[IDynamicMessageSink]

ServerContextTerminatorSink
[IMessageSink]

LeaseSink
[IMessageSink]

ServerObjectTerminatorSink
[IMessageSink]

StackbuilderSink
[IMessageSink]

Figure 11-7. Server-side messaging layers

CHAPTER 11 ■ INSIDE THE FRAMEWORK 335

public interface IServerChannelSink
{

IServerChannelSink NextChannelSink { get; }

ServerProcessing ProcessMessage(IServerChannelSinkStack sinkStack,
IMessage requestMsg,
ITransportHeaders requestHeaders,
Stream requestStream,
ref IMessage responseMsg,
ref ITransportHeaders responseHeaders,
ref Stream responseStream);

void AsyncProcessResponse(IServerResponseChannelSinkStack sinkStack,
object state,
IMessage msg,
ITransportHeaders headers,
Stream stream);

Stream GetResponseStream(IServerResponseChannelSinkStack sinkStack,
object state,
IMessage msg,
ITransportHeaders headers);

}

HttpServerChannel and HttpServerTransportSink
When a connection to the server-side channel is opened, an instance of HttpServerSocketHandler
is created and supplied with a delegate that points to the HttpServerTransportSink’s
ServiceRequest() method. This method will be called after the background thread finishes
reading the request stream.

The HttpServerTransportSink sets up the ServerChannelSinkStack and pushes itself onto
this stack before forwarding the call to the next sink.

After the chain has finished processing the message (that is, after the method call has been
executed), it generates the HTTP response headers. These will be either “200 OK” for synchro-
nous calls or “202 Accepted” for one-way messages.

SDLChannelSink
The SDLChannelSink is a very special kind of sink that really shows the power of the .NET
Remoting framework’s extensibility. Contrary to most other sinks, it does not forward any
requests to the destination object, but instead generates the WSDL information needed for the
creation of proxies.

It does this whenever it encounters either of the strings “?WSDL” or “?SDL” at
the end of an HTTP GET request. In this case, the WSDL will be generated by calling the
ConvertTypesToSchemaToStream() method from System.Runtime.Remoting.MetadataServices.
MetaData.

CHAPTER 11 ■ INSIDE THE FRAMEWORK336

■Note MetaData is the same class SoapSuds uses when generating proxies.

When the HTTP request is of type POST or when it is a GET request that does not end with
the string “?WSDL” or “?SDL”, the message will be passed to the next sink.

SoapServerFormatterSink and BinaryServerFormatterSink
The default server-side HTTP channel uses both formatters in a chained fashion. The first
formatter that’s used is the SoapServerFormatterSink. This sink first checks whether the serialized
message contained in the request stream is a SOAP message. If this is the case, it is deserialized,
and the resulting IMessage object is passed to the next sink (which is BinaryServerFormatterSink).
In this case, the stream (which is needed as an input parameter to the next sink) will be passed
as null.

If the stream does not contain a SOAP-encoded message, it will be copied to a MemoryStream
and passed to the BinaryServerFormatterSink.

The binary formatter employs the same logic and passes either the deserialized message
(which it might have already gotten from the SOAP formatter, or which it can deserialize on its
own) or the stream (if it cannot decode the message) to the next sink.

Both BinaryServerFormatterSink and SoapServerFormatterSink only push themselves onto
the SinkStack (before calling ProcessMessage() on the subsequent sink) when they can handle
the message. If neither BinaryServerFormatterSink nor SoapServerFormatterSink could deseri-
alize the message and the next sink is not another formatter, an exception is thrown.

DispatchChannelSink
After passing through an optional layer of IMessageSink objects, the message reaches the dispatcher.
The DispatchChannelSink takes the decoded IMessage and forwards it to ChannelServices.
DispatchMessage(). This method checks for disconnected or timed-out objects and dynamically
instantiates SAOs (Singleton or SingleCall) if they do not exist at the server.

After the possible creation of the necessary destination object, it promotes this call to
CrossContextChannel.SyncProcessMessage() or CrossContextChannel.AsyncProcessMessage()
if the call’s target is a one-way method.

CrossContextChannel
The CrossContextChannel notifies dynamic context sinks and passes the IMessage on to
ServerContextTerminatorSink. A dynamic sink does not implement IMessageSink, but rather
the interface IDynamicMessageSink, which is shown here:

public interface IDynamicMessageSink
{

void ProcessMessageStart(IMessage reqMsg, bool bCliSide, bool bAsync);
void ProcessMessageFinish(IMessage replyMsg, bool bCliSide, bool bAsync);

}

The same logic is applied as with client-side dynamic sinks: these sinks do not have to call
any additional sinks in the chain, as this will be taken care of by the framework.

CHAPTER 11 ■ INSIDE THE FRAMEWORK 337

The ProcessMessageStart() method is called before passing the message on to
ServerContextTerminatorSink and ProcessMesssageFinish() is called after the call to the
context terminator sink returns. Both methods may change the IMessage object’s properties.

You can read more about dynamic sinks later in Chapter 12.

ServerContextTerminatorSink
This sink’s behavior is probably the most complex one. It is the last “hardwired” sink, and
therefore has no direct references to other sinks in the chain. So how can the method call
specified in the message be executed?

The ServerContextTerminatorSink looks at the IMessage’s ServerIdentity object, using
InternalSink.GetServerIdentity(), and requests this object’s message sink chain using
ServerIdentity.GetServerObjectChain().

The ServerIdentity’s object chain is populated by a call to the static method
CreateServerObjectChain() of the Context class. This call creates a ServerObjectTerminatorSink
at the absolute end of the chain and puts other sinks before it. These other sinks are obtained
from the DomainSpecificRemotingData object, which is held in the RemotingData property of
AppDomain.

DomainSpecificRemotingData by default contains a reference to LeaseSink that will be
placed in the chain before the terminator sink. The resulting sink chain, which is obtained from
the ServerIdentity object, is shown in Figure 11-8.

LeaseSink
The lease sink will have a reference to the destination MarshalByRefObject’s lease. It simply calls
the RenewOnCall() method of this lease and passes the call on to the next sink. The RenewOnCall()
method looks at the RenewOnCallTime configuration setting (default of two minutes) and sets
the object’s time to live to this value.

ServerObjectTerminatorSink and StackbuilderSink
The object terminator sink will forward the call to the StackBuilderSink. This final message sink
is a kind of “magic” sink. First it checks if it’s okay to remotely call the method specified in the
IMessage object. It does this by checking whether the destination object matches the request,
meaning that there is a “direct match,” or the object implements the requested interfaces or is
derived from the requested base class.

LeaseSink
[IMessageSink]

ServerObjectTerminatorSink
[IMessageSink]

StackbuilderSink
[IMessageSink]

Increasing lifetime during each call

Forwarding the call to StackBuilderSink

Executing call on destination object

Figure 11-8. Sinks from the ServerIdentity object

CHAPTER 11 ■ INSIDE THE FRAMEWORK338

After verifying the message, the sink uses several external functions to create a stack frame
(that is, it makes the transition between message-based execution and stack-based execution)
and calls the destination method. It then generates a return message that contains the result
and, if available, the values from any ref or out parameters. This ReturnMessage object is then
returned from the call to SyncProcessMessage().

All About Asynchronous Messaging
The previous part of this chapter only covers synchronous processing due to one reason: it’s
a lot easier and consistent between client and server than other types of processing.

As you know from the examples and figures earlier in this chapter, several methods are
available for message handling: on the client side, there are the IMessageSink and the
IClientChannelSink interfaces. Both sink types approach the handling of asynchronous
messages in a substantially different manner, as described in the next sections.

Asynchronous IMessageSink Processing
When handling the messages in a synchronous manner in an IMessageSink chain, the response
message will simply be the return value of the method call. You can see this in the following
snippet, which shows a sample IMessageSink (I’ve omitted parts of the interface and only dis-
play the SyncProcessMessage() method here):

class MySink1: IMessageSink {
IMessageSink _nextSink;
IMessage SyncProcessMessage(IMessage msg) {

// here you can do something with the msg

IMessage retMsg = _nextSink.SyncProcessMessage(msg);

// here you can do something with the retMsg

// and then, simply return the retMsg to the previous sink
return retMsg;

}
}

When implementing asynchronous processing that is triggered whenever you use a Delegate’s
BeginInvoke() method, the call to NextSink.AsyncProcessMessage() is returned immediately.
The response message is sent to a secondary chain, which is passed in the replySink parame-
ter of the call to AsyncProcessMessage().

First, I show you how to do asynchronous processing when you don’t want to be notified
of the call’s return:

public class MySink1: IMessageSink {
IMessageSink _nextSink;
IMessageCtrl AsyncProcessMessage(IMessage msg,

IMessageSink replySink)
{

// here you can do something with the msg

CHAPTER 11 ■ INSIDE THE FRAMEWORK 339

return _nextSink.AsyncProcessMessage(msg, replySink);
}

}

In replySink, you’ll receive the first entry to a chain of IMessageSink objects that want to
be notified upon completion of the asynchronous call.

If you want to handle the reply message in a sink of your own, you have to instantiate
a new IMessageSink object and “chain” it to the existing list of reply sinks. You can see this in
the following snippet (again, parts of the interface have been omitted):

public class MyReplySink: IMessageSink {
IMessageSink _nextSink;

MyReplySink(IMessageSink next) {
// .ctor used to connect this sink to the chain
_nextSink = next;

}

IMessage SyncProcessMessage(IMessage msg) {
// the msg will be the reply message!

// here you can do something with the msg

// and then, pass it onto the next reply sink in the chain
IMessage retMsg = _nextSink.SyncProcessMessage(msg);

return retMsg;
}

}

public class MySink1: IMessageSink {
IMessageSink _nextSink;
IMessageCtrl AsyncProcessMessage(IMessage msg,

IMessageSink replySink)
{

// here you can do something with the msg

// create a new reply sink which is chained to the existing replySink
IMessageSink myReplyChain = new MyReplySink(replySink);

// call the next sink's async processing
return _nextSink.AsyncProcessMessage(msg, myReplyChain);

}
}

When the async call is completed in this example, you’ll have the option to change the
reply message in the MyReplySink.SyncProcessMessage() method.

CHAPTER 11 ■ INSIDE THE FRAMEWORK340

■Note The reply message is processed synchronously; only the generation of the message happens asyn-
chronously at the server.

Asynchronous IClientChannelSink Processing
As you can see in the following partial definition of the IClientChannelSink interface, there are,
in contrast to the IMessageSink interface, distinct methods for handling the asynchronous
request and reply:

public interface IClientChannelSink
{

void AsyncProcessRequest(IClientChannelSinkStack sinkStack,
IMessage msg,
ITransportHeaders headers,
Stream stream);

void AsyncProcessResponse(IClientResponseChannelSinkStack sinkStack,
object state,
ITransportHeaders headers,
Stream stream);

}

When the AsyncProcessRequest() method is called while an IMessage travels through
a sink chain, it will receive an IClientChannelSinkStack as a parameter. This sink stack contains
all sinks that want to be notified when the asynchronous processing returns. If your sink wants
to be included in this notification, it has to push itself onto this stack before calling the next
sink’s AsyncProcessRequest() method.

You can see this in the following snippet (only parts are shown):

public class SomeSink: IClientChannelSink
{

IClientChannelSink _nextChnlSink;

public void AsyncProcessRequest(IClientChannelSinkStack sinkStack,
IMessage msg,
ITransportHeaders headers,
Stream stream)

{

// here you can work with the message

CHAPTER 11 ■ INSIDE THE FRAMEWORK 341

// pushing this sink onto the stack
sinkStack.Push (this,null);

// calling the next sink
_nextChnlSink.AsyncProcessRequest(sinkStack,msg,headers,stream);

}
}

The sinkStack object that is passed to AsyncProcessRequest() is of type ClientChannelSinkStack
and implements the following IClientChannelSinkStack interface, which allows a sink to push itself
onto the stack:

public interface IClientChannelSinkStack : IClientResponseChannelSinkStack
{

object Pop(IClientChannelSink sink);
void Push(IClientChannelSink sink, object state);

}

Whatever is being passed as the state parameter of Push() will be received by sink’s
AsyncProcessResponse() method upon completion of the call. It can contain any information
the sink might need while processing the response. For built-in sinks, this will be the original
message that triggered the request.

As the previous interface extends the IClientReponseChannelSinkStack interface, I’ll show
you this one here as well:

public interface IClientResponseChannelSinkStack
{

void AsyncProcessResponse(ITransportHeaders headers, Stream stream);
void DispatchException(Exception e);
void DispatchReplyMessage(IMessage msg);

}

The AsyncProcessResponse() method of the ClientChannelSinkStack pops one sink from
stack and calls this sink’s AsyncProcessResponse() method. Therefore, the “reverse” chaining
that uses the sink stack works simply by recursively calling the stack’s AsyncProcessResponse()
method from each sink. This is shown in the following piece of code:

public class SomeSink: IClientChannelSink
{

public void AsyncProcessResponse(
IClientResponseChannelSinkStack sinkStack,
object state,
ITransportHeaders headers,
Stream stream)

{

// here you can work with the stream or headers

CHAPTER 11 ■ INSIDE THE FRAMEWORK342

// calling the next sink via the sink stack
sinkStack.AsyncProcessResponse(headers,stream);

}
}

Generating the Request
In the following text, I show you how an asynchronous request is generated and how the
response is handled. The example I’ll use is based on the following custom sinks:

• MyMessageSink: A custom IMessageSink

• MyResponseSink: A sink created by MyMessageSink as a handler for the asynchronous
response

• MyChannelSink: A custom IClientChannelSink implementation

Regardless of whether the request is synchronous or asynchronous, the IMessageSink
chain is handled before any calls to a IClientChannelSink. Immediately before the first call to
IClientChannelSink.AsyncProcessRequest(), a ClientSinkStack object is instantiated and gets
a reference to the IMessageSink reply chain. You can see the beginning of an asynchronous call
in Figure 11-9.

Proxies
Transparent & Real

AsyncResult
IMessageSink

AsyncReplySink
IMessageSink

MyReplySink
IMessageSink

ClientChannelSinkStack
IClientChannelSinkStack

MyMessageSink
IMessageSink

SoapClientFormatterSink
IMEssageSink

MyChannelSink
IClientChannelSink

HttpClientTransportSink
IClientChannelSink

new

AsyncProcessMessage()

AsyncProcessMessage()

AsyncProcessRequest()

AsyncProcessRequest()

new

new

return

return

push (this, msg)

push (this, msg)

new
1

2

3

4

Figure 11-9. First phase of an asynchronous call

CHAPTER 11 ■ INSIDE THE FRAMEWORK 343

In Figures 11-10 through 11-13, you’ll see the contents of the replySink and the SinkStack
that are passed as parameters at the points marked (1) through (4) in Figure 11-9. In Figure 11-10
you can see the predefined reply chain that is established for each asynchronous call before
reaching the first IMessageSink. The purpose of these sinks is to handle the asynchronous
response in a form that’s compatible with the “conventional” delegate mechanism.

The final sink for the asynchronous reply will be the AsyncResult object that is returned
from the delegate’s BeginInvoke() method.

ReplySink at 1

AsyncReplySink
IMessageSink

AsyncResultSink
IMessageSink

NextSink

Figure 11-10. SinkStack before call to first custom IMessageSink

When MyMessageSink’s AsyncProcessResponse() method is called, it generates a new reply
sink, named MyReplySink, that is linked to the existing reply chain. You can see the ReplySink
parameter that is passed to the next sink in Figure 11-11.

ReplySink at 2

MyReplySink
IMessageSink

AsyncReplySink
IMessageSink

NextSink

AsyncResult
IMessageSink

NextSink

Figure 11-11. SinkStack before call to SoapClientFormatterSink

Figure 11-12 shows you the contents of the ClientChannelSinkStack after
SoapClientFormatterSink has finished its processing. The stack contains a reference to the
previous IMessageSink stack, shown in Figure 11-11, and points to the first entry in the stack
of IClientFormatterSinks. This is quite interesting insofar as the SOAP formatter has been called
as an IMessageSink but pushes itself onto the stack of IClientChannelSinks.

CHAPTER 11 ■ INSIDE THE FRAMEWORK344

ClientChannelSinkStack at 3

MyReplySink
IMessageSink

AsyncReplySink
IMessageSink

NextSink

ClientChannelSinkStack
IClientChannelSinkStack

_replySink

SoapClientFormatterSink

_stack

ClientChannelSinkStack.SinkStack

Sink

AsyncResult
IMessageSink

NextSink

Figure 11-12. SinkStack before call to first custom IClientChannelSink

When the secondary custom IClientChannelSink object, MyChannelSink, is called, it pushes
itself onto the stack and calls the AsyncProcessRequest() method of HttpClientTransportSink.
In Figure 11-13 you can see the resulting channel sink stack before the HTTP request is sent.

ClientChannelSinkStack at 4

MyReplySink
IMessageSink

AsyncReplySink
IMessageSink

NextSink

ClientChannelSinkStack
IClientChannelSinkStack

_replySink

MyChannelSink

PrevStack

ClientChannelSinkStack.SinkStack

Sink

SoapClientFormatterSink

ClientChannelSinkStack.SinkStack

Sink

AsyncResult
IMessageSink

NextSink

_stack

Figure 11-13. SinkStack before call to HttpClientTransportSink

CHAPTER 11 ■ INSIDE THE FRAMEWORK 345

Handling the Response
On receiving the HTTP response, HttpClientTransportSink calls AsyncProcessResponse() on
the ClientChannelSinkStack. The sink stack then pops the first entry from the stack (using a dif-
ferent implementation, as with its public Pop() method) and calls AsyncProcessResponse() on
the IClientChannelSink that is at the top of the stack. You can see the sequence of calls that fol-
low in Figure 11-14.

HttpClientTransportSink
IClientChannelSink

ClientChannelSinkStack
IClientChannelSinkStack

AsyncProcessResponse()
1

2

pop

pop

3

AsyncProcessResponse()

SyncProcessMessage()

SyncProcessMessage()

SyncProcessMessage()

AsyncProcessResponse()

DispatchReplyMessage()

MyChannelSink
IClientChannelSink

SoapClientFormatterSink
IMessageSink

MyReplySink
IMessageSink

AsyncReplySink
IMessageSink

AsyncResult
IMessageSink

4

Figure 11-14. Handling an asynchronous response

ClientChannelSinkStack at 2

MyReplySink
IMessageSink

AsyncReplySink
IMessageSink

NextSink

ClientChannelSinkStack
IClientChannelSinkStack

_replySink

SoapClientFormatterSink

_stack

ClientChannelSinkStack.SinkStack

Sink

AsyncResult
IMessageSink

NextSink

Figure 11-15. The ClientChannelSinkStack before the first sink is called

Before this call—the point marked with (1) in the diagram—the ClientChannelSinkStack
will look the same as in Figure 11-13. You can see the state of this stack after the “pop” opera-
tion in Figure 11-15.

CHAPTER 11 ■ INSIDE THE FRAMEWORK346

In the following step, the sink stack places a call to the custom MyChannelSink object. This
sink will handle the call as shown in the following source code fragment and will therefore just
proceed with invoking AsyncProcessResponse() on the sink stack again:

public void AsyncProcessResponse(IClientResponseChannelSinkStack sinkStack,
object state,
ITransportHeaders headers,
Stream stream)

{
sinkStack.AsyncProcessResponse(headers,stream);

}

The ClientChannelSinkStack now pops the next sink from the internal stack and forwards
the call on to this SoapClientFormatterSink. You can see the state of the stack at Figure 11-16.

ClientChannelSinkStack at 3

MyReplySink
IMessageSink

AsyncReplySink
IMessageSink

NextSink

ClientChannelSinkStack
IClientChannelSinkStack

_replySink

AsyncResult
IMessageSink

NextSink

Figure 11-16. The stack before the call to the SOAP formatter

The SOAP formatter deserializes the HTTP response and creates a new IMessage object.
This object is then passed as a parameter to the channel sink stack’s DispatchReplyMessage()
method.

The sink stack now calls SyncProcessMessage() on the first entry of its reply sink chain, which
is shown as (4) in the sequence diagram. After this call, the IMessage travels through the sinks
until it reaches the AsyncResult object.

This final sink will examine the response message and prepare the return values for the call
to the Delegate’s EndInvoke() method.

Exception Handling
When an exception occurs during an IClientChannelSink’s processing, it has to call
DispatchException() on the sink stack. The stack in this case generates a new ReturnMessage
object, passing the original exception as a parameter to its constructor. This newly created
return message travels through the chain of IMessageSinks, and the exception will be
“unwrapped” by the AsyncResult sink.

CHAPTER 11 ■ INSIDE THE FRAMEWORK 347

Server-Side Asynchronous Processing
On the server side, there are also two kinds of interfaces: IServerChannelSink and IMessageSink.
The asynchronous processing for objects implementing IMessageSink is handled in the same
way as on the client: the sink has to create another reply sink and pass this to the next sink’s
AsyncProcessMessage() method.

The handling of asynchronous messages for IServerChannelSink objects is a little bit different.
You can see the relevant parts of this interface here:

public interface IServerChannelSink {
ServerProcessing ProcessMessage(IServerChannelSinkStack sinkStack,

IMessage requestMsg,
ITransportHeaders requestHeaders,
Stream requestStream,
ref IMessage responseMsg,
ref ITransportHeaders responseHeaders,
ref Stream responseStream);

void AsyncProcessResponse(IServerResponseChannelSinkStack sinkStack,
object state,
IMessage msg,
ITransportHeaders headers,
Stream stream);

}

When a serialized message is received by an object implementing this interface, it is not
yet determined whether it will be handled synchronously or asynchronously. This can only be
defined after the message later reaches the formatter.

In the meantime, the sink has to assume that the response might be received asynchro-
nously, and therefore will have to push itself (and a possible state object) onto a stack before
calling the next sink.

The call to the next sink returns a ServerProcessing value that can be Completed, Async, or
OneWay. The sink has to check whether this value is Completed and only in such a case might
do any post-processing work in ProcessMessage(). If this returned value is OneWay, the sink
will not receive any further information when the processing has been finished.

When the next sink’s return value is ServerProcessing.Async, the current sink will be
notified via the sink stack when the processing has been completed. The sink stack will call
AsyncProcessResponse() in this case. After the sink has completed the processing of the response,
it has to call sinkStack.AsyncProcessResponse() to forward the call to further sinks.

A sample implementation of ProcessMessage() and AsyncProcessResponse() might look
like this:

public ServerProcessing ProcessMessage(IServerChannelSinkStack sinkStack,
IMessage requestMsg,
ITransportHeaders requestHeaders,
Stream requestStream,
out IMessage responseMsg,
out ITransportHeaders responseHeaders,
out Stream responseStream)

{

CHAPTER 11 ■ INSIDE THE FRAMEWORK348

// handling of the request will be implemented here

// pushing onto stack and forwarding the call
sinkStack.Push(this,null);

ServerProcessing srvProc = _nextSink.ProcessMessage(sinkStack,
requestMsg,
requestHeaders,
requestStream,
out responseMsg,
out responseHeaders,
out responseStream);

if (srvProc == ServerProcessing.Complete) {
// handling of the response will be implemented here

}

// returning status information
return srvProc;

}

public void AsyncProcessResponse(IServerResponseChannelSinkStack sinkStack,
object state,
IMessage msg,
ITransportHeaders headers,
Stream stream)

{

// handling of the response will be implemented here

// forwarding to the stack for further processing
sinkStack.AsyncProcessResponse(msg,headers,stream);

}

Summary
In this chapter, you learned about the details and inner workings of .NET Remoting. You read
about the various processing stages of a message, and you now know the difference between
IMessageSink, IClientChannelSink, and IServerChannelSink. You also know how asynchronous
requests are processed, and that the inner workings of the asynchronous message handling is
different for message sinks and channel sinks.

In the next chapter, I’ll show you how those sinks are created using sink providers.

349

C H A P T E R 1 2

■ ■ ■

Creation of Sinks

The previous chapter showed you the various kinds of sinks and their synchronous and asyn-
chronous processing of requests. What I have omitted until now is one of the most important
steps: the instantiation of sinks and sink chains. Sinks are normally not created directly in either
your code or with the definition in configuration files. Instead, a chain of sink providers is set up,
which will in turn return the sink chains on demand. This chapter shows you the foundation
on which to build your own sinks. The implementation of those custom sinks is presented in
Chapter 13.

Understanding Sink Providers
As you saw in Chapter 4, you can define a chain of sinks in a .NET configuration file as shown in
the following code. (This example is for a client-side configuration file; for server-side chains,
you have to replace clientProviders with serverProviders.)

<configuration>
<system.runtime.remoting>
<application>
<channels>
<channel ref="http">
<clientProviders>

<provider type="MySinks.SomeMessageSinkProvider, Client" />
<formatter ref="soap" />
<provider type="MySinks.SomeClientChannelSinkProvider, Client" />

</clientProviders>
</channel>

</channels>
</application>

</system.runtime.remoting>
</configuration>

CHAPTER 12 ■ CREATION OF SINKS350

To cover this example more thoroughly, I’ll expand the <formatter ref="soap" /> setting
using the “real” value from machine.config (including the necessary strong name here).

<formatter id="soap",
type="System.Runtime.Remoting.Channels.SoapClientFormatterSinkProvider, ➥

System.Runtime.Remoting, Version=1.0.3300.0, Culture=neutral, ➥

PublicKeyToken=b77a5c561934e089"/>

The complete chain now looks like this:

<provider type="MySinks.SomeMessageSinkProvider, Client" />
<formatter id="soap",
type="System.Runtime.Remoting.Channels.SoapClientFormatterSinkProvider, ➥

System.Runtime.Remoting, Version=1.0.3300.0, Culture=neutral, ➥

PublicKeyToken=b77a5c561934e089"/>

<provider type="MySinks.SomeClientChannelSinkProvider, Client" />

As you can see in these examples, the chain is not defined using the sinks’ names/types
(which would be, for example, SoapClientFormatterSink). Instead, a chain of providers is set
up. A provider can be either client side or server side and has to implement at least one of
these interfaces:

public interface IClientChannelSinkProvider
{

IClientChannelSinkProvider Next { get; set; }

IClientChannelSink CreateSink(IChannelSender channel,
string url,
object remoteChannelData);

}

public interface IServerChannelSinkProvider
{

IServerChannelSinkProvider Next { get; set; }

IServerChannelSink CreateSink(IChannelReceiver channel);
void GetChannelData(IChannelDataStore channelData);

}

You can see in this interface declaration that there is indeed a chain set up using the Next
property of each provider.

Creating Client-Side Sinks
After loading the configuration file shown previously, this provider chain will consist of the objects
shown in Figure 12-1. The first three providers are loaded from the configuration, whereas the
last one (HttpClientTransportSinkProvider) is by default instantiated by the HTTP channel.

CHAPTER 12 ■ CREATION OF SINKS 351

SomeMessageSinkProvider
IClientChannelSinkProvider

SoapClientFormatterSinkProvider
IClientVChannelSinkProvider

SomeClientChannelSinkProvider
IClientChannelSinkProvider

HttpClientTransportSinkProvider
IClientChannelSinkProvider

Next

Next

Next

Figure 12-1. Chain of providers

SomeMessageSinkProvider
IClientChannelSinkProvider

SoapClientFormatterSinkProvider
IClientVChannelSinkProvider

SomeClientChannelSinkProvider
IClientChannelSinkProvider

HttpClientTransportSinkProvider
IClientChannelSinkProvider

Next

Next

HttpChannel
IChannel

HttpClientChannel
IChannel

_sinkProvider

_clientChannel

Next

Figure 12-2. IChannel with populated sink providers

On the client side, these sink providers are associated with the client-side channel. You
can access the channel object using the following line of code:

IChannel chnl = ChannelServices.GetChannel("http");

■Note The “http” in this code line refers to the channel’s unique name. For HTTP and binary channels,
these names are set in machine.config.

The channel object’s contents relevant for creation of the sinks are shown in Figure 12-2.

CHAPTER 12 ■ CREATION OF SINKS352

RemotingServices ChannelServices HttpChannel HttpClientChannel SomeMessage
SinkProvider

SomeClientChannel
SinkProvider

Connect()

CreateMessageSink()

CreateMessageSink()
This will be called for
all registered channels
until one returns
a IMessageSink ! = null

CreateSink()

CreateSink()

CreateSink()

CreateMessageSink

Figure 12-3. Creation of sinks from a chain of providers

When a reference to a remote SAO object is created (for CAOs, an additional ConstructionCall
message is sent to the server and the proxy’s identity object populated), a lot of things happen
behind the scenes. At some time during the use of the new operator or the call to Activator.
GetObject(), the method RemotingServices.Connect() is called. What happens after this call is
shown (in part) in Figure 12-3.

After being invoked from RemotingServices, ChannelServices calls CreateMessageSink()
on each registered channel until one of them accepts the URL that is passed as a parameter. The
HTTP channel, for example, will work on any URLs that start with http: or https:, whereas the TCP
channel will only accept those with a tcp: protocol designator.

When the channel recognizes the given URL, it calls CreateMessageSink() on its client-side
channel.

■Note The HTTP channel internally consists of both the client-side and the server-side transport channel.

HttpClientChannel, in turn, invokes CreateSink() on the first sink provider (as shown in
Figure 12-3). What the different sink providers do now corresponds to the following code (shown
for a sample SomeClientChannelSinkProvider):

public class SomeClientChannelSinkProvider: IClientChannelSinkProvider
{

private IClientChannelSinkProvider next = null;

public IClientChannelSink CreateSink(IChannelSender channel,
string url,
object remoteChannelData)

{
IClientChannelSink nextSink = null;

CHAPTER 12 ■ CREATION OF SINKS 353

// checking for additional sink providers
if (next != null)

{
nextSink = next.CreateSink(channel,url,remoteChannelData);

}

// returning first entry of a sink chain
return new SomeClientChannelSink(nextSink);

}
}

Each sink provider first calls CreateSink() on the next entry in the provider chain and then
returns its own sink on top of the sink chain returned from this call. The exact syntax for plac-
ing a new sink at the beginning of the chain is not specified, but in this case the Some-
ClientSink provides a constructor that takes an IClientChannelSink object as a parameter
and sets its _nextChnlSink instance variable as shown in the following snippet (again, only parts
of the class are shown here):

public class SomeClientChannelSink: IClientChannelSink
{

private IClientChannelSink _nextChnlSink;

public SomeClientChannelSink (IClientChannelSink next)
{

_nextChnlSink = next;
}

}

The complete sink chain that is returned from the call to ChannelServices.CreateMessageSink()
is then connected to a new TransparentProxy/RealProxy pair’s identity object, as shown in
Figure 12-4.

TransparentProxy

RemotingProxy
(RealProxy)

Identity

First sink in chain
(IMessageSink)

_rp

_identity

_channelSink

Figure 12-4. The first IMessageSink is connected to the TransparentProxy.

CHAPTER 12 ■ CREATION OF SINKS354

SdlChannelSinkProvider
IServerChannelSinkProvider

SoapServerFormatterSinkProvider
IServerChannelSinkProvider

BinaryServerFormatterSinkProvider
IServerChannelSinkProvider

Next

Next

Figure 12-5. The HttpServerChannel’s default sink chain

Creating Server-Side Sinks
The creation of server-side sinks works a little differently from the creation of the client-side
sinks. As you’ve seen previously, on the client side the necessary sinks are created when a refer-
ence to a remote object is acquired. Contrary to this, server-side sinks are created as soon as
a channel is registered.

When the server-side channel is created from a definition in a configuration file, the fol-
lowing constructor will be used:

public HttpServerChannel(IDictionary properties,
IServerChannelSinkProvider sinkProvider)

The IDictionary is taken from the attributes of the <channel> section. When your configu-
ration file, for example, contains this line:

<channel ref="http" port="1234" />

then the properties dictionary will contain one entry with the key “port” and value 1234.
In the sinkProvider parameter to the constructor, the first entry to the chain of sink providers

will be passed to the channel. This chain is constructed from the entries of the <serverProviders>
setting in the configuration file.

During the channel setup, which is started from the HTTP channel’s constructor, one of
two things will happen now. If the <serverProviders> setting is missing, the default sink chain,
which is shown in Figure 12-5, will be created.

When <serverProviders> has been specified in the configuration file, the sink chain will be
created from those values, and none of those default sink providers will be used.

■Note This is quite interesting, because in this case, you will not be able to use the ?WSDL parameter
to the URL of your SAO to generate WSDL without explicitly specifying SdlChannelSinkProvider in the
<serverProviders> section.

CHAPTER 12 ■ CREATION OF SINKS 355

After this chain of providers has been created, ChannelServices.
CreateServerChannelSinkChain() is called. This method takes the sink provider chain as
a parameter. It then walks the chain and adds a DispatchChannelSinkProvider object at the
end of the chain before calling its CreateSink() method. Finally, it returns the generated sink
chain. After receiving this object from ChannelServices, HttpServerChannel will add an
HttpServerTransportSink as the first element. The resulting server-side channel object is
shown in Figure 12-6.

HttpChannel
IChannel

_serverChannel

_transportSink

ChannelSinkChain

_sinkChain
NextChannelSink

NextChannelSink

NextChannelSink

NextChannelSink

HttpServerChannel
IChannel

HttpServerTransportSink
IServerChannelSink

SdlChannelSink
IServerChannelSink

SoapServerFormatterSink
IServerChannelSink

BinaryServerFormatterSink
IServerChannelSink

DispatchChannelSink
IServerChannelSink

Figure 12-6. The complete server-side HTTP channel’s sink stack

CHAPTER 12 ■ CREATION OF SINKS356

Using Dynamic Sinks
As you’ve seen in the previous chapter, both the client-side and the server-side sink chain can
call dynamic sinks. On the server side this is done by the CrossContextChannel and on the
client side by the ClientContextTerminatorSink.

Dynamic sinks are associated with a specific context (you can read more about contexts in
Chapter 11) and therefore will be called for all calls passing a context boundary. They cannot
be assigned to a specific channel and will even be called for local cross-context or cross-
AppDomain calls. The sinks are created by dynamic context properties, which are classes
implementing IDynamicProperty and IContributeDynamicSink.

■Note IContributeDynamicSink can be compared to a sink provider for dynamic sinks.

The corresponding interfaces are shown here:

public interface IDynamicProperty
{

string Name { get; }
}

public interface IContributeDynamicSink
{

IDynamicMessageSink GetDynamicSink();
}

The dynamic sink itself, which has to be returned from GetDynamicSink(), implements the
following IDynamicMessageSink interface:

public interface IDynamicMessageSink
{

void ProcessMessageStart(IMessage reqMsg, bool bCliSide, bool bAsync);
void ProcessMessageFinish(IMessage replyMsg, bool bCliSide, bool bAsync);

}

As the names imply, the ProcessMessageStart() method is called before the message trav-
els further through the chain, and ProcessMessageFinish() is called when the call has been
handled by the sink.

The following dynamic sink will simply write a line to the console, whenever a message
passes a remoting boundary:

public class MyDynamicSinkProvider: IDynamicProperty, IContributeDynamicSink
{

public string Name
{

get { return "MyDynamicSinkProvider"; }
}

CHAPTER 12 ■ CREATION OF SINKS 357

public IDynamicMessageSink GetDynamicSink()
{

return new MyDynamicSink();
}

}

public class MyDynamicSink: IDynamicMessageSink
{

public void ProcessMessageStart(IMessage reqMsg, bool bCliSide,
bool bAsync)

{
Console.WriteLine("--> MyDynamicSink: ProcessMessageStart");

}

public void ProcessMessageFinish(IMessage replyMsg, bool bCliSide,
bool bAsync)

{
Console.WriteLine("--> MyDynamicSink: ProcessMessageFinish");

}
}

To register an IDynamicProperty with the current context, you can use the following code:

Context ctx = Context.DefaultContext;
IDynamicProperty prp = new MyDynamicSinkProvider();
Context.RegisterDynamicProperty(prp, null, ctx);

Summary
In this chapter, you read about the creation of the various kinds of sinks. Together with the pre-
vious chapter, you’re now fully equipped to implement your own sinks to enhance the feature
set of .NET Remoting. You also made first contact with dynamic context sinks, a topic that is
covered in more detail in Chapter 15.

I admit that the last two chapters have been quite heavy in content, but in the next chapter
I reward your patience by showing some real-world sinks that employ all the techniques pre-
sented here.

359

C H A P T E R 1 3

■ ■ ■

Extending .NET Remoting

In Chapters 11 and 12, I told you a lot about the various places in your remoting applications
that can be extended by custom sinks and providers. What I didn’t tell you is why you’d want to
change the default remoting behavior. There are a lot of reasons for doing so:

• Compression or encryption of the message’s contents.

• Passing additional information from the client to the server. For example, you could pass
the client-side thread’s priority to the server so that the remote execution is performed
using the same priority.

• Extending the “look and feel” of .NET Remoting. You could, for example, switch to a per-
host authentication model instead of the default per-object model.

• Debugging your applications by dumping the message’s contents to the console or to
a log file.

• And last but not least, custom sinks and providers enable you to use other transport
mediums such as MSMQ or even SMTP/POP3.

You might ask why Microsoft hasn’t already implemented these features itself. The only
answer I can give you is that most programmers, including myself, really prefer being able to
change the framework and add the necessary features themselves in a clean and documented
way. You can look forward to getting message sinks from various third-party providers, includ-
ing Web sites from which you can download sinks with included source code.

Creating a Compression Sink
The first thing to ask yourself before starting to implement a new feature for .NET Remoting is
whether you’ll want to work on the original message (that is, the underlying dictionary) or on
the serialized message that you’ll get from the stream. In the case of compression, you won’t really
care about the message’s contents and instead just want to compress the resulting stream at the
client side and decompress it on the server side before reaching the server’s SoapFormatter.

You can see the planned client-side sink chain in Figure 13-1 and the server-side chain in
Figure 13-2.

CHAPTER 13 ■ EXTENDING .NET REMOTING360

SoapClientFormatterSink
IMessageSink

CompressionClientSink
IClientChannelSink

HttpClientTransportSink
IClientChannelSink

Figure 13-1. Client-side sink chain with the compression sink

SoapServerFormatterSink
IServerChannelSink

CompressionServerSink
IServerChannelSink

HttpServerTransportSink
IServerChannelSink

Figure 13-2. Server-side sink chain with the compression sink

After having decided upon the two new sinks, you can identify all classes that need to be
written.

• CompressionClientSink: Implements IClientChannelSink, compresses the request
stream, and decompresses the response stream

• CompressionClientSinkProvider: Implements IClientChannelSinkProvider and is
responsible for the creation of the sink

• CompressionServerSink: Implements IServerChannelSink, decompresses the request,
and compresses the response before it is sent back to the client

• CompressionServerSinkProvider: Implements IServerChannelSinkProvider and creates
the server-side sink

Unfortunately, the .NET Framework only added support for compression with version 2.0, so
you will have to use a third-party compression library if you are running on version 1.0 or 1.1. I’d
like to recommend using Mike Krueger’s SharpZipLib (available from http://www.icsharpcode.net/
OpenSource/SharpZipLib/Default.aspx). This is an open source C# library that is covered by
a liberated GPL license. To quote the Web page: “In plain English, this means you can use this
library in commercial closed-source applications.”

CHAPTER 13 ■ EXTENDING .NET REMOTING 361

Implementing the Client-Side Sink
The client-side sink extends BaseChannelSinkWithProperties and implements IClientChannelSink.
In Listing 13-1, you can see a skeleton client channel sink. The positions at which you’ll have to
implement the preprocessing and post-processing logic have been marked “TODO.” This is a fully
working sink—it simply doesn’t do anything useful yet.

Listing 13-1. A Skeleton IClientChannelSink

using System;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Messaging;
using System.IO;

namespace CompressionSink
{

public class CompressionClientSink: BaseChannelSinkWithProperties,
IClientChannelSink

{
private IClientChannelSink _nextSink;

public CompressionClientSink(IClientChannelSink next)
{

_nextSink = next;
}

public IClientChannelSink NextChannelSink
{

get {
return _nextSink;

}
}

public void AsyncProcessRequest(IClientChannelSinkStack sinkStack,
IMessage msg,
ITransportHeaders headers,
Stream stream)

{
// TODO: Implement the preprocessing

sinkStack.Push(this,null);
_nextSink.AsyncProcessRequest(sinkStack,msg,headers,stream);

}

CHAPTER 13 ■ EXTENDING .NET REMOTING362

public void AsyncProcessResponse(IClientResponseChannelSinkStack sinkStack,
object state,
ITransportHeaders headers,
Stream stream)

{

// TODO: Implement the post-processing

sinkStack.AsyncProcessResponse(headers,stream);
}

public Stream GetRequestStream(IMessage msg,
ITransportHeaders headers)

{
return _nextSink.GetRequestStream(msg, headers);

}

public void ProcessMessage(IMessage msg,
ITransportHeaders requestHeaders,
Stream requestStream,
out ITransportHeaders responseHeaders,
out Stream responseStream)

{
// TODO: Implement the preprocessing

_nextSink.ProcessMessage(msg,
requestHeaders,
requestStream,
out responseHeaders,
out responseStream);

// TODO: Implement the post-processing

}
}

}

Before filling this sink with functionality, you create a helper class that communicates with
the compression library and returns a compressed or uncompressed copy of a given stream. You
can see this class in Listing 13-2.

Listing 13-2. Class Returning Compressed or Uncompressed Streams

using System;
using System.IO;
using NZlib.Compression;
using NZlib.Streams;

CHAPTER 13 ■ EXTENDING .NET REMOTING 363

namespace CompressionSink {
public class CompressionHelper {

public static Stream GetCompressedStreamCopy(Stream inStream) {
Stream outStream = new System.IO.MemoryStream();
DeflaterOutputStream compressStream = new DeflaterOutputStream(

outStream,new Deflater(Deflater.BEST_COMPRESSION));
byte[] buf = new Byte[1000];
int cnt = inStream.Read(buf,0,1000);
while (cnt>0) {

compressStream.Write(buf,0,cnt);
cnt = inStream.Read(buf,0,1000);

}
compressStream.Finish();
compressStream.Flush();
outStream.Seek(0,SeekOrigin.Begin);
return outStream;

}

public static Stream GetUncompressedStreamCopy(Stream inStream) {
MemoryStream outStream = new MemoryStream();
inStream = new InflaterInputStream(inStream);
byte[] buf = new Byte[1000];
int cnt = inStream.Read(buf,0,1000);
while (cnt>0)
{

outStream.Write(buf,0,cnt);
cnt = inStream.Read(buf,0,1000);

}
outStream.Seek(0,SeekOrigin.Begin);
return outStream;

}
}

}

When implementing the compression functionality in the client-side sink, you have to
deal with both synchronous and asynchronous processing. The synchronous implementation
is quite straightforward. Before passing control further down the chain, the sink simply com-
presses the stream. When it has finished processing (that is, when the server has sent its response),
the message sink will decompress the stream and return it to the calling function as an out
parameter.

public void ProcessMessage(IMessage msg,
ITransportHeaders requestHeaders,
Stream requestStream,
out ITransportHeaders responseHeaders,
out Stream responseStream)

{
// generate a compressed stream using NZipLib
requestStream = CompressionHelper.GetCompressedStreamCopy(requestStream);

CHAPTER 13 ■ EXTENDING .NET REMOTING364

// forward the call to the next sink
_nextSink.ProcessMessage(msg, requestHeaders, requestStream,

out responseHeaders, out responseStream);
// uncompress the response
responseStream = CompressionHelper.GetUncompressedStreamCopy(responseStream);

}

As you’ve seen in the previous chapter, asynchronous handling is split between two methods.
In the current example, you add the compression to AsyncProcessRequest() and the decom-
pression to AsyncProcessResponse(), as shown in the following piece of code:

public void AsyncProcessRequest(IClientChannelSinkStack sinkStack,
IMessage msg,
ITransportHeaders headers,
Stream stream)

{

// generate a compressed stream using NZipLib
stream = CompressionHelper.GetCompressedStreamCopy(stream);

// push onto stack and forward the request
sinkStack.Push(this,null);
_nextSink.AsyncProcessRequest(sinkStack,msg,headers,stream);

}

public void AsyncProcessResponse(IClientResponseChannelSinkStack sinkStack,
object state,
ITransportHeaders headers,
Stream stream)

{

// uncompress the response
stream = CompressionHelper.GetUncompressedStreamCopy(stream);

// forward the request
sinkStack.AsyncProcessResponse(headers,stream);

}

Implementing the Server-Side Sink
The server-side sink’s task is to decompress the incoming stream before passing it on to the
formatter. In Listing 13-3, you can see a skeleton IServerChannelSink.

Listing 13-3. A Basic IServerChannelSink

using System;
using System.Runtime.Remoting.Channels;

CHAPTER 13 ■ EXTENDING .NET REMOTING 365

using System.Runtime.Remoting.Messaging;
using System.IO;

namespace CompressionSink
{

public class CompressionServerSink: BaseChannelSinkWithProperties,
IServerChannelSink

{

private IServerChannelSink _nextSink;

public CompressionServerSink(IServerChannelSink next)
{

_nextSink = next;
}

public IServerChannelSink NextChannelSink
{

get
{

return _nextSink;
}

}

public void AsyncProcessResponse(IServerResponseChannelSinkStack sinkStack,
object state,
IMessage msg,
ITransportHeaders headers,
Stream stream)

{
// TODO: Implement the post-processing

// forwarding to the stack for further processing
sinkStack.AsyncProcessResponse(msg,headers,stream);

}

public Stream GetResponseStream(IServerResponseChannelSinkStack sinkStack,
object state,
IMessage msg,
ITransportHeaders headers)

{
return null;

}

public ServerProcessing ProcessMessage(IServerChannelSinkStack sinkStack,
IMessage requestMsg,
ITransportHeaders requestHeaders,

CHAPTER 13 ■ EXTENDING .NET REMOTING366

Stream requestStream,
out IMessage responseMsg,
out ITransportHeaders responseHeaders,
out Stream responseStream)

{
// TODO: Implement the preprocessing

// pushing onto stack and forwarding the call
sinkStack.Push(this,null);

ServerProcessing srvProc = _nextSink.ProcessMessage(sinkStack,
requestMsg,
requestHeaders,
requestStream,
out responseMsg,
out responseHeaders,
out responseStream);

// TODO: Implement the post-processing

// returning status information
return srvProc;

}
}

}

An interesting difference between client-side and server-side sinks is that the server-side
sink does not distinguish between synchronous and asynchronous calls during the request
stage. Only later in the sink stack will this decision be made and the call possibly returned
asynchronously—therefore you always have to push the current sink onto the sinkStack when-
ever you want the response to be post-processed. To follow the preceding example, you imple-
ment ProcessMessage() and AsyncProcessResponse() to decompress the request and compress
the response.

public ServerProcessing ProcessMessage(IServerChannelSinkStack sinkStack,
IMessage requestMsg,
ITransportHeaders requestHeaders,
Stream requestStream,
out IMessage responseMsg,
out ITransportHeaders responseHeaders,
out Stream responseStream)

{
// uncompressing the request
requestStream =
CompressionHelper.GetUncompressedStreamCopy(requestStream);

// pushing onto stack and forwarding the call
sinkStack.Push(this,null);

CHAPTER 13 ■ EXTENDING .NET REMOTING 367

ServerProcessing srvProc = _nextSink.ProcessMessage(sinkStack,
requestMsg, requestHeaders, requestStream,
out responseMsg, out responseHeaders, out responseStream);

// compressing the response
responseStream =
CompressionHelper.GetCompressedStreamCopy(responseStream);

// returning status information
return srvProc;

}

public void AsyncProcessResponse(IServerResponseChannelSinkStack sinkStack,
object state,
IMessage msg,
ITransportHeaders headers,
Stream stream)

{
// compressing the response
stream = CompressionHelper.GetCompressedStreamCopy(stream);

// forwarding to the stack for further processing
sinkStack.AsyncProcessResponse(msg,headers,stream);

}

Congratulations! If you’ve been following along with the examples, you have now finished
your first channel sinks. To start using them, you only have to implement two providers that
take care of the sinks’ initialization.

