
A
R

M
 A

SSE
M

B
LY LA

N
G

U
A

G
E

Fund
am

entals and
 Techniq

ues

SECOND 
EDITION

Hohl
Hinds

ISBN: 978-1-4822-2985-1

9 781482 229851

90000

K22631

 “Assembly language programming is still the best way to learn about the 
internals of processors and this is one of a very few books that teaches that 
skill for ARM® processors. It covers the necessary material in a well-organized 
manner. Updated for newer versions of ARM processors, it adds good material 
on floating-point arithmetic that was missing from the first edition.” 
         —Ronald W. Mehler, California State University, Northridge, USA

“This text retains the ease of using the ARM7TDMI while moving the 
student [or reader] into the more capable Cortex-M4. …The addition of the 
Cortex-M4 makes this a much stronger text.” 
         —Ralph Tanner, Western Michigan University, Kalamazoo, USA

Delivering a solid introduction to assembly language and embedded 
systems, ARM Assembly Language: Fundamentals and Techniques, Second 
Edition continues to support the popular ARM7TDMI, but also addresses the 
latest architectures from ARM, including Cortex™-A, Cortex-R, and Cortex-M 
processors—all of which have slightly different instruction sets, programmer’s 
models, and exception handling. 

Featuring three brand-new chapters, a new appendix, and expanded 
coverage of the ARM7™, this edition:

       •     Discusses IEEE 754 floating-point arithmetic and explains how to 
program with the IEEE standard notation

       •     Contains step-by-step directions for the use of Keil™ MDK-ARM and 
Texas Instruments (TI) Code Composer Studio™

       •     Provides a resource to be used alongside a variety of hardware 
evaluation modules, such as TI’s Tiva Launchpad, STMicroelectronics’ 
iNemo and Discovery, and NXP Semiconductors’ Xplorer boards

Written by experienced ARM processor designers, ARM Assembly 
Language: Fundamentals and Techniques, Second Edition covers the 
topics essential to writing meaningful assembly programs, making it an ideal 
textbook and professional reference.

Computer Science and Engineering

K22631_COVER_final.indd   1 9/12/14   3:07 PM

www.allitebooks.com

http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


S E C O N D  E D I T I O N

ARM ASSEMBLY
LANGUAGE

Fundamentals and Techniques

www.allitebooks.com

http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


S E C O N D  E D I T I O N

ARM ASSEMBLY
LANGUAGE

Fundamentals and Techniques

William Hohl

Christopher Hinds
ARM, Inc., Austin, Texas

Boca Raton  London  New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

www.allitebooks.com

http://www.allitebooks.org


CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2015 by William Hohl and Christopher Hinds
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20140915

International Standard Book Number-13: 978-1-4822-2986-8 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts 
have been made to publish reliable data and information, but the author and publisher cannot assume 
responsibility for the validity of all materials or the consequences of their use. The authors and publishers 
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to 
copyright holders if permission to publish in this form has not been obtained. If any copyright material has 
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, 
including photocopying, microfilming, and recording, or in any information storage or retrieval system, 
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood 
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and 
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, 
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used 
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

www.allitebooks.com

http://www.allitebooks.org


To our families

www.allitebooks.com

http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


vii

Contents
Preface......................................................................................................................xv
Acknowledgments ...................................................................................................xxi
Authors ................................................................................................................. xxiii

Chapter 1 An Overview of Computing Systems ...................................................1

1.1 Introduction ...............................................................................1
1.2 History of RISC .........................................................................3

1.2.1 ARM Begins ................................................................5
1.2.2 The Creation of ARM Ltd. ...........................................7
1.2.3 ARM Today ..................................................................9
1.2.4 The Cortex Family ..................................................... 10

1.2.4.1 The Cortex-A and Cortex-R Families ......... 10
1.2.4.2 The Cortex-M Family ................................. 11

1.3 The Computing Device ............................................................ 12
1.4 Number Systems ...................................................................... 15
1.5 Representations of Numbers and Characters .......................... 18

1.5.1 Integer Representations .............................................. 18
1.5.2 Floating-Point Representations .................................. 21
1.5.3 Character Representations ..........................................23

1.6 Translating Bits to Commands ................................................24
1.7 The Tools .................................................................................25

1.7.1 Open Source Tools .....................................................27
1.7.2 Keil (ARM) ................................................................27
1.7.3 Code Composer Studio ...............................................28
1.7.4 Useful Documentation ................................................30

1.8 Exercises ..................................................................................30

Chapter 2 The Programmer’s Model .................................................................. 33

2.1 Introduction ............................................................................. 33
2.2 Data Types ............................................................................... 33
2.3 ARM7TDMI ...........................................................................34

2.3.1 Processor Modes ........................................................34
2.3.2 Registers ..................................................................... 35
2.3.3 The Vector Table ........................................................ 38

2.4 Cortex-M4 ................................................................................ 39
2.4.1 Processor Modes ........................................................40
2.4.2 Registers .....................................................................40
2.4.3 The Vector Table ........................................................ 42

2.5 Exercises .................................................................................. 43

www.allitebooks.com

http://www.allitebooks.org


viii Contents

Chapter 3 Introduction to Instruction Sets: v4T and v7-M ................................. 45

3.1 Introduction ............................................................................. 45
3.2 ARM, Thumb, and Thumb-2 Instructions ..............................46
3.3 Program 1: Shifting Data.........................................................46

3.3.1 Running the Code ....................................................... 47
3.3.2 Examining Register and Memory Contents ............... 49

3.4 Program 2: Factorial Calculation ............................................ 51
3.5 Program 3: Swapping Register Contents ................................. 53
3.6 Program 4: Playing with Floating-Point Numbers ..................54
3.7 Program 5: Moving Values between Integer and Floating-

Point Registers ......................................................................... 55
3.8 Programming Guidelines ........................................................ 56
3.9 Exercises .................................................................................. 57

Chapter 4 Assembler Rules and Directives ......................................................... 59

4.1 Introduction ............................................................................. 59
4.2 Structure of Assembly Language Modules ............................. 59
4.3 Predefined Register Names ..................................................... 63
4.4 Frequently Used Directives ..................................................... 63

4.4.1 Defining a Block of Data or Code .............................. 63
4.4.1.1 Keil Tools ....................................................64
4.4.1.2 Code Composer Studio Tools .....................65

4.4.2 Register Name Definition ...........................................66
4.4.2.1 Keil Tools ....................................................66
4.4.2.2 Code Composer Studio ...............................66

4.4.3 Equating a Symbol to a Numeric Constant ................66
4.4.3.1 Keil Tools .................................................... 67
4.4.3.2 Code Composer Studio ............................... 67

4.4.4 Declaring an Entry Point ............................................ 67
4.4.5 Allocating Memory and Specifying Contents ...........68

4.4.5.1 Keil Tools ....................................................68
4.4.5.2 Code Composer Studio ...............................69

4.4.6 Aligning Data or Code to Appropriate Boundaries ......70
4.4.6.1 Keil Tools .................................................... 70
4.4.6.2 Code Composer Studio ............................... 71

4.4.7 Reserving a Block of Memory ................................... 71
4.4.7.1 Keil Tools .................................................... 71
4.4.7.2 Code Composer Studio ............................... 71

4.4.8 Assigning Literal Pool Origins .................................. 72
4.4.9 Ending a Source File .................................................. 72

4.5 Macros ..................................................................................... 73
4.6 Miscellaneous Assembler Features ......................................... 74

4.6.1 Assembler Operators .................................................. 74
4.6.2 Math Functions in CCS .............................................. 76

4.7 Exercises ..................................................................................77

www.allitebooks.com

http://www.allitebooks.org


ixContents

Chapter 5 Loads, Stores, and Addressing ........................................................... 79

5.1 Introduction ............................................................................. 79
5.2 Memory ................................................................................... 79
5.3 Loads and Stores: The Instructions ......................................... 83
5.4 Operand Addressing ................................................................88

5.4.1 Pre-Indexed Addressing .............................................88
5.4.2 Post-Indexed Addressing ............................................ 89

5.5 Endianness ............................................................................... 91
5.5.1 Changing Endianness .................................................93
5.5.2 Defining Memory Areas ............................................94

5.6 Bit-Banded Memory ................................................................95
5.7 Memory Considerations ..........................................................96
5.8 Exercises ..................................................................................99

Chapter 6 Constants and Literal Pools .............................................................. 103

6.1 Introduction ........................................................................... 103
6.2 The ARM Rotation Scheme .................................................. 103
6.3 Loading Constants into Registers .......................................... 107
6.4 Loading Constants with MOVW, MOVT ............................. 112
6.5 Loading Addresses into Registers ......................................... 113
6.6 Exercises ................................................................................ 116

Chapter 7 Integer Logic and Arithmetic ........................................................... 119

7.1 Introduction ........................................................................... 119
7.2 Flags and Their Use ............................................................... 119

7.2.1 The N Flag ................................................................ 120
7.2.2 The V Flag ................................................................ 121
7.2.3 The Z Flag ................................................................ 122
7.2.4 The C Flag ................................................................ 123

7.3 Comparison Instructions .......................................................124
7.4 Data Processing Operations .................................................. 125

7.4.1 Boolean Operations .................................................. 126
7.4.2 Shifts and Rotates ..................................................... 127
7.4.3 Addition/Subtraction ................................................ 133
7.4.4 Saturated Math Operations ...................................... 135
7.4.5 Multiplication ........................................................... 137
7.4.6 Multiplication by a Constant .................................... 139
7.4.7 Division .................................................................... 140

7.5 DSP Extensions ..................................................................... 141
7.6 Bit Manipulation Instructions ................................................ 143
7.7 Fractional Notation ................................................................ 145
7.8 Exercises ................................................................................ 150



x Contents

Chapter 8 Branches and Loops ......................................................................... 155

8.1 Introduction ........................................................................... 155
8.2 Branching .............................................................................. 155

8.2.1 Branching (ARM7TDMI) ........................................ 156
8.2.2 Version 7-M Branches .............................................. 160

8.3 Looping.................................................................................. 162
8.3.1 While Loops ............................................................. 162
8.3.2 For Loops ................................................................. 163
8.3.3 Do-While Loops ....................................................... 166

8.4 Conditional Execution ........................................................... 167
8.4.1 v4T Conditional Execution ....................................... 167
8.4.2 v7-M Conditional Execution: The IT Block ............. 169

8.5 Straight-Line Coding ............................................................. 170
8.6 Exercises ................................................................................ 172

Chapter 9 Introduction to Floating-Point: Basics, Data Types, 
and Data Transfer ............................................................................. 175

9.1 Introduction ........................................................................... 175
9.2 A Brief History of Floating-Point in Computing .................. 175
9.3 The Contribution of Floating-Point to the Embedded 

Processor ............................................................................... 178
9.4 Floating-Point Data Types ..................................................... 180
9.5 The Space of Floating-Point Representable Values ............... 183
9.6 Floating-Point Representable Values ..................................... 185

9.6.1 Normal Values .......................................................... 185
9.6.2 Subnormal Values .................................................... 186
9.6.3 Zeros ......................................................................... 188
9.6.4 Infinities.................................................................... 189
9.6.5 Not-a-Numbers (NaNs) ............................................ 190

9.7 The Floating-Point Register File of the Cortex-M4 ............... 192
9.8 FPU Control Registers ........................................................... 193

9.8.1 The Floating-Point Status and Control 
Register, FPSCR ....................................................... 193
9.8.1.1 The Control and Mode Bits ...................... 194
9.8.1.2 The Exception Bits .................................... 195

9.8.2 The Coprocessor Access Control Register, 
CPACR .................................................................. 196

9.9 Loading Data into Floating-Point Registers .......................... 197
9.9.1 Floating-Point Loads and Stores: The 

Instructions ...........................................................197
9.9.2 The VMOV instruction ............................................ 199

9.10 Conversions between Half-Precision and Single-Precision ......201
9.11 Conversions to Non-Floating-Point Formats .........................202

9.11.1 Conversions between Integer and Floating-Point .....203



xiContents

9.11.2 Conversions between Fixed-Point and
 Floating-Point ...........................................................203

9.12 Exercises ................................................................................206

Chapter 10 Introduction to Floating-Point: Rounding and Exceptions...............209

10.1 Introduction ...........................................................................209
10.2 Rounding ...............................................................................209

10.2.1 Introduction to Rounding Modes in the IEEE 
754-2008 Specification ............................................. 211

10.2.2 The roundTiesToEven (RNE) Rounding Mode ........ 212
10.2.3 The Directed Rounding Modes ................................ 214

10.2.3.1 The roundTowardPositive (RP) 
Rounding Mode ........................................ 215

10.2.3.2 The roundTowardNegative (RM) 
Rounding Mode ........................................ 215

10.2.3.3 The roundTowardZero (RZ) Rounding 
Mode ......................................................... 215

10.2.4 Rounding Mode Summary ....................................... 216
10.3 Exceptions ............................................................................. 219

10.3.1 Introduction to Floating-Point Exceptions ............... 219
10.3.2 Exception Handling ..................................................220
10.3.3 Division by Zero .......................................................220
10.3.4 Invalid Operation ..................................................... 222
10.3.5 Overflow ................................................................... 223
10.3.6 Underflow .................................................................225
10.3.7 Inexact Result ...........................................................226

10.4 Algebraic Laws and Floating-Point .......................................226
10.5 Normalization and Cancelation .............................................228
10.6 Exercises ................................................................................ 232

Chapter 11 Floating-Point Data-Processing Instructions ................................... 235

11.1 Introduction ........................................................................... 235
11.2 Floating-Point Data-Processing Instruction Syntax .............. 235
11.3 Instruction Summary ............................................................. 236
11.4 Flags and Their Use ............................................................... 237

11.4.1 Comparison Instructions .......................................... 237
11.4.2 The N Flag ................................................................ 237
11.4.3 The Z Flag ................................................................ 238
11.4.4 The C Flag ................................................................ 238
11.4.5 The V Flag ................................................................ 238
11.4.6 Predicated Instructions, or the Use of the Flags ...... 239
11.4.7 A Word about the IT Instruction .............................. 241

11.5 Two Special Modes................................................................242
11.5.1 Flush-to-Zero Mode .................................................242



xii Contents

11.5.2 Default NaN ............................................................. 243
11.6 Non-Arithmetic Instructions ................................................. 243

11.6.1 Absolute Value ......................................................... 243
11.6.2 Negate ....................................................................... 243

11.7 Arithmetic Instructions .........................................................244
11.7.1 Addition/Subtraction ................................................244
11.7.2 Multiplication and Multiply–Accumulate ................246

11.7.2.1 Multiplication and Negate 
Multiplication .........................................247

11.7.2.2 Chained Multiply–Accumulate ................. 247
11.7.2.3 Fused Multiply–Accumulate .....................250

11.7.3 Division and Square Root......................................... 252
11.8 Putting It All Together: A Coding Example ..........................254
11.9 Exercises ................................................................................ 257

Chapter 12 Tables ................................................................................................ 259

12.1 Introduction ........................................................................... 259
12.2 Integer Lookup Tables ........................................................... 259
12.3 Floating-Point Lookup Tables ...............................................264
12.4 Binary Searches .....................................................................268
12.5 Exercises ................................................................................ 272

Chapter 13 Subroutines and Stacks..................................................................... 275

13.1 Introduction ........................................................................... 275
13.2 The Stack ............................................................................... 275

13.2.1 LDM/STM Instructions ........................................... 276
13.2.2 PUSH and POP ......................................................... 279
13.2.3 Full/Empty Ascending/Descending Stacks .............280

13.3 Subroutines ............................................................................ 282
13.4 Passing Parameters to Subroutines ........................................ 283

13.4.1 Passing Parameters in Registers ............................... 283
13.4.2 Passing Parameters by Reference .............................285
13.4.3 Passing Parameters on the Stack ..............................286

13.5 The ARM APCS ................................................................... 289
13.6 Exercises ................................................................................292

Chapter 14 Exception Handling: ARM7TDMI ..................................................297

14.1 Introduction ...........................................................................297
14.2 Interrupts ...............................................................................297
14.3 Error Conditions .................................................................... 298
14.4 Processor Exception Sequence ..............................................299
14.5 The Vector Table ................................................................... 301
14.6 Exception Handlers ...............................................................303



xiiiContents

14.7 Exception Priorities ...............................................................304
14.8 Procedures for Handling Exceptions .....................................305

14.8.1 Reset Exceptions ......................................................305
14.8.2 Undefined Instructions .............................................306
14.8.3 Interrupts .................................................................. 311

14.8.3.1 Vectored Interrupt Controllers .................. 312
14.8.3.2 More Advanced VICs ............................... 319

14.8.4 Aborts ....................................................................... 319
14.8.4.1 Prefetch Aborts ......................................... 320
14.8.4.2 Data Aborts ............................................... 320

14.8.5 SVCs ......................................................................... 321
14.9 Exercises ................................................................................ 322

Chapter 15 Exception Handling: v7-M ............................................................... 325

15.1 Introduction ........................................................................... 325
15.2 Operation Modes and Privilege Levels ................................. 325
15.3 The Vector Table ................................................................... 330
15.4 Stack Pointers ........................................................................ 331
15.5 Processor Exception Sequence .............................................. 331

15.5.1 Entry ......................................................................... 331
15.5.2 Exit ........................................................................... 333

15.6 Exception Types .................................................................... 333
15.7 Interrupts ............................................................................... 337
15.8 Exercises ................................................................................340

Chapter 16 Memory-Mapped Peripherals ........................................................... 341

16.1 Introduction ........................................................................... 341
16.2 The LPC2104 ......................................................................... 341

16.2.1 The UART ................................................................ 342
16.2.2 The Memory Map .................................................... 343
16.2.3 Configuring the UART ............................................. 345
16.2.4 Writing the Data to the UART ................................. 347
16.2.5 Putting the Code Together ........................................348
16.2.6 Running the Code ..................................................... 349

16.3 The LPC2132 ......................................................................... 349
16.3.1 The D/A Converter ................................................... 350
16.3.2 The Memory Map .................................................... 352
16.3.3 Configuring the D/A Converter ................................ 353
16.3.4 Generating a Sine Wave ........................................... 353
16.3.5 Putting the Code Together ........................................ 354
16.3.6 Running the Code ..................................................... 356

16.4 The Tiva Launchpad .............................................................. 356
16.4.1 General-Purpose I/O ................................................ 359
16.4.2 The Memory Map .................................................... 359



xiv Contents

16.4.3 Configuring the GPIO Pins ...................................... 359
16.4.4 Turning on the LEDs ................................................360
16.4.5 Putting the Code Together ........................................ 362
16.4.6 Running the Code ..................................................... 363

16.5 Exercises ................................................................................ 363

Chapter 17 ARM, Thumb and Thumb-2 Instructions ........................................ 365

17.1 Introduction ........................................................................... 365
17.2 ARM and 16-Bit Thumb Instructions ................................... 365

17.2.1 Differences between ARM and 16-Bit Thumb ........ 369
17.2.2 Thumb Implementation ............................................ 370

17.3 32-Bit Thumb Instructions .................................................... 371
17.4 Switching between ARM and Thumb States ........................ 373
17.5 How to Compile for Thumb .................................................. 375
17.6 Exercises ................................................................................ 377

Chapter 18 Mixing C and Assembly ................................................................... 379

18.1 Introduction ........................................................................... 379
18.2 Inline Assembler .................................................................... 379

18.2.1 Inline Assembly Syntax ........................................... 382
18.2.2 Restrictions on Inline Assembly Operations ............384

18.3 Embedded Assembler ............................................................384
18.3.1 Embedded Assembly Syntax .................................... 386
18.3.2 Restrictions on Embedded Assembly Operations .....387

18.4 Calling between C and Assembly ......................................... 387
18.5 Exercises ................................................................................390

Appendix A: Running Code Composer Studio ................................................. 393

Appendix B: Running Keil Tools ........................................................................ 399

Appendix C: ASCII Character Codes ...............................................................407

Appendix D ...........................................................................................................409

Glossary ................................................................................................................ 415

References ............................................................................................................. 419



xv

Preface
Few industries are as quick to change as those based on technology, and computer 
technology is no exception. Since the First Edition of ARM Assembly Language: 
Fundamentals and Techniques was published in 2009, ARM Limited and its 
many partners have introduced a new family of embedded processors known as 
the Cortex-M family. ARM is well known for applications processors, such as 
the ARM11, Cortex-A9, and the recently announced Cortex-5x families, which 
provide the processing power to modern cell phones, tablets, and home entertain-
ment devices. ARM is also known for real-time processors, such as the Cortex-R4, 
Cortex-R5, and Cortex-R7, used extensively in deeply embedded applications, such 
as gaming consoles, routers and modems, and automotive control systems. These 
applications are often characterized by the presence of a real-time operating system 
(RTOS). However, the Cortex-M family focuses on a well-established market space 
historically occupied by 8-bit and 16-bit processors. These applications differ from 
real-time in that they rarely require an operating system, instead performing one or 
only a few functions over their lifetime. Such applications include game controllers, 
music players, automotive safety systems, smart lighting, connected metering, and 
consumer white goods, to name only a few. These processors are frequently referred 
to as microcontrollers, and a very successful processor in this space was the ubiq-
uitous 8051, introduced by Intel but followed for decades by offerings from numer-
ous vendors. The 68HC11, 68HC12, and 68HC16 families of microcontrollers from 
Motorola were used extensively in the 1980s and 1990s, with a plethora of offerings 
including a wide range of peripherals, memory, and packaging options. The ease 
of programming, availability, and low cost is partly responsible for the addition of 
smart functionality to such common goods as refrigerators and washers/dryers, the 
introduction of airbags to automobiles, and ultimately to the cell phone.

In early applications, a microcontroller operating at 1 MHz would have provided 
more than sufficient processing power for many applications. As product designers 
added more features, the computational requirements increased and the need for 
greater processing power was answered by higher clock rates and more powerful 
processors. By the early 2000s, the ARM7 was a key part of this evolution. The early 
Nokia cell phones and Apple iPods were all examples of systems that performed 
several tasks and required greater processing power than was available in microcon-
trollers of that era. In the case of the cell phone, the processor was controlling the 
user interface (keyboard and screen), the cellular radio, and monitoring the battery 
levels. Oh, and the Snake game was run on the ARM7 as well! In the case of the 
iPod, the ARM7 controlled the user interface and battery monitoring, as with the cell 
phone, and handled the decoding of the MP3 music for playing through headphones. 
With these two devices our world changed forever—ultimately phones would play 
music and music players would make phone calls, and each would have better games 
and applications than Snake!
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In keeping with this trend, the mix of ARM’s processor shipments is changing 
rapidly. In 2009 the ARM7 accounted for 55% of the processor shipments, with 
all Cortex processors contributing only 1%.* By 2012 the ARM7 shipments had 
dropped to 36%, with the Cortex-M family shipments contributing 22%.† This trend 
is expected to continue throughout the decade, as more of the applications that 
historically required only the processing power of an 8-bit or 16-bit system move 
to the greater capability and interoperability of 32-bit systems. This evolution is 
empowering more features in today’s products over those of yesterday. Consider the 
capabilities of today’s smart phone to those of the early cell phones! This increase 
is made possible by the significantly greater computing power available in roughly 
the same size and power consumption of the earlier devices. Much of the increase 
comes through the use of multiple processors. While early devices were capable 
of including one processor in the system, today’s systems include between 2 and 8 
processors, often different classes of processors from different processor families, 
each performing tasks specific to that processor’s capabilities or as needed by the 
system at that time. In today’s System-on-Chip (SoC) environment, it is common 
to include both application processors and microcontrollers in the same device. 
As an example, the Texas Instruments OMAP5 contains a dual-core Cortex-A15 
application processor and two Cortex-M4 microcontrollers. Development on such a 
system involves a single software development system for both the Cortex-A15 and 
the Cortex-M4 processors. Having multiple chips from different processor families 
and vendors adds to the complexity, while developing with processors all speaking 
the same language and from the same source greatly simplifies the development.

All this brings us back to the issue raised in the first edition of this book. Why 
should engineers and programmers spend time learning to program in assembly 
language? The reasons presented in the first edition are as valid today as in 2009, 
perhaps even more so. The complexity of the modern SoCs presents challenges in 
communications between the multiple processors and peripheral devices, challenges 
in optimization of the sub-systems for performance and power consumption, and 
challenges in reducing costs by efficient use of memory. Knowledge of the assembly 
language of the processors, and the insight into the operation of the processors that 
such knowledge provides, is often the key to the timely and successful completion of 
these tasks and launch of the product. Further, in the drive for performance, both in 
speed of the product to the user and in a long battery life, augmenting the high-level 
language development with targeted use of hand-crafted assembly language will 
prove highly valuable—but we don’t stop here. Processor design remains a highly 
skilled art in which a thorough knowledge of assembly language is essential. The 
same is true for those tasked with compiler design, creating device drivers for the 
peripheral subsystems, and those producing optimized library routines. High quality 
compilers, drivers, and libraries contribute directly to performance and development 
time. Here a skilled programmer or system designer with a knowledge of assembly 
language is a valuable asset.

* ARM 2009 Annual Report, www. arm. com/ annualreport09/ business- review
† ARM 2012 Annual Report, see www. arm. com
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In the second edition, we focus on the Cortex-M4 microcontroller in addition 
to the ARM7TDMI. While the ARM7TDMI still outsells the Cortex-M family, 
we believe the Cortex-M family will soon overtake it, and in new designs this is 
certainly true. The Cortex-M4 family is the first ARM microcontroller to incor-
porate optional hardware floating-point. Chapter 9 introduces floating-point com-
putation and contrasts it with integer computation. We present the floating-point 
standard of 1985, IEEE 754-1985, and the recent revision to the standard, the 
IEEE 754-2008, and discuss some of the issues in the use of floating-point which 
are not present in integer computation. In many of the chapters, floating-point 
instructions will be included where their usage would present a difference from 
that of integer usage. As an example, the floating-point instructions use a separate 
register file from the integer register file, and the instructions which move data 
between memory and these registers will be discussed in Chapters 3, 9, and 12. 
Example programs are repeated with floating-point instructions to show differ-
ences in usage, and new programs are added which focus on specific aspects of 
floating-point computation. While we will discuss floating-point at some length, 
we will not exhaust the subject, and where useful we will point the reader to other 
references.

The focus of the book remains on second- or third-year undergraduate students 
in the field of computer science, computer engineering, or electrical engineering. 
As with the first edition, some background in digital logic and arithmetic, high-
level programming, and basic computer operation is valuable, but not necessary. 
We retain the aim of providing not only a textbook for those interested in assembly 
language, but a reference for coding in ARM assembly language, which ultimately 
helps in using any assembly language.

In this edition we also include an introduction to Code Composer Studio (from 
Texas Instruments) alongside the Keil RealView Microcontroller Development 
Kit. Appendices A and B cover the steps involved in violating just about every 
programming rule, so that simple assembly programs can be run in an otherwise 
advanced simulation environment. Some of the examples will be simulated using 
one of the two tools, but many can be executed on an actual hardware platform, 
such as a Tiva™ Launchpad from TI. Code specifically for the Tiva Launchpad will 
be covered in Chapter 16. In the first edition, we included a copy of the ARM v4T 
Instruction Set as Appendix A. To do so and include the ARM Thumb-2 and ARM 
FPv4-SP instruction sets of the Cortex-M4 would simply make the book too large. 
Appropriate references are highlighted in Section 1.7.4, all of which can be found on 
ARM’s and TI’s websites.

The first part of the book introduces students to some of the most basic ideas about 
computing. Chapter 1 is a very brief overview of computing systems in general, with 
a brief history of ARM included in the discussion of RISC architecture. This chap-
ter also includes an overview of number systems, which should be stressed heavily 
before moving on to any further sections. Floating-point notation is mentioned here, 
but there are three later chapters dedicated to floating-point details. Chapter 2 gives 
a shortened description of the programmer’s model for the ARM7TDMI and the 
Cortex-M4—a bit like introducing a new driver to the clutch, gas pedal, and steering 
wheel, so it’s difficult to do much more than simply present it and move on. Some 
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simple programs are presented in Chapter 3, mostly to get code running with the 
tools, introduce a few directives, and show what ARM and Thumb-2 instructions 
look like. Chapter 4 presents most of the directives that students will immediately 
need if they use either the Keil tools or Code Composer Studio. It is not intended to 
be memorized.

The next chapters cover topics that need to be learned thoroughly to write any 
meaningful assembly programs. The bulk of the load and store instructions are 
examined in Chapter 5, with the exception of load and store multiple instructions, 
which are held until Chapter 13. Chapter 6 discusses the creation of constants in 
code, and how to create and deal with literal pools. One of the bigger chapters is 
Chapter 7, Logic and Arithmetic, which covers all the arithmetic operations, includ-
ing an optional section on fractional notation. As this is almost never taught to under-
graduates, it’s worth introducing the concepts now, particularly if you plan to cover 
floating-point. If the course is tight for time, you may choose to skip this section; 
however, the subject is mentioned in other chapters, particularly Chapter 12 when a 
sine table is created and throughout the floating-point chapters. Chapter 8 highlights 
the whole issue of branching and looks at conditional execution in detail. Now that 
the Cortex-M4 has been added to the mix, the IF-THEN constructs found in the 
Thumb-2 instruction set are also described.

Having covered the basics, Chapters 9 through 11 are dedicated to floating-point, 
particularly the formats, registers used, exception types, and instructions needed for 
working with single-precision and half-precision numbers found on the Cortex-M4 
with floating-point hardware. Chapter 10 goes into great detail about rounding 
modes and exception types. Chapter 11 looks at the actual uses of floating-point 
in code—the data processing instructions—pointing out subtle differences between 
such operations as chained and fused multiply accumulate. The remaining chapters 
examine real uses for assembly and the situations that programmers will ultimately 
come across. Chapter 12 is a short look at tables and lists, both integer and floating-
point. Chapter 13, which covers subroutines and stacks, introduces students to the 
load and store multiple instructions, along with methods for passing parameters to 
functions. Exceptions and service routines for the ARM7TDMI are introduced in 
Chapter 14, while those for v7-M processors are introduced in Chapter 15. Since the 
book leans toward the use of microcontroller simulation models, Chapter 16 intro-
duces peripherals and how they’re programmed, with one example specifically tar-
geted at real hardware. Chapter 17 discusses the three different instruction sets that 
now exist—ARM, Thumb, and Thumb-2. The last topic, mixing C and assembly, is 
covered in Chapter 18 and may be added if students are interested in experimenting 
with this technique.

Ideally, this book would serve as both text and reference material, so Appendix 
A explains the use of Code Composer Studio tools in the creation of simple 
assembly programs. Appendix B has an introduction to the use of the RealView 
Microcontroller Development Kit from Keil, which can be found online at http:/ / 
www. keil. com/ demo.  This is certainly worth covering before you begin coding. The 
ASCII character set is listed in Appendix C, and a complete program listing for an 
example found in Chapter 15 is given as Appendix D.
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A one-semester (16-week) course should be able to cover all of Chapters 1 through 
8. Depending on how detailed you wish to get, Chapters 12 through 16 should be 
enough to round out an undergraduate course. Thumb and Thumb-2 can be left off 
or covered as time permits. A two-semester sequence could cover the entire book, 
including the harder floating-point chapters (9 through 11), with more time allowed 
for writing code from the exercises.
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1

An Overview of 
Computing Systems

1.1 INTRODUCTION

Most users of cellular telephones don’t stop to consider the enormous amount of 
effort that has gone into designing an otherwise mundane object. Lurking beneath 
the display, below the user’s background picture of his little boy holding a balloon, 
lies a board containing circuits and wires, algorithms that took decades to refine 
and implement, and software to make it all work seamlessly together. What exactly 
is happening in those circuits? How do such things actually work? Consider a mod-
ern tablet, considered a fictitious device only years ago, that displays live television, 
plays videos, provides satellite navigation, makes international Skype calls, acts as 
a personal computer, and contains just about every interface known to man (e.g., 
USB, Wi-Fi, Bluetooth, and Ethernet), as shown in Figure 1.1. Gigabytes of data 
arrive to be viewed, processed, or saved, and given the size of these hand-held 
devices, the burden of efficiency falls to the designers of the components that lie 
within them.

Underneath the screen lies a printed circuit board (PCB) with a number of indi-
vidual components on it and probably at least two system-on-chips (SoCs). A SoC 
is nothing more than a combination of processors, memory, and graphics chips that 
have been fabricated in the same package to save space and power. If you further 
examine one of the SoCs, you will find that within it are two or three specialized 
microprocessors talking to graphics engines, floating-point units, energy manage-
ment units, and a host of other devices used to move information from one device to 
another. The Texas Instruments (TI) TMS320DM355 is a good example of a modern 
SoC, shown in Figure 1.2.

System-on-chip designs are becoming increasingly sophisticated, where engi-
neers are looking to save both money and time in their designs. Imagine having to 
produce the next generation of our hand-held device—would it be better to reuse 
some of our design, which took nine months to build, or throw it out and spend 
another three years building yet another, different SoC? Because the time allotted 
to designers for new products shortens by the increasing demand, the trend in indus-
try is to take existing designs, especially designs that have been tested and used 
heavily, and build new products from them. These tested designs are examples of 
“intellectual property”—designs and concepts that can be licensed to other com-
panies for use in large projects. Rather than design a microprocessor from scratch, 
companies will take a known design, something like a Cortex-A57 from ARM, and 
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build a complex system around it. Moreover, pieces of the project are often designed 
to comply with certain standards so that when one component is changed, say our 
newest device needs a faster microprocessor, engineers can reuse all the surrounding 
devices (e.g., MPEG decoders or graphics processors) that they spent years design-
ing. Only the microprocessor is swapped out.
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FIGURE 1.2 The TMS320DM355 System-on-Chip from Texas Instruments. (From Texas 
Instruments. With permission.)

FIGURE 1.1 Handheld wireless communicator.
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This idea of building a complete system around a microprocessor has even spilled 
into the microcontroller industry. A microprocessor can be seen as a computing 
engine with no peripherals. Very simple processors can be combined with useful 
extras such as timers, universal asynchronous receiver/transmitters (UARTs), or 
analog-to-digital (A/D) converters to produce a microcontroller, which tends to be 
a very low-cost device for use in industrial controllers, displays, automotive applica-
tions, toys, and hundreds of other places one normally doesn’t expect to find a com-
puting engine. As these applications become more demanding, the microcontrollers 
in them become more sophisticated, and off-the-shelf parts today surpass those 
made even a decade ago by leaps and bounds. Even some of these designs are based 
on the notion of keeping the system the same and replacing only the microprocessor 
in the middle.

1.2 HISTORY OF RISC

Even before computers became as ubiquitous as they are now, they occupied a 
place in students’ hearts and a place in engineering buildings, although it was 
usually under the stairs or in the basement. Before the advent of the personal com-
puter, mainframes dominated the 1980s, with vendors like Amdahl, Honeywell, 
Digital Equipment Corporation (DEC), and IBM fighting it out for top billing in 
engineering circles. One need only stroll through the local museum these days for 
a glimpse at the size of these machines. Despite all the circuitry and fans, at the 
heart of these machines lay processor architectures that evolved from the need 
for faster operations and better support for more complicated operating systems. 
The DEC VAX series of minicomputers and superminis—not quite mainframes, 
but larger than minicomputers—were quite popular, but like their contemporary 
architectures, the IBM System/38, Motorola 68000, and the Intel iAPX-432, they 
had processors that were growing more complicated and more difficult to design 
efficiently. Teams of engineers would spend years trying to increase the proces-
sor’s frequency (clock rate), add more complicated instructions, and increase the 
amount of data that it could use. Designers are doing the same thing today, except 
most modern systems also have to watch the amount of power consumed, espe-
cially in embedded designs that might run on a single battery. Back then, power 
wasn’t as much of an issue as it is now—you simply added larger fans and even 
water to compensate for the extra heat!

The history of Reduced Instruction Set Computers (RISC) actually goes back 
quite a few years in the annals of computing research. Arguably, some early work in 
the field was done in the late 1960s and early 1970s by IBM, Control Data Corporation 
and Data General. In 1981 and 1982, David Patterson and Carlo Séquin, both at the 
University of California, Berkeley, investigated the possibility of building a proces-
sor with fewer instructions (Patterson and Sequin 1982; Patterson and Ditzel 1980), 
as did John Hennessy at Stanford (Hennessy et  al. 1981) around the same time. 
Their goal was to create a very simple architecture, one that broke with traditional 
design techniques used in Complex Instruction Set Computers (CISCs), e.g., using 
microcode (defined below) in the processor; using instructions that had different 



4 ARM Assembly Language

lengths; supporting complex, multi-cycle instructions, etc. These new architectures 
would produce a processor that had the following characteristics:

• All instructions executed in a single cycle. This was unusual in that many 
instructions in processors of that time took multiple cycles. The trade-off 
was that an instruction such as MUL (multiply) was available without hav-
ing to build it from shift/add operations, making it easier for a program-
mer, but it was more complicated to design the hardware. Instructions in 
mainframe machines were built from primitive operations internally, but 
they were not necessarily faster than building the operation out of simpler 
instructions. For example, the VAX processor actually had an instruction 
called INDEX that would take longer than if you were to write the opera-
tion in software out of simpler commands!

• All instructions were the same size and had a fixed format. The Motorola 
68000 was a perfect example of a CISC, where the instructions themselves 
were of varying length and capable of containing large constants along with 
the actual operation. Some instructions were 2 bytes, some were 4 bytes. 
Some were longer. This made it very difficult for a processor to decode the 
instructions that got passed through it and ultimately executed.

• Instructions were very simple to decode. The register numbers needed for 
an operation could be found in the same place within most instructions. 
Having a small number of instructions also meant that fewer bits were 
required to encode the operation.

• The processor contained no microcode. One of the factors that complicated 
processor design was the use of microcode, which was a type of “software” 
or commands within a processor that controlled the way data moved inter-
nally. A simple instruction like MUL (multiply) could consist of dozens of 
lines of microcode to make the processor fetch data from registers, move 
this data through adders and logic, and then finally move the product into 
the correct register or memory location. This type of design allowed fairly 
complicated instructions to be created—a VAX instruction called POLY, 
for example, would compute the value of an nth-degree polynomial for an 
argument x, given the location of the coefficients in memory and a degree 
n. While POLY performed the work of many instructions, it only appeared 
as one instruction in the program code.

• It would be easier to validate these simpler machines. With each new gen-
eration of processor, features were always added for performance, but that 
only complicated the design. CISC architectures became very difficult to 
debug and validate so that manufacturers could sell them with a high degree 
of confidence that they worked as specified.

• The processor would access data from external memory with explicit 
instructions—Load and Store. All other data operations, such as adds, sub-
tracts, and logical operations, used only registers on the processor. This dif-
fered from CISC architectures where you were allowed to tell the processor 
to fetch data from memory, do something to it, and then write it back to 
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memory using only a single instruction. This was convenient for the pro-
grammer, and especially useful to compilers, but arduous for the processor 
designer.

• For a typical application, the processor would execute more code. Program 
size was expected to increase because complicated operations in older 
architectures took more RISC instructions to complete the same task. In 
simulations using small programs, for example, the code size for the first 
Berkeley RISC architecture was around 30% larger than the code com-
piled for a VAX 11/780. The novel idea of a RISC architecture was that 
by making the operations simpler, you could increase the processor fre-
quency to compensate for the growth in the instruction count. Although 
there were more instructions to execute, they could be completed more 
quickly.

Turn the clock ahead 33 years, and these same ideas live on in most all modern 
processor designs. But as with all commercial endeavors, there were good RISC 
machines that never survived. Some of the more ephemeral designs included DEC’s 
Alpha, which was regarded as cutting-edge in its time; the 29000 family from AMD; 
and Motorola’s 88000 family, which never did well in industry despite being a fairly 
powerful design. The acronym RISC has definitely evolved beyond its own moni-
ker, where the original idea of a Reduced Instruction Set, or removing complicated 
instructions from a processor, has been buried underneath a mountain of new, albeit 
useful instructions. And all manufacturers of RISC microprocessors are guilty of 
doing this. More and more operations are added with each new generation of proces-
sor to support the demanding algorithms used in modern equipment. This is referred 
to as “feature creep” in the industry. So while most of the RISC characteristics found 
in early processors are still around, one only has to compare the original Berkeley 
RISC-1 instruction set (31 instructions) or the second ARM processor (46 opera-
tions) with a modern ARM processor (several hundred instructions) to see that the 
“R” in RISC is somewhat antiquated. With the introduction of Thumb-2, to be dis-
cussed throughout the book, even the idea of a fixed-length instruction set has gone 
out the window!

1.2.1 ARM Begins

The history of ARM Holdings PLC starts with a now-defunct company called 
Acorn Computers, which produced desktop PCs for a number of years, primar-
ily adopted by the educational markets in the UK. A plan for the successor to the 
popular BBC Micro, as it was known, included adding a second processor alongside 
its 6502 microprocessor via an interface called the “Tube”. While developing an 
entirely new machine, to be called the Acorn Business Computer, existing archi-
tectures such as the Motorola 68000 were considered, but rather than continue to 
use the 6502 microprocessor, it was decided that Acorn would design its own. Steve 
Furber, who holds the position of ICL Professor of Computer Engineering at the 
University of Manchester, and Sophie Wilson, who wrote the original instruction 
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set, began working within the Acorn design team in October 1983, with VLSI 
Technology (bought later by Philips Semiconductor, now called NXP) as the sili-
con partner who produced the first samples. The ARM1 arrived back from the fab 
on April 26, 1985, using less than 25,000 transistors, which by today’s standards 
would be fewer than the number found in a good integer multiplier. It’s worth not-
ing that the part worked the first time and executed code the day it arrived, which 
in that time frame was quite extraordinary. Unless you’ve lived through the evolu-
tion of computing, it’s also rather important to put another metric into context, 
lest it be overlooked—processor speed. While today’s desktop processors routinely 
run between 2 and 3.9 GHz in something like a 22 nanometer process, embedded 
processors typically run anywhere from 50 MHz to about 1 GHz, partly for power 
considerations. The original ARM1 was designed to run at 4 MHz (note that this is 
three orders of magnitude slower) in a 3 micron process! Subsequent revisions to the 
architecture produced the ARM2, as shown in Figure 1.3. While the processor still 
had no caches (on-chip, localized memory) or memory management unit (MMU), 
multiply and multiply-accumulate instructions were added to increase performance, 
along with a coprocessor interface for use with an external floating-point accelera-
tor. More registers for handling interrupts were added to the architecture, and one 
of the effective address types was actually removed. This microprocessor achieved 
a typical clock speed of 12 MHz in a 2 micron process. Acorn used the device in 
the new Archimedes desktop PC, and VLSI Technology sold the device (called the 
VL86C010) as part of a processor chip set that also included a memory controller, 
a video controller, and an I/O controller.

FIGURE 1.3 ARM2 microprocessor.
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1.2.2 The CReATion of ARM LTd.

In 1989, the dominant desktop architectures, the 68000 family from Motorola and 
the x86 family from Intel, were beginning to integrate memory management units, 
caches, and floating-point units on board the processor, and clock rates were going 
up—25 MHz in the case of the first 68040. (This is somewhat misleading, as this 
processor used quadrature clocks, meaning clocks that are derived from overlapping 
phases of two skewed clocks, so internally it was running at twice that frequency.) To 
compete in this space, the ARM3 was developed, complete with a 4K unified cache, 
also running at 25 MHz. By this point, Acorn was struggling with the dominance of 
the IBM PC in the market, but continued to find sales in education, specialist, and 
hobbyist markets. VLSI Technology, however, managed to find other companies will-
ing to use the ARM processor in their designs, especially as an embedded processor, 
and just coincidentally, a company known mostly for its personal computers, Apple, 
was looking to enter the completely new field of personal digital assistants (PDAs).

Apple’s interest in a processor for its new device led to the creation of an entirely 
separate company to develop it, with Apple and Acorn Group each holding a stake, 
and Robin Saxby (now Sir Robin Saxby) being appointed as managing director. The 
new company, consisting of money from Apple, twelve Acorn engineers, and free 
tools from VLSI Technology, moved into a new building, changed the name of the 
architecture from Acorn RISC Machine to Advanced RISC Machine, and developed 
a completely new business model. Rather than selling the processors, Advanced 
RISC Machines Ltd. would sell the rights to manufacture its processors to other 
companies, and in 1990, VLSI Technology would become the first licensee. Work 
began in earnest to produce a design that could act as either a standalone processor 
or a macrocell for larger designs, where the licensees could then add their own logic 
to the processor core. After making architectural extensions, the numbering skipped 
a few beats and moved on to the ARM6 (this was more of a marketing decision than 
anything else). Like its competition, this processor now included 32-bit addressing 
and supported both big- and little-endian memory formats. The CPU used by Apple 
was called the ARM610, complete with the ARM6 core, a 4K cache, a write buf-
fer, and an MMU. Ironically, the Apple PDA (known as the Newton) was slightly 
ahead of its time and did quite poorly in the market, partly because of its price and 
partly because of its size. It wouldn’t be until the late 1990s that Apple would design 
a device based on an ARM7 processor that would fundamentally change the way 
people viewed digital media—the iPod.

The ARM7 processor is where this book begins. Introduced in 1993, the design 
was used by Acorn for a new line of computers and by Psion for a new line of PDAs, 
but it still lacked some of the features that would prove to be huge selling points for 
its successor—the ARM7TDMI, shown in Figure 1.4. While it’s difficult to imag-
ine building a system today without the ability to examine the processor’s registers, 
the memory system, your C++ source code, and the state of the processor all in a 
nice graphical interface, historically, debugging a part was often very difficult and 
involved adding large amounts of extra hardware to a system. The ARM7TDMI 
expanded the original ARM7 design to include new hardware specifically for an 
external debugger (the initials “D” and “I” stood for Debug and ICE, or In-Circuit 
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Emulation, respectively), making it much easier and less expensive to build and test a 
complete system. To increase performance in embedded systems, a new, compressed 
instruction set was created. Thumb, as it was called, gave software designers the 
flexibility to either put more code into the same amount of memory or reduce the 
amount of memory needed for a given design. The burgeoning cell phone industry 
was quite keen to use this new feature, and consequently began to heavily adopt the 
ARM7TDMI for use in mobile handsets. The initial “M” reflected a larger hardware 
multiplier in the datapath of the design, making it suitable for all sorts of digital signal 
processing (DSP) algorithms. The combination of a small die area, very low power, 
and rich instruction set made the ARM7TDMI one of ARM’s best-selling processors, 
and despite its age, continues to be used heavily in modern embedded system designs. 
All of these features have been used and improved upon in subsequent designs.

Throughout the 1990s, ARM continued to make improvements to the archi-
tecture, producing the ARM8, ARM9, and ARM10 processor cores, along with 
derivatives of these cores, and while it’s tempting to elaborate on these designs, the 
discussion could easily fill another textbook. However, it is worth mentioning some 
highlights of this decade. Around the same time that the ARM9 was being devel-
oped, an agreement with Digital Equipment Corporation allowed it to produce its 
own version of the ARM architecture, called StrongARM, and a second version was 
slated to be produced alongside the design of the ARM10 (they would be the same 
processor). Ultimately, DEC sold its design group to Intel, who then decided to con-
tinue the architecture on its own under the brand XScale. Intel produced a second 
version of its design, but has since sold this design to Marvell. Finally, on a corporate 
note, in 1998 ARM Holdings PLC was floated on the London and New York Stock 
Exchanges as a publicly traded company.
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In the early part of the new century, ARM released several new processor lines, 
including the ARM11 family, the Cortex family, and processors for multi-core and 
secure applications. The important thing to note about all of these processors, from 
a programmer’s viewpoint anyway, is the version. From Figure 1.5, you can see that 
while there are many different ARM cores, the version precisely defines the instruc-
tion set that each core executes. Other salient features such as the memory architec-
ture, Java support, and floating-point support come mostly from the individual cores. 
For example, the ARM1136JF-S is a synthesizable processor, one that supports both 
floating-point and Java in hardware; however, it supports the version 6 instruction 
set, so while the implementation is based on the ARM11, the instruction set archi-
tecture (ISA) dictates which instructions the compiler is allowed to use. The focus 
of this book is the ARM version 4T and version 7-M instruction sets, but subsequent 
sets can be learned as needed.

1.2.3 ARM TodAy

By 2002, there were about 1.3 billion ARM-based devices in myriad products, but 
mostly in cell phones. By this point, Nokia had emerged as a dominant player in 
the mobile handset market, and ARM was the processor powering these devices. 
While TI supplied a large portion of the cellular market’s silicon, there were other 
ARM partners doing the same, including Philips, Analog Devices, LSI Logic, 

APPLICATION
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Cortex-M1 Cortex-M4

Cortex-M3 Cortex-A53

Cortex-A57

Cortex-M0

SC300

Cortex-R5

Cortex-R4

ARM 32-bit ISA ARM

AArch64

�umb 16-bit ISA �umb 16-bit ISA

�umb-2 �umb-2

Cortex-A5

Cortex-A8

ARM11MP

ARM1176ARM926

ARM968

ARM946ARM7TDMI

SC100

v4

v5

v6

v6-M

v7

v7-M v8

ARM1136

ARM1156T2

Cortex-A9

Cortex-A12

Cortex-A15

EMBEDDED

CLASSIC

FIGURE 1.5 Architecture versions.
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PrairieComm, and Qualcomm, with the ARM7 as the primary processor in the 
offerings (except TI’s OMAP platform, which was based on the ARM9).

Application Specific Integrated Circuits (ASICs) require more than just a proces-
sor core—they require peripheral logic such as timers and USB interfaces, standard 
cell libraries, graphics engines, DSPs, and a bus structure to tie everything together. 
To move beyond just designing processor cores, ARM began acquiring other com-
panies focusing on all of these specific areas. In 2003, ARM purchased Adelante 
Technologies for data engines (DSP processors, in effect). In 2004, ARM purchased 
Axys Design Automation for new hardware tools and Artisan Components for stan-
dard cell libraries and memory compilers. In 2005, ARM purchased Keil Software 
for microcontroller tools. In 2006, ARM purchased Falanx for 3D graphics accel-
erators and SOISIC for silicon-on-insulator technology. All in all, ARM grew quite 
rapidly over six years, but the ultimate goal was to make it easy for silicon partners 
to design an entire system-on-chip architecture using ARM technology.

Billions of ARM processors have been shipped in everything from digital cam-
eras to smart power meters. In 2012 alone, around 8.7 billion ARM-based chips 
were created by ARM’s partners worldwide. Average consumers probably don’t real-
ize how many devices in their pockets and their homes contain ARM-based SoCs, 
mostly because ARM, like the silicon vendor, does not receive much attention in the 
finished product. It’s unlikely that a Nokia cell phone user thinks much about the fact 
that TI provided the silicon and that ARM provided part of the design.

1.2.4 The CoRTex fAMiLy

Due to the radically different requirements of embedded systems, ARM decided to 
split the processor cores into three distinct families, where the end application now 
determines both the nature and the design of the processors, but all of them go by 
the trade name of Cortex. The Cortex-A, Cortex-R, and Cortex-M families continue 
to add new processors each year, generally based on performance requirements as 
well as the type of end application the cores are likely to see. A very basic cell phone 
doesn’t have the same throughput requirements as a smartphone or a tablet, so a 
Cortex-A5 might work just fine, whereas an infotainment system in a car might need 
the ability to digitally sample and process very large blocks of data, forcing the SoC 
designer to build a system out of two or four Cortex-A15 processors. The controller 
in a washing machine wouldn’t require a 3 GHz processor that costs eight dollars, 
so a very lightweight Cortex-M0 solves the problem for around 70 cents. As we 
explore the older version 4T instructions, which operate seamlessly on even the most 
advanced Cortex-A and Cortex-R processors, the Cortex-M architecture resembles 
some of the older microcontrollers in use and requires a bit of explanation, which 
we’ll provide throughout the book.

1.2.4.1 The Cortex-A and Cortex-R Families
The Cortex-A line of cores focuses on high-end applications such as smart phones, 
tablets, servers, desktop processors, and other products which require significant com-
putational horsepower. These cores generally have large caches, additional arithme-
tic blocks for graphics and floating-point operations, and memory management units 
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to support large operating systems, such as Linux, Android, and Windows. At the 
high end of the computing spectrum, these processors are also likely to support sys-
tems containing multiple cores, such as those found in servers and wireless base sta-
tions, where you may need up to eight processors at once. The 32-bit Cortex-A family 
includes the Cortex-A5, A7, A8, A9, A12, and A15 cores. Newer, 64-bit architectures 
include the A57 and A53 processors. In many designs, equipment manufacturers build 
custom solutions and do not use off-the-shelf SoCs; however, there are quite a few 
commercial parts from the various silicon vendors, such as Freescale’s i.MX line based 
around the Cortex-A8 and A9; TI’s Davinci and Sitara lines based on the ARM9 and 
Cortex-A8; Atmel’s SAMA5D3 products based on the Cortex-A5; and the OMAP and 
Keystone multi-core solutions from TI based on the Cortex-A15. Most importantly, 
there are very inexpensive evaluation modules for which students and instructors can 
write and test code, such as the Beaglebone Black board, which uses the Cortex-A8.

The Cortex-R cores (R4, R5, and R7) are designed for those applications where 
real-time and/or safety constraints play a major role; for example, imagine an embed-
ded processor designed within an anti-lock brake system for automotive use. When 
the driver presses on the brake pedal, the system is expected to have completely 
deterministic behavior—there should be no guessing as to how many cycles it might 
take for the processor to acknowledge the fact that the brake pedal has been pressed! 
In complex systems, a simple operation like loading multiple registers can introduce 
unpredictable delays if the caches are turned on and an interrupt comes in at the just 
the wrong time. Safety also plays a role when considering what might happen if a 
processor fails or becomes corrupted in some way, and the solution involves build-
ing redundant systems with more than one processor. X-ray machines, CT scan-
ners, pacemakers, and other medical devices might have similar requirements. These 
cores are also likely to be asked to work with operating systems, large memory 
systems, and a wide variety of peripherals and interfaces, such as Bluetooth, USB, 
and Ethernet. Oddly enough, there are only a handful of commercial offerings right 
now, along with their evaluation platforms, such as TMS570 and RM4 lines from TI.

1.2.4.2 The Cortex-M Family
Finally, the Cortex-M line is targeted specifically at the world of microcontrollers, 
parts which are so deeply embedded in systems that they often go unnoticed. Within 
this family are the Cortex-M0, M0+, M1, M3, and M4 cores, which the silicon ven-
dors then take and use to build their own brand of off-the-shelf controllers. As the 
much older, 8-bit microcontroller space moves into 32-bit processing, for controlling 
car seats, displays, power monitoring, remote sensors, and industrial robotics, indus-
try requires a variety of microcontrollers that cost very little, use virtually no power, 
and can be programmed quickly. The Cortex-M family has surfaced as a very popu-
lar product with silicon vendors: in 2013, 170 licenses were held by 130 companies, 
with their parts costing anywhere from two dollars to twenty cents. The Cortex-M0 
is the simplest, containing only a core, a nested vectored interrupt controller (NVIC), 
a bus interface, and basic debug logic. Its tiny size, ultra-low gate count, and small 
instruction set (only 56 instructions) make it well suited for applications that only 
require a basic controller. Commercial parts include the LPC1100 line from NXP, 
and the XMC1000 line from Infineon. The Cortex-M0+ is similar to the M0, with 
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the addition of a memory protection unit (MPU), a relocatable vector table, a single-
cycle I/O interface for faster control, and enhanced debug logic. The Cortex-M1 was 
designed specifically for FPGA implementations, and contains a core, instruction-
side and data-side tightly coupled memory (TCM) interfaces, and some debug logic. 
For those controller applications that require fast interrupt response times, the abil-
ity to process signals quickly, and even the ability to boot a small operating system, 
the Cortex-M3 contains enough logic to handle such requirements. Like its smaller 
cousins, the M3 contains an NVIC, MPU, and debug logic, but it has a richer instruc-
tion set, an SRAM and peripheral interface, trace capability, a hardware divider, and 
a single-cycle multiplier array. The Cortex-M4 goes further, including additional 
instructions for signal processing algorithms; the Cortex-M4 with optional floating-
point hardware stretches even further with additional support for single-precision 
floating-point arithmetic, which we’ll examine in Chapters 9, 10, and 11. Some 
commercial parts offering the Cortex-M4 include the SAM4SD32 controllers from 
Atmel, the Kinetis family from Freescale, and the Tiva C series from TI, shown in 
its evaluation module in Figure 1.6.

1.3 THE COMPUTING DEVICE

More definitions are probably in order before we start speaking of processors, pro-
grams, and bits. At the most fundamental level, we can look at machines that are 
given specific instructions or commands through any number of mechanisms—
paper tape, switches, or magnetic materials. The machine certainly doesn’t have to 
be electronic to be considered. For example, in 1804 Joseph Marie Jacquard invented 
a way to weave designs into fabric by controlling the warp and weft threads on a silk 
loom with cards that had holes punched in them. Those same cards were actually 
modified (see Figure 1.7) and used in punch cards to feed instructions to electronic 
computers from the 1960s to the early 1980s. During the process of writing even 
short programs, these cards would fill up boxes, which were then handed to someone 

FIGURE 1.6 Tiva LaunchPad from Texas Instruments.
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behind a counter with a card reader. Woe to the person who spent days writing a 
program using punch cards without numbering them, since a dropped box of cards, 
all of which looked nearly identical, would force someone to go back and punch a 
whole new set in the proper order! However the machine gets its instructions, to do 
any computational work those instructions need to be stored somewhere; otherwise, 
the user must reload them for each iteration. The stored-program computer, as it 
is called, fetches a sequence of instructions from memory, along with data to be 
used for performing calculations. In essence, there are really only a few components 
to a computer: a processor (something to do the actual work), memory (to hold its 
instructions and data), and busses to transfer the data and instructions back and forth 
between the two, as shown in Figure 1.8. Those instructions are the focus of this 
book—assembly language programming is the use of the most fundamental opera-
tions of the processor, written in a way that humans can work with them easily.

FIGURE 1.7 Hollerith cards.

Processor
Address

Data

Instructions

FIGURE 1.8 The stored-program computer model.
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The classic model for a computer also shows typical interfaces for input/output 
(I/O) devices, such as a keyboard, a disk drive for storage, and maybe a printer. 
These interfaces connect to both the central processing unit (CPU) and the mem-
ory; however, embedded systems may not have any of these components! Consider 
a device such as an engine controller, which is still a computing system, only it 
has no human interfaces. The totality of the input comes from sensors that attach 
directly to the system-on-chip, and there is no need to provide information back to 
a video display or printer.

To get a better feel for where in the process of solving a problem we are, and to 
summarize the hierarchy of computing then, consider Figure 1.9. At the lowest level, 
you have transistors which are effectively moving electrons in a tightly controlled 
fashion to produce switches. These switches are used to build gates, such as AND, 
NOR and NAND gates, which by themselves are not particularly interesting. When 
gates are used to build blocks such as full adders, multipliers, and multiplexors, we 
can create a processor’s architecture, i.e., we can specify how we want data to be 
processed, how we want memory to be controlled, and how we want outside events 
such as interrupts to be handled. The processor then has a language of its own, which 
instructs various elements such as a multiplier to perform a task; for example, you 
might tell the machine to multiply two floating-point numbers together and store 
the result in a register. We will spend a great deal of time learning this language 
and seeing the best ways to write assembly code for the ARM architecture. Beyond 
the scope of what is addressed in this text, certainly you could go to the next levels, 
where assembly code is created from a higher-level language such as C or C++, and 
then on to work with operating systems like Android that run tasks or applications 
when needed.

Applications/OS

Languages

ISA EOR r3,r2,r1
BEQ Table

Microarchitecture

Gates

Transistors

C++, Java

YOU
ARE

HERE

FIGURE 1.9 Hierarchy of computing.
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1.4 NUMBER SYSTEMS

Since computers operate internally with transistors acting as switches, the combi-
national logic used to build adders, multipliers, dividers, etc., understands values 
of 1 or 0, either on or off. The binary number system, therefore, lends itself to use 
in computer systems more easily than base ten numbers. Numbers in base two are 
centered on the idea that each digit now represents a power of two, instead of a 
power of ten. In base ten, allowable numbers are 0 through 9, so if you were to count 
the number of sheep in a pasture, you would say 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and then 
run out of digits. Therefore, you place a 1 in the 10’s position (see Figure 1.10), to 
indicate you’ve counted this high already, and begin using the old digits again—10, 
11, 12, 13, etc.

Now imagine that you only have two digits with which to count: 0 or 1. To count 
that same set of sheep, you would say 0, 1 and then you’re out of digits. We know the 
next value is 2 in base ten, but in base two, we place a 1 in the 2’s position and keep 
counting—10, 11, and again we’re out of digits to use. A marker is then placed in the 
4’s position, and we do this as much as we like.

EXAMPLE 1.1

Convert the binary number 1101012 to decimal.

soLuTion

This can be seen as

25 24 23 22 21 20

1 1 0 1 0 1

This would be equivalent to 32 + 16 + 4 + 1 = 5310.
The subscripts are normally only used when the base is not 10. You will see 

quickly that a number such as 101 normally doesn’t raise any questions until you 
start using computers. At first glance, this is interpreted as a base ten number—
one hundred one. However, careless notation could have us looking at this num-
ber in base two, so be careful when writing and using numbers in different bases.

After staring at 1’s and 0’s all day, programming would probably have people jump-
ing out of windows, so better choices for representing numbers are base eight (octal, 
although you’d be hard pressed to find a machine today that mainly uses octal nota-
tion) and base sixteen (hexadecimal or hex, the preferred choice), and here the digits 

4 hundreds 8 ones

834
102 101 100

3 tens

FIGURE 1.10 Base ten representation of 438.
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are now a power of sixteen. These numbers pack quite a punch, and are surprisingly 
big when you convert them to decimal. Since counting in base ten permits the num-
bers 0 through 9 to indicate the number of 1’s, 10’s, 100’s, etc., in any given position, 
the numbers 0 through 9 don’t go far enough to indicate the number of 1’s we have in 
base sixteen. In other words, to count our sheep in base sixteen using only one digit, 
we would say 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and then we can keep going since the next 
position represents how many 16’s we have. So the first six letters of the alphabet are 
used as placeholders. So after 9, the counting continues—A, B, C, D, E, and then F. 
Once we’ve reached F, the next number is 1016.

EXAMPLE 1.2

Find the decimal equivalent of A5E916.

soLuTion

This hexadecimal number can be viewed as

163 162 161 160

A 5 E 9

So our number above would be (10 × 163) + (5 × 162) + (14 × 161) + (9 × 160) = 
42,47310. Notice that it’s easier to mentally treat the values A, B, C, D, E, and F as 
numbers in base ten when doing the conversion.

EXAMPLE 1.3

Calculate the hexadecimal representation for the number 86210.

soLuTion

While nearly all handheld calculators today have a conversion function for this, 
it’s important that you can do this by hand (this is a very common task in program-
ming). There are tables that help, but the easiest way is to simply evaluate how 
many times a given power of sixteen can go into your number. Since 163 is 4096, 
there will be none of these in your answer. Therefore, the next highest power is 
162, which is 256, and there will be

  862/256 = 3.3672

or 3 of them. This leaves

  862 – (3 × 256) = 94.

The next highest power is 161, and this goes into 94 five times with a remainder 
of 14. Our number in hexadecimal is therefore

163 162 161 160

 3 5 E
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The good news is that conversion between binary and hexadecimal is very easy—
just group the binary digits, referred to as bits, into groups of four and convert the 
four digits into their hexadecimal equivalent. Table 1.1 shows the binary and hexa-
decimal values for decimal numbers from 0 to 15.

EXAMPLE 1.4

Convert the following binary number into hexadecimal:

 110111110000101011112

soLuTion

By starting at the least significant bit (at the far right) and grouping four bits together 
at a time, the first digit would be F16, as shown below.

 

110111110000101011112

16F
�

The second group of four bits would then be 10102 or A16, etc., giving us

 DF0AF16.

One comment about notation—you might see hexadecimal numbers displayed 
as 0xFFEE or &FFEE (depending on what’s allowed by the software development 
tools you are using), and binary numbers displayed as 2_1101 or b1101.

TABLE 1.1
Binary and Hexadecimal Equivalents

Decimal Binary Hexadecimal

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F
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1.5 REPRESENTATIONS OF NUMBERS AND CHARACTERS

All numbers and characters are simply bit patterns to a computer. It’s unfortunate 
that something inside microprocessors cannot interpret a programmer’s meaning, 
since this could have saved countless hours of debugging and billions of dollars in 
equipment. Programmers have been known to be the cause of lost space probes, 
mostly because the processor did exactly what the software told it to do. When you 
say 0x6E, the machine sees 0x6E, and that’s about it. This could be a character (a 
lowercase “n”), the number 110 in base ten, or even a fractional value! We’re going 
to come back to this idea over and over—computers have to be told how to treat all 
types of data. The programmer is ultimately responsible for interpreting the results 
that a processor provides and making it clear in the code. In these next three sec-
tions, we’ll examine ways to represent integer numbers, floating-point numbers, and 
characters, and then see another way to represent fractions in Chapter 7.

1.5.1 inTegeR RepResenTATions

For basic mathematical operations, it’s not only important to be able to represent num-
bers accurately but also use as few bits as possible, since memory would be wasted to 
include redundant or unnecessary bits. Integers are often represented in byte (8-bit), 
halfword (16-bit), and word (32-bit) quantities. They can be longer depending on their 
use, e.g., a cryptography routine may require 128-bit integers.

Unsigned representations make the assumption that every bit signifies a positive 
contribution to the value of the number. For example, if the hexadecimal number 
0xFE000004 were held in a register or in memory, and assuming we treat this as an 
unsigned number, it would have the decimal value

 (15 × 167) + (14 × 166) + (4 × 160) = 4,261,412,868.

Signed representations make the assumption that the most significant bit is used to 
create positive and negative values, and they come in three flavors: sign-magnitude, 
one’s complement and two’s complement.

Sign-magnitude is the easiest to understand, where the most significant bit in the 
number represents a sign bit and all other bits represent the magnitude of the number. 
A one in the sign bit indicates the number is negative and a zero indicates it is positive.

EXAMPLE 1.5

The numbers −18 and 25 are represented in 16 bits as

 –18 = 1000000000010010
    25 = 0000000000011001

To add these two numbers, it’s first necessary to determine which number has 
the larger magnitude, and then the smaller number would be subtracted from it. 
The sign would be the sign of the larger number, in this case a zero. Fortunately, 
sign-magnitude representations are not used that much, mostly because their use 
implies making comparisons first, and this adds extra instructions in code just to 
perform basic math.
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One’s complement numbers are not used much in modern computing systems 
either, mostly because there is too much extra work necessary to perform basic 
arithmetic operations. To create a negative value in this representation, simply 
invert all the bits of its positive, binary value. The sign bit will be a 1, just like 
sign-magnitude representations, but there are two issues that arise when work-
ing with these numbers. The first is that you end up with two representations for 
0, and the second is that it may be necessary to adjust a sum when adding two 
values together, causing extra work for the processor. Consider the following two 
examples.

EXAMPLE 1.6

Assuming that you have 16 bits to represent a number, add the values −124 to 236 
in one’s complement notation.

soLuTion

To create −124 in one’s complement, simply write out the binary representation 
for 124, and then invert all the bits:

    124 0000000001111100
    –124 1111111110000011

 Adding 236 gives us

 

−

+ +

→

124 1111111110000011

236 0000000011101100

1 0000000001carry 1101111

The problem is that the answer is actually 112, or 0x70 in hex. In one’s comple-
ment notation, a carry in the most significant bit forces us to add a one back into 
the sum, which is one extra step:

 

+ +1

112

0000000001101111
1

0000000001110000

EXAMPLE 1.7

Add the values −8 and 8 together in one’s complement, assuming 8 bits are avail-
able to represent the numbers.

soLuTion

Again, simply take the binary representation of the positive value and invert all 
the bits to get −8:
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8 00001000

8
0

11110111

11111111

+ −

Since there was no carry from the most significant bit, this means that 00000000 
and 11111111 both represent zero. Having a +0 and a –0 means extra work for 
software, especially if you’re testing for a zero result, leading us to the use of two’s 
complement representations and avoiding this whole problem.

Two’s complement representations are easier to work with, but it’s important to 
interpret them correctly. As with the other two signed representations, the most sig-
nificant bit represents the sign bit. However, in two’s complement, the most signifi-
cant bit is weighted, which means that it has the same magnitude as if the bit were in 
an unsigned representation. For example, if you have 8 bits to represent an unsigned 
number, then the most significant bit would have the value of 27, or 128. If you have 8 
bits to represent a two’s complement number, then the most significant bit represents 
the value −128. A base ten number n can be represented as an m-bit two’s comple-
ment number, with b being an individual bit’s value, as

 
n b bm

m
i

i

i

m

= − +−
−

=

−

∑1
1

0

2

2 2

To interpret this more simply, the most significant bit can be thought of as the 
only negative component to the number, and all the other bits represent positive com-
ponents. As an example, −114 represented as an 8-bit, two’s complement number is

 100011102 = –27 + 23 + 22 + 21 = –114.

Notice in the above calculation that the only negative value was the most signifi-
cant bit. Make no mistake—you must be told in advance that this number is treated 
as a two’s complement number; otherwise, it could just be the number 142 in decimal.

The two’s complement representation provides a range of positive and negative val-
ues for a given number of bits. For example, the number 8 could not be represented in 
only 4 bits, since 10002 sets the most significant bit, and the value is now interpreted as 
a negative number (–8, in this case). Table 1.2 shows the range of values produced for 
certain bit lengths, using ARM definitions for halfword, word, and double word lengths.

EXAMPLE 1.8

Convert −9 to a two’s complement representation in 8 bits.

soLuTion

Since 9 is 10012, the 8-bit representation of −9 would be

 

00001001 9

11110110 9

11110111 9

−

+

−

 in one’s complement

1

 in two’’s complement
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Arithmetic operations now work as expected, without having to adjust any 
final values. To convert a two’s complement binary number back into decimal, 
you can either subtract one and then invert all the bits, which in this case is the 
fastest way, or you can view it as –27 plus the sum of the remaining weighted bit 
values, i.e.,

 –27 + 26 + 25 + 24 + 22 + 21 + 20 =
 –128 + 119 =
 –9

EXAMPLE 1.9

Add the value −384 to 2903 using 16-bit, two’s complement arithmetic.

soLuTion

First, convert the two values to their two’s complement representations:

 

384 0000000110000000

384 1111111001111111 1 111111101000
2

2

=

− = + = 00000

2903

2519

0000101101010111

00000100111010111

2

2

2

+ = +

1.5.2 fLoATing-poinT RepResenTATions

In many applications, values larger than 2,147,483,647 may be needed, but you still 
have only 32 bits to represent numbers. Very large and very small values can be 
constructed by using a floating-point representation. While the format itself has a 
long history to it, with many varieties of it appearing in computers over the years, 
the IEEE 754 specification of 1985 (Standards Committee 1985) formally defined a 
32-bit data type called single-precision, which we’ll cover extensively in Chapter 9. 
These floating-point numbers consist of an exponent, a fraction, a sign bit, and a bias. 

TABLE 1.2
Two’s Complement Integer Ranges

Length Number of Bits Range

m –2m–1 to 2m−1–1

Byte 8 –128 to 127

Halfword 16 –32,768 to 32,767

Word 32 –2,147,483,648 to 2,147,483,647

Double word 64 –264 to 264–1

Note: To calculate the two’s complement representation of a negative number, sim-
ply take its magnitude, convert it to binary, invert all the bits, and then add 1.
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For “normal” numbers, and here “normal” is defined in the specification, the value of 
a single-precision number F is given as

 F = –1s × 1.f × 2e−b

where s is the sign bit, and f is the fraction made up of the lower 23 bits of the format. 
The most significant fraction bit has the value 0.5, the next bit has the value 0.25, and 
so on. To ensure all exponents are positive numbers, a bias b is added to the exponent 
e. For single-precision numbers, the exponent bias is 127.

While the range of an unsigned, 32-bit integer is 0 to 232-1 (4.3 × 109), the posi-
tive range of a single-precision floating-point number, also represented in 32 bits, is 
1.2 × 10−38 to 3.4 × 10+38! Note that this is only the positive range; the negative range is 
congruent. The amazing range is a trade-off, actually. Floating-point numbers trade 
accuracy for range, since the delta between representable numbers gets larger as the 
exponent gets larger. Integer formats have a fixed precision (each increment is equal 
to a fixed value).

EXAMPLE 1.10

Represent the number 1.5 in a single-precision, floating-point format.
We would form the value as

s = 0 (a positive number)
f = 100 0000 0000 0000 0000 0000 (23 fraction bits representing 0.5)
e = 0 + 127 (8 bits of true exponent plus the bias)

F = 0 0111111 100 0000 0000 0000 0000 0000

or 0x3FC00000, as shown in Figure 1.11.

The large dynamic range of floating-point representations has made it popular for 
scientific and engineering computing. While we’ve only seen the single-precision 
format, the IEEE 754 standard also specifies a 64-bit, double-precision format that 
has a range of ±2.2 × 10−308 to 1.8 × 10+308! Table 1.3 shows what two of the most com-
mon formats specified in the IEEE standard look like (single- and double- precision). 
Single precision provides typically 6–9 digits of numerical precision, while double 
precision gives 15–17.

Special hardware is required to handle numbers in these formats. Historically, 
floating-point units were separate ICs that were attached to the main processor, e.g., 
the Intel 80387 for the 80386 and the Motorola 68881 for the 68000. Eventually these 
were integrated onto the same die as the processor, but at a cost. Floating-point units 
are often quite large, typically as large as the rest of the processor without caches 
and other memories. In most applications, floating-point computations are rare and 

S E E E E E E E E F F F F F F F F F F F F F F F F F F F F F F
0 0 1 1 1 1 1 1 1 1 0 0

F
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

00000CF3

FIGURE 1.11 Formation of 1.5 in single-precision.
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not speed-critical. For these reasons, most microcontrollers do not include special-
ized floating-point hardware; instead, they use software routines to emulate floating-
point operations. There is actually another format that can be used when working 
with real values, which is a fixed-point format; it doesn’t require a special block of 
hardware to implement, but it does require careful programming practices and often 
complicated error and bounds analysis. Fixed-point formats will be covered in great 
detail in Chapter 7.

1.5.3 ChARACTeR RepResenTATions

Bit patterns can represent numbers or characters, and the interpretation is based 
entirely on context. For example, the binary pattern 01000001 could be the num-
ber 65 in an audio codec routine, or it could be the letter “A”. The program deter-
mines how the pattern is used and interpreted. Fortunately, standards for encoding 
character data were established long ago, such as the American Standard Code for 
Information Interchange, or ASCII, where each letter or control character is mapped 
to a binary value. Other standards include the Extended Binary-Coded-Decimal 
Interchange Code (EBCDIC) and Baudot, but the most commonly used today is 
ASCII. The ASCII table for character codes can be found in Appendix C.

While most devices may only need the basic characters, such as letters, numbers, 
and punctuation marks, there are some control characters that can be interpreted 
by the device. For example, old teletype machines used to have a bell that rang in 
a Pavlovian fashion, alerting the user that something exciting was about to happen. 
The control character to ring the bell is 0x07. Other control characters include a 
backspace (0x08), a carriage return (0x0D), a line feed (0x0A), and a delete character 
(0x7F), all of which are still commonly used.

Using character data in assembly language is not difficult, and most assemblers 
will let you use a character in the program without having to look up the equivalent 
hexadecimal value in a table. For example, instead of saying

 MOV r0, #0x42; move a ‘B’ into register r0

you can simply say

 MOV r0, #’B’; move a ‘B’ into register r0

TABLE 1.3
IEEE 754 Single- and Double-Precision Formats

Format Single Precision Double Precision

Format width in bits 32 64

Exponent width in bits 8 11

Fraction bits 23 52

Exp maximum +127 +1023

Exp minimum –126 –1022

Exponent bias 127 1023
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Character data will be seen throughout the book, so it’s worth spending a little time 
becoming familiar with the hexadecimal equivalents of the alphabet.

1.6 TRANSLATING BITS TO COMMANDS

All processors are programmed with a set of instructions, which are unique patterns 
of bits, or 1’s and 0’s. Each set is unique to that particular processor. These instruc-
tions might tell the processor to add two numbers together, move data from one 
place to another, or sit quietly until something wakes it up, like a key being pressed. 
A processor from Intel, such as the Pentium 4, has a set of bit patterns that are com-
pletely different from a SPARC processor or an ARM926EJ-S processor. However, 
all instruction sets have some common operations, and learning one instruction set 
will help you understand nearly any of them.

The instructions themselves can be of different lengths, depending on the pro-
cessor architecture—8, 16, or 32 bits long, or even a combination of these. For our 
studies, the instructions are either 16 or 32 bits long; although, much later on, we’ll 
examine how the ARM processors can use some shorter, 16-bit instructions in com-
bination with 32-bit Thumb-2 instructions. Reading and writing a string of 1’s and 
0’s can give you a headache rather quickly, so to aid in programming, a particular bit 
pattern is mapped onto an instruction name, or a mnemonic, so that instead of reading

E0CC31B0
1AFFFFF1
E3A0D008

the programmer can read

STRH sum, [pointer], #16
BNE loop_one
MOV count, #8

which makes a little more sense, once you become familiar with the instructions 
themselves.

EXAMPLE 1.11

Consider the bit pattern for the instruction above:

 MOV count, #8

The pattern is the hex number 0xE3A0D008. From Figure 1.12, you can see 
that the ARM processor expects parts of our instruction in certain fields—the 

cond

31 28 272625 24 21 20 19 16 15 12 11 0

0 0 I S Rn Rd shifter_operandopcode

FIGURE 1.12 The MOV instruction.
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number  8, for example, would be placed in the field called 8_bit_immediate, 
and the instruction itself, moving a number into a register, is encoded in the field 
called opcode. The parameter called count is a convenience that allows the pro-
grammer to use names instead of register numbers. So somewhere in our program, 
count is assigned to a real register and that register number is encoded into the 
field called Rd. We will see the uses of MOV again in Chapter 6.

Most mnemonics are just a few letters long, such as B for branch or ADD for, 
well, add. Microprocessor designers usually try and make the mnemonics as clear as 
possible, but every once in a while you come across something like RSCNE (from 
ARM), DCBZ (from IBM) or the really unpronounceable AOBLSS (from DEC) 
and you just have to look it up. Despite the occasionally obtuse name, it is still much 
easier to remember RSCNE than its binary or hex equivalent, as it would make 
programming nearly impossible if you had to remember each command’s pattern. 
We could do this mapping or translation by hand, taking the individual mnemonics, 
looking them up in a table, then writing out the corresponding bit pattern of 1’s and 
0’s, but this would take hours, and the likelihood of an error is very high. Therefore, 
we rely on tools to do this mapping for us.

To complicate matters, reading assembly language commands is not always triv-
ial, even for advanced programmers. Consider the sequence of mnemonics for the 
IA-32 architecture from Intel:

 mov eax, DWORD PTR _c
 add eax, DWORD PTR _b
 mov DWORD PTR _a, eax
 cmp DWORD PTR _a, 4

This is actually seen as pretty typical code, really—not so exotic. Even more 
intimidating to a new learner, mnemonics for the ColdFire microprocessor look like 
this:

 mov.l (0,%a2,%d2.l*4),%d6
 mac.w %d6:u,%d5:u <<1
 mac.w %d6:l,%d3:u <<1

Where an experienced programmer would immediately recognize these com-
mands as just variations on basic operations, along with extra characters to make 
the software tools happy, someone just learning assembly would probably close the 
book and go home. The message here is that coding in assembly language takes 
practice and time to learn. Each processor’s instruction set looks different, and tools 
sometimes force a few changes to the syntax, producing something like the above 
code; however, nearly all assembly formats follow some basic rules. We will begin 
learning assembly using ARM instructions, which are very readable.

1.7 THE TOOLS

At some point in the history of computing, it became easier to work with high-level 
languages instead of coding in 1’s and 0’s, or machine code, and programmers 
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described loops and variables using statements and symbols. The earlier languages 
include COBOL, FORTRAN, ALGOL, Forth, and Ada. FORTRAN was required 
knowledge for an undergraduate electrical engineering student in the 1970s and 
1980s, and that has largely been replaced with C, C++, Java, and even Python. All 
of these languages still have one thing in common: they all contain near-English 
descriptions of code that are then translated into the native instruction set of the 
microprocessor. The program that does this translation is called a compiler, and 
while compilers get more and more sophisticated, their basic purpose remains the 
same, taking something like an “if…then” statement and converting it into assembly 
language. Modern systems are programmed in high-level languages much of the 
time to allow code portability and to reduce design time.

As with most programming tasks, we also need an automated way of translating 
our assembly language instructions into bit patterns, and this is precisely what an 
assembler does, producing a file that a piece of hardware (or a software simulator) 
can understand, in machine code using only 1’s and 0’s. To help out even further, we 
can give the assembler some pseudo-instructions, or directives (either in the code or 
with options in the tools), that tell it how to do its job, provided that we follow the 
particular assembler’s rules such as spacing, syntax, the use of certain markers like 
commas, etc. If you follow the tools flow in Figure 1.13, you can see that an object 
file is produced by the assembler from our source file, or the file that contains our 
assembly language program. Note that a compiler will also use a source file, but the 
code might be C or C++. Object files differ from executable files in that they often 
contain debugging information, such as program symbols (names of variables and 
functions) for linking or debugging, and are usually used to build a larger execut-
able. Object files, which can be produced in different formats, also contain relocation 

ASM source
module(s)

C/C++ source
module(s)

ELF object
file(s) with
DWARF

debug tables

armasm

armlink ELF/DWARF
image

Disassembly
Code size
Data size

etc.

ROM
format

Libraries

Library

fromelf fromelf

armar

armcc  -c

.s

.o

.o

.axf

.o

.c

FIGURE 1.13 Tools flow.
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information. Once you’ve assembled your source files, a linker can then be used to 
combine them into an executable program, even including other object files, say from 
customized libraries. Under test conditions, you might choose to run these files in a 
debugger (as we’ll do for the majority of examples), but usually these executables are 
run by hardware in the final embedded application. The debugger provides access 
to registers on the chip, views of memory, and the ability to set and clear break-
points and watchpoints, which are methods of stopping the processor on instruction 
or memory accesses, respectively. It also provides views of code in both high-level 
languages and assembly.

1.7.1 open souRCe TooLs

Many students and professors steer clear of commercial software simply to avoid 
licensing issues; most software companies don’t make it a policy to give away their 
tools, but there are non-profits that do provide free toolchains. Linaro, a not-for-
profit engineering organization, focuses on optimizing open source software for 
the ARM architecture, including the GCC toolchain and the Linux kernel, and pro-
viding regular releases of the various tools and operating systems. You can find 
downloads on their website (www. linaro. org).  What they define as “bare-metal” 
builds for the tools can also be found if you intend on working with gcc (the gnu 
compiler) and gdb (the gnu debugger). Clicking on the links take you to prebuilt 
gnu toolchains for Cortex-M and Cortex-R controllers located at https://launchpad.
net/gcc-arm-embedded. There are dozens of other open source sites for ARM tools, 
found with a quick Web search.

1.7.2 KeiL (ARM)

ARM’s C and C++ compilers generate optimized code for all of the instruction sets, 
ARM, Thumb, and Thumb-2, and support full ISO standard C and C++. Modern 
tool sets, like ARM’s RealView Microcontroller Development Kit (RVMDK), which 
is found at http:/ / www. keil. com/ demo, can display both the high-level code and its 
assembly language equivalent together on the screen, as shown in Figure 1.14. Students 
have found that the Keil tools are relatively easy to use, and they support hundreds of 
popular microcontrollers. A limitation appears when a larger microprocessor, such 
as a Cortex-A9, is used in a project, since the Keil tools are designed specifically for 
microcontrollers. Otherwise, the tools provide everything that is needed:

• C and C++ compilers
• Macro assembler
• Linker
• True integrated source-level debugger with a high-speed CPU and periph-

eral simulator for popular ARM-based microcontrollers
• µVision4 Integrated Development Environment (IDE), which includes a 

full-featured source code editor, a project manager for creating and main-
taining projects, and an integrated make facility for assembling, compiling, 
and linking embedded applications
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• Execution profiler and performance analyzer
• File conversion utility (to convert an executable file to a HEX file, for example)
• Links to development tools manuals, device datasheets, and user’s guides

It turns out that you don’t always choose either a high-level language or assem-
bly language for a particular project—sometimes, you do both. Before you prog-
ress through the book, read the Getting Started User’s Guide in the RVMDK tools’ 
documentation.

1.7.3 Code CoMposeR sTudio

Texas Instruments has a long history of building ARM-based products, and as a 
leading supplier, makes their own tools. Code Composer Studio (CCS) actually sup-
ports all of their product lines, not just ARM processors. As a result, they include 
some rather nice features, such as a free operating system (SYS/BIOS), in their tool 
suite. The CCS tools support microcontrollers, e.g., the Cortex-M4 products, as well 
as very large SoCs like those in their Davinci and Sitara lines, so there is some 
advantage in starting with a more comprehensive software package, provided that 
you are aware of the learning curve associated with it. The front end to the tools is 
based on the Eclipse open source software framework, shown in Figure 1.15, so if 
you have used another development tool for Java or C++ based on Eclipse, the CCS 
tools might look familiar. Briefly, the CCS tools include:

• Compilers for each of TI’s device families
• Source code editor

FIGURE 1.14 Keil simulation tools.



29An Overview of Computing Systems

FI
G

U
R

E 
1.

15
 

C
od

e 
C

om
po

se
r 

St
ud

io
 d

ev
el

op
m

en
t t

oo
ls

.



30 ARM Assembly Language

• Project build environment
• Debugger
• Code profiler
• Simulators
• A real-time operating system

Appendix A provides step-by-step instructions for running a small assembly pro-
gram in CCS—it’s highly unorthodox and not something done in industry, but it’s 
simple and it works!

1.7.4 usefuL doCuMenTATion

The following free documents are likely to be used often for looking at formats, 
examples, and instruction details:

• ARM Ltd. 2009. Cortex-M4 Technical Reference Manual. Doc. no. 
DDI0439C (ID070610). Cambridge: ARM Ltd.

• ARM Ltd. 2010. ARM v7-M Architectural Reference Manual. Doc. no. 
DDI0403D. Cambridge: ARM Ltd.

• Texas Instruments. 2012. ARM Assembly Language Tools v5.0 User’s 
Guide. Doc. no. SPNU118K. Dallas: Texas Instruments.

• ARM Ltd. 2012. RealView Assembler User Guide (online), Revision D. 
Cambridge: ARM Ltd.

1.8 EXERCISES

 1. Give two examples of system-on-chip designs available from semiconduc-
tor manufacturers. Describe their features and interfaces. They do not nec-
essarily have to contain an ARM processor.

 2. Find the two’s complement representation for the following numbers, 
assuming they are represented as a 16-bit number. Write the value in both 
binary and hexadecimal.

 a. –93
 b. 1034
 c. 492
 d. –1094

 3. Convert the following binary values into hexadecimal:
 a. 10001010101111
 b. 10101110000110
 c. 1011101010111110
 d. 1111101011001110

 4. Write the 8-bit representation of –14 in one’s complement, two’s comple-
ment, and sign-magnitude representations.
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 5. Convert the following hexadecimal values to base ten:
 a. 0xFE98
 b. 0xFEED
 c. 0xB00
 d. 0xDEAF

 6. Convert the following base ten numbers to base four:
 a. 812
 b. 101
 c. 96
 d. 3640

 7. Using the smallest data size possible, either a byte, a halfword (16 bits), 
or a word (32 bits), convert the following values into two’s complement 
representations:

 a. –18,304
 b. –20
 c. 114
 d. –128

 8. Indicate whether each value could be represented by a byte, a halfword, or 
a word-length two’s complement representation:

 a. –32,765
 b. 254
 c. –1,000,000
 d. –128

 9. Using the information from the ARM v7-M Architectural Reference Manual, 
write out the 16-bit binary value for the instruction SMULBB r5, r4, r3.

 10. Describe all the ways of interpreting the hexadecimal number 0xE1A02081 
(hint: it might not be data).

 11. If the hexadecimal value 0xFFE3 is a two’s complement, halfword value, 
what would it be in base ten? What if it were a word-length value (i.e., 32 
bits long)?

 12. How do you think you could quickly compute values in octal (base eight) 
given a value in binary?

 13. Convert the following decimal numbers into hexadecimal:
 a. 256
 b. 1000
 c. 4095
 d. 42

 14. Write the 32-bit representation of –247 in sign-magnitude, one’s comple-
ment, and two’s complement notations. Write the answer using 8 hex digits.
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 15. Write the binary pattern for the letter “Q” using the ASCII representation.

 16. Multiply the following binary values. Notice that binary multiplication 
works exactly like decimal multiplication, except you are either adding 0 to 
the final product or a scaled multiplicand. For example:

  

100

110

0

1000

( )

( )

(

multiplicand

multiplier

scaled multiplicand

×

−−

−

by 2

scaled multiplicand by 4

)

( )10000

11000

 
a.

 
1100
1111×

 
b.

 
1010
1011×

 
c.

 
1000
1001×

 
d.

 
11100

111×

 17. How many bits would the following C data types use by the ARM7TDMI?
 a. int
 b. long
 c. char
 d. short
 e. long long

 18. Write the decimal number 1.75 in the IEEE single-precision floating-point 
format. Use one of the tools given in the References to check your answer.



33

The Programmer’s Model

2.1 INTRODUCTION

All microprocessors have a set of features that programmers use. In most instances, 
a programmer will not need an understanding of how the processor is actually con-
structed, meaning that the wires, transistors, and/or logic boards that were used to 
build the machine are not typically known. From a programmer’s perspective, what 
is necessary is a model of the device, something that describes not only the way the 
processor is controlled but also the features available to you from a high level, such 
as where data can be stored, what happens when you give the machine an invalid 
instruction, where your registers are stacked during an exception, and so forth. This 
description is called the programmer’s model. We’ll begin by examining the basic 
parts of the ARM7TDMI and Cortex-M4 programmer’s models, but come back to 
certain elements of them again in Chapters 8, 13, 14, and 15, where we cover branch-
ing, stacks, and exceptions in more detail. For now, a brief treatment of the topic will 
provide some definition, just enough to let us begin writing programs.

2.2 DATA TYPES

Data in machines is represented as binary digits, or bits, where one binary digit can 
be seen as either on or off, a one or a zero. A collection of bits are often grouped 
together into units of eight, called bytes, or larger units whose sizes depend on the 
maker of the device, oddly enough. For example, a 16-bit data value for a proces-
sor such as the Intel 8086 or MC68040 is called a word, where a 32-bit data value 
is a word for the ARM cores. When describing both instructions and data, nor-
mally the length is factored in, so that we often speak of 16-bit instructions or 32-bit 
instructions, 8-bit data or 16-bit data, etc. Specifically for data, the ARM7TDMI and 
Cortex-M4 processors support the following data types:

Byte, or 8 bits
Halfword, or 16 bits
Word, or 32 bits

For the moment, the length of the instructions is immaterial, but we’ll see later than 
they can be either 16 or 32 bits long, so you will need two bytes to create a Thumb 
instruction and four bytes to create either an ARM instruction or a Thumb-2 instruc-
tion. For the ARM7TDMI, when reading or writing data, halfwords must be aligned 
to two-byte boundaries, which means that the address in memory must end in an 
even number. Words must be aligned to four-byte boundaries, i.e., addresses ending 

2
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in 0, 4, 8, or C. The Cortex-M4 allows unaligned accesses under certain conditions, 
so it is actually possible to read or write a word of data located at an odd address. 
Don’t worry, we’ll cover memory accesses in much more detail when we get to 
addressing modes in Chapter 5. Most data operations, e.g., ADD, are performed on 
word quantities, but we’ll also work with smaller, 16-bit values later on.

2.3 ARM7TDMI

The motivation behind examining an older programmer’s model is to show its 
similarity to the more advanced cores—the Cortex-A and Cortex-R processors, for 
example, look very much like the ARM7TDMI, only with myriad new features and 
more modes, but everything here applies. Even though the ARM7TDMI appears 
simple (only three stages in its pipeline) when compared against the brobdingnagian 
Cortex-A15 (highly out-of-order pipeline with fifteen stages), there are still enough 
details to warrant a more cautious introduction to modes and exceptions, omitting 
some details for now. It is also noteworthy to point out features that are common to 
all ARM processors but differ by number, use, and limitations, for example, the size 
of the integer register file on the Cortex-M4. The registers look and act the same as 
those on an ARM7TDMI, but there are just fewer of them. Our tour of the program-
mer’s model starts with the processor modes.

2.3.1 pRoCessoR Modes

Version 4T cores support seven processor modes: User, FIQ, IRQ, Supervisor, Abort, 
Undefined, and System, as shown in Figure 2.1. It is possible to make mode changes 
under software control, but most are normally caused by external conditions or 
exceptions. Most application programs will execute in User mode. The other modes 
are known as privileged modes, and they provide a way to service exceptions or 
to access protected resources, such as bits that disable sections of the core, e.g., a 
branch predictor or the caches, should the processor have either of these.

Supervisor
(SVC)
FIQ

IRQ

Abort
Undef
System

User

Entered on reset and when a Software Interrupt (SWI)
instruction is executed
Entered when a high priority (fast) interrupt is
raised
Entered when a low priority (normal) interrupt is
raised
Used to handle memory access violations
Used to handle undefined instructions
Privileged mode using the same registers as User
mode

Mode under which most applications/OS tasks run

Mode

Ex
ce

pt
io

n 
m

od
es

Description

Privileged
modes

Unprivileged
mode

FIGURE 2.1 Processor modes.
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A simple way to look at this is to view a mode as an indication of what the pro-
cessor is actually doing. Under normal circumstances, the machine will probably 
be in either User mode or Supervisor mode, happily executing code. Consider a 
device such as a cell phone, where not much happens (aside from polling) until 
either a signal comes in or the user has pressed a key. Until that time, the proces-
sor has probably powered itself down to some degree, waiting for an event to wake 
it again, and these external events could be seen as interrupts. Processors gener-
ally have differing numbers of interrupts, but the ARM7TDMI has two types: a 
fast interrupt and a lower priority interrupt. Consequently, there are two modes to 
reflect activities around them: FIQ mode and IRQ mode. Think of the fast inter-
rupt as one that might be used to indicate that the machine is about to lose power 
in a few milliseconds! Lower priority interrupts might be used for indicating that 
a peripheral needs to be serviced, a user has touched a screen, or a mouse has 
been moved.

Abort mode allows the processor to recover from exceptional conditions such as 
a memory access to an address that doesn’t physically exist, for either an instruc-
tion or data. This mode can also be used to support virtual memory systems, often 
a requirement of operating systems such as Linux. The processor will switch to 
Undefined mode when it sees an instruction in the pipeline that it does not recognize; 
it is now the programmer’s (or the operating system’s) responsibility to determine 
how the machine should recover from such as error. Historically, this mode could be 
used to support valid floating-point instructions on machines without actual floating-
point hardware; however, modern systems rarely rely on Undefined mode for such 
support, if at all. For the most part, our efforts will focus on working in either User 
mode or Supervisor mode, with special attention paid to interrupts and other excep-
tions in Chapter 14.

2.3.2 RegisTeRs

The register is the most fundamental storage area on the chip. You can put most 
anything you like in one—data values, such as a timer value, a counter, or a coeffi-
cient for an FIR filter; or addresses, such as the address of a list, a table, or a stack in 
memory. Some registers are used for specific purposes. The ARM7TDMI processor 
has a total of 37 registers, shown in Figure 2.2. They include

• 30 general-purpose registers, i.e., registers which can hold any value
• 6 status registers
• A Program Counter register

The general-purpose registers are 32 bits wide, and are named r0, r1, etc. The 
registers are arranged in partially overlapping banks, meaning that you as a pro-
grammer see a different register bank for each processor mode. This is a source of 
confusion sometimes, but it shouldn’t be. At any one time, 15 general-purpose regis-
ters (r0 to r14), one or two status registers, and the Program Counter (PC or r15) are 
visible. You always call the registers the same thing, but depending on which mode 
you are in, you are simply looking at different registers. Looking at Figure 2.2, you 
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can see that in User/System mode, you have registers r0 to r14, a Program Counter, 
and a Current Program Status Register (CPSR) available to you. If the processor 
were to suddenly change to Abort mode for whatever reason, it would swap, or bank 
out, registers r13 and r14 with different r13 and r14 registers. Notice that the largest 
number of registers swapped occurs when the processor changes to FIQ mode. The 
reason becomes apparent when you consider what the processor is trying to do very 
quickly: save the state of the machine. During an interrupt, it is normally necessary 
to drop everything you’re doing and begin to work on one task: namely, saving the 
state of the machine and transition to handling the interrupt code quickly. Rather 
than moving data from all the registers on the processor to external memory, the 
machine simply swaps certain registers with new ones to allow the programmer 
access to fresh registers. This may seem a bit unusual until we come to the chapter 
on exception handling. The banked registers are shaded in the diagram.

While most of the registers can be used for any purpose, there are a few registers 
that are normally reserved for special uses. Register r13 (the stack pointer or SP) 
holds the address of the stack in memory, and a unique stack pointer exists in each 
mode (except System mode which shares the User mode stack pointer). We’ll exam-
ine this register much more in Chapter 13. Register r14 (the Link Register or LR) is 

Mode
User/System

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
PC

CPSR CPSR
SPSR_SVC

= banked register

SPSR_ABORT SPSR_UNDEF SPSR_IRQ SPSR_FIQ
CPSR CPSR CPSR CPSR

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13_SVC
R14_SVC
PC

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13_ABORT
R14_ABORT
PC

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13_UNDEF
R14_UNDEF
PC

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13_IRQ
R14_IRQ
PC

R0
R1
R2
R3
R4
R5
R6
R7
R8_FIQ
R9_FIQ
R10_FIQ
R11_FIQ
R12_FIQ
R13_FIQ
R14_FIQ
PC

Supervisor Abort Undefined Interrupt Fast interrupt

FIGURE 2.2 Register organization.
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used to hold subroutine and exception return addresses. As with the stack pointers, 
a unique r14 exists in all modes (except System mode which shares the User mode 
r14). In Chapters 8 and 13, we will begin to work with branches and subroutines, and 
this register will hold the address to which we need to return should our program 
jump to a small routine or a new address in memory. Register r15 holds the Program 
Counter (PC). The ARM7TDMI is a pipelined architecture, as shown in Figure 2.3, 
meaning that while one instruction is being fetched, another is being decoded, and 
yet another is being executed. The address of the instruction that is being fetched (not 
the one being executed) is contained in the Program Counter. This register is not nor-
mally accessed by the programmer unless certain specific actions are needed, such 
as jumping long distances in memory or recovering from an exception. You can read 
a thorough treatment of pipelined architectures in Patterson and Hennessy (2007).

The Current Program Status Register (CPSR) can be seen as the state of the 
machine, allowing programs to recover from exceptions or branch on the results 
of an operation. It contains condition code flags, interrupt enable flags, the current 
mode, and the current state (more on the differences between ARM and Thumb 
state is discussed in Chapter 17). Each privileged mode (except System mode) has 
a Saved Program Status Register (SPSR) that is used to preserve the value of the 
CPSR when an exception occurs. Since User mode and System mode are not entered 
on any exception, they do not have an SPSR, and a register to preserve the CPSR is 
not required. In User mode or System mode, if you attempt to read the SPSR, you 
will get an unpredictable value back, meaning the data cannot be used in any further 
operations. If you attempt to write to the SPSR in one of these modes, the data will 
be ignored.

The format of the Current Program Status Register and the Saved Program Status 
Register is shown in Figure 2.4. You can see that it contains four bits at the top, 
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FIGURE 2.3 ARM7TDMI pipeline diagram.
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collectively known as the condition code flags, and eight bits at the bottom. The con-
dition code flags in the CPSR can be altered by arithmetic and logical instructions, 
such as subtractions, logical shifts, and rotations. Furthermore, by allowing these 
bits to be used with all the instructions on the ARM7TDMI, the processor can con-
ditionally execute an instruction, providing improvements in code density and speed. 
Conditional execution and branching are covered in detail in Chapter 8.

The bottom eight bits of a status register (the mode bits M[4:0], I, F, and T) are 
known as the control bits. The I and F bits are the interrupt disable bits, which dis-
able interrupts in the processor if they are set. The I bit controls the IRQ interrupts, 
and the F bit controls the FIQ interrupts. The T bit is a status bit, meant only to 
indicate the state of the machine, so as a programmer you would only read this bit, 
not write to it. If the bit is set to 1, the core is executing Thumb code, which consists 
of 16-bit instructions. The processor changes between ARM and Thumb state via a 
special instruction that we’ll examine much later on. Note that these control bits can 
be altered by software only when the processor is in a privileged mode.

Table 2.1 shows the interpretation of the least significant bits in the PSRs, which 
determine the mode in which the processor operates. Note that while there are five 
bits that determine the processor’s mode, not all of the configurations are valid 
(there’s a historical reason behind this). If any value not listed here is programmed 
into the mode bits, the result is unpredictable, which by ARM’s definition means that 
the fields do not contain valid data, and a value may vary from moment to moment, 
instruction to instruction, and implementation to implementation.

