
Beginning
Spring 5

From Novice to Professional
—
Joseph B. Ottinger
Andrew Lombardi

www.allitebooks.com

http://www.allitebooks.org

Beginning Spring 5
From Novice to Professional

Joseph B. Ottinger
Andrew Lombardi

www.allitebooks.com

http://www.allitebooks.org

Beginning Spring 5: From Novice to Professional

ISBN-13 (pbk): 978-1-4842-4485-2			 ISBN-13 (electronic): 978-1-4842-4486-9
https://doi.org/10.1007/978-1-4842-4486-9

Copyright © 2019 by Joseph B. Ottinger and Andrew Lombardi

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484244852. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Joseph B. Ottinger
YOUNGSVILLE, NC, USA

Andrew Lombardi
Laguna Beach, CA, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-4486-9
http://www.allitebooks.org

To our loved ones and whirled peas.

www.allitebooks.com

http://www.allitebooks.org

About the Authors��� xi

About the Technical Reviewer�� xiii

Acknowledgments��xv

Chapter 1: History and Justification�� 1

1.1 ���Setting the Stage for Better Development��� 1

1.2 ���Rod and Juergen Change the (Java) World�� 6

1.3 ���The Lever: Dependency Injection��� 8

1.3.1 ���J2EE Hello World, as of 2005��� �9

1.3.2 ���Spring’s Better Vision of Hello World��� 12

1.4 ���Spring Breaks Free and Fixes Java EE��� 15

1.5 ���Next Steps�� 15

Chapter 2: Hello, World!��� 17

2.1 ���A Simple Application�� 17

2.1.1 ���Suffering-Oriented Programming�� 18

2.2 ���Building�� 20

2.2.1 ���Installing Gradle��� 21

2.2.2 ���Building the Project��� 22

2.3 ���Testing�� 26

2.4 ���A Simple Application with Spring��� 30

2.5 ���Next Steps�� 34

Chapter 3: Configuration and Declaration of Beans�� 35

3.1 ���The Container��� 35

3.2 ���The Sample Application��� 36

3.2.1 ���The Code for the Band Gateway�� 38

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

vi

3.3 ���Configuration Through Annotation��� 49

3.3.1 ���Declaring a Spring Bean with @Component��� 50

3.3.2 ���Wiring Components Together with @Autowired�� 55

3.3.3 ���Choosing Components with @Qualifier and Bean Names��� 62

3.3.4 ���Constructor Injection with Annotations��� 69

3.4 ���Configuration Through XML�� 77

3.4.1 ���Declaring a Bean with <bean />��� 77

3.4.2 ���Wiring Components Together with <property />��� 79

3.4.3 ���Wiring Components Together with <constructor-arg />�� 82

3.5 ���Configuration Through Java��� 84

3.5.1 ���Declaring Components with @Bean�� 85

3.5.2 ���Using a Programmatic Configuration for ApplicationContext�� 86

3.5.3 ���Wiring Components Together with @Autowired with Static Configuration�������������������� 87

3.5.4 ���Using @Qualifier to Select Specific Components for Wiring��� 88

3.5.5 ���Constructor Injection with Static Configuration��� 89

3.5.6 ���Testing Every Configuration with a DataProvider�� 91

3.6 ���Next Steps�� 95

Chapter 4: Lifecycle��� 97

4.1 ���Introduction of Lifecycle�� 97

4.1.1 ���Scope��� 98

4.1.2 ���Calling Constructors�� 103

4.1.3 ���Calling Methods After Construction and Before Destruction��������������������������������������� 105

4.1.4 ���Lifecycle Listeners��� 108

4.2 ���Lifecycle with JSR-250 Annotations�� 110

4.2.1 ���Annotated Beans with Scopes��� 110

4.2.2 ���Constructors with Annotated Classes�� 113

4.2.3 ���Calling Methods After Construction and Before Destruction��������������������������������������� 113

4.3 ���Lifecycle with Java Configuration�� 116

4.4 ���Additional Scopes�� 119

4.5 ���Next Steps�� 119

Table of Contents

vii

Chapter 5: Spring and Jakarta EE�� 121

5.1 ���Introduction to Jakarta EE�� 121

5.1.1 ���The Servlet API�� 122

5.1.2 ���Modern Web Application Design Principles��� 125

5.2 ���Module Structure��� 125

5.2.1 ���The Common Module��� 126

5.2.2 ���The Annotation-Based Web Application��� 130

5.2.3 ���The XML-Based Spring Context Application�� 140

5.3 ���Next Steps�� 143

Chapter 6: Spring Web��� 145

6.1 ���Introduction to Spring MVC�� 145

6.2 ���MVC�� 145

6.3 ���Hello, World with MVC�� 146

6.3.1 ���REST Concepts�� 149

6.4 ���Developing Our First Endpoint with MVC��� 152

6.5 ���Configuration��� 159

6.6 ���Templates and Models��� 161

6.7 ���Error Handling�� 164

6.8 ���Next Steps�� 167

Chapter 7: Spring Boot�� 169

7.1 ���What Is Spring Boot?�� 169

7.2 ���Setting Up a Project��� 171

7.3 ���Checking the Foundation��� 172

7.3.1 ���Building the Application��� 173

7.3.2 ���Building Our Transport Object�� 173

7.3.3 ���Actually Saying “Hello”�� 175

7.3.4 ���Testing with Spring Boot�� 176

7.3.5 ���Configuration in Spring Boot��� 179

7.3.6 ���Static Content with Spring Boot�� 180

7.3.7 ���Summary of the “Hello, World” Boot Mechanism�� 182

Table of Contents

viii

7.4 ���Spring Boot and Database Connections��� 183

7.4.1 ���Initializing Data with Spring Boot�� 184

7.4.2 ���Building an ArtistService��� 188

7.4.3 ���Handling Exceptions in Spring Boot�� 192

7.4.4 ���The Actual Implementation of ArtistService and Its Little Controller, Too�������������������� 194

7.4.5 ���Testing Our ArtistController: Does It Work?�� 200

7.5 ���Next Steps�� 205

Chapter 8: Spring Data Access with JdbcTemplate��� 207

8.1 ���Introduction�� 207

8.2 ���Project Setup��� 208

8.2.1 ���Lombok: Eliminating Boilerplate Code��� 210

8.3 ���Our Entity and Data Models��� 216

8.4 ���Accessing Data�� 222

8.4.1 ���JdbcTemplate.query()�� 225

8.4.2 ���@Transactional�� 228

8.4.3 ���The Actual MusicRepository�� 232

8.5 ���Adding the REST Endpoints�� 243

8.5.1 ���The ArtistController�� 244

8.5.2 ���The SongController�� 253

8.6 ���Next Steps�� 259

Chapter 9: Persistence with Spring and Spring Data�� 261

9.1 ���Introduction�� 261

9.2 ���General Architecture�� 262

9.2.1 ���An Important Note About Requirements�� 264

9.3 ���Creating Our Project Structure��� 264

9.3.1 ���The Common Code�� 266

9.3.2 ���The chapter9test Project��� 281

9.3.3 ���The chapter9jpa Project�� 291

9.3.4 ���The chapter9mongodb Project�� 301

Table of Contents

ix

9.3.5 ���Getting MongoDB��� 301

9.3.6 ���The Code for the chapter9mongodb Project�� 302

9.4 ���Tying Up Loose Ends�� 311

9.5 ���Next Steps�� 311

Chapter 10: Spring Security�� 313

10.1 ���Introduction�� 313

10.2 ���Configuration��� 315

10.2.1 ���Customizing Your Security��� 327

10.3 ���Securing a REST Application�� 332

10.4 ���New in Spring Security 5��� �339

10.4.1 ���OAuth 2.0 Login��� 339

10.4.2 ���Reactive Support��� 341

10.4.3 ���DelegatingPasswordEncoder��� 342

10.5 ���Next Steps�� 343

Chapter 11: Next Steps�� 345

11.1 ���Spring WebMVC.fn��� 345

11.2 ���Spring Reactive�� 348

11.3 ���Message Queues and Spring��� 349

11.4 ���GraphQL��� 351

11.5 ���Rivescript��� 353

11.6 ���What’s Next?�� 356

Index�� 357

Table of Contents

xi

About the Authors

Joseph B. Ottinger (@josephbottinger) is a distributed systems architect with

experience in many cloud platforms. He was the editor-in-chief of both Java Developer

Journal and TheServerSide.com and has also contributed to many, many publications,

open source projects, and commercial projects over the years, using many different

languages (but primarily Java, Python, and JavaScript). He’s also a previously published

author online (with too many publications to note individually) and in print, through

Apress.

Andrew Lombardi (@kinabalu) is a veteran entrepreneur and systems engineer. He’s

run the successful boutique consulting firm Mystic Coders for 18 years. With his team

they’ve helped companies as large as Walmart and firms with problems as interesting

as helicopter simulation. A few years ago, he authored a book on WebSocket for O’Reilly

which focused on the server and client components all written with JavaScript and Node.

js. He firmly believes that the best thing he’s done so far is being a great dad.

xiii

About the Technical Reviewer

Manuel Jordan Elera is an autodidactic developer and

researcher who enjoys learning new technologies for his

own experiments and creating new integrations. Manuel

won the Springy Award – Community Champion and Spring

Champion 2013. In his little free time, he reads the Bible

and composes music on his guitar. Manuel is known as

dr_pompeii. He has tech-reviewed numerous books for

Apress, including Pro Spring, Fourth Edition (2014); Practical

Spring LDAP (2013); Pro JPA 2, Second Edition (2013); and Pro

Spring Security (2013). Read his 13 detailed tutorials about

many Spring technologies, contact him through his blog at www.manueljordanelera.

blogspot.com, and follow him on his Twitter account, @dr_pompeii.  

https://www.manueljordanelera.blogspot.com
https://www.manueljordanelera.blogspot.com

xv

Acknowledgments

Joseph Ottinger would like to think the unthinkable – oh, wait, the itheberg already did

that. Instead, he’d like to thank the concept of referring to oneself in the third person,

as well as cool flashlights, long run-on sentences, whoever invented the footnote,

magnetized toys, Porcupine Tree, idealized drum kits and Rickenbacker basses, and

Meltwater, as well as friends like Andrew and Tracy Snell and Darren Thornton, in

addition to associates like Josh Long (and everyone else from the Spring project!),

Reinier Zwitserloot whose name is still probably not properly spelled, and – most

importantly and seriously – his family for putting up with him in the first place, and

much more for putting up with him during the book-writing process. I love all of you

more than I know how to express.

Andrew would like to thank all the people in his life who put up with the book writing

process. Thank you to Joaquín who put up with some blank stares to his questions after

I’d searched for written words that would not arrive, and my love Dana who took an

immediate interest and helped craft some of our funnier footnotes that hopefully survived.

Thank you to Joe, for being crazy enough to want to write a book with me.

1
© Joseph B. Ottinger and Andrew Lombardi 2019
J. B. Ottinger and A. Lombardi, Beginning Spring 5, https://doi.org/10.1007/978-1-4842-4486-9_1

CHAPTER 1

History and Justification
Spring is an application framework providing Dependency Injection features for the Java

Virtual Machine – features that enable testability, reliability, and flexibility to application

developers. It changed how Java is developed, and here’s how and why.

1.1  Setting the Stage for Better Development
Spring, according to Wikipedia, is one of the four temperate seasons, following winter

and… no, no, this isn’t a book about weather. Let’s try again.

A spring is a mechanical device that stores kinetic energy, releasing it when tension

stored in the… no, that doesn’t sound right either. This is supposed to be a book about

programming.

One more try:

Spring, contextually speaking, is an application framework for the JVM. It uses a

concept called “Dependency Injection” – described later in this chapter, we promise – as

a general model for development, and it has changed how Java programs are written,

even if the programs in question avoid the use of Spring itself.

Spring is also an ecosystem – a galaxy of extensions and modules with a library called

spring-core at its center. The extensions and modules add functionality and features to

cover many, many possible use cases. In general, people don’t refer to spring-core much;

instead they just use “Spring” and expect others to understand that the ecosystem as a

whole is being referred to.

The modules are, as mentioned, pretty extensive. Chances are, if you need to work

with something in Java, there’s a Spring module for it… somewhere.

2

Spring came from somewhere, first, of course; that “somewhere” was actually

“someone,” Rod Johnson.

In 2002, Rod wrote a book called Expert One-on-One J2EE Design and Development.1

It was written as a reaction to certain aspects of J2EE, the predominant framework for

enterprise application design in Java, and as such represented a bit of a revolution – or

a rebirth of joy and ease, if you will – for Java programming. In it, Rod included some

example code that Juergen Hoeller and others asked him to make open source, which

found its way into a project, called “Spring,” which itself later found its way into another

book, Expert One-on-One J2EE Development without EJB.2 This is the book that really got

things moving.3

To understand the importance of J2EE4 (and Spring, really), we need to think about

how programming was evolving at the time. “Real applications” tended to still be run on

minicomputers or mainframes, managed resources were still king, and applications that

managed to be relevant running on personal computers were surprising. Everyone knew

of Lotus 1-2-3,5 of course, and dBase was a surprisingly functional database application,

and sure, it was fine for students and others of similar low breeding to write documents

on personal computers… but to actually run real applications meant running on the

corporate mainframe.

1�Johnson, Rod (2002), Expert One-on-One J2EE Design and Development, Hoboken, NJ: Wiley
Press. It’s unfortunately out of print, although you might be able to find it on Amazon and other
such sites.

2�Johnson, Rod & Hoeller, Juergen (2004), Expert One-on-One J2EE Development without EJB,
Hoboken, NJ: Wiley Press. Unlike its predecessor, this one’s still in print, although it’s out of date
as one can expect from a book published well over a decade ago, as of this book’s publication. I
think this footnote is longer than the source paragraph.

3�For all intents and purposes, J2EE Development without EJB was the more significant book, and
an autographed copy lives on one of the author’s shelves in a place of honor. From here on out,
any references to these books will center on this latter book.

4�“J2EE” is a set of specifications and libraries for “enterprise features” in Java. It’s an acronym
for “Java 2 Platform, Enterprise Edition,” and was renamed in 2006 to “Java EE.” In 2018, it was
turned over to the Eclipse Foundation and renamed “Jakarta EE.”

5�Lotus 1-2-3 was the first “killer application” for PCs; it was the first truly popular and usable
spreadsheet, and revolutionized the PC market all by itself, simply by being respectable and
capable. It’s still around somewhere, now owned by IBM, but for most people Microsoft Excel
killed it off. I’m going to try to minimize footnotes for a while.

Chapter 1 History and Justification

3

Mainframe development would be horribly constraining for developers today;

the concept of scheduling jobs to run – even as compilations, or tests – is foreign.

We’re used to the power of being able to spin up a PostgreSQL6 instance in Docker,7

for instance, to which we connect our app for a quick integration test. Today, we think

nothing of running an application for two seconds just to see if a function returns

the right value… but in the mainframe days, that represented quite a considerable

investment of time and money and disk space. You typically had a production

database and one test database, both of which were valued more than gold, if only

because they were very difficult to replace.

In that kind of environment, the system administrator was king. The sysadmin told

you where he or she had located the databases, and how to connect to them, and – more

importantly – how much of the system resources were allocated to your program. Exceed

those resources, and your program would be terminated, to prevent impacting every

other program negatively.

Enter Java, which could be compiled on a wimpy local desktop. Suddenly, the

cost of development for applications meant to be run on the mainframe dropped,

because no longer was the mainframe as important for anything except running the

application. What’s more, Java was incredibly strong enough to bring the mainframe

ethos (“Real programs run here”) into smaller machines like minicomputers and even

the personal computer.

J2EE was created as an application framework that provided a set of standards for

enterprise development. It had a presentation layer and a computation layer, among

others, and incorporated formal standards for communications between those layers.

It also used the concept of a “container” into which one deployed J2EE modules –

like web modules and other such components – and the container represented a

point of control for system administrators. An administrator could control how many

connections a given container could make to a specific database, for example.

The most important word in the prior paragraph was “formal.” The next most

important word was “control,” as in “what the container administrator had.”

6�PostgreSQL is an open source relational database engine. See www.postgresql.org/ for more
details.

7�Docker is an open source container for virtualized runtimes; basically, it’s a program that allows
you to deploy “application images” for easy deployment. See https://docker.com/ to learn
more. So much for my desire to “minimize footnotes.”

Chapter 1 History and Justification

http://www.postgresql.org/
https://docker.com/

4

Java had a concept that it called the “Java bean,” which was meant to be a deployable

unit of functionality; you might have a “bean” that followed certain standards and

represented some kind of relevant operation; you might have a bean that, for example,

served to calculate the points along a curve when provided sample data, or a bean that

performed matrix computations.

Likewise, J2EE had the concept of an “Enterprise Java Bean,” or “EJB,” which was

a Java Bean with additional restrictions and capabilities, mostly centering around

transactions and the ability to be called remotely. An EJB, when called, represented an

interprocess communication, even if it was colocated with its caller.

In practice, this meant that every J2EE programmer was enabled right out of the gate

to design working distributed architectures. This is not a small accomplishment at all;

distributed architectures are difficult to get right, and J2EE made invoking processes on

separate machines trivial.

There’s a cost to all of this, of course.

The nature of EJB, especially early in J2EE’s lifecycle, meant that when every

call could be remote, every call had to be treated as if it were a remote call, with a

specific deployment and development cycle (early on, you had a separate packaging

compiler for EJB, called ejbc, to build the supporting classes for EJBs to run), and

because of the requirement that EJBs be considered to be remote even when they

weren’t, EJBs were slow.

EJBs were slow to develop, slow to test, slow to deploy, and slow to invoke. And they

were everywhere.

J2EE Development without EJB was written as a logical reaction to the entrenched

mindset. Rod Johnson and Juergen Hoeller looked at how EJBs were being used (and

misused) and their actual cost to developer productivity – which was really quite high,

for the value they were providing. To use an EJB, not only did you have to go through

a special development and deployment cycle, but then you had to look them up at

runtime and handle the exceptions when they weren’t available…

Listing 1-1.  Looking up an EJB in the olden days

// get the JNDI context for the application

Context ctx=new InitialContext();

// Inferencer is the java interface for the EJB

// First, we have to get the "Home" object, which

// can create the EJB for the caller

Chapter 1 History and Justification

5

// The deployer should have set up the name to point to /

// an actual deployed EJB artifact

Object ref=ctx.lookup("java:comp/env/ejb/inferencer");

InferencerHome home=

 (InferencerHome) PortableRemoteObject.narrow(

 ref,

 InferencerHome.class

);

// now, we use the home object to actually get the EJB

Inferencer engine=home.create();

// presumably, generate an inference using inputs...

engine.generate(input);

In Listing 1-1, not only did you have to write the code to grab a component that can

create the EJB from somewhere else,8 but you had to configure that reference… and then

you had to go through a set of semantics to get something that can actually invoke your

EJB. But why go through the development and remote semantics when they were rarely

needed and desired? Those semantics were rarely important despite how much they

catastrophically affected your code; at a Java Symposium in the early 2000s, attendees were

asked how many used EJBs, and most hands went up; the next question was how many of

those EJBs were actually invoked remotely. The answer was, anecdotally, about 2%.9

That mindset is what drove J2EE Development without EJB: a desire to return

freedom to the coders, to provide support for programming with necessary complexity.

If you needed to call a remote service, well, nothing stops you from doing that, but

experience with actual coding showed that it was rarely necessary and, instead, served

as a barrier to just getting things done.

Rod’s primary insight was that EJBs might be powerful, but they were a little like

strapping a V6 engine into a child’s bicycle. Most developers didn’t need them, or

want them; EJB just happened to be the language feature du jour, and as a result

8�JNDI, the “Java Naming and Directory Interface,” is a standard way for an application
administrator to create local names for global references. If it sounds sort of like LDAP, it’s
because it was derived largely from LDAP. It also meant that in order to look up resources, you
had to know how to set up the references, and few bothered. In practice, effectively no one liked
doing it as part of development.

9�TheServerSide Java Symposium, Las Vegas, NV, 2004.

Chapter 1 History and Justification

6

development was slowed down, deployment was more difficult,10 testing was difficult,

and configuration was arcane. Most developers didn’t use the “correct techniques” for

looking up EJBs because they didn’t want to take the time to configure the EJB container.

Configuring the container meant that reproducing conditions was more difficult, as well.

It was a mess. It was a productive mess, at times; after all, the technology was

created as a response to actual user needs. But even if developers were able to use it to

get real things done well, it created a lot of burden on those same developers, and the

practices in place weren’t making it better. The technology didn’t even really allow better

practices.

1.2  �Rod and Juergen Change the (Java) World
In J2EE Development without EJB, Rod (and Juergen, but I’ll shorten it to Rod and hope

Juergen takes no offense!) mapped out a process for J2EE development that focused on

six themes:

•	 Simplicity

•	 Productivity

•	 The fundamental importance of object orientation

•	 The primacy of business requirements

•	 The importance of empirical process

•	 The importance of testability11

In addition to these themes being obviously fairly important, it’s important to

recognize that these themes were secondary concerns for typical J2EE development.

For example, EJBs were meant to represent generic access to remote services,

so developing an EJB meant creating something that could be invoked via complex

protocols, along with handling fairly complex transactional concerns. If that’s what

you actually needed, then EJB was fine… but most developers didn’t need to worry

about CORBA, and their transactional needs tended to be very simple. EJB represented

complexity that the applications didn’t need.

10�EJB modules were deployed separately from presentation modules, so you had to configure the
application to coordinate everything to actually run your code.

11�Rod Johnson, J2EE Development without EJB (Hoboken: Wiley, 2004), 5-6.

Chapter 1 History and Justification

7

If the applications didn’t need the complexity, but programmers had to be

aware of it, then the complexity represented a direct and unavoidable sunk cost for

development.

Further, EJBs tended to be non-Java-like in how they worked. They represented

endpoints of functionality, not self-contained objects. Designing an EJB meant stepping

outside of the very paradigms that made Java useful in the first place.

Spring was designed to change enterprise development such that it prioritized,

well, all six of those themes. It was designed to be simple (and thus productive and by

definition focused on actual business requirements), object oriented, and testable, a

feature whose value is difficult to overvalue.12

J2EE Development without EJB then went on a tear, demonstrating a self-

contained application context that, despite using XML, was far easier for developers

to work with than J2EE’s striated developer/deployer model. It returned power to the

developers and along the way provided easy ways to create objects that were used

solely for testing – a feature EJB provided but only with great difficulty – and ways to

change how the application objects acquired resources such that it made sense to

most developers.

After all, if you need a Widget in your FooFram, one doesn’t normally think that in

ordinary Java the FooFram should ask a remote service to provide a Widget somehow;

normally one has a setWidget(Widget widget) method in the FooFram object.

Spring went a long way to making Java look like, well, Java again. Objective adoption

rates are unclear, but it’s safe to say that Java developers were a lot more excited about

developing with Spring than with traditional J2EE. However, Spring was not a formal part

of the development landscape of J2EE.

Spring had an almost subversive approach; one used J2EE, and Spring was used

alongside J2EE to actually get things done. It was a curious, but effective, model. Spring

was becoming a standard dependency for many; it was standard idiom without being an

actual part of any standards.

Better approaches were possible, with the creation of community processes such

that Java application design wasn’t decided upon by cloistered architects in San Jose.

12�In other words, testability is extremely valuable. Tests allow you to know if the code is working as
designed; no more cases where a developer says “I think it should work…” followed by delivery
to a customer. That still happens, but it’s not the failure of the technology: it’s a failure of process.

Chapter 1 History and Justification

8

1.3  �The Lever: Dependency Injection
The core design pattern that Spring introduced to the wider Java world is called

“Dependency Injection.”13 With the “traditional J2EE approach,” objects that needed a

resource deterministically acquired that resource, with a specific name. (You could, I

suppose, look up the name you wanted, but then you have to look up the specific name,

which isn’t much better.) Control over which resource was provided was given to the

J2EE application server’s administrator.

For a developer to use J2EE, he or she had to assume the administrator role and

configure the name service somehow. Name services, to borrow a phrase from Barbie,

are hard; you have to make sure you have qualifying types (a low barrier, honestly,

because most of the things you’d want a name service for would qualify, by design), you

have to know how to make sure the objects are constructed properly, you have to know

how to set up the names and resources for your specific application server, and you then

have to know how to set up the application-specific redirected names – again, for each

application server, because while most of them were similar, they weren’t quite the

same, either.

It’s a very powerful idea, but it’s more than most developers wanted to do – and

many of them did only the minimum necessary and didn’t bother setting up local names

for resources. It also made testing very difficult, because you couldn’t just use a Widget in

a test, you had to deploy a Widget, set up a name for it, and have your object look up the

Widget in the test. It’s doable, certainly – programmers are often inventive and driven –

but it’s also a pain.

With Dependency Injection, however, the objects that want a Widget no longer

have to look up a Widget. Now, when an object that needs a Widget is constructed,

the Dependency Injection framework (in this book, Spring!) provides a Widget

immediately.14 The Dependency Injection framework gathers information about Widget

in a few different ways: the simplest way (and the earliest) was simply to create an XML

file that had a reference to a Widget and the classes that needed it. In later versions of

Java and Spring, the application code can be searched for possible instances of injectable

resources, making configuration of simple applications very lightweight.

13�It used to be called “Inversion of Control.”
14�There is a distinct lack of nuance here. There are actually lots of ways for this to happen; we’ll

see many variants and why these variants matter in a later chapter.

Chapter 1 History and Justification

9

When programmers designed code for J2EE, they indebted themselves to the J2EE

mindset; everything one did with J2EE involved a lot of, well, J2EE. You couldn’t test

code that used an EJB without involving yourself in JNDI configuration – a simple test

would have to start up a JNDI container (and, possibly, an EJB container), along with

populating the JNDI dataset and making sure the EJBs could be resolved. None of

that is actually testing the service – it’s all gruntwork required just to get to the point

where you’re able to test the service. It implies enduring startup time for the containers

(which is time wasted even in the best of circumstances) and time spent on testing the

configuration.

But if the goal is to test something… pragmatism would suggest that configuration of

containers and startup times is all wasted.

With Dependency Injection, you simply create a Java class that reflects the behavior

you want, and supply it to the class you’re testing. Your test doesn’t even have to depend

on Spring or anything else. As an example, let’s consider two forms of “Hello, world”15 –

the EJB version (as it would exist around 200516) and a version that represents the class

structure that’s ready for Dependency Injection.

1.3.1  �J2EE Hello World, as of 2005
An EJB back in the first days of Spring needed at least three source files: an interface that

described the contract for the EJB, a class that provided the actual executable code for

the EJB, and a “home object” that was used to manage the EJB’s lifecycle (operations that

took place when the EJB was created, or destroyed, among other lifecycle stages). We’re

not even going to go into the process of developing the actual deployment itself – this is

just the Java class structure required at runtime. Deployment required at least one XML

descriptor, with each container often requiring yet another container-specific XML file

to connect resources inside the container’s JNDI tree. It was maddening, even in the best

case… and the best cases were rather rare.17

15�Note that we’re going to revisit “Hello, World” in the next chapter, and do it correctly.
16�Why focus on 2005? Because Spring made J2EE change a lot, something that every Java

programmer benefitted from. We’re showing why Spring was such a benefit to Java.
17�Sadly, the rarity of the best cases was difficult to measure, because most developers would do

things inefficiently just so they could avoid the normal deployment model. This is a clear signal
that EJB development, while “functional,” didn’t actually work.

Chapter 1 History and Justification

10

Listing 1-2.  The EJB interface

interface HelloWorldEJB

 extends EJBObject

{

 String sayHello(String name)

 throws RemoteException;

}

In our HelloWorldEJB, we’re simply saying that we have one method that the EJB

provides: sayHello(). Since this is an EJB, we have to anticipate the possibility of errors

occurring due to the nature of EJBs being remoteable. It’s worth pointing out that

even the interface of our EJB is affected by, well, being an EJB; we have to include the

EJBObject interface. We can’t even develop this much of our EJB without being aware

of the fact that it’s an EJB. This is Not Good; it represents technical debt to J2EE and we

haven’t even done anything yet.

Listing 1-3.  The EJB home object

public interface HelloWorldEJBHome

 extends EJBHome

{

 HelloWorldEJB create()

 throws RemoteException,

 CreateException;

}

The HelloWorldEJBHome interface specifies how a concrete instance of

HelloWorldEJB can be created. In our case, our interface demonstrates a stateless service

(e.g., we don’t create it with a default target to greet), so there’s nothing special for the

creation process… yet we still need to create this interface.

Chapter 1 History and Justification

11

Listing 1-4.  The EJB implementation

class HelloWorldEJBImplementation

 implements SessionBean

{

 public String sayHello(String name)

 {

 if(name==null)

 {

 name="world";

 }

 return "hello, "+name+".";

 }

}

At least, we have meaningful code! It’s a simple method; if the argument is null,

default to saying “Hello, world,” but otherwise greet the name provided to the method.

It’s worth noting here that it doesn’t actually implement HelloWorldEJB – evidence of an

antipattern, indeed.

Listing 1-5.  The EJB client code

...

try {

 Context ctx=new InitialContext();

 Object ref=ctx.lookup("java:comp/env/ejb/hello");

 HelloWorldEJBHome home= (HelloWorldEJBHome)

 PortableRemoteObject.narrow(

 ref, HelloWorldEJBHome.class);

 HelloWorldEJB greeter=home.create();

 System.out.println(greeter.sayHello("Andrew"));

} catch(Throwable throwable) {

 /*
 bubble up to the next level of the application

 for all exception conditions, since we can

 handle none of them *here* - note that we're

Chapter 1 History and Justification

12

 handling CreateException, RemoteException,

 and NamingException with one catch block

 */

 throw new RuntimeException(

 throwable.getMessage(), throwable);

}

This is what the caller of our EJB would have to do as a bare minimum. This doesn’t

test our EJB; it only calls it. If we wanted to test our EJB out, we’d have to construct

something similar to this, deploy our EJB, and add code to pass it known inputs and

compare to expected outputs.18

I think it’s safe to say that this sounds like a burden… but this is what every J2EE

developer had to endure.

1.3.2  �Spring’s Better Vision of Hello World
Now let’s take a look at what Rod Johnson encouraged coders to create. We’ll have our

contract (the interface), an implementation of that interface, and show client code that

would use our HelloWorldBean – and then walk a little bit through some of the many

reasons this implementation is better.

Listing 1-6.  The HelloWorld interface

package com.bsg5.hello;

interface HelloWorld

{

 String sayHello(String name);

}

Note how clean this interface is: it does nothing more than our EJB’s interface

does (and in fact HelloWorldEJB could extend this interface, adding only the

EJBObject interface as decoration). This class has no technical debt anywhere – not

to Spring, not to J2EE.

18�Note that the EJB 1.1 source files shown here are not part of the book’s source code. These
files are like time-traveling back to when your choices were death by smallpox or death by the
bubonic plague.

Chapter 1 History and Justification

13

Listing 1-7.  The HelloWorld implementation

package com.bsg5.hello;

public class HelloWorldImplementation

 implements HelloWorld

{

 public String sayHello(String name)

 {

 if(name==null) {

 name="world";

 }

 return "Hello, "+name+".";

 }

}

We see the same pattern with HelloWorldImplementation as we do with HelloWorld.

It depends on the HelloWorld interface, of course, but that’s all. We have nothing in the

class that’s not focused on actually fulfilling the contract of the HelloWorld interface.

The HelloWorldEJBImplementation gets close to that idea, but has to implement

SessionBean – and is not supposed to implement the interface that represents its

contract. We’ve only displayed two example classes and we’ve got far less technical debt,

and our classes conform to idiomatic Java – even the idioms of the day back in 2004 or so,

when J2EE was king and dinosaurs roamed the Earth.

Listing 1-8.  The HelloWorld client

package com3.bsg5.client;

public class Greeter

{

 HelloWorld generator;

 void setGenerator(HelloWorld generator)

 {

 this.generator=generator;

 }

Chapter 1 History and Justification

14

 public void displayHello(String name)

 {

 System.out.println(generator.sayHello(name));

 }

}

Here, you see the generator reference points to a HelloWorld implementation.

Greeter doesn’t instantiate a HelloWorld (although it could if it wanted); however, the

idea here is that something external to Greeter provides a HelloWorld, and a Greeter

just uses it. It doesn’t have to have any acquisition code, has no lookup code, it’s just an

attribute on a regular Java class.

HelloBean is too simple to actually need other implementations… but suppose we

needed to wrap some other functionality into an implementation for testing or other

diagnosis?19 We could create the functionality and just use the new implementation

for testing; our Greeter class doesn’t have to change, and we don’t have to do anything

special to switch to our new implementation besides using it instead.

This is Dependency Injection; we’re injecting the HelloWorld dependency when we

need it.

Spring not only recognized the power of this pattern, but the Spring framework

provided tools to use it; you would define an XML file that named a helloworld bean

(of type com.bsg5.chapter1.HelloWorldImpl), as well as a Greeter instance, and would

inject the helloworld reference into the Greeter automatically, with no source-level

dependencies on Spring whatsoever.

Spring added some technical debt, if you used certain aspects of the framework: you

could have lifecycle hooks in your beans, for example, if you wanted them. (You could

still configure lifecycle stages via XML, too, and avoid technical debt in the source files.)

But Spring was, and is, largely pragmatic; you, as a developer, had the power to choose

how much debt you wanted to incur, as opposed to J2EE’s mandated and crushing

technical debt.

19�We’ll see this sort of thing in Chapter 2.

Chapter 1 History and Justification

15

1.4  �Spring Breaks Free and Fixes Java EE
Sun, the original creators and maintainers of Java, created the Java Community

Process back in 1998, but opened up membership a few years later. Spring, being an

influential aspect of the community, participated in the creation of Java EE 6, with

J2EE having been renamed to something less confusing.20 With Spring’s participation,

Java EE 6 gained a new specification, “Context and Dependency Injection.” Standard

annotations were added to support CDI and features related to it, and the world

rejoiced publicly and privately.

The funny thing is, as Spring became more influential on Java EE, Java EE itself

became less influential. Spring never stopped innovating; now, you can deploy

microcontainers using Spring, leveraging Java EE API specifications, without bothering

with Java EE containers as such at all. You can still use a Java EE application server, of

course, but the need to do so has lessened.

That represents a loss of control by the “old guard,” the system administrators who

still think that 2005 represented the “good old days21” – but it means that programmers

of today have more power and flexibility than they’ve ever had, and in Java it’s fair to say

they owe a debt of gratitude to the Spring framework for it.

1.5  �Next Steps
In our next chapter, we’re going to take a look at “Hello, World” again – and go a lot

deeper into the strengths of Dependency Injection, and Spring in particular.

20�”Java 2, Enterprise Edition” made sense, until you realized that it used Java 1.2. Then you had
“Java 2, Enterprise Edition, version 1.3,” and so on. Sun was a brilliant company with confusing
release numbering schemes. It made sense when you dug into the details, but it would have
made a lot more sense to just use cohesive and sensible version numbers. We’ll talk more about
this in Chapter 5 when we discard “J2EE” as a name.

21�Those old system administrators are probably still on their front porches, shouting “Get off my
lawn!”