Creating the Sink Providers
Before you can use your sinks in a .NET Remoting application, you have to create a server-side
and a client-side sink provider. These classes look nearly identical for most sinks you’re going
to implement.

In the CreateSink() method, you first create the next provider’s sinks and then put the
compression sink on top of the chain before returning it, as shown in Listing 13-4.

Listing 13-4. The Client-Side Sink Provider

using System;
using System.Runtime.Remoting.Channels;
using System.Collections;

namespace CompressionSink
{

public class CompressionClientSinkProvider: IClientChannelSinkProvider
{

private IClientChannelSinkProvider _nextProvider;

CHAPTER 13 ■ EXTENDING .NET REMOTING368

public CompressionClientSinkProvider(IDictionary properties,
ICollection providerData)

{
// not yet needed

}

public IClientChannelSinkProvider Next
{

get {return _nextProvider; }
set {_nextProvider = value;}

}

public IClientChannelSink CreateSink(IChannelSender channel,
string url,
object remoteChannelData)

{
// create other sinks in the chain
IClientChannelSink next = _nextProvider.CreateSink(channel,

url,
remoteChannelData);

// put our sink on top of the chain and return it
return new CompressionClientSink(next);

}
}

}

The server-side sink provider that is shown in Listing 13-5 looks nearly identical, but
returns IServerChannelSink instead of IClientChannelSink.

Listing 13-5. The Server-Side Sink Provider

using System;
using System.Runtime.Remoting.Channels;
using System.Collections;

namespace CompressionSink
{

public class CompressionServerSinkProvider: IServerChannelSinkProvider
{

private IServerChannelSinkProvider _nextProvider;

public CompressionServerSinkProvider(IDictionary properties,
ICollection providerData)

{
// not yet needed

}

CHAPTER 13 ■ EXTENDING .NET REMOTING 369

public IServerChannelSinkProvider Next
{

get {return _nextProvider; }
set {_nextProvider = value;}

}

public IServerChannelSink CreateSink(IChannelReceiver channel)
{

// create other sinks in the chain
IServerChannelSink next = _nextProvider.CreateSink(channel);

// put our sink on top of the chain and return it
return new CompressionServerSink(next);

}

public void GetChannelData(IChannelDataStore channelData)
{

// not yet needed
}

}
}

Using the Sinks
To use the sinks on the client and server side of a channel, you simply have to include them in
your configuration files. In the client-side configuration file, you have to incorporate the infor-
mation shown in the following code. If you place the CompressionSink assembly in the GAC,
mind that you have to specify the complete strong name in the type attribute!

<configuration>
<system.runtime.remoting>
<application>
<channels>
<channel ref="http">

<clientProviders>
<formatter ref="soap" />
<provider
type="CompressionSink.CompressionClientSinkProvider, CompressionSink" />

</clientProviders>

</channel>
</channels>
</application>
</system.runtime.remoting>
</configuration>

CHAPTER 13 ■ EXTENDING .NET REMOTING370

Figure 13-3. TCP trace of an HTTP/SOAP connection1

The server-side configuration file will look similar to the following:

<configuration>
<system.runtime.remoting>
<application>
<channels>
<channel ref="http" port="1234">

<serverProviders>
<provider
type="CompressionSink.CompressionServerSinkProvider, CompressionSink" />
<formatter ref="soap"/>

</serverProviders>

</channel>
</channels>
</application>
</system.runtime.remoting>
</configuration>

Figure 13-3 shows a TCP trace from a client/server connection that isn’t using this sink,
whereas Figure 13-4 shows the improvement when compression is used.

1. You can get this tcpTrace tool at http://www.pocketsoap.com.

CHAPTER 13 ■ EXTENDING .NET REMOTING 371

Figure 13-4. TCP trace of an HTTP connection with compressed content

In the circled area, you can see that the HTTP Content-Length header goes down from 549
bytes to 234 bytes when using the compression sink.

■Note This is a proof-of-concept example. Instead of using compression in this scenario, you could easily
switch to binary encoding to save even more bytes to transfer. But keep in mind that the compression sink
also works with the binary formatter!

Extending the Compression Sink
The server-side sink as presented in the previous section has at least one serious problem
when used in real-world applications: it doesn’t yet detect whether the stream is compressed
or not and will always try to decompress it. This will lead to an inevitable exception when the
request stream has not been compressed before.

In an average remoting scenario, you have two types of users. On the one hand, there are
local (LAN) users who connect to the server via high-speed links. If these users compress their
requests, it’s quite possible that the stream compression would take up more time (in regard to
client- and server-side CPU time plus transfer time) than the network transfer of the uncom-
pressed stream would. On the other hand, you might have several remote users who connect
via lines ranging from speedy T1s down to 9600 bps wireless devices. These users will quite
certainly profit from sending requests in a compressed way.

The first step to take when implementing these additional capabilities in a channel sink is
to determine how the server will know that the request stream is compressed. Generally this
can be done by adding additional fields to the ITransportHeader object that is passed as a param-
eter to ProcessMessage() and AsyncProcessRequest().

These headers are then transferred to the server and can be obtained by the server-side
sink by using the ITransportHeaders that it receives as a parameter to its ProcessMessage()
method. By convention, these additional headers should start with the prefix X-, so that you
can simply add a statement like the following in the client-side sink’s ProcessMessage() method
to indicate that the content will be compressed:

CHAPTER 13 ■ EXTENDING .NET REMOTING372

requestHeaders["X-Compress"]="yes";
The complete AsyncProcessRequest() method now looks like this:

public void AsyncProcessRequest(IClientChannelSinkStack sinkStack,
IMessage msg,
ITransportHeaders headers,
Stream stream)

{
headers["X-Compress"]="yes";

stream = CompressionHelper.GetCompressedStreamCopy(stream);

// push onto stack and forward the request
sinkStack.Push(this,null);
_nextSink.AsyncProcessRequest(sinkStack,msg,headers,stream);

}

When the server receives this request, it processes the message and replies with a com-
pressed stream as well. The server also indicates this compression by setting the X-Compress
header. The complete client-side code for AsyncProcessResponse() and ProcessMessage() will
therefore look at the response headers and decompress the message if necessary.

public void ProcessMessage(IMessage msg,
ITransportHeaders requestHeaders,
Stream requestStream,
out ITransportHeaders responseHeaders,
out Stream responseStream)

{

requestStream = CompressionHelper.GetCompressedStreamCopy(requestStream);
requestHeaders["X-Compress"] = "yes";

// forward the call to the next sink
_nextSink.ProcessMessage(msg,

requestHeaders,
requestStream,
out responseHeaders,
out responseStream);

// deflate the response if necessary
String xcompress = (String) responseHeaders["X-Compress"];

if (xcompress != null && xcompress == "yes")
{

responseStream =
CompressionHelper.GetUncompressedStreamCopy(responseStream);

}
}

CHAPTER 13 ■ EXTENDING .NET REMOTING 373

public void AsyncProcessResponse(IClientResponseChannelSinkStack sinkStack,
object state,
ITransportHeaders headers,
Stream stream)

{

// decompress the stream if necessary
String xcompress = (String) headers["X-Compress"];

if (xcompress != null && xcompress == "yes")
{

stream = CompressionHelper.GetUncompressedStreamCopy(stream);
}

// forward the request
sinkStack.AsyncProcessResponse(headers,stream);

}

The server-side channel sink’s ProcessMessage() method works a little bit differently. As
you’ve seen in Chapter 11, when the message reaches this method, it’s not yet determined
whether the call will be executed synchronously or asynchronously. Therefore the sink has to
push itself onto a sink stack that will be used when replying asynchronously.

As the AsyncProcessResponse() method for the channel sink has to know whether the
original request has been compressed or not, you’ll need to use the second parameter of the
sinkStack.Push() method, which is called during ProcessMessage(). In this parameter you can
put any object that enables you to later determine the state of the request. This state object will
be passed as a parameter to AsyncProcessResponse(). The complete server-side implementation
of ProcessMessage() and AsyncProcessResponse() therefore looks like this:

public ServerProcessing ProcessMessage(IServerChannelSinkStack sinkStack,
IMessage requestMsg,
ITransportHeaders requestHeaders,
Stream requestStream,
out IMessage responseMsg,
out ITransportHeaders responseHeaders,
out Stream responseStream)

{

bool isCompressed=false;

// decompress the stream if necessary
String xcompress = (String) requestHeaders["X-Compress"];
if (xcompress != null && xcompress == "yes")
{

requestStream = CompressionHelper.GetUncompressedStreamCopy(requestStream);
isCompressed = true;

}

CHAPTER 13 ■ EXTENDING .NET REMOTING374

// pushing onto stack and forwarding the call.
// the state object contains true if the request has been compressed,
// else false.
sinkStack.Push(this,isCompressed);

ServerProcessing srvProc = _nextSink.ProcessMessage(sinkStack,
requestMsg,
requestHeaders,
requestStream,
out responseMsg,
out responseHeaders,
out responseStream);

if (srvProc == ServerProcessing.Complete) {
// compressing the response if necessary
if (isCompressed)
{

responseStream=
CompressionHelper.GetCompressedStreamCopy(responseStream);

responseHeaders["X-Compress"] = "yes";
}

}
// returning status information
return srvProc;

}

public void AsyncProcessResponse(IServerResponseChannelSinkStack sinkStack,
object state,
IMessage msg,
ITransportHeaders headers,
Stream stream)

{
// fetching the flag from the async-state
bool hasBeenCompressed = (bool) state;

// compressing the response if necessary
if (hasBeenCompressed)
{

stream=CompressionHelper.GetCompressedStreamCopy(stream);
headers["X-Compress"] = "yes";

}

// forwarding to the stack for further processing
sinkStack.AsyncProcessResponse(msg,headers,stream);

}

CHAPTER 13 ■ EXTENDING .NET REMOTING 375

Figure 13-5. The compressed HTTP request

Figure 13-6. The compressed HTTP response

As you can see in Figure 13-5, which shows the HTTP request, and Figure 13-6, which
shows the corresponding response, the complete transfer is compressed and the custom HTTP
header X-Compress is populated.

Encrypting the Transfer
Even though using an asymmetric/symmetric combination such as HTTPS/SSL for the encryp-
tion of the network traffic provides the only real security, in some situations HTTPS isn’t quite
helpful.

First, .NET Remoting by default only supports encryption when using an HTTP channel
and when hosting the server-side components in IIS. If you want to use a TCP channel or host
your objects in a Windows service, there’s no default means of secure communication.

CHAPTER 13 ■ EXTENDING .NET REMOTING376

Second, even if you use IIS to host your components, callbacks that are employed with
event notification will not be secured. This is because your client (which is the server for the
callback object) does not publish its objects using HTTPS, but only HTTP.

Essential Symmetric Encryption
Symmetric encryption is based on one key fact: client and server will have access to the same
encryption key. This key is not a password as you might know it, but instead is a binary array in
common sizes from 40 to 192 bits. Additionally, you have to choose from among a range of
encryption algorithms supplied with the .NET Framework: DES, TripleDES, RC2, or Rijndael.

To generate a random key for a specified algorithm, you can use the following code snippet.
You will find the key in the byte[] variable mykey afterwards.

String algorithmName = "TripleDES";
SymmetricAlgorithm alg = SymmetricAlgorithm.Create(algorithmName);

int keylen = 128;
alg.KeySize = keylen;
alg.GenerateKey();

byte[] mykey = alg.Key;

Because each algorithm has a limited choice of valid key lengths, and because you might
want to save this key to a file, you can run the separate KeyGenerator console application, which
is shown in Listing 13-6.

Listing 13-6. A Complete Keyfile Generator

using System;
using System.IO;
using System.Security.Cryptography;

class KeyGen
{

static void Main(string[] args)
{

if (args.Length != 1 && args.Length != 3)
{

Console.WriteLine("Usage:");
Console.WriteLine("KeyGenerator <Algorithm> [<KeySize> <Outputfile>]");
Console.WriteLine("Algorithm can be: DES, TripleDES, RC2 or Rijndael");
Console.WriteLine();
Console.WriteLine("When only <Algorithm> is specified, the program");
Console.WriteLine("will print a list of valid key sizes.");
return;

}

String algorithmname = args[0];

CHAPTER 13 ■ EXTENDING .NET REMOTING 377

SymmetricAlgorithm alg = SymmetricAlgorithm.Create(algorithmname);

if (alg == null)
{

Console.WriteLine("Invalid algorithm specified.");
return;

}

if (args.Length == 1)
{

// just list the possible key sizes
Console.WriteLine("Legal key sizes for algorithm {0}:",algorithmname);
foreach (KeySizes size in alg.LegalKeySizes)
{

if (size.SkipSize != 0)
{

for (int i = size.MinSize;i<=size.MaxSize;i=i+size.SkipSize)
{

Console.WriteLine("{0} bit", i);
}

}
else
{

if (size.MinSize != size.MaxSize)
{

Console.WriteLine("{0} bit", size.MinSize);
Console.WriteLine("{0} bit", size.MaxSize);

}
else
{

Console.WriteLine("{0} bit", size.MinSize);
}

}
}
return;

}

// user wants to generate a key
int keylen = Convert.ToInt32(args[1]);
String outfile = args[2];
try
{

alg.KeySize = keylen;
alg.GenerateKey();
FileStream fs = new FileStream(outfile,FileMode.CreateNew);
fs.Write(alg.Key,0,alg.Key.Length);
fs.Close();

CHAPTER 13 ■ EXTENDING .NET REMOTING378

Console.WriteLine("{0} bit key written to {1}.",
alg.Key.Length * 8,
outfile);

}
catch (Exception e)
{

Console.WriteLine("Exception: {0}" ,e.Message);
return;

}

}
}

When this key generator is invoked with KeyGenerator.exe (without any parameters), it
will print a list of possible algorithms. You can then run KeyGenerator.exe <AlgorithmName>
to get a list of possible key sizes for the chosen algorithm. To finally generate the key, you have
to start KeyGenerator.exe <AlgorithmName> <KeySize> <OutputFile>. To generate a 128-bit
key for a TripleDES algorithm and save it in c:\testfile.key, run KeyGenerator.exe TripleDES 128
c:\testfile.key.

The Initialization Vector
Another basic of symmetric encryption is the use of a random initialization vector (IV). This is
again a byte array, but it’s not statically computed during the application’s development. Instead,
a new one is generated for each encryption taking place.

To successfully decrypt the message, both the key and the initialization vector have to be
known to the second party. The key is determined during the application’s deployment (at least
in the following example) and the IV has to be sent via remoting boundaries with the original
message. The IV is therefore not secret on its own.

Creating the Encryption Helper
Next I show you how to build this sink in the same manner as the previous CompressionSink,
which means that the sink’s core logic will be extracted to a helper class. I call this class
EncryptionHelper. The encryption helper will implement two methods, ProcessOutboundStream()
and ProcessInboundStream(). The methods’ signatures look like this:

public static Stream ProcessOutboundStream(
Stream inStream,
String algorithm,
byte[] encryptionkey,
out byte[] encryptionIV)

public static Stream ProcessInboundStream(
Stream inStream,
String algorithm,
byte[] encryptionkey,
byte[] encryptionIV)

CHAPTER 13 ■ EXTENDING .NET REMOTING 379

As you can see in the signatures, both methods take a stream, the name of a valid crypto-
algorithm, and a byte array that contains the encryption key as parameters. The first method is
used to encrypt the stream. It also internally generates the IV and returns it as an out param-
eter. This IV then has to be serialized by the sink and passed to the other party in the remoting
call. ProcessInboundStream(), on the other hand, expects the IV to be passed to it, so this value
has to be obtained by the sink before calling this method. The implementation of these helper
methods can be seen in Listing 13-7.

Listing 13-7. The EncryptionHelper Encapsulates the Details of the Cryptographic Process

using System;
using System.IO;
using System.Security.Cryptography;

namespace EncryptionSink
{

public class EncryptionHelper
{

public static Stream ProcessOutboundStream(
Stream inStream,
String algorithm,
byte[] encryptionkey,
out byte[] encryptionIV)

{
Stream outStream = new System.IO.MemoryStream();

// set up the encryption properties
SymmetricAlgorithm alg = SymmetricAlgorithm.Create(algorithm);
alg.Key = encryptionkey;
alg.GenerateIV();
encryptionIV = alg.IV;

CryptoStream encryptStream = new CryptoStream(
outStream,
alg.CreateEncryptor(),
CryptoStreamMode.Write);

// write the whole contents through the new streams
byte[] buf = new Byte[1000];
int cnt = inStream.Read(buf,0,1000);
while (cnt>0)
{

encryptStream.Write(buf,0,cnt);
cnt = inStream.Read(buf,0,1000);

}
encryptStream.FlushFinalBlock();
outStream.Seek(0,SeekOrigin.Begin);

CHAPTER 13 ■ EXTENDING .NET REMOTING380

return outStream;
}

public static Stream ProcessInboundStream(
Stream inStream,
String algorithm,
byte[] encryptionkey,
byte[] encryptionIV)

{
// set up decryption properties
SymmetricAlgorithm alg = SymmetricAlgorithm.Create(algorithm);
alg.Key = encryptionkey;
alg.IV = encryptionIV;

// add the decryptor layer to the stream
Stream outStream = new CryptoStream(inStream,

alg.CreateDecryptor(),
CryptoStreamMode.Read);

return outStream;
}

}
}

Creating the Sinks
The EncryptionClientSink and EncryptionServerSink look quite similar to the previous com-
pression sinks. The major difference is that they have custom constructors that are called from
their sink providers to set the specified encryption algorithm and key. For outgoing requests,
the sinks will set the X-Encrypt header to “yes” and store the initialization vector in Base64 cod-
ing in the X-EncryptIV header. The complete client-side sink is shown in Listing 13-8.

Listing 13-8. The EncryptionClientSink

using System;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Messaging;
using System.IO;
using System.Text;

namespace EncryptionSink
{

public class EncryptionClientSink: BaseChannelSinkWithProperties,
IClientChannelSink

{
private IClientChannelSink _nextSink;
private byte[] _encryptionKey;
private String _encryptionAlgorithm;

CHAPTER 13 ■ EXTENDING .NET REMOTING 381

public EncryptionClientSink(IClientChannelSink next,
byte[] encryptionKey,
String encryptionAlgorithm)

{
_encryptionKey = encryptionKey;
_encryptionAlgorithm = encryptionAlgorithm;
_nextSink = next;

}

public void ProcessMessage(IMessage msg,
ITransportHeaders requestHeaders,
Stream requestStream,
out ITransportHeaders responseHeaders,
out Stream responseStream)

{

byte[] IV;

requestStream = EncryptionHelper.ProcessOutboundStream(requestStream,
_encryptionAlgorithm,_encryptionKey,out IV);

requestHeaders["X-Encrypt"]="yes";
requestHeaders["X-EncryptIV"]= Convert.ToBase64String(IV);

// forward the call to the next sink
_nextSink.ProcessMessage(msg,

requestHeaders,
requestStream,
out responseHeaders,
out responseStream);

if (responseHeaders["X-Encrypt"] != null &&
responseHeaders["X-Encrypt"].Equals("yes"))

{

IV = Convert.FromBase64String(
(String) responseHeaders["X-EncryptIV"]);

responseStream = EncryptionHelper.ProcessInboundStream(
responseStream,
_encryptionAlgorithm,
_encryptionKey,
IV);

}

}

CHAPTER 13 ■ EXTENDING .NET REMOTING382

public void AsyncProcessRequest(IClientChannelSinkStack sinkStack,
IMessage msg,
ITransportHeaders headers,
Stream stream)

{
byte[] IV;

stream = EncryptionHelper.ProcessOutboundStream(stream,
_encryptionAlgorithm,_encryptionKey,out IV);

headers["X-Encrypt"]="yes";
headers["X-EncryptIV"]= Convert.ToBase64String(IV);

// push onto stack and forward the request
sinkStack.Push(this,null);
_nextSink.AsyncProcessRequest(sinkStack,msg,headers,stream);

}

public void AsyncProcessResponse(IClientResponseChannelSinkStack sinkStack,
object state,
ITransportHeaders headers,
Stream stream)

{

if (headers["X-Encrypt"] != null && headers["X-Encrypt"].Equals("yes"))
{

byte[] IV =
Convert.FromBase64String((String) headers["X-EncryptIV"]);

stream = EncryptionHelper.ProcessInboundStream(
stream,
_encryptionAlgorithm,
_encryptionKey,
IV);

}

// forward the request
sinkStack.AsyncProcessResponse(headers,stream);

}

public Stream GetRequestStream(IMessage msg,
ITransportHeaders headers)

{
return null; // request stream will be manipulated later

}

CHAPTER 13 ■ EXTENDING .NET REMOTING 383

public IClientChannelSink NextChannelSink {
get
{

return _nextSink;
}

}

}
}

The EncryptionServerSink shown in Listing 13-9 works basically in the same way as the
CompressionServerSink does. It first checks the headers to determine whether the request has
been encrypted. If this is the case, it retrieves the encryption initialization vector from the header
and calls EncryptionHelper to decrypt the stream.

Listing 13-9. The EncryptionServerSink

using System;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Messaging;
using System.IO;

namespace EncryptionSink
{

public class EncryptionServerSink: BaseChannelSinkWithProperties,
IServerChannelSink

{

private IServerChannelSink _nextSink;
private byte[] _encryptionKey;
private String _encryptionAlgorithm;

public EncryptionServerSink(IServerChannelSink next, byte[] encryptionKey,
String encryptionAlgorithm)

{
_encryptionKey = encryptionKey;
_encryptionAlgorithm = encryptionAlgorithm;
_nextSink = next;

}

public ServerProcessing ProcessMessage(IServerChannelSinkStack sinkStack,
IMessage requestMsg,
ITransportHeaders requestHeaders,
Stream requestStream,
out IMessage responseMsg,
out ITransportHeaders responseHeaders,
out Stream responseStream) {

CHAPTER 13 ■ EXTENDING .NET REMOTING384

bool isEncrypted=false;

// checking the headers
if (requestHeaders["X-Encrypt"] != null &&

requestHeaders["X-Encrypt"].Equals("yes"))
{

isEncrypted = true;

byte[] IV = Convert.FromBase64String(
(String) requestHeaders["X-EncryptIV"]);

// decrypt the request
requestStream = EncryptionHelper.ProcessInboundStream(

requestStream,
_encryptionAlgorithm,
_encryptionKey,
IV);

}

// pushing onto stack and forwarding the call,
// the flag "isEncrypted" will be used as state
sinkStack.Push(this,isEncrypted);

ServerProcessing srvProc = _nextSink.ProcessMessage(sinkStack,
requestMsg,
requestHeaders,
requestStream,
out responseMsg,
out responseHeaders,
out responseStream);

if (isEncrypted)
{

// encrypting the response if necessary
byte[] IV;

responseStream =
EncryptionHelper.ProcessOutboundStream(responseStream,
_encryptionAlgorithm,_encryptionKey,out IV);

responseHeaders["X-Encrypt"]="yes";
responseHeaders["X-EncryptIV"]= Convert.ToBase64String(IV);

}

CHAPTER 13 ■ EXTENDING .NET REMOTING 385

// returning status information
return srvProc;

}

public void AsyncProcessResponse(IServerResponseChannelSinkStack sinkStack,
object state,
IMessage msg,
ITransportHeaders headers,
Stream stream)

{
// fetching the flag from the async-state
bool isEncrypted = (bool) state;

if (isEncrypted)
{

// encrypting the response if necessary
byte[] IV;

stream = EncryptionHelper.ProcessOutboundStream(stream,
_encryptionAlgorithm,_encryptionKey,out IV);

headers["X-Encrypt"]="yes";
headers["X-EncryptIV"]= Convert.ToBase64String(IV);

}

// forwarding to the stack for further processing
sinkStack.AsyncProcessResponse(msg,headers,stream);

}

public Stream GetResponseStream(IServerResponseChannelSinkStack sinkStack,
object state,
IMessage msg,
ITransportHeaders headers)

{
return null;

}

public IServerChannelSink NextChannelSink {
get {

return _nextSink;
}

}
}

}

CHAPTER 13 ■ EXTENDING .NET REMOTING386

Creating the Providers
Contrary to the previous sink, the EncryptionSink expects certain parameters to be present in
the configuration file. The first one is “algorithm”, which specifies the cryptographic algorithm
that should be used (DES, TripleDES, RC2, or Rijndael). The second parameter, “keyfile”, specifies
the location of the previously generated symmetric keyfile. The same file has to be available to
both the client and the server sink.

The following excerpt from a configuration file shows you how the client-side sink will be
configured:

<configuration>
<system.runtime.remoting>
<application>
<channels>
<channel ref="http">

<clientProviders>
<formatter ref="soap" />
<provider type="EncryptionSink.EncryptionClientSinkProvider, EncryptionSink"

algorithm="TripleDES" keyfile="testkey.dat" />
</clientProviders>

</channel>
</channels>
</application>
</system.runtime.remoting>
</configuration>

In the following snippet you see how the server-side sink can be initialized:

<configuration>
<system.runtime.remoting>
<application>
<channels>
<channel ref="http" port="5555">

<serverProviders>
<provider type="EncryptionSink.EncryptionClientSinkProvider, EncryptionSink"

algorithm="TripleDES" keyfile="testkey.dat" />
<formatter ref="soap"/>
</serverProviders>

</channel>
</channels>
</application>
</system.runtime.remoting>
</configuration>

CHAPTER 13 ■ EXTENDING .NET REMOTING 387

You can access additional parameters in the sink provider’s constructor, as shown in the
following source code fragment:

public EncryptionClientSinkProvider(IDictionary properties,
ICollection providerData)

{
String encryptionAlgorithm = (String) properties["algorithm"];

}

In addition to reading the relevant configuration file parameters, both the client-side sink
provider (shown in Listing 13-10) and the server-side sink provider (shown in Listing 13-11)
have to read the specified keyfile and store it in a byte array. The encryption algorithm and the
encryption key are then passed to the sink’s constructor.

Listing 13-10. The EncryptionClientSinkProvider

using System;
using System.IO;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting;
using System.Collections;

namespace EncryptionSink
{

public class EncryptionClientSinkProvider: IClientChannelSinkProvider
{

private IClientChannelSinkProvider _nextProvider;

private byte[] _encryptionKey;
private String _encryptionAlgorithm;

public EncryptionClientSinkProvider(IDictionary properties,
ICollection providerData)

{
_encryptionAlgorithm = (String) properties["algorithm"];
String keyfile = (String) properties["keyfile"];

if (_encryptionAlgorithm == null || keyfile == null)
{

throw new RemotingException("'algorithm' and 'keyfile' have to " +
"be specified for EncryptionClientSinkProvider");

}

// read the encryption key from the specified file
FileInfo fi = new FileInfo(keyfile);

if (!fi.Exists)
{

CHAPTER 13 ■ EXTENDING .NET REMOTING388

throw new RemotingException("Specified keyfile does not exist");
}

FileStream fs = new FileStream(keyfile,FileMode.Open);
_encryptionKey = new Byte[fi.Length];
fs.Read(_encryptionKey,0,_encryptionKey.Length);

}

public IClientChannelSinkProvider Next
{

get {return _nextProvider; }
set {_nextProvider = value;}

}

public IClientChannelSink CreateSink(IChannelSender channel, string url,
object remoteChannelData)

{
// create other sinks in the chain
IClientChannelSink next = _nextProvider.CreateSink(channel,

url, remoteChannelData);

// put our sink on top of the chain and return it
return new EncryptionClientSink(next,_encryptionKey,

_encryptionAlgorithm);
}

}
}

Listing 13-11. The EncryptionServerSinkProvider

using System;
using System.IO;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting;
using System.Collections;

namespace EncryptionSink
{

public class EncryptionServerSinkProvider: IServerChannelSinkProvider
{

private byte[] _encryptionKey;
private String _encryptionAlgorithm;

private IServerChannelSinkProvider _nextProvider;

public EncryptionServerSinkProvider(IDictionary properties,
ICollection providerData)

{

CHAPTER 13 ■ EXTENDING .NET REMOTING 389

_encryptionAlgorithm = (String) properties["algorithm"];
String keyfile = (String) properties["keyfile"];

if (_encryptionAlgorithm == null || keyfile == null)
{

throw new RemotingException("'algorithm' and 'keyfile' have to " +
"be specified for EncryptionServerSinkProvider");

}

// read the encryption key from the specified file
FileInfo fi = new FileInfo(keyfile);

if (!fi.Exists)
{

throw new RemotingException("Specified keyfile does not exist");
}

FileStream fs = new FileStream(keyfile,FileMode.Open);
_encryptionKey = new Byte[fi.Length];
fs.Read(_encryptionKey,0,_encryptionKey.Length);

}

public IServerChannelSinkProvider Next
{

get {return _nextProvider; }
set {_nextProvider = value;}

}

public IServerChannelSink CreateSink(IChannelReceiver channel)
{

// create other sinks in the chain
IServerChannelSink next = _nextProvider.CreateSink(channel);

// put our sink on top of the chain and return it
return new EncryptionServerSink(next,

_encryptionKey,_encryptionAlgorithm);
}

public void GetChannelData(IChannelDataStore channelData)
{

// not yet needed
}

}
}

CHAPTER 13 ■ EXTENDING .NET REMOTING390

Figure 13-7. A TCP-trace of the encrypted HTTP traffic

When including the sink providers in your configuration files as presented previously, the
transfer will be encrypted, as shown in Figure 13-7.

You can, of course, also chain the encryption and compression sinks together to receive an
encrypted and compressed stream.

Passing Runtime Information
The previous sinks were IClientChannelSinks and IServerChannelSinks. This means that they
work on the resulting stream after the formatter has serialized the IMessage object. IMessageSinks,
in contrast, can work directly on the message’s contents before they are formatted. This means
that any changes you make to the IMessage’s contents will be serialized and therefore reflected
in the resulting stream.

■Caution Even though you might be tempted to change the IMessage object’s content in an IClientChannelSink,
be aware that this change is not propagated to the server, because the serialized stream has already been
generated from the underlying IMessage!

Because of this distinction, client-side IMessageSinks can be used to pass runtime informa-
tion from the client to the server. In the following example, I show you how to send the client-
side thread’s current priority to the server so that remote method calls will execute with the same
priority.

To send arbitrary data from the client to the server, you can put it into the Message object’s
logical call context. In this way, you can transfer objects that either are serializable or extend
MarshalByRefObject. For example, to pass the client-side thread’s current context for every
method call to the server, you can implement the following SyncProcessMessage() method:

CHAPTER 13 ■ EXTENDING .NET REMOTING 391

public IMessage SyncProcessMessage(IMessage msg)
{

if (msg as IMethodCallMessage != null)
{

LogicalCallContext lcc =
(LogicalCallContext) msg.Properties["__CallContext"];

lcc.SetData("priority",Thread.CurrentThread.Priority);
return _nextMsgSink.SyncProcessMessage(msg);

}
else
{

return _nextMsgSink.SyncProcessMessage(msg);
}

}

The same has to be done for AsyncProcessMessage() as well.

public IMessageCtrl AsyncProcessMessage(IMessage msg, IMessageSink replySink)
{

if (msg as IMethodCallMessage != null)
{

LogicalCallContext lcc =
(LogicalCallContext) msg.Properties["__CallContext"];

lcc.SetData("priority",Thread.CurrentThread.Priority);
return _nextMsgSink.AsyncProcessMessage(msg,replySink);

}
else
{

return _nextMsgSink.AsyncProcessMessage(msg,replySink);
}

}

On the server side, you have to implement an IServerChannelSink to take the call context
from the IMessage object and set Thread.CurrentThread.Priority to the contained value.

public ServerProcessing ProcessMessage(IServerChannelSinkStack sinkStack,
IMessage requestMsg,
ITransportHeaders requestHeaders,
Stream requestStream,
out IMessage responseMsg,
out ITransportHeaders responseHeaders,
out Stream responseStream)

{
LogicalCallContext lcc =

(LogicalCallContext) requestMsg.Properties["__CallContext"];

// storing the current priority
ThreadPriority oldprio = Thread.CurrentThread.Priority;

CHAPTER 13 ■ EXTENDING .NET REMOTING392

// check if the logical call context contains "priority"
if (lcc != null && lcc.GetData("priority") != null)
{

// fetch the priority from the call context
ThreadPriority priority =

(ThreadPriority) lcc.GetData("priority");

Console.WriteLine(" -> Pre-execution priority change {0} to {1}",
oldprio.ToString(),priority.ToString());

// set the priority
Thread.CurrentThread.Priority = priority;

}

// push on the stack and pass the call to the next sink
// the old priority will be used as "state" for the response
sinkStack.Push(this,oldprio);

ServerProcessing spres = _next.ProcessMessage (sinkStack,
requestMsg, requestHeaders, requestStream,
out responseMsg,out responseHeaders,out responseStream);

// restore priority if call is not asynchronous

if (spres != ServerProcessing.Async)
{

if (lcc != null && lcc.GetData("priority") != null)
{

Console.WriteLine(" -> Post-execution change back to {0}",oldprio);
Thread.CurrentThread.Priority = oldprio;

}
}
return spres;

}

The sink provider for the server-side sink is quite straightforward. It looks more or less the
same as those for the previous IServerChannelSinks.

On the client side, some minor inconveniences stem from this approach. Remember
that you implemented an IMessageSink and not an IClientChannelSink in this case. Looking
for an IMessageSinkProvider will not give you any results, so you’ll have to implement an
IClientChannelSink provider in this case as well—even though the sink is in reality an
IMessageSink. The problem with this can be seen when looking at the following part of the
IClientChannelSinkProvider interface:

CHAPTER 13 ■ EXTENDING .NET REMOTING 393

IClientChannelSink CreateSink(IChannelSender channel,
string url,
object remoteChannelData);

This indicates CreateSink() has to return an IClientChannelSink in any case, even if your
sink only needs to implement IMessageSink. You now have to extend your IMessageSink to
implement IClientChannelSink as well. You also have to use caution because IClientChannelSink
defines more methods that have to be implemented. Those methods are called when the sink
is used as a channel sink (that is, after the formatter) and not as a message sink. You might not
want to allow your users to position the sink after the formatter (because it wouldn’t work there
because it’s changing the IMessage object’s content), so you want to throw exceptions in those
methods.

The complete client-side PriorityEmitterSink, which throws those exceptions when used
in the wrong sequence, is shown in Listing 13-12.

Listing 13-12. The Complete PriorityEmitterSink

using System;
using System.Collections;
using System.IO;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Messaging;
using System.Threading;

namespace PrioritySinks
{
public class PriorityEmitterSink : BaseChannelObjectWithProperties,

IClientChannelSink, IMessageSink
{
private IMessageSink _nextMsgSink;

public IMessageCtrl AsyncProcessMessage(IMessage msg, IMessageSink replySink)
{

// only for method calls
if (msg as IMethodCallMessage != null)
{

LogicalCallContext lcc =
(LogicalCallContext) msg.Properties["__CallContext"];

lcc.SetData("priority",Thread.CurrentThread.Priority);
return _nextMsgSink.AsyncProcessMessage(msg,replySink);

}
else
{

return _nextMsgSink.AsyncProcessMessage(msg,replySink);
}

}

CHAPTER 13 ■ EXTENDING .NET REMOTING394

public IMessage SyncProcessMessage(IMessage msg)
{

// only for method calls
if (msg as IMethodCallMessage != null)
{

LogicalCallContext lcc =
(LogicalCallContext) msg.Properties["__CallContext"];

lcc.SetData("priority",Thread.CurrentThread.Priority);
return _nextMsgSink.SyncProcessMessage(msg);

}
else
{

return _nextMsgSink.SyncProcessMessage(msg);
}

}

public PriorityEmitterSink (object next)
{

if (next as IMessageSink != null)
{

_nextMsgSink = (IMessageSink) next;
}

}

public IMessageSink NextSink
{

get
{

return _nextMsgSink;
}

}

public IClientChannelSink NextChannelSink
{

get
{

throw new RemotingException("Wrong sequence.");
}

}

public void AsyncProcessRequest(IClientChannelSinkStack sinkStack,
IMessage msg,
ITransportHeaders headers,
Stream stream)

{
throw new RemotingException("Wrong sequence.");

}

CHAPTER 13 ■ EXTENDING .NET REMOTING 395

public void AsyncProcessResponse(
IClientResponseChannelSinkStack sinkStack,
object state,
ITransportHeaders headers,
Stream stream)

{
throw new RemotingException("Wrong sequence.");

}

public System.IO.Stream GetRequestStream(IMessage msg,
ITransportHeaders headers)

{
throw new RemotingException("Wrong sequence.");

}

public void ProcessMessage(IMessage msg,
ITransportHeaders requestHeaders,
Stream requestStream,
out ITransportHeaders responseHeaders,
out Stream responseStream)

{
throw new RemotingException("Wrong sequence.");

}
}
}

The client-side PriorityEmitterSinkProvider, which is shown in Listing 13-13, is quite
straightforward to implement. The only interesting method is CreateSink().

Listing 13-13. The Client-Side PriorityEmitterSinkProvider

using System;
using System.Collections;
using System.Runtime.Remoting.Channels;

namespace PrioritySinks
{

public class PriorityEmitterSinkProvider: IClientChannelSinkProvider
{

private IClientChannelSinkProvider next = null;

public PriorityEmitterSinkProvider(IDictionary properties,
ICollection providerData)

{
// not needed

}

CHAPTER 13 ■ EXTENDING .NET REMOTING396

public IClientChannelSink CreateSink(IChannelSender channel,
string url, object remoteChannelData)

{
IClientChannelSink nextsink =

next.CreateSink(channel,url,remoteChannelData);

return new PriorityEmitterSink(nextsink);
}

public IClientChannelSinkProvider Next
{

get { return next; }
set { next = value; }

}

}
}

Because the server-side sink shown in Listing 13-14 is an IServerChannelSink and not an
IMessageSink, as is the client-side sink, the implementation is more consistent. You don’t need
to implement any additional interface here.

Listing 13-14. The Server-Side PriorityChangerSink

using System;
using System.Collections;
using System.IO;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Messaging ;
using System.Runtime.Remoting.Channels;
using System.Threading;

namespace PrioritySinks
{

public class PriorityChangerSink : BaseChannelObjectWithProperties,
IServerChannelSink, IChannelSinkBase

{

private IServerChannelSink _next;

public PriorityChangerSink (IServerChannelSink next)
{

_next = next;
}

public void AsyncProcessResponse (
IServerResponseChannelSinkStack sinkStack,
Object state,

CHAPTER 13 ■ EXTENDING .NET REMOTING 397

IMessage msg,
ITransportHeaders headers,
Stream stream)

{
// restore the priority
ThreadPriority priority = (ThreadPriority) state;
Console.WriteLine(" -> Post-execution change back to {0}",priority);
Thread.CurrentThread.Priority = priority;

}

public Stream GetResponseStream (IServerResponseChannelSinkStack sinkStack,
Object state,
IMessage msg,
ITransportHeaders headers)

{
return null;

}

public ServerProcessing ProcessMessage(IServerChannelSinkStack sinkStack,
IMessage requestMsg,
ITransportHeaders requestHeaders,
Stream requestStream,
out IMessage responseMsg,
out ITransportHeaders responseHeaders,
out Stream responseStream)

{
LogicalCallContext lcc =

(LogicalCallContext) requestMsg.Properties["__CallContext"];

// storing the current priority
ThreadPriority oldprio = Thread.CurrentThread.Priority;

// check if the logical call context contains "priority"
if (lcc != null && lcc.GetData("priority") != null)
{

// fetch the priority from the call context
ThreadPriority priority =

(ThreadPriority) lcc.GetData("priority");

Console.WriteLine("-> Pre-execution priority change {0} to {1}",
oldprio.ToString(),priority.ToString());

// set the priority
Thread.CurrentThread.Priority = priority;

}

CHAPTER 13 ■ EXTENDING .NET REMOTING398

// push on the stack and pass the call to the next sink
// the old priority will be used as "state" for the response
sinkStack.Push(this,oldprio);

ServerProcessing spres = _next.ProcessMessage (sinkStack,
requestMsg, requestHeaders, requestStream,
out responseMsg,out responseHeaders,out responseStream);

// restore priority if call is not asynchronous

if (spres != ServerProcessing.Async)
{

if (lcc != null && lcc.GetData("priority") != null)
{

Console.WriteLine("-> Post-execution change back to {0}",oldprio);
Thread.CurrentThread.Priority = oldprio;

}
}
return spres;

}

public IServerChannelSink NextChannelSink
{

get {return _next;}
set {_next = value;}

}
}

}

The corresponding server-side sink provider, which implements IServerChannelSinkProvider,
is shown in Listing 13-15.

Listing 13-15. The Server-Side PriorityChangerSinkProvider

using System;
using System.Collections;
using System.Runtime.Remoting.Channels;

namespace PrioritySinks
{

public class PriorityChangerSinkProvider: IServerChannelSinkProvider
{

private IServerChannelSinkProvider next = null;

public PriorityChangerSinkProvider(IDictionary properties,
ICollection providerData)

{
// not needed

}

CHAPTER 13 ■ EXTENDING .NET REMOTING 399

public void GetChannelData (IChannelDataStore channelData)
{

// not needed
}

public IServerChannelSink CreateSink (IChannelReceiver channel)
{

IServerChannelSink nextSink = next.CreateSink(channel);
return new PriorityChangerSink(nextSink);

}

public IServerChannelSinkProvider Next
{

get { return next; }
set { next = value; }

}

}
}

To test this sink combination, use the following SAO, which returns the server-side
thread’s current priority:

public class TestSAO: MarshalByRefObject
{

public String getPriority()
{

return System.Threading.Thread.CurrentThread.Priority.ToString();
}

}

This SAO is called several times with different client-side thread priorities. The configura-
tion file that is used by the server is shown here:

<configuration>
<system.runtime.remoting>
<application>
<channels>
<channel ref="http" port="5555">

<serverProviders>
<formatter ref="soap" />

<provider
type="PrioritySinks.PriorityChangerSinkProvider, PrioritySinks" />

</serverProviders>

</channel>
</channels>

CHAPTER 13 ■ EXTENDING .NET REMOTING400

<service>
<wellknown mode="Singleton"

type="Server.TestSAO, Server" objectUri="TestSAO.soap" />
</service>

</application>
</system.runtime.remoting>

</configuration>

The client-side configuration file will look like this:

<configuration>
<system.runtime.remoting>

<application>
<channels>
<channel ref="http">

<clientProviders>
<provider

type="PrioritySinks.PriorityEmitterSinkProvider, PrioritySinks" />
<formatter ref="soap" />

</clientProviders>

</channel>
</channels>

<client>
<wellknown type="Server.TestSAO, generated_meta"

url="http://localhost:5555/TestSAO.soap" />
</client>

</application>
</system.runtime.remoting>

</configuration>

For the test client, you can use SoapSuds to extract the metadata. When you run the appli-
cation in Listing 13-16, you’ll see the output shown in Figure 13-8.

Listing 13-16. The Test Client

using System;
using System.Runtime.Remoting;
using Server; // from generated_meta.dll
using System.Threading;

namespace Client
{

delegate String getPrioAsync();

class Client
{

CHAPTER 13 ■ EXTENDING .NET REMOTING 401

static void Main(string[] args)
{

String filename = "client.exe.config";
RemotingConfiguration.Configure(filename);

TestSAO obj = new TestSAO();
test(obj);

Thread.CurrentThread.Priority = ThreadPriority.Highest;
test(obj);

Thread.CurrentThread.Priority = ThreadPriority.Lowest;
test(obj);

Thread.CurrentThread.Priority = ThreadPriority.Normal;
test(obj);

Console.ReadLine();
}

static void test(TestSAO obj)
{

Console.WriteLine("----------------- START TEST CASE ---------------");
Console.WriteLine(" Local Priority: {0}",

Thread.CurrentThread.Priority.ToString());

String priority1 = obj.getPriority();

Console.WriteLine(" Remote priority: {0}",priority1.ToString());
Console.WriteLine("----------------- END TEST CASE ---------------");

}
}

}

Figure 13-8. The test client’s output shows that the sinks work as expected.

CHAPTER 13 ■ EXTENDING .NET REMOTING402

Changing the Programming Model
The previous sinks all add functionality to both the client- and the server-side of a .NET
Remoting application. The pluggable sink architecture nevertheless also allows the creation of
sinks, which change several aspects of the programming model. In Chapter 5, for example,
you’ve seen that passing custom credentials such as username and password involves manual
setting of the channel sink’s properties for each object.

CustomerManager mgr = new CustomerManager();
IDictionary props = ChannelServices.GetChannelSinkProperties(mgr);
props["username"] = "dummyremotinguser";
props["password"] = "12345";

In most real-world applications, it is nevertheless preferable to set these properties on
a per-host basis, or set them according to the base URL of the destination object. In a perfect
world, this would be possible using either configuration files or code, as in the following example:

<configuration>
<system.runtime.remoting>
<application>
<channels>
<channel ref="http">
<clientProviders>

<formatter ref="soap" />
<provider type="UrlAuthenticationSink.UrlAuthenticationSinkProvider,

UrlAuthenticationSink">

<url
base="http://localhost"
username="DummyRemotingUser"
password="12345"

/>

<url
base="http://www.somewhere.org"
username="MyUser"
password="12345"

/>
</provider>

</clientProviders>
</channel>
</channels>
</application>

</system.runtime.remoting>
</configuration>

When setting these properties in code, you can simply omit the <url> entries from the
configuration file and instead use the following lines to achieve the same behavior:

CHAPTER 13 ■ EXTENDING .NET REMOTING 403

UrlAuthenticator.AddAuthenticationEntry(
"http://localhost",
"dummyremotinguser",
"12345");

UrlAuthenticator.AddAuthenticationEntry(
"http://www.somewhere.org",
"MyUser",
"12345");

In fact, this behavior is not supported by default but can be easily implemented using
a custom IClientChannelSink.

Before working on the sink itself, you have to write a helper class that provides static meth-
ods to store and retrieve authentication entries for given base URLs. All those entries will be
stored in an ArrayList and can be retrieved by passing a URL to the GetAuthenticationEntry()
method. In addition, default authentication information that will be returned if none of the
specified base URLs matches the current object’s URL can be set as well. This helper class is
shown in Listing 13-17.

Listing 13-17. The UrlAuthenticator Stores Usernames and Passwords

using System;
using System.Collections;

namespace UrlAuthenticationSink
{

internal class UrlAuthenticationEntry
{

internal String Username;
internal String Password;
internal String UrlBase;

internal UrlAuthenticationEntry (String urlbase,
String user,
String password)

{
this.Username = user;
this.Password = password;
this.UrlBase = urlbase.ToUpper();

}
}

public class UrlAuthenticator
{

private static ArrayList _entries = new ArrayList();
private static UrlAuthenticationEntry _defaultAuthenticationEntry;

CHAPTER 13 ■ EXTENDING .NET REMOTING404

public static void AddAuthenticationEntry(String urlBase,
String userName,
String password)

{
_entries.Add(new UrlAuthenticationEntry(

urlBase,userName,password));
}

public static void SetDefaultAuthenticationEntry(String userName,
String password)

{
_defaultAuthenticationEntry = new UrlAuthenticationEntry(

null,userName,password);
}

internal static UrlAuthenticationEntry GetAuthenticationEntry(String url)
{

foreach (UrlAuthenticationEntry entr in _entries)
{

// check if a registered entry matches the url-parameter
if (url.ToUpper().StartsWith(entr.UrlBase))
{

return entr;
}

}

// if none matched, return the default entry (which can be null as well)
return _defaultAuthenticationEntry;

}
}

}

The sink itself calls a method that checks if an authentication entry exists for the URL of
the current message. It then walks the chain of sinks until reaching the final transport channel
sink, on which is set the properties that contain the correct username and password. It finally
sets a flag for this object’s sink so that this logic will be applied only once per sink chain. The
complete source for this sink can be found in Listing 13-18.