2.3.3 The VeCToR TABLe

There is one last component of the programmer’s model that is common in nearly 
all processors—the vector table, shown in Table 2.2. While it is presented here for 
reference, there is actually only one part of it that’s needed for the introductory work 
in the next few chapters. The exception vector table consists of designated addresses 
in external memory that hold information necessary to handle an exception, an inter-
rupt, or other atypical event such as a reset. For example, when an interrupt (IRQ) 
comes along, the processor will change the Program Counter to 0x18 and begin 
fetching instructions from there. The data values that are located at these addresses 

TABLE 2.1
The Mode Bits

xPSR[4:0] Mode

10000 User mode

10001 FIQ mode

10010 IRQ mode

10011 Supervisor mode

10111 Abort mode

11011 Undefined mode

11111 System mode
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are actual ARM instructions, so the next instruction that the machine will likely 
fetch is a branch (B) instruction, assuming the programmer put such an instruction 
at address 0x18. Once this branch instruction is executed, the processor will begin 
fetching instructions for the interrupt handler that resides at the target address, also 
specified with the branch instruction, somewhere in memory. It is worth noting here 
that many processors, including the Cortex-M4, have addresses at these vector loca-
tions in memory. The ARM7TDMI processor places instructions here. You can use 
the fact that instructions reside at these vectors for a clever shortcut, but it will have 
to wait until Chapter 14.

The one exception vector with which we do need to concern ourselves before 
writing some code is the Reset exception vector, which is at address 0x0 in memory. 
Since the machine will fetch from this address immediately as it comes out of reset, 
we either need to provide a reset exception handler (to provide an initialization rou-
tine for turning on parts of the device and setting bits the way we like) or we can 
begin coding at this address, assuming we have a rather unusual system with no 
errors, exceptions, or interrupts. Many modern development tools provide a startup 
file for specific microcontrollers, complete with startup code, initialization rou-
tines, exception vector assignments, etc., so that when we begin programming, the 
first instruction in your code isn’t really the first instruction the machine executes. 
However, to concentrate on the simpler instructions, we will bend the rules a bit and 
ignore exceptional conditions for the time being.

2.4 CORTEX-M4

The Cortex-M family differs significantly from earlier ARM designs, but the pro-
grammer’s model is remarkably similar. The cores are very small. They may only 
implement a subset of instructions. The memory models are relatively simple. In 
some ways the Cortex-M3 and M4 processors resemble much older microcontrollers 
used in the 1970s and 1980s, and the nod to these earlier designs is justified by the 
markets that they target. These cores are designed to be used in applications that 
require 32-bit processors to achieve high code density, fast interrupt response times, 
and now even the ability to handle signal processing algorithms, but the final prod-
uct produced by silicon vendors may cost only a few dollars. The line between the 

TABLE 2.2
ARM7TDMI Exception Vectors

Exception Type Mode Vector Address

Reset SVC 0x00000000

Undefined instruction UNDEF 0x00000004

Software Interrupt (SVC) SVC 0x00000008

Prefetch abort (instruction fetch memory abort) ABORT 0x0000000C

Data abort (data access memory abort) ABORT 0x00000010

IRQ (interrupt) IRQ 0x00000018

FIQ (fast interrupt) FIQ 0x0000001C
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world of microcontrollers and the world of high-end microprocessors is beginning to 
blur a bit, as we see features like IEEE floating-point units, real-time operating sys-
tem support, and advanced trace capabilities in an inexpensive device like the Tiva 
microcontrollers from TI. There is no substitute for actually writing code, so for now, 
we will learn enough detail of the programmer’s model to bring the processor out of 
reset, play with some of the registers in the Cortex-M4 and its floating-point unit, and 
then stop a simulation. Again, we begin with the processor modes.

2.4.1 pRoCessoR Modes

The Cortex-M4 has only two modes: Handler mode and Thread mode. As shown in 
Figure 2.5, there are also two access levels to go along with the modes, Privileged 
and User, and depending on what the system is doing, it will switch between the 
two using a bit in the CONTROL register. For very simple applications, the proces-
sor may only stay in a single access level—there might not be any User-level code 
running at all. In situations where you have an embedded operating system, such as 
SYS/BIOS controlling everything, security may play a role by partitioning the ker-
nel’s stack memory from any user stack memory to avoid problems. In Chapter 15, 
we will examine the way the Cortex-M4 handles exceptions more closely.

2.4.2 RegisTeRs

There appear to be far fewer physical registers on a Cortex-M4 than an ARM7TDMI, 
as shown in Figure 2.6, but the same 16 registers appear as those in User mode on the 
ARM7TDMI. If you have a Cortex-M4 that includes a floating-point unit, there are 
actually more. Excluding peripherals, the Cortex-M4 with floating-point hardware 
contains the following registers as part of the programmer’s model:

• 17 general purpose registers, i.e., registers than can hold any value
• A status register than can be viewed in its entirety or in three specialized views

Privileged

Handler
mode

Thread
mode

User

Use: Exception
          handling

Stack: Main

Use: Applications

Stack: Main or
             Process

Use: Applications

Stack: Main or
             Process

FIGURE 2.5 Cortex-M4 modes.
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• 3 interrupt mask registers
• A control register
• 32 single-precision floating-point registers (s0–s31) or 16 double-precision 

registers (d0–d15) or a mix
• 4 floating-point control registers (although these are memory-mapped, not 

physical registers)

As described in the previous section, registers r0 through r12 are general pur-
pose registers, and the registers hold 32-bit values that can be anything you like—
addresses, data, packed data, fractional data values, anything. There are some special 
purpose registers, such as register r13, the stack pointer (and there are two of them, 
giving you the ability to work with separate stacks); register r14, the Link Register; 
and register r15, which is the Program Counter. Like the ARM7TDMI, register r13 
(the stack pointer or SP) holds the address of the stack in memory, only there are just 
two of them in the Cortex-M4, the Main Stack Pointer (MSP) and the Process Stack 
Pointer (PSP). We’ll examine these registers much more in Chapter 15. Register r14 
(the Link Register or LR) is used to hold subroutine and exception return addresses. 
Unlike the ARM7TDMI, there is only one Link Register. Register r15, the Program 
Counter or PC, points to the instruction being fetched, but due to pipelining, there 
are enough corner cases to make hard and fast rules about its value difficult, so 
details can be safely tabled for now.

The Program Status Register, or xPSR, performs the same function that the 
ARM7TDMI’s CPSR does, but with different fields. The entire register can be 
accessed all at once, or you can examine it in three different ways, as shown in 
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FIGURE 2.6 Cortex-M4 with floating-point register organization.
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Figure 2.7. The Application Program Status Register (APSR), the Interrupt Program 
Status Register (IPSR), and the Execution Program Status Register (EPSR) are just 
three specialized views of the same register. The APSR contains the status flags (N, 
C, V, and Z), the Greater Than or Equal flags (used by the SEL instruction), and an 
additional “sticky” Q flag used in saturation arithmetic, where sticky in this case 
means that the bit can only be cleared by explicitly writing a zero to it. The IPSR 
contains only an exception number that is used in handling faults and other types 
of exceptions. Two fields contain the IF-THEN instruction status bits overlapped 
with the Interrupt-Continuable Instruction (ICI) bits, and when combined with the 
Thumb (T) bit, produce the EPSR. The IF-THEN instruction will be seen when we 
begin loops and conditional execution in Chapter 8; however, the ICI/IT bits are used 
for recovering from exceptions, which will not be covered. See the ARM Cortex-M4 
Devices Generic User Guide (ARM 2010b) for more details.

The interrupt mask registers, PRIMASK, FAULTMASK, and BASEPRI are use 
to mask certain types of interrupts and exceptions. PRIMASK and FAULTMASK 
are actually just single-bit registers. BASEPRI can be up to eight bits wide, and the 
value contained in this register sets the priority level of allowable interrupts that the 
processor will acknowledge. In Chapter 15, we’ll see examples of interrupt handling, 
but for more complex interrupt situations, see Yiu (2014), where the use of interrupt 
mask registers is illustrated in more detail.

The last special purpose register is the CONTROL register, which consists of 
only three bits. The least significant bit, CONTROL[0], changes the access level 
while in Thread mode to either a Privileged or User level. The next most signifi-
cant bit, CONTROL[1], selects which stack the processor is to use, either the Main 
Stack Pointer (MSP) or the Process Stack Pointer (PSP). The most significant bit, 
CONTROL[2], indicates whether or not to preserve the floating-point state during 
exception processing. We’ll work with this register a bit more in Chapter 15.

2.4.3 The VeCToR TABLe

The Cortex-M4 vector table is probably one of the larger departures from all previ-
ous ARM processor designs. Returning to the idea that addresses are stored in the 
vector table, rather than instructions, the Cortex-M model looks very much like older 
microcontrollers such as the 8051 and MC6800 in this respect. From Table 2.3, you 
can see how the various exception types have their own type number and address in 
memory. An important point here, not normally too prominent if you are coding in C, 
since a compiler will take care of this issue for you, is that the least significant bit of 
these exception vectors (addresses) should be set to a 1. When we cover instructions 

31
N Z C V Q GE

ICI/IT ICI/ITT

APSR

EPSR

IPSR

30 29 28 27 26 25 24 23 : 20 19 : 16 15 : 10 9 : 8 7 6 5

ISRNUM

4 3 2 1 0
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over the next few chapters, we’ll discover that the Cortex-M4 only executes Thumb-2 
instructions, rather than ARM instructions as the ARM7TDMI does, and the proto-
col requires it. This vector table is relocatable after the processor comes out of reset; 
however, our focus for now is to write short blocks of code without any exceptions or 
errors, covering procedural details first and worrying about all of the variations later.

2.5 EXERCISES

 1. How many modes does the ARM7TDMI processor have? How many states 
does it have? How many modes does the Cortex-M4 have?

 2. What do you think would happen if the instruction SMULTT (an instruc-
tion that runs fine on a Cortex-M4) were issued to an ARM7TDMI? Which 
mode do you think it would be in after this instruction entered the execute 
stage of its pipeline?

 3. What is the standard use of register r14? Register r13? Register r15?

 4. On an ARM7TDMI, in any given mode, how many registers does a pro-
grammer see at one time?

 5. Which bits of the ARM7TDMI status registers contain the flags? Which 
register on the Cortex-M4 holds the status flags?

 6. If an ARM7TDMI processor encounters an undefined instruction, from 
what address will it begin fetching instructions after it changes to Undefined 
mode? What about a reset?

 7. What is the purpose of FIQ mode?

TABLE 2.3
Cortex-M4 Exception Vectors

Exception Type Exception No. Vector Address

(Top of Stack) — 0x00000000

Reset 1 0x00000004

NMI 2 0x00000008

Hard fault 3 0x0000000C

Memory management fault 4 0x00000010

Bus fault 5 0x00000014

Usage fault 6 0x00000018

SVcall 11 0x0000002C

Debug monitor 12 0x00000030

PendSV 14 0x00000038

SysTick 15 0x0000003C

Interrupts 16 and above 0x00000040 and above
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 8. Which mode on an ARM7TDMI can assist in supporting operating sys-
tems, especially for supporting virtual memory systems?

 9. How do you enable interrupts on the ARM7TDMI?

 10. How many stages does the ARM7TDMI pipeline have? Name them.

 11. Suppose that the Program Counter, register r15, contained the hex value 
0x8000. From what address would an ARM7TDMI fetch an instruction 
(assume you are in ARM state)?

 12. What is the function of the Saved Program Status Register?

 13. On an ARM7TDMI, is it permitted to put the instruction

 SUB r0, r2, r3

  at address 0x4? How about at address 0x0? Can you put that same bit pat-
tern at address 0x4 in a system using a Cortex-M4?

 14. Describe the exception vector table for any other microprocessor. How 
does it differ from the ARM7TDMI processor? How does it differ from the 
Cortex-M4?

 15. Give an example of an instruction that would typically be placed at address 
0x0 on an ARM7TDMI. What value is typically placed at address 0x0 on a 
Cortex-M4?

 16. Explain the current program state of an ARM7TDMI if the CPSR had the 
value 0xF00000D3.
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Introduction to 
Instruction Sets
v4T and v7-M

3.1 INTRODUCTION

This chapter introduces basic program structure and a few easy instructions to show 
how directives and code create an assembly program. What are directives? How is 
the code stored in memory? What is memory? It’s unfortunate that the tools and the 
mechanics of writing assembly have to be learned simultaneously. Without software 
tools, the best assembly ever written is virtually useless, difficult to simulate in your 
head, and even harder to debug. You might find reading sections with unfamiliar 
instructions while using new tools akin to learning to swim by being thrown into 
a pool. It is. However, after going through the exercise of running a short block 
of code, the remaining chapters take time to look at all of the details: directives, 
memory, arithmetic, and putting it all together. This chapter is meant to provide a 
gentle introduction to the concepts behind, and rules for writing, assembly programs.

First, we need tools. While the ideas behind assemblers haven’t changed over the 
years, the way that programmers work with an assembler has, in that command-line 
assemblers aren’t really the first tool that you want to use. Integrated Development 
Environments (IDEs) have made learning assembly much easier, as the assembler can 
be driven graphically. Gone are the days of having paper tape as an input to the machine, 
punch cards have been relegated to museums, and errors are reported in milliseconds 
instead of hours. More importantly, the countless options available with command-line 
assemblers are difficult to remember, so our introduction starts the easy way, graphi-
cally. Graphical user interfaces display not only the source code, but memory, registers, 
flags, the binary listings, and assembler output all at once. Tools such as the Keil MDK 
and Code Composer Studio will set up most of the essential parameters for us.

If you haven’t already installed and familiarized yourself with the tools you plan 
to use, you should do so now. By using tools that support integrated development, 
such as those from Keil, ARM, IAR, and Texas Instruments, you can enter, assem-
ble, and test your code all in the same environment. Refer to Appendices A and B 
for instructions on creating new projects and running the code samples in the book. 
You may also choose to use other tools, either open-source (like gnu) or commer-
cial, but note there might be subtle changes to the syntax presented throughout this 
book, and you will want to consult your software’s documentation for those details. 
Either way, today’s tools are vastly more helpful than those used 20 years ago—no 

3
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clumsy breakpoint exceptions are needed; debugging aids are already provided; and 
everything is visual!

3.2 ARM, THUMB, AND THUMB-2 INSTRUCTIONS

There is no clean way to avoid the subject of instruction length once you begin writ-
ing code, since the instructions chosen for your program will depend on the proces-
sor. Even more daunting, there are options on the length of the instruction—you can 
choose a 32-bit instruction or let the assembler optimize it for you if a smaller one 
exists. So some background on the instructions themselves will guide us in making 
sense of these differences. ARM instructions are 32 bits wide, and they were the first 
to be used on older architectures such as the ARM7TDMI, ARM9, ARM10, and 
ARM11. Thumb instructions, which are a subset of ARM instructions, also work on 
32-bit data; however, they are 16 bits wide. For example, adding two 32-bit numbers 
together can be done one of two ways:

ARM instruction ADD r0, r0, r2
Thumb instruction ADD r0, r2

The first example takes registers r0 and r2, adds them together, then stores 
the result back in register r0. The data contained in those registers as well as the 
ARM instruction itself is 32 bits wide. The second example does the exact same 
thing, only the instruction is 16 bits wide. Notice there are only two operands in 
the second example, so one of the operands, register r0, acts as both the source 
and destination of the data. Thumb instructions are supported in older proces-
sors such as the ARM7TDMI, ARM9, and ARM11, and all of the Cortex-A and 
Cortex-R families.

Thumb-2 is a superset of Thumb instructions, including new 32-bit instructions 
for more complex operations. In other words, Thumb-2 is a combination of both 
16-bit and 32-bit instructions. Generally, it is left to the compiler or assembler to 
choose the optimal size, but a programmer can force the issue if necessary. Some 
cores, such as the Cortex-M3 and M4, only execute Thumb-2 instructions—there 
are no ARM instructions at all. The good news is that Thumb-2 code looks very 
similar to ARM code, so the Cortex-M4 examples below resemble those for the 
ARM7TDMI, allowing us to concentrate more on getting code to actually run. In 
Chapter 17, Thumb and Thumb-2 are discussed in detail, especially in the context of 
optimizing code, but for now, only a few basic operations will be needed.

3.3 PROGRAM 1: SHIFTING DATA

Finally, we get around to writing up and describing a real, albeit small, program 
using a few simple instructions, some directives, and the tools to watch everything 
in action. The code below takes a simple value (0x11), loads it into a register, and 
then shifts it one bit to the left, twice. The code could be written identically for either 
the Cortex-M4 or an ARM7TDMI, but we’ll look at the first example using only the 
ARM7TDMI using Keil directives, shown below.
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 AREA Prog1, CODE, READONLY
 ENTRY

 MOV r0, #0x11 ; load initial value
 LSL r1, r0, #1 ; shift 1 bit left
 LSL r2, r1, #1 ; shift 1 bit left

stop B stop  ; stop program
 END

For the assembler to create a block of code, we need the AREA declaration, along 
with the type of data we have—in this case, we are creating instructions, not just 
data (hence the CODE option), and we specify the block to be read-only. Since all 
programs need at least one ENTRY declaration, we place it in the only file that we 
have, with the only section of code that we have. The only other directive we have for 
the assembler in this file is the END statement, which is needed to tell the assembler 
there are no further instructions beyond the B (branch) instruction.

For most of the instructions (there are a few exceptions), the general format is

 instruction destination, source, source

with data going from the source to the destination. Our first MOV instruction has 
register r0 as its destination register, with an immediate value, a hex number, as 
the source operand. We’ll find throughout the book that instructions have a variety 
of source types, including numbers, registers, registers with a shift or rotate, etc. 
The MOV command is normally used to shuffle data from one register to another 
register. It is not used to load data from external memory into a register, and we 
will see that there are dedicated load and store instructions for doing that. The LSL 
instruction takes the value in register r0, shifts it one bit to the left, and moves the 
result to register r1. In Chapter 6, we will look at the datapaths of the ARM7TDMI 
and the Cortex-M4 in more detail, but for now, note that we can also modify other 
instructions for performing simple shifts, such as an ADD, using two registers as the 
source operands in the instruction, and then providing a shift count. The second LSL 
instruction is the same as the first, shifting the value of register r1 one bit to the left 
and moving the result to register r2. We expect to have the values 0x11, 0x22, and 
0x44 in registers r0, r1, and r2, respectively, after the program completes.

The last instruction in the program tells the processor to branch to the branch 
instruction itself, which puts the code into an infinite loop. This is hardly a graceful 
exit from a program, but for the purpose of trying out code, it allows us to terminate 
the simulation easily by choosing Start/Stop Debug Session from the Debug menu or 
clicking the Halt button in our tools.

3.3.1 Running The Code

Learning assembly requires an adventurous programmer, so you should try each 
code sample (and write your own). The best way to hone your skills is to assem-
ble and run these short routines, study their effects on registers and memory, and 
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make improvements as needed. Following the examples provided in Appendices A 
and B, create a project and a new assembly file. You may wish to choose a simple 
microcontroller, such as the LPC2104 from NXP, as your ARM7TDMI target, and 
the TM4C1233H6PM from TI as your Cortex-M4 target (NB: this part is listed as 
LM4F120H5QR in the Keil tools). Once you’ve started the debugger, you can single-
step through the code, executing one instruction at a time until you come to the last 
instruction (the branch). You may also wish to view the assembly listing as it appears 
in memory. If you’re using the MDK tools, choose Disassembly Window from the 
View menu, and your code will appear as in Figure 3.1. You can see the mnemon-
ics in the sample program alongside their equivalent binary representations. Code 
Composer Studio has a similar Disassembly window, found in its View menu.

Recall from Chapter 1 that a stored program computer holds instructions in 
memory, and in this first exercise for the ARM7TDMI, memory begins at address 
0x00000000 and the last instruction of our program can be found at address 
0x0000000C. Notice that the branch instruction at this address has been changed, 
and that our label called stop has been replaced with its numerical equivalent, so that 
the line reads

0x0000000C EAFFFFFE B  0x0000000C

The label stop in this case is the address of the B instruction, which is 
0x0000000C. In Chapter 8, we’ll explore how branches work in detail, but it’s 
worth noting here that the mnemonic has been translated into the binary number 
0xEAFFFFFE. Referring to Figure 3.2 we can see that a 32-bit (ARM) branch 
instruction consists of four bits to indicate the instruction itself, bits 24 to 27, along 
with twenty-four bits to be used as an offset. When a program uses the B instruction 

FIGURE 3.1 Disassembly window.
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to jump or branch to some new place in memory, it uses the Program Counter to cre-
ate an address. For our case, the Program Counter contains the value 0x00000014 
when the branch instruction is in the execute stage of the ARM7TDMI’s pipeline. 
Remember that the Program Counter points to the address of the instruction being 
fetched, not executed. Our branch instruction sits at address 0x0000000C, and 
in order to create this address, the machine needs merely to subtract 8 from the 
Program Counter. It turns out that the branch instruction takes its twenty-four-bit 
offset and shifts it two bits to the left first, effectively multiplying the value by four. 
Therefore, the two’s complement representation of −2, which is 0xFFFFFE, is placed 
in the instruction, producing a binary encoding of 0xEAFFFFFE.

Examining memory beyond our small program shows a seemingly endless series 
of ANDEQ instructions. A quick examination of the bit pattern with all bits clear 
will show that this translates into the AND instruction. The source and destina-
tion registers are register r0, and the conditional field, to be explained in Chapter 8, 
translates to “if equal to zero.” The processor will fetch these instructions but never 
execute them, since the branch instruction will always force the processor to jump 
back to itself.

3.3.2 exAMining RegisTeR And MeMoRy ConTenTs

Again referring back to the stored program computer in Chapter 1, we know that 
both registers and memory can hold data. While you write and debug code, it can be 
extremely helpful to monitor the changes that occur to registers and memory con-
tents. The upper left-hand corner of Figure 3.3 shows the register window in the Keil 
tools, where the entire register bank can be viewed and altered. Changing values 
during debugging sessions can often save time, especially if you just want to test the 
effect of a single instruction on data. The lower right-hand corner of Figure 3.3 shows 
a memory window that will display the contents of memory locations given a start-
ing address. Code Composer Studio has these windows, too, shown in Figure 3.4. 
For now, just note that our ARM7TDMI program starts at address 0x00000000 in 
memory, and the instructions can be seen in the following 16 bytes. For the next few 
chapters, we’ll see examples of moving data to and from memory before unleashing 
all the details about memory in Chapter 5.

Breakpoints can also be quite useful for debugging purposes. A breakpoint is an 
instruction that has been tagged in such a way that the processor stops just before 
its execution. To set a breakpoint on an instruction, simply double-click the instruc-
tion in the gray bar area. You can use either the source window or the disassembly 
window. You should notice a red box beside the breakpointed instruction. When you 
run your code, the processor will stop automatically upon hitting the breakpoint. 
For larger programs, when you need to examine memory and register contents, set 

cond

31 28 272625 2324 0

1 0 1 L 24_bit_signed_offset

FIGURE 3.2 Bit pattern for a branch instruction.
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FIGURE 3.4 Register and memory windows in CCS.

FIGURE 3.3 Register and memory windows in the Keil tools.



51Introduction to Instruction Sets

a breakpoint at strategic points in the code, especially in areas where you want to 
single-step through complex instruction sequences.

3.4 PROGRAM 2: FACTORIAL CALCULATION

The next simple programs we look at for both the ARM7TDMI and the Cortex-M4 
are ones that calculate the value of n!, which is a relatively short loop using only a 
few instructions. Recall that n! is defined as
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For a given value of n, the algorithm iteratively multiplies a current product by a 
number that is one less than the number it used in the previous multiplication. The 
code continues to loop until it is no longer necessary to perform a multiplication, that 
is, when the multiplier is equal to zero.

For the ARM7TDMI code below, we can introduce the topics of

Conditional execution—The multiplication, subtraction, and branch may or 
may not be performed, depending on the result of another instruction.

Setting flags—The CMP instruction directs the processor to update the flags in 
the Current Program Status Register based on the result of the comparison.

Change-of-flow instructions—A branch will load a new address, called a 
branch target, into the Program Counter, and execution will resume from 
this new address.

Flags, in particular their use and meaning, are covered in detail in Chapters 7 
and 8, but one condition that is quite easy to understand is greater-than, which 
simply tells you whether a value is greater than another or not. After a compari-
son instruction (CMP), flags in the CPSR are set and can be combined so that we 
might say one value is less than another, greater than another, etc. In order for 
one signed value to be greater than another, the Z flag must be clear, and the N 
and V flags must be equal. From a programmer’s viewpoint, you simply write the 
condition in the code, e.g., GE for greater-than-or-equal, LT for less-than, or EQ 
for equal.

 AREA Prog2, CODE, READONLY
 ENTRY
 MOV r6,#10  ; load n into r6
 MOV r7,#1  ; if n = 0, at least n! = 1
loop CMP r6, #0
 MULGT r7, r6, r7
 SUBGT r6, r6, #1  ; decrement n
 BGT loop  ;  do another mul if counter!= 0
stop B stop  ; stop program
 END
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As in the first program, we have directives for the Keil assembler to create an 
area with code in it, and we have an ENTRY point to mark the start of our code. 
The first MOV instruction places the decimal value 10, our initial value, into register 
r6. The second MOV instruction moves a default value of one into register r7, our 
result register, in the event the value of n equals zero. The next instruction simply 
subtracts zero from register r6, setting the condition code flags. We will cover this 
in much more detail in the next few chapters, but for now, note that if we want to 
make a decision based on an arithmetic operation, say if we are subtracting one from 
a counter until the counter expires (and then branching when finished), we must tell 
the instructions to save the condition codes by appending the “S” to the instruction. 
The CMP instruction does not need one—setting the condition codes is the only 
function of CMP.

The bulk of the arithmetic work rests with the only multiplication instruction in 
the code, MULGT, or multiply conditionally. The MULGT instruction is executed 
based on the results of that comparison we just did—if the subtraction ended up with 
a result of zero, then the zero (Z) flag in the Current Program Status Register (CPSR) 
will be set, and the condition greater-than does not exist. The multiply instruction 
reads “multiply register r6 times register r7, putting the results in register r7, but 
only if r6 is greater than zero,” meaning if the previous comparison produced a 
result greater than zero. If the condition fails, then this instruction proceeds through 
the pipeline without doing anything. It’s a no-operation instruction, or a nop (pro-
nounced no op).

The next SUB instruction decrements the value of n during each pass of the loop, 
counting down until we get to where n equals zero. Like the multiplier instruction, 
the conditional subtract (SUBGT) instruction only executes if the result from the 
comparison is greater than zero. There are two points here that are important. The 
first is that we have not modified the flag results of the earlier CMP instruction. In 
other words, once the flags were set or cleared by the CMP instruction, they stay that 
way until something else comes along to modify them. There are explicit commands 
to modify the flags, such as CMP, TST, etc., or you can also append the “S” to an 
instruction to set the flags, which we’ll do later. The second thing to point out is that 
we could have two, three, five, or more instructions all with this GT suffix on them to 
avoid having to make another branch instruction. Notice that we don’t have to branch 
around certain instructions when the subtraction finally produces a value of zero in 
our counter—each instruction that fails the comparison will simply be ignored by 
the processor, including the branch (BGT), and the code is finished.

As before, the last branch instruction just branches to itself so that we have a stop-
ping point. Run this code with different values for n to verify that it works, including 
the case where n equals zero.

The factorial algorithm can be written in a similar fashion for the Cortex-M4 as

  MOV r6,#10  ; load 10 into r6
  MOV r7,#1  ; if n = 0, at least n! = 1
 loop CMP r6, #0
  ITTT GT  ; start of our IF-THEN block
  MULGT r7, r6, r7
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  SUBGT r6, r6, #1
  BGT loop ; end of IF-THEN block

 stop B stop ; stop program

The code above looks a bit like ARM7TDMI code, only these are Thumb-2 
instructions (technically, a combination of 16-bit Thumb instructions and some new 
32-bit Thumb-2 instructions, but since we’re not looking at the code produced by the 
assembler just yet, we won’t split hairs).

The first two MOV instructions load our value for n and our default product into 
registers r6 and r7, respectively. The comparison tests our counter against zero, just 
like the ARM7TDMI code, except the Cortex-M4 cannot conditionally execute 
instructions in the same way. Since Thumb instructions do not have a 4-bit conditional 
field (there are simply too few bits to include one), Thumb-2 provides an IF-THEN 
structure that can be used to build small loops efficiently. The format will be covered 
in more detail in Chapter 8, but the ITTT instruction indicates that there are three 
instructions following an IF condition that are treated as THEN operations. In other 
words, we read this as “if register r6 is greater than zero, perform the multiply, the 
subtraction, and the branch; otherwise, do not execute any of these instructions.”

3.5 PROGRAM 3: SWAPPING REGISTER CONTENTS

This next program is actually a useful way to shuffle data around, and a good exer-
cise in Boolean arithmetic. A fast way to swap the contents of two registers without 
using an intermediate storage location (such as memory or another register) is to use 
the exclusive OR operator. Suppose two values A and B are to be exchanged. The 
following algorithm could be used:

 A = A ⊕ B
 B = A ⊕ B
 A = A ⊕ B

The ARM7TDMI code below implements this algorithm using the Keil assem-
bler, where the values of A = 0xF631024C and B = 0x17539ABD are stored in regis-
ters r0 and r1, respectively.

 AREA Prog3, CODE, READONLY
 ENTRY
 LDR r0, =0xF631024C ; load some data
 LDR r1, =0x17539ABD ; load some data
 EOR r0, r0, r1 ; r0 XOR r1
 EOR r1, r0, r1 ; r1 XOR r0
 EOR r0, r0, r1 ; r0 XOR r1
stop B  stop ; stop program
 END
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After execution, r0 = 0x17539ABD and r1 = 0xF631024C. Exclusive OR state-
ments work on register data only, so we perform three EOR operations using our 
preloaded values. There are two funny-looking LDR (load) instructions, and in fact, 
they are not legal instructions. Rather, they are pseudo-instructions that we put in 
the code to make it easier on us, the programmer. While LDR instructions are nor-
mally used to bring data from memory into a register, here they are used to load 
the hexadecimal values 0xF631024C and 0x17539ABD into registers. This pseudo-
instruction is not supported by all tools, so in Chapter 6, we investigate all the differ-
ent ways of loading constants into a register.

3.6 PROGRAM 4: PLAYING WITH FLOATING-POINT NUMBERS

The Cortex-M4 is the first Cortex-M processor to offer an optional floating-point 
unit, allowing real values to be used in microcontroller routines more easily. This 
is no small block of logic; consequently, it is worth examining a short program to 
introduce the subject, as well as the format of the numbers themselves. The following 
code adds 1.0 and 1.0 together, which is not at all obvious:

 LDR  r0, =0xE000ED88  ; Read-modify-write
 LDR  r1, [r0]
 ORR  r1, r1, #(0xF <<  20)   ; Enable CP10, CP11
 STR  r1, [r0]
 VMOV.F s0, #0x3F800000  ; single-precision 1.0
 VMOV.F s1, s0
 VADD.F s2, s1, s0  ; 1.0 + 1.0 = ??

The first instruction, LDR, is actually the same pseudo-instruction we saw in 
Program 3 above, placing a 32-bit constant into register r0. We then use a real load 
instruction, LDR, to perform a read-modify-write operation, first reading a value at 
address 0xE000ED88 into register r1. This is actually the address of the Coprocessor 
Access Control Register, one of the memory-mapped registers used for controlling 
the floating-point unit. We then use a logical-OR instruction to set bits r1[23:20] to 
give us full access to coprocessors 10 and 11 (covered in Chapter 9). The final store 
instruction (STR) writes the value into the memory-mapped register, turning on the 
floating-point unit.

If you run the code using the Keil tools, you will see all of the registers for the 
processor, including the floating-point registers, in the Register window, shown in 
Figure 3.5. As you single-step through the code, notice that the first floating-point 
register, s0, eventually gets loaded with the value 0x3F800000, which is the decimal 
value 1.0 represented as a single-precision floating-point number. The second move 
operation (VMOV.F) copies that value from register s0 to s1. The VADD.F instruc-
tion adds the two numbers together, but the resulting 32-bit value, 0x40000000, 
definitely feels a little odd—that’s 2.0 as a single-precision floating-point value! Run 
the code again, replacing the value in register s0 with 0x40000000. You anticipate 
that the value is 4.0, but the result requires a bit of interpretation.



55Introduction to Instruction Sets

3.7  PROGRAM 5: MOVING VALUES BETWEEN INTEGER AND 
FLOATING-POINT REGISTERS

It’s worth exploring one more short example. Here data is transferred between the 
ARM integer processor and the floating-point unit. Type in and run the following 
code on a Cortex-M4 microcontroller with floating-point hardware, single-stepping 
through each instruction to see the register values change.

 LDR  r0, =0xE000ED88 ; Read-modify-write
 LDR  r1, [r0]
 ORR  r1, r1, #(0xF <<  20) ; Enable CP10, CP11
 STR  r1, [r0]
 LDR r3, =0x3F800000 ; single precision 1.0
 VMOV.F s3, r3 ; transfer contents from ARM to FPU
 VLDR.F s4, =6.0221415e23 ; Avogadro’s constant
 VMOV.F r4, s4 ; transfer contents from FPU to ARM

The first four instructions are those that we saw in the previous example to enable 
the floating-point unit. In line five, the LDR instruction loads register r3 with the 
representation of 1.0 in single precision. The VMOV.F instruction then takes the 
value stored in an integer register and transfers it to a floating-point register, register 
s3. Notice that the VMOV instruction was also used earlier to transfer data between 
two floating-point registers. Finally, Avogadro’s constant is loaded into a floating-
point register directly with the VLDR pseudo-instruction, which works just like the 
LDR pseudo-instruction in Programs 3 and 4. The VMOV.F instruction transfers 
the 32-bit value into the integer register r4. As you step through the code, watch the 
values move between integer and floating-point registers. Remember that the micro-
controller really has little control over what these 32-bit values mean, and while there 
are some special values that do get treated differently in the floating-point logic, the 
integer logic just sees the value 0x66FF0C30 (Avogadro’s constant now converted 

FIGURE 3.5 Register window in the Keil tools.
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into a 32-bit single-precision number) in register r4 and thinks nothing of it. The 
exotic world of IEEE-compatible floating-point numbers will be covered in great 
detail in Chapters 9 through 11.

3.8 PROGRAMMING GUIDELINES

Writing assembly code is generally not difficult once you’ve become familiar with 
the processor’s abilities, the instructions available, and the problem you are trying to 
solve. When writing code for the first time, however, you should keep a few things 
in mind:

• Break your problem down into small pieces. Writing smaller blocks of code 
can often prove to be much easier than trying to tackle a large problem all 
at one go. The trade-off, of course, is that you must now ensure that the 
smaller blocks of code can share information and work together without 
introducing bugs in the final routine.

• Always run a test case through your finished code, even if the code looks 
like it will “obviously” work. Often you will find a corner case that you 
haven’t anticipated, and spending some time trying to break your own code 
is time well spent.

• Use the software tools to their fullest when writing a block of code. For 
example, the Keil MDK and Code Composer Studio tools provide a nice 
interface for setting breakpoints on instructions and watchpoints on data so 
that you can track the changes in registers, memory, and the condition code 
flags. As you step through your code, watch the changes carefully to ensure 
your code is doing exactly what you expect.

• Always make the assumption that someone else will be reading your 
code, so don’t use obscure names or labels. A frequent complaint of pro-
grammers, even experienced ones, is that they can’t understand their own 
code at certain points because they didn’t write down what they were 
thinking at the time they wrote it. Years may pass before you examine 
your software again, so it’s important to notate as much as possible, as 
carefully as possible, while you’re writing the code and it’s fresh in your 
mind.

• While it’s tempting to make a program look very sophisticated and clever, 
especially if it’s being evaluated by a teacher or supervisor, this often leads 
to errors. Simplicity is usually the best bet for beginning programs.

• Your first programs will probably not be optimal and efficient. This is nor-
mal. As you gain experience coding, you will learn about optimization 
techniques and pipeline effects later, so focus on getting the code running 
without errors first. Optimal code will come with practice.

• Don’t be afraid to make mistakes or try something out. The software tools 
that you have available make it very easy to test code sections or instruc-
tions without doing any permanent damage to anything. Write some code, 
run it, watch the effects on the registers and memory, and if it doesn’t work, 
find out why and try again!
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• Using flowcharts may be useful in describing algorithms. Some program-
mers don’t use them, so the choice is ultimately left to the writer.

• Pay attention to initialization. When your programs or modules begin, 
make a note of what values you expect to find in various registers—are 
they to be clear? Do you need to reset certain parameters at the start of 
a loop? Check for constants and fixed values that can be stored in mem-
ory or in the program itself. Before using variables (register or memory 
contents), it’s always a good idea to set them to a known value. In some 
cases, this may not be necessary, e.g., if you subtracted two numbers and 
stored the result in a register that had not been initialized, the operation 
itself will set the register to a known value. However, if you use a register 
assuming the contents are clear, even a memory-mapped register, you 
can easily introduce errors in your code since some memory-mapped 
registers are described as undefined coming out of reset and may not be 
set to zero. Memory-mapped registers are examined in more detail in 
Chapter 16.

3.9 EXERCISES

 1. Change Program 1, replacing the last LSL instruction with

 ADD r2, r1, r1, LSL #2

  and rerun the simulation. What value is in register r2 when the code reaches 
the infinite loop (the B instruction)? What is the ADD instruction actually 
doing?

 2. Using a Disassembly window, write out the seven machine codes (32-bit 
instructions) for Program 2.

 3. How many bytes does the code for Program 2 occupy? What about Program 3?

 4. Change the value in register r6 at the start of Program 2 to 12. What value 
is in register r7 when the code terminates? Verify that this hex number is 
correct.

 5. Run Program 3. After the first EOR instruction, what is the value in register 
r0? After the second EOR instruction, what is the value in register r1?

 6. Using the instructions in Program 2 as a guide, write a program for both the 
ARM7TDMI and the Cortex-M4 that computes 6x2 − 9x + 2 and leaves the 
result in register r2. You can assume x is in register r3. For the syntax of the 
instructions, such as addition and subtraction, see the ARM Architectural 
Reference Manual and the ARM v7-M Architectural Reference Manual.

 7. Show two different ways to clear all the bits in register r12 to zero. You may 
not use any registers other than r12.
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 8. Using Program 3 as a guide, write a program that adds the 32-bit two’s 
complement representations of −149 and −4321. Place the result in register 
r7. Show your code and the resulting value in register r7.

 9. Using Program 2 as a guide, execute the following instructions on an 
ARM7TDMI. Place small values in the registers beforehand. What do the 
instructions actually do?

 a. MOVS r6, r6, LSL #5
 b. ADD r9, r8, r8, LSL #2
 c. RSB r10, r9, r9, LSL #3
 d. (b) Followed by (c)

 10. Suppose a branch instruction is located at address 0x0000FF00 in mem-
ory. What ARM instruction (32-bit binary pattern) do you think would be 
needed so that this B instruction could branch to itself?

 11. Translate the following machine code into ARM mnemonics. What does 
the machine code do? What is the final value in register r2? You will want to 
compare these bit patterns with instructions found in the ARM Architectural 
Reference Manual.

 12. Using the VLDR pseudo-instruction shown in Program 5, change Program 4 
so that it adds the value of pi (3.1415926) to 2.0. Verify that the answer is cor-
rect using one of the floating-point conversion tools given in the References.

 13. The floating-point instruction VMUL.F works very much like a VADD.F 
instruction. Using Programs 4 and 5 as a guide, multiply the floating-point 
representation for Avogadro’s constant and 4.0 together. Verify that the 
result is correct using a floating-point conversion tool.

Address Machine code

00000000 E3A00019
00000004 E3A01011
00000008 E0811000
0000000C E1A02001
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Assembler Rules and 
Directives

4.1 INTRODUCTION

The ARM assembler included with the RealView Microcontroller Development Kit 
contains an extensive set of features found on most assemblers—essential for expe-
rienced programmers, but somewhat unnerving if you are forced to wade through 
volumes of documentation as a beginner. Code Composer Studio also has a nice 
assembler with myriad features, but the details in the ARM Assembly Language 
Tools User’s Guide run on for more than three hundred pages. In an attempt to cut 
right to the heart of programming, we now look at rules for the assembler, the struc-
ture of a program, and directives, which are instructions to the assembler for creating 
areas of code, aligning data, marking the end of your code, and so forth. These are 
unlike processor instructions, which tell the processor to add two numbers or jump 
somewhere in your code, since they never turn into actual machine instructions. 
Although both the ARM and TI assemblers are easy to learn, be aware that other 
assemblers have slightly different rules; e.g., gnu tools have directives that are pre-
ceded with a period and labels that are followed by a colon. It’s a Catch-22 situation 
really, as you cannot learn assembly without knowing how to use directives, but it’s 
difficult to learn directives without seeing a little assembly. Fortunately, it is unlikely 
that you will use every directive or every assembler option immediately, so for now, 
we start with what is essential. Read this chapter to get an overview of what’s pos-
sible, but don’t panic. As we proceed through more chapters of the book, you may 
find yourself flipping back to this chapter quite often, which is normal. You can, of 
course, refer back to the RealView Assembler User’s Guide found in the RVMDK 
tools or the Code Composer Studio documentation for the complete specifications of 
the assemblers if you need even more detail.

4.2 STRUCTURE OF ASSEMBLY LANGUAGE MODULES

We begin by examining a very simple module as a starting point. Consider the fol-
lowing code:

 AREA ARMex, CODE, READONLY
 ; Name this block of code ARMex
 ENTRY   ; Mark first instruction to execute
start MOV  r0, #10 ; Set up parameters
 MOV  r1, #3

4
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 ADD  r0, r0, r1 ; r0 = r0 + r1
stop B  stop  ; infinite loop
 END   ; Mark end of file

While the routine may appear a little cryptic, it only does one thing: it adds the 
numbers 10 and 3 together. The rest of the code consists of directives for the assem-
bler and an instruction at the end to put the processor in an infinite loop. You can see 
that there is some structure to the lines of code, and the general form of source lines 
in your assembly files is

{label} {instruction|directive|pseudo-instruction} {;comment}

where each field in braces is optional. Labels are names that you choose to repre-
sent an address somewhere in memory, and while they eventually do need to be 
translated into a numeric value, as a programmer you simply work with the name 
throughout your code. The linker will calculate the correct address during the link-
age process that follows assembly. Note that a label name can only be defined once 
in your code, and labels must start at the beginning of the line (there are some 
assemblers that will allow you to place the label at any point, but they require 
delimiters such as a colon).

The instructions, directives, and pseudo-instructions (such as ADR that we will 
see in Chapter 6) must be preceded by a white space, either a tab or any number of 
spaces, even if you don’t have a label at the beginning. One of the most common mis-
takes new programmers make is starting an instruction in column one. To make your 
code more readable, you may use blank lines, since all three sections of the source 
line are optional. ARM and Thumb instructions available on the ARM7TDMI are 
from the ARM version 4T instruction set; the Thumb-2 instructions used on the 
Cortex-M4 are from the v7-M instruction set. All of these can be found in the respec-
tive Architectural Reference Manuals, along with their mnemonics and uses. Just to 
start us off, the ARM instructions for the ARM7TDMI are also listed in Table 4.1, 
and we’ll slowly introduce the v7-M instructions throughout the text. There are many 
directives and pseudo-instructions, but we will cover only a handful throughout this 
chapter to get a sense of what is possible.

The current ARM/Thumb assembler language, called Unified Assembler 
Language (UAL), has superseded earlier versions of both the ARM and Thumb 
assembler languages (we saw a few Thumb instructions in Chapter 3, and we’ll 
see more throughout the book, particularly in Chapter 17). To give you some idea 
of the subtle changes involved, compare the two formats for performing a shift 
operation:

Old ARM format UAL format
MOV <Rd>, <Rn>, LSL shift  LSL <Rd>, <Rn>, shift
LDR{cond}SB    LDRSB{cond}
LDMFD sp!,{reglist}   PUSH {reglist}

Code written using UAL can be assembled for ARM, Thumb, or Thumb-2, 
which is an extension of the Thumb instruction set found on the more recent ARM 
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processors, e.g., Cortex-A8. However, you’re likely to find a great a deal of code 
written using the older format, so be mindful of the changes when you review older 
programs. Also be aware that a disassembly of your code will show the UAL nota-
tions if you are using the RealView tools or Code Composer Studio. You can find 
more details on UAL formats in the RealView Assembler User’s Guide located in 
the RVMDK tools.

We’ll examine commented code throughout the book, but in general it is a good 
idea to document your code as much as possible, with clear statements about the 
operation of certain lines. Remember that on large projects, you will probably not 
be the only one reading your code. Guidelines for good comments include the 
following:

• Don’t comment the obvious. If you’re adding one to a register, don’t write 
“Register r3 + 1.”

• Use concise language when describing what registers hold or how a func-
tion behaves.

• Comment the sections of code where you think another programmer might 
have a difficult time following your reasoning. Complicated algorithms 
usually require a deep understanding of the code, and a bug may take days 
to find without adequate documentation.

• In addition to commenting individual instructions, include a short descrip-
tion of functions, subroutines, or long segments of code.

• Do not abbreviate, if possible.
• Acronyms should be avoided, but this can be difficult sometimes, since 

peripheral register names tend to be shortened. For example, VIC0_VA7R 
might not mean much in a comment, so if you use the name in the instruc-
tion, describe what the register does.

TABLE 4.1
ARM Version 4T Instruction Set
ADC ADD AND B BL

BX CDP CMN CMP EOR

LDC LDM LDR LDRB LDRBT

LDRH LDRSB LDRSH LDRT MCR

MLA MOV MRC MRS MSR

MUL MVN ORR RSB RSC

SBC SMLAL SMULL STC STM

STR STRB STRBT STRH STRT

SUB SWIa SWP SWPB TEQ

TST UMLAL UMULL   

a The SWI instruction was deprecated in the latest version of the ARM 
Architectural Reference Manual (2007c), so while you should use the 
SVC instruction, you may still see this instruction in some older code.
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If you are using the Keil tools, the first semicolon on a line indicates the beginning 
of a comment, unless you have the semicolon inside of a string constant, for example,

abc SETS “This is a semicolon;”

Here, a string is assigned to the variable abc, but since the semicolon lies within 
quotes, there is no comment on this line. The end of the line is the end of the com-
ment, and a comment can occupy the entire line if you wish. The TI assembler will 
allow you to place either an asterisk (*) or a semicolon in column 1 to denote a com-
ment, or a semicolon anywhere else on the line.

At some point, you will begin using constants in your assembly, and they are 
allowed in a handful of formats:

• Decimal, for example, 123
• Hexadecimal, for example, 0x3F
• n_xxx (Keil only) where:

 n is a base between 2 and 9
 xxx is a number in that base

Character constants consist of opening and closing single quotes, enclosing either a 
single character or an escaped character, using the standard C escape characters (recall 
that escape characters are those that act as nonprinting characters, such as \n for creat-
ing a new line). String constants are contained within double quotes. The standard C 
escape sequences can be used within string constants, but they are done differently by 
assemblers. For example, in the Keil tools, you could say something like

 MOV r3, #’A’ ; single character constant
 GBLS str1 ; set the value of global string variable
str1 SETS “Hello world!\n”

In the Code Composer Studio tools, you might say

 .string “Hello world!”

which places 8-bit characters in the string into a section of code, but the .string direc-
tive neither adds a NUL character at the end of the characters nor interprets escape 
characters. Instead, you could say

 .cstring “Hello world!\n”

which both adds the NUL character for you and correctly interprets the \n escape 
character at the end.

Before we move into directives, we need to cover a few housekeeping rules. For 
the Keil tools, there are case rules associated with your commands, so while you can 
write the instruction mnemonics, directives, and symbolic register names in either 
uppercase or lowercase, you cannot mix them. For example ADD or add are accept-
able, but not Add. When it comes to mnemonics, the TI assembler is case-insensitive. 
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To make the source file easier to read, the Keil tools allow you to split up a single line 
into several lines by placing a backslash character (\) at the end of a line. If you had 
a long string, you might write

ISR_Stack_Size EQU (UND_Stack_Size + SVC_Stack_Size + ABT_Stack_Size + \
 FIQ_Stack_Size + IRQ_Stack_Size)

There must not be any other characters following the backslash, such as a space 
or a tab. The end-of-line sequence is treated as a white space by the assembler. 
Using the Keil tools, you may have up to 4095 characters for any given line, includ-
ing any extensions using backslashes. The TI tools only allow 400 characters per 
line—anything longer is truncated. For either tool, keep the lines relatively short 
for easier reading!

4.3 PREDEFINED REGISTER NAMES

Most assemblers have a set of register names that can be used interchangeably in 
your code, mostly to make it easier to read. The ARM assembler is no different, 
and includes a set of predefined, case-sensitive names that are synonymous with 
registers. While the tools recognize predeclared names for basic registers, status 
registers, floating-point registers, and coprocessors, only the following are of imme-
diate use to us:

r0-r15 or R0-R15
s0-s31 or S0-S31
a1-a4 (argument, result, or scratch registers, synonyms for r0 to r3)
sp or SP (stack pointer, r13)
lr or LR (Link Register, r14)
pc or PC (Program Counter, r15)
cpsr or CPSR (current program status register)
spsr or SPSR (saved program status register)
apsr or APSR (application program status register)

4.4 FREQUENTLY USED DIRECTIVES

A complete description of the assembler directives can be found in Section 4.3 of the 
RealView Assembler User’s Guide or Chapter 4 of ARM Assembly Language Tools 
User’s Guide; however, in order to start coding, you only need a few. We’ll examine 
the more frequently used directives first, shown in Table 4.2, and leave the others 
as reference material should you require them. Then we’ll move on to macros in the 
next section.

4.4.1 defining A BLoCK of dATA oR Code

As you create code, particularly compiled code from C programs, the tools will need 
to be told how to treat all the different parts of it—data sections, program sections, 
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blocks of coefficients, etc. These sections, which are indivisible and named, then get 
manipulated by the linker and ultimately end up in the correct type of memory in a 
system. For example, data, which could be read-write information, could get stored 
in RAM, as opposed to the program code which might end up in Flash memory. 
Normally you will have separate sections for your program and your data, especially 
in larger programs. Blocks of coefficients or tables can be placed in a section of their 
own. Since the two main tool sets that we’ll use throughout the book do things in 
very different ways, both formats are presented below.

4.4.1.1 Keil Tools
You tell the assembler to begin a new code or data section using the AREA directive, 
which has the following syntax:

 AREA sectionname{,attr}{,attr}…

where sectionname is the name that the section is to be given. Sections can be 
given almost any name, but if you start a section name with a digit, it must be 
enclosed in bars, e.g., |1_DataArea|; otherwise, the assembler reports a missing 
section name error. There are some names you cannot use, such as |.text|, since this 
is used by the C compiler (but it would be a rather odd name to pick at random). 
Your code must have at least one AREA directive in it, which you’ll usually find 
in the first few lines of a program. Table 4.3 shows some of the attributes that are 
available, but a full list can be found in the RealView Assembler User Guide in the 
Keil tools.

EXAMPLE 4.1

The following example defines a read-only code section named Example.

 AREA Example,CODE,READONLY ; An example code section.
 ; code

TABLE 4.2
Frequently Used Directives

Keil Directive CCS Directive Uses

AREA .sect Defines a block of code or data

RN .asg Can be used to associate a register with a name

EQU .equ Equates a symbol to a numeric constant

ENTRY  Declares an entry point to your program

DCB, DCW, DCD .byte, .half, .word Allocates memory and specifies initial runtime contents

ALIGN .align Aligns data or code to a particular memory boundary

SPACE .space Reserves a zeroed block of memory of a particular size

LTORG  Assigns the starting point of a literal pool

END .end Designates the end of a source file
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4.4.1.2 Code Composer Studio Tools
It’s often helpful to break up large assembly files into sections, e.g., creating a sepa-
rate section for large data sets or blocks of coefficients. In fact, the TI assembler has 
directives to address similar concepts. Table 4.4 shows some of the directives used 
to create sections.

The .sect directive is similar to the AREA directive in that you use it to create 
an initialized section, to put either your code or some initialized data there. Sections 
can be made read-only or read-write, just as with Keil tools. You can make as many 
sections as you like; however, it is usually best to make only as many as needed. An 
example of a section of data called Coefficients might look like

 .sect “Coefficients”
 .float 0.05
 .float 2.03
 .word 0AAh

The default section is the .text section, which is where your assembly program 
will normally sit, and in fact, you can create it either by saying

 .sect “.text”

TABLE 4.3
Valid Section Attributes (Keil Tools)
ALIGN = expr This aligns a section on a 2expr-byte boundary (note that this is different from the 

ALIGN directive); e.g., if expr = 10, then the section is aligned to a 1KB 
boundary.

CODE The section is machine code (READONLY is the default)

DATA The section is data (READWRITE is the default)

READONLY The section can be placed in read-only memory (default for sections of CODE)

READWRITE The section can be placed in read-write memory (default for sections of DATA)

TABLE 4.4
TI Assembler Section Directives

 Directive Use

Uninitialized sections .bss Reserves space in the .bss section

.usect Reserves space in a specified uninitialized named section

Initialized sections .text The default section where the compiler places code

.data Normally used for pre-initialized variables or tables

.sect Defines a named section similar to the default .text and 
.data sections
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or by simply typing

 .text

Anything after this will be placed in the .text section. As we’ll see in Chapter 5 
for both the Keil tools and the Code Composer Studio tools, there is a linker com-
mand file and a memory map that determines where all of these sections ultimately 
end up in memory. As with most silicon vendors, TI ships a default linker command 
file for their MCUs, so you shouldn’t need to modify anything to get up and running.

4.4.2 RegisTeR nAMe definiTion

4.4.2.1 Keil Tools
In the ARM assembler that comes with the Keil tools, there is a directive RN that 
defines a register name for a specified register. It’s not mandatory to use such a direc-
tive, but it can help in code readability. The syntax is

name RN expr

where name is the name to be assigned to the register. Obviously name cannot be 
the same as any of the predefined names listed in Section 4.3. The expr parameter 
takes on values from 0 to 15. Mind that you do not assign two or more names to the 
same register.

EXAMPLE 4.2

The following registers have been given names that can be used throughout 
 further code:

 coeff1 RN 8 ; coefficient 1
 coeff2 RN 9 ; coefficient 2
 dest RN 0 ; register 0 holds the pointer to
    ; destination matrix

4.4.2.2 Code Composer Studio
You can assign names to registers using the .asg directive. The syntax is

 .asg “character string”, substitution symbol

For example, you might say

 .asg R13, STACKPTR
 ADD STACKPTR, STACKPTR, #3

4.4.3 equATing A syMBoL To A nuMeRiC ConsTAnT

It is frequently useful to give a symbolic name to a numeric constant, a register-
relative value, or a program-relative value. Such a directive is similar to the use 
of #define to define a constant in C. Note that the assembler doesn’t actually place 
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anything at a particular memory location. It merely equates a label with an operand, 
either a value or another label, for example.

4.4.3.1 Keil Tools
The syntax for the EQU directive is

name EQU expr{,type}

where name is the symbolic name to assign to the value, expr is a register-relative 
address, a program-relative address, an absolute address, or a 32-bit integer constant. 
The parameter type is optional and can be any one of

ARM
THUMB
CODE16
CODE32
DATA

EXAMPLE 4.3

SRAM_BASE EQU 0x04000000  ; assigns SRAM a base address
abc EQU 2   ;  assigns the value 2 to the symbol abc
xyz EQU  label+8 ;  assigns the address (label+8)
    ; to the symbol xyz
fiq EQU  0x1C, CODE32 ; assigns the absolute address
    ;  0x1C to the symbol fiq, and marks it 
    ; as code

4.4.3.2 Code Composer Studio
There are two identical (and interchangeable) directives for equating names with 
constants and other values: .set and .equ. Notice that registers can be given names 
using these directives as well as values. Their syntax is

symbol .set   value
symbol .equ  value

EXAMPLE 4.4

AUX_R4 .set R4 ; equate symbol AUX_R4 to register R4
OFFSET .equ 50/2 + 3 ; equate OFFSET to a numeric value
 ADD r0, AUX_R4, #OFFSET

4.4.4 deCLARing An enTRy poinT

In the Keil tools, the ENTRY directive declares an entry point to a program. The 
syntax is

 ENTRY

Your program must have at least one ENTRY point for a program; otherwise, a 
warning is generated at link time. If you have a project with multiple source files, not 
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every source file will have an ENTRY directive, and any single source file should 
only have one ENTRY directive. The assembler will generate an error if more than 
one ENTRY exists in a single source file.

EXAMPLE 4.5

 AREA ARMex, CODE, READONLY
 ENTRY     ; Entry point for the application

4.4.5 ALLoCATing MeMoRy And speCifying ConTenTs

When writing programs that contain tables or data that must be configured before the 
program begins, it is necessary to specify exactly what memory looks like. Strings, 
floating-point constants, and even addresses can be stored in memory as data using 
various directives.

4.4.5.1 Keil Tools
One of the more common directives, DCB, actually defines the initial runtime con-
tents of memory. The syntax is

{label} DCB expr{,expr}…

where expr is either a numeric expression that evaluates to an integer in the range 
−128 to 255, or a quoted string, where the characters of the string are stored con-
secutively in memory. Since the DCB directive affects memory at the byte level, you 
should use an ALIGN directive afterward if any instructions follow to ensure that the 
instruction is aligned correctly in memory.

EXAMPLE 4.6

Unlike strings in C, ARM assembler strings are not null-terminated. You can con-
struct a null-terminated string using DCB as follows:

   C_string DCB “C_string”,0

If this string started at address 0x4000 in memory, it would look like

Compare this to the way to that the Code Composer Studio assembler did the 
same thing using the .cstring directive in Section 4.2.

Address ASCII equivalent

0x4000 43 C
0x4001 5F _
0x4002 73 s
0x4003 74 t
0x4004 72 r
0x4005 69 i
0x4006 6E n
0x4007 67 g
0x4008 00
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In addition to the directive for allocating memory at the resolution of bytes, there 
are directives for reserving and defining halfwords and words, with and without 
alignment. The DCW directive allocates one or more halfwords of memory, aligned 
on two-byte boundaries (DCWU does the same thing, only without the memory 
alignment). The syntax for these directives is

{label} DCW{U} expr{,expr}…

where expr is a numeric expression that evaluates to an integer in the range −32768 
to 65535.

Another frequently used directive, DCD, allocates one or more words of memory, 
aligned on four-byte boundaries (DCDU does the same thing, only without the mem-
ory alignment). The syntax for these directives is

{label} DCD{U} expr{,expr}

where expr is either a numeric expression or a program-relative expression. DCD 
inserts up to 3 bytes of padding before the first defined word, if necessary, to achieve 
a 4-byte alignment. If alignment isn’t required, then use the DCDU directive.

EXAMPLE 4.7

coeff DCW 0xFE37, 0x8ECC ; defines 2 halfwords
data1 DCD 1,5,20 ; defines 3 words containing
 ; decimal values 1, 5, and 20
data2 DCD mem06 + 4 ; defines 1 word containing 4 +
 ;  the address of the label mem06

 AREA MyData, DATA, READWRITE
 DCB 255 ; now misaligned...
data3 DCDU 1,5,20 ; defines 3 words containing
 ; 1, 5, and 20 not word aligned

4.4.5.2 Code Composer Studio
There are similar directives in CCS for initializing memory, each directive specifying 
the width of the values being used. For placing one or more values into consecutive 
bytes of the current section, you can use either the .byte or .char directive. The syntax is

{label} .byte value1{,…,valuen}

where value can either be a string in quotes or some other expression that gets evalu-
ated assuming the data is 8-bit signed data.

EXAMPLE 4.8

If you wanted to place a few constants and some short strings in memory, you 
could say

LAB1 .byte 10, −1, “abc”, ‘a’
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and in memory the values would appear as

0A FF 61 62 63 61

For halfword values, there are .half and .short directives which will always align the 
data to halfword boundaries in the section. For word length values, there are .int, 
.long, and .word directives, which also align the data to word boundaries in the sec-
tion. There is even a .float directive (for single-precision floating-point values) and a 
.double directive (for double-precision floating-point values)!

4.4.6 ALigning dATA oR Code To AppRopRiATe BoundARies

Sometimes you must ensure that your data and code are aligned to appropriate 
boundaries. This is typically required in circumstances where it’s necessary or opti-
mal to have your data aligned a particular way. For example, the ARM940T proces-
sor has a cache with 16-byte cache lines, and to maximize the efficiency of the cache, 
you might try to align your data or function entries along 16-byte boundaries. For 
those processors where you can load and store double words (64 bits), such as the 
ARM1020E or ARM1136EJ-S, the data must be on an 8-byte boundary. A label on 
a line by itself can be arbitrarily aligned, so you might use ALIGN 4 before the label 
to align your ARM code, or ALIGN 2 to align Thumb code.

4.4.6.1 Keil Tools
The ALIGN directive aligns the current location to a specified boundary by padding 
with zeros. The syntax is

ALIGN {expr{,offset}}

where expr is a numeric expression evaluating to any power of two from 20 to 231, 
and offset can be any numeric expression. The current location is aligned to the next 
address of the form

offset + n * expr

If expr is not specified, ALIGN sets the current location to the next word (four 
byte) boundary.

EXAMPLE 4.9

  AREA OffsetExample, CODE
  DCB 1       ; This example places the two
  ALIGN 4,3      ; bytes in the first and fourth
  DCB 1       ; bytes of the same word

  AREA Example, CODE, READONLY
start  LDR r6, = label1
  ; code
  MOV pc,lr
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label1  DCB 1  ; pc now misaligned
  ALIGN  ; ensures that subroutine1 addresses
subroutine1 MOV r5, #0x5 ; the following instruction

4.4.6.2 Code Composer Studio
The .align directive can be used to align the section Program Counter to a particular 
boundary within the current section. The syntax is

 .align {size in bytes}

If you do not specify a size, the default is one byte. Otherwise, a size of 2 aligns 
code or data to a halfword boundary, a size of 4 aligns to a word boundary, etc.

4.4.7 ReseRVing A BLoCK of MeMoRy

You may wish to reserve a block of memory for variables, tables, or storing data dur-
ing routines. The SPACE and .space directives reserve a zeroed block of memory.

4.4.7.1 Keil Tools
The syntax is

{label} SPACE expr

where expr evaluates to the number of zeroed bytes to reserve. You may also want 
to use the ALIGN directive after using a SPACE directive, to align any code that 
follows.

EXAMPLE 4.10

 AREA MyData, DATA, READWRITE
data1 SPACE 255 ; defines 255 bytes of zeroed storage

4.4.7.2 Code Composer Studio
There are actually two directives that reserve memory—the .space and .bes direc-
tives. When a label is used with the .space directive, it points to the first byte reserved 
in memory, while the .bes points to the last byte reserved. The syntax for the two is

{label} .space size (in bytes)

{label} .bes size (in bytes)

EXAMPLE 4.11

 RES_1: .space 100 ; RES_1 points to the first byte
 RES_2: .bes 30 ; RES_2 points to the last byte

As an aside, there is also a .bss directive for reserving uninitialized space— 
consult Chapter 4 of ARM Assembly Language Tools User’s Guide for all the details.
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4.4.8 Assigning LiTeRAL pooL oRigins

Literal pools are areas of data that the ARM assembler creates for you at the end of 
every code section, specifically for constants that cannot be created with rotation 
schemes or that do not fit into an instruction’s supported formats. Chapter 6 discusses 
literal pools at length, but you should at least see the uses for the LTORG directive 
here. Situations arise where you might have to give the assembler a bit of help in 
placing literal pools, since they are placed at the end of code sections, and these ends 
rely on the AREA directives at the beginning of sections that follow (or the end of 
your code).

EXAMPLE 4.12

Consider the code below. An LDR pseudo-instruction is used to move the con-
stant 0x55555555 into register r1, which ultimately gets converted into a real LDR 
instruction with a PC-relative offset. This offset must be calculated by the assem-
bler, but the offset has limits (4 kilobytes). Imagine then that we reserve 4200 bytes 
of memory just at the end of our code—the literal pool would go after the big, 
empty block of memory, but this is too far away. An LTORG directive is required 
to force the assembler to put the literal pool after the MOV instruction instead, 
allowing an offset to be calculated that is within the 4 kilobyte range. In larger 
programs, you may find yourself making several literal pools, so place them after 
unconditional branches or subroutine return instructions. This prevents the pro-
cessor from executing the constants as instructions.

 AREA Example, CODE, READONLY
start  BL  func1
func1   ; function body
   ; code
 LDR r1, = 0x55555555 ; =>  LDR R1, [pc, #offset to lit
   ; pool 1]
 ; code
 MOV  pc,lr ; end function
 LTORG  ;  lit. pool 1 contains literal
   ; 0x55555555
data SPACE 4200 ;  clears 4200 bytes of memory,
   ;  starting at current location
 END  ;  default literal pool is empty

Note that the Keil tools permit the use of the LDR pseudo-instruction, but Code 
Composer Studio does not, so there is no equivalent of the LTORG directive in 
the CCS assembler.

4.4.9 ending A souRCe fiLe

This is the easiest of the directives—END simply tells the assembler you’re at the 
end of a source file. The syntax for the Keil tools is

 END



73Assembler Rules and Directives

and for Code Composer Studio, it’s

 .end

When you terminate your source file, place the directive on a line by itself.

4.5 MACROS

Macro definitions allow a programmer to build definitions of functions or opera-
tions once, and then call this operation by name throughout the code, saving some 
writing time. In fact, macros can be part of a process known as conditional assem-
bly, wherein parts of the source file may or may not be assembled based on certain 
variables, such as the architecture version (or a variable that you specify yourself). 
While this topic is not discussed here, you can find all the specifics about conditional 
assembly, along with the directives involved, in the Directives Reference section of 
the RealView Assembler User’s Guide or the Macro Description chapter of the ARM 
Assembly Language Tools User’s Guide from TI.

The use of macros is neither recommended nor discouraged, as there are advan-
tages and disadvantages to using them. You can generally shorten your source code 
by using them, but when the macros are expanded, they may chew up memory space 
because of their frequent use. Macros can sometimes be quite large. Using macros 
does allow you to change your code more quickly, since you usually only have to 
edit one block, rather than multiple instances of the same type of code. You can also 
define a new operation in your code by writing it as a macro and then calling it when-
ever it is needed. Just be sure to document the new operation thoroughly, as someone 
unfamiliar with your code may one day have to read it!

Note that macros are not the same thing as a subroutine call, since the macro defini-
tions are substituted at assembly time, replacing the macro call with the actual assem-
bly code. It is sometimes actually easier to follow the logic of source code if repeated 
sections are replaced with a macro, but they are not required in writing assembly. Let’s 
examine macros using only the Keil tools—the concept translates easily to Code 
Composer Studio.

Two directives are used to define a macro: MACRO and MEND. The syntax is

  MACRO

{$label} macroname{$cond} {$parameter{,$parameter}…}

  ; code
  MEND

where $label is a parameter that is substituted with a symbol given when the macro 
is invoked. The symbol is usually a label. The macro name must not begin with an 
instruction or directive name. The parameter $cond is a special parameter designed 
to contain a condition code; however, values other than valid condition codes are 
permitted. The term $parameter is substituted when the macro is invoked.

Within the macro body, parameters such as $label, $parameter, or $cond can be 
used in the same way as other variables. They are given new values each time the 
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macro is invoked. Parameters must begin with $ to distinguish them from ordinary 
symbols. Any number of parameters can be used. The $label field is optional, and 
the macro itself defines the locations of any labels.

EXAMPLE 4.13

Suppose you have a sequence of instructions that appears multiple times in your 
code—in this case, two ADD instructions followed by a multiplication. You could 
define a small macro as follows:

  MACRO
  ; macro definition:
  ;
  ; vara = 8 * (varb + varc + 6)

$Label_1 AddMul $vara, $varb, $varc

$Label_1
  ADD $vara, $varb, $varc  ; add two terms
  ADD $vara, $vara, #6  ; add 6 to the sum
  LSL $vara, $vara, #3  ; multiply by 8
  MEND

In your source code file, you can then instantiate the macro as many times as 
you like. You might call the sequence as

 ; invoke the macro
CSet1 AddMul r0, r1, r2

 ; the rest of your code

and the assembler makes the necessary substitutions, so that the assembly listing 
actually reads as

; invoke the macro
CSet1

ADD r0, r1, r2
ADD r0, r0, #6
LSL r0, r0, #3
; the rest of your code

4.6 MISCELLANEOUS ASSEMBLER FEATURES

While your first program will not likely contain many of these, advanced program-
mers typically throw variables, literals, and complex expressions into their code 
to save time in writing assembly. Consult the RealView Assembler User’s Guide 
or ARM Assembly Language Tools User’s Guide for the complete set of rules and 
allowable expressions, but we can adopt a few of the most common operations for our 
own use throughout the book.

4.6.1 AsseMBLeR opeRAToRs

Primitive operations can be performed on data before it is used in an instruction. 
Note that these operators apply to the data—they are not part of an instruction. 
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Operators can be used on a single value (unary operators) or two values (binary 
operators). Unary operators are not that common; however, binary operators prove 
to be quite handy for shuffling bits across a register or creating masks. Some of the 
most useful binary operators are

 Keil Tools Code Composer Studio

A modulo B A:MOD:B A % B

Rotate A left by B bits A:ROL:B  

Rotate A right by B bits A:ROR:B  

Shift A left by B bits A:SHL:B or A <<  B A <<  B

Shift A right by B bits A:SHR:B or A >>  B A >>  B

Add A to B  A + B A + B

Subtract B from A  A − B A − B

Bitwise AND of A and B  A:AND:B A & B

Bitwise Exclusive OR of A and B A:EOR:B A ^ B

Bitwise OR of A and B A:OR:B A | B

These types of operators creep into macros especially, and should you find your-
self writing conditional assembly files, for whatever reason, you may decide to use 
these types of operators to control the creation of the source code.

EXAMPLE 4.14

To set a particular bit in a register (say if it were a bit to enable/disable the caches, 
a branch predictor, interrupts, etc.) you might have the control register copied to a 
general-purpose register first. Then the bit of interest would be modified using an 
OR operation, and the control register would be stored back. The OR instruction 
might look like

 ORR r1, r1, #1:SHL:3  ; set CCREG[3]

Here, a 1 is shifted left three bits. Assuming you like to call register r1 CCREG, 
you have now set bit 3. The advantage in writing it this way is that you are more 
likely to understand that you wanted a one in a particular bit location, rather than 
simply using a logical operation with a value such as 0x8.

You can even use these operators in the creation of constants, for example,

DCD (0x8321:SHL:4):OR:2

which could move this two-byte field to the left by four bits, and then set bit 1 of the 
resulting constant with the use of the OR operator. This might be easier to read, since 
you may need a two-byte value shifted, and reading the original before the shift may 
help in understanding what the code does. It is not necessary to do this, but again, it 
provides some insight into the code’s behavior.
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To create very specific bit patterns quickly, you can string together many opera-
tors in the same field, such as

 MOV r0, #((1:SHL:14):OR:(1:SHL:12))

which may look a little odd, but in effect we are putting the constant 0x5000 into 
register r0 by taking two individual bits, shifting them to the left, and then ORing 
the two patterns (convince yourself of this). It would look very similar in the Code 
Composer Studio tools as

  MOV r0, #((1 <<14) | (1 <<12))

You may wonder why we’re creating such a strange configuration and not something 
simpler, such as

 MOV r0, #0x5000

which is clearly easier to enter. Again, it depends on the context of the program. The 
programmer may need to load a configuration register, which often has very specific 
bit fields for functions, and the former notation will remind the reader that you are 
enabling two distinct bits in that register.

4.6.2 MATh funCTions in CCs

There are a number of built-in functions within Code Composer Studio that make 
math operations a bit easier. Some of the many included functions are

$$cos(expr) Returns the cosine of expr as a floating-point value
$$sin(expr) Returns the sine of expr as a floating-point value
$$log(expr) Returns the natural logarithm of expr, where expr > 0
$$max(expr1, expr2) Returns the maximum of two values
$$sqrt(expr)  Returns the square root of expr, where expr >= 0, as a 

floating-point value

You may never use these in your code; however, for algorithmic development, 
they often prove useful for quick tests and checks of your own routines.

EXAMPLE 4.15

You can build a list of trigonometric values very quickly in a data section by saying 
something like

 .float  $$cos(0.434)
 .float  $$cos(0.348)
 .float  $$sin(0.943)
 .float  $$tan(0.342)
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4.7 EXERCISES

 1. What is wrong with the following program?

   AREA  ARMex2, CODE, READONLY
   ENTRY
 start
 MOV r0, #6
 ADD r1, r2, #2
   END

 2. What is another way of writing the following line of code?

   MOV PC, LR

 3. Use a Keil directive to assign register r6 to the name bouncer.

 4. Use a Code Composer Studio directive to assign register r2 to the name 
FIR _ index.

 5. Fill in the missing Keil directive below:

 SRAM_BASE 0x2000
   MOV r12, #SRAM_BASE
   STR r6, [r12]

 6. What is the purpose of a macro?

 7. Create a mask (bit pattern) in memory using the DCD directive (Keil) and 
the SHL and OR operators for the following cases. Repeat the exercise using 
the .word directive (CCS) and the << and | operators. Remember that bit 31 
is the most significant bit of a word and bit 0 is the least significant bit.

 a. The upper two bytes of the word are 0xFFEE and the least significant 
bit is set.

 b. Bits 17 and 16 are set, and the least significant byte of the word is 0x8F.
 c. Bits 15 and 13 are set (hint: do this with two SHL directives).
 d. Bits 31 and 23 are set.

 8. Give the Keil directive that assigns the address 0x800C to the symbol 
INTEREST.

 9. What constant would be created if the following operators are used with a 
DCD directive? For example,

 MASK DCD 0x5F:ROL:3

 a. 0x5F:SHR:2
 b. 0x5F:AND:0xFC
 c. 0x5F:EOR:0xFF
 d. 0x5F:SHL:12
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 10. What constant would be created if the following operators are used with a 
.word directive? For example,

 MASK .word 0x9B < <3

 a. 0x9B>>2
 b. 0x9B & 0xFC
 c. 0x9B ^ 0xFF
 d. 0x9B<<12

 11. What instruction puts the ASCII representation of the character “R” in 
register r11?

 12. Give the Keil directive to reserve a block of zeroed memory, holding 40 
words and labeled coeffs.

 13. Give the CCS directive to reserve a block of zeroed memory, holding 40 
words and labeled coeffs.

 14. Explain the difference between Keil’s EQU, DCD, and RN directives. 
Which, if any, would be used for the following cases?

 a. Assigning the Abort mode’s bit pattern (0x17) to a new label called 
Mode_ABT.

 b. Storing sequential byte-sized numbers in memory to be used for copy-
ing to another location in memory.

 c. Storing the contents of register r12 to memory address 0x40000004.
 d. Associating a particular microcontroller’s predefined memory-mapped 

register address with a name from the chip’s documentation, for example, 
VIC0_VA7R.
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Loads, Stores, and 
Addressing

5.1  INTRODUCTION

Processor architects spend a great deal of time analyzing typical routines on simula-
tion models of a processor, often to find performance bottlenecks. Dynamic instruc-
tion usage gives a good indication of the types of operations that are performed the 
most while code is running. This differs from static usage that only describes the 
frequency of an instruction in the code itself. It turns out that while typical code 
is running, about half of the instructions deal with data movement, including data 
movement between registers and memory. Therefore, loading and storing data effi-
ciently is critical to optimizing processor performance. As with all RISC processors, 
dedicated instructions are required for loading data from memory and storing data to 
memory. This chapter looks at those basic load and store instructions, their address-
ing modes, and their uses.

5.2 MEMORY

Earlier we said that one of the major components of any computing system is mem-
ory, a place to store our data and programs. Memory can be conceptually viewed as 
contiguous storage elements that hold data, each element holding a fixed number of 
bits and having an address. The typical analogy for memory is a very long string of 
mailboxes, where data (your letter) is stored in a box with a specific number on it. 
While there are some digital signal processors that use memory widths of 16 bits, 
the system that is nearly universally adopted these days has the width of each ele-
ment as 8 bits, or a byte long. Therefore, we always refer to memory as being so 
many megabytes* (abbreviated MB, representing 220 or approximately 106 bytes), 
gigabytes (abbreviated GB, representing 230 or  approximately 109 bytes), or even 
terabytes (abbreviated TB, representing 240 or approximately 1012 bytes).

Younger programmers really should see what an 80 MB hard drive used to look 
like as late as the 1980s—imagine a washing machine with large, magnetic plates in 
the center that spun at high speeds. With the advances in magnetic materials and sili-
con memories, today’s programmers have 4 TB hard drives on their desks and think 

* The term megabyte is used loosely these days, as 1 kilobyte is defined as 210 or 1024 bytes. A 
megabyte is 220 or 1,048,576 bytes, but it is abbreviated as 1 million bytes. The distinction is rarely 
important.

5
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nothing of it! Visit museums or universities with collections of older computers, if 
only to appreciate how radically storage technology has changed in less than one 
lifetime.

In large computing systems, such as workstations and mainframes, the mem-
ory to which the processor speaks directly is a fixed size, such as 4 GB, but the 
machine is capable of swapping out areas of memory, or pages, to larger storage 
devices, such as hard drives, that can hold as much as a terabyte or more. The 
method that is used to do this lies outside the scope of this book, but most text-
books on computer architecture cover it pretty well. Embedded systems typically 
need far less storage, so it’s not uncommon to see a complete design using 2 MB 
of memory or less. In an embedded system, one can also ask how much memory is 
actually needed, since we may only have a simple task to perform with very little 
data. If our processor is used in an application that takes remote sensor data and 
does nothing but transmit it to a receiver, what could we possibly need memory 
for, other than storing a small program or buffering small amounts of data? Often, 
it turns out, embedded processors spend a lot of time twiddling their metaphorical 
thumbs, idly waiting for something to do. If a processor such as one in our remote 
sensor does decide to shut down or go into a quiescent state, it may have to save off 
the contents of its registers, including control registers, floating-point registers, and 
status registers. Energy management software may decide to power down certain 
parts of a chip when idle, and a loss of power may mean a loss of data. It may even 
have to store the contents of other on-chip memories such as a cache or tightly 
coupled memory (TCM).

Memory comes in different flavors and may reside at different addresses. For 
example, not all memory has to be readable and writable—some may be read-
able only, such as ROM (Read-Only Memory) or EEPROM (Electrically Erasable 
Programmable ROM)—but the data is accessed the same way for all types of mem-
ory. Embedded systems often use less expensive memories, e.g., 8-bit memory over 
faster, more expensive 32-bit memory, and it is left to the hardware designers to 
build a memory system for the application at hand. Programmers then write code 
for the system knowing something about the hardware up front. In fact, maps are 
often made of the memory system so that programmers know exactly how to access 
the various memory types in the system. Examining Figure 1.4 again, you’ll notice 
that the address bus on the ARM7TDMI consists of 32 bits, meaning that you could 
address bytes in memory from address 0 to 232–1, or 4,294,967,295 (0xFFFFFFFF), 
which is considered to be 4 GB of memory space. If you look at the memory map 
of a Cortex-M4-based microcontroller, such as the Tiva TM4C123GH6ZRB shown 
in Table 5.1, you’ll note that the entire address space is defined, but certain address 
ranges do not exist, such as addresses between 0x44000000 and 0xDFFFFFFF. You 
can also see that this part has different types of memories on the die—flash ROM 
memory and SRAM—and an interface to talk to external memory off-chip, such as 
DRAM. Not all addresses are used, and much of the memory map contains areas 
dedicated to specific functions, some of which we’ll examine further in later chap-
ters. While the memory layout is defined by an SoC’s implementation, it is not part 
of the processor core.
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TABLE 5.1
Memory Map of the Tiva TM4C123GH6ZRB

Start End Description
For Details, 
See Page…a

Memory
0x0000.0000 0x0003.FFFF On-chip flash 553

0x0004.0000 0x00FF.FFFF Reserved —

0x0100.0000 0x1FFF.FFFF Reserved for ROM 538

0x2000.0000 0x2000.7FFF Bit-banded on-chip SRAM 537

0x2000.8000 0x21FF.FFFF Reserved —

0x2200.0000 0x220F.FFFF Bit-band alias of bit-banded on-chip 
SRAM starting at 0x2000.0000

537

0x2210.0000 0x3FFF.FFFF Reserved —

Peripherals
0x4000.0000 0x4000.0FFF Watchdog timer 0 798

0x4000.1000 0x4000.1FFF Watchdog timer 1 798

0x4000.2000 0x4000.3FFF Reserved —

0x4000.4000 0x4000.4FFF GPIO Port A 675

0x4000.5000 0x4000.5FFF GPIO Port B 675

0x4000.6000 0x4000.6FFF GPIO Port C 675

0x4000.7000 0x4000.7FFF GPIO Port D 675

0x4000.8000 0x4000.8FFF SSI 0 994

0x4000.9000 0x4000.9FFF SSI 1 994

0x4000.A000 0x4000.AFFF SSI 2 994

0x4000.B000 0x4000.BFFF SSI 3 994

0x4000.C000 0x4000.CFFF UART 0 931

0x4000.D000 0x4000.DFFF UART 1 931

0x4000.E000 0x4000.EFFF UART 2 931

0x4000.F000 0x4000.FFFF UART 3 931

0x4001.0000 0x4001.0FFF UART 4 931

0x4001.1000 0x4001.1FFF UART 5 931

0x4001.2000 0x4001.2FFF UART 6 931

0x4001.3000 0x4001.3FFF UART 7 931

0x4001.4000 0x4001.FFFF Reserved —

Peripherals
0x4002.0000 0x4002.0FFF I2C 0 1044

0x4002.1000 0x4002.1FFF I2C 1 1044

0x4002.2000 0x4002.2FFF I2C 2 1044

0x4002.3000 0x4002.3FFF I2C 3 1044

0x4002.4000 0x4002.4FFF GPIO Port E 675

0x4002.5000 0x4002.5FFF GPIO Port F 675

0x4002.6000 0x4002.6FFF GPIO Port G 675

0x4002.7000 0x4002.7FFF GPIO Port H 675

0x4002.8000 0x4002.8FFF PWM 0 1270

(continued)



82 ARM Assembly Language

TABLE 5.1 (continued)
Memory Map of the Tiva TM4C123GH6ZRB

Start End Description
For Details, 
See Page…a

0x4002.9000 0x4002.9FFF PWM 1 1270

0x4002.A000 0x4002.BFFF Reserved —

0x4002.C000 0x4002.CFFF QEI 0 1341

0x4002.D000 0x4002.DFFF QEI 1 1341

0x4002.E000 0x4002.FFFF Reserved —

0x4003.0000 0x4003.0FFF 16/32-bit Timer 0 747

0x4003.1000 0x4003.1FFF 16/32-bit Timer 1 747

0x4003.2000 0x4003.2FFF 16/32-bit Timer 2 747

0x4003.3000 0x4003.3FFF 16/32-bit Timer 3 747

0x4003.4000 0x4003.4FFF 16/32-bit Timer 4 747

0x4003.5000 0x4003.5FFF 16/32-bit Timer 5 747

0x4003.6000 0x4003.6FFF 32/64-bit Timer 0 747

0x4003.7000 0x4003.7FFF 32/64-bit Timer 1 747

0x4003.8000 0x4003.8FFF ADC 0 841

0x4003.9000 0x4003.9FFF ADC 1 841

0x4003.A000 0x4003.BFFF Reserved —

0x4003.C000 0x4003.CFFF Analog Comparators 1240

0x4003.D000 0x4003.DFFF GPIO Port J 675

0x4003.E000 0x4003.FFFF Reserved —

0x4004.0000 0x4004.0FFF CAN 0 Controller 1094

0x4004.1000 0x4004.1FFF CAN 1 Controller 1094

0x4004.2000 0x4004.BFFF Reserved —

0x4004.C000 0x4004.CFFF 32/64-bit Timer 2 747

0x4004.D000 0x4004.DFFF 32/64-bit Timer 3 747

0x4004.E000 0x4004.EFFF 32/64-bit Timer 4 747

0x4004.F000 0x4004.FFFF 32/64-bit Timer 5 747

0x4005.0000 0x4005.0FFF USB 1146

0x4005.1000 0x4005.7FFF Reserved —

0x4005.8000 0x4005.8FFF GPIO Port A (AHB aperture) 675

0x4005.9000 0x4005.9FFF GPIO Port B (AHB aperture) 675

0x4005.A000 0x4005.AFFF GPIO Port C (AHB aperture) 675

0x4005.B000 0x4005.BFFF GPIO Port D (AHB aperture) 675

0x4005.C000 0x4005.CFFF GPIO Port E (AHB aperture) 675

0x4005.D000 0x4005.DFFF GPIO Port F (AHB aperture) 675

0x4005.E000 0x4005.EFFF GPIO Port G (AHB aperture) 675

0x4005.F000 0x4005.FFFF GPIO Port H (AHB aperture) 675

0x4006.0000 0x4006.0FFF GPIO Port J (AHB aperture) 675

0x4006.1000 0x4006.1FFF GPIO Port K (AHB aperture) 675

0x4006.2000 0x4006.2FFF GPIO Port L (AHB aperture) 675

0x4006.3000 0x4006.3FFF GPIO Port M (AHB aperture) 675
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5.3  LOADS AND STORES: THE INSTRUCTIONS

Now that we have some idea of how memory is described in the system, the next step 
is to consider getting data out of memory and into a register, and vice versa. Recall 
that RISC architectures are considered to be load/store architectures, meaning that 
data in external memory must be brought into the processor using an instruction. 
Operations that take a value in memory, multiply it by a coefficient, add it to another 

TABLE 5.1 (continued)
Memory Map of the Tiva TM4C123GH6ZRB

Start End Description
For Details, 
See Page…a

0x4006.4000 0x4006.4FFF GPIO Port N (AHB aperture) 675

0x4006.5000 0x4006.5FFF GPIO Port P (AHB aperture) 675

0x4006.6000 0x4006.6FFF GPIO Port Q (AHB aperture) 675

0x4006.7000 0x400A.EFFF Reserved —

0x400A.F000 0x400A.FFFF EEPROM and Key Locker 571

0x400B.0000 0x400B.FFFF Reserved —

0x400C.0000 0x400C.0FFF I2C 4 1044

0x400C.1000 0x400C.1FFF I2C 5 1044

0x400C.2000 0x400F.8FFF Reserved —

0x400F.9000 0x400F.9FFF System Exception Module 497

0x400F.A000 0x400F.BFFF Reserved —

0x400F.C000 0x400F.CFFF Hibernation Module 518

0x400F.D000 0x400F.DFFF Flash memory control 553

0x400F.E000 0x400F.EFFF System control 237

0x400F.F000 0x400F.FFFF µDMA 618

0x4010.0000 0x41FF.FFFF Reserved —

0x4200.0000 0x43FF.FFFF Bit-banded alias of 0x4000.0000 
through 0x400F.FFFF

—

0x4400.0000 0xDFFF.FFFF Reserved —

Private Peripheral Bus
0xE000.0000 0xE000.0FFF Instrumentation Trace Macrocell (ITM) 70

0xE000.1000 0xE000.1FFF Data Watchpoint and Trace (DWT) 70

0xE000.2000 0xE000.2FFF Flash Patch and Breakpoint (FPS) 70

0xE000.3000 0xE000.DFFF Reserved —

0xE000.E000 0xE000.EFFF Cortex-M4F Peripherals (SysTick, 
NVIC, MPU, FPU and SCB)

134

0xE000.F000 0xE003.FFFF Reserved —

0xE004.0000 0xE004.0FFF Trace Port Interface Unit (TPIU) 71

0xE004.1000 0xE004.1FFF Embedded Trace Macrocell (ETM) 70

0xE004.2000 0xFFFF.FFFF Reserved —

a See Tiva TM4C123GH6ZRB Microcontroller Data Sheet.
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register, and then store the result back to memory with only a single instruction do 
not exist. For hardware designers, this is considered to be a very good thing, since 
some older architectures had so many options and modes for loading and storing 
data that it became nearly impossible to build the processors without introducing 
errors in the logic. Without listing every combination, Table 5.2 describes the most 
common instructions for dedicated load and store operations in the version 4T and 
version 7-M instruction sets.

Load instructions take a single value from memory and write it to a general-
purpose register. Store instructions read a value from a general-purpose register and 
store it to memory. Load and store instructions have a single instruction format:

 LDR|STR{<size>}{<cond>} <Rd>, <addressing_mode>

where <size> is an optional size such as byte or halfword (word is the default size), 
<cond> is an optional condition to be discussed in Chapter 8, and <Rd> is the source 
or destination register. Most registers can be used for both load and store instruc-
tions; however, there are register restrictions in the v7-M instructions, and for ver-
sion 4T instructions, loads to register r15 (the PC) must be used with caution, as this 
could result in changing the flow of instruction execution. The addressing modes 
allowed are actually quite flexible, as we’ll see in the next section, and they have 
two things in common: a base register and an (optional) offset. For example, the 
instruction

LDR r9, [r12, r8, LSL #2]

would have a base register of r12 and an offset value created by shifting register r8 
left by two bits. We’ll get to the details of shift operations in Chapter 7, but for now 
just recognize LSL as a logical shift left by a certain number of bits. The offset is 
added to the base register to create the effective address for the load in this case.

It may be helpful at this point to introduce some nomenclature for the address—
the term effective address is often used to describe the final address created from 
values in the various registers, with offsets and/or shifts. For example, in the instruc-
tion above, if the base register r12 contained the value 0x4000 and we added register 
r8, the offset, which contained 0x20, to it, we would have an effective address of 
0x4080 (remember the offset is shifted). This is the address used to access memory. 

TABLE 5.2
Most Often Used Load/Store Instructions
Loads Stores Size and Type
LDR STR Word (32 bits)

LDRB STRB Byte (8 bits)

LDRH STRH Halfword (16 bits)

LDRSB Signed byte

LDRSH Signed halfword

LDM STM Multiple words
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A shorthand notation for this is ea<operands>, so if we said ea<r12 + r8*4>, the 
effective address is the value obtained from summing the contents of register r12 and 
4 times the contents of register r8.

Sifting through all of the options for loads and stores, there are basically two main 
types of addressing modes available with variations, both of which are covered in 
the next section:

• Pre-indexed addressing
• Post-indexed addressing

If you allow for the fact that a simple load such as

LDR  r2, [r3]

can be viewed as special case of pre-indexed addressing with a zero offset, then loads 
and stores for the ARM7TDMI and Cortex-M4 processors take the form of an instruc-
tion with one of the two indexing schemes. Referring back to Table 5.2, the first three 
types of instructions simply transfer a word, halfword, or byte to memory from a reg-
ister, or from memory to a register. For halfword loads, the data is placed in the least 
significant halfword (bits [15:0]) of the register with zeros in the upper 16 bits. For 
halfword stores, the data is taken from the least significant halfword. For byte loads, 
the data is placed in the least significant byte (bits [7:0]) of the register with zeros in the 
upper 24 bits. For byte stores, the data is taken from the least significant byte.

EXAMPLE 5.1

Consider the instruction

LDRH r11, [r0]; load a halfword into r11

Assuming the address in register r0 is 0x8000, before and after the instruction is 
executed, the data appears as follows:

Memory Address

r11 before load 0xEE 0x8000
 0x12345678 0xFF 0x8001
 r11 after load 0x90 0x8002
  0x0000FFEE 0xA7 0x8003

Notice that 0xEE, the least significant byte at address 0x8000, is moved to the least 
significant byte in register r11, the second least significant byte, 0xFF, is moved 
to second least significant byte of register r11, etc. We’ll have much more to say 
about this ordering shortly.

Signed halfword and signed byte load instructions deserve a little more explana-
tion. The operation itself is quite easy—a byte or a halfword is read from memory, 
sign extended to 32 bits, then stored in a register. Here the programmer is specifically 
branding the data as signed data.
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EXAMPLE 5.2

The instruction

LDRSH r11, [r0]; load signed halfword into r11

would produce the following scenario, again assuming register r0 contains the 
address 0x8000:

Memory Address

r11 before load 0xEE 0x8000
 0x12345678 0x8C 0x8001
 r11 after load 0x90 0x8002
  0xFFFF8CEE 0xA7 0x8003

As in Example 5.1, the two bytes from memory are moved into register r11, 
except the most significant bit of the value at address 0x8001, 0x8C, is set, 
meaning that in a two’s complement representation, this is a negative number. 
Therefore, the sign bit should be extended, which produces the value 0xFFFF8CEE 
in register r11.

You may not have noticed the absence of signed stores of halfwords or bytes into 
memory. After a little thinking, you might come to the conclusion that data stored to 
memory never needs to be sign extended. Computers simply treat data as a sequence 
of bit patterns and must be told how to interpret numbers. The value 0xEE could 
be a small, positive number, or it could be an 8-bit, two’s complement representa-
tion of the number -18. The LDRSB and LDRSH instructions provide a way for the 
programmer to tell the machine that we are treating the values read from memory 
as signed numbers. This subject will be brought up again in Chapter 7 when we deal 
with fractional notations.

There are some very minor differences in the two broad classes of loads and 
stores, for both the ARM7TDMI and the Cortex-M4. For example, those instruc-
tions transferring words and unsigned bytes have more addressing mode options 
than instructions transferring halfwords and signed bytes, as shown in Table 5.3 and 
Table 5.4. These are not critical to understanding the instructions, so we’ll proceed 
to see how they are used first.

TABLE 5.3
 Addressing Options for Loads and Stores on the ARM7TDMI

Imm 
Offset Reg Offset

Scaled Reg 
Offset Examples

Word 12 bits Supported Supported LDR r0, [r8, r2, LSL #28]

Unsigned byte LDRB r4, [r8, #0xF1A]

Halfword 8 bits Supported Not supported STRH r9, [r10, #0xF4]

Signed halfword LDRSB r9, [r2, r1]

Signed byte
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EXAMPLE 5.3

Storing data to memory requires only an address. If the value 0xFEEDBABE is held 
in register r3, and we wanted to store it to address 0x8000, a simple STR instruc-
tion would suffice.

STR r3, [r8]; store data to 0x8000

The registers and memory would appear as:

Memory Address

 r8 before store 0xBE 0x8000
 0x00008000 0xBA 0x8001
 r8 after store 0xED 0x8002
 0x00008000 0xFE 0x8003

However, we can perform a store operation and also increment our address auto-
matically for further stores by using a post-increment addressing mode:

 STR r3, [r8], #4; store data to 0x8000

The registers and memory would appear as:

Memory Address

 r8 before store 0xBE 0x8000
 0x00008000 0xBA 0x8001
 r8 after store 0xED 0x8002
 0x00008004 0xFE 0x8003

Other examples of single-operand loads and stores are below. We’ll study the two 
types of addressing and their uses in the next sections.

TABLE 5.4
Addressing Options for Loads and Stores on the Cortex-M4

Imm Offset Reg Offset
Scaled Reg 

Offset Examples

Unsigned byte
Signed byte

Depending on 
instruction, index can 
range from −255 
to 4095a

LDRSB r3, [r6, r7, LSL #2]
LDRSH r10, [r2, #0x42]

STRH r3, [r6, r8]

Halfword Supported Supported

Signed halfword

Word

a Due to the way the instructions are encoded, there are actually different instructions for 
LDRSB r3, [r4, #0] and LDRSB r3, [r4, #-0]! Consult the v7-M ARM for other dubious behavior.
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LDR r5, [r3]  ; load r5 with data from ea < r3 > 
STRB r0, [r9]  ; store data in r0 to ea < r9 > 
STR r3, [r0, r5, LSL #3] ; store data in r3 to ea < r0 + (r5<<3) > 
LDR r1, [r0, #4]!  ; load r1 from ea < r0+4 > ,r0 = r0+4
STRB r7, [r6, #-1]!  ; store byte to ea < r6-1 > ,r6 = r6-1
LDR r3, [r9], #4  ; load r3 from ea < r9 > ,r9 = r9 + 4
STR r2, [r5], #8  ; store word to ea < r5 > ,r5 = r5+8

Load Multiple instructions load a subset (or possibly all) of the general-purpose 
registers from memory. Store Multiple instructions store a subset (or possibly all) of 
the general-purpose registers to memory. Because Load and Store Multiple instruc-
tions are used more for stack operations, we’ll come back to these in Chapter 13, 
where we discuss parameter passing and stacks in detail. Additionally, the Cortex-M4 
can load and store two words using a single instruction, but for now, we’ll concen-
trate on the basic loads and stores.

5.4  OPERAND ADDRESSING

We said that the addressing mode for load and store instructions could be one 
of two types: pre-indexed addressing or post-indexed addressing, with or without 
 offsets. For the most part, these are just variations on a theme, so once you see 
how one works, the others are very similar. We’ll begin by examining pre-indexed 
addressing first.

5.4.1  pRe-indexed AddRessing

The pre-indexed form of a load or store instruction is

 LDR|STR{<size>}{<cond>} <Rd>, [<Rn>, <offset>]{!}

In pre-indexed addressing, the address of the data transfer is calculated by add-
ing an offset to the value in the base register, Rn. The optional “!” specifies writ-
ing the effective address back into Rn at the end of the instruction. Without it, 
Rn contains its original value after the instruction executes. Figure 5.1 shows the 
instruction

STR r0, [r1, #12]

Base
register 0x200

r1
0x200

0x20c 0x5 0x5
r0 Source

register
for STR

12
Offset

FIGURE 5.1  Pre-indexed store operation.
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where register r0 contains 0x5. The store is done by using the value in register r1, 
0x200 in this example, as a base address. The offset 12 is added to this address 
before the data is stored to memory, so the effective address is 0x20C. An important 
point here is the base register r1 is not modified after this operation. If the value 
needs to be updated automatically, then the “!” can be added to the instruction, 
becoming

STR r0, [r1, #12]!

Referring back to Table 5.3, when performing word and unsigned byte accesses on 
an ARM7TDMI, the offset can be a register shifted by any 5-bit constant, or it can be an 
unshifted 12-bit constant. For halfword, signed halfword, and signed byte accesses, the 
offset can be an unsigned 8-bit immediate value or an unshifted register. Offset address-
ing can use the barrel shifter, which we’ll see in Chapters 6 and 7, to provide logical 
and arithmetic shifts of constants. For example, you can use a rotation (ROR) and logi-
cal shift to the left (LSL) on values in registers before using them. In addition, you can 
either add or subtract the offset from the base register. As you are writing code, limita-
tions on immediate values and constant sizes will be flagged by the assembler, and if 
an error occurs, just find another way to calculate your offsets and effective addresses.

Further examples of pre-indexed addressing modes for the ARM7TDMI are as 
follows:

STR r3, [r0, r5, LSL #3] ; store r3 to ea < r0 + (r5<<3)> (r0 unchanged)
LDR r6, [r0, r1, ROR #6]! ; load r6 from ea < r0 + (r1 >>6)> (r0 updated)
LDR r0, [r1, #-8] ; load r0 from ea < r1-8 > 
LDR r0, [r1, -r2, LSL #2] ; load r0 from ea < r1 + (-r2<<2) > 
LDRSH r5, [r9] ; load signed halfword from ea < r9 > 
LDRSB r3, [r8, #3] ; load signed byte from ea < r8 + 3 > 
LDRSB r4, [r10, #0xc1] ; load signed byte from ea < r10 + 193 > 

Referring back to Table 5.4, the Cortex-M4 has slightly more restrictive usage. For 
example, you cannot use a negated register as an offset, nor can you perform any 
type of shift on a register other than a logical shift left (LSL), and even then, the shift 
count must be no greater than 3. Otherwise, the instructions look very similar. Valid 
examples are

 LDRSB r0, [r5, r3, LSL #1]
 STR r8, [r0, r2]
 LDR r12, [r7, #-4]

5.4.2 posT-indexed AddRessing

The post-indexed form of a load or store instruction is:

 LDR|STR{<size>}{<cond>} <Rd>, [<Rn>], <offset>

In post-indexed addressing, the effective address of the data transfer is calculated 
from the unmodified value in the base register, Rn. The offset is then added to the 
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value in Rn, and the sum is written back to Rn. This type of incrementing is useful 
in stepping through tables or lists, since the base address is automatically updated 
for you.

Figure 5.2 shows the instruction

STR r0, [r1], #12

where register r0 contains the value 0x5. In this case, register r1 contains the base 
address of 0x200, which is used as the effective address. The offset of 12 is added 
to the base address register after the store operation is complete. Also notice the 
absence of the “!” option in the mnemonic, since post-indexed addressing always 
modifies the base register.

As for pre-indexed addressing, the same rules shown in Table 5.3 for 
ARM7TDMI addressing modes and in Table 5.4 for Cortex-M4 addressing modes 
apply to post-indexed addressing, too. Examples of post-indexed addressing for 
both cores include

STR r7, [r0], #24 ; store r7 to ea <r0>, then r0 = r0+24
LDRH r3, [r9], #2 ; load halfword to r3 from ea <r9>, then r9 = r9+2
STRH r2, [r5], #8 ; store halfword from r2 to ea <r5>, then r5 = r5+8

The ARM7TDMI has a bit more flexibility, in that you can even perform rotations 
on the offset value, such as

LDR r2, [r0], r4, ASR #4; load r2 to ea <r0>, add r4/16 after

EXAMPLE 5.4

Consider a simple ARM7TDMI program that moves a string of characters from one 
memory location to another.