Chapter 1 History and Justification

17
© Joseph B. Ottinger and Andrew Lombardi 2019
J. B. Ottinger and A. Lombardi, Beginning Spring 5, https://doi.org/10.1007/978-1-4842-4486-9_2

CHAPTER 2

Hello, World!
It seems appropriate to start learning about Spring by building out our first example

as a simple “Hello, World!” application. In this chapter, we’re going to take a look at

the tools and libraries we’re going to rely on – in particular, Gradle and TestNG1 – and

build a simple application to demonstrate how we validate that our application works

as designed. Then – at last – we’ll leverage Spring in our application. This way, we’ll

establish the knowledge we’ll need to make sense of the rest of the book.

2.1  �A Simple Application
Our goal in this chapter will be to take another look at the “Hello, World” application

from Chapter 1, except this time we’re going to examine tooling and the mindset that

drove the design.

First, why “Hello, World?” Traditionally, programming languages (and frameworks)

use this application because it’s very simple – and that means we have room to focus on

things like overall syntax, how to design, how to build, and how to run the app. “Hello,

World” allows us to do nothing but explore the lifecycle of a “full program.”2

1�Why TestNG and not JUnit? There’s a little more explanation later in this chapter, but just to get
it out of the way: TestNG makes certain kinds of tests more convenient. You should be able to
use JUnit instead with fairly little difficulty, although you’ll need to add a JUnit module to use
features like data providers.

2�We’re foisting a “Hello world” on you, but we promise there’s no “Pet Store” in this book. If that
doesn’t give you a palpable sense of relief, well… pretend it does, because it should. Right, Joe?
We’re not doing the Pet Store, right? We agreed? Yes?

18

Spring is going to be incredibly heavy for such a simple application, and we aren’t

even going to use it for the first iteration, but that allows us to focus on tooling and

process, including tests.3 We’ll wire everything together with Spring as we continue –

even though it will look a bit silly – because that will demonstrate how we can move

configuration around as needed, a feature that’s necessary in real-world scenarios.

2.1.1  �Suffering-Oriented Programming
Throughout the entire book, we’re going to do simple things over and over (and over)

again – you’ll probably be sick of “Hello, World” as we use it multiple times. This is partly

because of the familiarity of “Hello, World” – it has simple, knowable inputs and simple,

knowable outputs and therefore allows us to focus on the bits that surround the basic

process rather than the process of saying “Hello” itself.

A bit of history: “Hello, World” was introduced to the world in Kernighan and
Ritchie’s The C Programming Language.4 This is an iconic programming
book, and it’s the most accessible of the classic programming books such as
The Art of Computer Programming (Knuth) or Design Patterns (Gamma, Helm,
Johnson, Vlissides). The other books are accessible, too – they’re classics
for a reason – but The C Programming Language stands alone due to its
directness, simple and clear presentation of its subject matter, and, well, the
time of publication.

“Hello, World” is used as a “sanity check” – a very simple program to make
sure the compiler and runtime environment are working, as well as illustrating
a general “bare minimum” to get a program running that actually generates
output.

3�If you don’t write tests, you need to start writing tests. Don’t worry, you’ll get a ton of exposure in
this book. They’re easy and fun. After your first 1,203,172 tests, you might get a free toaster.

4�Kernighan, Brian & Ritchie, Dennis (1978), Englewood Cliffs, NJ; Prentice-Hall.

Chapter 2 Hello, World!

19

Many programmers add functionality to it to illustrate additional features; the Free
Software Foundation’s “Hello, World” (found at www.gnu.org/software/hello/)
is 184 lines of code, illustrating command line parsing and licensing and other such
issues of concern for the FSF – and the downloadable archive is nearly 800K!

Following this time-honored tradition – are there any other kinds of valid
traditions? – we’ll be following suit in this book, generally using “Hello, World” to
make sure our library is doing what it’s supposed to, before adding functionality
that actually exercises the chapter’s subject in question.

We also follow the concept of “suffering-oriented programming,” a term coined by

Nathan Marz on http://nathanmarz.com/blog/suffering-oriented-programming.

html. The concept behind this is simple: “First make it possible. Then make it beautiful.

Then make it fast.”

This mindset says that working code is superior to any other kind of code; you

should first focus on making your application run.

The next most important aspect of your code is to make it understandable – or

“beautiful,” or perhaps “simple.” Once you’ve solved your problem somehow (you’ve

made it work), you are likely to understand your problem more completely than

when you first started writing code. Now that you’ve got working code, you can try

to simplify your solution such that it’s more clear and maintainable. (Spring helps

a lot with this, by the way.) Along the way, if you find your “more beautiful” version

doesn’t actually work, well… you’ve still got your baseline code, the code that existed

before you started beautifying, so you can refine your attempts to clean up your code

until it, too, works.

Lastly, you make your code fast. By this point you’ve presumably got working code

written with simple abstractions; now it’s time to focus on where the code actually runs

inefficiently, such that it uses resources properly. This is where you’d go through the code

with a profiler, looking for places where you allocate memory unnecessarily (a small

concern with languages like Java, where short-term memory usage is, to use the

technical term, “fast as blazes”) or where you iterate through data structures more slowly

than you could have.

This book focuses heavily on the first two aspects of suffering-oriented

programming, because Java’s actually fairly spectacular at making simple code run well,

but it’s worth keeping all three concerns in mind.

Chapter 2 Hello, World!

http://www.gnu.org/software/hello/
http://nathanmarz.com/blog/suffering-oriented-programming.html
http://nathanmarz.com/blog/suffering-oriented-programming.html

20

2.2  �Building
With simplicity in mind, we’re going to use an open source build tool called Gradle.5

Gradle is one of the two major build systems popular in Java, along with Maven, but

Gradle has a simpler configuration file – and the goal of this book is to focus on Spring,

rather than spend 15 pages explaining how the build system is configured.

Gradle uses a conventional filesystem structure lifted from Maven and a simple

domain-specific language for building. Basically, there’s a directory for source files

called src – with typically two directories in it. src/main holds the application files – the

ones that make up the actual program being built – and src/test contains the files that

are for testing only. src/main and src/test themselves have different directories; Java

files that are part of the application would go into src/main/java, while tests written in

Java would be located in src/test/java. You might have static resources as part of the

build; things meant to be included for delivery would go in src/main/resources, where

resources meant only for testing would go into src/test/resources.

You’ll have a lot of opportunities to see these structures over and over again as the

book progresses.

First, let’s show how to install Gradle for some popular operating systems.6 After that,

we’ll walk through build.gradle, the file that informs Gradle about how you want your

project built.

5�Gradle can be found at https://gradle.org. We’ll demonstrate how to install Gradle for many
operating systems as we go through the chapter.

6�If your operating system is not addressed, fear not, Brave Reader: http://gradle.org/ can help.

Chapter 2 Hello, World!

https://gradle.org/
http://gradle.org/

21

2.2.1  �Installing Gradle
The best method to install Gradle is subjective, but our recommendation is to use a

package manager available on your platform.

For Linux, you can use the SDKMAN! package manager7 and install with:

sdk install gradle 5.5.1

For MacOS the best option is to use Homebrew8:

brew install gradle

And for those of you unlucky enough to be using Windows, scoop9 is inspired by

Homebrew and looks to be pretty decent:

scoop install gradle

Most often you will add the Gradle wrapper to your code repository and developers

can just use the wrapper for their operating system, either gradlew or gradlew.bat. To

create the Gradle wrapper after installing Gradle from any of the preceding methods, you

can do the following:

> gradle wrapper

> Task :wrapper

BUILD SUCCESSFUL in 0s

1 actionable task: 1 executed

The result will be two files and a directory you can add to your code repository:

gradlew, gradlew.bat, and the directory gradle/. (There’s also a hidden directory,

.gradle, that holds a local gradle instance for repeatable builds, but that shouldn’t go

into a code repository.)

7�SDKMAN! (https://sdkman.io/) is a developer-focused environment manager for multiple
operating systems, including Linux, Windows, and OSX. It allows you to have localized
environments for building and running applications. It’s horribly useful, because it disassociates
you from the distribution’s package-management process.

8�Homebrew (https://brew.sh/) is essential if you run MacOS, so if you don’t have it installed
already, for the love of all that is good and holy, do it now.

9�Scoop (https://scoop.sh/) is a simple command line installer for Windows.

Chapter 2 Hello, World!

https://sdkman.io/
https://brew.sh/
https://scoop.sh/

22

2.2.2  �Building the Project
Gradle uses a plugin-based system to control what simple operations to apply to a given

project. For Java, there’s a java plugin; we’ll use that to use the default configurations for

building, testing, and bundling Java artifacts.

What’s an “artifact?” An artifact is a deliverable element. If you build an application
into a file called myapplication-1.0.jar, then myapplication-1.0.jar
is an artifact of your build. A single project might have multiple artifacts; this
will show up in a much later chapter. For right now, though, an “artifact” is a
deliverable element generated from a project.

What we want to do is define a build that controls a number of other builds as

subprojects, or “modules.” Our top-level file won’t actually have anything to compile, but

it will instead define variables for use in our chapter modules, as well as setting global

preferences. As a result, our chapters’ build.gradle files will be essentially simple, only

containing dependencies and configurations for the chapters that are differentiated from

the top-level project.

In practice, this means that the chapters’ build.gradle files will consist of chapter

dependencies themselves, like Spring. Let’s take a look at the file in Listing 2-1.

Listing 2-1.  Gradle Java plugin definition

apply plugin: 'java'

sourceCompatibility = 1.11

targetCompatibility = 1.11

ext {

 springFrameworkVersion = "5.1.5.RELEASE"

 jacksonVersion = "2.9.9"

 testNgVersion = "6.14.3"

}

allprojects {

 apply plugin: 'java'

Chapter 2 Hello, World!

23

 repositories {

 jcenter()

 mavenCentral()

 }

 dependencies {

 testImplementation "org.testng:testng:$testNgVersion"

 }

 test {

 useTestNG()

 }

}

Our top-level build file has four sections:

•	 A plugin section that marks this as a Java project. This is meant

mostly to help with setting the Java version settings, which aren’t

visible in non-Java projects.

•	 sourceCompatibility and targetCompatibility settings, which

target the current (as of publication time) long-term supported

version of Java, which is Java 11. (At the time of writing, Java 12 had

been released; however, that version will be deprecated when Java 13

is released. Java 11 is slated to have support for a few years.)

•	 An ext section that sets variables for use in every other submodule.

Here, we set our TestNG version and the current Spring release

version; if a new release of Spring is made, we can update Spring for

the entire project by changing the value of springFrameworkVersion.

•	 A section marked allprojects. This is a set of build directives that

apply to every project under this project. What this means, then, is that

every chapter will have the java plugin applied and will depend on

TestNG (and use TestNG in tests). They will also look up dependencies

(like Spring and TestNG) through two common repositories.

However, we’ve made a reference to subprojects without showing them. Our next

file, settings.gradle, is how we can easily tell Gradle that a subdirectory represents a

subproject (Listing 2-2).

Chapter 2 Hello, World!

24

Listing 2-2.  /settings.gradle including submodules

rootProject.name = 'bsg5'

// add inclusions as the chapter sources are followed

include 'chapter2'

include 'chapter3'

include 'chapter4'

include 'chapter5'

include 'chapter5common'

include 'chapter5anno'

include 'chapter5xml'

include 'chapter6'

include 'chapter7'

include 'chapter8'

include 'chapter9common'

include 'chapter9test'

include 'chapter9jpa'

include 'chapter9mongodb'

include 'chapter10'

include 'chapter10custom'

include 'chapter10jpa'

If you’re typing in each chapter’s code as you proceed through the book, you’ll want

to include only the existing directories – if you have only chapter2 as a subdirectory for

your project, only use include 'chapter2'.

We have a very flat directory structure. In Maven, one can nest projects deeply;

you can do it with Gradle, too, but Gradle uses a slightly different addressing

scheme for projects. As a result, it’s more efficient for Gradle to have a very flat

structure with unique names for each chapter; thus, instead of having a chapter9

directory with common, test, jpa, and mongodb in it, we have chapter9common,

chapter9test, and so forth.

We can now define the build.gradle for our submodule in the chapter2 directory.

In this chapter, we need three Spring dependencies (spring-core, spring-context,

and spring-test) – and every other attribute of the build comes from the build.

gradle at the top-level project (i.e., apply the java plugin, use Java 11, include and use

TestNG for testing).

Chapter 2 Hello, World!

25

Listing 2-3.  chapter2/build.gradle

dependencies {

 compile "org.springframework:spring-core:$springFrameworkVersion"

 compile "org.springframework:spring-context:$springFrameworkVersion"

 compile "org.springframework:spring-test:$springFrameworkVersion"

}

The Gradle default is to run tests under JUnit. As we’ll discuss in the next section,

we’re choosing to use TestNG instead in the examples of the book. TestNG has had

support for annotations from the beginning, doesn’t require extending a test class, and

has other powerful features that we’ve decided to leverage10; you can use JUnit in similar

ways but TestNG has earned its way into our hearts.

Now that we’ve got the basics set up with Gradle, we can run the gradle command

and see some very mundane but expected output – since we don’t have any code yet.

Listing 2-4.  Gradle output without any code

% gradle

Parallel execution is an incubating feature.

> Task :help

Welcome to Gradle 4.6.

To run a build, run gradle <task> ...

To see a list of available tasks, run gradle tasks

To see a list of command-line options, run gradle --help

To see more detail about a task, run gradle help --task <task>

For troubleshooting, visit https://help.gradle.org

BUILD SUCCESSFUL in 0s

1 actionable task: 1 executed

10�TestNG utilized the concept of data providers before JUnit did, and while JUnit supports the
feature now it’s through a library external to JUnit. We’ve chosen to stick with TestNG, but you
can certainly use JUnit instead without hurting our feelings very much; JUnit’s nearly caught up
with TestNG and in some ways has surpassed it.

Chapter 2 Hello, World!

26

In the next section, we’ll go into more detail about TestNG and how we’ll be using it

throughout the many examples in the pages ahead.

2.3  �Testing
The best way to ensure that your program is working as intended is not System.out.

println all over your codebase. It’s to write tests. Tests allow us to write assumptions

about what our code does, and have those validated (or not). They help with refactoring

and can sometimes be an initial basis for self-documentation of the codebase.

As we saw in Listing 2-1, we’ve already added TestNG to our configuration for

every submodule in our directory structure. So let’s assume before we write any

implementation that we have a class called HelloWorldGreeter that implements an

interface Greeter which defines two methods greet() and setPrintStream().

Listing 2-5 shows our very simple Greeter interface.

Listing 2-5.  chapter2/src/main/java/com/bsg5/chapter2/Greeter.java

package com.bsg5.chapter2;

import java.io.PrintStream;

public interface Greeter {

 void setPrintStream(PrintStream printStream);

 void greet();

}

As mentioned earlier, TestNG makes use of annotations to instrument your test

classes. For our test GreeterTest, we will use the method annotation @Test to let TestNG

know to run testHelloWorld as a test – if any of the assertions fail, or if an exception is

thrown, the test will be considered to have failed.

Listing 2-6.  chapter2/src/test/java/com/bsg5/chapter2/GreeterTest.java

package com.bsg5.chapter2;

import org.testng.annotations.Test;

import java.io.ByteArrayOutputStream;

Chapter 2 Hello, World!

27

import java.io.PrintStream;

import java.io.UnsupportedEncodingException;

import java.nio.charset.StandardCharsets;

import static org.testng.Assert.assertEquals;

public class GreeterTest {

 @Test

 public void testHelloWorld() {

 Greeter greeter = new HelloWorldGreeter();

 final ByteArrayOutputStream baos = new ByteArrayOutputStream();

 try (PrintStream ps = new PrintStream(baos, true, "UTF-8")) {

 greeter.setPrintStream(ps);

 greeter.greet();

 } catch (UnsupportedEncodingException e) {

 e.printStackTrace();

 }

 String data = new String(baos.toByteArray(), StandardCharsets.UTF_8);

 assertEquals(data, "Hello, World!");

 }

}

You can see in Listing 2-6 that we also have a static import so in our assertions

we can type assertEquals(actual, expected) vs. Assert.assertEquals(actual,

expected). Using static imports in test code is generally a good idea11 as this type of code

tends to duplicate calls many times in each method and we’re not losing any readability

since it’s fairly constrained. The implementation of a Greeter is that an implementation

will output something (the default implementation will send to System.out). A test that

can confirm this is a bit difficult, so we inject our own implementation of a PrintStream

and use that to assert the test case we expect. Take a look at the snippet of code later and

see how we’re creating a new HelloWorldGreeter object, a ByteArrayOutputStream, and

the PrintStream which our Greeter will use to send data to (which by default is assigned

to System.out – we want to override it so we can check the output).

11�Using static imports in your regular code is a code smell, and you don’t want your code to smell
funky, do you? … No, you don’t.

Chapter 2 Hello, World!

28

Now that we have a test we can use to validate expected functionality, let’s write

the implementation for HelloWorldGreeter so we can get it to compile and run.

In Listing 2-7 you’ll find a base implementation of the Greeter interface.

Listing 2-7.  HelloWorldGreeter without implementation

package com.bsg5.chapter2;

import java.io.PrintStream;

public class HelloWorldGreeter implements Greeter {

 public void setPrintStream(PrintStream printStream) {

 }

 public void greet() {

 }

}

With the preceding code in place, we can run gradle test and get the expected

failure in Listing 2-8. The failure proves our assumption, that the current implementation

of Greeter does in fact not print “Hello, World!” and the test works as expected. (The

actual failure record can be seen in chapter2/build/reports/tests/test/index.html,

if you’re interested, but in this case we know exactly why the test failed: our class doesn’t

do anything yet.)

Listing 2-8.  GreeterTest failure

gradle test

Parallel execution is an incubating feature.

> Task :chapter2:test FAILED

Gradle suite > Gradle test > com.bsg5.chapter2.GreeterTest.testHelloWorld

FAILED

 java.lang.AssertionError at GreeterTest.java:26

1 test completed, 1 failed

FAILURE: Build failed with an exception.

Chapter 2 Hello, World!

29

* What went wrong:

Execution failed for task ':chapter2:test'.

> There were failing tests. See the report at:

 file:///./chapter2/build/reports/tests/test/index.html

* Try:

Run with --stacktrace option to get the stack trace. Run with --info or

--debug

 option to get more log output. Run with --scan to get full insights.

* Get more help at https://help.gradle.org

BUILD FAILED in 1s

4 actionable tasks: 2 executed, 2 up-to-date

Finally, let’s actually write the implementation for HelloWorldGreeter so that we

know the test not only works as expected but will pass. We’re going to write a non-Spring

implementation of HelloWorldGreeter so that in the next section when we add the

relevant Spring configuration, you’ll have a base of understanding to work from.

Listing 2-9.  chapter2/src/main/java/com/bsg5/chapter2/
HelloWorldGreeter.java

package com.bsg5.chapter2;

import org.springframework.stereotype.Service;

import java.io.PrintStream;

In this section, we wrote a test using TestNG against the Greeter interface and

exercised the implementation we wrote called HelloWorldGreeter. Everything has used

vanilla Java so far because of the nature of the example and was very simple to achieve.

In the next section, we’re going to refactor the code in Listing 2-9 to show you how to

wire the beans together using the power of Spring’s Dependency Injection framework.

Chapter 2 Hello, World!

30

2.4  �A Simple Application with Spring
What have we done so far? We’ve built an “application” (in our test) that creates a

Greeter and, after supplying it with instances of a PrintStream we can use to test, we

exercise it. We are manually building the classes to inject into our Greeter, and we’re

manually instantiating the actual Greeter implementation as well.

Spring allows us to automate almost everything but the test itself – which we don’t

really want to automate (although I suppose we could, given a scaffolding). We’re going

to get Spring to do all of the object instantiation and injection for us; the power here is

that if we should want to redirect to something different, all we need to do is change the

actual objects being injected.

Historically one of the most pervasive arguments for not using Spring was the

configuration, which was written in namespaced XML.

While there is definitely a programmatic way of implementing our Spring

context,12 for purposes of this example, we’re going to stick with the XML file. Using the

conventions from our build system, we can put the config file in src/main/resources

and load it from the classpath.

The header of our file in Listing 2-10 pulls in specifics that we’ll need from Spring

which include the specs for beans.

Note that most IDEs can generate Spring contexts, including most or all of this,
for you.

Listing 2-10.  applicationContext.xml XML header

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

12�We’ll be showing you programmatic Spring context configuration in Chapter 3.

Chapter 2 Hello, World!

31

Let’s add our beans to the Spring config. In the section on testing, we checked

the output of the HelloWorldGreeter by creating a String from a passed in

ByteArrayOutputStream. When we wrote this out without using Spring, we were

forced to create the ByteArrayOutputStream, PrintStream, and HelloWorldGreeter

implementation like in Listing 2-11.

Listing 2-11.  GreeterTest test to validate HelloWorldGreeter

public void testHelloWorld() {

 Greeter greeter = new HelloWorldGreeter();

 final ByteArrayOutputStream baos = new ByteArrayOutputStream();

 try (PrintStream ps = new PrintStream(baos, true, "UTF-8")) {

 greeter.setPrintStream(ps);

 greeter.greet();

 } catch (UnsupportedEncodingException e) {

 e.printStackTrace();

 }

 String data = new String(baos.toByteArray(), StandardCharsets.UTF_8);

 assertEquals(data, "Hello, World!");

}

While the preceding code is certainly fine, we can do the entire thing with the Spring

context. We will create the ByteArrayOutputStream and PrintStream objects using the

Spring context along with our HelloWorldGreeter which will take the PrintStream as a

bean reference.

Take a look at Listing 2-12 to see this in action.

Listing 2-12.  chapter2/src/main/resources/applicationContext.xml

<bean id="helloGreeter" class="com.bsg5.chapter2.HelloWorldGreeter">

 <property name="printStream" ref="printStream" />

</bean>

Chapter 2 Hello, World!

32

<bean id="printStream" class="java.io.PrintStream">

 <constructor-arg ref="baos"/>

 <constructor-arg value="true"/>

 <constructor-arg value="UTF-8"/>

</bean>

<bean id="baos" class="java.io.ByteArrayOutputStream" />

With the preceding code, we can greatly simplify our test because Spring ends up

doing all of the work by reading our configuration. We’re obviously (hopefully!) great

proponents of testing so the way we’ll ensure everything is working is to spruce up our

test with Spring.

Lastly, we will look at our test class, with a focus on the new testHelloWorld

method, and see how much it has simplified.

The first thing it does is create an ApplicationContext reference, by

instantiating a ClassPathXmlApplicationContext. This is a concrete instance

of an ApplicationContext that loads a configuration file from the classpath. As

you may (or may not) suspect, this is one of many possible concrete instances of

ApplicationContext; for most simple uses, this is one that works quite well.

Outside of the creation of the Spring context, the rest of the code is quite simple.

With Spring injecting our HelloWorldGreeter into the test class, in our method

we can simply call greeter.greet() and then convert the contents in the injected

ByteArrayOutputStream into a String and assert that it equals what we expect. If all

goes well, and it should, we’ll get a passing test now.

Listing 2-13.  chapter2/src/test/java/com/bsg5/chapter2/
SpringGreeterTest.java

package com.bsg5.chapter2;

import org.springframework.context.ApplicationContext;

import org.springframework.context.support.ClassPathXmlApplicationContext;

import org.testng.annotations.Test;

import java.io.ByteArrayOutputStream;

import java.nio.charset.StandardCharsets;

import static org.testng.Assert.assertEquals;

Chapter 2 Hello, World!

33

public class SpringGreeterTest {

 @Test

 public void testHelloWorld() {

 �ApplicationContext context = new ClassPathXmlApplicationContext

("/applicationContext.xml");

 Greeter greeter = context.getBean("helloGreeter", Greeter.class);

 �ByteArrayOutputStream baos = context.getBean("baos", ByteArray

OutputStream.class);

 greeter.greet();

 String data = new String(baos.toByteArray(), StandardCharsets.UTF_8);

 assertEquals(data, "Hello, World!");

 }

}

When we run this test – by running gradle :chapter2:test, in our top-level

directory – we should see something equivalent to the output in Listing 2-14.

Listing 2-14.  Output of gradle :chapter2:test in root directory

$ gradle chapter2:test

BUILD SUCCESSFUL in 7s

4 actionable tasks: 3 executed, 1 up-to-date

There’s no output for a successful test – only a successful build. Congratulations,

programmer!

One thing: It’s very important to note the class hierarchy of this test – it

must extend AbstractTestNGSpringContextTests (or, if you’re using JUnit 4,

AbstractJUnit4SpringContextTests; JUnit 5 has a different extension mechanism,

where you annotate a test class with @ExtendWith(SpringExtension.class) instead of

altering the class hierarchy. The new base class of the test is where the context is loaded

and any processing occurs, before the tests are run.13

13�Worth noting: Not remembering the proper inheritance bit the author for about 30 minutes
before he realized that he’d forgotten the required class hierarchy.

Chapter 2 Hello, World!

34

If we ignore the extravagant lengths we went to do build a “Hello, World” app and

think through the power that can come from loosely coupling our individual classes in a

bigger application, the power of Dependency Injection really starts to shine. In this case

we simply created and injected an OutputStream that gave us the ability to see what had

been written into it; we could easily replace this with an OutputStream (or Greeter) that

sent an email, or logged data, or performed a translation into different languages, or any

other feature we can think of – and yet our client application doesn’t have to change, or

even be aware of the differences.

Since the configuration of the structure is external to the classes themselves, we can

radically change the function of the program – while retaining a fairly high confidence

that the program works as designed, because our object model is trivial to test, and our

configuration is easily debugged.

2.5  �Next Steps
In our next chapter, we’re going to shift gears a bit and dive into configuration and bean

declaration with Spring.

We’re going to expand on our small “Hello, World” example and start exercising

more aspects that the Spring framework provides.14

14�I promise the next chapter will fly by, configuration talk is super exciting.

Chapter 2 Hello, World!

35
© Joseph B. Ottinger and Andrew Lombardi 2019
J. B. Ottinger and A. Lombardi, Beginning Spring 5, https://doi.org/10.1007/978-1-4842-4486-9_3

CHAPTER 3

Configuration and
Declaration of Beans
In this chapter, we’re going to explore a decent subset of Spring configuration, and we’re

going to shift attention away from “Hello, World” into a simple application that will allow

us to explore features and configuration. We’ll introduce the sample application first,

then walk through a few different ways to configure it. There’s a lot of code here, much of

it redundant on the surface, but we’ll use some base classes to help reduce the tendency

to repeat ourselves.1

3.1  �The Container
Spring changed how Java developers thought about class structure and design in their

applications,2 and it’s entirely doable to design applications with Dependency Injection

in mind – without using Spring – while reaping the benefits of the mindset. However,

the central mechanism for using the Dependency Injection mindset, regardless of what

framework you use, is the Container.

The Container is responsible for managing instances of what are referred to

as “managed objects.” Our HelloWorldGreeter from Chapter 2, for example, is a

manageable object (as most objects would be) but is managed when it’s created and

injected via the ApplicationContext – which is a Container. The ApplicationContext

is the primary interaction point for Spring-managed classes, so when we refer to the

“context,” this is usually what we’re referring to.

1�The redundancies we’re going to run into will either be required by Java as boilerplate or
deliberate choices to illustrate a point. We’ll try to be clear about why such choices are made.

2�See all of Chapter 1 for how and why – and you thought it’d be okay to skip! … and you thought
there’d be fewer footnotes as the book progressed, too, didn’t you?

36

Classes that are managed by a Spring container are referred to as “Spring beans.”3

The Container not only creates instances – the Spring beans – but also provides

references to those instances in various ways (through constructors, or mutators and

accessors4). The process as a whole is referred to as “wiring.”

We’re going to step through an example application’s specification, and then we’re

going to start showing how to wire the application together with Spring.

3.2  �The Sample Application

This next section – the entire heading, actually – has nothing to do with Spring at
all. No dependencies on Spring, no Spring references, no rites of Spring, absolutely
nothing outside of a reference here and there to remind us that we’re in a book
about Spring. However, we’re introducing an application that gives us enough
functionality to explore Spring in some depth; without the application and an
understanding of it, we’re going to end up saying “Hello, World” in 80 different
ways. With the project, we’ll have a practical application to keep in mind as we
walk through Spring features.

Imagine you’re the fan of a band called “Threadbare Loaf.”5 If you were trying to

introduce a friend to Threadbare Loaf, they’d probably wonder what song (or songs) they

should listen to, to get a sense of what Threadbare Loaf is about as an artist; you might

suggest their first hit, “Someone Stole The Flour,” or perhaps the single from their second

release, “What Happened to Our First Release?”

3�Wouldn’t it have been neat for Spring to have been called “Human,” so instead of “Spring beans”
we had “Human beans?”

4�A “mutator” is also known as a “setter,” and an “accessor” is known colloquially as a “getter.” Your
Humble Authors find these terms to be rather gross, so we’re going to use the correct terms even
though they make us sound all hoity-toity and like we’re too proud to drink our wine from a box.

5�There is no artist known as “Threadbare Loaf” at the time this was written. If you still manage to
be a fan of the band, that’s… interesting.

Chapter 3 Configuration and Declaration of Beans

37

These two songs might be considered the “hooks” for the artist. Most artists have a

song or set of songs that exemplify the band’s direction and focus; for the Rolling Stones,

it might be “Satisfaction” or “Jumpin’ Jack Flash”; for Pink Floyd it might be “Money” or

“Comfortably Numb”; for The Beatles it might be “Hey Jude” or “Let It Be”; and so forth

and so on.

It’s not that the artists’ other songs aren’t great, but that these are songs which a given

person might think were perfect to entice someone else to enjoy the band as well.

What we’re going to do is create an API for an application to allow users to suggest

“hooks” for artists, and for other users to see what users suggested most. It’s a simple

application, and we’re not going to construct a full user experience; we’re mostly going

to focus on the core API for the application to illustrate Spring concepts.

We’re also going to create many, many versions of the API, with each iteration

being used to demonstrate different features of Spring. The API will likely improve as

we continue, but the goal of the iterations will usually be demonstrative and not for the

purpose of making the API more “mature” or full-featured.

For the purposes of this book, the application will be called the “band gateway,”

suggesting that the songs managed by the API are the “gateway songs” to appreciate the

artists in question.

We’re initially going to have two entities to consider as part of our data model: the

Artist and the Song.

An Artist is uniquely referred to by name.6 We should expect to support only one

Artist with a given name, as long as we’re working only with music.

A Song is scoped to an Artist and does not have a unique name – it’s perfectly

legitimate to have a song called “Come Together” recorded by both The Beatles and

Aerosmith, for example, and users might consider these songs the ideal introductions

to both bands.7 We’re also aware that artists might have other types of media that serve

6�Strictly speaking, this is not true, but artists usually do try to have unique names. The original
names for the example app were intended to be “The Heebie Jeebies” and “The Screaming
Meemies,” both rejected because there were actual bands with these names already. If
“Threadbare Loaf” and the other example band names (“Therapy Zeppelin” and “Clancy in Silt”)
used in this chapter actually exist in the real world, they were created and named rather poorly
after the book was written.

7�Worth noting: The opinions of the ideal introductory songs, or hooks, for every real band
mentioned are entirely up to the taste of the individual. You might listen to these songs and be
revolted; take every suggestion with a grain of salt, unless it refers to the Canadian band Rush, in
which case every suggestion is made very seriously.

Chapter 3 Configuration and Declaration of Beans

38

as “hooks” for the band, such as videos or other artistic works; for the purposes of

simplicity, we’re assuming that we are only managing audio recordings and not, say,

videos or paintings that might be associated with a given Artist.

Our application, in its initial form, needs to support a few basic read operations and

two write operations.

The operations related to reading data are as follows:

•	 Retrieve songs for an artist, ordered by popularity (the most popular

song is the better “hook”)

•	 Retrieve song names for an artist (for use in autocompletion

operations)

•	 Retrieve a list of artist names (for use in autocompletion operations)

Then, we also need to allow people to contribute to our database:

•	 Record that a song exists

•	 Vote for a song as a hook for a given Artist

3.2.1  �The Code for the Band Gateway
We’re going to need at least five classes to begin to construct our API: our model

consists of two classes (the Artist and Song), and we’re going to create an interface

(called Normalizer) that represents a method by which we can transform (or

“normalize”) names for our API, and lastly, an interface for our API (the MusicService)

and a base class that contains an in-memory representation of our model

(BaseMusicService).

We’re also eventually going to build a base class for our tests, for the same reason (it

will contain the basic tests we will want to run no matter what the actual implementation

of the MusicService is), and our actual tests will extend this base class.

Our model will be concrete, but the rest of the interfaces and abstract classes

are chosen because we don’t want to have eight implementations of the same

functionality.8

8�We’re trying to apply the programming principle known as DRY – “Don’t Repeat Yourself.” The
alternative is all WET – “Write Everything Twice.” This concept is given to us courtesy of Andy
Hunt and Dave Thomas, in their book The Pragmatic Programmer.

Chapter 3 Configuration and Declaration of Beans

39

�The Build

We’ll want to create a module for this project. In Chapter 2 we created a top-level project

and a chapter2 module under it; in Chapter 3 (this one) we’ll follow the same idea and

create a chapter3 directory. You’ll want to open up your settings.gradle from the

top-level directory and make sure it contains a line with include 'chapter3' – which

was already shown in Chapter 2, incidentally.

Our chapter3 directory should have a source tree in it, of course, so create

src/main/java, src/main/resources, src/test/java, and src/test/resources.

If you’re using a UNIX-like operating system like OSX or Linux, you can do this trivially

with a typical shell like bash or zsh with the following commands, when in the project’s

top-level directory.

Listing 3-1.  Building the chapter3 directory structure

mkdir -p chapter3/src/main/java

mkdir -p chapter3/src/test/java

mkdir -p chapter3/src/main/resources

mkdir -p chapter3/src/test/resources

Next we need a build.gradle to tell Gradle how to compile and test this chapter’s

code. It’s nearly identical (if not exactly identical! – and it turns out it is identical) to

Chapter 2’s build.gradle.

Listing 3-2.  chapter3/src/build.gradle

dependencies {

 compile "org.springframework:spring-core:$springFrameworkVersion"

 compile "org.springframework:spring-context:$springFrameworkVersion"

 compile "org.springframework:spring-test:$springFrameworkVersion"

}

�The Model

First let’s take a look at our model classes, Artist and Song. These are simple Java

objects, and as such there’s a lot of boilerplate with accessors and mutators, equals(),

hashCode(), and toString().

Chapter 3 Configuration and Declaration of Beans

40

Our implementations are also fairly simple – we’re choosing mutable classes,

with default constructors as well as simple parameterized constructors. We’re leaving

our classes mutable (thus, an Artist might change names, according to our model).

There are reasons to prefer immutable classes (namely, performance, and avoiding

having programmers who worship at the Church of Functional Programming say

rude things about you), and there are also reasons to expect more complicated

constructors that validate arguments and other such things, but we’re going to stay

simple by choice and acknowledge that there are workable alternatives even though

we’re not using them here.

Our first class is the Song, which is very simple: it contains the Song name (a String)

and a number of votes, basically the number of people who suggest that this Song is a

good hook for its artist. It does not have a reference to the Artist (because it will exist

only in the context of an Artist, as we’ll see in the next code listing – an Artist has a

reference to a Set of Song instances).

Most of the code in the listing is, of course, boilerplate; note that we do not consider

votes as part of uniqueness, but only the Song name.