Listing 13-18. The UrlAuthenticationSink

using System;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Messaging;
using System.IO;

namespace UrlAuthenticationSink
{

CHAPTER 13 ■ EXTENDING .NET REMOTING 405

public class UrlAuthenticationSink: BaseChannelSinkWithProperties,
IClientChannelSink

{
private IClientChannelSink _nextSink;
private bool _authenticationParamsSet;

public UrlAuthenticationSink(IClientChannelSink next)
{

_nextSink = next;
}

public IClientChannelSink NextChannelSink
{

get {
return _nextSink;

}
}

public void AsyncProcessRequest(IClientChannelSinkStack sinkStack,
IMessage msg,
ITransportHeaders headers,
Stream stream)

{
SetSinkProperties(msg);
// don't push on the sinkstack because this sink doesn't need
// to handle any replies!
_nextSink.AsyncProcessRequest(sinkStack,msg,headers,stream);

}

public void AsyncProcessResponse(
IClientResponseChannelSinkStack sinkStack,
object state,
ITransportHeaders headers,
Stream stream)

{
// not needed

}

public Stream GetRequestStream(IMessage msg,
ITransportHeaders headers)

{
return _nextSink.GetRequestStream(msg, headers);

}

CHAPTER 13 ■ EXTENDING .NET REMOTING406

public void ProcessMessage(IMessage msg,
ITransportHeaders requestHeaders,
Stream requestStream,
out ITransportHeaders responseHeaders,
out Stream responseStream)

{

SetSinkProperties(msg);

_nextSink.ProcessMessage(msg,requestHeaders,requestStream,
out responseHeaders,out responseStream);

}

private void SetSinkProperties(IMessage msg)
{

if (! _authenticationParamsSet)
{

String url = (String) msg.Properties["__Uri"];

UrlAuthenticationEntry entr =
UrlAuthenticator.GetAuthorizationEntry(url);

if (entr != null)
{

IClientChannelSink last = this;

while (last.NextChannelSink != null)
{

last = last.NextChannelSink;
}

// last now contains the transport channel sink

last.Properties["username"] = entr.Username;
last.Properties["password"] = entr.Password;

}

_authenticationParamsSet = true;
}

}
}

}

The corresponding sink provider examines the <url> entry, which can be specified in the
configuration file below the sink provider.

<provider type="UrlAuthenticationSink.UrlAuthenticationSinkProvider,
UrlAuthenticationSink">

CHAPTER 13 ■ EXTENDING .NET REMOTING 407

<url
base="http://localhost"
username="DummyRemotingUser"
password="12345"

/>

</provider>

The sink provider will receive those entries via the providerData collection, which con-
tains objects of type SinkProviderData. Every instance of SinkProviderData has a reference to
a properties dictionary that allows access to the attributes (base, username, and password) of
the entry.

When the base URL is set in the configuration file, it simply calls UrlAuthenticator.
AddAuthenticationEntry(). If no base URL has been specified, it sets this username/password
as the default authentication entry. You can see the complete source code for this provider in
Listing 13-19.

Listing 13-19. The UrlAuthenticationSinkProvider

using System;
using System.Runtime.Remoting.Channels;
using System.Collections;

namespace UrlAuthenticationSink
{

public class UrlAuthenticationSinkProvider: IClientChannelSinkProvider
{

private IClientChannelSinkProvider _nextProvider;

public UrlAuthenticationSinkProvider(IDictionary properties,
ICollection providerData)

{
foreach (SinkProviderData obj in providerData)
{

if (obj.Name == "url")
{

if (obj.Properties["base"] != null)
{

UrlAuthenticator.AddAuthenticationEntry(
(String) obj.Properties["base"],
(String) obj.Properties["username"],
(String) obj.Properties["password"]);

}
else
{

UrlAuthenticator.SetDefaultAuthenticationEntry(
(String) obj.Properties["username"],
(String) obj.Properties["password"]);

CHAPTER 13 ■ EXTENDING .NET REMOTING408

}
}

}
}

public IClientChannelSinkProvider Next
{

get {return _nextProvider; }
set {_nextProvider = value;}

}

public IClientChannelSink CreateSink(IChannelSender channel,
string url,
object remoteChannelData)

{
// create other sinks in the chain
IClientChannelSink next = _nextProvider.CreateSink(channel,

url,
remoteChannelData);

// put our sink on top of the chain and return it
return new UrlAuthenticationSink(next);

}
}

}

Using This Sink
When using this sink, you can simply add it to your client-side sink chain in the configuration
file, as shown here:

<configuration>
<system.runtime.remoting>
<application>
<channels>
<channel ref="http">

<clientProviders>
<formatter ref="soap" />
<provider type="UrlAuthenticationSink.UrlAuthenticationSinkProvider,

UrlAuthenticationSink" />
</clientProviders>

</channel>
</channels>
</application>

</system.runtime.remoting>
</configuration>

CHAPTER 13 ■ EXTENDING .NET REMOTING 409

2. The following was inspired by a blog post by my friend Richard Blewett at http://staff.develop.com/
richardb/weblog.

■Note This sink is an IClientChannelSink, so you have to place it after the formatter.

To specify a username/password combination for a given base URL, you can now add this
authentication information to the configuration file by using one or more <url> entries inside
the <provider> section.

<clientProviders>
<formatter ref="soap" />
<provider type="UrlAuthenticationSink.UrlAuthenticationSinkProvider,

UrlAuthenticationSink">
<url

base="http://localhost"
username="DummyRemotingUser"
password="12345"

/>
</provider>

</clientProviders>

If you don’t want to hard code this information, you can ask the user of your client pro-
gram for the username/password and employ the following code to register it with this sink:

UrlAuthenticator.AddAuthenticationEntry(<url>, <username>, <password>);

To achieve the same behavior as that of the <url> entry in the previous configuration snip-
pet, you use the following command:

UrlAuthenticator.AddAuthenticationEntry(
"http://localhost",
"dummyremotinguser",
"12345");

Avoiding the BinaryFormatter Version Mismatch
Custom .NET Remoting sinks can also be used as a workaround for certain glitches inside the
framework. You can use them to change the way the .NET Remoting framework treats sev-
eral exception conditions.2

As you’ve read in Chapter 10, there is a misleading exception that might be triggered from
time to time when you use the HttpChannel with the BinaryFormatter while hosting your
server-side components in IIS. In some cases, IIS sends back detailed information for some
errors in HTML format. It also uses the content-type text/html.

The binary formatter, however, ignores this content-type header and interprets the data as
a binary message and tries to deserialize it. This deserialization fails (as there is no binary message),
and the client only receives an exception telling it that the deserialization failed. However, this
final exception does not contain any additional information about the root cause of the problem.

CHAPTER 13 ■ EXTENDING .NET REMOTING410

Figure 13-9. This response message results in an incorrect exception.

Figure 13-10. The incorrect exception information

To work around this issue, you can create a custom sink that will be used between the
client-side binary formatter and the client-side transport channel. This sink can intercept the
response message and check its content-type header. If the header is “application/octet-stream”,
then the message contains a real binary message and the sink will just forward it. Otherwise,
the sink will read the complete error message in text format and forward a matching exception
to the call chain.

To implement this, let me first show you the TcpTrace output for an incorrect message in
Figure 13-9 and the (incorrect) resulting exception message in Figure 13-10.

The custom sink I am going to show you will intercept the preceding message and turn it
into a more reasonable exception.

This sink’s process message method will first forward the call onto the next sink in the chain
(so that it is transferred to the server) and will then inspect the response stream. To inspect the
stream, it uses a method, GetExceptionIfNecessary(), which I’ll show you in just in a minute.

CHAPTER 13 ■ EXTENDING .NET REMOTING 411

This method returns either null, if everything is OK, or an exception with a more meaningful
error message.

If an exception is returned, ProcessMessage() will simply throw the exception.

public void ProcessMessage(IMessage msg,
ITransportHeaders requestHeaders,
Stream requestStream,
out ITransportHeaders responseHeaders,
out Stream responseStream)

{
_next.ProcessMessage(msg, requestHeaders, requestStream,

out responseHeaders, out responseStream);
Exception ex =

GetExceptionIfNecessary(ref responseHeaders, ref responseStream);

if (ex!=null) throw ex;
}

The method for examining the content of the response stream first looks at the “Content-Type”
header. If this header has the value “application/octet-stream”, it is not modified and the method
does not return an exception. Otherwise, it reads the complete response text and creates a new
Exception object, setting its description to the text that has been received from the server.

This method can look like this:

private Exception GetExceptionIfNecessary(
ref ITransportHeaders headers, ref Stream stream)

{
int chunksize=0x400;
MemoryStream ms = new MemoryStream();

string ct = headers["Content-Type"] as String;

if (ct==null || ct != "application/octet-stream")
{

byte[] buf = new byte[chunksize];
StringBuilder bld = new StringBuilder();
for (int size = stream.Read(buf, 0, chunksize);

size > 0; size = stream.Read(buf, 0, chunksize))
{

bld.Append(Encoding.ASCII.GetString(buf, 0, size));
}
return new RemotingException(bld.ToString());

}
return null;

}

Additionally, you will need to implement AsyncProcessRequest() and AsyncProcessResponse()
to provide a similar behavior.

public void AsyncProcessRequest(IClientChannelSinkStack sinkStack,
IMessage msg,

CHAPTER 13 ■ EXTENDING .NET REMOTING412

ITransportHeaders headers,
Stream stream)

{
sinkStack.Push(this,null);
_next.AsyncProcessRequest(sinkStack, msg, headers, stream);

}

public void AsyncProcessResponse(
IClientResponseChannelSinkStack sinkStack,
object state,
ITransportHeaders headers,
Stream stream)

{
Exception ex = GetExceptionIfNecessary(ref headers, ref stream);
if (ex!=null)
{

sinkStack.DispatchException(ex);
}
else
{

sinkStack.AsyncProcessResponse(headers, stream);
}

}

After creating the complete sink and an appropriate sink provider, you can use it in your
client-side configuration file like this:

<configuration>
<system.runtime.remoting>

<application>
<channels>

<channel ref="http">
<clientProviders>

<formatter ref="binary" />
<provider

type="HttpErrorInterceptor.InterceptorSinkProvider, HttpErrorInterceptor" />
</clientProviders>

</channel>
</channels>
<!-- client entries removed -->

</application>
</system.runtime.remoting>

</configuration>

■Note You can find the complete source code for this sink (and, of course, for any other sample contained
in this book) at the book’s source-code download page at http://www.apress.com.

CHAPTER 13 ■ EXTENDING .NET REMOTING 413

Figure 13-11. The corrected exception information

After you apply this configuration file and run the same client-side command that initially
resulted in the incorrect exception, you will now receive the information shown in Figure 13-11.
This information correctly reflects the source of the problem.

Using a Custom Proxy
In the previous parts of this chapter, you read about the possible ways you can extend the .NET
Remoting framework using additional custom message sinks. There is another option for chang-
ing the default behavior of the remoting system: custom proxy objects. Figure 13-12 shows you
the default proxy configuration.

You can change this by replacing RemotingProxy with a custom proxy that inherits from
RealProxy.

■Note You’ll normally miss the opportunity to use configuration files in this case. To work around this issue,
you can use the RemotingHelper class, discussed in Chapter 6.

TransparentProxy

RemotingProxy
[RealProxy]

Identity

First sink in chain
[IMessageSink]

_rp

_identity

_channelSink

Figure 13-12. The default combination of proxy objects

CHAPTER 13 ■ EXTENDING .NET REMOTING414

To do this, you basically have to implement a class that extends RealProxy, provides a cus-
tom constructor, and overrides the Invoke() method to pass the message on to the correct
message sink.

As shown in Listing 13-20, the constructor first has to call the base object’s constructor and
then checks all registered channels to determine whether they accept the given URL by calling
their CreateMessageSink() methods. If a channel can service the URL, it returns an IMessageSink
object that is the first sink in the remoting chain. Otherwise it returns null. The constructor will
throw an exception if no registered channel is able to parse the URL.

Listing 13-20. A Skeleton Custom Remoting Proxy

using System;
using System.Collections;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Remoting.Proxies;
using System.Runtime.Remoting.Messaging;

namespace Client
{

public class CustomProxy: RealProxy
{

String _url;
String _uri;
IMessageSink _sinkChain;

public CustomProxy(Type type, String url) : base(type)
{

_url = url;

// check each registered channel if it accepts the
// given URL
IChannel[] registeredChannels = ChannelServices.RegisteredChannels;
foreach (IChannel channel in registeredChannels)
{

if (channel is IChannelSender)
{

IChannelSender channelSender = (IChannelSender)channel;

// try to create the sink
_sinkChain = channelSender.CreateMessageSink(_url,

null, out _uri);

// if the channel returned a sink chain, exit the loop
if (_sinkChain != null) break;

}
}

CHAPTER 13 ■ EXTENDING .NET REMOTING 415

// no registered channel accepted the URL
if (_sinkChain == null)
{

throw new Exception("No channel has been found for " + _url);
}

}

public override IMessage Invoke(IMessage msg)
{

msg.Properties["__Uri"] = _url;

// TODO: process the request message

IMessage retMsg = _sinkChain.SyncProcessMessage(msg);

// TODO: process the return message

return retMsg;
}

}
}

To employ this proxy, you have to instantiate it using the special constructor by passing
the Type of the remote object and its URL. You can then call GetTransparentProxy() on the
resulting CustomProxy object and cast the returned TransparentProxy to the remote object’s
type, as shown in Listing 13-21.

Listing 13-21. Using a Custom Proxy

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;
using Service; // from service.dll

namespace Client
{

class Client
{

static void Main(string[] args)
{

ChannelServices.RegisterChannel(new HttpChannel());

CustomProxy prx = new CustomProxy(typeof(Service.SomeSAO),
"http://localhost:1234/SomeSAO.soap");

SomeSAO obj = (SomeSAO) prx.GetTransparentProxy();

String res = obj.doSomething();

CHAPTER 13 ■ EXTENDING .NET REMOTING416

Console.WriteLine("Got result: {0}",res);
Console.ReadLine();

}
}

}

To show you an example for a custom proxy, I implement some methods that dump the
request and return messages’ contents. These methods are called from the proxy’s Invoke(),
which will be executed whenever your client calls a method on the TransparentProxy object.
This is shown in Listing 13-22.

■Note You can also call these content dump methods in an IMessageSink!

Listing 13-22. Custom Proxy That Dumps the Request and Response Messages’ Contents

using System;
using System.Collections;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Remoting.Proxies;
using System.Runtime.Remoting.Messaging;

namespace Client
{

public class CustomProxy: RealProxy
{

String _url;
String _uri;
IMessageSink _sinkChain;

public CustomProxy(Type type, String url) : base(type)
{

_url = url;

// check each registered channel if it accepts the
// given URL
IChannel[] registeredChannels = ChannelServices.RegisteredChannels;
foreach (IChannel channel in registeredChannels)
{

if (channel is IChannelSender)
{

IChannelSender channelSender = (IChannelSender)channel;

// try to create the sink
_sinkChain = channelSender.CreateMessageSink(_url,

null, out _uri);

CHAPTER 13 ■ EXTENDING .NET REMOTING 417

// if the channel returned a sink chain, exit the loop
if (_sinkChain != null) break;

}
}

// no registered channel accepted the URL
if (_sinkChain == null)
{

throw new Exception("No channel has been found for " + _url);
}

}

public override IMessage Invoke(IMessage msg)
{

msg.Properties["__Uri"] = _url;
DumpMessageContents(msg);
IMessage retMsg = _sinkChain.SyncProcessMessage(msg);
DumpMessageContents(retMsg);
return retMsg;

}

private String GetPaddedString(String str)
{

String ret = str + " ";
return ret.Substring(0,17);

}

private void DumpMessageContents(IMessage msg)
{

Console.WriteLine("==");
Console.WriteLine("============ Message Dump ==============");
Console.WriteLine("==");

Console.WriteLine("Type: {0}", msg.GetType().ToString());

Console.WriteLine("--- Properties ---");
IDictionary dict = msg.Properties;
IDictionaryEnumerator enm =

(IDictionaryEnumerator) dict.GetEnumerator();

while (enm.MoveNext())
{

Object key = enm.Key;
String keyName = key.ToString();
Object val = enm.Value;

Console.WriteLine("{0}: {1}", GetPaddedString(keyName), val);

CHAPTER 13 ■ EXTENDING .NET REMOTING418

Figure 13-13. Using the custom proxy to dump the messages’ contents

// check if it's an object array
Object[] objval = val as Object[];
if (objval != null)
{

DumpObjectArray(objval);
}

}

Console.WriteLine();
Console.WriteLine();

}

private void DumpObjectArray(object[] data)
{

// if empty -> return
if (data.Length == 0) return;

Console.WriteLine("\t --- Array Contents ---");
for (int i = 0; i < data.Length; i++)
{

Console.WriteLine("\t{0}: {1}", i, data[i]);
}

}
}

}

The output of the preceding client when used with this proxy is shown in Figure 13-13.

CHAPTER 13 ■ EXTENDING .NET REMOTING 419

As nearly all the functionality you’ll want to implement in a common .NET Remoting scenario
can be implemented with IMessageSinks, IClientChannelSinks, or IServerChannelSinks, I sug-
gest you implement functionality by using these instead of custom proxies in .NET Remoting.
Sinks provide the additional benefits of being capable of working with configuration files and
being chainable. This chaining allows you to develop a set of very focused sinks that can then
be combined to solve your application’s needs.

Custom proxies are nevertheless interesting because they can also be used for local objects.
In this case, you don’t have to implement a special constructor, only override Invoke(). You can
then pass any MarshalByRefObject to another constructor (which is provided by the parent
RealProxy) during creation of the proxy. All method calls to this local object then pass the proxy
as an IMessage object and can therefore be processed. You can read more on message-based
processing for local applications in Chapter 11.

Some Final Words of Caution
Custom .NET Remoting sinks should enhance the transport protocol, but should not normally
provide application-specific functionality. Or to rephrase it: you should not implement business
logic in custom sinks. The reason is that this would tie your business logic code to the transport
protocol you are using.

Experience shows that business applications outlive their initial environments. In my con-
sulting practice, I have seen several applications developed with VB4 for example, then ported
to VB5, then to VB6. Subsequently, some parts have been ported to VB .NET, but some parts have
simply been wrapped as COM DLLs to expose their functionality to .NET and Web Services appli-
cations. These pieces of code have definitely outlived their initial environments.

If you therefore tie your business logic code to some side effects of your custom sinks, you’ll
make it harder for your code to live without the .NET Remoting framework. However, this might
become critical as in the future you might want to expose the same components via Web Services,
or by using the upcoming stack of Indigo technologies.

All of these alternative protocols also have means of extensibility. This means you would
not just have to port your business logic (which will usually be a fairly trivial task), but also your
custom sinks. The latter might prove harder, as the extensibility models of these other technolo-
gies are completely different.

So, to summarize: custom .NET Remoting sinks are a great means to enhance the distributed
application protocol used in your application. However, they should in most cases not be used
to create side effects that unnecessarily tie your business logic code to the .NET Remoting frame-
work. If you decide that it makes sense for your project to do this nevertheless, you have to take
into account that migrating your code might be more difficult in the future.

Summary
In this chapter you have seen how you can leverage the .NET Remoting framework’s extensibility.
You should now be able to apply the internals shown in Chapters 11 and 12 to extend and cus-
tomize the .NET Remoting programming model to suit your needs.

You now know the differences between IMessageSink, which is used before the mes-
sage reaches the client-side formatter, and IClientChannelSink, which is used after the seriali-
zation of the IMessage object. You know that you can add properties to the IMessage object’s

CHAPTER 13 ■ EXTENDING .NET REMOTING420

LogicalCallContext to pass it to the server, where it can be read by an IServerChannelSink,
and you can also encrypt or compress a request by using a combination of IClientChannelSinks and
IServerChannelSinks.

You also learned how sink providers are developed, and that a client-side IMessageSink
has to be created by an IClientChannelSinkProvider as well and therefore has to implement
the IClientChannelSink’s methods. Finally, you read about custom proxies, which allow you to
implement additional functionality before the message reaches the chain of sinks.

In the next chapter, you get a chance to use the knowledge gained here to implement a com-
plete transport channel from scratch.

421

C H A P T E R 1 4

■ ■ ■

1. Which will be provided by the IpcChannel, which will be shipped with version 2.0 of the .NET Framework.

Developing a Transport Channel

In the last three chapters you’ve seen how the .NET Remoting framework’s various layers can
be extended. The ultimate example of customization is nevertheless the creation of a specific
transport channel.

As you already know by now, the .NET Remoting framework comes out of the box with
three transport channels: HTTP channel, IPC channel, and TCP channel. Even though these
protocols cover a lot of common scenarios, you might have a special need for other transport
channels for some applications. On one hand, protocols like named pipes,1 for example,
could allow for higher performance (with security!) for applications communicating with each
other on the same machine. On the other hand, you might have the need for asynchronous
communication with MSMQ or even by standard Internet e-mail using SMTP and POP3.

No matter which protocol you choose, you must watch for one thing: most protocols are
either synchronous or asynchronous in their nature. As the remoting framework supports both
kinds of calls, you’ll need to either map asynchronous .NET Remoting calls onto a synchronous
protocol like HTTP or TCP or map synchronous .NET Remoting calls onto an asynchronous pro-
tocol like MSMQ or SMTP/POP3.

With the former, you will, for example, have to spawn a secondary thread that waits for
the reply and notifies the IAsyncResult (as seen in Chapter 7) whenever a response is returned. The
latter demands that you block the calling thread and wake it up as soon as the asynchronous
response has been received from the underlying protocol.

Protocol Considerations
First, I have to place a disclaimer here: this chapter will provide you with the necessary ideas
and walk you through the process of designing and developing a specialized transport chan-
nel. It isn’t the objective of this chapter to give you a commercial grade SMTP/POP3 channel.
Even though you could just use this channel in your application, you’ll need to understand it
fully before doing so because neither the author nor the publisher will provide any support
when you include this channel in your applications.

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL422

Okay, now let’s start with the implementation of this channel. Before doing this you never-
theless have to know the protocol (or at least the relevant parts of it) that you are going to use.
Every Internet protocol has its so-called request-for-comment (RFC) documents. The SMTP
protocol in its most recent version is shown in RFC2821 and POP3 in RFC1939. You can get them
at http://www.ietf.org/rfc/rfc2821.txt and http://www.ietf.org/rfc/rfc1939.txt.

You can generally search for any RFC at http://www.faqs.org/rfcs/index.html, but you
should keep in mind that normally RFCs are identified by the full protocol name and not the
more common acronym. For example, you’d have to search for “Simple Mail Transfer Protocol”,
not “SMTP”, to find the mentioned RFCs. If you don’t know the real protocol name, you can
search for the abbreviation on http://www.webopedia.com/.

Generally the transfer of e-mails is split between two protocols: SMTP and POP3.
SMTP is used to send e-mails from your mail client to a mail server and will then be used for
inter–mail-server communication until it reaches a destination mailbox. POP3 is used to receive
e-mails from a server’s mailbox to your e-mail client.

The Shortcut Route to SMTP . . .
To save you from having to read through the whole RFC2821, I provide here a short summary
of the relevant parts needed to implement this channel. First, SMTP uses a request/reply syn-
tax normally sent over a TCP connection to port 25 on the server. The client can send a list of
commands, and the server replies to them with a status code and a message. The status code is
a three-digit number of which the first digit specifies the class. These are shown in Table 14-1.
The message that might be sent after the status code is not standardized and should be ignored
or used only for reporting errors back to the user.

Table 14-1. SMTP Response Code Classes

Response Code Meaning

2xx Positive response. Command accepted and executed.

3xx Intermediate or transient positive. Command accepted, but more
information is needed. In plain English, this means the client can now
start to transfer the mail (if received as a reply to the DATA command).

4xx Transient error. Try again later.

5xx Permanent error. You quite certainly did something wrong!

A successful SMTP conversion can therefore look like the following code. (The ➤ symbol
indicates that the client sends this line and the symbol indicates the server’s reply.) You can
easily try this out yourself by entering telnet <mailserver> 25—but be aware that the commands
you input might not be echoed back to you.

220 MyRemotingServer Mercury/32 v3.21c ESMTP server ready.
➤ HELO localhost

250 MyRemotingServer Hi there, localhost.
➤ MAIL FROM: <client_1@localhost>

250 Sender OK - send RCPTs.
➤ RCPT TO: <server_1@localhost>

250 Recipient OK - send RCPT or DATA.
➤ DATA

➤

➤

➤

➤

➤

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL 423

354 OK, send data, end with CRLF.CRLF
➤ <sending message contents inclusive headers>
➤_ sending <CR><LF>.<CR><LF> (i.e. a "dot" between two CR/LFs)

250 Data received OK.
➤ QUIT

221 MyRemotingServer Service closing channel.

As you can see here, several commands can be sent by the client. At the beginning of the
session, after the server announces itself with 220 servername message, the client will send
HELO hostname. This starts the SMTP session, and the server responds with 250 servername
message.

For each e-mail the client wants to send via this server, the following process takes place.
First, the client starts with MAIL FROM: <e-mail address> (note that the e-mail address has to
be enclosed in angle brackets). The server replies with 250 message if it allows e-mails from this
sender; otherwise, it replies with a 4xx or 5xx status code. The client then sends one or more
RCPT TO: <e-mail address> commands that designate the recipients of this e-mail and that are
also confirmed by 250 message replies.

As soon as all recipients have been specified, the client sends DATA to notify the server that
it’s going to send the e-mail’s content. The server replies with 354 message and expects the
client to send the e-mail and finish with “.” (dot) on a single new line (that is, the client sends
<CR><LF><DOT><CR><LF>). The server then acknowledges the e-mail by replying with 250
message.

At this point the client can send further e-mails by issuing MAIL FROM or can terminate the
session with the QUIT command, which will be confirmed by the server via a 221 message reply.
The server will then also close the TCP connection. Sometime after the message is sent, it will
be placed in a user’s mailbox from where it can be retrieved by the POP3 protocol.

. . . And Round-Trip to POP3
Generally POP3 works in quite the same way as SMTP: it’s also a request/response protocol.
POP3 messages are generally sent over a TCP connection to port 110. Instead of the status
codes SMTP relies on, POP3 supports three kinds of replies. The first two are +OK message to
indicate success and -ERR message to indicate failure. The messages after the status code aren’t
standardized, and as such should be used only to report errors to your user and not be parsed
by a program.

Another type of reply is a content reply, which is used whenever you request information
from the server that might span multiple lines. In this case the server will indicate the end of
the response with the same <CR><LF><DOT><CR><LF> sequence that is used by SMTP to end
the transfer of the e-mail text.

A sample POP3 session might look like this. To start it, enter telnet <mailserver> 110.

+OK <1702038211.21388@vienna01>, MercuryP/32 v3.21c ready.
➤_ USER server_1

+OK server_1 is known here.
➤_ PASS server_1

+OK Welcome! 1 messages (231 bytes)
➤_ LIST

+OK 1 messages, 3456 bytes
1 231

➤

➤

➤

➤

➤

➤

➤

➤

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL424

.
➤_ RETR 1

+OK Here it comes...
<e-mail text>
.

➤_ DELE 1
+OK Message deleted.

➤_ QUIT
+OK vienna01 Server closing down.

As you can see in this connection trace, the client authenticates itself at the server by send-
ing the commands USER username and PASS password. In this case the password is transported
in clear text over the network. Most POP3 servers also support an APOP command based on an
MD5 digest that incorporates a server-side timestamp to disable replay attacks. You can read
more about this in RFC1939.

The server then replies with a message like +OK Welcome! 1 messages (231 bytes). You should
never try to parse this reply to receive the message count; instead, either send the command STAT,
which will be answered by +OK number_of_messages total_bytes or issue a LIST command, which
will first return +OK message and then return this line once for each message: message_number
bytes. The reply concludes with a <CR><LF><DOT><CR><LF> sequence.

The client can then issue a RETR message_number command to retrieve the content of a spe-
cific message (with a final <CR><LF><DOT><CR><LF> as well) and a DELE message_number
statement to delete it at the server. This deletion is only carried out after sending QUIT to the
server, which then closes the connection.

Character Encoding Essentials
After reading the last few pages, you are almost fully equipped to start with the design of your
channel. The last thing you need to know before you can start to write some code is how the
resulting e-mail has to look.

Because there’s no standard for the binding of .NET Remoting to custom transfer protocols,
I just elected Simon Fell’s recommendation for SOAP binding to SMTP as the target specifi-
cation for this implementation. You can find the latest version of this document at http://
www.pocketsoap.com/specs/smtpbinding/. In essence, it basically says that the content has to
be either Base64 or Quoted-Printable encoded and needs to supply a given number of e-mail
headers. So, what does this mean? Essentially, the e-mail format we know today was designed ages
ago when memory was expensive, WAN links were slow, and computers liked to deal with 7-bit
ASCII characters.

Nowadays we instead use Unicode, which allows us to have huge numbers of characters so
that even languages like Japanese, Chinese, or Korean can be encoded. This is, of course, far from
7 bit, so you have to find a way to bring such data back to a 7-bit format of “printable characters.”
Base64 does this for you; it is described in detail in section 5.2 of RFC1521, available at http://
www.ietf.org/rfc/rfc1521.txt. To encode a given byte array with the Base64 algorithm, you
can use Convert.ToBase64String().

➤

➤

➤

➤

➤

➤

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL 425

Creating E-Mail Headers
An e-mail contains not only the body, but also header information. For a sample SOAP-via-SMTP
request, the complete e-mail might look like this:

From: client_1@localhost
To: server_1@localhost
Message-Id: <26fc4f4cd8de4567a66ccea6897dc481@REMOTING>
MIME-Version: 1.0
Content-Type: text/xml; charset=utf-8
Content-Transfer-Encoding: BASE64

...encoded SOAP request here...

To match a response message to the correct request, the value of the Message-Id header
will be included in the In-Reply-To header of the response message.

From: server_1@localhost
To: client_1@localhost
Message-Id: <97809278530983552398576545869067@REMOTING>
In-Reply-To: <26fc4f4cd8de4567a66ccea6897dc481@REMOTING>
MIME-Version: 1.0
Content-Type: text/xml; charset=utf-8
Content-Transfer-Encoding: BASE64

...encoded SOAP response here...

You also need to include some special headers that are taken from the ITransportHeaders
object of the .NET Remoting request. Those will be preceded by X-REMOTING- so that a complete
remoting request e-mail might look like this:

From: client_1@localhost
To: server_1@localhost
Message-Id: <26fc4f4cd8de4567a66ccea6897dc481@REMOTING>
MIME-Version: 1.0
Content-Type: text/xml; charset=utf-8
Content-Transfer-Encoding: BASE64
X-REMOTING-Content-Type: text/xml; charset="utf-8"
X-REMOTING-SOAPAction:
"http://schemas.microsoft.com/clr/ns/System.Runtime ➥

.Remoting.Activation.IActivator#Activate"
X-REMOTING-URI: /RemoteActivationService.rem

...encoded .NET Remoting request here...

The encoded .NET Remoting request itself can be based on either the binary formatter
or SOAP!

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL426

Encapsulating the Protocols
Now that you’ve got some of the protocol basics down, you’re ready for the source code for this
channel. Okay, here goes. First you have to encapsulate the SMTP and POP3 protocols that are
later used in the client-side and server-side transport channel sinks.

The first part of this is shown in Listing 14-1. This source file encapsulates the lower-level
SMTP protocol. It provides a public constructor that needs the hostname of your SMTP-server
as a parameter. Its SendMessage() method takes the sender’s and recipient’s e-mail address and
the full e-mail’s text (including the headers) as parameters. It then connects to the SMTP server
and sends the specified mail.

Listing 14-1. Encapsulating the Lower-Level SMTP Protocol

using System;
using System.Net.Sockets;
using System.Net;
using System.IO;
using System.Text;

namespace SmtpChannel
{

public class SmtpConnection
{

private String _hostname;
private TcpClient _SmtpConnection;
private NetworkStream _smtpStream;
private StreamReader _smtpResponse;

public SmtpConnection(String hostname) {
_hostname = hostname;

}

private void Connect() {
_SmtpConnection = new TcpClient(_hostname,25);
_smtpStream = _SmtpConnection.GetStream();
_smtpResponse = new StreamReader(_smtpStream);

}

private void Disconnect() {
_smtpStream.Close();
_smtpResponse.Close();
_SmtpConnection.Close();

}

private void SendCommand(String command, int expectedResponseClass) {
// command: the SMTP command to send
// expectedResponseClass: first digit of the expected smtp response

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL 427

// throws an exception if the server's responsecode's first
// digit (resonse class) is > the expectedResponseClass.

// if expectedResponseClass == 0, it will be ignored

command = command + "\r\n";
byte[] cmd = Encoding.ASCII.GetBytes(command);
_smtpStream.Write(cmd,0,cmd.Length);
String response = _smtpResponse.ReadLine();

if (expectedResponseClass != 0) {
int resp = Convert.ToInt32(response.Substring(0,1));
if (resp > expectedResponseClass) {

throw new Exception("SMTP Server returned unexpected " +
"response:\n'" + response + "'");

}
}

}

public void SendMessage(String from, String to, String text) {
try
{

Connect();
SendCommand("HELO localhost",2);
SendCommand("MAIL FROM: <" + from + ">",2);
SendCommand("RCPT TO: <" + to + ">",2);
SendCommand("DATA",3);
byte[] bodybytes = Encoding.ASCII.GetBytes(text + "\r\n");
_smtpStream.Write(bodybytes,0,bodybytes.Length);
SendCommand(".",3);
SendCommand("QUIT",0);

} finally {
try {

Disconnect();
} catch (Exception e) {/*ignore*/};

}
}

}
}

To encapsulate the POP3 protocol, you first have to add a class that will hold the parsed
message and its headers. This is shown in Listing 14-2.

Listing 14-2. A Retrieved and Parsed Message

using System;
using System.Collections;

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL428

namespace SmtpChannel
{

public class POP3Msg
{

public String From;
public String To;
public String Body;
public String Headers;
public String MessageId;
public String InReplyTo;

}
}

The helper class POP3Connection encapsulates the lower-level details of the POP3 protocol.
After construction, it connects to the server, authenticates the user, and issues a LIST command
to retrieve the list of messages waiting.

using System;
using System.Net.Sockets;
using System.Net;
using System.IO;
using System.Collections;
using System.Text;

namespace SmtpChannel
{

public class POP3Connection
{

private class MessageIndex
{

// will be used to store the result of the LIST command
internal int Number;
internal int Bytes;

internal MessageIndex(int num, int msgbytes)
{

Number = num;
Bytes = msgbytes;

}
}

private String _hostname;
private String _username;
private String _password;

private TcpClient _pop3Connection;
private NetworkStream _pop3Stream;
private StreamReader _pop3Response;
private IDictionary _msgs;

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL 429

public POP3Connection(String hostname, String username, String password)
{

// try to connect to the server with the supplied username
// and password.

_hostname = hostname;
_username = username;
_password = password;
try
{

Connect();
}
catch (Exception e)
{

try
{

Disconnect();
}
catch (Exception ex) {/* ignore */}

throw e;
}

}

private void Connect()
{

// initialize the list of messages
_msgs = new Hashtable();

// open the connection
_pop3Connection = new TcpClient(_hostname,110);
_pop3Stream = _pop3Connection.GetStream();
_pop3Response = new StreamReader(_pop3Stream);

// ignore first line (server's greeting)
String response = _pop3Response.ReadLine();

// authenticate
SendCommand("USER " + _username,true);
SendCommand("PASS " + _password,true);

// retrieve the list of messages
SendCommand("LIST",true);
response = _pop3Response.ReadLine();
while (response != ".")
{

// add entries to _msgs dictionary
int pos = response.IndexOf(" ");

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL430

String msgnumStr = response.Substring(0,pos);
String bytesStr = response.Substring(pos);

int msgnum = Convert.ToInt32(msgnumStr);
int bytes = Convert.ToInt32(bytesStr);

MessageIndex msgidx = new MessageIndex(msgnum,bytes);
_msgs.Add (msgidx,msgnum);
response = _pop3Response.ReadLine();

}
}

These methods make use of the SendCommand() method, which sends a specified POP3
command to the server and checks the response if indicated.

private void SendCommand(String command,bool needOK)
{

// sends a single command.

// if needOK is set it will check the response to begin
// with "+OK" and will throw an exception if it doesn't.

command = command + "\r\n";
byte[] cmd = Encoding.ASCII.GetBytes(command);

// send the command
_pop3Stream.Write(cmd,0,cmd.Length);
String response = _pop3Response.ReadLine();

// check the response
if (needOK)
{

if (!response.Substring(0,3).ToUpper().Equals("+OK"))
{

throw new Exception("POP3 Server returned unexpected " +
"response:\n'" + response + "'");

}
}

}

The MessageCount property returns the number of messages available at the server.

public int MessageCount
{

get

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL 431

{
// returns the message count after connecting and
// issuing the LIST command
return _msgs.Count;

}
}

GetMessage() returns a POP3Msg object, which is filled by retrieving the specified message
from the server. It does this by sending the RETR command to the POP3 server and by checking
for special e-mail headers. It then populates the POP3Msg object’s properties with those headers
and the e-mail body.

public POP3Msg GetMessage(int msgnum)
{

// create the resulting object
POP3Msg tmpmsg = new POP3Msg();

// retrieve a single message
SendCommand("RETR " + msgnum,true);
String response = _pop3Response.ReadLine();

// read the response line by line and populate the
// correct properties of the POP3Msg object

StringBuilder headers = new StringBuilder();
StringBuilder body = new StringBuilder();
bool headersDone=false;
while ((response!= null) && (response != "."))
{

// check if all headers have been read
if (!headersDone)
{

if (response.Length >0)
{

// this will only parse the headers which are relevant
// for .NET Remoting

if (response.ToUpper().StartsWith("IN-REPLY-TO:"))
{

tmpmsg.InReplyTo = response.Substring(12).Trim();
}
else if (response.ToUpper().StartsWith("MESSAGE-ID:"))
{

tmpmsg.MessageId = response.Substring(11).Trim();
}
else if (response.ToUpper().StartsWith("FROM:"))
{

tmpmsg.From = response.Substring(5).Trim();
}

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL432

else if (response.ToUpper().StartsWith("TO:"))
{

tmpmsg.To = response.Substring(3).Trim();
}
headers.Append(response).Append("\n");

}
else
{

headersDone = true;
}

}
else
{

// all headers have been read, add the rest to
// the body.

// For .NET Remoting, we need the body in a single
// line to decode Base64, therefore no <CR><LF>s will
// be appended!

body.Append(response);
}

// read next line
response = _pop3Response.ReadLine();

}

// set the complete header and body Strings of POP3Msg
tmpmsg.Body = body.ToString();
tmpmsg.Headers = headers.ToString();
return tmpmsg;

}

What’s still needed is DeleteMessage(), which flags a message for deletion by sending the
DELE command to the server.

public void DeleteMessage(int msgnum)
{

// issue the DELE command to delete the specified message
SendCommand("DELE " + msgnum,true);

}

And finally, you need a method to send the QUIT command and disconnect from the
server. This Disconnect() method is shown here:

public void Disconnect()
{

// sends QUIT and disconnects

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL 433

try
{

// send QUIT to commit the DELEs
SendCommand("QUIT",false);

}
finally
{

// close the connection
_pop3Stream.Close();
_pop3Response.Close();
_pop3Connection.Close();

}
}

With those two helper classes presented previously, you’ll be able to access SMTP and
POP3 servers without having to deal further with the details of those protocols. Nevertheless,
what’s still missing is a mapping between the .NET Remoting framework and those e-mail
messages.

Checking for New Mail
As POP3 will not notify the client whenever a message has been received, it is necessary to
continuously log on to the server to check for new e-mails. This is done by the POP3Polling
class. Each instance of this class contacts a given server in regular intervals. If a message is
available, it will fetch it and invoke a delegate on another helper class that will then process
this message.

The POP3Polling class can be run in two modes: client or server mode. Whenever it’s in
client mode, it only starts polling after the client has sent a request to the server. As soon as the
server’s reply is handled, this class stops polling to save network bandwidth. In server mode, it
checks the server regularly to handle any remoting requests.

As you can see in the following part of this class, it provides a custom constructor that
accepts the server’s hostname, username, password, the polling interval, and a flag indicating
whether it should run in server or client mode:

using System;
using System.Collections;
using System.Threading;

namespace SmtpChannel
{

public class POP3Polling
{

delegate void HandleMessageDelegate(POP3Msg msg);

// if it's a remoting server, we will poll forever
internal bool _isServer;

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL434

// if this is not a server, this property has to be set to
// start polling
internal bool _needsPolling;

// is currently polling
internal bool _isPolling;

// polling interval in seconds
internal int _pollInterval;

// logon data
private String _hostname;
private String _username;
private String _password;

internal POP3Polling(String hostname, String username, String password,
int pollInterval, bool isServer)

{
_hostname = hostname;
_username = username;
_password = password;
_pollInterval = pollInterval;
_isServer = isServer;

if (!_isServer) { _needsPolling = false; }
}

The following Poll() method does the real work. It is started in a background thread and
checks for new e-mails as long as either _isServer or _needsPolling (which indicates the need
for client-side polling) is true. While it polls the server, it also sets a flag to prevent reentrancy.

SMTPHelper.MessageReceived() is a static method that is called by using an asynchronous
delegate in a fire-and-forget way. This method will handle the e-mail and forward it to the remot-
ing framework. Have a look at it here:

private void Poll()
{

if (_isPolling) return;
_isPolling = true;
do
{

Thread.Sleep(_pollInterval * 1000);

POP3Connection pop = new POP3Connection(_hostname,_username,_password);
for (int i =1;i<=pop.MessageCount;i++)
{

POP3Msg msg = pop.GetMessage(i);
HandleMessageDelegate del = new HandleMessageDelegate(

SMTPHelper.MessageReceived);

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL 435

del.BeginInvoke(msg,null,null);
pop.DeleteMessage(i);

}
pop.Disconnect();
pop = null;

} while (_isServer || _needsPolling);
_isPolling = false;

}

The last method of this class, CheckAndStartPolling(), can be called externally to start the
background thread as soon as _needsPolling has been changed. It does the necessary checks
to ensure that only one background thread is running per instance.

internal void CheckAndStartPolling()
{

if (_isPolling) return;

if (_isServer || _needsPolling)
{

Thread thr = new Thread(new ThreadStart(this.Poll));
thr.Start();
thr.IsBackground = true;

}
}

Registering a POP3 Server
When creating a custom channel like this, you might want to be able to have one application
that can be client and server at the same time. To optimize the polling strategy in this case, you
want to have only one instance of the POP3Polling class for a specified e-mail address, and not
two separate ones for the client channel and the server channel.

For client-only use of this channel, you also want to have a central point that can be noti-
fied as soon as a request has been sent to the server so it can start the background thread to
check for new e-mails. Additionally, this class needs a counter of responses that have been sent
and for which no reply has yet been received. As soon as all open replies have been handled, it
should again notify the POP3Polling object to stop checking for those e-mails.

This class provides a method, RegisterPolling(), that has to be called for each registered
channel to create the POP3Polling object. This method first checks whether the same username/
hostname combination has already been registered. If this is not the case, it creates the new
object and stores a reference to it in a Hashtable.

If the same combination has been registered before, this method first checks whether the
new registration request is for a server-side channel and in this case switches the already known
POP3Polling object into server mode. It also checks the polling intervals of the old and the new
object and takes the lower value. Finally, it calls the POP3Polling object’s CheckAndStartPolling()
method to enable the background thread if it is in server mode.

using System;
using System.Collections;
using System.Threading;

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL436

namespace SmtpChannel
{

public class POP3PollManager
{

// dictionary of polling instances
static IDictionary _listeners = Hashtable.Synchronized(new Hashtable());

// number of sent messages for which no response has been received
private static int _pendingResponses;
private static int _lastPendingResponses;

public static void RegisterPolling(String hostname, String username,
String password, int pollInterval, bool isServer)

{
String key = username + "|" + hostname;

// check if this combination has already been registered
POP3Polling pop3 = (POP3Polling) _listeners[key];
if (pop3 == null)
{

// create a new listener
pop3 = new POP3Polling(hostname,username,password,

pollInterval,isServer);

_listeners[key]= pop3;
}
else
{

// change to server-mode if needed
if (!pop3._isServer && isServer)
{

pop3._isServer = true;
}

// check for pollInterval => lowest interval will be taken
if (! (pop3._pollInterval > pollInterval))
{

pop3._pollInterval = pollInterval;
}

}
pop3.CheckAndStartPolling();

}

Two other methods that are provided in this class have to be called to notify all registered
POP3Polling objects that the remoting framework is waiting for a reply or that it has received
a reply.

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL 437

internal static void RequestSent()
{

_pendingResponses++;
if (_lastPendingResponses<=0 && _pendingResponses > 0)
{

IEnumerator enmr = _listeners.GetEnumerator();
while (enmr.MoveNext())
{

DictionaryEntry entr = (DictionaryEntry) enmr.Current;
POP3Polling pop3 = (POP3Polling) entr.Value;
pop3._needsPolling = true;
pop3.CheckAndStartPolling();

}
}
_lastPendingResponses = _pendingResponses;

}

internal static void ResponseReceived()
{

_pendingResponses--;
if (_pendingResponses <=0)
{

IEnumerator enmr = _listeners.GetEnumerator();
while (enmr.MoveNext())
{

DictionaryEntry entr = (DictionaryEntry) enmr.Current;
POP3Polling pop3 = (POP3Polling) entr.Value;
pop3._needsPolling = false;

}
}
_lastPendingResponses = _pendingResponses;

}

Connecting to .NET Remoting
What you’ve seen until now has been quite protocol specific, because I haven’t yet covered any
connections between the underlying protocol to .NET Remoting. This task is handled by the
SMTPHelper class. This class holds three synchronized Hashtables containing the following data:

• Objects that are waiting for a response to a given SMTP message ID. These can be either
Thread objects or SmtpChannel.AsyncResponseHandler objects, both of which are shown
later. These are stored in _waitingFor.

• The server-side transport sink for any e-mail address that has been registered with
a SMTPServerChannel in _servers.

• The received responses that will be cached while waking up the thread that has been
blocked is stored in _responses. This is a short-term storage that is only used for the frac-
tions of a second it takes for the thread to wake up and fetch and remove the response.