SRAM_BASE EQU 0x04000000 ;  start of SRAM for STR910FM32
  AREA StrCopy, CODE
  ENTRY   ; mark the first instruction
Main  ADR r1, srcstr ; pointer to the first string
  LDR r0, =SRAM_BASE ;  pointer to the second string
strcopy
  LDRB r2, [r1], #1 ; load byte, update address
  STRB r2, [r0], #1 ; store byte, update address
  CMP r2, #0  ; check for zero terminator
  BNE strcopy  ; keep going if not

Original
base register

Updated
base register

0x200
r1

0x20c
r1

0x200

0x20c

0x5

0x5
r0 Source

register 
for STR

12
Offset

FIGURE 5.2 Post-indexed store operation.
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stop  B stop  ; terminate the program
srcstr DCB “This is my (source) string”, 0
  END

The first line of code equates the starting address of SRAM with a constant so 
that we can just refer to it by name, instead of typing the 32-bit number each time 
we need it. In addition to the two assembler directives that follow, the program 
includes two pseudo-instructions, ADR and a special construct of LDR, which we 
will see in Chapter 6. We can use ADR to load the address of our source string 
into register r1. Next, the address of our destination is moved into register r0. A 
loop is then set up that loads a byte from the source string into register r2, incre-
ments the address by one byte, then stores the data into a new address, again 
incrementing the destination address by one. Since the string is null-terminated, 
the loop continues until it detects the final zero at the end of the string. The BNE 
instruction uses the result of the comparison against zero and branches back to the 
label strcopy only if register r2 is not equal to zero. The source string is declared 
at the end of the code using the DCB directive, with the zero at the end to create 
a null-terminated string. If you run the example code on an STR910FM32 micro-
controller, you will find that the source string has been moved to SRAM starting at 
address 0x04000000 when the program is finished.

If you follow the suggestions outlined in Appendix A, you can run this exact 
same code on a Cortex-M4 part, such as the Tiva TM4C123GH6ZRB, account-
ing for one small difference. On the TI microcontroller, the SRAM region begins 
at address 0x20000000 rather than 0x04000000. Referring back to the memory 
map diagram shown in Table 5.1, this region of memory is labeled as bit-banded 
on-chip SRAM, but for this example, you can safely ignore the idea of a bit-
banded region and use it as a simple scratchpad memory. We’ll cover bit-banding 
in Section 5.6.

5.5  ENDIANNESS

The term “endianness” actually comes from a paper written by Danny Cohen (1981) 
entitled “On Holy Wars and a Plea for Peace.” The raging debate over the order-
ing of bits and bytes in memory was compared to Jonathan Swift’s satirical novel 
Gulliver’s Travels, where in the book rival kingdoms warred over which end of an 
egg was to be broken first, the little end or the big end. Some people find the whole 
topic more like something out of Alice’s Adventures in Wonderland, where Alice, 
upon being told by a caterpillar that one side of a perfectly round mushroom would 
make her grow taller while the other side would make her grow shorter, asks “And 
now which is which?” While the issue remains a concern for software engineers, 
ARM actually supports both formats, known as little-endian and big-endian, through 
software and/or hardware mechanisms.

To illustrate the problem, suppose we had a register that contained the 32-bit 
value 0x0A0B0C0D, and this value needed to be stored to memory addresses 0x400 
to 0x403. Little-endian configurations would dictate that the least significant byte in 
the register would be stored to the lowest address, and the most significant byte in 
the register would be stored to the highest address, as shown in Figure 5.3. While it 
was only briefly mentioned earlier, Examples 5.1, 5.2, and 5.3 are all assumed to be 
little-endian (have a look at them again).
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There is really no reason that the bytes couldn’t be stored the other way around, 
namely having the lowest byte in the register stored at the highest address and the 
highest byte stored at the lowest address, as shown in Figure 5.4. This is known as 
word-invariant big-endian addressing in the ARM literature. Using an ARM7TDMI, 
if you are always reading and writing word-length values, the issue really doesn’t 
arise at all. You only see a problem when halfwords and bytes are being transferred, 
since there is a difference in the data that is returned. As an example, suppose you 
transferred the value 0xBABEFACE to address 0x400 in a little-endian configura-
tion. If you were to load a halfword into register r3 from address 0x402, the register 
would contain 0x0000BABE when the instruction completed. If it were a big-endian 
configuration, the value in register r3 would be 0x0000FACE.

ARM has no preference for which you use, and it will ultimately be up to the hard-
ware designers to determine how the memory system is configured. The default format 
is little-endian, but this can be changed on the ARM7TDMI by using the BIGEND pin. 
Nearly all microcontrollers based on the Cortex-M4 are configured as little-endian, but 
more detailed information on byte-invariant big-endian formatting should be reviewed 
in the Architectural Reference Manual (ARM 2007c) and (Yiu 2014), in light of the 
fact that word-invariant big-endian format has been deprecated in the newest ARM 
processors. Many large companies have used a particular format for historical reasons, 
but there are some applications that benefit from one orientation over another, e.g., 
reading network traffic is simpler when using a big-endian configuration. All of the 
coding examples in the book assume a little-endian memory configuration.

For programmers who may have seen memory ordered in a big-endian configura-
tion, or for those who are unfamiliar with endianness, a glimpse at memory might 
be a little confusing. For example, in Figure 5.5, which shows the Keil development 
tools, the instruction

MOV r0, #0x83

can be seen in both the disassembly and memory windows. However, the bit pattern 
for the instruction is 0xE3A00083, but it appears to be backwards starting at 0x1E4 in 
the memory window, only because the lowest byte (0x83) has been stored at the low-
est address. This is actually quite correct—the disassembly window has taken some 
liberties here in reordering the data for easier viewing. Code Composer Studio does 

0x0A 0x0B 0x0C 0x0D

400 401 402 403 404

FIGURE 5.4 Big-endian memory configuration.

0x0D 0x0C 0x0B 0x0A

400 401 402 403 404

FIGURE 5.3  Little-endian memory configuration.
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something similar, so check your tools with a simple test case if you are uncertain. 
While big-endian addressing might be a little easier to read in a memory window 
such as this, little-endian addressing can also be easy to read with some practice, and 
some tools even allow data to be formatted by selecting your preferences.

5.5.1  ChAnging endiAnness

Should it be necessary to swap the endianness of a particular register or a large num-
ber or words, the following code can be used for the ARM7TDMI. This method is 
best for single words.

; On entry: r0 holds the word to be swapped
; On exit : r0 holds the swapped word, r1 is destroyed
byteswap    ; r0 = A, B, C, D
 EOR r1, r0, r0, ROR #16 ; r1 = A∧C,B∧D,C∧A,D∧B
 BIC r1, r1, #0xFF0000 ; r1 = A∧C, 0, C∧A,D∧B
 MOV r0, r0, ROR #8  ; r0 = D, A, B, C
 EOR r0, r0, r1, LSR #8 ; r0 = D, C, B, A

The following method is best for swapping the endianness of a large number of 
words:

; On entry: r0 holds the word to be swapped
; On exit : r0 holds the swapped word,
;     : r1, r2 and r3 are destroyed
byteswap ; three instruction initialization
 MOV r2, #0xFF ; r2 = 0xFF
 ORR r2, r2, #0xFF0000 ; r2 = 0x00FF00FF
 MOV r3, r2, LSL #8 ; r3 = 0xFF00FF00
; repeat the following code for each word to swap
  ; r0 = A B C D
 AND r1, r2, r0, ROR #24 ; r1 = 0 C 0 A
 AND r0, r3, r0, ROR #8 ; r0 = D 0 B 0
 ORR r0, r0, r1 ; r0 = D C B A

FIGURE 5.5  Little-endian addressing of an instruction.
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We haven’t come across the BIC, ORR, or EOR instructions yet. BIC is used to 
clear bits in a register, ORR is a logical OR operation, and EOR is a logical exclusive 
OR operation. All will be covered in more detail in Chapter 7, or you can read more 
about them in the Architectural Reference Manual (ARM 2007c).

After the release of the ARM10 processor, new instructions were added to spe-
cifically change the order of bytes and bits in a register, so the v7-M instruction set 
supports operations such as REV, which reverses the byte order of a register, and 
RBIT, which reverses the bit order of a register. The example code above for the 
ARM7TDMI can be done in just one line on the Cortex-M4:

byteswap  ; r0 = A B C D
 REV r1, r0 ; r1 = D C B A

5.5.2  defining MeMoRy AReAs

The algorithm has been defined, the microcontroller has been identified, the features 
are laid out for you, and now it’s time to code. When you write your first routines, 
it will probably be necessary to initialize some memory areas and define variables, 
and while this is seen again in Chapter 12, it’s probably worth elaborating a bit more 
here. There are some easy ways to set up tables and constants in your program, and 
the methods you use depend on how readable you want the code to be. For example, 
if a table of coefficients is needed, and each coefficient is represented in 8 bits, then 
you might declare an area of memory as

table DCB 0xFE, 0xF9, 0x12, 0x34
 DCB 0x11, 0x22, 0x33, 0x44

if you are reading each value with a LDRB instruction. Assuming that the table 
was started in memory at address 0x4000 (the compilation tools would normally 
determine the starting address, but it’s possible to do it yourself), the memory would 
look like

Address Data Value

0x4000 0xFE

0x4001 0xF9

0x4002 0x12

0x4003 0x34

0x4004 0x11

0x4005 0x22

0x4006 0x33

0x4007 0x44

If all of the data used will be word-length values, then you’d probably declare an 
area in memory as

table DCD 0xFEF91234
 DCD 0x11223344
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but notice that its memory listing in a little-endian system would look like

Address Data Value

0x4000 0x34

0x4001 0x12

0x4002 0xF9

0x4003 0xFE

0x4004 0x44

0x4005 0x33

0x4006 0x22

0x4007 0x11

In other words, the directives used and the endianness of the system will deter-
mine how the data is ordered in memory, so be careful. Since you normally don’t 
switch endianness while the processor is running, once a configuration is chosen, 
just be aware of the way the data is stored.

5.6  BIT-BANDED MEMORY

With the introduction of the Cortex-M3 and M4 processors, ARM gave program-
mers the ability to address single bits more efficiently. Imagine that some code wants 
to access only one particular bit in a memory location, say bit 2 of a 32-bit value 
held at address 0x40040000. Microcontrollers often use memory-mapped registers 
in place of registers in the core, especially in industrial microcontrollers where you 
have ten or twenty peripherals, each with its own set of unique registers. Let’s further 
say that a peripheral such as a Controller Area Network (CAN) controller on the Tiva 
TM4C123GH6ZRB, which starts at memory address 0x40040000, has individual 
control bits that are set or cleared to enable different modes, read status informa-
tion, or transmit data. For example, bit 7 of the CAN Control Register puts the CAN 
controller in test mode. If we wish to set this bit and only this bit, you could use a 
read-modify-write operation such as:

LDR r3, =0x40040000 ; location of CAN Control Register
LDR r2, [r3] ;  read the memory-mapped register contents
ORR r2, #0x80 ; set bit 7
STR r2, [r3] ;  write the entire register contents back

This seems horribly wasteful from a code size and execution time perspective 
to set just one bit in a memory-mapped register. Imagine then if every bit in a reg-
ister had its own address—rather than loading an entire register, modifying one 
bit, then writing it back, an individual bit could be set by just writing to its address. 
Examining Table 5.1 again, you can see that there are two bit-banded regions of 
memory: addresses from 0x22000000 to 0x220FFFFF are used specifically for 
bit-banding the 32KB region from 0x20000000 to 0x20007FFF; and addresses 
from 0x42000000 to 0x43FFFFFF are used specifically for bit-banding the 1MB 
region from 0x40000000 to 0x400FFFFF. Figure 5.6 shows the mapping between 
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the regions. Going back to the earlier CAN example, we could set bit 7 using just a 
single store operation:

LDR r3, =0x4280001C
MOV r4, #1
STR r4, [r3] ; set bit 7 of the CAN Control Register

The address 0x4280001C is derived from

 bit-band alias = bit-band base + (byte offset × 32) + (bit number × 4)
  = 0x42000000 + (0x40000 × 0x20) + (7 × 4)
  = 0x42000000 + 0x800000 + 0x1C

As another example, if bit 1 at address 0x40038000 (the ADC 0 peripheral) is to 
be modified, the bit-band alias is calculated as:

 0x42000000 + (0x38000 × 0x20) + (1 × 4) = 0x42700004

What immediately becomes obvious is that you would need a considerable num-
ber of addresses to make a one-to-one mapping of addresses to individual bits. In 
fact, if you do the math, to have each bit in a 32KB section of memory given its own 
address, with each address falling on a word boundary, i.e., ending in either 0, 4, 8, 
or C, you would need

 32,768 bytes × 8 bits/byte × 4 bytes/bit = 1MB

The trade-off then becomes an issue of how much address space can be sacrificed 
to support this feature, but given that microcontrollers never use all 4GB of their 
address space, and that large swaths of the memory map currently go unused, this is 
possible. Perhaps in ten years, it might not be.

5.7 MEMORY CONSIDERATIONS

In a typical microcontroller, there are often blocks of volatile memory (SRAM or 
some other type of RAM) available for you to use, along with different kinds of 
non-volatile memory (flash or ROM) where your code would live. Simulators such as 
Keil’s RealView Microcontroller Development Kit model those different blocks of 
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FIGURE 5.6 Mapping bit-banded regions.
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memory for you, so you don’t necessarily stop to think about how code was loaded 
into flash or how some variables ended up in SRAM. As a programmer, you write 
your code, press a few buttons, and voilà—things just work. Describing what hap-
pens behind the scenes and all the options associated with emulation and debugging 
could easy fill another book, but let’s at least see how blocks of memory are config-
ured as we declare sections of code.

Consider a directive used in a program to reserve some space for a stack (a stack is 
a section of memory used during exception processing and subroutines which we’ll 
see in Chapters 13, 14 and 15, but for now we are just telling the processor to reserve 
a section of RAM for us). Our directive might look like

 AREA STACK, NOINIT, READWRITE, ALIGN = 3
StackMem

  SPACE Stack

If we are programming something like a microcontroller, then we also have our 
program that needs to be stored in flash memory, so that when the processor is reset, 
code already exists in memory to be executed. The start of our program might look like

 AREA RESET, CODE, READONLY
 THUMB
;************************************************************
;
; The vector table.
;
;************************************************************
 DCD StackMem + Stack ;Top of Stack
 DCD Reset_Handler ; Reset Handler
 DCD NmiSR ; NMI Handler
 DCD FaultISR ; Hard Fault Handler
  .
  .
  .

At this point, something is missing—how does a development tool know that 
there is a block of RAM on our microcontroller for things like stacks, and how does 
it know the starting address of that block? When you first start your simulation, 
you likely pick a part from a list of available microcontrollers (if you use the Keil 
tools), and the map of the memory system is already configured in the tool for you. 
When you assemble your program, the tools will generate a map file such as the 
one in Figure 5.7 (Keil) or Figure 5.8 (CCS) which shows where code and variables 
are actually stored. The linker then uses this information when building an execut-
able to ensure the various sections (in the object files created by the assembler) are 
placed in the appropriate memories, where sections are built with the AREA direc-
tives we have been using. In Figure 5.7, you can see that the section that we called 
RESET, which is our program, would be stored to ROM starting at address 0x0. 
Any read-only sections are also stored to this ROM region. Read/write and zero-
initialized data would be stored to RAM starting at address 0x04000000, which 
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/****************************************************************************
 *
 * Default Linker Command file for the Texas Instruments TM4C123GH6PM
 *
 * This is derived from revision 11167 of the TivaWare Library.
 *
 ***************************************************************************/

––retain = g_pfnVectors

MEMORY
{
 FLASH (RX) : origin = 0x00000000, length = 0x00040000
 SRAM (RWX) : origin = 0x20000000, length = 0x00008000
}
/* The following command line options are set as part of the CCS project. */
/* If you are building using the command line, or for some reason want to */
/* define them here, you can uncomment and modify these lines as needed. */
/* If you are using CCS for building, it is probably better to make any */
/* modifications in your CCS project and leave this file alone. */
/* */
/* ––heap_size = 0 */
/* ––stack_size = 256 */
/* ––library = rtsv7M4_T_le_eabi.lib */

/* Section allocation in memory */

SECTIONS
{
 .intvecs:    > 0x00000000
 .text   :    > FLASH
 .const  :    > FLASH
 .cinit  :    > FLASH
 .pinit  :    > FLASH
 .init_array : > FLASH
 .myCode :    > FLASH

 .vtable :    > 0x20000000
 .data   :    > SRAM
 .bss    :    > SRAM
 .sysmem :    > SRAM
 .stack  :    > SRAM
}

FIGURE 5.8 Code Composer Studio linker command file.

; ****************************************************************
; ***** Scatter-Loading Description File generated by uVision ****
; ****************************************************************
LR_IROM1 0x00000000 0x00040000 { ;load region size_region
 ER_IROM1 0x00000000 0x00040000 { ;load address = execution address
  *.o (RESET, +First)
  *(InRoot$$Sections)
  .ANY (+RO)
 }
 RW_IRAM1 0x04000000 0x00010000 { ;RW data
  .ANY (+RW +ZI)
 }
}

FIGURE 5.7 Keil memory map tile.
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is where the SRAM block is located on an STR910FM32 microcontroller, in this 
example. You can also create your own custom scatter-loading file to feed into the 
linker, and those details can be found in RealView Compilation Tools Developer 
Guide (ARM 2007a).

Other techniques, like those used in the gnu tools, can be used to assign variables 
to certain regions of memory. For example, in C, it is possible to tell the linker to 
place a variable at a specific location in memory. If you were writing code, you might 
say something like:

#include <stdio.h > 

extern int cube(int n1);
int gCubed __attribute__((at(0x9000))); // Place at 0x9000

int main()
{

 gCubed = cube(3);
 printf(“Your number cubed is: %d\n”, gCubed);

}

Your global variable called gCubed would be placed at the absolute address 0x9000. 
In most instances, it is still far easier to control variables and data using directives.

5.8 EXERCISES

 1. Describe the contents of register r13 after the following instructions com-
plete, assuming that memory contains the values shown below. Register r0 
contains 0x24, and the memory system is little-endian.

Address Contents

0x24 0x06

0x25 0xFC

0x26 0x03

0x27 0xFF

 a. LDRSB r13, [r0]
 b. LDRSH r13, [r0]
 c. LDR r13, [r0]
 d. LDRB r13, [r0]

 2. Indicate whether the following instructions use pre- or post-indexed 
addressing modes:

 a. STR r6, [r4, #4]
 b. LDR r3, [r12], #6
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 c. LDRB r4, [r3, r2]!
 d. LDRSH r12, [r6]

 3. Calculate the effective address of the following instructions if register 
r3 = 0x4000 and register r4 = 0x20:

 a. STRH r9, [r3, r4]
 b. LDRB r8, [r3, r4, LSL #3]
 c. LDR r7, [r3], r4
 d. STRB r6, [r3], r4, ASR #2

 4. What’s wrong with the following instruction running on an ARM7TDMI?

   LDRSB r1,[r6],r3,LSL#4

 5. Write a program for either the ARM7TDMI or the Cortex-M4 that sums 
word-length values in memory, storing the result in register r3. Include the 
following table of values to sum in your code:

 TABLE DCD 0xFEBBAAAA, 0x12340000, 0x88881111
  DCD 0x00000013, 0x80808080, 0xFFFF0000

 6. Assume an array contains 30 words of data. A compiler associates variables 
x and y with registers r0 and r1, respectively. Assume the starting address 
of the array is contained in register r2. Translate the C statement below into 
assembly instructions:

   x = array[7] + y;

 7. Using the same initial conditions as Exercise 6, translate the following C 
statement into assembly instructions:

   array[10] = array[8] + y;

 8. Consider a C procedure that initializes an array of bytes to all zeros, given as

 init_Indices (int a[], int s) {
  int i;
  for (i = 0; i < s; i++)
  a[i] = 0; }

  Write the assembly language for this initialization routine. Assume s > 0 and 
is held in register r2. Register r1 contains the starting address of the array, 
and the variable i is held in register r3. While loops are not covered until 
Chapter 8, you can build a simple for loop using the following construction:

  MOV r3, #0 ; clear i
 loop instruction
  instruction
  ADD r3, r3, #1 ; increment i
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  CMP r3, r2 ; compare i to s
  BNE loop ; branch to loop if not equal

 9. Suppose that registers belonging to a particular peripheral on a microcon-
troller have a starting address of 0xE000C000. Individual registers within 
the peripheral are addressed as offsets from the starting address. If a reg-
ister called LSR0 is 0x14 bytes away from the starting address, write the 
assembly and Keil directives that will load a byte of data into register r6, 
where the data is located in the LSR0 register. Use pre-indexed addressing.

 10. Assume register r3 contains 0x8000. What would the register contain after 
executing the following instructions?

 a. STR   r6, [r3, #12]
 b. STRB  r7, [r3], #4
 c. LDRH  r5, [r3], #8
 d. LDR   r12, [r3, #12]!

 11. Assuming you have a little-endian memory system connected to the 
ARM7TDMI, what would register r4 contain after executing the follow-
ing instructions? Register r6 holds the value 0xBEEFFACE and register r3 
holds 0x8000.

 STR   r6, [r3]
 LDRB  r4, [r3]

  What if you had a big-endian memory system?
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Constants and Literal 
Pools

6.1 INTRODUCTION

One of the best things about learning assembly language is that you deal directly 
with hardware, and as a result, learn about computer architecture in a very direct 
way. It’s not absolutely necessary to know how data is transferred along busses, or 
how instructions make it from an instruction queue into the execution stage of a pipe-
line, but it is interesting to note why certain instructions are necessary in an instruc-
tion set and how certain instructions can be used in more than one way. Instructions 
for moving data, such as MOV, MVN, MOVW, MOVT, and LDR, will be introduced 
in this chapter, specifically for loading constants into a register, and while floating-
point constants will be covered in Chapter 9, we’ll also see an example or two of how 
those values are loaded. The reason we focus so heavily on constants now is because 
they are a very common requirement. Examining the ARM rotation scheme here 
also gives us insight into fast arithmetic—a look ahead to Chapter 7. The good news 
is that a shortcut exists to load constants, and programmers make good use of them. 
However, for completeness, we will examine what the processor and the assembler 
are doing to generate these numbers.

6.2 THE ARM ROTATION SCHEME

As mentioned in Chapter 1, an original design goal of early RISC processors was 
to have fixed-length instructions. In the case of ARM processors, the ARM and 
many of the Thumb-2 instructions are 32 bits long (16-bit Thumb instructions will 
be discussed later on). This brings us to the apparent contradiction of fitting a 32-bit 
constant into an instruction that is only 32 bits long. To see how this is done, let’s 
begin by examining the binary encoding of an ARM MOV instruction, as shown in 
Figure 6.1.

You can see the fields associated with the class of instruction (bits [27:25], which 
indicate that this is a data processing instruction), the instruction itself (bits [24:21], 
which would indicate a MOV instruction), and the least significant 12 bits. These last 
bits have quite a few options, and give the instruction great flexibility to either use 
registers, registers with shifts or rotates, or immediate values as operands. We will 
look at the case where the operand is an immediate data value, as show in Figure 6.2. 
Notice that the least significant byte (8 bits) can be any number between 0 and 255, 
and bits [11:8] of the instruction now specify a rotate value. The value is multiplied 
by 2, then used to rotate the 8-bit value to the right by that many bits, as shown in 

6
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Figure 6.3. This means that if our bit pattern were 0xE3A004FF, for example, the 
machine code actually translates to the mnemonic

 MOV r0, #0xFF, 8

since the least-significant 12 bits of the instruction are 0x4FF, giving us a rotation 
factor of 8, or 4 doubled, and a byte constant of 0xFF.

Figure 6.4 shows a simplified diagram of the ARM7 datapath logic, including 
the barrel shifter and main adder. While its use for logical and arithmetic shifts is 
covered in detail in Chapter 7, the barrel shifter is also used in the creation of con-
stants. Barrel shifters are really little more than circuits designed specifically to shift 
or rotate data, and they can be built using very fast logic. ARM’s rotation scheme 
moves bits to the right using the inline barrel shifter, wrapping the least significant 
bit around to the most significant bit at the top.

With 12 bits available in an instruction and dedicated hardware for performing 
shifts, ARM7TDMI processors can generate classes of numbers instead of every 
number between 0 and 232 − 1. Analysis of typical code has shown that about half of 
all constants lie in the range between −15 and 15, and about ninety percent of them 
lie in the range between −511 and 511. You generally also need large, but simple 
constants, e.g., 0x4000, for masks and specifying base addresses in memory. So 
while not every constant is possible with this scheme, as we will see shortly, it is still 
possible to put any 32-bit number in a register.

Let’s examine some of the classes of numbers that can be generated using this 
rotation scheme. Table 6.1 shows examples of numbers you can easily generate with 

31 28

cond 0 0 1 opcode S Rn Rd 8_bit_immediaterotate_imm

2726 25 24 21 20 19 16 15 12 11 8 7 0

FIGURE 6.2 MOV instruction with an immediate operand.

11 8 7 0
rot immed_8

x2
Shifter
ROR

FIGURE 6.3 Byte rotated by an even number of bits.

31 28 27 26 25 24

cond 0 0 1 opcode S Rn Rd shifter_operand

21 20 19 16 15 12 11 0

FIGURE 6.1 MOV instruction.
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a MOV using an ARM7TDMI. You can, therefore, load constants directly into reg-
isters or use them in data operations using instructions such as

 MOV r0, #0xFF   ; r0 = 255
 MOV r0, #0x1, 30   ; r0 = 1020
 MOV r0, #0x1, 26   ; r0 = 4096
 ADD r0, r2, #0xFF000000  ; r0 = r2 + 0xFF000000
 SUB r2, r3, #0x8000  ; r2 = r3 − 0x8000
 RSB r8, r9, #0x8000  ; r8 = 0x8000 – r9

The Cortex-M4 can generate similar classes of numbers, using similar Thumb-2 
instructions; however, the format of the MOV instruction is different, so rotational 
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ABE A[31:0] Address
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FIGURE 6.4 ARM7 internal datapaths.

TABLE 6.1
Examples of Creating Constants with Rotation

Rotate Binary Decimal Step Hexadecimal

No rotate 000000000000000000000000xxxxxxxx 0-255 1 0-0xFF

Right, 30 bits 0000000000000000000000xxxxxxxx00 0-1020 4 0-0x3FC

Right, 28 bits 00000000000000000000xxxxxxxx0000 0-4080 16 0-0xFF0

Right, 26 bits 000000000000000000xxxxxxxx000000 0-16320 64 0-0x3FC0

… … … … …

Right, 8 bits xxxxxxxx000000000000000000000000 0-255x224 224 0-0xFF000000

Right, 6 bits xxxxxx000000000000000000000000xx — — —

Right, 4 bits xxxx000000000000000000000000xxxx — — —

Right, 2 bits xx000000000000000000000000000000 — — —
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values are not specified in the same way. The second operand is more flexible, so if 
you wish to load a constant into a register using a MOV instruction, the constant can 
take the form of

• A constant that can be created by shifting an 8-bit value left by any number 
of bits within a word

• A constant of the form 0x00XY00XY
• A constant of the form 0xXY00XY00
• A constant of the form 0xXYXYXYXY

The Cortex-M4 can load a constant such as 0x55555555 into a register without 
using a literal pool, covered in the next section, which the ARM7TDMI cannot do, 
written as

  MOV r3, #0x55555555

Data operations permit the use of constants, so you could use an instruction such as

  ADD r3, r4, #0xFF000000

that use the rotational scheme. If you using a MOV instruction to perform a shift 
operation, then the preferred method is to use ASR, LSL, LSR, ROR, or RRX 
instructions, which are covered in the next chapter.

EXAMPLE 6.1

Calculate the rotation necessary to generate the constant 4080 using the byte 
rotation scheme.

soLuTion

Since 4080 is 1111111100002, the byte 111111112 or 0xFF can be rotated to the left 
by four bits. However, the rotation scheme rotates a byte to the right; therefore, 
a rotation factor of 28 is needed, since rotating to the left n bits is equivalent to 
rotating to the right by (32-n) bits. The ARM instruction would be

 MOV  r0, #0xFF, 28; r0 = 4080

EXAMPLE 6.2

A common method used to access peripherals on a microcontroller (ignoring bit-
banding for the moment) is to specify a base address and an offset, meaning 
that the peripheral starts at some particular value in memory, say 0x22000000, 
and then the various registers belonging to that peripheral are specified as an 
offset to be added to the base address. The reasoning behind this scheme relies 
on the addressing modes available to the processor. For example, on the Tiva 
TM4C123GH6ZRB microcontroller, the system control base starts at address 
0x400FE000. This region contains registers for configuring the main clocks, turn-
ing the PLL on and off, and enabling various other peripherals. Let’s further sup-
pose that we’re interested in setting just one bit in a register called RCGCGPIO, 
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which is located at an offset of 0x608 and turns on the clock to GPIO block F. This 
can be done with a single store instruction such as

 STR r1, [r0, r2]

where the base address 0x400FE000 would be held in register r0, and our offset 
of 0x608 would be held in register r2. The most direct way to load the offset value 
of 0x608 into register r2 is just to say

 MOV r2, #0x608

It turns out that this value can be created from a byte (0xC1) shifted three bits 
to the left, so if you were to assemble this instruction for a Cortex-M4, the 32-bit 
Thumb-2 instruction that is generated would be 0xF44F62C1. From Figure 6.5 
below you can see that the rotational value 0xC1 occupies the lowest byte of the 
instruction.

The MVN (move negative) instruction, which moves a one’s complement of the 
operand into a register, can also be used to generate classes of numbers, such as

 MVN r0, #0 ; r0 = 0xFFFFFFFF
 MVN r3, #0xEE ; r3 = 0xFFFFFF11

for the ARM7TDMI and Cortex-M4, and

 MVN r0, #0xFF, 8 ; r0 = 0x00FFFFFF

for the ARM7TDMI.
These rotation schemes are fine, but as a programmer, you might find this entire 

process a bit tiring if you have to enter dozens of constants for a data-intensive algo-
rithm. This brings us back to our shortcut, and to numbers that cannot be built using 
the various methods above.

6.3 LOADING CONSTANTS INTO REGISTERS

We covered the topic of memory in detail in the last chapter, and we saw that there 
are specific instructions for loading data from memory into a register—the LDR 
instruction. You can create the address required by this instruction in a number of 
different ways, and so far we’ve examined addresses loaded directly into a register. 
Now the idea of an address created from the Program Counter is introduced, where 
register r15 (the PC) is used with a displacement value to create an address. And 

15

1 1 1 1 0 i 0 0 0 1 0 0 imm3 imm8RdS 1 1 1 1

14

Encoding T2 ARMv7-M
MOV{S}<c> .W <Rd>, #<const>

13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FIGURE 6.5 MOV operation using a 32-bit Thumb instruction.
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we’re also going to bend the LDR instruction a bit to create a pseudo-instruction that 
the assembler understands.

First, the shortcut: When writing assembly, you should use the following pseudo-
instruction to load constants into registers, as this is by far the easiest, safest, and 
most maintainable way, assuming that your assembler supports it:

  LDR <Rd>, =<numeric constant>

or for floating-point numbers

  VLDR.F32 <Sd>, =<numeric constant>
  VLDR.F64 <Dd>, =<numeric constant>

so you could say something like

 LDR  r8, =0x20000040; start of my stack

or

 VLDR.F32 s7, =3.14159165; pi

It may seem unusual to use a pseudo-instruction, but there’s a valid reason to do 
so. For most programmers, constants are declared at the start of sections of code, and 
it may be necessary to change values as code is written, modified, and maintained by 
other programmers. Suppose that a section of code begins as

SRAM_BASE EQU 0x04000000
  AREA EXAMPLE, CODE, READONLY
;
; initialization section
;
  ENTRY
  MOV r0, #SRAM_BASE
  MOV r1, #0xFF000000
  .
  .
  .

If the value of SRAM_BASE ever changed to a value that couldn’t be generated 
using the byte rotation scheme, the code will generate an error. If the code were 
written using

 LDR r0,  = SRAM_BASE

instead, the code will always assemble no matter what value SRAM_BASE takes. 
This immediately raises the question of how the assembler handles those “unusual” 
constants.

When the assembler sees the LDR pseudo-instruction, it will try to use either a 
MOV or MVN instruction to perform the given load before going further. Recall 
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that we can generate classes of numbers, but not every number, using the rotation 
schemes mentioned earlier. For those numbers that cannot be created, a literal pool, 
or a block of constants, is created to hold them in memory, usually very near the 
instructions that asked for the data, along with a load instruction that fetches the 
constant from memory. By default, a literal pool is placed at every END directive, 
so a load instruction would look just beyond the last instruction in a block of code 
for your number. However, the addressing mode that is used to do this, called a 
PC-relative address, only has a range of 4 kilobytes (since the offset is only 12 bits), 
which means that a very large block of code can cause a problem if we don’t correct 
for it. In fact, even a short block of code can potentially cause problems. Suppose we 
have the following ARM7TDMI code in memory:

 AREA Example, CODE
 ENTRY  ; mark first instruction
 BL func1 ; call first subroutine
 BL func2 ; call second subroutine
stop B stop ; terminate the program
func1 LDR r0, =42 ; =>  MOV r0, #42
 LDR r1, =0x12345678 ; =>  LDR r1, [PC, #N]
   ;  where N = offset to literal pool 1
 LDR r2, =0xFFFFFFFF ; =>  MVN r2, #0
 BX lr ; return from subroutine
 LTORG  ;  literal pool 1 has 0x12345678
func2 LDR r3, =0x12345678 ; =>  LDR r3, [PC, #N]
   ;  N = offset back to literal pool 1
 ;LDR r4, =0x87654321 ;  if this is uncommented, it fails.
   ;  Literal pool 2 is out of reach!
 BX lr ; return from subroutine
BigTable
 SPACE 4200 ; clears 4200 bytes of memory,
   ; starting here
 END  ; literal pool 2 empty

This contrived program first calls two very short subroutines via the branch and 
link (BL) instruction. The next instruction is merely to terminate the program, so 
for now we can ignore it. Notice that the first subroutine, labeled func1, loads the 
number 42 into register r0, which is quite easy to do with a byte rotation scheme. 
In fact, there is no rotation needed, since 0x2A fits within a byte. So the assembler 
generates a MOV instruction to load this value. The next value, 0x12345678, is too 
“odd” to create using a rotation scheme; therefore, the assembler is forced to generate 
a literal pool, which you might think would start after the 4200 bytes of space we’ve 
reserved at the end of the program. However, the load instruction cannot reach this 
far, and if we do nothing to correct for this, the assembler will generate an error. The 
second load instruction in the subroutine, the one setting all the bits in register r2, 
can be performed with a MVN instruction. The final instruction in the subroutine 
transfers the value from the Link Register (r14) back into the Program Counter (reg-
ister r15), thereby forcing the processor to return to the instruction following the first 
BL instruction. Don’t worry about subroutines just yet, as there is an entire chapter 
covering their operation.
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By inserting an LTORG directive just at the end of our first subroutine, we have 
forced the assembler to build its literal pool between the two subroutines in memory, 
as shown in Figure 6.6, which shows the memory addresses, the instructions, and 
the actual mnemonics generated by the assembler. You’ll also notice that the LDR 
instruction at address 0x10 in our example appears as

 LDR r1, [PC,#0x0004]

which needs some explanation as well. As we saw in Chapter 5, this particular 
type of load instruction tells the processor to use the Program Counter (which 
always contains the address of the instruction being fetched from memory) modify 
that number (in this case add the number 8 to it) and then use this as an address. 
When we used the LTORG directive and told the assembler to put our literal pool 
between the subroutines in memory, we fixed the placement of our constants, and 
the assembler can then calculate how far those constants lie from the address in the 
Program Counter. The important thing to note in all of this is where the Program 
Counter is when the LDR instruction is in the pipeline’s execute stage. Again, 
referring to Figure 6.6, you can see that if the LDR instruction is in the execute 
stage of the ARM7TDMI’s pipeline, the MVN is in the decode stage, and the BX 
instruction is in the fetch stage. Therefore, the difference between the address 0x18 
(what’s in the PC) and where we need to be to get our constant, which is 0x1C, is 4, 
which is the offset used to modify the PC in the LDR instruction. The good news 
is that you don’t ever have to calculate these offsets yourself—the assembler does 
that for you.

There are two more constants in the second subroutine, only one of which actu-
ally gets turned into an instruction, since we commented out the second load instruc-
tion. You will notice that in Figure 6.6, the instruction at address 0x20 is another 
PC-relative address, but this time the offset is negative. It turns out that the instruc-
tions can share the data already in a literal pool. Since the assembler just generated 
this constant for the first subroutine, and it just happens to be very near our instruc-
tion (within 4 kilobytes), you can just subtract 12 from the value of the Program 
Counter when the LDR instruction is in the execute stage of the pipeline. (For those 

Address Instruction
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0x00000008

0x00000010

0x00000014

0x00000018

0x0000000C

0x0000001C

0x00000020
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EAFFFFFE
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BL 0x0000000C
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MVN

BX

MOV RO,#0x0000002A
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R14

R1,[PC,#0x0004]

R2,#0x00000000

R14

R3,[PC,#–0x000C]

← PC
← PC + 4

EXECUTE
DECODE
FETCH

FIGURE 6.6 Disassembly of ARM7TDMI program.
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readers really paying attention: the Program Counter seems to have fetched the next 
instruction from beyond our little program—is this a problem or not?) The second 
load instruction has been commented out to prevent an assembler error. As we’ve put 
a table of 4200 bytes just at the end of our program, the nearest literal pool is now 
more than 4 kilobytes away, and the assembler cannot build an instruction to reach 
that value in memory. To fix this, another LTORG directive would need to be added 
just before the table begins.

If you tried to run this same code on a Cortex-M4, you would notice several 
things. First, the assembler would generate code using a combination of 16-bit and 
32-bit instructions, so the disassembly would look very different. More importantly, 
you would get an error when you tried to assemble the program, since the second 
subroutine, func2, tries to create the constant 0x12345678 in a second literal pool, but 
it would be beyond the 4 kilobyte limit due to that large table we created. It cannot 
initially use the value already created in the first literal pool like the ARM7TDMI 
did because the assembler creates the shorter (16-bit) version of the LDR instruction. 
Looking at Figure 6.7, you can see the offset allowed in the shorter instruction is 
only 8 bits, which is scaled by 4 for word accesses, and it cannot be negative. So now 
that the Program Counter has progressed beyond the first literal pool in memory, a 
PC-relative load instruction that cannot subtract values from the Program Counter 
to create an address will not work. In effect, we cannot see backwards. To correct 
this, a very simple modification of the instruction consists of adding a “.W” (for wide) 
extension to the LDR mnemonic, which forces the assembler to use a 32-bit Thumb-2 
instruction, giving the instruction more options for creating addresses. The code 
below will now run without any issues.

 BL func1 ; call first subroutine
 BL func2 ; call second subroutine
stop B stop ; terminate the program
func1 LDR r0, =42 ; =>  MOV r0, #42
 LDR r1, =0x12345678 ; =>  LDR r1, [PC, #N]
   ;  where N = offset to literal pool 1
 LDR r2, =0xFFFFFFFF ; =>  MVN r2, #0
 BX lr ; return from subroutine
 LTORG  ;  literal pool 1 has 0x12345678

All versions of the �umb ISA.Encoding T1

Encoding T2

LDR<c> <Rt>, <label>

LDR<c>.W <Rt>, <label>
LDR<c>.W <Rt>, [PC, #–0]

15 14 13 12 11

0 1 0 0 1

10 9

Rt imm8
8 7 6 5 4 3 2 1 0

ARMv7-M

Special case
15

1 1 1 1 1 0 0 0 U 1 0 Rt imm121 1 1 1 1

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FIGURE 6.7 LDR instruction in Thumb and Thumb-2.
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func2 LDR.W r3, =0x12345678 ; =>  LDR r3, [PC, #N]
   ; N = offset back to literal pool 1
 ;LDR r4, =0x98765432 ; if this is uncommented, it fails.
   ; Literal pool 2 is out of reach!
 BX lr ; return from subroutine
BigTable
 SPACE 4200 ; clears 4200 bytes of memory,
   ; starting here

So to summarize:

Use LDR <Rd > , =< numeric constant> to put a constant into an integer register.
Use VLDR <Sd > , =< numeric constant> to put a constant into a floating-point 

register. We’ll see this again in Section 9.9.
Literal pools are generated at the end of each section of code.
The assembler will check if the constant is available in a literal pool already, 

and if so, it will attempt to address the existing constant.
On the Cortex-M4, if an error is generated indicating a constant is out of range, 

check the width of the LDR instruction.
The assembler will attempt to place the constant in the next literal pool if it is 

not already available. If the next literal pool is out of range, the assembler 
will generate an error and you will need to fix it, probably with an LTORG 
or adjusting the width of the instruction used.

If you do use an LTORG, place the directive after the failed LDR pseudo-
instruction and within ±4 kilobytes. You must place literal pools where 
the processor will not attempt to execute the data as an instruction, so put 
the literal pools after unconditional branch instructions or at the end of a 
subroutine.

6.4 LOADING CONSTANTS WITH MOVW, MOVT

Earlier we saw that there are several ways of moving constants into registers for both 
the ARM7TDMI and the Cortex-M4, and depending on the type of data you have, 
the assembler will try and optimize the code by using the smallest instruction avail-
able, in the case of the Cortex-M4, or use the least amount of memory by avoiding 
literal pools, in the case of both the ARM7TDMI and the Cortex-M4. There are 
two more types of move instructions available on the Cortex-M4; both instructions 
take 16 bits of data and place them in a register. MOVW is the same operation as 
MOV, only the operand is restricted to a 16-bit immediate value. MOVT places a 
16-bit value in the top halfword of a register, so the pair of instructions can load 
any 32-bit constant into a destination register, should your assembler not support the 
LDR pseudo-instruction, e.g., Code Composer Studio.

EXAMPLE 6.3

The number 0xBEEFFACE cannot be created using a rotational scheme, nor does it 
fall into any of the formats, such as 0xXY00XY00, that allow a single MOV instruc-
tion to load this value into a register. You can, however, use the combination of 
MOVT and MOVW to create a 32-bit constant in register r3:
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 MOVW  r3, #0xFACE
 MOVT  r3, #0xBEEF

6.5 LOADING ADDRESSES INTO REGISTERS

At some point, you will need to load the address of a label or symbol into a register. 
Usually you do this to give yourself a starting point of a table, a list, or maybe a set of 
coefficients that are needed in a digital filter. For example, consider the ARM7TDMI 
code fragment below.

SRAM_BASE EQU 0x04000000
 AREA FILTER, CODE

dest RN0 ; destination pointer
image RN1 ; image data pointer
coeff RN2 ; coefficient table pointer
pointer RN3 ; temporary pointer
 ENTRY
 CODE32
Main
 ; initialization area
 LDR dest, =#SRAM_BASE ; move memory base into dest
 MOV pointer, dest ;  current pointer is destination
 ADR image, image_data ; load image data pointer
 ADR coeff, cosines ; load coefficient pointer
 BL filter ; execute one pass of filter
 .
 .
 .
 ALIGN
image_data
 DCW 0x0001,0x0002,0x0003,0x0004
 DCW 0x0005,0x0006,0x0007,0x0008
 .
 .
 .
cosines
 DCW 0x3ec5,0x3537,0x238e,0x0c7c
 DCW 0xf384,0xdc72,0xcac9,0xc13b
 .
 .
 .
 END

While the majority of the program is still to be written, you can see that if we 
were to set up an algorithm, say an FIR filter, where you had some data stored in 
memory and some coefficients stored in memory, you would want to set point-
ers to the start of each set. This way, a register would hold a starting address. To 
access a particular data value, you would simply use that register with an offset 
of some kind.

We have seen the directives EQU and RN already in Chapter 4, but now we actu-
ally start using them. The first line equates the label SRAM_BASE to a number, 
so that when we use it in the code, we don’t have to keep typing that long address, 
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similar to the #DEFINE statement in C. The RN directives give names to our reg-
isters r0, r1, r2, and r3, so that we can refer to them by their function rather than by 
their number. You don’t have to do this, but often it’s helpful to know a register’s 
use while programming. The first two instructions load a known address (called 
an absolute address, since it doesn’t move if you relocate your code in memory) 
into registers r0 and r3. The third and fourth instructions are the pseudo-instruction 
ADR, which is particularly useful at loading addresses into a register. Why do it 
this way? Suppose that this section of code was to be used along with other blocks. 
You wouldn’t necessarily know exactly where your data starts once the two sections 
are assembled, so it’s easier to let the assembler calculate the addresses for you. As 
an example, if image_data actually started at address 0x8000 in memory, then this 
address gets moved into register r1, which we’ve renamed. However, if we change 
the code, move the image data, or add another block of code that we write later, then 
this address will change. By using ADR, we don’t have to worry about the address.

EXAMPLE 6.4

Let’s examine another example, this time to see how the ADR pseudo-instruction 
actually gets converted into real ARM instructions. Again, the code in this exam-
ple doesn’t actually do anything except set up pointers, but it will serve to illustrate 
how ADR behaves.

  AREA adrlabel,CODE,READONLY
  ENTRY  ; mark first instruction to execute

Start BL func ; branch to subroutine
stop B stop ; terminate
  LTORG  ; create a literal pool
func ADR r0, Start ; =>  SUB r0, PC, #offset to Start
  ADR r1, DataArea ; =>   ADD r1, PC, #offset to DataArea
  ;ADR r2, DataArea + 4300 ;  This would fail because the offset
    ;  cannot be expressed by operand2 of ADD
  ADRL r2, DataArea + 4300 ; =>  ADD r2, PC, #offset1
    ; ADD r2, r2, #offset2
  BX lr ; return
DataArea
  SPACE 8000 ; starting at the current location,
    ; clears an 8000-byte area of memory to 0
  END

You will note that the program calls a subroutine called func, using a branch 
and link operation (BL). The next instruction is for ending the program, so we 
really only need to examine what happens after the LTORG directive. The sub-
routine begins with a label, func, and an ADR pseudo-instruction to load the 
starting address of our main program into register r0. The assembler actually 
creates either an ADD or SUB instruction with the Program Counter to do this. 
Similar to the LDR pseudo-instruction we saw previously, by knowing the value 
of the Program Counter at the time when this ADD or SUB reaches the execute 
stage of the pipeline, we can simply take that value and modify it to generate an 
address. The catch is that the offset must be a particular type of number. For ARM 
instructions, that number must be one that can be created using a byte value 
rotated by an even number of bits, exactly as we saw in Section 6.2 (if rejected 
by the assembler, it will generate an error message to indicate that an offset 
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cannot be represented by 0–255 and a rotation). For 32-bit Thumb instructions, 
that number must be within ±4095 bytes of a byte, half-word, or word-aligned 
address. If you notice the second ADR in this example, the distance between the 
instruction and the label DataArea is small enough that the assembler will use a 
simple ADD instruction to create the constant.

The third ADR tries to create an address where the label is on the other 
side of an 8000-byte block of memory. This doesn’t work, but there is another 
pseudo-instruction: ADRL. Using two operations instead of one, the ADRL will 
calculate an offset that is within a range based on the addition of two values 
now, both created by the byte rotation scheme mentioned above (for ARM 
instructions). There is a fixed range for 32-bit Thumb instructions of ±1MB. You 
should note that if you invoke an ADRL pseudo-instruction in your code, it will 
generate two operations even if it could be done using only one, so be careful 
in loops that are sensitive to cycle counts. One other important point worth 
mentioning is that the label used with ADR or ADRL must be within the same 
code section. If a label is out of range in the same section, the assembler faults 
the reference. As an aside, if a label is out of range in other code sections, the 
linker faults the reference.

There is yet another way of loading addresses into registers, and it is exactly the same 
as the LDR pseudo-instruction we saw earlier for loading constants. The syntax is

  LDR <Rd>, =label

In this instance, the assembler will convert the pseudo-instruction into a load 
instruction, where the load reads the address from a literal pool that it creates. As 
with the case of loading constants, you must ensure that a literal pool is within range 
of the instruction. This pseudo-instruction differs from ADR and ADRL in that 
labels outside of a section can be referenced, and the linker will resolve the reference 
at link time.

EXAMPLE 6.5

The example below shows a few of the ways the LDR pseudo-instruction can be 
used, including using labels with their own offsets.

 AREA LDRlabel, CODE, READONLY
 ENTRY  ; Mark first instruction to execute
start
 BL func1 ; branch to first subroutine
 BL func2 ; branch to second subroutine
stop B stop ; terminate

func1
 LDR r0, =start ;=>  LDR R0, [PC, #offset into Literal Pool 1]
 LDR r1, =Darea + 12 ;=>  LDR R1, [PC, #offset into Lit. Pool 1]
 LDR r2, =Darea + 6000 ;=>  LDR R2, [PC, #offset into Lit. Pool 1]
 BX lr ; return

 LTORG
func2
 LDR r3, =Darea + 6000 ; =>  LDR R3, [PC, #offset into Lit. Pool 1]
   ;  (sharing with previous literal)
 ; LDR r4, =Darea + 6004 ;  if uncommented produces an error
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   ;  as literal pool 2 is out of range
 BX lr ; return
Darea
 SPACE 8000 ;  starting at the current location, clears
   ;  an 8000-byte area of memory to zero
 END  ;  literal pool 2 is out of range of the LDR
   ; instructions above

You can see the first three LDR statements in the subroutine func1 would actually 
be PC-relative loads from a literal pool that would exist in memory at the LTORG 
statement. Additionally, the first load statement in the second subroutine could 
use the same literal pool to create a PC-relative offset. As the SPACE directive has 
cleared an 8000-byte block of memory, the second load instruction cannot reach 
the second literal pool, since it must be within 4 kilobytes.

So to summarize:

Use the pseudo-instruction

 ADR <Rd>, label

 to put an address into a register whenever possible. The address is created 
by adding or subtracting an offset to/from the PC, where the offset is calcu-
lated by the assembler.

If the above case fails, use the ADRL pseudo-instruction, which will calcu-
late an offset using two separate ADD or SUB operations. Note that if you 
invoke an ADRL pseudo-instruction in your code, it will generate two oper-
ations even if it could be done using only one.

Use the pseudo-instruction

 LDR <Rd>, =label

 if you plan to reference labels in other sections of code, or you know that a 
literal table will exist and you don’t mind the extra cycles used to fetch the 
literal from memory. Use the same caution with literal pools that you would 
for the construct

 LDR <Rd>, =constant

Consult the Assembler User’s Guide (ARM 2008a) for more details on the use of 
ADR, ADRL and LDR for loading addresses.

6.6 EXERCISES

 1. What constant would be loaded into register r7 by the following instructions?
 a. MOV r7, #0x8C, 4
 b. MOV r7, #0x42, 30
 c. MVN r7, #2
 d. MVN r7, #0x8C, 4
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 2. Using the byte rotation scheme described for the ARM7TDMI, calculate the 
instruction and rotation needed to load the following constants into register r2:

 a. 0xA400
 b. 0x7D8
 c. 0x17400
 d. 0x1980

 3. Tell whether or not the following constants can be loaded into an ARM7TDMI 
register without creating a literal pool and using only a single instruction:

 a. 0x12340000
 b. 0x77777777
 c. 0xFFFFFFFF
 d. 0xFFFFFFFE

 4. Tell whether or not the following constants can be loaded into a Cortex-M4 
register without creating a literal pool and using only a single instruction:

 a. 0xEE00EE00
 b. 0x09A00000
 c. 0x33333373
 d. 0xFFFFFFFE

 5. What is the best way to put a numeric constant into a register, assuming 
your assembler supports the method?

 6. Where is the best place to put literal pool data?

 7. Suppose you had the following code:

  AREA SAMPLE, CODE,READONLY
  ENTRY
 start
  MOV r12, #SRAM_BASE
  ADD r0, r1, r2
  MOV r0, #0x18
  BL routine1
  .
  .
  .
 routine1
  STM sp!, {r0-r3,lr}
  .
  .
  .
  END

  Describe two ways to load the label routine1 into register r3, noting any 
restrictions that apply.

 8. Describe the difference between ADR and ADRL.
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 9. Give the instruction(s) to perform the following operations for both the 
ARM7TDMI and the Cortex-M4:

 a. Add 0xEC00 to register r6, placing the sum in register r4.
 b. Subtract 0xFF000000 from register r12, placing the result in register r7.
 c. Add the value 0x123456AB to register r7, placing the sum in register 

r12.
 d. Place a two’s complement representation of −1 into register r3.

 10. Suppose you had the following code and you are using the Keil tools:
  .
  .
  .

  BL func1 ; call first subroutine
  BL func2 ; call second subroutine
 stop B stop ; terminate the program

 func1 MOV r2, #0
  LDR r1, =0xBABEFACE
  LDR r2, =0xFFFFFFFC
  MOV pc, lr ; return from subroutine

  LTORG ; literal pool 1 has 0xBABEFACE
 func2 LDR r3, =0xBABEFACE
  LDR r4, =0x66666666
  MOV pc, lr ; return from subroutine
 BigTable
  SPACE 3700 ;  clears 3700 bytes of memory,
   ; starting here
  .
  .
  .

  On an ARM7TDMI, will loading 0x66666666 into register r4 cause an 
error? Why or why not? What about on a Cortex-M4?

 11. The ARM branch instruction—B—provides a ±32 MB branching range. If 
the Program Counter is currently 0x8000 and you need to jump to address 
0xFF000000, how do you think you might do this?

 12. Assuming that the floating-point hardware is already enabled (CP10 and 
CP11), write the instructions to load the floating-point register s3 with a 
quiet NaN, or 0x7FC00000. (Hint: use Program 5 from Chapter 3 as a 
guide.) You can write it using either the Keil tools or the CCS tools.
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Integer Logic and 
Arithmetic

7.1 INTRODUCTION

This is a long chapter, but for good reasons. Arithmetic operations are probably one 
of the more common types of instructions you will use, especially if the software 
being written involves manipulating large amounts of data, such as an incoming 
audio signal. Graphics algorithms, speech processing algorithms, digital controllers, 
and audio processing all involve a great deal of arithmetic work, so it’s important 
to understand the types of data that you have and how to perform the operation 
needed in the shortest amount of time and/or space. We begin with a discussion of 
flags, examine the basic arithmetic instructions for both the ARM7TDMI and the 
Cortex-M4, quickly examine some of the new DSP extensions in the Cortex-M4, 
and then wrap up with an overview of fractional arithmetic. Once you gain a good 
understanding of the concepts behind integer arithmetic, you should then be able to 
tackle floating-point arithmetic in Chapters 9, 10, and 11, and even go on to more 
advanced functions, such as trigonometric functions, exponentials, and square roots.

7.2 FLAGS AND THEIR USE

Recall from Chapter 2 that the Program Status Register holds the current state 
of the machine: the flags, the mode, the interrupt bits, and the Thumb bit for the 
ARM7TDMI, and the flags, the exception number, the Interrupt-Continuable 
Instruction (ICI) bits, and the Thumb bit for the Cortex-M4, shown in Figure 7.1. 
There are four bits, N, Z, C, and V, in the uppermost nibble that help determine 
whether or not an instruction will be conditionally executed. The flags are set and 
cleared based on one of four things:

• Instructions that are specifically used for setting and clearing flags, such 
TST or CMP

• Instructions that are told to set the flags by appending an “S” to the mne-
monic. For example, EORS would perform an exclusive OR operation and set 
the flags afterward, since the S bit is set in the instruction. We can do this with 
all of the ALU instructions, so we control whether or not to update the flags

• A direct write to the Program Status Register, where you explicitly set or 
clear flags

• A 16-bit Thumb ALU instruction, which will be covered both here and in 
Chapter 17

7



120 ARM Assembly Language

The Q flag on the Cortex-M4 indicates a value has saturated and different rules gov-
ern its behavior, so it is discussed separately in Section 7.4.4. In the next sections, we’ll 
examine each flag individually—some are quite easy and some require a little thought.

7.2.1 The n fLAg

This flag is useful when checking for a negative result. What does this mean, nega-
tive? This definition sits in the context of a two’s complement number system, and 
as we saw in the last few chapters, a two’s complement number is considered to be 
negative if the most significant bit is set. Be careful, though, as you could easily 
have two perfectly good positive numbers add together to produce a value with the 
uppermost bit set.

EXAMPLE 7.1

Adding −1 to −2 is easy enough, and the result has the most-significant bit set, as 
expected. In two’s complement notation, this would be represented as

 

FFFFFFFF
FFFFFFFE

FFFFFFFD

+

If we were to code this on the ARM7TDMI as

 MOV r3, #-1
 MOV r4, #-2
 ADDS r3, r4, r3

we would expect to see the N bit set in the CPSR, as shown in Figure 7.2, which it 
is, as the most significant bit of register r3 was set as a result of the addition.

EXAMPLE 7.2

If we add the values below, the addends are positive in two’s complement nota-
tion, but the sum is negative, i.e.,

N

ARM7TDMI Status Register

Cortex-M4 Status Register

Z C V Do not modify/Read as zero I F T
M
4

M
3

M
2

M
1

M
0

0123456782728293031

31

N Z C V Q GE ICI/ITICI/IT T

30 29 28 27 26 25 24 15 14 1319 18 17 16 12 11 10 7 6 5

ISRNUM

4 3 2 1 0

FIGURE 7.1 Status registers.
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7B

 3

AB

000000

0000000

000000

+

which means that something might be wrong. First, notice that since the most-
significant bit is now set, this forces the N bit to be set if our ADD instruction 
actually sets the flags (remember, it doesn’t have to). Second, if you aren’t work-
ing with two’s complement numbers, then perhaps we don’t really care what the 
value of the N bit is. Finally, in a two’s complement representation, notice that we 
originally meant to add two positive numbers together to get a bigger positive sum, 
but the result indicates that this positive sum cannot be represented in 32 bits, so 
the result effectively overflowed the precision we had available. So perhaps we 
need one more flag to work with signed values.

7.2.2 The V fLAg

When performing an operation like addition or subtraction, if we calculate the V flag 
as an exclusive OR of the carry bit going into the most significant bit of the result 
with the carry bit coming out of the most significant bit, then the V flag accurately 
indicates a signed overflow. Overflow occurs if the result of an add, subtract, or com-
pare is greater than or equal to 231, or less than –231.

EXAMPLE 7.3

Two signed values, assumed to be in two’s complement representations, are 
added to produce the sum

 

A1234567

 B
151234567

+ 0000000

which does not fit into 32 bits. More importantly, since the numbers are consid-
ered to be in a two’s complement format, then we overflowed, since we added 
two fairly large, negative numbers together, and the most significant bit of the 
32-bit result is clear (notice the 5 in the most significant byte of the result).

FIGURE 7.2 Status flags in the CPSR.
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Let’s examine Example 7.2 again. When we added 0x7B000000 to 0x30000000, 
the result did, in fact, fit into 32 bits. However, the result would be interpreted as a 
negative number when we started off adding two positive numbers, so is this an over-
flow case? The answer is yes. Both the N and the V bits would be set in the xPSR, as 
shown in Figure 7.3, if you were to run the following code on the Cortex-M4:

LDR r3, =0x7B000000
LDR r4, =0x30000000
ADDS r5, r4, r3

Notice that the ‘S’ extension is added to the ADD mnemonic, indicating that we 
want the flags updated as a result of the addition.

7.2.3 The Z fLAg

This is one of the easiest to understand, as the only thing the Z flag tells us is that the 
result of an operation produces zero, meaning all 32 bits must be zero. This might 
be the result of a counter expiring, or a routine might need to examine an operand 
before performing some other kind of arithmetic routine, such as division.

EXAMPLE 7.4

In Chapter 16, we’ll create a short program to change the color of the LED on the 
Tiva Launchpad, part of which is shown below.

 MOVT r7, #0xF4 ; set counter to 0xF40000
spin

 SUBS r7, r7, #1 ; just twiddling our thumbs....
 BNE spin

In order to hold the LED at a particular color for a second or two, a short loop 
sets a register to a fixed value then subtracts one, setting the flags in the process, 
until the register equals zero. The Z flag is used to determine when the counter 
hits zero, where the BNE (branch if not equal to zero) instruction uses the value 
of the Z flag. If it is clear, then the program jumps back to the SUBS instruction 

FIGURE 7.3 Status flags indicating an overflow.
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and repeats. Otherwise, the loop is exhausted and the program continues doing 
something else.

7.2.4 The C fLAg

The Carry flag is set if the result of an addition is greater than or equal to 232, if the 
result of a subtraction is positive, or as the result of an inline barrel shifter operation 
in a move or logical instruction. Carry is a useful flag, allowing us to build opera-
tions with greater precision should we need it, e.g., creating routines to add 64-bit 
numbers, which we will see in a moment. If we were to add the two values shown 
in the code below, the C bit will be set in the status register, since the sum is greater 
than 232.

 LDR r3, =0x7B000000
 LDR r7, =0xF0000000
 ADDS r4, r7, r3 ; value exceeds 32 bits, generates C out

Like older processors, such as the MC68000 and its predecessors, the carry flag 
is inverted after a subtraction operation, making the carry bit more like a borrow bit, 
primarily due to the way subtraction is implemented in hardware. For example, these 
instructions will set the carry bit to a one, since the operation produces no carry out 
and the bit is inverted:

 LDR r0, =0xC0000000
 LDR r2, =0x80000000
 SUBS r4, r0, r2 ; r4 = r0 - r2 (watch the order!)

Let’s further suppose that we really want to subtract two 64-bit numbers:

 0x7000BEEFC0000000
− 0x3000BABE80000000

We know the answer should be 0x4000043140000000, and to get this, we use the 
following code:

 LDR r0, =0xC0000000 ; lower 32-bits
 LDR r1, =0x7000BEEF ; upper 32-bits
 LDR r2, =0x80000000 ; lower 32-bits
 LDR r3, =0x3000BABE ; upper 32-bits
 SUBS r4, r0, r2 ; set C bit for next subtraction
 SBC r5, r1, r3 ; upper 32 bits use the carry flag

The first subtraction operation will set the status flags for us. We saw earlier that 
the C flag is set, since there is no carry out for the first operation, e.g., 0xC minus 
0x8 produces no carry. The second subtraction is a subtract with carry (SBC) oper-
ation, using the carry bit to perform a normal subtraction. If the carry bit had been 
clear, the SBC instruction would have subtracted one more from its result.
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7.3 COMPARISON INSTRUCTIONS

Apart from using the S bit with instructions to set flags, there are also four instruc-
tions that do nothing except set the condition codes or test for a particular bit in a 
register. They are:

CMP—Compare. CMP subtracts a register or an immediate value from a reg-
ister value and updates the condition codes. You can use CMP to quickly 
check the contents of a register for a particular value, such as at the begin-
ning or end of a loop.

CMN—Compare negative. CMN adds a register or an immediate value to 
another register and updates the condition codes. CMN can also quickly 
check register contents. This instruction is actually the inverse of CMP, and 
the assembler will replace a CMP instruction when appropriate. For example, 
if you typed

CMP r0, #-20

 the assembler will instead generate

CMN r0, #0x14

TST—Test. TST logically ANDs an arithmetic value with a register value and 
updates the condition codes without affecting the V flag. You can use TST 
to determine if many bits of a register are all clear or if at least one bit of a 
register is set.

TEQ—Test equivalence. TEQ logically exclusive ORs an arithmetic value 
with a register value and updates the condition codes without affecting the 
V flag. You can use TEQ to determine if two values are the same.

The syntax for these instructions is

 instruction{<cond>} <Rn>, <operand2>

where {<cond>} is one of the optional conditions covered in Chapter 8, and 
 <operand2> can be a register with an optional shift, or an immediate value. Typical 
instructions might look like

 CMP r8, #0 ; r8 = =0?
 BEQ routine ; yes, then go to my routine

 TST r4, r3 ; r3 = 0xC0000000 to test bits 31, 30

 TEQ r9, r4, LSL #3

Recall that the condition code flags are kept in the Program Status Register, along 
with other state information, such as the mode (for the ARM7TDMI) or the current 
exception number (for the Cortex-M4). For both processors, you can use the MRS 
(Move PSR to general-purpose register) instruction to read the flags, and the MSR 
(Move general-purpose register to PSR) to write the flags.
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The ARM7TDMI has both Current and Saved Program Status Registers, so the 
MRS instruction will read the flags in the CPSR and any of the SPSRs. For example, 
the two instructions

 MRS r0, CPSR
 MRS r1, SPSR

will load the contents of the CPSR and SPSR into registers r0 and r1, respec-
tively. From there, you can examine any flags that you like. The restrictions here 
are that you cannot use register r15 as the destination register, and you must not 
attempt to access an SPSR in User mode, since the register does not exist. The ARM 
Architectural Reference Manual (ARM 2007c) defines the results of this operation 
as UNPREDICTABLE.

The Cortex-M4 has only one status register, but it can be referenced in three dif-
ferent views—APSR, IPSR, or EPSR—or all at once as PSR. The flags are held only 
in the APSR, so you could read or change the values using

 MRS r3, APSR ; read flag information into r3
 MSR APSR, r2 ; write to just the flags
 MSR PSR, r7 ; write all status information to r7

As we begin to write more complex programs, individual flags will become less 
important, and you will more than likely use the condition codes along with a branch 
(B) instruction or another instruction to create loops and conditional assembly rou-
tines without actually having to read the flags, for example, the BEQ instruction 
above. This topic is covered in much more detail in Chapter 8.

7.4 DATA PROCESSING OPERATIONS

You would expect any microprocessor, even the simplest, to include the fundamental 
operations such as add, subtract, and shift, and from these you could build more 
advanced operations such as divide, multiply, and square root. The ARM micropro-
cessors are designed to be used in embedded applications, which are very sensitive 
to power dissipation and die size. Ideally, the processor would provide a wide range 
of data processing instructions without making the gate count of the part too high or 
make the area requirements too large. By combining a barrel shifter, a 32-bit ALU, 
and a hardware multiplier, the ARM7TDMI provides a rich instruction set while 
saving power. With significant advances in CMOS processes, more transistors can be 
used in VLSI designs the size of the ARM7TDMI or smaller, allowing for even more 
arithmetic functionality to be added to the Cortex-M4, such as a hardware divider, 
saturated math and DSP operations, and even a floating-point unit!

An example of a data processing instruction, ADD, might look like

 ADDS{<cond>} r0, r1, <operand2>

where “S” indicates that the status flags should be updated and {<cond>} is one of 
the optional conditions covered in Chapter 8, e.g., EQ, LT, GT, or PL. The second 
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operand, <operand2>, can be an immediate value, a register, or a register with a 
shift or rotate associated with it. The last option turns out to be quite handy, as 
we’ll see below. As an aside, this syntax has been updated for Unified Assembly 
Language (UAL)—the older style of mnemonic would have been written as 
ADD{<cond>}S,* and we will see how even shifts and rotations have changed 
their format.

7.4.1 BooLeAn opeRATions

Both the ARM7TDMI and the Cortex-M4 support Boolean logic operations using 
two register operands, shown in Table 7.1. Although we saw MOV instructions in 
previous chapters, the MOVN instruction can also be used to logically invert all bits 
in a register, since it takes the one’s complement negation of an operand. A very fast 
way to load the two’s complement representation of −1 into a register is to logically 
invert zero, since the 32-bit value 0xFFFFFFFF is −1 in a two’s complement nota-
tion, written as

 MOVN r5, #0  ; r5 = −1 in two’s complement

Examples of the remaining operations include

 AND r1, r2, r3 ; r1 = r2 AND r3
 ORR r1, r2, r3 ; r1 = r2 OR r3
 EOR r1, r2, r3 ; r1 = r2 exclusive OR r3
 BIC r1, r2, r3 ; r1 = r2 AND NOT r3

The first three instructions are fairly straightforward—AND, OR, and exclusive 
OR are basic logic functions. The fourth instruction is the Bit Clear operation, which 
can be used to clear selected bits in a register. For each bit in the second operand, 
a 1 clears the corresponding bit in the first operand (a register), and a 0 leaves it 
unchanged. According to the data processing instruction format, we can also use an 
immediate value for the second operand. For example,

* Since older ARM7TDMI code is quite common, it is very likely you will see both formats of instruction.

TABLE 7.1
Boolean Operations

ARM7TDMI Instruction Cortex-M4 Instruction Comment

AND AND Logically ANDs two operands

ORR ORR Logically ORs two operands

ORN OR of operand 1 with NOT operand 2

EOR EOR Exclusive OR of two operands

MOVN MVN Move negative—logically NOTs all bits

BIC BIC Bit Clear—clears selected bits in a register
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BIC r2, r3, #0xFF000000

clears the upper byte of register r3 and moves the result to register r2.
The Cortex-M4 has one additional Boolean operation called ORN, for OR Not, 

which logically ORs the first operand with the one’s complement of the second operand.

7.4.2 shifTs And RoTATes

Figure 7.4 shows part of the internal data path of the ARM7TDMI, where the data 
for an instruction come down two busses leading to the main ALU. Only one of those 
busses goes through the barrel shifter, which is a dedicated hardware block of logic 
to rotate or shift data left or right. Because of this asymmetry, we can rotate or shift 
only one of the operands in the instruction, but in general, this is enough functional-
ity. With the addition of a few instructions, we can overcome any limitations that are 
introduced with this type of design. In fact, the very idea to have a barrel shifter sit 
between the register bank (an architecture term that describes the physical registers 
r0 through r15) and the main ALU allows for 32-bit constants to be used in ALU and 
MOV instructions, despite having only 32 bits for the instruction itself. We saw this 
in Chapter 6 with literals and constants.

The types of shifts and rotates that the ARM processors can perform are shown 
in Figure 7.5. There are two types of logical shifts, where the data is treated as 
unsigned, an arithmetic shift where the data is treated as signed, and two types of 
rotates. The absence of rotate left can be explained by the fact that a rotate left by 
m bits is the same as a rotate to the right by (32-m) bits (except for the effect on the 
carry bit), and can, therefore, be done using the same instruction. Another instruc-
tion that may appear to have gone missing is ASL, or an arithmetic shift left. With 
a little thought, it becomes apparent that you would never need such an instruction, 
since arithmetic shifts need to preserve the sign bit, and shifting signed data to the 
left will do so as long as the number doesn’t overflow. As an example, the num-
ber −1 in two’s complement notation is 0xFFFFFFFF, and shifting it left results in 
0xFFFFFFFE, which is −2 and correct. A 32-bit number such as 0x8000ABCD will 
overflow if shifted left, resulting in 0x0001579A, which is now a positive number.

Barrel
shifter

ALU

Result

Operand
1

Operand
2

FIGURE 7.4 The ARM7TDMI barrel shifter.
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If you want to shift or rotate data without performing another operation such as 
an add, then a MOV instruction works well. Recall from Chapter 6 that MOV can 
transfer data from a register to a register, so by adding an optional shift operation, the 
instruction gets slightly more elaborate. When you follow the UAL conventions, an 
instruction that just shifts data to the left should use the LSL mnemonic; an instruc-
tion that just shifts data to the right should use the LSR mnemonic. The assembler 
will choose the best instruction to use under the guidelines of the assembly directives 
that are given. For example, code that is written as

LSL r3, r4, #1

for an ARM7TDMI will be replaced with

MOV r3, r4, LSL #1

assuming that you have not explicitly told the assembler you want Thumb instruc-
tions. On a Cortex-M4, the assembler will replace this with the 32-bit Thumb-2 
instruction

LSL r3, r4, #1

. . .C

C

0

LSL Logical shift left by n bits Multiplication by 2n

LSR Logical shift right by n bits Unsigned division by 2n

ASR Arithmetic shift right by n bits Signed division by 2n

ROR Rotate right by n bits 32-bit rotate

RRX Rotate right extended by one bit 33-bit rotate. 33rd bit is Carry flag

. . .0

C. . .

C. . .

C. . .

FIGURE 7.5 Shifts and rotates.
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because the original mnemonic does not set the flags, and neither will the 32-bit ver-
sion. Thumb arithmetic instructions set flags automatically, so if you said

LSLS r3, r3, #1

you would get the 16-bit Thumb instruction

LSL r3, #1

More will be said about Thumb in Chapter 17.

EXAMPLE 7.5

The following instructions show how simple shifts and rotates are written.

 LSL  r4, r6, #4 ; r4 = r6 <<  4 bits
 LSL  r4, r6, r3 ; r4 = r6 <<  # specified in r3
 ROR  r4, r6, #12 ; r4 = r6 rotated right 12 bits
  ; r4 = r6 rotated left 20 bits

All shift operations take one clock cycle to execute, except register-specified 
shifts, which take an extra cycle as there are only two read ports on the register 
bank, and an extra read is required. When performing shifts, the shift count can be 
either an unsigned 5-bit value, i.e., 0 to 31, as in the first example, or the bottom 
byte in a register, as in the second example.

EXAMPLE 7.6

The shift and logical operations can also be used to move data from one byte to 
another. Suppose we need to move the uppermost byte from register r2 and put 
it at the bottom of register r3. The contents of register r3 are shifted left by 8 bits 
first. Two instructions could be used to do this:

 LSR r0, r2, #24 ; extract top byte from R2 into R0
 ORR r3, r0, r3, LSL #8 ; shift up r3 and insert r0

EXAMPLE 7.7 HAMMING CODES

In the 1940s, a mathematician named Richard Hamming developed and formally 
defined ways of not only detecting errors in bit streams but correcting them as 
well. For example, if you were going to transmit 8 bits of data from a computer 
across a channel (and here, a channel could be seen as something like a piece of 
wire, an optical link, or maybe even a wireless interface) to a receiver, you would 
hope that the value you sent matches the value received exactly. If there are errors, 
it’s critical to know this. More interestingly, if there is a way to correct the bit error, 
this byte of information would not need to be resent. The field of error correcting 
codes has grown substantially since then, and more modern coding schemes such 
as Reed-Solomon code, Binary Golay code, and BCH code can be found in Roth 
(2006). While the theory behind them is rather complicated, simple Hamming 
codes can be built easily, so we’ll examine an algorithm to detect up to two bit 
errors in an 8-bit value. This algorithm can also correct a single bit error.
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Consider the idea of adding a bit, called a checksum, to a value that indicates 
the parity of the bits in that value. For example, if you had the 7-bit number

 1010111

and we counted the number of ones in the value, 5 in this case, adding a 1 at 
the beginning of the value would make the parity even, since the number of ones 
(including the parity bit) is an even number. Our new value would be

 11010111

If the data were transmitted this way, the receiver could detect an error in the byte 
sent if one of the data bits changes, since the parity would suddenly become odd. 
Note that if two of the bits changed, then we could not detect an error, since the 
parity remains even.

One type of Hamming code can be constructed by using four checksum bits 
placed in strategic locations. If a 12-bit value is constructed using 8 bits of data and 
four checksum bits as shown below, then we can use the checksum bits to detect 
up to two errors in the data and even correct a single bit error.

Original 8-bit value

d7 d6 d5 d4 d3 d2 d1 d0

Modified 8-bit value

11 10 9 8 7 6 5 4 3 2 1 0

d7 d6 d5 d4 c3 d3 d2 d1 c2 d0 c1 c0

The checksum bits c3, c2, c1, and c0 are computed as follows:

Checksum bit c0 should produce even parity for bits 0, 2, 4, 6, 8, and 10. In 
other words, we’re checking a bit, skipping a bit, checking a bit, etc.

Checksum bit c1 should produce even parity for bits 1, 2, 5, 6, 9, and 10. In 
other words, we’re checking two bits, skipping two bits, checking two bits, 
etc.

Checksum bit c2 should produce even parity for bits 3, 4, 5, 6, and 11. Now 
we’re checking four bits, skipping four bits, etc.

Checksum bit c3 should produce even parity for bits 7, 8, 9, 10, and 11.

As an example, suppose we wanted to generate checksums for the binary value 
10101100. The first checksum bit c0 would be 1, since this would produce even 
parity for the bits 0, 0, 1, 0, and 0. Using the same method, the remaining check-
sum bits would show

 c1 = 1

 c2 = 1

 c3 = 0
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resulting in the 12-bit value 101001101011.
The code on the next page shows the assembly code to build a 12-bit Hamming 

code, making efficient use of the barrel shifter during logical operations.

 AREA HAMMING, CODE

 ENTRY

; Registers used:
; R0 - temp
; R1 - used to hold address of data
; R2 - holds value to be transmitted
; R4 - temp
main
 MOV r2, #0    ; clear out transmitting reg
 ADR r1, arraya   ; start of constants
 LDRB r0, [r1]

 ;
 ; calculate c0 using bits    76543210
 ;             * ** **
 ; even parity, so result of XORs is the value of c0
 ;
 MOV r4, r0    ; make a copy
 EOR r4, r4, r0, ROR #1  ; 1 XOR 0
 EOR r4, r4, r0, ROR #3  ; 3 XOR 1 XOR 0
 EOR r4, r4, r0, ROR #4  ; 4 XOR 3 XOR 1 XOR 0
 EOR r4, r4, r0, ROR #6  ; 6 XOR 4 XOR 3 XOR 1 XOR 0
 AND r2, r4, #1   ; create c0 -> R2
 ;
 ; calculate c1 using bits     76543210
 ;          * * **  *

 MOV r4, r0
 EOR r4, r4, r0, ROR #2  ; 2 XOR 0
 EOR r4, r4, r0, ROR #3  ; 3 XOR 2 XOR 0
 EOR r4, r4, r0, ROR #5  ; 5 XOR 3 XOR 2 XOR 0
 EOR r4, r4, r0, ROR #6  ; 6 XOR 5 XOR 3 XOR 2 XOR 0
 AND r4, r4, #1   ; isolate bit
 ORR r2, r2, r4, LSL #1  ; 7 6 5 4 3 2 c1 c0
 ;
 ; calculate c2 using bits 76543210
 ;    *   ***
 ROR r4, r0, #1   ; get bit 1
 EOR r4, r4, r0, ROR #2  ; 2 XOR 1
 EOR r4, r4, r0, ROR #3  ; 3 XOR 2 XOR 1
 EOR r4, r4, r0, ROR #7  ; 7 XOR 3 XOR 2 XOR 1
 AND r4, r4, #1   ; isolate bit
 ORR r2, r2, r4, ROR #29  ; 7 6 5 4 c2 2 c1 c0
 ;
 ; calculate c3 using bits 76543210
 ;    ****
 ROR r4, r0, #4   ; get bit 4
 EOR r4, r4, r0, ROR #5  ; 5 XOR 4
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 EOR r4, r4, r0, ROR #6  ; 6 XOR 5 XOR 4
 EOR r4, r4, r0, ROR #7  ; 7 XOR 6 XOR 5 XOR 4
 AND r4, r4, #1
 ;
 ; build the final 12-bit result
 ;
 ORR r2, r2, r4, ROR #25  ; rotate left 7 bits
 AND r4, r0, #1   ; get bit 0 from original
 ORR r2, r2, r4, LSL #2  ; add bit 0 into final
 BIC r4, r0, #0xF1   ; get bits 3,2,1
 ORR r2, r2, r4, LSL #3  ; add bits 3,2,1 to final
 BIC r4, r0, #0x0F   ; get upper nibble
 ORR r2, r2, r4, LSL #4  ;  r2 now contains 12 bits
     ; with checksums
done B done
 ALIGN

arraya
 DCB 0xB5
 DCB 0xAA
 DCB 0x55
 DCB 0xAA

 END

Our starting 8-bit value is in memory location arraya and is loaded into register 
r0. A fast way to generate even parity is to use the result of exclusive OR opera-
tions as the checksum bit, e.g., if you take an odd number of bits in a pattern and 
exclusive OR them together, the result will be 1; therefore, the checksum should 
be a 1 to make an even number. The first checksum is generated by using an EOR 
instruction on the original data many times, ignoring all bits except bit 0. Note that 
the first logical instruction

  EOR r4, r4, r0, ROR #1

takes the original data and exclusive ORs bit 0 with bit 1 of the copied data, all 
in a single instruction. Subsequent EOR instructions take the copied data and 
rotate the necessary bits down to bit 0. Ultimately, we’re only interested in bit 0, 
so we logically AND the final result with 1 to clear out all the bits except the least 
 significant bit, since ANDing a value with 0 produces 0, and ANDing a value with 
1 just gives back the original value.

The other checksums are calculated in much the same way, always shifting the 
necessary bits down to bit 0 before EORing them with intermediate results. The final 
12-bit value is constructed from the original 8-bit value and the four checksums using 
logical functions. Notice that rotates to the left are done using ROR instructions, since 
a rotate to the left by n bits is the same as a rotate to the right by (32-n) bits, and there 
is no ROL instruction. The final value is kept in register r2. The first 8-bit value read, 
0xB5, should generate the 12-bit Hamming value 0xBA6 in register r2.

To detect an error in the transmitted value, the four checksum bits c3, c2, c1, 
and c0 are examined. If it turns out that one of the checksum bits is incorrect (this 
can be verified by looking at the data in the 12-bit value), then it is the checksum 
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bit itself that is incorrect. If there are two checksum bits that are incorrect, say cn 
and cm, then the bit position of the incorrect bit, j, can be found by

 j = (2n + 2m) − 1

For example, if checksum bits c3 and c2 are incorrect, then the error lies with 
bit 11. Since this is the only error, it can be corrected.

7.4.3 AddiTion/suBTRACTion

The arithmetic instructions in the ARM and Thumb-2 instruction sets include opera-
tions that perform addition, subtraction, and reverse subtraction, all with and without 
carry. Examples include:

 ADD r1, r2, r3 ; r1 = r2 + r3
 ADC r1, r2, r3 ; r1 = r2 + r3 + C
 SUB r1, r2, r3 ; r1 = r2 - r3
 SUBC r1, r2, r3 ; r1 = r2 - r3 + C - 1
 RSB r1, r2, r3 ; r1 = r3 - r2
 RSC r1, r2, r3 ; r1 = r3 - r2 + C - 1

From the discussion on flags we noted that the Carry flag could be used to indicate 
that an operation produced a carry bit in the most significant bit of the result. The 
ADC, SUBC, and RSC instructions make use of this flag by adding the Carry flag 
into the operation. Suppose we wish to perform a 64-bit addition. Since the registers 
are only 32 bits wide, we would need to store the two addends in two registers each, 
and the sum would have to be stored in two registers.

EXAMPLE 7.8

The following two instructions add a 64-bit integer contained in registers r2 and 
r3 to another 64-bit integer contained in registers r0 and r1, and place the result 
in registers r4 and r5:

 ADDS r4,r0,r2 ; adding the least significant words
 ADC r5,r1,r3 ; adding the most significant words

You can see in Figure 7.6 that the carry out from the lower 32-bit sum is added 
into the upper 32-bit sum to produce the final 64-bit result.

EXAMPLE 7.9

The second operand can make use of the barrel shifter when performing adds and 
subtracts, a topic we’ll explore more shortly, such as

 SUB r0, r0, r2, LSL #2  ; r0 = r0 − (r2 <<2)
 ADD r1, r1, r3, LSR #3  ; r1 = r1 + (r3 >>3)

There are two very unusual, but useful, instructions listed above: RSB and RSC, 
which are reverse subtracts. The reverse subtract instruction comes about from 



134 ARM Assembly Language

having a barrel shifter on only one of the busses going from the register bank to 
the main ALU, as shown earlier in Figure 7.4. Consider the case where we want to 
perform the following operation:

 SUB r0, r2, r3, LSL #2 ; r0 = r2 – r3*4

We could do this quite easily with this single instruction. However, suppose we 
want modify (shift) register r2 before the subtraction instead of register r3. Since 
subtraction is not a commutative operation, i.e.,

 x − y ≠ y − x, y,x ≠ 0

register r2 must somehow be made to appear on the bus that contains the barrel 
shifter. This is done using the reverse subtract operation, where the instruction would 
be written as

 RSB r0, r3, r2, LSL #2 ; r0 = r2*4 – r3

This same instruction can be used to great effect, since the second operand can 
also be a constant, so you could conceivably subtract a register value from a constant, 
instead of the other way around.

EXAMPLE 7.10

Write an ARM7TDMI assembly program to perform the function of absolute value. 
Register r0 will contain the initial value, and r1 will contain the absolute value. The 
pseudo-instruction would look like

 ABS r1, r0

Try to use only two instructions (not counting instructions to terminate the pro-
gram or any directives).

soLuTion

Recall that the absolute value function always returns a positive value for the argu-
ment, so f(x) = |x| just changes the sign of the argument if the value is negative. 
We can do this with one more instruction and one instruction to change the sign:

C

r3
31

31

0

63 32

+

31 0

0

r2

r5 r4

r1 r0 Addend1

Carry out

Addend2

Sum

FIGURE 7.6 64-bit addition.
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  AREA Prog7a, CODE, READONLY
  ENTRY
  MOVS r1, r0
  RSBLT r1, r1, #0
done  B done
  END

The program first sets the status flags to see if anything needs to be done. If the 
argument is zero, the result is zero. If the argument is negative (LT indicates Less 
Than zero, but we’ll cover this in more detail in Chapter 8), the reverse subtract 
instruction subtracts r1 from zero, effectively changing its sign. Notice the condi-
tional execution of the RSB instruction, since a positive value will fail the condi-
tion of being less than zero.

7.4.4 sATuRATed MATh opeRATions

Algorithms for handling speech data, adaptive control algorithms, and routines for 
filtering are often sensitive to quantization effects when implemented on a micro-
processor or microcontroller. A careful analysis of the both the implementation (e.g., 
direct or indirect, recursive or non-recursive) and the coefficients used in the fil-
ter gives programmers a better idea of precautions that must be made in advance. 
Sometimes it is required that limitations be placed on both the input data and the 
algorithm’s coefficients to prevent overflow conditions or to prevent an algorithm 
from becoming unstable. In other cases, the software can mitigate any problems by 
forcing intermediate values to stay within boundaries should they stray. Saturated 
math is one such approach, especially when dealing with signed data. For example, 
consider a digital waveform in Figure 7.7, possibly the output of an adaptive predic-
tor, where the values are represented by 16-bit signed integers; in other words, the 
largest positive value in a register would be 0x00007FFF and the largest negative 
value would be 0xFFFF8000. If this signal were scaled in some way, it’s quite pos-
sible that the largest value would overflow, effectively flipping the MSB of a value so 
that a positive number suddenly becomes negative, and the waveform might appear 
as in Figure 7.8. Using saturated math instructions, the signal would get clipped, and 
the waveform might appear as in Figure 7.9, not correcting the values but at least 
keeping them within limits.

0x00007FFF

0xFFFF8000

FIGURE 7.7 Signal represented by 16-bit signed integers.
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In version 6 cores and higher, many new instructions were added for manipulat-
ing saturated values, such as QADD, QADD8, QADD16, UQADD8, etc., and the 
Cortex-M4 includes addition, signed multiplication, subtraction, and parallel opera-
tions for working with saturated math, one of which we’ll examine in Section 7.5. 
These instructions will return maximum or minimum values based on the results 
of the operation if those values are exceeded. An additional status bit, the Q bit that 
we saw in Chapter 2, indicates that saturation has occurred and resides in the APSR 
shown in Figure 7.1. This bit is considered “sticky” in that once it is set, it must be 
written to a zero to clear it. In practice, you might use the saturated operation at the 
end of a loop or once data has been read as an input to an algorithm to ensure that 
values used in further processing are within acceptable limits.

EXAMPLE 7.11

A 32-bit signed value is to be saturated into a 16-bit signed value. If the value in 
register r3 is 0x00030000, then the instruction

 SSAT r4, #16, r3

will place the value 0x00007FFF into register r4, since the input value is above the 
threshold of 0x7FFF, and the Q bit will be set indicating that the value saturated. If 

0x00007FFF

0xFFFF8000

FIGURE 7.8 Digital waveform exceeding bounds.

0x00007FFF

0xFFFF8000

FIGURE 7.9 Digital waveform with saturation.
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the value in register r3 is 0xFFFF7FFF, then the returned value in register r4 would 
be 0xFFFF8000, since the initial value is below the threshold of 0xFFFF8000, the 
most negative number represented in 16 bits. Again, the Q bit is set.

EXAMPLE 7.12

Unsigned saturation works analogously. Figure 7.10 shows a 16-bit signal where 
0x0000 is the smallest value it would have and 0xFFFF is the largest. If register r3 
contains the 32-bit signed value 0xFFFF8000, the unsigned saturation instruction

 USAT r4, #16, r3

would return the value 0x00000000 and the Q bit is set, since the 32-bit 
signed input is well below the smallest unsigned value of zero. An input value 
of 0x00030000 would return 0x0000FFFF and the Q bit is set since the input 
exceeds the maximum unsigned value of 0xFFFF. See the ARM v7-M Architectural 
Reference Manual (ARM 2010a) for more detailed information about the use of 
SSAT and USAT.

7.4.5 MuLTipLiCATion

Binary multiplication is provided on nearly every processor these days, but it comes 
at a cost. As an operation, it’s quite common. As a block of digital hardware, it’s 
expensive in that multipliers usually consume quite a bit of area and power relative to 
the other parts of a microprocessor. Older microcontrollers would often use a shift-
add iterative routine to perform multiplication, avoiding building a large multiplier 
array; however, this tends to be quite slow. Modern designs usually perform multipli-
cations in a single cycle or two, but again, because of power considerations, if there 
is a way to avoid using the array, an ARM compiler will try to produce code without 
multiply instructions, as we will see shortly. Microprocessors and/or DSP engines 
are often selected based on their ability to perform fast multiplication, especially in 
areas of speech and signal processing, signal analysis, and adaptive control.

Table 7.2 shows all of the supported instructions available in the ARM7TDMI, 
which are a small subset of those supported on the Cortex-M4. MUL and MLA are 
multiply and multiply-and-accumulate instructions that produce 32-bit results. MUL 
multiplies the values in two registers, truncates the result to 32 bits, and stores the 

0xFFFF

0

FIGURE 7.10 16-bit unsigned signal.
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product in a third register. MLA multiplies two registers, truncates the results to 32 
bits, adds the value of a third register to the product, and stores the result in a fourth 
register, for example,

 MUL r4, r2, r1 ; r4 = r2 * r1
 MULS r4, r2, r1 ; r4 = r2 * r1, then set the flags
 MLA r7, r8, r9, r3 ; r7 = r8 * r9 + r3

Both MUL and MLA can optionally set the N and Z condition code flags. For 
multiplications that produce only 32 bits of result, there is no distinction between 
signed and unsigned multiplication. Only the least significant 32 bits of the result are 
stored in the destination register, and the sign of the operands does not affect this 
value. There is an additional multiply and subtract instruction (MLS) available on 
the Cortex-M4 which multiplies two 32-bit values together and then subtracts this 
product from a third value.

EXAMPLE 7.13

Multiply long instructions produce 64-bit results. They multiply the values of two 
registers and store the 64-bit result in a third and fourth register. SMULL and 
UMULL are signed and unsigned multiply long instructions:

 SMULL r4, r8, r2, r3 ; r4 = bits 31-0 of r2*r3
  ; r8 = bits 63-32 of r2*r3

 UMULL r6, r8, r0, r1 ; {r8,r6} = r0*r1

These instructions multiply the values of two registers, add the 64-bit value 
from a third and fourth register, and store the 64-bit result in the third and fourth 
registers:

 SMLAL r4, r8, r2, r3 ; {r8,r4} = r2*r3 + {r8,r4}
 UMLAL r5, r8, r0, r1 ; {r8,r5} = r0*r1 + {r8,r5}

All four multiply long instructions can optionally set the N and Z condition 
code flags. If any source operand is negative, the most significant 32 bits of the 
result are affected.

TABLE 7.2
ARM7TDMI Multiply and Multiply-Accumulate Instructions

Instruction Comment

MUL 32x32 multiply with 32-bit product

MLA 32x32 multiply added to a 32-bit accumulated value

SMULL Signed 32x32 multiply with 64-bit product

UMULL Unsigned 32x32 multiply with 64-bit product

SMLAL Signed 32x32 multiply added to a 64-bit accumulated value

UMLAL Unsigned 32x32 multiply added to a 64-bit accumulated value
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7.4.6 MuLTipLiCATion By A ConsTAnT

In our discussion of shifts and rotates, we saw that the inline barrel shifter in the 
ARM7TDMI’s datapath can be used in conjunction with other instructions, such as 
ADD or SUB, in effect getting a multiplication for free. This feature is used to its 
full advantage when certain multiplications are done using the barrel shifter instead 
of the multiplier array. Consider the case of multiplying a number by a power of two. 
This can be written using only an LSL instruction, i.e.,

LSL r1, r0, #2 ; r1 = r0*4

But what if we wanted to multiply two numbers, one of which is not a power of 
two, like five? Examine the following instruction:

ADD r0, r1, r1, LSL #2 ; r0 = r1 + r1*4

This is the same thing as taking a value, shifting it to the left two bits (giving 
a multiplication by four), and then adding the original value to the product. In 
other words, multiply the number by five. Why do it this way? Consider the size 
and power usage of a multiplier array, which is highlighted in Figure 7.11 for the 
ARM10200 microprocessor. In very low power applications, it’s often necessary to 
play every trick in the book to save power: not clocking logic that is not being used, 
powering down caches or the entire processor if it is not needed, reducing voltages 
and frequencies, etc. By using only the 32-bit adder and a barrel shifter, the ARM 
processors can actually generate multiplications by 2n, 2n − 1, and 2n + 1 in a single 

FIGURE 7.11 ARM10200 die photo with multiplier array highlighted.
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cycle, without having to use a multiplier array. This also potentially saves some 
execution time. For example,

RSB r0, r2, r2, LSL #3 ; r0 = r2*7

will perform a multiplication by 7 by taking register r2, shifting it left by 3 bits, yield-
ing a multiplication by 8, and then subtracting register r2 from the product. Note that 
the reverse subtract instruction was used here, since an ordinary subtraction will pro-
duce the wrong result. By chaining together multiplications, for example, multiplying 
by 5 and then by 7, larger constants can be created. Examine the following code to see 
that you can, in fact, create multiplier arguments that are not powers of two:

 ADD r0, r1, r1, LSL #1 ; r0 = r1*3
 SUB r0, r0, r1, LSL #4 ; r0 = (r1*3) − (r1*16) = r1* − 13
 ADD r0, r0, r1, LSL #7 ; r0 = (r1* − 13) + (r1*128) = r1*115

7.4.7 diVision

Binary division is a subject that can get quite complicated very quickly. Historically, 
ARM cores did not include a binary integer divider in hardware, mostly because divi-
sion is so infrequently used (and can therefore be done using a software routine), a 
divider can take up too much area and/or power to consider using on an embedded 
processor, and there are ways of avoiding division entirely. However, with denser 
geometries being made available to VLSI designers, it is possible to include division 
instructions in the newer ARM ISAs without too much overhead, and so we’ll examine 
the divider in the Cortex-M4. This is not to say that good software routines are not still 
available for processors like the ARM7TDMI. Factors to be considered in choosing a 
divider routine include the type of data you have (either fractional data or integer data), 
the speed of the algorithm needed, and the size of the code permitted to perform an 
algorithm in software. For an excellent treatment of the topic, consider reading Sloss, 
Symes, and Wright (2004). Runtime libraries include a division routine, so if you hap-
pen to be writing in C or C++, generally the compiler will take care of the division 
algorithm for you. But our focus is assembly, so we’ll consider at least one simple case.

The following code, which is a variation of a shift-subtract algorithm, can be 
used to divide two unsigned, 32-bit values, where the dividend is in register Ra and 
the divisor is in register Rb, producing a quotient in register Rc and a remainder in 
register Ra.

 AREA Prog7b, CODE, READONLY
Rcnt RN 0    ; assign R0 to Rcnt
Ra RN 1    ; assign R1 to Ra
Rb RN 2    ; assign R2 to Rb
Rc RN 3    ; assign R3 to Rc

 ENTRY

 ; Place your dividend in Ra
 ; Place your divisor in Rb
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 MOV Rcnt, #1  ; bit to control the
     ; division
Div1 CMP Rb, #0x80000000 ; move Rb until
     ; greater than Ra
 CMPCC Rb, Ra
 LSLCC Rb, Rb, #1
 LSLCC Rcnt, Rcnt, #1
 BCC Div1
 MOV Rc, #0
Div2 CMP Ra, Rb   ; test for possible
     ; subtraction
 SUBCS Ra, Ra, Rb  ; subtract if OK
 ADDCS Rc, Rc, Rcnt  ; put relevant bit
     ; into result
 LSRS Rcnt, Rcnt, #1  ; shift control bit
 LSRNE Rb, Rb, #1   ; halve unless
     ; finished
 BNE Div2   ; divide result in Rc
     ; remainder in Ra
done B done
 END

EXAMPLE 7.14

Let’s compare the execution times using both the software routine above and the 
hardware divider on the Cortex-M4. We will divide 0xFF000000 by 0x98. Since 
these values can be created using two MOV instructions, load the registers Ra and 
Rb using:

 MOV Ra, #0xFF000000 ; loads register r1
 MOV Rb, #0x98 ; loads register r2

Running the code, register r3 contains the value 0x1AD7943 (the quotient) and 
register r1 contains 0x38 (the remainder). Using the Keil simulation tools, this code 
takes 450 cycles or 28.125 microseconds to complete on a Tiva TM4C123GH6ZRB 
microcontroller. Using three lines of code, we can reduce the execution time 
considerably:

 MOV r1, #0xFF000000
 MOV r2, #0x98

 UDIV r3, r1, r2 ; r3 = r1/r2

Again, register r3 holds the quotient, but this code takes 0.813 microseconds, or 
13 cycles!

The Cortex-M4 gives you the option to handle division by zero one of two 
ways: a fault exception or placing zero in the destination register. We’ll see an 
example in Chapter 15 showing how to configure the Nested Vectored Interrupt 
Controller (NVIC) to allow this type of exception.

7.5 DSP EXTENSIONS

The Cortex-M4 is the first M-class ARM core targeted at signal processing applica-
tions, and as such, offers more of the DSP instructions defined in the ARM v7-M 
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Architectural Reference Manual (ARM 2010a) to handle cryptography routines, 
graphics algorithms, speech and video processing, etc. An instruction set summary 
can be found in the Cortex-M4 Technical Reference Manual (ARM 2009), detail-
ing the behavior of each instruction. In this section, we’ll look at two examples of 
DSP operations that go beyond the usual multiply-accumulate calculations found in 
digital filters.

EXAMPLE 7.15

Some instructions are designed for particular algorithms; some instructions are 
designed to work on certain types of data, for example on Q31 formatted data 
(to be explained shortly). Figure 7.12 shows how the instructions SMMLA and 
SMMLAR work. They both take two 32-bit operands and multiply them together. 
The most-significant word of the product is then added to a 32-bit accumulated 
value. If the R bit in the instruction is set (SMMLAR does this), then the value 
0x80000000 is added prior to the truncation of the final result. Otherwise, noth-
ing is added before truncation. For example, if we loaded registers r2 and r3 with 
32-bit signed operands, and we used register r4 as an accumulated value, then

 LDR  r3, =0xFFFE6487
 LDR  r2, =0x80008F71;
 LDR  r4, =0xFFFF0003; accumulator
 SMMLAR  r9, r2, r3, r4

will produce the final result of 0xFFFFCDBF in register r9 as follows. The 32-bit 
multiply would produce the 64-bit product 0x0000CDBB9971C897. The accumu-
lator value 0xFFFF0003 is then added producing the intermediate result:

x

+

64

64

32

0x80000000

ACC

32 32

0
R

+

32

FIGURE 7.12 Operations involved in SMMLA and SMMLAR.
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0 0000

0 000
0

x CDBB9971C897

xFFFF 3
xFFFFCDBE9971C897

+

Because we have selected the rounding version of the instruction, 0x80000000 
is added to the sum, giving us

 

0
0 0000000

0

xFFFFCDBE9971C897
x8

xFFFFCDBF1971C897

+

At this point, the upper 32 bits are kept, so that register r9 contains 0xFFFFCDBF.

EXAMPLE 7.16

Without context, the USAD8 and USADA8 instructions make little sense, as they’re 
quite specific. These operations calculate the sum of absolute differences and the 
accumulated sum of absolute differences, respectively. It turns out that these cal-
culations are useful for object recognition, motion estimation, and graphic com-
pression algorithms, such as MPEG and H.264. When comparing two images, 
one simple block metric that can be found is the L1 norm of the difference image 
(or the Manhattan distance between two images), so if you wanted to compare, 
for example, image blocks of N × N squares in one image, say m1, with another 
N × N square in image m2 at a particular point (x,y), then you might compute the 
accumulated sum of absolute differences according to:

 
acc x y m x i y j m i j
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Four 8-bit pixel values can be read from each of two registers, say registers r3 
and r4. The absolute differences are then found between corresponding bytes in 
registers r3 and r4. These four values are then summed in a destination register 
with the instruction

  USAD8{<cond>} Rd, Rm, Rs ; sum of absolute differences

If you were to calculate an accumulated value, you could then follow at some 
point in your code with

  USADA8{<cond>} {Rd,} Rm, Rs, Rn ; Rn is accumulated value to include

For both of these instructions, {<cond>} refers to an optional condition code that 
might be used (see Chapter 8).