Listing 3-3.  chapter3/src/main/java/com/bsg5/chapter3/model/Song.java

package com.bsg5.chapter3.model;

import java.util.Objects;

import java.util.StringJoiner;

public class Song implements Comparable<Song> {

 private String name;

 private int votes=0;

 public Song() {

 }

 public Song(String name) {

 setName(name);

 }

 public String getName() {

 return name;

 }

Chapter 3 Configuration and Declaration of Beans

41

 public void setName(String name) {

 this.name = name;

 }

 public int getVotes() {

 return votes;

 }

 public void setVotes(int votes) {

 this.votes = votes;

 }

 @Override

 public boolean equals(Object o) {

 if (this == o) return true;

 if (!(o instanceof Song)) return false;

 Song song = (Song) o;

 return Objects.equals(getName(), song.getName());

 }

 @Override

 public int hashCode() {

 return Objects.hash(getName());

 }

 @Override

 public String toString() {

 return new StringJoiner(", ", Song.class.getSimpleName() + "[", "]")

 .add("name='" + name + "'")

 .add("votes=" + votes)

 .toString();

 }

Chapter 3 Configuration and Declaration of Beans

42

 @Override

 public int compareTo(Song o) {

 int value = Integer.compare(o.getVotes(), getVotes());

 if (value == 0) {

 value = getName().compareTo(o.getName());

 }

 return value;

 }

}

Our Artist class consists of a name – again, a simple String – and a Map of

Song objects, indexed by name, called songs. Since we’re using a Map, the songs are

considered to be unique (we can’t have two Song instances with the same name, by

implication, although we need to make sure that our Song class enforces this).

Listing 3-4.  chapter3/src/main/java/com/bsg5/chapter3/model/Artist.java

package com.bsg5.chapter3.model;

import java.util.*;

public class Artist {

 private String name;

 private Map<String, Song> songs=new HashMap<>();

 public Artist() {

 }

 public Artist(String name) {

 setName(name);

 }

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

Chapter 3 Configuration and Declaration of Beans

43

 public Map<String, Song> getSongs() {

 return songs;

 }

 public void setSongs(Map<String, Song> songs) {

 this.songs = songs;

 }

 @Override

 public boolean equals(Object o) {

 if (this == o) return true;

 if (!(o instanceof Artist)) return false;

 Artist artist = (Artist) o;

 return Objects.equals(getName(), artist.getName());

 }

 @Override

 public int hashCode() {

 return Objects.hash(getName());

 }

 @Override

 public String toString() {

 �return new StringJoiner(", ", Artist.class.getSimpleName() +

"[", "]")

 .add("name='" + name + "'")

 .add("songs=" + songs)

 .toString();

 }

}

�The Normalizer Interface

This is a simple single-access method interface, by which we can transform input

somehow. The default transformation is to trim whitespace from the edges of the input

string, but implementations can obviously change the behavior.

Chapter 3 Configuration and Declaration of Beans

44

This is only an interface. It’s not usable without a concrete realization of the interface;

we could have made it a base class, but we’ve chosen to make it an interface so we can

use it to illustrate some concepts with Spring later in the chapter.

Listing 3-5.  chapter3/src/main/java/com/bsg5/chapter3/Normalizer.java

package com.bsg5.chapter3;

public interface Normalizer {

 default String transform(String input) {

 return input.trim();

 }

}

�The Music Service

The Music Service API itself is represented in a single interface. It really would be better,

in a real-world application, to split the API calls related to Artist into an ArtistService,

and the other API calls into a SongService, and then have the MusicService delegate to

concrete implementations of those interfaces, but our initial revision is going to focus on

different aspects of the configuration rather than object design.9

The interface itself is simple.

Listing 3-6.  chapter3/src/main/java/com/bsg5/chapter3/MusicService.java

package com.bsg5.chapter3;

import com.bsg5.chapter3.model.Song;

import java.util.List;

public interface MusicService {

 List<Song> getSongsForArtist(String artist);

 List<String> getMatchingSongNamesForArtist(String artist, String prefix);

 List<String> getMatchingArtistNames(String prefix);

9�The single class for managing both Artist and Song instances is dictated in this chapter by
storing all of our data in memory. If we were using an external datastore, like a relational
database accessed through JPA or JDBC, split interfaces would be the better approach. In this
chapter, and for our purposes, the single interface and implementation is wiser.

Chapter 3 Configuration and Declaration of Beans

45

 Song getSong(String artist, String name);

 Song voteForSong(String artist, String name);

}

We want to have another interface for testing purposes – a Resettable.10 This

allows us to mark a component as being able to be reset – something useful for us

during testing.

There are multiple ways to accomplish resetting a class. This just happens to use
an interface to expose reset() to other classes, so it meets some object-oriented
design requirements while really contributing fairly little value. It’s just convenient for
testing, especially when we haven’t explored the scope of references we get from
Spring – which we’ll do more in Chapter 4 when we introduce the prototype.

Listing 3-7.  chapter3/src/main/java/com/bsg5/chapter3/Resettable.java

package com.bsg5.chapter3;

public interface Resettable {

 void reset();

}

There’s not a lot going on here – we just want implementations to be easily marked as

being able to be reset, and we want to know the entry point for actually causing the reset.

Since we’re not insane, we’re going to call the method reset().

We’re also going to build a base class that implements each of those methods in

both MusicService and Resettable to varying degrees. This class is going to be a little

more verbose than it really should be, because it has to anticipate conditions that normal

implementations shouldn’t have to. Let’s take a look at it, and then we’ll discuss what it’s

doing and why.

10�The use of Resettable as an interface name matches the use of Closeable, Serializable, and
other such classes in the Java API.

Chapter 3 Configuration and Declaration of Beans

46

Listing 3-8.  chapter3/src/main/java/com/bsg5/chapter3/
AbstractMusicService.java

package com.bsg5.chapter3;

import com.bsg5.chapter3.model.Artist;

import com.bsg5.chapter3.model.Song;

import java.util.*;

import java.util.function.Function;

import java.util.stream.Collectors;

public abstract class AbstractMusicService implements MusicService,

Resettable {

 private Map<String, Artist> bands = new HashMap<>();

 protected String transformArtist(String input) {

 return input;

 }

 protected String transformSong(String input) {

 return input;

 }

 @Override

 public void reset() {

 bands.clear();

 }

 private Artist getArtist(String name) {

 String normalizedName = transformArtist(name);

 return bands.computeIfAbsent(normalizedName,

 s -> new Artist(normalizedName));

 }

 @Override

 public Song getSong(String artistName, String name) {

 Artist artist = getArtist(artistName);

 String normalizedTitle = transformSong(name);

 return artist

Chapter 3 Configuration and Declaration of Beans

47

 .getSongs()

 .computeIfAbsent(normalizedTitle, Song::new);

 }

 @Override

 public List<Song> getSongsForArtist(String artist) {

 List<Song> songs = new ArrayList<>(

 getArtist(artist)

 .getSongs()

 .values()

);

 songs.sort(Song::compareTo);

 return songs;

 }

 @Override

 public List<String> getMatchingSongNamesForArtist(String artist,

 String prefix) {

 String normalizedPrefix = transformSong(prefix)

 .toLowerCase();

 return getArtist(artist)

 .getSongs()

 .keySet()

 .stream()

 .map(this::transformSong)

 .filter(name -> name

 .toLowerCase()

 .startsWith(normalizedPrefix))

 .sorted(Comparator.comparing(Function.identity()))

 .collect(Collectors.toList());

 }

 @Override

 public List<String> getMatchingArtistNames(String prefix) {

 String normalizedPrefix = transformArtist(prefix)

 .toLowerCase();

 return bands

Chapter 3 Configuration and Declaration of Beans

48

 .keySet()

 .stream()

 .filter(name -> name

 .toLowerCase()

 .startsWith(normalizedPrefix))

 .sorted(Comparator.comparing(Function.identity()))

 .collect(Collectors.toList());

 }

 @Override

 public Song voteForSong(String artistName, String name) {

 Song song = getSong(artistName, name);

 song.setVotes(song.getVotes() + 1);

 return song;

 }

}

There’s quite a lot going on in this class.

First, we have two methods (transformSong() and transformArtist()) that do

nothing but return their input parameters. These are functional stubs, or hooks; classes

that extend the AbstractMusicService can (and probably should) override their

behavior, possibly by delegating to a Normalizer instance. These methods are meant to

be called in order to make sure Song and Artist names are in some sort of consistent

form before use.

Next we have our humble reset() method – which, true to its name, simply clears

out the in-memory data structure.

After the normalization methods, we have a private method, getArtist(), which

maps a String into a valid Artist reference. If the Artist does not exist, we create an

instance for future use. We then see the same pattern replicated in getSong(), with

the main difference between the methods being that getSong() is exposed as part of

the external API. (It fulfills the specification requirement of being able to create a Song

without voting for it as a hook for the artist.)

Next we have a series of methods to retrieve a sorted set of Song references for

the Artist and return lists of matching names. In nearly every case, we call our

transformation methods to make sure the names are in consistent form (even though

by default that doesn’t change the names at all). Even though some of the chains of

Chapter 3 Configuration and Declaration of Beans

49

methods look quite long (see getMatchingSongNamesForArtist() as an example, where

eight methods are chained together in a row, with a few extra chains embedded), the

actual process is expressed rather simply and few of those methods incur any noticeable

CPU cost.11

One thought that our eagle-eyed readers will probably already have noted: our

model classes are mutable (i.e., can be changed) and we’re returning the actual

instances that represent our model in these methods. In other words, a bad actor (or

rookie programmer) could get a song from voteForSong(), then call setVotes(400) –

and the actual “database” would change the votes for that Song to 400. This is not wise;

you don’t want to propagate changes unintentionally. Here, though, we’ll allow it

because this is a memory-only demonstration12 and the code’s complex enough already

without adding a copy step to our methods. Consider it an exercise for the reader.

At long last, it’s time for us to start building some concrete implementations and

tests, wiring them together with Spring.13

3.3  �Configuration Through Annotation
Configuration through annotations in Spring is very simple. The main thing to

remember is that we want to tell Spring we’re using annotations. You can do this in a

number of ways; we’re going to use XML to configure the annotations, since it’s simple

(and reflects what we’ve already learned, in Chapter 2).

After that, we have to remember that Spring will work only with managed objects:

that means we can annotate a class all we like, but if we don’t retrieve it from a Spring

container (an ApplicationContext), the annotations will be irrelevant.

11�In getMatchingSongNamesForArtist(), the sorted() method for the Stream is probably the
most expensive method call. Of course, if you really wanted to make sure, you’d crank up your
friendly local profiler and check and leave assumptions to authors and other such miscreants.

12�If our data model was actually being held in secondary storage, i.e, in a file, or in a database,
or on punch cards, persistence would have a step that had nothing to do with the references in
memory, and therefore the incorrect changes would propagate only to the scope of the instance.
This problem is limited to the in-memory form of the data storage.

13�We really tried to figure out a good way to make the application code we’ve seen so far related
to Spring somehow. That’s a terrible idea, honestly; the fact that we’ve got no technical debt on
Spring in our object model is a strength. However, this is a book about Spring, so it’s time to start
accruing some technical debt at last. Thankfully, it’ll be beneficial, in the end.

Chapter 3 Configuration and Declaration of Beans

50

Annotations in Spring generally fall into two categories: component declaration and

wiring. Component declaration means that a class is managed by a container, and wiring

means that the class has resources that are injected (or “wired”) by the container.

3.3.1  �Declaring a Spring Bean with @Component
To enable scanning for components, we need to tell Spring to, well, scan for the

components. Let’s create the first in a series of configuration files, called config-01.

xml, in src/test/resources. This is a baseline Spring configuration for annotations;

normally we’d have a little more information in this file, but this will serve for our first

explorations.

This file has one significant line in it: <context:component-scan

basepackage="com.bsg5.chapter3.mem01" />. (Well, that’s not strictly true: the entire

<beans…> content is pretty important, too. Most people, including your authors, copy

and paste that section, unless there are tools like the Spring Tool Suite that do build the

header for you.) What this line does is pretty simple: it scans that package and any others

under it for beans marked with the valid annotations for components, like @Component,

@Service, @Repository, and others. (The specific meanings will be discussed in later

chapters.) Those beans will be registered in the ApplicationContext and can be referred

to by any other Spring components managed by that ApplicationContext, whether

scanned in with <component-scan /> or not.14

Now that we’ve talked about it, let’s take a look at our first iteration of the Spring

configuration.

Listing 3-9.  chapter3/src/test/resources/config-01.xml

<?xml version="1.0" encoding="UTF-8"?>

<!-- chapter3/src/test/resources/config-01.xml -->

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:context="http://www.springframework.org/schema/context"

14�Proof that annotated components can be used by anything managed by a given
ApplicationContext can be seen in our tests. The test classes themselves are managed by the
Context, and as we’ve seen (and as we’ll see, over and over again), we can wire components into
our test classes with wild abandon, and it all works.

Chapter 3 Configuration and Declaration of Beans

51

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/context

 http://www.springframework.org/schema/context/spring-context.xsd">

 <context:component-scan base-package="com.bsg5.chapter3.mem01" />

</beans>

We’ll need two more classes to make this worthwhile. Our first one will be a

concrete realization of the AbstractMusicService interface, which will do nothing

more than add a @Component annotation to the abstract class. (An abstract class in Java

can’t be instantiated, so telling Spring that an abstract component is a component

would be … unfortunate.)

Listing 3-10.  chapter3/src/main/java/com/bsg5/chapter3/mem01/

MusicService1.java

package com.bsg5.chapter3.mem01;

import com.bsg5.chapter3.AbstractMusicService;

import org.springframework.stereotype.Component;

@Component

public class MusicService1 extends AbstractMusicService {

}

We also want to build a test, however. Our first test is going to be very simple and test

very little of the MusicService interface; we’re going to use it to acquire a MusicService,

and we’re also going to take a quick look inside the ApplicationContext to get a sense of

what our simple Spring configuration actually contains.

As we’ve seen in Chapter 2, Spring-aware tests using TestNG extend

AbstractTestNGSpringContextTests. We add a class-level annotation,

@ContextConfiguration, with a reference to our /config-01.xml file to specify that

this test uses that particular configuration. Let’s take a look at the source file for the

test, and then we’ll discuss what we can learn from it.

Chapter 3 Configuration and Declaration of Beans

52

Listing 3-11.  chapter3/src/test/java/com/bsg5/
chapter3/TestMusicService1.java

package com.bsg5.chapter3;

import com.bsg5.chapter3.model.Song;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.context.ApplicationContext;

import org.springframework.test.context.ContextConfiguration;

import org.springframework.test.context.testng.

AbstractTestNGSpringContextTests;

import org.testng.annotations.Test;

import java.util.Arrays;

import java.util.HashSet;

import java.util.Set;

import static org.testng.Assert.assertEquals;

import static org.testng.Assert.assertNotNull;

import static org.testng.Assert.assertTrue;

@ContextConfiguration(locations = "/config-01.xml")

public class TestMusicService1 extends AbstractTestNGSpringContextTests {

 @Autowired

 ApplicationContext context;

 @Autowired

 MusicService service;

 @Test

 public void testConfiguration() {

 assertNotNull(context);

 Set<String> definitions = new HashSet<>(

 Arrays.asList(context.getBeanDefinitionNames())

);

Chapter 3 Configuration and Declaration of Beans

53

 /*
 // uncomment if you'd like to see the entire set of defined beans

 for (String d : definitions) {

 System.out.println(d);

 }

 */

 assertTrue(definitions.contains("musicService1"));

 }

 @Test

 public void testMusicService() {

 Song song = service.getSong(

 "Threadbare Loaf", "Someone Stole the Flour"

);

 assertEquals(song.getVotes(), 0);

 }

}

Aside from the @ContextConfiguration annotation on the test class itself, we also

have two fields marked with @Autowired. The first one is an ApplicationContext and

the second is a MusicService. When Spring sees an @Autowired field, it will look for

classes that it manages that fit the description of the field.

The simplest matching is done on the basis of type; if we are wiring a field of type

ApplicationContext and Spring is managing only one component that can be assigned

to that field, then that component’s reference is used in the field.

If the configuration contains more than one component that can be assigned to the

reference, then Spring will look for a component whose name matches the reference.

Thus, if we had a field named xyzyx, of type Fuzzball, it would look for a single

component of type Fuzzball, and if it had more than one Fuzzball in the configuration,

it would look for the component named xyzyx, and fail to inject that value if such a

component wasn’t found.

We’ll also see the use of @Qualifier for autowired fields in a subsequent test,

through which we can tell Spring what specific component name to look for, such that

it does not try to derive the component name from the reference. (In other words, we

could tell it to look for a component called myxalotl even if the field was xyzyx. We

promise: we’ll explain more later.)

Chapter 3 Configuration and Declaration of Beans

54

There are two tests in this file: testConfiguration() and testMusicService().

The first test, testConfiguration(), simply checks our configuration to

demonstrate that wiring has occurred properly. It first checks to make sure that

the ApplicationContext has been provided to the test; if the context reference is

null, we know something has failed rather dramatically.15 After it makes sure that

the context is available, it checks to make sure that a component with a specific

name (musicService1) is available in the context. This is the name Spring will

derive from a component called MusicService1, by default. We can override it with

@Component, and we will do so in a later example; if no name is specified, Spring

takes the class name (MusicService1) and decapitalizes the first letter (leaving it as

musicService1).

If you would like to see all of the beans in the context as specified by our current

configuration and package structure, you could include the code from the Java

comment. For this test, for the record, this code outputs the following.

Listing 3-12.  Console output from the commented code in TestMusicService1

org.springframework.context.event.internalEventListenerProcessor

org.springframework.context.event.internalEventListenerFactory

org.springframework.context.annotation.internalConfigurationAnnotationProcessor

musicService1

org.springframework.context.annotation.internalAutowiredAnnotationProcessor

The org.springframework classes noted here are components for internal Spring

use; they’re not really things we care about much, as application designers. What we’re

looking for in that list is the musicService1 reference.

The second test simply calls getSong() for our mythical band, “Threadbare

Loaf,” and makes sure that the song should have no votes (as we’ve not registered

any yet).

15�In early versions of this chapter, one of the authors wasted quite a bit of time wondering
why the configuration was left unassigned. It turned out that he’d forgotten to extend
AbstractTestNGSpringContextTests. It’s a silly test, but less silly than it could be.

Chapter 3 Configuration and Declaration of Beans

55

3.3.2  �Wiring Components Together with @Autowired
In our first configuration, we had a single component (a MusicService), and our test

simply made sure the component scanning was working and that our component was

able to be injected into our test.

In our next configuration, we’re going to actually have two components and wire

them together. We’re going to add a good bit of code here, too, to have a repeatable set of

tests that we can apply to multiple configurations; when we reach the end of the chapter,

we can use this to test nearly all of our implementations in series.16

We’re going to create another instance of MusicService, one that looks almost

exactly like our MusicService1, except that it’s going to override transformArtist() and

transformSong() such that they call an injected Normalizer instance. We’ll also need to

create a concrete type to serve as a Normalizer – because we declared it as an interface,

so it’s non-instantiable in and of itself. We also need another configuration file and two

more classes: one will be our base test class (incorporating tests we will want to be able

to apply to every MusicService) and the other will be our actual executable test, which

delegates to our base test class.

Our MusicService2 class is very simple.

Listing 3-13.  chapter3/src/main/java/com/bsg5/chapter3/mem02/
MusicService2.java

package com.bsg5.chapter3.mem02;

import com.bsg5.chapter3.AbstractMusicService;

import com.bsg5.chapter3.Normalizer;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Component;

@Component

public class MusicService2 extends AbstractMusicService {

 @Autowired

 Normalizer normalizer;

16�We’re still trying to make sure we’re not repeating ourselves very often in code.

Chapter 3 Configuration and Declaration of Beans

56

 @Override

 protected String transformArtist(String input) {

 return normalizer.transform(input);

 }

 @Override

 protected String transformSong(String input) {

 return normalizer.transform(input);

 }

}

Our Normalizer is a simple concrete realization of our Normalizer interface; the

primary values it conveys are in that it can be marked as a @Component, and it can be

instantiated. Since we have a default method body in Normalizer, we don’t even have

to create the method in our NameNormalizer, unless we want it to do more than simply

trim whitespace. (At this point in our application, we’re not concerned about the actual

functionality; we’re demonstrating component wiring.)

Listing 3-14.  chapter3/src/main/java/com/bsg5/chapter3/mem02/
SimpleNormalizer.java

package com.bsg5.chapter3.mem02;

import com.bsg5.chapter3.Normalizer;

import org.springframework.stereotype.Component;

@Component

public class SimpleNormalizer implements Normalizer {

 /* inherits default transform() method from interface */

}

Lastly, our configuration file, config-02.xml.

Chapter 3 Configuration and Declaration of Beans

57

Listing 3-15.  chapter3/src/test/resources/config-02.xml

<?xml version="1.0" encoding="UTF-8"?>

<!-- chapter3/src/test/resources/config-02.xml -->

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:context="http://www.springframework.org/schema/context"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/context

 http://www.springframework.org/schema/context/spring-context.xsd">

 <context:component-scan base-package="com.bsg5.chapter3.mem02" />

</beans>

Now we get to the “fun” part of the code. We’re going to build a test class that

contains a series of methods usable by a test. They won’t be invoked directly by

TestNG, but they’re designed to be called from test methods that are invoked by the test

framework.

Why are we doing it this way? Primarily, it’s because a test class has a single

application context.17 What we’d like to do is enable ourselves to eventually load a set of

configurations on demand and run each test on each individual configuration; this way,

we repeat ourselves for the delegation call but little else.

This class is designed to be used through composition – that is, it’s designed to

be included in an actual class with the tests. This may make you think that it’s a good

candidate to be a Spring bean – and you’re right, it is. We’ll show this in practice in a later

section of this chapter.

Let’s take a look at our MusicServiceTests class, and then we’ll step through some

of the details of what it provides. After we do that, we’ll show a test that actually uses

this class – and the good news is that the actual test class is far, far shorter than the

MusicServiceTests class.

17�A test class can load multiple configurations, but it merges them into one context. We have not
shown this in operation yet, but the explanation is that a @ContextConfiguration annotation
can actually accept an array of configuration files (and other configuration sources, which we’ll
learn about later in this chapter), merging them all into one context.

Chapter 3 Configuration and Declaration of Beans

58

Listing 3-16.  chapter3/src/main/test/com/bsg5/chapter3/
MusicServiceTests.java

package com.bsg5.chapter3;

import com.bsg5.chapter3.model.Song;

import java.util.List;

import java.util.function.Consumer;

import static org.testng.Assert.assertEquals;

public class MusicServiceTests {

 private Object[][] model = new Object[][]{

 {"Threadbare Loaf", "Someone Stole the Flour", 4},

 {"Threadbare Loaf", "What Happened To Our First CD?", 17},

 {"Therapy Zeppelin", "Medium", 4},

 {"Clancy in Silt", "Igneous", 5}

 };

 void iterateOverModel(Consumer<Object[]> consumer) {

 for (Object[] data : model) {

 consumer.accept(data);

 }

 }

 void populateService(MusicService service) {

 iterateOverModel(data -> {

 for (int i = 0; i < (Integer) data[2]; i++) {

 service.voteForSong((String) data[0], (String) data[1]);

 }

 });

 }

 void reset(MusicService service) {

 if (service instanceof Resettable) {

 ((Resettable) service).reset();

Chapter 3 Configuration and Declaration of Beans

59

 } else {

 throw new RuntimeException(service +

 " does not implement Resettable.");

 }

 }

 void testSongVoting(MusicService service) {

 reset(service);

 populateService(service);

 iterateOverModel(data ->

 assertEquals(

 service.getSong((String) data[0],

 (String) data[1]).getVotes(),

 ((Integer) data[2]).intValue()

));

 }

 void testSongsForArtist(MusicService service) {

 reset(service);

 populateService(service);

 List<Song> songs = service.getSongsForArtist("Threadbare Loaf");

 assertEquals(songs.size(), 2);

 assertEquals(songs.get(0).getName(), "What Happened To Our First CD?");

 assertEquals(songs.get(0).getVotes(), 17);

 assertEquals(songs.get(1).getName(), "Someone Stole the Flour");

 assertEquals(songs.get(1).getVotes(), 4);

 }

 void testMatchingArtistNames(MusicService service) {

 reset(service);

 populateService(service);

 List<String> names = service.getMatchingArtistNames("Th");

 assertEquals(names.size(), 2);

 assertEquals(names.get(0), "Therapy Zeppelin");

 assertEquals(names.get(1), "Threadbare Loaf");

 }

Chapter 3 Configuration and Declaration of Beans

60

 void testMatchingSongNamesForArtist(MusicService service) {

 reset(service);

 populateService(service);

 List<String> names = service.getMatchingSongNamesForArtist(

 "Threadbare Loaf", "W"

);

 assertEquals(names.size(), 1);

 assertEquals(names.get(0), "What Happened To Our First CD?");

 }

}

The first bit worth noticing in this class is the Object[][] model. This may surprise

some readers, but this is our starting data model for the tests. Each row represents an

artist’s song, and the number of times users have indicated that this song is the artist’s

ideal introductory song. Thus, we have three artists represented, with four songs; two

of the artists have “Th” at the beginning of the names, and one of the artists has two

songs represented. This allows us to test name matching (for autocompletion) as well as

allowing us to test the sorting of songs based on votes.

The first method in the class is iterateOverModel(). This method is designed

to allow us to execute a simple method over every row in the model; it accepts a

Consumer<Object[]>, which means a lambda that expects an Object[], and calls the

lambda for every row; nothing more, nothing less. It can be seen being used in the next

method in this class, populateService().

The next method – again, populateService() – creates a lambda that issues a

single vote for a song and calls that lambda multiple times for every row in our model.

The model has an Integer as the third “column,” and populateService() calls

voteForSong() for each song as many times as that column indicates. In other words,

if we have an artist of “Threadbare Loaf” and a song title of “What Happened To Our

First CD?”, with a third column of 17 – and this may surprise you, but we do have those

things – populateService will call voteForSong() 17 times for that particular song. This

method is primarily meant as a utility method, not something to serve as a test itself.

We have another utility method after populateService(), called reset(). This

makes sure that the Service is marked as Resettable, and if it’s not, it throws an

exception; for this chapter, all of our services are resettable, and if they’re not, we want

to know. Assuming they are, then this method simply delegates to the service’s reset()

method, which should empty out the service’s data model.

Chapter 3 Configuration and Declaration of Beans

61

After that, we have four methods that are designed to be delegated to –

testSongVoting(), testSongsForArtist(), testMatchingArtistNames(), and

testMatchingSongsForArtist(). These all accept a Service reference, and generally

exercise the Service, using data that we know about the model. The testSongVoting()

method tests the votes for every song in our model.

However, as we’ve stated, this class isn’t actually usable as a test. We want to write a

test that delegates to an instance of MusicServiceTests to actually execute the methods

that actually represent our tests.

Listing 3-17.  chapter3/src/main/test/com/bsg5/chapter3/
TestMusicService2.java

package com.bsg5.chapter3;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.test.context.ContextConfiguration;

import org.springframework.test.context.testng.

AbstractTestNGSpringContextTests;

import org.testng.annotations.Test;

@ContextConfiguration(locations = "/config-02.xml")

public class TestMusicService2 extends AbstractTestNGSpringContextTests {

 @Autowired

 MusicService service;

 MusicServiceTests tests = new MusicServiceTests();

 @Test

 public void testSongVoting() {

 tests.testSongVoting(service);

 }

 @Test

 public void testGetMatchingArtistNames() {

 tests.testMatchingArtistNames(service);

 }

Chapter 3 Configuration and Declaration of Beans

62

 @Test

 public void testGetSongsForArtist() {

 tests.testSongsForArtist(service);

 }

 @Test

 public void testMatchingSongNamesForArtist() {

 tests.testMatchingSongNamesForArtist(service);

 }

}

Finally, we have an actual executable test!18 This test has the same scaffolding

as TestMusicService1, except with a different configuration file. It uses an injected

MusicService and instantiates a local copy of MusicServiceTests; it then has

four test methods, each of which delegates to the method of the same name in

MusicServiceTests. It’s very simple. It also manages to test every line of code in

MusicService2 and its superclass, AbstractMusicService, with the sole exceptions

being the methods in AbstractMusicService that are overridden by MusicService2.19

3.3.3  �Choosing Components with @Qualifier and Bean
Names

In the previous section, we injected a normalizer into our MusicService2 and used it to

normalize both the artist names and the song names. This assumes, though, that both

sets of names are normalized in the same way. What if they’re not?

In that case, we need to use two different kinds of normalizers. Then we’re

faced with a different kind of problem: how do we tell Spring which normalizer to

use, and where?

18�Seriously, run it. Unless something unfortunate’s happened to your source code or ours, the
build should run without any failures when you use gradle :chapter3:test – these tests don’t
really have visible output, nor should they.

19�It’s a good thing that every line of code is hit, even though all of these are test classes and the
code doesn’t really matter, but don’t make the mistake of thinking that 100% code coverage
is an “end goal.” We have 100% coverage, but we’ve not tested any edge cases, and no failure
conditions. Again, 100% coverage is good, but it’s a lousy target; you should aim to fulfil all of the
specification’s requirements, instead. It just so happens that our “specification” doesn’t contain
any error conditions to speak of.

Chapter 3 Configuration and Declaration of Beans

63

It turns out we have a few different options. Since injection is based on types, we

could simply create new marker interfaces, like SongNameNormalizer, that simply extend

Normalizer. Then we would have a declaration like @Autowired SongNameNormalizer

songNameNormalizer and be done; Spring would look at the components it manages,

find one component that can be assigned to songNameNormalizer, and be done.

We can also use the component names, as opposed to the components’ assignable

types. The @Component annotation has an optional value that serves as the component

name for Spring. The default component name is the class’ name itself, with an initial

lowercase letter (thus, MusicService1 is given a component name of musicService1),

but if we use @Component("bluePin"), then the component is named, predictably,

bluePin instead.

If the autowired reference uses a name that matches a Spring bean – that is, we have

MusicService bluePin – then Spring will inject a bean with that name.

That doesn’t help us when one of two different circumstances arises in our code,

though. If our variable reference doesn’t match a component name, or we have two of

the same types to inject, Spring still won’t know how to choose which instance to inject.

We can help Spring decide which component to inject by using the @Qualifier

annotation, which requires a value corresponding to the name of the Spring bean you

want assigned.

Let’s see it in action! We’re going to use two Normalizer types: one will trim all

whitespace from the beginning and the end of the input text (the default behavior, and

we’re basically replicating the SimpleNormalizer from the last example) and the other

will capitalize the start of every word in addition to trimming the whitespace. Then we’ll

create a MusicService that uses both normalizers, and lastly, we’ll have another test.

These listings will all be short, thankfully.

Here’s our configuration file. Again, it’s very similar to our previous configurations,

only changing the base-package of the component-scan tag.

Listing 3-18.  chapter3/src/test/resources/config-03.xml

<?xml version="1.0" encoding="UTF-8"?>

<!-- chapter3/src/test/resources/config-03.xml -->

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:context="http://www.springframework.org/schema/context"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

Chapter 3 Configuration and Declaration of Beans

64

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/context

 http://www.springframework.org/schema/context/spring-context.xsd">

 <context:component-scan base-package="com.bsg5.chapter3.mem03" />

</beans>

Our Normalizer instances come next. Note that we don’t need the @Component

annotations to use names; the two classes would get names of simpleNormalizer and

capLeadingNormalizer by default. Those are boring names, and thus we’re changing

them to foo and bar, respectively.20

First, the SimpleNormalizer, which is basically a copy of what we’ve seen before, but

with a new package and a name in the @Component annotation.21

Listing 3-19.  chapter3/src/main/java/com/bsg5/chapter3/mem03/
SimpleNormalizer.java

package com.bsg5.chapter3.mem03;

import com.bsg5.chapter3.Normalizer;

import org.springframework.stereotype.Component;

@Component("foo")

public class SimpleNormalizer implements Normalizer {

}

Next we have our CapLeadingNormalizer. The transform() method trims

whitespace from the edges of the input and then splits the string into words separated

by whitespace and creates a Stream. It then filters out tokens that are blank and then

(with map()) creates a word with a leading capitalized character and the rest of the word

lowercased. It then joins the results into a single String as output. It looks (and sounds)

more complicated than it is.

20�Of course, foo and bar are just as boring, as is the use of baz later in this very chapter. These
are known as “metasyntactic variables,” a set of meaningless placeholder words used as names
when we don’t want to communicate specific meaning. In this code, they’re actually being used
in exactly the wrong sense, since these references do have specific meaning, but we’re using the
meaningless words because they help us illustrate a concept.

21�Yes, we know, these are the same classes, repeated over and over again! We’re painfully aware.
We just haven’t shown how to build modular configurations yet – and we actually need slightly
different codebases because we’re changing the configuration that’s embedded in the code itself.

Chapter 3 Configuration and Declaration of Beans

65

Listing 3-20.  chapter3/src/main/java/com/bsg5/chapter3/mem03/
CapLeadingNormalizer.java

package com.bsg5.chapter3.mem03;

import com.bsg5.chapter3.Normalizer;

import org.springframework.stereotype.Component;

import java.util.StringJoiner;

import java.util.stream.Stream;

@Component("bar")

public class CapLeadingNormalizer implements Normalizer {

 @Override

 public String transform(String input) {

 StringJoiner joiner = new StringJoiner(" ");

 Stream

 .of(input.trim().split("\\s"))

 .filter(s -> !s.isBlank())

 .map(s ->

 Character.toUpperCase(s.charAt(0)) +

 s.substring(1).toLowerCase()

)

 .forEach(joiner::add);

 return joiner.toString();

 }

}

Of course, now we have to wonder: will this code work? The simplest response is

“of course it will,” but if you’re from Missouri, that isn’t likely to fly. We had better cater

to our readers from Missouri and demonstrate that this class does what it’s supposed

to do, with a test.22 Our test can be really simple, simply feeding a set of inputs into our

Normalizer and checking it against expected output.

22�We’re programmers. We don’t have to be from Missouri, not that there’s anything wrong with
that, but we’re supposed to be a suspicious bunch.

Chapter 3 Configuration and Declaration of Beans

66

Listing 3-21.  chapter3/src/main/test/com/bsg5/chapter3/
TestCapLeadingNormalizer.java

package com.bsg5.chapter3;

import com.bsg5.chapter3.mem03.CapLeadingNormalizer;

import org.testng.annotations.DataProvider;

import org.testng.annotations.Test;

import static org.testng.Assert.assertEquals;

public class TestCapLeadingNormalizer {

 Normalizer normalizer=new CapLeadingNormalizer();

 @DataProvider

 Object[][] data() {

 return new Object[][] {

 { "this is a test", "This Is A Test"},

 { " This IS a test ", "This Is A Test"},

 { "this is a test", "This Is A Test"}

 };

 }

 @Test(dataProvider = "data")

 public void testNormalization(String input, String expected) {

 assertEquals(normalizer.transform(input), expected);

 }

}

Now that we have a test that shows that we can trust our CapLeadingNormalizer,

it’s time to show a MusicService that uses it. This is a slight variant on MusicService2,

as you might expect, with the main differences being in the package and the use of

Normalizer references with a @Qualifier annotation, matching the names in our

Normalizer classes. We also add mutators and accessors (again, “setters” and “getters”)

to expose the Normalizer references – we don’t really need this yet, but we will.23

23�In the writing business, this is called “foreshadowing.” It’s pretty clumsy foreshadowing,
honestly, but when we get to the XML configuration section, we’re going to want MusicService3
to have the mutators and accessors.