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL438

This class also starts with a method that transforms the .NET Remoting–specific infor-
mation in the form of a stream and an ITransportHeaders object into an e-mail message. This
method writes the standard e-mail headers, adds the remoting-specific headers from the
ITransportHeaders object, encodes the stream’s contents to Base64, and ensures a maximum
line length of 73 characters. Finally, it sends the e-mail using the SmtpConnection helper class.

using System;
using System.Text;
using System.IO;
using System.Collections;
using System.Runtime.Remoting.Channels;
using System.Threading;

namespace SmtpChannel
{

public class SMTPHelper
{

// threads waiting for response
private static IDictionary _waitingFor =

Hashtable.Synchronized(new Hashtable());

// known servers
private static IDictionary _servers =

Hashtable.Synchronized(new Hashtable());

// responses received
private static IDictionary _responses =

Hashtable.Synchronized(new Hashtable());

// sending messages
private static void SendMessage(String ID,String replyToId,

String mailfrom, String mailto, String smtpServer,
ITransportHeaders headers, Stream stream, String objectURI)

{
StringBuilder msg = new StringBuilder();

if (ID != null)
{

msg.Append("Message-Id: ").Append(ID).Append("\r\n");
}
if (replyToId != null)
{

msg.Append("In-Reply-To: ").Append(replyToId).Append("\r\n");
}

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL 439

msg.Append("From: ").Append(mailfrom).Append("\r\n");
msg.Append("To: ").Append(mailto).Append("\r\n");
msg.Append("MIME-Version: 1.0").Append("\r\n");
msg.Append("Content-Type: text/xml; charset=utf-8").Append("\r\n");
msg.Append("Content-Transfer-Encoding: BASE64").Append("\r\n");

// write the remoting headers
IEnumerator headerenum = headers.GetEnumerator();
while (headerenum.MoveNext())
{

DictionaryEntry entry = (DictionaryEntry) headerenum.Current;
String key = entry.Key as String;
if (key == null || key.StartsWith("__"))
{

continue;
}
msg.Append("X-REMOTING-").Append(key).Append(": ");
msg.Append(entry.Value.ToString()).Append("\r\n");

}

if (objectURI != null)
{

msg.Append("X-REMOTING-URI: ").Append(objectURI).Append("\r\n");
}

msg.Append("\r\n");
MemoryStream fs = new MemoryStream();

byte[] buf = new Byte[1000];
int cnt = stream.Read(buf,0,1000);
int bytecount = 0;
while (cnt>0)
{

fs.Write(buf,0,cnt);
bytecount+=cnt;
cnt = stream.Read(buf,0,1000);

}

// convert the whole string to Base64 encoding
String body = Convert.ToBase64String(fs.GetBuffer(),0,bytecount);

// and ensure the maximum line length of 73 characters
int linesNeeded = (int) Math.Ceiling(body.Length / 73);

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL440

for (int i = 0;i<=linesNeeded;i++)
{

if (i != linesNeeded)
{

String line = body.Substring(i*73,73);
msg.Append(line).Append("\r\n");

}
else
{

String line = body.Substring(i*73);
msg.Append(line).Append("\r\n");

}
}

// send the resulting message
SmtpConnection con = new SmtpConnection (smtpServer);
con.SendMessage(mailfrom,mailto,msg.ToString());

}

This method is not called directly by the framework, but instead the class provides two other
methods that are made for this purpose. The first one, named SendRequestMessage(), generates
a message ID that is later returned using an out parameter and then calls SendMessage() to send
the e-mail via SMTP. It next calls the POP3PollManager’s RequestSent() method so that the
background thread will start checking for incoming reply mails.

The second method, SendReplyMessage(), takes a given message ID and sends a reply:

internal static void SendRequestMessage(String mailfrom, String mailto,
String smtpServer, ITransportHeaders headers, Stream request,
String objectURI, out String ID)

{
ID = "<" + Guid.NewGuid().ToString().Replace("-","") + "@REMOTING>";
SendMessage(ID,null,mailfrom,mailto,smtpServer,headers,request,objectURI);
POP3PollManager.RequestSent();

}

internal static void SendResponseMessage(String mailfrom, String mailto,
String smtpServer, ITransportHeaders headers, Stream response,
String ID)

{
SendMessage(null,ID,mailfrom,mailto,smtpServer,headers,response,null);

}

The more complex part of mapping the underlying protocol to the .NET Remoting frame-
work is the handling of responses. As the combination of SMTP and POP3 is asynchronous in
its nature, whereas most .NET calls are executed synchronously, you have to provide a means
for blocking the underlying thread until the matching response has been received. This is accom-
plished by the following method, which adds the waiting thread to the _waitingFor Hashtable
and suspends it afterwards. Whenever a response is received (which is handled by another
function running in a different thread), the response is stored in the _responses Hashtable and
the thread awakened again. It then fetches the value from _responses and returns it to the caller.

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL 441

internal static POP3Msg WaitAndGetResponseMessage(String ID)
{

// suspend the thread until the message returns
_waitingFor[ID] = Thread.CurrentThread;

Thread.CurrentThread.Suspend();

// waiting for resume
POP3Msg pop3msg = (POP3Msg) _responses[ID];
_responses.Remove(ID);
return pop3msg;

}

The previous method showed you the handling of synchronous .NET Remoting messages,
but you might also want to support asynchronous delegates. In this case, a callback object is
placed in _waitingFor and the method that handles incoming POP3 messages simply invokes
the corresponding method on this callback object.

internal static void RegisterAsyncResponseHandler(String ID,
AsyncResponseHandler ar)

{
_waitingFor[ID] = ar;

}

One of the most important methods is MessageReceived(), which is called by POP3Polling
as soon as an incoming message has been collected from the server. This method attempts to
map all incoming e-mails to .NET Remoting calls.

There are two quite different types in e-mails: requests that are sent from a client to a server
and reply messages that are sent back from the server. The distinction between these is that
a reply e-mail includes an In-Reply-To header, whereas the request message only contains
a Message-Id header.

If the incoming message is a request message, the MessageReceived() method checks the
_servers Hashtable to retrieve the server-side sink chain for the destination e-mail address. It
will then call HandleIncomingMessage() on this SMTPServerTransportSink object.

For reply messages, on the other hand, the method checks whether any objects are wait-
ing for an answer to the contained In-Reply-To header. If the waiting object is a thread, the
POP3Msg object will be stored in the _responses Hashtable and the thread will be awakened.
For asynchronous calls, the waiting object will be of type AsyncResponseHandler. In this case
the framework will simply call its HandleAsyncResponsePop3Msg() method. Regardless of whether
the reply has been received for a synchronous or an asynchronous message, POP3PollManager.
ResponseReceived() will be called to decrement the count of unanswered messages and to
eventually stop polling if all replies have been received.

internal static void MessageReceived(POP3Msg pop3msg)
{

// whenever a pop3 message has been received, it
// will be forwarded to this method

// check if it's a request or a reply
if ((pop3msg.InReplyTo == null) && (pop3msg.MessageId != null))

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL442

{
// it's a request

String requestID = pop3msg.MessageId;

// Request received

// check for a registered server
SMTPServerTransportSink snk = (SMTPServerTransportSink)

_servers[GetCleanAddress(pop3msg.To)];

if (snk==null)
{

// No server side sink found for address
return;

}

// Dispatch the message to serversink
snk.HandleIncomingMessage(pop3msg);

}
else if (pop3msg.InReplyTo != null)
{

// a response must contain the in-reply-to header
String responseID = pop3msg.InReplyTo.Trim();

// check who's waiting for it
Object notify = _waitingFor[responseID];

if (notify as Thread != null)
{

_responses[responseID] = pop3msg;

// Waiting thread found. Will wake it up
_waitingFor.Remove(responseID);
((Thread) notify).Resume();
POP3PollManager.ResponseReceived();

}
else if (notify as AsyncResponseHandler != null)
{

_waitingFor.Remove(responseID);
POP3PollManager.ResponseReceived();
((AsyncResponseHandler)notify).HandleAsyncResponsePop3Msg(

pop3msg);
}
else

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL 443

{
// no one is waiting for this reply. ignore.

}
}

}

Another method is employed to map a POP3Msg object onto the objects that .NET
Remoting needs: Stream and ITransportHeader. ProcessMessage() does this by taking all
custom remoting headers starting with X-REMOTING- from the e-mail and putting them into
a new ITransportHeader object. It then converts back the Base64-encoded payload into a byte
array and creates a new MemoryStream that allows the remoting framework to read the byte
array. It also returns the message ID as an out parameter.

internal static void ProcessMessage(POP3Msg pop3msg,
out ITransportHeaders headers, out Stream stream, out String ID)

{
// this method will split it into a TransportHeaders and
// a Stream object and will return the "remoting ID"

headers = new TransportHeaders();

// first all remoting headers (which start with "X-REMOTING-")
// will be extracted and stored in the TransportHeaders object
String tmp = pop3msg.Headers;
int pos = tmp.IndexOf("\nX-REMOTING-");
while (pos >= 0)
{

int pos2 = tmp.IndexOf("\n",pos+1);
String oneline = tmp.Substring(pos+1,pos2-pos-1);

int poscolon = oneline.IndexOf(":");
String key = oneline.Substring(11,poscolon-11).Trim();
String headervalue = oneline.Substring(poscolon+1).Trim();
if (key.ToUpper() != "URI")
{

headers[key] = headervalue;
}
else
{

headers["__RequestUri"] = headervalue;
}
pos = tmp.IndexOf("\nX-REMOTING-",pos2);

}

String fulltext = pop3msg.Body ;
fulltext = fulltext.Trim();
byte[] buffer = Convert.FromBase64String(fulltext);

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL444

stream=new MemoryStream(buffer);

ID = pop3msg.MessageId;
}

There’s also a method called RegisterServer() in SMTPHelper that stores a server-side
sink chain in the _servers Hashtable using the e-mail address as a key.

public static void RegisterServer(SMTPServerTransportSink snk,
String address)

{
// registering sink for a specified e-mail address
_servers[address] = snk;

}

The last two methods in the helper class are of a more generic nature. The first parses a URL
in the form smtp:someone@somedomain.com/URL/to/object and returns the e-mail address
separated from the object’s URI (which is /URL/to/object in this case) as out parameters.

internal static void parseURL(String url, out String email,
out String objectURI)

{
// format: "smtp:user@host.domain/URL/to/object"

// is split to:
// email = user@host.domain
// objectURI = /URL/to/object
int pos = url.IndexOf("/");
if (pos > 0)
{

email = url.Substring(5,pos-5);
objectURI = url.Substring(pos);

}
else if (pos ==-1)
{

email = url.Substring(5);
objectURI ="";

}
else
{

email = null;
objectURI = url;

}

}

The second method is used to parse an e-mail address for an incoming request. It accepts
addresses in a variety of formats and returns the generic form of user@domain.com:

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL 445

public static String GetCleanAddress(String address)
{

// changes any kind of address like "someone@host"
// "<someone@host>" "<someone@host> someone@host"
// to a generic format of "someone@host"

address = address.Trim();
int posAt = address.IndexOf("@");
int posSpaceAfter = address.IndexOf(" ",posAt);
if (posSpaceAfter != -1) address = address.Substring(0,posSpaceAfter);

int posSpaceBefore = address.LastIndexOf(" ");

if (posSpaceBefore != -1 && posSpaceBefore < posAt)
{

address = address.Substring(posSpaceBefore+1);
}

int posLt = address.IndexOf("<");
if (posLt != -1)
{

address = address.Substring(posLt+1);
}

int posGt = address.IndexOf(">");
if (posGt != -1)
{

address = address.Substring(0,posGt);
}

return address;
}

Implementing the Client Channel
Before looking into the implementation of the client-side SMTPClientChannel, let me show
you how it will later be used in a configuration file.

<channel
name="smtpclient"
type="SmtpChannel.SMTPClientChannel, SmtpChannel"
senderEmail="client_1@localhost"
smtpServer="localhost"
pop3Server="localhost"
pop3User="client_1"
pop3Password="client_1"
pop3PollInterval="1"

>

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL446

All of these parameters are mandatory, and I explain their meanings in Table 14-2.

Table 14-2. Parameters for SMTPClientChannel

Parameter Description

name Unique name for this channel.

senderEmail The value for the e-mail’s From: header. The server will reply to the
address specified here.

smtpServer Your outgoing e-mail server’s name.

pop3Server Your incoming mail server’s name.

pop3User The POP3 user account that is assigned to this client application.

pop3Password The password for the application’s POP3 account.

pop3PollInterval Interval in seconds at which the framework will check for new mail at
the server.

A client channel has to extend BaseChannelWithProperties and implement IChannelSender,
which in turn extends IChannel. These interfaces are shown in Listing 14-3.

Listing 14-3. IChannel and IChannelSender

public interface IChannel
{

// properties
string ChannelName { get; }
int ChannelPriority { get; }

// methods
string Parse(string url, ref String objectURI);

}

public interface IChannelSender: IChannel
{

// methods
IMessageSink CreateMessageSink(string url, object remoteChannelData,

ref String objectURI);
}

Let’s have a look at the basic implementation of a channel and the IChannel interface first.
Each channel that is creatable using a configuration file has to supply a special constructor
that takes two parameters: an IDictionary object, which will contain the attributes specified in
the configuration file (for example, smtpServer); and an IClientChannelSinkProvider object,
which points to the first entry of the chain of sink providers specified in the configuration file.

In the case of the SMPTClientChannel, this constructor will store those values to member
variables and call POP3PollManager.RegisterPolling() to register the connection information.

using System;
using System.Collections;

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL 447

using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Messaging;

namespace SmtpChannel
{

public class SMTPClientChannel: BaseChannelWithProperties, IChannelSender
{

IDictionary _properties;
IClientChannelSinkProvider _provider;
String _name;

public SMTPClientChannel (IDictionary properties,
IClientChannelSinkProvider clientSinkProvider)

{
_properties = properties;
_provider = clientSinkProvider;
_name = (String) _properties["name"];

POP3PollManager.RegisterPolling(
(String) _properties["pop3Server"],
(String) _properties["pop3User"],
(String) _properties["pop3Password"],
Convert.ToInt32((String)_properties["pop3PollInterval"]),
false);

}

The implementation of IChannel itself is quite straightforward. You basically have to
return a priority and a name for the channel, both of which can be either configurable or hard
coded. You also have to implement a Parse() method that takes a URL as its input parameter.
It then has to check if the given URL is valid for this channel (returning null if it isn’t) and split
it into its base URL, which is the return value from the method, and the object’s URI, which is
returned as an out parameter.

public string ChannelName
{

get
{

return _name;
}

}

public int ChannelPriority
{

get
{

return 0;
}

}

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL448

public string Parse(string url, out string objectURI)
{

String email;
SMTPHelper.parseURL(url, out email, out objectURI);
if (email == null || email=="" || objectURI == null || objectURI =="")
{

return null;
}
else
{

return "smtp:" + email;
}

}

The implementation of IChannelSender consists only of a single method: CreateMessageSink().
This method will either receive a URL or a channel data store as parameters and will return an
IMessageSink as a result and the destination object’s URI as an out parameter.

When no URL is specified as a parameter, you should cast the channel data store (which is
passed as object) to IChannelDataStore and take the first URL from it instead. You then have to
check whether the URL is valid for your channel and return null if it isn’t. Next you add the client
channel’s transport sink provider at the end of the provider chain and call CreateSink() on the
first provider. The resulting sink chain is then returned from the method.

public IMessageSink CreateMessageSink(string url, object remoteChannelData,
out string objectURI)

{

if (url == null && remoteChannelData != null &&
remoteChannelData as IChannelDataStore != null)

{
IChannelDataStore ds = (IChannelDataStore) remoteChannelData;
url = ds.ChannelUris[0];

}

// format: "smtp:user@host.domain/URI/to/object"
if (url != null && url.ToLower().StartsWith("smtp:"))
{

// walk to last provider and this channel sink's provider
IClientChannelSinkProvider prov = _provider;
while (prov.Next != null) { prov = prov.Next ;};

prov.Next = new SMTPClientTransportSinkProvider(
(String) _properties["senderEmail"],
(String) _properties["smtpServer"]);

String dummy;
SMTPHelper.parseURL(url,out dummy,out objectURI);

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL 449

IMessageSink msgsink =
(IMessageSink) _provider.CreateSink(this,url,remoteChannelData);

return msgsink;
}
else
{

objectURI =null;
return null;

}
}

Creating the Client’s Sink and Provider
Even though this sink provider is called a transport sink provider, it is in fact a straightforward
implementation of an IClientChannelSinkProvider, which you’ve encountered in Chapter 13.
The main difference is that its CreateSink() method has to parse the URL to provide the trans-
port sink with the correct information regarding the destination e-mail address and the object’s
URI. It also doesn’t need to specify any special constructors, as it will not be initialized from
a configuration file. The complete sink provider is shown in Listing 14-4.

Listing 14-4. The SMTPClientTransportSinkProvider

using System;
using System.Collections;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Messaging;

namespace SmtpChannel
{

public class SMTPClientTransportSinkProvider: IClientChannelSinkProvider
{

String _senderEmailAddress;
String _smtpServer;

public SMTPClientTransportSinkProvider(String senderEmailAddress,
String smtpServer)

{
_senderEmailAddress = senderEmailAddress;
_smtpServer = smtpServer;

}

public IClientChannelSink CreateSink(IChannelSender channel,
string url, object remoteChannelData)

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL450

{
String destinationEmailAddress;
String objectURI;
SMTPHelper.parseURL(url,out destinationEmailAddress,out objectURI);

return new SMTPClientTransportSink(destinationEmailAddress,
_senderEmailAddress,_smtpServer, objectURI);

}

public IClientChannelSinkProvider Next
{

get
{

return null;
}
set
{

// ignore as this has to be the last provider in the chain
}

}
}

}

When relying on the helper classes presented previously, the client-side sink’s implemen-
tation will be quite simple as well. First, you have to provide a constructor that allows the
sender’s and the recipient’s e-mail address, the object’s URI, and the SMTP server to be set.

using System;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Messaging;
using System.IO;

namespace SmtpChannel
{

public class SMTPClientTransportSink: BaseChannelSinkWithProperties,
IClientChannelSink, IChannelSinkBase

{
String _destinationEmailAddress;
String _senderEmailAddress;
String _objectURI;
String _smtpServer;

public SMTPClientTransportSink(String destinationEmailAddress,
String senderEmailAddress, String smtpServer, String objectURI)

{
_destinationEmailAddress = destinationEmailAddress;
_senderEmailAddress = senderEmailAddress;

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL 451

_objectURI = objectURI;
_smtpServer = smtpServer;

}

The key functionality of this sink is that ProcessMessage() and AsyncProcessMessage() cannot
just forward the parameters to another sink, but instead have to send it by e-mail to another
process. ProcessMessage() parses the URL to split it into the e-mail address and the object’s URI.
Those values are then used to call SMTPHelper.SendRequestMessage(). As this method has to
block until a response is received, it also calls SMTPHelper.WaitAndGetResponseMessage().
Finally, it hands over the processing of the return message to the ProcessMessage() method of
SMTPHelper to split it into a stream and an ITransportHeaders object that have to be returned
from ProcessMessage() as an out parameter.

public void ProcessMessage(IMessage msg,
ITransportHeaders requestHeaders, Stream requestStream,
out ITransportHeaders responseHeaders,
out Stream responseStream)

{
String ID;
String objectURI;
String email;

// check the URL
String URL = (String) msg.Properties["__Uri"];
SMTPHelper.parseURL(URL,out email,out objectURI);

if ((email==null) || (email == ""))
{

email = _destinationEmailAddress;
}

// send the message
SMTPHelper.SendRequestMessage(_senderEmailAddress,email,_smtpServer,

requestHeaders,requestStream,objectURI, out ID);

// wait for the response
POP3Msg popmsg = SMTPHelper.WaitAndGetResponseMessage(ID);

// process the response
SMTPHelper.ProcessMessage(popmsg,out responseHeaders,out responseStream,

out ID);
}

The AsyncProcessMessage() method does not block and wait for a reply, but instead creates
a new instance of AsyncResponseHandler (which I introduce in a bit) and passes the sink stack
to it. It then registers this object with the SMTPHelper to enable it to forward the response to the
underlying sinks and finally to the IAsyncResult object that has been returned from the delegate’s
BeginInvoke() method.

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL452

public void AsyncProcessRequest(IClientChannelSinkStack sinkStack,
IMessage msg, ITransportHeaders headers, Stream stream)

{
String ID;
String objectURI;
String email;

// parse the url
String URL = (String) msg.Properties["__Uri"];
SMTPHelper.parseURL(URL,out email,out objectURI);

if ((email==null) || (email == ""))
{

email = _destinationEmailAddress;
}

// send the request message
SMTPHelper.SendRequestMessage(_senderEmailAddress,email,_smtpServer,

headers,stream,objectURI, out ID);

// create and register an async response handler
AsyncResponseHandler ar = new AsyncResponseHandler(sinkStack);
SMTPHelper.RegisterAsyncResponseHandler(ID, ar);

}

The rest of the SMTPClientTransportSink is just a standard implementation of the mandatory
parts of IClientChannelSink. As these methods are not expected to be called for a transport sink,
they will either return null or throw an exception.

public void AsyncProcessResponse(IClientResponseChannelSinkStack sinkStack,
object state, ITransportHeaders headers, Stream stream)
{

// not needed in a transport sink!
throw new NotSupportedException();

}

public Stream GetRequestStream(IMessage msg, ITransportHeaders headers)
{

// no direct way to access the stream
return null;

}

public IClientChannelSink NextChannelSink
{

get
{

// no more sinks
return null;

}
}

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL 453

The last thing you have to implement before you are able to use this channel is the
AsyncResponseHandler class that is used to pass an incoming reply message to the sink stack.
Its HandleAsyncResponsePop3Msg() method is called by SMTPHelper.MessageReceived() whenever
the originating call has been placed by using an asynchronous delegate. It calls SMTPHelper.
ProcessMessage() to split the e-mail message into a Stream object and an ITransportHeaders
object and then calls AsyncProcessResponse() on the sink stack that has been passed to
AsyncResponseHandler in its constructor.

using System;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting;
using System.IO;
using System.Runtime.Remoting.Messaging;

namespace SmtpChannel
{

internal class AsyncResponseHandler
{

IClientChannelSinkStack _sinkStack;

internal AsyncResponseHandler(IClientChannelSinkStack sinkStack)
{

_sinkStack = sinkStack;
}

internal void HandleAsyncResponsePop3Msg(POP3Msg popmsg)
{

ITransportHeaders responseHeaders;
Stream responseStream;
String ID;

SMTPHelper.ProcessMessage(popmsg,out responseHeaders,
out responseStream,out ID);

_sinkStack.AsyncProcessResponse(responseHeaders,responseStream);
}

}
}

Well, that’s it! You’ve just completed your first client-side transport channel.

Implementing the Server Channel
As with the client channel, I show you how the server channel will be used before diving into
the code. Basically, it looks exactly like the SMTPClientChannel does.

<channel
name="smtpserver"
type="SmtpChannel.SMTPServerChannel, SmtpChannel"

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL454

senderEmail="server_1@localhost"
smtpServer="localhost"
pop3Server="localhost"
pop3User="server_1"
pop3Password="server_1"
pop3PollInterval="1"

>

The parameters for this channel are shown in Table 14-3.

Table 14-3. Parameters for SMTPServerChannel

Parameter Description

name Unique name for this channel.

senderEmail The value for the e-mail’s From: header. The server will reply to the
address specified here.

smtpServer Your outgoing e-mail server’s name.

pop3Server Your incoming mail server’s name.

pop3User The POP3 user account that is assigned to this client application.

pop3Password The password for the application’s POP3 account.

pop3PollInterval Interval in seconds at which the framework will check for new mail at
the server.

The basic difference between the SMTPClientChannel and the SMTPServerChannel is that the
latter registers itself with the POP3PollManager as a server. This means that the POP3Polling
instance will constantly check for new e-mails.

The server-side channel has to implement IChannelReceiver, which in turn inherits from
IChannel again. These interfaces are shown in Listing 14-5.

Listing 14-5. IChannel and IChannelReceiver

public interface IChannel
{

string ChannelName { get; }
int ChannelPriority { get; }

string Parse(string url, ref String objectURI);
}

public interface IChannelReceiver: IChannel
{

object ChannelData { get; }

string[] GetUrlsForUri(string objectURI);
void StartListening(object data);
void StopListening(object data);

}

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL 455

The implementation of SMTPServerChannel itself is quite straightforward. Its constructor
checks for the attributes specified in the configuration file and assigns them to local member
variables. It also creates a ChannelDataStore object, which is needed for CAOs to communicate
back with the server (that is, when creating a CAO using this channel, the server returns the
base URL contained in this ChannelDataStore object).

It then creates the sink chain and adds the SMTPServerTransportSink on top of the chain.
This is different from the client-side channel, where the constructor only creates a chain of sink
providers. This is because on the server side there is only a single sink chain per channel, whereas
the client creates a distinct sink chain for each remote object. Finally the constructor calls
StartListening() to enable the reception of incoming requests.

using System;
using System.Collections;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Messaging;

namespace SmtpChannel
{

public class SMTPServerChannel: BaseChannelWithProperties,
IChannelReceiver,
IChannel

{
private String _myAddress;
private String _name;
private String _smtpServer;
private String _pop3Server;
private String _pop3Username;
private String _pop3Password;
private int _pop3Pollingtime;

private SMTPServerTransportSink _transportSink;
private IServerChannelSinkProvider _sinkProvider;
private IDictionary _properties;

private ChannelDataStore _channelData;

public SMTPServerChannel(IDictionary properties,
IServerChannelSinkProvider serverSinkProvider)

{
_sinkProvider = serverSinkProvider;
_properties = properties;
_myAddress = (String) _properties["senderEmail"];
_name = (String) _properties["name"];
_pop3Server = (String) _properties["pop3Server"];
_smtpServer = (String) _properties["smtpServer"];
_pop3Username = (String) _properties["pop3User"];

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL456

_pop3Password = (String) _properties["pop3Password"];
_pop3Pollingtime =

Convert.ToInt32((String) _properties["pop3PollInterval"]);

// needed for CAOs!
String[] urls = { this.GetURLBase() };
_channelData = new ChannelDataStore(urls);

// collect channel data from all providers
IServerChannelSinkProvider provider = _sinkProvider;
while (provider != null)
{

provider.GetChannelData(_channelData);
provider = provider.Next;

}

// create the sink chain
IServerChannelSink snk =

ChannelServices.CreateServerChannelSinkChain(_sinkProvider,this);

// add the SMTPServerTransportSink as a first element to the chain
_transportSink = new SMTPServerTransportSink(snk, _smtpServer,

_myAddress);

// start to listen
this.StartListening(null);

}

The constructor calls GetURLBase(), which provides a way for this channel to return its
base URL.

private String GetURLBase()
{

return "smtp:" + _myAddress;
}

You also have to implement IChannel’s methods and properties: Parse(), ChannelName,
and ChannelPriority. The implementation itself looks exactly the same as it did for the client-
side channel.

public string Parse(string url, out string objectURI)
{

String email;
SMTPHelper.parseURL(url, out email, out objectURI);
if (email == null || email=="" || objectURI == null || objectURI =="")
{

return null;
}
else

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL 457

{
return "smtp:" + email;

}
}

public string ChannelName
{

get
{

return _name;
}

}

public int ChannelPriority
{

get
{

return 0;
}

}

The single most important method of a server-side channel is StartListening(). Only after
it is called will the server be able to receive requests and to handle them.

In the SMTPServerChannel, this method registers its connection as a server with the
POP3PollManager. It next registers the server-side transport sink and its e-mail address with
the SMTPHelper. This last step will enable the helper to dispatch requests based on the desti-
nation e-mail address.

public void StartListening(object data)
{

// register the POP3 account for polling
POP3PollManager.RegisterPolling(_pop3Server,_pop3Username,

_pop3Password,_pop3Pollingtime,true);

// register the e-mail address as a server
SMTPHelper.RegisterServer(_transportSink,_myAddress);

}

public void StopListening(object data)
{

// not needed ;-)
}

To enable CAOs to work correctly, you must implement the method GetUrlsForUri() and
the property ChannelData. The first allows the framework to convert a given object’s URI into
a complete URL (including the protocol-specific part, such as smtp:user@host.com). The second
returns the channel data object that is used by the framework to provide the complete URL for
a client-activated object.

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL458

public string[] GetUrlsForUri(string objectURI)
{

String[] urls;
urls = new String[1];
if (!(objectURI.StartsWith("/")))

objectURI = "/" + objectURI;

urls[0] = this.GetURLBase() + objectURI;
return urls;

}

public object ChannelData
{

get
{

return _channelData;
}

}

Creating the Server’s Sink
A server-side transport sink has to implement IServerChannelSink, which in turn extends
IChannelSinkBase. You might already know the interfaces shown in Listing 14-6 from Chapter 13,
where they were used to extend the remoting infrastructure.

Listing 14-6. IChannelSinkBase and IServerChannelSink

public interface IChannelSinkBase
{

IDictionary Properties { get; }
}

public interface IServerChannelSink : IChannelSinkBase
{

IServerChannelSink NextChannelSink { get; }

ServerProcessing ProcessMessage(IServerChannelSinkStack sinkStack,
IMessage requestMsg, ITransportHeaders requestHeaders,
Stream requestStream, ref IMessage responseMsg,
ref ITransportHeaders responseHeaders, ref Stream responseStream);

void AsyncProcessResponse(IServerResponseChannelSinkStack sinkStack,
object state, IMessage msg, ITransportHeaders headers,
Stream stream);

Stream GetResponseStream(IServerResponseChannelSinkStack sinkStack,
object state, IMessage msg, ITransportHeaders headers);

}

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL 459

The implementation of SMTPServerTransportSink is a little bit different from classic chan-
nel sinks. First and foremost, it is not created by a sink provider but instead directly by the
channel that passes the reference to the next sink, the SMTP server’s address and the server’s
own address to the newly created SMTPServerTransportSink.

Additionally, you’ll need a private class to hold state information about the origin of the
request and its message ID to process the asynchronous replies.

using System;
using System.IO;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Messaging;

namespace SmtpChannel
{

public class SMTPServerTransportSink: IServerChannelSink

{
// will be used as a state object for the async reply
private class SMTPState
{

internal String ID;
internal String responseAddress;

}

private String _smtpServer;
private String _myAddress;
private IServerChannelSink _nextSink;

public SMTPServerTransportSink(IServerChannelSink nextSink,
String smtpServer, String myAddress)

{
_nextSink = nextSink;
_smtpServer =smtpServer;
_myAddress = myAddress;

}

One of the main differences between a server-side transport sink and a “conventional”
channel sink is that the latter receives its parameters via the ProcessMessage() method. The trans-
port sink instead does not define a specific way to receive the incoming request from the under-
lying transport mechanisms.

In the case of the SMTPServerTransportSink, it receives a POP3Msg object from the
SMTPHelper and processes it in HandleIncomingMessage(). It first splits the e-mail message
into a Stream object and an ITransportHeaders object. It then creates a new state object of type
SMTPState and populates its properties from the e-mail’s values.

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL460

Next, it creates a ServerChannelSinkStack and pushes itself and the newly created state object
onto it before handing over the processing to the next sink in its chain. When this method is
finished, it returns a ServerProcessing value. This indicates whether the message has been han-
dled synchronously, asynchronously, or as a one-way message.

The SMTPServerTransportSink now behaves accordingly. If the request has been handled
synchronously, it generates and sends a response message. For asynchronous calls, it waits for
the framework to call its AsyncProcessResponse() method. For one-way calls, it does nothing at all.

public void HandleIncomingMessage(POP3Msg popmsg)
{

Stream requestStream;
ITransportHeaders requestHeaders;
String ID;

// split the message in Stream and ITransportHeaders
SMTPHelper.ProcessMessage(popmsg,out requestHeaders,

out requestStream, out ID);

// create a new sink stack
ServerChannelSinkStack stack = new ServerChannelSinkStack();

// create a new state object and populate it
SMTPState state = new SMTPState();
state.ID = ID;
state.responseAddress = SMTPHelper.GetCleanAddress(popmsg.From);

// push this sink onto the stack
stack.Push(this,state);

IMessage responseMsg;
Stream responseStream;
ITransportHeaders responseHeaders;

// forward the call to the next sink
ServerProcessing proc = _nextSink.ProcessMessage(stack,null,requestHeaders,

requestStream, out responseMsg, out responseHeaders,
out responseStream);

// check the return value
switch (proc)
{

// this message has been handled synchronously
case ServerProcessing.Complete:

// send a response message
SMTPHelper.SendResponseMessage(_myAddress,

state.responseAddress,_smtpServer,responseHeaders,
responseStream,state.ID);

break;

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL 461

// this message has been handled asynchronously
case ServerProcessing.Async:

// nothing needs to be done yet
break;

// it's been a one way message
case ServerProcessing.OneWay:

// nothing needs to be done yet
break;

}
}

AsyncProcessResponse() is called when the framework has completed the execution of an
underlying asynchronous method. The SMTPServerTransportSink in this case generates a response
message and sends it to the client.

public void AsyncProcessResponse(
IServerResponseChannelSinkStack sinkStack, object state,
IMessage msg, ITransportHeaders headers, System.IO.Stream stream)

{

// fetch the state object
SMTPState smtpstate = (SMTPState) state;

// send the response e-mail
SMTPHelper.SendResponseMessage(_myAddress,

smtpstate.responseAddress,_smtpServer,headers,
stream,smtpstate.ID);

}

What’s still left in SMTPServerTransportSink is the implementation of the other manda-
tory methods and properties defined in IServerChannelSink. Most of them will not be called
for a transport sink and will therefore only return null or throw an exception.

public IServerChannelSink NextChannelSink
{

get
{

return _nextSink;
}

}

public System.Collections.IDictionary Properties
{

get
{

// not needed
return null;

}
}

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL462

public ServerProcessing ProcessMessage(
IServerChannelSinkStack sinkStack, IMessage requestMsg,
ITransportHeaders requestHeaders, Stream requestStream,
out IMessage responseMsg, out ITransportHeaders responseHeaders,
out Stream responseStream)

{
// will never be called for a server side transport sink
throw new NotSupportedException();

}

public Stream GetResponseStream(
IServerResponseChannelSinkStack sinkStack, object state,
IMessage msg, ITransportHeaders headers)

{
// it's not possible to directly access the stream
return null;

}

Great! You have now finished implementing your own transport channel!

Wrapping the Channel
As you’ve seen with the default .NET Remoting channels, you don’t have to manually create
and register HttpClientChannel and HttpServerChannel but can instead use the combination
in the form of HttpChannel. This isn’t strictly needed for compatibility with the .NET Remoting
framework, but it does provide more comfort for the developers using this channel. An additional
feature you might want to implement is the default assignment of a formatter to this channel.
I’m now going to show you how to do this to create an SmtpChannel class.

First, the combined channel has to extend BaseChannelWithProperties and implement
IChannelSender and IChannelReceiver. Nevertheless, there won’t be too much logic in SmtpChannel,
as it will delegate most of its work to either SMTPClientChannel or SMTPServerChannel.

To check if an application wants to act as a server for .NET Remoting requests via SMTP, you
have to introduce another attribute that can be used in the configuration file: isServer. When
this is set to “yes”, the SmtpChannel will create an SMTPServerChannel as well; otherwise it will
only create an SMTPClientChannel.

The SmtpChannel has to implement a different constructor that allows the framework to
pass both an IClientChannelSinkProvider and an IServerChannelSinkProvider object to it. It
will then check whether either of these is null and create a default SOAP formatter in this case.

All other methods that have to be implemented to support the specified interfaces will just
forward their calls to the respective client or server channel. This is shown in Listing 14-7.

Listing 14-7. The SmtpChannel

using System;
using System.Collections;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Messaging;

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL 463

namespace SmtpChannel
{

public class SmtpChannel: BaseChannelWithProperties,
IChannelSender, IChannelReceiver

{
SMTPClientChannel _clientchannel;
SMTPServerChannel _serverchannel;
String _name;

public SmtpChannel (IDictionary properties,
IClientChannelSinkProvider clientSinkProvider,
IServerChannelSinkProvider serverSinkProvider)

{
if (clientSinkProvider == null)
{

clientSinkProvider = new SoapClientFormatterSinkProvider();
}

// create the client channel
_clientchannel = new SMTPClientChannel(properties, clientSinkProvider);

if ((properties["isServer"] != null) &&
((String) properties["isServer"] == "yes"))

{
if (serverSinkProvider == null)
{

serverSinkProvider = new SoapServerFormatterSinkProvider();
}

// create the server channel
_serverchannel = new SMTPServerChannel(properties,

serverSinkProvider);
}

_name = (String) properties["name"];
}

public IMessageSink CreateMessageSink(string url,
object remoteChannelData, out string objectURI)

{
return _clientchannel.CreateMessageSink(url,

remoteChannelData, out objectURI);
}

public string Parse(string url, out string objectURI)
{

return _clientchannel.Parse(url, out objectURI);
}

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL464

public string ChannelName
{

get
{

return _name;
}

}

public int ChannelPriority
{

get
{

return 0;
}

}

public void StartListening(object data)
{

if (_serverchannel != null)
{

_serverchannel.StartListening(data);
}

}

public void StopListening(object data)
{

if (_serverchannel != null)
{

_serverchannel.StopListening(data);
}

}

public string[] GetUrlsForUri(string objectURI)
{

if (_serverchannel != null)
{

return _serverchannel.GetUrlsForUri(objectURI);
}
else
{

return null;
}

}

public object ChannelData
{

get

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL 465

{
if (_serverchannel != null)
{

return _serverchannel.ChannelData;
}
else
{

return null;
}

}
}

}
}

Using the SmtpChannel
What you’ve seen previously constitutes a full-featured transport channel. It supports every
.NET Remoting functionality: synchronous calls, asynchronous calls, and event notification. In
addition, client-activated objects can be used with this channel. To use it on the server side,
you can register it by implementing a configuration file like this:

<configuration>
<system.runtime.remoting>
<application>
<channels>

<channel name="smtp"
type="SmtpChannel.SmtpChannel, SmtpChannel"
senderEmail="server_1@localhost"
smtpServer="localhost"
pop3Server="localhost"
pop3User="server_1"
pop3Password="server_1"
pop3PollInterval="1"
isServer="yes" />

</channels>

<service>
<wellknown mode="Singleton"

type="Service.SomeSAO, Service"
objectUri="SomeSAO.soap" />

</service>
</application>

</system.runtime.remoting>
</configuration>

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL466

The corresponding client-side configuration file might look like this:

<configuration>
<system.runtime.remoting>
<application>

<channels>
<channel name="smtp"

type="SmtpChannel.SmtpChannel, SmtpChannel"
senderEmail="client_1@localhost"
smtpServer="localhost"
pop3Server="localhost"
pop3User="client_1"
pop3Password="client_1"
pop3PollInterval="1"
isServer="yes" />

</channels>

<client>
<wellknown type="Service.SomeSAO, Service"

url="smtp:server_1@localhost/SomeSAO.soap" />
</client>

<client url="smtp:server_2@localhost">
<activated type="Service.SomeCAO, Service" />

</client>

</application>
</system.runtime.remoting>

</configuration>

In the source code download that accompanies this book online, you’ll find not only the
complete implementation of this channel, but also a test environment consisting of three proj-
ects (two servers and a client) that shows the following features using the SmtpChannel:

• Server-activated objects

• Client-activated objects

• Synchronous calls

• Asynchronous calls using a delegate

• Raising and handling events

• Passing references to CAOs between different applications

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL 467

Figure 14-1. These user accounts are needed for this example.

Figure 14-2. Preparing the core modules

Preparing Your Machine
To run the samples on your machine, you’ll need to have access to three e-mail accounts (two
for the servers and one for the client) with SMTP and POP3. For testing purposes I therefore
recommend that you download and install Mercury/32, a free e-mail server, to allow you to easily
perform the configuration without having to bother any system administrators. You can get it
from http://www.pmail.com.

Please create three user accounts in Mercury/32 after installing and running it (Configuration ➤
Manage local users), each having the same password as the user name: client_1, server_1, and
server_2. You can see the final state in Figure 14-1.

You also need to change to Mercury core configuration (Configuration ➤ Mercury core
module) to recognize the local domain. To do this, switch to the Local domains tab and enter
localhost in the Local host or server and Internet name text boxes, as shown in Figure 14-2.

CHAPTER 14 ■ DEVELOPING A TRANSPORT CHANNEL468

Some Final Words of Caution
Developing a custom transport channel is a nontrivial task. In some cases, when you have to
work with different protocols—for example, when talking with embedded devices—it might be
easier to just implement a raw socket or serial port connection directly as an application-specific
API library.

Developing a transport channel should be a very conscious choice, for example, if you’d like
to allow interoperability with a third-party distributed application technology. As you will see
in the last chapter of this book, there are already a number of bridges between .NET and Java
or between .NET and CORBA that are based on custom transport channels. If you are about to
decide to create a custom channel just to interoperate between these platforms, it might be
easier to look at one of the already existing solutions.

Apart from this, the same disclaimer I’ve used at the end of the previous chapter applies here
as well: you should take explicit care not to tie your client- or server-side business logic too much
to the .NET Remoting framework. If your business logic code depends on side effects introduced
by your custom channel, it will be very hard to migrate it to future technology. Always remember:
business code often outlives its initial environment, but you have to plan accordingly to allow
for future changes.

Summary
After reading this chapter, you’ve finally reached the level of .NET Remoting wizardship. Not only
do you know how to extend the framework using custom sinks and providers, but now you can
also implement a complete channel from scratch. You learned that most work in implementing
a custom channel has to be expended in understanding and encapsulating the underlying
protocol. Mapping an asynchronous protocol to synchronous calls and vice versa is an espe-
cially important and challenging task. You also know how to implement IChannelSender and
IChannelReceiver, how to combine them into a top-level channel, and how to assign default
formatters to a channel.

In the next chapter, I introduce you to the possibilities of using the basic principle of .NET
Remoting, which is the processing of method calls using messages instead of stack-based call-
ing conventions in your local applications.

469

C H A P T E R 1 5

■ ■ ■

Context Matters

This chapter is about message-based processing in local applications. Here you learn how
you can intercept calls to objects to route them through IMessageSinks. This routing allows
you to create and maintain parts of your application’s business logic at the metadata level by
using attributes. You also discover why it might be a good idea to do so.

■Caution Everything in this chapter is 100 percent undocumented. Reliance on these techniques is not
supported by either Microsoft, the publisher, or the author of this book. Use at your own risk! If your computer
won’t work afterwards, your toaster blows up, or your car doesn’t start, I assume no liability whatsoever. You’re
now about to enter the uncharted territories of .NET and you do so at your own risk. I can only provide some
guidance.

Well, it’s great that you’re still with me after this introductory warning. So let’s start with
a look at some common business applications. You will quite likely have some object model
that holds local data before it’s committed to the database. Those classes will contain parts of
your business logic. For example, assume that your application provides an instant way for
employees of your company to donate various amounts of their paychecks to charity organiza-
tions. In this case, you might have a data object that looks like the one shown in Listing 15-1,
which allows a user to set an organization’s name and the donation of a specified amount to it.

CHAPTER 15 ■ CONTEXT MATTERS470

Listing 15-1. The First Version of the Organization Object

using System;

namespace ContextBound
{

public class Organization
{

String _name;
double _totalDonation;

public String Name
{

set
{

_name = value;
}
get
{

return _name;
}

}

public void Donate(double amount)
{

_totalDonation = _totalDonation + amount;
}

}
}

You might also have some database restriction or business logic that limits an organiza-
tion’s name to 30 characters and allows a maximum donation of $100.00. Therefore, you need
to extend Donate() and the setter of Name to check for this logic.

public String Name
{

set
{

if (value != null && value.Length > 30)
{

throw new Exception("This field must not be longer than 30 characters");
}

_name = value;
}

CHAPTER 15 ■ CONTEXT MATTERS 471

get
{

return _name;
}

}

public void Donate(double amount)
{

if (amount > 100)
{

throw new Exception("This parameter must not be greater than 100.");
}
_totalDonation = _totalDonation + amount;

}

You’re checking the business logic and your application works as expected. So far, so good.
The problems only commence as soon as more developers start using your objects as the base
for their applications, because they don’t discover about those restrictions by reading the inter-
face definition alone. As in most real-world applications, the business logic is in this case hidden
inside the implementation and is not part of the metadata level. There is no way for another
developer to tell that the maximum amount for a valid donation is $100.00 without looking at
your source code.

If you’re a well-informed developer, you already know that you can at least document those
parameters using inline XML comments to automatically generate online documentation for
your classes—but you still have to document and implement the logic in two separate places.
If you’ve never, ever changed any implementation detail without updating the inline documen-
tation, you don’t need to read further—you’ve already solved the problem.

Working at the MetaData Level
In most projects though (at least in some I’ve recently heard of), there is a direct proportionality
between days to deadline and quality of documentation. Somehow people tend to forget to
update comments as soon as their boss is reminding them that they should have shipped it
yesterday.

Wouldn’t it be great to just specify those checks using some source code attributes and
have some “black magic” happen between the client and your objects that takes care of check-
ing the passed values against those attributes?

In a perfect world, these methods might simply look like this:

public String Name
{

[Check(MaxLength=30)]
set
{

_name = value;
}

CHAPTER 15 ■ CONTEXT MATTERS472

get
{

return _name;
}

}

public void Donate([Check(MaxValue=100)] double amount)
{

_totalDonation = _totalDonation + amount;
}

Now the documentation of your business logic is applied on the metadata level! You could
easily use reflection to generate printed or online documentation that includes these basic
business logic checks as well.

Well, unfortunately, no checks have been done yet. In fact, when using this class, you could
easily set Name to any possible value and Donate() to whatever amount you’d like.

■Caution You’re now really about to read about unsupported and undocumented features of .NET Framework.
Your mileage may vary.

What’s still missing is that magic something I mentioned that would sit between the client
and your object (running maybe within the same process and application) and perform those
checks. This is where ContextBoundObject enters the game.

Creating a Context
When you create a class that is derived from ContextBoundObject, nothing special happens
yet: by default all objects are still created in the same context. You can, however, decorate this
class with an attribute that inherits from ContextAttribute and overrides the following two
methods:

public bool IsContextOK(Context ctx, IConstructionCallMessage ctor)
public void GetPropertiesForNewContext(IConstructionCallMessage ctor)

When doing this, the first method is called whenever someone is creating a new instance of
the target class (for example, the previous Organization class). If it returns true, nothing happens,
and the object is created in the same context as the client. There won’t be the chance to intercept
a call from the client to this instance by using a message sink.

If the method returns false, on the other hand, a new “virtual” remoting boundary, the con-
text, is created. In this case, the framework will subsequently call GetPropertiesForNewContext()
to allow you to add the IContextProperty objects that you want to use with this context.

The implementation of a complete attribute that will later be used to create a sink to inter-
cept calls to this object is shown in Listing 15-2.

CHAPTER 15 ■ CONTEXT MATTERS 473

Listing 15-2. A ContextAttribute That Allows You to Intercept Calls

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Contexts;
using System.Runtime.Remoting.Activation;
using System.Runtime.Remoting.Messaging;

namespace ContextBound
{

[AttributeUsage(AttributeTargets.Class)]
public class CheckableAttribute: ContextAttribute
{

public CheckableAttribute(): base ("MyInterception") { }

public override bool IsContextOK(Context ctx,
IConstructionCallMessage ctor)

{
// if this is already an intercepting context, it's ok for us
return ctx.GetProperty("Interception") != null;

}

public override void GetPropertiesForNewContext(
IConstructionCallMessage ctor)

{
// add the context property that will later create a sink
ctor.ContextProperties.Add(new CheckableContextProperty());

}
}

}

An IContextProperty on its own doesn’t provide you with a lot of functionality, as you can
see in Listing 15-3.

Listing 15-3. The IContextProperty Interface

public interface IContextProperty
{

string Name { get; }

void Freeze(Context newContext);
bool IsNewContextOK(Context newCtx);

}

Freeze() is called when the context itself is frozen. This indicates that no change of context
properties is allowed afterwards. IsNewContextOk() is called after all context attributes have added
their context properties to allow your property to check for dependencies. If IContextProperty
A can only be used together with IContextProperty B, it can check in this method if both prop-
erties are available for the newly created context. If this method returns false, an exception
will be thrown.