7.6 BIT MANIPULATION INSTRUCTIONS

There are instructions in the Cortex-M4 that allow the manipulation of individual bits 
in a register: BFI (Bit Field Insert), UBFX (Unsigned Bit Field Extract), SBFX (Signed 
Bit Field Extract), BFC (Bit Field Clear), and RBIT (Reverse Bit order). Industrial and 
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automotive applications typically require processing large amounts of general-purpose 
I/O data, and cycles can be wasted just moving individual bits around from sensors or 
other interfaces. In older architectures, it was necessary to use several instructions to 
copy contents, modify bits, and then store them; now with a single instruction, fields 
can be modified or extracted without changing the entire bit pattern in a register.

BFI, SBFX, and UBFX have the following syntax:

 BFI{<cond>} <Rd>, <Rn>, <#lsb>, <#width>
 SBFX{<cond>} <Rd>, <Rn>, <#lsb>, <#width>
 UBFX{<cond>} <Rd>, <Rn>, <#lsb>, <#width>

BFC has the following syntax:

 BFC{<cond>} <Rd>, <#lsb>, <#width>

RBIT is the simplest, and has the syntax:

 RBIT{<cond>} <Rd>, <Rn>

The parameter #lsb indicates the least significant bit of the bitfield (in other words, 
where to start in the bit pattern going from right to left) and should be in the range 
of 0 to 31. The #width parameter indicates the width of the bitfield; this parameter 
should be in the range of 1 to (32-lsb). This makes the most significant bit position 
of the field lsb + width-1.

Suppose we start with register r0 equal to 0xABCDDCBA and register r1 equal 
to 0xFFFFFFFF. If we employ the instruction

 BFI r1, r0, #8, #8

then registers r0 and r1 would appear as

r0 before r0 after
0xABCDDCBA 0xABCDDCBA

r1 before r1 after
0xFFFFFFFF 0xFFFFBAFF

The 8 lower bits of register r0 are inserted into register r1, starting at bit 8. Signed 
and unsigned bit field extract instructions work in a similar fashion. The instruction

 UBFX r1, r0, #12, #8

takes an unsigned bit field from a register (inserting zeros), and it leaves register r0 
and r1 as follows:

r0 before r0 after
0xABCDDCBA 0xABCDDCBA

r1 before r1 after
0xFFFFBAFF 0x000000DD
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Figure 7.13 shows the operation. Signed bit field extract sign extends the most 
significant bit of the field before inserting it into a register. Clearing a bit field can be 
done using BFC, so if we wished to clear out a nibble from register r1, we would say

 BFC r1, #4, #4

which leaves register r1 as

r1 before r1 after

0x000000DD 0x0000000D

Should it become necessary to reverse the bit order of an entire register, you can 
use RBIT. The instruction

 RBIT r1, r1

would produce the following results:

r1 before r1 after

0x0000000D 0xB0000000

7.7 FRACTIONAL NOTATION

When learning assembly, one of the first issues that often arises is how to put values 
like e and π in a program. This is a question of importance, given that you are likely 

to come across a value such as 2  in practical code, and clearly the ARM processor 
works only with 32-bit integer values unless you have a floating-point unit available. 
Or does it? As we’ve seen in Chapter 1, the processor works with data, raw numbers, 
bit patterns. These bit patterns are interpreted as different things by the programmer, 
not the processor (unless specifically told to do so). Suppose you have the 32-bit value 
0xF320ABCD in register r3. Is this number positive or negative? Under normal cir-
cumstances, you simply don’t know. You could interpret this number as −215,962,675 
in decimal if it were a two’s complement representation. You could also interpret this 
as 4,079,004,621 if it were just an ordinary, unsigned integer. These decisions are 
largely based on the algorithm and the type of arithmetic operations that are being 
done on these numbers. Normally, the program expects data in a particular form and 
uses it accordingly—if an adaptive filter routine is written using only signed numbers, 
then the programmer takes care to treat the results as signed values.

To take this argument one step further, where is the binary point in the number 
0xF320ABCD? In other words, where does the integer portion of this number start 

A
31

Register r0
0

B C D D C B A

0
31

Register r1
0

0 0 0 0 0 D D

FIGURE 7.13 Unsigned bit field extract instruction.
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and where does the fractional portion start? Does it even have a fractional portion? 
Again, the answer lies with the programmer. It is useful at this point to look at small 
values first and then generalize the ideas to 32-bit numbers.

If the binary number 1011 is considered to be an unsigned number, the base 10 
equivalent is 8 + 2 + 1 = 11. However, you could also assume that a binary point 
exists just before the last digit, as shown in Figure 7.14, which means that 101.1 would 
equal 4 + 1 + 0.5 = 5.5. This representation only gives two possible values for a frac-
tional part—0 or 0.5, which isn’t terribly useful. If the binary point is assumed to be 
one more place to the left, the number becomes 10.11, which is 2 + 0.5 + 0.25 = 2.75 
in base 10. Notice now that the two bits to the right of the binary point provide the 
four possibilities for a fractional value: 0, 0.25, 0.5, or 0.75. The resolution of the 
fraction is now 0.25, or in other words, the difference between any two fractional 
values can be no less than 0.25. Moving the binary point all the way to the left gives 
us the number 0.1011, which is 0.5 + 0.125 + 0.0625 = 0.6875 in base ten. Having an 
entirely fractional value is limiting in some ways, but the resolution of our fractional 
value is 0.0625, which is something of an improvement.

Recall from Chapter 1 that if a base ten number n is represented as an m-bit two’s 
complement number, with b being an individual bit’s value, the value is calculated as

 
n b bm
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so an 8-bit, two’s complement number such as 101100102 equals

 −27 + 25 + 24 + 21 = −78.

But we just said that the binary point in any representation is entirely up to the 
programmer. So what if we assumed that this 8-bit number was divided by 27? The 
bit pattern is identical—the interpretation is different. It turns out that the base 10 
number n would be calculated as

 n = −1 + 2−2 + 2−3 + 2−6 = −0.609375.

In fact, we could divide any m-bit number by 2m−1, giving us just a fractional value 
n, such that

 −1 ≤ n ≤ (1 − 2−(m−1)).

Integer

1 0 1 1
23 22 21 20 2–1 2–2 2–3 2–4

1 0 1
1 0

1
1 1
0 11
1 10 1

1

Fraction

FIGURE 7.14 Binary interpretations of fractional values.
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Going back to our question about e and π, if we wanted to represent a number 
with only some fractional part, then we could scale the number by something less 
than 2m−1. Suppose we have 16 bits, and we want to use e in a calculation. We know 
there are at least two bits needed to represent the integer portion of it (since the 
number is 2.71828…), so we would have at most 13 bits left for the fraction, given 
that the most-significant bit is the sign bit. In the literature, sometimes this is called 
Q notation, where our number might be called a Q13 number. Fortunately, the rules 
for working with Q-notated numbers are straightforward. Numbers that are added 
or subtracted in this notation should always have their binary points aligned, so 
Qn + Qn = Qn. When two numbers are multiplied, a Qn number times a Qm num-
ber will produce a result in a Q(n + m) format.

EXAMPLE 7.17

Convert the transcendental number e into a Q13 format.

soLuTion

To produce e in Q13 notation, take the value e, multiply it by 213, and then convert 
this number to hexadecimal (here, a calculator is often handy). So we have

 e × 213 = 22,268.1647 = 0x56FC.

Note we convert only the integer portion to hex. If this number is interpreted in 
Q13 notation, we can see that we do indeed have two bits to the left of the imagi-
nary binary point and 13 bits to the right:

 

sign bit

x56FC  1 1 11 111111

imaginary binary point

↓

=

↑

0 0 0 0 0 00

EXAMPLE 7.18

Convert 3 /2 into a Q15 format.

soLuTion

We want our value to have 15 bits of fraction and one sign bit, or something that 
looks like

 s.f14f13f12f11f10f9f8f7f6f5f4f3f2f1f0

First, we compute the decimal value for 3 /2, which turns out to be 0.8660254038. 
Now multiply this value times 215, giving 28,377.9204. Convert only the integer 
portion to a hexadecimal value, giving 0x6ED9.
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EXAMPLE 7.19

Let’s take our illustration one step further to actually have the machine calculate 
e times 2. We need to convert this second number into fractional notation, too, 
so let’s use Q13 notation again. If the same rules above are followed, the Q13 
representation of 2  is 0x2D41. This short block of code below will perform the 
multiplication.

 LDR r3, =0x56FC ; e in Q13 notation
 LDR r2, =0x2D41 ; sqrt(2) in Q13 notation
 MUL r5, r2, r3 ; product is in Q26 notation

If you run the code, you should find the value 0xF6061FC in register r5. Since 
the product is now in Q26 notation, we must convert the value to decimal and 
then divide by 226 for the final result, which turns out to be 3.84412378. The 
actual product is 3.84423102, but you would expect that some precision would be 
lost immediately from the original values being represented in a limited-precision 
notation. If there were an infinite number of bits available to perform the opera-
tion, then our results would be exact. We haven’t said what you would do with 
this value sitting in the register—yet. That 32-bit number could still represent just a 
big positive number or something odd like a mask for a configuration register in a 
cache controller! The processor has no idea what you’re doing.

EXAMPLE 7.20

Let’s do another example, except this time one of the operands is negative, as this 
introduces a few more twists in handling these notations. The two values to be 
multiplied are π/4 and the value of a digital signal, say −0.3872. The two values 
should be in Q15 notation, represented by 16 bits. In other words, the representa-
tion looks like

 s.f14f13f12f11f10f9f8f7f6f5f4f3f2f1f0,

or one sign bit, one imaginary binary point, and 15 bits of fractional value. To 
convert π/4 into a Q15 representation, we do as before, taking the decimal value 
and multiplying by 215, giving

 π/4 × 215 = 25,735.927 = 0x6487 (convert only the integer portion to hex)

The other, negative number will require a little more thinking. The easiest way 
to handle negative numbers is to convert a positive value first, then negate the 
result. So, to convert a positive Q15 value first, we have

 |−0.3872| × 215 = 12,687.7696 = 0x318F.

To negate 0x318F, you can either do it by hand (not recommended) or use a 
calculator or computer to perform a two’s complement negation. What results is 
a 16-bit value with the most significant bit set—it had better be, or the value isn’t 
negative. So negating 0x318F produces 0xCE71. (As an aside, some calculators 
will sign extend this value—just remember that you’ve chosen only 16 bits to rep-
resent the number!) As a sanity check, we can look at this value as
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s f f f f f f f f f f f f f f f
1 • 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1

↑ 2−1 2−2 2−3 2−4 2−5 2−6 2−7 2−8 2−9 2−10 2−11 2−12 2−13 2−14 2−15

imaginary binary point

Since we said earlier that this could be viewed as 

 − + =∑1 all fractional bits

 − 1 + 2−1 + 2−4 + 2−5 + 2−6 + … =

 − 1 + 0.6128 = −0.3871765,

we’re getting what we expect. To code the multiplication, we do the same thing as 
before, only you must sign extend the negative operands to 32 bits if you use the 
ARM7TDMI. Why? The multiplier in the ARM7TDMI will take two 32-bit oper-
ands and multiply them together (returning only the lower 32 bits if the MUL 
instruction is used), so if we put a 16-bit value in one of the registers, the results 
will not be correct, as this is effectively a positive, two’s complement number in 
32 bits—to the processor anyway. The first simulation uses the version 4T instruc-
tion set, so it’s necessary to do things the slightly old-fashioned way. The code 
would look like the following:

 LDR r3, =0x6487  ; pi/4 in Q15 notation
 LDR r2, =0xFFFFCE71 ; −0.3872 in Q15 notation

 MUL r5, r2, r3  ; product is in Q30 notation
 LSL r5, r5, #1  ; shift out extra sign bit

The result you find in register r5 is 0xD914032E. To interpret this number, it’s 
easiest to negate it first (again, use a calculator), giving 0x26EBFCD2, since we 
know the result is a negative number. It’s also a Q31 representation, so convert 
to base ten and then divide by 231, giving 0.3041. Why the extra shift at the end? 
Remember that a multiplication by two Q15 numbers will result in a Q30 product; 
however, there are 32 bits of result, which means that we end up with a superflu-
ous sign bit in the most significant bit. In order to align the binary point again, 
everything is shifted left one bit. The final result could be taken from the upper 
half-word (16 bits) of register r5, resulting in another Q15 number. We didn’t see 
this shifting in the first example because the operands were positive (hence there 
was no sign bit set) and we didn’t do any realigning—we just stopped with a posi-
tive Q26 number.

If you use the Cortex-M4 processor, which has newer instructions that take 
16-bit values and sign extend them for you, then you don’t need to add the extra 
bits to the operands. You would use the instruction SMULBB, which tells the pro-
cessor that you want to take the bottom half of two registers, multiply them together, 
and treat all the values as signed two’s complement values. The code would be:

 LDR r3, =0x6487 ; pi/4 in Q15 notation
 LDR r2, =0xCE71 ; −0.3872 in Q15 notation
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 SMULBB r5, r2, r3 ; product is in Q30 notation
 LSL r5, r5, #1 ; shift one bit left

done B done

Depending on the application and the precision needed in an algorithm, the data 
may be truncated at some point. So for graphics data where all the values may range 
only from 0 to 0xFF, once the algorithm produces a result, the entire fractional por-
tion may be truncated anyway before the result is stored. For audio data or variables 
in a digital controller, you might keep some or all of the fractional precision before 
sending the result to a digital-to-analog converter (DAC), for example. The applica-
tion will have a great influence on the way you handle the data. For further reading, 
see (Hohl and Hinds 2008; Oshana 2006).

7.8 EXERCISES

 1. What’s wrong with the following ARM instructions? You may want to con-
sult the ARM Architectural Reference Manual to see the complete instruc-
tion descriptions and limitations.

 a. ADD  r3, r7, #1023
 b. SUB  r11, r12, r3, LSL #32
 c. RSCLES  r0, r15, r0, LSL r4
 d. EORS  r0, r15, r3, ROR r6

 2. Without using the MUL instruction, give instructions that multiply register 
r4 by:

 a. 135
 b. 255
 c. 18
 d. 16,384

 3. Write a compare routine to compare two 64-bit values, using only two 
instructions. (Hint: the second instruction is conditionally executed, based 
on the first comparison.)

 4. Write shift routines that allow you to arithmetically shift 64-bit values that 
are stored in two registers. The routines should shift an operand left or right 
by one bit.

 5. Write the following decimal values in Q15 notation:
 a. 0.3487
 b. −0.1234
 c. −0.1111
 d. 0.7574

 6. Write the following signed, two’s complement Q8 values in decimal:
 a. 0xFE32
 b. 0x9834
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 c. 0xE800
 d. 0xF000

 7. Write the assembly code necessary to detect an error in a 12-bit Hamming 
code, where your code tests the 4 checksum bits c3, c2, c1, and c0. Place 
your corrupted data in memory. Assume that only a single error occurs in 
the data and store your corrected value in register r6.

 8. Write a program to calculate π × 48.9 in Q10 notation.

 9. Show the representation of sin(82°) in Q15 notation.

 10. Show the representation of sin(193°) in Q15 notation.

 11. Temperature conversion between Celsius and Fahrenheit can be computed 
using the relationship

 
C F= −

5
9

32( )

  where C and F are in degrees. Write a program that converts a Celsius value 
in register r0 to degrees Fahrenheit. Convert the fraction into a Q15 repre-
sentation and use multiplication instead of division in your routine. Load 
your test value from a memory location called CELS and store the result 
in memory labeled FAHR. Remember that you will need to specify the 
starting address of RAM for the microcontroller that you use in simulation. 
For example, the LPC2132 microcontroller has SRAM starting at address 
0x40000000.

 12. Write a program for either the ARM7TDMI or the Cortex-M4 that counts 
the number of ones in a 32-bit value. Store the result in register r3.

 13. Using the ARM Architectural Reference Manual (or the Keil or CCS tools), 
give the bit pattern for the following ARM instructions:

 a. RSB r0, r3, r2, LSL #2
 b. SMLAL r3, r8, r2, r4
 c. ADD r0, r0, r1, LSL #7

 14. A common task that microcontrollers perform is ASCII-to-binary conver-
sion. If you press a number on a keypad, for example, the processor receives 
the ASCII representation of that number, not the binary representation. 
A small routine is necessary to convert the data into binary for use in other 
arithmetic operations. Looking at the ASCII table in Appendix C, you will 
notice that the digits 0 through 9 are represented with the ASCII codes 
0x30 to 0x39. The digits A through F are coded as 0x41 through 0x46. 
Since there is a break in the ranges, it’s necessary to do the conversion using 
two checks.
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   The algorithm to do the conversion is

Mask away the parity bit (bit 7 of the ASCII representation), since we 
don’t care about it.

Subtract a bias away from the ASCII value.
Test to see if the digit is between 0 and 9.
If so, we’re done. Otherwise subtract 7 to find the value.

   Write this routine in assembly. You may assume that the ASCII represen-
tation is a valid character between 0 and F.

 15. Write four different instructions that clear register r7 to zero.

 16. Suppose register r0 contains the value 0xBBFF0000. Give the Thumb-2 
instruction and register value for r1 that would insert the value 0x7777 into 
the lower half of register r0, so that the final value is 0xBBFF7777.

 17. Write ARM instructions that set bits 0, 4, and 12 in register r6 and leave the 
remaining bits unchanged.

 18. Write a program that converts a binary value between 0 and 15 into its 
ASCII representation. See Exercise 14 for background information.

 19. Assume that a signed long multiplication instruction is not available on the 
ARM7TDMI. Write a program that performs a 32 × 32 multiplication, pro-
ducing a 64-bit result, using only UMULL and logical operations. Run the 
program to verify its operation.

 20. Write a program to add 128-bit numbers together, placing the result in reg-
isters r0, r1, r2, and r3. The first operand should be placed in registers r4, r5, 
r6, and r7, and the second operand should be in registers r8, r9, r10, and r11.

 21. Write a program that takes character data “a” through “z” and returns the 
character in uppercase.

 22. Give three different methods to test the equivalence of two values held in 
registers r0 and r1.

 23. Write assembly code for the ARM7TDMI to perform the following signed 
division:

 r1 = r0/16

 24. Multiply 0xFFFFFFFF (−1 in a two’s complement representation) and 
0x80000000 (the largest negative number in a 32-bit two’s complement 
representation) on the ARM7TDMI. Use the MUL instruction. What value 
do you get? Does this number make sense? Why or why not?
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 25. A Gray code is an ordering of 2n binary numbers such that only one bit 
changes from one entry to the next. One example of a 2-bit Gray code is 
10 11 01 002. The spaces in this example are for readability. Write ARM 
assembly to turn a 2-bit Gray code held in register r1 into a 3-bit Gray 
code in register r2. Note that the 2-bit Gray code occupies only bits [7:0] of 
register r1, and the 3-bit Gray code occupies only bits [23:0] of register r2. 
You can ignore the leading zeros. One way to build an n-bit Gray code from 
an (n − 1)-bit Gray code is to prefix every (n − 1)-bit element of the code 
with 0. Then create the additional n-bit Gray code elements by taking each 
(n − 1)-bit Gray code element in reverse order and prefixing it with a one. 
For example, the 2-bit Gray code above becomes

 010 011 001 000 100 101 111 110

 26. Write a program that calculates the area of a circle. Register r0 will contain 
the radius of the circle in Q3 notation. Represent π in Q10 notation, and 
store the result in register r3 in Q3 notation.
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Branches and Loops

8.1 INTRODUCTION

Branches are a necessary evil. Software cannot avoid using them, and hardware 
engineers treat them as anathema. So much so that computer architects will go to 
extreme lengths to get rid of them. In fact, researchers spend years and years trying 
to come up with new strategies to either predict their effects before they arrive or 
avoid them entirely. A quick read through most computer architecture literature will 
highlight the elaborate hardware that is included with every modern design: static 
branch predictors, dynamic branch predictors, two-level adaptive branch predictors, 
instruction trace caches—the research continues. Certainly, ARM is no stranger to 
the phenomenon. However, the whole notion of how to remove and predict branches 
is beyond the scope of this book, so for now, we’re going to examine one way around 
even having to use a branch instruction in assembly code. In our discussion, the use 
of conditional execution will demonstrate that even though you can’t remove them 
completely, some branches can be avoided or removed. While the concepts underly-
ing the ability to change the flow of a program are identical for both A- and M-class 
processors, the details are sufficiently different to warrant separate discussions. 
We’ll examine the ARM7TDMI first, then look at some of the new instructions that 
were made available for the v7-M processors.

8.2 BRANCHING

One way to see the effects of a branch in an instruction stream, and the reason 
they present obstacles to optimizing code, is to look at a pipeline diagram for the 
ARM7TDMI, shown in Figure 8.1. The three-stage pipeline can fetch one instruc-
tion from memory, decode another instruction, and execute a third instruction, all in 
the same clock cycle. The analogy for a pipeline is washing dishes—one man washes 
a plate, one man rinses the plate previously washed, and a third man dries the plate 
previously rinsed, all at the same time. Once a man is finished, he passes his item 
to the next person in line; each man stays busy doing his task until all the dishes 
are done. You can see from the diagram that an ADD, SUB, and MOV instruction 
presents no problems for a pipelined architecture, since there is nothing present that 
would cause an instruction to stall or force the processor to wait for it to complete. 
However, a BL instruction, or any other type of branch, will cause the entire pipeline 
to be flushed—a branch instruction effectively tells the machine to start fetching new 
instructions from a different address in memory.

From the diagram, you can see that in cycle 1, the branch (BL) has entered the 
Execute stage of the pipeline, and two instructions have already been fetched (one 

8
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from address 0x8004 and one from 0x8008). Since the branch says to begin fetching 
new instructions from address 0x8FEC, those unused instructions must be thrown 
away. In a three-stage pipeline, the effects are not nearly as deleterious, but consider 
what would happen in a very deep pipeline, say 24 stages—a branch that is not 
handled correctly could force the processor to abandon significant amounts of work. 
It’s worth noting at this point what’s happening in cycles 2 and 3. Since the branch 
and link instruction saves a return address for us in the Link Register, the processor 
takes the Program Counter and moves it into register r14. However, we’ve already 
noted that the Program Counter points to the instruction being fetched in any given 
cycle, so at the time that the BL instruction is in the execute stage of the pipeline, 
the Program Counter is pointing to 0x8008. In cycle 2, this value is moved into the 
Link Register, but notice that we really need to return to address 0x8004. To correct 
for this, the processor subtracts four from the value in the Link Register in cycle 3 
without introducing any stalls in the pipeline.

8.2.1 BRAnChing (ARM7TdMi)

Any event that modifies the Program Counter (register r15) can be defined as a 
change of flow, and this can be accomplished by either explicitly modifying the 
Program Counter by writing to it or using one of the branch instructions. The three 
types of branch instructions on the ARM7TDMI are:

• B—Branch. This is the simplest form of branch, where condition codes may 
also be used to decide whether or not to branch to a new address in the code.

• BX—Branch indirect (formerly called Branch and eXchange). In addition 
to providing a branch using a registered value, this instruction provides 
a mechanism to switch from 32-bit ARM instructions to 16-bit Thumb 
instructions. We will cover Thumb in more detail in Chapter 17.

• BL—Branch and Link. Here, the Link Register (r14) is used to hold a return 
address just after a branch instruction, so that if we want to execute a sub-
routine and return, the processor merely has to put the value of the Link 
Register into the Program Counter at the end of the subroutine. We saw a 
few examples of this already in Chapter 6.

Cycle

Address Operation

0x8000
0x8004
0x8008
0x8FEC
0x8FF0
0x8FF4

BL
X
XX
ADD
SUB
MOV

1 2 3 4 5

Fetch
Fetch

Decode
Decode

Decode Execute

Execute Linkret Adjust

Decode Execute
Decode

Fetch
Fetch

Fetch
Fetch

Fetch

FIGURE 8.1 ARM7TDMI pipeline diagram.
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The branch instructions in the ARM instruction set, B and BL shown in Figure 
8.2, have 24-bit fields for a branch offset. When the processor executes a branch 
instruction, this offset is added to the Program Counter, and the machine begins 
fetching instructions from this new address. Since a 32-bit instruction cannot hold 
a 32-bit address, a couple of questions immediately arise. First, if only 24 bits are 
available, what’s the best way to effectively use them? Rather than just adding this 
offset to register 15, the 24 bits are shifted left by two bits first, since all ARM 
instructions must be word-aligned anyway, i.e., the least significant two bits of the 
address are always zero. This gives a range of ±32 MB using this method and brings 
up the second question: how do you jump more than 32 MB away from the current 
address? Remember that register 15, the Program Counter, is just another register, so 
you can say something like

 LDR pc, =0xBE000000

or

 MOV pc, #0x04000000

which forces an address directly into the Program Counter.
For the most part, this chapter deals with one particular type of branch instruc-

tion—B—leaving the discussion of BL and BX for later chapters, but we’ll examine 
both conditional and unconditional branches. The unconditional instruction B alone 
simply forces the code to jump to some new address. However, it’s likely you’ll want 
to condition this decision with more criteria; for example, did a counter just expire 
or did an earlier subtraction result in a negative number? Table 8.1 shows various 
combinations of flags in ARM processors that can be used with branches. It is quite 
possible, then, to say

 CMP r0, r1
 BLT Sandwich ; programmers get hungry...

where this means if register r0 is less than register r1, branch to a label called 
Sandwich. Recall that the job of a comparison instruction is to set the flags in the 
CPSR and little else, so the branch instruction can immediately use that informa-
tion to make decisions. We’ll certainly see more examples of conditional branches 
throughout the book, and shortly we’ll find that on the ARM7TDMI, almost any 
instruction can be conditionally executed.

31 2827 25

Cond 1 0 L Offset

Link bit 0 = Branch
1 = Branch and link

Condition field

1

24 23 0

FIGURE 8.2 The B and BL instruction.
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EXAMPLE 8.1

Suppose that you need to compare two signed numbers, where they are assumed 
to be in two’s complement form, with 0xFF000000 in register r0 and 0xFFFFFFFF 
in register r1. If you wanted to branch to some code only if the first number was 
less than the second, you might have something like

 CMP r0, r1   ; r0 < r1?
 BLT algor

For this case, the branch would be taken, as register r0 holds a large, negative 
number and register r1 holds –1. If you assume that the two numbers are unsigned, 
BCC should be used instead, as register r1 would hold the larger number.

Since any real code will have something more than just arithmetic and control 
instructions, the whole notion of looping through code needs to be addressed. We 
need the ability to execute a section of code multiple times, so we’re going to start off 
the discussion of loops by looking at a real problem. Suppose that we had a register 
containing a binary value that needed to be normalized. In other words, we need to 
have the leading 1 in the most significant bit, even if we have to shift it to get it there. 
This does actually come up in numerical algorithms, such as the Newton–Raphson 
division algorithm, logarithmic routines, and some priority decoders. This problem 
is so significant that ARM decided to add a new instruction (CLZ, or Count Leading 
Zeros) to the version 5TE architectures and beyond, just to reduce the cycle count 
of certain mathematical routines. Since the ARM7TDMI does not have this instruc-
tion, it makes a good example to code.

TABLE 8.1
Condition Codes and Their Meaning

Field Mnemonic Condition Code Flags Meaning Code

EQ Z set Equal 0000

NE Z clear Not equal 0001

CS/HS
CC/LO
MI

C set
C clear
N set

Unsigned ≥
Unsigned <
Negative

0010
0011
0100

PL N clear Positive or zero 0101

VS V set Overflow 0110

VC V clear No overflow 0111

HI C set and Z clear Unsigned > 1000
LS C clear and Z set Unsigned ≤ 1001
GE N ≥ V Signed ≥ 1010
LT N ≠ V Signed < 1011
GT Z clear, N = V Signed > 1100
LE Z set, N ≠ V Signed ≤ 1101
AL Always Default 1110
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For our normalization task, the flowchart in Figure 8.3 might help to decide how 
this algorithm will be implemented. The first thing to test for is whether the argu-
ment is either zero or already normalized—if there’s nothing to do, then the routine 
should just stop. Otherwise, we want to shift it by one bit to the left and increment the 
shift counter, which could be used by another routine to tell how much the original 
value had to be shifted. The routine should check to see if the most significant bit is 
now set, as this would be the place to stop. If it’s not, the code should go back and 
repeat the shift/increment/test portion again.

The code for this algorithm might look like the following:

 AREA Prog8a, CODE, READONLY
 ENTRY
main
 MOV  r4, #0  ; clear shift count
 CMP  r3, #0  ; is the original value <=  0?
 BLE  finish  ; if yes, we’re done
loop LSLS  r3, r3, #1 ; shift one bit
 ADD  r4, r4, #1 ; increment shift counter

Start

Shift CNT
=0

NUM ≤ 0?

Shift left
1 bit

Shift CNT
+ = 1

MSB
≠1?

Yes

End

No

Yes

No

FIGURE 8.3 Flowchart for normalization algorithm.
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 BPL  loop
finish
 B  finish
 END

The first type of branch we see is the BLE just above the loop statement. The com-
parison above sets the flags in the CPSR, and if the number is negative (indicated 
by the most significant bit being set) or zero, then the condition forces the code to 
branch to the label finish. Otherwise, it continues to the first instruction inside the 
loop, which shifts the value one place to the left. An important point to note here 
is that an “S” has been appended to the LSL instruction because we have to tell the 
machine to set the flags again for the loop condition. The ADD will not have any 
effect on the flags, since arithmetic instructions do not set flags unless told to do so. 
The BPL, or Branch if Positive or zero, instruction simply says to check the flags 
again, and as long as the most significant bit is clear, i.e., the value is still not normal-
ized, to branch back to the label loop.

While this code would not occupy much memory, the issue that is probably not 
obvious is the cycle time that it would take to execute. Consider the worst case sce-
nario where a 1 is in the least significant bit of the register, forcing 31 shifts to get it 
to the most significant bit. The LSL instruction takes one cycle to execute, as does 
the ADD. However, the branch instruction flushes the ARM7’s pipeline and causes a 
change of flow in the instruction stream, and the code repeats all of this 31 times. In 
total, this adds up to a significant number of cycles. Toward the end of the chapter, we 
will see two much more efficient ways to do this. For now, we’ll continue to examine 
ways to branch and how different types of loops are written.

8.2.2 VeRsion 7-M BRAnChes

Version 7-M cores have more branch instructions than the ARM7TDMI, but the 
types of allowable branches have some limitations:

• B—Branch. This is the simplest form of branch, where condition codes may 
be used to decide whether or not to branch to a new address in the code.

• BX—Branch indirect. A registered value is used as a branch target. If bit[0] 
of the address is a zero, a usage fault exception will occur. Use this instruc-
tion carefully, as the assembler will not be generating offsets or addresses 
for you, and the value in the register must have bit[0] set.

• BL—Branch with Link. As with the ARM7TDMI, the Link Register will 
hold a return address after a branch.

• BLX—Branch indirect with Link. This instruction is similar to BL, only 
the address is held in a register.

• CBZ, CBNZ—Compare and Branch if Zero, Compare and Branch if 
Nonzero. These two instructions are useful in looping and can reduce the 
number of instructions.

• IT blocks—IF-THEN blocks. The IT instruction can be used to avoid 
branching entirely with up to four instructions in a block.
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The B, BX, and BL instructions work in the same way as in v4T architectures, namely 
to change the Program Counter to a new address from which the processor can begin 
fetching instructions. Both B and BL can be thought to contain immediate addresses, 
meaning that the address is encoded in the instruction itself. For example, you might say

 B myroutine

and the linker will calculate the PC-relative offset necessary to jump to myroutine.
The BX and BLX instructions use an address contained in a register; for example,

 BX r9

will load the value in register r9 into the Program Counter, and fetching begins from 
this new address.

Unlike v4T branch instructions, which always have a range of −32MB to 32MB, 
in version 7-M the range varies depending on which branch instruction you use. A 
32-bit branch instruction has a range of −16MB to +16MB. A conditional branch 
used inside of an IT block (discussed shortly) has a range of −16MB to +16MB, 
while a conditional branch used outside of an IT block has a shorter range of −1MB 
to +1MB. In some cases, it might be necessary to force the longer instruction to be 
used to get the maximum range, for example

 BEQ.W label

where the .W suffix denotes “wide”. For complete details, consult either (Yiu 2014) 
or the ARM v7-M Architectural Reference Manual (ARM 2010a).

With the introduction of Thumb-2 and Unified Assembly Language (UAL), it’s 
worth pointing out here that you’re likely to see some mixed use of the BX instruc-
tion. BX can be used to change the state of the machine from ARM to Thumb on the 
ARM7TDMI (covered in detail in Chapter 17), but it can also be used as a simple 
branch instruction, too, as long as the least significant bit is not set (this would throw 
us into Thumb state). This instruction takes a register value and loads it into the 
Program Counter. An example instruction might be

 BX r4

where the value held in register r4 is moved to the PC and then execution begins from 
this new address. This leaves us with another way to return from subroutines, which 
are covered in Chapter 13. Rather than using the older instruction

 MOV pc, lr

which transfers the contents of the Link Register into the Program Counter, you 
should now say

 BX lr

which does the same thing. As you study code samples from other sources, you are 
likely to see both styles, so just keep this in mind as you read documentation and 
write your own code.
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The Compare and Branch if Nonzero (CBNZ) and Compare and Branch if Zero 
(CBZ) instructions can be used to avoid changing the condition code flags during 
loops. As an example, if you assume that the CMP instruction does not change the 
flags, instead of saying

 CMP r2, #0
 BEQ label

you would use the single instruction

 CBZ r2, label

as they are functionally equivalent statements. These two instructions come with a 
few restrictions worth noting. First, the only registers allowed must be in the range 
of r0–r7. Second, the branch destination must be within 4–130 bytes following the 
instruction. Finally, the CBZ and CBNZ instructions cannot be used within an IT 
block, which brings us to the subject of Section 8.3, looping.

8.3 LOOPING

Nearly all embedded code will have some form of loop construct, especially if an oper-
ating system is running or the application requires the processor to periodically check 
an input or peripheral. We’ll examine three easy loop structures—the while loop, the 
for loop, and the do-while loop, along with code samples that show their construction.

8.3.1 WhiLe Loops

Certainly, one of the more common constructs in C or C++, or any high-level lan-
guage really, is the while loop, and its cousin, the for loop. Since the number of itera-
tions of a while loop is not a constant, these structures tend to be somewhat simple. 
Suppose we had the following C code:

 j = 100;
 while (j! = 0) {
 //do something
 j- -;}

The while loop can be constructed on an ARM7TDMI as

  MOV r3, #0x64
  B  Test
Loop  .
  .   ; do something
  .
  SUB r3, r3, #1 ; j- -
Test  ..   ; evaluate condition j = 0?
  BNE  Loop
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While loops evaluate the loop condition before the loop body. There is only one 
branch in the loop body itself. The first branch actually throws you into the first 
iteration of the loop.

The loop can be constructed for the Cortex-M4 using version 7-M instructions as

 MOV r3, #0x64
Loop CBZ r3, Exit
 ; do something
 SUB  r3, #1  ; j- -
 B Loop
Exit

Here the initial test is done at the start of the loop. The Compare and Branch if 
Zero (CBZ) instruction will test the counter against zero, and if it is equal to zero, 
branch outside the loop to Exit. Note that the CBZ instruction will only support 
forward branches, meaning only to addresses that add to the Program Counter, not 
those that subtract from it.

8.3.2 foR Loops

The other common loop, the for loop, is actually just a variation of the while loop. 
Suppose you wish to create a for loop to implement a counter of some kind using a 
control expression to manage an index j, which is declared as an integer:

for (j = 0; j < 10; j + +) {instructions}

The first control expression (j = 0) just clears a variable and can execute before 
the loop begins. The second control expression (j < 10) is evaluated on each pass 
through the loop and determines whether or not to exit. The index increments at the 
end of each pass to prepare for a branch back to the start of the loop. In assembly, it 
might be tempting to code this loop as

 MOV r1, #0   ; j = 0
LOOP CMP r1, #10  ; j < 10?
 BGE DONE   ; if j > =10, finish
 .
 . ; instructions
 .
 ADD  r1, r1, #1   ; j + +
 B  LOOP
DONE ..

A much better way to do this is to count down rather than up. A for loop can 
be constructed using only one branch at the end, subtracting one from the counter 
register, and branching back to the top only when the counter value is not equal to 
zero, like this:
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 MOV r1, #10 ; j = 10
LOOP
 .
 .   ; instructions
 .
 SUBS r1, r1, #1 ; j = j-1
 BNE  LOOP  ; if j = 0, finish
DONE  ..

This is actually more efficient in that a branch is removed and a comparison 
against zero comes for free, since we set the condition codes with the SUB instruc-
tion and use the B instruction to test whether or not the counter is now zero.

EXAMPLE 8.2

Let’s translate the following C code to assembly using an ARM7TDMI-based 
microcontroller.

 for (i = 0; i < 8; i + +) {
a[i] = b[7−i];

  }

The index i is declared as an integer, and assume the arrays a and b contain only 
byte-wide data. We also need to have the array a be located in writable memory, 
so for this example, you will need to select a target device that contains some 
RAM. Since we’ll be using the LPC2132 microcontroller from NXP in Chapter 16, 
we can select this one as the target device now. It has 16 KB of on-chip RAM, 
and programming it now only requires that we know the starting address of RAM, 
which is 0x40000000. The code below implements the above for loop.

 AREA Prog8b, CODE, READONLY
SRAM_BASE EQU 0x40000000
 ENTRY
 MOV  r0, #7   ; i
 ADR  r1, arrayb   ; load address of array
 MOV  r2, #SRAM_BASE  ; a[i] starts here
Loop
 RSB  r3, r0, #7   ; index = 7−i
 LDRB  r5, [r1, r3]   ; load b[7−i]
 STRB  r5, [r2, r0]   ; store into a[i]
 SUBS  r0, r0, #1   ; i- -
 BGE  Loop
done B  done
 ALIGN
arrayb  DCB 0xA,0x9,0x8,0x7,0x6,0x5,0x4,0x3
 END

The code starts by setting the index i to 7. The address of array b, which is 
located in memory just after our program code, is loaded into register r1. The 
address of array a, which will be located in SRAM on the chip, is placed in 
register r2. The reverse subtract operation calculates the difference between 
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7 and i to use as a pointer into memory. The data is loaded from memory into 
register r5 with a load byte instruction (LDRB), and then stored into array a using 
a store byte instruction (STRB). The counter is decremented, setting the flags for 
our upcoming comparison. The BGE (Branch if Greater than or Equal to zero) 
examines the flags, and based on the state of the N and the V flags, branches 
to the start of the loop. Notice that the data for array b is placed in the code 
using a DCB statement, which simply places byte-wide (8-bit) constants in the 
instruction memory. The other important thing to note here is that our loop is 
created with just one branch statement, since the comparison is built into the 
branch instruction.

EXAMPLE 8.3

In this next example for the ARM7TDMI, suppose we have six 32-bit integers that 
need to be summed together, where the integer data is stored in memory. This 
might be equivalent to a C statement such as

sum = 0;
for (i = 0; i < 6; i + +) {
 sum +=  a[i];
}

While simple loops don’t often require a flowchart, we might sketch one out to 
help define the steps necessary to write the assembly, as shown in Figure 8.4.

Start

SUM = 0

LOAD a[i]

SUM = SUM + a[i]
i = i – 1

i ≥ 0?Yes

Stop

No

FIGURE 8.4 Flowchart for summing six integers.
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The code can be written in just a few lines, with one branch and no CMP 
instructions by simply counting down:

 AREA Prog8c, CODE, READONLY
 ENTRY
 MOV r0, #0   ; sum = 0
 MOV r1, #5   ; # of elements -1
 ADR r2, arraya  ; load start of array
Loop
 LDR r3,[r2,r1,LSL #2] ; load value from memory
 ADD r0, r3, r0  ; sum +=  a[i]
 SUBS r1, r1, #1  ; i = i−1
 BGE Loop   ; loop only if i > =0
done B done
 ALIGN
arraya DCD -1,-2,-3,-4,-5,-6
 END

The code begins by clearing out the accumulated sum held in register r0. While 
there are six elements to add, we only load the value 5 into an index register 
because the values will be loaded from memory using an address with an offset, 
and therefore, we can use the fact that one of the elements is addressed with an 
offset of zero. The start of the array in memory is loaded into register r2 using the 
pseudo-instruction ADR. Notice that the data is declared at the end of the code 
with a DCD directive and ends up being located just at the end of our code in 
instruction memory. However, this data could just as easily have been located 
somewhere else in memory, such as in a peripheral, in SRAM, or elsewhere on 
the microcontroller.

At the beginning of the loop, register r3 is loaded with one word of data, and 
the value is then added into the accumulated sum. The counter for the loop is 
decremented with the SUBS instruction that sets the flags. Recall that we can use 
the condition codes for a variety of branch types, as well as conditional execu-
tion, which we’ll see in the next section. The BGE instruction causes the processor 
to branch back to our label Loop only if the subtraction produced a value that 
was greater than or equal to zero. Once the counter becomes negative, the loop 
terminates.

8.3.3 do-WhiLe Loops

Here the loop body is executed before the condition is evaluated. The structure is the 
same as the while loop but without the initial branch:

LOOP
 ...
 ; loop body
 ...
 ; evaluate condition
 BNE LOOP
EXIT
...
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8.4 CONDITIONAL EXECUTION

As we saw in the beginning of the chapter, branches can potentially cause very large 
delays in code, so if there were a way to remove a branch entirely, not only would our 
execution time decrease but our code size would decrease, too. Conditional execu-
tion provides this ability, since we can precondition an instruction as it goes through 
the pipeline—if it’s not even necessary to execute the instruction, it passes through 
without affecting anything. It still takes a clock cycle, and still holds a place in the 
pipeline, but nothing happens.

8.4.1 V4T CondiTionAL exeCuTion

All version 4T ARM instructions can be conditionally executed based on the four-bit 
field in the upper nibble of the instruction, shown in Figure 8.5. Fortunately, you can 
still specify these conditions using the same mnemonics that we use for branches 
from Table 8.1. Careful readers will have noticed that there are 15 different field 
mnemonics, such as GT, GE, LT, etc., but there are actually 16 combinations—this 
is a four-bit field. Figure 8.6 shows an arbitrary Thumb-2 instruction, a 32-bit wide 
ADD instruction, which allows more flexibility than the 16-bit ADD instruction. 
Notice that bits 28 through 31, the upper nibble of the instruction, are all ones. In 
earlier ARM architectures, this encoding was used for the condition Never (NV), 
which seems a little unusual given that one normally hopes to have instructions used 
at least once in compiled code! By using this encoding to identify some of the new, 
32-bit Thumb-2 instructions, the instruction space was given a bit of breathing room, 
allowing for more operations to be added.

It’s at this point that we can also begin to see why Thumb-2 instructions could not 
be conditionally executed like those in the v4T ISA, primarily for two reasons: 16-bit 
Thumb instructions have no extra bits for a conditional field, and if another construct 
is used, something beyond the traditional Thumb instructions will be needed. By 
adding a new instruction called IT to build small IF-THEN loops, this limitation can 
be overcome, as we’ll see shortly. For now, let’s examine how ARM instructions can 
be conditionally executed using the conditional field.

31 28 27 0

cond

FIGURE 8.5 Condition code field.

15
1 1 1 1 0 i 0 1 0 0 0 0 imm3 imm8RdS Rn

14

Encoding T3
ADD{S}<c> .W <Rd>,<Rn>, #<const>

13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARMv7-M

FIGURE 8.6 32-bit wide Thumb instruction.
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EXAMPLE 8.4

Suppose you had to test a string for the presence of either a “!” or a “?” character, 
and you had one-byte character data called char. The test condition might be 
written in C as

if (char = = ‘!’ || char = =’?’)

 found + +;

Assuming that the character data char was held in register r0 and the variable 
found was in register r1, you could write the assembly for this as

 TEQ r0,#’!’

 TEQNE r0,#’?’

 ADDEQ r1,r1,#1

Recall that the TEQ instruction tests equivalence of two things by using the 
exclusive OR operation, always setting the flags in the CPSR afterward. If the 
two numbers were in fact the same, the Z flag would be set, so the second TEQ 
instruction would not be executed. The third instruction would be executed, 
since the Z flag has not been changed since the first comparison and the condi-
tion is still true.

EXAMPLE 8.5

At the risk of being almost overused as an example, the greatest common divisor 
algorithm is still worth presenting here, as it demonstrates the power of condi-
tional execution. Euclid’s algorithm for computing the GCD of two positive inte-
gers (a,b) can be written as

 while (a != b) {

      if (a > b) a = a – b;

      else b = b – a;

      }

To illustrate how this works, if you had the numbers 18 and 6, you would always 
subtract the smaller number from the larger until the two are equal. This gives 12 
and 6 on the first pass, and 6 and 6 on the second and final pass.

Assuming that the numbers a and b are held in registers r0 and r1, respec-
tively, the assembly code might look something like this if only the branches are 
executed conditionally:

gcd CMP  r0,r1 ; a > b?
 BEQ  end ; if a = b we’re done
 BLT  less ; a < b branches
 SUB  r0,r0,r1 ; a = a-b
 B  gcd ; loop again

less SUB r1,r1,r0 ; b = b-a
 B gcd
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The most efficient way to do this is to avoid the branches altogether and condition-
ally execute the instructions, as

gcd CMP r0, r1
 SUBGT r0, r0, r1
 SUBLT r1, r1, r0
 BNE gcd

Not only does this code execute more quickly, it contains fewer instructions. Note 
that in the second case, the code compares the two numbers, setting the flags. 
The two subsequent instructions are mutually exclusive, so there will never be a 
case where one of the numbers is less than and greater than the other at the same 
time. The final case where the two numbers are equal after the compare forces 
both subtraction instructions to be ignored in the pipeline, and the final branch 
instruction falls through as well because they are, in fact, equal. Not having the 
extra branches in the code makes a huge difference, since the pipeline does not 
get flushed repeatedly when the branches are taken.

8.4.2 V7-M CondiTionAL exeCuTion: The iT BLoCK

It was stated in the last section that a new instruction was combined with the older 
Thumb instruction set to allow small IF-THEN blocks to be built. Like conditional 
execution, the goal is to remove or avoid branches as much as possible in Thumb-2 
code. The IT instruction is used in conjunction with other operations to build blocks 
using the following syntax:

 ITxyz condition

where the x, y, and z fields specify either T for THEN (true) or E for ELSE (false). For 
example, a simple IF-THEN statement such as

 if (r3 < r8){
  r3 = r3 + r8;
  r4 = 0;}
 else
  r3 = 0;

might be coded as

 ITTE LT
 ADDLT r3, r3, r8
 MOVLT r4, #0
 SUBGE r3, r3, r3

Here the ADD and MOV instructions have the same condition specified in the 
ITTE instruction (LT), and the ELSE instruction reflects the inverse condition (GE). 
There are up to four instructions in an IF-THEN block and a few simple rules that 
govern its construction:



170 ARM Assembly Language

• The condition field must be one of the fields listed in Table 8.1, except 
Always.

• The first statement following the IT instruction must be the true-then-exe-
cute case (THEN).

• The number of T’s and E’s in the IT instruction itself should match the 
number of THEN and ELSE instructions in the block. If you specify an 
instruction such as ITTEE, there should be two THEN instructions and two 
ELSE instructions following the IT instruction.

• Branches to any instruction in the IT block are not permitted, apart from 
those performed by exception returns.

• Any branches used in an IT block must be the last instruction in the block.
• The ELSE condition must be the inverse of the THEN condition. If you 

refer to Table 8.1 again, you will notice that these two fields differ only in 
the LSB of the encoding. In other words, GE, which is 1010, is the inverse 
of LT, which is 1011.

Note that the IT instruction does not affect the condition code flags. If you use 
16-bit instructions in the IT block, other than CMP, CMN, and TST, they do not set 
the condition code flags either.

EXAMPLE 8.6

In Chapter 16, we will examine a program that changes the color of the LEDs on a 
Tiva Launchpad. One small section of the code can be stated in C as

 if (Color = = 8)
  Color = 2;
 else
  Color = Color * 2;

This forces the Color variable to take on the values 2, 4, or 8, and then to cycle 
through those same values over and over. Assuming our variable is held in register 
r6, the assembly for the Cortex-M4 would look like

 CMP  r6, #8
 ITE  LT
 LSLLT  r6, r6, #1 ; LED = LED * 2
 MOVGE  r6, #2  ; reset to 2 otherwise

The first comparison tests against our upper limit (8) and sets the flags for our 
conditional instructions coming up. Notice that the IT instruction specifies only 
one Less Than instruction (LSL) and one Else instruction (MOV). The IT block then 
begins with a logical shift of the value in register r6 if the value was either two or 
four. Otherwise, the value is reset to the starting value of two with a simple MOV. 
The Else instruction is predicated with the inverse condition of LT.

8.5 STRAIGHT-LINE CODING

Now that we’ve seen how branches are done, you might ask if an algorithm that con-
tains a loop necessarily has to have a branch instruction. The answer is no. It turns 
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out that in many algorithms, especially signal processing algorithms, speed is the 
most important consideration in its implementation. If any delays can be removed 
from the code, even at the expense of memory, then sometimes they are. Instructions 
that are between the start of a loop and the branch back to the beginning can be 
repeated many times, a process known as unrolling a loop. For example, if you had 
one instruction that was inside of a for loop, i.e.,

 MOV r1, #10  ; j = 10
Loop
 MLA r3, r2, r4, r5 ; r3 = r2*r4 + r5
 SUBS r1, r1, #1  ; j = j – 1
 BNE Loop   ; if j = 0, finish

you could do away with the for loop entirely by simply repeating the MLA instruc-
tion 10 times.

If you recall from the normalization example presented at the beginning of 
the chapter, a branch forces a pipeline to flush instructions that have already been 
fetched and decoded; therefore, a routine may spend considerable time just refilling 
the pipeline. To avoid this, software can simply remove all branches—the routine 
may be significantly faster but it will occupy more memory because of the repeated 
instructions. The normalization routine in Section 8.2.1 has been optimized by 
Symes (Sloss, Symes, and Wright 2004) and is presented below. Notice that the cycle 
count is fixed for this routine—17 cycles for an ARM7TDMI—due to the condi-
tional execution and lack of branches. The instructions that are not executed, those 
that fail their condition codes, still have to go through the pipeline and still take a 
cycle in the execute stage.

; Normalization on the ARM7TDMI
; Argument in r0
; Shift count needed for normalization returned in r1
shift RN  r0
x RN  r1
 AREA  Prog8d, CODE, READONLY
 ENTRY
 MOV  shift, #0  ; shift = 0
 CMP  x, #1<<16  ; if (x < (1<<16))
 LSLCC  x, x, #16  ; {x = x<<16;
 ADDCC  shift, shift, #16 ; shift + =16; }
 TST  x, #0xFF000000 ; if (x < (1<<24))
 LSLEQ  x, x, #8  ; {x = x <<8;
 ADDEQ  shift, shift, #8 ; shift + =8; }
 TST  x, #0xF0000000 ; if (x < (1<<28))
 LSLEQ  x, x, #4  ; {x = x<<4;
 ADDEQ  shift, shift, #4 ; shift + =4; }
 TST  x, #0xC0000000 ; if (x < (1<<30))
 LSLEQ  x, x, #2  ; {x = x<<2;
 ADDEQ  shift, shift, #2 ; shift + =2; }
 TST  x, #0x80000000 ; if (x < (1<<31))
 ADDEQ  shift, shift, #1 ; { shift + =1 ;
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 LSLEQS  x, x, #1  ; x << = 1;
 MOVEQ  shift, #32  ; if (x = =0) shift = 32; }
done B  done
 END

As a point of interest, it was mentioned earlier that a new instruction, Count 
Leading Zeros (CLZ), was added to the v5TE instruction set, and it is included in 
the v7-M instructions. The entire routine above can be done in two lines of code on 
the Cortex-M4:

 ; r2 = shift count
 ; r3 = original value
 CLZ r2, r3
 LSL.W r3, r3, r2 ; r3 <<  shift count

8.6 EXERCISES

 1. Code the following IF-THEN statement using Thumb-2 instructions:

 if (r2 != r7)
   r2 = r2 − r7;
 else
   r2 = r2 + r4;

 2. Write a routine for the ARM7TDMI that reverses the bits in a register, 
so that a register containing d31d30d29…d1d0 now contains d0d1…d29d30d31. 
Compare this to the instruction RBIT on the Cortex-M4.

 3. Code the GCD algorithm given in Section 8.4.1 using Thumb-2 instructions.

 4. Find the maximum value in a list of 32-bit values located in memory. 
Assume the values are in two’s complement representations. Your program 
should have 50 values in the list.

 5. Write a parity checker routine that examines a byte in memory for correct 
parity. For even parity, the number of ones in a byte should be an even num-
ber. For odd parity, the number of ones should be an odd number. Create 
two small blocks of data, one assumed to have even parity and the other 
assumed to have odd parity. Introduce errors in both sets of data, writing 
the value 0xDEADDEAD into register r0 when an error occurs.

 6. Compare the code sizes (in bytes) for the GCD routines in Section 8.4.1, 
where one is written using conditional execution and one is written using 
branches.

 7. Digital signal processors make frequent use of Finite Impulse Response 
filters. The output of the filter, y(n), can be described as a weighted sum of 
past and present input samples, or
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  where the coefficients h(m) are calculated knowing something about the 
type of filter you want. A linear phase FIR filter has the property that its 
coefficients are symmetrical. Suppose that N is 7, and the values for h(m) 
are given as

h(0) = h(6) = −0.032
h(1) = h(5) = 0.038
h(2) = h(4) = 0.048
h(3) = −0.048

  Use the sample data x(n) below:

 SAMPLE DCW 0x0034,0x0024,0x0012,0x0010
  DCW 0x0120,0x0142,0x0030,0x0294

  Write an assembly language program to compute just one output value, y(8), 
placing the result in register r1. You can assume that x(8) starts at the low-
est address in memory and that x(7), x(6), etc., follow as memory addresses 
increase. The coefficients should be converted to Q15 notation, and the 
input and output values are in Q0 notation.

 8. Write a routine to reverse the word order in a block of memory. The block 
contains 32 words of data.

 9. Translate the following conditions into a single ARM instruction:
 a. Add registers r3 and r6 only if N is clear. Store the result in register r7.
 b. Multiply registers r7 and r12, putting the results in register r3 only if C 

is set and Z is clear.
 c. Compare registers r6 and r8 only if Z is clear.

 10. The following is a simple C function that returns 0 if (x + y) < 0 and returns 
1 otherwise:

 int foo(int x, int y){
  if (x + y < 0)
  return 0;
  else
  return 1;
  }

  Suppose that a compiler translated it into the following assembly:

 foo ADDS r0, r0, r1
  BPL PosOrZ
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 done
  MOV r0, #0
  BX lr
 PosOrZ
  MOV r0, r1
  B done

  This is inefficient. Rewrite the assembly code for the ARM7TDMI using 
only four instructions (hint: use conditional execution).

 11. Write Example 7.10 (finding the absolute value of a number) for the 
Cortex-M4.

 12. What instructions are actually assembled if you type the following lines of 
code for the Cortex-M4 into the Keil assembler, and why?

 CMP r3, #0
 ADDEQ r2, r2, r1
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Introduction to 
Floating-Point
Basics, Data Types, 
and Data Transfer

9.1 INTRODUCTION

In Chapter 1 we looked briefly at the formats of the floating-point data types called 
single-precision and double-precision. These data types are referred to as float and 
double, respectively, in C, C++, and Java. These formats have been the standard 
since the acceptance of the IEEE Standard for Binary Floating-Point Arithmetic 
(IEEE Standard 1985), known as the IEEE 754-1985 standard, though floating-point 
was in use long before an effort to produce a standard was considered. Each com-
puter maker had their own data types, rounding modes, exception handling, and odd 
numeric quirks. In this chapter we take a closer look at the single-precision floating-
point data type, the native data type of the Cortex-M4 floating-point unit, and a new 
format called half-precision. An aim of this chapter is to answer why a programmer 
would choose to use floating-point over integer in arithmetic computations, and what 
special considerations are necessary to properly use these data types. This introduc-
tory look, here and in Chapters 10 and 11, will let us add floating-point to our pro-
gramming and make use of a powerful feature of the Cortex-M4.

9.2 A BRIEF HISTORY OF FLOATING-POINT IN COMPUTING

Hardware floating-point is a relatively new part of embedded microprocessors. One 
of the earliest embedded processors offered with optional floating-point was the 
ARM10, introduced in 1999. In the last fifteen years embedded processors, such 
as the ARM11 and Cortex-M4, have been available with hardware floating-point. 
The adoption of floating-point in the embedded space follows a long tradition of 
computing features which were first introduced in supercomputer and mainframe 
computers, and over time migrated to minicomputers, later to desktop processors, 
and ultimately to the processors which power your smart phone and tablet.

The earliest processor with floating-point capability was the Z3, built by Konrad 
Zuse in Berlin in the years 1938–1941.*  Figure 9.1 shows Dr. Zuse and a reconstruc-
tion of the Z3 computer. It featured a 22-bit floating-point unit, with 1 sign bit, 7 

* Konrad Zuse’s Legacy: The architecture of the Z1 and Z3, IEEE Annals of the History of Computing, 
19, 2, 1997, pp. 5–16.

9
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bits of exponent, and 14  bits of significand. Many of the early machines eschewed 
floating-point in favor of fixed-point, including the IAS Machine, built by John von 
Neumann in Princeton, New Jersey. Of the successful commercial computers, the 
UNIVAC 1100 series and 2200 series included two floating-point formats, a single-
precision format using 36  bits and a double-precision format using 72  bits. Numerous 
machines soon followed with varying data formats. The IBM 7094, shown in Figure 
9.2, like the UNIVAC, used 36-bit words, but the IBM 360, which followed in 1964, 
used 32-bit words, one for single-precision and two for double-precision. The inter-
esting oddity of IBM floating-point was the use of a hexadecimal exponent, that is, 
the exponent used base 16 rather than base 2, with each increment of the exponent 

FIGURE 9.1 Konrad Zuse with a reconstruction of the Z3 computer.

FIGURE 9.2 IBM 7094 System.
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representing 24.* In the supercomputer space, machines by Control Data Corporation 
(CDC) and later by Cray would use a 60-bit floating-point format and be known for 
their speed of floating-point computation. That race has not stopped. While Cray 
held the record for years with a speed of 160 million floating-point operations per 
second (megaflops), modern supercomputers boast speeds in the petaflop (1015 flops) 
range! Figure 9.3 is a photograph of Seymore Cray and the original Cray-1 computer.

However, even with the wide adoption of floating-point there were problems. 
Companies supported their own formats of floating-point data types, had different 
models for exceptions, and rounded the results in different ways. While you may not 
be familiar with floating-point exceptions or rounding just yet, when these concepts 
are addressed you will see the benefits of a standard that defines the data types, excep-
tion handling, and rounding modes. For an example of the problems that arose due 
to the varied landscape of behaviors, consider the Cray machines. These processors 
were blazingly fast in their floating-point computations, but they suffered in compu-
tational accuracy due to some shortcuts in their rounding logic. They were fast, but 
not always accurate! In the early 1980s, an IEEE standards committee convened to 
produce a standard for floating-point which would introduce a consistency to com-
putations done in floating-point, enable work to be performed across a wide variety 
of computers, and result in a system which could be used by non-numerical experts 
to produce reliable numerical code. A key leader in this effort was Dr. William 
Kahan, shown in Figure 9.4, of the University of California at Berkeley, at the time 
consulting with Intel Corporation on the development of the i8087 floating-point 

* See IBM System/360 Principles of Operation, IBM File No. S360-01, pp. 41–42, available from http://
bitsavers.informatik.uni-stuttgart.de/pdf/ibm/360/princOps/A22-6821-6_360PrincOpsJan67.pdf.

FIGURE 9.3 Seymore Cray and a Cray-1 Computer, circa 1974.
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coprocessor. The specification defined the format of the data types, including special 
values such as infinities and not-a-numbers (NaNs, to be considered in a later sec-
tion); how rounding was to be done; what conditions would result in exceptions; and 
how exceptions would be handled and reported. In 2008, a revision of the standard, 
referred to as IEEE 754-2008, was released, adding decimal data types and address-
ing a number of issues unforeseen 25 years ago. Most processors with floating-point 
hardware, from supercomputers to microcontrollers, implement some subset of the 
IEEE 754 standard.

9.3  THE CONTRIBUTION OF FLOATING-POINT TO 
THE EMBEDDED PROCESSOR

The cost of an integrated circuit is directly related to the size of the die. The larger 
the size of the die, the fewer of them that can be put on a wafer. With constant wafer 
costs, the more die on the wafer, the lower the cost of each die. So it is a reasonable 
question to ask why manufacturers spend the die area on an FPU, or, more spe-
cifically, what value does the floating-point unit of the Cortex-M4 bring? To answer 
these questions it is necessary to first consider how floating-point computations dif-
fer from integer computations. As we saw in Chapter 2, the integer data types are 
commonly in three formats:

• Byte, or 8 bits
• Halfword, or 16 bits
• Word, or 32 bits

Each of these formats may be treated as signed or unsigned. For the moment we 
will consider only 32-bit words, but each data type shares these characteristics. The 
range of an unsigned word value is 0 to 4,294,967,295 (232–1). Signed word values 
are in the range −2,147,483,648 to 2,147,483,647, or −231 to 231−1. While these are 
large numbers, many fields of study cannot live within these bounds. For example, 

FIGURE 9.4 Dr. William Kahan.
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the national debt is $17,320,676,548,008.59 (as of January 4, 2014), a value over 2000 
times larger than can be represented in a 32-bit unsigned word. In the field of astron-
omy, common distances are measured in parsecs, with one parsec equal to 3.26 light 
years, or about 30,856,780,000,000 km. While such a number cannot be represented 
in a 32-bit unsigned word, it is often unnecessary to be as precise as financial com-
putations. Less precise values will often suffice. So, while the charge on an electron, 
denoted e, is 1.602176565 × 10−19 coulombs, in many instances computations on e 
can tolerate reduced precision, perhaps only a few digits. So 1.60 × 10−19 may be 
 precise enough for some calculations. Floating-point enables us to trade off preci-
sion for range, so we can represent values larger than 32-bit integers and also much 
smaller than 1, but frequently with less than full precision.

Could this mean floating-point is always the best format to use? Simply put, no. 
Consider the 32-bit integer and 32-bit single-precision floating-point formats. Both 
have the same storage requirements (32 bits, or one word), both have the same num-
ber of unique bit patterns (232), but integers have a fixed numeric separation, that is, 
each integer is exactly the same distance from the integer just smaller and the integer 
just larger. That numeric separation is exactly and always 1. Consider that we repre-
sent the decimal value 1037 in 32-bit binary as

 0000 0000 0000 0000 0000 0100 0000 1101;

the integer value just smaller is 1036, represented in 32-bit binary as

 0000 0000 0000 0000 0000 0100 0000 1100;

and the integer value just larger is 1038, and it is represented in 32-bit binary as

 0000 0000 0000 0000 0000 0100 0000 1110.

In each case the difference between sequential values is exactly 1 (verify you 
believe this from the last 4 bits). This is why integers make a great choice for coun-
ters and address values, but not always for arithmetic calculations. Why would a 
32-bit floating-point value be better for arithmetic? As we showed above, the range 
of a 32-bit integer is insufficient for many problems—it is simply not big enough 
on the end of the number curve, and not small enough to represent values between 
0 and 1. If we use 64-bit integers we extend the range significantly, but again not 
enough for all problems. We will see that floating-point values have a much greater 
range than even 64-bit integers. They accomplish this by not having a fixed numeric 
separation, but a variable one that depends on the value of the exponent. We’ll 
explain this in Section 9.5.

So, back to our question—Why include floating-point capability in the proces-
sor? To begin our evaluation, let’s ask some questions. First, does the application 
have inputs, outputs, or intermediate values larger than representable by the available 
integers? Second, does the application have inputs, outputs, or intermediate values 
between 0 and 1? If either of these questions is yes, can we use fixed-point represen-
tations to satisfy the range required? Third, do any of the algorithms in the applica-
tion require correct rounding, rather than truncation? Fourth, how easy is it to ensure 
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that no intermediate value is outside the range of the available integers? In many 
cases the analysis required to ensure that all inputs, outputs, and intermediate values 
remain in the range available is not trivial, but can be quite difficult. The answers 
to these questions will point the system designer to one of two conclusions–that the 
integer formats are sufficient, or the problems are better processed with floating-
point. The following chapters introduce the key elements of floating-point, where 
floating-point differs from integer and fixed-point computation, and what benefits 
come naturally to computations in floating-point. Knowing this will make the deci-
sion easier for the system designer. 

9.4 FLOATING-POINT DATA TYPES

The IEEE 754-2008 specification defines four binary floating-point formats: 16-bit, 
32-bit, 64-bit, and 128-bit, commonly referred to as half-precision, single-precision, 
double-precision, and quad-precision, respectively. C, C++, and Java refer to the 
32-bit format as float and the 64-bit format as double. The Cortex-M4 does not sup-
port the two larger formats, but does support a half-precision floating-point format 
for data storage and the single-precision data type for computation. Figure 9.5 shows 
the half-precision, single-precision, and double-precision data formats.

From Figure 9.5 you can see the floating-point formats are composed of three com-
ponent parts: the sign bit, represented by s; the exponent, typically in a biased form (see 
the explanation of bias below); and the fraction. The value of a floating-point data value 
is computed according to the formula for normal values, covered in Section 9.6.1. We 
will consider special values in a later sections. This format is called sign magnitude 
representation, since the sign bit is separate from the bits that comprise the magnitude 
of the value. The equation for normal values in a floating-point format is given by*

 F = (−1)s × 2(exp–bias) × 1.f (9.1)

* We will consider values, or encodings, for values that are not in the space of normal values in Section 9.6.

Half-precision format
15 14 10 9

Fractionexp

Single-precision format

Double-precision format

31

1
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30 23
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63 62 52 51 0

0

s
0

FIGURE 9.5 IEEE 754-2008 data formats.
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where:
• s is the sign,

• 0 for positive
• 1 for negative

• exp is the exponent,
• The bias is a constant specified in the format
• The purpose is to create a positive exponent

• f is the fraction, or sometimes referred to as the mantissa

We refer to the value 1.f as the significand, and this part of the equation is always 
in the range [1.0, 2.0) (where the value may include 1.0 but not 2.0). The set of pos-
sible values is referred to as the representable values, and each computation must 
result in either one of these representable values or a special value. The bias is a 
constant added to the true exponent to form an exponent that is always positive. 
For the single-precision format, the bias is 127, resulting in an exponent range of 
1 to 254 for normal numbers. The exponent values 0 and 255 are used for special 
formats, as will be considered later. Table 9.1 shows the characteristics of the three 
standard data types.

EXAMPLE 9.1

Form the single-precision representation of 6.5.

soLuTion

The sign is positive, so the sign bit will be 0. The power of 2 that will result in a 
significand between 1 and almost 2 is 4.0 (22), resulting in a significand of 1.625. 
Expressed in floating-point representation, the value 6.5 is

 6.5 = −10 × 22 × 1.625 

TABLE 9.1
Floating-Point Formats and Their Characteristics

Format

Half-Precisiona Single-Precision Double-Precision

Format width in bits 16 32 64

Exponent width in bits 5 8 11

Fraction bits 10 23 52

Exp maximum +15 +127 +1023

Exp minimum −14 −126 −1022

Exponent bias 15 127 1023

a The Cortex-M4 has an alternative format for half-precision values. This format may be 
selected by setting the AHF bit in the FPSCR, and the format will be interpreted as having 
an exponent range that includes the max exponent, 216. This precision does not support 
NaNs or infinities. The maximum value is (2-2−10) × 216 or 131008.
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To finish the example, convert the resulting factor to a significand in binary.

 1.625 = 1 + ½ + ⅛, or in binary, 1.101.

The exponent is 2, and when the bias is added to form the exponent part of the 
single-precision representation, the biased exponent becomes 129, or 0x81.

The resulting single-precision value is 0x40D00000, shown in binary and 
hexadecimal in Figure 9.6.

EXAMPLE 9.2

Form the single-precision representation of −0.4375.

soLuTion

The sign is negative, so the sign bit will be 1. The power of 2 that will result in a 
significand between 1 and almost 2 is 2−2 (0.25), giving a significand of 1.75.

 −0.4375 = −11 × 2−2 × 1.75

 1.75 = 1 + ½ + ¼, or in binary, 1.11.

The exponent is −2, and when the bias is added to form the exponent of the 
single-precision representation, the biased exponent becomes 125, or 0x7D. The 
resulting single-precision value is 0xBEE00000. See Figure 9.7.

It’s unlikely you will ever have to do these conversions by hand. The assembler 
will perform the conversion for you. Also, a number of useful websites will do the 
conversions for you. See, e.g., (http://babbage.cs.qc.cuny.edu/IEEE-754.old/Decimal.
html) for conversions from decimal to floating-point. See also (http://babbage.cs.qc.
cuny.edu/IEEE-754.old/32bit.html) for an excellent website that has a very useful 
calculator to perform the conversion from single-precision floating-point to deci-
mal. Also, the website at (http://www.h-schmidt.net/FloatConverter) allows you to 

S
3
1

3
0

0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0000004 D

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1 9 8 7 6 5 4 3 2 1 0
0

Exponent Fraction

FIGURE 9.6 Result of Example 9.1.
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set each bit separately in a single-precision representation and see immediately the 
contribution to the final value.

9.5 THE SPACE OF FLOATING-POINT REPRESENTABLE VALUES

In school we learned about the number line and the whole numbers. On this number 
line, each whole number was separated from its neighbor whole number by the value 
1. Regardless of where you were on the number line, any whole number was 1 greater 
than the whole number to the left and 1 less than the whole number to the right. Such 
is not the case for the floating-point number line. Recall from Equation 9.1 above that 
the significand is multiplied by a power of 2. The larger the exponent, the greater the 
multiplication factor applied to the significand. Two significands that are contiguous, 
i.e., the larger significand is the next higher value, would differ by a factor of the 
exponent rather than a fixed value. Let’s represent this idea using a simple format 
with 2 bits of fraction and an exponent range of −3 ≤ E ≤ 0. The floating-point num-
ber line looks like Figure 9.8.

There are several things to notice in the number line in Figure 9.8. First, the number 
of representable values associated with each exponent is fixed at 2n, where n is the num-
ber of bits in the fraction. In this example, two bits give four representable values for 
each exponent. Notice that four values exist with an exponent of −1 using our format: ½, 
⅝, ¾, and ⅞. Second, notice the numeric separation between each representable value 
is a function of the exponent value, and as the exponent increases by one, the numeric 
separation doubles. The only exception is in the subnormal range, and we will discuss 
subnormals in Section 9.6.2. If we consider a single-precision data value with the expo-
nent equal to 0 (a biased exponent of 127), the range of values with this exponent are:

 1.0 … 1.99999998808 (21 – 2−23)

That is, the minimum value representable is 1.0, while the maximum value is just 
less than 2.0. With a fraction of 23 bits, the numeric separation between represent-
able values is 2−23, or ~1.192 × 10−7, a fairly small amount.

Contrast this to an exponent of 23 (a biased exponent of 150). Now each value will 
be in the range

 8388608 … 16777215 

Significand

Subnormals

1.00
1.01
1.10
1.11

0

Exponent

1/8

–3 –2 –1

1 2

0

1/4 1/2

0.01
0.10
0.11

FIGURE 9.8 Floating-point number line for positive values, 2 exponent bits and 2 fractional 
bits (see Ercegovac and Lang 2004).
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In this instance, the numeric separation between representable values is 1.0, much 
larger than the 1.192 × 10−7 of the previous example.

If we continue this thought with an exponent closer to the maximum, say 73 (a 
biased exponent of 200), we have this range of values:

 9.445 × 1021 … 1.889 × 1022

Here the numeric separation between representable values is roughly 1.126 × 1015! If 
we go in the other direction, say with an exponent value of −75 (a biased exponent of 
52), the range becomes

 2.647 × 10−23 … 5.294 × 10−23

with a numeric separation of 3.155 × 10−30! Table 9.2 is a summary of the findings.
From Table 9.2 it is evident that the range of single-precision values and the 

numeric separation vary a great deal. Notice that the numeric separation between 
values for an exponent of 73 is greater than the total range for values with an expo-
nent of 23. The key to understanding floating-point as a programmer is that float-
ing-point precision is not fixed but a function of the exponent. That is, while the 
numeric separation in an integer data type is always 1, the numeric separation of a 
floating-point data type varies with the exponent. This is rarely a problem for scien-
tific computations—we typically are interested in only a few digits regardless of the 
magnitude of the results. So if we specify the precision of our results is to be 4 digits, 
1 to the left of the decimal point and three to the right, we may compute

 5.429 × 1015

but another calculation may result in

 −2.907 × 10−8

and we would not consider this in error even though the value of the second calcula-
tion is much smaller than the smallest variation we are interested in of the first result 
(a factor of 1012). Rather, the precision of each of the calculations is the same—4 
digits. Thinking of floating-point as a base-2 version of scientific notation will help 
in grasping the useful properties of floating-point, and in using them properly.

TABLE 9.2
Examples of the Range of Numeric Separation in Single-Precision Values

Exponent exp-bias Range Numeric Separation

52 −75 2.647 × 10−23 … 5.294 × 10−23 3.155 × 10−30

127 0 1.0 … 1.9999998 1.192 × 10−7

150 23 8388608 … 16777215 1.0

200 73 9.445 × 1021 … 1.889 × 1022 1.126 × 1015
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9.6 FLOATING-POINT REPRESENTABLE VALUES

All representable values have a single encoding in each floating-point format, but not 
all floating-point encodings represent a number. This is another difference between 
floating-point and integer representation. The IEEE 754-2008 specification defines 
five classes of floating-point encodings: normal numbers, subnormal numbers, zeros, 
NaNs, and infinities. Each class has some shared properties and some unique proper-
ties. Let’s consider each one separately.

9.6.1 noRMAL VALues

We use the term normal value to define a floating-point value that satisfies the 
equation

 F = (−1)s × 2(exp–bias) × 1.f (9.1)

which we saw earlier in Section 9.4. In the space of normal values, each floating-
point number has a single encoding, that is, an encoding represents only one floating-
point value and each representable value has only one encoding. Put another way, 
no aliasing exists within the single-precision floating-point data type. It is possible 
to have multiple encodings represent a single value when represented in decimal 
floating-point formats, but this is beyond the scope of this text. See the IEEE 754-
2008 specification for more on this format.

Recall that a 32-bit signed integer has a range of −2,147,483,648 to 2,147,483,647 
(+/−2.147 × 109). Figure 9.9 shows the range of signed 32-bit integers, half-precision 
(16-bit) and single-precision (32-bit) floating-point data types for the normal range. 
Notice the range of the signed 32-bit integer and the half-precision data types is 
roughly the same; however, notice the much greater range available in the single-
precision floating-point data type.

Remember, the tradeoff between the integer data types and the floating-point data 
types is in the precision of the result. In short, as we showed in Figure 9.8, the preci-
sion of a floating-point data value is a function of the exponent. As the exponent 

Single-precision

Signed 32-bit integer

Half-precision

0 1.18×10–38 6.10×10–5 6.55×104 2.15×109 3.40×10381.0

FIGURE 9.9 Relative normal range for signed 32-bit integer, half-precision floating-point, and 
single-precision floating-point data types.



186 ARM Assembly Language

increases, the precision decreases, resulting in an increased numeric separation 
between representable values.

Table 9.3 shows some examples of normal data values for half-precision and single-
precision formats. Note that each of these values may be made negative by setting the 
most-significant bit. For example, −1.0 is 0xBF800000. Using the technique shown 
in Section 9.4, try out some of these. You can check your work using the conversion 
tools listed in the References.

9.6.2 suBnoRMAL VALues

The inclusion of subnormal values* was an issue of great controversy in the original 
IEEE 754-1985 deliberations. When a value is non-zero and too small to be repre-
sented in the normal range, it value may be represented by a subnormal encoding. 
These values satisfy Equation 9.2:

 F = (−1)s × 2−126 × 0.f (9.2)

Notice first the exponent value is fixed at −126, one greater than the negative bias 
value. This value is referred to as emin, and is the exponent value of the smallest nor-
mal representation. Also notice that the 1.0 factor is missing, changing the significand 
range to [0.0, 1.0). The subnormal range extends the lower bounds of the representable 
numbers by further dividing the range between zero and the smallest normal repre-
sentable value into 223 additional representable values. If we look again at Figure 9.8, 
we see in the region marked Subnormals that the range between 0 and the minimum 
normal value is represented by n values, as in each exponent range of the normal 

* The ARM documentation in the ARM v7-M Architecture Reference Manual uses the terms “denor-
mal” and “denormalized” to refer to subnormal values. The ARM Cortex-M4 Technical Reference 
Manual uses the terms “denormal” and “subnormal” to refer to subnormal values.

TABLE 9.3
Several Normal Half-Precision and Single-
Precision Floating-Point Values

Format

Half-Precision Single-Precision

1.0 0x3C00 0x3F800000

2.0 0x4000 0x40000000

0.5 0x3800 0x3F000000

1024 0x6400 0x44800000

0.005 0x1D1F 0x3BA3D70A

6.10 × 10−5 0x0400 0x38800000

6.55 × 104 0x7BFF 0x477FE000

1.175 × 10−38 Out of range 0x00800000

3.40 × 1038 Out of range 0x7F7FFFFF



187Introduction to Floating-Point

values. The numeric separation in the subnormal range is equal to that of the normal 
values with minimum normal exponent. The minimum value in the normal range 
for the single-precision floating-point format is 1.18 × 10−38. The subnormal values 
increase the minimum range to 1.4 × 10−45. Be aware, however, when an operand in 
the subnormal range decreases toward the minimum value, the number of significant 
digits decreases. In other words, the precision of subnormal values may be signifi-
cantly less than the precision of normal values, or even larger subnormal values. The 
range of subnormal values for the half-precision and single-precision data types is 
shown in Table 9.4. Table 9.5 shows some examples of subnormal data values. As 
with the normal values, each of these values may be made negative by setting the 
most significant bit.

EXAMPLE 9.3

Convert the value −4.59 × 10−41 to single-precision.

soLuTion

The value is below the minimum threshold representable as a normal value in the 
single-precision format, but is greater than the minimum representable subnormal 
value and is in the subnormal range for the single-precision format.

Recalling our conversion steps above, we can use the same methodology for 
subnormal values so long as we recall that the exponent is fixed at the value 2−126 
and no implicit 1 is present.

TABLE 9.4
Subnormal Range for Half-Precision and Single-Precision

Format

Half-Precision Single-Precision

Minimum +/−5.96 × 10−8 +/−1.45 × 10−45

Maximum +/−6.10 × 10−5 +/−1.175 × 10−38

TABLE 9.5
Examples of Subnormal Values for Half-Precision 
and Single-Precision

Format

Half-Precision Single-Precision

6.10 × 10−5 0x03FF

1.43 × 10−6 0x0018

5.96 × 10−8 0x0001

1.175 × 10−38 0x007FFFFF

4.59 × 10−41 0x00008000

1.45 × 10−45 0x00000001
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 First, divide −4.592 × 10−41 by 2−126 and we have −0.00390625, which is equal 
to 2−8. This leaves us with

 −4.592 × 10−41 = −11 × 2−126 × 0.00390625

The result single-precision value is 0x80008000, shown in binary and hexadeci-
mal in Figure 9.10.

The conversion to and from half-precision is done in an identical manner, but 
remember the subnormal exponent for the half-precision format is −14 and the for-
mat is only 16 bits.

A computation that results in a subnormal value may set the Underflow flag and 
may signal an exception. We will address exceptions in a later chapter.

9.6.3 ZeRos

It’s odd to think of zero as anything other than, well, zero. In floating-point zeros are 
signed. You may compute a function and see a negative zero as a result! Zeros are 
formed by a zero exponent and zero fraction. A critical bit of information here—if the 
fraction is not zero, the value is a subnormal, as we saw above. While numerous subnor-
mal encodings are possible, only two zero encodings, a positive zero with a sign bit of 
zero, and a negative zero with a sign bit of one, are possible. How is it possible to have a 
negative zero? There are several ways outlined in the IEEE 754-2008 specification. One 
way is to be in Round to Minus Infinity mode (we will consider rounding in Chapter 10) 
and sum two equal values that have opposite signs.

EXAMPLE 9.4

Add the two single-precision values 0x3F80000C and 0xBF80000C with different 
rounding modes.

soLuTion

Let register s0 contain 0x3F80000C and register s1 contain 0xBF80000C. The 
two operands have the same magnitude but opposite sign, so the result of adding 
the two operands using the Cortex-M4 VADD instruction (we will consider this 
instruction in Chapter 11)

 VADD s2, s0, s1

in each case is zero. But notice that the sign of the zero is determined by the 
rounding mode. We will consider rounding modes in detail in Chapter 10, but 
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FIGURE 9.10 Single-precision representation of −4.592 × 10−41.
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for now consider the four in Table 9.6. (The names give a clue to the rounding 
that is done. For example, roundTowardPositive always rounds up if the result is 
not exact. The rounding mode roundTiesToEven uses the method we learned in 
school—round to the nearest valid number, and if the result is exactly halfway 
between two valid numbers, pick the one that is even.)

Likewise, a multiplication of two values, one positive and the other negative, with 
a product too small to represent as a subnormal, will return a negative zero. And 
finally, the square root of −0 returns −0. Why bother with signed zeros? First, the 
negative zero is an artifact of the sign-magnitude format, but more importantly, the 
sign of zero is an indicator of the direction of the operation or the sign of the value 
before it was rounded to zero. This affords the numeric analyst with information on 
the computation, which is not obvious from an unsigned zero result, and this may be 
useful even if the result of the computation is zero.

The format of the two zeros for half-precision and single-precision are shown in 
Table 9.7.

9.6.4 infiniTies

Another distinction between floating-point and integer values is the presence of an 
infinity encoding in the floating-point formats. A floating-point infinity is encoded 
with an exponent of all ones and a fraction of all zeros. The sign indicates whether it 
is a positive or negative infinity. While it is tempting to consider the positive infinity 
as the value just greater than the maximum normal value, it is best considered as a 
mathematical symbol and not as a number. In this way computations involving infin-
ity will behave as would be expected. In other words, any operation computed with an 

TABLE 9.6
Operations with Zero Result in Each Rounding Mode

Rounding Mode Result

roundTiesToEven 0x00000000 Positive Zero

roundTowardPositive 0x00000000 Positive Zero

roundTowardNegative 0x80000000 Negative Zero

roundTowardZero 0x00000000 Positive Zero

TABLE 9.7
Format of Signed Zero in Half-Precision 
and Single-Precision

Format

Half-Precision Single-Precision

+0.0 0x0000 0x00000000

−0.0 0x8000 0x80000000
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infinity value by a normal or subnormal value will return the infinity value. However, 
some operations are invalid, that is, there is no generally accepted result value for the 
operation. An example is multiplication of infinity by zero. We note that the IEEE 
754-2008 specification defines the nature of the infinity in an affine sense, that is,

 −∞ < all finite numbers < +∞

Recall from Section 7.2.2 that overflow in an integer computation produces an 
incorrect value and sets a hardware flag. To determine whether overflow occurred, a 
check on the flags in the status register must be made before you can take appropri-
ate action. Multiplying two very large values that result in a value greater than the 
maximum for the floating-point format will return an infinity,* and further calcula-
tions on the infinity will indicate the overflow. While there is an overflow flag (more 
on this in Chapter 10), in most cases the result of a computation that overflows will 
indicate as much without requiring the programmer to check any flags. The result 
will make sense as if you had done it on paper. The format of the half-precision and 
single-precision infinities is shown in Table 9.8.

9.6.5 noT-A-nuMBeRs (nAns)

Perhaps the oddest of the various floating-point classes is the not-a-number, or NaN. 
Why would a numerical computation method include a data representation that is 
“not a number?” A reasonable question, certainly. They have several uses, and we 
will consider two of them. In the first use, a programmer may choose to return a 
NaN with a unique payload (the bits in the fraction portion of the format) as an 
indicator that a specific, typically unexpected, condition existed in a routine within 
the program. For instance, the programmer believes the range of data for a variable 
at a point in the program should not be greater than 100. But if it is, he can use a 
NaN to replace the value and encode the payload to locate the line or algorithm in 
the routine that caused the behavior. Secondly, NaNs have historically found use as 
the default value put in registers or in data structures. Should the register or data 
structure be read before it is written with valid data, a NaN would be returned. If 

* In some rounding modes, a value of Maximum Normal will be returned.  We will consider this case in 
the section in our discussion of exceptions.

TABLE 9.8
Format of Signed Infinity in Half-Precision 
and Single-Precision

Format

Half-Precision Single-Precision

−Infinity 0xFC00 0xFF800000

+Infinity 0x7C00 0x7F800000
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the NaN is of a type called signaling NaNs, the Invalid Operation exception would 
be signaled, giving the programmer another tool for debugging. This use would alert 
the programmer to the fact that uninitialized data was used in a computation, likely 
an error. The Motorola MC68881 and later 68K floating-point processors initialized 
the floating-point register file with signaling NaNs upon reset for this purpose. Both 
signaling NaNs, and a second type known as quiet NaNs, have been used to repre-
sent non-numeric data, such as symbols in a symbolic math system. These programs 
operate on both numbers and symbols, but the routines operating on numbers can’t 
handle the symbols. NaNs have been used to represent the symbols in the program, 
and when a symbol is encountered it would cause the program to jump to a routine 
written specifically to perform the needed computation on symbols rather than num-
bers. This way it would be easy to intermix symbols and numbers, with the arith-
metic of the processor operating on the numbers and the symbol routines operating 
whenever an operand is a symbol.

How does one use NaNs? One humorous programmer described NaNs this way: 
when you think of computing with NaNs, replace the NaN with a “Buick” in a cal-
culation.* So, what is a NaN divided by 5? Well, you could ask instead, “What is 
a Buick divided by 5?” You quickly see that it’s not possible to reasonably answer 
this question, since a Buick divided by 5 is not-a-number, so we will simply return 
the Buick (unscratched, if we know what’s good for us). Simply put, in an operation 
involving a NaN, the NaN, or one of the NaNs if both operands are NaN, is returned. 
This is the behavior of an IEEE 754-2008-compliant system in most cases when a 
NaN is involved in a computation. The specification does not direct which of the 
NaNs is returned when two or more operands are NaN, leaving it to the floating-
point designer to select which is returned.

A NaN is encoded with an exponent of all ones and a non-zero fraction. Note that an 
exponent of all ones with a zero fraction is an infinity encoding, so to avoid confusing 
the two representations, a NaN must not have a zero fraction. As we mentioned above, 
NaNs come in two flavors: signaling NaNs (sNaN) and non-signaling, or quiet, NaNs 
(qNaN). The difference is the value of the first, or most significant, of the fraction bits. 
If the bit is a one, the NaN is quiet. Likewise, if the bit is a zero, the NaN is signaling, 
but only if at least one other fraction bit is a one. In the half-precision format, bit 9 is 
the bit that identifies the NaN type; in the single-precision format it’s bit 22. The format 
of the NaN encodings for the half-precision format and the single-precision format 
is shown in Table 9.9.

Why two encodings? The signaling NaN will cause an Invalid Operation excep-
tion (covered in Section 10.3.4) to be set, while a quiet NaN will not. What about the 
fraction bits when a NaN is an operand to an operation? The specification requires 
that the fraction bits of a NaN be preserved, that is, returned in the NaN result, if it 
is the only NaN in the operation and if preservation is possible. (An example when 
it would not be possible to preserve the fraction is the case of a format conversion in 
which the fraction cannot be preserved because the final format lacks the necessary 
number of bits.) If two or more NaNs are involved in an operation, the fraction of one 
of them is to be preserved, but which is again the decision of the processor designer. 

* Buick is a brand of General Motors vehicle popular in the 1980s.
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The sign bit of a NaN is not significant, and may be considered as another payload 
bit. Several of the many NaN values are shown in Table 9.10, with payloads of 0x01 
and 0x55. Notice how the differentiator is the most-significant fraction bit.

9.7 THE FLOATING-POINT REGISTER FILE OF THE CORTEX-M4

Within the floating-point unit of the Cortex-M4 is another register file made up of 32 
single-precision registers labeled s0 to s31. One difference to note between the ARM 
registers and the FPU registers is that none of the FPU registers are banked, as are 
some of the ARM registers. The Cortex-M4 can also address registers as double-
precision registers for loads and stores even without specific instructions which 
operate on double-precision data types. Likewise, half-precision and integer data 
can be stored in the FPU registers in either the upper or lower half of the register. 
The register file is shown in Figure 9.11.

Each single-precision register may be used as a source or destination, or both, in 
any instruction. There are no limitations on the use of the registers, unlike register 
r13, register r14, and register r15 in the integer register file. This is referred to as a 
flat register file, although some restrictions do exist when a standard protocol, such 
as the ARM Architecture Procedure Call Standard (AAPCS), is in place for passing 
operands and results to subroutines and functions. The FPU registers are aliased, 

TABLE 9.10
Examples of Quiet and Signaling NaNs in Half-
Precision and Single-Precision Formats

Format

Half-Precision Single-Precision

Quiet NaN, 0x01 0x7D01 0x7FC00001

Quiet NaN, 0x55 0x7D55 0x7FC00055

Signalling NaN, 0x01 0x7C01 0x7F800001

Signalling NaN, 0x55 0x7C55 0x7F800055

TABLE 9.9
Format of NaN Encodings in Half-Precision and Single-Precision

Format

Half-Precision Single-Precision

Sign bit 0/1 0/1

Exponent bits Must be all ones, 0x1F Must be all ones, 0xFF

NaN type bit Bit 9 Bit 22

Payload bits Bits 8-0 Bits 21-0
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such that two single-precision registers may be referenced as a double-precision reg-
ister. The aliasing follows the relation shown below.

 d[x] {s[ 2x 1]  s[2x]}⇔ +( ) ,

For example, register d[6] is aliased to the register pair {s13, s12}. In several of 
the load and store instructions, the FPU operand may be either a single-precision or 
double-precision register. This enables 64-bit data transfers with memory and with 
the ARM register file. It’s important to ensure that you know which single-precision 
registers are aliased to a double-precision register, so you don’t accidently overwrite 
a single-precision register with a load to a double-precision register.

9.8 FPU CONTROL REGISTERS

Two control registers are of immediate importance, and they are the FPSCR and 
the CPACR. The first controls the internal workings of the FPU, while the second 
enables the FPU. If the FPU is not enabled, any access to the FPU will result in a 
fault. This will be covered in more detail in Chapter 15, but for now we need to know 
that the FPU must be enabled or our programs will not work.

9.8.1 The fLoATing-poinT sTATus And ConTRoL RegisTeR, fpsCR

In Chapter 7, we became familiar with the various status registers, e.g., the CPSR 
and APSR. We also examined the use of the register to hold condition code flags 
and to specify various options and modes of operation. The equivalent register in 
the FPU is the Floating-Point Status and Control Register (FPSCR), shown in Figure 
9.12. Reading and writing the FPSCR is covered in Chapter 11. Notice that the APSR 
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FIGURE 9.11 Cortex-M4 floating-point register file.
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and the FPSCR are alike in that the upper 4 bits hold the status of the last compari-
son, the N, Z, C, and V bits. These bits record the results of floating-point compare 
instructions (considered in Chapter 11) and can be transferred to the APSR for use in 
conditional execution and conditional branching.

9.8.1.1 The Control and Mode Bits
The bits following the status bits are used to specify modes of operation. The AHP 
bit specifies the “alternative half-precision format” to select the format of the half-
precision data type. If set to zero, the IEEE 754-2008 format is selected, and if set 
to 1, the ARM alternative format is selected. The DN bit selects whether the FPU is 
in “default NaN” mode. When not in default NaN mode (the common case), opera-
tions with NaN input values preserve the NaN (or one of the NaN values, if more 
than one input operand is a NaN) as the result. When in default NaN mode any 
operation involving a NaN returns the default NaN as the result, regardless of the 
NaN payload or payloads. The default NaN is a qNaN with an all-zero payload, as 
in Table 9.11.

The FZ bit selects whether the processor is in flush-to-zero mode. When set, the 
processor ignores subnormal inputs, replacing them in computations with signed 
zeroes, and flushes a result in the subnormal range to a signed zero. Both the DN 
and FZ bits are discussed in greater detail in Chapter 11. Bits 23 and 22 contain the 
RMode bits. These bits specify the rounding mode to be used in the execution of 
most operations. The default rounding mode is roundTiesToEven, also known as 
Round to Nearest Even. It’s important to know where these bits may be found, but we 
will not take up rounding until Chapter 10. The rounding mode is selected by setting 
the RMode bits to one of the bit patterns shown in Table 9.12.

TABLE 9.11
Format of the Default Nan for Half-Precision 
and Single-Precision Data Types

Format

Half-Precision Single-Precision

Sign bit 0 0

Exponent 0x1F 0xFF

Fraction bit [9] = 1, bits [8:0] = 0 bit [22] = 1, bits [21:0] = 0

31 29

N Z C V

28 27

Reserved

Reserved
Reserved

IXC

RMode
FZ
DN

IDC IOC
DZC
OFC
UFC

AHP

26 25 24 23 22 21 8 7 6 5 4 3 2 1 030

FIGURE 9.12 Cortex-M4 Floating-Point Status and Control Register.
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9.8.1.2 The Exception Bits
The status bits in the lower 8 bits of the FPSCR indicate when an exceptional condi-
tion has occurred. We will examine exceptions in Chapter 10, but here we only need 
to know that these bits are set by hardware and cleared only by a reset or a write to 
the FPSCR. The Cortex-M4 does not trap on any exceptional conditions, so these bits 
are only useful to the programmer to identify an exceptional condition has occurred 
since the bit was last cleared.

The exception bits are shown in the Table 9.13. Each of these bits is “sticky”, 
that is, they are set on the first instance of the condition, and remain set until 
cleared by a write to the FPSCR. If the bits are cleared before a block of code, 
they will indicate whether their respective condition occurred in that block. They 
won’t tell you what instruction or operand(s) caused the condition, only that it 
occurred somewhere in the block of code. To learn this information more pre-
cisely you can step through the code and look for the instruction that set the 
exception bit of interest.

TABLE 9.12
Rounding Mode Bits

Rounding Mode Setting in FPSCR[22:23]

roundTiesToEven 0b00 (default)

roundTowardPositive 0b01

roundTowardNegative 0b10

roundTowardZero 0b11

TABLE 9.13
FPSCR Exception Bits

FPSCR Bit 
Number Bit Name This Bit Is Set When

7 IDC
Input Denormal

An input to an operation was subnormal and was flushed to zero 
before used in the operation. Valid only in flush-to-zero mode.

4 IXC
Inexact

An operation returned a result that was not representable in the 
single-precision format, and a rounded result was written to 
the register file.

3 UFC
Underflow

An operation returned a result that, in absolute value, was 
smaller in magnitude than the positive minimum normalized 
number before rounding, and was not exact.

2 OFC
Overflow

An operation returned a result that, in absolute value, was 
greater in magnitude than the positive maximum number after 
rounding.

1 DZC
Division by Zero

A divide had a zero divisor and the dividend was not zero, an 
infinity or a NaN.

0 IOC
Invalid Operation

An operation has no mathematical value or cannot be 
represented.
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9.8.2 The CopRoCessoR ACCess ConTRoL RegisTeR, CpACR

The Coprocessor Access and Control Register, known as the CPACR, controls the 
access rights to all implemented coprocessors, including the FPU. Coprocessors are 
addressed by coprocessor number, a four-bit field in coprocessor instructions that 
identifies to the coprocessor whether it is to handle this instruction or to ignore it. 
Coprocessors are identified by CPn, where n is a number from 0 to 15. Coprocessors 
CP8 to CP15 are reserved by ARM, allowing system-on-chip designers to utilize 
CP0-CP7 for special function devices that can be addressed by coprocessor instruc-
tions. ARM processors have supported user coprocessors from the ARM1, but 
designing and incorporating custom coprocessors is not a trivial exercise, and is 
beyond the scope of this book. The FPU in ARM processors uses coprocessor num-
bers CP10 and CP11. The two coprocessor numbers are part of each FPU instruction, 
and specify the precision of the instruction, with CP10 specifying single-precision 
execution and CP11 specifying double-precision execution. Since the Cortex-M4 
executes instructions operating on single-precision operands only, CP10 must be 
enabled. However, some of the instructions which load and store 64-bit double- 
precision data are in CP11 space, so it makes sense to enable both CP10 and CP11.

To enable the FPU the two bits corresponding to CP10 and CP11, bits 23:22 and 
21:20, must be set to either 01 or 11. If CP10 and CP11 are each set to 01, the FPU 
may be accessed only in a privileged mode. If code operating in unprivileged Thread 
mode attempts to execute a FPU instruction, a UsageFault will be triggered and 
execution will transfer to a handler routine. For more information on exceptions 
and exception handling, see Chapter 15. If the bits are set to 11, the FPU is enabled 
for operations in privileged and unprivileged modes. This is the mode in which we 
will operate for our examples, but if you were designing a system you would have 
the flexibility to utilize the privileged and unprivileged options in your system code. 
The format of the CPACR is shown in Figure 9.13.

The following code may be used to enable CP10 and CP11 functionality in both 
privileged and unprivileged modes. The CPACR is a memory-mapped register, that 
is, it is addressed by a memory address rather than by a register number. In the 
Cortex-M4 the CPACR is located at address 0xE000ED88.

 ; Enable the FPU, both CP10 and CP11, for
 ; privileged and unprivileged mode accesses
 ; CPACR is located at address 0xE000ED88
 LDR.W r0, = 0xE000ED88
 ; Read CPACR
 LDR r1, [r0]
 ; Set bits 20-23 to enable CP10 and CP11 coprocessors
 ORR r1, r1, #(0xF <<  20)

31 29 28

Reserved ReservedCP11 CP7 CP6 CP5 CP4 CP3 CP2 CP1 CP0CP10

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 030

FIGURE 9.13 Cortex-M4 Coprocessor Access Control Register.
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 ; Write back the modified value to the CPACR
 STR r1, [r0]
 ; Wait for store to complete
 DSB

It is necessary to execute this code or some code that performs the same func-
tions before executing any code that loads data into the FPU or executes any FPU 
operations.

9.9 LOADING DATA INTO FLOATING-POINT REGISTERS

We have seen the various data types and formats available in the Cortex-M4 FPU, 
but how is data loaded into the register file and stored to memory? Fortunately, the 
instructions for loading and storing data to the FPU registers share features with the 
integer instructions seen in Chapter 5. We will first consider transfers to and from 
memory, then with the integer register file, and finally between FPU registers.

9.9.1 fLoATing-poinT LoAds And sToRes: The insTRuCTions

Memory is accessed in the same way for floating-point data and integer data. The 
instructions and the format for floating-point loads and stores is given below.

 VLDR|VSTR{<cond>}.32 <Sd>, [<Rn>{, #+/ − <imm>}]
 VLDR|VSTR{<cond>}.64 <Dd>, [<Rn>{, #+/ − <imm>}]

The <cond> is an optional condition field, as discussed in Chapter 8. Notice that 
these instructions do not follow the convention of naming the destination first. For 
both loads and stores the FPU register is named first and the addressing follows. All 
FPU instructions may be predicated by a condition field; however, as described in 
Chapter 8, selecting a predicate, such as NE, introduces an IT instruction to affect 
the predicated execution. The <Sd> value is a single-precision register, the <Dd> 
register is a pair of single-precision registers, the <Rn> register is an integer register, 
and the <imm> field is an 8-bit signed offset field. This addressing mode is referred 
to as pre-indexed addressing, since the offset is added to the address in the index 
register to form the effective address. For example, the instruction

 VLDR s5, [r6, #08]

loads the 32-bit value located in memory into FPU register s5. The address is cre-
ated from the value in register r6 plus the offset value of 8. Only fixed offsets and a 
single-index register are available in the FPU load and store instructions. An offset 
from an index register is useful in accessing constant tables and stacked data. Stacks 
will be covered in Chapter 13, and we will see an example of floating-point tables in 
Chapter 12.

VLDR may also be used to create literal pools of constants. This use is referred to 
as a pseudo-instruction, meaning the instruction as written in the source file is not a 
valid Cortex-M4 instruction, but is used by the assembler as a shortcut. The VLDR 
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pseudo-instruction used with immediate data creates a constant table and generates 
VLDR PC-relative addressed instructions. The format of the instruction is:

 VLDR{<cond>}.F32 Sd, =constant
 VLDR{<cond>}.F64 Dd, =constant

Any value representable by the precision of the register to be loaded may be used as 
the constant. The format of the constants in the Keil tools may be any of the following:

[+/−]number.number (e.g., −5.873, 1034.77)
[+/−]number[e[+/−]number] (e.g., 6e-5, −123e12)
[+/−]number.number[e[+/−]number] (e.g., 1.25e-18, −5.77e8)

For example, to load Avogadro’s constant, the molar gas constant, and Boltzmann’s 
constant in single-precision, the following pseudo-instructions are used to create a 
literal pool and generate the VLDR instructions to load the constant into the destina-
tion registers.