Chapter 3 Configuration and Declaration of Beans

67

Listing 3-22.  chapter3/src/main/java/com/bsg5/chapter3/mem03/
MusicService3.java

package com.bsg5.chapter3.mem03;

import com.bsg5.chapter3.AbstractMusicService;

import com.bsg5.chapter3.Normalizer;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.beans.factory.annotation.Qualifier;

import org.springframework.context.annotation.Scope;

import org.springframework.stereotype.Component;

@Component

@Scope()

public class MusicService3 extends AbstractMusicService {

 @Autowired

 @Qualifier("bar")

 Normalizer artistNormalizer;

 @Autowired

 @Qualifier("foo")

 Normalizer songNormalizer;

 public Normalizer getArtistNormalizer() {

 return artistNormalizer;

 }

 public void setArtistNormalizer(Normalizer artistNormalizer) {

 this.artistNormalizer = artistNormalizer;

 }

 public Normalizer getSongNormalizer() {

 return songNormalizer;

 }

 public void setSongNormalizer(Normalizer songNormalizer) {

 this.songNormalizer = songNormalizer;

 }

Chapter 3 Configuration and Declaration of Beans

68

 @Override

 protected String transformArtist(String input) {

 return artistNormalizer.transform(input);

 }

 @Override

 protected String transformSong(String input) {

 return songNormalizer.transform(input);

 }

}

And finally, we want to verify that this code works, too, so let’s round things out

with another (short) test class, which mirrors our previous test classes but changes the

configuration file.

Listing 3-23.  chapter3/src/test/com/bsg5/chapter3/TestMusicService3.
java

package com.bsg5.chapter3;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.test.context.ContextConfiguration;

import org.springframework.test.context.testng.

AbstractTestNGSpringContextTests;

import org.testng.annotations.Test;

@ContextConfiguration(locations = "/config-03.xml")

public class TestMusicService3 extends AbstractTestNGSpringContextTests {

 @Autowired

 MusicService service;

 MusicServiceTests tests = new MusicServiceTests();

 @Test

 public void testSongVoting() {

 tests.testSongVoting(service);

 }

Chapter 3 Configuration and Declaration of Beans

69

 @Test

 public void testGetMatchingArtistNames() {

 tests.testMatchingArtistNames(service);

 }

 @Test

 public void testGetSongsForArtist() {

 tests.testSongsForArtist(service);

 }

 @Test

 public void testMatchingSongNamesForArtist() {

 tests.testMatchingSongNamesForArtist(service);

 }

}

Careful readers might note that we’re still manually instantiating the

MusicServiceTests object. In the next section, we’ll fix that – and introduce constructor

injection. However, we’re going to start reusing some of the code from this section and

introduce some more configuration elements so that you, the reader, don’t have to read

the same code over and over (and over and over) again.

3.3.4  �Constructor Injection with Annotations
There’s one more primary mode of bean injection we haven’t addressed so far:

constructor injection. If you’ve looked at our example code in an IDE like IDEA

(https://jetbrains.com/idea) or Eclipse (https://eclipse.org), you might have

noticed that the IDE was telling you something ominous about the @Autowired

annotation, like “Field injection is not recommended.”

The alternative is to use constructor injection, to have a constructor with parameters

marked with @Autowired and, if necessary, @Qualifier. The reason is pretty simple:

fields are mutable by implication, and using a constructor argument means that we can

mark a field as final; this means that we can not only require a field to be set, but we can

also assume that when it’s set, it remains at the value that’s been set.

In practice, all we need to do to enable constructor injection is, well, to create a valid

constructor with the arguments marked for injection. The rules for constructor injection

mirror the rules for field injection; we just get more control over it.

Chapter 3 Configuration and Declaration of Beans

https://jetbrains.com/idea
https://eclipse.org/

70

One other thing we’d like to do, to save ourselves from endless repetition in later

sections (and chapters), is introduce a new configuration tag: <import>.24

What <import> does should be pretty obvious: it imports a separate configuration

file into another. It allows us to create modular configurations.

We’re going to create two “modules” – meaning configurations with specific

purposes. One is going to be a set of Normalizer instances, from the com.bsg5.

chapter3.mem03 package; the other is going to be our MusicServiceTests class. When

we import those two configurations into a third configuration, the beans in each

configuration will have access to one another.

There’s one problem, though: the mem03 package has a MusicService

implementation, too! So we’re going to introduce an additional attribute for

<context:component-scan />, called resource-pattern.

Let’s start building our modules. First, the simplest one, a pure XML configuration

for MusicServiceTests. We’re not going to change that class from the code we’ve already

seen, so there’s no annotation; we’re going to use a simple XML <bean /> tag, much as

we saw in Chapter 2.

Listing 3-24.  chapter3/src/test/resources/musicservicetest.xml

<?xml version="1.0" encoding="UTF-8"?>

<!-- chapter3/src/test/resources/musicservicetest.xml -->

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd">

 �<bean id="musicServiceTests" class="com.bsg5.chapter3.

MusicServiceTests" />

</beans>

24�If you’re wishing we’d have introduced this tag earlier in the chapter… well, us too. However,
we’re trying to introduce new pieces of information at a deliberately slow pace, to avoid
overwhelming readers new to the concepts we’re discussing, so this was where we finally felt
like we had the chance to introduce this one. We’ve found that people usually learn best when
new concepts are introduced piecemeal, so we’ve chosen to go fairly slowly.

Chapter 3 Configuration and Declaration of Beans

71

This configuration is quite simple: it declares a bean named musicServiceTests, of

the type com.bsg5.chapter3.MusicServiceTests. Therefore, in any context in which

this file is referenced, MusicServiceTests is a valid candidate for injection, as we’ll see.

Listing 3-25.  chapter3/src/test/resources/normalizers.xml

<?xml version="1.0" encoding="UTF-8"?>

<!-- chapter3/src/test/resources/normalizers.xml -->

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:context="http://www.springframework.org/schema/context"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/context

 http://www.springframework.org/schema/context/spring-context.xsd">

 <context:component-scan base-package="com.bsg5.chapter3.mem03"

 resource-pattern="*Normalizer.class"/>

</beans>

Here we see the resource-pattern annotation for <context:component-

scan />. This tag is a filter for the classes being scanned. Here, we use resource-

pattern="*Normalizer.class", which means that the only classes included in

the scan are classes that end with Normalizer – thus, our SimpleNormalizer and

CapLeadingNormalizer classes.

Why are we using resource-pattern here? Well, what we’re really doing
is saying to scan only specific classes in the com.bsg5.chapter3.mem03
package. If we didn’t limit the scan to only the normalization classes, we’d be
importing the MusicService3 too, and we don’t want to include that class in a
configuration that’s supposed to be limited to, well, normalizers only.

The expression used here is a Java regular expression and includes the entire

resource name – by default it’s **/*.class, meaning “any file in the entire package tree

beginning at the package specified in base-package that ends with .class.”

Chapter 3 Configuration and Declaration of Beans

72

In the normalizers.xml configuration, however, it’s limited to “any file in the current

package that ends with Normalizer.class”, with the package set to com.bsg5.chapter3.

mem03, so it will only pick up our two Normalizer implementations.

Now we get to see our “master configuration” in use, showing the use of the two

<import /> tags. This creates a “flattened configuration,” such that anything that loads

config-04.xml is going to see every component loaded by not only config-04.xml but

anything loaded by normalizers.xml and musicservicetest.xml as well.

Listing 3-26.  chapter3/src/test/resources/config-04.xml

<?xml version="1.0" encoding="UTF-8"?>

<!-- chapter3/src/test/resources/config-04.xml -->

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:context="http://www.springframework.org/schema/context"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/context

 http://www.springframework.org/schema/context/spring-context.xsd">

 <import resource="/normalizers.xml" />

 <import resource="/musicservicetest.xml"/>

 <context:component-scan base-package="com.bsg5.chapter3.mem04" />

</beans>

In fact, let’s prove this, by writing a quick test that validates that the beans we expect

to have in our configuration are available. As usual, we’ll use a @DataProvider to provide

a flexible dataset for a parameterized test. We’ll do something a little different, in that

we’ll put both String instances and Class references into the data provider – and we’ll

check the type to figure out which ApplicationContext getBean() method to use.

(There are probably cleaner ways to do this, but honestly, this is a throwaway test. We

don’t need it to be perfect, we just need it to work for our purposes.25)

25�It might be handy to have a failing condition in this test, but that complicates the data provider
greatly, by indicating if a “miss” should fail the test or not. Consider that a quick exercise for the
reader.

Chapter 3 Configuration and Declaration of Beans

73

Listing 3-27.  chapter3/src/test/java/com/bsg5/chapter3/TestConfiguratio
nImport.java

package com.bsg5.chapter3;

import com.bsg5.chapter3.mem03.CapLeadingNormalizer;

import com.bsg5.chapter3.mem03.SimpleNormalizer;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.context.ApplicationContext;

import org.springframework.test.context.ContextConfiguration;

import org.springframework.test.context.testng.

AbstractTestNGSpringContextTests;

import org.testng.annotations.DataProvider;

import org.testng.annotations.Test;

import static org.testng.Assert.assertNotNull;

import static org.testng.Assert.fail;

@ContextConfiguration(locations = "/config-04.xml")

public class TestConfigurationImport extends

AbstractTestNGSpringContextTests {

 @Autowired

 ApplicationContext context;

 @DataProvider

 Object[][] resources() {

 return new Object[][]{

 {"musicServiceTests"},

 {MusicServiceTests.class},

 {"foo"},

 {"bar"},

 {SimpleNormalizer.class},

 {CapLeadingNormalizer.class},

 {"musicService4"}

 };

 }

Chapter 3 Configuration and Declaration of Beans

74

 @Test(dataProvider = "resources")

 public void validateResourceExistence(Object resource) {

 if (resource instanceof String) {

 assertNotNull(context.getBean(resource.toString()));

 } else {

 if (resource instanceof Class<?>) {

 assertNotNull(context.getBean((Class<?>) resource));

 } else {

 fail("Invalid resource type");

 }

 }

 }

}

At last, it’s time to see our MusicService4, a near-clone of MusicService3 – as all

of our MusicService implementations have been. The major change here is that we’re

going to make our Normalizer references final, and we’re going to initialize them

through constructor injection. We’ll then have one more test class (a near-clone of other

tests, referring to config-04.xml instead of the other configurations) to make sure our

configuration loads smoothly and correctly (and, for that matter, quickly).

Listing 3-28.  chapter3/src/main/java/com/bsg5/chapter3/
mem04/MusicService4.java

package com.bsg5.chapter3.mem04;

import com.bsg5.chapter3.AbstractMusicService;

import com.bsg5.chapter3.Normalizer;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.beans.factory.annotation.Qualifier;

import org.springframework.stereotype.Component;

@Component

public class MusicService4 extends AbstractMusicService {

 private final Normalizer artistNormalizer;

 private final Normalizer songNormalizer;

Chapter 3 Configuration and Declaration of Beans

75

 public MusicService4(@Autowired

 @Qualifier("bar")

 Normalizer artistNormalizer,

 @Autowired

 @Qualifier("foo")

 Normalizer songNormalizer) {

 this.artistNormalizer = artistNormalizer;

 this.songNormalizer = songNormalizer;

 }

 @Override

 protected String transformArtist(String input) {

 return artistNormalizer.transform(input);

 }

 @Override

 protected String transformSong(String input) {

 return songNormalizer.transform(input);

 }

}

Here, we’ve still got the @Autowired and @Qualifier annotations in use; they’re

just applied to arguments in the constructor instead of being applied to class attributes.

The class attributes themselves are marked private final – because they’re not used

outside of this class, and because we want to tell the virtual machine to not allow the

references to change, once set.

In this class, having the references be final is of limited value, mostly because the

entire MusicService is of limited value – so far our implementations have been designed

purely to show Spring configuration features. With that said, in real components, having

values marked final can help the JVM optimize code, and it also makes your intent for

the values clear: these are not things to be managed or changed. They’re meant to be set

and left alone.

Now we have an almost desultory test: it looks exactly like TestMusicService3,

except for the configuration file name. We’re going to parameterize the configurations

later in this chapter, and actually test every one of our configuration files in one single

test, but let’s take a look at XML configuration and programmatic configuration of

Spring, first.

Chapter 3 Configuration and Declaration of Beans

76

Listing 3-29.  chapter3/src/test/com/bsg5/chapter3/TestMusicService4.java

package com.bsg5.chapter3;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.test.context.ContextConfiguration;

import org.springframework.test.context.testng.

AbstractTestNGSpringContextTests;

import org.testng.annotations.Test;

@ContextConfiguration(locations = "/config-04.xml")

public class TestMusicService4 extends AbstractTestNGSpringContextTests {

 @Autowired MusicService service;

 @Autowired MusicServiceTests tests;

 @Test

 public void testSongVoting() {

 tests.testSongVoting(service);

 }

 @Test

 public void testGetMatchingArtistNames() {

 tests.testMatchingArtistNames(service);

 }

 @Test

 public void testGetSongsForArtist() {

 tests.testSongsForArtist(service);

 }

 @Test

 public void testMatchingSongNamesForArtist() {

 tests.testMatchingSongNamesForArtist(service);

 }

}

Chapter 3 Configuration and Declaration of Beans

77

Our next section will recreate what we’ve just walked through, except without relying

on annotations. We’re going to walk through the process of using XML to configure

Spring beans and wire them together.

3.4  �Configuration Through XML
XML is not required to define a configuration, even though we’ve used it so far to

kick-start the process of scanning for components. However, it is historically the most

common (it’s the oldest configuration mechanism), and it also has the benefit of

centralizing configuration very easily. (We can see that because in every configuration in

this chapter, we’ve used XML to do component scanning.)

What we’d like to do is demonstrate the basic XML wiring capabilities, by replicating

our annotation-based examples, except with XML. The only exceptions will be the test

classes themselves, which will continue to use annotations for injection; this is because

the AbstractTestNGSpringContextTests class (and its JUnit equivalent) specifically

implements a process by which annotation injection is applied. Therefore, there’d be no

point to explicitly using XML to wire the test class’ dependencies; the annotations are

already being scanned and processed.

3.4.1  �Declaring a Bean with <bean />
To declare a component in XML, one uses the <bean /> tag, as shown in Listing 3-30.

Listing 3-30.  chapter3/src/test/resources/musicservicetest.xml

<bean id="musicServiceTests" class="com.bsg5.chapter3.MusicServiceTests" />

This is a simple and straightforward usage of <bean/>, but there are a lot of attributes

that can be used here. We’re going to cover the most common ones in this chapter, with

others covered in Chapter 4. There are more attributes than are being covered in this

table, but the ones that aren’t included here are rare.

Chapter 3 Configuration and Declaration of Beans

78

Attribute Meaning Description

name The qualified name

of the bean.

If no name is provided, the bean name is derived from the

class name.

class The fully qualified

class of the bean.

There are cases where this is actually unnecessary, but

they’re rare and not covered in a book for Spring beginners.

scope The lifetime of the

bean component.

This determines if getBean() will return the same instance

on every invocation (thus keeping the component as a

singleton) or if Spring will create a new instance on every

call to getBean(). The default is the singleton mode (with

the attribute value being singleton, if you can imagine). If

a prototype is desired, the attribute value is prototype.

lazy-init When in the context’s

lifecycle, a bean

should be created.

If set to true, the bean will be instantiated when it’s

requested, rather than on container startup. The default is

false so the Spring beans are created immediately and

eagerly.

autowire Controls the

autowiring behavior

for this bean.

Spring will not autowire references created via XML by

default; this setting allows programmers to fine-tune

autowiring behavior. It can be set to no, which means “no

autowiring,” byName and byType which means autowiring

is based on the attribute name (so foo will match a

component with the name foo) or by reference type, and

constructor, which is like byType except for constructor

arguments.

dependson A list of beans that

must be initialized

before this one.

This is a comma-separated list of dependency references

that must be fully initialized before this one is initialized.

This is not normally required; Spring can determine if bean

foo depends on bar or not, so this is only if the default

dependency mechanism fails thanks to static references or

something like that. In general, if you need this, you’ve done

something wrong.

Other attributes to look for, particularly in Chapter 4, include init-method, destroy-

method, factory-method, and factory-bean.

Chapter 3 Configuration and Declaration of Beans

79

So what we see in Listing 3-31 is a simple Spring bean, called musicServiceTests,

of type com.bsg5.chapter3.MusicServiceTests. It will be created as soon as the

configuration is loaded (since lazy-init is left to the default, which is false), and it

will be a singleton (only one instance loaded per ApplicationContext), since we let the

scope to its default value, which is singleton.

This is, of course, the simplest type of bean to create, a bean that has no attributes

to manage. It’s entirely self-contained. What happens if we want to set other attributes –

as we do with our Normalizer instances? Well, first, let’s create a normalizers-na.

xml configuration. We’re going to use normalizers-na.xml because normalizers.xml

uses annotations for configuration, and we want to be explicit26; our beans will still be

named foo and bar but we want to create them explicitly. Note that the beans are the

Normalizer classes from the mem03 package – and we’re going to reuse MusicService3 as

well, just without the annotations being processed.

Listing 3-31.  chapter3/src/test/resources/normalizers-na.xml

<?xml version="1.0" encoding="UTF-8"?>

<!-- chapter3/src/test/resources/normalizers.xml -->

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="bar" class="com.bsg5.chapter3.mem03.SimpleNormalizer" />

 <bean id="foo" class="com.bsg5.chapter3.mem03.CapLeadingNormalizer" />

</beans>

3.4.2  �Wiring Components Together with <property />
Now that we’ve declared a set of configurations with, well, a set of Spring beans,

we need to figure out how to use these beans in our MusicService3; if you paid any

attention to Chapter 2, of course, you know: we’re going to use <property /> to set the

references.

26�We’re using “na” to mean “no annotations.”

Chapter 3 Configuration and Declaration of Beans

80

The property tag has the following attribute values and meanings.

Attribute Meaning Description

name This is the name of the property to set. This is required.

value This is the value of the argument, which

must be easily coerced into the type.

This cannot coexist with ref.

ref This is a reference to another named

Spring bean, by name.

This cannot coexist with value.

In this case, we have two Normalizer references available, provided we import

normalizers-na.xml – and we will – so we’re going to use ref to set the values.

Here’s our config-05.xml, which declares a MusicService (with a type of com.

bsg5.chapter3.mem03.MusicService3) and then calls setArtistNormalizer() and

setSongNormalizer() with the appropriate references, looking them up by name.

Listing 3-32.  chapter3/src/test/resources/config-05.xml

<?xml version="1.0" encoding="UTF-8"?>

<!-- chapter3/src/test/resources/config-05.xml -->

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <import resource="/normalizers-na.xml" />

 �<bean name="musicService" class="com.bsg5.chapter3.mem03.MusicService3">

 <property name="artistNormalizer" ref="foo" />

 <property name="songNormalizer" ref="bar" />

 </bean>

</beans>

Of course, it’s all well and good to have nice, convenient, modular configuration

files… but they don’t do anything. Astute readers know what’s coming next: a test!

Chapter 3 Configuration and Declaration of Beans

81

This test is going to be very similar to our other tests, with one difference: we’re

going to load multiple configuration files in our @ContextConfiguration annotation.

(Our tests don’t use the XML configuration, nor should they, really.) Other than the

usage of an array of configuration files, this test is identical to TestMusicService4. Each

configuration file is loaded into a single ApplicationContext, so this is a handy way for

us to modularize for tests, where beans like our MusicServiceTests don’t need to be

part of the “main configuration,” our config-05.xml file.

Listing 3-33.  chapter3/src/test/com/bsg5/chapter3/TestMusicService5.
java

package com.bsg5.chapter3;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.test.context.ContextConfiguration;

import org.springframework.test.context.testng.

AbstractTestNGSpringContextTests;

import org.testng.annotations.Test;

@ContextConfiguration(locations = {"/config-05.xml","/musicservicetest.xml"})

public class TestMusicService5 extends AbstractTestNGSpringContextTests {

 @Autowired

 MusicService service;

 @Autowired

 MusicServiceTests tests;

 @Test

 public void testSongVoting() {

 tests.testSongVoting(service);

 }

 @Test

 public void testGetMatchingArtistNames() {

 tests.testMatchingArtistNames(service);

 }

Chapter 3 Configuration and Declaration of Beans

82

 @Test

 public void testGetSongsForArtist() {

 tests.testSongsForArtist(service);

 }

 @Test

 public void testMatchingSongNamesForArtist() {

 tests.testMatchingSongNamesForArtist(service);

 }

}

3.4.3  �Wiring Components Together with
<constructor-arg />

Our next example will replicate what we just did, but just as we saw in the series of

annotation-based examples, this one will use constructor injection. Just as we did with

TestMusicService5 (which reused MusicService3), we’re going to reuse MusicService4

with another configuration and another test.

First, the configuration. This one will use <constructor-arg /> instead of

<property />. The <constructor-arg /> node has the following attributes available.

Attribute Meaning Description

type This is the type of the argument, if it cannot

be derived from the value.

Must match the type hierarchy.

value This is the value of the argument, which

must be easily coerced into the type.

This cannot coexist with ref.

ref This is a reference to another named Spring

bean, by name.

This cannot coexist with value.

name This is the name of the argument, as in the

constructor’s source code.

This cannot coexist with index.

index This is the index of the argument being set. This cannot coexist with name.

Chapter 3 Configuration and Declaration of Beans

83

So let’s take a look at our config-06.xml, which does the same thing as config-05.

xml, except with the constructor-only version of the MusicService.

Listing 3-34.  chapter3/src/test/resources/config-06.xml

<?xml version="1.0" encoding="UTF-8"?>

<!-- chapter3/src/test/resources/config-06.xml -->

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <import resource="/normalizers-na.xml" />

 <bean name="musicService" class="com.bsg5.chapter3.mem04.MusicService4">

 <constructor-arg name="artistNormalizer" ref="foo" />

 <constructor-arg name="songNormalizer" ref="bar" />

 </bean>

</beans>

And we’d be breaking a habit if we didn’t include yet another test, another copy of an

earlier test, except this time referring to config-06.xml instead of, well, anything else.

Listing 3-35.  chapter3/src/test/com/bsg5/chapter3/TestMusicService6.java

package com.bsg5.chapter3;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.test.context.ContextConfiguration;

import org.springframework.test.context.testng.

AbstractTestNGSpringContextTests;

import org.testng.annotations.Test;

@ContextConfiguration(locations = {"/config-06.xml","/musicservicetest.xml"})

public class TestMusicService6 extends AbstractTestNGSpringContextTests {

 @Autowired

 MusicService service;

Chapter 3 Configuration and Declaration of Beans

84

 @Autowired

 MusicServiceTests tests;

 @Test

 public void testSongVoting() {

 tests.testSongVoting(service);

 }

 @Test

 public void testGetMatchingArtistNames() {

 tests.testMatchingArtistNames(service);

 }

 @Test

 public void testGetSongsForArtist() {

 tests.testSongsForArtist(service);

 }

 @Test

 public void testMatchingSongNamesForArtist() {

 tests.testMatchingSongNamesForArtist(service);

 }

}

We’re now going to take a look at a third way to configure an ApplicationContext:

Java configuration.

3.5  �Configuration Through Java
With programmatic configuration, you have a few options: one is to define a Java class

and mark it as a @Configuration, providing methods to return Spring beans internally.

This is (mostly) static configuration.

Another way to configure Spring programmatically is to grab an ApplicationContext

and manually register components in it. This is dynamic configuration. The latter is very

flexible, but uncommon, so we’re going to focus on static configuration in this section.

With static configuration, you declare a class with methods that return components;

mark the methods that return Spring beans with @Bean, and mark the class with

Chapter 3 Configuration and Declaration of Beans

85

@Configuration, and you’re done, although of course you have the capability to

fine-tune the annotations. If the methods have arguments, then Spring tries to use a

resolution mechanism similar to constructor-based injection.

3.5.1  �Declaring Components with @Bean
Let’s see a simple configuration in action. This configuration will mirror what we did

with the MusicService1 in Listing 3-11 – a simple component with no dependencies.

Listing 3-36.  chapter3/src/test/com/bsg5/chapter3/Configuration7.java

package com.bsg5.chapter3;

import com.bsg5.chapter3.mem01.MusicService1;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

@Configuration

public class Configuration7 {

 @Bean

 MusicService musicService() {

 return new MusicService1();

 }

}

Our eagle-eyed readers will notice that we have Configuration7, leaving out
configurations one through six. This is deliberate. This is the seventh configuration
in this chapter, so rather than restarting the sequence, we just continued where we
left off. Good eye, though, readers.

This configuration would contribute one Spring bean to an ApplicationContext,

whose name would be derived from the method – so create a reference to a

MusicService called musicService, with an instance reference of type MusicService1.

(We’ll show how you can name the references differently in a later example.)

Chapter 3 Configuration and Declaration of Beans

86

Let’s create another configuration class, one that creates a MusicServiceTests

reference, which we’ll use in a test we’ll see after we walk through the other

configuration possibilities.

Listing 3-37.  chapter3/src/test/com/bsg5/chapter3/TestConfiguration.java

package com.bsg5.chapter3;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

@Configuration

public class TestConfiguration {

 @Bean

 MusicServiceTests musicServiceTests() {

 return new MusicServiceTests();

 }

}

3.5.2  �Using a Programmatic Configuration for
ApplicationContext

We’ve seen how to load configurations with ClassPathXmlApplicationContext

(from Chapter 2), but that class accepts XML file locations as arguments; here,

we have no XML at all. In order to use this kind of configuration, we need to use

AnnotationConfigApplicationContext, passing it a reference to the Class<?> that

represents the configuration. We can pass in as many configuration classes as we need. In

practice, a runnable application might look something like Listing 3-38, which loads our

two configuration classes and dumps every managed Spring bean’s name to the console.

Listing 3-38.  chapter3/src/test/com/bsg5/chapter3/MusicServiceRunner.java

package com.bsg5.chapter3;

import org.springframework.context.ApplicationContext;

import org.springframework.context.annotation.

AnnotationConfigApplicationContext;

public class MusicServiceRunner {

Chapter 3 Configuration and Declaration of Beans

87

 public static void main(String[] args) {

 Class<?>[] configurations = new Class<?>[]

 {Configuration7.class, TestConfiguration.class};

 ApplicationContext context =

 new AnnotationConfigApplicationContext(configurations);

 for(String name:context.getBeanDefinitionNames()) {

 System.out.println(name);

 }

 }

}

If it’s run without changes, the output looks like Listing 3-39.

Listing 3-39.  Output of MusicServiceRunner

org.springframework.context.annotation.

internalConfigurationAnnotationProcessor

org.springframework.context.annotation.internalAutowiredAnnotationProcessor

org.springframework.context.event.internalEventListenerProcessor

org.springframework.context.event.internalEventListenerFactory

configuration7

testConfiguration

musicService

musicServiceTests

You can see in this output how there’s a reference to musicService and

musicServiceTests. (We’re going to walk through a few more configuration examples

before using this – and the rest of our configurations, all of them – in a test.)

3.5.3  �Wiring Components Together with @Autowired
with Static Configuration

References marked with @Autowired are still candidates for injection, of course. What’s

more, the rules for injection hold even with programmatic configuration. In the second

configuration (config-02.xml), we had a single Normalizer in the configuration,

automatically wired into a MusicService2. Listing 3-40 shows what that same

configuration looks like, using Java for configuration instead of XML.

Chapter 3 Configuration and Declaration of Beans

88

Listing 3-40.  chapter3/src/test/com/bsg5/chapter3/Configuration8.java

package com.bsg5.chapter3;

import com.bsg5.chapter3.mem02.MusicService2;

import com.bsg5.chapter3.mem02.SimpleNormalizer;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

@Configuration

public class Configuration8 {

 @Bean

 Normalizer normalizer() {

 return new SimpleNormalizer();

 }

 @Bean

 MusicService musicService() {

 return new MusicService2();

 }

}

3.5.4  �Using @Qualifier to Select Specific Components
for Wiring

For MusicService3, we had multiple Normalizer references. Again, the resolution works

out exactly the same; the injected reference is qualified by name if no other candidate

exists, and in the programmatic configuration, the name of the bean defaults to the

name of the method that returns a given class instance. (Thus, in Listing 3-40, the beans

are named musicService and normalizer.)

In our next example, we have two methods that produce Normalizer references:

foo() and capNormalizer(). If they’re both marked solely with @Bean, the Spring beans’

names will be, logically enough, foo and capNormalizer, respectively, but that would

yield a missing reference for the autowired attribute in MusicService3, which is looking

for a component named bar.

We can name references explicitly, by using the name attribute in the @Bean

annotation. Our next configuration shows this in action.

Chapter 3 Configuration and Declaration of Beans

89

Listing 3-41.  chapter3/src/test/com/bsg5/chapter3/Configuration9.java

package com.bsg5.chapter3;

import com.bsg5.chapter3.mem03.CapLeadingNormalizer;

import com.bsg5.chapter3.mem03.SimpleNormalizer;

import com.bsg5.chapter3.mem03.MusicService3;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

@Configuration

public class Configuration9 {

 @Bean

 Normalizer foo() {

 return new SimpleNormalizer();

 }

 @Bean(name="bar")

 Normalizer capNormalizer() {

 return new CapLeadingNormalizer();

 }

 @Bean

 MusicService musicService() {

 return new MusicService3();

 }

}

3.5.5  �Constructor Injection with Static Configuration
Our last example corresponds to our examples that leverage constructor injection.

We have a few options here: we could construct the references manually (thus, new

MusicService4(new SimpleNormalizer(), new SimpleNormalizer())), but this

violates the principle of allowing Spring to manage the references.

We can actually have the bean construction method itself accept arguments (with

names that resolve to bean components or set explicitly via @Qualifier). Spring will

then do argument matching based on type or name, allowing us to use those references

in the construction of the new component.

Chapter 3 Configuration and Declaration of Beans

90

Listing 3-42.  chapter3/src/test/com/bsg5/chapter3/Configuration10.java

package com.bsg5.chapter3;

import com.bsg5.chapter3.mem03.CapLeadingNormalizer;

import com.bsg5.chapter3.mem03.SimpleNormalizer;

import com.bsg5.chapter3.mem04.MusicService4;

import org.springframework.beans.factory.annotation.Qualifier;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

@Configuration

public class Configuration10 {

 @Bean

 Normalizer foo() {

 return new SimpleNormalizer();

 }

 @Bean

 Normalizer bar() {

 return new CapLeadingNormalizer();

 }

 @Bean

 MusicService musicService(Normalizer bar,

 @Qualifier("foo")

 Normalizer baz) {

 return new MusicService4(bar, baz);

 }

}

The advantage provided here is not only that of flexibility but management. Only one

instance of a SimpleNormalizer, for example, is created; it’s a singleton.

Chapter 3 Configuration and Declaration of Beans

91

3.5.6  �Testing Every Configuration with a DataProvider
We haven’t seen most of these configurations in use, and the only use we’ve seen is that

of a poor excuse for a test. Let’s write a test that actually exercises every configuration

we’ve presented so far. This class has some fairly significant oddities to it, so we’ll present

two methods it contains and explain what these methods do, then we’ll see the entire

class, with the method in context.

Listing 3-43.  chapter3/src/test/com/bsg5/chapter3/TestMusicService10.java

private void runMethod(Object config, Consumer<MusicService> method) {

 ApplicationContext context;

 if (config instanceof String) {

 context = new ClassPathXmlApplicationContext(config.toString());

 } else {

 if (config instanceof Class<?>) {

 �context = new AnnotationConfigApplicationContext((Class<?>)

config);

 } else {

 �throw new RuntimeException("Invalid configuration argument: " +

config);

 }

 }

 MusicService service = context.getBean(MusicService.class);

 method.accept(service);

}

@Test(expectedExceptions = RuntimeException.class)

public void testRunMethod() {

 runMethod(Boolean.TRUE, tests::testSongVoting);

}

The runMethod() method is internal to our test, and what it does is pretty simple but

might seem odd to some readers: it accepts a configuration object of some kind as well

as a method reference that accepts an ApplicationContext. The config object is looked

into, to see if it’s a Class or a String; if it’s a String, the ApplicationContext is loaded

from XML, and if it’s a Class, it’s loaded from a programmatic configuration. (If it’s not

one of those, an exception is thrown. Our other method tests this out.)

Chapter 3 Configuration and Declaration of Beans

92

Once the context is loaded, it grabs a MusicService from the context and then

invokes the method passed in as the second argument with the MusicService. A

failure in the method being invoked – an exception or assertion failure – is bubbled

up to the caller of runMethod(). Therefore, we can accept a configuration of some

kind – either a String or a Class – and invoke a method with a properly constructed

ApplicationContext at will.

We’ve seen this in our MusicServiceTests, by the way – we’re just going one level

higher and compositing method invocation twice instead of once.

So let’s take a look at the entire test class, TestMusicService10.java. It’s going to

use a data provider method (called configurations()) to create a list composed of

references to every configuration this chapter contains, and in every method that refers

to the data provider, it will call runMethod() with the provided configuration reference

and a method reference from MusicServiceTests. Any failures will show up as test

failures.

Listing 3-44.  chapter3/src/test/com/bsg5/chapter3/TestMusicService10.
java

package com.bsg5.chapter3;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.context.ApplicationContext;

import org.springframework.context.annotation.

AnnotationConfigApplicationContext;

import org.springframework.context.support.ClassPathXmlApplicationContext;

import org.springframework.test.context.ContextConfiguration;

import org.springframework.test.context.testng.

AbstractTestNGSpringContextTests;

import org.testng.annotations.DataProvider;

import org.testng.annotations.Test;

import java.util.function.Consumer;

@ContextConfiguration(classes = {TestConfiguration.class})

public class TestMusicService10 extends AbstractTestNGSpringContextTests {

 @Autowired

 MusicServiceTests tests;

Chapter 3 Configuration and Declaration of Beans

93

 @DataProvider

 Object[][] configurations() {

 return new Object[][]{

 {"/config-01.xml"},

 {"/config-02.xml"},

 {"/config-03.xml"},

 {"/config-04.xml"},

 {"/config-05.xml"},

 {"/config-06.xml"},

 {Configuration7.class},

 {Configuration8.class},

 {Configuration9.class},

 {Configuration10.class}

 };

 }

 // tag::runMethod[]

 private void runMethod(Object config, Consumer<MusicService> method) {

 ApplicationContext context;

 if (config instanceof String) {

 context = new ClassPathXmlApplicationContext(config.toString());

 } else {

 if (config instanceof Class<?>) {

 �context = new AnnotationConfigApplicationContext((Class<?>)

config);

 } else {

 �throw new RuntimeException("Invalid configuration argument:

" + config);

 }

 }

 MusicService service = context.getBean(MusicService.class);

 method.accept(service);

 }

Chapter 3 Configuration and Declaration of Beans

94

 @Test(expectedExceptions = RuntimeException.class)

 public void testRunMethod() {

 runMethod(Boolean.TRUE, tests::testSongVoting);

 }

 // end::runMethod[]

 @Test(dataProvider = "configurations")

 public void testSongVoting(Object config) {

 runMethod(config, tests::testSongVoting);

 }

 @Test(dataProvider = "configurations")

 public void testGetMatchingArtistNames(Object config) {

 runMethod(config, tests::testMatchingArtistNames);

 }

 @Test(dataProvider = "configurations")

 public void testGetSongsForArtist(Object config) {

 runMethod(config, tests::testSongsForArtist);

 }

 @Test(dataProvider = "configurations")

 public void testMatchingSongNamesForArtist(Object config) {

 runMethod(config, tests::testMatchingSongNamesForArtist);

 }

}

Some interesting observations from this test’s successful conclusion:

	 1.	 On the author’s machine, this test runs in 1.6 seconds, with the

most significant times being spent on warmup (as the code is

first seen by the JVM). The XML-based test configurations tended

to run slightly slower than the programmatic configurations

(as one might expect), but even the slowest runs in around

50 milliseconds, although readers’ results may vary slightly

depending on a number of factors.