CHAPTER 15 ■ CONTEXT MATTERS474

Name simply has to return the context property’s name that will be used to retrieve it by call-
ing Context.GetProperty("<name>"). To be able to create a sink to intercept calls to this object,
this class will have to implement one of the following interfaces: IContributeObjectSink,
IContributeEnvoySink, IContributeClientContextSink, or IContributeServerContextSink. In
the examples to follow, I use IContributeObjectSink, which is shown in Listing 15-4.

Listing 15-4. The IContributeObjectSink Interface

public interface IContributeObjectSink
{

IMessageSink GetObjectSink(MarshalByRefObject obj, IMessageSink nextSink);
}

To create a new instance of CheckerSink, you can implement the IContextProperty, as
shown in Listing 15-5.

Listing 15-5. The CheckableContextProperty

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Contexts;
using System.Runtime.Remoting.Activation;
using System.Runtime.Remoting.Messaging;

namespace ContextBound
{

public class CheckableContextProperty: IContextProperty,
IContributeObjectSink

{
public bool IsNewContextOK(Context newCtx)
{

return true;
}

public void Freeze(Context newContext)
{

// nothing to do
}

public string Name
{

get
{

return "Interception";
}

}

CHAPTER 15 ■ CONTEXT MATTERS 475

public IMessageSink GetObjectSink(MarshalByRefObject obj,
IMessageSink nextSink)

{
return new CheckerSink(nextSink);

}

}
}

CheckerSink itself is a common IMessageSink implementation. Its first iteration is shown
in Listing 15-6.

Listing 15-6. The CheckerSink’s First Iteration

using System;
using System.Reflection;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Activation;
using System.Runtime.Remoting.Contexts;
using System.Runtime.Remoting.Messaging;

namespace ContextBound
{

public class CheckerSink: IMessageSink
{

IMessageSink _nextSink;

public CheckerSink(IMessageSink nextSink)
{

_nextSink = nextSink;
}

public IMessage SyncProcessMessage(IMessage msg)
{

Console.WriteLine("CheckerSink is intercepting a call");
return _nextSink.SyncProcessMessage(msg);

}

public IMessageCtrl AsyncProcessMessage(IMessage msg,
IMessageSink replySink)

{
Console.WriteLine("CheckerSink is intercepting an async call");
return _nextSink.AsyncProcessMessage(msg,replySink);

}

CHAPTER 15 ■ CONTEXT MATTERS476

publicIMessageSink NextSink
{

get
{

return _nextSink;
}

}
}

}

To enable this way of intercepting the Organization class shown at the beginning of this
chapter, you have to mark it with [Checkable] and have it inherit from ContextBoundObject to
create the context property.

The Organization class, which is shown in Listing 15-7, does not yet employ the use of
custom attributes for checking the maximum amount of a single donation or the maximum
length of the organization’s name. It just demonstrates the basic principle of interception.

Listing 15-7. The Organization Is Now a ContextBoundObject

using System;

namespace ContextBound
{

[Checkable]
public class Organization: ContextBoundObject
{

String _name;
double _totalDonation;

public String Name
{

set
{

_name = value;
}
get
{

return _name;
}

}

public void Donate(double amount)
{

Organization x = new Organization();
x.Name = "Hello World";
_totalDonation = _totalDonation + amount;

}

}
}

CHAPTER 15 ■ CONTEXT MATTERS 477

Figure 15-1. The application’s output when using the ContextBoundObject

A simple client for this class is shown in Listing 15-8.

Listing 15-8. This Client Is Using the ContextBoundObject

using System;
using System.Runtime.Remoting.Contexts;

namespace ContextBound
{

public class TestClient
{

public static void Main(String[] args) {
Organization org = new Organization();
Console.WriteLine("Will set the name");
org.Name = "Happy Hackers";
Console.WriteLine("Will donate");
org.Donate(103);

Console.WriteLine("Finished, press <return> to quit.");
Console.ReadLine();

}
}

}

When this application is started, you will see the output shown in Figure 15-1.

As you can see here, the CheckerSink intercepts the setting of the property Name and the call
to Donate(), although it doesn’t yet do anything to check the constraints I mentioned earlier.

The first step to enabling the sink to do something useful is to create a custom attribute that
will later be used to designate a parameter’s maximum length and maximum value. This attribute,
which can be used for parameters and methods, stores the properties MaxLength, MaxValue, and
NonNull, as shown in Listing 15-9. Its DoCheck() method will later be called by the sink to check
a given value against the attribute’s definition.

CHAPTER 15 ■ CONTEXT MATTERS478

Listing 15-9. The CheckAttribute

using System;

namespace ContextBound
{

[AttributeUsage (AttributeTargets.Parameter | AttributeTargets.Method)]
public class CheckAttribute: Attribute
{

private int _maxLength;
private int _maxValue;
private bool _nonNull;

public int MaxLength {
get {

return _maxLength;
}
set {

_maxLength = value;
}

}

public int MaxValue
{

get
{

return _maxValue;
}
set
{

_maxValue = value;
}

}

public bool NonNull
{

get
{

return _nonNull;
}
set
{

_nonNull = value;
}

}

CHAPTER 15 ■ CONTEXT MATTERS 479

public void DoCheck (Object val)
{

// check for NonNull
if (_nonNull && val == null)
{

throw new Exception("This value must not be null");
}

// check for MaxLength
if (_maxLength > 0 && val.ToString().Length > _maxLength)
{

throw new Exception("This value must not be longer than " +
_maxLength + " characters");

}

// check for MaxValue
if (_maxValue > 0)
{

if ((double) val > _maxValue)
{

throw new Exception("This value must not be higher than " +
_maxValue);

}

}
}

}
}

To make use of this attribute in the Organization class, you have to mark the parameter to
Donate() and the set method for the Name property, as shown here:

public String Name
{

[Check(NonNull=true,MaxLength=30)]
set
{

_name = value;
}
get
{

return _name;
}

}

public void Donate([Check(NonNull=true,MaxValue=100)] double amount)
{

_totalDonation = _totalDonation + amount;
}

CHAPTER 15 ■ CONTEXT MATTERS480

Checking Parameters in an IMessageSink
Listing 15-10 shows the implementation of the CheckerSink. Calls from SyncProcessMessage()
and AsyncProcessMessage() have been added to the private DoCheck() method, which iterates
over the assigned attributes and forwards the business logic checks to CheckAttribute.DoCheck()
for each parameter that is marked with this attribute.

Listing 15-10. The CheckerSink

using System;
using System.Reflection;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Activation;
using System.Runtime.Remoting.Contexts;
using System.Runtime.Remoting.Messaging;

namespace ContextBound
{

public class CheckerSink: IMessageSink
{

IMessageSink _nextSink;
String _mType;
public CheckerSink(IMessageSink nextSink, String mType)
{

_nextSink = nextSink;
_mType = mType;

}

public IMessage SyncProcessMessage(IMessage msg)
{

DoCheck(msg);
return _nextSink.SyncProcessMessage(msg);

}

public IMessageCtrl AsyncProcessMessage(IMessage msg,
IMessageSink replySink)

{
DoCheck(msg);
return _nextSink.AsyncProcessMessage(msg,replySink);

}

public IMessageSink NextSink
{

get
{

return _nextSink;
}

}

CHAPTER 15 ■ CONTEXT MATTERS 481

private void DoCheck(IMessage imsg)
{

// not interested in IConstructionCallMessages
if (imsg as IConstructionCallMessage != null) return;

// but only interested in IMethodMessages
IMethodMessage msg = imsg as IMethodMessage;
if (msg == null) return;

// check for the Attribute
MemberInfo methodbase = msg.MethodBase;

object[] attrs = methodbase.GetCustomAttributes(false);

foreach (Attribute attr in attrs)
{

CheckAttribute check = attr as CheckAttribute;

// only interested in CheckAttributes
if (check == null) continue;

// if the method only has one parameter, place the check directly
// on it (needed for property set methods)
if (msg.ArgCount == 1)
{

check.DoCheck(msg.Args[0]);
}

}

// check the Attribute for each parameter of this method
ParameterInfo[] parms = msg.MethodBase.GetParameters();

for (int i = 0;i<parms.Length;i++)
{

attrs = parms[i].GetCustomAttributes(false);
foreach (Attribute attr in attrs)
{

CheckAttribute check = attr as CheckAttribute;

// only interested in CheckAttributes
if (check == null) continue;

// if the method only has one parameter, place the check directly
// on it (needed for property set methods)

CHAPTER 15 ■ CONTEXT MATTERS482

check.DoCheck(msg.Args[i]);
}

}

}

}
}

You can then change the sample client to demonstrate what happens when it performs an
invalid operation, as shown in Listing 15-11.

Listing 15-11. This Client Does Not Honor the Business Logic Constraints

using System;
using System.Runtime.Remoting.Contexts;

namespace ContextBound
{

public class TestClient
{

public static void Main(String[] args) {
Organization org = new Organization();
try
{

Console.WriteLine("Will set the name");
org.Name = "Happy Hackers";
Console.WriteLine("Will donate");
org.Donate(99);
Console.WriteLine("Will donate more");
org.Donate(102);

}
catch (Exception e)
{

Console.WriteLine("Exception: {0}",e.Message);
}

Console.WriteLine("Finished, press <return> to quit. ");
Console.ReadLine();

}
}

}

When you start this application, you will get the output shown in Figure 15-2.

CHAPTER 15 ■ CONTEXT MATTERS 483

Figure 15-2. The client’s illegal operation is prohibited by the CheckerSink.

Great! You are now checking your business logic constraints by using attributes that are
assigned at the metadata level instead of checks that are hidden in your source code.

One interesting One interesting consideration that I have not yet mentioned is the
following: what would happen if the first Organization object instantiates another Organi-
zation object and calls the Donate() method on the secondary object? Will this call also go
through the message sink? In fact, in the current configuration it won’t. This example just
protects your class library from “outside” clients but doesn’t affect any calls inside this con-
text. This is because the CheckableAttribute’s IsContextOK() only requests a new context
when it’s called from outside a checked context.

To make all calls to Organization (no matter what their origin) go through the CheckerSink,
you’d have to change CheckableAttribute to return false from IsContextOK():

public override bool IsContextOK(Context ctx, IConstructionCallMessage ctor)
{

return false;
}

This will request a new context for each and every instance of any class that is marked with
[Checkable] and that inherits from ContextBoundObject.

Summary
In this last chapter, I showed you some undocumented techniques to move constraints away
from the implementation up to the metadata level. When using this approach together with
reflection on the types of your class library, you will be able to automatically generate docu-
mentation that includes all those metadata-level checks. You learned about using different
contexts in your local application and how to use IContextProperty and IContributeObjectSink
to intercept calls to your objects by using IMessageSink objects.

I just want to remind you that context sinks are a great technology, but unfortunately not
yet officially supported or documented by Microsoft. If you use them, it will be at your own risk!
If any problems occur when doing so, you will be on your own. But isn’t that the fate of anyone
who’s going to enter uncharted territory?

CHAPTER 15 ■ CONTEXT MATTERS484

Conclusion
In this book you learned .NET Remoting from the basics to very advanced topics. In the first
chapters, I introduced you to the various kinds of remote objects and how to create and register
them. I covered the intricacies of client-activated objects and server-activated objects. You also
learned about the various ways of generating the necessary metadata to allow the .NET Remoting
framework to create transparent proxies. I showed you the deployment options for remot-
ing servers that can be either managed applications (including console applications, Windows
services, and Windows Form applications) and IIS. I then showed you more advanced topics such
as security, event handling, versioning, and lifetime management by using leases and sponsors.

In the second part of the book, I showed you how .NET Remoting works internally. You were
introduced to proxies, messages, transport channels, formatters, message sinks, and channel
sinks. After covering those architectural basics, I showed you how to leverage the .NET Remoting
framework’s extensibility model by implementing your own sinks and sink providers. At the end
of the second part, you finally learned how to implement a complete transport channel from
scratch and how to use ContextBoundObject to intercept message calls.

You are now well prepared for the development of distributed applications using the .NET
Framework—so go ahead and do your stuff!

P A R T 3

■ ■ ■

Reference

487

A P P E N D I X A

■ ■ ■

.NET Remoting Usage
Reference

The core classes for .NET Remoting reside in the System.Runtime.Remoting namespace. In
this appendix, you will find a reference of the types that are usually used when writing .NET
Remoting applications and that were used in the first part of the book. I will not explain any
classes, interfaces, and enumerations used for extending the .NET Remoting infrastructure in
this appendix. The reference for extensibility can be found in Appendix B, which presents the
types you use for extending the .NET Remoting infrastructure.

Many entries are cross-referenced with relevant chapters as well as entries to the MSDN
documentation where appropriate. MSDN documentation will include further details in many
cases. I will also cover several classes from the following subnamespaces:

• System.Runtime.Remoting.Channels

• System.Runtime.Remoting.Lifetime

• System.Runtime.Remoting.Messaging

• System.Runtime.Remoting.Metadata

• System.Runtime.Remoting.Services

• System.Runtime.Serialization

But before starting with the types defined in these namespaces, I have to cover a handful of
types defined in other namespaces, but used by the .NET Remoting infrastructure, which are
used in the chapters throughout the book.

System Types
Here I’ll explain some types that are not defined in the Remoting namespace but are used by the
.NET Remoting infrastructure. Often you won’t be using the types directly, but it’s important to
have a brief understanding of these types.

APPENDIX A ■ .NET REMOTING USAGE REFERENCE488

System.Activator Class
The Activator class is primarily used for either creating instances of new objects locally or
remotely or obtaining references to existing instances of remote objects. The CreateInstance()
and CreateInstanceFrom() methods can be used for creating new instances of .NET-based types,
whereas the CreateComInstanceFrom() method obtains a COM object name (in the format
“library.classname”) as parameter for creating registered COM objects.

In the examples in this book, you also saw the GetObject() method used for retrieving
a remote well-known object that already exists on a .NET Remoting server.

Usage example:

MyClass MyFirst = (MyClass)Activator.CreateInstance(typeof(MyClass));

ObjectHandle handle = Activator.CreateInstance(
"MyAssembly",
"MyNamespace.MyClass",
new object[] {"First", 2});

MyClass MySecond = (MyClass)handle.Unwrap();

IRemoteComponent MyThird = (IRemoteComponent)Activator.GetObject(
typeof(IRemoteComponent),
"tcp://localhost:8080/MyRemote.rem");

The use of the Activator class is demonstrated in many of the chapters of the book, the
first time being within the first .NET Remoting example, which appears in Chapter 2.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemactivatorclasstopic.asp

System.MarshalByRefObject Class
The MarshalByRefObject class usually is not used directly by the application programmer. This
class enables access to objects living in other application domains. Such objects can reside in
application domains of the same or other processes on the same machine or in processes on
remote machines.

Objects that need to be accessible remotely must be inherited from MarshalByRefObject.

Usage example:

public class MyClass : MarshalByRefObject, IRemoteComponent
{
public void Foo()
{
// do something here
// can be called remotely because
// MyClass inherits from MarshalByRefObject

}
}

APPENDIX A ■ .NET REMOTING USAGE REFERENCE 489

As all remoteable objects have to be inherited from MarshalByRefObject, I am using this
class as a base class throughout all the chapters of the book for such objects. The first occurrence
and explanation can be found in Chapter 2 when creating the first .NET Remoting example.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemmarshalbyrefobjectclasstopic.asp

System.SerializableAttribute Class
Applied to any class, this attribute indicates that the class is serializable. For .NET Remoting,
you need this each time you want to transport a class between the client and the server. Also
often known as a marshal by value object, it is not accessed and executed on the remote server
through an object reference; rather it is serialized, sent across the wire, and deserialized at the
other endpoint. Therefore, objects that need to be sent as messages between a .NET Remoting
client and a server have to have the SerializableAttribute applied.

Usage example:

[Serializable]
public class Customer
{
public string Firstname;
public string Lastname;
public int Age;

[NonSerialized]
public int InternalNumber;

public Customer(string first, string last, int age)
{
// ...

}
}

Usually the .NET Framework serializer serializes all public and private members of a class.
If you don’t want specific members to be serialized, you can use the NonSerialized attribute for
those members.

I use this attribute for all classes that are exchanged between the client and the server as
messages. The first occurrence and explanation of this attribute can be found in Chapter 2 in
the first .NET Remoting example.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemserializableattributeclasstopic.asp

APPENDIX A ■ .NET REMOTING USAGE REFERENCE490

System.Delegate Class
Delegates are safe references to either static or instance methods of classes. People programming
in C++ could image a delegate as a safe version of function pointers. Delegates are used in many
cases when programming .NET-based applications. The most common usage scenario for
delegates is events. But in general, you can implement any function callback you need with
delegates.

Because delegates are classes too, they can be used as function parameters as well as class
members. For using delegates, you first have to define the structure of the delegate, which is
made up of its name and the type of the return value, as well as the required parameters, including
their types.

Usage example:

public delegate string MyDelegateName(int x, int y);

class MyDelegateTest
{

[STAThread]
static void Main(string[] args)
{
Console.WriteLine("Which delegate to use (1, 2): ");
short sel = Int16.Parse(Console.ReadLine());
if(sel == 1)
DoActions(new MyDelegateName(MyFirstImplementation));

else
DoActions(new MyDelegateName(MySecondImplementation));

Console.ReadLine();
}

static string MyFirstImplementation(int x, int y)
{
return (x+y).ToString();

}

static string MySecondImplementation(int x, int y)
{
return (x*y).ToString();

}

static void DoActions(MyDelegateName functionReference)
{
for(int i=0; i < 10; i++)
for(int j=0; j < 2*i; j++)
Console.WriteLine("-) {0}", functionReference(i, j));

}
}

APPENDIX A ■ .NET REMOTING USAGE REFERENCE 491

Delegates are used for the first time in Chapter 3 for implementing asynchronous calls. In
Chapter 7, you can see delegates used for implementing events.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemdelegateclasstopic.asp

System.IAsyncResult Interface
The IAsyncResult interface represents the status of an asynchronous operation. It can be used
in conjunction with the BeginInvoke() and EndInvoke() methods of a delegate. The BeginInvoke()
method starts the asynchronous execution of the delegate and allows the application to do
something different instead of waiting for the function to be finished. As soon as the application
requires the results, it can call the delegate’s EndInvoke() method, passing the IAsyncResult as
a parameter. In this case, the application waits for the delegate to be finished and gets the actual
return value.

Usage example:

IAsyncResult result = functionReference.BeginInvoke(i, j, null, null);
while(!result.IsCompleted)
{
// wait for completion or do something else...

}
string ret = functionReference.EndInvoke(result);

I use the IAsyncResult interface for the first time in Chapter 3 and then in Chapter 7 for
implementing an asynchronous method call in the examples.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemiasyncresultclasstopic.asp

System.Runtime.Remoting
Most of the time when writing .NET Remoting applications, you spend your time using classes
defined in the root namespace System.Runtime.Remoting. The most important class in here is
definitely the RemotingConfiguration class, which offers you the possibility of configuring .NET
Remoting services as well as clients.

Basic Infrastructure Classes
The following classes are basic support classes that enable the .NET Remoting framework’s
core functionality.

ObjRef Class
Although not used directly, the ObjRef class is the secret behind accessing remote objects. It is
the representation of a reference to an object running in a different application domain either

APPENDIX A ■ .NET REMOTING USAGE REFERENCE492

on the same or on a remote machine. Of course, object references can be passed between mul-
tiple instances so that any one of them can access the same object that is referenced through
this class.

The ObjRef class is explained in detail in Chapter 3 when you encounter MarshalByRef as
well as the capability of creating a multiserver configuration.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingobjrefclasstopic.asp

ObjectHandle Class
Although I have not used this class directly in the examples, it is worth mentioning its existence.
What the ObjRef class is for remote objects running in other application domains the ObjectHandle
is for serialized classes passed between application domains. The object handle gives you the
possibility of passing serialized types through an indirection between application domains.

This level of indirection can help you improve performance because as long as you don’t
call its Unwrap method, the metadata of the serialized type is not loaded into the application
domain.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingobjecthandleclasstopic.asp

RemotingConfiguration Class
The RemotingConfiguration class—as its name says—is the primary class for configuring .NET
Remoting applications. You can use the class for registering your types either manually or through
configuration files. This class cannot be used for registering channels; in that case, you have to
use the ChannelServices class, which will be explained later in this appendix.

Usage examples:

// configure an object published on the server as a Singleton
RemotingConfiguration.RegisterWellKnownServiceType(

typeof(CustomerManager),
"CustomerManager.soap",
WellKnownObjectMode.Singleton);

// configure a remote object on the client residing under the following URL
RemotingConfiguration.RegisterWellKnownClientType(

typeof(IRemoteComponent),
"tcp://localhost:8080/MyRemote.rem");

// perform the configuration based on the contents of MyConfigFile.config
RemotingConfiguration.Configure("MyConfigFile.config");

APPENDIX A ■ .NET REMOTING USAGE REFERENCE 493

You can see this class used for configuring .NET Remoting applications in almost every
chapter in this book, starting with the first example in Chapter 2.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingremotingconfigurationclasstopic.asp

RemotingServices Class
The RemotingServices class can be used for publishing remoted objects and proxies on a .NET
Remoting server by calling static methods of this class. It can also be used to connect to a remote
object by calling its Connect method, which basically does the same as the Activator.GetObject
method.

Usage examples:

// publish an existing object on the server
MyClass cls = new MyClass(DateTime.Now);
RemotingServices.Marshal(cls,

" MyRemote.rem",
typeof(IRemoteComponent));

// create and use the proxy on the client
IRemoteComponent c = (IRemoteComponent)RemotingServices.Connect(

typeof(IRemoteComponent),
"tcp://localhost:8080/MyRemote.rem");

if(RemotingServices.IsObjectOutOfAppDomain(c)) {
Console.WriteLine("What a surprise: object in another AppDomain!");

}

I use the RemotingServices class for the first time in Chapter 3 when publishing a cre-
ated object. The intention is to enable passing parameters to the constructor, which is not
possible when configuring Singleton or SingleCall objects through the methods offered by
RemotingConfiguration (in which case objects are created automatically by the runtime).

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingremotingservicesclasstopic.asp

Configuration Classes
The following classes are used to manually configure the .NET Remoting functionality at runtime.

TypeEntry Class
The TypeEntry class is the general base class for various type configurations in the .NET Remoting
runtime. Types that are configured for being available remotely or remote types used from within
a client have to be configured by using the intended subclass of the TypeEntry class. Any type
entries can be configured through either configuration files or the RemotingConfiguration class.
The specific subclasses are explained in the chapters referenced in the discussions of these sub-
classes that follow.

APPENDIX A ■ .NET REMOTING USAGE REFERENCE494

In Chapter 4, I introduce the RemotingHelper class, which iterates through the configured
entries in the current configuration. It uses the client-side subclasses of the TypeEntry class for
doing so.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingtypeentryclasstopic.asp

ActivatedServiceTypeEntry Class
The ActivatedServiceTypeEntry class is used for registering a class on a .NET Remoting service
that is used as a client-activated object. In this case, object creation occurs when the client is
sending an activation request message. Registration occurs either through configuration files
or by calling the RemotingConfiguration.RegisterActivatedServiceType() method.

Usage example:

RemotingConfiguration.RegisterActivatedServiceType(
new ActivatedServiceTypeEntry(typeof(IRemoteComponent)));

RemotingConfiguration.RegisterActivatedServiceType(typeof(IRemoteComponent));

Configuration example:

<configuration>
<system.runtime.remoting>

<application>
<service>

<activated type="MyNamespace.IRemoteComponent, MyAssemblyName" />
</service>

</application>
</system.runtime.remoting>

</configuration>

I use the RegisterActivatedServiceType() method (and therefore configured an
ActivatesServiceTypeEntry) for the first time in Chapter 3 when explaining the difference
between server-activated and client-activated objects.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingactivatedservicetypeentryclasstopic.asp

ActivatedClientTypeEntry Class
This class is the client’s counterpart to the ActivatedServiceTypeEntry configuration on the server.
It holds all the configuration information for a remote client-activated object on the client.
After this method has been called, you can use either the Activator.CreateInstance() method
or (when working with generated metadata and SoapSuds.exe) the new operator for creating
a new instance of the remote object.

APPENDIX A ■ .NET REMOTING USAGE REFERENCE 495

With the call to the new operator or the Activator.CreateInstance() method, the client sends
a creation message to the server that leads the server to create a new instance with the param-
eters passed in the activation message. The server returns the object reference, and the runtime
creates the TransparentProxy on the client.

Usage examples:

RemotingConfiguration.RegisterActivatedClientType(
typeof(MyClass), "tcp://localhost:8080/MyRemote.rem");

RemotingConfiguration.RegisterActivatedClientType(
new ActivatedClientTypeEntry(typeof(MyClass),

"tcp://localhost:8080/MyRemote.rem"));

Configuration example:

<configuration>
<system.runtime.remoting>

<application>
<client url="http://localhost:8080" />

<activated type="MyNamespace.MyClass, MyAssemblyName" />
</client>

</application>
</system.runtime.remoting>

</configuration>

I use this method together with the corresponding configuration on the server for the first
time in Chapter 3 when explaining the difference between SAO und CAO.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingactivatedclienttypeentryclasstopic.asp

WellKnownServiceTypeEntry Class
The WellKnownServiceTypeEntry class allows you to publish server-activated objects in Single-
ton or SingleCall mode. In this case, the objects are created on the server and not through
a creation message sent by the client, as is the case with activated types.

Usage examples:

RemotingConfiguration.RegisterWellKnownServiceType(
typeof(MyClass),
"MyRemoteObject.rem",
WellKnownObjectMode.Singleton);

RemotingConfiguration.RegisterWellKnownServiceType(
new WellKnownServiceTypeEntry(typeof(MyClass),

"MyRemoteObject.rem",
WellKnownObjectMode.SingleCall));

APPENDIX A ■ .NET REMOTING USAGE REFERENCE496

Configuration example:

<configuration>
<system.runtime.remoting>

<application>
<service>

<wellknown type="MyNamespace.MyClass, MyAssembly"
objectUri="MyRemoteObject.rem"
mode="Singleton" />

</service>
</application>

</system.runtime.remoting>
</configuration>

You can see server-activated objects used for the first time in Chapter 2 in the first .NET
Remoting example. In Chapter 3, you can find details about the differences between server-
activated and client-activated objects.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingwellknownservicetypeentryclasstopic.asp

WellKnownClientTypeEntry Class
As with the ActivatedClientTypeEntry class, the WellKnownClientTypeEntry class holds the con-
figuration of a server-activated object used by the client application. Therefore, it is the client’s
counterpart for the WellKnownServiceTypeEntry.

Usage examples:

RemotingConfiguration.RegisterWellKnownClientType(
typeof(IRemoteComponent),
"tcp://localhost:8080/MyRemoteObject.rem");

RemotingConfiguration.RegisterWellKnownClientType(
new WellKnownClientTypeEntry(typeof(IRemoteComponent),

"tcp://localhost:8080/MyRemoteObject.rem"));

Configuration example:

<configuration>
<system.runtime.remoting>

<application>
<client>

<wellknown
type="MyNamespace.IRemoteComponent, MySharedAssembly"
url="tcp://localhost:8080/RemoteType.rem" />

</client>
</application>

</system.runtime.remoting>
</configuration>

APPENDIX A ■ .NET REMOTING USAGE REFERENCE 497

In Chapters 2 and 3, I use this type of configuration for creating the first .NET Remoting
example as well as explaining the difference between server-activated and client-activated objects.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingwellknownclienttypeentryclasstopic.asp

WellKnownObjectMode Enumeration
This enumeration is used in conjunction with the RegisterWellKnownService type method for
registering-server activated objects in .NET Remoting server components. It allows you to select
the mode of the server-activated object, which can be Singleton or SingleCall.

I explain the difference between Singleton and SingleCall objects in Chapter 3 when pre-
senting the details about server-activated objects.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingwellknownobjectmodeclasstopic.asp

Exception Classes
The .NET Framework includes three main exceptions to convey additional information about
the type of error.

RemotingException Class
This exception is thrown by the infrastructure when something has been going wrong when
using .NET Remoting. The exception inherits from System.Exception and therefore offers you
querying of the same types of information as a standard .NET exception.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingremotingexceptionclasstopic.asp

RemotingTimeoutException Class
This exception inherits from the base class RemotingException and is thrown by the .NET
Remoting infrastructure when the server (or the client in case of an event/callback) cannot be
reached for a previously specified period of time. Timeouts can be specified through either the
channel configuration or the RemotingClientProxy class, which is the base class for proxies
generated via SoapSuds.exe.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingremotingtimeoutexceptionmemberstopic.asp

ServerException Class
This exception is thrown by the infrastructure when the client connects to non–.NET-based
components that are not able to throw exceptions on their own.

APPENDIX A ■ .NET REMOTING USAGE REFERENCE498

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingserverexceptionmemberstopic.asp

General Interfaces
The following interfaces are parts of the internal processing of remoting interactions.

IChannelInfo Interface
This interface provides a basic contract for carrying channel-specific data with an object refer-
ence (ObjRef) between the client and the server. This information is serialized with the ObjRef
and transferred between the two actors so that the channel on the other side can read and
leverage the information.

You can use this interface for extending the .NET Remoting infrastructure or reading
channel-specific data in your custom code. In your own code, you can use the channels regis-
tered in your application domain to examine channel-specific data on the receiving side.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingichannelinfoclasstopic.asp

IEnvoyInfo Interface
This interface allows you to pass context information used by message sinks between the client
and the server. This information can be basically used for extending the .NET Remoting
infrastructure.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingiobjecthandleclasstopic.asp

IObjectHandle Interface
This is the base interface implemented by the ObjectHandle class referenced at the very begin-
ning of this appendix. An ObjectHandle is a reference to serialized objects passed between
application domains and allows you to avoid loading type information into an application
domain where it is not needed. For more information, take a look at the “ObjectHandle Class”
section of this appendix.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingiobjecthandleclasstopic.asp

IRemotingTypeInfo Interface
When passing a reference of a remote object to a client, the ObjRef carries some type informa-
tion with it. This type information can be queried through its TypeInfo property, which returns
an object implementing this interface. You can do both querying the type name as well as asking
for possible type casts through the interface’s CanCastTo method.

APPENDIX A ■ .NET REMOTING USAGE REFERENCE 499

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingiremotingtypeinfoclasstopic.asp

System.Runtime.Remoting.Channels
In this namespace, you can find the general interfaces as well as concrete implementations for
.NET Remoting channels and message formatter classes. Channels are used for implementing
the details of the transport protocol employed for calling remote components. The .NET
Framework 1.0 and 1.1 ship with two prebuilt channels, one channel for TCP and another one for
HTTP. With .NET 2.0, the infrastructure includes an IPC channel for interprocess communication.

General Interfaces and Classes
In this section, I have included the main interfaces and classes that are related to the system of
extensible channels in the .NET Remoting framework.

IChannel Interface
This interface specifies the basic contract that has to be implemented by all channel objects. It speci-
fies that each channel has to support at least two properties, ChannelName and ChannelPriority.
The ChannelName property specifies a unique name for the channel, while the ChannelPriority
property specifies which channel is given first chance to connect to a remote object. For server
objects, it specifies the order in which channel data appears in the ObjRef passed to the client.
Higher numbers indicate higher priority.

The IChannel interface also specifies that implementing classes must provide a Parse method.
This method is used for parsing a complete URL and returning the URI for the current channel
as well as the object’s URI as an out parameter.

Usually you do not use the interface on its own, except if you want to write code that is
independent of a specific channel implementation such as the HttpChannel. When implement-
ing your own channel, you have to implement this interface.

Usage example:

// run through the configured channels
foreach(IChannel ch in ChannelServices.RegisteredChannels)
{
Console.WriteLine("Channel: " + ch.ChannelName);
if(ch is HttpClientChannel)
{
BaseChannelWithProperties chp = (BaseChannelWithProperties)ch;
foreach(string key in chp.Properties.Keys)
{
Console.WriteLine("-) {0}={1}", key, chp.Properties[key]);

}
}

}

APPENDIX A ■ .NET REMOTING USAGE REFERENCE500

As this is the only interface that is useful for using from within your application directly,
I will not explain the other interfaces of this namespace here, but in Appendix B.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingchannelsichannelclasstopic.asp

ChannelServices Class
The ChannelServices class allows you to configure .NET Remoting channels for your application
domain as well as enumerate registered channels and retrieve channel URIs. Each channel
must have a unique name within an application domain. This class is also used by the
RemotingConfiguration class when reading information out of configuration files.

Usage examples:

Hashtable props = new Hashtable();
props.Add("timeout", 20);
props.Add("proxyPort", "8080");
props.Add("proxyName", "myproxy");
props.Add("name", "My first channel");
props.Add("priority", 30);
props.Add("useDefaultCredentials", "true");

HttpClientChannel channel = new HttpClientChannel(props, null);
ChannelServices.RegisterChannel(channel);

Configuration example:

<configuration>
<system.runtime.remoting>

<application>
<client>

<wellknown type="RemoteType, RemoteAssembly"
url="http://localhost:8080/MyRemoteObject.rem" />

</client>
<channels>

<channel ref="http" port="0" />
</channels>

</application>
</system.runtime.remoting>

</configuration>

Channels are used in nearly all chapters throughout the book, either through configuration
files or configuration in code. The first time you can see the use and explanation of channels is
in Chapter 2, in the first .NET Remoting example. Configuration details can be found in Chapter 4.

According to configuration, you can either define channels within the <application>
element or directly under <system.runtime.remoting>. When directly defining under
<system.runtime.remoting>, channel templates, rather than channel instances, will be con-
figured that can be referenced from within the <application> element using the ref attribute
when defining the application’s channel.

APPENDIX A ■ .NET REMOTING USAGE REFERENCE 501

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingchannelschannelservicesclasstopic.asp

BinaryServerFormatterSinkProvider Class
This class provides the server with the functionality of serializing the message into binary for-
mat before sending it out through the channel and deserializing the incoming message before
forwarding it to other channel sinks or the application. In terms of usage, you usually have to
configure formatters if you want to configure one of the following properties for a sending
channel:

• includeVersions: Specifies whether to include version information when sending serial-
ized types across the wire.

• strictBinding: Specifies whether the exact version type is necessary for deserialization or
not. If not, a version of the deserialized type must be installed in the GAC.

• typeFilterLevel: This is by far the most necessary attribute. Here you can specify which
functionality will be permitted by the serializer during deserialization when receiving
a serialized type. The property can be set to Low or Full, whereas Low restricts the types
accepted by the deserializer (e.g., callbacks through delegates are not allowed with the
Low setting). The default setting since .NET Framework 1.1 is Low.

Usage example:

BinaryServerFormatterSinkProvider sink1 = new BinaryServerFormatterSinkProvider();
sink1.TypeFilterLevel = TypeFilterLevel.Full;

SoapServerFormatterSinkProvider sink2 = new SoapServerFormatterSinkProvider();
sink2.TypeFilterLevel = TypeFilterLevel.Full;
sink2.Next = sink1;

HttpServerChannel channel = new HttpServerChannel("MyChannel", 8080, sink2);
ChannelServices.RegisterChannel(channel);

Configuration example:

<configuration>
<system.runtime.remoting>
<application>
<channels>
<channel ref="tcp" port="1234">
<serverProviders>
<formatter ref="binary"

typeFilterLevel="Full" />
<formatter ref="soap"

typeFilterLevel="Full" />
</serverProviders>

</channel>

APPENDIX A ■ .NET REMOTING USAGE REFERENCE502

</channels>
<service>
<wellknown type="Server.ServerImpl, Server"

objectUri="MyServer.rem"
mode="Singleton" />

</service>
</application>

</system.runtime.remoting>
</configuration>

This class is used for the first time in Chapter 4 when the configuration options for the
typeFilterLevel are explained.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingchannelsbinaryserverformattersinkproviderclasstopic.asp

SoapServerFormatterSinkProvider Class
This class provides the server with the functionality of serializing the message into SOAP
format before sending it out through the channel and deserializing the incoming message
before forwarding it to other channel sinks or the application. In terms of usage, you usually
have to configure formatters if you want to configure one of the settings described in the
“BinaryServerFormatterSinkProvider Class” section earlier.

I use this class for the first time in Chapter 4 when explaining the typeFilterLevel attribute,
which has changed from .NET Framework version 1.0 to 1.1 for security reasons. Also, take
a look at the usage example in the “BinaryServerFormatterSinkProvider Class” section, where
I also use the SoapServerFormatterSinkProvider class to configure the typeFilterLevel attribute.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingchannelssoapserverformattersinkproviderclasstopic.asp

BinaryClientFormatterSinkProvider Class
This class is the opposite of the server’s BinaryServerFormatterSinkProvider class. It is doing
the deserialization and serialization of serializable types from and to binary format on the
client side.

The typeFilterLevel attribute cannot be set on this class. If you want to configure this option
for the client application, you have to use the BinaryServerFormatterSinkProvider as explained
in Chapter 4 (within the serviceProviders section of the configuration files), or in the preceding
two sections in this appendix.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingchannelsbinaryclientformattersinkproviderclasstopic.asp

APPENDIX A ■ .NET REMOTING USAGE REFERENCE 503

SoapClientFormatterSinkProvider Class
This class is the opposite of the server’s BinaryServerFormatterSinkProvider class. It performs
the deserialization and serialization of serializable types from and to SOAP format on the
client side.

The typeFilterLevel attribute cannot be set on this class. If you want to configure this option
for the client application, you have to use the SoapServerFormatterSinkProvider as explained
in Chapter 4 (within the serviceProviders section of the configuration files), or in the two preced-
ing sections in this appendix.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingchannelssoapclientformattersinkproviderclasstopic.asp

BinaryClientFormatterSink Class
The BinaryClientFormatterSink class is a default formatter provided by the .NET Remoting frame-
work for formatting messages in a binary format before they are sent across the wire to the remote
server object. Internally this formatter sink leverages the binary formatters provided in the
System.Runtime.Serialization.Formatters namespace.

As the sink is created by its corresponding provider, the BinaryClientFormatterSinkProvider,
which is also used in configuration files or code for configuring the formatter’s properties, you
usually won’t use this class directly in your own code.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingchannelsbinaryclientformattersinkclasstopic.asp

BinaryServerFormatterSink Class
The BinaryServerFormatterSink class receives messages in binary format sent from the client
and deserializes the binary stream back into its message format. Afterwards the message can
be processed by the other sinks in the chain.

As the sink is created by its corresponding provider, the BinaryServerFormatterSinkProvider,
which is also used in configuration files or code for configuring the formatter’s properties, you
usually won’t use this class directly in your own code.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingchannelsbinaryserverformattersinkclasstopic.asp

SoapClientFormatterSink Class
The SoapClientFormatterSink class is a default formatter provided by the .NET Remoting
framework for formatting messages in SOAP-based format before they are sent across the wire
to the remote server object. Internally this formatter sink leverages the SOAP formatters provided
in the System.Runtime.Serialization.Formatters namespace.

APPENDIX A ■ .NET REMOTING USAGE REFERENCE504

As the sink is created by its corresponding provider, the SoapClientFormatterSinkProvider,
which is also used in configuration files or code for configuring the formatter’s properties, you
usually won’t use this class directly in your own code.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingchannelssoapclientformattersinkclasstopic.asp

SoapServerFormatterSink Class
The SoapServerFormatterSink Class receives messages in SOAP format sent from the client and
deserializes the SOAP structure back into its original message format. Afterwards the message
can be processed by the other sinks in the chain.

As the sink is created by its corresponding provider, the SoapServerFormatterSinkProvider,
which is also used in configuration files or code for configuring the formatter’s properties, you
usually won’t use this class directly in your own code.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingchannelssoapserverformattersinkclasstopic.asp

System.Runtime.Remoting.Channels.Http
This namespace includes client- and server-side channels for interactions via the HTTP protocol.

HttpChannel Class
This class provides an implementation of a channel using the HTTP protocol that is able to
send as well as receive messages across the wire. Actually, it combines HttpClientChannel and
the HttpServerChannel in one implementation. By default, this channel uses the SOAP format-
ter classes to transmit messages in SOAP format across the wire.

Usage example:

Hashtable props = new Hashtable();
props.Add("name", "My first channel");
props.Add("priority", 30);

HttpChannel channel = new HttpChannel(props, null, null);
ChannelServices.RegisterChannel(channel);

Configuration example:

<configuration>
<system.runtime.remoting>

<application>
<client>

<wellknown type="MyNamespace.MyClass, MySharedAssembly"
url="http://localhost:8080/MyRemoteObject.rem" />

APPENDIX A ■ .NET REMOTING USAGE REFERENCE 505

</client>
<channels>

<channel ref="http" port="0" />
</channels>

</application>
</system.runtime.remoting>

</configuration>

On the client side, a port has to be configured when the client needs to receive callbacks
from the server. In this case, you can also use the <serviceProviders> element to configure
server channels with typeFilterLevel.

I use this channel across multiple examples throughout the whole book. Details about the
channel and its configuration can be found in Chapter 4.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingchannelshttphttpchannelclasstopic.asp

HttpClientChannel Class
While the HttpChannel class implements both the sending and receiving part of a channel,
the HttpClientChannel class only implements the client-side part of the channel. By default,
all messages are passed through the SOAP formatter, which means that messages are transmitted
via SOAP/XML to the server.

Usage example:

HttpClientChannel channel = new HttpClientChannel("My Client Channel", null);
ChannelServices.RegisterChannel(channel);

Configuration example:

<configuration>
<system.runtime.remoting>

<channelSinkProviders>
<channel type="System.Runtime.Remoting.Channels.Http.HttpChannel,

System.Runtime.Remoting" id="httpbinary" >
<clientProviders>

<formatter type="System.Runtime.Remoting.Channels.
BinaryClientFormatterSinkProvider,
System.Runtime.Remoting" />

</clientProviders>
</channel>

</channels>
<application>

<channels>
<channel ref="httpbinary" />

</channels>
<client>

APPENDIX A ■ .NET REMOTING USAGE REFERENCE506

<wellknown url="http://localhost:80/MyRemoteObject.rem"
type="MyNamespace.MyRemoteObject, SharedAssembly" />

</client>
</application>

</system.runtime.remoting>
</configuration>

The preceding configuration example demonstrates how the HTTP channel can be used
with the binary formatter on the client side. On the server side, the same configuration would
be used with the <serverProviders> element instead of the <clientProviders> element.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingchannelshttphttpclientchannelclasstopic.asp

HttpServerChannel Class
While the HttpChannel class implements both the client and server part, this channel only
implements the server-side part of the channel. By default, the channel accepts messages in
both SOAP and binary format.

Configuration and usage is very similar to the HttpClientChannel. In configuration files,
you use the <serverProviders> element instead of <clientProviders>.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingchannelshttphttpserverchannelclasstopic.asp

System.Runtime.Remoting.Channels.Tcp
This namespace includes client- and server-side channels for interactions via a proprietary
TCP-based protocol.

TcpChannel Class
As with the HttpChannel class, the TcpChannel class implements both the client- and the
server-channel part for transmitting messages across the wire using the TCP protocol. Therefore,
it is a combination of the TcpClientChannel as well as the TcpServerChannel. By default, it
accepts and transmits messages in binary format.

Usage example:

TcpChannel channel = new TcpChannel(4711);
ChannelServices.RegisterChannel(channel);

Configuration example:

<configuration>
<system.runtime.remoting>
<application>
<channels>

APPENDIX A ■ .NET REMOTING USAGE REFERENCE 507

<channel ref="tcp" port="1234">
<serverProviders>
<formatter ref="binary" />

</serverProviders>
</channel>

</channels>
<service>
<wellknown type="Server.ServerImpl, Server"

objectUri="MyServer.rem" mode="Singleton" />
</service>

</application>
</system.runtime.remoting>

</configuration>

For details about the TcpChannel class and its configuration options, take a closer look at
the descriptions in Chapter 4.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingchannelstcptcpchannelclasstopic.asp

TcpClientChannel Class
While the TcpChannel class implements both the client- and the server-side part of the channel,
this implementation can be used on clients only. In configuration files, it is used together with
the <clientProviders> part for configuration of the message sinks and formatters of the channel.

Usage example:

TcpClientChannel channel = new TcpClientChannel("My Tcp Channel", null);
ChannelServices.RegisterChannel(channel);

Configuration example:

<configuration>
<system.runtime.remoting>
<application name="FirstServer">
<channels>
<channel ref="tcp" />

</channels>
<client>
<wellknown type="General.IRemoteFactory, General"

url="tcp://localhost:1234/MyServer.rem" />
</client>

</application>
</system.runtime.remoting>

</configuration>

APPENDIX A ■ .NET REMOTING USAGE REFERENCE508

Configuration is similar to HttpClientChannel as well as TcpChannel in general. Therefore,
for details, look at the corresponding sections in this appendix. For further details about channel
configuration, take a closer look at Chapter 4.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingchannelstcptcpclientchannelclasstopic.asp

TcpServerChannel Class
Whereas the TcpClientChannel class implements the client-side channel, this class implements
the server-side channel only. By default, it accepts messages in either SOAP or binary format.
Configuration and usage is very similar to TcpChannel (and TcpClientChannel) except that you
use the <serverProviders> element in the configuration files when configuring formatters and
message sinks for this channel.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingchannelstcptcpserverchannelclasstopic.asp

System.Runtime.Remoting.Lifetime
This namespace includes classes that are used to implement and customize the lease-based
lifetime management system.

ILease Interface
The ILease interface defines the lifetime lease object that is used by .NET Remoting LifetimeServices.
The ILease interface allows you to define the properties that will be used by LifetimeServices for
evaluating how long a server-side object will be kept alive.

It enables the server object to define several types of timeouts. Based on these timeout values,
the lifetime service decides when the server-side object can be destroyed. For configuring the
lifetime of a server object, you have to override the InitializeLifetimeService() method of
the MarshalByRefObject class.

Usage example:

public override object InitializeLifetimeService()
{

Console.WriteLine("MyRemoteObject.InitializeLifetimeService() called");
ILease lease = (ILease)base.InitializeLifetimeService();
if (lease.CurrentState == LeaseState.Initial)
{

lease.InitialLeaseTime = TimeSpan.FromMilliseconds(10);
lease.SponsorshipTimeout = TimeSpan.FromMilliseconds(10);
lease.RenewOnCallTime = TimeSpan.FromMilliseconds(10);

}
return lease;

}

APPENDIX A ■ .NET REMOTING USAGE REFERENCE 509

Configuration example:

<configuration>
<system.runtime.remoting>

<application>
<lifetime

leaseTimeout="10M"
renewOnCallTime="5M"
leaseManagerPollTime="30S"

/>
</application>

</system.runtime.remoting>
</configuration>

I use the ILease interface the first time in Chapter 3 in the section “Managing Lifetime.”
More details about lifetime management can be found at the very beginning of Chapter 7.
Details about configuring lease times can be found in Chapter 4.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotinglifetimeileaseclasstopic.asp

ISponsor Interface
Every object that wants to request a lease renewal for a server-side object must implement the
ISponsor interface. By implementing this interface, the object can become a sponsor by regis-
tering itself with the lease manager. A sponsor can reside on the client or on the server or on
any other machine too. The only requirement is that it is reachable by the .NET Remoting
infrastructure.

If the sponsor is used on the client, the client becomes a server itself as the .NET Remoting
infrastructure on the server-side object tries to contact the sponsor for asking whether or not
the TTL of the server object should be renewed after the lease time has expired.