 VLDR.F32 s14, =6.0221415e23  ; Avogadro’s number
 VLDR.F32 s15, =8.314462  ; molar gas constant
 VLDR.F32 s16, =1.3806505e-23 ; Boltzmann’s constant

The following code is generated:

 41: VLDR.F32 s14, = 6.0221415e23 ; Avogadro’s number
0x0000001C ED9F7A03 VLDR s14,[pc,#0x0C]
 42: VLDR.F32 s15, = 8.314462 ; molar gas constant
0x00000020 EDDF7A03 VLDR s15,[pc,#0x0C]
 43: VLDR.F32 s16, = 1.3806505e-23 ; Boltzmann’s constant
0x00000024 ED9F8A03 VLDR s16,[pc,#0x0C]

The memory would be populated as shown below.

 0x0000002C 0C30 DCW 0x0C30
 0x0000002E 66FF DCW 0x66FF
 0x00000030 0814 DCW 0x0809
 0x00000032 4105 DCW 0x4105
 0x00000034 8740 DCW 0x8740
 0x00000036 1985 DCW 0x1985

You should convince yourself these constants and offsets are correct.
For hexadecimal constants, the following may be used:

 VLDR{<cond>}.F32 Sd, =0f_xxxxxxxx

where xxxxxxxx is an 8 character hex constant. For example,

 VLDR.F32 s17, =0f_7FC00000

will load the default NaN value into register s17.
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Note that Code Composer Studio does not support VLDR pseudo-instructions. 
See Section 6.3.

9.9.2 The VMoV insTRuCTion

Often we want to copy data between ARM registers and the FPU. The VMOV 
instruction handles this, along with moving data between FPU registers and loading 
constants into FPU registers. The first of these instructions transfers a 32-bit operand 
between an ARM register and an FPU register; the second between an FPU register 
and an ARM register:

 VMOV{<cond>}.F32 <Sd>, <Rt>
 VMOV{<cond>}.F32 <Rt>, <Sn>

The format of the data type is given in the .F32 extension. When it could be unclear 
which data format the instruction is transferring, the data type is required to be 
included. The data type may be one of the following shown in Table 9.14.

We referred to the operand simply as a 32-bit operand because what is contained 
in the source register could be any 32-bit value, not necessarily a single-precision 
operand. For example, it could contain two half-precision operands. However, it does 
not have to be a floating-point operand at all. The FPU registers could be used as 
temporary storage for any 32-bit quantity.

The VMOV instruction may also be used to transfer data between FPU registers. 
The syntax is

 VMOV{<cond>}.F32 <Sd>, <Sn>

One important thing to remember in any data transfer operation is that the content 
of the source register is ignored in the transfer. That is, the data is simply transferred 
bit by bit. This means that if the data in the source register is an sNaN, the IOC flag 
will not be set. This is true for any data transfer operation, whether between FPU 
registers, or between an FPU register and memory, or between an FPU register and 
an ARM register.

As a legacy of the earlier FPUs that processed double-precision operands, the 
following VMOV instructions transfer to or from an ARM register and the upper or 
lower half of a double-precision register. The x is replaced with either a 1, for the top 
half, or a 0, for the lower half. This is necessary to identify which half of the double-
precision register is being transferred.

TABLE 9.14
Data Type Identifiers

Data Type Identifier

Half-precision .F16

Single-precision .F32 or .F

Double-precision .F64 or .D
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 VMOV{<cond>}.F32 <Dd[x]>, <Rt>
 VMOV{<cond>}.F32 <Rt>, <Dn[x]> 

It is not necessary to include the .F32 in the instruction format above, but it is good 
practice to make the data type explicit whenever possible. The use of this form of the 
VMOV instruction is common in routines which process double-precision values using 
integer instructions, such as routines that emulate double-precision operations. You may 
have access to integer routines that emulate the double-precision instructions that are 
defined in the IEEE 754-2008 specification but are not implemented in the Cortex-M4.

Two sets of instructions allow moving data between two ARM registers and two 
FPU registers. One key thing to note is that the ARM registers may be independently 
specified but the FPU registers must be contiguous. As with the instructions above, 
these are useful in handling double-precision operands or simply moving two 32-bit 
quantities in a single instruction. The first set is written as

 VMOV{<cond>} <Sm>, <Sm1>, <Rt>, <Rt2>
 VMOV{<cond>} <Rt>, <Rt2>, <Sm>, <Sm1>

The transfer is always between Sm and Rt, and Sm1 and Rt2. Sm1 must be the 
next contiguous register from Sm, so if Sm is register s6 then Sm1 is register s7. For 
example, the following instruction

 VMOV s12, s13, r6, r11

would copy the contents of register r6 into register s12 and register r11 into register 
s13. The reverse operation is also available. The second set of instructions substitutes 
the two single-precision registers with a reference to a double-precision register. This 
form is a bit more limiting than the instructions above, but is often more useful in 
double-precision emulation code. The syntax for these instructions is shown below.

 VMOV{<cond>} <Dm>, <Rt>, <Rt2>
 VMOV{<cond>} <Rt>, <Rt2>, <Dm>

One final VMOV instruction is often very useful when a simple constant is 
needed. This is the immediate form of the instruction,

 VMOV{<cond>}.F32 <Sd>, #<imm> 

For many constants, the VMOV immediate form loads the constant without a 
memory access. Forming the constant can be a bit tricky, but fortunately for us, 
the assembler will do the heavy lifting. The format of the instruction contains two 
immediate fields, imm4H and imm4L, as we see in Figure 9.14.

The destination must be a single-precision register, meaning this instruction can-
not be used to create half-precision constants. It’s unusual for the programmer to 
need to determine whether the constant can be represented, but if code space or 
speed is an issue, using immediate constants saves on area and executes faster than 
the PC-relative loads generated by the VLDR pseudo-instruction.
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The single-precision operand is formed from the eight bits contained in the two 
4-bit fields, imm4H and imm4L. The imm4H contains bits 7-4, and imm4L bits 3-0. 
The bits contribute to the constant as shown in Figure 9.15.

While at first glance this does look quite confusing, many of the more common 
constants can be formed this way. The range of available constants is

 +/− (1.0 … 1.9375) × 2(−3 … +4)

For example, the constant 1.0, or 0x3F800000, is formed when the immediate 
field is imm4H = 0111 and imm4L = 0000. When these bits are inserted as shown in 
Figure 9.15, we have the bit pattern shown in Figure 9.16.

Some other useful constants suitable for the immediate VMOV include those 
listed in Table 9.15. Notice that 0 and infinity cannot be represented, and if the con-
stant cannot be constructed by this instruction, the assembler will create a literal 
pool.

9.10  CONVERSIONS BETWEEN HALF-PRECISION 
AND SINGLE-PRECISION

A good way to reduce the memory usage in a design is to use the smallest format 
that will provide sufficient range and precision for the data. As we saw in Section 
9.6.1, the half-precision data type has a range of +/− 6.10 × 10−5 to +/− 6.55 × 104, 
with 10 fraction bits, giving roughly 3.3 digits of precision. When the data can be 
represented in this format, only half the memory is required as compared to using 
single-precision data for storage.

The instructions VCVTB and VCVTT convert a half-precision value in either the 
lower half or upper half of a floating-point register, respectively, to a single-precision 
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value, or convert a single-precision value to a half-precision value and store it in 
either the lower half or upper half of the destination floating-point register. The syn-
tax of these instructions is

 VCVTB{<cond>}.F32.F16  <Sd>, <Sm>
 VCVTT{<cond>}.F32.F16  <Sd>, <Sm>
 VCVTB{<cond>}.F16.F32  <Sd>, <Sm>
 VCVTT{<cond>}.F16.F32  <Sd>, <Sm>

The B variants operate on the lower 16 bits of the Sm or Sd register, while the T 
variants operate on the upper 16 bits. These instructions provide a means of storing 
table data that does not require the precision or range of single-precision floating-
point but can be represented sufficiently in the half-precision format.

9.11 CONVERSIONS TO NON-FLOATING-POINT FORMATS

Often data is input to a system in integer or fixed-point formats and must be con-
verted to floating-point to be operated on. For example, the analog-to-digital con-
verter in the TM4C1233H6PM microcontroller from Texas Instruments outputs a 
12-bit digital conversion in the range 0 to the analog supply voltage, to a maximum 
of 4 volts. Using the fixed-point to floating-point conversion instructions, the conver-
sion from a converter output to floating-point is possible in two instructions—one to 
move the data from memory to a floating-point register, and the second to perform 
the conversion. The range of options in the fixed-point conversion instructions makes 
it easy to configure most conversions without any scaling required. In Chapter 18, we 
will look at how to construct conversion routines using these instructions, which may 
be easily called from C or C++.

In the following sections, we will look at the instructions for conversion between 
32-bit integers and floating-point single-precision, and between 32-bit and 16-bit 
fixed-point and floating-point single-precision.

TABLE 9.15
Useful Floating-Point Constants

Constant Value imm4H Imm4L

0.5 0110 0000

0.125 0100 0000

2.0 0000 0000

31 0011 1111

15 0010 1110

4.0 0001 0000

−4.0 1001 0000

1.5 0111 1000

2.5 0001 0100

0.75 0110 1000
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9.11.1 ConVeRsions BeTWeen inTegeR And fLoATing-poinT

The Cortex-M4 has two instructions for conversion between integer and floating-
point formats. The instructions have the format

 VCVT{R}<c>.<T32>.F32  <Sd>, <Sm>
 VCVT<c>.F32.<T32>     <Sd>, <Sm>

The <T32> may be replaced by either S32, for 32-bit signed integer, or U32, for 
32-bit unsigned integer. Conversions to integer format commonly use the round-
TowardZero (RZ) format. This is the behavior seen in the C and C++ languages; con-
version of a floating-point value to an integer always truncates any fractional part. 
For example, each of the following floating-point values, 12.0, 12.1, 12.5, and 12.9, 
will return 12 when converted to integer. Likewise, −12.0, −12.1, −12.5, and −12.9 
will return −12. To change this behavior, the R variant may be used to perform the 
conversion using the rounding mode in the FPSCR. When the floating-point value 
is too large to fit in the destination precision, or is an infinity or a NaN, an Invalid 
Operation exception is signaled, and the largest value for the destination type is 
returned. Exceptions are covered in greater detail in Chapter 10.

A conversion from integer to floating-point always uses the rounding mode in 
the FPSCR. If the conversion is not exact, as in the case of a very large integer 
that has more bits of precision than are available in the single-precision format, 
the Inexact exception is signaled, and the input integer is rounded. For example, 
the value 10,000,001 cannot be precisely represented in floating-point format, and 
when converted to single-precision floating-point will signal the Inexact exception.

9.11.2 ConVeRsions BeTWeen fixed-poinT And fLoATing-poinT

The formats of the fixed-point data type in the Cortex-M4 can be either 16 bits or 32 
bits, and each may be signed or unsigned. The position of the binary point is identi-
fied by the <fbits> field, which specifies the number of fractional bits in the format. 
For example, let us specify an unsigned, 16-bit, fixed-point format in which there are 
8 bits of integer data and 8 bits of fractional data. So the range of this data type is 
[0, 128), with a numeric separation of 1/256, or 0.00390625. That is, the value incre-
ments by 1/256 as one is added to the least-significant bit.

The instructions have the format

 VCVT{<cond>}.<Td>.F32  <Sd>, <Sd>, #<fbits>
 VCVT{<cond>}.F32.<Td>  <Sd>, <Sd>, #<fbits>

The <Td> value is the format of the fixed-point value, one of U16, S16, U32, 
or S32. Rounding of the conversions depends on the direction. Conversions from 
fixed-point to floating-point are always done with the roundTiesToEven rounding 
mode, and conversions from floating-point to fixed-point use the roundTowardZero 
rounding mode. We will consider these rounding modes in Chapter 10. One thing 
to notice in these instructions is the reuse of the source register for the destination 
register. This is due to the immediate <fbits> field. Simply put, there is not room 
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in the instruction word for two registers, so the source register is overwritten. This 
should not be an issue; typically this instruction takes a fixed-point value and con-
verts it, and the fixed-point value is needed only for the conversion. Likewise, when a 
floating-point value is converted to a fixed-point value, the need for the floating-point 
value is often gone.

EXAMPLE 9.5

Convert the 16-bit value 0x0180 in U16 format with 8 bits of fraction to a single-
precision floating-point value.

soLuTion

 ADR r1, DataStore
 LDRH r2, [r1]

 ; Convert each of the 16-bit data to single-precision with
 ; different <fbits> values

 VMOV.U16 s7, r2 ; load the 16-bit fixed-pt to s reg
 VCVT.F32.U16 s7, s7, #8 ; convert the fixed-pt to SP with
   ; 8 bits of fraction
loop B loop

 ALIGN
DataStore
 DCW 0x0180

The value in register s7 after this code is run is 0x3FC00000, which is 1.5. How 
did the Cortex-M4 get this value? Look at Table 9.16.

Notice that we specified 8 bits of fraction (here 8’b10000000, representing 
0.5 in decimal) and 8 bits of integer (here 8’b00000001, representing 1.0), hence 
the final value of 1.5. In this format, the smallest representable value would be 
0x0001 and would have the value 0.00390625, and the largest value would be 
0xFFFF, which is 255.99609375 (256 – 0.00390625). Any multiple of 0.00390625 
between these two values may be represented in 16 bits. If we wanted to do this 
in single-precision, each value would require 32 bits. With the U16 format we can 
represent each in only 16 bits.

There are valid uses for this type of conversion. The cost of memory is often a factor 
in the cost of the system, and minimizing memory usage, particularly ROM storage, 
will help. Another use is generating values that may be used by peripherals that expect 
outputs in a non-integer range. If we want to control a motor and the motor control 

TABLE 9.16
Output of Example 9.5

Format U/S, 
<fbits > Hex Value Binary Value

Decimal 
Value

Single-Precision 
Floating-Point Value

U16, 8 0x0180 00000001.10000000 1.5 0x3FC00000
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inputs are between 0 to almost 10, with 4 bits of fraction (so we can increment by 1/16, 
i.e., 0, 1/16, 1/8, 3/16, … 9.8125, 9.875) the same instruction can be used to convert 
from floating-point values to U16 values. Conversion instructions are another tool in 
your toolbox for optimizing your code for speed or size, and in some cases, both.

The 16-bit formats may also be interpreted as signed when the S16 format is 
used, and both signed and unsigned fixed-point 32-bit values are available. Table 
9.17 shows how adjusting the #fbits value can change how a 16-bit hex value is inter-
preted. If the #fbits value is 0, the 16 bits are interpreted as an integer, either signed 

TABLE 9.17
Ranges of Available 16-Bit Fixed-Point Format Data

fbits
Integer Bits: 
Fraction Bits

Numeric 
Separation

Range Unsigned 
Range Signed

0 16:0 20, 1 0 … 65,535
−32,768 … 32,767

1 15:1 2−1, 0.5 0 … 32,767.5
−16,384 … 16,383.5

2 14:2 2−2, 0.25 0 … 16,383.75
−8,192 … 8,191.75

3 13:3 2−3, 0.125 0 … 8,191.875
−4,096 … 4,047.875

4 12:4 2−4, 0.0625 0 … 4,095.9375
−2,048 … 2,023.9375

5 11:5 2−5, 0.03125 0 … 2,047.96875
−1,024 … 1,023.96875

6 10:6 2−6, 0.015625 0 … 1,023.984375
−512 … 511.984375

7 9:7 2−7, 0.0078125 0 … 511.9921875
−256 … 255.9921875

8 8:8 2−8, 0.00390625 0 … 255.99609375
−128 … 127.99609375

9 7:9 2−9, 0.001953125 0 … 127.998046875
−64 … 63.998046875

10 6:10 2−10, 0.000976563 0 … 63.999023438
−32 … 31.999023438

11 5:11 2−11, 0.000488281 0 … 31.99951171875
−16 … 15.99951171875

12 4:12 2−12, 0.000244141 0 … 15.999755859375
−8 … 7.999755859375

13 3:13 2−13, 0.00012207 0 … 7.9998779296875
4 … 3.9998779296875

14 2:14 2−14, 6.10352E-05 0 … 3.99993896484375
2 … 1.99993896484375

15 1:15 2−15, 3.05176E-05 0 … 1.999969482421875
−1 … 0.999969482421875

16 0:16 2−16, 1.52588E-05 0 … 0.999984741210937
−0.5 … 0.499984741210937
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or unsigned, and the numeric separation is 1, as we expect in the integer world. 
However, if we choose #fbits to be 8, the 16 bits are interpreted as having 8 integer 
bits and 8 fraction bits, and the range is that of an 8-bit integer, but with a numeric 
separation of 2−8, or 0.00390625, allowing for a much higher precision than is avail-
able with integers by trading off range.

When the range and desired precision are known, for example, for a sensor 
attached to an analog-to-digital converter (ADC) or for a variable speed motor, the 
fixed-point format can be used to input the data directly from the converter without 
having to write a conversion routine. For example, if we have an ADC with 16-bit 
resolution over the range 0 to +VREF, we could choose a VREF value of 4.0 V. The 
U16 format with 14 fraction bits has a range of 0 up to 4 with a resolution of 2−14. All 
control computations for the motor control could be made using a single-precision 
floating-point format and directly converted to a control voltage using

 VCVT.U16.F32 s9, s9, #14

The word value in the s9 register could then be written directly to the ADC buffer 
location in the memory map. If the conversion is not 16 bits, but say 12 bits, conver-
sion with the input value specified to be the format U16 with 10 fraction bits would 
return a value in the range 0 to 4 for all 12-bit inputs. Similarly, if VREF is set to 2 V, 
the U16 format with 15 fraction bits would suffice for 16-bit inputs and the U16 with 
11 fraction bits for 12-bit inputs. The aim of these instructions is to eliminate the 
need for a multiplier step for each input sampled or control output. Careful selection 
of the VREF and the format is all that is required. Given the choice of signed and 
unsigned formats and the range of options available, these conversion instructions 
can be a powerful tool when working with physical input and output devices.

9.12 EXERCISES

 1. Represent the following values in half-precision, single-precision, and 
double-precision.

 a. 1.5
 b. 3.0
 c. −4.5
 d. −0.46875
 e. 129
 f. −32768

 2. Write a program in a high-level language to take as input a value in the 
form (−)x.y and convert the value to single-precision and double-precision 
values.

 3. Using the program from Exercise 2 (or a converter on the internet), convert 
the following values to single-precision and double-precision.

 a. 65489
 b. 2147483648
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 c. 229

 d. −0.38845
 e. 0.0004529
 f. 11406
 g. −57330.67

 4. Expand the program in Exercise 2 to output half-precision values. Test your 
output on the values from Exercise 3. Which would fit in half-precision?

 5. Write a program in a high-level language to take as input a single-precision 
value in the form 0xXXXXXXXX (where X is a hexadecimal value) and 
convert the input to decimal.

 6. Using the program from Exercise 5 (or a converter on the internet), convert 
the following single-precision values to decimal. Identify the class of value 
for each input. If the input is a NaN, give the payload as the value, and NaN 
type in the class field.

Single-Precision Value Value Class

a. 0x3fc00000

b. 0x807345ff

c. 0x7f350000

d. 0xffffffff

e. 0x20000000

f. 0x7f800000

g. 0xff800ffe

h. 0x42c80000

i. 0x4d800000

j. 0x80000000

 7. What value would you write to the FPSCR to set the following conditions?
 a. FZ unset, DN unset, roundTowardZero rounding mode
 b. FZ set, DN unset, roundTowardPositive rounding mode
 c. FZ set, DN set, roundTiesToEven rounding mode

 8. Complete the following table for each of the FPSCR values shown below.

N Z C V DN FZ RMode IDC IXC UFC OFC DZC IOC

0x41c00010

0x10000001

0xc2800014

 9. Give the instructions to load the following values to FPU register s3.
 a. 5.75 × 103

 b. 147.225
 c. –9475.376
 d. −100.6 × 10−8
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 10. Give the instructions to perform the following load and store operations.
 a. Load the 32-bit single-precision value at the address in register r4 into 

register s12.
 b. Load the 32-bit single-precision value in register r6 to register s12. 

Repeat for a store of the value in register s15 to register r6.
 c. Store the 32-bit value in register s4 to memory at the address in register 

r8 with an offset of 16 bytes.
 d. Store the 32-bit constant 0xffffffff to register s28.

 11. Give the instructions to perform a conversion of four fixed-point data in 
unsigned 8.8 format stored in register s8 to register s11 to single-precision 
format.

 12. What instruction would you use to convert a half-precision value in the lower 
half of register s5 to a single-precision value, and store the result in register s2?

 13. Give the instructions to load 8 single-precision values at address 0x40000100 
to FPU registers s8 to s15.

 14. How many subnormal values are there in a single-precision representation? 
Is this the same number as values for any non-zero exponent?
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Introduction to 
Floating-Point
Rounding and Exceptions

10.1 INTRODUCTION

Rounding is one of the most important but confusing aspects of floating-point. We 
learned this early in school with problems asking for the nearest whole number when 
we divided 9 by 4. The pencil and paper result is 2.25, but what whole number do we 
give in the answer? The solution, we were taught, is to add 0.5 to the result and drop 
the fraction. So,

 9/4 + 0.5 = 2.75,

and dropping the fraction gives 2. What if the problem was 9 divided by 2? We get 
4.5, and adding 0.5 gives us 5. Is this the best we can do, since the computed value 
is exactly halfway between two whole numbers? We have the same issue in floating-
point. The result of each operation must be a representable value, but what if the 
intermediate result of the operation was not? We have to round the intermediate 
result to a representable value. In this chapter we will look carefully at rounding and 
the various rounding modes specified by the IEEE 754-2008 specification.

A second important issue concerns what we do when an operation has no math-
ematically agreed upon answer, such as 0/0, or if some unusual event occurred in 
our computation. We call these situations exceptions, and while they are often not 
problematic, sometimes it can signal a situation that may require attention. We will 
consider each of these exceptions first generally, and then the specific response of 
the Cortex-M4 with floating-point hardware to the situations that signal each excep-
tion. Next we will consider whether we can count on some of the mathematical laws 
we learned in school, and finish the chapter looking at normalization and cancel-
ation, two steps in floating-point computation and how they impact rounding and 
exceptions.

10.2 ROUNDING

Since only a finite set of representable values exists for each floating-point data type, 
we must have a method to deal with a computation that does not result in a represent-
able value. For example, when we add

 1.0 (0x3F800000) + 224 (0x4B800000)

10
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on a Cortex-M4, with the default rounding mode (roundTiesToEven), the answer is

 224 (0x4B800000).

Why is the result the same as the second operand? Where is the contribution of 
the first operand? When we add a 1 to an integer, we expect the result to be the input 
integer incremented by one. On first glance, this seems to be an error. However, in 
this floating-point example, it makes no difference to the final result that we added 
1.0 to 224. In fact, it makes no difference whether we add 1.0 to 224 once, or whether 
we add it a million times. Each time this instruction is executed we will get the same 
result. How can this be? The answer is one of the most important features, and pro-
gramming landmines, in using floating-point arithmetic, namely the frequent need 
to round the computed result to a representable value. The IEEE 754-2008 standard 
requires that each computation be computed as if to infinite precision* and then 
rounded to a representable value or a special value. Internal to the Cortex-M4, the 
computation is performed to an intermediate precision larger than single-precision, 
which represents the infinitely precise internal sum, of

 1.0 + 224 = 16,777,217.0

as we would expect. However, this value is not a representable value for the single-
precision data type. Recalling the formula for single-precision values

 F = (−1)s × 2(exp−bias) × 1.f (9.1)

which we saw earlier in Sections 1.5.2 and 9.4, the value 224 + 1.0, results in the fol-
lowing floating-point component parts according to our formula (the significand part 
is represented in binary and the exponent in decimal):

 16,777,217.0 = (−1)0 × 2(151−127) × 1.000000000000000000000001

Recall a single-precision value has only 23 fraction bits (bits [22:0] in a representa-
tion with the least-significant bit numbered 0). There are 24 bits in the significand of 
our example after the binary point, and only 23 of them can fit in the final significand. 
So we must select a representable value to return in place of the infinitely precise 
internal value. Every computation results in either exactly a representable value or 
one between two representable values, as shown in Figure 10.1. In this figure, values 
n1 and n2 are representable values in single-precision. Result A is exactly the repre-
sentable value n1; result B is exactly halfway between representable values n1 and n2; 
result C is closer to representable value n1, while result D is closer to representable 

* It doesn’t really keep an infinite set of bits from a computation. That would make for a really large 
processor. Rather, the computation is done as if to infinite precision, meaning that internal to the 
Cortex-M4 the computation retains enough information to round the result correctly. See the IEEE 
754-2008 standard section 5.1, p. 17.
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value n2. In each case, the representable value to be returned is determined by the cur-
rent rounding mode and the bits in the infinitely precise internal value.

Each of the available rounding modes is the subject of the following sections, 
which describe the rounding modes defined in the IEEE 754-2008 standard, and 
those that are available in the Cortex-M4.

10.2.1  inTRoduCTion To Rounding Modes in The ieee 754-2008 
speCifiCATion

The IEEE 754-2008 standard specifies that the computed infinitely precise internal 
value be rounded to a representable value according to a selected rounding mode. 
Five rounding modes are specified by the standard:

roundTiesToEven
roundTiesToAway
roundTowardPositive
roundTowardNegative
roundTowardZero

We will focus our attention on four of these: roundTiesToEven, which we some-
times refer to as Round to Nearest Even, or RNE*; roundTowardPositive, also known 
as Round to Plus Infinity, or RP; roundTowardNegative, also known as Round to 
Minus Infinity, or RM; and roundTowardZero, also known as Round to Zero, or RZ.† 
Recall from Chapter 9, the rounding mode is set in the FPSCR in the Cortex M4, and 
the VMSR and VMRS instructions, covered in Chapter 11, enable the reading and 
writing of the FPSCR.

Inside the processor, a computed result will have additional bits beyond the 23 bits 
of the fraction. These bits are computed faithfully, that is, they are correct for the 
operation; however, they are not simply more bits of precision. Rather, two additional 
bits are computed—the guard bit and the sticky bit, shown in Figure 10.2. The guard 
bit is the bit immediately lower in rank than the least-significant bit position in the 
final result. If the infinitely precise internal significand were normalized to the range 
[1.0, 2.0), this would be the 25th bit of the significand, counting from left to right. 
The sticky bit is formed by ORing all bits with lower significance than the guard bit. 

* In the IEEE 754-1985 specification this referred to as Round to Nearest Even, hence RNE. The abbre-
viations of the other rounding modes should be self-explanatory.

† The IEEE 754-2008 Standard does not require roundTiesToAway (RNA). See Clause 4.3.3, p. 16.

A

· · · · · ·
n1

2

n2(n1 + n2)

C B D

FIGURE 10.1 Possible results between two representable values.
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In other words, if the final result was computed to 40 bits, the upper 24 bits would be 
the significand of the pre-rounded, final result; the next bit would be the guard bit; 
and the OR of the final 15 bits would be the sticky bit.

EXAMPLE 10.1

Add 224 (0x4B800000) + 1.25 (0x3FA00000)

soLuTion

The value 224 is much larger than 1.25, and when represented in single-precision 
format, the 1.25 only contributes in the guard and sticky bits. When represented 
in infinite precision, we can see all the bits in the intermediate sum.

 1.25 + 224 = (−1)0 × 2(151−127) × 1.00000000000000000000000101

The guard bit is the 1 in bit position 2 (counting from the right side), while the 
sticky bit would be the OR of bits 0 (bit position 1) and 1 (bit position 0) and would 
be 1. We also refer to the least-significant bit of the pre-rounded significand as the 
L bit (for least-significant bit, or LSB). See Table 10.1.

10.2.2 The RoundTiesToeVen (Rne) Rounding Mode

The roundTiesToEven (RNE) rounding mode is the default rounding mode in the 
Cortex M4. The following equation governs the decision to increment the significand:

 Increment = (L & G)|(G & S)

In truth table form this equation looks like Table 10.2.
The roundTiesToEven rounding mode causes the significand to be incremented 

whenever the bits not part of the pre-rounded significand would contribute greater 
than 1/2 the LSB value to the final result, and never when the bits would contribute 
less than 1/2 the LSB value. In the case of the bits contributing exactly 1/2 of the 
LSB, the pre-rounded significand is incremented when it is odd, that is, the L bit is 

1.000000000000000000000001

L

bits ORed 
to form SG

0 1

23 fraction
bits

FIGURE 10.2 Internal representation of 224 + 1.25.

TABLE 10.1
Significand with Guard and Sticky Bits

Value 20 2−1…2−22 2−23 
(“L”)

Guard 
(“G”)

Bits Contributing to 
the Sticky Bit (“S”)

Bit position 25 24…4 3 2 1 0

Bit value 1. 0…0 0 1 0 1
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set, and not when it is even. This is what the Even signifies in the name roundTies-
ToEven. This paradigm for rounding results is the statistically most accurate results 
for a random sample of operations and operands.

So let’s return to our example case of adding 1.25 to 224. We know that the sig-
nificand of the final value is 1.00000000000000000000000101. In Figure 10.2 we 
identified the L, G, and S bits.

The guard bit adds exactly 1/2 the value of the L bit to the significand, and the 
sticky bit increases the rounding contribution to greater than 1/2 of the L bit value. 
The significand does get incremented, and we have 224 + 2 as a final result.

EXAMPLE 10.2

Show a pair of operands that, when added, demonstrate the tie case without an 
increment.

soLuTion

The two operands could be 16,777,216 (224) and 1.0.
From Figure 10.2, the contribution of the 1.0 term would be only the G bit. L 

and S are each zero. From Table 10.2, we would not increment in this case (see 
the third line from the top of the table.)

EXAMPLE 10.3

Show a pair of operands that, when added, demonstrate the tie case with an 
increment.

soLuTion

The two operands could be 16,777,218 (224 + 2.0) and 1.0.
From Figure 10.2, the contribution of the 1.0 term would be only the G bit. L is 

set to a one and S is zero. From Table 10.2, we would increment in this case (see 
the seventh line from the top of the table.)

TABLE 10.2
roundTiesToEven Rounding Summary

L LSB G Guard S Sticky Increment? Note

0 0 0 No Pre-rounded result is exact, no 
rounding necessary

0 0 1 No Only sticky set

0 1 0 No Tie case, L bit not set

0 1 1 Yes Guard and Sticky set—rounding 
bits >1/2 LSB

1 0 0 No Pre-rounded result is exact, no 
rounding necessary

1 0 1 No Only L bit and Sticky set

1 1 0 Yes Tie case, L-bit set

1 1 1 Yes Guard and sticky set—rounding 
bits are >1/2 LSB
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EXAMPLE 10.4

Show a pair of operands that, when added, demonstrate an increment due to G 
and S.

soLuTion

The two operands could be 16,777,216 (224) and 1.25.
From Figure 10.2, the contribution of the 1.25 term would be the G and S bits 

each set. L is zero. From Table 10.2, we would increment in this case. (See the 
fourth line from the top of the table.)

10.2.3 The diReCTed Rounding Modes

The other three rounding modes are called directed rounding modes. These find 
use in specialized mathematical operations in which creating a bound of a prob-
lem is more useful than computing a single result. In these instances, knowing the 
bounds of a function with a specific data set conveys more useful information about 
the error range than would a single result of unknown accuracy. One such area of 
mathematics is called interval arithmetic. In interval arithmetic, each value is rep-
resented as a pair of bounds, representing the range of possible numerical values 
for a result rather than a single result value. These computations are useful when the 
true value cannot be known due to measurement inaccuracies, rounding, or limited 
precision.

For example, we may say a friend’s height is between 6 feet and 6 feet two 
inches. While we don’t know exactly the height of our friend, we are sure he is at 
least 6 feet but no more than 6 feet 2 inches tall. If we were to measure the average 
height of a class of boys, we could measure each boy using a tape measure, but 
each of these measurements may not be accurate. For example, we measure Tom to 
be 6 foot 3/4 inches. But is this his true height? Perhaps he has let his hair grow and 
this added a 1/4 inch, or his shoes or socks are contributing to our measurement. 
Next week he will get his hair cut, and he would measure only 6 foot 1/2 inches. 
If we record the boys’ heights to a precision of 1 inch, rounding any fraction down 
for a lower value and rounding up for a higher value, we could create a pair of 
bounding values, each with a precision of 1 inch, one lower than the measured 
value, and one higher than the measured value. With the measurement we have 
for Tom, we could record Tom’s height as (6′ 0″, 6′ 1″). This way we give accurate 
bounds for his height, but not a specific number. In floating-point interval arithme-
tic, we would round any imprecise value, both down, for a lower bound, and up, 
for a higher bound, creating a bounding pair for all computations. When we have 
all the measurement pairs for the class, we would compute an average of the lower 
entries in each pair, and an average of the upper entries in the pairs, producing 
again another pair. Now we can say with some certainty that the average height of 
the boys in the class is between the lower bound and the upper bound. As you can 
see, while this is imprecise, in that we don’t have a single value, it is more accurate 
than any single number could be.

The three directed rounding modes are often used in interval arithmetic, and are 
discussed below.
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10.2.3.1 The roundTowardPositive (RP) Rounding Mode
This rounding mode will increment any imprecise positive result, and not increment 
any precise or negative result. The inputs to the rounding equation are G and S bits, 
the sign bit, and incrementing is done if both the pre-rounded result is positive and if 
either G or S is set. If the pre-rounded result is negative, no incrementing is done. In 
this mode, the increment equation is

 Increment = ~sign & (G|S)

Recall the sign bit in a positive floating-point number is 0. If we consider Example 
10.4, we see the S bit is set and the sign is positive (sign = 0). In RP mode the final 
significand would be incremented.

10.2.3.2 The roundTowardNegative (RM) Rounding Mode
Some explanation is useful here. When we say a value in incremented, we are refer-
ring to the significand regardless of the sign off the value. For example, if we have 
in −1.75 in decimal and we round this value up, we would have −2.0. Simply put, an 
increment always causes the result to be further from zero, regardless of the sign of 
the result.

The RM rounding mode will increment any imprecise negative result, and not 
increment any precise or positive result. This mode is the negative sign bit counter-
part to the roundTowardPositive rounding mode. If the pre-rounded result is nega-
tive, and if either G or S is set, the mantissa is incremented. If the pre-rounded result 
is positive, no incrementing is done. In this mode the increment equation is

 Increment = sign & (G|S)

If we consider again Example 10.4, the S bit set and the sign positive (sign = 0) 
would dictate that the final significand would not be incremented. If the sign of the 
result were negative in the example, the roundTowardNegative rounding mode would 
dictate incrementing the final significand.

10.2.3.3 The roundTowardZero (RZ) Rounding Mode
The roundTowardZero (RZ) mode is also called truncate, and this rounding mode 
never increments an intermediate value, but simply drops any guard and sticky bits. 
Any bits computed beyond the L bit are ignored. This the mode commonly used in 
integer arithmetic in processors with divide operations. In this mode the increment 
equation is

 Increment = 0

In other words, we never increment the result in the roundTowardZero rounding 
mode. In Example 10.4, even though the G and S bits are set, the final significand is 
not incremented. All the bits to the right of the L bit are simply truncated.
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10.2.4 Rounding Mode suMMARy

The operation of these four rounding modes may be summarized by the diagram in 
Figure 10.3. The values n and n + 1 ulp* are two, contiguous, representable floating-
point values. The value n + 1/2 ulp represents the point halfway between the two rep-
resentable floating-point values but is not itself a representable floating-point value.

Consider first the upper two lines in Figure 10.3. These lines represent the behav-
ior of the RNE rounding mode, and the handling of tie cases depends on the value of 
L, the least significant bit of the internal normalized significand (more on normaliza-
tion in Section 10.5). In the top line, L is 1, indicating the normalized significand is 
odd. In this case the tie case rounds up to make the result significand even. In the 
second line the internal normalized significand is even before the rounding deci-
sion, and a tie case will not increment, leaving the result even. In both cases, if the 
infinitely precise internal value is greater than n + 1/2 ulp, the internal value is incre-
mented, and if less, the internal value is not incremented. The third line indicates 
the behavior of RP for a positive result and RM for a negative result, while the last 
line indicates the behavior of RP for a negative result, RM for a positive result, and 
RZ always. In both RP and RM, the decision to increment is made on the sign of the 
result, the rounding mode, and whether the internal normalized significand is exactly 
a representable value. To complete Table 10.1, we add in the three directed rounding 
modes to form Table 10.3.

Let’s consider a multiplication example to demonstrate the four rounding modes.

EXAMPLE 10.5

Multiply 0x3F800001 (1.00000011920928955) by 0xC4D00000 (−1664) in each 
rounding mode and compute the result.

* A ulp is shorthand for a unit-in-the-last-place, or the bit with the smallest contribution to the final 
result. For single-precision, this is the least significant bit. This is a common term in floating-point error 
analysis.

RN

n

RP (if positive)
RM (if negative)

RP (if negative)
RM (if positive)
RZ always

n + ½
ulp

L == 1

L == 0

n + 1
ulp

FIGURE 10.3 Rounding mode summary.
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soLuTion

Let OpA = 0x3F800001 and OpB = 0xC4D00000. The two operands are shown 
in their component parts in Table 10.4.

Recall that in integer multiplication, we take each digit of the multiplier, and 
if it is a 1 we include the multiplicand shifted to align bit [0] of the multiplicand 
with the multiplier bit. If the bit is a zero, we skip it and go on to the next bit. In 
the diagram below, there are two multiplier bits, OpA[0] and OpA[23], resulting 
in two partial product terms, called OpA[0] term and OpA[23] term. These two 
partial products are summed using binary addition to form the infinitely precise 
product. Since the two significands are 24 bits each, the product will be (24 + 24 
−1), or 47 bits. If the summing operation produced a carry, the product would 
have 48 bits; however, in this case there is no carry, so only 47 bits are valid. The 
L bit and G bit, and the bits which will be ORed to make the S bit (identified with 
a lowercase s) are marked in the line pre-rounded product. In this example, L is 
1, so our pre-rounded product is odd; G is 1, and S is 1. From Table 10.5, for the 
RNE and RM rounding modes the pre-rounded product will be incremented to 
form the result product, but for the RP and RZ rounding modes the pre-rounded 
product is not incremented. (Notice the product is negative.)

TABLE 10.3
Rounding Mode Summary

Sign Rounding Bits
Increment?

Rounding Mode

Data CharacteristicL G S RNE RP RM RZ

0 0 0 0 No No No No Exact

1 0 0 0 No No No No Exact

0 0 0 1 No Yes No No Inexact—positive

1 0 0 1 No No Yes No Inexact—negative

0 0 1 0 No Yes No No Inexact—positive, tie case

1 0 1 0 No No Yes No Inexact—negative, tie case

0 0 1 1 Yes Yes No No Inexact—positive

1 0 1 1 Yes No Yes No Inexact—negative

0 1 0 0 No No No No Exact

1 1 0 0 No No No No Exact

0 1 0 1 No Yes No No Inexact—positive

1 1 0 1 No No Yes No Inexact—negative

0 1 1 0 Yes Yes No No Inexact—positive, tie case

1 1 1 0 Yes No Yes No Inexact—negative, tie case

0 1 1 1 Yes Yes No No Inexact—positive

1 1 1 1 Yes No Yes No Inexact—negative

TABLE 10.4
Operands for Example 10.5
OpA: 0x3F800001  = −10 x 20 x 1.00000000000000000000001

OpB: 0xC4D00000  = −11 x 210 x 1.10100000000000000000000
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10.3 EXCEPTIONS

10.3.1 inTRoduCTion To fLoATing-poinT exCepTions

An important difference between integer and floating-point operations is the intrin-
sic nature of exceptions. You may be familiar with one exception in the integer 
world, division by zero. If you have a processor with a hardware divider and attempt 
to divide an operand by zero, you will very likely see something like

 #DIV/0!

and find your program has halted. The reason for this is that there is no value that 
would be appropriate to return as the result of this operation. With no suitable result, 
this operation in the program is flawed, and any results cannot be trusted. Even if the 
numerator was also a zero, this situation will be signaled with the same result. If the 
integer number set had a representation for infinity, this might not be a fatal situation, 
but all integer bit patterns represent real numbers, and no infinity representation exists.

In floating-point, we do have a representation for infinity, and division by zero is 
not fatal. When we use the term exception in the floating-point context, we do not 
mean a catastrophic failure, or even a situation that requires a programmer’s or user’s 
attention, but simply a case of which you, the programmer or user, might want to be 
made aware. We say might, because in many exceptional cases the program will 
continue execution with the exceptional condition and end successfully. Returning 
to our division by zero operation, we were taught in math class that a nonzero num-
ber divided by zero was not allowed. However, in a computational environment, we 
would expect the hardware to return a signed infinity according to the IEEE 754-
2008 standard, and in roundTiesToEven rounding mode this is what we see. The 
program does not have to be halted. As we will see in Chapter 11, all floating-point 
operations have rational behaviors with infinities as operands.

The IEEE 754-2008 specification requires five exceptions, and each must deliver 
a default result to the destination, signal the exception by a corresponding flag, and 
not stop processing when encountered.* In our division by zero example, a signed 
infinity would be a proper return value. If this infinity were operated on further, the 
subsequent operations must respect the properties of an infinity, and this is what 
will happen. It’s very difficult to change an infinity to a normal number (impossible, 
really) so the infinity will in most cases be the result of the computation, and the user 
will see the infinity as the output.

As mentioned above, the IEEE 754-2008 standard specifies five exceptions:

• Division by Zero
• Invalid Operation
• Overflow

* The IEEE 754-2008 standard specifies an Alternate exception handling mechanism in which a trap 
is taken to a trap handler, which allows the programmer to specify the behavior to be taken when the 
exception is detected. The Cortex-M4 does not allow for this option directly, but instead provides five 
pins on the boundary of the processor core that toggle with the exception flag. Each could be connected 
to an interrupt input and cause an interrupt routine to execute when the exception is signaled.
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• Underflow
• Inexact

We will consider each one separately; however, be aware that Inexact may appear 
with Overflow and with Underflow, returning two exceptions on a single operation. 
Also, recall that all exception flags in the Cortex-M4 are cumulative, or “sticky,” and 
once set by an exceptional condition remain set until written to a zero to clear it.

10.3.2 exCepTion hAndLing

The IEEE 754-2008 standard requires that a default result be written to the destination 
register, a corresponding flag be set, and the processing to continue uninterrupted. 
In the case of arithmetic exceptional conditions, such as overflow, underflow, divi-
sion by zero, and inexactness, the default results may be the correct result and allow 
processing to continue without error. For example, in an overflow situation, a properly 
signed infinity is a correct result and may indicate that this computation is simply out 
of bounds. This may be a valid output, or it may signal that the data set operated on 
resulted in computations out of bounds for the algorithm, and a modification to the data 
set or the algorithm is required. The selection of default results shows the desire of the 
architects of the floating-point specification to have a system that will do mathemati-
cal processing with reasonable results, even with the limitations of the data types and 
operating on unknown data sets. It is possible to construct robust programs that can 
tolerate varying data sets and exceptions of the types we will discuss below and return 
reasonable and useful data. As you consider each of the exceptions below, see if you 
agree with the selection of the default result for each case.

10.3.3 diVision By ZeRo

Division by zero occurs whenever a division operation is performed with a divisor 
of zero and the dividend is a normal or subnormal operand. When this occurs, the 
default result is a properly signed infinity. Properly signed here means that the sign 
rules learned in school apply, that is, if both signs are the same, a positive result is 
returned, and if the signs are different, a negative result is returned. When detected, 
a properly signed infinity is written to the destination register, the division by zero 
(DZC) status bit is set in the FPSCR, or remains set if it was set prior to this instruc-
tion, and processing continues with this result. Note that if the operation is a recipro-
cal operation, the dividend is assumed to be +1.0. The code below shows the behavior 
of the Cortex-M4 in a division-by-zero case.

EXAMPLE 10.6

 ; Example 10.6 - Divide by Zero
 ; In this example we load s0 with 5.0 and s1 with
 ; 0.0 and execute a divide. We expect to see +inf
 ; in the destination register (s2)
 ; Next we load s3 with −0.375 and perform the
 ; division, this time expecting –inf in the destination
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 ; register s4

 VMOV.F s0, #5.0
 LDR r1, = 0x00000000 ; cannot load 0.0 using VMOV.F
 VMOV.F s1, r1
 VDIV.F s2, s0, s1 ; return positive infinity
 VMOV.F s3, #−0.375
 VDIV.F s4, s3, s1 ; return negative infinity

After running this code the floating-point registers contain the values shown 
in Figure 10.4. The contents of the FPSCR register show the DZC (Divide-by-zero 
Condition bit) is set as shown in Figure 10.5.

The result of the first division in register s2 is a positive infinity (convince your-
self that this is the hexadecimal pattern for a positive infinity), and the result in 
register s4 is a negative infinity (again, make sure you are convinced that this is a 
negative infinity).

FIGURE 10.4 Output of Example 10.6.

FIGURE 10.5 FPSCR Contents after Example 10.6.
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What if the dividend was not a normal or subnormal value? If it was a zero, NaN, 
or an infinity, there is no commonly accepted mathematical result for this situation. 
An Invalid Operation exception is returned, and the division by zero exception is not 
signaled. We will consider this exception next.

10.3.4 inVALid opeRATion

There are a host of conditions that will signal an Invalid Operation exception. Most 
are present to signal mathematical situations for which a commonly accepted result 
is not known, such as the division of zero by zero, as mentioned above. The condi-
tions for Invalid Operation fall into three categories:

 1. Operations with signaling NaNs (sNANs)—Of the two types of NaNs dis-
cussed in Section 9.6.5, the sNaN, or signaling NaN, will always signal the 
Invalid Operation exception when operated on by an arithmetic operation. 
Note that data moves will not trigger the exception. No other exceptions are 
signaled for an operation involving a sNaN, even if other exceptional condi-
tions exist.

 2. Arithmetic operations without a commonly accepted default result—Several 
operations simply don’t have agreed upon results. Consider addition with 
unlike-signed infinities and multiplication of infinity by zero. These opera-
tions are defined as “undefined,” or an “indefinite form.” The complete list 
is given in Table 10.6 for floating-point operations; however, other operations 
that are not specified by the standard, such as transcendental functions, may 
also raise exception flags.

 3. Conversion operations—When a conversion of a value in floating-point 
format to an integer or fixed-point format isn’t possible because the value 
of the floating-point operand is too large for that destination format, the 
Invalid Operation exception is signaled. For example, if register s4 contains 
0x60000000 (~3.7 × 1015), conversion to a 32-bit integer would not be pos-
sible, since this value is much greater than is representable. In this case the 
largest integer value is returned, and the IOC and IXC bits are set in the 
FPSCR. Again, this is because there is no integer format that would indicate 
the error. All bit patterns in the integer formats represent valid numbers, 
and to return even the maximum value would not represent the input value 
or indicate the error condition. Why not use the Overflow exception for this 
case? The Overflow exception indicates the result of an arithmetic operation, 
and this is a format conversion issue and not an arithmetic operation.

When the Invalid Operation exception is detected for arithmetic and conversion 
operations, the default Quiet NaN (qNaN) is returned and the Invalid Operation 
(IOC) status bit is set in the FPSCR. The format of the default NaN is at the imple-
menter’s discretion; in Section 9.8.1.1 we saw what the developers of the Cortex-M4 
chose as the default NaN. When an input is a sNaN, the sNaN is quieted, that is, the 
NaN type bit is set, making the sNaN into a qNaN. If more than one input operand is 
a NaN of either flavor, one of the NaNs will be returned, but always in a quiet form.
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10.3.5 oVeRfLoW

The Overflow exception is signaled when the result of an arithmetic operation cannot 
be represented because the absolute value of the result is too large for the destina-
tion format. In this way it is possible to overflow both with a positive and a negative 
result. In the default RNE rounding mode, a positive value too large for the single-
precision format will return a positive infinity. Likewise, if the absolute value of the 
result is too large for the single-precision format, and the sign is negative, a negative 
infinity will be returned. In the general case, the default value returned depends on 
the signs of the operands and the rounding mode, as seen in Table 10.7. One thing to 
note here is that with an overflow exception both the overflow status bit (OFC) and 
the inexact status bit (IXC) are set.

TABLE 10.6
Operations and Operands Signaling the Invalid Operation Exception

Instruction Invalid Operation Exceptions

VADD (+infinity) + (−infinity) or (−infinity) + (+infinity)

VSUB (+infinity) − (+infinity) or (−infinity) − (−infinity)

VCMPE, VCMPEZ Any NaN operand

VMUL, VNMUL Zero × ±infinity or ±infinity × zero

VDIV Zero/zero or infinity/infinity

VMAC, VNMAC Any condition that can cause an Invalid Operation exception for VMUL or 
VADD can cause an Invalid Operation exception for VMAC and VNMAC. 
The product generated by the VMAC or VNMAC multiply operation is 
considered in the detection of the Invalid Operation exception for the 
subsequent sum operation

VMSC, VNMSC Any of the conditions that can cause an Invalid Operation exception for 
VMUL or VSUB can cause an Invalid Operation exception for VMSC and 
VNMSC. The product generated by the VMSC or VNMSC multiply 
operation is considered in the detection of the Invalid Operation exception 
for the subsequent difference operation

VSQRT Source is less than 0

VMLA/VMLS Multiplier and multiplicand are zero and infinity or infinity and zero

VMLA/VMLS The product overflows and the addend is an infinity, and the sign of the 
product is not the sign of the addend

Convert FP to Int Source is NaN, Inf, or outside the range with RMode

TABLE 10.7
Default Values for the Overflow Exception

Rounding Mode Positive Result Negative Result

RNE + infinity − infinity

RP + infinity − maximum normal value

RM + maximum normal value − infinity

RZ + maximum normal value − maximum normal value
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If you consider that the default rounding mode is RNE, returning positive 
and negative infinity values for overflows makes very good sense. Likewise, for 
the three directed rounding modes, returning the largest normal value indicates 
rounding in one direction, while infinity indicates rounding in the other direction. 
Overflow is possible in most arithmetic operations. Take note, overflow may be due 
to the operation resulting in a value outside the range before rounding, or it may 
be due to a pre-rounded result that is in the normal range but the rounded result 
overflows. The case of a pre-rounded result rounding to an overflow condition is 
left as an exercise.

EXAMPLE 10.7

Compute the factorial function for all integers from 1 to 35.

soLuTion

The factorial computation is
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We can construct a simple table of factorials, beginning with the factorial of 1 and 
continue until we have a factorial too large to fit in a single-precision value.

1 - 1
2 - 2
3 - 6
4 - 24
…
10 - 3,628,800, or 3.628 × 106

…
15 - 1,307,674,368,000, or 1.307 × 1012

…
20 - 2,432,902,008,176,640,000, or 2.432 × 1018

…
25 - 15,511,210,043,330,985,984,000,000, or 1.551 × 1025

…
30 - 265,252,859,812,191,058,636,308,480,000,000, or 2.653 × 1032

31 - 8,222,838,654,177,922,817,725,562,880,000,000, or 8.223 × 1033

32 - 263,130,836,933,693,530,167,218,012,160,000,000, or 2.632 × 1035

33 - 8,683,317,618,811,886,495,518,194,401,280,000,000, or 8.683 × 1036

34 - 295,232,799,039,604,140,847,618,609,643,520,000,000, or 2.952 × 1038

35 - 10,333,147,966,386,144,929,666,651,337,523,200,000,000, or 1.033 × 1040
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Recalling that the range of a single-precision value is up to 3.40 × 1038, the facto-
rial of 35 will result in a value too large for the single-precision format. According 
to Table 10.2, the result for the roundTiesToEven rounding mode and the round-
TowardPositive rounding mode is a +infinity, while the roundTowardNegative 
and roundTowardZero would return the maximum normal value, or 3.40 × 1038 
(0x7F7FFFFF). If we attempted to compute the factorial of 36 by multiplying the 
computed value of 35! by 36, we would get back the same value as computed 
for 35!. Why? In RNE and RP modes, we are multiplying +infinity by 36, which 
results in +infinity, and in RM and RP modes, the value of the maximum normal 
value multiplied by 36 again overflows, and the maximum normal value will be 
returned. Showing this in simulation is left as an exercise.

10.3.6 undeRfLoW

Floating-point arithmetic operations can also underflow when the result of the opera-
tion is too small to fit in the destination format. You can imagine when two very 
small values, say 6.6261 × 10−34 (Planck’s constant in J ⋅ s) and 1.602 × 10−19 (elemen-
tary charge in Coulombs), are multiplied, the product is 10.607 × 10−53, but this value 
is outside the normal range of a single-precision value, and we have underflowed. 
In some systems the result would be a signed zero.* Underflow is unique among 
the exceptions in that it is at the discretion of the processor designer whether the 
determination of underflow is made before rounding or after rounding, but all under-
flow determinations must be made the same way. The Cortex-M4 chose to detect 
underflow before rounding. When the Underflow exception is detected, the default 
value returned is a subnormal value (if the result is within the subnormal range for 
the destination precision) or a signed zero. The Underflow status bit (UFC) and the 
Inexact status bit (IXC) are set in the FPSCR if the result is not exact; otherwise, 
neither status bit is set. For example, if the operation resulted in a subnormal value 
that was exact, neither the UFC or IXC bits will be set. The IEEE 754-2008 standard 
does not regard this as an underflow condition. However, if the result is subnormal 
and not exact, both the UFC and IXC bits will be set, since the result is below the 
normal range and inexact. In the same way, if the result is too small even to be rep-
resented as a subnormal, and a zero is returned, both the UFC and IXC bits will be 
set, since this is both an underflow and an inexact condition. Table 10.8 summarizes 
the several cases possible in underflow condition.

* We will see this option in the Cortex-M4 in the Flush-to-zero mode described in Section 11.5.1.

TABLE 10.8
Summary of the Flags and Results in Underflow Conditions

Result before Rounding Returned Result Flags Set

Subnormal range Subnormal value If exact, no flags. Otherwise, 
UFC and IXC

Below subnormal range Signed zero UFC and IXC
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10.3.7 inexACT ResuLT

As we saw in the section on rounding, not all floating-point computations are exact. 
More likely than not, most will result in an intermediate value which is between 
two representable values and requires rounding. When this occurs, the result is 
said to be inexact. That means simply that there was no representable value exactly 
matching the result, and another value was substituted for the computed result. 
When the Inexact Exception occurs, the Inexact flag (IXC) is set in the FPSCR and 
the computation continues. The programmer may check this flag at any time to see 
whether any of the operations returned an inexact result since the last time the flag 
was cleared.

10.4 ALGEBRAIC LAWS AND FLOATING-POINT

In school we were taught several laws of mathematics, and we’re interested in three 
of these, namely the commutative law, the associative law, and the distributive law. 
Are they still useful in the world of floating-point? Let’s take each one separately. 
The commutative law states that in addition and multiplication the operands may be 
swapped without affecting the answer. Such is not the case for subtraction and divi-
sion. Does this law hold for floating-point addition and multiplication? Consider the 
following.

EXAMPLE 10.8

If register s7 contains 0x40200000 (2.5) and register s8 contains 0x42FD999A 
(126.8), will these two instructions produce the same result? You should try this 
for yourself.

 VADD.F32 s10, s7, s8
 VADD.F32 s11, s8, s7

Likewise, consider these instructions:

 VMUL.F32 s12, s7, s8
 VMUL.F32 s13, s8, s7

Is the value in register s10 the same as in register s11, and the value in register 
s12 the same as register s13? They do indeed have the same values, and we can 
expect that in all cases floating-point addition and multiplication abide by the 
commutative property. Note, however, that this applies only to a single addition 
or multiplication operation. When more than two operands are to be summed or 
multiplied, the IEEE 754-2008 standard requires the operations be performed in 
the order of the program code unless rearranging the operands would return the 
same result value and flags.

What about the associative law? If A, B, and C are single-precision floating-point 
values, is

 (A + B) + C = A + (B + C)
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as required by the associative property of addition? If we denote floating-point addi-
tion of single-precision values with a single-precision result as ⊕, is

 (A ⊕ B) ⊕ C = A ⊕ (B ⊕ C)?

Consider the example below.

EXAMPLE 10.9

Let A be 0x50800000 (1.718 × 1010) in register s13, let B be 0xD0800000 
(−1.718 × 1010) in register s14, and let C be 0x2FC00000 (3.492 × 10−10) in register 
s15. What is the result of the following pair of instructions?

 VADD.F32 s16, s13, s14 ; s13 = A, s14 = B, s16 = A ⊕ B
 VADD.F32 s17, s16, s15 ; s15 = C, s17 = (A ⊕ B) ⊕ C

Is it different from this pair of instructions?

 VADD.F32 s16, s14, s15 ; s16 = (B ⊕ C)
 VADD.F32 s17, s13, s16 ; s17 = A ⊕ (B ⊕ C)

In this example A ⊕ B is zero, so the result of the first set of instructions is the value 
C in register s15, or 3.492 × 10−10. However, when B and C are added, the result is 
B, since the contribution of C is too small and is lost in the rounding of the VADD 
operation. So the result of the second set of operations is zero! While it is not 
always the case that floating-point addition fails to satisfy the associative property 
of addition, it must be a consideration to a programmer that the order of addition 
operations may affect the final result.

Does the associative law hold for multiplication? If we again have 3 single-precision 
operands, A, B, and C, and floating-point multiplication is denoted by ⊗, is the fol-
lowing true in all cases?

 (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C)

EXAMPLE 10.10

Let A be 0x734C0000 (1.616 × 1031) in register s20, let B be 0x5064E1C0 
(1.536 × 1010) in register s21, and let C be 0x2BF92000 (1.770 × 10−12) in register 
s22. What will be the answer for each of the following pairs of instructions?

 VMUL.F32 s23, s20, s21 ; s20 = A, s21 = B, s23 = A ⊗ B
 VMUL.F32 s24, s23, s22 ; s22 = C, s24 = (A ⊗ B) ⊗ C

and

 VMUL.F32 s25, s21, s22 ; s25 = B ⊗ C
 VMUL.F32 s26, s20, s23 ; s26 = A ⊗ (B ⊗ C)

In the first pair, A multiplied by B returns positive infinity (0x7F800000), and the 
second multiplication with C results in a positive infinity. The first multiplica-
tion overflows, and the second multiplication of a normal value and an infinity 
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returns an infinity. However, in the second pair of instructions, B and C are 
multiplied first and results in 2.719 × 10−2. When this product is multiplied by 
A, the result is 4.395 × 1029. All products in the second sequence of instructions 
are normal numbers; none of the products is an infinity. As with addition, the 
order of operands can play a critical role in the result of a series of additions 
or multiplications. When a result is not what is expected, as in the case of the 
infinity in the pair of multiplications, it is often a clue that the operand ordering 
played a part in the result.

This leaves the distributive law, which states that

 A * (B + C) = (A * B) + (A * C)

From the above it should be clear that in floating-point operations this property 
can quite easily be shown to fail. This is left as an exercise for the reader.

10.5 NORMALIZATION AND CANCELATION

Often a floating-point computation will not be normalized, that is, it will not be in 
the correct form in the equation for a normal or subnormal value. It could be so 
because the computed significand is in the range [2.0, 4.0). To normalize the result, it 
must be shifted right one place, and the exponent must be incremented to be within 
the proper range. For example, if we multiply

 1.7 (0x3FD9999A) × 1.4 (0x3FB33333) = 2.38 (0x401851EC)

you notice that both input operands have the exponent 0x3F8 (representation of 20); 
however, the result has the exponent 0x400 (representation of 21). Internally, the 
product of 1.7 and 1.4 results in a significand in the range [2.0, 4.0), specifically, 
2.38. To form the final result value, the Cortex-M4 shifts the internal significand to 
the right 1 place to form a new significand of 1.19, and increments the exponent (then 
0) to 1, and forms the result as

 2.38 = −10 × 21 × 1.19

This is referred to as post-normalization and is all done internal to the proces-
sor—it’s invisible to the user. Once the computed result is normalized, the guard and 
sticky bits can be generated. Similarly, in the case of an effective subtraction, it is 
possible for the upper bits to cancel out, leaving a string of zeros in the most signifi-
cant bit positions. An effective subtraction is a subtraction operation on like signed 
operands, that is,

 (+1.0) – (+0.45) or (−5.3) – (−2.1),

or an addition of unlike signed operands, such as

 (+1.0) + (−0.45) or (+5.3) + (−2.1).
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Any summation operation that produces a result closer to 0 is an effective 
subtraction.

EXAMPLE 10.11

Consider in this decimal example

 1.254675 × 106 – 1.254533 × 106 = 1.42 × 102

Most of the upper digits cancel out, leaving only a value with an order of magni-
tude of 2 when the original operands were order of magnitude 6. This may occur 
when the exponents of the two operands in an effective subtraction are equal or 
differ by 1. The same situation occurs for floating-point, requiring the resulting 
significand to be left shifted until a 1 appears in the integer bit of the result, and 
the exponent must be decremented accordingly.

EXAMPLE 10.12

Add 0x3F9CE3BD and 0xBF9CD35B.

soLuTion

Let OpA be 0x3F9CE3BD (1.2257) and OpB be 0xBF9CD35B (−1.2252). If the 
value in register s3 is OpA and register s4 contains OpB, and these are added in 
the FPU with the instruction

 VADD.F32 s5, s3, s4

the result in register s5 will be 0x3A031000 (4.9996 × 10−4, the closest representa-
tion in single-precision to 5.0 × 10−4). Notice the exponent has been adjusted so 
the resulting significand is in the range [1.0, 2.0), as we saw with the multiplication 
and decimal examples above. Table 10.9 shows this process. The two operands 
are normalized (the leading binary bit is a 1). When subtracted, the upper bits 
cancel, leaving a string of zeros before the first 1. To normalize the significand, we 
shift it left until the most significant bit is a 1. The number of shift positions is 11, 
since the number of leading zeros is 11. To generate the final exponent, the initial 
exponent (0x7F) is decremented by 11, resulting in the final exponent of 0x74. The 

TABLE 10.9
Internal Values for Example 10.12

Exponent Significand

OpA (Addend) 01111111 100111001110001110111100
OpA (Addend) 01111111 100011001101001101011011
Sum (pre-normalized) 01111111 000000000001000001100010
Post-normalized sum 01110100 100000110001000000000000

Result sum − RNE 01110100 100000110001000000000000

Result sum − RP 01110100 100000110001000000000000

Result sum − RM 01110100 100000110001000000000000

Result sum − RZ 01110100 100000110001000000000000
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final result in single-precision format is 0x3A031000. Verify for yourself that the 
four results in binary in Table 10.9 are correct.

When a result is computed and the exponent is incremented or decremented, it may 
result in an overflow or underflow condition.

EXAMPLE 10.13

Multiply 0x3F800001 by 0x7F7FFFFE in each rounding mode.

soLuTion

In this example, the rounding of the internal infinitely precise product results in an 
overflow of the significand, and the exponent is incremented in the normalization 
of the final significand. When the exponent is incremented, it becomes too large 
for the single-precision format, and the final product overflows.

In Table 10.10, the OpA value is the multiplier and the OpB value is the mul-
tiplicand. Only two bits are set in the multiplier—OpA[0] and OpA[23] so there 
will only be two partial products to be summed. The infinitely precise product is 
all ones, except the final bit, and the L, G, and S rounding bits are each one. In the 
roundTiesToEven and roundTowardPositive rounding modes, this causes a rounding 
increment, which is done by adding a one to the bit in the L position. When the 
infinitely precise product is incremented, the resulting internal product is

 10.0000000000000000000000011111111111111111111110

which is greater than 2.0, as shown in the line Incremented product in Table 10.10. 
To normalize this significand to the range [1.0, 2.0), it is shifted right one place and 
the exponent is incremented by one. Only the upper 24 bits are returned; the lower 
bits, which contribute to the rounding determination, are discarded. The exponent 
before the increment is 0xFE, the largest normal exponent. When incremented, the 
resulting exponent is 0xFF, which is too large to be represented in single-precision, 
and an infinity is returned. In the roundTowardNegative and roundTowardZero 
rounding modes the increment is not required, and the pre-rounded product is 
normalized and within the bounds of single-precision range.

It is also possible to round out of an underflow condition. Recall that the Cortex-M4 
will signal underflow if the intermediate result is below the minimum normal range 
and imprecise, even if rounding would return the minimum normal value.

EXAMPLE 10.14

Multiply 0x3F000001 and 0x00FFFFFF in each rounding mode.

soLuTion

In this example, the two significands are exactly the same as in the previous 
example, resulting in the same infinitely precise product and rounding conditions. 
As we saw in the previous example, in the roundTiesToEven and roundToward-
Positive rounding modes this causes a rounding increment. In this case the expo-
nent before the rounding was 0x00, one less than is representable by a normal 
value. When the infinitely precise product is incremented, the resulting internal 
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product is again 2.0, and the normalization results in a new exponent of 0x01, the 
smallest exponent for normal numbers. The result for the roundTiesToEven and 
roundTowardPositive is the smallest normal number, 0x00800000, and underflow 
is signaled with IXC. However, for roundTowardNegative and roundTowardZero, 
no increment is required and the result is 0x007FFFFF, in the subnormal range, 
and UFC and IXC are signaled.

10.6 EXERCISES

 1. For each rounding mode, show the resulting value given the sign, exponent, 
fraction, guard, and sticky bit in the cases below.

Rounding Mode Sign Exponent Fraction G bit S bit

0 011111111 11111111111111111111111 1 0

roundTiesToEven

roundTowardPositive

roundTowardNegative

roundTowardZero

1 000000000 11111111111111111111111 0 1

roundTiesToEven

roundTowardPositive

roundTowardNegative

roundTowardZero

0 11111110 11111111111111111111111 1 1

roundTiesToEven

roundTowardPositive

roundTowardNegative

roundTowardZero

1 11111110 01111111111111111111110 1 0

roundTiesToEven

roundTowardPositive

roundTowardNegative

roundTowardZero

 2. Rework Example 10.1 with the following values for OpB. For each, generate 
the product rounded for each of the four rounding modes:

 a. 0xc4900000
 b. 0xc4800000
 c. 0xc4b00000
 d. 0xc4c00000
 e. 0x34900000
 f. 0x34800000
 g. 0x34b00000
 h. 0x34c00000
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 3. Complete the following table for the given operands and operations, show-
ing the result and the exception status bits resulting from each operation. 
Assume the multiply-accumulate operations are fused.

Operation Operand A Operand B Operand C Result
Exception 
Bit(s) set

A + B 0xFF800000 0x7F800000 -

A * B 0x80000000 0x7F800000 -

A – B 0xFF800000 0xFF800001 -

A/B 0x7FC00011 0x00000000 -

A/B 0xFF800000 0xFF800000 -

A * B 0x10500000 0x02000000 -

A * B 0x01800000 0x3E7FFFFF -

A * B 0x3E7F0000 0x02000000 -

(A * B) + C 0x80000000 0x00800000 0x7FB60004

(A * B) + C 0x3F800000 0x7F800000 0xFF800000

(A * B) + C 0x6943FFFF 0x71000000 0xFF800000

 4. Write a program in a high-level language to input two single-precision val-
ues and add, subtract, multiply and divide the values. In this Exercise use 
the default rounding mode. Test your program with various floating-point 
values.

 5. Using routines available in your high-level language, perform each of 
the computations in each of the four rounding modes. In C, you can use 
the floating-point environment by including <fenv.h> and changing the 
rounding mode by the function fsetround(RMODE), where RMODE is 
one of

FE_DOWNWARD
FE_TONEAREST
FE_TOWARDZERO
FE_UPWARD

   Test your program with input values, modifying the lower bits in the 
operands to see how the result differs for the four rounding modes. For 
example, use 0x3f800001 and 0xbfc00000. What differences did you 
notice in the results for the four rounding modes?

 6. Give 3 values that will hold to the distributive law and 3 which will not.

 7. Is it is possible to have cancelation in an effective subtraction operation and 
have a guard and sticky bit? If so, show an example. If not, explain why.

 8. Demonstrate that the distributive law can fail to hold for floating-point 
values.
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 9. Redo Example 10.4 using 0x3F800003 as the multiplier.

 10. Show that 36! generates an overflow condition.

 11. Demonstrate a case in which a multiply operation results in a normal value 
for the RZ and RN rounding modes, but overflows for the RNE and RP 
rounding modes.
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Floating-Point Data-
Processing Instructions

11.1 INTRODUCTION

Floating-point operations are not unlike their integer counterparts. The basic arithme-
tic operations are supported, such as add and subtract, multiply and multiply–accu-
mulate, and divide. Three are unique, however, and they are negate, absolute value, 
and square root. You will also notice that the logic operations are missing. There are 
no floating-point Boolean instructions, and no bit manipulation instructions. For these 
operations, should you need them, integer instructions may be used once the floating-
point operand is moved into an ARM register with a VMOV instruction.

Floating-point performance is measured in flops, or floating-point operations per 
second. Only arithmetic operations are included in the flops calculation, and this 
measurement has been a fundamental component in comparing floating-point units 
for decades. Even though the flops measurement is concerned only with arithmetic 
operations, real floating-point performance is a combination of data transfer capa-
bility and data processing. It’s important to do the arithmetic fast, but if the data 
cannot be loaded and stored as fast as the arithmetic, the performance suffers. We 
have already considered the varied options for moving data between memory and the 
FPU, and in Chapter 13 another means, the load and store multiple instructions, will 
be introduced. In this chapter we look at the arithmetic, and non-arithmetic, instruc-
tions available in the Cortex-M4 for floating-point data. This chapter begins with a 
discussion of the status bits, and then considers the basic instructions in the ARM 
v7-M floating-point extension instructions.

11.2  FLOATING-POINT DATA-PROCESSING 
INSTRUCTION SYNTAX

Floating-point data-processing instructions have a consistent syntax that makes it easy 
to use them without having to consult a reference manual. The syntax is shown below.

 V<operation>{cond}.F32 {<dest>}, <src1>, <src2>

All floating-point data processing instructions in the Cortex-M4 operate on 
single- precision data and write a single-precision result, so the only data format is 
F32 (which can be abbreviated .F). The src1, src2, and dest registers can be any of 
the single-precision registers, s0 to s31, in the register file. There are no restrictions 

11
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on the use of registers. Also, the src1, src2, and dest registers can be the same regis-
ter, different registers, or any two can be the same register. For example, to square a 
value in register s9 and place the result in register s0, the following multiply instruc-
tion could be used:

 VMUL.F32 s0, s9, s9

If the value in register s9 is no longer necessary, it could be overwritten by replac-
ing register s0 as the destination register with register s9.

11.3 INSTRUCTION SUMMARY

Table 11.1 shows the floating-point data-processing instructions available in the 
Cortex-M4.

TABLE 11.1
Cortex-M4 Floating-Point Instruction Summary

Operation Format Operation

Absolute value VABS{cond}.F32 <Sd>, <Sm> Sd = |Sm|

Negate VNEG{cond}.F32 <Sd>, <Sm> Sd = −1 * Sn

Addition VADD{cond}.F32 <Sd>, <Sn>, <Sm> Sd = Sn + Sm

Subtract VSUB{cond}.F32 <Sd>, <Sn>, <Sm> Sd = Sn − Sm

Multiply VMUL{cond}.F32 <Sd>, <Sn>, <Sm> Sd = Sn * Sm

Negate Multiply VNMUL{cond}.F32 <Sd>, <Sn>, <Sm> Sd = −1 * (Sn * Sm)

Chained 
Multiply–accumulate

VMLA{cond}.F32 <Sd>, <Sn>, <Sm> Sd = Sd + (Sn * Sm)

Chained 
Multiply–Subtract

VMLS{cond}.F32 <Sd>, <Sn>, <Sm> Sd = Sd + (−1 * (Sn * Sm))

Chained Negate 
Multiply–accumulate

VNMLA{cond}.F32 <Sd>, <Sn>, <Sm> Sd = (−1 * Sd) + (−1 * (Sn * 
Sm))

Chained Negate 
Multiply–Subtract

VNMLS{cond}.F32 <Sd>, <Sn>, <Sm> Sd = (−1 * Sd) + (Sn * Sm)

Fused 
Multiply–accumulate

VFMA{cond}.F32 <Sd>, <Sn>, <Sm> Sd = Sd + (Sn * Sm)

Fused 
Multiply–Subtract

VFMS{cond}.F32 <Sd>, <Sn>, <Sm> Sd = Sd + ((−1 * Sn) * Sm)

Fused Negate 
Multiply–accumulate

VFNMA{cond}.F32 <Sd>, <Sn>, <Sm> Sd = (−1 * Sd) + (Sn * Sm)

Fused Negate 
Multiply–Subtract

VFNMS{cond}.F32 <Sd>, <Sn>, <Sm> Sd = (−1 * Sd) + ((−1 * Sn) * 
Sm)

Comparison VCMP{E}{cond}.F32 <Sd>, <Sm>
VCMP{E}{cond}.F32 <Sd>, #0.0

Sets FPSCR flags based on 
comparison of Sd and Sm or 
Sd and 0.0

Division VDIV{cond}.F32 <Sd>, <Sn>, <Sm> Sd = Sn/Sm

Square root VSQRT{cond} <Sd>, <Sm> Sd = Sqrt(Sm)
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11.4 FLAGS AND THEIR USE

As we saw in Chapter 2, the various Program Status Registers hold the flags and 
control fields for the integer instructions. Recall from Chapter 9 how the Floating-
Point Status and Control Register, the FPSCR, performs the same function for the 
FPU. One difference between the integer handling of the flags and that of the FPU 
is in the operations that can set the flags. Only the two compare instructions, VCMP 
and VCMPE, can set the flags for the FPU. None of the arithmetic operations are 
capable of setting flags. In other words, there is no S variant for floating-point 
instructions as with integer instructions. As a result, you will see that the flags are 
much simpler in the FPU than their integer counterparts, however, the C and V flags 
are redefined to indicate one or both operands in the comparison is a NaN. The use 
of the V flag in integer operations to indicate a format overflow is not necessary in 
floating-point.

11.4.1 CoMpARison insTRuCTions

The VCMP and VCMPE instructions perform a subtraction of the second operand 
from the first and record the flag information, but not the result. The two instruc-
tions differ in their handling of NaNs. The VCMPE instruction will set the Invalid 
Operation flag if either of the operands is a NaN, while the VCMP instruction 
does so only when one or more operands are sNaNs. The check for NaNs is done 
first, and if neither operand is a NaN, the comparison is made between the two 
operands. As we mentioned in Chapter 9, infinities are treated in an affine sense, 
that is,

 −infinity < all finite numbers < +infinity

which is what we would expect. If we compare a normal number and a positive infin-
ity, we expect the comparison to show the infinity is greater than the normal number. 
Likewise, a comparison of a negative infinity with any value, other than a negative 
infinity or a NaN, will show the negative infinity is less than the other operand.

The VCMP and VCMPE instructions may be used to compare two values or com-
pare one value with zero. The format of the instruction is

 VCMP{E}{<cond>}.F32 <Sd>, <Sm>
 VCMP{E}{<cond>}.F32 <Sd>, #0.0

The VCMP instruction will set the Invalid Operand status bit (IOC) if either operand 
is a sNaN. The VCMPE instruction sets the IOC if either operand is a NaN, whether 
the NaN is signaling or quiet. The flags are set according to Table 11.2.

11.4.2 The n fLAg

The N flag is set only when the first operand is numerically smaller than the second 
operand. Since an overflow is recorded in the OFC status bit, there is no need for the 
N flag in detecting an overflow condition as in integer arithmetic.
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11.4.3 The Z fLAg

The Z flag is set only when the first and second operands are not NaN and compare 
exactly. There is one exception to this rule, and that involves zeros. The positive zero 
and negative zero will compare equal. That is, when both operands are zero, the 
signs of the two zeros are ignored.

11.4.4 The C fLAg

The C flag is set in two cases. The first is when the first operand is equal to or larger 
than the second operand, and the second is when either operand is NaN.

11.4.5 The V fLAg

The V flag is set only when a comparison is unordered, that is, when a NaN is one or 
both of the comparison operands.

EXAMPLE 11.1

The comparisons in Table 11.3 show the operation of the Cortex-M4 compare 
instructions.

TABLE 11.2
Floating-Point Status Flags

Comparison Result N Z C V

Less than 1 0 0 0

Equal 0 1 1 0

Greater than 0 0 1 0

Unordered 0 0 1 1

TABLE 11.3
Example Compare Operations and Status Flag Settings

Operands Flags

NotesSd Sm N Z C V

0x3f800001 0x3f800000 0 0 1 0 Sd > Sm
0x3f800000 0x3f800000 0 1 1 0 Sd = = Sm
0x3f800000 0x3f800001 1 0 0 0 Sd < Sm
0xcfffffff 0x3f800000 1 0 0 0 Sd < Sm
0x7fc00000 0x3f800000 0 0 1 1 Sd is qNaN
0x40000000 0x7f800001 0 0 1 1 Sm is sNaN
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11.4.6 pRediCATed insTRuCTions, oR The use of The fLAgs

The flags in the FPU may be accessed by a read of the FPSCR and tested in an inte-
ger register. The most common use for these flags is to enable predicated operation, 
as was covered in Chapter 8. Recall that the flag bits used in the determination of 
whether the predicate is satisfied are the flag bits in the APSR. To use the FPU flags, 
a VMRS instruction must be executed to move the flags in the FPSCR to the APSR. 
The format of the VMRS is

 VMRS{<cond>} <Rt>, FPSCR

The destination can be any ARM register, r0 to r14, but r13 and r14 are not rea-
sonable choices. To replace the NZCV flag bits in the APSR the <Rt> field would 
contain “APSR_nzcv.” This operation transfers the FPSCR flags to the APSR, and 
any predicated instruction will be executed or skipped based on the FPSCR flags 
until these flags are changed by any of the operations covered in Chapter 7. When 
using the flags, the predicates are the same as those for integer operations, as seen in 
Chapter 8 (see Table 8.1).

EXAMPLE 11.2

Transfer the flag bits in the FPSCR to the APSR.

soLuTion

The transfer is made with a VMRS instruction, with the destination APSR_nzcv:

 VMRS.F32 APSR_nzcv, FPSCR

VMRS is what is known as a serializing instruction. It must wait until all other 
instructions have completed and the register file is updated to ensure any instruction 
that could alter the flag bits has completed. Other serializing instructions include the 
counterpart instruction, VMSR, which overwrites the FPSCR with the contents of 
an ARM register. This instruction is serializing to ensure changes to the FPSCR do 
not affect instructions that were issued before the VMSR but have not yet completed.

To modify the FPSCR, for example, to change the rounding mode, the new value 
must be read from memory or the new rounding mode inserted into the current 
FPSCR value. To change the current FPSCR value, first move it into an ARM regis-
ter, modify the ARM register, and then use the VMSR instruction to move the new 
value back to the FPSCR. The modification is done using the integer Boolean opera-
tions. The format for the VMSR instruction is

 VMSR{<cond>} FPSCR, <Rt> 

EXAMPLE 11.3

Set the rounding mode to roundTowardZero.
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soLuTion

The rounding mode bits are FPSCR[22:23], and the patterns for the rounding mode 
selection was shown in Chapter 9. To set the rounding mode to roundTowardZero, 
the bits [22:23] must be set to 0b11. Modifying the FPSCR is done using integer 
bit manipulation instructions, but the FPSCR must first be copied to an ARM reg-
ister by the VMRS instruction. The bits can be ORed in using an ORR immediate 
instruction, and the new FPSCR written to the FPU with the VMSR instruction. The 
code sequence is below.

 VMRS r2, FPSCR ; copy the FPSCR to r2
 ORR r2, r2, #0x00c00000 ; force bits [22:23] to 0b11
 VMSR FPSCR, r2 ; copy new FPSCR to FPU

After running this code, Figure 11.1 shows the register window in the Keil tools 
with the change in the FPSCR.

To set the rounding mode back to RN, the following code can be used:

 VMRS r2, FPSCR ; copy the FPSCR to r2
 BIC r2, r2, #0x00c00000 ; clear bits [22:23]
 VMSR FPSCR, r2 ; copy new FPSCR to FPU

EXAMPLE 11.4

Find the largest value in four FPU registers.

soLuTion

Assume registers s4, s5, s6, and s7 contain four single-precision values. The 
VCMP.F32 instruction performs the compares and sets the flags in the FPSCR. 
These flags are moved to the APSR with the VMRS instruction targeting 

FIGURE 11.1 FPSCR contents after the rounding mode change.
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APSR_nzcv as the destination; the remaining bits in the APSR are unchanged. 
This allows for predicated operations to be performed based on the latest float-
ing-point comparison.

 ; Find the largest value in four FPU registers
 ; s4-s7. Use register s8 as the largest value register
 ; First, compare register s4 to s5, and copy the largest to s8.
 ; Then compare s6 to s8, and copy s6 to s8 if it is
 ; larger. Finally, compare s7 to s8, copying s7 to s8 if
 ; it is the larger.

 ; Set up the contents of registers s4-s7 using VLDR
 ; pseudo-instruction
 VLDR.F32 s4, = 45.78e5
 VLDR.F32 s5, = -0.034
 VLDR.F32 s6, = 1.25e8
 VLDR.F32 s7, = -3.5e10

 ; The comparisons use the VCMP instruction, and the status
 ; bits copied to the APSR. Predicated operations perform
 ; the copies

 ; First, compare s4 and s5, and copy the largest
 ; to s8. The GT is true if the compare is signed >,
 ; and the LE is true if the compare is signed < =.
 VCMP.F32 s4, s5 ; compare s4 and s5
 VMRS APSR_nzcv, FPSCR ; copy only the flags to APSR
 VMOVGT.F32 s8, s4 ; copy s4 to s8 if larger than s5
 VMOVLE.F32 s8, s5 ; copy s5 if larger or equal to s4

 ; Next, compare s6 with the new largest. This time only
 ; move s6 if s6 is greater than s8.
 VCMP.F32 s6, s8 ; compare s6 and the new larger
 VMRS APSR_nzcv, FPSCR ; copy only the flags to APSR
 VMOVGT.F32 s8, s6 ; copy s6 to s8 if new largest

 ; Finally, compare s7 with the largest. As above, only
 ; move s7 if it is greater than s8.
 VCMP.F32 s7, s8 ; compare s6 and the new larger
 VMRS APSR_nzcv, FPSCR ; copy only the flags to APSR
 VMOVGT.F32 s8, s7 ; copy s7 to s8 if new largest

 ; The largest of the 4 registers is now in register s8.

Exit B Exit

11.4.7 A WoRd ABouT The iT insTRuCTion

The IT instruction was introduced in Chapter 8. Recall that ARM instructions are 
predicated, with the AL (Always) predicate the default case, used when an instruc-
tion is to be executed regardless of the status bits in the APSR. When execution 
is to be determined by the status bits, as in the example above, a field mnemonic 
is appended to the instruction, as in VMOVGT seen above. This is true in the 
ARM instruction set, but not in the Thumb-2 instruction set—this functionality 
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is available through the IT instruction. In the disassembly file, the Keil assembler 
inserted an IT instruction before the VMOVGT and the VMOVLE instructions as 
shown below.

0x00000034 BFCC ITE GT
 63: VMOVGT.F32 s8, s4 ; copy s4 to s8 if larger than s5
0x00000036 EEB04A42 VMOVGT.F32 s8,s4
 64: VMOVLE.F32 s8, s5 ; copy s5 if larger or equal to s4
0x0000003A EEB04A62 VMOVLE.F32 s8,s5

Since the GT and LE conditions are opposites, that is, the pair covers all condi-
tions, only a single IT block is needed.

The Keil tools allow for the programmer to write the assembly code as if the 
instructions are individually predicated, as in the example above. The assembler 
determines when an IT block is needed, and how many predicated instructions may 
be part of the IT block. Each IT block can predicate from one to four instructions. It 
is a very powerful tool and should be used when the result of a compare operation is 
used to select only a small number of operations.

11.5 TWO SPECIAL MODES

Early in the development of ARM FPUs, two modes were introduced which simpli-
fied the design of the FPU, enabling a faster and smaller design, but which were not 
fully IEEE 754-1985 compatible. These two modes are Flush-to-Zero and Default 
NaN. Both are enabled or disabled by bits in the FPSCR—the Flush-to-Zero mode 
is enabled by setting the FZ bit, bit [24], and the Default NaN mode is enabled by 
setting the DN bit, bit [25].

11.5.1 fLush-To-ZeRo Mode

When the Cortex-M4 is in Flush-to-Zero mode, all subnormal operands are treated 
as zeros with the sign bit retained, and any result in the subnormal range before 
rounding is returned as zero with the sign of the computed subnormal result. When 
an input subnormal operand is treated as a zero, the Input Denormal exception bit 
(IDC, bit [7] of the FPSCR) is set, but the Inexact status bit is not set. However, when 
a subnormal result is detected, the Underflow exception (UFC, bit [3] of the FPSCR) 
is set, but the Inexact status bit is not set.

Note that Flush-to-Zero mode is not compatible with the IEEE 754-2008 speci-
fication, which states that subnormal values must be computed faithfully. When 
would you consider using Flush-to-Zero mode? In early ARM FPUs, a subnormal 
input or a result in the subnormal range would cause a trap to library code to com-
pute the operation, resulting in potentially thousands of cycles to process the opera-
tion faithfully. Unlike these older FPUs, the Cortex-M4 computes all operations 
with the same number of clock cycles, even when subnormal operands are involved 
or the result is in the subnormal range. It is unlikely you will ever need to enable 
the Flush-to-Zero mode.
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11.5.2 defAuLT nAn

When in Default NaN mode, the Cortex-M4 treats all NaNs as if they were the 
default NaN. Recall that the IEEE 754-2008 specification suggests that a NaN oper-
and to an operation should be returned unchanged, that is, the payload, as we dis-
cussed in Chapter 9, should be returned as the result. In Default NaN mode this is not 
the case. Any input NaN results in the default NaN, shown in Table 9.1, regardless of 
the payload of any of the input NaNs. As with the Flush-to-Zero mode above, it was 
the case in the earlier FPUs that NaNs would cause a trap to library code to preserve 
the payload according to the recommended IEEE 754-2008 behavior. However, the 
Cortex-M4 handles NaNs according to the recommendations of the standard without 
library code, so it is unlikely you will ever need to enable the Default NaN mode.

11.6 NON-ARITHMETIC INSTRUCTIONS

Two instructions are referred to as “non-arithmetic” even though they perform arith-
metic operations. They are Absolute Value (VABS) and Negate (VNEG). They dif-
fer from the other data-processing instructions in that they do not signal an Invalid 
Operation if the operand is a signaling NaN.

11.6.1 ABsoLuTe VALue

As you recall, floating-point values are stored in sign-magnitude form, that is, a 
separate sign bit indicates the sign of the unsigned magnitude. So to make a floating-
point value positive simply requires setting the sign bit to zero. This is true for nor-
mal and subnormal values, zeros, infinities and NaNs. Contrast this with changing 
the sign of a two’s complement number and you will see how easy it is in floating-
point. The format of the VABS instruction is shown below. While it is a two-operand 
instruction, it is not uncommon to overwrite the source if only the absolute value of 
the operand will be used.

 VABS{cond}.F32 <Sd>, <Sm>

11.6.2 negATe

The VNEG operation simply flips the sign bit of the source operand and writes the 
modified result to the destination register. This is true of zero, infinity, and NaN 
results, as well as all normal and subnormal results. The format of the VNEG instruc-
tion is shown below. Like VABS above, it is a two-operand instruction, and it is not 
uncommon to overwrite the source if only the negative of the operand will be used.

 VNEG{cond}.F32 <Sd>, <Sm> 

EXAMPLE 11.5

The result of executing VABS and VNEG on the following values is shown in 
Table 11.4.
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11.7 ARITHMETIC INSTRUCTIONS

Most of the data-processing instructions are arithmetic operations, that is, they will 
set exception status bits for signaling NaNs. At this point we’ll spend some time 
looking at the operations in some detail.

11.7.1 AddiTion/suBTRACTion

The addition and subtraction instructions have the following format:

 VADD{cond}.F32 <Sd>, <Sn>, <Sm>
 VSUB{cond}.F32 <Sd>, <Sn>, <Sm> 

Recall in Chapter 10 how addition and subtraction can result in unexpected values 
due to rounding and cancelation, and when operands are infinities and NaNs. For 
normal and subnormal values, the instructions are straightforward in their use, with 
any register available as a source or destination register. For example, to double a 
value in a register, the instruction

 VADD.F32 s5, s5, s5

would do so for normal and subnormal values, and avoid having to store a factor of 
2.0 in a register.

It is possible with the VADD and VSUB instructions to incur all of the exceptions 
except divide-by-zero. It is not difficult to see how these operations could overflow 
and underflow, and it is common to return an inexact result. A signaling NaN can 
cause an Invalid Operation exception, as can some operations with infinities. Table 
11.5 shows how VADD and VSUB behave with the five classes of encodings. In this 
table, Operand A and Operand B may be either input operand. The notes are directed 
to the VADD instruction, but also apply to the VSUB when the signs of the operands 
are different.

TABLE 11.4
Examples of VABS and VNEG

Input Value VABS VNEG Note

0X5FEC43D1 0X5FEC43D1 0XDFEC43D1 Normal value, sign bit modified
0x80000000 0x00000000 0x00000000 Negative zero becomes positive zero for both 

operations
0x00000000 0x00000000 0x80000000 Positive zero becomes negative after VNEG
0xFF800055 0x7F800055 0x7F800055 Signaling NaN, only the sign bit is changed, 

and IOC is not set
0x800000FF 0x000000FF 0x000000FF Subnormal sign changed, and UFC is not set
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EXAMPLE 11.6

Select three pairs of operands that when added using a VADD instruction result in a

 1. Normal value
 2. Subnormal value
 3. Infinity

soLuTion

 1. The two operands could be 0x3F800000 (+1.0). The sum would be 
0x40000000 (2.0).

 2. To return a subnormal with two normal input operands, cancelation 
would have to take place. If the two input operands are 0x00800001 and 
0x80800000, the result would be 0x00000001, the minimum subnormal 
value (1.401 × 10−45).

 3. To return an infinity, the rounding mode would have to be either RNE or 
RP, for two positive values, or RNE or RM, for two negative values. As an 
example, if the rounding mode was RNE, the operands 0x7F7FFFFF and 
0x7F700001 would overflow and return an infinity. Likewise, the operands 
0xFF7FFFFF and 0xFF700001, would return a negative infinity.

EXAMPLE 11.7

Select three pairs of operands that when subtracted using a VSUB instruction 
results in

TABLE 11.5
Floating-Point Addition and Subtraction Instructions Operand and 
Exception Table

Operand A Operand B Result
Possible 

Exceptions Notes

Normal Normal Normal, Subnormal, 
Infinity

OFC, UFC, 
IXC

Normal + Normal can overflow, 
resulting in an infinity or max 
normal, and if opposite signs, 
can result in a subnormal value

Normal Subnormal Normal, Subnormal OFC, UFC, 
IXC

If opposite signs a subnormal 
result is possible, otherwise, a 
normal would result

Normal Infinity Infinity None

Normal Zero Normal None

Subnormal Subnormal Normal, Subnormal, 
Zero

UFC, IXC

Subnormal Infinity Infinity None

Subnormal Zero Subnormal None

Infinity Infinity Infinity None

Infinity Zero Infinity None

NaN Anything NaN IOC If a signaling NaN, IOC is set
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 1. Normal value
 2. Subnormal value
 3. Infinity

soLuTion

 1. The two operands could be 0x3F800000 (+1.0) and 0xBF800000 (−1.0). 
The sum would be 0x40000000 (2.0).

 2. To return a subnormal with 2 normal operands, cancelation would have to 
take place. If the two input operands are 0x00800001 and 0x00800000, the 
result would be 0x00000001, the minimum subnormal value (1.401 × 10−45).

 3. To return an infinity, if the rounding mode was RNE, the operands 0xFF7FFFFF 
and 0x7F700001 would overflow and return a negative infinity. Likewise, 
the operands 0x7F7FFFFF and 0xFF700001 would return a positive infinity.

11.7.2 MuLTipLiCATion And MuLTipLy–ACCuMuLATe

The Cortex-M4 has a rich variety of multiplication and multiply–accumulate opera-
tions, but some can be a bit confusing. Two varieties of multiply–accumulate instruc-
tions, chained and fused, are available with options to negate the addend and the 
product. In early ARM FPUs, only the chained operations were available. For exam-
ple, the chained VNMLA instruction produces a result equivalent to a sequence of 
multiply and add operations. If the instruction is

 VNMLA.F32 s1, s2, s3

an equivalent sequence of instructions producing the same result would be

 VMUL.F32 s2, s2, s3
 VNEG.F32 s2, s2
 VADD.F32 s1, s1, s2

The advantage is in the single instruction and in compliance to the IEEE 754-
1985 standard. Before the introduction of the IEEE 754-2008 standard, no multiply–
accumulate could be compliant without rounding the product before the addition of 
the addend. The chained operations in the Cortex-M4 are a legacy of earlier ARM 
FPUs that were IEEE 754-1985 standard compliant by performing this rounding step 
on the product before adding in the addend. With the introduction of the IEEE 754-
2008 standard a new set of instructions, referred to as fused multiply–accumulate 
instructions, were made part of the standard. These instructions compute the product 
equivalently to the infinitely precise product, and this value, unrounded, is added to 
the addend. The final sum is rounded to the destination precision. The fused opera-
tions are more accurate because they avoid the rounding of the intermediate product, 
and they are preferred to the chained operations. In some cases of legacy floating-
point code, the chained operations may be used to exactly reproduce earlier IEEE 
754-1985 standard results, while the fused operations may give different results.

We will first consider the multiply instructions, which include VMUL and 
VNMUL. Next we will consider the chained multiply–accumulate operations, and 
finally the fused multiply–accumulate operations.
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11.7.2.1 Multiplication and Negate Multiplication
Two multiply instructions are available in the Cortex-M4. VMUL multiplies two 
operands, writing the result in a destination register. VNMUL first negates the sec-
ond of the two operands before the multiplication. The formats of the two instruc-
tions are shown below.

 VMUL{cond}.F32 <Sd>, <Sn>, <Sm> 
 VNMUL{cond}.F32 <Sd>, <Sn>, <Sm> 

Any of the floating-point registers can be a source and destination register. As an 
example, the following instruction

 VMUL.F32 s12, s12, s12

would square a normal value and leave the square in the register. Similarly, if the 
algorithm called for the negative of the square of a normal value, the instruction

 VNMUL.F32 s12, s12, s12

would perform the operation with a single instruction.
The VMUL and VNMUL instructions can generate all of the exceptions apart 

from the divide-by-zero exception. Overflow and underflow are common, as mul-
tiplication can create values both too large and too small to fit in a finite data type. 
Inexact is also a common consequence of floating-point multiplication. Recall that 
the Inexact status bit is set whenever an overflow is detected.

Table 11.6 shows how VMUL and VNMUL instructions behave with the five 
classes of encodings. In this table, Operand A and Operand B may be either input 
operand.

11.7.2.2 Chained Multiply–Accumulate
There are four chained multiply–accumulate operations, providing options to sub-
tract rather than add, and an option to negate the product. The formats of the instruc-
tions are shown below.

 VMLA{cond}.F32 <Sd>, <Sn>, <Sm>
 VMLS{cond}.F32 <Sd>, <Sn>, <Sm>
 VNMLA{cond}.F32 <Sd>, <Sn>, <Sm>
 VNMLS{cond}.F32 <Sd>, <Sn>, <Sm>

Each of these instructions can be represented by an equivalent set of operations, 
as shown in Table 11.7. The possible exceptions and default results are the same 
as those for the component operations discussed above. For example, in a VMLA 
operation in the RNE rounding mode, if the Sn and Sm operands are two very large 
normal values, which, when multiplied will overflow to a positive infinity, and the Sd 
operand is a normal value, the result of the VMLA will be the same as an addition of 
a normal value and a positive infinity, which is a positive infinity. In understanding 
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the behavior of chained operations, the individual component operations are consid-
ered in order separately of the others, and the final result of the chained instructions 
is the result of the last of the component operations (Table 11.7).

EXAMPLE 11.8

Execute each of VMLA, VMLS, VNMLA, and VNMLS instructions with the follow-
ing operands:

Sn = −435.792
Sm = 10.0
Sd = 5832.553

soLuTion

Using a tool such as the conversion tools at (http://babbage.cs.qc.cuny.edu/IEEE-
754.old/Decimal.html), the single-precision values for Sn, Sm, and Sd are:

Sn: 0xC3D9E560
Sm: 0x41200000
Sd: 0x45B6446D

TABLE 11.6
Floating-Point Multiply Instructions Operand and Exception Table

Operand A Operand B Result
Possible 

Exceptions Notes

Normal Normal Normal, 
Subnormal, 
Infinity, Zero

OFC, UFC, 
and IXC

Normal * Normal can overflow, 
resulting in an infinity or max 
normal, or result in a subnormal 
value or zero

Normal Subnormal Normal, 
Subnormal, 
Zero

UFC, IXC The result may be in the normal 
range, subnormal range, or 
underflow to a zero

Normal Zero Zero None As expected in zero arithmetic

Normal Infinity Infinity None As expected in infinity arithmetic

Subnormal Subnormal Zero UFC, IXC This case will always result in 
underflow, with a zero result and 
UFC and IXC status bits set

Subnormal Zero Zero None As expected in zero arithmetic

Subnormal Infinity Infinity None As expected in infinity arithmetic

Zero Zero Zero None As expected in zero arithmetic

Infinity Zero NaN IOC Invalid operation

Infinity Infinity Infinity None As expected in infinity arithmetic

NaN Anything NaN IOC If a signaling NaN, IOC is set, and 
SNaN input is quieted
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The following code implements the solution.

 ADR r1, MulAddTestData

 VLDR.F32 s0, [r1] ; Sn
 VLDR.F32 s1, [r1, #4] ; Sm
 VLDR.F32 s2, [r1, #8] ; Sd

 ; VMLA
 VMLA.F32 s2, s0, s1

 ; VMLS
 VLDR.F32 s2, [r1, #8] ; Reload Sd
 VMLS.F32 s2, s0, s1

 ; VNMLA
 VLDR.F32 s2, [r1, #8] ; Reload Sd
 VNMLA.F32 s2, s0, s1

 ; VNMLS
 VLDR.F32 s2, [r1, #8] ; Reload Sd
 VNMLS.F32 s2, s0, s1

 B Exit

 ALIGN
MulAddTestData
 DCD 0xC3D9E560 ; −435.792
 DCD 0x41200000 ; 10.0
 DCD 0x45B6446D ; 5832.553

TABLE 11.7
Chained Multiply-Accumulate Operations

Instruction Operation Equivalent Operations

VMLA Chained Multiply–accumulate
Sd = Sd + (Sn * Sm)

Temp = Round(Sn * Sm)
Sd = Round(Sd + Temp)

VMLS Chained Multiply Subtract
Sd + (−1 * ((Sn * Sm))

Temp = Round(Sn * Sm)
Temp = Negate(Temp)
Sd = Round(Sd + Temp)

VNMLA Chained Negate 
Multiply–accumulate

Sd = (−1 * Sd) + (−1 * (Sn * Sm))

Temp = Round(Sn * Sm)
Temp = Negate(Temp)
Temp2 = Negate(Sd)
Sd = Round(Temp2 + Temp)

VNMLS Chained Negate Multiply Subtract
Sd = (−1 * Sd) + (Sn * Sm)

Temp = Round(Sn * Sm)
Temp2 = Negate(Sd)
Sd = Round(Temp2 + Temp)
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When this code is run, the destination register s2 contains the following for 
each of the four operations:

 VMLA: s2 = 0x44B85444, which is 1474.633.
 VMLS: s2 = 0x461F39E4, which is 10,190.473
 VNMLA: s2 = 0xC4B85444, which is −1474.633
 VNMLS: s2 = 0xC61F39E4, which is −10,190.473

Confirm for yourself that the answers are correct for each of the four operations.

11.7.2.3 Fused Multiply–Accumulate
The Cortex-M4 implements a second set of multiply–accumulate operations that 
are referred to as fused. Unlike the chained operations discussed above, the fused 
operations do not round the product, but maintain the product in an infinitely pre-
cise, unrounded form. The addend is then added to the product. By eliminating the 
rounding of the product, the result may have greater accuracy. In most cases this will 
never be an issue, but in algorithms such as those used to compute transcendental 
functions, the accuracy of the fused operations enables writing library functions 
with lower error bounds compared to discrete or chained instructions.

The fused multiply–accumulate instructions have the formats shown below.

 VFMA{cond}.F32 <Sd>, <Sn>, <Sm>
 VFMS{cond}.F32 <Sd>, <Sn>, <Sm>
 VFNMA{cond}.F32 <Sd>, <Sn>, <Sm>
 VFNMS{cond}.F32 <Sd>, <Sn>, <Sm>

It is useful to consider these instructions, as we did the chained instructions above, 
as implementing a series of operations. The first thing to notice is the function of the 
two negate instructions differs from the chained operations. The chained instruc-
tion VNMLA instruction is analogous to the fused VFNMS instruction, while the 
chained VNMLS instruction is analogous to the fused VFNMA instruction. Table 
11.8 shows the instructions, the operations, and the equivalent operations.