Chapter 3 Configuration and Declaration of Beans

95

	 2.	 More significantly, we’re demonstrating rather different

components, all referred to by the same interface, all used

identically from the calling code. Our test runs through

ten different configurations, with four fairly differentiated

implementation classes, and there’s absolutely no change in

how classes are acquired from the Spring context. There’s no

real performance difference; there’s some time spent initializing

the contexts, but it’s not significant, because most contexts are

retained for far longer than a single test.

3.6  �Next Steps
In Chapter 4, we’re going to explore some of the lifecycle options in Spring, where we

have even more control over how beans are created (through constructors, as we’ve

done in this chapter, or factories), as well as how we invoke methods when Spring beans

are created or destroyed. We’re also going to see how to create new Spring beans such

that they’re not singleton objects.

Chapter 3 Configuration and Declaration of Beans

97
© Joseph B. Ottinger and Andrew Lombardi 2019
J. B. Ottinger and A. Lombardi, Beginning Spring 5, https://doi.org/10.1007/978-1-4842-4486-9_4

CHAPTER 4

Lifecycle
In this chapter, we’ll expand on our sample application and learn about the lifecycle

options in Spring. We’ll introduce how to invoke methods when Spring beans are

created or destroyed and how to do so via multiple configurable options either using

the Spring XML file, annotations, or the programmatic configurations, all of which

were used in Chapter 3.

4.1  �Introduction of Lifecycle
Every object has a lifecycle in the Java Virtual Machine. When an object is created, it’s got

a series of initialization stages (at the class level, then the instance level), then the class’

constructor is called. When (and if) the object becomes unreachable by program code,

the object might be cleaned up by the garbage collector, which might itself call specially

named methods so that the object can clear out any allocated resources, a process

known as finalization.1

Dependency Injection frameworks add extra control to the lifecycle of objects,

by adding callbacks for lifecycle events or offering hooks that the dependency

context will call when certain things have been accomplished. Spring also provides

scope within a given context, to control whether the resources are considered to be

singletons or not.

Let’s look at scope, first.

1�Finalization has long been known to be a good way to wreck your application’s performance,
but sometimes it was the only tool available that allowed classes to know when to force-remove
allocated resources. Since Java 9, though, there’s an alternative: the java.lang.ref.Cleaner
class, which isn’t entirely trivial but is far more safe to use.

98

4.1.1  �Scope
Spring provides two basic scopes for objects in the standard ApplicationContext –

singleton and prototype.

An object set to singleton scope – the default – is created and destroyed once in a

given application context. If you retrieve an object multiple times, you will receive the

same object reference each time.

An object set to prototype scope is constructed on retrieval, and every time you

get an object of this type from the context, you will receive a unique object; Spring acts

like a builder2 in this case. You might use this scope if you have an object whose state is

mutated but, once changed, the object isn’t useful for any other process.

A builder is actually an excellent example of this kind of pattern. With many
instances of the builder pattern, one creates the builder, then adds data to it. When
the data is considered “complete,” you’d call the build() method – or some
analog – that yields a completed object from the builder. The builder isn’t useful
for building anything else once it’s delivered what it’s built, because it contains
state that’s unique to the object being built; you’d then discard the builder, and if
you needed another object, you’d create a new builder to create it. In Spring terms,
builders would be ideal prototypes.

There are actually other scopes available through Spring’s web module, but we’ll

discuss them in Chapter 6, where they’re more appropriate.

Let’s take a look at a trivial example showing the scopes in action. We’re going to

create a project for this chapter (called chapter4, because we’re quite original in this

book), and we’re going to write a quick test that demonstrates how we can define object

scopes and also what the effect of those scopes might be.

First, we need to create our directory structure, starting in the overall project

directory (Listing 4-1).

2�The builder pattern is a pattern described by Design Patterns: Elements of Reusable Object-
Oriented Software, by Gamma, Helm, Johnson, and Vlissides. It’s a pattern that refers to how
objects are created consistently; see https://en.wikipedia.org/ wiki/Builder_pattern
for more.

Chapter 4 Lifecycle

https://en.wikipedia.org/wiki/Builder_pattern
https://en.wikipedia.org/wiki/Builder_pattern

99

Listing 4-1.  Creating the directory structure with POSIX

mkdir -p chapter4/src/main/java/com/bsg5/chapter4

mkdir -p chapter4/src/test/java/com/bsg5/chapter4

mkdir -p chapter4/src/test/resources

We also need a build.gradle and settings.gradle, neither of which add

anything new or spectacular to our build so far. Remember that things like

$springFrameworkVersion were defined in Chapter 2, in our top-level project. (If the

current versions of any of these dependencies change, you can change it in the top-level

build.gradle and have those changes reflected throughout the entire project.)

Listing 4-2.  chapter4/build.gradle

dependencies {

 compile "org.springframework:spring-core:$springFrameworkVersion"

 compile "org.springframework:spring-context:$springFrameworkVersion"

 compile "org.springframework:spring-test:$springFrameworkVersion"

 compile "javax.annotation:javax.annotation-api:1.3.2"

}

Now it’s time to get more interesting. Let’s create an abstract class to hold a single

piece of data – called HasData – and we’ll extend it with multiple classes embedded

with our test code. We can get away with this because we’re not actually creating

classes for the purpose of anything other than demonstrating lifecycle, and these

aren’t public classes.3

Listing 4-3.  chapter4/src/main/java/com/bsg5/chapter4/HasData.java

package com.bsg5.chapter4;

import java.util.Objects;

abstract class HasData {

 String datum = "default";

3�Java’s source rules specify that a file must be named the same as a single public class contained
in that file. In this case, we have no public classes, which limits their use to inside the package in
which they exist.

Chapter 4 Lifecycle

100

 public String getDatum() {

 return datum;

 }

 public void setDatum(String datum) {

 this.datum = datum;

 }

 @Override

 public boolean equals(Object o) {

 if (this == o) return true;

 if (!(o instanceof HasData)) return false;

 HasData hasData = (HasData) o;

 return Objects.equals(getDatum(), hasData.getDatum());

 }

 @Override

 public int hashCode() {

 return Objects.hash(getDatum());

 }

}

The equals() method is slightly more complex than it might have been, because

it has to accept subclasses of HasData (and, in fact, it has no choice; since HasData is

abstract, you’ll never have an actual instance of HasData). It’s also worth noting that

IDEs can (and did) generate these methods; every method was generated automatically

by IDEA. (For what it’s worth, Eclipse would have generated equivalent code; it just so

happens that your authors used IDEA here.)

Why would equals() need to accept subclasses? Well, it really depends on
the use case. Here, we have no choice but to accept things that aren’t the same
class as HasData, because HasData is abstract – there will never be a valid
instance of this type, unless the definition changes. However, if we’re talking
about concrete types, then you still might want to accept subclasses – because
many frameworks like Hibernate (https://hibernate.org) will generate

Chapter 4 Lifecycle

https://hibernate.org/

101

proxies as subclasses for entities, such that they look exactly like the entity
classes but have code to interact with the database as needed. HasData isn’t
particularly likely to become an entity for Hibernate, but it’s good practice to do
the right thing when you can.

To set an object to be a prototype, we simply add the scope attribute to the

configuration. (We’re going to show XML configuration first, as it’s more flexible and

explicit than the annotations when it comes to fine-grained control of events.) The two

values are – surprisingly – prototype and singleton, although singleton is the default

and therefore isn’t necessary at all.

We are defining two beans – foo and bar – both of the same type, because we can

retrieve objects by name, with different scopes.

Listing 4-4.  chapter4/src/test/resources/config-01.xml

<?xml version="1.0" encoding="UTF-8"?>

<!-- chapter4/src/test/resources/config-01.xml -->

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <!--

 �note that "singleton" scope is the default, so this declaration is

unnecessary.

 -->

 <bean name="foo"

 class="com.bsg5.chapter4.FirstObject"

 scope="singleton"/>

 <bean name="bar"

 class="com.bsg5.chapter4.FirstObject"

 scope="prototype"/>

</beans>

Chapter 4 Lifecycle

102

In our test, we have a data provider that refers to the reference names themselves, as

well as a flag to tell the test whether the types are to be considered distinct or not. Our

test grabs a single instance of the specified type by name, then mutates it from its original

state. It then gets another instance with the same name.

If the type is specified to be a singleton, the objects should be the same instance

(i.e., o1 == o2), and setting the data in one should also be reflected in the other (in other

words, there’s both instance equality and data equality).

If the type is specified to be a prototype instead, then the objects should not be the

same instance, and setting the data in one should leave the other in its default state.

Listing 4-5.  chapter4/src/test/java/com/bsg5/chapter4/TestLifeCycle01.
java

package com.bsg5.chapter4;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.context.ApplicationContext;

import org.springframework.test.context.ContextConfiguration;

import org.springframework.test.context.testng.AbstractTestNGSpringContextTests;

import org.testng.annotations.DataProvider;

import org.testng.annotations.Test;

import java.util.UUID;

import static org.testng.Assert.*;

class FirstObject extends HasData {

}

@ContextConfiguration(locations = "/config-01.xml")

public class TestLifecycle01 extends AbstractTestNGSpringContextTests {

 @Autowired

 ApplicationContext context;

 @DataProvider

Chapter 4 Lifecycle

103

 Object[][] getReferences() {

 return new Object[][]{

 {"foo", true},

 {"bar", false}

 };

 }

 @Test(dataProvider = "getReferences")

 public void testReferenceTypes(String name, boolean singleton) {

 HasData o1 = context.getBean(name, HasData.class);

 String defaultValue = o1.getDatum();

 o1.setDatum(UUID.randomUUID().toString());

 HasData o2 = context.getBean(name, HasData.class);

 if (singleton) {

 assertSame(o1, o2);

 assertEquals(o1, o2);

 assertNotEquals(defaultValue, o2.getDatum());

 } else {

 assertNotSame(o1, o2);

 assertNotEquals(o1, o2);

 assertEquals(defaultValue, o2.getDatum());

 }

 }

}

4.1.2  �Calling Constructors
In Chapter 3 we saw how we can specify constructor arguments for Spring beans, either

by naming arguments or using the argument index. (The most straightforward technique

is to use named arguments, if many exist, although perhaps using @Autowired references

is even simpler. But we’re sticking to XML in this section.) Chapter 3 walks through most

of this fairly well, but we’ll offer a short example here just for completeness’ sake.

Chapter 4 Lifecycle

104

Listing 4-6.  chapter4/src/test/resources/config-02.xml

<?xml version="1.0" encoding="UTF-8"?>

<!-- chapter4/src/test/resources/config-02.xml -->

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean name="foo" class="com.bsg5.chapter4.SecondObject">

 <constructor-arg name="initialValue"

 value="Initial Value"/>

 </bean>

</beans>

Note the use of the name attribute in the constructor-arg directive – it maps to the

actual parameter named initialValue.

And now a test that utilizes that configuration is shown in Listing 4-7.

Listing 4-7.  chapter4/src/test/java/com/bsg5/chapter4/TestLifeCycle02.
java

package com.bsg5.chapter4;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.context.ApplicationContext;

import org.springframework.test.context.ContextConfiguration;

import org.springframework.test.context.testng.

AbstractTestNGSpringContextTests;

import org.testng.annotations.Test;

import static org.testng.Assert.assertEquals;

class SecondObject extends HasData {

 SecondObject(String initialValue) {

 setDatum(initialValue);

 }

}

Chapter 4 Lifecycle

105

@ContextConfiguration(locations = "/config-02.xml")

public class TestLifecycle02 extends AbstractTestNGSpringContextTests {

 @Autowired

 ApplicationContext context;

 @Test

 public void validateConstruction() {

 HasData o1 = context.getBean(HasData.class);

 assertEquals(o1.getDatum(), "Initial Value");

 }

}

Our test here is simpler, because all we need to do is make sure the object built by

Spring has the expected data value.

4.1.3  �Calling Methods After Construction and Before
Destruction

We can also call methods after object construction and, oddly, before the context drops

all references it is managing. This is done in XML with the init-method and destroy-

method attributes.

The destroy-method is not the same as a Java finalizer, although it can serve some

of the same roles; if the ApplicationContext is able to be closed (through the well-

named close() method, first seen in ConfigurableApplicationContext in the class

hierarchy), the context will call these methods before the context closes. This is not the

same as finalization; if the classes have finalizers or utilize Java 9’s Cleaner facility, those

methods will be called before garbage collection occurs.

Note that destroy-method only applies to Spring beans that are singletons.
Prototypes are created by Spring and then are considered to be unmanaged,
once retrieved; Spring will construct them and pass them to your code, and then
forget such instances exist. Therefore, the method indicated by destroy-method
will not be called on prototyped instances; this is probably all right because
destroy-method should be rarely used in any event, as one rarely closes Spring
contexts in the first place.

Chapter 4 Lifecycle

106

In other words, destroy-method is present to allow you to finely control when

something might happen to a Spring bean, but it’s unlikely to be useful in ordinary

development. That won’t stop us from demonstrating it, though!

For both methods, there’s a contract the methods need to follow. They can be named

anything valid (since we specify which methods are to be called), but the methods must

not have a return value (they have to be declared of type void) and they cannot have

method parameters.

Here’s a configuration that shows the methods being specified.

Listing 4-8.  chapter4/src/test/resources/config-03.xml

<?xml version="1.0" encoding="UTF-8"?>

<!-- chapter4/src/test/resources/config-03.xml -->

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean name="foo"

 class="com.bsg5.chapter4.ThirdObject"

 init-method="init"

 destroy-method="dispose"

 />

</beans>

What this means is that when Spring creates the ThirdObject, it will call init() after

all construction has been finished, just as if the following code snippet were run.

Listing 4-9.  A code snippet replicating init-method

ThirdObject foo=new ThirdObject();

foo.init();

Our test source will define ThirdObject and create a static reference, called

semaphore. (It’s not truly a semaphore, but it… could be?) This reference is set only by

the init method; therefore, we can verify that the proper initialization methods are

being followed. We also define a destroy method that sets the semaphore reference to

null; it’s not a true semaphore, but it’s sort of acting like one for our test.

Chapter 4 Lifecycle

107

The actual test itself uses a ConfigurableApplicationContext instead of an

ApplicationContext, because we want to explicitly close the context after we’ve

retrieved an object from it. The ApplicationContext interface does not define close(),

whereas the ConfigurableApplicationContext implements Closeable (as well as

ApplicationContext and Lifecycle, for that matter). The method visibility is the only

reason we’re using ConfigurableApplicationContext – if it weren’t for close() not

being defined on ApplicationContext, it would serve well for this test.

The test method grabs a bean from the application context and then runs two simple

verifications: one is that the bean instance looks correct (i.e., it has data matching what

we expect), and the other is that the semaphore is populated.

We then close the context and check the semaphore reference again – which, if

dispose() has been called, will be set to null.

Listing 4-10.  chapter4/src/test/java/com/bsg5/chapter4/TestLifeCycle03.
java

package com.bsg5.chapter4;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.context.ConfigurableApplicationContext;

import org.springframework.test.context.ContextConfiguration;

import org.springframework.test.context.testng.

AbstractTestNGSpringContextTests;

import org.testng.annotations.Test;

import static org.testng.Assert.*;

class ThirdObject extends HasData {

 static Object semaphore = null;

 public void init() {

 semaphore = new Object();

 }

 public void dispose() {

 semaphore = null;

 }

}

Chapter 4 Lifecycle

108

@ContextConfiguration(locations = "/config-03.xml")

public class TestLifecycle03 extends AbstractTestNGSpringContextTests {

 @Autowired

 ConfigurableApplicationContext context;

 @Test

 public void testInitDestroyMethods() {

 ThirdObject o1 = context.getBean(ThirdObject.class);

 assertNotNull(ThirdObject.semaphore);

 assertEquals(o1.getDatum(), "default");

 context.close();

 assertNull(ThirdObject.semaphore);

 }

}

4.1.4  �Lifecycle Listeners
There are more options for listening to lifecycle events, too: the InitializingBean

and DisposableBean interfaces. These interfaces define afterPropertiesSet() and

destroy(), respectively, and these methods will be called at the proper times (i.e., after

construction and all properties are set, and before the context releases the reference

to the bean). Functionally it’s exactly the same as with the init-method and destroy-

method attributes in the XML configuration; the main difference is that these interfaces

bind you directly to Spring’s interfaces, whereas theoretically the init-method and

destroy-method references do not.4

As with our other tests, here’s a configuration file describing a FourthObject. Note

the lack of lifecycle methods being described.

Listing 4-11.  chapter4/src/test/resources/config-04.xml

<?xml version="1.0" encoding="UTF-8"?>

<!-- chapter4/src/test/resources/config-04.xml -->

4�This is sophistry, really. A method specified with init-method would have to be manually called,
as would a method specified with destroy-method, to make sense; these methods exist primarily
in the context of Spring lifecycles, and which one you choose is really up to you, although you’re
probably best off using annotations – covered later in this chapter – to accomplish similar effects.

Chapter 4 Lifecycle

109

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean name="foo"

 class="com.bsg5.chapter4.FourthObject"

 />

</beans>

Now, our test. The actual test itself is functionally equivalent to the TestLifecycle03

test, with the main difference being the class type being used, which is FourthObject

instead of ThirdObject. The FourthObject class itself implements both

InitializingBean and DisposableBean and therefore replaces ThirdObject's init

and dispose methods with afterPropertiesSet and destroy, respectively.

Listing 4-12.  chapter4/src/test/java/com/bsg5/chapter4/TestLifeCycle04.
java

package com.bsg5.chapter4;

import org.springframework.beans.factory.DisposableBean;

import org.springframework.beans.factory.InitializingBean;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.context.ConfigurableApplicationContext;

import org.springframework.test.context.ContextConfiguration;

import org.springframework.test.context.testng.

AbstractTestNGSpringContextTests;

import org.testng.annotations.Test;

import static org.testng.Assert.*;

class FourthObject extends HasData

 implements InitializingBean, DisposableBean {

 static Object semaphore = null;

 @Override

 public void afterPropertiesSet() throws Exception {

 semaphore = new Object();

 }

Chapter 4 Lifecycle

110

 @Override

 public void destroy() throws Exception {

 semaphore = null;

 }

}

@ContextConfiguration(locations = "/config-04.xml")

public class TestLifecycle04 extends AbstractTestNGSpringContextTests {

 @Autowired

 ConfigurableApplicationContext context;

 @Test

 public void testLifecycleMethods() {

 FourthObject o1 = context.getBean(FourthObject.class);

 assertNotNull(FourthObject.semaphore);

 assertEquals(o1.getDatum(), "default");

 context.close();

 assertNull(FourthObject.semaphore);

 }

}

4.2  �Lifecycle with JSR-250 Annotations
Annotations provide most – but not quite all – features that the XML configuration

provides. The main difference is in construction; most other lifecycle features are either

identical (with the InitializingBean and DisposableBean interfaces) or have direct

analogs (e.g., with annotations that contain method names for init-method). Let’s step

through our features, one by one, starting with component scope.

4.2.1  �Annotated Beans with Scopes
The scopes can be demonstrated with annotations logically enough: simply add the

@Scope annotation with the correct scope name. Our example will be slightly more

contrived than our XML example, because we need two different types such that

they’re annotated differently. We’re going to use only one configuration file for all of the

annotated lifecycle tests, though, and here it is.

Chapter 4 Lifecycle

111

Listing 4-13.  chapter4/src/test/resources/annotated.xml

<?xml version="1.0" encoding="UTF-8"?>

<!-- chapter4/src/test/resources/config-04.xml -->

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:context="http://www.springframework.org/schema/context"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/context

 http://www.springframework.org/schema/context/spring-context.xsd">

 <context:component-scan base-package="com.bsg5.chapter4"/>

</beans>

Here’s a working test with two annotated component types, FifthObject and

SixthObject. It’s very nearly the same as our TestLifecycle01 class, with the main

differences being the component classes themselves, and we also use the component

classes to look up references instead of named references.

Listing 4-14.  chapter4/src/test/java/com/bsg5/chapter4/TestLifeCycle05.
java

package com.bsg5.chapter4;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.beans.factory.config.ConfigurableBeanFactory;

import org.springframework.context.ApplicationContext;

import org.springframework.context.annotation.Scope;

import org.springframework.stereotype.Component;

import org.springframework.test.context.ContextConfiguration;

import org.springframework.test.context.testng.

AbstractTestNGSpringContextTests;

import org.testng.annotations.DataProvider;

import org.testng.annotations.Test;

Chapter 4 Lifecycle

112

import java.util.UUID;

import static org.testng.Assert.*;

@Component

@Scope(ConfigurableBeanFactory.SCOPE_SINGLETON)

class FifthObject extends HasData {

}

@Component

@Scope(ConfigurableBeanFactory.SCOPE_PROTOTYPE)

class SixthObject extends HasData {

}

@ContextConfiguration("/annotated.xml")

public class TestLifecycle05 extends AbstractTestNGSpringContextTests {

 @Autowired

 ApplicationContext context;

 @DataProvider

 Object[][] getReferences() {

 return new Object[][]{

 {FifthObject.class, true},

 {SixthObject.class, false}

 };

 }

 @Test(dataProvider = "getReferences")

 public void testReferenceTypes(Class<HasData> clazz, boolean singleton) {

 HasData o1 = context.getBean(clazz);

 String defaultValue = o1.getDatum();

 o1.setDatum(UUID.randomUUID().toString());

 HasData o2 = context.getBean(clazz);

 if (singleton) {

 assertSame(o1, o2);

 assertEquals(o1, o2);

 assertNotEquals(defaultValue, o2.getDatum());

Chapter 4 Lifecycle

113

 } else {

 assertNotSame(o1, o2);

 assertNotEquals(o1, o2);

 assertEquals(defaultValue, o2.getDatum());

 }

 }

}

4.2.2  �Constructors with Annotated Classes
Here’s where things diverge from the XML configuration: annotated classes will be

invoked with as much information as is available, and the objects will be constructed

in an order that satisfies dependencies as much as possible. This mirrors things we’ve

seen in Chapter 3; if a constructor has a parameter marked with @Autowired, Spring

will look for a class that matches the parameter’s type and qualifier, if any, and inject it

into the constructor call. As such, there’s not really anything to show here that wouldn’t

mirror what we’ve already seen in Chapter 3 (see 3.3 for a full discussion and example of

constructor injection with annotations).

4.2.3  �Calling Methods After Construction and Before
Destruction

Here’s where things get interesting. Instead of naming methods for init-method

and destroy-method, we have two annotations available to us through the javax.

annotation-api artifact, imported from our build.gradle file: @PostConstruct and

@PreDestroy. Methods marked with these annotations will be called at the appropriate

spots in the object’s and context’s lifecycle, as we can see in Listing 4-15.

Listing 4-15.  chapter4/src/test/java/com/bsg5/chapter4/TestLifeCycle06.
java

package com.bsg5.chapter4;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.context.ConfigurableApplicationContext;

import org.springframework.stereotype.Component;

import org.springframework.test.context.ContextConfiguration;

Chapter 4 Lifecycle

114

import org.springframework.test.context.testng.AbstractTestNGSpringContext

Tests;

import org.testng.annotations.Test;

import javax.annotation.PostConstruct;

import javax.annotation.PreDestroy;

import static org.testng.Assert.*;

@Component

class SeventhObject extends HasData {

 static Object semaphore = null;

 @PostConstruct

 public void initialize() throws Exception {

 semaphore = new Object();

 }

 @PreDestroy

 public void dispose() throws Exception {

 semaphore = null;

 }

}

@ContextConfiguration("/annotated-06.xml")

public class TestLifecycle06 extends AbstractTestNGSpringContextTests {

 @Autowired

 ConfigurableApplicationContext context;

 @Test

 public void testInitDestroyMethods() {

 EighthObject o1 = context.getBean(EighthObject.class);

 assertNotNull(EighthObject.semaphore);

 assertEquals(o1.getDatum(), "default");

 context.close();

 assertNull(EighthObject.semaphore);

 }

}

Chapter 4 Lifecycle

115

Careful readers will notice the use of annotated-06.xml as the configuration file.

This file is identical to annotated.xml – with the only difference being the name. This

isn’t something required by the test in and of itself, but if you run every test in this

chapter in a single build (as with gradle build or gradle test), the context.close()

will interfere with other tests’ completions. Using a unique file name for this and for the

next test (which uses annotated-07.xml) avoids this problem.5

Listing 4-16.  Copying annotated.xml for other tests

cp chapter4/src/test/resources/annotated.xml \

 chapter4/src/test/resources/annotated-06.xml

cp chapter4/src/test/resources/annotated.xml \

 chapter4/src/test/resources/annotated-07.xml

We also still have the callback interfaces themselves to rely on, InitializingBean

and DisposableBean. The class’ annotated status changes nothing about these callbacks,

as shown in yet another test (Listing 4-17).

Listing 4-17.  chapter4/src/test/java/com/bsg5/chapter4/TestLifeCycle07.
java

package com.bsg5.chapter4;

import org.springframework.beans.factory.DisposableBean;

import org.springframework.beans.factory.InitializingBean;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.context.ConfigurableApplicationContext;

import org.springframework.stereotype.Component;

import org.springframework.test.context.ContextConfiguration;

import org.springframework.test.context.testng.

AbstractTestNGSpringContextTests;

import org.testng.annotations.Test;

import static org.testng.Assert.*;

5�This assumes you’re not using source code downloaded from https://apress.com for this book;
if you’re using the source code from the book’s web site, all of these files will obviously be in the
right places already.

Chapter 4 Lifecycle

https://apress.com/

116

@Component

class EighthObject extends HasData

 implements InitializingBean, DisposableBean {

 static Object semaphore = null;

 @Override

 public void afterPropertiesSet() throws Exception {

 semaphore = new Object();

 }

 @Override

 public void destroy() throws Exception {

 semaphore = null;

 }

}

@ContextConfiguration(locations = "/annotated-07.xml")

public class TestLifecycle07 extends AbstractTestNGSpringContextTests {

 @Autowired

 ConfigurableApplicationContext context;

 @Test

 public void testLifecycleMethods() {

 EighthObject o1 = context.getBean(EighthObject.class);

 assertNotNull(EighthObject.semaphore);

 assertEquals(o1.getDatum(), "default");

 context.close();

 assertNull(EighthObject.semaphore);

 }

}

4.3  �Lifecycle with Java Configuration
Annotated beans are all well and good, but annotating the beans makes their

configuration global – if you set an annotated bean’s name, it’s set for every instance of

that class in the current classpath; compare that to XML, where you can have multiple

beans of the same class, with different names and different property values.

Chapter 4 Lifecycle

117

We’ve demonstrated how to set beans to different scopes with XML and

annotations; there’s also the ability to use a configuration class as well, and scope

applies here just like it does elsewhere. The advantage of a configuration class is that

you can have multiple configuration classes present on the classpath at any time,

which gives you the power and cleanliness of the annotated approach, with the

flexibility of the XML approach.

Let’s take one more look at a test. This one will create another object type extending

HasData – this time, named NinthObject – but the configuration will be stored in a local

class called Config08. In it, there are two methods declared, foo() and bar(), and these

methods are both marked with @Bean – which means that foo() will describe how to

create a bean named foo, and bar() will describe how to name a bean named bar. We

could, of course, provide annotation directives to rename the beans instead of using the

method names, but that’s something we’ve already seen in Chapter 3.

Just as with our annotation example, we can add @Scope("prototype") to our

methods, which tells Spring the appropriate scope to use for beans with that name.

We’re also changing the @ContextConfiguration for the test class, to refer to

Config08.class instead of a named configuration file. Past that, though, everything

looks similar (and acts the same) as what we saw in TestLifecycle05.java – we have

a data provider that tells the test whether the class should be a singleton or not and

validates the instance references and instance data appropriately.

Listing 4-18 shows the test source.

Listing 4-18.  chapter4/src/test/java/com/bsg5/chapter4/TestLifeCycle07.
java

package com.bsg5.chapter4;

import org.springframework.beans.factory.DisposableBean;

import org.springframework.beans.factory.InitializingBean;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.context.ConfigurableApplicationContext;

import org.springframework.stereotype.Component;

import org.springframework.test.context.ContextConfiguration;

import org.springframework.test.context.testng.

AbstractTestNGSpringContextTests;

import org.testng.annotations.Test;

Chapter 4 Lifecycle

118

import static org.testng.Assert.*;

@Component

class EighthObject extends HasData

 implements InitializingBean, DisposableBean {

 static Object semaphore = null;

 @Override

 public void afterPropertiesSet() throws Exception {

 semaphore = new Object();

 }

 @Override

 public void destroy() throws Exception {

 semaphore = null;

 }

}

@ContextConfiguration(locations = "/annotated-07.xml")

public class TestLifecycle07 extends AbstractTestNGSpringContextTests {

 @Autowired

 ConfigurableApplicationContext context;

 @Test

 public void testLifecycleMethods() {

 EighthObject o1 = context.getBean(EighthObject.class);

 assertNotNull(EighthObject.semaphore);

 assertEquals(o1.getDatum(), "default");

 context.close();

 assertNull(EighthObject.semaphore);

 }

}

Chapter 4 Lifecycle

119

4.4  �Additional Scopes
Spring, being a maze of twisty passages, all alike, naturally adds more to scopes (the

prototype and singleton scopes) than this chapter discusses – mostly because the

additional scopes exist in context of Spring Web, covered in Chapter 6. The rules for

scoping don’t change, but the names and reachability do; a component can be marked

such that it exists as a singleton in the context of a single HTTP request, for example,

or in the context of a user session. These scopes will be explored in more detail in the

appropriate chapter (which is, as mentioned, Chapter 6). Chapter 5 introduces the

servlet API and a simple way of accessing a Spring context from HTTP endpoints, but

that method is too simple to provide the full capability of Spring.

4.5  �Next Steps
In Chapter 5, we’re going to switch gears and talk about integrating Spring with Jakarta

EE. Spring has been a driving force in the enterprise environment space since its early

days, and we’ll introduce some of the terminology and APIs, as well as a fairly archaic

and simple approach to integrating Spring, in preparation for something far more useful

in Chapter 6.

Chapter 4 Lifecycle

121
© Joseph B. Ottinger and Andrew Lombardi 2019
J. B. Ottinger and A. Lombardi, Beginning Spring 5, https://doi.org/10.1007/978-1-4842-4486-9_5

CHAPTER 5

Spring and Jakarta EE
Spring can certainly be used in a standalone environment, but the most common

environment for Spring has historically been in an enterprise environment, powering

web applications and backend services in a managed server. This chapter will

demonstrate some aspects of integration in a Jakarta EE container (formerly known as

Java EE, or J2EE, or maybe even just “Tomcat” depending on your level of exposure,

currency, and experience).

This chapter also introduces submodules to our projects, as well as intermodule

dependencies. We’re going to create a chapter5common module (where we will store

some classes that will be the same through the other modules), a chapter5anno module

(which will use annotation-based configuration), and a chapter5xml module (which

will use, of all things, XML for configuration). We’re not going to use a Java configuration

because we wouldn’t learn anything new through the process. (We’ll be shifting to using

Java-based configurations heavily once we hit Chapter 6, though.)

5.1  �Introduction to Jakarta EE
Jakarta EE is a set of specifications covering most, if not all, enterprise architectural

patterns for applications written on the Java platform. For example, if you have a

request/response interaction model for your application, there’s a specification that

covers it – the Servlet specification. If you have a message-oriented architecture, there’s

the Java Message Service. If you need a remote invocation architecture, Jakarta EE has

a few specifications for that, too, starting with the Enterprise Java Bean specification.

There’s even a Context and Dependency Injection (CDI) specification that looks an awful

lot like Spring does.

122

There are, of course, reference implementations for the specifications. GlassFish

(https://javaee.github.io/glassfish/) is the current reference implementation

for the Servlet and the Java Message Service specifications, for example; Weld (http://

weld.cdi-spec.org/) is the reference implementation for CDI, even though it’s very

arguable that Spring inspired the specification in the first place.

Jakarta EE, incidentally, is a fairly recent name for what used to be called Java

Enterprise Edition (“JavaEE”) and, before being known as “Java EE,” was “Java 2,

Enterprise Edition,” or “J2EE.” In 2018, Java EE was released by Oracle to the Eclipse

Foundation to be managed by the open source community, which renamed it “Jakarta

EE” because of copyright issues around the name “Java.” It’s yet more branding confusion

around Java – which has suffered from branding, naming, and version confusion from

Day Paisley (or, as humans refer to it, “day one”), but hopefully the management of Jakarta

EE by an open source community will help stabilize names and versions for the future.1

What this chapter will do is show you some basics around the most commonly used

enterprise specification, the Servlet specification, using arguably the most common servlet

container, Apache Tomcat. Be warned: Jakarta EE isn’t simple. Jakarta EE implementations

run as nested applications inside of other applications, with consequences to classpaths

and resource availability, and even writing about it can be confusing because there are so

many different and successful approaches to solving each given problem.

This chapter is actually going to serve mostly to introduce concepts that future

chapters will rely on, and illustrate a fairly archaic way of integrating Spring into Jakarta

EE – mostly serving as an easy on-ramp to more complex and complete solutions.

5.1.1  �The Servlet API
As previously stated, the servlet API is designed for services that follow a request/

response lifecycle: a request comes in, and a response goes out. Ultimately, requests

map to a single class that implements a known interface, javax.servlet.Servlet, but

servlets can chain (or forward) calls to other servlets. The API also defines filters that can

execute before or after servlet invocation as well as listeners that can watch for events

emitted by the container (like application startup or shutdown).

1�Java has always had confusion around names and versions: for example, there used to be a
release called J2SE 4, which was “Java 2, Standard Edition,” version 1.4. The 1.4 edition was also
edition 4… and most people without a lot of exposure to Java spent a lot of time wondering what
versions referred to what components. This was something that plagued Sun, the company that
created Java, and has never really gone away.

Chapter 5 Spring and Jakarta EE

https://javaee.github.io/glassfish/
https://javaee.github.io/glassfish/
http://weld.cdi-spec.org/
http://weld.cdi-spec.org/

123

Servlet containers establish network listeners on specific ports; how this is done

is very dependent on the servlet container in question. They typically use HTTP – the

HyperText Transfer Protocol, one version of which can be found at https://tools.

ietf.org/html/rfc2616 – but they don’t have to.

A servlet has a service() method along with a servlet context2 and some

lifecycle methods (including init() and destroy()). The service() method

receives ServletRequest and ServletResponse references, both of which are

interfaces themselves. The ServletRequest interface references information about

the request (the protocol, attributes of the request, parameters, etc.), and the

ServletResponse provides mechanisms by which a servlet can build a response

matching the request.

Filters can be defined in a manner similar to servlets; there’s a general javax.

servlet.Filter interface with a single primary entry point (called doFilter(), of all

things, although Filter has other methods associated with filter lifecycles); this method

receives the request and response objects created by the servlet container, as well as

a FilterChain reference. The filter can do almost anything it wants with the request

and response, although usually filters will either set up data for delegated services or

decorate responses.