Usage example:

// creation of a sponsor class
public class MySponsor: MarshalByRefObject, ISponsor
{

public bool doRenewal = true;

public TimeSpan Renewal(System.Runtime.Remoting.Lifetime.ILease lease)
{

Console.WriteLine("{0} SPONSOR: Renewal() called", DateTime.Now);

if (doRenewal)
{

Console.WriteLine("{0} SPONSOR: Will renew (10 secs)", DateTime.Now);
return TimeSpan.FromSeconds(10);

}

APPENDIX A ■ .NET REMOTING USAGE REFERENCE510

else
{

Console.WriteLine("{0} SPONSOR: Won’t renew further", DateTime.Now);
return TimeSpan.Zero;

}
}

}

public class MyApplication
{
public static void Main(string[] args)
{
String filename = "client.exe.config";
RemotingConfiguration.Configure(filename);

SomeCAO cao = new SomeCAO();
ILease le = (ILease) cao.GetLifetimeService();
MySponsor sponsor = new MySponsor();
le.Register(sponsor);

// do something here ...

// unregister the lease at the end
le.Unregister(sponsor);

}
}

You can see the ISponsor interface used for the first time in Chapter 7 in the “Managing
Lifetime” section.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotinglifetimeisponsorclasstopic.asp

ClientSponsor Class
The ClientSponsor class provides a default implementation for a client-side sponsor. It allows
you to set the RenewalTime property from outside and can be registered with the lifetime services
as sponsor.

I have not used the default implementation in this book, but more information on imple-
menting the ISponsor interface on your own can be found in Chapter 7.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotinglifetimeclientsponsorclasstopic.asp

APPENDIX A ■ .NET REMOTING USAGE REFERENCE 511

LifetimeServices Class
This class enables you to control the lifetime infrastructure of .NET Remoting. Therefore, it gives
you access to an ILease object for configuring several timeout values or registering sponsors.

Usage examples:

// LifetimeServices and client-activated objects
ILease le = (ILease) cao.GetLifetimeService();
MySponsor sponsor = new MySponsor();
le.Register(sponsor);

// LifetimeServices and server-activated objects
class ServerExampleClass: MarshalByRefObject
{

public override object InitializeLifetimeService()
{

ILease tmp = (ILease) base.InitializeLifetimeService();
if (tmp.CurrentState == LeaseState.Initial)
{

tmp.InitialLeaseTime = TimeSpan.FromSeconds(5);
tmp.RenewOnCallTime = TimeSpan.FromSeconds(1);

}
return tmp;

}
}

The LifetimeServices is used for the first time in Chapter 3 when I discuss the fundamentals
about lifetime. More details can be found in Chapter 7.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotinglifetimelifetimeservicesclasstopic.asp

LeaseState Enumeration
The ILease interface has one property called CurrentState. This property enables the developer
to query the current lease state of a server object. This state can be one of the following:

• Activate: Lease is activated and not expired

• Expired: Lease has expired and cannot be renewed

• Initial: Lease has been created but not yet activated

• Renewing: Lease has been expired and is seeking sponsorship

• Null: Lease is not initialized

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotinglifetimeleasestateclasstopic.asp

APPENDIX A ■ .NET REMOTING USAGE REFERENCE512

System.Runtime.Remoting.Messaging
In this namespace, you will find classes that are used for transmitting and controlling transmit-
ted messages between remoting clients and servers. Basically, the .NET Remoting infrastructure
uses messages for communication between the client and the server. These messages are either
serialized binary or in SOAP format.

Within the messaging namespace are classes that allow you to send some additional
information in the message header (context) as well as control the way messages are sent and
responses are evaluated in .NET Remoting applications.

AsyncResult Class
The AsyncResult class provides a default implementation of the IAsyncResult interface introduced
in Chapters 3 and 7 in the sections “Asynchronous Calls” and “Remoting Events.” I always use
the IAsyncResult interface in this book’s examples, as I had no specific reason for using this
class. The class provides two additional methods. They allow you to complete the method call
explicitly through the Complete() method and let you verify whether EndInvoke() has completed
successfully.

If you require one of these two methods, you can use the AsyncResult class instead of the
interface. If not, there is no reason for not using just the interface as done in the examples in
the book.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingmessagingasyncresultclasstopic.asp

CallContext Class
The CallContext class allows you to carry additional properties within the message exchanged
between the client and the server. Therefore, you can include some additional metadata that can
be used either by the server or by the client. This metadata has nothing to do with the actual
business logic but more with some infrastructural topics.

Typical examples are things like security-related information as authentication method
and encryption method. Another example is including some message IDs that can be used for
implementing something like long-running business transactions in your system.

Usage examples:

// define a context object in the shared assembly (must be serializable!)
[Serializable]
public class MyContextObject : ILogicalThreadAffinative
{
public DateTime RequestTime;
public Guid ServerResponseGuid;

}

// example for using the context object in the client application
public static void Main(string[] args)

APPENDIX A ■ .NET REMOTING USAGE REFERENCE 513

{
HttpChannel channel = new HttpChannel();
ChannelServices.RegisterChannel(channel);

ICustomerManager mgr = (ICustomerManager) Activator.GetObject(
typeof(ICustomerManager),
"http://localhost:1234/CustomerManager.soap");

Console.WriteLine("Client.Main(): Reference to CustomerManager acquired");

MyContextObject ctx = new MyContextObject();
ctx.RequestTime = DateTime.Now;
ctx.ServerResponseGuid = Guid.Empty;
CallContext.SetData("MyContext", ctx);

Customer cust = mgr.GetCustomer(4711);

MyContextObject ret = (MyContextObject)CallContext.GetData("MyContext");
Console.WriteLine("Metadata: {0}", ret.ServerResponseGuid.ToString());

}

// example for using the context object in the server application
class CustomerManager: MarshalByRefObject, ICustomerManager
{
public Customer GetCustomer(int id)
{
Console.WriteLine("CustomerManager.getCustomer): Called");
Customer tmp = new Customer();
tmp.FirstName = "John";
tmp.LastName = "Doe";
tmp.DateOfBirth = new DateTime(1970,7,4);

object ctxData = CallContext.GetData("MyContext");
if(ctxData != null)
{
MyContextObject ctx = (MyContextObject)ctxData;
Console.WriteLine("Request sent at {0}",

ctx.RequestTime.ToString("dd.MM.YYYY - hh.mm.ss.SS"));
ctx.ServerResponseGuid = Guid.NewGuid();

}
return tmp;

}
}

I use CallContext for the first time in Chapter 9 when talking about contexts.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingmessagingcallcontextclasstopic.asp

APPENDIX A ■ .NET REMOTING USAGE REFERENCE514

LogicalCallContext Class
The LogicalCallContext class is a special version of the CallContext class that is used during method
calls to remote objects. The CallContext class itself is used for sharing data across method calls
in a single logical thread but not across logical threads or across application domains. As soon
as it comes to communication with other threads or remote application domains, the CallContext
class automatically creates a LogicalCallContext, which is used for transmitting data to the other
application domain.

This is done only if transmitted context objects implement the ILogicalThreadAffinative
interface. In any other case, the context objects are kept for the logical thread only, and are not
transmitted to the other application domain.

You don’t use this object directly, as the CallContext object automatically creates the
LogicalCallContext when transmitting context information to the other application domain.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingmessaginglogicalcallcontextclasstopic.asp

OneWayAttribute Class
This special attribute allows you to mark a method of a .NET Remoting server as a one-way
method. One-way methods do not have any return values, out values, or ref parameters. In the
case of remoting, the call message is sent by client objects without verifying any return values
or success on calling the remote method.

Usage example:

public class BroadcastEventWrapper: MarshalByRefObject {
// ...some other class members ...
[OneWay]
public void SampleOneWay (String msg) {

// Do something here without returning anything
}

}

Details about the OneWayAttribute class and its advantages and disadvantages can be
found in Chapter 7.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingmessagingonewayattributeclasstopic.asp

System.Runtime.Remoting.Metadata
The System.Runtime.Remoting.Metadata namespace includes classes and attributes for
controlling the processing and serialization of objects and fields when using SOAP as your
message format. These classes can be used for specifying XML element and attribute names
for serialization as well as controlling the SOAP header itself.

The attributes explained in this section and introduced in this namespace provide similar
functionality to the attributes introduced with the XML serialization (System.Xml.Serialization),
which is used for XML and Web Services.

The attributes introduced in this section are used for the first time in the book in Chapter 8.

APPENDIX A ■ .NET REMOTING USAGE REFERENCE 515

SoapAttribute Class
The SoapAttribute class is not used directly on your serializable types. It provides the base
functionality for all attributes explained in this section.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingmetadatasoapattributeclasstopic.asp

SoapTypeAttribute Class
The SoapTypeAttribute class is the most important of all the attributes explained in this section.
It can be applied to classes and structures only, and specifies general attributes of the type like
the XML root element name and, of course, the namespace that should be used for serialization.

Usage example:

[Serializable()]
[SoapTypeAttribute(XmlNamespace="MyXmlNamespace")]
public class TestSimpleObject
{

public int member1;

[SoapFieldAttribute(XmlElementName="MyXmlElement")]
public string member2;

// a field that is not serialized
[NonSerialized()]
public string member3;

}

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingmetadatasoaptypeattributeclasstopic.asp

SoapFieldAttribute Class
This attribute can be applied on a field of a serializable type and controls serialization of this
field. Serialization is performed by the SOAP formatter that evaluates this attribute and then
serializes the field according to the information in this attribute. If not present, it assumes
some defaults like taking the fieldname for the name of the XML element serialized into the
SOAP message.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingmetadatasoapfieldattributeclasstopic.asp

APPENDIX A ■ .NET REMOTING USAGE REFERENCE516

SoapMethodAttribute Class
Other than the attributes introduced until now in this section, this attribute is not applied to
a serializable type but on a method that can be invoked remotely. The SoapSuds.exe tool uses
these attributes for the generation of appropriate client proxy classes. It controls the SOAPAction
that will be serialized into the SOAP header.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingmetadatasoapmethodattributeclasstopic.asp

SoapParameterAttribute Class
This attribute can be used together with SoapMethodAttribute. While SoapMethodAttribute is
applied on the method itself, this attribute is applied on the method’s parameters and dictates
how parameters are serialized into the SOAP message (e.g., XML element names for parameters).

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingmetadatasoapparameterattributeclasstopic.asp

SoapOption Enumeration
The SoapTypeAttribute class includes a property, SoapOptions, that can be set to one of the
values defined in this enumeration. This attribute controls how type information is included in
the serialized SOAP message.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingmetadatasoapattributeclasstopic.asp

System.Runtime.Remoting.Services
Within the System.Runtime.Remoting.Services namespace you will find several classes that
provide additional remoting services to the .NET Framework. Here you can find a class for
interoperating with Enterprise Services or the base class for proxies created via SoapSuds.exe.

By far the most important class is the TrackingServices class, which allows you to plug your
own components into the marshaling, unmarshaling, and disconnection processes of remote
objects.

EnterpriseServicesHelper Class
The EnterpriseServicesHelper class provides some APIs for communicating with unmanaged
classes outside your own application domain.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingservicesenterpriseserviceshelperclasstopic.asp

APPENDIX A ■ .NET REMOTING USAGE REFERENCE 517

RemotingClientProxy Class
This class is the abstract base class for any client-side proxy for well-known objects generated
by the SoapSuds.exe utility. It defines a set of frequently used properties for SoapSuds-generated
proxies.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingservicesremotingclientproxyclasstopic.asp

ITrackingHandler Interface
The ITrackingHandler interface defines functionality that allows an object to be notified when the
.NET Remoting infrastructure marshals, unmarshals, or disconnects an object from its proxy.

Interface definition:

public interface ITrackingHandler
{
void DisconnectedObject(object obj);
void MarshaledObject(object obj, ObjRef or);
void UnmarshaledObject(object obj, ObjRef or);
}

The preceding interface defines three methods that have to be implemented by your own
tracking handler class. This implementation has to be registered with the TrackingServices class,
which is defined in the same namespace.

TrackingHandlers can be used when you need to be notified for one or more of these events.
In this case, you can implement functionality such as deterministic resource management or
object pooling for remoting objects.

For example, if an object disconnects from its proxy, you can free unmanaged resources by
catching the DisconnectObject event and calling the Dispose() method of your wrapper classes
for the unmanaged resources to free them at once. You can also restore any resources when an
object gets marshaled again if you need them for subsequent processing immediately.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingservicesitrackinghandlerclasstopic.asp

TrackingServices Class
The TrackingServices class provides the basic infrastructure for registering your own tracking
handlers. This enables you to catch the events explained in the description of the ITrackingHandler
interface.

Tracking those events enables creation of mechanisms like object pooling or improved
resource management in terms of releasing resources on object disconnection and restoring
them when a new reference has been acquired (marshaling and unmarshaling).

APPENDIX A ■ .NET REMOTING USAGE REFERENCE518

Usage example:

// Part I:
// create your own tracking handler
public class SampleTrackingHandler : ITrackingHandler
{

public void MarshaledObject(object obj, ObjRef or)
{

// write logging information
// restore other objects from a pool on the server side

}

public void UnmarshaledObject(object obj, ObjRef or)
{

// write logging information or
}

public void DisconnectedObject(object obj)
{
// write logging code or
// release any resources not required when disconnected

}
}

// Part II:
// register your tracking handler
TrackingServices.RegisterTrackingHandler(objHandler) ;
// ...
// perform your operations here...
// ...
// unregister your handler if catching events not necessary anymore
TrackingServices.UnregisterTrackingHandler(objHandler) ;

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingservicestrackingservicesclasstopic.asp

System.Runtime.Serialization
This namespace contains all types that are used by the generic .NET serializer for serializing
and deserializing any types of objects. I have demonstrated some of the classes, interfaces, and
enumerations for changing typeFilterLevel attribute on formatter sinks, as well as specifically
in the versioning chapter, for controlling the serialization and deserialization of types transmitted
between the client and the server.

As the generic serializer could fill a book on its own, I will only explain the parts that I use
in the samples in this book.

APPENDIX A ■ .NET REMOTING USAGE REFERENCE 519

ISerializable Interface
Usually serialization is done by the .NET serialization runtime and formatters automatically after
an object has been marked with the [Serializable] attribute. In this case, the serializer implements
a default behavior for serializing and deserializing objects. If an object wants to override this
default behavior, it has to implement the ISerializable interface.

If an object implements ISerializable, the serialization runtime calls the interface’s
GetObjectData() method for getting the serialized version of the object. When deserializing
the runtime, look for a special constructor in the class. Both the GetObjectData() method as
well as the special constructor get two objects as parameters—a SerializationInfo class as well
as a StreamingContext class, which are explained later in this section.

Usage example:

[Serializable]
public class Customer: ISerializable {

public String FirstName;
public String LastName;
public DateTime DateOfBirth;
public String Title;

public Customer (SerializationInfo info, StreamingContext context) {
FirstName = info.GetString("FirstName");
LastName = info.GetString("LastName");
DateOfBirth = info.GetDateTime("DateOfBirth");
try {

Title = info.GetString("Title");
} catch (Exception e) {

Title = "n/a";
}

}

public void GetObjectData(SerializationInfo info, StreamingContext context)
{

info.AddValue("FirstName",FirstName);
info.AddValue("LastName",LastName);
info.AddValue("DateOfBirth",DateOfBirth);
info.AddValue("Title",Title);

}
}

The preceding code is the sample code introduced in Chapter 8 for getting a serializable
type that continues working with older versions of its own. I also introduced the usage of the
interface for implementing advanced versioning concepts in Chapter 8 where the serializable
type doesn’t lose information when working with newer and older versions of its own.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeserializationiserializableclasstopic.asp

APPENDIX A ■ .NET REMOTING USAGE REFERENCE520

SerializationInfo Class
The SerializationInfo class holds the data that is serialized or that should be deserialized during the
serialization process. In the preceding code example, SerializationInfo is used for writing
the customer’s data during the serialization process and reading the data during deserialization.

Usage example:

public void GetObjectData(SerializationInfo info, StreamingContext context)
{

info.AddValue("FirstName",FirstName);
info.AddValue("LastName",LastName);
info.AddValue("DateOfBirth",DateOfBirth);
info.AddValue("Title",Title);

}
}

You can see this class in Chapter 8, where it is used for implementing custom serialization
logic for versioning of the serialized types. An important fact is that you can also add subobjects
to SerializationInfo as long as they are serializable on their own. But also you have to know up
front what to serialize and what needs to be deserialized. The SerializationInfo doesn’t include
functionality for iterating through all serialized members during deserialization. Therefore, if
you want to dynamically add different data to SerializationInfo, you have to work with objects
like an ArrayList.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeserializationserializationinfoclasstopic.asp

StreamingContext Structure
The second parameter of the GetObjectData() method and the special constructor used for
custom serialization logic is StreamingContext. This structure gives you some additional infor-
mation about the serialization currently done like the source and the purpose for the seriali-
zation. The purpose can be queried through the class’s Context property, which is of the type
StreamingContextStates.

The StreamingContextStates enumeration gives you information about the source of
serialization, for example, object cloning (Clone), file persistence (Persistence), and, of course,
.NET Remoting.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeserializationstreamingcontextclasstopic.asp

More information about the StreamingContextStates enumeration on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeserializationstreamingcontextstatesclasstopic.asp

APPENDIX A ■ .NET REMOTING USAGE REFERENCE 521

SerializationException Class
This exception is thrown when an error occurs during serialization or deserialization. Causes
for a serialization exception might be trying deserialize a stream that does contain wrong or
incomplete data or data for the wrong version of the serialized type.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeserializationserializationexceptionclasstopic.asp

System.Runtime.Serialization.Formatters
This namespace includes the necessary infrastructure for runtime formatting, which is inter-
nally used by the built-in formatters for .NET Remoting.

SoapFault Class
The SoapFault class represents an error that occurred when calling a remote method using
SOAP. This class is used for carrying error and status information within the SOAP message.
Although I have not used the class within the book, it should be mentioned here because SOAP
faults are the standard for transferring error information when calling remote services via
SOAP. Therefore, they are important when it comes to Web Services, too.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeserializationformatterssoapfaultclasstopic.asp

SoapMessage Class
The SoapMessage class is a representation of the metadata transferred within the SOAP message
when calling a remote service/method via SOAP. It holds the method name as well as the names
and types of the parameters required during serialization and deserialization of SOAP RPC mes-
sages. The corresponding counterpart for Web Services (which are usually not SOAP RPC) can be
found in the System.Web.Services.Protocols namespace.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeserializationformatterssoapmessageclasstopic.asp

TypeFilterLevel Enumeration
The TypeFilterLevel enumeration was introduced with .NET Framework 1.1 for security reasons
in the deserialization process. Theoretically, an attacker could leverage the process of dese-
rialization. To avoid this possible security problem, TypeFilterLevel has been added to the
serialization infrastructure.

With a TypeLevelFilter set to low, not all types will be deserialized by the serialization run-
time. If some types such as delegate types are included in the messages transmitted between
the client and the server, a SerializationException will be thrown.

APPENDIX A ■ .NET REMOTING USAGE REFERENCE522

Usage example:

// configure the formatters for the channel
BinaryServerFormatterSinkProvider formatterBin =

new BinaryServerFormatterSinkProvider();
formatterBin.TypeFilterLevel = TypeFilterLevel.Full;

// register the channels
IDictionary dict = new Hashtable();
dict.Add("port", "1234");

TcpChannel channel = new TcpChannel(dict, null, formatterBin);
ChannelServices.RegisterChannel(channel);

// register the wellknown service
RemotingConfiguration.RegisterWellKnownServiceType(typeof(ServerImpl),

Configuration example:

<configuration>
<system.runtime.remoting>
<application>
<channels>
<channel ref="tcp" port="1234">
<serverProviders>
<formatter ref="binary"

typeFilterLevel="Low" />
</serverProviders>

</channel>
</channels>
<service>
<wellknown type="Server.ServerImpl, Server"

objectUri="MyServer.rem"
mode="Singleton" />

</service>
</application>

</system.runtime.remoting>
</configuration>

I introduce TypeFilterLevel in Chapter 4 in the discussion on configuring channels. In
configuration files, TypeFilterLevel is configured through the formatter sink providers within
the <serverProviders> element of the corresponding channels.

APPENDIX A ■ .NET REMOTING USAGE REFERENCE 523

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeserializationformatterstypefilterlevelclasstopic.asp

Summary
In this appendix, you’ve seen an overview of the most important classes you’ll encounter when
using .NET Remoting. In the next appendix, this overview will be extended to cover the name-
spaces, classes, and interfaces that are used to extend the remoting framework.

525

A P P E N D I X B

■ ■ ■

.NET Remoting Extensibility
Reference

In most cases, extending the .NET Remoting infrastructure means creating classes that imple-
ment specific interfaces of the framework. Within this appendix, you’ll find a brief description
of the interfaces needed for extending the .NET Remoting framework with your own channels
and formatters, as well as message sinks. Some of the interfaces you’ll find in this appendix might
have been described in the previous appendix, too, but from within another context.

The namespaces where you can find the interfaces described in this appendix are as follows:

• System.Runtime.Remoting.Messaging

• System.Runtime.Remoting.Activation

• System.Runtime.Remoting.Proxies

• System.Runtime.Remoting.Channels

You can find details about the interfaces and how to use them in the chapters of the second
part of the book.

System.Runtime.Remoting.Messaging
Basically, the .NET Remoting infrastructure uses messages for communicating with remote
objects. Messages are used not only for calling remote objects, but also for activating them
through so-called activation messages. A message carries all the information that is necessary
for the remote object for appropriate processing. This means it consists of metadata like action
identifiers as well as the actual user data. You can find all the interfaces for the basic messaging
infrastructure of the framework in this namespace.

IMessage Interface
Each communication with remote objects is based on messages that are sent across the wire.
The IMessage interface is the base interface for messages and therefore contains communica-
tion data sent between two parties.

Basically, the IMessage interface defines a dictionary object containing the message
properties only. Within one .NET Remoting object, the message is passed through a set of sinks

APPENDIX B ■ .NET REMOTING EXTENSIBIL ITY REFERENCE526

to the transport channel, which is responsible for transmitting the message across the wire to
the remote object. On the remote side, the object is passed through the receiving transport
channel as well as a set of sinks to the actual object processing the message.

Interface definition:

public interface IMessage
{
IDictionary Properties { get; }
}

Basically, implementations or subtypes of this interface add additional properties that
allow easier access to the contents of the message as can be seen with the MethodCall class
implementation later in this chapter.

Chapter references:
• Chapter 11: Inside the Framework

• Chapter 12: Creation of Sinks

• Chapter 13: Extending .NET Remoting

• Chapter 14: Developing a Transport Channel

• Chapter 15: Context Matters

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingmessagingimessageclasstopic.asp

IMessageSink Interface
As mentioned previously, when a message is sent from an object to a remote object, it first flows
through a set of sinks in the local application domain before it is sent to the remote object via
the transport channel. On the remote object’s side, a receiving channel receives the object and
passes the message through its own chain of message sinks again before the last sink decodes
the message and transforms the message into a local method call to the actual remote object’s
method or property.

The IMessageSink interface defines the basic functionality for every message sink of the
framework.

Interface definition:

public interface IMessageSink
{
IMessageCtrl AsyncProcessMessage(IMessage msg, IMessageSink replySink);
IMessage SyncProcessMessage(IMessage msg);
IMessageSink NextSink { get; }
}

As you can see, IMessageSink defines one property and two methods. The property, NextSink,
returns a reference to the next message sink in the chain of sinks, whereas the two methods are
used for processing the messages (one for synchronous and the other one for asynchronous
processing).

Chapter references:
• Chapter 4: Configuration and Deployment

• Chapter 11: Inside the Framework

• Chapter 12: Creation of Sinks

• Chapter 13: Extending .NET Remoting

• Chapter 14: Developing a Transport Channel

• Chapter 15: Context Matters

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingmessagingimessagesinkclasstopic.asp

IMethodMessage Interface
Whereas the IMessage interface just defines the basic structure of any message sent across the
wire, the IMethodMessage interface is an extension of the IMessage interface that defines
additional properties for messages encapsulating method-general properties. This information
is sent to and from remote methods.

Interface definition:

public interface IMethodMessage : IMessage
{
object GetArg(int argNum);
string GetArgName(int index);
int ArgCount { get; }
object[] Args { get; }
bool HasVarArgs { get; }
LogicalCallContext LogicalCallContext { get; }
MethodBase MethodBase { get; }
string MethodName { get; }
object MethodSignature { get; }
string TypeName { get; }
string Uri { get; }
}

The interface defines methods and properties for resolving the cracking the method affected
by the call: arguments (count, name, and values), method signature information (target object
type, method name, object URI), as well as the context for the message call.

Chapter reference:
• Chapter 15: Context Matters

APPENDIX B ■ .NET REMOTING EXTENSIBIL ITY REFERENCE 527

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingmessagingimethodmessageclasstopic.asp

IMethodCallMessage Interface
While the IMethodMessage interface defines the basic structure for referencing methods in
general and is sent to and from remote methods, IMethodCallMessage is just used for calling
only remote messages.

Interface definition:

public interface IMethodCallMessage : IMethodMessage
{
object GetInArg(int argNum);
string GetInArgName(int index);
int InArgCount { get; }
object[] InArgs { get; }
}

As it is used for calling remote methods only, the interface defines additional properties
for input arguments, whereas the IMethodMessage interface’s properties are defined for input
as well as the output argument (that’s the big difference).

Chapter reference:
• Chapter 13: Extending .NET Remoting

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingmessagingimethodcallmessageclasstopic.asp

IMethodReturnMessage Interface
Whereas IMethodCallMessage defines the message structure sent across the wire for calling
remote methods, IMethodReturnMessage defines the message structure sent back as the result
of the remote message call from the server.

Interface definition:

public interface IMethodReturnMessage : IMethodMessage
{
object GetOutArg(int argNum);
string GetOutArgName(int index);
Exception Exception { get; }
int OutArgCount { get; }
object[] OutArgs { get; }
object ReturnValue { get; }
}

APPENDIX B ■ .NET REMOTING EXTENSIBIL ITY REFERENCE528

The IMethodReturnMessage interface is derived from IMethodMessage and provides addi-
tional properties for retrieving exceptions and output arguments, as well as the return value of
the method call. Again, the IMethodMessage interface’s properties are defined for input as well
as output arguments, whereas these properties are for output arguments (and return values) only.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingmessagingimethodreturnmessageclasstopic.asp

MethodCall Class
The MethodCall class is an implementation of the IMethodCallMessage interface and therefore
provides an implementation for calling methods on a remote object. This type is not intended
to be used directly in your application, therefore always use the interfaces described previously
if you want to access details about method calls.

Chapter references:
• Chapter 11: Inside the Framework

• Chapter 13: Extending .NET Remoting

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingmessagingmethodcallclasstopic.asp

MethodResponse Class
The MethodResponse class implements the IMethodResponseMessage interface and therefore
is the counterpart of the MethodCall class. An instance of this class is returned from the server
as a result of a remote method call.

Again, this class implements the interfaces described previously in this appendix and is
not intended to be used directly. Therefore, if you want to access details about the response of
a remote method call, use the IMethodResponseMessage interface.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingmessagingmethodresponseclasstopic.asp

System.Runtime.Remoting.Activation
In the System.Runtime.Remoting.Activation namespace, you can find classes and interface
definitions that support activation of remote objects. Activation messages are only necessary
for client-activated objects, as server-activated objects are created by the server itself.

Basically, the creation of remote objects is based on so-called construction call mes-
sages. These messages are special implementations of IMethodCallMessage as well as
IMethodResponseMessage.

APPENDIX B ■ .NET REMOTING EXTENSIBIL ITY REFERENCE 529

IConstructionCallMessage Interface
This interface defines the structure of the message sent for activating a client-activated object
of the server. Therefore, when the client calls Activator.CreateInstance() or uses the new oper-
ator for creating a configured client-activated object, the .NET Remoting infrastructure creates
a construction call message and sends this message to the server for retrieving, telling the server
to create a new instance as well as retrieving the reference to the newly created instance.

Interface definition:

public interface IConstructionCallMessage : IMethodCallMessage
{
Type ActivationType { get; }
string ActivationTypeName { get; }
IActivator Activator { get; set; }
object[] CallSiteActivationAttributes { get; }
IList ContextProperties { get; }
}

The construction message contains the actual type of the remote object to be created and
the name of the type, as well as context information and activation attributes specified in the
Activator.CreateInstance() method call on the client. The Activator property specifies an
instance of IActivator, which is responsible for the creation process.

Chapter reference:
• Chapter 15: Context Matters

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingactivationiconstructioncallmessageclasstopic.asp

IConstructionReturnMessage Interface
The IConstructionReturnMessage interface is an implementation of IMethodReturnMessage
and provides the client with results of the activation of a client-activated object. Therefore, it is
used by the infrastructure for checking the success of the creation process as well as retrieving
context information created by the activator during the creation process.

IConstructionReturnMessage defines no additional properties or methods in the current
version of the .NET Framework.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingactivationiconstructionreturnmessageclasstopic.asp

System.Runtime.Remoting.Proxies
The System.Runtime.Remoting.Proxies namespace contains the classes for controlling and
providing proxy functionality to the .NET Remoting framework. The most important class within
this namespace is the RealProxy class, which is the base class for all client-side proxies. You can
use this class for creating custom proxies, too.

APPENDIX B ■ .NET REMOTING EXTENSIBIL ITY REFERENCE530

RealProxy Class
RealProxy is an abstract base class for all client-side proxies. Actually, the client never uses RealProxy
directly; it always has access to a TransparentProxy. TransparentProxy gives the client the illusion
of talking to the remote object directly. Actually, TransparentProxy forwards any method calls
to a RealProxy instance.

RealProxy has the task of taking the method calls from TransparentProxy and forwards
these method calls through the .NET Remoting infrastructure to the remote server object.

Chapter references:
• Chapter 11: Inside the Framework

• Chapter 12: Creation of Sinks

• Chapter 13: Extending .NET Remoting

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingproxiesrealproxyclasstopic.asp

ProxyAttribute Class
This attribute indicates that an object type requires a custom proxy object inherited from the
RealProxy class. Any object that requires a custom proxy needs to have this class-level attribute
applied.

Usually, you would have to provide your own implementation of this attribute. The attribute
employs a CreateProxy() method in which you can create, initialize, and return an instance of
your custom proxy object.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingproxiesproxyattributeclasstopic.asp

System.Runtime.Remoting.Channels
Channels and channel sinks are used as transport vehicles when a client calls methods on
a remote object. The System.Runtime.Remoting.Channels namespace contains classes as well
as base interfaces for those classes as well as other classes in subnamespaces.

The most important classes are described in Appendix A. Here, I will focus on the interfaces
that are used for extending the .NET Remoting infrastructure. The interfaces in this namespace
are used for both creation of custom transport channels and extension of the framework by
creating custom sinks.

When a message is sent to a remote object, the message first flows through a chain of so-called
message sinks (remember the IMessageSink interface introduced in the previous section of
this chapter). The sink chain must consist of one formatter sink that is a special sink that creates
the wire format of the message. Afterwards, some preprocessing sinks (like encryption or digital
signatures) process the message before passing it on to the last sink in the chain, which must be
the transport channel sink itself.

APPENDIX B ■ .NET REMOTING EXTENSIBIL ITY REFERENCE 531

On the server, the processing occurs the other way around. The transport channel is the
first sink that receives the message from the client. It then forwards the message to some preprocess-
ing sinks (decryption, digital signature verification) as well as formatter sinks and other (custom)
sinks before cracking the message into its parts and converting it to a method call on the
server’s object.

For both client- and server-side processing, as well as sending and receiving parts, you will
find the necessary interfaces for customizing this sink chain in the namespace.

IChannelSinkBase Interface
IChannelSinkBase is the base interface for all types of sinks in the sink chain. It defines just
a property bag for a channel sink. All the implementations extend the channel sink base struc-
ture with their own properties (for indirectly accessing this property bag).

When extending the .NET Remoting infrastructure, you don’t use this interface, but the
interfaces described in the following parts of this section.

Chapter references:
• Chapter 13: Extending .NET Remoting

• Chapter 14: Developing a Transport Channel

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingchannelsichannelsinkbaseclasstopic.asp

IClientChannelSink Interface
IClientChannelSink defines the basic functionality for client-side channel sinks and therefore
defines which functionality must be provided by a custom plug-in point within the client-side
message processing.

Interface definition:

public interface IClientChannelSink : IChannelSinkBase
{
void AsyncProcessRequest(IClientChannelSinkStack sinkStack,

IMessage msg, ITransportHeaders headers,
Stream stream);

void AsyncProcessResponse(IClientResponseChannelSinkStack sinkStack,
object state, ITransportHeaders headers,
Stream stream);

Stream GetRequestStream(IMessage msg, ITransportHeaders headers);
void ProcessMessage(IMessage msg, ITransportHeaders requestHeaders,

Stream requestStream,
[out] ref ITransportHeaders responseHeaders,
[out] ref Stream responseStream);

IClientChannelSink NextChannelSink { get; }
}

APPENDIX B ■ .NET REMOTING EXTENSIBIL ITY REFERENCE532

The interface defines a property for linking the current sink to the next sink in the sink chain.
The ProcessMessage() method is used for processing a message request and its response syn-
chronously. This means that ProcessMessage() processes the request, calls the next sink in the
chain (its ProcessMessage() method), and waits till the sink (or the remote object) has finished
processing.

For asynchronous calls, the interface defines a method for asynchronously processing the
requests without waiting for the response and for asynchronously processing the response as
soon as it is available. Through the GetRequestStream() method, the sink has direct access to
the stream onto which the provided message will be serialized.

Chapter references:
• Chapter 11: Inside the Framework

• Chapter 12: Creation of Sinks

• Chapter 13: Extending .NET Remoting

• Chapter 14: Developing a Transport Channel

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingchannelsiclientchannelsinkclasstopic.asp

IClientChannelSinkProvider Interface
Sink implementations are always connected to channels through sink providers. This can also
be seen in configuration files where you always configure new sinks through the <provider> tag
and specify corresponding sink provider classes.

A sink provider can be seen as the factory for a sink implementation itself. This means the
sink provider is responsible for creating, initializing, and returning the actual channel sink
instance.

Interface definition:

public interface IClientChannelSinkProvider
{
IClientChannelSink CreateSink(IChannelSender channel,

string url, object remoteChannelData);
IClientChannelSinkProvider Next { get; set; }
}

The interface defines one method for creating the actual sink as well as a property for setting
and retrieving the next sink provider in the chain. This means the developer of a sink is respon-
sible for calling the CreateSink() method of the next provider (if available) before returning its
own sink instance within the CreateSink() method implementation.

Chapter references:
• Chapter 12: Creation of Sinks

• Chapter 13: Extending .NET Remoting

• Chapter 14: Developing a Transport Channel

APPENDIX B ■ .NET REMOTING EXTENSIBIL ITY REFERENCE 533

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingchannelsiclientchannelsinkproviderclasstopic.asp

IClientFormatterSink Interface
IClientFormatterSink is a special interface implementing the IMessageSink interface as well as
the IClientChannelSink interface. Formatters are special sinks in the sink chain responsible for
formatting the message into its wire format before sending it across the wire.

The interface doesn’t define any additional methods. It just combines the interfaces
IMessageSink and IClientChannelSink within one interface. The first sink on the client side must
be an IClientFormatterSink or implement both the IMessageSink and the IClientChannelSink
interfaces.

In configuration files, you usually use the <formatter> tag instead of the <provider> tag for
specifying a formatter in the sink chain.

Chapter reference:
• Chapter 11: Inside the Framework

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingchannelsiclientformattersinkclasstopic.asp

IClientFormatterSinkProvider Interface
This interface marks a sink provider as a provider used for creating formatter sink objects. The
interface doesn’t add any methods to its base interface IClientChannelSinkProvider, it is just
used as a marker for the .NET Remoting runtime.

The first sink provider in the chain must be a formatter sink provider. Use the <formatter>
tag instead of the <provider> tag in the configuration file for specifying the client-side formatter.

Sink formatter implementations usually use the runtime serialization formatters
(BinaryFormatter or SoapFormatter) specified in the System.Runtime.Serialization name-
space as well as in the Formatters subnamespace.

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingchannelsiclientformattersinkproviderclasstopic.asp

IServerChannelSink Interface
Whereas the IClientChannelSink interface is used for creating sinks employed before a message
is sent across the wire to a remote object, you can use the IServerChannelSink interface for cre-
ating sinks used when a remote object receives a message from a client. That said, this interface
defines the functionality that has to be supported by server-side sink objects.

APPENDIX B ■ .NET REMOTING EXTENSIBIL ITY REFERENCE534

Interface definition:

public interface IServerChannelSink : IChannelSinkBase
{
void AsyncProcessResponse(IServerResponseChannelSinkStack sinkStack,

object state, IMessage msg,
ITransportHeaders headers, Stream stream);

Stream GetResponseStream(IServerResponseChannelSinkStack sinkStack,
object state, IMessage msg, ITransportHeaders headers);

ServerProcessing ProcessMessage(IServerChannelSinkStack sinkStack,
IMessage requestMsg,
ITransportHeaders requestHeaders,
Stream requestStream,
[out] ref IMessage responseMsg,
[out] ref ITransportHeaders responseHeaders,
[out] ref Stream responseStream);

IServerChannelSink NextChannelSink { get; }
}

Although the interface is an extension of the IChannelSinkBase interface like its client-side
counterpart, its structure is a little bit more complicated. Most importantly, it defines a method
for synchronously processing incoming messages—the ProcessMessage() method.

For asynchronous messaging, it specifies the AsyncProcessResponse() method only as the
logic for message processing, and not waiting for any response is encapsulated within the
ProcessMessage() method itself.

Whereas the IClientChannelSink interface allows you to access the request stream, the server
channel sink requires a method for retrieving the response stream into which the returned message
is going to be serialized. And last but not least, the concept for accessing the next sink in the
chain through the NextChannelSink property is still the same as with client-side channel sinks.

Chapter references:
• Chapter 11: Inside the Framework

• Chapter 12: Creation of Sinks

• Chapter 13: Extending .NET Remoting

• Chapter 14: Developing a Transport Channel

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingchannelsiserverchannelsinkclasstopic.asp

IServerChannelSinkProvider Interface
The IServerChannelSinkProvider interface acts as a factory for creating server-side channel
sinks. This concept is basically the same as with the client-side sink provider classes. In config-
uration files, you don’t specify any server channel sink directly but rather its sink providers.

APPENDIX B ■ .NET REMOTING EXTENSIBIL ITY REFERENCE 535

Interface definition:

public interface IServerChannelSinkProvider
{
IServerChannelSink CreateSink(IChannelReceiver channel);
void GetChannelData(IChannelDataStore channelData);
IServerChannelSinkProvider Next { get; set; }
}

Although fulfilling the same purpose for server sinks as IClientChannelSinkProvider for
client-side sinks, the interface is differently structured. Remember that the server side doesn’t
need the object URI because it is receiving messages only (sending processes will be done
through the client sink infrastructure because that means the server plays the role of a client
when communicating with another server object). Also, it doesn’t need the possibility for spec-
ifying additional data that will be sent to the remote channel (that is, the remoteChannelData
parameter in IClientChannelSinkProvider’s CreateSink() method).

Through the GetChannelData() method, the sink provider is able to access channel specific
properties of the receiving channel. The Next property is used by the infrastructure for setting the
next server sink provider in the chain and enables you to retrieve the next provider in your code.

Again, you are responsible for calling the CreateSink() method of the next channel sink
provider before returning your own sink provider instance.

Chapter references:
• Chapter 12: Creation of Sinks

• Chapter 13: Extending .NET Remoting

• Chapter 14: Developing a Transport Channel

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingchannelsiserverchannelsinkproviderclasstopic.asp

ITransportHeaders Interface
When discussing the IMessage interface, I told you that a message contains both metadata and
the actual user data. Whereas the user data is the part necessary for implementing the business
logic, metadata can be used for some infrastructural additional information.

For example, if you are implementing an asynchronous encryption channel, information
about the public key can be included in the transport headers collection. This information doesn’t
really belong to the user data (e.g., invoice, order, or similar business messages), but it is used
by (your own) infrastructure for providing some basic services. Such information—called
metadata—can be stored in the transport headers of a message.

The ITransportHeaders interface defines the basic functionality for transport header objects.
It is just a collection of key-value pairs, as you can see in its interface definition.

APPENDIX B ■ .NET REMOTING EXTENSIBIL ITY REFERENCE536

Interface definition:

public interface ITransportHeaders
{
IEnumerator GetEnumerator();
object this[object key] { get; set; }
}

The interface defines a GetEnumerator() method, which returns an enumerator for iterat-
ing the header properties as well as an indexer property for accessing the header properties
directly by a key.

Chapter references:
• Chapter 11: Inside the Framework

• Chapter 13: Extending .NET Remoting

• Chapter 14: Developing a Transport Channel

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingchannelsitransportheadersclasstopic.asp

IChannel Interface
The IChannel interface defines the basic functionality of a transport channel. Transport chan-
nels are used for crossing remoting boundaries, which can be contexts, AppDomains, and
processes, as well as machines.

Channels implement the specifics of the transport protocol (e.g., TCP or HTTP) and can
listen on transport protocol ports as well as send messages through transport protocol streams.

That said, channels have to cover inbound as well as outbound communication with remote
objects. They provide an extensibility point in the runtime for adding custom transport protocols
to the .NET Remoting infrastructure.

Interface definition:

public interface IChannel
{
string Parse(string url, [out] ref string objectURI);
string ChannelName { get; }
int ChannelPriority { get; }
}

As you can see, each channel has to implement a method for parsing the remote object’s URL
as well as provide properties for the channel’s name and its priority in the list of channels. Both
roles, the listening portion as well as the sending portion, are expressed through the subinterfaces
IChannelReceiver and IChannelSender described in the next two sections of this appendix.

APPENDIX B ■ .NET REMOTING EXTENSIBIL ITY REFERENCE 537

Chapter references:
• Chapter 4: Configuration and Deployment

• Chapter 12: Creation of Sinks

• Chapter 13: Extending .NET Remoting

• Chapter 14: Developing a Transport Channel

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingchannelsichannelclasstopic.asp

IChannelReceiver Interface
The IChannelReceiver interface, an extension of the IChannel interface, defines the functionality
that has to be provided for receiving channels. This means the receiver listens on a specific
transport protocol port and waits for incoming messages. Every time a message is received, it
takes the message and passes it on to the formatter, which deserializes the message and forwards
it to the next sink in the sink chain.

That said, IChannelReceiver always has to be the first part in the sink chain of a remoting
application that is able to receive messages from remote objects.

Interface definition:

public interface IChannelReceiver : IChannel
{
string[] GetUrlsForUri(string objectURI);
void StartListening(object data);
void StopListening(object data);
object ChannelData { get; }
}

Usually, a receiving channel is used on the server side, waiting for incoming requests of
clients. If you keep configuration in mind, you are specifying an object URI only and not the
whole URL. Therefore, the receiving channel needs to provide functionality for creating the real
URL out of the specified object URI, which is encapsulated in the GetUrlsForUri() method of
the interface.

Furthermore, the channel knows how to start listening as well as stop listening on the trans-
port protocols port, and therefore needs to provide functionality for doing so. The ChannelData
property provides access to additional channel properties.

Chapter references:
• Chapter 4: Configuration and Deployment

• Chapter 12: Creation of Sinks

• Chapter 13: Extending .NET Remoting

• Chapter 14: Developing a Transport Channel

APPENDIX B ■ .NET REMOTING EXTENSIBIL ITY REFERENCE538

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingchannelsichannelreceiverclasstopic.asp

IChannelSender Interface
The IChannelSender interface is the counterpart of the IChannelReceiver interface and specifies
functionality a channel has to support when sending messages to a remote remoting channel.

Interface definition:

public interface IChannelSender : IChannel
{
IMessageSink CreateMessageSink(string url,

object remoteChannelData,
[out] ref string objectURI);

}

Whereas IChannelReceiver actually is responsible for listening on the transport protocols
port and receiving the messages through this port, the channel sender is just responsible for
creating a message sink that does the actual protocol handling.

This sink will be added to the sink chain of the infrastructure on the last position. This means,
as the last sink, it is responsible for sending the message via the corresponding transport pro-
tocol across the wire.

For example, both HttpClientChannel and TcpClientChannel are implementations of this
interface but do not send the message across the wire themselves. They act as a factory for an
HttpClientTransport sink and TcpClientTransportSink, respectively. Those sinks are actually
sending the message across the wire to the remote endpoint.

Chapter references:
• Chapter 4: Configuration and Deployment

• Chapter 12: Creation of Sinks

• Chapter 13: Extending .NET Remoting

• Chapter 14: Developing a Transport Channel

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingchannelsichannelsenderclasstopic.asp

BaseChannelObjectWithProperties Class
This class provides a base implementation for channels and channel sinks that want to provide
properties. It implements all necessary interfaces for providing those properties in the form of
key-value pairs and can be used as a base class for channels or channel sink objects.

The class does not implement any of the interfaces described previously. It only implements
IDictionary, IEnumerable, and ICollection. Therefore, the sink interfaces or channel interfaces
must be implemented manually. The class primarily handles the task of asking a channel for its
properties.

APPENDIX B ■ .NET REMOTING EXTENSIBIL ITY REFERENCE 539

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingchannelsbasechannelobjectwithpropertiesclasstopic.asp

BaseChannelWithProperties Class
The BaseChannelWithProperties class can be used as a base class for implementing your own
channels. It extends BaseChannelObjectWithProperties with the complex task of asking its channel
sinks for their properties.

Still, this interface does not implement any of the channel-specific interfaces introduced
in the previous parts of this appendix (e.g., IChannel, IChannelSender, or IChannelReceiver);
therefore, you have to provide your own implementation of these interfaces.

Chapter references:
• Chapter 13: Extending .NET Remoting

• Chapter 14: Developing a Transport Channel

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingchannelsbasechannelwithpropertiesclasstopic.asp

BaseChannelSinkWithProperties Class
This class is an extension of BaseChannelObjectWithProperties that can be used as a base class
for implementing your own channel sink provider. As it doesn’t implement any of the interfaces
described in the previous sections (e.g., IClientChannelSinkProvider) you have to implement these
interfaces on your own.

Chapter references:
• Chapter 13: Extending .NET Remoting

• Chapter 14: Developing a Transport Channel

More information on MSDN:
http://msdn.microsoft.com/library/en-us/cpref/html/
frlrfsystemruntimeremotingchannelsbasechannelsinkwithpropertiesclasstopic.asp

Summary
With this appendix, you have received a collection of reference information that you will need
when extending the .NET Remoting framework. I’ve included most interfaces and base classes
you’ll need to create your own message sinks, channel sinks, and transport channels.

In the next appendix, I’ve collected a series of links for .NET Remoting. You’ll find implemen-
tations of all the interfaces described in this chapter.

APPENDIX B ■ .NET REMOTING EXTENSIBIL ITY REFERENCE540

541

A P P E N D I X C

■ ■ ■

.NET Remoting Links

This last appendix provides a list of useful links as well as short descriptions of the content
that can be found on the target locations of those links. Most of the URLs listed here are links
to some technical articles and how-to articles as well as useful and interesting samples.

Ingo’s .NET Remoting FAQ Corner
On the homepage of thinktecture, you will find a separate .NET Remoting corner written by
one of the authors of this book. Here he publishes technical articles as well as important links
to information, knowledge base articles, and other technical resources for .NET Remoting.
A must-know for anyone who programs solutions based on .NET Remoting.

http://www.thinktecture.com/Resources/RemotingFAQ/default.html

MSDN and MSDN Magazine Articles
In the past three years, Microsoft has published a lot of in-depth information about .NET
Remoting. Following is a rundown of some of the more informative ones.