EXAMPLE 11.9

Evaluate the accuracy of three random operands in the range (0,1.0) using both the 
VMLA and the VFMA instructions.

soLuTion

Consider these three operands (each is computed to full precision):

Sn: 0x3F34FE23 (0.707002818584442138671875)
Sm: 0x3E78EE2A (0.2430960237979888916015625)
Sd: 0x3F7F3DCA (0.99703657627105712890625)

The computed result of Sd + (Sn * Sm) (to 24 digits, the precision of our input 
operands) is 1.16890615028290589805237. The results are shown in Table 11.9.
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As you can see, the difference is one ulp in the final result, or 2−23. Not very much. 
In fact, the VMLA results differ from the full precision result by just over 5 × 10−6%, 
while the fused is only very slightly more accurate! Overall, the computations show 
very little difference between the two instructions; the computation for both instruc-
tions shows very high accuracy, and the use of fused over chained, in this example, 
has very little impact.

But this doesn’t tell the whole story. Some pathological cases exist which can 
return very different results. Take the following inputs as an example:

s0 = 0x3F800001 (1.0 + 2−23, or 1.0 + 1 ulp)
s1 = 0x3F800001
s2 = 0xBF800002 (−(1.0 + 2−22), or −(1.0 + 2 ulps))

When input to the chained VMLA instruction the result will be zero. The square 
of 0x3F800001 will result in a fraction with 1’s in the 20, 2−22, and 2−46 bit positions 
internal to the hardware. When rounded in RNE, the 2−46 contribution is dropped, 
leaving only 20 + 2−22, the same fraction as the 0xBF800002 operand. The VFMA 
does not round, so the 2−46 contribution is retained, and the result is 0x2880000, or 
2−46. This case shows a greater error when the inputs are changed just a bit. Consider 
these operands input to both operations:

TABLE 11.8
Fused Multiply–Accumulate Instructions Equivalent Operations

Instruction Operation Equivalent Operations

VFMA Fused Multiply–accumulate
Sd = Sd + (Sn * Sm)

Temp = (Sn * Sm)
Sd = Round(Sd + Temp)

VFMS Fused Multiply Subtract
Sd = Sd + ((−1 * Sn) * Sm)

Temp = Negate(Sn)
Temp = (Temp * Sm)
Sd = Round(Sd + Temp)

VFNMA Fused Negate 
Multiply–accumulate

Sd = (−1 * Sd) + (Sn * Sm)

Temp = (Sn * Sm)
Temp2 = Negate(Sd)
Sd = Round(Temp2 + Temp)

VFNMS Fused Negate Multiply Subtract
Sd = (−1 * Sd) + ((−1 * Sn) * Sm)

Temp = Negate(Sn)
Temp = (Temp * Sm)
Temp2 = Negate(Sd)
Sd = Round(Temp2 + Temp)

TABLE 11.9
Results of Example 11.9

Instruction
Cortex-M4 

Result (Hex) Cortex-M4 Result (Decimal)
Difference from the 

Computed Result (%)

VMLA 0x3F959EB8 1.16890621185302734375 0.00000527

VFMA 0x3F959EB7 1.16890609264373779296875 0.00000493
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  s0 = 0x3FC00001 (1.5 + 2−23, or 1.5 + 1 ulp)
  s1 = 0x3FC00001
  s2 = 0xC0100002 (−(2.25 + 2−22), or –(2.25 + 2 ulps))

The result of the VMLA will again be zero, but the VFMA returns 2−23 as the 
result. The answer to why this is so is left as an exercise.

One more situation is worth noting. When using the fused multiply–accumulate 
instructions, you don’t have to worry about exceptions generated by the multiply 
operation, because these will be reflected in the final result if they impact the final 
result. For example, consider the following inputs to the VMLA instruction:

  s0 = 0x7F000001 (just greater than ½ max normal)
  s1 = 0x40000000 (2.0)
  s2 = 0xFF7FFFFF (negative, and just under max normal)

If we execute the VMLA instruction:

 VMLA.F32 s2, s0, s1

the result is a positive infinity, and the OFC and IXC status bits are set. Why? The 
product of 0x7F000001 and 0x40000000 overflowed, and an infinity was substituted 
for the product, and input to the final addition. The infinity plus the very large nega-
tive value resulted in an infinity.

If the same inputs are made to the VFMA instruction:

 VFMA.F32 s2, s0, s1

the result is 0x74400000, and no exception status bits are set. Since the intermediate 
product is not evaluated for overflow but rather input with the extended range of the 
intermediate, infinitely precise value, it is not replaced with an infinity. The addition 
of the negative addend brings the sum back into the normal range.

11.7.3 diVision And squARe RooT

Both division and square root instructions are available in the Cortex-M4. VDIV 
divides the first source operand by the second source operand, writing the result in a 
destination register. VSQRT performs the square root operation. The formats of the 
two instructions are shown below.

 VDIV{cond}.F32 <Sd>, <Sn>, <Sm>
 VSQRT{cond}.F32 <Sd>, <Sm>

Any of the floating-point registers can be a source and destination register. As an 
example, the following instruction

 VDIV.F32 s21, s8, s1
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would divide the value in register s8 by the value in register s1, and put the rounded 
quotient in register s21.

Division will result in a divide-by-zero exception, setting the DZC status bit if the 
divisor is a zero and the dividend is normal or subnormal. Overflow and underflow 
are possible when the result of the division would result in a value too large or too 
small, respectively, for representation in the single-precision format. Any division 
with normal or subnormal values can produce an inexact result and set the IXC 
status bit.

Table 11.10 shows how the VDIV instruction functions with the five classes of 
encodings. In this table, Operand A is the dividend and Operand B the divisor. If the 
result is not exact, the Inexact status bit, IXC, will be set. Recall that the Underflow 
status bit, UFC, is set when a subnormal result is generated and the result is either 
not exact or a zero due to a result smaller in magnitude than can be represented in 
the destination precision. If the computed result is too small, the UFC and IXC status 
bits will be set and a signed zero result returned.

TABLE 11.10
Floating-Point Divide Instruction Operand and Exception Table

Operand A Operand B Result
Possible 

Exceptions Notes

Normal Normal Normal, 
Subnormal, 
Infinity, Zero

OFC, UFC, 
and IXC

Normal/Normal can overflow, 
resulting in an infinity or max 
normal, or result in a subnormal 
value or zero

Normal Subnormal Normal, Infinity OFC, IXC The result may be in the normal range, 
subnormal range, or underflow to a 
zero.

Normal Zero Infinity DZC Divide by zero
Normal Infinity Zero None As expected for an infinity divisor
Subnormal Normal Normal, 

Subnormal, 
Zero

UFC, IXC Subnormal/Normal may be normal or 
subnormal, or zero. UFC and IXC are 
set if subnormal and inexact, or if zero.

Subnormal Subnormal Normal IXC If exact, IXC is not set
Subnormal Infinity Zero None As expected for an infinity divisor
Subnormal Zero Infinity DZC Divide by zero
Zero Normal Zero None As expected for a zero dividend
Zero Subnormal Zero None
Zero Infinity Zero None
Zero Zero NaN IOC Invalid operation
Infinity Normal Infinity None As expected for an infinity dividend
Infinity Subnormal Infinity None
Infinity Infinity NaN IOC Invalid operation
Infinity Zero Infinity None Odd, perhaps, but the infinity governs 

the result, which is infinity.

Anything NaN NaN IOC If a signaling NaN, IOC is set and 
NaN is quieted.
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Only the Invalid Operation and Inexact exceptions are possible with square root. 
Any positive normal or subnormal operand may produce an inexact result and set 
the IXC status bit. When an operand is a negative normal or subnormal value, and 
not a negative NaN, the operation is invalid, the default NaN is returned and the IOC 
status bit is set.

Table 11.11 shows how VSQRT instruction functions with the five classes of 
encodings and signed values.

11.8 PUTTING IT ALL TOGETHER: A CODING EXAMPLE

In this section, we’ll tie everything together by coding a routine for the bisection 
algorithm, which is a simple method of finding a root (a zero crossing) of a con-
tinuous function. The algorithm begins with two points on the function that have 
opposite signs and computes a third point halfway between the two points. The new 
third point replaces one of the original points that has the same sign as the function 
evaluated at that new third point, and the algorithm repeats. In Figure 11.2, the origi-
nal points are labeled a and b, and we see that f(a) and f(b) have opposite signs. The 
computed third point, c, is the result of one iteration. Further iteration will result in 
a computed new point closer to the true crossing. The algorithm is ended when the 
computed point is exactly on the zero crossing ( f(c) = 0) or the difference between 
the input point with the same sign as the computed point is below a threshold.

The algorithm is written in pseudo-code as shown below.*

INPUT: Function f, endpoint values a, b, tolerance TOL, maximum iterations NMAX
CONDITIONS: a < b, either f(a) < 0 and f(b) > 0 or f(a) > 0 and f(b) < 0
OUTPUT: value which differs from a root of f(x) = 0 by less than TOL

N ← 1
While N ≤ NMAX {limit iterations to prevent infinite loop
c ← (a + b)/2 new midpoint

* The code is taken from the Wikipedia entry on “Bisection method,” taken from http://en.wikipedia.
org/wiki/Bisection_method#CITEREFBurdenFaires1985.

TABLE 11.11
Floating-Point Square Root Instruction Operand and Exception Table

Operand A Result
Possible 

Exceptions Notes

+Normal +Normal IXC

−Normal Default NaN IOC Any input below zero results in an invalid operation

+Subnormal +Normal IXC

−Subnormal Default NaN IOC Any input below zero results in an invalid operation

+Infinity +Infinity None

−Infinity Default NaN IOC

+Zero +Zero None

−Zero −Zero None

NaN NaN IOC If a signaling NaN, IOC is set. NaN should be input NaN
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If (f(c) = 0 or (b – a)/2 < TOL then {solution found
Output(c)
Stop

}
N ← N + 1 increment step counter
If sign(f(c)) = sign(f(a)) then a ← c else b ← c new interval
}
Output(“Method failed.”) max number of steps exceeded

 ; Bisection code
 ; The algorithm requires the first two points,
 ; a, and b, to be one below and one above the
 ; root; that is, f(a) will have an opposite
 ; sign to f(b). The algorithm computes the midway
 ; point between a and b, called c, and computes f(c).
 ; This new point replaces the point with the same
 ; function result sign. If f(a) is positive and f(c)
 ; is positive, c replaces a, and the algorithm reruns
 ; with b and c as points. The algorithm exits when f(c)
 ; is zero, or (a-b) is less than a threshold value.

 ; FPU registers
 ; s6 - the threshold value, 0.0002
 ; s7 - 2.0, to divide the sum for the new operand
 ; s8 - operand a
 ; s9 - operand b
 ; s10 - the new point, operand c
 ; s11 - f(a)
 ; s12 - f(b)
 ; s13 - f(c)
 ; ARM registers
 ; r1 - sign of f(a)
 ; r2 - sign of f(b)
 ; r3 - sign of f(c)
 ; r4 - iteration count

f(x) f(b)

f(c)

f(a)

a
c b x

FIGURE 11.2 Bisection method for two initial points and a computed third point.
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 ; Choose 0 and 4 as initial samples

 ; Initialize the divisor register and threshold
 VMOV.F32 s7, #2.0
 VLDR.F32 s6, = 0.0002

 ; Initialize the operand registers
 VSUB.F32 s8, s7, s7  ; a lazy way to create 0.0
 VMOV.F32 s9, #4.0

 ; Initialize our loop counter
 MOV r4, #0

Loop
 ; Increment our loop counter
 ADD r4, r4, #1

 ; Test a and b for (a-b) < threshold
 ; Use s11 for the difference, we will overwrite
 ; it in the eval of operand a
 VSUB.F32 s11, s8, s9  ; compute the difference
 VABS.F32 s11, s11  ; make sure diff is positive
 VCMP.F32 s11, s6  ; test diff > threshold?
 VMRS.F32 APSR_nzcv, FPSCR ; copy status bits to APSR
 BLS Exit   ; if neg or eq, exit

 ; Evaluate the function for operand a
 VMOV.F32 s1, s8
 BL func
 VMOV.F32 s11, s0

 ; Evaluate the function for operand b
 VMOV.F32 s1, s9
 BL func
 VMOV.F32 s12, s0

 ; Compute the midpoint for operand c,
 ; the point halfway between operands
 ; a and b
 VADD.F32 s10, s8, s9
 VDIV.F32 s10, s10, s7

 ; Evaluate the function for operand c
 VMOV.F32 s1, s10
 BL func
 VMOV.F32 s13, s0

 ; Test the signs of the three operands
 VCMP.F32 s11, #0 ; set status bits only on operand a
 VMRS.F32 r1, FPSCR
 AND r1, r1, #0x80000000 ; isolate the N status bit
 VCMP.F32 s12, #0 ; set status bits only on operand b
 VMRS.F32 r2, FPSCR
 AND r2, r2, #0x80000000 ; isolate the N status bit
 VCMP.F32 s13, #0 ; set status bits only on operand c
 VMRS.F32 r3, FPSCR
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 TST r3, #0x4000000 ; test for zero
 BEQ Exit ; the value in s10 is exactly
   ; the root
 AND r3, r3, #0x80000000 ; isolate the N status bit

 ; If sign(a) ! = sign(c), copy s10 into s9;
 ; else sign(b) ! = sign(c), copy s10 into s8;
 EORS r1, r3 ; test if sign(a) = sign(c)
 VMOVEQ.F32 s8, s10 ; if 0, copy c to a
 BLEQ Loop ; run it again with a new a
 VMOV.F32 s9, s10 ; if not a, then copy c into b
 BL Loop ; run it again with a new b
Exit
 B Exit

 ; Test functions
 ; Assumes ATPCS - regs s0-s15 parameters and/or scratch
 ; Register usage:
 ;  s0 - return result
 ;  s1 - input operand
 ;  s2 - scratch
 ;  s3 - scratch
func
 ; Function - x^3 + 2x - 8
 VMOV.F32 s0, #2.0 ; use s0 to hold 2.0 temporarily
 VMUL.F32 s2, s1, s1 ; initial squaring of input
 VMUL.F32 s3, s1, s0 ; multiply input by 2
 VMOV.F32 s0, #8.0 ; use s0 to hold 8.0 temporarily
 VMUL.F32 s2, s2, s1 ; finish cubing of input
 VSUB.F32 s3, s3, s0 ; subtract off 8.0 from 2x
 VADD.F32 s0, s2, s3 ; add in x^3 to return reg
 BX lr ; return

11.9 EXERCISES

 1. Complete the table for a VCMP instruction and the following operands.

Operand A Operand B N Z C V

0xFF800000 0x3F800000

0x00000000 0x80000000

0x7FC00005 0x00000000

0x7F80000F 0x7F80000F

0x40000000 0xBF000000

 2. Give the instructions to implement the following algorithm. Assume y is in 
register s0, and return x in register s0.

 x = 8y2 − 7y + 12

 3. Expand the code above to create a subroutine that will resolve an order 2 
polynomial with the constant for the square term in register s0, the order 1 
term in register s1, and the constant factor in register s2. Return the result 
in register s0.
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 4. Give the instructions to perform the following loop over an one- dimensional 
array X of 20 data values in memory at address 0x40000100 and an one-
dimensional array Y of data values in memory at address 0x40000200. 
Use a constant value of A between 2.0 and 10.0. The new y value should 
overwrite the original value.

 y = Ax + y

 5. Modify the program in Example 11.4 to order the four values in registers s8 
to s11 in order from smallest to largest.

 6. In the third case in Example 11.9 (Section 11.7.2.3) the error of the VMLA 
was 2−23. Show why this is the case.

 7. Write a division routine that checks for a divisor of zero, and if it is, returns 
a correctly signed infinity without setting the DZC bit. If the divisor is not 
zero, the division is performed.

 8. Add to the program of Exercise 7 a check on a divisor that is 2.0. If it is, 
perform a multiplication of 0.5 rather than do the division.

 9. Write a subroutine that would perform a reciprocal operation on an input in 
register s0, returning the result in register s0.
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12.1 INTRODUCTION

In the last few chapters, we’ve dealt primarily with manipulating numbers and per-
forming logical operations. Another common task that microprocessors usually per-
form is searching for data in memory from a list of elements, where an element could 
be sampled data stored from sensors or analog-to-digital converters (ADCs), or even 
data in a buffer that is to be transmitted to an external device. In the last 10 years, 
research into sorting and search techniques have, in part, been driven by the ubiquity 
of the Internet, and while the theory behind new algorithms could easily fill several 
books, we can still examine some simple and very practical methods of search-
ing. Lookup tables are sometimes efficient replacements for more elaborate routines 
when functions like log(x) and tan(x) are needed; the disadvantage is that you often 
trade memory usage and precision for speed. Before we examine subroutines, it’s 
worth taking a short look at some of the basic uses of tables and lists, for both integer 
and floating-point algorithms, as this will ease us into the topic of queues and stacks.

12.2 INTEGER LOOKUP TABLES

Consider a list of elements ordered in memory starting at a given address. Suppose 
that each element in the list is a word in length, as shown in Figure 12.1. Addressing 
a particular element in the list becomes quite easy, since the ARM addressing modes 
allow pre-indexed addressing with an offset. More precisely, if the starting address 
were held in register r5, then a given element could either be addressed by putting an 
offset in another register, or the element number can be used to generate an offset by 
scaling. The third element in the list could be accessed using either

LDR r6, [r5, r4]

or

LDR r6, [r5, r4, LSL #2]

where register r4 would contain the value 8, the actual offset, in the first case, or 2, 
one less than the element number, in the second case (for our discussion, the first 
 element is number zero). The latter addressing mode accounts for the size of the data 
by scaling the element number by 4.

Certainly the same concepts apply if the elements are halfwords, only now the 
load instructions would be

LDRH r6, [r4, r5]

12
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and

LDRH r6, [r4, r5, LSL #1]

EXAMPLE 12.1

Many control and audio applications require computing transcendental functions, 
such as log(x), tan(x), and sin(x). An easy way to compute the sine of an angle is to 
use a lookup table. There are obvious limits to the precision available with such a 
method, and if greater precision is required, there are very good routines for com-
puting these types of functions, such as those by Symes (Sloss, Symes, and Wright 
2004). However, a lookup table can return a value in Q31 notation for integer val-
ues of the angle between 0 and 360 degrees, and the implementation is not at all 
difficult.

To begin, it’s necessary to create a table of sine values for angles between 0 
and 90 degrees using Q notation. A short C program can generate these values 
very quickly, and if you throw in a little formatting at the end, it will save you the 
time of having to add assembler directives. The C code* below will do the trick:

#include <stdio.h > 
#include <string.h > 
#include <math.h > 
main()
{
 int i;
 int index = 0;
 signed int j[92];
 float sin_val;

 FILE *fp;

 if ((fp = fopen(“sindata.txt”,”w”)) = =NULL)
 {
  printf(“File could not be opened for writing\n”);
  exit(1);
 }
 for (i = 0; i < =90; i + +){
  /* convert to radians */
  sin_val = sin(M_PI*i/180.0);
  /* convert to Q31 notation */

* Depending on how you compile your C code, your table may be slightly different. A #DEFINE state-
ment may also be necessary for pi.

Memory Address 
r5 element n 0x8000 
0x8000 element n+1  0x8004 
r4 element n+2  0x8008 
offset element n+3  0x800C 

element n+4  ......

FIGURE 12.1 A simple list in memory.
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  j[i] = sin_val * (2147483648);
  }
 for (i = 1; i < =23; i + +){
  fprintf(fp,”DCD “);
  fprintf(fp,”0x%x,”,j[index]);
  fprintf(fp,”0x%x,”,j[index + 1]);
  fprintf(fp,”0x%x,”,j[index + 2]);
  fprintf(fp,”0x%x”,j[index + 3]);
  fprintf(fp,”\n”);
  index +=  4;
  }
 fclose(fp);
}

It’s important to note that while generic C code like this will produce accurate 
values for angles between 0 and 89 degrees, it’s still necessary to manually change 
the value for 90 degrees to 0x7FFFFFFF, since you cannot represent the number 1 
in Q31 notation (convince yourself of this). Therefore, we will just use the largest 
value possible in a fractional notation like this. The next step is to take the table 
generated and put this into an assembly program, such as the ones shown below 
for the ARM7TDMI and the Cortex-M4. While this is clearly not optimized code, 
it serves to illustrate several points.

; Example for the ARM7TDMI
 AREA SINETABLE, CODE
 ENTRY
; Registers used:
; r0 = return value in Q31 notation
; r1 = sin argument (in degrees, from 0 to 360)
; r2 = temp
; r4 = starting address of sine table
; r7 = copy of argument

main
 MOV r7,r1 ; make a copy of the argument
 LDR r2, = 270 ; constant won’t fit into rotation scheme
 ADR r4, sin_data ; load address of sin table
 CMP r1, #90 ; determine quadrant
 BLE retvalue ; first quadrant?
 CMP r1, #180
 RSBLE r1,r1,#180 ; second quadrant?
 BLE retvalue
 CMP r1, r2
 SUBLE r1, r1, #180 ; third quadrant?
 BLE retvalue
 RSB r1, r1, #360 ; otherwise, fourth
retvalue
 ; get sin value from table
 LDR r0, [r4, r1, LSL #2]
 CMP r7, #180 ; do we return a neg value?
 RSBGT r0, r0, #0 ; negate the value if so
done B done
ALIGN
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sin_data
  DCD 0x00000000,0x023BE164,0x04779630,0x06B2F1D8
  DCD 0x08EDC7B0,0x0B27EB50,0x0D613050,0x0F996A30
  DCD 0x11D06CA0,0x14060B80,0x163A1A80,0x186C6DE0
  DCD 0x1A9CD9C0,0x1CCB3220,0x1EF74C00,0x2120FB80
  DCD 0x234815C0,0x256C6F80,0x278DDE80,0x29AC3780
  DCD 0x2BC750C0,0x2DDF0040,0x2FF31BC0,0x32037A40
  DCD 0x340FF240,0x36185B00,0x381C8BC0,0x3A1C5C80
  DCD 0x3C17A500,0x3E0E3DC0,0x40000000,0x41ECC480
  DCD 0x43D46500,0x45B6BB80,0x4793A200,0x496AF400
  DCD 0x4B3C8C00,0x4D084600,0x4ECDFF00,0x508D9200
  DCD 0x5246DD00,0x53F9BE00,0x55A61280,0x574BB900
  DCD 0x58EA9100,0x5A827980,0x5C135380,0x5D9CFF80
  DCD 0x5F1F5F00,0x609A5280,0x620DBE80,0x63798500
  DCD 0x64DD8900,0x6639B080,0x678DDE80,0x68D9F980
  DCD 0x6A1DE700,0x6B598F00,0x6C8CD700,0x6DB7A880
  DCD 0x6ED9EC00,0x6FF38A00,0x71046D00,0x720C8080
  DCD 0x730BAF00,0x7401E500,0x74EF0F00,0x75D31A80
  DCD 0x76ADF600,0x777F9000,0x7847D900,0x7906C080
  DCD 0x79BC3880,0x7A683200,0x7B0A9F80,0x7BA37500
  DCD 0x7C32A680,0x7CB82880,0x7D33F100,0x7DA5F580
  DCD 0x7E0E2E00,0x7E6C9280,0x7EC11A80,0x7F0BC080
  DCD 0x7F4C7E80,0x7F834F00,0x7FB02E00,0x7FD31780
  DCD 0x7FEC0A00,0x7FFB0280,0x7FFFFFFF
  END

; Program for the Cortex-M4
  MOV r7,r1 ; make a copy of the argument
  LDR r2, = 270  ; constant won’t fit into rotation scheme

  ADR r4, sin_data ; load address of sin table
  CMP r1, #90 ; determine quadrant
  BLE retvalue ; first quadrant?
  CMP r1, #180
  ITT LE
  RSBLE r1,r1,#180 ; second quadrant?
  BLE retvalue
  CMP r1, r2
  ITT LE
  SUBLE r1, r1, #180 ; third quadrant?
  BLE retvalue
  RSB r1, r1, #360 ; otherwise, fourth
retvalue
  ; get sin value from table
  LDR r0, [r4, r1, LSL #2]
  CMP r7, #180 ; do we return a neg value?
  IT GT
  RSBGT r0, r0, #0 ; negate the value if so
done  B done
  ALIGN

sin_data
  DCD 0x00000000,0x023BE164,0x04779630,0x06B2F1D8
  DCD 0x08EDC7B0,0x0B27EB50,0x0D613050,0x0F996A30
  DCD 0x11D06CA0,0x14060B80,0x163A1A80,0x186C6DE0



263Tables

  DCD 0x1A9CD9C0,0x1CCB3220,0x1EF74C00,0x2120FB80
  DCD 0x234815C0,0x256C6F80,0x278DDE80,0x29AC3780
  DCD 0x2BC750C0,0x2DDF0040,0x2FF31BC0,0x32037A40
  DCD 0x340FF240,0x36185B00,0x381C8BC0,0x3A1C5C80
  DCD 0x3C17A500,0x3E0E3DC0,0x40000000,0x41ECC480
  DCD 0x43D46500,0x45B6BB80,0x4793A200,0x496AF400
  DCD 0x4B3C8C00,0x4D084600,0x4ECDFF00,0x508D9200
  DCD 0x5246DD00,0x53F9BE00,0x55A61280,0x574BB900
  DCD 0x58EA9100,0x5A827980,0x5C135380,0x5D9CFF80
  DCD 0x5F1F5F00,0x609A5280,0x620DBE80,0x63798500
  DCD 0x64DD8900,0x6639B080,0x678DDE80,0x68D9F980
  DCD 0x6A1DE700,0x6B598F00,0x6C8CD700,0x6DB7A880
  DCD 0x6ED9EC00,0x6FF38A00,0x71046D00,0x720C8080
  DCD 0x730BAF00,0x7401E500,0x74EF0F00,0x75D31A80
  DCD 0x76ADF600,0x777F9000,0x7847D900,0x7906C080
  DCD 0x79BC3880,0x7A683200,0x7B0A9F80,0x7BA37500
  DCD 0x7C32A680,0x7CB82880,0x7D33F100,0x7DA5F580
  DCD 0x7E0E2E00,0x7E6C9280,0x7EC11A80,0x7F0BC080
  DCD 0x7F4C7E80,0x7F834F00,0x7FB02E00,0x7FD31780
  DCD 0x7FEC0A00,0x7FFB0280,0x7FFFFFFF

The first task of the program is to determine in which quadrant the argument lies. 
Since

 sin(x) = sin(180° – x)

and

 sin(x − 180°) = −sin(x)
 sin(360° − x) = −sin(x)

we can simply compute the value of sine for the argument’s reference angle in 
the first quadrant and then negate the result as necessary. The first part of the 
assembly program compares the angle to 90 degrees, then 180 degrees, then 270 
degrees. If it’s over 270 degrees, then by default it must be in the fourth quadrant. 
The reference angle is also calculated to use as a part of the index into the table, 
using SUB or RSB as necessary. For values that lie in either the third or fourth 
quadrant, the final result will need to be negated.

The main task, obtaining the value of sine, is actually just one line of code:

LDR r0, [r4, r1, LSL #2] ; get sin value from table

Since the starting address of our lookup table is placed in register r4, we index the 
entry in the table with an offset. Here, we’re using pre-indexed addressing, with 
the offset calculated by multiplying the value of the argument (a number between 
0 and 90) by four. For example, if the starting address of the table was 0x4000, 
and the angle was 50, then we know we have to skip 50 words of data to get to 
the entry in the table that we need.

The reverse subtract at the end of the routine negates our final value if the 
argument was in either quadrant three or four. The exact same technique could be 
used to generate a cosine table, which is left as an exercise, or a logarithm table.
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12.3 FLOATING-POINT LOOKUP TABLES

Analogous to the integer lookup tables in Section 12.2, floating-point lookup tables 
are addressed with load instructions that have offsets, only the values for most cases 
are single-precision floating-point numbers. Instead of an LDR instruction, we use a 
VLDR instruction to move data into a register, or something like

 VLDR.F  s2, [r1, #20] ; offset is a multiple of 4

EXAMPLE 12.2

In this example, we set up a constant table with the label ConstantTable and 
load this address into register r1, which will serve as an index register for the 
VLDR instruction. The offset may be computed as the index of the value in the 
table entry less one, then multiplied by 4, since each data item is 4 bytes in 
length.

 ADR  r1, ConstantTable ; Load address of
        ; the constant table

 ; load s2 with pi, s3 with 10.0,
 ; and multiply them to s4

 VLDR.F  s2, [r1, #20] ; load pi to s2
 VLDR.F  s3, [r1, #12] ; load 10.0 to s3
 VMUL.F  s4, s2, s3

loop B  loop

 ALIGN

ConstantTable
 DCD  0x3F800000 ; 1.0
 DCD  0x40000000 ; 2.0
 DCD  0x80000000 ; -0.0
 DCD  0x41200000 ; 10.0
 DCD  0x42C80000 ; 100.0
 DCD  0x40490FDB ; pi
 DCD  0x402DF854 ; e

A common use of the index-with-offset addressing mode is with literal pools, 
which we encountered in Chapter 6. Literal pools are very useful in floating-point 
code since many floating-point data items are not candidates for the immediate 
constant load, which we will discuss in a moment. When the assembler creates 
a literal pool, it uses the PC as the index register. The Keil assembler allows for 
constants to be named with labels and used with their label.

EXAMPLE 12.3

The following modification to the example above shows how labels can be used 
in constant tables, should your assembler support this.
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 ; load s2 with pi, s3 with 10.0,
 ; and multiply them to s4
 VLDR.F  s5, C_Pi
 VLDR.F  s6, C_Ten
 VMUL.F  s7, s5, s6
loop B  loop

 ALIGN

C_One DCD 0x3F800000 ; 1.0
C_Two DCD 0x40000000 ; 2.0
C_NZero DCD 0x80000000 ; -0.0
C_Ten DCD 0x41200000 ; 10.0
C_Hun DCD 0x42C80000 ; 100.0
C_Pi  DCD 0x40490FDB ; pi
C_e  DCD 0x402DF854 ; e

Since the labels C_Pi and C_Ten translate to addresses, the distances between the 
current value of the Program Counter and the constants are calculated, then used 
in a PC-relative VLDR instruction. This technique allows you to place floating-
point values in any order, since the tools calculate offsets for you.

EXAMPLE 12.4 RECIPROCAL SQUARE ROOT ESTIMATION CODE

In graphics algorithms, the reciprocal square root is a common operation, used fre-
quently in computing the normal of a vector for use in lighting and a host of other 
operations. The cost of doing the full-precision, floating-point calculation of a square 
root followed by a division can be expensive. On the Cortex-M4 with floating-point 
hardware, these operations take 28 cycles, which is a relatively small amount for 
division and square root. So this example, while not necessarily an optimal choice 
in all cases, demonstrates the use of a table of half-precision constants and the use 
of the conversion instruction. The reciprocal square root is calculated by using a 
conversion table for the significand and adjusting the exponent as needed.

The algorithm proceeds as follows. If we first consider the calculation of a recipro-
cal square root, the equation is
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where 1.g is the table estimate.

The sequence of operations then becomes:

 1. Load pointers to a table for even exponent input operands and a table for 
odd exponent operands. The tables take a small number of the most signifi-
cant fraction bits as the index into the table.

 2. The oddness of the exponent is determined by ANDing all bits except the 
LSB to a zero, and testing this with the TEQ instruction. If odd, the exponent 
is incremented by 1.

 3. Divide the exponent by 2 and negate the result. A single-precision scale 
factor is generated from the computed exponent.

 4. Extract the upper 4 bits of the fraction, and if the exponent is odd, use them 
to index into table RecipSQRTTableOdd for the estimate (the table estimate 
1.g), and if the exponent is even, use the table RecipSQRTTableEven for the 
estimate.

 5. Convert the table constant to a single-precision value using the VCVTB 
instruction, then multiply by the scale factor to get the result.

Note that this code does not check for negative values for x, or whether x is infinity 
or a NaN. Adding these checks is left as an exercise for the reader.

Reset_Handler

 ; Enable the FPU
 ; Code taken from ARM website
 ; CPACR is located at address 0xE000ED88
 LDR.W r0, =0xE000ED88 ; Read CPACR
 LDR r1, [r0]
 ; Set bits 20-23 to enable CP10 and CP11 coprocessors
 ORR r1, r1, #(0xF <<  20)
 ; Write back the modified value to the CPACR
 STR r1, [r0] ; wait for store to complete
 DSB

 ; Reciprocal Square Root Estimate code
 ; r1 holds the address to the odd table
 ADR r0, RecipSQRTTableOdd
 ; r2 holds the address to the even table
 ADR r1, RecipSQRTTableEven

 ; Compute the reciprocal square root estimate for a
 ; single precision value X x 2^n as
 ; 1/(X)^-1/2. The estimate table is stored in two
 ; halves, the first for odd exponents
 ; RecipSqrtTableOdd) and the second for
 ; even exponents (RecipSqrtTableEven).

 VLDR.F s0, InputValue
 VMOV.F r2, s0
 ; Process the exponent first – we assume positive input
 MOV r3, r2 ; exp in r2, frac in r3
 LSR r2, #23 ; shift the exponent for subtraction
 SUB r2, #127 ; subtract out the bias
 AND r4, r2, #1 ; capture the lsb to r4
 TEQ r4, #1 ; check for odd exponent
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 ; Odd Exponent - add 1 before the negate and shift
 ; right operations
 ADDEQ r2, #1 ; increment to make even
 ; All exponents
 LSR r2, r2, #1 ; shift right by 1 to divide by 2
 NEG r2, r2 ; negate
 ADD r2, #127 ; add in the bias
 LSL r2, #23 ; return the new exponent - the
 ; Extract the upper 4 fraction bits for the table lookup
 AND r3, #0x00780000
 LSR r3, #18 ; shift so they are *2
 ; Select the table and the table entry based on
 ; the upper fraction bits
 LDRHEQ r4, [r3, r0] ; index into the odd table
 LDRHNE r4, [r3, r1] ; index into the even table
 VMOV.F s3, r4 ; copy the selected half-precision
 VCVTB.F32.F16 s4, s3 ; convert the estimate to sp
 VMOV.F s5, r2 ; move the exp multiplier to s5
 VMUL.F s6, s5, s4 ; compute the recip estimate

loop B loop

 ALIGN

InputValue
; Test values. Uncomment the value to convert
; DCD 0x42333333  ; 44.8, recip sqrt is 0.1494, odd exp
; DCD 0x41CA3D71  ; 25.28, recip sqrt is 0.19889, even exp

 ALIGN

RecipSQRTTableEven
 DCW 0x3C00  ; 1.0000 -> 1.0000
 DCW  0x3BC3  ; 1.0625 -> 0.9701
 DCW  0x3B8B  ; 1.1250 -> 0.9428
 DCW  0x3A57  ; 1.1875 -> 0.9177
 DCW  0x3B28  ; 1.2500 -> 0.8944
 DCW  0x3AFC  ; 1.3125 -> 0.8729
 DCW  0x3AD3  ; 1.3750 -> 0.8528
 DCW  0x3AAC  ; 1.4375 -> 0.8340
 DCW  0x3A88  ; 1.5000 -> 0.8165
 DCW  0x3A66  ; 1.5625 -> 0.8000
 DCW  0x3A47  ; 1.6250 -> 0.7845
 DCW  0x3A29  ; 1.6875 -> 0.7698
 DCW  0x3A0C  ; 1.7500 -> 0.7559
 DCW  0x39F1  ; 1.8125 -> 0.7428
 DCW  0x39D8  ; 1.8750 -> 0.7303
 DCW 0x39BF  ; 1.9375 -> 0.7184

 ALIGN

RecipSQRTTableOdd
 DCW 0x3DA8  ; 0.5000 -> 1.4142
 DCW 0x3D7C  ; 0.5322 -> 1.3707
 DCW  0x3D55  ; 0.5625 -> 1.3333
 DCW 0x3D31  ; 0.5938 -> 1.2978
 DCW 0x3D0F  ; 0.6250 -> 1.2649
 DCW 0x3CF0  ; 0.6563 -> 1.2344
 DCW 0x3CD3  ; 0.6875 -> 1.2060
 DCW 0x3CB8  ; 0.7186 -> 1.1795
 DCW 0x3C9E  ; 0.7500 -> 1.1547
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 DCW 0x3C87  ; 0.7813 -> 1.1313
 DCW 0x3C70  ; 0.8125 -> 1.1094
 DCW 0x3C5B  ; 0.8438 -> 1.0886
 DCW 0x3C47  ; 0.8750 -> 1.0690
 DCW 0x3C34  ; 0.9063 -> 1.0504
 DCW 0x3C22  ; 0.9375 -> 1.0328
 DCW 0x3C10  ; 0.9688 -> 1.0160

12.4 BINARY SEARCHES

Searching through lists or tables of information is considered to be something of a 
standard problem in computer science. Tables are usually organized to hold data in 
a regular structure so that they can be searched quickly, using an identifier at the 
beginning of an entry. A key is defined as a tag of some sort that identifies an entry 
in the table. Sometimes it’s just important to know whether or not a key exists in a 
table. Sometimes you need the data associated with that key. Either way, the tech-
niques used for gathering this information date back almost as far as the computer 
itself, and while volumes have been written on the subject (Knuth 1973), we’ll start 
by examining a basic search technique called a binary search.

If you have a list of entries in a table, as shown in Figure 12.2, where each entry 
consists of a numerical key and some type of data to go along with that key, e.g., 
character data such as an address or numerical data such as a phone number, you 
could try to find a key by sequentially comparing each key in the table to your 
value. Obviously this would take the longest amount of time, especially if the key 
of interest happened to be at the end of the table. If the keys are sorted already, 
say in increasing order, then you can significantly reduce your search efforts by 
starting at the middle of the table. This can immediately halve your search effort. 
Again referring to Figure 12.2, you can see that if our key is less than the middle 
key, we don’t even have to look in the latter half of the table. We know it’s some-
where between the first and middle keys, if it’s there at all. Next, we further refine 
the search by making the last key in our search the key just before the middle one. 
The new middle key is defined as the average of the first and last keys, and the 
procedure is repeated until the key is either found or we confirm that it’s not in the 
table. If the middle key happens to match our key, then the algorithm is finished. 
In a like manner, if the key we’re looking for is between the middle and last keys in 

Key Information
First Keys < middle

Middle

Keys > middle
Last

...

...

...

...

FIGURE 12.2 Binary search table.
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the table, we move the start of our search to the entry just after the middle key and 
compute a new middle key for comparisons. The C equivalent of this technique 
could be described as

first = 0;
last = num_entries − 1;
index = 0;
while   ((index = =  0) & (first <=  last)){
 middle = (first + last)/2;
 if (key = =  table[middle]) index = middle;
 else if (key < table[middle]) last = middle – 1;
 else first = middle + 1;
 }

where num _ entries is the number of entries in the table.
Figure 12.3 shows an example of how this works. Suppose we have a table with 

nine entries in it, and the key of interest is 992. On the first pass of the search, we 
compute the middle of the table to be index number 4, since this is the average of the 
first and last entry numbers, 0 and 8, respectively. A comparison is then made against 
the table entry with this index. Since our number is greater than the middle number, 
the search focuses on the half of the table where the keys are even larger. The new 
starting position is entry number 5, while the last entry remains the same. A new 
middle index is found by averaging 5 and 8, which is 6 (remember they have to be 
integers). The comparison against the table entry with this index happens to match, 
so we’ve actually found the entry and the algorithm terminates.

In coding the binary search, we should examine a few aspects of the algorithm 
and of the data first, since most of the work can be done with just a few instructions. 
The rest of them are used to control the loop. Consider a table starting at address 
0x4000, where each entry is 16 bytes, and say that 4 bytes, or a word, is used as a 
key. This leaves the remaining 12 bytes for character data, as shown in Figure 12.4. 
Examining the address of the tag, we can see that if the index i ranges from 0 to 
some number n–1, and the starting address of the table is table_addr, the address of 
the ith entry would be

 address = table_addr + i * size_of_entry.

First 100 Key 992 100 
206 206 
412 412 
800 800 

Middle 947 947 
968 First

Middle  
968 

992 992
1064 1064 

Last 1078 Last 1078 
First pass Second pass 

FIGURE 12.3 Two passes through a binary search.
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For our table, the second entry would start at address 0x4000 + 2 × 16 = 0x4020.
Using this approach, we can simply use an LDR instruction with pre-indexed 

addressing, offsetting the table’s base address with the scaled index, which is held 
in a register. The scaling (which is based on the entry size in bytes) can actually be 
specified with a constant—ESIZE—so that if we change this later, we don’t have 
to recode the instructions. With this approach comes a word of caution, since we 
assume that the entry size is a power of two. If this is not the case, all hope is not 
lost. You can implement a two-level table, where an entry now consists of a key and 
an address pointing to data in memory, and the data can be any size you like. The 
size of each entry is again fixed, and it can be set to a power of two. However, for our 
example, the entry size is a power of two.

We can load our table entries with a single pre-indexed instruction:

LDR r7, [r6, r2, LSL #ESIZE]

This just made short work of coding the remaining algorithm. The first four instruc-
tions in Figure 12.5 are just initialization—the base address of the table is loaded 
into a register, the first index is set to 0, and the last index is set to the last entry, in 
this case, the number of entries we have, called NUM, minus one. The instructions 
inside of the loop test to see whether the first index is still smaller than or equal to 
the last index. If it is, a new middle index is generated and used to load the table 
entry into a register. The data is loaded from the table and tested against our key. 
We can effectively use conditional execution to change the first and last indices, 
since the comparison will test for mutually exclusive conditions. The loop terminates 
with either a zero or the key index loaded into register r3. The data that is used in 
the example might be someone’s address on a street, followed by his or her favorite 
pizza toppings. Note that each key is 4 bytes and the character data is 12 bytes for 
each entry.

Execution times for search algorithms are important. Consider that a linear search 
through a table would take twice as long to execute if the table doubled in size, where 
a binary search would only require one more pass through its loop. The execution 
time increases logarithmically.

0x4000
0x4010
0x4020Table base address

LDR r7, [r6, r2, LSL #4]

Index

0x4030

0x00000034
4 Byte key

0x00000243
0x00003403
0x0010382C

Vacuums
12 Bytes of data

Clothes
Candy
Telephones

.

.

.

FIGURE 12.4 Structure of an example table.
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NUM EQU 14 ; insert # of entries here 
ESIZE EQU 4 ; log 2 of the entry size (16 bytes) 

; NB: This assumes entry size is a power of 2 

AREA BINARY, CODE 
ENTRY 

; Registers used: 
; R0 - first 
; R1 - last 
; R2 - middle 
; R3 - index 
; R4 - size of the entries (log 2) 
; R5 - the key (what you're searching for) 
; R6 - address of the list 
; R7 - temp 

LDR r5, =0x200 ; let’s look for PINEAPPLE 

ADR r6, table_start ; load address of the table 
MOV r0, #0 ; first = 0 
MOV r1, #NUM-1 ; last = number of entries in the list - 1 

loop CMP r0, r1 ; compare first and last 
MOVGT r2, #0 ; first > last, no key found, middle = 0 
BGT done 

ADD r2, r0, r1 ; first + last 
MOV r2, r2, ASR #1 ; first + last /2 

LDR r7, [r6, r2, LSL #ESIZE] ; load the entry 
CMP r5, r7 ; compare key to value loaded 
ADDGT r0, r2, #1 ; first = middle + 1 
SUBLT r1, r2, #1 ; last = middle - 1 
BNE loop ; go again 

done MOV r3, r2 ; move middle to 'index' 
stop B stop 

table_start
DCD 0x004 
DCB  "PEPPERONI   " 
DCD 0x005 
DCB "ANCHOVIES   " 
DCD 0x010 
DCB "OLIVES      " 
DCD 0x012 
DCB "GREEN PEPPER" 
DCD 0x018 
DCB "BLACK OLIVES" 
DCD 0x022 
DCB "CHEESE      " 
DCD 0x024 
DCB "EXTRA SAUCE " 
DCD 0x026 
DCB "CHICKEN     " 
DCD 0x030 
DCB "CANADIAN BAC" 
DCD 0x035 
DCB "GREEN OLIVES" 
DCD 0x038 
DCB "MUSHROOMS   " 
DCD 0x100 
DCB "TOMATOES    " 
DCD 0x200 
DCB "PINEAPPLE   " 
DCD 0x300 
DCB "PINE NUTS   " 
END 

FIGURE 12.5 Assembly code for the binary search.



272 ARM Assembly Language

12.5 EXERCISES

 1. Using the sine table as a guide, construct a cosine table that produces the 
value for cos(x), where 0 < x < 360. Test your code for values of 84 degrees 
and 105 degrees.

 2. It was mentioned in Section 12.4 that a binary search only works if the 
entries in a list are sorted first. A bubble sort is a simple way to sort entries. 
The basic idea is to compare two adjacent entries in a list—call them 
entry[j] and entry[j + 1]. If entry[j] is larger, then swap the entries. If this 
is repeated until the last two entries are compared, the largest element in 
the list will now be last. The smallest entry will ultimately get swapped, or 
“bubbled,” to the top. This algorithm could be described in C as

 last = num;
 while (last > 0){
 pairs = last – 1;
 for (j = 0; j <= pairs; j + +) {
  if(entry[j] > entry[j + 1]) {
    temp = entry[j];
    entry[j] = entry[j + 1];
    entry[j + 1] = temp;
    last = j;
  }
 }
 }

  where num is the number of entries in the list. Write an assembly language 
program to implement a bubble sort algorithm, and test it using a list of 20 
elements. Each element should be a word in length.

 3. Using the bubble sort algorithm written in Exercise 2, write an assembly 
program that sorts entries in a list and then uses a binary search to find a 
particular key. Remember that your sorting routine must sort both the key 
and the data associated with each entry. Create a list with 30 entries or so, 
and data for each key should be at least 12 bytes of information.

 4. Create a queue of 32-bit data values in memory. Write a function to remove 
the first item in the queue.

 5. Using the sine table as a guide, construct a tangent table that produces the 
value for tan(x), where 0 ≤ x ≤ 45. Test your code for values of 12 degrees and 
43 degrees. You may return a value of 0x7FFFFFFF for the case where the 
angle is equal to 45 degrees, since 1 cannot be represented in Q31 notation.

 6. Implement a sine table that holds values ranging from 0 to 180 degrees. 
The implementation contains fewer instructions than the routine in Section 
12.2, but to generate the value, it uses more memory to hold the sine values 
themselves. Compare the total code size for both cases.
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 7. Implement a cosine table that holds values ranging from 0 to 180 degrees. 
The implementation contains fewer instructions than the routine in Section 
12.2, but to generate the value, it uses more memory to hold the cosine val-
ues themselves. Compare the total code size for both cases.

 8. Rewrite the binary search routine for the Cortex-M4.
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Subroutines and Stacks

13.1 INTRODUCTION

Subroutines, which are routines dedicated to focused or shorter tasks, occur in nearly 
all embedded code, often to perform initialization routines or to handle algorithms 
that require handcrafted assembly. You’re very likely to write subroutines when you 
come across a large problem to solve. The notion of divide-and-conquer aptly applies 
to writing assembly code—it’s just easier to get your head around a problem by 
describing it as a sequence of events, worrying about the low-level details when you 
write the event itself. For example, you could break a large program that controls a 
motor into something that looks like

main BL ConfigurePWM
 BL GetPosition
 BL CalcOffset
 BL MoveMotor
 ...

and then write each of the smaller tasks as subroutines. Even if you’re coding at 
a high level, say in C or C++, it’s natural to break down a large task into smaller 
blocks or functions, each function being a routine that can be called from a main 
routine.

To write a proper subroutine, we also have to look at ways of saving and restoring 
data, passing information to and from subroutines, and building stacks. This chapter 
will cover some instructions that we skipped in Chapter 5, the load and store multiple 
operations LDM and STM, and their synonymous mnemonics PUSH and POP, as 
they’re used frequently in stack operations. We’ll briefly look at ARM standards that 
govern stack creation and define a standard way to call subroutines, so that a com-
mon protocol exists for all developers. Without such standards, programmers could 
easily write code that is incompatible with code created using third-party tools, or 
even tools from ARM. Before writing any code, though, we have to look at those new 
instructions and define what we mean by a stack.

13.2 THE STACK

Stacks are conceptually Last In-First Out (LIFO) queues that can be used to describe 
systems from the architectural level down to the hardware level. Stacks can be used 
for software operations, too. More abstract descriptions of stacks can be used as data 
types by languages such as Java or Python, and there are even stack-based computer 
systems. When referring to hardware, generally these are areas in memory that have 

13
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a variable length and a fixed starting address. Figure 13.1 shows a description of a 
hardware stack, with each entry being a fixed number of bytes in memory (for our 
case, generally these are word-length values). Data is written, or pushed, onto the top 
of the stack, and also read, or popped, from the top of the stack, where the proces-
sor adjusts the stack pointer before or after each operation. ARM processors have a 
stack pointer, register r13, which holds the address of either the next empty entry or 
the last filled entry in the queue, depending on what type of stack you have. We’ll see 
the different types shortly.

13.2.1 LdM/sTM insTRuCTions

Back in Chapter 5, we covered all of the basic load and store instructions, leaving 
off one pair until now—the load and store multiple instructions. Where LDR and 
STR instructions transfer words, halfwords, and bytes, the LDM and STM instruc-
tions always transfer one or more words using registers and a pointer to memory, 
known as the base register. This type of load/store appears most often in the context 
of stacks and exception handling, since the processor only has a limited number of 
registers, and at times, you just have to make some room for new data somewhere. 
By saving off the contents of the registers before handling an exception or going to a 
subroutine, you free up registers for different uses. Obviously, these must be restored 
when you’re finished, and there are instructions for doing exactly that. There are 
also advantages in using a multiple register transfer instruction instead of a series 
of single data transfer instructions, to wit, the code size decreases. A single LDM 
instruction can load multiple registers from memory using only a single instruction, 
rather than individual LDR instructions. Execution time also shortens, since only 
one instruction must be fetched from memory.

On the ARM7TDMI, the syntax of the LDM instruction is

 LDM <address-mode> {<cond>} <Rn> {!}, <reg-list> {̂ }

where {<cond>} is an optional condition code; <address-mode> specifies the 
addressing mode of the instruction, which tells us how and when we change the 
base register; <Rn> is the base register for the load operation; and <reg-list> is a 

PUSH POP

FIGURE 13.1 A hardware stack in memory.
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comma-delimited list of symbolic register names and register ranges enclosed in 
braces. We’ll talk more about the “!” and “^” symbols in a moment.

On the Cortex-M3/M4, the syntax of the LDM instruction is

 LDM <address-mode> {<cond>} <Rn> {!}, <reg-list>

where {<cond>} is an optional condition code; <address-mode> specifies the address-
ing mode of the instruction (although as we’ll see in the next section, there are only 
two); <Rn> is the base register for the load operation; and <reg-list> is a comma-
delimited list of symbolic register names and register ranges enclosed in braces.

EXAMPLE 13.1

Suppose you wanted to load a subset of all registers, for example, registers r0 to 
r3, from memory, where the data starts at address 0xBEEF0000 and continues 
upward in memory. The instruction would simply be

 LDMIA r9, {r0-r3}

where the base register r9 holds the address 0xBEEF0000. The addressing mode 
used here is called Increment After, or IA. This says to increment the address after 
each value has been loaded from memory, which we’ll see shortly. This has the 
same effect as four separate LDR instructions, or

 LDR r0, [r9]
 LDR r1, [r9, #4]
 LDR r2, [r9, #8]
 LDR r3, [r9, #12]

Notice in the example above that at the end of the load sequence, register r9 has 
not been changed and still holds the value 0xBEEF0000. If you wanted to load 
data into registers r0 through r3 and r12, you could simply add it to the end of the 
list, i.e.,

 LDMIA r9, {r0-r3, r12}

Obviously, there must be at least one register in the list, but it doesn’t actually 
matter in what order you list the registers. The lowest register will always be loaded 
from the lowest address in memory, and the highest register will be loaded from the 
highest address. For example, you could say

 LDMIA r9, {r5, r3, r0-r2, r14}

and register r0 will be loaded first, followed by registers r1, r2, r3, r5, and r14.
Analogous to the load multiple instruction, the store multiple instruction (STM) 

transfers register data to memory, and for the ARM7TDMI, its syntax is

STM <address-mode> {<cond>} <Rn> {!}, <reg-list> {̂ }
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where the options are identical to those for the LDM instruction. The syntax for the 
Cortex-M3/M4 is

 STM <address-mode> {<cond>} <Rn> {!}, <reg-list>

The options on LDM and STM instructions are used sparingly, but they’re worth 
mentioning here. Starting from the value in the base register, the address accessed is 
decremented or incremented by one word for each register in the register list. Since 
the base register is not modified after an LDM or STM instruction completes, you 
can force the address to be updated by using the “!” option with the mnemonic. If 
you happen to have the base register in the register list, then you must not use the 
writeback option. The caret (̂ ) option is discussed in Chapter 14, since it relates more 
to the procedures of handling exceptions.

The addressing modes go by different names, as we’ll see in a moment, but basi-
cally there are four:

IA—Increment After
IB—Increment Before
DA—Decrement After
DB—Decrement Before

The suffix on the mnemonic indicates how the processor modifies the base regis-
ter during the instruction. For example, if register r10 contained 0x4000,

 LDMIA r10, {r0, r1, r4}

would begin by loading register r0 with data from address 0x4000. The value in 
the base register is incremented by one word after the first load is complete. The 
second register, r1, is loaded with data from 0x4004, and register r4 is loaded 
with data from 0x4008. Note here that the base register is not updated after the 
instruction completes. The other three suffixes indicate whether the base register 
is changed before or after the load or store, as well as whether it is incremented 
or decremented, as shown in Figure 13.2. In the following sections, we’ll exam-
ine stacks and the other addressing mode suffixes that are easier to use for stack 
operations.

IA

Increasing
address

r4
r1
r0

r4
r1
r0

r4
r1
r0

r4
r1
r0

LDMxx r10, {r0, r1, r4}

Base register (Rb)

STMxx r10, {r0, r1, r4}

IB DA DB

r10

FIGURE 13.2 LDM/STM operations.
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While the ARM7TDMI supports all four addressing modes, version 7-M pro-
cessors like the Cortex-M3/M4 have more restrictive options and a few cautions to 
mind. There are only two addressing modes from which to choose:

IA—Increment After
DB—Decrement Before

since the Cortex-M3/M4 supports only one type of stack, which we’ll examine more 
closely in the next few sections. If an LDM instruction is used to load the Program 
Counter, ensure that bit 0 of the loaded value is set to a 1; otherwise a fault exception 
occurs. For both the STM and LDM instructions, the stack pointer should not be 
included in the register list. Also be aware that if you have an LDM instruction that 
has the Link Register in the register list, you cannot include the Program Counter in 
the list. Consult the ARM v7-M Architectural Reference Manual (ARM 2010a) for 
other restrictions when using LDM and STM instructions.

13.2.2 push And pop

There are two instructions that are synonymous with STMDB and LDMIA, namely 
PUSH and POP, respectively. PUSH can be used in place of a STMDB instruction 
with both the ARM7TDMI and the Cortex-M4, as it falls in line with the new pre-
ferred UAL mnemonics. The syntax for the two instructions is

 PUSH{<cond>} <reglist>
 POP{<cond>}   <reglist>

where {<cond>} is an optional condition code and <reg-list> is a comma-delimited 
list of symbolic register names and register ranges enclosed in braces. PUSH has 
similar restrictions to the STM instruction, e.g., the register list must not contain the 
PC. POP has similar restrictions to the LDM instruction, e.g., the register list must 
not contain the PC if it contains the LR.

EXAMPLE 13.2

PUSH and POP make it very easy to conceptually deal with stacks, since the 
instruction implicitly contains the addressing mode. Suppose we have a stack that 
starts at address 0x20000200 on the Tiva TM4C123GH6ZRB, grows downward 
in memory (a full descending stack), and has two words pushed onto it with the 
following code:

  AREA Example3, CODE, READONLY
  ENTRY
SRAM_BASE EQU 0x20000200
  LDR sp, =SRAM_BASE

  LDR r3, =0xBABEFACE
  LDR r4, =0xDEADBEEF
  PUSH {r3}
  PUSH {r4}
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  POP {r5}
  POP {r6}

stop B stop ; stop program

As we’ll see in the next section, a full descending stack implies that the stack 
pointer is pointing to the last (full) item stored in the stack (at address 0x20000200) 
and that the stack items are stored at addresses that decrease with each new 
entry. Therefore, our stack pointer must be decremented before anything new is 
placed on the stack. The first word in our program would be stored in memory at 
address 0x200001FC. The second word would be stored at address 0x200001F8. 
If you run the code above in a simulator and view a memory window, such as the 
one in Figure 13.3, you will see the two words stored at successively decreasing 
addresses. The POP instructions will read the data into whichever registers we 
choose, so the value 0xDEADBEEF is popped off the top of the stack into regis-
ter r5. The stack pointer is incremented afterward. The second POP instruction 
moves the value 0xBABEFACE into register r6, shown in Figure 13.4, returning the 
stack pointer value to 0x20000200.

13.2.3 fuLL/eMpTy AsCending/desCending sTACKs

Stack operations are easy to implement using LDM and STM instructions, since the 
base register is now just the stack pointer, register r13. Several types of stacks can be 
built, depending on personal preferences, programming, or hardware requirements. 

FIGURE 13.3
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Your software tools will probably build a particular type of stack by default. 
Fortunately, they all use the same instructions—the differences lie with suffixes on 
those instructions. The options are

Descending or ascending—The stack grows downward, starting with a high 
address and progressing to a lower one (a descending stack), or upward, start-
ing from a low address and progressing to a higher address (an ascending 
stack).

Full or empty—The stack pointer can either point to the last item in the stack (a 
full stack), or the next free space on the stack (an empty stack).

To make it easier for the programmer, stack-oriented suffixes can be used instead 
of the increment/decrement and before/after suffixes. For example, you can just use 
the FD suffix to indicate that you’re building a full descending stack; the assembler 
will translate that into the appropriate instructions. Pushing data onto a full descend-
ing stack is done with an STMDB instruction. The stack starts off at a high address 
and works its way toward a lower address, and full refers to the stack pointer point-
ing at the last item in the stack, so before moving new data onto it, the instruction 
has to decrement the pointer beforehand. Popping data off this type of stack requires 
the opposite operation—an LDMIA instruction. Because the address always points 
to the last item on the stack, the processor reads the data first, then the address is 
incremented. Refer to Table 13.1 for a list of stack-oriented suffixes.

EXAMPLE 13.3

Let’s build a full descending stack in memory, using register r13 as the pointer to 
the stack. Further suppose that this code is part of a routine that will require the 
Link Register and registers r4 through r7 to be saved on the stack. Assume that the 
SRAM starts at address 0x20000200 for the Tiva TM4C123GH6ZRB microcon-
troller. Our code might start something like this:

  AREA Test, CODE, READONLY
SRAM_BASE EQU 0x20000200
  ENTRY
  ; set up environment
  LDR sp, =SRAM_BASE ;r13 = ptr to stack memory
  ;
  ; your main code is here
  ;

TABLE 13.1
Stack-Oriented Suffixes

Stack Type PUSH POP

Full descending STMFD (STMDB) LDMFD (LDMIA)

Full ascending STMFA (STMIB) LDMFA (LDMDA)

Empty descending STMED (STMDA) LDMED (LDMIB)

Empty ascending STMEA (STMIA) LDMEA (LDMDB)
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  ; call your routine with a branch and link instruction
  BL Myroutine
  ;
Myroutine ; Routine code goes here. First, create space in the register
  ; file by saving r4-r7, then save the Link Register for the return,
  ; all with a single store multiple to the stack
  STMDB sp!, {r4-r7,lr} ;Save some working registers
 ;
 ; Routine code
 ;
 ; Restore saved registers and move the Link Register contents
 ; into the Program Counter, again with one instruction
 LDMIA sp!, {r4-r7,pc} ;restore registers and return
 END

Recall that full descending stacks can be created by using the STMDB/LDMIA 
combination, identical to the PUSH/POP combination. Notice that the LDM 
instruction pops the value of the Link Register into the Program Counter, so if we 
were to call our stacking routine as part of another function, the return address 
is moved into the Program Counter automatically and fetching begins from there. 
This is exactly how subroutines are called, which brings us to our next section.

13.3 SUBROUTINES

Most large programs consist of many smaller blocks of code, or subroutines, where 
functions can be called at will, such as a print routine or a complicated arithme-
tic function like a logarithm. A large task can be described more easily this way. 
Subroutines also allow programmers to write and test small blocks of code first, 
building on the knowledge that they’ve been proven to work. Subroutines should fol-
low certain guidelines, and software should be able to interrupt them without caus-
ing any errors. A routine that can be interrupted and then called by the interrupting 
program, or more generally, can be called recursively without any problems, is called 
reentrant. By following a few simple procedures at the start of your code, you should 
be able to write reentrant subroutines with few headaches.

We’ve already seen a few examples of subroutines in Chapter 6, where the subrou-
tine is called with the BL (branch and link) instruction. This instruction transfers the 
branch target (the starting address of your subroutine) into the Program Counter and 
also transfers the return address into the Link Register, r14, so that the subroutine 
can return back to the calling program.

Subroutines can also call other subroutines, but caution must be taken to ensure 
information is not lost in the process. For example, in Figure 13.5, a main routine 
calls a subroutine called func1. The subroutine should immediately push the values 
of any registers it might corrupt, as well as the Link Register, onto the stack. At some 
point in the code, another subroutine, func2, is called. This subroutine should begin 
the exact same way, pushing the values of any used registers and the Link Register 
onto the stack. At the end of func2, a single LDM instruction will restore any cor-
rupted registers to their original values and move the address in the Link Register 
(that we pushed onto the stack) into the Program Counter. This brings us back to 
point where we left off in subroutine func1. At the end of func1, registers are restored 
and the saved Link Register value coming off the stack is moved into the Program 
Counter, taking us back to the main routine. If func1 doesn’t save the Link Register 
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at the start of its routine, when func2 is called, the Link Register will get overwrit-
ten with a new return address, so when func1 finishes and tries to return to the main 
routine, it has the wrong return address.

13.4 PASSING PARAMETERS TO SUBROUTINES

Subroutines are often written to be as general as possible. A subroutine that com-
putes the arctangent of 8 is of little use, but one that computes the arctangent of 
any given number can potentially be used throughout your code. Therefore, data or 
addresses need to be able to move into or out of a subroutine, and these values are 
called parameters. These can be passed to a subroutine through a predefined set of 
registers, a specified block of memory, or on the stack. We’ll see what the trade-offs 
and requirements are for the different approaches, starting with the use of registers.

13.4.1 pAssing pARAMeTeRs in RegisTeRs

Passing parameters in registers is a fast way of transferring data between the calling 
program and a subroutine, but the subroutine must expect the data to be in specific 
registers.

EXAMPLE 13.4

Saturation arithmetic is used frequently in signal processing applications. For situ-
ations where the output of a digital filter or digital controller cannot exceed a cer-
tain value, saturation arithmetic can be used to effectively drive the result to either 
the most positive or most negative value that can be represented with a given 
number of bits. For example, a 32-bit value such as 0x7FFFFFFC can be seen as a 
large, positive value in a two’s complement representation. However, if you were 
to add another small, positive number to it, such as 9, then the value becomes 
0x80000005, which is now a very large negative number. If we were to use sat-
uration arithmetic, the value returned from the addition would be 0x7FFFFFFF, 
which is the largest positive value you can represent in 32 bits using two’s 
complement. Similarly, a large negative movement because of subtraction, e.g., 
0x80000001 minus 2, would produce 0x80000000, the largest negative number, 

func1 func2

STMFD
sp!, {regs, lr}

MOV pc, lr

BL func2BL func1

LDMFD
sp!, {regs, pc}

...
......

...

...
...

FIGURE 13.5 Stacking the Link Register during entry to a subroutine.
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using saturation arithmetic. Imposing these two limits could be used to prevent an 
audio or speech waveform from going from the most positive to the most negative 
value, which introduces high-frequency “clicks” in the signal. Suppose we wish to 
use saturation arithmetic to perform a logical shift left by m bits. Clearly a number 
as simple as 0x40000000 already gets us into trouble. This can actually be done 
on an ARM7TDMI using only four instructions, as described by Symes (Sloss, 
Symes, and Wright 2004):

; r4 = saturate32(r5 < <m)
MOV r6, #0x7FFFFFFF
MOV r4, r5, LSL m
TEQ r5, r4, ASR m ; if (r5! = (r4 > >m))
EORNE r4, r6, r5, ASR #31 ; r4 = 0x7FFFFFFF^sign(r5)

Let’s convert this algorithm into a subroutine, and then pass the parameters 
through registers. For our example, the parameters are the value to be shifted, 
the shift count, and the return value. Our target microcontroller can again be the 
LPC2132 from NXP. The code might look something like the following:

SRAM_BASE EQU 0x40000000
 AREA  Passbyreg, CODE, READONLY
 ENTRY

 LDR sp, =SRAM_BASE
 ; try out a positive case (this should saturate)
 MOV r0, #0x40000000
 MOV r1, #2
 BL saturate

 ; try out a negative case (should not saturate)
 MOV r0, #0xFFFFFFFE
 MOV r1, #8
 BL saturate

stop
 B stop
saturate
 ; Subroutine saturate32
 ; Performs r2 = saturate32(r0 < <r1)
 ; Registers used:
 ; r0 - operand to be shifted
 ; r1 - shift amount (m)
 ; r2 = result
 ; r6 – scratch register

 STMIA sp!,{r6,lr}
 MOV r6, #0x7FFFFFFF
 MOV r2, r0, LSL r1
 TEQ r0, r2, ASR r1  ; if (r0! = (r2 > >m))
 EORNE r2, r6, r0, ASR #31 ; r2 = 0x7FFFFFFF^sign(r0)
 LDMDB sp!,{r6,pc}  ; return

 END
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There are a few things to note in this example. The first is that we have three 
parameters to pass between the calling routine and the subroutine: the operand 
to be shifted, the shift amount, and the result. We can use registers r0, r1, and r2 
for these parameters. Note that the subroutine also expects the parameters to be 
in these specific registers. The second point is that one register, r6, is corrupted 
in our subroutine, and we should, therefore, stack it to preserve its original value. 
Our stack pointer, register r13, is loaded with the base address of SRAM on the 
LPC2132. Our stack starts at this address and goes upward in memory. The Link 
Register is also stacked so that we ensure our subroutine can be interrupted, if nec-
essary. We exit the subroutine by using only a single LDM instruction, since the 
last register to be updated is the PC, and this is loaded with the LR value, returning 
us to the calling routine.

13.4.2 pAssing pARAMeTeRs By RefeRenCe

A better approach to passing parameters is to send a subroutine information to 
locate the arguments to a function. Memory, such as a block of RAM, could hold 
the parameters, and then the calling program could pass just the address of the 
data to the subroutine, known as calling by reference. This allows for changing 
values, and in fact, is more efficient in terms of register usage for some types 
of data, e.g., a long string of characters. Rather than trying to pass large blocks 
of data through registers, the starting address of the data is the only parameter 
needed.

EXAMPLE 13.5

The same shift routine we wrote earlier could be written as shown below, now 
passing the address of our parameters in SRAM to the subroutine through register 
r3. Again, the target is the LPC2132.

SRAM_BASE EQU 0x40000000
 AREA  Passbymem, CODE, READONLY
 ENTRY

 LDR sp, =SRAM_BASE ; stack pointer initialized
 LDR r3, =SRAM_BASE + 100 ; writable memory for parameters

 ; try out a positive case (this should saturate)
 MOV r1, #0x40000000
 MOV r2, #2
 STMIA r3, {r1,r2} ; save off parameters
 BL saturate

 ; try out a negative case (should not saturate)
 MOV r1, #0xFFFFFFFE
 MOV r2, #8
 STMIA r3, {r1,r2}
 BL saturate

stop
 B stop
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saturate
 ; Subroutine saturate32
 ; Parameters are read from memory, and the
 ; starting address is in register r3. The result
 ; is placed at the start of parameter memory.
 ; Registers used:
 ; r3 – holds address of parameters in memory
 ; r4 - result
 ; r5 - operand to be shifted
 ; r6 – scratch register
 ; r7 - shift amount (m)

 ; r4 = saturate32 (r5 <<  m)
 STMIA sp!,{r4-r7,lr}  ; save off used registers
 LDMIA r3, {r5,r7}  ; get parameters
 MOV r6, #0x7FFFFFFF
 MOV r4, r5, LSL r7
 TEQ r5, r4, ASR r7  ; if (r5! = (r4 > >m))
 EORNE r4, r6, r5, ASR #31  ; r4 = 0x7FFFFFFF^sign(r5)
 STR r4, [r3]  ; move result to memory
 LDMDB sp!,{r4-r7,pc}  ; return

 END

The operand to be shifted and the shift count are stored in memory starting at 
address SRAM_BASE + 100, where they are read by the subroutine. The entry to 
the subroutine does some housekeeping by saving off the registers about to be 
corrupted to the stack, including the Link Register. This is required by the ARM 
Application Procedure Call Standard (AAPCS), which is covered shortly.

There are two options for returning a value from this subroutine. The first is 
to just store it back in memory for later reading by some other code. The second 
option is to return the value in a register, say register r3. In our example, the value 
is stored back to memory. If you were doing string comparisons, you might call a 
subroutine and send the addresses of the two strings to the subroutine, expecting 
either a one (they matched) or a zero (they did not match) to be stored in a register 
as the result.

13.4.3 pAssing pARAMeTeRs on The sTACK

One of the most straightforward ways to pass parameters to a subroutine is to use the 
stack. This is very similar to passing parameters in memory, only now the subroutine 
uses a dedicated register for a pointer into memory—the stack pointer, register r13. 
Data is pushed onto the stack before the subroutine call; the subroutine grabs the data 
off the stack to be used; and results are then stored back onto the stack to be retrieved 
by the calling routine.

At this point it’s worth mentioning that a programmer should be mindful of which 
stack pointer he or she is using. Recall from Chapter 2 that the ARM7TDMI has dif-
ferent stack pointers for Supervisor mode, the exception modes, and for User mode, 
allowing different stacks to be built for the different modes if the programmer wishes 
to do so. The Cortex-M4 has two stack pointers, a main stack pointer (MSP), which 
is the default stack pointer, and a process stack pointer (PSP). The choice of stack 
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pointers is controlled through the CONTROL Register, which was mentioned briefly 
in Chapter 2. We’ll examine these more when dealing with exceptions in Chapter 15.

EXAMPLE 13.6

Rewriting the same saturated shift routine using the stack would look something 
like the code that follows:

SRAM_BASE EQU 0x40000000
 AREA  Passbystack, CODE, READONLY
 ENTRY

 LDR sp, =SRAM_BASE ; stack pointer initialized

 ; try out a positive case (this should saturate)
 MOV r1, #0x40000000
 MOV r2, #2
 STMIA sp!, {r1,r2} ; push parameters on the stack
 BL saturate
 ; pop results off the stack
 ; now r1 = result of shift
 LDMDB sp!, {r1,r2}

 ; try out a negative case (should not saturate)
 MOV r1, #0xFFFFFFFE
 MOV r2, #8
 STMIA sp!, {r1,r2}
 BL saturate
 LDMDB sp!, {r1,r2}
stop
 B stop
saturate
 ; Subroutine saturate32
 ; Parameters are read from the stack, and
 ; registers r4 through r7 are saved on the stack.
 ; The result is placed at the bottom of the stack.
 ; Registers used:
 ; r4 - result
 ; r5 - operand to be shifted
 ; r6 – scratch register
 ; r7 - shift amount (m)

 ; r4 = saturate32 (r5 <<  m)
 STMIA sp!,{r4-r7,lr}  ; save off used registers
 LDR r5, [sp, #-0x20] ; get first parameter off stack
 LDR r7, [sp, #-0x1C] ; get second parameter off stack
 MOV r6, #0x7FFFFFFF
 MOV r4, r5, LSL r7
 TEQ r5, r4, ASR r7  ; if (r5! = (r4 > >m))
 EORNE r4, r6, r5, ASR #31 ; r4 = 0x7FFFFFFF^sign(r5)
 STR r4, [sp, #-0x20] ; move result to bottom of stack
 LDMDB sp!,{r4-r7,pc}  ; return

 END

The stack structure is drawn in Figure 13.6. The two parameters are pushed to 
the bottom of the stack, and then the saved registers are stacked on top of them, 
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ending with the Link Register at the top. Since register r13 now points to the top of 
the stack, it’s necessary to use the stack pointer with a negative offset to address 
the parameters. When the result is computed, it must be stored back to the bottom 
of the stack, again using the stack pointer with a negative offset.

If the example above used full descending stacks, then the PUSH and POP instruc-
tions could be used just as easily. To see how this might look using a Cortex-M4, let’s 
examine the same algorithm that uses full descending stacks.

EXAMPLE 13.7

Since the object of the example is to compare the stack structures rather than the 
algorithm itself, the following code shows how to push two values onto the stack, 
call the subroutine, and then pop two values off the stack. Careful readers will 
have noticed that if the shift value were fixed, rather than variable as it is in our 
subroutine, you could save quite a bit of coding by just using the SSAT instruction 
that we saw in Chapter 7. For this example, the SRAM block begins at address 
0x20000000 on the Tiva TM4C123GH6ZRB.

SRAM_BASE EQU   0x20000200

 LDR sp, =SRAM_BASE ; stack pointer initialized

 ; try out a positive case (this should saturate)
 MOV r1, #0x40000000
 MOV r2, #2
 PUSH  {r1,r2} ; push parameters on the stack
 BL saturate
 ; pop results off the stack
 ; now r1 = result of shift
 POP  {r1,r2}

 ; try out a negative case (should not saturate)
 MOV r1, #0xFFFFFFFE
 MOV r2, #8
 PUSH  {r1,r2}

sp 
lr 
r7 
r6 
r5 
r4 
r3 

sp-0x1C parameter 2 r7
sp-0x20 parameter 1 r5...

...

FIGURE 13.6 Stack configuration.
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 BL saturate
 POP  {r1,r2}
stop
 B stop

saturate
 ; Subroutine saturate32
 ; Parameters are read from the stack, and
 ; registers r4 through r7 are saved on the stack.
 ; The result is placed at the bottom of the stack.
 ; Registers used:
 ; r4 - result
 ; r5 - operand to be shifted
 ; r6 - scratch register
 ; r7 - shift amount (m)

 ; r4 = saturate32(r5 <<  m)
 PUSH {r4-r7,lr} ; save off used registers
 LDR r5, [sp, #0x14] ; get first parameter off stack
 LDR r7, [sp, #0x18] ; get second parameter off stack
 MOV r6, #0x7FFFFFFF
 MOV r4, r5, LSL r7
 ASR r4, r7
 TEQ r5, r4 ; if (r5! = (r4 > >m))
 IT NE
 EORNE r4, r6, r5, ASR #31 ; r4 = 0x7FFFFFFF^sign(r5)
 STR r4, [sp, #0x14] ; move result to bottom of stack
 POP {r4-r7,pc} ; return

Notice at the end of the subroutine that the Link Register value that was pushed 
onto the stack is now loaded into the Program Counter using the POP instruction, 
similar to the method used by the ARM7TDMI.

13.5 THE ARM APCS

It turns out that there’s a standard called the ARM Application Procedure Call 
Standard (AAPCS) for the ARM architecture, which is part of the Application 
Binary Interface (ABI) (ARM 2007b). The AAPCS defines how subroutines can 
be separately written, separately compiled, and separately assembled to work 
together. It describes a contract between a calling routine and a called routine that 
defines:

• Obligations on the caller to create a program state in which the called rou-
tine may start to execute

• Obligations on the called routine to preserve the program state of the caller 
across the call

• The rights of the called routine to alter the program state of its caller

The standard is also designed to combine the ease, speed, and efficiency of pass-
ing parameters through registers with the flexibility and extensibility of passing in 
the stack. While the document describes procedures for writing code, it also defines 
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the use of registers, shown in Figure 13.7. Some parts of the specification include the 
following:

The first four registers r0-r3 (also called a1-a4, for argument) are used to pass 
argument values into a subroutine and to return a result value from a func-
tion. They may also be used to hold intermediate values within a routine 
(but in general, only between subroutine calls).

Register r12 (IP) may be used by a linker as a scratch register between a rou-
tine and any subroutine it calls. It can also be used within a routine to hold 
intermediate values between subroutine calls.

Typically, the registers r4-r8, r10, and r11 are used to hold the values of a 
routine’s local variables. Of these, only r4-r7 can be used uniformly by the 
whole Thumb instruction set, but the AAPCS does not require that Thumb 
code only use those registers.

A subroutine must preserve the contents of the registers r4-r8, r10, r11, and SP 
(and r9 in some Procedure Call Standard variants).

Stacks must be eight-byte aligned, and the ARM and Thumb C and C++ com-
pilers always use a full descending stack.

For floating-point operations, similar rules apply. According to the standard, reg-
isters s16-s31 must be preserved across subroutine calls; registers s0-s15 do not need 
to be preserved, so you could use these for passing arguments to a subroutine. The 
only status register that may be accessed by conforming code is the FPSCR, and 
within this register, certain bits must be left unchanged. While it’s important to write 
code that conforms to the specification, beginning programmers would do well to 

Arguments into function
Result(s) from function
Otherwise corruptible

(Additional parameters
passed on stack)

Register variables
must be preserved

Scratch register
(corruptible)

Stack pointer
Link Register

Program Counter

Register

r3
r2
r1
r0

r7
r8

r9/sb
r10/s1

r13/sp
r14/lr
r15/pc

r11

r12

r6
r5
r4

FIGURE 13.7 The ARM APCS specification for register usage.
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practice with the specification in mind, and as time permits, rework your code to 
follow the standard.

EXAMPLE 13.8

Let’s look at a short floating-point routine for the Cortex-M4 that uses a Taylor 
series expansion to compute the value of sin(x). The subroutine uses registers 
s0-s10, so no floating-point registers need to be stacked. The input to the routine 
and the final result are stored in register s0. As we saw in Chapter 7, sometimes 
divisions can be avoided entirely by calculating constants beforehand and using 
multiplication operations instead.

;************************************************************
;
; This is the code that gets called when the processor first starts execution
; following a reset event.
;
;************************************************************
  EXPORT Reset_Handler
 ENTRY

Reset_Handler

 ; Enable the FPU
 ; Code taken from ARM website
 ; CPACR is located at address 0xE000ED88
 LDR.W r0, =0xE000ED88

 LDR r1, [r0]  ; Read CPACR
 ; Set bits 20-23 to enable CP10 and CP11 coprocessors
 ORR r1, r1, #(0xF <<  20)
 ; Write back the modified value to the CPACR
 STR r1, [r0]  ; wait for store to complete
 DSB

 ; Reset pipeline now that the FPU is enabled
 ISB

 ;
 ; The calculation of the sin(x) will be done in the
 ; subroutine SinCalc. The AAPCS dictates the first
 ; 16 FPU registers (s0-s15) are not preserved, so we will
 ; use them in the calling routine to pass the operand and
 ; return the result. Registers s16-s31 must be preserved in
 ; a subroutine, so they are used in the calling routine.

 ; FPU registers
 ; s0 - Passed operand and returned result

 ; Evaluate the function for operand the test operand
 VLDR.F32  s0, = 1.04719
 BL  SinCalc
Exit B  Exit

 ; Sine code
 ; The algorithm is a Taylor series with
 ; 4 terms (x = x - x^3/3! + x^5/5! - x^7/7!)
 ; Optimized, we have 9 multiplications and 3 adds.
 ; We can avoid the divisions by computing 1/3!, 1/5!, etc. and
 ; using the constant in a multiplication.
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 ;
 ; This formula works for all x in the range [0, pi/2]
 ; [0, pi/2]
 ;
 ; This routine assumes AAPCS -
 ; regs s0-s15 parameters and/or scratch
 ; Register usage:
 ; s0 - input operand and return result
 ; s1 - 1/3! (invfact3)
 ; s2 - 1/5! (invfact5)
 ; s3 - 1/7! (invfact7)
 ; s4 - x * s1 (xdiv3), then s4 * s7 (x^2 * xdiv3) (x3div3)
 ; s5 - x * s2 (xdiv5), then s5 * s8 (x^4 * xdiv5) (x5div5)
 ; s6 - x * s3 (xdiv7), then s6 * s9 (x^6 * xdiv7) (x7div7)
 ; s7 - x^2
 ; s8 - x^4
 ; s9 - x^6
 ; s10 - scratch

SinCalc
 ; set up the three inverse factorial constants
 VLDR.F32 s1, invfact3
 VLDR.F32 s2, invfact5
 VLDR.F32 s3, invfact7

 ;
 VMUL.F32 s4, s0, s1 ; compute xdiv3
 VMUL.F32 s7, s0, s0 ; compute x^2
 VMUL.F32 s5, s0, s2 ; compute xdiv5
 VMUL.F32 s4, s4, s7 ; compute x3div3
 VMUL.F32 s8, s7, s7 ; compute x^4
 VMUL.F32 s6, s0, s3 ; compute xdiv7
 VSUB.F32 s10, s0, s4 ; compute terms12, x-x^3/3!
 VMUL.F32 s9, s7, s8 ; compute x^6
 VMUL.F32 s5, s5, s8 ; compute x5div5
 VMUL.F32 s6, s6, s9 ; compute x7div7
 VADD.F32 s10, s10, s5 ; compute terms123, x-x^3/3! + x^5/5!
 VSUB.F32 s0, s10, s6 ; compute result

 BX  lr ; return

invfact3 DCD 0x3E2AAAAB ; 1/3!
invfact5 DCD 0x3C088888 ; 1/5!
invfact7 DCD 0x39500CD1 ; 1/7!

13.6 EXERCISES

 1. What’s wrong with the following ARM7TDMI instructions?
 a. STMIA r5!, {r5, r4, r9}
 b. LDMDA r2, {}
 c. STMDB r15!, {r0-r3, r4, lr}

 2. On the ARM7TDMI, if register r6 holds the address 0x8000 and you exe-
cuted the instruction

 STMIA r6, {r7, r4, r0, lr}

  what address now holds the value in register r0? Register r4? Register r7? 
The Link Register?
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 3. Assume that memory and ARM7TDMI registers r0 through r3 appear as 
follows:

Address Register

0x8010 0x00000001 0x13 r0

0x800C 0xFEEDDEAF 0xFFFFFFFF r1

0x8008 0x00008888 0xEEEEEEEE r2

0x8004 0x12340000 0x8000 r3

0x8000 0xBABE0000

  Describe the memory and register contents after executing the instruction

 LDMIA r3!, {r0, r1, r2}

 4. Suppose that a stack appears as shown in the first diagram below. Give the 
instruction or instructions that would push or pop data so that memory appears 
in the order shown. In other words, what instruction would be necessary to go 
from the original state to that shown in (a), and then (b), and then (c)?

Address

0x8010 0x00000001 0x00000001 0x00000001 0x00000001

0x800C 0xFEEDDEAF 0xFEEDDEAF 0xFEEDDEAF 0xFEEDDEAF

0x8008 0xBABE2222 0xBABE2222

0x8004 0x12340000

0x8000

Original (a) (b) (c)

 5. Convert the cosine table from Problem 1 in Chapter 12 into a subroutine, 
using a full descending stack.

 6. Rewrite Example 13.4 using full descending stacks.

 7. Rewrite Example 13.5 using full descending stacks.

 8. Rewrite Example 13.6 using full descending stacks.

 9. Convert the factorial program written in Chapter 3 into a subroutine, using 
full descending stacks. Pass arguments to the subroutine using both pass-
by-register and pass-by-stack techniques.

 10. Write the ARM7TDMI division routine from Chapter 7 as a subroutine that 
uses empty ascending stacks. Pass the subroutine arguments using regis-
ters, and test the code by dividing 4000 by 32.

 11. Match the following terms with their definitions:

 a.  Recursive 1.  Subroutine can be interrupted and called by the inter-
rupting routine
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 b. Relocatable 2. A subroutine that calls itself
 c. Position 3.  The subroutine can be placed anywhere in memory 

independent
 d. Reentrant 4.  All program addresses are calculated relative to the 

Program Counter

 12. Write the ARM7TDMI division routine from Chapter 7 as a subroutine that 
uses full descending stacks. Pass the subroutine arguments using the stack, 
and test the code by dividing 142 by 7.

 13. Write ARM assembly to implement a PUSH operation without using LDM 
or STM instructions. The routine should handle three data types, where 
register r0 contains 1 for byte values, 2 for halfword values, and 4 for word 
values. Register r1 should contain the data to be stored on the stack. The 
stack pointer should be updated at the end of the operation.

 14. Write ARM assembly to check whether an N × N matrix is a magic square. 
A magic square is an N × N matrix in which the sums of all rows, columns, 
and the two diagonals add up to N(N2 + 1)/2. All matrix entries are unique 
numbers from 1 to N2. Register r1 will hold N. The matrix starts at location 
0x4000 and ends at location (0x4000 + N2). Suppose you wanted to test a 
famous example of a magic square:

16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1

  The numbers 16, 3, 2, and 13 would be stored at addresses 0x4000 to 0x4003, 
respectively. The numbers 5, 10, 11, and 8 would be stored at addresses 
0x4004 to 0x4007, etc. Assume all numbers are bytes. If the matrix is a 
magic square, register r9 will be set upon completion; otherwise it will be 
cleared. You can find other magic square examples, such as Ben Franklin’s 
own 8 × 8 magic square, on the Internet to test your program.

 15. Another common operation in signal processing and control applications is 
to compute a dot product, given as

 

a c xm m

m

N

=
=

−

∑
0

1

  where the dot product a is a sum of products. The coefficients cm and the 
input samples xm are stored as arrays in memory. Assume sample data and 
coefficients are 16-bit, unsigned integers. Write the assembly code to com-
pute a dot product for 20 samples. This will allow you to use the LDM 
instruction to load registers with coefficients and data efficiently. You prob-
ably want to bring in four or five values at a time, looping as needed to 
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exhaust all values. Leave the dot product in a register, and give the register 
the name DPROD using the RN directive in your code. If you use the newer 
v7-M SIMD instructions, note that you can perform two multiples on 16-bit 
values at the same time.

 16. Suppose your stack was defined to be between addresses 0x40000000 and 
0x40000200, with program variables located at address 0x40000204 and 
higher in memory, and your stack pointer contains the address 0x400001FC. 
What do you think would happen if you attempt to store 8 words of data on 
an ascending stack?
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Exception Handling
ARM7TDMI

14.1 INTRODUCTION

Large applications, including operating systems, often have to deal with inputs from 
various sources, such as keyboards, mice, USB ports, and even power management 
blocks telling the processor its battery is about to run dry. Sometimes an embed-
ded microcontroller has only one or two external input sources (e.g., from sensors 
in an engine), but it may still have peripheral devices that may need attention from 
time to time, such as a watchdog timer. Universal asynchronous receiver/transmitters 
(UARTs), wake-up alerts, analog-to-digital converters (ADCs), and I2C devices can 
all demand the processor’s time. In the next two chapters, we’re going to examine 
the different types of exceptions a processor can face in light of the fact that they 
are not isolated, only running code and talking to no one. In our definition of an 
exception, the events that can cause one must not be immediately thought of as bad 
or unwanted. Exceptions include benign events like an interrupt, and this can be any 
kind of interrupt, like someone moving a mouse or pushing a button. Technically, 
anything that breaks a program’s normal flow could be considered an exception, but 
it’s worth detailing the different types, since some can be readily handled and others 
are unexpected and can cause problems. At this end of the spectrum, catastrophic 
faults, such as a bus error when trying to fetch an instruction, may have no solution 
in software and the best outcome may be to alert the user before halting the entire 
system. Certain events can lead to a serious system failure, and while they are rare, 
they should be anticipated to help find the cause of the problem during application 
development or to plan for a graceful shutdown. For example, a rogue instruction in 
the processor’s pipeline or a memory access to an address that doesn’t exist should 
not occur once the software is finished and tested. Version 4T cores and version 7-M 
cores handle exceptions differently, and we’ll therefore examine the exception model 
for the Cortex-M4 in Chapter 15. In this chapter, we’ll start with the exception model 
for the ARM7TDMI, and we’ll examine exceptions in two large classes—interrupts 
and error conditions.

14.2 INTERRUPTS

Interrupts are very common in microprocessor systems. They provide the ability 
for a device such as a timer or a USB interface to poke the processor in the ribs and 
loudly announce that it wants attention. Historically, large computers only took a 
set of instructions and some data, calculated an answer, and then stopped. These 

14
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machines had no worries about dozens of interfaces and devices all vying for part 
of the CPU’s time. Once microprocessors became ubiquitous in electronic devices, 
they had to deal with supporting an operating system and application software in 
addition to calculating and moving data for other parts of a system. Microcontrollers 
are, in effect, smaller versions of complete systems, where motor controllers, timers, 
real-time clocks, and serial interfaces all demand some face time from the processor. 
So what’s the best way to let the processor do its main tasks while allowing other 
peripherals to ask for assistance every so often?

Say you had a UART, which is a type of serial interface, attached to a proces-
sor that received a character from another device, say a wireless keyboard. When a 
character shows up in the UART, it’s basically sitting at a memory location assigned 
to the UART waiting for the processor to get the data. There are roughly three ways 
the processor can handle this situation. The first, and by far the least efficient, is 
for the processor to sit in a loop doing absolutely nothing except waiting for the 
character to show up. Given the speed at which processors run, where billions of 
instructions can now be processed in a single second, waiting even 1/100th of a 
second for a device to transmit the data wastes millions of cycles of bandwidth. The 
second option is for the processor to occasionally check the memory location to 
see if there is some new data there, known as polling. While the processor can do 
other things while it waits, it still has to take time to examine the (possibly empty) 
memory location. The third option, and clearly the best one, is to have the device 
tell the processor when there is new data waiting for it. This way, the processor can 
spend its time performing other functions, such as updating a display or converting 
MP3 data to an analog waveform, while it waits for a slower device to complete 
its task. An interrupt is therefore an efficient method for telling the processor that 
something (usually a device or peripheral) needs attention. If you refer back to the 
diagram of the ARM7TDMI in Chapter 1 (Figure 1.4), you will notice two external 
lines coming into the part—nIRQ and nFIQ, where the “n” denotes an active low 
signal. These are the two interrupt lines going into the processor, with a low priority 
interrupt called IRQ and a high priority interrupt called FIQ. In addition to hard-
ware interrupts, software has one as well, called aptly enough, Software Interrupt 
or SWI in the older notation, and SVC in the newer notation. We will look at all of 
these in detail to see how they work.

14.3 ERROR CONDITIONS

While you hope not to have these exceptions in a system, they do occur often enough 
that software needs to be sufficiently robust to handle them. The ARM cores recog-
nize a few error conditions, some of which are easy to handle, some of which are not. 
An undefined instruction in the program can cause an error, but this may or may not 
be intentional. In a completely tested system where no new code is introduced (e.g., 
an embedded processor in an MP3 player that only handles the display), one would 
not expect to see a strange instruction suddenly show up in the application code. 
However, if you know that you have a design that requires floating-point operations, 
but the processor does not support floating-point in hardware, you could decide to 
use floating-point instructions and emulate them in software. Once the processor 
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sees floating-point instructions (which aren’t listed in this book but can be found in 
the ARM Architectural Reference Manual (ARM 2007c)), it will take an undefined 
instruction exception since there is no hardware to perform the operations. The pro-
cessor can then take the necessary actions to perform the operations anyway, using 
only software to emulate the floating-point operation, appearing to the user as if 
floating-point hardware were present.

Data and prefetch aborts are the exception types that often cause programmers the 
most angst. A prefetch abort occurs when the processor attempts to grab an instruc-
tion in memory but something goes wrong—if memory doesn’t exist or the address 
is outside of a defined memory area, the processor should normally be programmed 
to recover from this. If the address is not “expected” but still permitted, then the 
processor may have additional hardware (known as a memory management unit or 
MMU) to help it out, but this topic is outside the scope of this book. A data abort 
occurs when the processor attempts to grab data in memory and something goes 
wrong (e.g., the processor is in an unprivileged mode and the memory is marked as 
being readable only in a privileged mode). Certain memory regions may be config-
ured as being readable but not writable, and an attempt to write to such a region can 
cause a data abort. As with prefetch aborts, the processor usually needs to be able 
to recover from some situations and often has hardware to assist in the recovery. We 
will see more about aborts in Section 14.8.4.

14.4 PROCESSOR EXCEPTION SEQUENCE

When an exception occurs, the ARM7TDMI processor has a defined sequence of 
events to start the handling and recovery of the exception. In all cases except a reset 
exception, the current instruction is allowed to complete. Afterward, the following 
sequence begins automatically:

• The CPSR is copied into SPSR_<mode>, where <mode> is the new mode 
into which the processor is about to change. Recall from Chapter 2 that 
the register file contains SPSR registers for exceptional modes, shown in 
Figure 14.1.

• The appropriate CPSR bits are set. The core will switch to ARM state if it 
was in Thumb state, as certain instructions do not exist in Thumb that are 
needed to access the status registers. The core will also change to the new 
exception mode, setting the least significant 5 bits in the CPSR register. IRQ 
interrupts are also disabled automatically on entry to all exceptions. FIQ 
interrupts are disabled on entry to reset and FIQ exceptions.

• The return address is stored in LR_<mode>, where <mode> is the new 
exception mode.

• The Program Counter changes to the appropriate vector address in memory.

Note that the processor is responsible for the above actions—no code needs to 
be written. At this point, the processor begins executing code from an exception 
handler, which is a block of code written specifically to deal with the various excep-
tions. We’ll look at how handlers are written and what’s done in them shortly. Once 
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the handler completes, the processor should then return to the main code—whether 
or not it returns to the instruction that caused the exception depends on the type 
of exception. The handler may restore the Program Counter to the address of the 
instruction after the one that caused the exception. Either way, the last two things 
that remain to be done, and must be done by the software handler, are

• The CPSR must be restored from SPSR_<mode>, where <mode> is the 
exception mode in which the processor currently operates.

• The PC must be restored from LR_<mode>.

These actions can only be done in ARM state, and fortunately, the software can usu-
ally do these two operations with a single instruction at the end of the handler.

It is worth noting at this point that while most ARM cores have similar excep-
tion handling sequences, there are some differences in the newest cores (e.g., the 
Cortex-M3/M4 has a different programmer’s model, and the Cortex-A15 has even 
more exception types and modes). The Technical Reference Manuals for the indi-
vidual cores contain complete descriptions of exception sequences, so future projects 
using version 7 and version 8 processors might require a little reading first.

Mode
User/System

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
PC

CPSR CPSR
SPSR_SVC

= banked register

SPSR_ABORT SPSR_UNDEF SPSR_IRQ SPSR_FIQ
CPSR CPSR CPSR CPSR

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13_SVC
R14_SVC
PC

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13_ABORT
R14_ABORT
PC

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13_UNDEF
R14_UNDEF
PC

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13_IRQ
R14_IRQ
PC

R0
R1
R2
R3
R4
R5
R6
R7
R8_FIQ
R9_FIQ
R10_FIQ
R11_FIQ
R12_FIQ
R13_FIQ
R14_FIQ
PC

Supervisor Abort Undefined Interrupt Fast Interrupt

FIGURE 14.1 Register organization.
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14.5 THE VECTOR TABLE

Earlier in Section 2.3.3, we saw the exception vector table for the first time, but we 
didn’t do much with it. At this point, we can start using these addresses to handle 
the various types of exceptions covered in this chapter. Figure 14.2 shows the table 
again, with the vectors listed as they would be seen in memory. Recall that while 
some processors, e.g., the 6502 and Freescale’s 680x0 families, put addresses in their 
vector tables, ARM uses actual instructions, so the reset exception vector (at address 
0x0) would have a change-of-flow instruction of some type sitting there. It may not 
be the actual instruction B, as we’ll see in a moment.

Having covered literal pools, we can now begin to examine the way that real 
ARM code would be written and stored in memory with regard to exceptions. 
Figure 14.3 shows a memory map from address 0x0 to 0xFFFFFFFF and an example 
layout for the exception handlers. Note that this is only an example, and may not be 
applicable to your application, so these are just options. For each type of exception, 
there is usually a dedicated block of code, called an exception handler, that is respon-
sible for acknowledging an exceptional condition and, more often than not, fixing 
it. Afterward, the code should return the processor back to the point from where it 
left, now able to continue without the exception. Not all exceptions need handlers, 
and in some deeply embedded systems, the processor may not be able to recover. 
Consider the hypothetical situation where the processor tries to read a memory loca-
tion that is not physically present. Further suppose that an address in the memory 
map does not point to a memory chip or memory block but rather points to nothing. 
The machine may be programmed to reset itself if something like that ever happens. 
Larger applications, such as a cell phone, will have to deal with all exceptions and 
provide robust methods to recover from them, especially in light of having hardware 
that can change, e.g., if a memory card can be added or removed.

Since exception vectors contain instructions at their respective addresses in mem-
ory, an exception such as an IRQ, which is a low-priority interrupt, would have some 
kind of change-of-flow instruction in its exception vector to force the processor to 

0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

FIQ
IRQ

(Reserved)
Data Abort

Prefetch Abort
Software Interrupt

Undefined instruction

Reset

FIGURE 14.2 Exception vector table.
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begin fetching instructions from its handler. These change-of-flow instructions are 
one of the following:

• Branch instruction—A direct branch can be used to jump to your exception 
handler; however, the range of a B instruction is only 32 MB, and this may 
not always work with every memory organization. If your exception handler 
is more than 32 MB away, you must use another type of instruction.

• MOV instruction—A MOV instruction can change the PC simply by load-
ing the register with a value. The value loaded could be created from a byte 
rotated by an even number of bits, so that it fits within a 32-bit instruction, 
for example,

 MOV PC, #0xEF000000

 Notice also that this instruction contains a 32-bit address, but it can be con-
structed using the rotation scheme discussed in Chapter 6.

• LDR instruction—Recall that data can be stored in instruction memory 
and then accessed by using an offset to the Program Counter, as we saw in 
Chapter 6 with literals. The instruction would have the form

 LDR PC, [PC + offset]

  where the offset would be calculated using the address of the handler, the 
vector address, and the effects of the pipeline.

Looking at our example memory map in Figure 14.3, we see that the reset excep-
tion can use a simple branch (B) instruction, provided that we place the reset handler 

0x30008000

MOV PC, #0x30000000
LDR PC, [PC, #+0xFF0]

Undef handler
Undef handler outside 32MB

branch instruction range

SVC exception handler placed on
appropriate address boundary

Literal pool containing address of
undef handler

SVC handler

0xFFFFFFFF

0x30008000

0x30000000

FIQ handler

B IRQ_handler
Reserved

Data abort vector
Prefetch abort vector

Reset vector

>32 MB 0x2000000

0x1000

0xFFC
<4 KB

IRQ handler within 32MB branch
instruction range

FIQ handler follows vector table

IRQ handler

FIGURE 14.3 Example memory map with exception handlers.
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within a 32 MB range. The next exception, the undefined instruction exception, uses 
a load instruction with an offset to access the value sitting at address 0xFFC in 
memory. When the processor is executing the load instruction at address 0x4, the 
Program Counter contains the value 0xC, since it is the address of the instruction 
being fetched. The offset would then be 0xFF0. When the value at address 0xFFC, 
0x30008000, is loaded into the Program Counter, it has the same effect as jump-
ing there with a branch instruction. One other thing to note is the size of the offset 
used—there are only 12 bits to create an offset with a load instruction of this type; 
hence, the value 0xFFC is the last word that could be accessed within that 4 KB 
range. The next word has the address 0x1000 and is too far away.

Continuing up the table, we come to the SWI (or SVC, as it is now known) excep-
tion. This example shows that an address like 0x30000000 can be generated using 
the byte rotation scheme and therefore can be reached using a simple MOV instruc-
tion. The SVC handler is then placed at that location in memory. Skipping the two 
abort exceptions and the reserved vector, we continue to address 0x18, where the 
IRQ exception vector contains a simple branch instruction, and the IRQ handler 
starts at an address that is located within 32 MB of the branch.

The last exception vector, to which we alluded back in Chapter 2, sits at the top of 
the vector table for a reason. FIQ interrupts are fast interrupts, meaning that if you 
have a critical event that must be serviced immediately, and it holds the highest prior-
ity among interrupts, then you want to spend as little time as possible getting to the 
code to service it. We also know from Chapter 8 that branches cause a pipelined archi-
tecture to throw away instructions, so rather than cause the processor to take some 
type of branch to get to the handler, the FIQ vector is the first instruction of the han-
dler! There is no need to branch, since the Program Counter will be set to the address 
0x1C when the processor acknowledges and begins to service the interrupt. The FIQ 
handler is then executed as the Program Counter increments through memory.

14.6 EXCEPTION HANDLERS

Exceptions require some housekeeping. Normally, the processor is busy moving data 
or crunching numbers, but when an exception occurs, processors have to prepare 
to save the status of the machine, since at some point they must return to crunch-
ing numbers or moving data. When an exceptional condition is seen by the proces-
sor, the first thing it must do is copy the Current Program Status Register into a 
Saved Program Status Register, and in particular the SPSR belonging to the new 
mode associated with the exception. Recall that for five of the seven modes, there are 
unique SPSRs (e.g., Abort Mode has an SPSR_abort). The Current Program Status 
Register must then be changed to reflect what happened—the mode bits will be 
changed, further interrupts may be disabled, and the state will change from Thumb 
state to ARM state if the processor was executing Thumb instructions (there’s more 
on Thumb in Chapter 17). Since exceptions cause the code to jump to a new location 
in memory, it’s imperative to save off a return address, akin to what was done for 
subroutines, so that the processor can return later. This return address is stored in the 
Link Register associated with the exception type (e.g., R14_FIQ if the processor took 
an FIQ exception). The Program Counter is then changed to the appropriate vector 
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address. All of this work is done by the processor, so the focus for the programmer 
is to write the appropriate exception handler.