Again, most servlets work with HTTP. As a protocol, HTTP maps Uniform Resource

Locators – URLs – to data. HTTP also specifies verbs in relation to these URLs, such as

GET, POST, DELETE, and HEAD. (There are others; check the specification3 for the full list.)

Each HTTP verb has implicit semantic meanings.

Roy T. Fielding wrote a dissertation back in 2000 called Architectural Styles and
the Design of Network-based Software Architectures. You can find it at www.
ics.uci.edu/~fielding/pubs/dissertation/top.htm; it describes an
architectural approach called “REST,” for “Representational State Transfer.” REST

2�Wait, there’s the word “context” again. Spring application contexts aren’t quite the same as
Jakarta EE application contexts, but they’re similar; they just don’t have the same roles at all.
Remember, we warned you that this could get interesting.

3�There are multiple HTTP specifications, because HTTP can do a lot and in a lot of different ways.
A useful reference for the “basic HTTP specification” as everyone thinks of it is HTTP 1.1: see
https://tools.ietf.org/html/rfc2616 – but note that that’s definitely not the final word on
HTTP.

Chapter 5 Spring and Jakarta EE

https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2616
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://tools.ietf.org/html/rfc2616

124

is a big deal in HTTP-based applications; it took some of the implications of the
HTTP protocol and formalized them. If you really want to know how to use the
HTTP verbs and how URLs work on the modern Web, check out REST – which we’ll
be using to create our application services in Chapters 6 and 7.

•	 GET is a request for a resource whose location is known, and URLs

used with GET are traditionally able to be bookmarked. This is by far

the most common type of HTTP request.

•	 POST is a request to store data into a known location (although how

this location is determined depends on the implementation).

•	 PUT is another type of storage request, although where POST means

“store,” PUT implies “store or update if the object already exists.”

•	 HEAD means to return data about the resource without returning the

resource itself; this can be used to determine if a resource has been

updated, for example.

•	 DELETE requests that a resource referred to by the URL is removed

somehow.

One usually speaks of the verbs in context of the URL itself; thus, one might say to

issue a GET http://localhost/foo/bar – or, in the context of a specific host already, you

might say to simply GET /foo/bar.

In HttpServlet, the service() method is overridden to dispatch the request type to

methods specifically named for each verb, and with parameter types that cater to HTTP4;

thus, GET in HTTP is handled by the doGet() method, POST in HTTP is handled by the

doPost() method, and so forth and so on.

It’s useful to understand how Servlets work and what they are actually doing, in

order to make future endpoints easier to conceptualize. We’re eventually going to

leverage resource handlers provided by Spring itself, and those handlers will dispatch

requests into methods of our choosing, with arguments parsed by the framework and

not manually as we’ll be doing in this chapter.

4�Servlet has a service(ServletRequest, ServletResponse); HttpServlet overrides this
method to delegate to a service(HttpServletRequest, HttpServletResponse) method,
which – if not overridden itself – will delegate to doGet(), doPost(), and so forth.

Chapter 5 Spring and Jakarta EE

125

5.1.2  �Modern Web Application Design Principles
It used to be that web applications were built to be monolithic, or “complete”: they

would include all static resources necessary for server-side rendering of content, for

example. This hasn’t been the preferred practice for quite some time now, with the

use of rich clients being very much the norm. A web application will refer to Javascript

libraries like JQuery or Vue.js that request resources in JSON or XML5 and render that

content appropriately.

There’s nothing preventing coders from using the older, monolithic approach, and

there’s nothing inherently wrong with it, although it’s difficult to say whether there are any

actual advantages to rendering a full page instead of sending data client-side to be rendered

on demand. The server-side rendering means that it’s nicer on lower-powered clients, as

long as they have bandwidth to spare; the client-side rendering is better on bandwidth but

uses more CPU power on the browser’s machine. (In practice, users have idle CPU cycles to

use for client-side rendering, and a busy server is a more finite resource, so this approach

makes a lot of cost-effective sense, although some applications’ needs may vary.)

For the purposes of this book, we’re going to use the modern approach, because it

allows us to focus on the server-side technologies in use, rather than how rich clients

work. We’ll use simple command line tools to issue HTTP requests where necessary,

instead of using Javascript embedded in a web page.

5.2  �Module Structure
We’re going to create three modules in this chapter: chapter5common, chapter5anno,

and chapter5xml. We do this because Gradle wants to address each module by name,

and nesting modules tends to make this process more obscure. With a simpler, flatter

structure, Gradle is able to build a graph of what needs to run more easily and quickly.

The suggestion of a flat structure for Gradle comes courtesy of James Nelson
(https://github.com/jamesxnelson), after some headaches were incurred
thanks to trying to replicate how Maven would have built the project.

5�JSON (“JavaScript Object Notation”) and XML are both structured data formats, with XML being
a formal data format and JSON being far more convenient for both humans and, well, Javascript
to read.

Chapter 5 Spring and Jakarta EE

https://github.com/jamesxnelson
https://github.com/jamesxnelson

126

5.2.1  �The Common Module
Our first module will be a simple common module. It will contain two servlets, matching

services that we’ll want in our music gateway application.6

To create our directory structure, we need to create chapter5common/src/main/

java/com/bsg5/chapter5.

Listing 5-1.  Creating the directory structure with POSIX

mkdir -p chapter5common/src/main/java/com/bsg5/chapter5

We’ll also want a build.gradle.

Listing 5-2.  chapter5common/build.gradle

dependencies {

 compileOnly 'javax.servlet:javax.servlet-api:4.0.1'

 compile "org.springframework:spring-core:$springFrameworkVersion"

 compile "org.springframework:spring-context:$springFrameworkVersion"

 compile "com.fasterxml.jackson.core:jackson-databind:$jacksonVersion"

 compile project(':chapter3')

}

This is all fairly straightforward, although we’re adding a resource for the servlet API,

set to compileOnly, which means that it’s available for the compiler (we can compile

using classes from the servlet API, which is rather important when compiling servlets),

but it’s not a transitive dependency. It shouldn’t be a transitive dependency, remember;

servlets run in a container like Tomcat, which will have its own copy of the servlet API,

so our application should actually make sure that it has no dependency that would

duplicate what the container would provide.

6�They will not, however, survive this chapter. They’re written with manual servlet processes in
mind, which is what programmers used to have to do back before Facebook was a thing. Spring
has a better way; we’ll see what that is in Chapter 6. In the meantime, these servlets will help us
validate what we’re learning in this chapter. With that said, we’re going to be writing equivalents
over and over again.

Chapter 5 Spring and Jakarta EE

127

We also have a transitive dependency on the chapter3 module, with compile

project(':chapter3'), meaning that projects that use our common module

will also need to include chapter3. The transitive dependency means that a

dependency on chapter5common carries with it another dependency on chapter3 –

as well as dependencies on anything else that chapter5common or chapter3

depends on.7 We are going to use one of the MusicService implementations from

Chapter 3 in some of our examples here, because we don’t want to have to rebuild

a working example when we have fully working interfaces and implementations

already written.

This way, we can have an intermodule dependency without having to copy our

module outputs into a known repository.

Now it’s time to see our servlets. Both of them will have the exact same structure:

	 1.	 Grab a Spring application context from the servlet context.

	 2.	 Get a MusicService from the Spring application context.

	 3.	 Create a Gson reference to prepare to generate JSON output.

	 4.	 Get servlet parameters from the HttpServletRequest.

	 5.	 Validate parameters.

	 6.	 Generate output from the MusicService, using Gson’s toJson()

method to convert to JSON.

The first servlet is the VoteForSongServlet. We won’t get a chance to see

this in action until we finish either the anno or xml modules, but note the

@WebServlet(urlPatterns="/vote"), which tells us part of the URL this servlet will

be attached to. (The other parts of the URL are the protocol, host, the port the server

is listening on, and the application name itself – so when we run the anno project, by

default, this servlet will be available at http://localhost:8080/anno/vote.)

7�The management of transitive dependencies is one of the things that make build tools in Java
like Maven or Gradle so absolutely necessary. Without transitive dependencies, programmers
would have to chase down the entire dependency tree for every library they used. The transitive
dependency mechanism built into the tools is far, far, far better.

Chapter 5 Spring and Jakarta EE

128

Listing 5-3.  chapter5common/src/main/java/com/bsg5/chapter5/
VoteForSongServlet.java

package com.bsg5.chapter5;

import com.bsg5.chapter3.MusicService;

import com.fasterxml.jackson.databind.ObjectMapper;

import org.springframework.context.ApplicationContext;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import java.io.IOException;

@WebServlet(urlPatterns = "/vote")

public class VoteForSongServlet extends HttpServlet {

 @Override

 public void doGet(HttpServletRequest req, HttpServletResponse resp)

 throws IOException {

 ApplicationContext context = (ApplicationContext) req

 .getServletContext()

 .getAttribute("context");

 MusicService service = context.getBean(MusicService.class);

 ObjectMapper mapper = new ObjectMapper();

 String artist = req.getParameter("artist");

 String song = req.getParameter("song");

 if (artist == null || song == null) {

 �log("Missing data in request: requires artist and song

parameters");

 resp.setStatus(500);

 } else {

 log("Voting for artist " + artist + ", song " + song);

 service.voteForSong(artist, song);

Chapter 5 Spring and Jakarta EE

129

 resp.setStatus(200);

 resp.getWriter().println(

 mapper.writeValueAsString(service.getSong(artist, song))

);

 }

 }

}

Note how we get the ApplicationContext. A ServletRequest has a ServletContext

associated with it by the container; we’re going to store a reference to an

ApplicationContext as an attribute into the ServletContext. The two servlets we’re

showing here are going to grab the Spring context from the Servlet context.

Our next servlet – the GetSongsForArtistServlet – follows the exact same pattern.

Listing 5-4.  chapter5common/src/main/java/com/bsg5/chapter5/
GetSongsForArtistServlet.java

package com.bsg5.chapter5;

import com.bsg5.chapter3.MusicService;

import com.bsg5.chapter3.model.Song;

import com.fasterxml.jackson.databind.ObjectMapper;

import org.springframework.context.ApplicationContext;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import java.io.IOException;

import java.util.List;

@WebServlet(urlPatterns = "/songs")

public class GetSongsForArtistServlet extends HttpServlet {

 @Override

 public void doGet(HttpServletRequest req, HttpServletResponse resp)

 throws IOException {

 ApplicationContext context = (ApplicationContext) req

 .getServletContext()

 .getAttribute("context");

Chapter 5 Spring and Jakarta EE

130

 MusicService service = context.getBean(MusicService.class);

 ObjectMapper mapper = new ObjectMapper();

 String artist = req.getParameter("artist");

 if (artist == null) {

 log("Missing data in request: requires artist parameter");

 resp.setStatus(500);

 } else {

 List<Song> data=service.getSongsForArtist(artist);

 resp.setStatus(200);

 resp.getWriter().println(

 mapper.writeValueAsString(data)

);

 }

 }

}

Fascinating stuff, and archaic, but it’s necessary in order to save ourselves from

copying source files back and forth. It’s time we looked at an actual web application, first

with a non-Spring-related “Hello, World” servlet, and then we’ll see how we can create a

Spring context for use by our common module’s servlets.

5.2.2  �The Annotation-Based Web Application
Let’s see how we can do two things: one, build a working web application, and two, use

a Spring context that programmatically scans packages for Spring-annotated classes, for

use by our servlets. This application is going to be called anno, not because we’re fond of

Latin words for periods of time, but because it’s much shorter to type than “annotation”

or other variants that might be more descriptive.

Let’s write our “hello world” servlet first, because it allows us to get all of our pieces

in place to integrate Spring for our second and third servlets.

Chapter 5 Spring and Jakarta EE

131

Gradle has plugins that can conveniently build artifacts designed for web containers,

called “web archives,” or – more colloquially – “wars.”8 It also has a convenient plugin to

run a web application inside a container, which we’ll see in a few paragraphs.

First, we need to create the anno directory itself.

Listing 5-5.  Creating the directory structure with POSIX

mkdir -p chapter5anno/src/main/java/com/bsg5/chapter5

mkdir -p chapter5anno/src/main/webapp/WEB-INF/templates/jtwig

The source layout is nearly identical to our other projects’ source layout, with

one additional directory: src/main/webapp, which contains static resources that get

processed directly by the container: stylesheets, images, static files, configuration

files for the container, and such. (This is differentiated from src/main/resources

in that things in src/main/resources get located in the artifact’s classpath.) In

our application’s case, we know we have a template that we want in the WEB-INF

directory (which our “hello world” servlet will use), so we can go ahead and create

that structure.

Our build.gradle is where things start to get interesting. Note the addition of the

extra things in the plugins section, and note also the additional dependencies:

•	 The servlet API itself, as in the common module.

•	 See also spring-web for web application–specific bits of Spring.

•	 A templating library, Jtwig.9

•	 A dependency on the code from Chapter 3 (compile

project(':chapter5common')) which we’ll use to do the actual work

in this chapter.

•	 Lastly, the org.gretty plugin, which gives Gradle a convenient way

to run Tomcat with our application deployed in it.

8�So now, if anyone ever asks you what war is good for, you can tell them with a straight face that
wars are good for deploying web applications built in Java. Everyone wins, but be careful: this
might get a cup of coffee thrown at you.

9�Jtwig, found at https://Jtwig.org/, bills itself as a “modern template engine for Java.” For our
purposes, it’s handy because it’s simple to bootstrap. As our chapter continues and we build
services rather than a user interface, Jtwig will become less important for us.

Chapter 5 Spring and Jakarta EE

https://jtwig.org/

132

Listing 5-6.  chapter5anno/build.gradle

plugins {

 id 'war'

 id 'org.gretty' version '2.2.0'

}

dependencies {

 compileOnly 'javax.servlet:javax.servlet-api:4.0.1'

 compile "org.springframework:spring-web:$springFrameworkVersion"

 compile 'org.jtwig:jtwig-web:5.87.0.RELEASE'

 compile project(':chapter5common')

}

�Our First Standalone Working Servlet

Now it’s time for us to create our first working Servlet10 – an endpoint that will accept a

request from a web browser and generate a response for it. It’s not very long, but it shows

us how to accept a GET request (again, the most common request type) from a browser

and how to render output via Jtwig (a skill that’s useful to have, but not one that’s

horrendously useful for this chapter).

Listing 5-7.  chapter5anno/src/main/java/com/bsg5/chapter5/
FirstHelloServlet.java

package com.bsg5.chapter5;

import org.jtwig.web.servlet.JtwigRenderer;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

10�We’ve already shown two Servlets, but they don’t run properly – because we haven’t shown how
to populate the Servlet context with a Spring context yet. The Servlet here is a “hello, world”
servlet, something to make sure our project is working properly. Once we know that we’re able
to run a servlet container and interact with it, we’ll have validated our process and we won’t
need to go back over it – only replicate it.

Chapter 5 Spring and Jakarta EE

133

import javax.servlet.http.HttpServletResponse;

import java.io.IOException;

@WebServlet(urlPatterns = "/hello1")

public class FirstHelloServlet extends HttpServlet {

 /**
 *
 */

 private static final long serialVersionUID = -4427011101374936594L;

 private final JtwigRenderer renderer = JtwigRenderer.defaultRenderer();

 @Override

 �protected void doGet(HttpServletRequest request, HttpServletResponse

response)

 throws ServletException, IOException {

 renderer.dispatcherFor("/WEB-INF/templates/jtwig/hello.jtwig.html")

 .with("name", "world")

 .render(request, response);

 }

}

In this servlet – identified with an annotation and available at a relative URL path

of /hello1 – we have a lot of boilerplate to handle imports, and we also declare a

JtwigRenderer instance, which is our handy entry point into Jtwig. We also have a

doGet() method – which handles GET requests over HTTP – which does nothing more

than render a Jtwig template (held in "/WEB-INF/templates/Jtwig/hello.Jtwig.html",

shown in Listing 5-8) with a variable name that has a static value of "world". As promised,

let’s take a look at our Jtwig template.

Listing 5-8.  chapter5anno/src/main/webapp/WEB-INF/templates/Jtwig/
hello.Jtwig.html

<!DOCTYPE html>

<html>

<head>

 <title>Hello, {{ name }}</title>

</head>

Chapter 5 Spring and Jakarta EE

134

<body>

<p>

 Hello, {{ name }}

</p>

</body>

</html>

Without going too far into too much detail (see the Jtwig web site), this template is

simply an HTML5 document, with placeholders for a value called name. The renderer

(the JtwigRenderer, of course) will replace {{ name }} with the value of name passed

into the render() method, if any.

All this is well and good, but it’s a little bit abstract: how do we run it? How can we get

our Servlet to actually achingly and finally greet the world, which surely has been waiting

with bated breath?11

We do it with Gradle and the aforementioned gretty plugin, of course, by executing

the following command in the top-level project directory, the one that contains

chapter3 and chapter5.

Listing 5-9.  Starting the servlet container

$ gradle :chapter5anno:tomcatStartWar

After some churning to download the appropriate resources and compile our servlet,

Gradle informs us that – among other things – Tomcat is running on port 8080 and our

code is available at http://localhost:8080/chapter5anno.

Listing 5-10.  Some of the log output from the servlet container

INFO: Starting ProtocolHandler ["http-nio-8080"]

20:11:56 INFO Tomcat 8.0.51 started and listening on port 8080

20:11:56 INFO chapter5 runs at:

20:11:56 INFO http://localhost:8080/chapter5anno

If you recall the @WebServlet annotation we used on FirstHelloServlet, you’ll

remember that we have a relative URL path of /hello1. This is added to the web application’s

root URL – which is, as shown, http://localhost:8080/chapter5anno – giving our servlet

11�It’s “bated” breath and not “baited,” no matter how much your authors wanted to seem as if
they’d been eating fish.

Chapter 5 Spring and Jakarta EE

135

an endpoint of http://localhost:8080/chapter5anno/hello1. If we open up a web

browser and go to that location, we will be showered with glory and praise as our browser

window triumphantly displays Hello, world and all of our dreams come true.

We can also test with a command line application, curl,12 which we’ll be doing for

our other servlets.

Listing 5-11.  The output from a successful HTTP request

$ curl http://localhost:8080/chapter5anno/hello1

<?doctype html5?>

<html>

<head>

 <title>Hello, world</title>

</head>

<body>

<p>

 Hello, world

</p>

</body>

</html>

$

12�Curl can be found at https://curl.haxx.se/ – if it’s not already installed on your OS,
convenient downloads can be found at that site.

Chapter 5 Spring and Jakarta EE

https://curl.haxx.se/

136

It’s exciting stuff, but as with other “hello, world” mechanisms, it mostly makes sure

all of the plumbing is in place so that we can start working on more interesting bits.

�Adding a Spring Context for Our Servlets

There are a few ways to use Spring in servlets: we could use a Spring module like

Spring Web (which has a servlet that serves as a dispatcher to service objects written

with Spring in mind,13 and which we’re actually including as a dependency here) or

Spring Boot (which actually has its own servlet engine embedded), or we could have

a web application instantiate a Spring context and access it as a resource from within

traditional servlets. Most Spring experts would probably lean toward Spring Boot, with

Boot’s trivial development and deployment model, but Spring Boot is a subject for

Chapter 7, not Chapter 5, and Spring Web is a subject for later chapters (Chapter 6) as

well… which means we get to get our feet wet with more basic approaches.

When we look at Spring Web and Spring Boot (again, Chapters 6 and 7, respectively),

we’ll find simpler ways to accomplish what we’ll see here – but this chapter will give us

insight into what’s happening behind the scenes in the later chapters, too.

So now that we’ve talked about this being a “basic approach,” and so forth – what is

the approach?

We’re going to add a ServletContextListener to our two web applications, and

in this ServletContextListener we’ll instantiate a Spring WebApplicationContext

and store it in the application scope for the entire web application. When we need

resources from the Spring context, we’ll grab them from the ServletContext – somewhat

like the traditional JNDI model in Jakarta EE, as we saw in our servlets in the common

module. (When we look at Spring Web and Spring Boot, we’ll see easy ways to autowire

dependencies.)

Let’s look at the ServletContextListener, which we’re going to name

AnnotationContextListener.

Listing 5-12.  chapter5anno/src/main/java/com/bsg5/chapter5/
AnnotationContextListener.java

package com.bsg5.chapter5;

import org.springframework.context.ApplicationContext;

13�We’ll be introducing @Controller and other such annotations in Chapter 6.

Chapter 5 Spring and Jakarta EE

137

import org.springframework.web.context.

 support.AnnotationConfigWebApplicationContext;

import javax.servlet.ServletContextEvent;

import javax.servlet.ServletContextListener;

import javax.servlet.annotation.WebListener;

@WebListener

public class AnnotationContextListener implements ServletContextListener {

 @Override

 public void contextInitialized(ServletContextEvent event) {

 ApplicationContext context = buildAnnotationContext();

 event.getServletContext().setAttribute("context", context);

 }

 private ApplicationContext buildAnnotationContext() {

 AnnotationConfigWebApplicationContext context =

 new AnnotationConfigWebApplicationContext();

 context.scan("com.bsg5.chapter3.mem03");

 context.refresh();

 return context;

 }

 @Override

 public void contextDestroyed(ServletContextEvent sce) {

 }

}

For the most part, this class is very simple. It uses @WebListener on the entire class –

which tells the servlet container to use an instance of this class where appropriate –

and, given that it implements ServletContextListener, it will receive context-related

events. There are only two: contextInitialized (called when the application is started)

and contextDestroyed (called when the application is destroyed, if possible).

We don’t care about the contextDestroyed() event – not in this case, at least – so we

simply provide an empty implementation to satisfy the interface’s contract. However, we

want to create our Spring context in the contextInitialized event.

Chapter 5 Spring and Jakarta EE

138

The AnnotationConfigWebApplicationContext, as its name implies, provides

us the ability to scan for available components, as with the <context:component-

scan /> tag we’ve seen in earlier chapters. With this class, we can programmatically

tell the Spring context which packages to scan for available annotations, which is

exactly what the buildAnnotationContext() method does.14 Once we have the

AnnotationConfigWebApplicationContext, we need to tell it where to look to find

candidate classes – and in this case, we’re reusing one of the Chapter 3 memory-based

implementations, so we provide it a single package name, com.bsg5.chapter3.mem03.

This method actually accepts an array of package names, and it’s a variadic function15;

it just so happens that we only need to scan one package for our purposes here, but we

could have provided a comma-delimited list of as many packages as we needed scanned.

Note that this isn’t quite the same as a Java configuration. If we were using a Java

configuration instead of building our configuration, we could have marked with it

@ComponentScan – which would have done the same thing as we’re doing here with

@AnnotationConfigWebApplicationContext and <context:component-scan />.

We’ll see it used in later chapters, when we actually do switch over to using Java-based

configuration.

It’s usually wise to scan exactly what you need, rather than adding entire trees
of packages. Scanning is fairly slow; you won’t do it often (only on application
startup), but it’s still fairly heavy on the Java runtime. If you don’t have a lot
of classes you’re actually interested in, consider programmatic configuration
with a class annotated with @Configuration rather than scanning packages.
We’re scanning here mostly because it’s a few less lines of code than the Java
configuration, which requires a class with its own boilerplate.

However, simply telling the context where it should scan doesn’t make it actually

perform the scan. That’s the role of context.refresh(). After we’ve done that, we get

the ServletContext from the ServletContextEvent and store the Spring context into

14�It actually scans entire package trees – so any packages that have the scanned packages as their
roots will be scanned as well. We could also use the Java configuration approach, and not scan at
all; see Chapter 3 for how to do this.

15�This means that it takes a variable number of arguments. In the method declaration, this is often
shown by using something like “String … args”, where args is actually a typed array.

Chapter 5 Spring and Jakarta EE

139

the Servlet context as a named attribute16; we name it “context” for simplicity. Once

we’ve done that, any executable code in the entire web application can grab the Spring

context from the Servlet context, by name.

When we use the Spring context in this manner (with an explicit load of the Spring

context into the servlet context), we don’t get autowiring of Spring resources into our

servlets. We get them from the Spring context instead. (The beans that are retrieved from

the Spring context, however, will have autowiring in place – and the particular MusicService

we use requires and demonstrates this.) Since we have full control over instance lifecycle

(see Chapter 4), we have fine-grained control over what gets created, and when.

All that’s incredibly useful17; we can now grab our MusicService from Spring, as

shown in the servlets from the common module, but how do we demonstrate it?

By doing the same thing we did with our “hello, world” servlet, of course.

Our anno application includes the common module, as we’ve shown (and mentioned

multiple times, in case readers weren’t paying attention). When we include the

common module, those servlets are automatically set to respond to the URL patterns

specified by the @WebServlet annotation – which means /vote and /songs. That

means when we run our anno application with tomcatStartWar, those servlets are

already active – although they aren’t going to work correctly unless we have our

ServletContextListener in place.

We can test this by using a command line application such as curl. After starting the

application, issue a curl command.

Listing 5-13.  Testing the application manually

$ curl "http://localhost:8080/chapter5anno/vote?artist=Therapy+Zeppelin&

song=Medium"

{"name":"Medium","votes":1}

$ curl "http://localhost:8080/chapter5anno/vote?artist=Therapy+Zeppelin&

song=Medium"

{"name":"Medium","votes":2}

$ curl http://localhost:8080/chapter5anno/songs?artist=Therapy+Zeppelin

[{"name":"Medium","votes":2}]

16�So many contexts!
17�It’s “incredibly useful,” so to speak: Chapter 6 will show us how to get around pretty much all of

this. But this is basically what’s happening behind the scenes.

Chapter 5 Spring and Jakarta EE

140

Wise readers might wonder why we’re not testing this automatically (as part of the

build process), as we’ve done elsewhere in the book. The answer is pretty simple: it’s

hard to do! Cranking up a compliant servlet container in a test is doable, but the best

way to do it is with something like Arquillian (https://arquillian.org/) – which is

unfortunately not trivial to explain. There’s a ton of plumbing that goes into recreating

the proper infrastructure, and it’s largely outside the scope of this book. Plus, this form

of building applications is, as already said multiple times, a bit archaic – our next chapter

will use Spring Web, which not only makes our endpoints far easier to write, but it also

makes them inherently testable without all of the effort we’d have to go through for this

chapter’s rather basic technique.

We promise, we’re not trying to shortchange you, readers! We’re actually just not

wasting effort showing you a testing process you’re not really going to need, but you

will want to have a basic understanding of what the Servlet API is and how it works,

in order to construct decent endpoints for your own applications. Check out the next

chapter. It touches on all of this, and does it properly, and then in later chapters we

do it even better.

5.2.3  �The XML-Based Spring Context Application
Here, everything is almost identical to our annotation-based application – which

was, of course, the whole point of creating the common module. We’re not going

to bother with the “hello world” servlet, so this web application will contain our

ServletContextListener and an XML configuration file (along with the servlets we

wrote in our common module). With our instructions for Gradle, we have four files.

First, the directory structure, starting from the chapter5xml directory itself.

Listing 5-14.  Creating the directory structure with POSIX

mkdir -p chapter5xml/src/main/java/com/bsg5/chapter5

mkdir -p chapter5xml/src/main/webapp/WEB-INF

Our build.gradle is effectively identical to the build.gradle from the

chapter5anno module, with the only real difference being that we no longer need Jtwig

(as the “hello world” servlet was the only class where Jtwig was used).

Chapter 5 Spring and Jakarta EE

https://arquillian.org/

141

Listing 5-15.  chapter5xml/build.gradle

plugins {

 id 'war'

 id 'org.gretty' version '2.2.0'

}

dependencies {

 compileOnly 'javax.servlet:javax.servlet-api:4.0.1'

 compile "org.springframework:spring-web:$springFrameworkVersion"

 compile project(":chapter5common")

}

The ServletContextListener creates an XmlWebApplicationContext instead of an

AnnotationConfigWebApplicationContext, which means we’ll need to have an XML file

in the application, but apart from that, everything should be very familiar.

Listing 5-16.  chapter5xml/src/main/java/com/bsg5/chapter5/
XMLContextListener.java

package com.bsg5.chapter5;

import org.springframework.context.ApplicationContext;

import org.springframework.web.context.support.XmlWebApplicationContext;

import javax.servlet.ServletContext;

import javax.servlet.ServletContextEvent;

import javax.servlet.ServletContextListener;

import javax.servlet.annotation.WebListener;

@WebListener

public class XMLContextListener implements ServletContextListener {

 @Override

 public void contextInitialized(ServletContextEvent event) {

 ApplicationContext context =

 buildXmlContext(event.getServletContext());

 event.getServletContext().setAttribute("context", context);

 }

Chapter 5 Spring and Jakarta EE

142

 private ApplicationContext buildXmlContext(ServletContext sc) {

 XmlWebApplicationContext context = new XmlWebApplicationContext();

 context.setServletContext(sc);

 context.refresh();

 return context;

 }

 @Override

 public void contextDestroyed(ServletContextEvent sce) {

 }

}

Note that when we build an XmlWebApplicationContext, we also set a reference to

the current ServletContext. This is primarily used in different environments than the

one we’re creating; it’s useful when Spring dispatches requests to resources itself, which

we’re not using here. When we get into Chapter 6, this sort of thing will happen behind

the scenes and we won’t have to worry about it, but here it’s just making sure the Spring

Context is set up as it expects.

And of course we need the configuration file itself.

Listing 5-17.  chapter5xml/src/main/webapp/WEB-INF/applicationContext.xml

<?xml version="1.0" encoding="UTF-8"?>

<!-- chapter5/xml/src/main/webapp/WEB-INF/applicationContext.xml -->

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:context="http://www.springframework.org/schema/context"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/context

 http://www.springframework.org/schema/context/spring-context.xsd">

 <context:component-scan base-package="com.bsg5.chapter3.mem03" />

</beans>

Chapter 5 Spring and Jakarta EE

143

This is a near-exact copy of one of the XML configurations from Chapter 3, just

renamed to match the default location searched by XmlWebApplicationContext. (We

can provide a resource to the context to read its configuration, but by default it searches

the web application’s local resources – in this case, /WEB-INF/aplicationContext.xml,

as shown.)

If we run the xml module with Gradle, via gradle :chapter5:xml:tomcatStartWar,

we can exercise the application in the exact same technique we used with the anno app,

changing only the application name from anno to xml.

Listing 5-18.  Testing the application manually

$ curl "http://localhost:8080/chapter5xml/vote?artist=Therapy+Zeppelin&

song=Medium"

{"name":"Medium","votes":1}

$ curl "http://localhost:8080/chapter5xml/vote?artist=Therapy+Zeppelin&

song=Medium"

{"name":"Medium","votes":2}

$ curl "http://localhost:8080/chapter5xml/songs?artist=Therapy+Zeppelin"

[{"name":"Medium","votes":2}]

Our excitement should know no boundaries! – but seriously, we’ve actually

done a lot so far in this chapter. It just so happens that Spring provides easier ways to

accomplish the same things, which we’ll see in the next chapter.

5.3  �Next Steps
In this chapter, we saw what goes on behind the curtains in a web application, with

raw servlets, template rendering with Jtwig, and resource requisition from manually

populated Spring contexts. We also got to see how submodules can be applied in Gradle.

Chapter 6 will show us how to build a more fully featured band gateway application,

by removing all of the manual invocations and conversions (and servlets) from our

application, leading us to a more streamlined and modern web application development

process, including automated testing.

Chapter 5 Spring and Jakarta EE

145
© Joseph B. Ottinger and Andrew Lombardi 2019
J. B. Ottinger and A. Lombardi, Beginning Spring 5, https://doi.org/10.1007/978-1-4842-4486-9_6

CHAPTER 6

Spring Web
6.1  �Introduction to Spring MVC
Spring Web is a framework that provides a Model View Controller (MVC) architecture

to develop applications with Spring for the Web. In the previous chapter, we built out

several servlets running within the Spring framework, but aside from the beans and

other management aspects you get baked into Spring, we were still using regular servlets

in the previous chapter. And as we saw in the previous chapter, nothing stops you from

doing this; however as we’ll hopefully be able to show, using this module will save you

loads of time.

6.2  �MVC
The web module of Spring organizes components using a paradigm known as MVC – an

acronym that stands for Model View Controller. The architecture can be used to develop

applications that are more flexible and loosely coupled than what we saw in the previous

chapter. (We also get to stop managing the configuration so carefully.) We can easily

separate the business logic and input and front-end logic into separate components and

use Spring to wire them together.

In MVC, a model holds the data for our application which allows us to separate our

business logic from how we deal with the data. In the Java world, this is a POJO or Plain

Old Java Object which we’re all pretty used to at creating many times daily.

The view is responsible for taking model data and showing it in some way to the

front end. In this chapter we will show renderers for both HTML and JSON. With HTML

we’ll be focused on rendering templates using a more human-readable format, and with

JSON we’ll be showing the result of an API call.

146

The controller is used to interface with the user. In a web-based interaction, this

consists of user requests, form submissions, and what view to show from a business logic

perspective. It is also responsible for how the model gets passed around.

6.3  �Hello, World with MVC
In this chapter we’re going to keep the module structure really simple compared to what

we did for chapter5. It will be a return to the infinitely simple structure we had prior, just

like Java, simple, not verbose at all.1

First, we need to create our directory structure, starting in the overall project

directory.

Listing 6-1.  Creating the directory structure with POSIX

mkdir -p chapter6/src/main/java/com/bsg5/chapter6

mkdir -p chapter6/src/webapp/WEB-INF/templates

mkdir -p chapter6/src/test/java/com/bsg5/chapter6

As with previous chapters, we will need our Gradle configuration file, build.

gradle. There’s nothing too special about it other than the addition in dependencies

of our spring-web, spring-webmvc, and the hamcrest library (http://hamcrest.

org/JavaHamcrest/) which adds a more flexible assert_that functionality along

with interchangeable matchers that make testing more flexible and extensible with

error messages that make sense. We’ll use the preceding code to help with testing our

controllers. The rest has been dutifully copied from previous incarnations in chapter5

and earlier which gave us the ability to run a Jetty instance with a simple Gradle target.

Listing 6-2.  chapter6/build.gradle

plugins {

 id 'war'

 id 'org.gretty' version '2.2.0'

}

1�I’m laughing at writing this because Spring has offenders like the super simple, not-verbose-at-all
SimpleBeanFactoryAwareAspectInstanceFactory, which, uh… yeah.

Chapter 6 Spring Web

http://hamcrest.org/JavaHamcrest/
http://hamcrest.org/JavaHamcrest/

147

dependencies {

 compileOnly 'javax.servlet:javax.servlet-api:4.0.1'

 compile "org.springframework:spring-core:$springFrameworkVersion"

 compile "org.springframework:spring-context:$springFrameworkVersion"

 compile "org.springframework:spring-web:$springFrameworkVersion"

 compile "org.springframework:spring-test:$springFrameworkVersion"

 compile "org.springframework:spring-webmvc:$springFrameworkVersion"

 compile "org.jtwig:jtwig-web:5.87.0.RELEASE"

 compile "org.jtwig:jtwig-spring:5.87.0.RELEASE"

 compile "com.fasterxml.jackson.core:jackson-databind:$jacksonVersion"

 �compile "com.fasterxml.jackson.core:jackson-annotations:$jacksonVersion"

 compile "ch.qos.logback:logback-classic:1.2.3"

 compile project(":chapter3")

 testCompile 'org.hamcrest:hamcrest-all:1.3'

}

In previous chapters we’ve gone into some depth on the XML configuration, so in

this chapter and subsequent ones, we’ll forego that and focus on annotations for all

our instrumentation needs. Why you may ask? Plainly the Java-based configuration is

much easier and more standard across the Java ecosystem, and we tend to like removing

verbosity if it doesn’t add anything of value. In Listing 6-3 we’ll take a simple controller

which will output a common tutorial phrase to the end user once the endpoint is hit.