“Improving Remoting Performance”
This article is part of the Patterns & Practices book Improving .NET Application Performance
and Scalability (Microsoft Press, 2004). It presents concrete recommendations for when to use
remoting and when not to use it, together with appropriate alternatives. The design guidelines
and coding techniques in this chapter provide performance solutions for activation, channels,
formatters, and serialization.

http://msdn.microsoft.com/library/en-us/dnpag/html/scalenetchapt11.asp

“.NET Remoting Security”
This article is part of the Patterns & Practices book Building Secure ASP.NET Applications (Microsoft
Press, 2004). It describes how to implement authentication, authorization, and secure commu-
nication in distributed Web applications that use .NET Remoting.

http://msdn.microsoft.com/library/en-us/secmod/html/secmod11.asp

APPENDIX C ■ .NET REMOTING L INKS542

“Boundaries: Processes and Application Domains”
As soon as you have to communicate between two assemblies loaded into different application
domains, you must use .NET Remoting. Application domains are a new concept introduced
with the .NET Framework for isolating .NET assemblies loaded into the same operating system
process.

ASP.NET, for example, uses this mechanism on IIS 5.x-based machines for isolating ASP.NET
Web applications, and SQL Server 2005 uses this mechanism for isolating assemblies installed
in different databases. More information about application domains can be found here:

http://msdn.microsoft.com/library/en-us/cpguide/html/
cpconboundariesprocessesapplicationdomainscontexts.asp

“.NET Remoting Architectural Assessment”
Even if you know the technical details about .NET Remoting, finding the right architecture is
not very easy. This article is intended for anyone who wants to use .NET Remoting for building
distributed applications. It describes the capabilities of the technology on an architectural level,
as well as some interesting implications when it comes to using the different features of the
infrastructure.

http://msdn.microsoft.com/library/en-us/dndotnet/html/dotnetremotearch.asp

“.NET Remoting Overview”
The official tutorial for .NET Remoting consists of lots of technical articles from the very basics
to some advanced topics as well as a complete reference of the .NET Remoting infrastructure.

http://msdn.microsoft.com/library/en-us/cpguide/html/
cpconnetremotingoverview.asp

“Building Secure ASP.NET Applications: Authentication,
Authorization, and Secure Communication”
The Microsoft Patterns & Practices team released a comprehensive guide for building secure
ASP.NET applications. It contains architectural as well as in-depth technical information for
designing and writing secure ASP.NET Web applications. Although the guide focuses on Web
applications, it contains a separate chapter about .NET Remoting security, because .NET
Remoting becomes important when the Web front end starts talking to remote back-end
components. This chapter can be found here:

http://msdn.microsoft.com/library/en-us/dnnetsec/html/SecNetch11.asp

“NET Remoting Authentication and Authorization Sample”
Chapter 5 introduces a solution for implementing authentication and secure communication
using .NET Remoting. In .NET 2.0, the infrastructure is included in the .NET Framework itself,
but in .NET 1.x you have to use the security solution sample assemblies introduced in the follow-
ing two MSDN articles. More information about using the solution can be found in Chapter 5.

http://msdn.microsoft.com/library/en-us/dndotnet/html/remsspi.asp
http://msdn.microsoft.com/library/en-us/dndotnet/html/remsec.asp

APPENDIX C ■ .NET REMOTING L INKS 543

“Managed Extensions for C++ and .NET Remoting Tutorial”
If you are using Visual C++ and managed extensions for C++, this tutorial might be interesting
for you. It focuses on .NET Remoting when writing applications with managed C++.

http://msdn.microsoft.com/library/en-us/vcmex/html/
vcgrfmanagedextensionsforcnetremotingtutorial.asp

“.NET Remoting Use-Cases and Best Practices” and “ASP.NET
Web Services or .NET Remoting: How to Choose”
One of the most frequently asked questions is when to use .NET Remoting, especially when it
comes to the decision of whether to use Web Services or .NET Remoting, which proves hard for
most people. Well, each of the technologies mentioned previously has its advantages and targets
specific use cases. The following links provide you with information that helps you in your
decision process:

http://www.thinktecture.com/Resources/RemotingFAQ/RemotingUseCases.html
http://msdn.microsoft.com/library/en-us/dnbda/html/bdadotnetarch16.asp

“Remoting Examples”
In the MSDN Resource Center, you will find lots of .NET Remoting samples. The following link
brings up a page with some advanced .NET Remoting samples showing the internals of the
infrastructure.

http://msdn.microsoft.com/library/en-us/cpguide/html/
cpconRemotingExamples.asp

“Secure Your .NET Remoting Traffic by Writing an Asymmetric
Encryption Channel”
Although the security solution mentioned previously provides you with a complete solution
covering authentication and secure communication, this article of MSDN Magazine is interest-
ing if you want to learn more about writing custom channel sinks as well as the classes of the
System.Security.Cryptography namespace.

http://msdn.microsoft.com/msdnmag/issues/03/06/NETRemoting/

“Create a Custom Marshaling Implementation Using .NET
Remoting and COM Interop”
Several methods for customizing the presentation of native .NET and COM object types are
available with the .NET Framework. Custom marshaling, which is one such technique, refers
to the notion of specializing object type presentations. Elements of COM Interop permit the
customizing of COM types, whereas .NET Remoting offers the developer the ability to tailor
native .NET types. This article examines these techniques.

http://msdn.microsoft.com/msdnmag/issues/03/09/custommarshaling/

APPENDIX C ■ .NET REMOTING L INKS544

.NET Remoting Interoperability
In my opinion, the primary technology for interoperability should be Web Services. But sometimes
Web Services might not be an option, especially if you need tight coupling of applications based
on different platforms (although I would avoid tight coupling as it leads to increased effort when
one of the applications changes). In this case, you might be better off using a different technology
that provides you with the performance and possibilities needed in your special case. Some of
the following solutions provide you with interoperability between .NET and other platforms
based on .NET Remoting.

.NET Remoting: CORBA Interoperability
Remoting.Corba (pronounced remoting dot corba) is a project that aims to integrate CORBA/
IIOP support into the .NET Remoting architecture. The goal is to allow .NET programmers to
use C# and Visual Basic .NET to develop systems that interoperate with systems that support
the Internet Inter-ORB Protocol (IIOP), including CORBA systems and various application servers
and middleware technologies.

http://remoting-corba.sourceforge.net/

.NET Remoting: Java RMI Bridges
Interoperability between Java and .NET becomes more and more important by now. Many large
enterprises using applications based on Java as well as .NET need to integrate those applications.
Although Web Services should be the primary technology because it provides the foundation
for loose coupling (which makes the applications more independent of each other), in some
cases you might need tight coupling (for performance reasons, stateful work, or similar things).

When it comes to interoperability with Java-based applications, you need to work with
a so-called Java RMI to .NET Remoting bridge. Such bridges enable .NET-based applications
using Java applications published via Java RMI and vice versa. The most common bridges,
J-Integra for .NET and JNBridge Pro, are available at the following URLs:

http://j-integra.intrinsyc.com/net/info/
http://www.jnbridge.com/jnbpropg.htm

XML-RPC with .NET Remoting
XML-RPC.NET is a library for implementing XML-RPC services and clients in the .NET environment.
The library has been in development since March 2001 and is used in many open source and
business applications.

http://www.xml-rpc.net/

Custom .NET Remoting Channels
Out-of-the-box, up to version 1.1 of the .NET Framework, .NET Remoting comes with two chan-
nels: TcpChannel and HttpChannel. In version 2.0 of the .NET Framework, the IpcChannel will
be added. In many cases, other channels might be more appropriate than these two. Here you
can find a list of interesting channels as well as some hints for when it is useful to use them.

APPENDIX C ■ .NET REMOTING L INKS 545

Named Pipes Channel for .NET Remoting
Both TcpChannel and HttpChannel are optimized for communication between two machines
across the network. If you just want to implement interprocess communication, they include
unnecessary overhead. For this purpose, named pipes are more appropriate. With .NET Frame-
work 2.0, a new channel, IpcChannel, will be included in the .NET Remoting runtime (for more
information, see Chapter 4).

With .NET Framework 1.x, you have to use a custom implementation. Such an implemen-
tation can be found at GotDotNet:

http://www.gotdotnet.com/Community/UserSamples/Details.aspx?SampleGuid=
43a1ef11-c57c-45c7-a67f-ed68978f3d6d

TcpEx Channel for .NET Remoting
The TcpEx channel is a replacement for the built-in TCP remoting channel. It improves on the
standard TCP channel by allowing communication in both directions on a single TCP connection,
instead of opening a second connection for events and callbacks.

http://www.gotdotnet.com/Community/UserSamples/Details.aspx?SampleGuid=
3F46C102-9970-48B1-9225-8758C38905B1

Jabber Channel
This channel allows you to transfer .NET Remoting messages via the Jabber instant messaging
protocol.

http://www.thinktecture.com/Resources/Software/opensourceremoting/
JabberChannel.html

Remoting Channel Framework Extension
Implementing new transport channels can be a heavy challenge. The Remoting Channel
Framework Extension introduced on GotDotNet provides you with some additional classes
based on the existing .NET Remoting infrastructure that makes development of transport
channels easier.

http://www.gotdotnet.com/Community/UserSamples/Details.aspx?SampleGuid=
3c35d911-e138-4ce9-87bc-47f0525ca203

“Using MSMQ for Custom Remoting Channel”
This article, found at the following Code Project page, describes the design and development
of a custom channel for using MSMQ with .NET Remoting. The implementation provides you
with an MSMQ sender as well as receiver channel.

http://www.codeproject.com/csharp/msmqchannel.asp

APPENDIX C ■ .NET REMOTING L INKS546

“Using WSE-DIME for Remoting over Internet”
DIME is a standard for transferring binary data together with a SOAP message between a Web
Service client and the Web Service itself. This article describes a design and implementation of
remoting over the Internet using the Advanced Web Services Enhancements—DIME technology.
This solution allows the binary formatted Remoting messages that flow through the Web Server
to include uploading and downloading any types of the attachments.

http://www.codeproject.com/cs/webservices/remotingdime.asp

Interesting Technical Articles
Some additional interesting articles can be found on the Web. The following text describes a few
of them that you may find especially interesting.

C# Corner: Remoting Section
The C# Corner community is a member of the CodeWise community and offers lots of technical
articles and samples. They also have a separate corner for .NET Remoting that contains articles
and samples specific to this topic.

http://www.c-sharpcorner.com/Remoting.asp

“Share the ClipBoard Using .NET Remoting”
This article describes how to use .NET Remoting for sharing the clipboard of one computer with
other computers.

http://www.codeproject.com/dotnet/clipsend.asp

“Chaining Channels in .NET Remoting”
This article describes how to design and implement remoting over chained channels (standard
and custom) using the logical URL address connectivity.

http://www.codeproject.com/csharp/chainingchannels.asp

“Applying Observer Pattern in .NET Remoting”
Implementing an observer pattern in distributed applications can be quite challenging. But this
article gives you a very good overview of how to design and implement the observer pattern with
.NET Remoting–based applications.

http://www.codeproject.com/csharp/c_sharp_remoting.asp

APPENDIX C ■ .NET REMOTING L INKS 547

“Aspect-Oriented Programming Enables Better Code
Encapsulation and Reuse” and “.NET Remoting Spied On”
Method call interception is interesting when it comes to aspect-oriented programming where
you add aspects to objects and methods by just using attributes. The attributes are used by an
infrastructure (framework, base components, for example, COM+) and lead to some infrastruc-
tural tasks. The following two articles describe the possibilities offered by the .NET Remoting
infrastructure for method call interception, which is necessary for implementing this approach.

http://msdn.microsoft.com/msdnmag/issues/02/03/aop/
http://www.codeproject.com/dotnet/remotespy.asp

“Persistent Events in Stateless Remoting Server”
High availability in distributed applications usually requires you to implement stateless components
on the server. This article shows the usage of .NET events with stateless server components:

http://www.codeproject.com/csharp/persistentevents.asp

“Intrinsyc’s Ja.NET—Extending the Reach of .NET Remoting”
Java RMI to .NET Remoting bridges enable interoperability between Java-based and .NET-based
applications. This article describes how to use Ja.NET, a Java RMI to .NET Remoting bridge. Find
the link to the Ja.NET bridge earlier in this chapter in the section “.NET Remoting: Java RMI Bridges.”

http://www.devx.com/dotnet/Article/6973

“Implementing Object Pooling with .NET Remoting—Part I”
This article shows an interesting way for implementing object pooling with custom resources
and objects when using the .NET Remoting infrastructure together with the ITrackingHandler
interface and tracking services.

http://www.devx.com/vb2themax/Article/19895/0/page/1

“.NET Remoting Versus Web Services”
The decision for the technology in distributed application scenarios is not easy and gets even
harder with the number of possibilities for implementation. The most common frequently asked
question, of course, is whether to use Web Services or .NET Remoting in distributed applications.
This article might help you with your decision, but don’t forget about the articles mentioned
earlier in this appendix.

http://www.developer.com/net/net/article.php/11087_2201701_1

“.NET Remoting Central”
This provides a collection of links for samples and information about .NET Remoting.

http://www.dotnetpowered.com/remoting.aspx

APPENDIX C ■ .NET REMOTING L INKS548

“Output Caching for .NET Remoting”
ASP.NET output caching can be used with not only ASP.NET pages, but also any other type of
application hosted in IIS, too. In this workspace, you can find a server-side channel sink that
provides output caching of methods on remoted objects.

http://www.gotdotnet.com/Community/UserSamples/Details.aspx?SampleGuid=
6a228851-5479-46bb-a972-6ad4b50d870e

“Abstract Client Formatter Sink”
You may want to connect to more than one remote server over a TCP channel using a binary
formatter in one case and a SOAP formatter in the other case. This would not work with the
normal remoting system, but this project demonstrates a workaround. A document is included
with the project explaining all of it better.

http://www.gotdotnet.com/Community/UserSamples/Details.aspx?SampleGuid=
0c348249-7823-406b-9fa5-b633b8d1c579

Remoting Tools
Apart from the articles and samples just discussed, a number of tools have been developed that
may help you during debugging and troubleshooting.

Remoting Management Console
The Remoting Management Console is a MMC snap-in that allows you to configure host
processes for publishing .NET Remoting components. Its user interface is similar to the
configuration MMC for the COM+ catalog.

http://www.codeproject.com/csharp/remotingmanagementconsole.asp

Remoting Probe
The Remoting Probe tool consists of a custom channel sink as well as an analyzer tool for
analyzing the communication details between remoting objects. The channel sink is responsi-
ble for publishing communication steps to the analyzer tool, and the tool can be used for
creating reports about communication.

http://www.codeproject.com/csharp/remotingprobe.asp

■A
ACL (Access Control Lists), 75
activated tag, client tag, 99
activated tag, service tag, 97
ActivatedClientTypeEntry class, 494–495
ActivatedServiceTypeEntry class, 494
Activation namespace, 529–530
Activator class, 19, 488
AddAuthenticationEntry method, 402, 407,

409
AddRef method, 185
AddValue method, 243, 261
algorithms

symmetric encryption, 376
anonymous access

ASP.NET application impersonating
client, 183

IIS authentication modes, 133–134
AOP (aspect-oriented programming)

links to web sites, 547
application configuration files

creating console clients, 163
application design/development

designing applications for static
scalability, 299

versioning, 256, 273
application domains

cross-AppDomain remoting, 276
links to web sites, 542
serializable classes passed between, 492

Application General code
creating Windows Forms client, 167

application tag, 85, 165
Application_StartUp event, 175
appSettings tag, configuration tag, 165
architecture

.NET Remoting, 10, 322
links to web sites, 542
sample remoting application, 14
Service-Oriented Architecture, 279

Args property, messages, 327
ASMX Web Services, 279
ASP.NET based clients, 169, 170

aspect-oriented programming (AOP)
links to web sites, 547

assemblies
.NET Framework versioning, 228, 232
client assembly, 14
CLR locating, 227
creating strongly named assembly, 226
full assembly name, 225
GAC, 227, 228
general assembly, 14
generated metadata assembly, 12
private assemblies, 227
server assembly, 14
shared assemblies, 11, 67, 227

assemblyBinding tag, 241
AssemblyKeyFile attribute, 227, 228
AssemblyVersion attribute, 227, 237
asymmetric encryption channel

links to web sites, 543
asynchronous calls

client assembly, 53
client-side sinks, 364, 459
delegates, 51, 52
mapping, 421
server-side sinks, 366
ways of executing methods, 46
ways of executing methods in .NET, 51

asynchronous delegates, 434, 441
asynchronous messaging, 338–348

generating requests, 342–344
handling responses, 345–346
IClientChannelSink processing,

340–342
IMessageSink processing, 338–339
mapping protocols to .NET Remoting,

440, 441
server-side asynchronous processing,

347–348
AsyncProcessMessage method

asynchronous IMessageSink processing,
338

checking parameters in IMessageSink,
480

Index

549

creating client-side sink and provider,
451

IMessageSink, 328
passing runtime information, 391, 393
server-side asynchronous processing,

347
AsyncProcessRequest method

asynchronous IClientChannelSink
processing, 340, 341

BinaryFormatter version mismatch, 411
changing sinks programming model,

405
client-side sinks, 364
extending compression sinks, 371, 372
generating asynchronous request, 342

AsyncProcessResponse method
asynchronous IClientChannelSink

processing, 340, 341
client-side sinks, 364

creating, 453
extending compression sinks, 372, 373
generating asynchronous request, 343
handling asynchronous response, 345,

346
IServerChannelSink, 334, 535
passing runtime information, 396
server-side asynchronous processing,

347
server-side sinks, 365, 367

creating, 458, 460, 461
AsyncResponseHandler class, 451, 453
AsyncResult class, 512
attributes

activated tag, 97, 99
channel tag, 89, 90
custom attributes, 92
formatter tag, 92
lifetime tag, 88
moving constraints to metadata level,

471
OneWayAttribute, 514
provider tag, 92
ProxyAttribute, 531
SoapAttribute, 515
SoapFieldAttribute, 515
SoapMethodAttribute, 516
SoapParameterAttribute, 516
SoapTypeAttribute, 515
wellknown tag, 97

authentication
see also security
anonymous access, 134

authentication level client and server,
144

authentication with IIS, 133–136
logon process, 137

basic authentication, 134
brief description, 123
changing default remoting behavior, 359
changing sinks programming model,

409
configuring authentication methods,

118
deployment using IIS, 116
deserialization of object security, 93
digest authentication, 134
encryption and IIS, 138
forms authentication, 130
identities, 130
IIS authentication modes, 133
links to web sites, 542
Passport authentication, 130
principals, 130
remote objects, 135
securing .NET Remoting, 123–160
security with remoting in .NET 2.0, 154
server accepting authenticated requests,

145
unsafeAuthenticatedConnectionSharing

attribute, 90
useAuthenticatedConnectionSharing

attribute, 90
using a GenericIdentity, 130
Windows authentication, 130, 134

enabling, 137
authentication protocols, 124

Kerberos, 126
NTLM authentication, 124
security package negotiate, 128
Security Support Provider Interface, 128

authenticationLevel property
provider tag, 144

authenticationMode property
.NET Remoting v2.0, 159
security with remoting in .NET 2.0, 151,

154
authorization

see also security
brief description, 123
custom application authorization, 149
GenericPrincipal, 130
implementing authorization in server,

149
IsInRole method, 133

■INDEX550

links to web sites, 542
types, .NET Framework, 133
WindowsPrincipal, 130

AutoLog property, 110

■B
base objects, 11
Base64 encoding, 439, 443
BaseChannelObjectWithProperties class,

539
BaseChannelSinkWithProperties class, 540

client-side sinks, 361
BaseChannelWithProperties class, 540

default .NET Remoting channels, 462
implementing client-side channels, 446

basic authentication, 134
BeginInvoke method

asynchronous IMessageSink processing,
338

concerns regarding SoapSuds, 287
creating client-side sink and provider,

451
IAsyncResult, 491
Visual Studio 2002 behavior, 52
when to use .NET Remoting, 281

behaviors
changing default remoting behavior, 359
versioning behavior, 95

binary encoding via HTTP, 96
binary formatter

links to web sites, 548
BinaryClientFormatterSink class, 503
BinaryClientFormatterSinkProvider class,

502
BinaryFormatter class

avoiding version mismatch, 409–413
for HTTP channel, switching to, 96
scalable remoting rules, 280
serializing messages through formatters,

329
version incompatibility, 309–311
when to use .NET Remoting, 278

BinaryServerFormatterSink class, 503
server-side messaging, 336

BinaryServerFormatterSinkProvider class,
501

configuring typeFilterLevel in code, 94
binding

strictBinding attribute, 92
versioning behavior, 95

bindingRedirect tag
versioning CAOs, 242

bindTo attribute
channel tag, 90

Break method, 304, 305
breakpoints

debugging Windows service, 115
manual breakpoints, 304

BroadcastEventWrapper class, 217, 219
broadcasting

MSMQ, 284
UDP broadcasts, 282

BroadcastMessage method, 215
BuildFormatName method, 286
business logic

checking parameters in IMessageSink,
482

implementation level, 470
moving constraints to metadata level, 472
scenarios for .NET remoting, 4
sinks, 419

ByRef objects, 13, 26
ByValue objects, 13, 25

■C
C# Corner web site, 546
caching

cached credentials, 144
designing applications for static

scalability, 299
explicit caches, 301
grouping data as static/dynamic, 300
links to web sites, 548
scalable remoting rules, 281

call value
authenticationLevel property, 144

callbacks
deserialization of object security, 93
encryption, 376
receiving from server through delegates,

94
scalable remoting rules, 281
when to use .NET Remoting, 277, 278

CallContext class, 512
accessing CallContext on server side, 211
accessing directly in code, 212
ILogicalThreadAffinative, 209
LogicalCallContext, 514
OOB (out-of-band) data, 209
scope, 211
security, 213
storing LogSettings in CallContext, 210
transferring runtime information,

209–213

■INDEX 551

CAO (client-activated objects)
ActivatedServiceTypeEntry, 494
C# code of client application, 84
client-side output using, 37, 85
client-side sinks, 352
creating, 34

using factory design pattern, 38
implementing server-side channels, 455,

457
instantiating server-side CAO, 100
ObjRef objects, 324, 325
registering, 96
scalable remoting rules, 281
server-side output using, 38
server-side sponsors, 207
SoapSuds or Interfaces, conclusion,

287
state, 34
versioning, 240–242
versioning with interfaces, 255
when to use .NET Remoting, 277

CAS (code access security), 129
certificates

encryption and IIS, 139
chained channels, 546
chains

see sinks
Channel Framework Extension

links to web sites, 545
channel sinks

BaseChannelSinkWithProperties, 540
channelSinkProviders tag, 86
encapsulating SMTP/POP3 protocol,

426
extending compression sinks, 371
IChannelSinkBase, 532
IClientChannelSink, 532
IClientChannelSinkProvider, 533
IServerChannelSink, 534
IServerChannelSinkProvider, 535
scalable remoting rules, 281

channel tag, 89–91
channel templates, 86
configuration file using, 76, 82, 138
implementing server-side channels, 453
using the IPC channel, 105
using the TCP channel, 154

ChannelData property, 457, 464, 538
ChannelDataStore object, 455
ChannelName property, 456, 463, 499
ChannelPriority property, 456, 464, 499

channels
BaseChannelObjectWithProperties, 539
BaseChannelSinkWithProperties, 540
BaseChannelWithProperties, 540
channel information for IIS, 118
client-side sinks, 351
CrossContextChannel, 336
DispatchChannelSink, 336
encryption, 375
HTTP channel, 17
HttpChannel, 504
HttpClientChannel, 333, 505
HttpServerChannel, 335, 506
IChannel, 537
IChannelInfo, 498
IChannelSender, 539
IChannelSinkBase, 532
IClientChannelSink, 532
IClientChannelSinkProvider, 533
implementing client-side channels,

445–453
implementing server-side channels,

453–462
interprocess communication channel,

102
IPC channel, 102
IServerChannelSink, 534
IServerChannelSinkProvider, 535
Jabber channel, 545
links to web sites, 544–546
Named Pipe channel sample, 102
registering default channels, 462
SDLChannelSink, 335
security with remoting in .NET 2.0, 151
suppressChannelData attribute, 90
TcpChannel, 506
TcpClientChannel, 507
TcpEx channel, 545
TcpServerChannel, 508
transport channels, 321
wrapping transport channel, 462–465

Channels namespace, 499–504, 531–540
channels tag, 89

ChannelServices, 500
configuration files, 85, 86
using SmtpChannel, 465, 466

Channels.Http namespace, 504–506
Channels.Tcp namespace, 506–508
ChannelServices class, 500
character encoding, 424
channelSinkProviders tag, 85, 86

■INDEX552

CheckableContextProperty class, 474
CheckAndStartPolling method, 435
CheckAttribute class, 478
CheckerSink class, 475, 477, 483
chunky interfaces, 278
class library project, 228
classes

identifying namespace, 186
click event

creating Windows Forms client, 168
client assembly

asynchronous calls, 53, 55
multiserver configuration, 66
non-wrapped proxy metadata, 72, 73
one-way calls, 56
output when removing OneWay

attribute, 58
remoting application architecture, 14
sample remoting application, 18, 21
synchronous calls, 49, 50
wrapped proxies, SoapSuds, 70

Client class
factory design pattern creating CAO, 41
sample remoting application, 18
server-activated objects, 27

client tag, 85, 98
client-activated objects

see CAO
client-side channels

client-side sinks, 351
IClientChannelSinkProvider, 533
SMTPClientChannel, 445–453

client-side messaging, 331–333
client-side proxies

RealProxy, 531
client-side sinks, 350–353, 361–364

changing sinks programming model,
408

compression sinks, 359, 362, 363
configuration files, 369
connection using/not using compared,

370
creating encryption sinks, 380
EncryptionClientSink, 380
IClientChannelSink, 532
IClientFormatterSink, 534
IClientFormatterSinkProvider, 534
implementing client-side channels,

449–453
passing runtime information, 390, 392
sink providers, 367

client-side sponsors, 197
calling expired object’s method,

198–203
scalable remoting rules, 281
when to use .NET Remoting, 277, 278

client-side transport channel sinks
encapsulating SMTP/POP3 protocol,

426
client/server affinity

creating NLB clusters, 296
ClientChannelSinkStack

handling asynchronous response, 345
clientConnectionLimit attribute

channel tag, 90, 91
ClientContextTerminatorSink

client-side messaging, 332
dynamic sinks, 356

clientProviders tag
channel tag, 202
client-side sinks, 400
formatter tag, 96
HttpClientChannel, 506
provider tag, 143
sink providers, 349

clients
ActivatedClientTypeEntry, 494
back-end-based client, 169–184

ASP.NET based clients, 169
remoting components hosted in IIS,

172, 176
security, 177

BinaryClientFormatterSink, 503
BinaryClientFormatterSinkProvider, 502
client for second server component, 175
client-side sponsors, 196, 197
configuring server objects in client

configuration, 165
console client, 163–166
end-user client security, 177
HttpClientChannel, 505
lifecycle management, versioned SAOs,

236, 237, 239
notification of clients, 277
remoting clients, 161–184
remoting events, 214
RemotingClientProxy, 517
servers requiring different versions, 259,

260, 263, 267
SoapClientFormatterSink, 503
SoapClientFormatterSinkProvider, 503
TcpClientChannel, 507

■INDEX 553

transfer runtime information with
server, 209–213

versioning with interfaces, 249, 251, 253,
255

WellKnownClientTypeEntry, 496
Windows Forms client, 167–169

ClientSponsor class, 510
clipboard sharing

links to web sites, 546
cloning

StreamingContext structure, 520
CLR

locating assemblies, 227
clusters

see also NLB clusters
caching, 299
designing applications for static

scalability, 299
IP addresses for, 291
request distribution, 291
scaling out remoting solutions, 290

code access security (CAS), 129
codeBase

CLR resolving assembly references, 227
COM

links to web sites, 543
COM+, 6
command-line tools, 226
commands

SMTP Response code classes, 422
Common Object Request Broker

Architecture
see CORBA

communication
interprocess communication channel,

102
Complete method

AsyncResult, 512
compression sinks, 359–375

client-side sink chain, 359
client-side sinks, 362, 363
extending, 371–375
server-side sink chain, 360

CompressionClientSink class, 360, 368
CompressionClientSinkProvider class, 360,

367, 369
CompressionHelper class, 363
CompressionServerSink class, 360, 369
CompressionServerSinkProvider class, 360,

368, 370
CompressionSink assembly, 369

confidentiality, 124
.config extension, 175
configuration classes, 493–497

ActivatedClientTypeEntry, 494
ActivatedServiceTypeEntry, 494
multiserver configuration, 59
RemotingConfiguration, 492–493
TypeEntry, 493
WellKnownClientTypeEntry, 496
WellKnownObjectMode enumeration,

497
WellKnownServiceTypeEntry, 495

configuration files, 76
see also web.config file
application configuration files, 163
BinaryFormatter version mismatch, 412
changing base lifetime example, 188
changing default lease time, 187
changing sinks programming model,

402, 408, 409
client-side sinks, 369

passing runtime information, 400
Configure method, 76
creating encryption sink providers, 386
functionality, 76
general configuration options, 85
implementing client-side channels, 445
main reason for using, 75
naming conventions, 76
problem with SoapSuds, 77

solution, 80
protecting from users, 75
remoting components hosted in IIS as

clients, 174
server-side sinks, 370
sink providers, 349
standard configuration options, 85
structure of file, 85
tags

activated tag, 97, 99
application tag, 85
appSettings tag, 165
assemblyBinding tag, 241
bindingRedirect tag, 242
channel tag, 89
channels tag, 86, 89
channelSinkProviders tag, 86
client tag, 98
clientProviders tag, 96
configuration tag, 85
debug tag, 86

■INDEX554

formatter tag, 92
lifetime tag, 88
provider tag, 92
service tag, 96

troubleshooting, 305–309
using in application, 76, 82
using SmtpChannel, 465, 466
wrapping transport channel, 462

configuration tag, 85
Configure method

ASP.NET based clients, 171
changing base lifetime example, 189
configuration file settings, 305, 307
creating Windows Forms client, 168
remoting components hosted in IIS as

clients, 172, 174
using configuration files, 76

Connect method, 493
connection pooling, 90
connectionGroupName attribute

channel tag, 90
connections

clientConnectionLimit attribute, 90
connectionGroupName attribute, 90
connection using/not using sinks

compared, 370, 371
NLB clusters, 292
POP3Connection class, 428
SmtpConnection class, 426, 438, 440
TCP connections, 292
unsafeAuthenticatedConnectionSharing

attribute, 90
useAuthenticatedConnectionSharing

attribute, 90
console applications

creating console clients, 163
creating server for remoting clients, 161
deploying server application, 108

console client implementation
creating console clients, 163

constraints
moving constraints to metadata level, 471

ConstructionCall class
properties, 327

ConstructionCall messages, 326, 352
ConstructionCallMessage, 240
constructors

IConstructionCallMessage, 530
IConstructionReturnMessage, 530

content reply
POP3 replies, 423

content-type header
BinaryFormatter version mismatch, 409

Context property
StreamingContext structure, 520

ContextAttribute
ContextBoundObject, 472
intercepting calls, 473

ContextBoundObject, 472, 476, 477
contexts

CallContext, 512
CheckableContextProperty, 474
ClientContextTerminatorSink, 332
CrossContextChannel, 336
dynamic sinks, 356
GetPropertiesForNewContext method,

472
IContextProperty, 473
IsContextOK method, 472, 483
IsNewContextOK method, 473, 474
LogicalCallContext, 514
ServerContextTerminatorSink, 337
StreamingContext structure, 520

CopyLocal property
.NET Framework versioning, 229

CORBA (Common Object Request Broker
Architecture)

introduction, 5
lifetime management, 185
links to web sites, 544

CreateInstance method, 488
ActivatedClientTypeEntry, 494
configuring server objects in client

configuration, 166
IConstructionCallMessage, 530

CreateInstanceFrom method, 488
CreateMessageSink method

client-side sinks, 352
implementing client-side channels, 446,

448
sinks using custom proxy, 414
wrapping transport channel, 463

CreateProxy method
deploying remote applications, 100
ProxyAttribute, 531

CreateServerChannelSinkChain method,
355

CreateServerObjectChain method, 337
CreateSink method

client-side sinks, 352, 353
creating client-side sink and provider,

449, 450

■INDEX 555

IClientChannelSinkProvider, 533
IServerChannelSinkProvider, 536
passing runtime information, 393, 399
server-side sinks, 355

credentials
cached credentials, 144
useDefaultCredentials attribute, 90

cross-AppDomain remoting, 276
cross-process on multiple machines in

LAN, 276
cross-process on single machine, 276
cross-process via WAN/Internet, 278
CrossContextChannel

dynamic sinks, 356
server-side messaging, 336

cryptographic process
encryption helper, 379

CurrentPrincipal property
.NET Remoting v2.0 based server, 156
implementing authorization in server,

149
CurrentState property

LeaseState enumeration, 511
custom attributes, 92
custom channels

links to web sites, 544–546
custom exceptions, 288

troubleshooting using, 313–314
custom marshaling

links to web sites, 543
custom proxies

sinks using, 413–419
Customer class, 15
CustomerManager class, 209
CustomerManager SAO

accessing, 97
configuration files, 82
server startup code, 82

CustomProxy class, 414

■D
data

see also metadata
ChannelData property, 457, 464, 538
ChannelDataStore object, 455
GetChannelData method, 536
GetObjectData method, 519
grouping data as static/dynamic, 300
MessageData objects, 323
OOB (out-of-band) data, 209
RemotingData property, 337

SetData method, 210
SinkProviderData objects, 407
suppressChannelData attribute, 90
typed DataSets, 287
User Datagram Protocol (UDP), 277

DATA command, SMTP, 423
data object definition, 15
data serialization, 12
DCE (Distributed Computing

Environment), 5
DCOM (Distributed Component Object

Model), 5, 185
debug tag, 85, 86, 87, 308
debugging

changing default remoting behavior, 359
configuration file settings, 305–309
IIS, 120, 303
Just-In-Time debugging, 305
manual breakpoints, 304
remoting components hosted in IIS as

clients, 174, 175
server applications, 303
troubleshooting hints, 303–305
Windows service, 113

in real runtime state, 114
selecting type of program, 115
setting breakpoints, 115

declarative security, 133
DefaultLifeTimeSingleton, 188, 189, 191,

193
DELE command, POP3, 424, 432
Delegate class, 490–491
delegate value

impersonationLevel property, 143, 147
delegates, 51

asynchronous calls, 51, 52
asynchronous delegates, 434, 441
callbacks, 94
classes and delegates, 490
creating, 52
declaration of, 51
deserialization of object security, 93
IAsyncResult, 491
method signatures, 51
remoting events, 218

one way methods/events, 222
typeFilterLevel changing security, 312

DeleteMessage method, 432
demilitarized zone (DMZ), 4, 317
deployment, 108

using IIS, 116

■INDEX556

deserialization of objects, 93
dictionary keys

corresponding message property, 327
digest authentication, 134
DIME

links to web sites, 546
Disconnect method, 432
DispatchChannelSink

server-side messaging, 336
DispatchException method, 346
displayName attribute

channel tag, 89
client tag, 98
wellknown tag, client tag, 99
wellknown tag, service tag, 97

Dispose method, 517
distributed applications

development of, 3
transferring runtime information, 209
when to use .NET Remoting, 275

Distributed Component Object Model
(DCOM), 5, 185

Distributed Computing Environment
(DCE), 5

distributed reference counting, 185
distributed transactions, 280, 281
DMZ (demilitarized zone), 4

troubleshooting client behind firewall,
317

DoCheck method, 479, 480
Donate method, 479, 483
DumpMessageContents method, 417
DumpObjectArray method, 418
dynamic sinks, 356–357

client-side messaging, 332

■E
e-mail

checking for new mail, 433
creating e-mail headers, 425
mapping protocols to .NET Remoting,

438, 441
Mercury/32 e-mail server, 467
parsing e-mail address for incoming

request, 444
parsing URL for e-mail address, 444
POP3 protocol, 433
protocols transferring e-mail, 422
SMTP response codes, 422
types of, 441

EJB (Enterprise Java Beans), 6

encoding
binary encoding via HTTP, 96
character encoding, 424
converting string to Base64 encoding,

439
encryption

see also security
.NET Remoting, 375–390
.NET Remoting v2.0, 157
asymmetric/symmetric combination,

375
changing default remoting behavior, 359
deserialization of object security, 93
HTTP channel, 375
HTTPS/SSL, 375
IIS, 138, 375
network sniffing encrypted traffic, 159
network sniffing unencrypted versions,

157
providers, 386–390
security with remoting in .NET 2.0, 154
sinks, 380–385
SSL encryption, 139
symmetric encryption, 376–380
TCP channels, 375

encryption helper
cryptographic process, 379
symmetric encryption, 378

encryption property.0, 152
EncryptionClientSink class, 380
EncryptionClientSinkProvider class, 386,

387
EncryptionServerSink class, 383
EncryptionServerSinkProvider class, 388
EndInvoke method, 491, 512
Enterprise Java Beans (EJB), 6
Enterprise Services, 280, 281
EnterpriseServicesHelper class, 516
ERR message, POP3, 423
errors

Configure method, 88
debug tag, 86
impersonation error, 147
SoapFault, 521

event handling
ASP.NET based clients, 172
encryption, 376
intermediate wrapper, 218

event logs
porting remoting server to Windows

services, 110

■INDEX 557

EventInitiator
remoting events, 221

EventLog viewer
installing Windows service, 112

events
one way events, 222, 224
remoting events, 213–224
scalable remoting rules, 281
typeFilterLevel changing security, 311
when to use .NET Remoting, 277, 278,

281
exception classes, 497–498
exceptions

BinaryFormatter version mismatch,
409–413

typeFilterLevel changing security,
312

custom exceptions, 288
expired TTL, 187
extending compression sinks, 371
handling asynchronous response, 346
remoting events, 217
RemotingException, 497

passing runtime information, 394
RemotingTimeoutException, 497
SerializationException, 309, 521
ServerException, 497
sinks using custom proxy, 415
versioning serializable objects, 242,

243
expired object’s method, 198
ExtendedMBRObject class, 193, 194

server-side sponsors, 206

■F
factory design pattern

creating CAOs using, 38, 39, 40, 41
factory object

client-side output using, 42
server-side output using, 43

filters
TypeFilterLevel enumeration, 521
typeFilterLevel attribute, 92

fine-grained security, 280
fingerprints

strong naming, 225
firewalls, 317

lifetime management, 185
formatter providers

channel tag, 91
client-side sponsors, 202
optional additional attributes, 92

formatter tag
clientProviders tag

BinaryFormatter version mismatch,
412

changing sinks programming model,
402

configuration file using attributes, 96
includeVersions attribute, 95
sink providers, 350

IClientFormatterSink, 534
IClientFormatterSinkProvider, 534
serverProviders tag

attributes, 92
strictBinding attribute, 95
configuration file using attributes, 91,

94, 96
typeFilterLevel attribute, 92

formatters
binary formatter, 548
BinaryClientFormatterSink, 503
BinaryClientFormatterSinkProvider, 502
BinaryFormatter, 96, 278, 280

avoiding version mismatch, 409–413
serializing messages through

formatters, 329
version incompatibility, 309–311

BinaryServerFormatterSink, 336, 503
BinaryServerFormatterSinkProvider, 501
brief description, 321
IClientFormatterSink, 328, 534
IClientFormatterSinkProvider, 534
messages, 328
serializing message objects through,

329–330
SOAP formatter, 504, 505, 548
SoapClientFormatterSink, 333, 503
SoapClientFormatterSinkProvider, 503
SoapFormatter, 329
SoapServerFormatterSink, 336, 504
SoapServerFormatterSinkProvider, 502

Formatters namespace, 521–523
FormsIdentity, 130
FreeNamedDataSlot method, 212
Freeze method, 473, 474
full assembly name, 225
Full value, typeFilterLevel attribute, 93

■G
GAC (Global Assembly Cache), 89, 233,

227–229
gacutil.exe, 228, 234, 235, 238
garbage collection, 185

■INDEX558

general assembly
see also shared assemblies
remoting application, 14, 20
server-activated objects, 26

general.dll assembly, 47
one-way calls, 56
remoting events, 214
versioning with interfaces, 253

generated metadata assembly, 12
GenericIdentity, 130
GenericPrincipal, 130
Genuine Channels, 279
GetAuthenticationEntry method, 403
GetChannel method, 89
GetChannelData method, 536
GetChannelSinkProperties method, 135
GetCleanAddress method, 445, 460
GetCompressedStreamCopy method

client-side sinks, 363, 364
extending compression sinks, 374
server-side sinks, 367

GetCurrent method, 130
GetDynamicSink method, 356
GetEnumerator method, 537
GetExceptionIfNecessary method, 410, 412
GetLeaseInitial method, 186
GetLifetimeService method, 197
GetMessage method, 431
GetObject method, 488

Connect method, 493
creating proxies, 322
deploying remote applications, 100
metadata, configuration files, 77

GetObjectData method
custom exceptions, 288, 290
ISerializable, 519
servers requiring different versions, 266
StreamingContext structure, 520
versioning serializable objects, 243, 245

GetPerson method, 258, 261, 268, 271
GetPropertiesForNewContext method,

472
GetRegisteredWellKnownClientTypes

method, 101
GetRequestStream method, 533
GetResponseStream method

creating server-side sinks, 458
IServerChannelSink, 334
server-side sinks, 365

getSAOVersion method, 236
GetTransparentProxy method, 415

GetUncompressedStreamCopy method
client-side sinks, 363, 364
extending compression sinks, 372, 373
server-side sinks, 366

GetURLBase method, 456
GetUrlsForUri method

IChannelReceiver, 538
implementing server-side channels, 457
wrapping transport channel, 464

Global Assembly Cache
see GAC

Global.asax file, 171
granularity, 280
groups, 149

connectionGroupName attribute, 90

■H
HandleAsyncResponsePop3Msg method,

441, 442, 453
HandleIncomingMessage method, 441,

442, 459, 460
HandleMessage method, 219
HandleMessageDelegate method, 434
HandleReturnMessage method, 323
Hashtables, SMTPHelper class, 437
headers

creating e-mail headers, 425
ITransportHeaders, 536

HELO command, SMTP, 423
helper classes

EnterpriseServicesHelper, 516
SoapSuds or Interfaces, conclusion, 287

hooking
listen attribute, 90

HTTP channel
see also channel tag
binary encoding via HTTP, 96
client for second server component, 176
configuration information, 89
deployment using IIS, 116
encryption, 375
multiserver configuration, 64
referencing predefined channel, 89
remoting components hosted in IIS as

clients, 174
sample remoting application, 17, 19
scalability features, 293
security related properties, 90
switching to BinaryFormatter for, 96

HTTP Content-Length header, 371
HTTP KeepAlives, 280

■INDEX 559

Http namespace, 504–506
HTTP proxies, 279, 297
HTTP requests

extending compression sinks, 375
TCP connections, 292

HTTP responses
extending compression sinks, 375

HttpApplication class, 171
HttpChannel class, 504

registering default .NET Remoting
channels, 462

scalable remoting rules, 280
when to use .NET Remoting, 278

HttpClientChannel class, 505
client-side messaging, 333
client-side sinks, 352
IChannelSender, 539
registering, 462

HttpServerChannel class, 506
registering, 462
server-side messaging, 333, 335
server-side sinks, 354

HttpServerSocketHandler class, 333
HttpServerTransportSink class, 335

■I
/i parameter, 228, 234
IAsyncResult interface, 491, 512
IBroadcaster interface, 214, 215
IChannel interface, 499, 537

client-side channels, 446, 447
client-side sinks, 351
server-side channels, 454

IChannelInfo interface, 498
IChannelReceiver interface, 454
IChannelSender interface, 446, 448, 539
IChannelSinkBase interface, 458, 532
IClientChannelSink interface, 328, 329,

360, 532
asynchronous messaging, 340–342
changing sinks programming model, 409
client-side sink providers, 368
client-side sinks, 361
creating client-side sink and provider, 452
interfaces for message sinks, 328
passing runtime information, 392, 396
sinks using custom proxy, 419

IClientChannelSinkProvider interface, 360,
533

client-side sink providers, 368
creating client-side sink and provider,

449

implementing client-side channels, 446
passing runtime information, 392

IClientFormatterSink interface, 534
formatters, 328

IClientFormatterSinkProvider interface, 534
IClientResponseChannelSinkStack

interface, 341
IConstructionCallMessage interface, 530
IConstructionReturnMessage interface,

530
IContextProperty interface, 473
IContributeDynamicSink interface, 356
IContributeObjectSink interface, 474
ICustomerManager interface, 14, 15, 16,

18, 20
identify value

impersonationLevel property, 143
identities, 129, 130
Identity objects, 323, 325
IDictionary interface

client-side channels, 446
server-side sinks, 354

IDynamicMessageSink interface, 356
IDynamicProperty interface, 356, 357
IEnvoyInfo interface, 498
IIdentity interface, 129
IIS (Internet Information Server)

ASP.NET application impersonating
client, 183

ASP.NET based clients, 171
authentication with IIS, 133, 134, 135
client for second server component, 176
configuration file debugging, 308
debugging, 120
debugging hints, 303
deployment for anonymous use, 118
deployment using, 116
encryption, 138, 375
end-user client for IIS hosted

component, 177
intermediary Remoting server hosted in,

173
membership in Windows groups, 149
output window for IIS hosted server, 177
preparing to use IIS as container, 117
remoting components hosted as clients

in, 172, 176
scalable remoting rules, 280
security without IIS, 140
server-side objects, 116
troubleshooting using custom

exceptions, 313

■INDEX560

ILease interface, 186, 508
client-side sponsors, 197
CurrentState property, 511
Register method, 197

ILogicalThreadAffinative interface, 209,
514

IMessage interface, 525
how messages work, 326
passing runtime information, 390

IMessageSink interface, 328, 329, 526
asynchronous messaging, 338–339
AsyncProcessMessage method, 328
client-side sinks, 353
intercepting calls, 469
interfaces for message sinks, 328
NextSink property, 328
passing runtime information, 390, 392
proxies creating messages, 323
server-side asynchronous processing,

347
sinks using custom proxy, 419
SyncProcessMessage method, 328

IMethodCallMessage interface, 528, 529
IMethodMessage interface, 527
IMethodResponseMessage interface, 529
IMethodReturnMessage interface, 528
imperative security checks, 133
impersonate value

impersonationLevel property, 143, 147
impersonation, 182

.NET 1.x and 2.0 differences, 152
impersonation error, 147
impersonationLevel property

.NET Remoting v2.0, 159
provider tag, 143
security with remoting in .NET 2.0, 151
server accepting authenticated requests,

147, 148
implementation of .NET Remoting

advantages of .NET Remoting, 9
client implementation, 18
server implementation, 15

In-Reply-To header
creating e-mail headers, 425
mapping protocols to .NET Remoting,

441
includeVersions attribute

BinaryServerFormatterSinkProvider, 501
formatter tag, clientProviders tag, 95
formatter tag, serverProviders tag, 92
servers requiring different versions, 264
versioning serializable objects, 242

Indigo, 257
InfinitelyLivingSingleton, 188, 189, 191,

193
InfinitelyLivingSingleton_LifeTime

property, 195, 196
Ingo’s .NET Remoting FAQ corner, 541
InitFields method, 323
initialization vector (IV)

symmetric encryption, 378
InitializeLifetimeService method

changing base lifetime, 188, 189, 191,
193

changing lease time, 187, 188
ExtendedMBRObject, 193, 194
ILease, 186, 508
lifetime management, 43
server overriding, 46