Once the mode of the processor has been changed, the exception handler will 
have to access its own stack pointer (R13_FIQ, for example), its own Link Register, 
and its own Saved Program Status Register. There are general-purpose registers that 
can be used by the handler, but normally some of these are saved off to a stack before 
using them, since any registers that are corrupted by a handler must be restored 
before returning (refer back to the ARM Application Procedure Call Standard that 
we saw in Chapter 13). This whole process of storing registers to external memory 
takes time, and again, depending on the type of exception, may cause an unaccept-
able delay in processing an exception. Going back to the idea of a fast interrupt, 
we’ve already seen that the FIQ vector sits at the top of the vector table, saving a 
branch instruction. To prevent having to store data on the stack before handling the 
FIQ interrupts, there are also five additional general-purpose registers (R8_FIQ to 
R12_FIQ) that the handler can access.

Exception handlers can be intentionally short, or long, robust routines depending 
on how much needs to be done for any given exception. In Section 14.8.2, we’ll exam-
ine an undefined exception handler of only a few lines. At the end of all handlers, the 
programmer is responsible for restoring the state of the machine and returning back 
to the original instruction stream before the exception. This can be done as an atomic 
operation, moving the contents of the SPSR back into the CPSR while moving the 
Link Register into the Program Counter. The instructions to do these operations only 
exist in the ARM instruction set, which was why the processor had to switch from 
Thumb to ARM if it was executing Thumb code. The various return methods are 
discussed more in the next few sections.

14.7 EXCEPTION PRIORITIES

Exceptions must be prioritized in the event that multiple exceptions happen at the 
same time. Consider the case where a peripheral on a microcontroller has generated 
a low-priority interrupt, say an A/D converter has finished sampling some data and 
alerts the processor by pulling on the IRQ line. At the exact same time, the proces-
sor tries to access a memory location that is undefined while another high-priority 
interrupt tries to tell the processor that we’re about to lose power in two minutes. The 
processor must now decide which exception type gets handled first. Table 14.1 shows 
the exception types in order of their priority.

For complicated reasons, data aborts are given the highest priority apart from 
the reset exception, since if they weren’t, there would be cases where if two or more 
exceptions occurred simultaneously, an abort could go undetected. If an FIQ and an 
IRQ interrupt occur at the same time, the FIQ interrupt handler goes first, and after-
ward, the IRQ will still be pending, so the processor should still be able to service 
it. An SVC and an Undefined Instruction exception are mutually exclusive, since 
an SVC instruction is defined and cannot generate an Undefined Instruction excep-
tion. To settle the contention described earlier, the Data Abort exception would be 
handled first, followed by the FIQ interrupt alerting the system to a power failure, 
and then the A/D converter will have its turn.
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A situation could present itself where the processor is already handling an excep-
tion and another exception occurs. For example, suppose the processor is working 
on an FIQ interrupt and has already begun executing the handler for it. During the 
course of executing this code, a data abort occurs—one that could be helped by addi-
tional MMU hardware. The processor would begin exception processing again, stor-
ing the CPSR into the register SPSR_abort, changing the mode, etc., and then jump 
to the new exception handler. Once the second exception completes and the Program 
Counter points back to the first handler, the original FIQ exception can finish up. If 
another FIQ interrupt tried to interrupt instead of a data abort, it would be blocked, 
because FIQ interrupts are automatically disabled by the processor upon entry to FIQ 
mode. The software could enable them again, but this is not typical practice.

14.8 PROCEDURES FOR HANDLING EXCEPTIONS

As mentioned before, sometimes handlers can be very short and sometimes they can 
be quite complicated—it all depends on what the handler is responsible for doing. 
In this next section, we’ll examine the basic requirements for the different excep-
tion types, along with some detailed code examples using the STR910FM32 and 
LPC2132 microcontrollers included in the Keil simulation tools.

14.8.1 ReseT exCepTions

When the processor first receives power, it will put the value 0x00000000 on the 
32-bit address bus going to memory and receive its first instruction, usually a branch. 
This branch then takes it to the first instruction of the reset handler, where initializa-
tion of the processor or microcontroller is started. Depending on what’s needed, a 
reset handler can be very simple, or it may need to perform tasks such as:

• Set up exception vectors
• Initialize the memory system (e.g., if a memory management unit [MMU] 

or memory protection unit [MPU] is present)

TABLE 14.1
ARM7TDMI Exception Priorities

Priority Exception Comment

Highest Reset Handler usually branches straight to the main routine.

Data Abort Can sometimes be helped with hardware (MMU).

FIQ Current instruction completes, then the interrupt is acknowledged.

IRQ Current instruction completes, then the interrupt is acknowledged. Used 
more often than FIQ.

Prefetch Abort Can sometimes be helped with hardware (MMU).

SVC Execution of the instruction causes the exception.

Lowest Undefined 
Instruction

SVC and Undef are actually mutually exclusive, so they have the same 
priority.
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• Initialize all required processor mode stacks and registers
• Initialize any critical I/O devices
• Initialize any peripheral registers, control registers, or clocks, such as a 

phase-locked loop (PLL)
• Enable interrupts
• Change processor mode and/or state

We’ll see in the example shortly how registers are configured and how interrupts 
are handled. Once the handler sets up needed registers and peripherals, it will jump 
to the main routine in memory. Reset handlers do not have a return sequence at the 
end of the code.

14.8.2 undefined insTRuCTions

We saw in Chapter 3 that the ARM7TDMI has about 50 instructions in its instruc-
tion set, plus all of the combinations of addressing modes and registers. With exactly 
232 possible instruction bit patterns, that leaves quite a few combinations of ones and 
zeros that are classified as an undefined instruction! An exception can occur if the 
processor doesn’t recognize a bit pattern in memory, but it can also take an Undefined 
exception in two other cases. The first is if the processor encounters an instruction 
that is intended for a coprocessor (such as a floating-point unit or other special bit 
of hardware that was attached to the ARM7TDMI’s coprocessor interface), but the 
coprocessor either doesn’t exist or it doesn’t respond. This first case was mentioned in 
Section 14.3, where the processor can emulate floating-point instructions by building 
a very smart exception handler that goes into the instruction memory and examines 
the offending instruction. If it turns out to be one of the instructions that the software 
wishes to support (e.g., a floating-point addition), then it begins to decode it. Software 
determines the operation that is needed, which would have to use integer registers 
and an integer datapath to perform the operation, and then calculates the result using 
a floating-point format. We then return to the main routine again. Theoretically, it 
allows software to be written only once using real floating-point instructions, and this 
could save money and power if speed isn’t critical. Should a hardware floating-point 
unit be present (maybe a silicon vendor makes two slightly different models of micro-
controller or SoC), the code will execute more quickly in hardware.

The second case that can generate an undefined instruction exception involves 
a coprocessor not responding to an instruction. As an example, Vector Floating-
Point (VFP) coprocessors appear on some of the more advanced ARM cores, such 
as the Cortex-A8 and ARM1136JF-S. They have unique instructions, such as FDIVS 
and FSQRTS, and the ability to generate errors just like the main integer processor. 
However, if the VFP coprocessor generates an exception while processing one of its 
own instructions (suppose it tried to divide by zero), it will simply not respond when 
the integer processor tries to give it another instruction. The exception handler will 
then have to determine that the VFP coprocessor generated an exception on the last 
instruction that it accepted.

The last case that will generate an exception is when the processor sees a legitimate 
coprocessor instruction but is not in a privileged mode. For example, on most advanced 
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applications processors, such as the ARM926EJ-S, ARM1136JF-S, or Cortex-A15, 
caches are included to improve performance (think of a cache as a small block of 
memory used to hold instructions and data so that the processor doesn’t have to go to 
external memory as often). Caches always have a cache control register to set things up, 
and ARM uses Coprocessor 15, or CP15, to do this. While there isn’t a real coproces-
sor in hardware, the instructions can be used anyway—have a look at the STC (Store 
Coprocessor) instruction and notice that bits 8 through 11 designate a coprocessor 
number. Coprocessor 15 is reserved for cache and MMU control registers. Meddling 
with these registers is only allowed if you’re in a privileged mode, so a user’s code 
would not be allowed to change the hardware configurations. The processor would 
reject the offending instruction by taking an Undefined Instruction exception.

EXAMPLE 14.1

Let’s examine a simple bit of code, running on an LPC2132 microcontroller from 
NXP, that forces an Undefined Instruction exception. In order to demonstrate how 
the processor behaves during such an exception, we’ll use a contrived situation 
where we wish to allow an instruction, normally undefined, to be emulated in 
software. This is analogous to floating-point emulation mentioned earlier, except 
our handler will be very short and very clumsy. Suppose that we call our instruc-
tion ADDSHFT. It takes one argument—the contents of register Rm, which can 
range from r0 to r7—and adds the contents of register r0 to it, shifting the result left 
by 5 bits. The assembler certainly wouldn’t recognize the mnemonic, so we will 
call the instruction manually using DCD statements. When the processor fetches 
the word of data in memory, it proceeds through the pipeline as an instruction. 
Once the processor tries to execute our new bit pattern, it will take an Undefined 
Instruction exception, where our handler will decode the instruction and perform 
the operation.

There are a few things to observe in the example. The first is which operations 
the processor does for us, and which operations must be done by a program-
mer. Recall the switching the mode is normally done by the processor during an 
exceptional condition; however, as we’ll see shortly, the programmer can also 
manually change the mode to set up a stack pointer. On the ARM7TDMI, saving 
registers and state information to the stack must be done by the programmer. 
The second thing to observe is the register file. Since the machine will change to 
Undef mode, we will be using a new register r13 and r14, so when you simulate 
this program, be sure to note the values in all of the registers in the processor, 
since we will now be working with more than just the traditional r0 through r15 
in a single mode.

Below, you can see the complete code listing:

; Area Definition and Entry Point

SRAM_BASE EQU 0x40000000 ; start of RAM on LPC2132
Mode_UND EQU 0x1B
Mode_SVC EQU 0x13
I_Bit  EQU 0x80
F_Bit  EQU 0x40

  AREA Reset, CODE, READONLY
  ARM
  ENTRY
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; Exception Vectors
; Dummy Handlers are implemented as infinite loops which can be modified.

Vectors LDR PC, Reset_Addr
  LDR PC, Undef_Addr
  LDR PC, SVC_Addr
  LDR PC, PAbt_Addr
  LDR PC, DAbt_Addr
  NOP   ; Reserved Vector
  LDR PC, IRQ_Addr
  LDR PC, FIQ_Addr

Reset_Addr DCD Reset_Handler
Undef_Addr DCD UndefHandler
SVC_Addr DCD SVCHandler
PAbt_Addr DCD PAbtHandler
DAbt_Addr DCD DAbtHandler
  DCD 0  ; Reserved Address
IRQ_Addr DCD IRQHandler
FIQ_Addr DCD FIQHandler

SVCHandler B SVCHandler
PAbtHandler B PAbtHandler
DAbtHandler B DAbtHandler
IRQHandler B IRQHandler
FIQHandler B FIQHandler

; Reset Handler

; Undefined Instruction test
;  31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
; |0 1  1 1 |0 1  1  1 |1 1  1  1 |0  0  0  0 |0   0   0   0 |1   1  1  1 1  1 1 1| Rm  |
;|CC = AL   |     OP     |     Rn = 0 |  Rd = 0   |    Rm       |

Reset_Handler
; The first order of business is to set up a stack pointer in
;  UNDEF mode, since we know our simulation will hit an undefined
; instruction.
 MSR   CPSR_c, #Mode_UND:OR:I_Bit:OR:F_Bit
 LDR  sp, = SRAM_BASE + 80; initialize stack pointer
 ; switch back to Supervisor mode
 MSR  CPSR_c, #Mode_SVC:OR:I_Bit:OR:F_Bit

 MOV  r0, #124; put some test data into r0
 MOV  r4, #0x8B; put some test data into r4
ADDSHFTr0r0r4 DCD  0x77F00FF4; r0 = (r0 + r4) LSL #5
 NOP

Loop B  Loop
 NOP

;/******************************************************************/
;/* Undefined Handler */
;/******************************************************************/
; Note that this handler is NOT AAPCS compliant. See the
; RealView Compilation Tools Developer Guide for examples of
; AAPCS-compliant handlers, specifically for maintaining 8-byte
; alignment and stack requirements. We’re taking some shortcuts
; here just so we can concentrate on a simple mechanism to deal
; with an undefined instruction.
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UndefHandler
 STMFD sp!, {r0-r12, LR} ; Save Workspace & LR to Stack
 MRS r0, SPSR ; Copy SPSR to r0
 STR  r0, [sp, #-4]! ; Save SPSR to Stack

 LDR r0, [lr,#-4]  ; r0 = undefined instruction
 BIC r2, r0, #0xF00FFFFF ; clear out all but opcode bits
 TEQ r2, #0x07F00000 ; r1 = opcode for ADDSHFT
 BLEQ ADDSHFTInstruction ; if a valid opcode, handle it

 ; insert tests for other undefined instructions here

 LDR  r1, [sp], #4 ; Restore SPSR to R1
  MSR SPSR_cxsf, r1  ; Restore SPSR
  LDMFD sp!, {r0-r12, PC}^  ; Return to program after
    ; Undefined Instruction

;  ADDSHFT instruction adds r0 + Rm (where Rm can only be between r0 and r7),
;  shifts the result left 5 bits, and stores result in r0. It also does not
; decode immediates, CC, S-bit, etc.)

ADDSHFTInstruction

 BIC r3, r0, #0xFFFFFFF0 ; mask out all bits except Rm
 ADD r3, r3, #1 ; bump past the SPSR on the stack
 LDR r0, [sp, #4] ; grab r0 from the stack
 LDR r3, [sp, r3, LSL #2] ; use the Rm field as an offset
 ADD r0, r0, r3 ; calculate r0 + Rm
 MOV r0, r0, LSL #5 ; r0 = (r0 + Rm) < <5
 STR r0, [sp, #4] ; store r0 back on the stack
 BX lr

 END

Figure 14.4 shows the basic flow of the program. The first few instructions of 
the program form the vector table, using PC-relative load instructions at each 
exception vector. Notice that the reset handler’s address is referenced in the DCD 
statement

Reset_Addr  DCD  Reset_Handler

so that when the processor comes out of reset, the first instruction it executes is 
LDR, which will load the Program Counter with a constant it fetches from mem-
ory. Examine the assembler listing and you will notice the PC-relative load instruc-
tion and the offset calculated by the linker. The constant in memory is the address 
of the reset handler, by design. Inside the reset handler, the machine is forced into 
Undef mode so that we can set up a stack pointer, since we know in advance we 
are going to switch modes after hitting our strange instruction. The machine is 
switched back into Supervisor mode afterward. When the processor then tries to 
execute the bit pattern we deliberately put into the pipeline,

ADDSHFTr0r0r4 DCD 0x77F00FF4 ; r0 = (r0 + r4) LSL #5
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it immediately changes the mode to Undef and sets the Program Counter to 0x4, 
expecting to fetch some type of branch instruction at the exception vector that will 
ultimately take us to our handler.

Now that the processor has begun exception processing, the instruction at 
address 0x4 is fetched and executed. This PC-relative load moves the address 
of our handler into the Program Counter, and fetching begins from there. The 
first three instructions in the handler save off register and SPSR information to 
the stack. A comparison is made to determine if the bit pattern the processor 
rejected was something we wish to support, and if so, the processor branches to 
the ADDSHFTInstruction routine. When returning from our undefined instruction 
exception, we restore the SPSR and the register file that was stacked and move the 
Link Register value into the Program Counter, given as

    LDMFD sp!, {r0-r12, PC}^

This particular version of LDM does two things: it loads the Link Register value 
back into the Program Counter, effectively jumping back to where we left off, and 
it moves the SPSR back into the CPSR. Astute readers will notice that we made 
no adjustment to the Program Counter or Link Register values before we jumped 
back to the main code. We mentioned before that in some cases, such as during 
a branch and link instruction (BL), the Link Register value may be adjusted due 

SVC Undef

PC = 0
Jump to reset handler

Switch to undef mode

Hit offending instruction

Set up stack pointer
switch to SVC mode

Undef_addr PC
enter handler

Test for valid
instruction encoding

ADDSHFT instruction

Return to main code

Spin in infinite loop

FIGURE 14.4 Exception flow diagram.
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to the fact that the Program Counter points two instructions ahead of the instruc-
tion being executed. In this case, the Link Register holds the return address of 
the instruction following the offending instruction, so the processor will not re-
execute the one that caused the exception. For some exceptions, as we’ll see in 
a moment, you might want to retry an offending instruction. Since we’ve finished 
handling the exception, the machine automatically changes back to Supervisor 
mode.

14.8.3 inTeRRupTs

ARM cores have two interrupt lines—one for a fast interrupt (FIQ) and one for a 
low-priority interrupt (IRQ). If there are only two interrupts in the entire system, 
then this works well, as there is already some level of prioritization offered. FIQs 
have a higher priority than IRQs in two ways: they are serviced first when multiple 
interrupts arise, and servicing an FIQ disables IRQ interrupts. Once the FIQ handler 
exits, the IRQ can then be serviced. FIQ interrupts also have the last entry in the vec-
tor table, providing a fast method of entering the handler, as well as five extra banked 
registers to use for exception processing.

But with only two lines, how would an SoC with dozens of potential interrupt 
sources compete for the processor’s time? There are a couple of ways to do this. 
The first, but not the best way, is to basically wire OR the interrupts coming from 
peripherals or external devices together. This would then be used to signal an inter-
rupt on one of the two lines going to the processor. However, this would require 
polling each interrupt source to determine who triggered the interrupt, which would 
waste thousands of cycles of time (especially if the requesting device is in a hurry 
and happens to be the last one in the list!) A second way is to use an external inter-
rupt controller, which is a specialized piece of hardware that takes in all of the inter-
rupt lines, assigns priorities to them, and often provides additional information to 
help the processor, such as a register that can be read for quickly determining who 
requested the interrupt. When handling interrupts, the processor must first change 
the Program Counter to either address 0x18 or 0x1C in memory, fetch the instruction 
that will change the Program Counter, e.g., either a MOV or LDR instruction, then 
jump to a new address, which is the start of the interrupt handler. The first column of 
Figure 14.5 shows what happens when you have multiple sources of interrupts. If the 
incoming lines are wired together or connected to an external interrupt controller, 
after the processor jumps to the start of the interrupt handler, the handler itself still 
has to determine which device caused the interrupt, and only after doing so can the 
processor branch to the correct interrupt handler.

 The second column of Figure 14.5 shows the general flow for a better way to 
handle interrupts. Suppose all of the interrupting peripherals in a system are con-
nected through a controller so that when a device, such as a timer, needs attention 
(let’s say the timer expired), the controller itself pulls on an interrupt line going to 
the processor. It also has the ability to give the processor the address of the interrupt 
handler so that all the processor needs to do is load the address into the Program 
Counter. The instruction to do so would still sit in the vector table as it did before. 
Programmers would not be absolved of all duties, however, as a few registers would 
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need to be configured before using such a controller. The modern solution to handle 
multiple interrupt sources, therefore, is to use what’s known as a vectored interrupt 
controller (VIC), and given that so many popular microcontrollers have them now, 
it’s worth a closer look.

14.8.3.1 Vectored Interrupt Controllers
Vectored Interrupt Controllers require a bit of thought and effort but make deal-
ing with interrupts less taxing. For hardware engineers, it makes designs more 
straightforward, since all the logic needed to build complicated interrupt schemes 
is already there. Software engineers appreciate the fact that everything is spelled 
out, but it still requires some work to get registers configured, interrupts enabled 
and defined, and memory locations initialized. Like the other microcontrollers 
that we’ve examined so far, the STR910FAM32 contains an ARM core (although 
this one is an ARM9E-based microcontroller), along with the two AMBA bus-
ses (AHB and APB) for interfacing to the memory and peripherals. You can see 
from Figure 14.6 that the VIC sits off the AHB bus, so it appears as a memory-
mapped device. VIC registers exist at memory locations rather than within the 
processor, a topic we’ll examine in much more detail when we look at memory-
mapped peripherals in the Chapter 16. For a complete description of the VIC in 
the STR910FAM32 microcontroller, consult the STR91xFAxxx Reference Manual 
(STMicroelectronics 2006).

The basic principle behind the VIC is to provide enough information to the pro-
cessor so that it doesn’t have to go searching through all of the possible interrupts to 

IRQ C

IRQ

0x18

IRQ C IRQ C

0x18

B <IRQ C>

B <IRQ > LDR pc, <VIC>

Vectored controller VIC interfaceSimple controller

FIGURE 14.5 Three methods of handling interrupts.
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determine the requester. It has multiple inputs and only two outputs for most cores—
the FIQ and IRQ interrupt lines. It also provides the most important component—the 
address of the interrupt handler. Rather than polling every possible interrupt source, 
the VIC can simply give the processor the address of the handler in a register. The 
processor then loads this value into the Program Counter by way of an LDR instruc-
tion in the IRQ exception vector.

1.8V Core supply, VDD

Stacked burst flash memory die

Main flash 256 KB,
or 512 KB

2nd flash
32 KB

JTAG ISP

Burst interface

Burst interface
Pre-fetch
queue and

branch cache

JTAG

AVDD
AVREF*
AVSS

STR91x

GND Core GND, VSS

3.0 or 3.3V I/O supply, VDDQ

GND I/O GND, VSSQ

VBATT

Backup
supply 64 KB or 96 KB

SRAM
RTC Arbiter

Data TCM
interface

ARM966E-S
RISC CPU Core

Control logic/BIU and write buffer

Instruction
TCM

interface
JTAG
debug

and
ETM ETM

Real time clock

Wake up

(4) 16-bit timers,
CAPCOM, PWM

Motor control,
3-ph induction

(3) UART w/IrDA

(2) I2C

(80) GPIO****

(2) SPI

CAN 2.0B

8-channel 10-bit
ADC

Watchdog Tmr

32.768 kHz
XTAL

AMBA/AHBA interface

Programmable vectored
interrupt controllers

4 MHz to 25
MHz XTAL

EMI Ctrl

USB bus

To ethernet
PHY (Mll)**

16

External memory
interface (EMI)***,

muxed address/data

Programmable DMA
controller (8 ch.)

EM
I b

us
***

 o
r

16
 G

PI
O

A
H

B

M
U

X
 to

 4
8 

G
PI

O

A
PB

Et
he

rn
et

**
or

 16
 G

PI
O

USB* full speed, 10
endpoints with FIFOs

Ethernet**
MAC, 10/100

* USB not available on STR910
**Ethernet MAC not available on STR910 and STR911
***EMI not available on LQFP80
****Only 40GPIOs on LQFP80

Dedicated
DMA

PLL, power management,
and supervisory reset AHB

to
APB

32 48

Request
from

UART,
12C,
SPI,

Timers,
Ext req

FIGURE 14.6 STR910FAM32 microcontroller. (From STMicroelectronics, STR91xF data 
sheet [Rev4], STMicroelectronics, Geneva, Switzerland. With permission.)



314 ARM Assembly Language

EXAMPLE 14.2

To illustrate how a VIC works, on the following pages is some actual code that can 
be run on the Keil tools. The code itself is a shortened version of the initialization 
code available for the STR910FAM32 microcontroller.

; Standard definitions of Mode bits and Interrupt (I & F)
; flags in PSRs
SRAM_BASE EQU 0x04000000
VectorAddr EQU 0xFFFFF030  ; VIC Vector Address Register
Mode_USR EQU 0x10
Mode_IRQ EQU 0x12
I_Bit EQU 0x80 ; when I bit is set, IRQ is disabled
F_Bit EQU 0x40 ; when F bit is set, FIQ is disabled

; System Control Unit (SCU) definitions

SCU_BASE EQU 0x5C002000 ; SCU Base Address (non-buffered)
SCU_CLKCNTR_OFS EQU 0x00 ; Clock Control register Offset
SCU_PCGR0_OFS EQU 0x14 ; Peripheral Clock Gating Register 0 Offset
SCU_PCGR1_OFS EQU 0x18 ; Peripheral Clock Gating Register 1 Offset
SCU_PRR0_OFS EQU 0x1C ; Peripheral Reset Register 0 Offset
SCU_PRR1_OFS EQU 0x20 ; Peripheral Reset Register 1 Offset
SCU_SCR0_OFS EQU 0x34 ; System Configuration Register 0 Offset

SCU_CLKCNTR_Val EQU 0x00020000
SCU_PLLCONF_Val EQU 0x000BC019
SCU_PCGR0_Val EQU 0x000000FB
SCU_PCGR1_Val EQU 0x00EC0803
SCU_PRR0_Val EQU 0x00001073
SCU_PRR1_Val EQU 0x00EC0803

 PRESERVE8

; Area Definition and Entry Point
; Startup Code must be linked first at Address at which it expects to run.
 AREA Reset, CODE, READONLY
 ENTRY

 ARM

; Exception Vectors Mapped to Address 0.
; Absolute addressing mode must be used.
; Dummy Handlers are implemented as infinite loops which can be modified.
Vectors
 LDR pc, Reset_Addr
 LDR pc, Undef_Addr
 LDR pc, SVC_Addr
 LDR pc, PAbt_Addr
 LDR pc, DAbt_Addr
 NOP     ; Reserved Vector
 LDR pc, [pc, #-0x0FF0]
 LDR pc, FIQ_Addr

Reset_Addr DCD  Reset_Handler
Undef_Addr DCD  UndefHandler
SVC_Addr DCD  SVCHandler
PAbt_Addr DCD  PAbtHandler
DAbt_Addr DCD  DAbtHandler
  DCD  0    ; Reserved Address
IRQ_Addr DCD  IRQHandler
FIQ_Addr DCD  FIQHandler
UndefHandler B    UndefHandler
SVCHandler B    SVCHandler
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PAbtHandler B  PAbtHandler
DAbtHandler B  DAbtHandler
IRQHandler B  IRQHandler
FIQHandler B  FIQHandler

Reset_Handler

; Setup Clock

 LDR    r0, =SCU_BASE
 LDR    r1, =0x00020002
 STR    r1, [r0, #SCU_CLKCNTR_OFS]

 ; Select OSC as clk src

 NOP
 ; Wait for OSC stabilization
 NOP
 NOP
 NOP
 NOP
 NOP
 NOP
 NOP
 NOP
 NOP
 NOP
 NOP
 LDR    r1, =SCU_CLKCNTR_Val

 ; Setup clock control

 STR    r1, [r0, #SCU_CLKCNTR_OFS]
 LDR    r1, =SCU_PCGR0_Val

 ; Enable clock gating

 STR    r1, [r0, #SCU_PCGR0_OFS]
 LDR    r1, =SCU_PCGR1_Val
 STR    r1, [r0, #SCU_PCGR1_OFS]

; Setup Peripheral Reset

 LDR    r1, =SCU_PRR0_Val
 STR    r1, [r0, #SCU_PRR0_OFS]
 LDR    r1, =SCU_PRR1_Val
 STR    r1, [r0, #SCU_PRR1_OFS]

; Enter IRQ Mode and set its Stack Pointer

 MSR    CPSR_c, #Mode_IRQ:OR:I_Bit:OR:F_Bit
 LDR    sp, =SRAM_BASE + 100

; Enter User Mode

 MSR    CPSR_c, #Mode_USR

; VIC registers
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VIC0_VA7R EQU 0xFFFFF11C ; Vector Address Register for TIM3 IRQ
VIC0_VC7R EQU 0xFFFFF21C ; Vector Control Register for TIM3 IRQ
VIC0_INTER EQU 0xFFFFF010 ; Interrupt Enable Register

; TIM3 registers
TIM3_CR2 EQU 0x58005018 ; TIM3 Control Register 2
TIM3_CR1 EQU 0x58005014 ; TIM3 Control Register 1

 LDR r4, =VIC0_VA7R
 LDR r5, =IRQ_Handler
 STR r5, [r4]

 ; Setup TIM3 IRQ Handler addr

 LDR r4, =VIC0_VC7R
 LDR r5, [r4]
 ORR r5, r5, #0x27
 STR r5, [r4]

 ; Enable the vector interrupt and specify interrupt number
 LDR r4, =VIC0_INTER
 LDR r5, [r4]
 ORR r5, r5, #0x80
 STR r5, [r4] ; Enable TIM3 interrupt

 ; Timer 3 Configuration (TIM3)

 LDR r4, =TIM3_CR2
 LDR r5, =0xFF00
 LDR r6, =0x200F
 LDR r8, [r4]
 AND r8, r8, r5 ; Clear prescaler value
 ORR r8, r8, r6

 ; Setup TIM3 prescaler and enable TIM3 timer overflow interrupt
 STR r8, [r4]
 LDR r4, =TIM3_CR1
 LDR r5, =0x8000
 LDR r6, [r4]
 ORR r6, r6, r5
 STR r6, [r4] ; TIM3 counter enable

; main loop

 LDR r9, =0xFFFFFFFF

Loop B Loop

IRQ_Handler

 SUB lr, lr, #4 ; Update Link Register
 SUB r9, r9, #1
 STMFD sp!, {r0-r12, lr} ; Save Workspace & LR to Stack
 LDR r4, =0x5800501C ; r4 = address of TIM3_SR
 LDR r5, =~ 0x2000
 LDR r6, [r4]
 AND r6, r6, r5
 STR r6, [r4] ; Clear Timer Overflow interrupt flag
 LDR r0, =VectorAddr ; Write to the VectorAddress
 LDR r1, =0x0 ; to clear



317Exception Handling

 STR r1, [r0] ; the respective Interrupt
 LDMFD sp!, {r0-r12, PC}^ ; Return to program, restoring state

 END

Nearly all of the code sets up registers, initializes clocks, or sets up stack pointers. 
Note that this example removes some parts that are not critical to demonstrating 
how interrupts work. You can see all of the EQU directives that assign names to 
numeric values—this is purely for convenience. Reading code becomes difficult 
otherwise. The modes are translated into bit patterns, e.g., Mode_USR is equated 
to 0x10, which is what the lower 5 bits of the CPSR would look like in User mode.

The code actually starts after the first AREA directive, and you can see the 
exception vector table being built with the label Vectors starting the table. While 
we normally use LDR instructions to load the PC when a handler is not close 
enough to use a B (branch) instruction, the method used here is the most general 
and copes with any memory map. In fact, take a look at the vector table, as shown 
in Table 14.2. The IRQ vector now contains an instruction that tells the processor 
to load the PC with a value from memory. The address of that value in memory 
is calculated using the difference between the Program Counter (which would be 
0x20 when this instruction reaches the execute stage of the ARM7TDMI’s pipe-
line) and the value 0xFF0, giving 0xFFFFF030, which is a strange address and 
not at all intuitive. It turns out that the VIC has an address register for the proces-
sor, called VIC0_VAR, that just happens to sit at address 0xFFFFF030 in memory 
(STMicroelectronics defined the address—it could have been anything). This reg-
ister holds the address of our IRQ exception handler, and the address is matched 
to a particular interrupt source. For example, suppose a timer and a USB interface 
can both generate interrupts. Inside of the VIC, handler addresses are stored in 
memory-mapped registers for each interrupt source. So if the USB interface gener-
ates an interrupt, its exception handler address is placed in the VIC0_VAR register. 
If the timer generates an interrupt, then the handler address belonging to the timer 
is placed in the VIC0_VAR register. Instead of a generic exception handler for 
interrupts, which would have to spend time figuring out who triggered the IRQ 
interrupt, the programmer can write a special handler for each type of interrupt 
and the processor will jump immediately to that unique handler.

In the example code, TIMER3 is used to generate an interrupt when the counter 
increments from 0x0000 to 0xFFFF. TIMER3 sits on channel 7 by default and its 

TABLE 14.2
Vector Table Showing IRQ Branch Instruction

Exception Vector Instruction

Reset LDR  pc, Reset_Addr

Undefined Instruction LDR  pc, Undef_Addr

SVC LDR  pc, SVC_Addr

Prefetch Abort LDR  pc, PAbt_Addr

Data Abort LDR  pc, DAbt_Addr

Reserved NOP

IRQ LDR  pc, [pc, -0x0FF0]
FIQ LDR  pc, FIQ_Addr
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interrupt line goes through VIC0. There are three registers that also need to be set 
up for VIC0 as shown in Table 14.3. You can see on page 316 where the code 
equates addresses with the names of the VIC registers. Immediately afterward, 
the address of the timer’s interrupt handler, called IRQ_Handler, is stored in the 
VIC0_VA7R register. Remember that if an interrupt is triggered, the VIC will know 
it was TIMER3 requesting the interrupt, and then it will move the handler’s address 
from VIC0_VA7R into VIC0_VAR. The remaining code enables and configures the 
timer.

The handler itself is at the end of the code. It adjusts the Link Register value 
first so that we can exit the handler with a single instruction (to be discussed in a 
moment). The second instruction in the handler begins stacking off registers into 
memory, including the Link Register. The rest of the handler clears the timer over-
flow flag in the timer peripheral, and it disables the interrupt request by writing to 
the VIC0_VAR register. An interrupt handler usually contains the code that clears 
the source of the interrupt.

Returning from an interrupt is not difficult, but it does require a little explana-
tion. The timing diagram in Figure 14.7 shows an example sequence of events in 
the ARM7TDMI processor’s pipeline. Cycle 1 shows the point at which the pro-
cessor acknowledges that the IRQ line has been asserted. The ADD instruction is 
currently in the execute stage and must complete, since the processor will allow all 
instructions to finish before beginning an interrupt exception sequence. In Cycle 
2, the processor has now begun handling the IRQ, but notice that the Program 

TABLE 14.3
VIC0 Registers

Address Register Name Function

0xFFFFF010 VIC0_INTER Interrupt enable register

0xFFFFF11C VIC0_VA7R Vector address register

0xFFFFF21C VIC0_VC7R Control register

Cycle
Address

0x8000
0x8004
0x8008
0x800C
0x0018
0x001C
0x0020

0xAF04
0xAF00

0xAF08

Operation

ADD
SUB 

X
MOV

XX
XXX
STMFD
MOV
LDR

B (to 0xAF00)
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FIGURE 14.7 Interrupt processing in the ARM7 pipeline.
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Counter has already progressed, i.e., the processor has fetched an instruction from 
this address, and the PC points to the instruction at 0x800C. It is this value that is 
loaded into the Link Register in Cycle 3. The exception vector 0x18 becomes the 
new Program Counter value, and the instruction at this address is fetched, which 
is a branch instruction. In Cycle 4, the Link Register can be adjusted in the same 
way that it is for BL instructions, but this makes the address in the Link Register 
0x8008, which is four bytes off if we decide to use this address when we’re done 
with the interrupt handler.

In our example code, the handler adjusts the Link Register value straight away 
before stacking it. Notice the first instruction in the handler is

 SUB   lr, lr, #4

This allows us to exit the handler using only a single instruction:

 LDMFD sp!, {r0-r12, pc}^

which is a special construct. The LDM instruction restores the contents of the 
registers from the stack, in addition to loading the PC with the value of the Link 
Register. The caret (̂ ) at the end of the mnemonic forces the processor to transfer 
the SPSR into the CPSR at the same time, saving us an instruction. This is the rec-
ommended way to exit an interrupt handler.

14.8.3.2 More Advanced VICs
Believe it or not, there is an even faster way of handling interrupts. Referring back to 
Figure 14.5, we’ve described two methods already, which are shown in the first two 
columns. The first requires the processor to branch to an address—the start of your 
interrupt handler. The handler then determines who requested the interrupt, branch-
ing to yet another location for the handler. The second method uses a VIC so that the 
processor still goes to the IRQ exception vector, but instead of branching to a generic 
handler, it branches to a handler address that is given to it by the VIC.

If the VIC is coupled ever more tightly to the processor, it’s possible to forgo an 
exception vector completely; ergo, a bus is created on the processor that talks directly 
to the VIC. As shown in the third column of Figure 14.5, when an interrupt occurs, the 
processor knows to take the address from the dedicated bus. Recall from the previous 
example that the VIC has memory-mapped registers that are attached to the AHB bus. 
When an interrupt occurs, the processor gets its interrupt service routine address from 
the VIC0_VAR register, which is also on the AHB bus. The third method allows the 
interrupt service routine’s address to be given to the core on a dedicated address bus, 
along with handshake lines to signal that the address is stable and that the core has 
received it. The processor doesn’t even have to go to the exception vector at address 
0x18. Since the processor core must be modified to accept a more advanced vectored 
interrupt controller, this feature is not found on all ARM processors.

14.8.4 ABoRTs

Aborts have something of a negative connotation to them, but not all of them are bad. 
Certainly, the processor should be prepared to deal with any that happen to appear, 
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and those that do should be the type that are handled with a bit of extra hardware, 
since the really awful cases are rare and don’t really provide many graceful exits. The 
topic of caches, physical and virtual addresses, and memory management units is 
best left for an advanced text, such as Sloss et al. (2004), Furber (2000), or Patterson 
and Hennessy (2007), but the general idea is that normally you limit the amount of 
physical memory in a processor system to keep the cost of the device low. Since the 
address bus coming out of the processor is 32-bits wide, it can physically address up 
to 4 GB of memory. A common trick to play on a processor is to allow it to address 
this much memory while physically only having a much smaller amount, say 128 MB. 
The hardware that does this is called a memory management unit (MMU). An MMU 
can swap out “pages” of memory so that the processor thinks it’s talking to memory 
that isn’t really there. If the processor requests a page that doesn’t exist in memory, the 
MMU provides an abort signal back to the processor, and the processor takes a data 
or prefetch abort exception. It’s what happens in the abort handler that determines 
whether or not the processor actually begins processing an abort exception. Normally, 
the MMU can try to swap out pages of memory and the processor will try again to 
load or store a value to a memory location (or fetch an instruction from memory). If 
it can’t or there is a privilege violation, e.g., a user trying to address memory marked 
for supervisor use only, then an abort exception may be taken. There are two types of 
aborts: prefetch aborts on the instruction side and data aborts on the data side.

14.8.4.1 Prefetch Aborts
A prefetch abort can occur if the processor attempts to fetch an instruction from an 
invalid address. The way the processor reacts depends on the memory management 
strategy in use. If you are working with a processor with an MMU, for example, an 
ARM926EJ-S or ARM1136JF-S, then the processor will attempt to load the correct 
memory page and execute the instruction at the specified address. Without an MMU, 
this is indicative of a fatal error, since the processor cannot continue without code. If it’s 
possible, the system should report the error and quit, or possibly just reset the system.

The prefetch abort sequence resembles those of other exceptions. When an abort 
is acknowledged by the processor, it will fetch the instruction in the exception vector 
table at address 0xC. The abort handler will then be responsible for either trying to 
fix the problem or die a graceful death. The offending instruction can be found at 
address ea < LR-4> if the processor was in ARM state, or ea <LR-2> if the processor 
was in Thumb state at the time of the exception. You should return from a prefetch 
abort using the instruction

 SUBS  PC, LR, #4

which retries the instruction by putting its address into the Program Counter. The 
suffix “S” on the subtract instruction and the PC as the destination restores the SPSR 
into the CPSR automatically.

14.8.4.2 Data Aborts
Loads and stores can generate data aborts if the address doesn’t exist or if an area 
of memory is privileged. Like prefetch aborts, the action taken by the processor 
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depends on the memory management strategy in place. If an MMU is being used, the 
programmer can find the offending address in the MMU’s Fault Address Register. 
The MMU can attempt to fix the problem by swapping in the correct page of mem-
ory, and the processor can reattempt the access. If there is no MMU in the system, 
and the processor takes the abort exception, this type of error is fatal, since the pro-
cessor cannot fix the error and should report it (if possible) before exiting.

There is a subtle difference in the way that certain ARM cores handle data aborts. 
Consider the instruction

 LDR  r0,[r1,#8]!

which would cause the base register r1 to be updated after the load completes. 
Suppose, though, that the memory access results in a data abort. Should the base 
register be modified? It turns out the effect on the base register is dependent on the 
particular ARM core in use. Cores such as StrongARM, ARM9, and ARM10 fami-
lies use what’s known as a “base restored” abort model, meaning the base register is 
automatically returned to its original value if an abort occurs on the instruction. The 
ARM7 family of cores uses a “base updated” abort model, meaning the abort han-
dler will need to restore the base register before the instruction can be reattempted. 
The handler should exit using the instruction

 SUBS  PC,LR,#8

if the processor wants to retry the load or store instruction again.

14.8.5 sVCs

Software interrupts, or SVCs as they are now known, are generated by using the 
ARM instruction SVC (although you might still see SWI being used in legacy code). 
This causes an exception to be taken, and forces the processor into Supervisor mode, 
which is privileged. A user program can request services from an operating system 
by encoding a request in the 24 bits of the mnemonic for ARM instructions or the 
8 bits for Thumb instructions, as shown in Figure 14.8.

Suppose that an embedded system with a keypad and an LCD display are being 
designed, but only parts of the system are ready—the processor and inputs are ready, 
but it has no display. The software engineer may choose to use a technique called 

ARM format:

�umb format:
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SVC number
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28 27 24 23
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FIGURE 14.8 Opcodes for SVC instructions.
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semihosting to write his or her code, where C primitives such as printf and scanf are 
simulated by a debugger in the development tools, such as the RealView Developer 
Suite (RVDS). The printf statements force the output onto a console window in the 
tools instead of to a nonexistent LCD panel. Semihosting uses SVCs to provide sys-
tem calls for the user, but these are done in the background without the user noticing. 
Note that the µVision tools do not support semihosting. Consult the RealView ICE 
and RealView Trace User Guide from ARM (ARM 2008b) for more information on 
semihosting and its use.

When an SVC instruction is encountered in the instruction stream, the processor 
fetches the instruction at the exception vector address 0x8 after changing to Supervisor 
mode. The core provides no mechanism for passing the SVC number directly to the 
handler, so the SVC handler must locate the instruction and extract the comment field 
embedded in the SVC instruction itself. To do this, the SVC handler must determine 
from which state (ARM or Thumb) the SVC was called by checking the T bit in 
the SPSR. If the processor was in ARM state, the SVC instruction can be found at 
ea <LR-4>; for Thumb state, the address is at ea <LR-2>. The SVC number in the 
instruction can then be used to perform whatever tasks are allowed by the handler.

To return from an SVC handler, use the instruction

 MOVS  PC, LR

since you wouldn’t want to rerun the instruction after having taken the exception 
already.

14.9 EXERCISES

 1. Name three ways in which FIQ interrupts are handled more quickly than 
IRQ interrupts.

 2. Describe the types of operations normally performed by a reset handler.

 3. Why can you only return from exceptions in ARM state on the ARM7TDMI?

 4. How many external interrupt lines does the ARM7TDMI have? If you have 
eight interrupting devices, how would you handle this?

 5. Write an SVC handler that accepts the number 0x1234. When the handler 
sees this value, it should reverse the bits in register r9 (see Exercise 2 in 
Chapter 8). The SVC exception handler should examine the actual SVC 
instruction in memory to determine its number. Be sure to set up a stack 
pointer in SVC mode before handling the exception.

 6. Explain why you can’t have an SVC and an undefined instruction exception 
occur at the same time.

 7. Build an Undefined exception handler that tests for and handles a new 
instruction called FRACM. This instruction takes two Q15 numbers, 
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multiplies them together, shifts the result left one bit to align the binary 
point, then stores the upper 16 bits to register r7 as a Q15 number. Be sure 
to test the routine with two values.

 8. As a sneak peek into Chapter 16, we’ll find out that interrupting devices 
are programmable. Using STMicroelectronics’ documentation found on 
its website, give the address range for the following peripherals on the 
STR910FAM32 microcontroller. They can cause an interrupt to be sent to 
the ARM processor.

 a. Real Time Clock
 b. Wake-up/Interrupt Unit

 9. Explain the steps the ARM7TDMI processor takes when handling an 
exception.

 10. What mode does the processor have to be in to move the contents of the 
SPSR to the CPSR? What instruction is used to do this?

 11. When handling interrupts, why must the Link Register be adjusted before 
returning from the exception?

 12. How many SPSRs are there on the ARM7TDMI?

 13. What is a memory management unit (MMU) used for? What is the differ-
ence between an MMU and a memory protection unit (MPU)? You may 
want to consult the ARM documentation or a text like (Patterson, Hennessy 
2007) for specific information on both.
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Exception Handling
v7-M

15.1 INTRODUCTION

With the introduction of the Cortex-M3 in 2006, ARM decided to move its consider-
able weight into the huge market for microcontrollers, devices that normally get very 
little attention as they’re embedded into everything from printers to industrial meters 
to dishwashers. Building on the success of the ARM7TDMI, which incidentally was 
and continues to be used in microcontrollers (particularly Bluetooth devices), the ver-
sion 7-M cores like the Cortex-M4 support deeply embedded applications requiring 
fast interrupt response times, low gate counts, and peripherals like timers and pulse 
width modulation (PWM) signal generators. In some ways, these processors are easier 
to work with and in some ways, more difficult. Theoretically, one should not be pro-
gramming a Cortex-M3 or a Cortex-M4 device by writing assembly (but we will!). 
They are designed to be completely accessible using only C, with libraries available to 
configure vector tables, the MPU, interrupt priorities, etc., which makes the program-
mer’s job easier. Very little assembly code ever has to be written. If, however, you 
are writing assembly, there are only two modes instead of seven and fewer registers 
to worry about. What makes these processors slightly more difficult to work with is 
the sheer number of options available: there are more instructions; priority levels can 
be set on the different interrupt types; there are subpriorities available; faults must be 
enabled before they can be handled; the Nested Vectored Interrupt Controller must 
be configured before using it (and while implementation specific, Cortex-M parts can 
support up to 496 external interrupt inputs!); and there are power management features 
to consider. In Chapter 14, we saw the exception model for the ARM7TDMI, which 
is different than the one for version 7-M processors. Here, we’ll examine the basics of 
handling exceptions for a processor like the Cortex-M4 without covering every single 
variable, since you are not likely to encounter every exception while you learn about 
programming, and there are quite a few options to consider when you have multiple 
exceptions arriving at the same time, some with higher priorities than others. For more 
advanced topics such as embedded operating systems, semaphores, tail-chaining inter-
rupts, and performance considerations, books such as (Yiu 2014) and the Cortex-M4 
Technical Reference Manual (ARM 2009) can be read for details.

15.2 OPERATION MODES AND PRIVILEGE LEVELS

The Cortex-M3 and Cortex-M4 processors have only two operation modes: Handler 
mode and Thread mode. This is a significant departure from the earlier ARM 

15
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models where the mode was determined more or less by what the processor was 
doing, e.g., handling an interrupt or taking an exception. Rather than having unique 
modes for the different exception types, the Cortex-M processors use Handler mode 
for dealing with exceptions and everything else runs in Thread mode. One further 
distinction is introduced, and this has to do with privilege levels. Obviously, you 
would not want a user application to be able to modify critical parts of a system like 
configuration registers or the MPU, and it is important that an operating system has 
the ability to access all memory ranges and registers. There are, then, two privilege 
levels, aptly named privileged and user. You can see from Figure 15.1 that when the 
processor comes out of reset, it immediately runs in privileged Thread mode. Once 
the system is configured, the processor can be put into non-privileged Thread mode 
by changing the least significant bit of the CONTROL register, shown in Figure 
15.2. When the processor takes an exception, it switches to Handler mode, which 
is always privileged, allowing the system to deal with any issues that may require 
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FIGURE 15.2 CONTROL Register on the Cortex-M4.
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restricted access to resources. Upon returning from the exception, the processor 
will revert back to the state from which it left, so there is no way for a user program 
to change the privilege level by simply changing a bit. It must use an exception 
handler (which forces the processor into a privileged level) that controls the value 
in the CONTROL register.

EXAMPLE 15.1

We’ll return to this example later in the chapter, with some modifications along 
the way, as it demonstrates the various aspects of exception handling in the 
Cortex-M4. Let’s begin by building a quick-and-dirty routine that forces the pro-
cessor into privileged Handler mode from privileged Thread mode. In Chapter 7, 
the idea of trapping division by zero was only mentioned, leaving an actual case 
study until now. If you type the following example into the Keil tools, using a Tiva 
TM4C1233H6PM as the target processor, and then single-step through the code, 
just out of reset the processor will begin executing the instructions after the label 
Reset_Handler. Note that many of the registers are memory mapped. For the full 
list of registers, see the Tiva TM4C1233H6PM Microcontroller Data Sheet (Texas 
Instruments 2013b).

Stack  EQU 0x00000100
DivbyZ EQU 0xD14
SYSHNDCTRL EQU 0xD24
Usagefault EQU 0xD2A
NVICBase EQU 0xE000E000

 AREA STACK, NOINIT, READWRITE, ALIGN = 3
StackMem
 SPACE Stack
 PRESERVE8

 AREA RESET, CODE, READONLY
 THUMB

; The vector table sits here
; We’ll define just a few of them and leave the rest at 0 for now

 DCD StackMem + Stack  ; Top of Stack
 DCD Reset_Handler  ; Reset Handler
 DCD NmiISR   ; NMI Handler
 DCD FaultISR  ; Hard Fault Handler
 DCD IntDefaultHandler ; MPU Fault Handler
 DCD IntDefaultHandler ; Bus Fault Handler
 DCD IntDefaultHandler ; Usage Fault Handler

 EXPORT Reset_Handler
 ENTRY

Reset_Handler
 ; enable the divide-by-zero trap
 ; located in the NVIC
 ; base: 0xE000E000
 ; offset: 0xD14
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 ; bit: 4
 LDR r6, =NVICBase
 LDR r7, =DivbyZ
 LDR r1, [r6, r7]
 ORR r1, #0x10  ; enable bit 4
 STR r1, [r6, r7]

 ; now turn on the usage fault exception
 LDR r7, =SYSHNDCTRL (p. 163)
 LDR r1, [r6, r7]
 ORR r1, #0x40000
 STR r1, [r6, r7]

 ; try out a divide by 2 then a divide by 0!
 MOV r0, #0
 MOV r1, #0x11111111
 MOV r2, #0x22222222
 MOV r3, #0x33333333

 ; this divide works just fine
 UDIV r4, r2, r1
 ; this divide takes an exception
 UDIV r5, r3, r0

Exit B Exit

NmiISR B NmiISR
FaultISR B FaultISR
IntDefaultHandler

 ; let’s read the Usage Fault Status Register

 LDR r7, =Usagefault
 LDRH r1, [r6, r7]
 TEQ r1, #0x200
 IT NE
 LDRNE r9, =0xDEADDEAD
 ; r1 should have bit 9 set indicating
 ; a divide-by-zero has taken place
done B done
 ALIGN

 END

Continue single-stepping through the MOV and LDR instructions until you come to 
the first of the two UDIV (unsigned divide) operations. If you examine the registers 
and the state information using the Keil tools, you see that the first divide instruc-
tion is perfectly legal, and it will produce a value in register r2. More importantly, 
the machine is operating in Thread mode and it is privileged, shown in Figure 
15.3. If you try to execute the next divide instruction, one which tries to divide a 
number by zero, you should see the machine change modes to Handler mode. 
The program has enabled a particular type of exception (usage faults, which we’ll 
cover in Section 15.6) and enabled divide-by-zero traps so that we can watch the 



329Exception Handling

processor begin working on the exception. At this point, the exception routine 
does not return back to the main code, but in the next example, we’ll add an 
instruction to effect the return.

EXAMPLE 15.2

To switch privilege levels, the CONTROL register must be used, and this can only 
be written in a privileged level, so either the processor must be in Handler mode 
or privileged Thread mode. If we change the exception handler instructions, we 
can switch the privilege level of the processor. Additionally, we’ll add a branch 
instruction (BX) that will allow the processor to exit exception handling and restore 
the values placed on the stack. You will notice that the original divide-by-zero 
exception remains, so that when we return to the main code, the processor will 
attempt to re-execute the offending instruction. For now, stop your simulation at 
that point. Our clumsy handler code should then read as:

IntDefaultHandler

 ; let’s read the Usage Fault Status Register

 LDR  r7, =Usagefault
 LDRH  r1, [r6, r7]
 TEQ  r1, #0x200
 IT  NE
 LDRNE  r9, =0xDEADDEAD
 ; r1 should have bit 9 set indicating
 ; a divide-by-zero has taken place

 ; switch to user Thread mode
 MRS  r8, CONTROL
 ORR  r8, r8, #1
 MSR  CONTROL, r8
 BX  LR

 ALIGN

FIGURE 15.3 Cortex-M4 operating in privileged Thread mode.
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Run the code again and single-step through each instruction, noting the processor 
mode and privilege level before and after entering the exception handler.

15.3 THE VECTOR TABLE

In Chapter 14, we saw that the ARM7TDMI processor had a unique address asso-
ciated with each exception type for handling the various interrupts and exceptions 
that come along. The Cortex-M3/M4 processor has a similar table; however, we 
pointed out in Chapter 2 that the vector table consists of addresses, not instructions 
like the more traditional ARM processors. When an exception occurs, the proces-
sor will push information to the stack, also reading the address at the appropriate 
vector in the vector table to start handling the exception. Fetching then begins 
from this new address and the processor will begin executing the exception han-
dler code.

Table 15.1 lists the different exceptions along with their respective vector 
addresses. Note that the vector table can in fact be moved to another location in mem-
ory; however, this is infrequently done. One other point to notice is that the address 

TABLE 15.1
Exception Types and Vector Table

Exception 
Type

Exception 
Number Priority

Vector 
Address Caused by…

— — — 0x00000000 Top of stack

Reset 1 − 3 (highest) 0x00000004 Reset

NMI 2 − 2 0x00000008 Non-maskable interrupt

Hard fault 3 − 1 0x0000000C All fault conditions if the 
corresponding fault is not enabled

Mem mgmt 
fault

4 Programmable 0x00000010 MPU violation or attempted access 
to illegal locations

Bus fault 5 Programmable 0x00000014 Bus error, which occurs during 
AHB transactions when fetching 
instructions or data

Usage fault 6 Programmable 0x00000018 Undefined instructions, invalid 
state on instruction execution, 
and errors on exception return

— 7–10 — Reserved

SVcall 11 Programmable 0x0000002C Supervisor Call

Debug 
monitor

12 Programmable 0x00000030 Debug monitor requests such as 
watchpoints or breakpoints

— 13 — Reserved

PendSV 14 Programmable 0x00000038 Pendable Service Call

SysTick 15 Programmable 0x0000003C System Tick Timer

Interrupts 16 and 
above

Programmable 0x00000040 
and above

Interrupts
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0x0 is not the reset vector as it is for other ARM processors. On the Cortex-M3/M4 
processor, the stack pointer address sits at address 0x0 (holding the value loaded into 
the Main Stack Pointer, or MSP register, covered in the next section). The reset vec-
tor is located at address 0x4.

15.4 STACK POINTERS

There are two stack pointers available to programmers, the Main Stack Pointer (MSP) 
and the Process Stack Pointer (PSP), both of which are called register r13; the choice 
of pointer depends on the mode of the processor and the value of CONTROL[1]. If 
you happen to have an operating system running, then the kernel should use the MSP. 
Exception handlers and any code requiring privileged access must use the MSP. 
Application code that runs in Thread mode should use the PSP and create a process 
stack, preventing any corruption of the system stack used by the operating system. 
Simpler systems, however, such as those without any operating system may choose to 
use the MSP alone, as we’ll see in the examples in this chapter. The topic of the inner 
working of operating systems literally fills textbooks, but a good working knowledge 
of the subject can be gleaned from (Doeppner 2011).

15.5 PROCESSOR EXCEPTION SEQUENCE

Aside from the vector table containing addresses, the entry and exit sequences of 
exception handling differ more than any other aspect of the programmer’s model. 
The overriding idea in the design of the v7-M model is that high-level software and 
standardized libraries will be controlling everything—the programmer merely calls 
the appropriate handler functions. Writing these device driver libraries must be done 
in accordance with the CMSIS standard written by ARM, so a knowledge of assem-
bly will be necessary here. Having said that, someone trying to write or debug code 
will need a working knowledge of what exactly happens during exceptions. The first 
step is to look at the fundamentals of exception entry and exiting.

15.5.1 enTRy

When a processor such as the Cortex-M4 first begins exception processing, eight 
data words are automatically pushed onto the current stack. This stack frame, as it is 
called, consists of registers r0 through r3, register r12, the Link Register, the PC, and 
the contents of the xPSR, shown in Figure 15.4. If a floating-point unit is present and 
enabled, the Cortex-M4 will also stack the floating-point state. Recall from Section 
15.4 that there is an option that controls which stack pointer is used, either the MSP 
or the PSP, but we’ll continue to use the MSP for our next example.

EXAMPLE 15.3

Let’s rerun the code from our last example, which trapped the division by zero. 
Single-step through the code, up to the point where the processor tries to execute 
the second (faulting) division. Open a memory window to examine the contents of 
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memory. On the Tiva TM4C1233H6PM microcontroller, SRAM begins at address 
0x20000000 and the stack has been defined to be 256 bytes (0x100) at the top 
of our program. If you look at memory starting just below 0x20000100, you will 
notice that the contents of registers r0 through r3, register r12, the Link Register, 
the PC, and the contents of the xPSR have been moved onto the stack, shown in 
Figure 15.5. Recall that the stack pointer indicates the address of the last full entry, 
so stacking would begin at address 0x200000FC.

SP Offset
Original SP,

4-byte aligned

New SP,
8-byte aligned

New SP,
8-byte aligned

Extended frame

Basic frame

Original SP,
8-byte alignedReserved

0x6C
0x68
0x64
0x60
0x5C
0x58
0x54
0x50
0x4C
0x48
0x44
0x40
0x3C
0x38
0x34
0x30
0x2C
0x28
0x24
0x20
0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

Reserved
FPSCR

S15
S14
S13
S12
S11
S10
S9
S8
S7
S6
S5
S4
S3
S2
S1
S0

xPSR
ReturnAddress

LR (R14)
R12
R3
R2
R1
R0

Reserved
FPSCR

S15
S14
S13
S12
S11
S10
S9
S8
S7
S6
S5
S4
S3
S2
S1
S0

xPSR
ReturnAddress

LR (R14)
R12
R3
R2
R1
R0

FIGURE 15.4 Exception stack frames.

FIGURE 15.5 Exception stack frame in memory.
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While the processor is storing critical information on the stack, it also reads the 
address of the exception handler in the vector table. In our previous example, the 
processor is about to take a usage fault exception, so the address found at memory 
location 0x00000018 would be used. The processor will also store one more 
value for us, called EXC_RETURN, in the Link Register. This 32-bit value describes 
which stack to use upon exception return, as well as the mode from which the 
processor left before the exception occurred. Table 15.2 shows all the values cur-
rently used on the Cortex-M4—most are reserved. Notice also from our previous 
example that the EXC_RETURN value was 0xFFFFFFF9, since the floating-point 
unit was not enabled at the time we took the exception, and we wish to return to 
Thread mode.

15.5.2 exiT

Returning from exceptions might be one of the few processes that is easier to do on 
a Cortex-M4 than on the ARM7TDMI, since the processor does most of the work 
for us. If we are in Handler mode and we wish to return to the main program, one 
of the following instructions can be used to load the EXC_RETURN value into the 
Program Counter:

• A LDR or LDM instruction with the PC as the destination
• A POP instruction that loads the PC
• A BX instruction using any register

As a point of interest, some processors use a dedicated instruction to indicate 
that an exception is complete, and ARM could have done the same thing given the 
architectural model of the Cortex-M4. However, the idea is to have a device that 
you can program entirely in C, so a conventional return instruction is used to allow 
C subroutines to handle exceptions. Most of the return information is held in the 
EXC_RETURN value.

15.6 EXCEPTION TYPES

In Chapter 14, we saw the different types of exceptions that ARM processors are 
asked to handle, and we noted that exceptions require the processor to take some 

TABLE 15.2
EXC_RETURN Value for the Cortex-M4 with Floating-Point Hardware

EXC_RETURN[31:0] State Return to Using Stack Pointer

0xFFFFFFE1 Floating-point Handler mode MSP

0xFFFFFFE9 Floating-point Thread mode MSP

0xFFFFFFED Floating-point Thread mode PSP

0xFFFFFFF1 Non-floating-point Handler mode MSP

0xFFFFFFF9 Non-floating-point Thread mode MSP

0xFFFFFFFD Non-floating-point Thread mode PSP
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time from normal processing to service a peripheral, deal with an interrupt, or han-
dle a fault of some type. There are even more exception types on the Cortex-M4, 
some of which are common, some of which are not. In fact, in any given microcon-
troller application, testing and product development cycles have hopefully removed 
all of the unexpected conditions so that the processor sees only requests which 
can be handled easily—interrupts, or possibly a debugger poking around. On the 
ARM7TDMI, the priorities of the exception types are fixed, so that data aborts over-
rule interrupts. On version 7-M processors, the exception types are mostly program-
mable, with a few types being fixed (refer back to Table 15.1): reset (-3 or the highest), 
non-maskable interrupt (-2), and hard fault (-1). Interrupts will be covered in more 
detail in Section 15.7.

The following types of exceptions are present on the Cortex-M4:

• Reset
• NMI
• Hard fault
• Memory management fault
• Bus fault
• Usage fault
• SVCall
• Debug monitor
• PendSV
• SysTick
• Interrupt

When the Cortex-M4 processor is reset, it will fetch the value at address 0x0 and 
address 0x4 (usually located in either Flash memory or some kind of ROM), reading 
both the initial stack pointer and the reset vector, respectively. As it turns out, there 
are different ways to reset a system, either parts of it or the entire thing. Depending 
on what’s needed, a reset handler can be very simple, or it may need to perform tasks 
such as:

• Enable a floating-point unit
• Initialize the memory system (e.g., if a memory protection unit [MPU] is 

present)
• Initialize the two stack pointers and all of the registers
• Initialize any critical I/O devices
• Initialize any peripheral registers, control registers, or clocks, such as a 

phase-locked loop (PLL)
• Enable certain exception types

A non-maskable interrupt (NMI) has the second highest priority among the 
exceptions, which means that in most cases, when the processor sees the request, 
it will be handled immediately. There are conditions that might prevent this, such 
as the processor being halted by the debugger or an NMI handler already running, 
but otherwise, this exception is permanently enabled and cannot be masked. On the 
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Tiva TM4C1233H6PM, for example, an NMI can be triggered by both hardware and 
software (there is an Interrupt Control and State Register to do this).

A hard fault can occur when the processor sees an error during exception process-
ing, or when another fault such as a usage fault is disabled. In our example code, if 
we disable usage faults and then rerun the code, you will notice that the processor 
takes a hard fault when the UDIV instruction is attempted, rather than a usage fault. 
You can also see hard faults when there is an attempt to access the System Control 
Space in an unprivileged mode; for example, if you attempt to write a value to one of 
the NVIC registers in Thread mode, the processor will take an exception.

Memory management faults occur when the processor attempts to access areas of 
memory that are inaccessible to the current mode and privilege level (e.g., privileged 
access only or read only) or that are not defined by the MPU. Generally, the reason 
for the fault and the faulting address can be found in the Memory Management Fault 
Status Register, shown in Table 15.3. Like usage and bus faults, memory manage-
ment faults must also be enabled before the processor can use them.

One of the busses that commonly runs through a conventional SoC is the AMBA 
High-Performance Bus (AHB), connecting memory and peripherals to the main pro-
cessor. Bus faults occur when an error response returns from an access on the AHB 
bus, either for instruction or data accesses. There is a Fault Status Register for these 
errors as well, so that an exception handler can determine the offending instruction 
and possibly recover. Since both precise bus faults (where the fault occurs on the 
last completed operation) and imprecise bus faults (where the fault is triggered by 
an instruction that may have already completed) can generate an error, recovery is 
possible in some cases, but it is certainly not easy to do.

Usage faults occur for a number of reasons. If you have enabled usage faults, then 
the processor will take an exception for the following:

• Trying to divide by zero, assuming that the processor has been told to trap 
on this event (i.e., setting the DIV_0_TRP bit in the NVIC as we did in 
Example 15.1)

• Trying to switch the processor into ARM state. Recall that the least signifi-
cant bit of branch targets, exception vectors, and PC values popped from 

TABLE 15.3
Memory Management Fault Status Register (Offset 0xD28)

Bit Name Reset Value Description

7 MMARVALID 0 Indicates the Memory Management 
Address register is valid

6:5 — — —

4 MSTKERR 0 Stacking error

3 MUNSTKERR 0 Unstacking error

2 — — —

1 DACCVIOL 0 Data access violation

0 IACCVIOL 0 Instruction access violation
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the stack must be a 1, since the Cortex-M4 always operates in Thumb state. 
The INVSTATE bit will be set in the Usage Fault Status Register shown in 
Table 15.4

• Using an undefined instruction
• Attempting an illegal unaligned access
• Attempting to execute a coprocessor instruction
• Returning from an exception with an invalid EXC_RETURN value

Table 15.4 shows all of the bits in the Usage Fault Status Register that can be 
examined by a fault handler.

At this point, we might be tempted to clean up our usage fault handler from ear-
lier examples so that the divide-by-zero error is no longer a problem. In an actual 
system, a warning, an error, or possibly a symbol such as “#DIV/0!” could be printed 
to a screen, but in an embedded system using only integer math, a division by zero 
is often catastrophic. There is no recovery that makes sense—what value could you 
return that either represents infinity or represents a number that could guarantee an 
algorithm would not exceed certain bounds? Unlike our short examples, a proper 
usage fault handler should follow the AAPCS guidelines, stacking the appropriate 
registers before proceeding, and it might even determine the destination register in 
the offending instruction to make a partial recovery. If an operating system were 
running, one course of action would be to terminate the thread that generated this 
exception and perhaps indicate the error to the user.

Supervisor calls (SVCall) and Pendable Service Calls (PendSV) are similar in 
spirit to the SWI (now SVC) exceptions on the ARM7TDMI, where user-level code 
can access certain resources in a system, say a particular piece of hardware, by forc-
ing an exception. A handler running in a privileged mode then examines the actual 
SVC instruction to determine specifically what is being requested. This way, hard-
ware can be controlled by an operating system, and something like an API can be 
provided to programmers, leaving device drivers to take care of the details. Pending 
Service Calls can be used in conjunction with SVC instructions to provide efficient 

TABLE 15.4
Usage Fault Status Register (Offset 0xD2A)

Bit Name Reset Value Description

9 DIVBYZERO 0 Indicates a divide by zero has occurred (only if 
DIV_0_TRP is also set)

8 UNALIGNED 0 An unaligned access fault has occurred

7:4 — — —

3 NOCP 0 Indicates a coprocessor instruction was attempted

2 INVPC 0 An invalid EXC_RETURN value was used in an 
exception

1 INVSTATE 0 An attempt was made to switch to an invalid state

0 UNDEFINSTR 0 Processor tried to execute an undefined instruction
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handling of context switching for operating systems. See (Yiu 2014) for details on 
working with service calls and interrupt handling.

The SYSTICK exception is generated by a 24-bit internal timer that is controlled 
by four registers. When this system timer reaches zero, it can generate an exception 
with its own vector number (refer back to Table 15.1). Operating systems use this 
type of timer for task management, that is, to ensure that no single task is allowed to 
run more than any other. For an excellent reference on operating systems, particu-
larly for embedded systems, see (http://processors.wiki.ti.com/index.php/TI-RTOS_
Workshop#Intro_to_TI-RTOS_Kernel_Workshop_Online_Video_Tutorials, 2013).

The last two types of exceptions are almost polar opposites of each other in terms 
of attention. One, the Debug Monitor exception, is generated by a debug monitor 
running in a system, and consequently, is of interest to writers of debug monitors and 
few others (if you are really curious, consult the RealView ICE User Guide (ARM 
2008b) for details on working with debug components). The second, interrupts, are 
used by nearly everyone, and therefore deserves a section of its own.

15.7 INTERRUPTS

In Section 14.2 we saw that not all exceptions are unwanted, particularly interrupts, 
since peripherals can generate them. The Cortex-M4 supports up to 240 interrupts of 
the 496 allowed by the Cortex-M specification, although most silicon vendors do not 
implement all of them. In fact, if we carefully examine the TM4C1233H6PM micro-
controller from TI, you will notice that it supports only 65—still, quite a few. The 
interrupt priorities are also programmable, so that the various interrupts coming from 
different peripherals can either have the same weighting or unique priorities which 
are assigned to each one. There are so many variations on the interrupts, in fact, that 
all of the details are best left for a book like (Yiu 2014) or the Cortex-M4 Technical 
Reference Manual (ARM 2009). Interrupts can be masked; interrupts can be held 
pending; interrupts can have subpriorities; and you can disable only interrupts with a 
priority below a certain level. All of these options are not critical to our understand-
ing of how they work and what is necessary to configure a peripheral to generate one.

Reading through the partial list of peripherals in Table 15.5, you can see that the 
various peripherals can generate an interrupt, and all of these interrupts are handled 
and prioritized by the NVIC (also covered in Chapter 14) once it is configured. A full 
listing can be found in the Data Sheet (Texas Instruments 2013a).

Configuration is probably the least trivial aspect of working with a microcontroller 
the size of the TM4C1233H6PM. There are dozens of registers than may need to be 
configured in any given system. Consequently, silicon vendors provide their own 
APIs to use when programming the controllers in a language like C. The libraries 
are based around the Cortex Microcontroller Software Interface Standard (CMSIS) 
from ARM. TivaWareTM from Texas Instruments and the LPCOpen Platform from 
NXP are examples of libraries that allow peripherals to be enabled and configured 
using only standard access functions. To fully appreciate a statement like

 SysCtlPeripheralEnable(SYSCTL_PERIPH_TIMER0);
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you need to program the same operation in assembly at least once! That’s where we 
begin.

EXAMPLE 15.4

Let’s look at an example of a relatively simple interrupt being caused by a timer 
counting down to zero. You can see from Table 15.5 that the twelve timers are 
all given their own vector number, interrupt number, and vector address. We’ll 
set up one 16-bit timer, Timer 0A, to count down from 0xFFFF to 0, sending an 
interrupt to the NVIC, alerting the core that the timer expired. The processor will 
acknowledge the interrupt and jump to a handler routine. Once inside the inter-
rupt handler, we’ll put a value into a core register and then spin in an infinite loop 
so that we can see the process happen using a debugger. In this example, we’ll use 
the Tiva Launchpad as a target. As a necessity, the timer must be configured as a 
memory-mapped peripheral, but this gives us a preview of Chapter 16.

In order to configure the interrupts, the following must take place:

• The system clocks on processor must be set up, similar to the code we’ll use 
in Chapter 16 for the GPIO example.

TABLE 15.5
Partial Vector Table for Interrupts on the Tiva TM4C1233H6PM 
Microcontroller

Vector 
Number

Interrupt Number (Bit in 
Interrupt Registers) Vector Address or Offset Description

0–15 — 0x00000000–0x0000003C Processor Exceptions

. . .

. . .

. . .

30 14 0x00000078 ADC0 Sequence 0

31 15 0x0000007C ADC0 Sequence 1

32 16 0x00000080 ADC0 Sequence 2

33 17 0x00000084 ADC0 Sequence 3

34 18 0x00000088 Watchdog Timers 0 and 1

35 19 0x0000008C 16/32-Bit Timer 0A
36 20 0x00000090 16/32-Bit Timer 0B

37 21 0x00000094 16/32-Bit Timer 1A

38 22 0x00000098 16/32-Bit Timer 1B

37 21 0x0000009C 16/32-Bit Timer 2A

38 22 0x000000A0 16/32-Bit Timer 2B

. . .

. . .

. . .

51 35 0x000000CC 16/32-Bit Timer 3A

52 36 0x000000D0 16/32-Bit Timer 3B

. . .
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• The clocks must be enabled to the interrupt block, specifically, using the 
RCGCTIMER register. Now that the timer is enabled, we can actually write to 
the memory-mapped registers within it. If the interrupt block is not enabled, 
any attempts to write to the memory-mapped registers results in a hard fault.

• Rather than having a periodic timer, we will configure it to be a one-shot 
timer. To do this, we must configure the GPTMTnMR register.

• The timer will be set up as a 16-bit timer, so the initial count will be (by a reset) 
set to 0xFFFF. By default, the timer will count down to zero, rather than up.

• The interrupt from the timer needs to be enabled. There is a GPTMIMR 
register, or General-Purpose Timer Interrupt Mask Register, than needs to be 
configured. Writing a 1 to the appropriate bit enables the interrupt.

• Interrupts needs to be enabled from Timer 0A in the NVIC. Bit 19 of the 
Interrupt Set Enable register in the NVIC enables Timer 0A.

• The timer needs to be started.

Using the Code Composer Studio tools, you can create a source code file with 
the following code:

 MOVW r0, #0xE000
 MOVT r0, #0x400F
 MOVW r2, #0x60  ; offset 0x060 for this register
 MOVW r1, #0x0540
 MOVT r1, #0x01C0
 STR r1, [r0, r2] ; write the register’s content

 MOVW r7, #0x604 ; enable timer0 - RCGCTIMER
 LDR r1, [r0, r7] ; p. 321, base 0x400FE000
 ORR r1, #0x1  ; offset - 0x604
 STR r1, [r0, r7] ; bit 0

 NOP
 NOP
 NOP
 NOP
 NOP    ; give myself 5 clocks per spec

 MOVW r8, #0x0000 ; configure timer0 to be
 MOVT r8, #0x4003 ; one-shot, p.698 GPTMTnMR
 MOVW r7, #0x4  ; base 0x40030000
 LDR r1, [r8, r7] ; offset 0x4
 ORR r1, #0x21  ; bit 5 = 1, 1:0 = 0x1
 STR r1, [r8, r7]

 LDR r1, [r8]  ; set as 16-bit timer only
 ORR r1, #0x4  ; base 0x40030000
 STR r1, [r8]  ; offset 0, bit[2:0] = 0x4

 MOVW r7, #0x30  ; set the match value at 0
 MOV r1, #0  ; since we’re counting down
 STR r1, [r8, r7] ; offset - 0x30

 MOVW r7, #0x18  ; set bits in the GPTM
 LDR r1, [r8, r7] ; Interrupt Mask Register
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 ORR r1, #0x10  ; p. 714 - base: 0x40030000
 STR r1, [r8, r7] ; offset - 0x18, bit 5

 MOVW r6, #0xE000 ; enable interrupt on timer0
 MOVT r6, #0xE000 ; p. 132, base 0xE000E000
 MOVW r7, #0x100 ; offset - 0x100, bit 19
 MOV r1, #(1 < <19) ; enable bit 19 for timer0
 STR r1, [r6, r7]

 MOVW r6, #0x0000 ; start the timer
 MOVT r6, #0x4003
 MOVW r7, #0xC
 LDR r1, [r6, r7]
 ORR r1, #0x1
 STR r1, [r6, r7] ; go!!

Now that the NVIC, Timer 0A, and all of the control registers are programmed, 
we can write a very simple handler for the interrupt we are expecting:

IntDefaultHandler:
 MOVW r10, #0xBEEF
 MOVT r10, #0xDEAD
Spot
 B Spot

This will do nothing more than write a value into register r10 and then spin in a 
loop.

To run this program on a Tiva Launchpad, you will likely have to reset the sys-
tem after the code is loaded (as opposed to resetting just the core). Then run the 
program. Once you hit the stop button, you can see that the processor is in the 
interrupt handler just executing branch instructions in a loop. The entire program 
is given in Appendix D.

15.8 EXERCISES

 1. How many operation modes does the Cortex-M4 have?

 2. What happens if you do not enable usage faults in Example 15.1?

 3. Which register must be used to switch privilege levels?

 4. What are the differences between the ARM7TDMI and Cortex-M4 vector 
tables?

 5. Give the offsets (from the base address 0xE000E000) and register size for 
the following:

 a. Usage Fault Status Register
 b. Memory Management Fault Status Register
  You may wish to consult the TM4C1233H6PM data sheet (Texas Instruments 

2013b).

 6. Configure Example 15.4 so that the timer counts up rather than down. Don’t 
forget to configure the appropriate match value!
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Memory-Mapped 
Peripherals

16.1 INTRODUCTION

Modern embedded systems generally demand quite a bit from a single piece of sili-
con. For example, in the 1990s, cell phones were used for making phone calls and 
little else. Today, their uses range from checking e-mail to watching your favorite 
movie. The industry also geared up to include GPS on smartphones, so that when 
you miss that turn while driving down the road (probably because you were arguing 
with your smartphone), you can also ask it for directions. To build such systems, the 
hardware has to include more features in silicon, and the software has to learn to 
talk to those new features. SoC designs are packing ever more devices onto one die. 
Even off-the-shelf microcontrollers are getting more elaborate, with small, 32-bit 
processors built to control different types of serial interfaces, e.g., UARTs, I2C, and 
CAN; analog devices like temperature sensors and analog comparitors; and motion 
controllers for motors and servos. How are all of these attached to a single proces-
sor? In this chapter, we’re going to look at three particular microcontrollers, the 
LPC2104 and the LPC2132 from NXP, and the TM4C123GH6PM from TI, along 
with three very useful peripherals, the UART, general-purpose I/O (GPIO), and the 
digital-to-analog converter (DAC). The UART is a relatively simple serial interface, 
and we’ll program it to send character data to a window in the simulator. The DAC 
takes a 10-bit value and generates an output relative to a reference voltage. To show 
off our coding skills, the DAC will generate a sine wave from the sine table we cre-
ated in Chapter 12. The last example uses an inexpensive evaluation module, the 
Tiva Launchpad, to continuously change the color of a flashing LED. In writing the 
three programs, we’re going to tie all of the elements from previous chapters into the 
code, including

• Subroutines and how they are written
• Passing parameters
• The ARM Application Procedure Call Standard (AAPCS)
• Stacks
• Q notation
• Arithmetic
• The ARM and Thumb-2 instruction sets

16.2 THE LPC2104

The best place to start is at the highest level—the SoC, or in our case, the micro-
controller. Figure 16.1 shows the block diagram of the LPC2104 from NXP. You can 

16
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see the ARM7TDMI core at the top, and two main busses in the system: the AHB, a 
high-speed bus designed to have only a few bus masters attached to it, and the VPB, 
a slower bus designed to have many peripherals attached to it. Between the two bus-
ses is a bridge. Fortunately for the programmer, you don’t have to focus too much 
on the internal hardware design, but it is important to know how the peripherals are 
attached and what type of interface they have (i.e., what pins go with which periph-
eral). The LPC2104 includes a few different serial interfaces, along with some tim-
ers, some general-purpose I/O, two UARTs, and some on-chip memory. Specifically, 
we’re going to use UART0 to write some character data out of the part.

16.2.1 The uART

The Universal Asynchronous Receiver/Transmitter (UART) is probably one of the 
most ubiquitous peripherals found on microcontrollers. It can be used to implement 
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FIGURE 16.1 LPC2104/2105/2106 block diagram. (From Doc. LPC2104–2105–2106–6 
Product Data Sheet, NXP Semiconductors, July 2007. With permission.)
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serial transmission standards such as RS-232 or EIA232F, or connect the micro-
controller to devices like LCD displays or bar code scanners. While high-speed 
serial standards such as USB and Firewire have largely replaced the older protocols, 
UARTs are still used to provide a simple, inexpensive interface to devices that don’t 
necessarily have to transmit and receive data at high speeds.

Asynchronous start-stop communication is done without a clock signal. Rather 
than using a dedicated clock line, which adds pins, special bits are added to the 
data being sent to tell the receiver when the data is starting and stopping. Parity 
bits, like those discussed in Chapter 7, can be added to the transmission. Long ago, 
these options were all controlled by hardware, through either switches or jumpers. 
With modern systems, software controls these choices. Table 16.1 shows the options 
available for character length, stop bits, parity, and break control. You can find more 
detailed information on UARTs and asynchronous serial ports in (Clements 2000) 
and (Kane et al. 1981).

16.2.2 The MeMoRy MAp

Peripherals on the LPC2104 are memory-mapped, meaning that their configuration 
registers, receive and transmit buffers, status registers, etc., are each mapped to an 
address. Accessing peripherals is actually just as easy as accessing a memory block. 

TABLE 16.1
UART Configuration Bits in the Control Register

U0LCR Function Description Reset Value

1:0 Word Length Select 00:5-bit character length 0

01:6-bit character length

10:7-bit character length

11:8-bit character length

2 Stop Bit Select 0:1 stop bit 0

1:2 stop bits (1.5 if U0LCR[1:0] = 00)

3 Parity Enable 0: Disable parity generation and checking 0

1: Enable parity generation and checking

5:4 Parity select 00: Odd parity 0

01: Even parity

10: Forced “l” stick parity

11: Forced “0” stick parity

6 Break Control 0: Disable break transmission 0

1: Enable break transmission. Output pin 
UART0 TxD is forced to logic 0 when 
U0LCR6 is actively high

7 Divisor Latch 0: Disable access to divisor latches 0

Access Bit 1: Enable access to divisor latches
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You can use LDR and STR instructions just as you would if you were writing a value 
to memory; although, you should be aware that some peripherals are sensitive to 
reads and writes. For example, a memory-mapped register may automatically clear 
its contents after being read.

Looking at Figure 16.2, you can see the memory map for the entire microcon-
troller. Notice that distinct memory regions are defined. The controller comes with 
128 KB of Flash memory for your programs, and in the case of the LPC2104, 16 KB 
of on-chip RAM for building stacks and holding variables. All of the peripherals lie 
in the very highest addresses, between addresses 0xE0000000 and 0xFFFFFFFF. If 
we zoom in a bit more, we will find our UART, called UART0, between addresses 
0xE000C000 and 0xE000C01C, as shown in Figure 16.3.
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FIGURE 16.2 System memory map. (From LPC2106/2105/2104 User Manual NXP 
Semiconductors, September 2003. With permission.)
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16.2.3  ConfiguRing The uART

To demonstrate how easy it is to talk to a peripheral, we’ll write a short block of code 
that does two things: it calls a subroutine to configure our UART, and it then sends a 
short message through the UART for the Keil tools to read. If you look at the external 
pins of the LPC2104, shown in Figure 16.4, you will notice that they are multiplexed 
pins, meaning that the function of the pin itself is configurable. This allows a pack-
age to reduce the pin count, but the programmer must configure the pins to use 
them. So the first order of business is to set up the LPC2104 so that pins P0.0 and 
P0.1 become our transmit and receive pins, Tx0 and Rx0, respectively. To do this, 
we load the address of the pin configuration register, shown in Table 16.2, into a 
general register, where PINSEL0 is equated to 0xE002C000. Using a read-modify-
write sequence (good practice when you don’t want to disturb other configuration or 
status bits), PINSEL0[1:0] and PINSEL0[3:2] are set to 0b01. The assembly would 
look like the following:

 LDR r5, = PINSEL0 ; base address of register
 LDR r6,[r5] ; get contents
 BIC r6,r6,#0xF ; clear out lower nibble
 ORR r6,r6,#0x5 ; sets P0.0 to Tx0 and P0.1 to Rx0
 STR r6, [r5] ; r/modify/w back to register
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FIGURE 16.3 Memory map of UART0 on the LPC2104. (From LPC2106/2105/2104 User 
Manual NXP Semiconductors, September 2003. With permission.)
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The next step to configuring the UART is to set the number of data bits, the 
parity, and the number of stop bits. Again, the starting address of the UART0 
configuration register, 0xE000C000, is loaded into a general register to be used as 
a base address. The LCR and LSR registers can be accessed using a pre-indexed 
addressing scheme, where the offsets are equated to known values at the begin-
ning of the final routine. Here, LCR0 would be equated to 0xC, and for our write 
routine, LSR0 would be equated to 0x14. Since these are 8-bit registers, they must 
be accessed using STRB and LDRB instructions. The rest of the configuration 
code is below.

 LDR r5, =U0START
 MOV r6, #0x83 ; set 8 bits, no parity, 1 stop bit
 STRB r6, [r5, #LCR0] ; write control byte to LCR
 MOV r6, #0x61 ; 9600 baud @15 MHz VPB clock
 STRB r6, [r5] ; store control byte
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FIGURE 16.4 Pin descriptions for the LPC2104. (From Doc. LPC2104–2105–2106–6 
Product Data Sheet, NXP Semiconductors, July 2007. With permission.)
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 MOV r6, #3 ; set DLAB = 0
 STRB r6, [r5, #LCR0] ; Tx and Rx buffers set up

16.2.4  WRiTing The dATA To The uART

Now that the UART is configured to send and receive data, we can try writing 
some data out of the part. In this case, we’ll send some character data—the short 
message “Watson. Come quickly!” The subroutine for this task is written so that 
the calling routine can send a single character at a time. When the subroutine 
receives the character, it’s placed into the transmit buffer, but only after the pro-
cessor checks to ensure the previous character has been transmitted. Who’s read-
ing this data? In the simulation tools, there is a serial window that can accept data 
from a UART, driving the necessary handshake lines that are normally attached 
to the receiver. The assembly code for our transmitter routine looks like the 
following:

 LDR r5, =U0START
wait LDRB r6,[r5,#LSR0] ; get status of buffer
 CMP r6,#0x20 ; buffer empty?
 BEQ wait ; spin until buffer’s empty
 STRB r0,[r5]

TABLE 16.2
PINSEL0 Register for Pin Configurations

PINSEL0
Pin 

Name
Function 
When 00

Function 
When 01 Function When 10

Function 
When 11

Reset 
Value

1:0 P0.0 GPIO Port 0.0 TxD (UART 0) PWM1 Reserved 0

3:2 P0.1 GPIO Port 0.1 RxD (UART 0) PWM3 Reserved 0

5:4 P0.2 GPIO Port 0.2 SCL (l2C) Capture 0.0 (Timer 0) Reserved 0

7:6 P0.3 GPIO Port 0.3 SDA (l2C) Match 0.0 (Timer 0) Reserved 0

9:8 P0.4 GPIO Port 0.4 SCK (SPI) Capture 0.1 (Timer 0) Reserved 0

11:10 P0.5 GPIO Port 0.5 MISO (SPI) Match 0.1 (Timer 0) Reserved 0

13:12 P0.6 GPIO Port 0.6 MOSI (SPI) Capture 0.2 (Timer 0) Reserved 0

15:14 P0.7 GPIO Port 0.7 SSEL (SPI) PWM2 Reserved 0

17:16 P0.8 GPIO Port 0.8 TxD UART 1 PWM4 Reserved 0

19:18 P0.9 GPIO Port 0.9 RxD (UART 1) PWM6 Reserved 0

21:20 P0.10 GPIO Port 0.10 RTS (UART 1) Capture 1.0 (Timer 1) Reserved 0

23:22 P0.11 GPIO Port 0.11 CTS (UART 1) Capture 1.1 (Timer 1) Reserved 0

25:24 P0.12 GPIO Port 0.12 DSR (UART 1) Match 1.0 (Timer 1) Reserved 0

27:26 P0.13 GPIO Port 0.13 DTR (UART 1) Match 1.1 (Timer 1) Reserved 0

29:28 P0.14 GPIO Port 0.14 CD (UART 1) EINT1 Reserved 0

31:30 P0.15 GPIO Port 0.15 RI (UART1) EINT2 Reserved 0

Source: From LPC2106/2105/2104 User Manual NXP Semiconductors, September 2003. With 
permission.
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16.2.5  puTTing The Code TogeTheR

Now that we have one subroutine to set up our UART and another to send a char-
acter, the remaining code will be responsible for reading a sentence from memory, 
one character at a time, and calling the subroutine to transmit it. A small loop will 
read a character from memory and test to see whether it is the null terminator for a 
string, i.e., the value 0. If so, the loop terminates. Otherwise, the subroutine Transmit 
is called.

The AAPCS allows registers r0 through r3 to be corruptible, and we’ve used reg-
isters r5 and r6 in our subroutines. While the code could be written without having to 
stack any registers (left as an exercise), we’ll go ahead and set the stack pointer to the 
start of RAM, which is address 0x40000000. The registers used in our subroutines 
can then be saved off. The code below is a complete routine.

 AREA UARTDEMO, CODE, READONLY
PINSEL0 EQU 0xE002C000 ; controls the function of the pins
U0START EQU 0xE000C000 ; start of UART0 registers
LCR0 EQU 0xC ; line control register for UART0
LSR0 EQU 0x14 ; line status register for UART0
RAMSTART EQU 0x40000000 ; start of onboard RAM for 2104
 ENTRY
start
 LDR sp, = RAMSTART ; set up stack pointer
 BL UARTConfig ; initialize/configure UART0
 LDR r1, = CharData ; starting address of characters
Loop
 LDRB r0, [r1],#1 ; load character, increment address
 CMP r0,#0 ; null terminated?
 BLNE Transmit ; send character to UART
 BNE Loop ; continue if not a ‘0’
done B done ; otherwise we’re done

; Subroutine UARTConfig
; This subroutine configures the I/O pins first. It
; then sets up the UART control register. The
; parameters
; are set to 8 bits, no parity and 1 stop bit.
; Registers used:
; r5 – scratch register
; r6 – scratch register
; inputs: none
; outputs: none

UARTConfig
 STMIA sp!, {r5,r6,lr}
 LDR r5, = PINSEL0 ; base address of register
 LDR r6,[r5] ; get contents
 BIC r6,r6,#0xF ; clear out lower nibble
 ORR r6,r6,#0x5 ; sets P0.0 to Tx0 and P0.1 to Rx0
 STR r6, [r5] ; r/modify/w back to register
 LDR r5, = U0START
 MOV r6, #0x83 ; set 8 bits, no parity, 1 stop bit
 STRB r6, [r5, #LCR0] ; write control byte to LCR
 MOV r6, #0x61 ; 9600 baud @15 MHz VPB clock
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 STRB r6, [r5] ; store control byte
 MOV r6, #3 ; set DLAB = 0
 STRB r6, [r5, #LCR0] ; Tx and Rx buffers set up
 LDMDB sp!,{r5,r6,pc}

; Subroutine Transmit
; This routine puts one byte into the UART
; for transmitting.
; Register used:
; r5 – scratch
; r6 - scratch
; inputs: r0- byte to transmit
; outputs: none
;

Transmit

 STMIA sp!,{r5,r6,lr}
 LDR r5, = U0START
wait LDRB r6,[r5,#LSR0] ; get status of buffer
 CMP r6,#0x20 ; buffer empty?
 BEQ wait ; spin until buffer’s empty
 STRB r0,[r5]
 LDMDB sp!,{r5,r6,pc}
CharData
 DCB “Watson. Come quickly!”,0
 END

16.2.6  Running The Code

At this point, you should take some time to enter the code and run it in the Keil tools. 
It should be run in the same manner we have taken with all of the other programs, 
namely that it starts in memory at address 0x0, and there are no handlers of any kind 
for exceptions. The tools have additional windows that allow you to view peripherals 
on the chip. The peripheral we use here, UART0, can be seen by choosing UART0 
from the Peripherals menu after the debug session has been started. This will bring 
up the peripheral window, shown in Figure 16.5.

To see the output from the UART, you can use the Serial Window submenu from 
the View menu on the toolbar. You should select UART #1, which brings up the 
window shown in Figure 16.6.

16.3  THE LPC2132

Figure 16.7 shows a block diagram of the LPC2132 microcontroller, which looks 
very much like the LPC2104. It has the same ARM7TDMI processor, the same 
AHB and VPB busses, and a very similar set of peripherals, which is fortunate. With 
a similar structure and memory map, programming our microcontroller should be 
very straightforward. The peripheral of interest this time is the D/A converter with 
its associated output pin AOUT. Since we’ve already covered fractional arithmetic, 
sine tables, and subroutines, we can tie all of these concepts together by creating a 
sine wave using the D/A converter. The output AOUT will be monitored on a simulated 
logic analyzer in the Keil tools so that we can see our sine wave.
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16.3.1  The d/A ConVeRTeR

In many signal processing and control applications, an analog waveform is sampled, 
processed in some way, e.g., a digital filter, and then converted back into an analog 
waveform. The process of taking a binary value and generating a voltage based on 
that value requires a digital-to-analog converter. There are many types, including 

FIGURE 16.5 The UART0 peripheral window.

FIGURE 16.6 Serial output window.
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tree networks and R-2R ladders, but their construction lies outside the scope of this 
book. Fortunately, the electronics can be overlooked for the moment and we can 
concentrate on using the device.

The basic operation of the D/A converter takes a 10-bit binary value and generates 
a voltage on AOUT which is proportional to a reference voltage VREF. In other words, 
if our binary number in base ten is value, then the output voltage is
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FIGURE 16.7 LPC2132 block diagram. (From UM10120 Vol. 1: LPC213x User Manual, 
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To use the D/A converter, we will need to set up the pin P0.25 to be our analog out-
put AOUT. Afterward, we can send our 10-bit value to this peripheral to be converted.

16.3.2 The MeMoRy MAp

The system memory map for the LPC2132 is shown in Figure 16.8. By now, we rec-
ognize the 64  KB of ROM memory from address 0x00000000 to 0x0000FFFF and 

4.0 GB 0xFFFF FFFF
AHB Peripherals

VPB Peripherals

Reserved address space

Reserved address space

32 KB on-chip static RAM (LPC2136/2138)

16 KB on-chip static RAM (LPC2132/2134)

8 KB on-chip static RAM (LPC2131)

Reserved address space

Total of 512 KB on-chip non-volatile memory
(LPC2138)

Total of 256 KB on-chip non-volatile memory
(LPC2136)

Total of 128 KB on-chip non-volatile memory
(LPC2134)

Total of 64 KB on-chip non-volatile memory
(LPC2132)
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(LPC2131)
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(remapped from on-chip flash memory)
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0x0000 8000
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2.0 GB
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FIGURE 16.8 LPC2132 memory map. (From UM10120 Vol. 1: LPC213x User Manual, 
NXP Semiconductors, June 2006. With permission.)
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the 16 KB of RAM starting at address 0x40000000. The peripherals are memory-
mapped in high memory, starting at address 0xE0000000. Again, zooming in a bit 
more, our peripheral has a register called DACR, or DAC Register, which is used for 
configuring the D/A converter as well as giving it a value to convert. The register 
is located at address 0xE006C000, and bits [15:6] are the 10 bits of digital input, as 
shown in Table 16.3.

16.3.3  ConfiguRing The d/A ConVeRTeR

Before using the D/A converter, we need to configure pin P0.25 such that it becomes 
AOUT, in the same way we changed the UART pins that were also multiplexed. The 
code below enables the D/A converter and sets the pin by writing 0b10 to bits [19:18] 
of the Pin Function Select Register called PINSEL1, which is located at address 
0xE002C004. A read-modify-write sequence ensures that other bits that are set or 
clear are not altered:

 LDR r6, = PINSEL1  ; PINSEL1 configures pins
 LDR r7,[r6]  ; read/modify write
 ORR r7,r7,#1:SHL:19 ; set bit 19
 BIC r7,r7,#1:SHL:18 ; clear bit 18
 STR r7,[r6]  ; change P0.25 to Aout

16.3.4 geneRATing A sine WAVe

The D/A converter will take an unsigned binary value and generate a voltage that 
ranges between 0 and VREF (in our simulation, this is 3.3V). To see a complete sine 
wave, all we have to build is a simple loop that counts from 0 to 359. Say this counter 
is held in register r1. The sine table we built in Chapter 12 will return a Q31 value 

TABLE 16.3
DAC Register Bit Description

Bit Symbol Value Description
Reset 
Value

5:0 — Reserved, user software should not write ones to reserved 
bits. The value read from a reserved bit is not defined.

NA

15:6 VALUE After the selected settling time after this field is written 
with a new VALUE, the voltage on the AOUT pin (with 
respect to VSSA) is VALUE/1024 * VREF.

0

16 BIAS 0 The settling time of the DAC is 1  µs max, and the 
maximum current is 700 µA.

0

1 The settling time of the DAC is 2.5 µs and the maximum 
current is 350 µA.

31:17 — Reserved, user software should not write ones to reserved 
bits. The value read from a reserved bit is not defined.

NA
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given the argument in register r1. However, we will have to scale and shift the output 
of our sine function, so that the value v sent to the D/A converter is

 v = 512 × sin(r1) + 512

since sine returns negative arguments in two’s complement. Scaling and shifting the 
output of our sine table will force v’s range between 0 and 1024, which is what the 
D/A converter understands. To write the 10-bit value to the DAC Register, a half-
word store moves the value v that has been shifted 6 bits so that it sits in bits [15:6]. 
So, the code would be

 ASR r0,r0,#16 ; convert Q31 to Q15
 LSL r0,r0,#9 ; x512 now in Q15 notation
 ASR r0,r0,#15 ; keep the integer part only
 ADD r0,r0,#512 ; 512 x sin(r1) + 512 to show wave
 LSL r0,r0,#6 ; bits 5:0 of DAC are undefined
 STRH r0,[r8] ; write to DACR

16.3.5  puTTing The Code TogeTheR

To put everything together, we first convert the sine table to a subroutine, making 
sure to follow the AAPCS rules for passing arguments, namely to put the argument 
in register r1 and expect the sine of the argument in register r0. Since registers r4, r5, 
and r7 were changed in the subroutine, we stack those before using them. While not 
absolutely necessary, our loop counter counts down rather than up, and we subtract 
the loop counter from 360 to use as the argument to our sine function. The complete 
code is shown below.

; Sine wave generator using the LPC2132 microcontroller
; This program will generate a sine wave using
; the D/A converter on the controller. The output can be
; viewed using the Logic Analyzer in the Keil tools.

PINSEL1 EQU 0xE002C004
DACREG  EQU 0xE006C000
SRAMBASE EQU 0x40000000

 AREA SINEWAVE, CODE
 ENTRY

main
 LDR sp, = SRAMBASE ; initialize stack pointer
 LDR r6, = PINSEL1 ; PINSEL1 configures pins
 LDR r8, = DACREG ; DAC Register[15:6] is VALUE
 LDR r7,[r6] ; read/modify write
 ORR r7,r7,#1:SHL:19 ; set bit 19
 BIC r7,r7,#1:SHL:18 ; clear bit 18
 STR r7,[r6] ; change P0.25 to Aout
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outloop
 MOV r6,#360 ; start counter
inloop
 RSB r1,r6,#360 ; arg = 360 - loop count
 BL sine ; get sin(r1)
 ; Now that we have r0 = sin(r1), we need to send
 ; this to the DAC converter.
 ; First, we take the Q31 value and make it Q15
 ; and multiply it by 512. Then we offset the result
 ; by 512 to show the full sine wave. Aout is
 ; VALUE/1024*Vref, so our sine wave should swing
 ; between 0 and 3.3 V on the output.

 ASR r0,r0,#16 ; convert Q31 to Q15
 LSL r0,r0,#9 ; x512 now in Q15 notation
 ASR r0,r0,#15 ; keep the integer part only
 ADD r0,r0,#512 ; 512 x sin(r1) + 512 to show wave
 LSL r0,r0,#6 ; bits 5:0 of DAC are undefined
 STRH r0,[r8] ; write to DACR

 SUBS r6,r6,#1 ; count down to 0
 BNE inloop
 B outloop ; do this forever

; Sine function
; Returns Q31 value for integer arguments from 0 to 360
; Registers used:
; r0 = return value in Q31 notation
; r1 = sin argument (in degrees)
; r4 = starting address of sine table
; r5 = temp
; r7 = copy of argument

sine
 STMIA sp!,{r4,r5,r7,lr} ; stack used registers
 MOV r7, r1 ; make a copy
 LDR r5, = 270 ; won’t fit into rotation scheme
 ADR r4, sin_data ; load address of sin table
 CMP r1, #90 ; determine quadrant
 BLE retvalue ; first quadrant?
 CMP r1, #180
 RSBLE r1,r1,#180 ; second quadrant?
 BLE retvalue
 CMP r1, r5
 SUBLE r1, r1, #180 ; third quadrant?
 BLE retvalue
 RSB r1, r1, #360 ; otherwise, fourth
retvalue
 LDR r0,[r4,r1,LSL #2] ; get sin value from table
 CMP r7, #180 ; do we return a neg value?
 RSBGT r0, r0, #0 ; negate the value
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 LDMDB sp!,{r4,r5,r7,pc} ; restore registers
done B done
 ALIGN
sin_data
 DCD 0x00000000,0x023BE164,0x04779630,0x06B2F1D8
 DCD 0x08EDC7B0,0x0B27EB50,0x0D613050,0x0F996A30
 DCD 0x11D06CA0,0x14060B80,0x163A1A80,0x186C6DE0
 DCD 0x1A9CD9C0,0x1CCB3220,0x1EF74C00,0x2120FB80
 DCD 0x234815C0,0x256C6F80,0x278DDE80,0x29AC3780
 DCD 0x2BC750C0,0x2DDF0040,0x2FF31BC0,0x32037A40
 DCD 0x340FF240,0x36185B00,0x381C8BC0,0x3A1C5C80
 DCD 0x3C17A500,0x3E0E3DC0,0x40000000,0x41ECC480
 DCD 0x43D46500,0x45B6BB80,0x4793A200,0x496AF400
 DCD 0x4B3C8C00,0x4D084600,0x4ECDFF00,0x508D9200
 DCD 0x5246DD00,0x53F9BE00,0x55A61280,0x574BB900
 DCD 0x58EA9100,0x5A827980,0x5C135380,0x5D9CFF80
 DCD 0x5F1F5F00,0x609A5280,0x620DBE80,0x63798500
 DCD 0x64DD8900,0x6639B080,0x678DDE80,0x68D9F980
 DCD 0x6A1DE700,0x6B598F00,0x6C8CD700,0x6DB7A880
 DCD 0x6ED9EC00,0x6FF38A00,0x71046D00,0x720C8080
 DCD 0x730BAF00,0x7401E500,0x74EF0F00,0x75D31A80
 DCD 0x76ADF600,0x777F9000,0x7847D900,0x7906C080
 DCD 0x79BC3880,0x7A683200,0x7B0A9F80,0x7BA37500
 DCD 0x7C32A680,0x7CB82880,0x7D33F100,0x7DA5F580
 DCD 0x7E0E2E00,0x7E6C9280,0x7EC11A80,0x7F0BC080
 DCD 0x7F4C7E80,0x7F834F00,0x7FB02E00,0x7FD31780
 DCD 0x7FEC0A00,0x7FFB0280,0x7FFFFFFF

 END

16.3.6  Running The Code

A logic analyzer in the MDK tools allows you to place signals in a window for 
viewing in the same way that you would probe pins on an actual part. For example, 
you can take the signal AOUT and drag it into the logic analyzer. As the value 
changes in real time, you can track it, stopping the processor at any point to read 
values. After you build a project for this code, enter the program and start the 
debugger. Open the Symbol window found in the View menu. Expand the Virtual 
Registers listing to show all of the pins. Open the Logic Analyzer window, also 
found in the View menu under Analysis Windows. Drag the pin called AOUT into 
the Logic Analyzer window, then start the simulation. You should see the sine 
wave, shown in Figure 16.9.