Listing 6-3.  chapter6/src/main/java/com/bsg5/chapter6/GreetingController.java

package com.bsg5.chapter6;

import org.springframework.http.HttpStatus;

import org.springframework.http.MediaType;

import org.springframework.http.ResponseEntity;

import org.springframework.stereotype.Controller;

import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.ResponseBody;

@Controller

Chapter 6 Spring Web

148

public class GreetingController {

 �@GetMapping(path = "/greeting", produces = {MediaType.TEXT_PLAIN_VALUE})

 @ResponseBody

 public ResponseEntity<String> greeting() {

 return new ResponseEntity<>("Hello, World!", HttpStatus.OK);

 }

}

There is a fair bit happening in the snippet that we haven’t talked about, so let’s

unpack it. We’ve introduced a GET request mapping using the annotation @GetMapping.

This annotation is a more specific form of the base @RequestMapping. We’ll talk more

about HTTP methods when we touch on REST, but suffice to say that there is an

annotation for each HTTP method you’d like to map to your controllers. A String is a

simple type and requires no conversion, and in more complex cases, Spring MVC will

use Jackson to convert an entity to whatever type your method is expected to return.

As we can see from our @GetMapping, it produces a type of text/plain. Our method

returns a ResponseEntity of type String, which makes sense given that we’re returning

a simple plain text item. The simple return is one of Hello, World! with a status of OK or

HTTP 200. Spring MVC will do a check on start to ensure you don’t have any conflicting

mappings.

It’s always a good idea to ensure that your controller actually works and does the

thing you expect, so let’s create a test to validate our assumptions.

Listing 6-4.  chapter6/src/test/java/com/bsg5/chapter6/
TestGreetingController.java

@Test

@WebAppConfiguration

@ContextConfiguration(classes = GatewayAppWebConfig.class)

public class TestGreetingController extends

AbstractTestNGSpringContextTests {

 @Autowired

 private WebApplicationContext wac;

 private MockMvc mockMvc;

Chapter 6 Spring Web

149

 @Test

 public void greetingTest() throws Exception {

 this.mockMvc = MockMvcBuilders.webAppContextSetup(this.wac).build();

 this.mockMvc.perform(get("/greeting")

 .accept(MediaType.ALL))

 .andExpect(status().isOk())

;

 }

The preceding test is a fairly simple test ensuring that our controller is handling

things that we expect it to. We are using the MockMvc class which fakes the HTTP

call for the web layer so that we can keep this test quick, and we’re purposefully not

starting up a web container here as that will be covered more in Chapter 7 with the

TestRestTemplate. With the test we can ensure the contract is being fulfilled and our

code is doing what it’s supposed to, which is exactly what you’d want to see in a test.

If you’d like to run the web server and test it manually (always a fine idea), you can

run the command line to start tomcat with gradle :chapter6:tomcatStart, hit the

endpoint http://localhost:8080/chapter6/greeting, and be greeted with a simple

text string Hello, World!.

So far we’ve introduced a simple GET request. In the examples that follow, we will

continue showing off portions of Spring MVC and follow REST as closely as we can in

each. Given that this is the first time we’re talking about REST in the book, it’s probably

appropriate for us to discuss some of the architectural concepts inherent in using this

paradigm which we’ll do in the next section.

6.3.1  �REST Concepts
One of the guiding API design strategies of the last few decades has been REST, or

Representational State Transfer.2 It was developed by Roy T. Fielding in the late 1990s in

parallel with the development of HTTP 1.1 and based on existing designs of the HTTP 1.0.

2�You can find more info about REST at https://en.wikipedia.org/wiki/Representational_
state_transfer. If you’d like to read Dr. Fielding’s actual dissertation, it’s online, too, at www.
ics.uci.edu/~fielding/pubs/dissertation/top.htm– it can be fascinating reading if only for
history’s sake.

Chapter 6 Spring Web

https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

150

When comparing the SOAP protocol3 to the architectural principles specified by REST,

we see a larger focus on reducing overall complexity and discoverability by using the

concepts baked into the HTTP protocol.

The following two things should be followed as a base implementation of a

RESTful API. There are many others, but these are the most prevalent:

•	 A base URI, for example, http://api.bandgateway.com/songs/

which specifies the collection (songs in this case), which you’ll be

operating under using the actions specified using HTTP methods.

•	 Use the HTTP methods appropriately, the most often used are GET,

POST, PUT, and DELETE. Others like PATCH, OPTIONS, and HEAD are

used less often but still important. In REST, they are used as actions

operating on your collections or entities.

We’re not suggesting that the other tenets of the REST architectural style aren’t

useful – they are. But they’re also out of scope for this book.

The preceding tenets should get you a good portion of the way toward a less

complicated API. Let’s talk a bit about what we mean about using HTTP methods

appropriately.

�Using HTTP Methods Appropriately

They say there’s no wrong way to eat a Reese’s, and the same can be said of using HTTP

methods. There is, however, a prescribed way of using the HTTP methods to follow the

REST architectural style.

REST splits things into member resources and collection resources. It bills itself

as a paradigm because it doesn’t fit every possible API out there but does a very good

job at representing most patterns you can think of. Later we’ll expand on some of this,

but if your API feels like it needs something a bit different, that’s fine; it’s not a perfect

abstraction so focus on getting the job done rather than building out the perfect API.

For the purposes of our simple API, we’ll talk about a single level of both resources

and collections, but just know that nesting is possible and simple enough to achieve

3�SOAP stands for Simple Object Access Protocol and is a standardized way of exchanging
information with XML; you can read more about it at https://en.wikipedia.org/wiki/SOAP.
Unfortunately, it’s named rather ironically: it’s actually not that simple to use.

Chapter 6 Spring Web

http://api.bandgateway.com/songs/
https://en.wikipedia.org/wiki/SOAP

151

with Spring MVC. If you’re dealing with a collection of resources, you’d be looking at

a URL like http://api.bandgateway.com/songs/. For a member resource, we will

specify an identifier of some kind so your URL structure will look more like http://api.

bandgateway.com/songs/42.

Warning: Jargon ahead!

The list of HTTP verbs often refers to a concept of “idempotency.” A call is
“idempotent” when you can make multiple calls with the exact same data
and produce the same result. Operations that are read-only – like GET – are
idempotent by nature; for other verbs, it can get a little more complicated. If a
call changes the application state but does so consistently, it’s considered to be
idempotent, like what would happen if you turned a light switch to “on” multiple
times – it’s just going to stay on. In reality, of course, it’s a little more complicated.

Abstractions are nice, but not perfect. Back to our text!

•	 GET is used to retrieve a resource. A request of this nature has no side

effects,4 meaning that they are safe because the state of the resource

is never changed.

•	 POST is used to create new resources and will use the collection

resource URL structure. The primary differences with PUT are that it

is not idempotent as multiple calls to POST will create new resources

and it uses the collection resource URL structure. (It’s not idempotent

because each call will create new object state, and the new state will

have its own identifiers, and so forth.)

•	 PUT is used primarily to update an existing resource in full. If the

resource does not exist, the origin server must use the HTTP 201

(Created) response code, and if it is an update, a HTTP status code

200 if returning the entity, or an HTTP status code 204 if the choice is

made to not return the entity.

4�Side effects may include dizziness, nausea, headache, bloat, and abdominal pain. Or that could
just be this writing.

Chapter 6 Spring Web

http://api.bandgateway.com/songs/
http://api.bandgateway.com/songs/42
http://api.bandgateway.com/songs/42

152

•	 PUT requests are idempotent5 which means that it will produce

the same result if executed once or multiple times, which ensures

repeated/retried calls to a PUT will not cause unintended effects

(thus, idempotency.) In addition a PUT request is operated on an

individual resource rather than the collection since it’s intended to be

an update in most cases.

•	 DELETE is used to remove a resource identified by the Request

URI. As with PUT, a DELETE operation is idempotent which means

repeatedly calling the DELETE API on that resource will not change

the outcome but a second time will return a 404 assuming the delete

was successful.

•	 OPTIONS is generally used for CORS requests.6 A deeper look

at CORS is beyond the scope of this book; it is a security-based

mechanism implemented via HTTP headers that tells a browser to

allow an application running at one origin to have permission to

access selected resources from a different origin. A common vector

of web-based attack is injecting malicious JavaScript code which may

hit other domains you have desired access to. A best practice is to

limit the scope of external code that is allowed to hit your API to an

approved list of domains.

The preceding list is a good primer on useful methods with HTTP and REST so let’s

put them into action next with our first REST endpoint.

6.4  �Developing Our First Endpoint with MVC
Now that we’ve explained a bit more about the concepts involved with REST, let’s

start building out some endpoints. The easiest to explain is a simple GET request. The

following snippet will handle any requests going to a URI like http://api.bandgateway.

com/songs?artist=threadbare%20loaf.

5�Idempotency problems? Ask your doctor if PUT requests are right for you.
6�For an explanation of CORS, you can visit https://spring.io/understanding/cors for more
detail.

Chapter 6 Spring Web

http://api.bandgateway.com/songs?artist=threadbare loaf
http://api.bandgateway.com/songs?artist=threadbare loaf
https://spring.io/understanding/cors

153

When Spring returns the query parameter, it will be URL decoded so

threadbare%20loaf will turn into threadbare loaf with an ASCII space in between.

With a URI there are specific allowed characters to allow easier transport. These

characters are defined by RFC 3986 Section 2 (https://tools.ietf.org/html/

rfc3986) and generally include US-ASCII alphanumeric characters along with

several reserved characters which have meaning in a URI string. If a character being

represented doesn’t fall within the specification, they are percent-encoded with the

US-ASCII code representing that character.

Listing 6-5.  chapter6/src/main/java/com/bsg5/chapter6/

GetSongsController.java

package com.bsg5.chapter6;

import com.bsg5.chapter3.MusicService;

import com.bsg5.chapter3.model.Song;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.http.HttpStatus;

import org.springframework.http.ResponseEntity;

import org.springframework.stereotype.Controller;

import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.PathVariable;

import org.springframework.web.bind.annotation.RequestParam;

import org.springframework.web.bind.annotation.ResponseBody;

import java.net.URLDecoder;

import java.nio.charset.StandardCharsets;

import java.util.List;

@Controller

public class GetSongsController {

 @Autowired

 return new ResponseEntity<>(song, HttpStatus.OK);

 }

 @GetMapping("/songs")

 @ResponseBody

Chapter 6 Spring Web

https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986

154

 public ResponseEntity<List<Song>> getSongsByArtist(

 @RequestParam(name="artist") String artist

) {

 System.out.println(artist);

 List<Song> data = service.getSongsForArtist(artist);

In Listing 6-5 we have a class GetSongsController, and in order to tell Spring

MVC that we intend this to be a class that will respond to methods of some fashion,

we annotate it with @Controller. This annotation is basically a more specific

form of @Bean or @Component that we’ve seen in earlier chapters and we’ll use a

lot more throughout this chapter and the book. We want to be able to pull in our

MusicService so we use the annotation @Autowired on the declaration which we

learned about back in Chapter 5. As we move through the chapters, we’ll continue to

use services from previous chapters so we can expand on concepts building on what

we already know.

As in the GreetingController earlier in the chapter, we’ve annotated our

getSongsByArtist method with a @GetMapping annotation which means any GET

request to /songs will hit this method.

Our getSongsByArtist method is set up to return a list of Song objects as a JSON

array. In order to do this, we need to accept a query parameter artist. Since we’re

down the road of annotation land already, we preface our method parameter with

@RequestParam which maps it to a web parameter.

A @RequestParam maps to query parameters, form data, and parts in multipart

requests. While not required, any of the @*Mapping annotations will accept a params

attribute so you can be more explicit about which params map to your method.

For the @RequestParam, it can have the following parameters, all of which are also

optional.

Parameter Description

name This is the name of the query parameter in the URI.

required Default is true, safe to ignore if that fits your requirements, otherwise specify

the opposite.

defaultValue Used in the event a value is not specified so you can operate on the default.

Chapter 6 Spring Web

155

We’re going to return a JSON array of Songs, so we’re going to implement a bit of

magic and return a ResponseEntity object which is commonly used in Spring MVC as

the return value for a @Controller method. What ResponseEntity adds to the response

is a status code. In order for Spring to know that it should use the return value and bind it

to the response body, we use our last annotation in this example @ResponseBody.

The other method handling requests in GetSongsController is listed later. It shows

the use of another method of accepting user input. We don’t currently have any unique

identifier to use as lookup, so we’re going to depend on two key pieces of information

that make up a song, the artist and song name. If you’ll remember in Chapter 1, a song

name is not enough to make up a unique identifier given that there have been examples

of duplicate song names over the years.

A @PathVariable maps to a pattern in the mapping definition annotation and can

have the following optional parameters.

Parameter Description

name This is the name of the path parameter in the URI.

required Default is true, safe to ignore if that fits your

requirements, otherwise specify the opposite.

Listing 6-6 shows what our getSong method looks like given the preceding

information. We won’t bore you with reexplaining any detail on the annotations that

we’ve previously explained in the @RequestParam explanations.

Listing 6-6.  chapter6/src/main/java/com/bsg5/chapter6/
GetSongsController.java

package com.bsg5.chapter6;

import com.bsg5.chapter3.MusicService;

import com.bsg5.chapter3.model.Song;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.http.HttpStatus;

import org.springframework.http.ResponseEntity;

import org.springframework.stereotype.Controller;

import org.springframework.web.bind.annotation.GetMapping;

Chapter 6 Spring Web

156

import org.springframework.web.bind.annotation.PathVariable;

import org.springframework.web.bind.annotation.RequestParam;

import org.springframework.web.bind.annotation.ResponseBody;

import java.net.URLDecoder;

import java.nio.charset.StandardCharsets;

import java.util.List;

@Controller

public class GetSongsController {

 @Autowired

 MusicService service;

 @GetMapping("/artists/{artist}/songs/{name}")

 @ResponseBody

 public ResponseEntity<Song> getSong(

 @PathVariable("artist") final String artist,

 @PathVariable("name") final String name

) {

 �String artistDecoded = URLDecoder.decode(artist, StandardCharsets.

UTF_8);

 �String nameDecoded = URLDecoder.decode(name, StandardCharsets.UTF_8);

 Song song = service.getSong(artistDecoded, nameDecoded);

 return new ResponseEntity<>(song, HttpStatus.OK);

 }

}

Our GET request here accepts two @PathVariable parameters and passes those into

our method. The URI will look something like the following: http://api.bandgateway.

com/artists/threadbare+loaf/songs/someone+stole+the+flour. In the case of path

parameters unlike our query parameter earlier, this will NOT be automatically URL

decoded by Spring. In our controller method since we’re looking for “threadbare loaf”

not “threadbare+loaf,” we will use the URLDecoder class available in the Java standard

library to get at a decoded version of the artist and name.

Chapter 6 Spring Web

http://api.bandgateway.com/artists/threadbare+loaf/songs/someone+stole+the+flour
http://api.bandgateway.com/artists/threadbare+loaf/songs/someone+stole+the+flour
http://api.bandgateway.com/artists/threadbare+loaf/songs/someone+stole+the+flour

157

Spring also has its own encoder and decoder. Which one should you use?

It really doesn’t matter. Both libraries will do the same thing, and they’re both
available to you. In the next chapter, we’ll use the Spring encoder and decoder, and
we won’t notice a difference.

Now that we have these two endpoints, we need to test them just like our

GreetingController. We’ll do the same song and dance with our tests here and

show you how to mock and ensure that your endpoints are processing the inputs and

delivering the outputs in the way you expect.

Listing 6-7.  chapter6/src/test/java/com/bsg5/chapter6/

TestGetSongsController.java

package com.bsg5.chapter6;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.http.MediaType;

import org.springframework.test.context.ContextConfiguration;

import org.springframework.test.context.testng.

AbstractTestNGSpringContextTests; import org.springframework.test.context.

web.WebAppConfiguration;

import org.springframework.test.web.servlet.MockMvc;

import org.springframework.test.web.servlet.setup.MockMvcBuilders;

import org.springframework.web.context.WebApplicationContext;

import org.testng.annotations.Test;

import static org.springframework.test.web.servlet.request.

MockMvcRequestBuilders.get;

import static org.springframework.test.web.servlet.result.

MockMvcResultMatchers.status;

@Test

@WebAppConfiguration

@ContextConfiguration(classes = GatewayAppWebConfig.class)

public class TestGetSongsController extends

AbstractTestNGSpringContextTests {

Chapter 6 Spring Web

158

 @Autowired

 private WebApplicationContext wac;

 private MockMvc mockMvc;

 @Test

 public void getSongControllerTest() throws Exception {

 this.mockMvc = MockMvcBuilders.webAppContextSetup(this.wac).build();

 this.mockMvc.perform(get("/songs")

 .param("artist", "van halen")

 .param("name", "jump")

 .accept(MediaType.ALL))

 .andExpect(status().isOk());

 }

 @Test

 public void getSongsTestWithoutParameters() throws Exception {

 this.mockMvc = MockMvcBuilders.webAppContextSetup(this.wac).build();

 this.mockMvc.perform(get("/songs")

 .accept(MediaType.ALL))

 .andExpect(status().is4xxClientError());

 }

 @Test

 public void getSongsByArtistTest() throws Exception {

 this.mockMvc = MockMvcBuilders.webAppContextSetup(this.wac).build();

 this.mockMvc.perform(get("/songs").param("artist", "van halen")

 .accept(MediaType.ALL))

 .andExpect(status().isOk());

 }

}

We chose using a mock here to make test writing simple and fast. With our usage of

hamcrest and the extensible matchers it provides, it makes writing these assertions a

breeze. In Chapter 7 we will expand on this and use more tooling in the testing space.

Chapter 6 Spring Web

159

The more astute reader will look at the preceding code or have entered it all into

their codebase and wonder how to map the template with our controller. Let’s set up our

initializer and config which will show how this is done.

6.5  �Configuration
We’re getting very used to annotation-based configuration, and so we’ll expand by

showing some configuration classes and how they’re used.

First up is the GatewayAppInitializer which requires us to override two of its

methods getRootConfigClasses and getServletConfigClasses. We’ll override

a third, getServletMappings, which identifies what the root mappings will be

for Spring’s DispatcherServlet to listen to. The one we care about the most is

getServletConfigClasses which returns our GatewayAppWebConfig class.

Listing 6-8.  chapter6/src/main/java/com/bsg5/chapter6/
GatewayAppInitializer.java

package com.bsg5.chapter6;

import org.springframework.web.servlet.support.

AbstractAnnotationConfigDispatcherServletInitializer;

public class GatewayAppInitializer extends

AbstractAnnotationConfigDispatcherServletInitiali

 @Override

 protected Class<?>[] getRootConfigClasses() {

 return new Class[0];

 }

 @Override

 protected Class<?>[] getServletConfigClasses() {

 return new Class[]{GatewayAppWebConfig.class};

 }

 @Override

 protected String[] getServletMappings() {

 return new String[]{"/"};

 }

}

Chapter 6 Spring Web

160

Our GatewayAppWebConfig will start with two annotations which should make sense

intrinsically, @Configuration and @EnableWebMvc, as this is a configuration class, and we

want to enable Spring MVC for the things that we’re configuring here.

The next annotation – @ComponentScan – we’ve seen mentioned in Chapter 5. It pulls

in all classes under the specified package structure – in this case, our service and model

classes from Chapter 3 com.bsg5.chapter3.mem03 and the classes for Chapter 6 under

com.bsg5.chapter6.

Listing 6-9.  chapter6/src/main/java/com/bsg5/chapter6/
GatewayAppWebConfig.java

package com.bsg5.chapter6;

import org.jtwig.spring.JtwigViewResolver;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.ComponentScan;

import org.springframework.context.annotation.Configuration;

import org.springframework.web.servlet.ViewResolver;

import org.springframework.web.servlet.config.annotation.EnableWebMvc;

import org.springframework.web.servlet.config.annotation.

ViewResolverRegistry;

import org.springframework.web.servlet.config.annotation.WebMvcConfigurer;

@Configuration

@EnableWebMvc

@ComponentScan(basePackages = {"com.bsg5.chapter6", "com.bsg5.chapter3.mem03"})

public class GatewayAppWebConfig implements WebMvcConfigurer {

 @Override

 public void configureViewResolvers(ViewResolverRegistry registry) {

 registry.viewResolver(jtwigViewResolver());

 }

 @Bean

 public ViewResolver jtwigViewResolver() {

 JtwigViewResolver viewResolver = new JtwigViewResolver();

 viewResolver.setPrefix("web:/WEB-INF/templates/");

Chapter 6 Spring Web

161

 viewResolver.setSuffix(".jtwig.html");

 return viewResolver;

 }

}

In Chapter 5 we introduced using Jtwig for our template rendering, and we’ll

continue doing that with Spring MVC. The reason to use this library is it provides a very

simple and easily understood templating engine. It’s a fine option, and if you’re looking

for something a bit more popular, you can look into Mustache (https://mustache.

github.io/), FreeMarker (https://freemarker.apache.org/), or dispense with any of

this and just write RESTful components which return JSON.

In order to use Jtwig, we need to register a new ViewResolver and set up where our

templates are and what suffix to use when we scan. The jtwig-spring package offers a

handy ViewResolver which we can return to make things easier.

We haven’t seen any usage of templates in this chapter yet, so let’s move through a

simple example where we can put our new configuration into practice!

6.6  �Templates and Models
In the preceding section, we’ve covered pretty nicely the @Controller aspect of the

Model View Controller paradigm. Let’s take a little time to talk about the View and

the Model.

There are three classes provided by Spring we can use to move data into our view

from our controller classes: Model, ModelMap, and ModelAndView. Let’s take a look at our

usage of the Model class in the next example.

Listing 6-10.  chapter6/src/main/java/com/bsg5/chapter6/
GreetingWithModelController.java

package com.bsg5.chapter6;

import org.springframework.stereotype.Controller;

import org.springframework.ui.Model;

import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.PathVariable;

Chapter 6 Spring Web

https://mustache.github.io/
https://mustache.github.io/
https://freemarker.apache.org/

162

@Controller

public class GreetingWithModelController {

 @GetMapping("/greeting/{name}")

 �public String greeting(@PathVariable(name="name") String name, Model

model) {

 model.addAttribute("name", name);

 return "greeting";

 }

}

In Listing 6-10 we see a controller with a @PathVariable similar to what we’ve seen

earlier accepting a required name field. Our method returns a String here rather than a

ResponseEntity because we’re going to pass back the name of the template we want to

serve this request. Our method accepts a Model class into which we’re throwing the value

passed into the path name. One of the nice things about a Model is that it will also allow

you to merge a Map of String values should you have the need.

You will remember in the configuration section that we set up a ViewResolver for

handling Jtwig templates. This is being put into action now with our greeting.jtwig.

html template. You can see from our method that we pass back a "greeting" String, and

merging that with the configuration we set up with our ViewResolver, we can infer that

the template path will be templates/greeting.jtwig.html.

Let’s take a look at our template.

Listing 6-11.  chapter6/src/main/webapp/WEB-INF/templates/greeting.
jtwig.html

<!DOCTYPE html>

<html>

<head>

 <title>Hello, {{ name }}</title>

</head>

<body>

Chapter 6 Spring Web

163

<p>

 Hello, {{ name }}

</p>

</body>

</html>

Our template does a variable replacement on a Model attribute called name and

effectively does a model.getAttribute("name") to fill in for the {{ name }} snippet

in the code. A Model is essentially an interface that gets passed into your method and

allows you to add attributes to it.

The second method of passing model data to our view is a ModelMap. This method

allows you to chain calls and supports autogenerated attribute names from the values.

Let’s see a simple example of this:

public String greeting(ModelMap map) {

 map.addAttribute("helloWorld");

 map.addAttribute("threadbareLoaf");

 return "greeting";

}

In the preceding code, we’re using the autogenerate functionality so that our model

will have two attribute names, one called “helloWorld” and the other “threadbareLoaf.”

It’s silly, but then life can be pretty silly, can’t it? (If it can’t, how do we explain some of

the text in this book?)

The final method of model data passing is the ModelAndView. It is a convenience

class for returning both the model and the view in a single call. The underlying

holder of model data is a ModelMap, and the view can be a String view like we’ve seen

previously which needs to be resolved by a ViewResolver class, or a view object can be

specified directly.

public ModelAndView greeting() {

 Map<String, String> model = new HashMap<>();

 model.put("helloWorld", "helloWorld");

 model.put("threadbareLoaf", "threadbareLoaf");

 return new ModelAndView("greeting", model);

}

Chapter 6 Spring Web

164

In the preceding simple example, we have duplicated what we did in the ModelMap

example, but we’re using the ModelAndView class now. It may not seem like much of

a savings, but it allows us to encapsulate both model and view in a single class, so it

affords us quite a lot of power. In the next section, we’re going to tackle errors and how to

configure and show them on the front end.

6.7  �Error Handling
Taking care of error cases when they come up is vital to the building of your web

application. With that in mind, let’s take a look at some ways in which you can let users

of our application know when they have hit an error. Our first order of business is to

build a custom exception which will simply extend RuntimeException and expose one of

the methods. Let’s take a look at that now.

Listing 6-12.  chapter6/src/main/java/com/bsg5/chapter6/
ArtistNotFoundException.java

package com.bsg5.chapter6;

public class ArtistNotFoundException extends RuntimeException {

 /**
 *
 */

 private static final long serialVersionUID = 1462190646166272903L;

 public ArtistNotFoundException(String message) {

 super(message);

 }

}

Listing 6-12 is pretty standard stuff, and you can definitely customize to your heart’s

content with error codes or other data should you feel it necessary. The way this comes

into action, though, given that we’re firmly on the side of using annotations everywhere,

is with the @ExceptionHandler annotation. In our snippet in Listing 6-13, we’re showing

a handler for our custom exception ArtistNotFoundException, and this is going to tell

Spring that the view we’re looking for when something like that is thrown should be

handled here.

Chapter 6 Spring Web

165

Let’s take a look at some code to show how this is done.

Listing 6-13.  chapter6/src/main/java/com/bsg5/chapter6/

GetArtistsExceptionController.java

@Controller

public class GetArtistsExceptionController {

 @Autowired

 MusicService service;

 @ExceptionHandler(ArtistNotFoundException.class)

 public ModelAndView handleCustomException(ArtistNotFoundException ex) {

 ModelAndView model = new ModelAndView("error");

 model.addObject("message", ex.getMessage());

 model.addObject("statusCode", 404);

 return model;

 }

}

This will handle a very specific exception that can be thrown in a controller method.

It uses the ModelAndView object that we learned about in the previous section and

prefills in the 404 status code since this is a “Not Found” exception. What happens when

something else happens, though, and it’s an exception we haven’t accounted for? We can

define a catch-all exception like the code snippet in Listing 6-14.

Listing 6-14.  chapter6/src/main/java/com/bsg5/chapter6/

GetArtistsExceptionController.java

@Controller

public class GetArtistsExceptionController {

 @Autowired

 MusicService service;

 @ExceptionHandler(Exception.class)

 public ModelAndView handleAllExceptions(Exception ex) {

Chapter 6 Spring Web

166

 ModelAndView model = new ModelAndView("error");

 model.addObject("message", ex.getMessage());

 model.addObject("statusCode", 500);

 return model;

 }

}

This will default to returning a 500 since it may have been thrown somewhere

outside of our code, and this is probably a legitimate server error that we can tell the user

about.

Our next method is going to be a little silly, since we’re using service methods from

Chapter 3, and they don’t throw exceptions or return nulls, we’ve just got a controller

method that will respond with any GET /artists/{artist} with the 404.

Listing 6-15.  chapter6/src/main/java/com/bsg5/chapter6/

GetArtistsExceptionController.java

@Controller

public class GetArtistsExceptionController {

 @Autowired

 MusicService service;

 @GetMapping("/artists/{artist}")

 @ResponseBody

 public ResponseEntity<Artist> getSong(

 @PathVariable("artist") final String artist

) {

 �throw new ArtistNotFoundException("Artist with name " + artist + "

not found");

 }

}

Our ModelAndView definitions in the two exception handler methods of our

controller reference a view named “error.” Let’s take a look at our error template.

Chapter 6 Spring Web

167

Listing 6-16.  chapter6/src/main/webapp/WEB-INF/templates/error.jtwig.html

<!DOCTYPE html>

<html>

<head>

 <title>Error {{ statusCode }}</title>

</head>

<body>

<p>

 �An error has occurred with status: {{ statusCode }} and message: {{

message }}

</p>

</body>

</html>

The preceding template is simple; it perfectly encapsulates a simple error page and

pulls data from our controller in the event something goes wrong.

6.8  �Next Steps
In this chapter, we saw how to build a more fully featured band gateway application,

by removing all of the manual invocations and conversions (and servlets) from our

application, leading us to a more streamlined and modern web application development

process, including automated testing. The next chapter will focus on the Spring Reactive

framework…

Chapter 6 Spring Web

169
© Joseph B. Ottinger and Andrew Lombardi 2019
J. B. Ottinger and A. Lombardi, Beginning Spring 5, https://doi.org/10.1007/978-1-4842-4486-9_7

CHAPTER 7

Spring Boot
So far, we’ve looked at Dependency Injection and various configuration approaches,

and we’ve explored deploying some web services into Apache Tomcat. Along the way

we’ve used a small set of Spring modules, picking and choosing as needed. It’s time for

us to switch gears and look at Spring Boot, which is a project structure generally aimed

at microcontainers; Spring Boot gives us an easier way to get larger feature sets out of

Spring and offers an integrated set of services aimed at deploying running applications

without having to rely on traditional Jakarta EE services like Apache Tomcat.

Microcontainers have multiple definitions, but in context, it’s a self-contained
application, representable as a single artifact, deployed in a virtual machine. That
sounds a little odd in the context of Java, which runs in a virtual machine itself;
wouldn’t every application qualify as a “microcontainer,” then?

The answer is “… maybe.” However, the more common use of a “microcontainer”
is an application with a single purpose, like “run the band gateway application,”
running inside its own virtual machine (therefore, a virtual machine running inside
another virtual machine) such as a Docker container.

7.1  �What Is Spring Boot?
Spring Boot can be defined in many ways, just like Spring can be defined in many ways.

At its heart, it’s a project that combines many of the most commonly used bits

of Spring into a single cohesive unit such that dependencies are easier to manage,

as well as an executable environment to make deployment without a container

quite doable.

170

We haven’t really run into enough correlated dependencies to give ourselves a

headache with trying to chase down problems in our dependencies, although as

we’ve progressed we’ve added more and more modules to our chapter projects. So far

we’ve been laser-focused on each chapter’s topics such that we’ve been able to keep

dependency lists to a fair minimum. Even so, there are a few issues we’ve encountered –

although we haven’t needed to address them, because they’re so minor, and our tools

actually fix them for us.

Namely, in Chapter 6, we used jtwig-spring for rendering our “Hello, World”

content. This library actually has transitive dependencies itself, on spring-webmvc,

guava, jtwig-web, slf4j-api, and commons-lang. The “issue” – note scare quotes! –

is that the dependency on spring-webmvc contained by the jtwig-spring artifact is

actually on version 4.2.3.RELEASE and not the Spring 5 version of spring-webmvc.

Gradle actually allows us to override the versions easily; when we declare the

dependency ourselves, Gradle assumes that we want the specific version we are referring

to instead of a transitive dependency, and thus it overrides the transitive dependency

with the right version.

With the Spring Boot parent project, we coalesce many of the Spring dependencies

into one reference list and thus eliminate a host of potential problems in one fell swoop.

This has implications for our library declarations and testing, since almost everything is

made available by magic.1

But there’s more.

Spring Boot is designed to give you the ability to make your projects executable

without a container like Apache Tomcat. You can still write your controllers and Spring

beans the exact same way, but instead of starting a Tomcat instance and deploying

your web application into it (a process we are more or less pretending to do when we

use gradle tomcatStartWar), Spring Boot can be executed as a regular executable

Jar file. It embeds a web container itself (Tomcat, by default) and manages it; it also

manages logging, database connections (and database setup), configurations, metrics,

and other things.

It can be horribly convenient.

1�True story: There was a chapter in which testing was such a pain without Spring Boot that your
authors decided to move the chapter to be after the Spring Boot chapter so that Boot’s tooling
could be used.

Chapter 7 Spring Boot

171

7.2  �Setting Up a Project
Actually setting up a Spring Boot project is rather easy. In Gradle, it involves a single

plugin and a single initial dependency (with the option of configuring an executable

jar) – after which everything more or less works through convention, including a basic

configuration. Let’s walk through yet another “Hello, World” application just to show the

parts we need – and note that we’ll be adding pieces as we go through the chapter.

First, of course, we need to create the source structure and build.gradle itself. The

source structure mirrors every other chapter we’ve seen so far, with a main and test

directory; our main contains a java directory and a resources directory. (We’ll be using

resources later in the chapter to add static content just to illustrate how we can create a

“user interface” – a term being applied very loosely in this book’s case.)

Listing 7-1.  Creating the directory structure with POSIX

mkdir -p chapter7/src/main/java/com/bsg5/chapter7

mkdir -p chapter7/src/main/resources

mkdir -p chapter7/src/test/java/com/bsg5/chapter7

Our build.gradle is fairly bland – a good thing in a build script. Things to note are

	 1.	 The declaration of the org.springframework.boot plugin, which

provides version information for subsequent dependencies

	 2.	 The use of the io.spring-dependency-management plugin

	 3.	 The spring-boot-starter-web dependency, whose version

comes from the boot plugin – so we don’t have to (or want to,

normally) specify anything (it’s pulled from the plugin)

	 4.	 The bootJar section, which tells Spring Boot how to package

our application into an executable jar file, in this case rather

inventively named bsg5-chapter7 – so our actual executable jar’s

name will be bsg5-chapter7-1.0.0.jar

This four-part structure (the plugins reference, the applied plugin, the

dependency, and bootJar) is very, very common with Spring Boot applications – you

could probably cut and paste this as a starter for Spring Boot projects if you wanted.

(For the record, we’re going to alter this script later in the chapter to add some features

our tests will need.)

Chapter 7 Spring Boot

172

For the record, this isn’t special information or tribal knowledge of any kind –
Spring Boot’s own documentation shows you nearly the exact same thing, as will
nearly any other Spring Boot reference.

Listing 7-2.  chapter7/build.gradle

plugins {

 id 'org.springframework.boot' version '2.1.3.RELEASE'

}

apply plugin: 'java'

apply plugin: 'io.spring.dependency-management'

dependencies {

 compile 'org.springframework.boot:spring-boot-starter-web'

 testCompile 'org.springframework.boot:spring-boot-starter-test'

 testCompile 'org.testng:testng:6.14.3'

}

bootJar {

 baseName = 'bsg5-chapter7'

 version = '1.0.0'

}

sourceCompatibility = 11

targetCompatibility = 11

test {

 useTestNG()

}

7.3  �Checking the Foundation
Now that we have our project structure set up, we can create our entry point, which

we’re going to call Chapter7Application. It will have no specific code to execute in

and of itself – it will load a configuration (via the @SpringBootApplication annotation,

Chapter 7 Spring Boot

173

which has special meanings as we’ll see in a few more paragraphs) – and crank up a web

container as well as creating a lot of beans for us, for metrics, and other services. What our

application will do is simple: declare beans and controllers and make sure they’re visible

to the application class (by virtue of being in the same package tree, so having a package

that starts with com.bsg5.chapter7, including any packages under com.bsg5.chapter7).