InitialLeaseTime property, 186
InitTypeCache method, 100
installutil.exe, 109, 112, 113
instances, .NET Framework, 30
InstanceSponsor_Lifetime, 205
InstanceSponsor_RenewOnCallTime, 205
integrated security, 138
integrity, 124
interception

CheckerSink, 477
ContextAttribute, 473
IMessageSinks, 469
Organization, 476

interface definitions
client and server accessing DDL, 14
generated metadata assembly, 12
multiserver configuration, 62
sample remoting application, 14

interfaces
advantages of .NET Remoting, 11
chunky interfaces, 278
client and server accessing, 14
configuring server objects in client

configuration, 165
deploying remote applications, 100
extending .NET Remoting framework,

525
IChannel, 499, 537
IChannelInfo, 498
IChannelSender, 539
IChannelSinkBase, 532
IClientChannelSink, 532
IClientChannelSinkProvider, 533
IClientFormatterSink, 534
IClientFormatterSinkProvider, 534

■INDEX 561

IConstructionCallMessage, 530
IConstructionReturnMessage, 530
IEnvoyInfo, 498
ILease, 508
IMessage, 525
IMessageSink, 526
IMethodCallMessage, 528
IMethodMessage, 527
IMethodResponseMessage interface,

529
IMethodReturnMessage, 528
IObjectHandle, 498
IRemotedType, 103
IRemotingTypeInfo, 498
ISerializable, 519
IServerChannelSink, 534
IServerChannelSinkProvider, 535
ISponsor, 509
ITrackingHandler, 517
ITransportHeaders, 536
message sinks, 328
servers requiring different versions, 258
shared assembly defining, 102
shared interfaces, 11, 39
SoapSuds or Interfaces, 286, 287
versioning with, 246–256

interoperability, 544
interprocess communication, 102
Intrinsyc’s Ja.NET, 547
Invoke method, proxies, 416, 419
IObjectHandle interface, 498
IP addresses

useIpAddress attribute, 90
IPC channel, 102, 105, 106
IPrincipal interface, 129
IRemoteCustomerManager interface, 100
IRemotedType interface, 103
IRemoteFactory interface, 161, 198
IRemoteObject interface, 63, 198
IRemoteSecond interface, 161, 173
IRemotingTypeInfo interface, 498
IsContextOK method, 472, 483
ISerializable interface, 12, 519

deserialization of object security, 93
versioning serializable objects, 243, 244

IServerChannelSink interface, 360, 534
creating server-side sinks, 458
interfaces for message sinks, 328
server-side asynchronous processing,

347
server-side messaging, 334
server-side sink providers, 368

server-side sinks, 364
sinks using custom proxy, 419

IServerChannelSinkProvider interface, 360,
535

passing runtime information, 398
server-side sink providers, 369

IsInRole method, 133
IsNewContextOK method, 473, 474
ISponsor interface, 196, 200, 509
isServer attribute

wrapping transport channel, 462
ITrackingHandler interface, 517

links to web sites, 547
ITransportHeaders interface, 536

extending compression sinks, 371
mapping protocols to .NET Remoting,

438
moving messages through transport

channels, 330
IUSR_MACHINENAME

anonymous access, 134
IWorkerObject interface, 63

■J
Ja.NET, 547
Jabber channel, 545
Java RMI (Java Remote Method Invocation)

introduction, 6
lifetime management, 185
links to web sites, 544

Just-In-Time debugging, 305

■K
KDC (Key Distribution Center)

Kerberos authentication, 126
KeepAlive method, 204, 206, 208
KeepAlives

disabling, 293
scalable remoting rules, 280
TCP connections, 292

Kerberos, 126
MSDN security samples, 144

key pairs, 226
.NET Framework versioning, 228
versioning with interfaces, 247

KeyGenerator application
symmetric encryption, 376, 378

■L
/l parameter, 228, 235, 238
language agnostic names, 149
layers, 4

■INDEX562

Lease class, 186
LeaseManager class

ISponsor, 196
leaseManagerPollTime attribute, 187
LeaseTimeAnalyzer method, 186
lifetime management, 186
server-side sponsors, 204
sponsors, 196
valid units of measurement, 187

leaseManagerPollTime attribute
LeaseManager, 187
lifetime tag, 88, 188

leases, 186, 187, 508
LeaseSink, 337
LeaseState enumeration, 511
leaseTime attribute

lifetime tag, 88, 188
LeaseTimeAnalyzer method, 186
lifecycle management

versioned SAOs, 233, 234–239
versioning CAOs, 240

lifetime management
see also time
advantages of .NET Remoting, 12
changing base lifetime, 188, 189, 191, 193
client calling timed-out CAO, 45, 46
DefaultLifeTimeSingleton, 188
distributed reference counting, 185
garbage collection, 185
GetLifetimeService method, 197
InfinitelyLivingSingleton_LifeTime

property, 195
InitializeLifetimeService method, 186
InstanceSponsor_Lifetime, 205
LeaseManager, 186
leases, 186
Lifetime namespace, 508–511
Lifetime property, 195, 205
lifetime tag, 85, 88

changing base lifetime, 188
LifetimeServices class, 511
managing object lifetime, 185
nondefault lifetimes, 193, 194
server-side sponsors, 203
Singleton objects, 30
sponsors, 43, 196–209
sponsorship, 185
TimeSpan properties, 186
TTL (time-to-live), 185

links to web sites, 541–548
LIST command, POP3, 424, 428
listen attribute, channel tag, 90

listeners
remoting events, 214

loadTypes attribute, debug tag, 87
local storage, 299
LocallyHandleMessageArrived method,

218
logging, 209, 210
LogicalCallContext class, 514
LogicalCallContext property, 327

passing runtime information, 391, 393,
397

logon process, 137, 138
LongerLivingSingleton class, 188, 189, 191,

193
properties, 195, 196

Low value, typeFilterLevel attribute, 93

■M
machineName attribute, 90, 317
mail

see e-mail
MAIL FROM command, SMTP, 423
maintenance, 292
major version, 225
managed extensions, 543
MapPath method, 172
mapping protocols to .NET Remoting,

437–445
marshal by value object, 489
MarshalByRefObject class, 488–489

changing base lifetime, 188, 189, 191, 193
changing lease time, 187
deployment using IIS, 116
ExtendedMBRObject, 193
leases, 186
nondefault lifetimes, 193, 194
objects, 26, 34, 59, 93
remoting events, 215
sample remoting application, 13, 14, 16
scalable remoting rules, 281
server-side sponsors, 203
sponsors, 185
troubleshooting multihomed machines,

315, 316
versioning with interfaces, 256

marshaling, 543
Mercury/32 e-mail server, 467
message confidentiality, 124
message objects

passing runtime information, 390
proxies, 322, 323
serialization through formatters, 329–330

■INDEX 563

message queuing, 277
message sinks, 328–329

brief description, 321
creating proxies, 323
how messages work, 326

Message-Id header, 425, 441
MessageArrived event, 215, 222
MessageArrivedLocally event, 218, 219
MessageCount property, POP3, 430
MessageData objects, 323
MessageReceived method, 434, 441
messages, 326–331

Args property, 327
AsyncProcessMessage method, 328
asynchronous messaging, 338–348
brief description, 321
BroadcastMessage method, 215
client-side messaging, 331–333
ConstructionCall messages, 326, 352
ConstructionCallMessage, 240
contents described, 327
CreateMessageSink method, 352
DeleteMessage method, 432
DumpMessageContents method, 417
formatters, 328
GetMessage method, 431
HandleIncomingMessage method, 441
HandleMessage method, 219
HandleMessageDelegate method, 434
HandleReturnMessage method, 323
how they work, 326
IConstructionCallMessage, 530
IConstructionReturnMessage, 530
IDynamicMessageSink, 356
IMessage, 525
IMessageSink, 338–339, 526
IMethodCallMessage, 528
IMethodMessage, 527
IMethodResponseMessage interface,

529
IMethodReturnMessage, 528
LocallyHandleMessageArrived method,

218
MessageArrived event, 215, 222
MessageArrivedLocally event, 218, 219
MessageCount property, POP3, 430
MessageData objects, 323
MessageReceived method, 434, 441
MethodName property, 327
MethodSignature property, 327
ProcessMessage method, 333
ProcessMessageFinish method, 356

ProcessMessageStart method, 356
properties and dictionary keys, 327
proxies creating, 323
SendMessage method, 440
SendReplyMessage method, 440
SendRequestMessage method, 440
SendResponseMessage method,

440
SerializeSoapMessage method, 330
serializing messages through formatters,

329
server-side messaging, 333–338
sink processing, 531
SoapMessage, 521
SyncProcessMessage method, 323
transport channels, 326

messages moving through, 330–331
TypeName property, 327
Uri property, 327
WaitAndGetResponseMessage method,

441
Messaging namespace, 512–514

extending .NET Remoting framework,
525–529

metadata
.NET Framework versioning example,

232
.NET Remoting configuration files, 77
CallContext, 512
client-side sinks, 400
CLR locating assemblies, 227
generated metadata assembly, 12
ITransportHeaders, 536
lifecycle management, versioned SAOs,

236, 239
moving constraints to, 471, 472
non-wrapped proxy metadata, 72
shared assemblies, SoapSuds, 68

Metadata namespace, 514–516
method signatures

delegates, 51
MethodCall class, 326, 327, 529
MethodName property, 327
MethodResponse class, 529
methods

IMethodCallMessage, 528, 529
IMethodMessage, 527
IMethodResponseMessage interface,

529
IMethodReturnMessage, 528
MethodCall class, 327, 529
MethodName property, 327

■INDEX564

MethodResponse class, 529
MethodSignature property, 327
one way methods, 222, 224
SoapMethodAttribute, 516
ways of executing in .NET, 46

asynchronous calls, 51
ByValue objects, 25
one-way calls, 55
synchronous calls, 47

MethodSignature property, messages
dictionary key, data type & sample

value, 327
Microsoft Management Console

installing Windows service, 111–112
Microsoft Transaction Server (MTS), 6
minor version, 225
mobile objects, 3
mode attribute

wellknown tag, service tag, 82, 97
MSDN

links to web sites, 541–543
MSDN security samples, 140

authentication level client and server,
144

capabilities of security token, 143
message protection, 144
security sample client, 141
server accepting authenticated requests,

145
shared assemblies for .NET remoting,

140
specifying security protocol, 143

MSMQ (Microsoft Message Queue)
asynchronous communication, 421
links to web sites, 545
when to use .NET Remoting, 277, 283

MTS (Microsoft Transaction Server), 6
multicasting

MSMQ, 284
MulticastDelegate, 220
UDP broadcasts, 282

multihomed machines
troubleshooting, 315–317

multiserver configuration, 59
client assembly, 66
examining, 60
HTTP channel, 64
multiserver/multiclient, 13
ports, 64
server assembly, 63, 64, 66
shared assembly, 62
UML diagram, 60

■N
name attribute, channel tag, 89
name parameter

SMTPClientChannel, 446
SMTPServerChannel, 454

Named Pipe channel sample, 102
named pipes, 421, 545
names

BuildFormatName method, 286
ChannelName property, 456, 463, 499
connectionGroupName attribute, 90
displayName attribute, 89, 97, 99
FreeNamedDataSlot method, 212
machineName attribute, 90
MethodName property, 327
proxyName attribute, 90
TypeName property, messages, 327

namespaces
see System.Runtime namespaces

naming conventions
configuration files, 76
language agnostic names, 149
strong naming, 225
strongly named assemblies, 226

.NET Framework
authorization check types, 133
concerns regarding SoapSuds, 287
identities, 129
instance creation, 30
principals, 129
shared assemblies, 67
versioning, 225–233
Whidbey, 151

.NET Remoting
advantages of, 9
architecture, 10, 322
client for second server component, 175
configuration files

see configuration files
creating remoting clients, 161
cross-AppDomain remoting, 276
cross-process on multiple machines in

LAN, 276
cross-process on single machine, 276
cross-process via WAN/Internet, 278
deployment, 108

using IIS, 116
Enterprise Services or, 280
evolution of remoting, 4
implementation, 9
integrating in Windows services, 108
interface definitions, 11

■INDEX 565

introduction, 7
lifetime management, 12, 43
mapping protocol to, 440, 437–445
MSDN security samples, 140, 141
multiserver/multiclient, 13
object types, 13
reasons for changing default remoting

behavior, 359
remoting components hosted in IIS as

clients, 172, 176
remoting events

see under events
sample .NET Remoting application,

13–22
client assembly, 18, 21
client implementation, 18
data object definition, 15
general assembly, 14, 20
interface definitions, 14
server assembly, 15, 21
server implementation, 15

scalable remoting rules, 280
scaling out remoting solutions, 290
scenarios for .NET remoting, 3
security

see security
SoapSuds vs. Interfaces, 286, 287
transferring runtime information, 209
types of remoting, 25, 26
using the IPC channel, 102
version 2.0 based client, 156
version 2.0 based server, 156
versioning, 233–245
ways to run remote objects, 75
web.config file and client configuration,

170
when to use .NET Remoting, 275

.NET Remoting framework
interfaces for extending, 525
links to web sites, 542
nondefault lifetimes, 193, 194
transport channels, 421

.NET Remoting links, 541–548
custom channels, 544–546
Ingo’s .NET Remoting FAQ corner, 541
interoperability, 544
MSDN, 541–543

.NET Remoting namespaces
see under System.Runtime namespaces

network latency, 278
Network Load Balancing

see NLB

network traffic
encryption, 375

new operator, 495
IConstructionCallMessage, 530

Next property, 536
NextChannelSink property, 535
NextSink property, 328, 527
NLB (Network Load Balancing)

clusters, 291
nodes, 292
performance, 291
scalable remoting rules, 280
scaling out remoting solutions, 290
when to use .NET Remoting, 277

NLB clusters
connections, 292
creating, 293–299
taking nodes online/offline, 299
words of caution, 294

NLB Manager
creating NLB clusters, 294

nodes
creating NLB clusters, 295, 298
designing applications for static

scalability, 299
Network Load Balancing, 292
taking nodes online/offline, 299

NONCE
NTLM authentication, 125

NonSerialized attribute, 489
notification of events, 281
notifications

clients located in same IP subnet, 282
guaranteed asynchronous delivery of, 283
MSMQ, 284
other approaches, 286
when to use .NET Remoting, 282

NT LAN manager (NTLM) authentication,
124

MSDN security samples, 144

■O
object pooling, 547
object types, 13
ObjectHandle class, 492
objectUri attribute

wellknown tag, service tag, 82, 97
ObjRef class, 491–492

MarshalByRefObjects object type, 13
properties, 325
proxies, 324
remoting with MarshalByRefObject, 59

■INDEX566

observer pattern, 546
OK message, POP3, 423
one way methods/events, 222, 224
one-way calls, 55, 56

ways of executing methods, 46
OneWay attribute, 57, 58
OneWayAttribute class, 514
OnStart method, 108
OnStop method, 108
OOB (out-of-band) data, 209
Organization class, 470, 476, 479, 483
output caching, 548

■P
packetIntegrity value

authenticationLevel property, 144
packetPrivacy value

authenticationLevel property, 144
parameters

checking in an IMessageSink, 480
i parameter, 228, 234
l parameter, 228, 235, 238
name parameter, 446, 454
pop3Xyz parameters, 446, 454
PropagateOutParameters method, 323
replySink parameter, 338, 339
senderEmail parameter, 446, 454
smtpServer parameter, 446, 454
SoapParameterAttribute, 516
u parameter, 228

Parse method, 499
implementing client-side channels, 447,

448
implementing server-side channels,

456
parseURL method, 450
passing by reference, 13, 26
passing by value, 13

see also serializable objects
PassportIdentity, 130
patterns

factory design pattern, 38
observer pattern, 546

per-host/object authentication model, 359
performance

designing applications for static
scalability, 299

links to web sites, 541
NLB clusters, 291

persistence
links to web sites, 547
StreamingContext structure, 520

Person class, 257, 258, 260, 261, 263, 264,
266, 268, 270, 273

platform independence, 281
platforms, 4
pluggable sink architecture, 402
Poll method, 434
polling

checking for new mail, 433
registering POP3 server, 435

pooling, 547
POP3 protocol, 423–424

asynchronous communication, 421
checking for new mail, 433
encapsulating, 427
POP3 replies, 423
registering POP3 server, 435
transferring e-mail, 422

POP3Connection class, 428
POP3Msg class, 427, 443
pop3Password parameter

SMTPClientChannel, 446
SMTPServerChannel, 454

POP3Polling class, 433
pop3PollInterval parameter

SMTPClientChannel, 446
SMTPServerChannel, 454

POP3PollManager class, 436, 454
pop3Server parameter

SMTPClientChannel, 446
SMTPServerChannel, 454

pop3User parameter
SMTPClientChannel, 446
SMTPServerChannel, 454

port attribute, channel tag, 89, 200
ports

channel information for IIS, 118
configuration files, 82
creating NLB clusters, 295
multiserver configuration, 64
proxyPort attribute, 90

principals
.NET Framework, 129, 130
application using, 130
example with role permission check, 131
role-based security, 129

priority attribute, channel tag, 89
PriorityChangerSink class, 396
PriorityChangerSinkProvider class, 398
PriorityEmitterSink class, 393
PriorityEmitterSinkProvider class, 395
private assemblies

shared assemblies compared, 227

■INDEX 567

private queues, 284
PrivateInvoke method

proxies creating messages, 323
proxies returning values, 324

probing
CLR resolving assembly references, 227

Processes dialog box
debugging Windows service, 114

ProcessInboundStream method
creating encryption sinks, 381, 382, 384
encryption helper, 380
symmetric encryption, 378

ProcessMessage method
BinaryFormatter version mismatch,

411
changing sinks programming model,

406
client-side messaging, 333
client-side sinks, 363, 451
compression sinks, 371, 373
encryption sinks, 383
IClientChannelSink, 533
IServerChannelSink, 334, 535
mapping protocols to .NET Remoting,

443
moving messages through transport

channels, 330
passing runtime information, 391, 397
server-side asynchronous processing,

347
server-side messaging, 334
server-side sinks, 366, 458, 459

ProcessMessageFinish method, 356
ProcessMessageStart method, 356
ProcessOutboundStream method

creating encryption sinks, 381, 382, 384,
385

encryption helper, 379
symmetric encryption, 378

PropagateOutParameters method, 323
protocols, 421–425

authentication protocols, 124, 128
encapsulating, 426–445
Kerberos, 126
mapping to .NET Remoting, 437–445
POP3 protocol, 423–424
protocols transferring e-mail, 422
SMTP protocol, 422–423
SOAP, 7
specifying MSDN security protocol, 143
transport channels, 421
User Datagram Protocol (UDP), 277

provider tag
clientProviders tag

authenticationLevel property, 144
BinaryFormatter version mismatch,

412
changing sinks programming model,

402, 408
client-side sinks, 400
configuration file using attributes, 142
impersonationLevel property, 143
securityPackage property, 143

serverProviders tag, 91, 92, 146
providers

see also sink providers
BinaryServerFormatterSinkProvider, 94
changing default remoting behavior, 359
client-side sinks, 352
CompressionClientSinkProvider, 360,

367, 369
CompressionServerSinkProvider, 360,

368, 370
encryption, 386–390
EncryptionClientSinkProvider, 386, 387
EncryptionServerSinkProvider, 388
formatter providers, 91, 92, 202
IClientChannelSinkProvider, 360, 533
IClientFormatterSinkProvider, 534
IServerChannelSinkProvider, 360, 535
PriorityChangerSinkProvider, 398
PriorityEmitterSinkProvider, 395
sink chains, 350
sink providers, 91
SinkProviderData objects, 86, 407, 534
SMTPClientTransportSinkProvider, 449
SoapClientFormatterSinkProvider, 503
SoapServerFormatterSinkProvider, 94,

502
SSPI, 128
UrlAuthenticationSinkProvider, 86, 407

proxies, 322–325
brief description, 321
client-side proxies, 531
creating messages, 323
creating proxies, 322
creating Windows Forms client, 168
CreateProxy method, 100, 531
custom proxies, 413–419
CustomProxy class, 414
disconnecting an object from, 517
GetTransparentProxy method, 415
how they work, 322
HTTP proxies, 279, 297

■INDEX568

lifetime management, 185
non-wrapped proxy metadata, 72
ObjRef, 324
RealProxy, 531
RemotingClientProxy, 517
RemotingProxy objects, 322, 413
returning values, 324
ServerProxy property, 169
sinks using custom proxy, 413–419
SoapSuds generated nonwrapped

proxy’s source, 240
TransparentProxy objects, 322
when to use .NET Remoting, 279
wrapped proxies, 68, 71

Proxies namespace, 530–531
ProxyAttribute class, 531
proxyName attribute, channel tag, 90
proxyPort attribute, channel tag, 90
published objects, 32, 33
publisher policies

CLR resolving assembly references, 227

■Q
queues

private queues, 284
QUIT command, 432, 423, 424

■R
RBS (role-based security), 129
RCPT TO command, SMTP, 423
RealProxy class, 531

client-side sinks, 353
creating proxies, 322
proxies creating messages, 323
proxies returning values, 324
sinks using custom proxy, 413

ref attribute
channel tag, 89
formatter tag, 92
provider tag, 92

refactoring
remoting event handling, 217

reference
distributed reference counting, 185
passing by reference, 13, 26

references to web sites, 541–548
Register method, 197

RegisterActivatedServiceType method,
494

RegisterAsyncResponseHandler method,
441

RegisterChannel method, 415

registered sponsors
deserialization of object security, 93

RegisterPolling method
implementing client-side channels, 446,

447
registering POP3 server, 435, 436

RegisterServer method, 444
rejectRemoteRequests attribute, channel

tag, 91
cross-process on single machine, 276

Release method
lifetime management, 185

remote components
configuration file debugging, 307
Windows services hosting, 110

remote objects
accessing, 491
authentication, 135
brief description, 3
client-side sponsors, 197
MarshalByRefObject, 489
registering, 99
rejectRemoteRequests attribute, 91
sponsors, 196

Remote Procedure Calls (RPC), 5
remote sponsors, 203
remote users

implementing authorization in server,
149

remoting
see .NET Remoting

Remoting Channel Framework Extension
links to web sites, 545

remoting events, 213–224
one way methods/events, 222, 224
refactoring event handling, 217
scalability, 213

Remoting Management Console (RMC)
links to web sites, 548

Remoting namespaces
see under System.Runtime

namespaces
Remoting Probe tool

links to web sites, 548
remoting server

porting to Windows services, 110
RemotingClientProxy class, 517
RemotingConfiguration class, 492–493

Configure method, 76
RemotingData property, 337
RemotingException class, 497

passing runtime information, 394

■INDEX 569

RemotingHelper class, 100
classes used for configuration, 494
client-side sponsors, 198
configuring IRemoteCustomerManager,

101
creating console clients, 164
creating server for remoting clients, 161
server-side objects for IIS, 116

RemotingProxy objects
creating proxies, 322
sinks using custom proxy, 413

RemotingServices class, 493
RemotingTimeoutException class, 497
Renew method, 204
Renewal method, 209
RenewalTime property, 510
RenewOnCall method, 337
renewOnCallTime attribute, lifetime tag,

88, 188
RenewOnCallTime property, 195

server-side sponsors, 205
TimeSpan, 186

replySink parameter
asynchronous IMessageSink processing,

338, 339
request distribution

clusters, 291
request-for-comment (RFC) documents, 422
requests

AsyncProcessRequest method, 340
asynchronous messaging generating,

342–344
CORBA, 5
creating server-side sinks, 459
GetRequestStream method, 533
HTTP requests, 292
implementing server-side channels, 455,

457
mapping protocols to .NET Remoting,

440
NLB clusters, 292
parsing e-mail address for incoming

request, 444
rejectRemoteRequests attribute, 91
RequestSent method, 437
SendRequestMessage method, 451
ServiceRequest method, 335
sinks using custom proxy, 416

RequestSent method
mapping protocols to .NET Remoting,

440
registering POP3 server, 437

response codes, 422
ResponseReceived method

mapping protocols to .NET Remoting,
441, 442

registering POP3 server, 437
responses

AsyncProcessResponse method, 340
AsyncResponseHandler class, 451
asynchronous messaging handling, 345,

346
creating e-mail headers, 425
GetResponseStream method, 334
HandleAsyncResponsePop3Msg

method, 441
HTTP responses, 375
IClientResponseChannelSinkStack, 341
IMethodResponseMessage, 529
mapping protocols to .NET Remoting,

440
MethodResponse, 529
RegisterAsyncResponseHandler

method, 441
SendResponseMessage method, 440
sinks using custom proxy, 416
WaitAndGetResponseMessage method,

441
responses hashtable, 437, 438, 440, 441
RETR command, POP3, 424, 431
return values

proxies, 324
RFC (request-for-comment) documents,

422
RMI (Remote Method Invocation)

see Java RMI
role-based security (RBS), 129
root

virtual root, 117
RPC (Remote Procedure Calls), 5
RunInstallerAttribute, 110
runtime information

passing, 390–401
transferring client with server, 209–213

■S
SAO (server-activated objects), 26

client-side sinks, 352
configuration files, 82
lifecycle management, 233, 234–239
ObjRef objects, 325
published objects, 32
registering, 96, 99
scalable remoting rules, 280

■INDEX570

server-side objects for IIS, 117
server-side output using, 85
SingleCall SAOs, 28, 277
Singleton objects, 30
SoapSuds or Interfaces, conclusion, 287
versioning, 233–239
versioning with interfaces, 246

scalability
designing applications for static

scalability, 299
HTTP channel, 293
remoting events, 213
scalable remoting rules, 280
scaling out remoting solutions, 290
when to use .NET Remoting, 275

scope
CallContext, 211

SDLChannelSink
server-side messaging, 335

security, 123–160
see also authentication; authorization;

encryption
Access Control Lists, 75
ASP.NET application impersonating

client, 182
authentication with IIS, 133
back-end-based client security, 177
CallContext, 213, 512
typeFilterLevel changing security, 311–313
client security token

differences .NET 1.x and 2.0, 152
creating back-end-based client, 177
declarative security, 133
demilitarized zone, 4
deployment using IIS, 116
deserialization of objects, 93
encryption and IIS, 138
end-user client security, 177
fingerprints, 225
HTTP channel attributes, 90
imperative security checks, 133
impersonation

differences .NET 1.x and 2.0, 152
integrated security, 138
key pairs, 226
links to web sites, 541, 543
major concepts, 123
MSDN security, 140, 143
new features also for v2.0, 140
physical separation of layers, 4
protecting configuration files from

users, 75

scalable remoting rules, 281
security with remoting in .NET 2.0, 151,

155
servers requiring different versions, 273
transferring runtime information, 209
trusted subsystem, 178
Windows Forms client, 179, 181
without IIS, 140

security mechanisms
code access security (CAS), 129
role-based security (RBS), 129, 133

security package negotiate (SPNEGO), 128
Security Support Provider Interface

see SSPI
securityPackage property, provider tag, 143
SendCommand method

POP3 protocol, 429, 431
SMTP protocol, 426

senderEmail parameter
SMTPClientChannel, 446
SMTPServerChannel, 454

SendMessage method
encapsulating SMTP protocol, 426, 427
mapping protocols to .NET Remoting,

440
SendReplyMessage method, 440
SendRequestMessage method, 440

creating client-side sink and provider,
451, 452

SendResponseMessage method, 440
serializable objects

see also passing by value
ByValue objects, 25
passed between application domains,

492
problem with SoapSuds, 77
server-side asynchronous processing, 347
versioning, 242–245

servers require different versions,
256–273

SerializableAttribute class, 489
serialization

advantages of .NET Remoting, 12
BinaryClientFormatterSinkProvider, 502
BinaryServerFormatterSinkProvider, 501
brief description, 3
concerns regarding SoapSuds, 286
custom exceptions, 288
deserialization of object security, 93
ISerializable, 519
message objects through formatters,

329–330

■INDEX 571

servers requiring different versions, 266,
267

SoapClientFormatterSinkProvider, 503
SoapFieldAttribute, 515
SoapMessage, 521
SoapMethodAttribute, 516
SoapServerFormatterSinkProvider, 502
SoapTypeAttribute, 515
types of .NET Remoting, 25

Serialization namespaces
see under System.Runtime namespaces

SerializationException class, 521
BinaryFormatter version

incompatibility, 309
SerializationInfo class, 520

custom exceptions, 289
SerializeSoapMessage method, 330
server applications

debugging hints, 303
deploying server application, 108

server assembly
multiserver configuration, 63, 64, 66
output independent of OneWay

attribute, 58
output using asynchronous calls, 55
output using synchronous calls, 51
remoting application architecture, 14
sample remoting application, 15, 21
synchronous calls, 47
wrapped proxies, SoapSuds, 68

server objects
configuring in client configuration, 165

server-activated objects
see SAO

server-side channels, 453–462
server-side messaging, 333–338
server-side sinks, 354–355, 364–367

compression sinks, 360
configuration files, 370
connection using/not using compared,

370
EncryptionServerSink, 383
implementing server-side channels,

458–462
IServerChannelSink, 534
IServerChannelSinkProvider, 535
sink providers, 368

server-side sponsors, 203–209
server-side transport channel sinks, 426
ServerChannelSinkStack, 334, 460
ServerContextTerminatorSink, 337

ServerException class, 497–498
ServerObjectTerminatorSink, 337
ServerProcessing property, 392, 398
serverProviders tag

BinaryServerFormatterSinkProvider, 501
channel tag, 91, 202
formatter tag, 94, 95
HttpServerChannel, 506
server accepting authenticated requests,

146
sink providers, 349

ServerProxy property, 169
servers

BinaryServerFormatterSink, 503
BinaryServerFormatterSinkProvider, 501
client for second server component, 175
console window for final server, 177
creating server for remoting clients,

161–163
HttpServerChannel, 506
intermediary .NET Remoting server

hosted in IIS, 173
lifecycle management, versioned SAOs,

237
output window for IIS hosted server, 177
registering POP3 server, 435
remoting events, 214
servers requiring different versions, 258,

260, 263, 264, 267, 268, 272
SoapServerFormatterSink, 504
SoapServerFormatterSinkProvider, 502
TcpServerChannel, 508
transfer runtime information with

client, 209–213
versioning with interfaces, 247, 251, 252,

255
servers hashtable, 437, 438, 441, 444
ServerStartup class

published objects, 33
sample remoting application, 16
Singleton objects, 30

service installer
Windows service installer, 109

service tag, 85, 96, 172
Service-Oriented Architecture (SOA), 279,

281
ServiceBase class, 108
ServiceRequest method, 335
services

see also Windows services
ActivatedServiceTypeEntry, 494

■INDEX572

ChannelServices, 500
EnterpriseServicesHelper, 516
LifetimeServices, 511
RemotingServices class, 493
TrackingServices, 517
WellKnownServiceTypeEntry, 495

Services namespace, 516, 518
session affinity

creating NLB clusters, 296
Session Ticket (ST), 127
SetAge method, 251, 252, 254
SetData method, 210
SetDefaultAuthenticationEntry method,

404, 407
SetSinkProperties method, 405
setValue method, 331
shared assemblies, 67

see also general assembly
.NET Framework versioning example,

229
creating server for remoting clients, 161
defining interfaces, 102
GAC, 227
interface definitions, .NET Remoting, 11
MSDN security, 140
multiserver configuration, 62
private assemblies compared, 227
servers requiring different versions, 260,

270
shared base classes, 67
shared implementation, 67
SoapSuds metadata, 68
versioning with interfaces, 246, 251, 253

shared base classes, 67
shared implementation, 67
shared interfaces, 11
shared storage, 299
signatures

delegates, 51
fingerprints, 225
symmetric encryption, 379
versioning with interfaces, 253

Simple Object Access Protocol
see SOAP

SingleCall objects
client output for, 29
registering, 28
scalable remoting rules, 280
server output for, 30
server-activated objects, 26, 28
wellknown tag, service tag, 97

SingleCall SAOs, 277
Singleton objects

allowing client access to, 83
changing base lifetime example, 188,

189, 191, 193
client output for, 31, 33
configuration files, 82
creating server for remoting clients, 163
lifetime management, 30
LifeTime property name extension, 195
registering, 30
RenewOnCallTime property name

extension, 195
server output for, 32, 33
server-activated objects, 26, 30
SponsorshipTimeout property name

extension, 195
threading, 32
versioning with interfaces, 248, 256
wellknown tag, service tag, 97

sink providers, 349–355, 367–369
changing sinks programming model,

406
channel tag, 91
client-side sinks, 367
reference for, 92
server-side sinks, 368

SinkProviderData objects, 407
sinks

BaseChannelObjectWithProperties, 539
BaseChannelWithProperties, 540
BinaryClientFormatterSink, 503
BinaryClientFormatterSinkProvider, 502
BinaryFormatter version

incompatibility, 310, 409–413
BinaryServerFormatterSink, 336, 503
BinaryServerFormatterSinkProvider, 94,

501
business logic, 419
changing default remoting behavior, 359
changing programming model, 402–409
channelSinkProviders tag, 86
client-side sinks, 350–353, 361–364

implementing client-side channels,
449–453

ClientContextTerminatorSink, 332
compression sinks, 359–375
creating proxies, 323
CrossContextChannel, 336
DispatchChannelSink, 336
dynamic sinks, 332, 356–357

■INDEX 573

encryption, 380–385
HttpServerTransportSink, 335
IChannelSinkBase, 532
IClientChannelSink, 532
IClientChannelSinkProvider, 533
IClientFormatterSink, 534
IClientFormatterSinkProvider, 534
IMessageSink, 526
IServerChannelSink, 534
IServerChannelSinkProvider, 535
LeaseSink, 337
message processing, 531
message sinks, 321, 328–329
passing runtime information, 390–401
pluggable sink architecture, 402
SDLChannelSink, 335
server-side asynchronous processing,

347
server-side sinks, 354–355, 364–367

implementing server-side channels,
458–462

ServerContextTerminatorSink, 337
ServerObjectTerminatorSink, 337
sink chains, 349, 350, 455
sink providers, 367–369
SoapClientFormatterSink, 333, 503
SoapClientFormatterSinkProvider, 503
SoapServerFormatterSink, 336, 504
SoapServerFormatterSinkProvider, 94,

502
StackbuilderSink, 337
transport channels, 419
using custom proxy, 413–419

SMTP protocol, 422–423
asynchronous communication, 421
encapsulating, 426
SMTP Response code classes, 422
SOAP binding to, 424
transferring e-mail, 422

SmtpChannel class, 465–467
wrapping transport channel, 462–465

SMTPClientChannel class, 445–453
SMTPServerChannel compared, 454
wrapping transport channel, 462

SMTPClientTransportSink class, 450, 452
SMTPClientTransportSinkProvider class,

449
SmtpConnection class, 426, 438, 440
SMTPHelper class, 437, 438
smtpServer parameter

SMTPClientChannel, 446
SMTPServerChannel, 454

SMTPServerChannel class, 453–462
implementing server-side channels, 454,

455, 457
parameters, 454
SMTPClientChannel compared, 454
wrapping transport channel, 462

SMTPServerTransportSink class
creating server-side sinks, 459, 461
implementing server-side channels, 455,

456
sn.exe

.NET Framework versioning example,
228

key pairs, 226
SOAP (Simple Object Access Protocol)

binding to SMTP, 424
creating e-mail headers, 425
introduction, 7
moving messages through transport

channels, 330
scalable remoting rules, 281
serializing messages through formatters,

330
when to use .NET Remoting, 279

SOAP formatter
HttpChannel, 504
HttpClientChannel, 505
links to web sites, 548

SOAP Trace Utility, 157
SoapAttribute class, 515
SoapClientFormatterSink class, 503

client-side messaging, 333
serializing messages through formatters,

330
SoapClientFormatterSinkProvider class,

503
SoapFault class, 521
SoapFieldAttribute class, 515
SoapFormatter class, 329
SoapMessage class, 521
SoapMethodAttribute class, 516
SoapOption enumeration, 516
SoapOptions property, 516
SoapParameterAttribute class, 516
SoapServerFormatterSink class, 504

server-side messaging, 336
SoapServerFormatterSinkProvider class,

502
configuring typeFilterLevel in code, 94

SoapSuds
calling, 68
client-side sinks, 400

■INDEX574

concerns regarding, 286
creating CAOs, 34, 240
generating SoapSuds wrapped proxy, 69
generating source code with, 80
interfaces or, 100, 286
lifecycle management, versioned SAOs,

236, 239
non-wrapped proxy metadata, 72
problem with SoapSuds, 77–81
RemotingClientProxy, 517
SoapMethodAttribute, 516
SoapSuds generated nonwrapped

proxy’s source, 240
SoapSuds metadata, 82

shared assemblies, 68
wrapped proxies, 68

client assembly, 70
SoapTypeAttribute class, 515, 516
SPNEGO (security package negotiate), 128
sponsors

see also client-side sponsors
basic sponsor example, 197
typeFilterLevel changing security, 311
client-side sponsors, 196, 197

calling expired object’s method,
198–203

ClientSponsor, 510
deserialization of object security, 93
InstanceSponsor_Lifetime, 205
InstanceSponsor_RenewOnCallTime, 205
ISponsor, 196, 509
LeaseManager, 196
lifetime management, 43, 196–209
LifetimeServices, 511
MarshalByRefObject, 185
registered sponsors, 93
remote objects, 196
remote sponsors, 203
server-side sponsors, 203–209

sponsorship
TTL lifetime management, 185

sponsorshipTimeout attribute, lifetime tag,
88

SponsorshipTimeout property, 186, 195
SSL encryption, 139
SSPI (Security Support Provider Interface),

128
differences versions 1.x and 2.0, 152
MSDN security samples, 140
new features also for v2.0, 140

ST (Session Ticket)
Kerberos authentication, 127

StackbuilderSink, 337
StartListening method, 455, 457, 464
STAT command, POP3, 424
state

client-activated objects, 34
creating server-side sinks, 459
creating Windows Forms client, 169
CurrentState property, 511
LeaseState enumeration, 511
links to web sites, 547
scalable remoting rules, 281
SingleCall objects, 28
StreamingContextStates enumeration,

520
static fields

scalable remoting rules, 281
StopKeepAlive method, 206
StopListening method, 464
storage

shared and local storage, 299
StreamingContext structure, 520
StreamingContextStates enumeration, 520
strictBinding attribute

BinaryServerFormatterSinkProvider, 501
formatter tag, serverProviders tag, 92, 95

strong names/naming, 225
.NET Framework versioning example,

228
CLR resolving assembly references, 227
creating strongly named assembly, 226
fingerprints, 225
GAC, 227
gacutil.exe retrieving, 235
versioning serializable objects, 242
versioning with interfaces, 247, 248, 250

strongly named assemblies
AssemblyKeyFile attribute, 227
AssemblyVersion attribute, 227
CLR locating, 227
creating, 226
lifecycle management, versioned SAOs,

234, 236
source file attributes, 226

suppressChannelData attribute, channel
tag, 90

symmetric encryption, 376–380
synchronous calls, 46, 47

client assembly, 49
client-side sinks, 363
mapping, 421
proxies creating messages, 323
server-side sinks, 366

■INDEX 575

synchronous messaging, 441
SyncProcessMessage method

handling asynchronous response, 346
IMessageSink, 328

asynchronous processing, 338, 339
checking parameters in, 480

passing runtime information, 390
proxies creating messages, 323
serializing messages through formatters,

329
sinks using custom proxy, 415

system maintenance, 292
System.Runtime namespaces

identifying for classes, 186
Remoting, 491–499
Remoting.Activation, 529–530
Remoting.Channels, 499–504, 531–540
Remoting.Channels.Http, 504–506
Remoting.Channels.Tcp, 506–508
Remoting.Lifetime, 508–511
Remoting.Messaging, 512–514,

525–529
Remoting.Metadata, 514–516
Remoting.Proxies, 530–531
Remoting.Services, 516–518
Serialization, 518–521
Serialization.Formatters, 521–523

■T
tags

see under configuration files
TCP channel attributes, 89
TCP channels

see also channel tag
creating console clients, 164
creating server for remoting clients, 163
cross-process on single machine, 276
encryption, 375
versioning with interfaces, 248

TCP connections
HTTP requests, 292
NLB clusters, 291, 292
troubleshooting client behind firewall,

317
Tcp namespace, 506, 508
TcpChannel class, 506
TcpClientChannel class, 507, 539
TcpEx channel, 545
TcpServerChannel class, 508
TGT (Ticket Granting Ticket)

Kerberos authentication, 126
ThreadPriority, 392, 397

threads
asynchronous calls, 421
changing default remoting behavior, 359
ILogicalThreadAffinative interface, 209,

514
mapping protocols to .NET Remoting,

440, 441
passing runtime information, 391, 399,

401
server-side sponsors, 206
Singleton objects, 26, 32

threat modeling, 124
time

see also lifetime management
InitialLeaseTime property, 186
InstanceSponsor_RenewOnCallTime,

205
Just-In-Time debugging, 305
leaseManagerPollTime attribute, 88
leaseTime attribute, 88
LeaseTimeAnalyzer method, 186
RemotingTimeoutException class, 497
RenewalTime property, 510
renewOnCallTime attribute, 88
RenewOnCallTime property, 186
runtime information, 209–213, 390–401
sponsorshipTimeout attribute, 88
SponsorShipTimeout property, 186

Title property
versioning serializable objects, 243, 245

trace
SOAP Trace Utility, 157

TrackingServices class, 516, 517, 547
TransparentProxy objects

client-side sinks, 353
creating proxies, 322, 323
proxies creating messages, 323
proxies returning values, 324
RealProxy, 531
remoting with MarshalByRefObject, 59

transport channels, 421–468
brief description, 321
client-side transport channel, 445–453
encapsulating SMTP/POP3 protocol,

426
how messages work, 326
moving messages through, 330–331
preparing to use, 467
server-side transport channel, 453–462
sinks, 419
SMTPClientChannel, 445–453
SMTPServerChannel, 453–462

■INDEX576

using SmtpChannel, 465
words of caution when developing, 468
wrapping transport channel, 462–465

transport headers
ITransportHeaders, 536
TransportHeaders method, 443

troubleshooting, 303–318
BinaryFormatter version

incompatibility, 309–311
typeFilterLevel changing security,

311–313
client behind firewalls, 317–317
configuration files, 305–309
debugging, 303–305
multihomed machines, 315–317
using custom exceptions, 313–314

trusted subsystem, 178
try...catch blocks

one-way calls, client assembly, 56
TTL (time-to-live)

changing default lease time, 187
changing lease time on class by class

basis, 187
expired TTL exception, 187
lifetime management, 185
sponsors, 196
TimeSpan properties, 186

tutorials
links to web sites, 543

type attribute
activated tag, client tag, 99
activated tag, service tag, 97
channel tag, 89
configuration file debugging, 307, 308
formatter tag, serverProviders tag, 92
provider tag, serverProviders tag, 92
wellknown tag, 83

client tag, 98, 99, 101
service tag, 82, 97

typed DataSets
concerns regarding SoapSuds, 287

TypeEntry class, 493, 494
typeFilterLevel attribute

BinaryClientFormatterSinkProvider, 502
BinaryServerFormatterSinkProvider, 501
changing security restrictions with,

311–313
formatter tag, 92, 93, 94

remoting events, 220
setting to full, 249
SoapClientFormatterSinkProvider, 503
versioning with interfaces, 248

TypeFilterLevel enumeration, 521
TypeName property, messages, 327
types

ActivatedClientTypeEntry, 494
ActivatedServiceTypeEntry, 494
content-type header, 409
GetRegisteredWellKnownClientTypes

method, 101
InitTypeCache method, 100
IRemotedType interface, 103
IRemotingTypeInfo, 498
loadTypes attribute, debug tag, 87
object types, 13
RegisterActivatedServiceType method,

494
registering as remote, 99
SoapTypeAttribute, 515
TypeEntry, 493
versioning behavior, 95
WellKnownClientTypeEntry, 496
WellKnownServiceTypeEntry, 495
XmlTypeNamespace attribute, 241

■U
/u parameter, 228
UDDI (Universal Description, Discovery,

and Integration, 7
UDP broadcasts, 282, 283
UML diagram

multiserver configuration, 60
Unicode, 424
Unregister method

client-side sponsors, 200
server-side sponsors, 204, 207

unsafeAuthenticatedConnectionSharing
attribute

channel tag, 90
Unwrap method, 492
UploadPerson method, 259, 261, 268, 271
Uri property, messages, 327
URIs

GetUrlsForUri method, 538
objectUri attribute, 97

url attribute, client tag, 83, 98, 99, 101
url tag, clientProviders tag, 402, 406, 409
UrlAuthenticationEntry class, 403, 406
UrlAuthenticationSink class, 404
UrlAuthenticationSinkProvider class, 407
UrlAuthenticator class, 402, 403
URLs

links to web sites, 541–548
parsing for e-mail address, 444

■INDEX 577

useAuthenticatedConnectionSharing
attribute

channel tag, 90
useDefaultCredentials attribute, channel

tag, 90, 138
useIpAddress attribute, channel tag, 90
User Datagram Protocol (UDP), 277

■V
ValidationResult class, 20
value

AddValue method, 243, 261
ByValue objects, 13, 25
marshal by value object, 489
passing by value, 13
return values, 324
setValue method, 331

versioning
.NET Framework, 225–233
.NET Remoting, 233–245
advanced concepts, 246
application design, 273
AssemblyVersion attribute, 227, 237
client-activated objects, 240–242
component compatibility, 225
getSAOVersion method, 236
includeVersions attribute, 92
major/minor versions, 225
serializable objects, 242–245

servers require different versions,
256–273

server-activated objects, 233–239
strong naming, 225
versioning with interfaces, 246–256

versioning behavior, 95
Virtual Directory Creation Wizard, 117
virtual root, 117

■W
WaitAndGetResponseMessage method,

441, 451
waitingFor hashtable, 437, 438, 440, 441
web application client

designer for creating back-end-based
client, 170

web services
.NET Remoting or, 279
ASMX Web Services, 279
introduction, 7
links to web sites, 543, 547
servers requiring different versions,

257

web site references
links to web sites, 541–548

web.config file
.NET Remoting client configuration, 170
configuring ASP.NET client, 170
deployment using IIS, 116
lifecycle management, versioned SAOs,

235
remoting components hosted in IIS as

clients, 172, 174
wellknown tag, 76, 82

client tag
attributes, 99
configuration file using attributes, 83,

100, 120, 139
service tag

anonymous deployment, 118
attributes, 96
configuration file using attributes, 98,

118
lifecycle management, versioned

SAOs, 235, 238
WellKnownClientTypeEntry class,

496–497
WellKnownObjectMode enumeration, 497
WellKnownServiceTypeEntry class,

495–496
Whidbey, .NET Framework, 151
Windows authentication

enabling, 137
IIS authentication modes, 134

Windows event log, 110
Windows Forms applications

Windows Forms client, 167–169
security, 179, 181

Windows groups, IIS, 149
Windows Management Instrumentation

(WMI)
creating NLB clusters, 298

Windows Network Load Balancing
see NLB

Windows NT challenge/response
see NTLM authentication

Windows services
debugging, 113
deploying server application, 108
hosting remote components, 110
installing service using installutil.exe,

112
integrating remoting in, 108
porting to, 108
security without IIS, 140

■INDEX578

service installer, 109
starting from IDE, 111

WindowsIdentity, 130
WindowsPrincipal, 130, 131
wrapped proxies, 68, 69, 71
wrapper classes

accessing CallContext directly in code, 212
message contents, 327

WSE-DIME
links to web sites, 546

■X
X-Compress header, 372
X-EncryptIV header, 380
X-REMOTING

creating e-mail headers, 425
mapping protocols to .NET Remoting,

443
XML-RPC, 7, 544
XmlNamespace attribute, 241
XmlTypeNamespace attribute, 241

■INDEX 579