16.4 THE TIVA LAUNCHPAD

For a bit of variety, as well as a good illustration of using general purpose input 
and output lines, we’ll turn next to an inexpensive evaluation module from Texas 
Instruments, shown in Figure 16.10, which contains the TM4C123GH6PM micro-
controller. Figure 16.11 shows a block diagram of the microcontroller, which has 
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a similar layout as the other microcontrollers we’ve examined. Rather than an 
ARM7TDMI core, it uses a Cortex-M4 processor with floating-point hardware, but 
we will address the peripherals the same way as we did in Sections 16.2 and 16.3. 
Up until this point, we’ve used simulation models to run our programs; now we’re 
using real hardware. Using the Code Composer Studio tools, a small block of code 

FIGURE 16.9 Simulation window with logic analyzer.

FIGURE 16.10 The Tiva Launchpad Evaluation Module.
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can be written to turn on the peripheral, set up the clocks, and then change the color 
of the LEDs on the board. Note that there are no simulation models of the evaluation 
module, hence the use of actual hardware.

16.4.1 geneRAL-puRpose i/o

General purpose I/O lines are probably the most straightforward of all peripherals 
to understand, and they can be very versatile. Since they can be configured as either 
input lines or output lines, you can use them for a variety of applications: driving 
LEDs or other components in a system, accepting parallel data from another device, 
or using them as a form of interrupt. Their versatility can sometimes prove to be 
maddening, mostly due to the sheer volume of documentation available on config-
uring them. Outputs can have different drive strengths, the GPIO lines might be 
multiplexed with other peripheral lines, some ports are available on both the AHB 
and the APB bus, etc. For the complete list of registers and options, refer to the Tiva 
TM4C123GH6PM Data Sheet (Texas Instruments 2013c), but for now, let’s examine 
a (relatively) simple, short block of code to see how everything is configured.

16.4.2 The MeMoRy MAp

There are, in fact, so many memory-mapped registers on the TM4C123GH6PM that 
it’s sometimes difficult to know which ones to use. In order to set up the clocks and 
the PLL so that our evaluation module actually runs code, we will need to configure 
the Run-Mode Clock Configuration (RCC) Register, which is part of the System 
Control Registers, which have a base address of 0x400FE000. The entire sequence 
for setting up the clocks is listed in Section 16.4.5. In order to use the GPIO port, it 
must be enabled by turning on its clock, which is configured in the General-Purpose 
Input/Output Run Mode Clock Gating Control (RCGCGPIO) Register. Yes, it’s a 
mouthful. Luckily, it has the same base address as the RCC Register, but its offset is 
0x608. The code looks like:

 ; Enable GPIOF
 ; RCGCGPIO (page 339)
 MOVW r2, #0x608 ; offset for this register
 LDR r1, [r0, r2] ; grab the register contents
 ORR r1, r1, #0x20 ; enable GPIOF clock
 STR r1, [r0, r2]

According to the data sheet, there must be a delay of 3 system clocks after the 
GPIO module clock is enabled before any GPIO module registers are accessed. 
There are four instructions between the STR that enables the clock and the STR that 
sets the direction of the port, satisfying this requirement.

16.4.3 ConfiguRing The gpio pins

Moving into a different memory space, the GPIO port itself is configured through 
dedicated registers. Table 16.4 shows the location of each of the GPIO ports on the 
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TM4C123GH6PM. The LED is actually located on APB bus Port F, so our base 
address will be 0x40025000. We’ll set the direction of GPIO Port F lines 1, 2, and 
3 to be outputs:

 ; Set the direction using GPIODIR (page 661)
 ; Base is 0x40025000
 MOVW r0, #0x5000
 MOVT r0, #0x4002
 MOVW r2, #0x400 ; offset for this register
 MOV r1, #0xE
 STR r1, [r0, r2] ; set 1 or 2 or 3 for output

If you are using the Keil tools, the constant 0x40025000 can be loaded into regis-
ter r0 with an LDR pseudo-instruction from Chapter 6; however, the Code Composer 
Studio assembler does not support this, so two separate move instructions will do 
the trick. There’s an additional level of gating on the port—the GPIO Digital Enable 
Register will need to be configured:

 ; set the GPIODEN lines
 MOVW r2, #0x51c ; offset for this register
 STR r1, [r0, r2] ; set 1 and 2 and 3 for I/O

16.4.4  TuRning on The Leds

The Tiva Launchpad board has a multi-colored LED that is controlled through three 
GPIO lines on Port F, one for red, one for green, and one for blue. The red LED is 
attached to line PF1, the green LED is attached to line PF2, and the blue LED is 
attached to line PF3. Now that Port F has been enabled and the appropriate lines have 
been configured as outputs, we can light the LEDs by driving a 1 to the GPIO line of 
our choice. To showcase all three colors, we can create a loop that selects one color 
at a time, cycling through all three by changing the value being written to the port.

TABLE 16.4
GPIO Port Locations

Port Address

APB Bus GPIO Port A 0x40004000

GPIO Port B 0x40005000

GPIO Port C 0x40006000

GPIO Port D 0x40007000

GPIO Port E 0x40024000

GPIO Port F 0x40025000

AHB Bus GPIO Port A 0x40058000

GPIO Port B 0x40059000

GPIO Port C 0x4005A000

GPIO Port D 0x4005B000

GPIO Port E 0x4005C000

GPIO Port F 0x4005D000
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In Chapter 5, the concept of bit-banding allowed individual bits of a memory-
mapped register to be accessed using a single read or write operation. It turns out the 
a similar feature is available on the TM4C123GH6PM microcontroller for access-
ing GPIO lines, where the address is used as a mask, as shown in Figure 16.12. For 
example, suppose we wish to alter only bits [7:6] and bit [0] of GPIO Port F. We can 
use bits [9:2] of the address in our write operation to form a bit mask, so that instead 
of writing to the base address of Port F (0x40025000), we would store our value to 
address (0x40025304). Now that our mask is in place, no matter what value we write 
to the port, such as 0xF6, only bits [7:6] and [0] are altered. Specifically for our LED 
example, we wish to have bits [9:2] of the address be 0b00111000, or 0x38, since 
we only want to change the LED lines connected to Port F. This value becomes our 
offset.

The following code shows our loop, complete with a small delay to give the observer 
a chance to see the individual colors of the LED. The delay value of 0xF40000 is arbi-
trary, but at 16 MHz, it gives us about 1 second to view a single color.

 SUB r7, r7, r7 ; clear out r7
 MOV r6, #2 ; start with LED = 0b10
mainloop
 ; turn on the LED
 ; if bits [9:2] affect the writes, then the address
 ; is offset by 0x38
 STR r6, [r0, #0x38] ; base + 0x38 so [9:2] = 0b111000
 MOVT r7, #0xF4 ; set counter to 0xF40000
spin
 SUBS r7, r7, #1
 BNE spin
 ; change colors
 CMP r6, #8
 ITE LT
 LSLLT r6, r6, #1 ; LED = LED * 2
 MOVGE r6, #2 ; reset to 2 otherwise
 B mainloop

7 6 5 4 3 2 1 0

1 1 1 1 0 1 1 0

1 1 0

1. . .
10 9 8 7 6 5 4 3 2 1 0

1 0 0 0

Unchanged

Write value

Port F [7:0]

Write address
0x400253040 0 1 0 0

FIGURE 16.12  Masking of the GPIO bits.
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The first line of our code sets the value to be written to Port F to 0b0010, and we plan 
to cycle through the values 0b0100, 0b1000, then back to 0b0010. The STR instruction 
will use the same base address in register r0 that we used earlier to configure the port, 
only the offset has now changed to our mask value. By using a MOVT instruction to 
store a value in the top half of register r7, we can load the value 0xF40000 without 
shifting any bits. The spin loop then does nothing but subtract one from the counter 
value until it expires. Once the loop reaches zero, the color is changed by logically 
shifting left the value to be stored to the port. If the value is equal to 0b1000, then it is 
reset to 0b0010 and the code branches to the start of the main loop.

16.4.5  puTTing The Code TogeTheR

The entire program to control the LEDs is listed below. If you follow the suggestions 
outlined in Appendix A for using the Code Composer Studio tools, this code should 
assemble without any issues.

myStart:
 ; Set sysclk to DIV/4, use PLL, XTAL_16 MHz, OSC_MAIN
 ; system control base is 0x400FE000, offset 0x60
 ; bits[26:23]= 0x3
 ; bit[22] = 0x1
 ; bit[13] = 0x0
 ; bit[11] = 0x0
 ; bits[10:6] = 0x15
 ; bits[5:4] = 0x0
 ; bit[0] = 0x0
 ; This all translates to a value of 0x01C00540
 MOVW r0, #0xE000
 MOVT r0, #0x400F
 MOVW r2, #0x60 ; offset 0x60 for this register
 MOVW r1, #0x0540
 MOVT r1, #0x01C0
 STR r1, [r0, r2] ; write the register’s contents
 ; Enable GPIOF
 ; RCGCGPIO (page 339)
 MOVW r2, #0x608 ; offset for this register
 LDR r1, [r0, r2] ; grab the register contents
 ORR r1, r1, #0x20 ; enable GPIOF clock
 STR r1, [r0, r2]
 ; Set the direction using GPIODIR (page 661)
 ; Base is 0x40025000
 MOVW r0, #0x5000
 MOVT r0, #0x4002
 MOVW r2, #0x400 ; offset for this register
 MOV r1, #0xE
 STR r1, [r0, r2] ; set 1 or 2 or 3 for output
 ;set the GPIODEN lines
 MOVW r2, #0x51c ; offset for this register
 STR r1, [r0, r2] ; set 1 and 2 and 3 for I/O
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 SUB r7, r7, r7 ; clear out r7
 MOV r6, #2 ; start with LED = 0b10
mainloop
 ; turn on the LED
 ; if bits [9:2] affect the writes, then the address
 ; is offset by 0x38
 STR r6, [r0, #0x38] ; base + 0x38 so [9:2] = 0b00111000
 MOVT r7, #0xF4 ; set counter to 0xF40000
spin
 SUBS r7, r7, #1
 BNE spin
 ; change colors
 CMP r6, #8
 ITE LT
 LSLLT r6, r6, #1 ; LED = LED * 2
 MOVGE r6, #2 ; reset to 2 otherwise
 B mainloop

16.4.6  Running The Code

The Code Composer Studio tools will help you build a project, enter the assembly 
code into a file, then run the code on the Launchpad evaluation module. The code 
will be loaded into Flash memory, so that once you build your project, in the future, 
once power is applied to the board, the same program will immediately execute 
and you should see the LEDs continue to flash. Take some time to set breakpoints 
on code segments to see how the register values change, and experiment with dif-
ferent delay values for the loop. Obviously you can restore the evaluation module’s 
default program if you wish using the tools provided by Texas Instruments.

16.5 EXERCISES

 1. Write an SVC handler so that when an SVC instruction is executed, the 
handler prints out the contents of register r8. The program should incorpo-
rate assembly routines similar to the ones already built. For example, you 
will need to convert the binary value in register r8 to ASCII first, then use a 
UART to display the information in the Keil tools. Have the routine display 
“Register r8 =” followed by the register’s value.

 2. Choose a device with general-purpose I/O pins, such as the LPC2103, and 
write an assembly routine that sequentially walks a 1 back and forth across 
the I/O pins. In other words, at any given time, only a single pin is set to 1—
all others are 0. Set up the Keil tools to display the pins (you might want to 
compile and run the Blinky example that comes with the tools to see what 
the interface looks like).

 3. Rewrite the two examples described in Section 16.2.5 and Section 16.3.5 
using full descending stacks.
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 4. What is the address range for on-chip SRAM for the LPC2106 
microcontroller?

 5. Write an assembly program that takes a character entered from a keyboard 
and echoes it to a display. To do this, you will need to use two UARTs, one 
for entering data and one for displaying it. The routine that accepts charac-
ters should not generate an interrupt when data is available, but merely wait 
for the character to appear in its buffer. In other words, the UART routine 
should spin in a loop until a key is pressed, after which it branches back to 
the main routine. Note that the UART window must have the focus in order 
to accept data from a keyboard (this is a Windows requirement), so be sure 
to click on the UART window first when testing your code.

 6. Using the D/A converter example as a guide, write an assembly routine that 
will generate a waveform defined by

 f(x) = asin(0.5x) + bsin(x) + c

  where a, b, and c are constants that allow a full period to be displayed. The 
output waveform should appear on AOUT so that you can view it on the logic 
analyzer in the Keil tools.

 7. What is the address range for the following devices on the LPC2132 
microcontroller?

 a. General-purpose input/output ports
 b. Universal asynchronous receiver transmitter 0
 c. Analog-to-digital converter
 d. Digital-to-analog converter

 8. What is the address range for the following devices on the STR910FM32 
microcontroller?

 a. General-purpose input/output ports
 b. Real time clock
 c. Universal asynchronous receiver transmitter
 d. Analog-to-digital converter

 9. The UART example given in this chapter uses registers r5 and r6 to config-
ure the UART and, therefore, must write them to the stack before corrupting 
them. Rewrite the UART example so that no registers are stacked and the 
routine is still AAPCS compliant.

 10. Modify the routine in Section 16.4.5 so that the LEDs flash alternately 
between red and blue for about 1 second each.
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ARM, Thumb and 
Thumb-2 Instructions

17.1 INTRODUCTION

Throughout the book, we’ve been using two different instruction sets, ARM and 
Thumb-2, only mentioning 16-bit Thumb here and there. Recall that the Cortex-M4 
executes only Thumb-2 instructions, while the ARM7TDMI executes ARM and 
16-bit Thumb instructions. Keeping in mind that a processor’s microarchitecture 
and a processor’s instruction set are two different things, Table 17.1 shows how the 
ARM processor architectures have evolved over the years, along with the instruc-
tion sets. They often get developed at the same time, but it is possible for a given 
microarchitecture to be modified only slightly to support additional instructions, 
adding more control logic and a bit more datapath, adding registers, etc. Consider the 
ARM9TDMI which supports the version 4T instruction set and the ARM9E, loosely 
the same microarchitecture, which supports version 5TE instructions. So when we 
discuss a processor like the Cortex-A15, we think of pipeline depth, memory man-
agement units, cache sizes, and the like, but at the end of the day we’re really inter-
ested in what instructions the machine supports. Historically for most ARM cores, 
two instruction sets were supported at the same time—ARM and Thumb—where 
the processor could switch between them as needed. In 2003, ARM (the company) 
introduced something called Thumb-2, and well, the water was muddied somewhat, 
so it’s worth a look back to see why there are now effectively three different instruc-
tion sets for ARM processors and in particular, which processors support any given 
instruction set.

17.2 ARM AND 16-BIT THUMB INSTRUCTIONS

We’ve already seen what ARM instructions look like: they’re 32-bits long; they con-
tain fields for specifying the operation, the source, and destination operands; they 
specify whether its execution is predicated upon a condition; etc. This format has 
also been around since the first ARM1 processor. Interestingly, most ARM proces-
sors support them, but not all. Again referring to Table 17.1, you can see that some 
processors, e.g., the Cortex-M4 and Cortex-M0, do not support 32-bit ARM instruc-
tions, but we’ll come back to this in a moment. In the early 1980s, many processors 
had either 8- or 16-bit instructions, so the question was eventually raised: can you 
compress a 32-bit instruction, keeping its code density improvements and features, to 
take advantage of inexpensive 16-bit memory and improve code density even further 
if you have 32-bit memory?

17
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Reducing the size of existing instructions can be done by examining the operands 
and bit fields that are needed, then perhaps coming up with a shorter instruction. 
Consider the 32-bit pattern for ADD, as shown in Figure 17.1. Normally the required 
arguments include a destination register Rd, a source register Rn, and a second oper-
and that can either be an immediate value or a register. A simple instruction that adds 
1 to register r2, i.e.,

ADD r2, r2, #1

could be compressed easily, especially since the destination register is the same as 
the only source register (r2) used in the instruction. The other argument in the addi-
tion is 1, a number small enough to fit within an 8-bit field. If we enforce a few 
restrictions on the new set of instructions, the same operation can be done using only 
a 16-bit opcode, as shown in Figure 17.2, using Encoding T2, which would make the 
instruction appear as

ADD r2, #1

Now the source and destination registers are the same, so they can be encoded 
in the same field, and the 8-bit immediate value is 1. The other 16-bit format would 
allow ADD instructions that look like

ADDS r2, r3, #3

RnSopcodecond

31 28 27 26 25 24 21 20 19 16 15 12 11 0

100 Rd shifter_operand

FIGURE 17.1  ADD instruction format in ARM.

TABLE 17.1
Architectures and Instruction Sets

Version Example Core ISA

v4T ARM7TDMI, ARM9TDMI ARM, Thumb

v5TE ARM946E-S, ARM966E-S ARM, Thumb

v5TEJ ARM926EJ-S, ARM1026EJ-S ARM, Thumb

v6 ARM1136 J(F)-S ARM, Thumb

v6T2 ARM1156T2(F)-S ARM, Thumb-2

v6-M Cortex-M0, Cortex-M1 Thumb-2 subset

v7-A Cortex-A5, Cortex-A8,Cortex-A12, Cortex-A15 ARM, Thumb-2

v7-R Cortex-R4, Cortex-R5, Cortex-R7 ARM, Thumb-2

v7-M Cortex-M3 Thumb-2

v7E-M Cortex-M4 Thumb-2
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and

ADD r2, r4, #2

but again, with restrictions. Note the operand fields have changed from 4 bits to 3 
bits, meaning the registers allowed range from r0 to r7, known as the low registers. 
To access the other registers, known as the high registers, separate instructions exist, 
including one that adds an immediate value to the Program Counter and two that 
add a value to the stack pointer. Note that the internal data paths and the registers 
in the processor would still be 32 bits wide—we’re only talking about making the 
instruction smaller.

This first deviation from the more traditional 32-bit ARM instructions is called 
Thumb, also referred to as 16-bit Thumb, and with it comes its own state (not to be 
confused with mode) in the processor. The instructions are a subset of the ARM 
instruction set, meaning that not all of the instructions in ARM are available in 
Thumb. For example, you cannot access the PSR registers in Thumb state on an 
ARM7TDMI. There are other restrictions on the use of constants, branches, and 
registers, but fortunately all of the subtleties in Thumb are left to the compiler, since 
you should rarely, if ever, be coding 16-bit Thumb instructions by hand. It is simply 
an option to give to the compiler. C or C++ code compiled for Thumb is typically 

All versions of the Thumb instruction set.

All versions of the Thumb instruction set.

ARMv7-M

ARMv7-M

ADD{S}<c>.W <Rd>, <Rn>, #<const>

ADDW<c> <Rd>, <Rn>, #<imm12>

Outside IT block.
Inside IT block.

Outside IT block.
Inside IT block.

ADDS <Rd>, <Rn>, #<imm3>
ADD<c> <Rd>, <Rn>, #<imm3>

ADDS <Rdn>, #<imm8> 
ADD<c> <Rdn>, #<imm8>

Encoding T1

Encoding T2

Encoding T3

Encoding T4

15
0 0 0 1 1 1 0 imm3 Rn Rd

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 Rdn imm8
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15
RdRnS00010i01111 imm30 imm8

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15
RdRn000001i01111 imm30 imm8

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FIGURE 17.2 Thumb formats for ADD (immediate).
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about 65–70% of the size of code compiled for ARM instructions. Fewer instruc-
tions necessitates the use of more individual Thumb instructions to do the same 
thing ARM instructions can do. In practice, code is a mix of ARM and Thumb 
instructions, allowing programmers to base their use of Thumb instructions on the 
application at hand, as we’ll see in Section 17.5. In some cases, it may be necessary 
to optimize a specific algorithm in Thumb, such as a signal processing algorithm. 
Further optimizations would require knowing details of Thumb pretty well, and 
these can be found in the ARM Architectural Reference Manual (ARM 2007c) with 
the complete list of instructions and their formats.

To demonstrate another advantage of having such an instruction set, an industry 
benchmark such as Dhrystone can be run on three different types of memory sys-
tems: 32-bit memory, 16-bit memory, and a mix of the two. Performance numbers 
are shown in Figure 17.3, where Dhrystone normally measures the number of itera-
tions of the main code loop per second. For the case where the memory system is 
made of 32-bit memory only, ARM code clearly performs better than Thumb code, 
since Thumb must compensate for the loss of some operations by using more than a 
single instruction. When the system is changed to use 16-bit memory, Thumb code 
now has the advantage over ARM—it takes two cycles to fetch a complete ARM 
instruction from 16-bit accesses. Obviously, the performance has decreased for both 
ARM and Thumb over the original 32-bit configuration. It turns out that if a small 
amount of 32-bit memory is used for stacks, along with 16-bit memory, the level of 
performance is nearly comparable to Thumb code running out of 32-bit memory 
alone. Stack accesses are data accesses, and regaining the ability to fetch 32 bits 
at a time (even with a 16-bit instruction) shores up the performance numbers. As 
we’ll see shortly, both the ARM7TDMI and the Cortex-M4 execute 16-bit Thumb 
instructions.

3500

3000

2500

2000

Dhrystone 2.1/sec
@20 MHz

on ARM7TDMI

1500ARM

Thumb
1000

500

0
32-bit 16-bit 16-bit with

32-bit stack

FIGURE 17.3 Dhrystone performance of ARM and 16-bit Thumb code.
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17.2.1 diffeRenCes BeTWeen ARM And 16-BiT ThuMB

In the creation of a new 16-bit instruction set, we’ve considered how an ARM 
instruction can be shortened by restricting the operands, but we still have to take into 
account other bits in the instruction, such as the S bit that tells it to set the condition 
codes in the status register, and the conditional field in bits 28 through 31 that allows 
the instruction to be conditionally executed. To account for the S bit, we could simply 
say that all ALU instructions set the status flags upon completion. This might be too 
limiting, so we could further say that depending on the registers used, some instruc-
tions will set the flags and some will not. For most data processing instructions, the 
flags are set by default. However, instructions that use the high registers (except for 
CMP) leave the flags unaffected, for example:

 ADD r12, r4 ; r12 = r12 + r4, flags unaffected
 ADD r10, r11 ; r10 = r10 + r11, flags unaffected
 ADD r0, r5  ; r0 = r0 + r5, flags affected
 ADD r2, r3, r4 ; r2 = r3 + r4, flags affected

To account for the conditional field bits, it’s necessary to remove conditional execu-
tion from 16-bit Thumb code entirely (but don’t worry, it comes back with Thumb-2). 
Branches, however, can still be executed conditionally, since leaving only uncondi-
tional branches in the instruction set would be very limiting.

One further restriction that hasn’t been mentioned is the lack of inline barrel 
shifter options available on ARM instructions. There simply isn’t enough room in 
sixteen bits to include an optional shift, so individual instructions have been included 
in the Thumb instruction set for shifts and rotates (e.g., ASR for Arithmetic Shift 
Right, ROR for Rotate Right, LSL for Logical Shift Left, and LSR for Logical Shift 
Right). It wouldn’t be realistic to expect a compressed instruction set to include every 
ARM instruction, so there are noticeable differences between the two sets (some 
of which we have discussed already). For starters, data processing instructions are 
unconditionally executed, so loops are not as elegant in Thumb, and the condition 
code flags will always be updated if you use low registers (r0 through r7). In fact, 
most of the instructions only act on the low registers, with the notable exceptions 
being CMP, MOV, and some variants of ADD and SUB.

When it comes to loading and storing data, 16-bit Thumb instructions impose 
several restrictions. For example, the only addressing modes allowed are

 LDR|STR <Rd>, [<Rn>, <offset>]

with the option of two pre-indexed addressing modes: base register + offset reg-
ister and base register + 5-bit offset (optionally scaled). Even the load and store 
multiple instructions are different. If you are working with low registers only, then 
the format

 LDMIA|STMIA <Rb>, <low reg list>
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can be used. However, for pushing data onto the stack,

 PUSH <low reg list, {lr}>

is used instead. Similarly, for popping data off the stack and loading the Program 
Counter in the process, you can use

 POP <low reg list, {pc}>

as we did in Chapter 13.

17.2.2 ThuMB iMpLeMenTATion

For the programmer, Thumb shouldn’t consist of much more than knowing it’s avail-
able and knowing how to compile for it. The compiler does all of the work by being 
told exactly which instruction set to use for any given block of code. However, it’s 
still worth understanding some of the modifications made within the ARM7TDMI 
architecture to support Thumb. While it’s tempting to think that disparate hardware 
was built specifically to support Thumb instructions, the only affected part of the 
ARM7TDMI pipeline is the decode stage, as shown in Figure 17.4. After the pro-
cessor has fetched a Thumb instruction from memory, it goes through a multiplexor 
first, routing instructions through a programmable logic array (PLA) table, which 
expands the 16-bit binary pattern into an equivalent ARM instruction before being 
sent through the decode logic that follows. Afterwards, the encoding is treated exactly 
as any other instruction would be, necessitating only one decoder in this stage of the 
pipeline (the decode stage drives the datapath by generating control logic for various 
blocks within the processor). No penalty results from this extra step of decompression 

Phase 1 Phase 2Decode

Thumb
instruction

decompressor ARM
instruction

decode

D[31:0]

ADDR[1]

T Bit

32-bit data

16

16
16

0

1

0

1

Fetch Execute

FIGURE 17.4 The ARM7TDMI processor pipeline.



371ARM, Thumb and Thumb-2 Instructions

since the first half of the decode stage allows enough time for an instruction to go 
through the PLA logic (remember, the ARM7TDMI processors generally run at 
speeds less than 50 MHz). Longer pipelines have less time in each processor stage, 
so for processors built after the ARM7TDMI, all Thumb and ARM instructions are 
decoded in parallel—the decision to use only one set of the control signals gener-
ated by both decoders is based on the state of the machine. As we’ll see shortly, the 
Cortex-M processors that implement all or part of the version 7-M instruction set 
need only decode the instructions without worrying about whether they are ARM 
or Thumb instructions (although there is a certain amount of effort needed to decide 
whether the machine is looking at a 16-bit Thumb instruction or a 32-bit Thumb 
instruction). They are all Thumb instructions!

17.3 32-BIT THUMB INSTRUCTIONS

With pressure coming from industry standards (e.g., the image compression stan-
dard H.264) and applications, support for operating systems, and better handling of 
interrupts, it was time to reexamine what kinds of processors were possible using 
ARM, 16-bit Thumb, supersets, and even subsets of these instructions. In 2003, 
ARM decided to cross the Rubicon and build machines that would support instruc-
tions of varying width—some instructions would be 16 bits long and some would 
be 32 bits long. Part of the reasoning behind doing so was that processors being 
used in microcontroller applications required features that could not be supported 
with just a 16-bit instruction set, or even the existing ARM and Thumb instruction 
sets together. The 16-bit instructions had too many limitations to be used alone, and 
switching between the two instruction sets added extra cycles that could be bet-
ter spent handling exceptions and interrupts. However, a compressed instruction set 
would be beneficial in a microcontroller that only had a limited amount of tightly 
coupled memory or cache.

Even though the whole idea of instructions with a fixed length is sacrosanct in 
RISC architectures, with the introduction of 32-bit Thumb instructions, some of 
the limitations of 16-bit instructions disappear. Consider the two Thumb-2 ADD 
immediate instructions in Figure 17.5 (shown earlier as Encoding T3 and T4 in 

ARMv7-M
ADD{S}<c>.W <Rd>, <Rn>, #<const>
Encoding T3

ARMv7-M
ADDW<c> <Rd>, <Rn>, #<imm12>
Encoding T4

15
RdRnS00010i01111 imm30 imm8

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15
RdRn000001i01111 imm30 imm8

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FIGURE 17.5 32-bit Thumb formats for ADD (immediate).
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Figure 17.2). Now that the instructions contain 32 bits again, longer constants can be 
used, condition codes can be optionally set or not set, and the register fields’ width 
allows nearly all the registers to be used with a single instruction (there are minor 
exceptions). Because there was little room left in the Thumb instruction space, a new 
encoding would be required to indicate to a processor that a fetched 16-bit instruc-
tion was merely the first half of a new 32-bit instruction. It turns out that if you are 
in Thumb state and the upper three bits of an instruction are all ones and the fol-
lowing two bits are non-zero, the processor can figure out that there are two halves 
to an encoding. So room does exist in the instruction space for new operations. In 
other words, the processor can tell by the encoding of the upper five bits whether the 
instruction is 16 bits long or 32 bits long—if any of the following patterns are seen, 
it’s a 32-bit Thumb instruction:

• 0b11101
• 0b11110
• 0b11111

The newer 32-bit instructions were then combined with older 16-bit Thumb 
instructions to create something called Thumb-2. This more powerful instruction 
set eliminated the need to support two instruction sets. Microcontrollers specifi-
cally, which often require fast interrupt handling times, did not need to burn cycles 
switching states from Thumb back to ARM to process an exception. The processor 
can execute exception handlers and normal code with the same instruction set. 
If you further examine the ARM v7-M Architectural Reference Manual, you’ll 
find that extensions have since been added for DSP operations and floating-point 
support.

Referring to Figure 17.5, notice that it is now possible to choose whether to set 
condition codes with a Thumb instruction, and along with this flexibility comes 
a bit of potential confusion. With the adoption of a Unified Assembly Language 
(UAL) format, Thumb code and ARM code now look the same, leaving the choice 
of instruction to the assembler unless you tell it otherwise. For example, if you were 
to simply say

 EOR r0, r0, r1

the operation could be performed using either a 16-bit Thumb instruction, an ARM 
instruction or a 32-bit Thumb instruction. If you happen to be working with a 
Cortex-M4, for example, then the choice falls to either one of the types of Thumb 
instructions, but there are two very subtle differences to mind. The first is that an 
ARM instruction of this type would not set the condition codes, since there is no 
S appendix in the mnemonic. A 16-bit Thumb instruction would set the condition 
codes. So using 16-bit Thumb instructions, the following two instructions would be 
equivalent:

 EOR r0, r1  ; 16-bit Thumb
 EORS r0, r0, r1 ; 16-bit Thumb using the UAL syntax
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The second difference to mind is the directives themselves. To identify the more 
traditional 16-bit Thumb code using ARM tools, then you would use the directive 
CODE16; if you want to indicate that you are using UAL syntax, then you would use 
the directive THUMB in your assembly.

EXAMPLE 17.1

Consider the following instruction and directive:

 THUMB
 EOR r0, r0, r1

You might be tempted think that an instruction like this (which sets the flags 
when using these low registers in traditional Thumb) could be done as a 16-bit 
Thumb instruction. However, since we’ve indicated to the assembler that we’re 
using UAL syntax by using the directive THUMB, the instruction has no S on 
the mnemonic and we are therefore telling the assembler not to produce an 
instruction which sets the condition codes. There is no 16-bit instruction in the 
Thumb instruction set to do this—the assembler is then forced to use a 32-bit 
Thumb-2 instruction (0xEA800001). This might not be what you want as you 
attempt to get better code compression. A good general rule is therefore: if you 
use UAL syntax, then always use an S on those operations that require updating 
the condition codes.

17.4 SWITCHING BETWEEN ARM AND THUMB STATES

The two processors that we’ve examined throughout the text, the ARM7TDMI and 
the Cortex-M4, are perfect examples of the variety that now exists in the ARM prod-
uct lines. Some cores can execute ARM, Thumb, and Thumb-2 instructions. Some 
cores only execute Thumb-2. If you do happen to be using a processor that supports 
both ARM and Thumb instructions, the bulk of C/C++ code in embedded applications 
might be compiled for Thumb instructions, especially with its performance from nar-
row memory and its code density. However, there are still times when it will be neces-
sary to switch between ARM and Thumb state. For example, on an ARM926EJ-S, 
certain operations cannot be done in Thumb state, so if access to the CPSR is needed 
to enable or disable interrupts, then the core must switch to ARM state. Speed-critical 
parts of an application may run in ARM state, since it gets better performance in 
32-bit memory—a JPEG compression routine, for example, which is common in digi-
tal cameras. Processors such as the Cortex-M3 and Cortex-M4 always run in Thumb 
state, and it was mentioned in Chapter 8 that care must be taken to stay in Thumb state 
when creating your exception vector table and when doing any branching. Processors 
such the Cortex-R4, the Cortex-A15, and our venerable ARM7TDMI have more than 
a single state, so let’s examine how to switch between them.

If you recall from Chapter 2, there is a bit in the CPSR, the T bit, that indicates 
whether the processor is in ARM state or Thumb state. This is only a status bit 
(meaning it’s read-only), and switching between the two states is accomplished by 
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way of a special type of branch instruction—BX, or branch and exchange. The for-
mats for this instruction are

Thumb state:  BX Rn
ARM state:    BX{condition} Rn

where Rn can be any register.
The mechanism used to switch between the states depends on an address held in 

Rn. Normally, the least significant bit of an address is ignored, since a branch to an 
unaligned address in both ARM and Thumb states is not allowed. By using bit 0 of 
Rn and the BX instruction, the state can be changed when the processor jumps to the 
new address. If bit 0 is a zero, the state is set to ARM; if bit 0 is a one, the state is set 
to Thumb, as shown in Figure 17.6.

When changing from Thumb to ARM state on the ARM7TDMI, it’s important 
to ensure that bit 1 of the address is also a zero—remember that ARM instructions 
are always fetched from word-aligned addresses, i.e., addresses that end in 0, 4, 8, or 
0xC, so the two least significant bits of the address must be clear. One other impor-
tant point worth considering is the register used. While the use of the PC as Rn in the 
BX instruction is valid, it’s not recommended, since unexpected results could occur. 
Depending on how the code is arranged, you can end up jumping to a misaligned 
address, and from there the system only gets muddled.

EXAMPLE 17.2

Using the Keil tools, the following ARM7TDMI code shows an example of a state 
change from ARM to Thumb.

  GLOBAL Reset_Handler

  AREA Reset, CODE, READONLY
  ENTRY

Reset_Handler

  ARM
start ADR r0, into_Thumb + 1
  BX r0

  CODE16

Destination address
131

Rn

0

1

BX

0

1-Thumb state
0-ARM state
ARM/Thumb selection

0

FIGURE 17.6 Changing to Thumb state via BX instruction.
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into_Thumb
  MOV r0, #10
  MOV r1, #20
  ADD r1, r0
stop  B stop
 END

Notice that the BX instruction is used to jump to an address called into_Thumb, 
where the least significant bit of the address has been set using the ADR pseudo-
instruction. The short section of Thumb code begins with the directive CODE16, 
indicating the following instructions are Thumb instructions (the newer assembly 
format uses the directive THUMB). The Thumb code that follows just adds the 
numbers 10 and 20 together. When you run this example, examine the CPSR and 
notice that the T bit is set when the branch is made into Thumb code.

Cores that have only one instruction set, such as the Cortex-M3 or the Cortex-M4, 
do not have to worry about switching states. However, care must be taken to prevent 
switching states. For example, if you were to branch to an address contained in a 
register on the Cortex-M4, using the BX instruction say, and the least significant 
bit of that address was a zero, then a Usage fault gets generated since the processor 
cannot change states. This issue goes away if you are always coding in C or C++, or 
if your assembly code uses labels and pseudo-instructions to generate branch target 
addresses, since the tools will compute the correct values for you, even making them 
odd when necessary. If you generate addresses some other way or enter them by hand 
in your assembly code, then watch the least significant bit!

17.5 HOW TO COMPILE FOR THUMB

A question that ultimately arises from introducing an instruction such as BX is how 
certain parts of ARM code might call a Thumb subroutine or vice versa. A section of 
code can be compiled as either ARM or Thumb code; however, calling and returning 
from a subroutine might require the ability to switch states. For example, if you were 
to write an ARM subroutine that called a Thumb subroutine, and these two sections 
of code were compiled separately without taking some necessary steps, then the 
ARM subroutine may not be able to switch to Thumb state before jumping, since 
a BL instruction does not change state. If you’re writing all of your own assembly, 
then obviously you need to mind the state of the machine when putting blocks of 
code together. However, embedded systems depend heavily on high-level coding, so 
it’s far more likely that you’ll be compiling C or C++ to incorporate Thumb code in 
your application.

Fortunately, compiler options can aid in the use of both ARM and Thumb subrou-
tines in the same program. The process is known as interworking, and it can be done 
through a short bit of code known as a veneer. To illustrate how this works, Figure 
17.7 shows a subroutine call from func1 to func2, where the subroutine func1 is 
to be compiled for ARM and func2 is to be compiled for Thumb (remember that a 
function might be called from either state). The BL instruction will not change the 
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state before the jump is made, and the instructions that are normally used to return 
from a subroutine, i.e.,

MOV PC, LR

will also not change the state. Therefore, veneers are created to aid in the task of 
switching between ARM and Thumb. These short blocks of code (usually 8–12 
bytes) become the immediate target of the original branch instruction, and include a 
BX instruction to change the state, e.g.,

ADR r12, {PC} + offset
BX r12

If the two blocks func1 and func2 are compiled with the --apcs/inter-
work option (for the ARM tools), an interwork attribute is set on the code generated, 
which will in turn be picked up by the linker. The linker will then calculate the offset 
and insert the veneer in the final code automatically. The called function, func2, 
also returns to the main code via a

BX LR

instruction instead of using the Thumb POP instruction, which would load the call-
er’s return address from the stack and move it into the PC. In Thumb, the instruction

BX LR

will always return to the correct state (irrespective of whether a Thumb or ARM 
function called the subroutine). The BL instruction in Thumb sets the least 
 significant bit of the return address, which would cause problems if the machine 
was originally in ARM state. Should you decide to mix assembly in C/C++ code, 
using the/interwork option will not change your assembly code, but it will alert 
the linker that your code is compatible for interworking. You would, however, be 
expected to use the correct return instruction (BX LR) in your own code. Consult 
the documentation for the tool suite you are using on the rules and usage of ARM/
Thumb interworking.

func1 func2
Compiled with

--apcs /interwork

Linker
generated

veneer

:
BL
:

:
:

BX LR

FIGURE 17.7 Linker generated veneers for ARM/Thumb interworking.
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If you are using a processor that does not switch between ARM and Thumb 
instructions, then by steering the compiler toward the appropriate architecture, the 
correct assembly will be generated automatically. For example, if you happen to be 
using the Keil tools to compile code for a Cortex-M4-based microcontroller, you will 
find the assembler option

--cpu Cortex-M4.fp

in the command line to tell the assembler that the v7-M instruction set is to be used 
along with floating-point instructions. No veneers are needed, since the machine 
never has to change states.

17.6 EXERCISES

 1. On the ARM7TDMI, which bit in the CPSR indicates whether you are in 
ARM state or Thumb state?

 2. Give the mnemonic(s) for a 16-bit Thumb instruction(s) that is equivalent to 
the ARM instruction

 SUB r0, r3, r2, LSL #2

 3. Why might you want to switch to Thumb state in an exception handler?

 4. Can you talk to a floating-point coprocessor in Thumb state?

 5. Using Figure 17.2 as a guide, convert Program 3 from Chapter 3 into 16-bit 
Thumb assembly.

 6. Describe why veneers might be needed in a program.

 7. Convert Example 13.4 into 16-bit Thumb code. Do not convert the entire 
subroutine—just the four lines of code to perform saturation arithmetic.

 8. In which state does the ARM7TDMI processor come out of reset?

 9. How do you switch to Thumb state if your processor supports both ARM 
and Thumb instructions?

 10. How do you switch to ARM state on the Cortex-M4?
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Mixing C and Assembly

18.1 INTRODUCTION

In this last chapter, we’re going to examine a few instances where it may make sense 
to combine your high-level C or C++ code with assembly. Mixing C and assembly 
is quite common, especially in deeply embedded applications where programmers 
work nearly at the hardware level. Doing such a thing is not always trivial, and the 
programmer is forced to be very mindful of variables, pointers, and function argu-
ments. However, a good programmer will need certain tricks in his or her toolbox, 
and a point was made in the Preface that optimizing code usually requires the ability 
to recognize what the compiler is doing, and more importantly, the ability to modify 
code so that a compiler or an assembler generates the best software for the task at 
hand. There are two ways to add assembly to your high-level source code: the inline 
assembler and the embedded assembler.

18.2 INLINE ASSEMBLER

Normally, the compiler will try to optimize code as much as possible for you 
(unless you tell it not to). However, for some applications, algorithms must be opti-
mized by hand, especially in instances where data is manipulated in ways that a 
compiler would normally not understand. Signal and speech processing algorithms 
tend to fall into this category. If you’re writing an algorithm at a high level, it is 
possible to give the compiler some assistance by indicating sections of code that 
should be regarded as important. One way is through a process called inlining, 
where the __inline keyword is placed in the C or C++ code to notate a function 
that, when possible, should be placed in the assembly directly, rather than being 
called as a subroutine. This potentially avoids some of the overhead associated 
with branching and returning. The compiler will inline as much as possible, given 
the right optimization settings, but this is an option the user can specify as well. 
Furthermore, you can even write some functions in your C or C++ code in assem-
bly—this might be placed in a function where you have called for inlining. Using 
the inline assembler is the easiest way to access instructions that are not supported 
by the C compiler, for example, saturated math operations, coprocessor instruc-
tions, or accessing the PSRs.

EXAMPLE 18.1

To tie a few ideas together, recall from Chapter 7 that Q notation allows us to work 
with fractional values easily by introducing an assumed binary point somewhere in 
the number. If we assume a number is Q31, for example, then a 32-bit value would 

18
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have a sign bit and 31 bits of fractional data behind the binary point. In Chapters 
7 and 13, we discussed saturation math, where the result of a signed addition 
or subtraction could be driven to either the largest positive or negative number, 
depending on the operation. In the version 5TE instruction set, new instructions 
were introduced to specifically work with fractional values and saturation math. 
A new status bit, the Q flag, was added to the CPSR/APSR to indicate that a value 
had saturated during an operation. The flag is sticky, meaning that it must be spe-
cifically written to a zero to clear it once it has been set.

Suppose that we have four Q15 numbers stored in two registers (each register 
holds two Q15 values). Recall a Q15 value is represented in 16 bits, the leading 
bit serving as the sign bit, and the remaining 15 bits are fraction bits. So the format 
of Q15 data is:

 s.f14f13f12f11f10f9f8f7f6f5f4f3f2f1f0

Further suppose that we need a multiply-accumulate operation to multiply two 
Q15 values and add the product to a Q31 operand. We can inline an assembly 
function in our C code to do this. Inside this function, the instruction SMULBB 
takes two Q15 numbers from the lower half of each source register (the B and B in 
the mnemonic identify the location of the two operands in the lower half of each 
source register) and multiplies them together as signed values. The value is now 
in Q30 notation (represented as two sign bits, one superfluous, and 30 fraction 
bits), and we must shift the result left by one bit to reformat the result in a Q31 
representation. The next instruction, QDADD, performs this function by doubling 
the operand, checking to see if it requires saturation, then adding the accumulated 
value to the result, again checking to see if it requires saturation. This whole opera-
tion is illustrated in Figure 18.1. If either the shift or the add saturates the result, 
the Q flag, which is bit 27 in the CPSR of a version 5TE processor and the APSR 
of a v7-M processor, is set. The code on the following page shows this assembly 
written in an inline block within the function. Notice that register numbers are not 
used here—C variables are used inside of the assembly code.

Once we have used saturation math somewhere in our C code, we should 
check the Q flag (see Exercise 5), take some sort of action if we saturated the 

31 16

Q15

15 0 31 16

Q15

Q31 value

Q31 value

x2

x

15 0

FIGURE 18.1 Multiply-accumulate with two Q15 numbers.
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result, and then clear the Q flag. Clearing the flag requires some instructions that 
the compiler cannot generate, so again, we can write this small function using the 
inline assembler. In this example, our test code routine takes two numbers, multi-
plies them together, then adds a number that will produce a saturated result. You 
should verify running this code sets the Q flag in your simulation. The function 
Clear_Q_flag is called afterward to clear the Q flag.

#define Q_Flag 0x08000000 // Bit 27 of the CPSR

__inline int satmac(int a, int x, int y)
{
 int i;
 __asm
 {
  SMULBB i, x, y
  QDADD a, a, i
 }
 return a;
}

__inline void Clear_Q_flag (void)
{
 int temp;

 __asm
 {
  MRS temp, CPSR
  BIC temp, temp, #Q_Flag
  MSR CPSR_f, temp
 }
}

int main(void)
{
//
// Multiply the two Q15 numbers together, then add a Q31
// number to it, which will saturate the result since it
// effectively overflows the precision allowed. This will
// set the Q flag in the CPSR.

//
 unsigned int b = 0x7000; // Q15 number
 unsigned int c = 0x7ABC; // Q15 number
 unsigned int a = 0x60000000; // Q31 number
 unsigned int r;

 r = satmac(a, b, c);

 // do something with the value here ...

 Clear_Q_flag();

 return 0;

}
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Using inline assembly code has some advantages, such as allowing you to access 
C variables directly in your code. You can also use C and C++ expressions as oper-
ands in the assembler statements. However, you should be aware of some limitations. 
First, the compiler will automatically optimize the assembly, so the final instructions 
may not be exactly what you wrote. Second, you cannot use all of the ARM instruc-
tion set in your assembly, e.g., BX and SVC instructions are not supported. In fact, 
Thumb instructions are not supported at all. Third, if you were to change the mode 
of the machine, the compiler would not be aware of this and consequently, your code 
may not behave as you expect. Lastly, be aware that you cannot change the Program 
Counter, you should not change the stack in any way, and you cannot use pseudo-
instructions such as ADR in your inline assembly. In general, the inline assembler 
should not be used to produce better or more efficient code than the compiler. It 
should be used to accomplish operations that a compiler cannot, such as accessing 
coprocessors, performing saturated math operations, changing interrupt status, etc.

While the code in the example has been written for the Keil tools, gnu compilers 
also support inline assembly. Note, though, that the syntax is significantly different. 
You should consult the compiler guide for whichever tool you happen to be using. 
More information on ARM’s tools and how to use the inline assembler can be found 
in the RealView Compilation Tools Compiler User Guide (ARM 2010c).

18.2.1 inLine AsseMBLy synTAx

The inline assembler is invoked with the __ asm keyword, which is followed by 
a list of assembly instructions inside braces. You can specify inline assembly code 
using either a single line or multiple lines. For example, single lines would be writ-
ten as

__asm(“instruction[;instruction]”);// Must be a single string
__asm{instruction[;instruction]}

On multiple lines, your code would be written as

__asm
{
 ...
 instruction
 ...
}

You can use C or C++ comments anywhere in an inline assembly language block, but 
not the single line structure.

When you use the __asm keyword, be sure to obey the following rules:

• If you include multiple instructions on the same line, you must separate 
them with a semicolon. If you use double quotes, you must enclose all the 
instructions within a single set of double quotes.
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• If an instruction requires more than one line, you must specify the line 
continuation with the backslash character (\).

• For the multiple line format, you can use C or C++ comments anywhere in 
the inline assembly language block. However, you cannot embed comments 
in a line that contains multiple instructions.

• The comma is used as a separator in assembly language, so C expressions 
with the comma operator must be enclosed in parentheses to distinguish 
them, for example,

 __asm
 {
  ADD x, y, (f(), z)
 }

• Register names in the inline assembler are treated as C or C++ variables. 
They do not necessarily relate to the physical register of the same name. If 
you do not declare the register as a C or C++ variable, then the compiler 
generates a warning.

• Do not save and restore registers in the line assembler. The compiler does 
this for you. Also, the inline assembler does not provide direct access to the 
physical registers.

• If registers other than CPSR, APSR, and SPSR are read without being writ-
ten to, an error message is issue, for example,

 int f(int x)
 {
  __asm
  {
  STMFD sp!, {r0} // save r0-illegal:read
   // before write
  ADD r0, x, 1
  EOR x, r0, x
  LDMFD sp!, {r0} // restore r0 - not needed.
  }
  return x;
 }

 The function must be written as

 int f(int x)
 {
 int r0;
 __asm
 {
  ADD r0, x, 1
  EOR x, r0, x
 }
 return x;
 }
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18.2.2 ResTRiCTions on inLine AsseMBLy opeRATions

Earlier we mentioned that the inline assembler has some restrictions, but in gen-
eral, you can still do nearly everything you need to optimize your code. Restrictions 
mostly apply to the use of registers and the types of instructions allowed. For exam-
ple, registers r0 through r3, sp, lr, and the NZCV flags in the CPSR/APSR must 
be used with caution. Other C or C++ expressions might use these as temporary 
registers, and the flags could be corrupted by the compiler when evaluating those 
expressions. Additionally, the following instructions are not supported in the inline 
assembler:

• BKPT, BX, BXJ, BLX, and SVC instructions
• LDR Rn, = expression pseudo-instruction
• LDRT, LDRBT, STRT, and STRBT instructions
• MUL, MLA, UMULL, UMLAL, SMULL, and SMLAL flag setting 

instructions
• MOV or MVN flag setting instructions where the second operand is a 

constant
• User mode LDM instructions
• ADR and ADRL pseudo-instructions

All of the restrictions (and even some workarounds) for the inline assembler are 
detailed in the RealView Compilation Tools User Guide (ARM 2010c) and on the 
Keil Tools website (www. keil. com). 

18.3 EMBEDDED ASSEMBLER

If you have a larger routine that requires optimizing by hand, then you can use the 
embedded assembler rather than the inline assembler. The embedded assembler 
allows you to declare assembly functions in C and C++ source modules with full 
function prototypes, including arguments and a return value. Unlike functions writ-
ten with the inline assembler, these functions cannot be inlined and will always have 
the overhead associated with function calls. However, you do have access to the 
full instruction set, so it is possible to insert Thumb assembly functions in an ARM 
module, for example.

EXAMPLE 18.2

To illustrate how the embedded assembler works, we can write a short routine 
that copies a string from one memory location and stores it to another. Obviously 
a compiler would do a pretty good job compiling such a function from C, but it’s 
simple enough to write one just to illustrate the point.

#include <stdio.h > 

extern void init_serial (void);

__asm void my_strcopy(const char *src, char *dst)
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{
loop
 LDRB r2, [r0], #1
 STRB r2, [r1], #1
 CMP r2, #0
 BNE loop
 BX lr
}

int main(void)
{
 const char *a = “Just saying hello!”;
 char b[24];

 init_serial();

 my_strcopy(a,b);

 printf(“Original string: ‘%s’\n”, a);
 printf(“Copied string: ‘%s’\n”, b);
 return 0;
}

The main routine is written under the assumption that standard I/O routines work, 
i.e., a printf function call actually prints to an output device. This is left as an 
exercise to prove it works. The routine my_strcopy is called with the main routine 
passing the two pointers in memory to our strings. Notice that there is no need 
to export the function name, but the routine does have to follow AAPCS rules. 
Arguments will be passed in registers, and values can be pushed and popped to 
the stack if necessary. The routine has a return sequence (in our case, a simple BX 
instruction to move the value in the Link Register back to the Program Counter). Be 
careful when writing embedded assembly routines, as the compiler will not check 
that your code is AAPCS compliant!

The embedded assembler offers another advantage over the inline assembler 
in that you can access the C preprocessor directly using the__cpp keyword. This 
allows access to constant expressions, including the addresses of data or functions 
with external linkage. Example assembly instructions might look like the following:

LDR r0, = __cpp(&some_variable)
LDR r1, = __cpp(some_function)
BL __cpp(some_function)
MOV r0, #__cpp(some_constant_expr)

When using the__cpp keyword, however, be aware of the following differences 
between expressions in embedded assembly and in C or C++:

• Assembler expressions are always unsigned. The same expression might 
have different values between assembler and C or C++. For example,

 MOV r0, #(-33554432/2) // result is 0x7f000000
 MOV r0, #__cpp(-33554432/2) // result is 0xff000000
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• Assembler numbers with leading zeros are still decimal. For example,

 MOV r0, #0700 // decimal 700
 MOV r0, #__cpp(0700) // octal 0700 == decimal 448

• Assembler operator precedence differs from C and C++. For example,

 MOV r0, #(0x23:AND:0xf + 1) //((0x23 & 0xf) + 1) => 4
 MOV r0, #__cpp(0x23 & 0xf + 1) //(0x23 & (0xf + 1)) => 0

• Assembler strings are not null-terminated. For example,

 DCB “Hello world!” //12 bytes (no trailing null)
 DCB __cpp(“Hello world!”) //13 bytes (trailing null)

18.3.1 eMBedded AsseMBLy synTAx

Functions declared with __asm can have arguments and return a type. They are 
called from C and C++ in the same way as normal C and C++ functions. The syntax 
of an embedded assembly function is:

__asm return-type function-name(parameter-list){
 instruction
 instruction
 etc.
 }

The initial state of the embedded assembler (ARM or Thumb) is determined 
by the initial state of the compiler, as specified on the command line. This means 
that if the compiler starts in ARM state, the embedded assembler uses __arm. If 
the compiler starts in Thumb state, the embedded assembler uses __thumb. You 
can change the state of the embedded assembler within a function by using explicit 
ARM, THUMB, or CODE16 directives in the embedded assembler function. Such 
a directive within an __asm function does not affect the ARM or Thumb state of 
subsequent __asm functions.

Note that argument names are permitted in the parameter list, but they cannot 
be used in the body of the embedded assembly function. For example, the fol-
lowing function uses integer i in the body of the function, but this is not valid in 
assembly:

__asm int f(int i)
{
 ADD i, i, #1//error
}

Here, you would use r0 instead of i as both the source and destination to be 
AAPCS compliant.
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18.3.2 ResTRiCTions on eMBedded AsseMBLy opeRATions

No return instructions are generated by the compiler for an __asm function. If you 
want to return from an __asm function, then you must include the return instruc-
tions, in assembly code, in the body of the function. Note that this makes it possible 
to fall through to the next function, because the embedded assembler guarantees to 
emit the __asm functions in the order you have defined them. However, inlined and 
template functions behave differently.

All calls between an __asm function and a normal C or C++ function must adhere 
to the AAPCS rules, even though there are no restrictions on the assembly code that 
an __asm function can use (for example, changing state).

All of the restrictions for the embedded assembler are detailed in the RealView 
Compilation Tools Compiler User Guide (ARM 2010c) or at www. keil. com. 

18.4 CALLING BETWEEN C AND ASSEMBLY

You may find it more convenient to write functions in either C or assembly and then 
mix them later. This can also be done. In fact, it’s downright easy. Functions can be 
written in assembly and then called from either C or C++, and vice versa; assembly 
routines can be called from C or C++ source code. Here, we’ll examine mixing C 
and assembly routines, but refer to the ARM documentation (ARM 2007d) for infor-
mation on working with C++. When using mixed language programming, you want 
to ensure that your assembly routines follow the AAPCS standard and your C code 
uses C calling conventions.

EXAMPLE 18.3

You may have a function defined in C that you want to use in an assembly routine. 
The code below shows a simple function that is called in the assembly routine 
with a BL instruction.

C source code appears as

int g(int a, int b, int c, int d, int e)
{
 return a + b + c + d + e;
}

Assembly source code appears as

;int f(int i) {return g(i, 2*i, 3*i, 4*i, 5*i);}
PRESERVE8
EXPORT f
AREA f, CODE, READONLY
IMPORT g ; i is in r0
STR lr, [sp, #4] ; preserve lr
ADD r1, r0, r0 ; compute 2*i (2nd param)
ADD r2, r1, r0 ; compute 3*i (3rd param)
ADD r3, r1, r2 ; compute 5*i
STR r3, [sp, #−4]! ; 5th param on stack
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ADD r3, r1, r1 ; compute 4*i (4th param)
BL g ; branch to C function
ADD sp, sp, #4 ; remove 5th param
LDR pc, [sp], #4 ; return
END

EXAMPLE 18.4

The code below shows an example of calling an assembly language function from 
C code. The program copies one string over the top of another string, and the 
copying routine is written entirely in assembly.

C source code appears as

#include <stdio.h > 
extern void strcpy(char *d, const char *s);
extern void init_serial(void);

int main()
{
 const char *srcstr = “First string - source”;
 char dststr[] = “Second string - destination”;
 /* dststr is an array since we’re */
 /* going to change it */
 init_serial();
 printf(“Before copying:\n”);
 printf(“%s\n %s\n”,srcstr, dststr);
 strcopy(dststr, srcstr);
 printf(“After copying:\n”);
 printf(“%s\n %s\n”,srcstr, dststr);
 return(0);
}

Assembly source code appears as

 PRESERVE8
 AREA SCopy, CODE, READONLY
 EXPORT strcopy
strcopy
    ; r0 points to destination string
    ; r1 points to source string
 LDRB r2, [r1], #1 ; load byte and update address
 STRB r2, [r0], #1 ; store byte and update address
 CMP r2, #0  ; check for zero terminator
 BNE strcopy  ; keep going if not
 BX lr  ; return
 END

In some cases, features of the processor are not readily available in C and C++. 
For example, the conversion instructions in the Cortex-M4 for fixed-point and float-
ing-point values we considered in Chapter 9 are not accessible in C and C++. The 
example below shows how to use the embedded assembly features to create a set of 
conversion routines for specific formats that can easily be reused.
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EXAMPLE 18.5

The code below contains two routines for conversion between signed S16 format 
values and single-precision floating-point values. Recall that the S16 format speci-
fies a short signed integer of 16 bits. In this example, we are simulating sensor data 
in the form of a signed fixed-point 16-bit format with 8 fraction bits. The range of 
input data is {−128, 127 + 255/256}, with a numeric separation of 1/256.

The conversion routine utilizing the VCVT.S16,F32 instruction is shown below. 
Recall that this instruction operates on two FPU registers, so a move from the input 
source to an FPU register is required.

AREA FixedFloatCvtRoutines, CODE, READONLY
THUMB

EXPORT CvtShorts8x8ToFloat

CvtShorts8x8ToFloat
 ; Use the VCVT instruction to convert a short in
 ; signed 8x8 format to a floating-point single-
 ; precision value and return the float value.
 ; The input short is in register r0.
 ; First move it to a float register - no
 ; format conversion will take place
 VMOV.F32 s0, r0  ; transfer the short to a
     ; floating-point register
 VCVT.F32.S16 s0, s0, #8 ; perform the conversion
 BX  lr  ; return
 END

A sample C program to use this conversion routine is shown below. The input data 
is in short integer format representing the signed 8x8 format (check for yourself 
that these values are correct).

//Input data in S16 format with 8 fraction bits.
#include <stdio.h > 
extern void EnableFPU(void);
extern float CvtShorts8x8ToFloat(short i);

int main(void)
{
 short Input[10] = {
  1408, // 5.5 (0x0580)
  384, // 1.5 (0x180)
  −672, // −2.625 (0xFD60)
  −256, // −1.0 (0xFF00)
  641, // 2.50390625 (2.5 + 1/256)(0x0281)
  192, // .75 (0x00C0)
  −32768, // neg max, −128.0 (0x8000)
  32767, // pos max, 127 + 255/256 (0x7FFF)
  −32, // −0.125 (0xFFE0)
  0
 };
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 int i;
 short InVal;
 float OutVal;

 for (i = 0; i < 11; i + +) {
  OutVal = CvtShorts8x8ToFloat(Input[i]);
  //Operate on the float value
 }
}

The conversion routine is stored in a separate file. Multiple routines may be 
placed in this file and called as needed by the C program. In this way, a library of 
routines utilizing functions not readily available from the high-level languages may 
be created to make use of features in the processor.

For further reading, you should consult the ARM documentation about calling 
C++ functions from assembly and calling assembly from C++. Examples can be 
found in the RealView Compilation Tools Developer Guide (ARM 2007a).

18.5 EXERCISES

 1. Example 18.1 gives the program necessary to set the Q flag. Run the 
code using the Keil tools, with the target being the STR910FM32 from 
STMicroelectronics. Which registers does the compiler use, and what is the 
value in those registers just before the QDADD instruction is executed?

 2. Example 18.2 demonstrates the embedded assembler. Compile the code 
and run it. What is the value in the Program Counter just before the BX 
instruction executes in the function my_strcopy? In order to compile this 
example, you will need to target the LPC2101 from NXP and include 
files from the “Inline” example found in the Keil “Examples” direc-
tory. Include the source files serial.c and retarget.c in your own project. 
Also be sure to include the startup file when asked. When you run the 
code, you can use the UART #2 window to see the output from the printf 
statements.

 3. Write a short C program that declares a variable called TMPTR. Using 
Example 18.2 as a guide, print out the variable in degrees Celsius, with 
some initial temperature defined in the main program in degrees Fahrenheit. 
Write the temperature conversion program as an inline assembly function. 
You’ll want to use fractional arithmetic to avoid division.

 4. Using the saturation algorithm discussed in Chapter 13, which performs a 
logical shift left by m bits and saturates when necessary, write a C routine 
which calls it as an embedded assembly function. The function should have 
two parameters: the value to be shifted and the shift count. It should return 
the shifted value. The small C routine should create a variable with the 
initial value.
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 5. Modify Example 18.1 so that the function Clear_Q_Flag returns 1 when the 
function clears a set Q flag; otherwise, if the bit was clear, it returns 0.

 6. Run Example 18.4 by creating two separate source files in the Keil tools. 
Once you have saved these files, you can add them to a new project. The 
Keil tools will compile the C source file and assemble the assembly lan-
guage file automatically. When you run the code, you can see the output on 
UART #2. Refer to Exercise 2 for more details.

 7. Run Example 18.5 by creating three separate source files in the Keil tools. 
Recall that the FPU must be initialized, and this should be one of the three 
files. Notice the value of OutVal in the variables window and confirm the 
converted values match the expected inputs from the sensor (see the com-
ments in the array declaration).

 8. Expand Example 18.5 by converting the OutVal floating-point value 
back to S16 8x8 format. Add this routine to the file containing the 
CvtShorts8x8ToFloat routine and call it CvtFloatToShorts8x8. Verify that 
the result of the conversion back to S16 8x8 format matches the original 
value. Experiment with some other formats, such as 9.7 or 7.9, and see what 
values are produced.
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Appendix A: Running Code 
Composer Studio

A.1 INTRODUCTION

Code Composer Studio (CCS) is freely available from http:/ / www. ti. com and 
 provides a development environment for all of Texas Instruments’ ARM-based 
SoCs and microcontrollers, e.g., Sitara™, Hercules™, and Tiva™. Very inexpen-
sive development platforms and evaluation modules (EVMs) can be found from dis-
tributors, so getting a real Cortex-M4 running code takes relatively little effort. A 
wide variety of microcontrollers are available from Texas Instruments, and their 
peripherals can be driven with inputs to exercise I/O pins, A/D converters, UARTs, 
etc. The Tiva Launchpad (shown earlier in Figure 1.6) contains a Cortex-M4-
based microcontroller with floating-point hardware, and makes for a quick intro-
duction to using the Code Composer Studio tools. At the time of this writing, there 
are both Stellaris and Tiva parts available on the Launchpad platform (Tiva is the 
supported product line now), and while the older LM4F230H5QR microcontroller 
on the Stellaris Launchpad is nearly identical to the new Tiva TM4C123GH6PM 
microcontroller, you can use either one. All descriptions in this Appendix will show 
the newer names.

Code Composer Studio does not generally support building projects in assembly 
only; however, there are now assembly-only options in the build choices. The tools 
are based on an Eclipse front-end, so students learning a high-level language like 
Java may already be familiar with Eclipse-based tools. Just as we’ll see with the Keil 
tools in Appendix B, writing assembly language on a Cortex-M4 will require break-
ing most industry programming practices. For starters, most of the exception vector 
table will be omitted to keep things simple. Second, conventional code would require 
handlers to be in place for dealing with Fault exceptions and interrupts, and we don’t 
really have to consider those just yet. We therefore create our program with handlers 
that just stay in an infinite loop. This is fine as long as we don’t require exception 
handling. To run a simple program, you first need to specify a particular device for 
which to assemble your code. You then create a project, write your assembly, and 
add it to your project. Finally, you build the project and start up the debugger to step 
through your code.

A.2 RUNNING CODE ON THE CORTEX-M4

The CCS tools do not simulate a Tiva Launchpad, so you’ll want to attach the physi-
cal hardware to your development tools. You can find information about doing this 
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in the documents provided with the board or on TI’s website. There are a couple of 
things to check before running your code on the Launchpad:

 a. When you install CCS for the first time, ensure that the Tiva products are 
added when the dialog appears asking which processor architectures you 
wish to support.

 b. Make sure you’ve got the in-circuit debugging interface driver loaded on 
the host computer.

A.2.1 CReATing A CoRTex-M4 pRojeCT And seLeCTing A deViCe

First we’ll create a new project file. Start the CCS tools and choose New CCS Project 
from the Project menu, as shown in Figure A.1. Give your project a name. As an 
example, you could call it Sample. The project file normally includes source files 
of code, including C, C++ and assembly, library files, header files, etc., along with 
a linker command file that tells the linker how to build your executable file. In our 
case, we will only have an assembly file and a linker command file. When the dialog 
box appears, select ARM from the Family drop-down menu. Choose Executable for 
the Output Type. In the Variant box, you should enter 123GH6PM, which will bring 
up TM4C123GH6PM (the chip on the Tiva Launchpad) in the parts drop-down box. 
Under Connection, make sure that you have the Stellaris In-Circuit Debug Interface 
chosen to talk to the Tiva Launchpad (newer versions of CCS may say Tiva In-Circuit 
Debug Interface). Under Project templates and examples, you will see an option to cre-
ate an Empty Assembly-only Project, as shown in Figure A.2. Click on this option and 
then click on Finish. If you go to the Project Explorer pane on the left, and open the 
project you just created, you will find a list of files in the project. One of those will be 
a startup file with a “.c” ending. You should delete this file from the project by right-
clicking on the name and then choosing Delete.

FIGURE A.1 Creating a new project.
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A.2.2 CReATing AppLiCATion Code

Now that the project has been created and a device chosen, you will need a source 
file. The easiest file to create is one that has only a few lines of actual code and a 
handful of directives to get the tools working. For example, the code below just adds 
two numbers together. Choose New -> Source File from the File menu, enter a name 
in the Source file box, such as Sample.asm, then carefully type the following code:

 .global myStart, myStack, ResetISR, Vecs, _c_int00, _main
 .sect “.myCode”
myStart:
 MOV r2, #10
 MOV r3, #5
 ADD r1, r2, r3
 B  myStart
 .text
; This is the Reset Handler
_c_int00:
 B myStart
; This is the dummy NMI handler
NmiSR:
 B $
; This is the dummy Fault handler
FaultISR:
 B $
; Here we define the stack
myStack .usect “.stack”, 0x400
; Interrupt vector table (abbreviated)
 .retain “.intvecs”
 .sect “.intvecs”
Vecs: .wordmyStack ; initial stack pointer
 .word _c_int00 ; the reset handler
 .word NmiSR ; dummy NMI handler
 .word FaultISR ; dummy Fault handler
 .word 0 ; we don’t care about the rest

FIGURE A.2 Project options.
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The four instructions at the top of the file simply move two values into register 
r2 and r3, adding them together and branching back to the top of the code when fin-
ished. The reset handler is normally a fairly comprehensive block of code enabling 
various peripherals and features on a microcontroller. For our case, we just want 
the handler to jump to our code, so the reset handler is just a branch instruc-
tion. There are two dummy handlers that follow, one for an NMI (Non-Maskable 
Interrupt) and one for a fault. Again, normally these handlers contain the proper 
code that either cleans up the exception or helps in dealing with one. Our handlers 
do nothing except spin in an infinite loop, so mind any exceptions that occur in 
your code—at the moment, there is no way to recover if you do something that 
causes a Fault exception. In Chapter 15, we’ll see ways to build simple handlers to 
cover these exceptions.

The stack is configured next, with 1,024 bytes reserved for it. The label myS-
tack will eventually be converted into an address that will get stored in the vector 
table. The section called “.intvecs” is our vector table, and you can see that the 
individual vectors contain addresses. In the process of creating an executable file, 
the ELF linker will try to remove any code that isn’t actually used, and since it 
sees the vector table as a set of constants that are not referenced anywhere else in 
the main code, it will remove them. We therefore add a .retain directive to instruct 
the linker to keep our vector table. The stack pointer is stored at address 0x0 in 
memory, and the first value is the address of myStack. The reset handler’s address 
is stored at address 0x4 in memory, and so on. Since we don’t need to worry about 
exceptions yet, we’ll only define enough of the vectors to get our code up and 
running.

A.2.3 BuiLding The pRojeCT And Running Code

We’re nearly finished. There are a few additional tools issues to deal with before try-
ing to build the project. If you open the linker command file (the file in the project 
that ends in .cmd), you’ll find an equation involving __STACK_TOP. Just comment 
that out for now. Additionally, we should tell the linker where to put our code, so add 
an entry under .init_array for the section called .myCode. Your linker command file 
should now look like this:

SECTIONS
{
 .intvecs : > 0x00000000
 .text : > FLASH
 .const : > FLASH
 .cinit : > FLASH
 .pinit : > FLASH
 .init_array : > FLASH
 .myCode : > FLASH

 .vtable : > 0x20000000
 .data : > SRAM
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 .bss : > SRAM
 .sysmem : > SRAM
 .stack : > SRAM
}

// __STACK_TOP = __stack + 512;

One last correction is needed. Right click on the project name in the Project 
Explorer pane, and then choose Properties. In the dialog box, click on the ARM 
Linker section under Build. You will see a subsection called File Search Path. Ensure 
that “libc.a” is not included in the File Search Path box on the right (see Figure A.3). 
If it is there, delete it using the delete button just above the line. If we were writing C 
code, this is an important library, but since we’re only making a small assembly file, 
this library isn’t necessary and the tools will generate a warning.

You can now build the project by either choosing Build Project from the Project 
menu or you can click on the hammer button in the toolbar.

Launch the debugger by either choosing Debug from the Run menu or hitting the 
bug button on the toolbar. You should see the four panes shown in Figure A.4—your 
code is displayed in one pane, along with a disassembly of the code in another. You 
can open up the Core Registers display to show all of the internal registers when 
running your code. Use the Assembly Step Into button (the green buttons, which 
are labeled by mousing over the buttons) to single-step through your assembly code. 
Examine the contents of the registers for each instruction to ensure things are work-
ing well.

Once you’ve completed a simple example, go back and read the CCS User’s 
Guide, which is available in the Help menu. Many integrated development environ-
ments are similar, so if you have already used one from a different vendor, you may 
find this one very familiar.

FIGURE A.3 Properties dialog box.
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FIGURE A.4 Sample code running in the debugger.
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Appendix B: Running Keil Tools

B.1 INTRODUCTION

The RealView Microcontroller Development Kit that is available from http:/ / www. 
keil. com/ demo simulates not only an ARM microprocessor but a complete micro-
controller. A wide variety of microcontrollers are available in the tools, and their 
peripherals can be driven with inputs to exercise I/O pins, A/D converters, UARTs, 
etc. For the purpose of simulating the microcontrollers described in each chapter, 
we’ll need a way to write assembly code without having to read one hundred pages 
of manuals, so here’s where we bend the rules a bit. While Keil does not formally 
support building projects in assembly only, it can be done quite easily and the tools 
provide a nice development environment in which to build your code. There is, how-
ever, a rather heretical approach taken when using the RVMDK tools to write only 
assembly. For starters, code begins at address 0x00000000 on the ARM7TDMI, 
which is where the exception vector table normally sits, so we can put code there 
as long as we don’t require exception handling. Second, the tools normally expect a 
default reset handler to be in place, and we don’t really want to use that. We therefore 
create our program in such a way that the tools believe it to be the reset handler. 
Writing code for the Cortex-M4 works the same way—we will be leaving out excep-
tion handlers and assembly code normally created when compiling C code. To run 
a simple program, you first need to specify a particular device to simulate. You then 
create a project, write your code, and add it to your project. Finally, you build the 
project and start up the debugger to step through your code. NB: This appendix uses 
Version 4.73, so if you are using Version 5.0 or above, be sure to download the soft-
ware pack that supports the legacy ARM7 and ARM9 microcontrollers.

B.2 WORKING WITH AN ARM7TDMI

This section can be read in conjunction with Chapter 3, since you’re likely to look for 
a way to run your first assembly programs without having to download and build a 
simulator. If you are learning to program an ARM7- or ARM9-based device, then the 
procedure for running short blocks of assembly is quite easy. Be aware of how many 
rules of professional programming are being thrown out the window, but since the goal 
is to learn to walk before you learn to run, it’s permitted to ignore a few things for now.

B.2.1 CReATing An ARM7TdMi pRojeCT And seLeCTing A deViCe

Let’s begin by creating a new project file. Start the RVMDK tools and choose New 
µVision Project from the Project menu, as shown in Figure B.1.

Give your project a name. As an example, you could call it My First Program, 
as shown in Figure B.2. The project file can include source files of code, including 
C, C++ and assembly, library files, header files, etc., along with environment options 
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that you can save (see the µVision IDE User’s Guide included with the software for 
all the different options available). You might wish to create a new folder for each 
project, just to keep things simple.

At this point the tools will ask you to specify a device to simulate. To continue our 
example, choose one of the LPC21xx parts from NXP, such as the LPC2104. This 
is an ARM7-based microcontroller with a few peripherals. You will find all of the 
available parts in the device database window shown in Figure B.3. Scroll down until 
you come to the NXP parts and select LPC2104. Notice that the tools detail all of the 
peripherals and memory options when you choose the device. When you click OK, 
a dialog box will appear asking if you want to include startup code for this device. 
Click No, since we are only making a small assembly program and will not need all 
of the initialization code.

B.2.2 CReATing AppLiCATion Code

Now that the project has been created and a device chosen, you will need to create 
a source file. From the File menu, choose New to create your assembly file with the 
editor. If you like, you can directly copy the small program from Figure B.4 as an 

FIGURE B.1 Creating a new project.

FIGURE B.2 Naming the project.
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example. The latest versions of RVMDK now require a reset handler to be found, 
and normally this is included in the startup file. However, we have elected not to 
use this file, so the workaround is to mark your assembly code as the reset handler 
and declare it globally. Notice the first line of code is the GLOBAL directive. You 
should also call the block of code reset (or Reset—it is case insensitive) with the 
AREA directive. After the ENTRY directive, the label Reset _ Handler should 
be placed at the top of your code. You can follow this with another label if you like, 
say Main or MyCode, but just be sure to include the first label. The remaining code 
would appear as examples do in the book. Choose Save As from the File menu, and 
give it a name, such as My First Program.s, being sure to include the “.s” extension 
on the file. The window should change, showing legal instructions in boldface type, 
and comments and constants in different colors.

The assembly file must be added to the project. In the Project Workspace win-
dow on the left, click on the plus sign to expand the Target 1 folder. Right click on 
the Source Group 1 folder, then choose Add Files to Group “Source Group 1” as 

FIGURE B.3 Device database dialog box.

FIGURE B.4 Sample code.
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shown in Figure B.5. A dialog box will appear. In the dropdown menu called Files of 
Type, choose Asm Source file to show all of the assembly files in your folder. Select 
the file you just created and saved. Click Add, and then Close.

B.2.3 BuiLding The pRojeCT And Running Code

To build the project, select Build target or Rebuild all target files from the Project 
menu. You will get a warning about the fact that Reset_Handler does not exist, 
but you can ignore it. Now that the executable has been produced, you can use the 
debugger for simulation. From the Debug menu, choose Start/Stop Debug Session. 

FIGURE B.5 Adding a source file to the project.

FIGURE B.6 Running code in the debugger.
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This puts you into a debug session (shown in Figure B.6) and produces new win-
dows, including the Register window and the Memory window. You can single-step 
through the code, watching each instruction execute by clicking on the Step Into 
button on the toolbar or choosing Step from the Debug menu. At this point, you can 
also view and change the contents of the register file, and view and change memory 
locations by typing in the address of interest. When you are finished, choose Start/
Stop Debug Session again from the Debug menu. Once you’ve completed a simple 
example, go back and read the µVision IDE User’s Guide, which is available in the 
Help menu. Many integrated development environments are similar, so if you have 
already used one from a different vendor, you may find this one very familiar.

B.3 WORKING WITH A CORTEX-M4

Huge simplifications allow us to make a working environment for Cortex-M4 devices. 
Unless specific requirements are added for handling exceptions, such as hard faults or 
interrupts, you must be very careful when writing code since an unexpected condi-
tion will send you into the weeds. With the debugging tools available to you, how-
ever, most errors can be caught and corrected without too much difficulty. As with the 
ARM7TDMI projects, you might choose to read this section before reading Chapter 3.

B.3.1 CReATing A CoRTex-M4 pRojeCT And seLeCTing A deViCe

First, we’ll create a new project file. Start the RVMDK tools and choose New µVision 
Project from the Project menu, as shown in Figure B.7. Give your project a name. 
As an example, you could call it My First M4 Program, as shown in Figure B.8. 
The project file can include source files of code, including C, C++ and assembly, 
library files, header files, etc., along with environment options that you can save (see 
the µVision IDE User’s Guide included with the software for all the different options 
available). You might wish to create a new folder for each project, just to keep things 
simple.

At this point the tools will ask you to specify a device to simulate. To continue 
our example, choose one of the Tiva parts from TI, such as the LM4F120H5QR 
(this part number is equivalent to the TM4C1233H6PM). This is a Cortex-M4-based 

FIGURE B.7 Creating a new project.
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microcontroller with a number of peripherals. You will find all of the available parts 
in the device database window shown in Figure B.9. Scroll down until you come to 
the TI parts and select LM4F120H5QR. Notice that the tools detail all of the periph-
erals and memory options when you choose the device. When you click OK, a dialog 
box will appear asking if you want to include startup code for this device. Click Yes, 
since we can make a running example quickly using the initialization code.

B.3.2 CReATing AppLiCATion Code

Now that the project has been created and a device chosen, you will need a source 
file. Rather than create one from scratch, we will simply edit the Startup.s file that 
we included in the last section. Locate the file by clicking on the +sign by the Source 
Group 1 icon in the Project window on the left. You should see one file called 
Startup.s. Open the file by double-clicking on the name. At this point, you can insert 
your code. Let’s use the example in Chapter 3 for computing a factorial function. You 

FIGURE B.9 Device database dialog box.

FIGURE B.8 Naming the project.
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will need to delete the code between the labels Reset_Handler and NmiSR. Add your 
code after the label Reset_Handler, adding an ENTRY directive so that the code 
looks like that in Figure B.10.

Comment out the code in the section for handling stack and heap memory loca-
tions, since we won’t immediately need any of this. Simply add a semicolon to the 
beginning of each line, so that the code looks like:

;*************************************************************
;
; The function expected of the C library startup code for 
; defining the stack and heap memory locations. For the C 
; library version of the startup code, provide this function
; so that the C library initialization code can find out
; the location of the stack and heap.
;
;*************************************************************
; IF :DEF: __MICROLIB
;  EXPORT __initial_sp
;  EXPORT __heap_base
;  EXPORT __heap_limit
; ELSE
;  IMPORT __use_two_region_memory
;  EXPORT __user_initial_stackheap
;__user_initial_stackheap
;  LDR R0, =HeapMem
;  LDR R1, =(StackMem + Stack)
;  LDR R2, =(HeapMem + Heap)
;  LDR R3, =StackMem
;  BX LR
; ENDIF

FIGURE B.10 Sample code.
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B.3.3 BuiLding The pRojeCT And Running Code

To build the project, select Build target or Rebuild all target files from the Project 
menu. You will get a warning, but you can ignore it. Now that the executable has been 
produced, you can use the debugger for simulation. From the Debug menu, choose 
Start/Stop Debug Session. This puts you into a debug session (shown in Figure 
B.11) and produces new windows, including the Register window and the Memory 
window. You can single-step through the code, watching each instruction execute by 
clicking on the Step Into button on the toolbar or choosing Step from the Debug 
menu. At this point, you can also view and change the contents of the register file, 
and view and change memory locations by typing in the address of interest. When 
you are finished, choose Start/Stop Debug Session again from the Debug menu.

Once you’ve completed a simple example, go back and read the µVision IDE 
User’s Guide, which is available in the Help menu. Many integrated development 
environments are similar, so if you have already used one from a different vendor, 
you may find this one very familiar.

FIGURE B.11 Running code in the debugger.
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Appendix C: ASCII Character 
Codes

MOST SIGNIFICANT BITS

LE
A

ST
 S

IG
N

IF
IC

A
N

T 
B

IT
S

0 1 2 3 4 5 6 7

0 Null Data Link Escape Space 0 @ P ` p

1 Start of Heading Device Control 1 ! 1 A Q a q

2 Start of Text Device Control 2 “ 2 B R b r

3 End of Text Device Control 3 # 3 C S c s

4 End of Transmit Device Control 4 $ 4 D T d t

5 Enquiry Neg Acknowledge % 5 E U e u

6 Acknowledge Synchronous Idle & 6 F V f v

7 Bell End of Trans Block ’ 7 G W g w

8 Backspace Cancel ( 8 H X h x

9 Horizontal Tab End of Medium ) 9 I Y i y

A Line Feed Substitute * : J Z j z

B Vertical Tab Escape  + ; K [ k {

C Form Feed File Separator , < L \ l |

D Carriage Return Group Separator -  = M ] m }

E Shift Out Record Separator . > N ^ n  ~ 

F Shift In Unit Separator / ? O _ o Delete

The American Standard Code for Information Interchange contains both printable 
and nonprintable characters, e.g., backspace or line feed. The devices that use ASCII 
data do not have to implement the entire character set. An LCD panel, for example, 
probably will not do anything if it receives the control character to ring a bell (0x7). 
If a device is an ASCII device, then it will only accept ASCII data, and numbers 
must be sent in their respective ASCII representations. For example, if you want to 
print a 9, then a printer must receive the value 0x39. Note that the most significant bit 
of an ASCII value is either zero or a parity bit, depending on how the programmer 
wants to use it.
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Appendix D
**************************************************************
*
* Forward declaration of the default fault handlers.
*
**************************************************************

.global myStart, myStack, ResetISR, Vecs, _c_int00, _main
**************************************************************
* Interrupt vector table
**************************************************************
 .sect “.intvecs”

Vecs: .word myStack + 0x400 ; The initial stack pointer
 .word _main ; The reset handler
 .word NmiSR ; The NMI handler
 .word FaultISR ; The hard fault handler
 .word IntDefaultHandler ; The MPU fault handler
 .word IntDefaultHandler ; The bus fault handler
 .word IntDefaultHandler ; The usage fault handler
 .word 0 ; Reserved
 .word 0 ; Reserved
 .word 0 ; Reserved
 .word 0 ; Reserved
 .word IntDefaultHandler ; SVCall handler
 .word IntDefaultHandler ; Debug monitor handler
 .word 0 ; Reserved
 .word IntDefaultHandler ; The PendSV handler
 .word IntDefaultHandler ; The SysTick handler
 .word IntDefaultHandler ; GPIO Port A
 .word IntDefaultHandler ; GPIO Port B
 .word IntDefaultHandler ; GPIO Port C
 .word IntDefaultHandler ; GPIO Port D
 .word IntDefaultHandler ; GPIO Port E
 .word IntDefaultHandler ; UART0 Rx and Tx
 .word IntDefaultHandler ; UART1 Rx and Tx
 .word IntDefaultHandler ; SSI0 Rx and Tx
 .word IntDefaultHandler ; I2C0 Master and Slave
 .word IntDefaultHandler ; PWM Fault
 .word IntDefaultHandler ; PWM Generator 0
 .word IntDefaultHandler ; PWM Generator 1
 .word IntDefaultHandler ; PWM Generator 2
 .word IntDefaultHandler ; Quadrature Encoder 0
 .word IntDefaultHandler ; ADC Sequence 0
 .word IntDefaultHandler ; ADC Sequence 1
 .word IntDefaultHandler ; ADC Sequence 2
 .word IntDefaultHandler ; ADC Sequence 3
 .word IntDefaultHandler ; Watchdog timer
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 .word IntDefaultHandler ; Timer 0 subtimer A
 .word IntDefaultHandler ; Timer 0 subtimer B
 .word IntDefaultHandler ; Timer 1 subtimer A
 .word IntDefaultHandler ; Timer 1 subtimer B
 .word IntDefaultHandler ; Timer 2 subtimer A
 .word IntDefaultHandler ; Timer 2 subtimer B
 .word IntDefaultHandler ; Analog Comparator 0
 .word IntDefaultHandler ; Analog Comparator 1
 .word IntDefaultHandler ; Analog Comparator 2
 .word IntDefaultHandler ; System Control (PLL OSC BO)
 .word IntDefaultHandler ; FLASH Control
 .word IntDefaultHandler ; GPIO Port F
 .word IntDefaultHandler ; GPIO Port G
 .word IntDefaultHandler ; GPIO Port H
 .word IntDefaultHandler ; UART2 Rx and Tx
 .word IntDefaultHandler ; SSI1 Rx and Tx
 .word IntDefaultHandler ; Timer 3 subtimer A
 .word IntDefaultHandler ; Timer 3 subtimer B
 .word IntDefaultHandler ; I2C1 Master and Slave
 .word IntDefaultHandler ; Quadrature Encoder 1
 .word IntDefaultHandler ; CAN0
 .word IntDefaultHandler ; CAN1
 .word IntDefaultHandler ; CAN2
 .word IntDefaultHandler ; Ethernet
 .word IntDefaultHandler ; Hibernate
 .word IntDefaultHandler ; USB0
 .word IntDefaultHandler ; PWM Generator 3
 .word IntDefaultHandler ; uDMA Software Transfer
 .word IntDefaultHandler ; uDMA Error
 .word IntDefaultHandler ; ADC1 Sequence 0
 .word IntDefaultHandler ; ADC1 Sequence 1
 .word IntDefaultHandler ; ADC1 Sequence 2
 .word IntDefaultHandler ; ADC1 Sequence 3
 .word IntDefaultHandler ; I2S0
 .word IntDefaultHandler ; External Bus Interface 0
 .word IntDefaultHandler ; GPIO Port J
 .word IntDefaultHandler ; GPIO Port K
 .word IntDefaultHandler ; GPIO Port L
 .word IntDefaultHandler ; SSI2 Rx and Tx
 .word IntDefaultHandler ; SSI3 Rx and Tx
 .word IntDefaultHandler ; UART3 Rx and Tx
 .word IntDefaultHandler ; UART4 Rx and Tx
 .word IntDefaultHandler ; UART5 Rx and Tx
 .word IntDefaultHandler ; UART6 Rx and Tx
 .word IntDefaultHandler ; UART7 Rx and Tx
 .word 0   ; Reserved
 .word 0   ; Reserved
 .word 0   ; Reserved
 .word 0   ; Reserved
 .word IntDefaultHandler ; I2C2 Master and Slave
 .word IntDefaultHandler ; I2C3 Master and Slave
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 .word IntDefaultHandler ; Timer 4 subtimer A
 .word IntDefaultHandler ; Timer 4 subtimer B
 .word 0   ; Reserved
 .word 0   ; Reserved
 .word 0   ; Reserved
 .word 0   ; Reserved
 .word 0   ; Reserved
 .word 0   ; Reserved
 .word 0   ; Reserved
 .word 0   ; Reserved
 .word 0   ; Reserved
 .word 0   ; Reserved
 .word 0   ; Reserved
 .word 0   ; Reserved
 .word 0   ; Reserved
 .word 0   ; Reserved
 .word 0   ; Reserved
 .word 0   ; Reserved
 .word 0   ; Reserved
 .word 0   ; Reserved
 .word 0   ; Reserved
 .word 0   ; Reserved
 .word IntDefaultHandler ; Timer 5 subtimer A
 .word IntDefaultHandler ; Timer 5 subtimer B
 .word IntDefaultHandler ; Wide Timer 0 subtimer A
 .word IntDefaultHandler ; Wide Timer 0 subtimer B
 .word IntDefaultHandler ; Wide Timer 1 subtimer A
 .word IntDefaultHandler ; Wide Timer 1 subtimer B
 .word IntDefaultHandler ; Wide Timer 2 subtimer A
 .word IntDefaultHandler ; Wide Timer 2 subtimer B
 .word IntDefaultHandler ; Wide Timer 3 subtimer A
 .word IntDefaultHandler ; Wide Timer 3 subtimer B
 .word IntDefaultHandler ; Wide Timer 4 subtimer A
 .word IntDefaultHandler ; Wide Timer 4 subtimer B
 .word IntDefaultHandler ; Wide Timer 5 subtimer A
 .word IntDefaultHandler ; Wide Timer 5 subtimer B
 .word IntDefaultHandler ; FPU
 .word IntDefaultHandler ; PECI 0
 .word IntDefaultHandler ; LPC 0
 .word IntDefaultHandler ; I2C4 Master and Slave
 .word IntDefaultHandler ; I2C5 Master and Slave
 .word IntDefaultHandler ; GPIO Port M
 .word IntDefaultHandler ; GPIO Port N
 .word IntDefaultHandler ; Quadrature Encoder 2
 .word IntDefaultHandler ; Fan 0
 .word 0   ; Reserved
 .word IntDefaultHandler ; GPIO Port P (Summary or P0)
 .word IntDefaultHandler ; GPIO Port P1
 .word IntDefaultHandler ; GPIO Port P2
 .word IntDefaultHandler ; GPIO Port P3
 .word IntDefaultHandler ; GPIO Port P4
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 .word IntDefaultHandler ; GPIO Port P5
 .word IntDefaultHandler ; GPIO Port P6
 .word IntDefaultHandler ; GPIO Port P7
 .word IntDefaultHandler ; GPIO Port Q (Summary or Q0)
 .word IntDefaultHandler ; GPIO Port Q1
 .word IntDefaultHandler ; GPIO Port Q2
 .word IntDefaultHandler ; GPIO Port Q3
 .word IntDefaultHandler ; GPIO Port Q4
 .word IntDefaultHandler ; GPIO Port Q5
 .word IntDefaultHandler ; GPIO Port Q6
 .word IntDefaultHandler ; GPIO Port Q7
 .word IntDefaultHandler ; GPIO Port R
 .word IntDefaultHandler ; GPIO Port S
 .word IntDefaultHandler ; PWM 1 Generator 0
 .word IntDefaultHandler ; PWM 1 Generator 1
 .word IntDefaultHandler ; PWM 1 Generator 2
 .word IntDefaultHandler ; PWM 1 Generator 3
 .word IntDefaultHandler ; PWM 1 Fault

 .sect “.myCode”

myStart:
 ; Set sysclk to DIV/4, use PLL, XTAL_16 MHz, OSC_MAIN
 ; system control base is 0x400FE000, offset 0x60
 ; bits [26:23]  = 0x3
 ; bit  [22]  = 0x1
 ; bit  [13]  = 0x0
 ; bit  [11]  = 0x0
 ; bits [10:6]  = 0x15
 ; bits [5:4]  = 0x0
 ; bit  [0]  = 0x0
 ; All of this translates to 0x01C00540

 MOVW r0, #0xE000
 MOVT r0, #0x400F
 MOVW r2, #0x60  ; offset 0x060 for this register
 MOVW r1, #0x0540
 MOVT r1, #0x01C0
 STR r1, [r0, r2]  ; write the register’s contents

; MOVW r6, #0xE000
; MOVT r6, #0xE000
 MOVW r7, #0x604  ; enable timer0 - RCGCTIMER
 LDR r1, [r0, r7]  ; p. 321, base 0x400FE000
 ORR r1, #0x1  ; offset - 0x604
 STR r1, [r0, r7]  ; bit 0

 NOP
 NOP
 NOP
 NOP
 NOP    ; give myself 5 clocks per spec
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 MOVW r8, #0x0000 ; configure timer0 to be
 MOVT r8, #0x4003 ; one-shot, p.698 GPTMTnMR
 MOVW r7, #0x4 ; base 0x40030000
 LDR r1, [r8, r7] ; offset 0x4
 ORR r1, #0x21 ; bit 5 = 1, 1:0 = 0x1
 STR r1, [r8, r7]

 LDR r1, [r8] ; set as 16-bit timer only
 ORR r1, #0x4 ; base 0x40030000
 STR r1, [r8] ; offset 0, bit[2:0] = 0x4

 MOVW r7, #0x30 ; set the match value at 0
 MOV r1, #0  ; since we’re counting down
 STR r1, [r8, r7] ; offset - 0x30

 MOVW r7, #0x18 ; set bits in the GPTM
 LDR r1, [r8, r7] ; Interrupt Mask Register
 ORR r1, #0x10 ; p. 714 - base: 0x40030000
 STR r1, [r8, r7] ; offset - 0x18, bit 5

 MOVW r6, #0xE000 ; enable interrupt on timer0
 MOVT r6, #0xE000 ; p. 132, base 0xE000E000
 MOVW r7, #0x100 ; offset - 0x100, bit 19
 MOV r1, #(1 < <19) ; enable bit 19 for timer0
 STR r1, [r6, r7]

 ;NOP
 ;NOP
 ;NOP
 ;NOP
 ;NOP

 MOVW r6, #0x0000 ; start the timer
 MOVT r6, #0x4003
 MOVW r7, #0xC
 LDR r1, [r6, r7]
 ORR r1, #0x1
 STR r1, [r6, r7] ; go!!

Spin
 B Spin  ; sit waiting for the interrupt to occur

**************************************************************
* Interrupt functions
**************************************************************
 .text

;ResetISR:
;_c_int00:
_main
 B myStart
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NmiSR:
  B  $

FaultISR:
  B  $

IntDefaultHandler:
  MOVW  r10, #0xBEEF
  MOVT  r10, #0xDEAD
  NOP
Spot
  B  Spot

**************************************************************
myStack .usect “.stack”, 0x400



415

Glossary
AHB: Advanced High-performance Bus. Part of the AMBA specification for inter-

connectivity, the AHB is a single-cycle bus to which you normally attach bus 
masters, such as processor cores, DSP engines, DMA engines, or memory.

AMBA: Advanced Microcontroller Bus Architecture. The AMBA specification pro-
vides a bus framework around which systems can be built, and it also defines 
the manner in which processors and peripherals communicate in a system.

APB: Advanced Peripheral Bus. Part of the AMBA specification, the APB is the bus 
to which you normally attach peripherals or slower devices in the system.

API: Application Programming Interface. Often APIs come in the form of a library 
that includes routines for accessing hardware or services at a high level, 
resembling function calls.

ASIC: Application Specific Integrated Circuit. A description of any integrated circuit 
which is built for one specific purpose, as opposed to a generic device such 
as a microprocessor, which can be used in many applications. Examples are 
anti-lock disc brake circuits for a particular manufacturer or engine control-
lers for a particular vehicle.

Big-Endian: Byte-ordering scheme in which bytes of decreasing significance in a 
data word are stored at increasing addresses in memory.

Cache: From the French caché; literally, hidden. This memory, located very near the 
processor, holds recently used data and allows a processor to find data on 
the chip before going out to external memory, which is much slower.

CAN: Controller Area Network. Developed by Bosch and Intel, this is a network 
protocol and bus standard that allows automotive components like trans-
missions, engine control units, and cruise control to communicate as a sub-
system within the car.

CISC: Complex Instruction Set Computer. An older computer architecture which 
implements a large instruction set, usually microcoded, and can have 
instructions of varying length.

Die: An individual square produced by cutting a wafer into pieces. Normally a 
die contains an entire microprocessor or analog device, including contact 
points (pads).

DSP: Digital Signal Processor. Any device which is specifically designed to transfer 
large amounts of data while providing arithmetic operations in parallel, 
particularly multiply and accumulate operations. General-purpose micro-
processors can also be used as DSPs.

EEPROM: Electrically Erasable Programmable Read-Only Memory. This type of 
read-only memory can be programmed via software and erased electrically, 
rather than through an ultraviolet light source as EPROMs are. Flash mem-
ory is a recent form of EEPROM.

Endianness: The scheme that determines the order in which successive bytes of a 
data word are stored in memory. An aspect of the system’s memory mapping.
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EFlash Memory: See EEPROM.
Exponent: Eight bits of a single-precision floating-point number or eleven bits of 

a double-precision floating-point number that follow a sign bit, indicating 
how the significand is to be scaled. Normally the exponent is biased so that 
the number is positive.

Fraction: The part of a floating-point number that is in the range [1.0, 2.0), repre-
sented in single-precision by 23 bits and in double-precision by 52 bits. Also 
known as the mantissa.

I2C: Inter-Integrated Circuit. This is a serial bus invented by Philips that allows low-
speed peripherals to be attached to motherboards or embedded devices. 
Common applications of the bus include controlling LCD displays, reading 
real-time clocks, and accessing low-speed A/D converters.

Intellectual Property (IP): Legally, a term used to describe and protect artistic 
works, music, inventions, and other creations derived from human intellect. 
Semiconductor companies can license IP under contract from suppliers 
such as ARM, and are entitled to certain rights under the contract, e.g., the 
ability to produce products derived from the design they licensed.

Little-Endian: Byte ordering scheme in which bytes of increasing significance in a 
data word are stored at increasing addresses in memory.

Mantissa: See Fraction.
MB: Megabyte, or 1,048,576 bytes.
MMU: Memory Management Unit. A hardware option on a microprocessor that 

allows it to address more memory than physically present.
MPEG: Stands for Moving Picture Experts Group, but generally refers to the dif-

ferent standards for digitally encoding audio and video. Popular formats 
include MP3 for audio and MPEG-2 and MPEG-4 for video, which include 
standards for HDTV and high definition DVD players.

PROM: Programmable Read-Only Memory. A type of ROM that is programmed 
after the device has been built, using fuses that are changed just once.

RAM: Random Access Memory. This type of memory can be written to and read 
from. Forms of RAM include DRAM (Dynamic RAM) and SRAM (Static 
RAM).

RISC: Reduced Instruction Set Computer. A computer architecture having a small 
instruction set, where instructions are of a fixed length. Most RISC instruc-
tions execute in a single cycle, and data must be explicitly loaded and stored 
with separate instructions.

ROM: Read-Only Memory. This type of memory cannot be altered or programmed, 
and is usually configured at the time of manufacture.

Significand: In IEEE floating-point representations, the significand is the value 1.f, 
where f is the fraction.

SoC: System-on-Chip. This term refers to the integration of a processor core or 
cores, an internal bus, and peripherals on a single die to build a complete 
system.

Sticky bit: A bit that can only be cleared by explicitly writing a value of zero to it. In 
floating-point rounding operations, the sticky bit is a bit formed by ORing 
all bits with lower significance than the guard bit.
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TCM: Tightly Coupled Memory. An area of low latency memory that provides 
predictable instruction execution or data load timing in cases where deter-
ministic performance is required. TCMs are useful for holding important 
software routines, such as an interrupt handler, or data that is not well suited 
for caching. TCMs can be either ROM or RAM types.

UAL: Unified Assembly Language. With the introduction of Thumb-2 extensions, 
the syntax for instructions has been unified to allow the programmer to use 
a single mnemonic which can be ported to different architectures, espe-
cially for newer processors such as the Cortex family.

UART: Universal Asynchronous Receiver/Transmitter. This is a simple buffer 
which can be used to serially transmit and receive data. UARTs are com-
monly found on microcontrollers as memory-mapped peripherals.

USB: Universal Serial Bus. Largely a replacement for old serial and parallel con-
nections on computers, the USB specification was developed by the USB 
Implementers Forum, which included companies such as HP, Apple, Microsoft, 
Intel, and NEC.

VPB: VLSI Peripheral Bus. A superset of ARM’s AMBA Peripheral Bus protocol 
defined by NXP.

Wafer: A thin, crystalline slice of material (usually silicon) used to make integrated 
circuits. Wafers are produced by slicing ingots of semiconducting material 
into thin plates and then polishing them.

Wi-Fi: The trade name for wireless networks based on the IEEE 802.11 standards.
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 “Assembly language programming is still the best way to learn about the 
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iNemo and Discovery, and NXP Semiconductors’ Xplorer boards

Written by experienced ARM processor designers, ARM Assembly 
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topics essential to writing meaningful assembly programs, making it an ideal 
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