Those services will be automatically made available to whatever needs them, as we’ll see.

7.3.1  �Building the Application

Listing 7-3.  chapter7/src/main/java/com/bsg5/chapter7/
Chapter7Application.java

package com.bsg5.chapter7;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication

public class Chapter7Application {

 public static void main(String[] args) {

 SpringApplication.run(Chapter7Application.class, args);

 }

}

7.3.2  �Building Our Transport Object
Of course, this isn’t useful without an actual controller to serve as an HTTP endpoint

somewhere, so let’s also create a simple greeting service, to make sure the parts all work

together. First, we’ll create a Greeting – an object containing content – that we can serve

from a REST endpoint.

Note the use of methods like Objects.equals() and Objects.hash() – these are utility

methods introduced in Java 1.7 to help generate hash codes and determine equality.

If you skipped the ideas behind REST in Chapter 6, this might be a good time to go
back and review. If you don’t want to do that, it’s okay – basically, we’re hosting a
resource behind an HTTP GET request.

Chapter 7 Spring Boot

174

Listing 7-4.  chapter7/src/main/java/com/bsg5/chapter7/Greeting.java

package com.bsg5.chapter7;

import java.util.Objects;

public class Greeting {

 String message;

 public Greeting(String message) {

 this.message = message;

 }

 public Greeting() {

 }

 public String getMessage() {

 return message;

 }

 public void setMessage(String message) {

 this.message = message;

 }

 @Override

 public boolean equals(Object o) {

 if (this == o) return true;

 if (!(o instanceof Greeting)) return false;

 Greeting greeting = (Greeting) o;

 return Objects.equals(getMessage(), greeting.getMessage());

 }

 @Override

 public int hashCode() {

 return Objects.hash(getMessage());

 }

}

Chapter 7 Spring Boot

175

7.3.3  �Actually Saying “Hello”
Now that we have an object to pass around, let’s create our GreetingController, in

concept incredibly similar to the GreetingController from Chapter 6.2 We’ll add a

special case or two: for one thing, we’ll have a generalized greeting in case no name

is provided, and for another, we’ll have our controller not recognize the name of the

Invisible Man (“Jack Griffin,” in the 1933 horror film).

Listing 7-5.  chapter7/src/main/java/com/bsg5/chapter7/
GreetingController.java

package com.bsg5.chapter7;

import org.springframework.web.bind.annotation.PathVariable;

import org.springframework.web.bind.annotation.RequestMapping;

import org.springframework.web.bind.annotation.RestController;

@RestController

public class GreetingController {

 @RequestMapping(value = {"/greeting/{name}", "/greeting"})

 Greeting greeting(@PathVariable(required = false) String name) {

 String object = name != null ? name : "world";

 /* Jack Griffin is the name of the "Invisible Man." */

 if (object.equalsIgnoreCase("jack griffin")) {

 return new Greeting("I don't know who you are.");

 } else {

 return new Greeting("Hello, " + object + "!");

 }

 }

}

2�We could have used Chapter 6’s classes in this chapter, but Chapter 6 doesn’t use Spring
Boot and this chapter does, obviously enough. This means Chapter 6’s classes would imply
dependency management issues that we’re trying to avoid here, so we’re going to rewrite the
classes for clarity’s sake, as well as illustrating some different concepts.

Chapter 7 Spring Boot

176

A few things to point out:

•	 @RequestMapping means that this endpoint will handle the

responses for multiple HTTP methods, so we can issue a POST to

this endpoint as well as a GET and it should respond the same. If we

wanted to restrict the HTTP method, we could use @GetMapping or

@PostMapping, for example.

•	 We have multiple locations specified – one with {name}, and one

without. That’s to handle the situation where no name is provided, so

we can respond to /greeting/World and /greeting with the same

endpoint. This is not particularly wise, as POST accepts different kinds

of data and we’re pretending all HTTP requests are treated the same.

•	 We map the parameter type with a @PathVariable annotation,

where we specify that it’s not required (because being required is

the default). If we didn’t tell Spring that it was optional, we’d get an

exception when the value was not provided.

7.3.4  �Testing with Spring Boot
Of course, there’s no point in having a controller or service if we don’t know that it works,

so let’s create a test for it that runs a few sample inputs with their expected outputs.

There are actually two approaches we can take here; one approach to testing is that we

can test the controller directly, by issuing method calls directly against the endpoint

method. However, that avoids a lot of the functionality of the endpoint itself. Let’s take a

quick look at that code, just to see what we’re talking about.

Listing 7-6.  chapter7/src/test/java/com/bsg5/chapter7/
TestGreetingController.java

@Test(dataProvider = "greetingData")

public void testDirectGreeting(String name, String greeting) {

 assertEquals(

 greetingController.greeting(name).getMessage(),

}

Chapter 7 Spring Boot

177

This is fine code, I suppose, and it actually verifies that the Java code for the

controller is doing what it’s supposed to. However, what we’d like to do is issue a call over

HTTP, to make sure our parameter conversion and URL mappings are working properly,

and that we’re getting our objects back in the right form. We can do this, provided we

allow Spring Boot to wire in an object to issue REST calls in a test, along with building

the actual endpoint. To issue the call, we use a TestRestTemplate, which will allow us to

get a ResponseEntity<Greeting> back from our endpoint. The ResponseEntity allows

us to check the actual results of the REST call – HTTP codes, and the like – as well as

returning an object we can examine as in our prior test. It means that we have more code

to actually validate the results of the call, but that’s okay; we’re actually interested in such

things. (If we weren’t interested in the HTTP status, we could use TestRestTemplate.

getForObject() instead, which would return the Greeting itself and ignore the

ResponseEntity wrapper.) Here’s the complete, functioning TestGreetingController

class, to show what’s going on.

Listing 7-7.  chapter7/src/test/java/com/bsg5/chapter7/
TestGreetingController.java

package com.bsg5.chapter7;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.boot.test.context.SpringBootTest;

import org.springframework.boot.test.web.client.TestRestTemplate;

import org.springframework.boot.web.server.LocalServerPort;

import org.springframework.http.HttpStatus;

import org.springframework.http.ResponseEntity;

import org.springframework.test.context.testng.

AbstractTestNGSpringContextTests;

import org.testng.annotations.DataProvider;

import org.testng.annotations.Test;

import static org.testng.Assert.assertEquals;

Chapter 7 Spring Boot

178

@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT)

public class TestGreetingController extends

AbstractTestNGSpringContextTests {

 @Autowired

 private GreetingController greetingController;

 @LocalServerPort

 private int port;

 @Autowired

 private TestRestTemplate restTemplate;

 @DataProvider

 Object[][] greetingData() {

 return new Object[][]{

 new Object[]{null, "Hello, world!"},

 new Object[]{"World", "Hello, World!"},

 new Object[]{"Andrew", "Hello, Andrew!"},

 new Object[]{"Jack Griffin", "I don't know who you are."}

 };

 }

 @Test(dataProvider = "greetingData")

 public void testRestGreeting(String name, String greeting) {

 String url = "http://localhost:" + port + "/greeting/" +

 (name != null ? name : "");

 ResponseEntity<Greeting> result =

 restTemplate.getForEntity(url, Greeting.class);

 assertEquals(result.getStatusCode(), HttpStatus.OK);

 assertEquals(result.getBody().getMessage(), greeting);

 }

 @Test(dataProvider = "greetingData")

 public void testDirectGreeting(String name, String greeting) {

 assertEquals(

 greetingController.greeting(name).getMessage(),

 greeting);

 }

}

Chapter 7 Spring Boot

179

We can actually run a test now and have the four tests run; now we know our

controller is working properly.

7.3.5  �Configuration in Spring Boot
To finish up, then, do we need to create any additional configuration of some kind?

As it turns out, we don’t. (Not yet, at least.) The @SpringBootApplication annotation

actually implies autoconfiguration (so wiring happens automatically, and a lot of

infrastructure is generated for us), component scanning in the same package (and

packages “under” the same package) as the class that has the annotation (so all classes

in com.bsg5.chapter7 are scanned to check whether they’re Spring beans or not), and

implicitly includes a configuration reference as well – so unless we’re doing something

out of the ordinary, Spring Boot will automatically see every bean that is referenced

somewhere in the current package, including classes that contain a Java configuration.

We’re actually done with our “Hello, World” web service itself.

We’ve mentioned package trees a few times so far in this chapter, where we
say that scanning happens in com.bsg5.chapter7 and packages “under”
that package, if we had any. It’s worth remembering, though, that packages are
named hierarchically, and it’s convenient to think of them as a hierarchy, but
they’re not actually hierarchical; you can’t import a package tree, but only a
specific package.

You’d have to import each package specifically.

So when we write that scanning happens in a “package tree,” note that it’s actually
walking through packages with a common prefix; it’s not actually a tree.

We can build our application into an executable jar file with gradle

:chapter7:bootJar, which will create our executable jar in chapter7/build/libs/

bsf5-chapter7-1.0.0.jar. We can run this jar trivially.

Listing 7-8.  Building and running our “Hello, World” container

gradle :chapter7:bootJar

java -jar chapter7/build/libs/bsg5-chapter7-1.0.0.jar

Chapter 7 Spring Boot

180

After a fairly large amount of logging information on startup (which should take only

a few seconds), we can open http://localhost:8080/greeting/Joe in a browser and

be warmly (perhaps even “affectionately”) greeted by our application.

7.3.6  �Static Content with Spring Boot
It’s also worth noting that we can have Boot serve static content, as long as we locate

it in src/main/resources/static in our build tree. (It’s actually more than that:

static content can be served from /static, /public, /resources, or even /META-INF/

resources by default – and yes, you can alter these as well, although it’s not advised.

Having four “standard locations” is amusing in and of itself, without adding more

confusion.)

Let’s add a hello-boot.html page that will allow us to actually make a REST call

from an HTML page, just to demonstrate an end-to-end process.

This is not a recommendation for any kind of rich client programming practices.
This is pretty much just about as simple a “rich client” as can be made, and
readers are advised to read one of Apress’ many fine books on HTML user
interfaces rather than take this primitive example as advice of proper design and
practice.

Chapter 7 Spring Boot

181

What our HTML page will have is fairly simple: an HTML form that submits data

via a short Javascript function, the Javascript itself, and a placeholder to render results.

The Javascript will use JQuery (https://jquery.com/) to issue a REST call against our

endpoint, much like our test did, and it will alter the placeholder to render the data from

our GreetingController verbatim.

Listing 7-9.  chapter7/src/main/resources/static/hello-boot.html

<!DOCTYPE html>

<html>

<head>

 <title>Hello, World</title>

 <script

 src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery.min.js">

 </script>

 <script>

 function submitForm() {

 $.get('http://localhost:8080/greeting/'+

 $('#helloform input[name=name]').val(),

 function(data) {

 $("#greeting").text(data.message);

 },

 'json');

 };

 </script>

 <style>

 p#greeting {

 font-family: "Andale Mono",monospace;

 }

 </style>

</head>

<body>

<div>

 <form id="helloform">

 <p>

 Hello, what is your name?

Chapter 7 Spring Boot

https://jquery.com/

182

 <input type="text" name="name"/>

 <input type="button" value="Submit" onclick="submitForm()"/>

 </p>

 <p id="greeting"></p>

 </form>

</div>

</body>

</html>

If we run our application (after rebuilding it, and by running java -jar chapter7/

build/libs/bsg5-chapter7-1.0.0.jar), we can interact with our HTML page by

opening http://localhost:8080/hello-boot.html and entering various names. For

this example, we’ll identify as the Invisible Man:

7.3.7  �Summary of the “Hello, World” Boot Mechanism
We’ve seen how to build our project structure and create a runnable class for Spring

Boot, as well as how to create an executable jar file; we’ve also seen how to create a

REST endpoint (using concepts we discussed in Chapter 6) with a working test, as well

as how to embed static resources into our application. It’s time for us to go back to our

music recommendation application, and show how more of this would tie together in a

(slightly) more real-world application.

Chapter 7 Spring Boot

183

7.4  �Spring Boot and Database Connections
It’s time for us to create a better version of our music gateway services. In previous

chapters, we’ve been reusing a memory-only version of the services from Chapter 3,

which was convenient because those services had no other dependencies; they

didn’t use a database or anything that might require configuration. In the interest of

demonstrating a more fully featured configuration, let’s create a MusicService backed by

an embedded database (H2, in this case).

We’re still showing you ways to do things that aren’t exactly “the most efficient.” That’s
because this chapter is focused on Spring Boot and some of its features, not JDBC or
other such technologies; we’re purposefully not leveraging some of the things we will
cover in subsequent chapters. Some of those things, like Spring Boot itself, will make
accomplishing some of these programming tasks much easier and with less code.

First, of course, we need to make sure H2 is available to our project. We also will need

to make sure that spring-boot-starter-jdbc is in our list of dependencies, in order to –

spoiler alert – get Spring Boot to add connection pooling for our database.3

Why H2 and not HSQL or Derby? For one thing, H2 is probably the most popular
of them; both it and HSQLDB are actively maintained forks of HSQL, but H2 is
maintained by HSQL’s original author. Derby is actually surprisingly capable, being
nearly a Java version of IBM’s DB2 and maintained by Apache, but it’s also heavier
on system resources than H2 or HSQLDB.

Listing 7-10.  chapter7/build.gradle with H2 included

plugins {

 id 'org.springframework.boot' version '2.1.3.RELEASE'

}

3�Be careful about dependencies here. There’s an org.springframework:spring-jdbc
dependency as well, but it will use an embedded database url by design, overriding any database
connection properties you might set manually.

Chapter 7 Spring Boot

184

apply plugin: 'java'

apply plugin: 'io.spring.dependency-management'

dependencies {

 compile 'com.h2database:h2'

 compile 'org.springframework.boot:spring-boot-starter-web'

 compile 'org.springframework.boot:spring-boot-starter-jdbc'

 testCompile 'org.springframework.boot:spring-boot-starter-test'

 testCompile 'org.testng:testng:6.14.3'

}

bootJar {

 baseName = 'bsg5-chapter7'

 version = '1.0.0'

}

sourceCompatibility = 11

targetCompatibility = 11

test {

 useTestNG()

}

What’s neat here is that for three embedded databases for Java – H2, HSQLDB, and

Derby – Spring Boot can autoconfigure our databases for us. All we have to do is include

the dependencies, and Boot does the rest. That doesn’t mean we won’t want to configure

the databases, but for early development and testing, it’s rather convenient, as are

many of Spring Boot’s features. In the interest of best practices, however, we’re going to

manually configure the database connection.

7.4.1  �Initializing Data with Spring Boot
Spring Boot also runs SQL for us on application startup. It starts by executing the SQL

commands contained in files named schema.sql and data.sql (in that order) from the

classpath (so we can locate these files, e.g., in our source tree at src/main/resources). It

also will run database-specific scripts based on a platform property – which we’ll show –

so that we can have generalized schema setup and then fine-tune the configuration for

whichever database we might choose, if we happen to use features that aren’t based

Chapter 7 Spring Boot

185

on the SQL standard. (In other words, if our schema requires features for a specific

database, using that database’s custom SQL, we can locate the custom SQL in a file

named specifically for that database.)

Note that our startup scripts are designed for our testing requirements, not for live
deployment. We forcibly reset the data to match what our tests require, which is
something a live application would not want to do.

We’ve now mentioned autoconfiguration of the database connection pool and a

“platform” property. These come from a simple property file in the classpath, called

application.properties. In our case, we want to set up a simple database connection,

with a JDBC URL, a username, a password, and a database driver name. We don’t

actually need all of these – or any of them, really – but it’s good practice to set them

for when you’ll want to change them to something more robust than an embedded

database.4

Our application.properties file for now is shown in Listing 7-11.

Listing 7-11.  chapter7/src/main/resources/application.properties

spring.datasource.url=jdbc:h2:./chapter7;DB_CLOSE_ON_EXIT=FALSE

spring.datasource.username=sa

spring.datasource.password=

spring.datasource.driver-class-name=org.h2.Driver

spring.datasource.platform=h2

With this, we’re creating a database in the user’s current directory when the

application is run, with a database username of sa and an empty password (which

happens to match the default H2 user profile); we are also explicitly setting the driver

class name to org.h2.Driver. Lastly, we’re setting the platform to be h2 as well, so

4�There’s nothing wrong with an embedded database, but note that embedded databases are
fast but not typically scalable. If your application gets enough traffic that a single application
container gets overwhelmed, you’d need to rebuild the database to point to an external database.
It’s not a high-priority thing to think about, but it is important to be aware. Embedded databases
are great, because of how easy they are to use, but they’re certainly not a “one stop solution.”

Chapter 7 Spring Boot

186

Spring Boot will first attempt to run schema.sql, and then schemah2.sql, after which it

will run data.sql and data-h2.sql.

Why would one have database-specific scripts? Well, SQL is generally going to
be the same across every database platform, but not quite. Some databases will
have nonstandard datatypes or ways to define primary keys or table relationships;
sadly, for as common and as powerful as SQL is, it’s terribly common to require
database-specific scripting to accomplish certain tasks – and defining the schema
is one of the areas that this is most true.

If you recall our data model in Chapter 3, you’ll note that we have two entities to

manage: Artist and Song. This sounds like a suggestion that we have two tables that

correspond to those entity names, and we could do that, but we’re not going to.

The reason is rather simple: this chapter is already covering a lot of ground, and

covering both Artist and Song services would take too long and add relatively little

(once you understand what’s going on with services related to Artist, the services

related to Song wouldn’t make much difference – but it’d take a lot more room). We’re

going to revise how we access data in the next chapter, so it makes more sense for us

to focus on the full feature set of services in Chapter 8 and not here in Chapter 7. We’re

going to include the data descriptions here – as SQL comments – just to show you

where it would go, but then we’re going to pretend that Song doesn’t exist until we hit

Chapter 8.

Listing 7-12.  chapter7/src/main/resources/schema-h2.sql

DROP INDEX IF EXISTS artist_name;

DROP TABLE IF EXISTS artists;

CREATE TABLE IF NOT EXISTS ARTISTS

(

 id IDENTITY,

 name VARCHAR(64) NOT NULL

);

CREATE UNIQUE INDEX IF NOT EXISTS artist_name

 ON ARTISTS(name);

Chapter 7 Spring Boot

187

--CREATE TABLE IF NOT EXISTS SONGS

--(

-- id IDENTITY,

-- artist_id INT,

-- name VARCHAR(64) NOT NULL,

-- votes INT DEFAULT 0,

-- FOREIGN KEY (artist_id) REFERENCES ARTISTS (id)

-- ON DELETE CASCADE

-- ON UPDATE CASCADE

--);

--CREATE UNIQUE INDEX IF NOT EXISTS song_artist

-- ON SONGS (artist_id, name);

We also want data in our database when our application starts. In testing, we might

clear out the data (and often) so that we know in what condition the database is for a

given test. Here’s our data.sql file – note that we don’t need a platform-specific version

of this file, because the SQL we’re using is standard and should work on nearly every SQL

database out there. (If we happen to use a database for which this SQL does not work,

we’d be better off creating a platform-specific file for that database.)

Listing 7-13.  chapter7/src/main/resources/data.sql

INSERT INTO ARTISTS (ID, NAME)

VALUES (1, 'Threadbare Loaf');

INSERT INTO ARTISTS (ID, NAME)

VALUES (2, 'Therapy Zeppelin');

INSERT INTO ARTISTS (ID, NAME)

VALUES (3, 'Clancy In Silt');

--INSERT INTO SONGS (ID, ARTIST_ID, NAME, VOTES)

--VALUES (1, 1, 'Someone Stole the Flour', 4);

--INSERT INTO SONGS (ID, ARTIST_ID, NAME, VOTES)

--VALUES (2, 1, 'What Happened to Our First CD?', 17);

--INSERT INTO SONGS (ID, ARTIST_ID, NAME, VOTES)

--VALUES (3, 2, 'Medium', 4);

--INSERT INTO SONGS (ID, ARTIST_ID, NAME, VOTES)

--VALUES (4, 3, 'Igneous', 5);

Chapter 7 Spring Boot

188

7.4.2  �Building an ArtistService
Now we need to start populating our services – which means, as usual, creating a set of

files. We need a way to represent artists – so we’ll create a class, com.bsg5.chapter7.

Artist, logically enough. We’ll also want a service – a Repository, actually, something

that actually does the work of interacting with a database – and we’ll call that one

com.bsg5.chapter7.ArtistRepository. Lastly, we’ll need something to connect the

service to the web layer – a controller – so, naturally, we’ll create a com.bsg5.chapter7.

ArtistController.

If you remember Chapter 3 well, you’ll recall that we used a MusicService class
there, which handled all of the things we needed to do with our data model. Here,
we’re splitting things out, as we said we were going to do back in Chapter 3. The
reason: expediency. We chose to build the in-memory service in Chapter 3 as we
did because it was far easier to have a single point of control for our data model,
contained in a set of data structures. Here, we have an actual “system of record” –
the database – and it makes sense for us to split the interactions out into smaller
chunks, because we don’t have to worry about artists messing around with songs,
in terms of our data management.

The Artist class is a simple POJO, with everything that implies: a no-argument

constructor (a default constructor), private fields, a constructor that will initialize the

private fields, accessors and mutators,5 an implementation of equals() and hashCode(),

and a simple implementation of toString() as well. Almost every bit of it was generated

by an IDE once the fields were put into the class; there’s nothing special or unique

about this implementation at all. (The exceptions: compareTo(), which ignores case

for the artist names, and equals() was modified to do the same thing.) It’s a long class,

compared to what it does – it’s simply a container for artist references, after all – but

that’s the beauty of Java.

5�Accessors and mutators are commonly called “getters” and “setters,” respectively, in case you
don’t recall us mentioning this – but this author still finds the use of “getter” and “setter” rather
unacceptable in polite company.

Chapter 7 Spring Boot

189

Listing 7-14.  chapter7/src/main/java/com/bsg5/chapter7/Artist.java

package com.bsg5.chapter7;

import java.util.Objects;

import java.util.StringJoiner;

public class Artist implements Comparable<Artist> {

 private int id;

 private String name;

 public Artist() {

 }

 public Artist(int id, String name) {

 this.id = id;

 this.name = name;

 }

 public int getId() {

 return id;

 }

 public void setId(int id) {

 this.id = id;

 }

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 @Override

 public String toString() {

 return new StringJoiner(", ",

 Artist.class.getSimpleName() + "[", "]")

 .add("id=" + id)

Chapter 7 Spring Boot

190

 .add("name='" + name + "'")

 .toString();

 }

 @Override

 public boolean equals(Object o) {

 if (this == o) return true;

 if (!(o instanceof Artist)) return false;

 Artist artist = (Artist) o;

 return getId() == artist.getId() &&

 Objects.equals(

 getName().toLowerCase(),

 artist.getName().toLowerCase()

);

 }

 @Override

 public int hashCode() {

 return Objects.hash(getId(), getName());

 }

 @Override

 public int compareTo(Artist o) {

 �return o.getName().toLowerCase().compareTo(getName().toLower

Case());

 }

}

The ArtistService needs a little more explanation.

First, remember that we’re trying to implement the following services, as listed in

Chapter 3 that relates to artists:

•	 Retrieve a list of artist names (for use in autocompletion operations)

The implication is that the other four services we listed in Chapter 3 are related to
songs instead, even though artists are involved, and this is indeed the case.

Chapter 7 Spring Boot

191

The thing is, the other services also imply something about artists as well. Remember

that we would want to record that a song exists, as well as vote for one, in our full set

of requirements – these are song-related services, to be sure, but the songs also need

to be related to artists. Therefore, we should add some basic services to our list of

requirements:

•	 Get an artist by id

•	 Get artists by name

•	 Save an artist

The structure of each one of these functions looks a little odd, too. We actually

will want two versions of each function: one that accepts just the parameters we need

for the function (e.g., an id if we’re getting an Artist by id), and another that adds a

Connection object to those parameters. We’ll do this because we want to be able to

compose our methods, and we want the composition to not require a unique database

connection for every call. For example, saving an artist might look up the artist by name

first; we want to use a single Connection for both operations, because that gives us the

ability to use one database transaction instead of two. (We’ll see this done later on in

this chapter.)

As with so many other things in this chapter, we’re … not actually using database
transactions explicitly. We’ll get more into transaction isolation features in Chapter 8.
In this chapter, though, maintaining transaction state would be distracting.

Let’s take a look at the first two of our ArtistService methods, findArtistById().

These methods are simple enough: retrieve an Artist whose primary key matches the

one supplied as an argument.

Listing 7-15.  chapter7/src/main/java/com/bsg5/chapter7/services/
ArtistService.java excerpt

 return findArtistById(conn, id);

 }

}

Chapter 7 Spring Boot

192

private Artist findArtistById(Connection conn, int id) {

 String sql = "SELECT * FROM artists WHERE id=?";

 try (PreparedStatement ps = conn.prepareStatement(sql)) {

 ps.setInt(1, id);

 try (ResultSet rs = ps.executeQuery()) {

 if (rs.next()) {

 return new Artist(id, rs.getString("name"));

 } else {

 throw new ArtistNotFoundException(id +

 " not found in artist database");

 }

 }

 } catch (SQLException e) {

 throw new ArtistNotFoundException(e);

 }

}

public Artist saveArtist(String name) throws SQLException {

What we see is a simple enough mechanism: if we call the findArtistById(int),

we allocate a Connection with Java’s try-with-resources (which means that when exiting

the try block, the Connection will get closed properly without us having to write explicit

code for that purpose), and then, inside the try block, delegate to an overloaded method

of the same name, with that Connection.

The overloaded method simply creates a PreparedStatement and uses it to query

the database for a matching Artist. If it finds one, it constructs an Artist with the

data from the query and returns it. If one isn’t found, it throws a custom exception –

ArtistNotFoundException.

7.4.3  �Handling Exceptions in Spring Boot
We create custom exceptions because we want to handle the different paths in different

ways. A generic exception would work, but a custom exception allows us to assign

semantic meaning to the exception and handle it precisely. In fact, now that we’ve

mentioned the exception, we should take a quick look at it before looking at the rest of

ArtistService.java.

Chapter 7 Spring Boot

193

Listing 7-16.  chapter7/src/main/java/com/bsg5/chapter7/
ArtistNotFoundException.java

package com.bsg5.chapter7;

import org.springframework.http.HttpStatus;

import org.springframework.web.bind.annotation.ResponseStatus;

@ResponseStatus(HttpStatus.NOT_FOUND)

public class ArtistNotFoundException extends RuntimeException {

 /**
 *
 */

 private static final long serialVersionUID = -7888061245862993240L;

 public ArtistNotFoundException(String message) { super(message);

 }

 public ArtistNotFoundException(Exception e) {

 super(e);

 }

}

This is a very vanilla exception class, with one line that we really want to notice:

@ResponseStatus(HttpStatus.NOT_FOUND). This tells a Spring @Controller that

this exception should map to a specific HTTP status code – in this case, it’s 404,

corresponding to “not found,” as the name clearly implies. If we don’t set an explicit

response status, the exceptions will be considered service errors, which corresponds to

HTTP status 500. Using the precise HTTP error code means that if this exception gets

returned from a Controller, it should be treated as a “resource not found” – which, from

the name, is exactly what it represents. (This feels obvious, but we’d have been remiss if

we didn’t point it out.)

It’s also worth pointing out that it inherits from RuntimeException. This is typical for

exceptions in Spring, as it means we don’t have to specify thrown exceptions in method

signatures, keeping our code cleaner. There are many ways of looking at this practice,

but most languages don’t have an analog to Java’s explicit error mechanisms, even on

the Java Virtual Machine, and most programmers seem to be okay with writing less

verbose code.

Chapter 7 Spring Boot

194

Now we can look at the rest of the ArtistRepository. Once we understand the

method overloading being used, it’s really pretty simple, despite the length of the

class. Also worth noting is the use of @Repository on the class, and its construction

with a DataSource. Marking it as a @Repository describes its specific architectural

role (it encapsulates behavior that interacts with a data storage system) and enables its

participation in translating some exception types (a feature we’re not going to describe

in this chapter).

7.4.4  �The Actual Implementation of ArtistService
and Its Little Controller, Too

Listing 7-17.  chapter7/src/main/java/com/bsg5/chapter7/
ArtistRepository.java

package com.bsg5.chapter7;

import org.springframework.stereotype.Repository;

import javax.sql.DataSource;

import java.sql.Connection;

import java.sql.PreparedStatement;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.util.ArrayList;

import java.util.List;

@Repository

public class ArtistRepository {

 private DataSource dataSource;

 public ArtistRepository(DataSource dataSource) {

 this.dataSource = dataSource;

 }

Chapter 7 Spring Boot

195

 public Artist findArtistById(int id) throws SQLException {

 try (Connection conn = dataSource.getConnection()) {

 return findArtistById(conn, id);

 }

 }

 private Artist findArtistById(Connection conn, int id) {

 String sql = "SELECT * FROM artists WHERE id=?";

 try (PreparedStatement ps = conn.prepareStatement(sql)) {

 ps.setInt(1, id);

 try (ResultSet rs = ps.executeQuery()) {

 if (rs.next()) {

 return new Artist(id, rs.getString("name"));

 } else {

 throw new ArtistNotFoundException(id +

 " not found in artist database");

 }

 }

 } catch (SQLException e) {

 throw new ArtistNotFoundException(e);

 }

 }

 public Artist saveArtist(String name) throws SQLException {

 try (Connection conn = dataSource.getConnection()) {

 try {

 return saveArtist(conn, name);

 } catch (SQLException e) {

 return findArtistByName(conn, name);

 }

 }

 }

 private Artist saveArtist(Connection conn, String name)

 throws SQLException {

 String sql = "INSERT INTO ARTISTS (NAME) VALUES (?)";

 try (PreparedStatement ps = conn.prepareStatement(sql)) {

Chapter 7 Spring Boot

196

 ps.setString(1, name);

 ps.executeUpdate();

 try (ResultSet rs = ps.getGeneratedKeys()) {

 rs.next();

 return new Artist(rs.getInt(1), name);

 }

 }

 }

 public Artist findArtistByName(String name) throws SQLException {

 try (Connection conn = dataSource.getConnection()) {

 return findArtistByName(conn, name);

 }

 }

 private Artist findArtistByName(

 Connection conn,

 String name

) throws SQLException {

 String sql = "SELECT * FROM artists WHERE LOWER(name)=LOWER(?)";

 try (PreparedStatement ps = conn.prepareStatement(sql)) {

 ps.setString(1, name);

 try (ResultSet rs = ps.executeQuery()) {

 if (rs.next()) {

 return new Artist(

 rs.getInt("id"),

 rs.getString("name")

);

 } else {

 throw new ArtistNotFoundException(name +

 " not found in artist database");

 }

 }

 }

 }

Chapter 7 Spring Boot

197

 public List<Artist> findAllArtistsByName(String name)

 throws SQLException {

 try (Connection conn = dataSource.getConnection()) {

 return findAllArtistsByName(conn, name);

 }

 }

 private List<Artist> findAllArtistsByName(

 Connection conn,

 String name

) throws SQLException {

 String sql = "SELECT * FROM artists WHERE LOWER(name) LIKE LOWER(?)"

 + " ORDER BY name";

 List<Artist> artists = new ArrayList<>();

 try (PreparedStatement ps = conn.prepareStatement(sql)) {

 ps.setString(1, name + "%");

 try (ResultSet rs = ps.executeQuery()) {

 while (rs.next()) {

 artists.add(new Artist(

 rs.getInt("id"),

 rs.getString("name")

));

 }

 }

 }

 return artists;

 }

}

There’s nothing spectacular in play in this particular implementation of

ArtistRepository, including the SQL itself.

However, saveArtist could use some explanation – it actually returns a valid

Artist. It does this by first trying to save an Artist to the database – but what if the

data is already there? We’d get an exception (a SQLException, indicating a violation of a

unique key constraint). This method, if it gets that SQLException, assumes the Artist is

Chapter 7 Spring Boot

198

already in the database and queries for that Artist data and returns that instead – so we

always get a valid “saved” Artist, even if we didn’t actually create the Artist data in this

specific call.

Note that we’re still cheating for the sake of expediency; we’re not checking to
make sure that the SQLException in question was caused by an index violation,
which is the only case in which we’d want to follow this logic.

This class uses wildcard matching to do searches in findAllArtistsByName – pass

in foo and it will search for all artists whose names start with foo, by using a parameter

value of foo% – and it uses the SQL LOWER() function to remove case significance from

the queries. But apart from that (and, of course, try-with-resources [https://docs.

oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html]),

it’s no different from JDBC code written from the earliest days of JDBC. Naturally,

from Spring’s perspective, this is inefficient and rather awful – Spring has excellent

mechanisms for data access that we’re completely ignoring here – but again, that’s more

a subject for the next chapter.

We have one more class we need to see to fulfill our service functionality – the

Controller itself, which mostly delegates to the ArtistRepository. It’s actually quite

short, and thankfully so, simply having four exposed endpoints.

Listing 7-18.  chapter7/src/main/java/com/bsg5/chapter7/
ArtistController.java

package com.bsg5.chapter7;

import org.springframework.web.bind.annotation.*;

import java.sql.SQLException;

import java.util.List;

@RestController

public class ArtistController {

 private ArtistRepository service;

 public ArtistController(ArtistRepository service) {

 this.service = service;

 }

Chapter 7 Spring Boot

https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html

199

 @GetMapping("/artist/{id}")

 Artist findArtistById(@PathVariable int id) throws SQLException {

 return service.findArtistById(id);

 }

 @GetMapping({"/artist/search/{name}", "/artist/search/"})

 Artist findArtistByName(

 @PathVariable(required = false) String name

) throws SQLException {

 if (name != null) {

 return service.findArtistByName(name);

 } else {

 throw new IllegalArgumentException("No artist name submitted");

 }

 }

 @PostMapping("/artist")

 Artist saveArtist(@RequestBody Artist artist) throws SQLException {

 return service.saveArtist(artist.getName());

 }

 @GetMapping({"/artist/match/{name}", "/artist/match/"})

 List<Artist> findArtistByMatchingName(

 @PathVariable(required = false)

 String name

) throws SQLException {

 return service.findAllArtistsByName(name != null ? name : "");

 }

}

Note the use of specific annotations for HTTP GET and POST methods. For the

methods annotated with @GetMapping, the parameters are embedded as part of the URL

mapping itself, and these are all fairly simple methods.

The saveArtist() method uses @PostMethod, though, and has a parameter of

Artist. This means that an Artist model is expected to be passed to the method in the

HTTP content – which is fairly standard for REST services. We don’t have to worry about

doing any conversions from JSON or XML to our Artist class, though, because Spring

takes care of all of that for us, as discussed in Chapter 6.

Chapter 7 Spring Boot

200

7.4.5  �Testing Our ArtistController: Does It Work?
We actually do have one more class we’d like to see, though, and it’s pretty important: it’s

the TestArtistController class, which is actually the longest class in the entire chapter,

spanning more than 150 lines.

Listing 7-19.  chapter7/src/test/java/com/bsg5/chapter7/
TestArtistController.java

package com.bsg5.chapter7;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.boot.test.context.SpringBootTest;

import org.springframework.boot.test.web.client.TestRestTemplate;

import org.springframework.boot.web.server.LocalServerPort;

import org.springframework.core.ParameterizedTypeReference;

import org.springframework.http.HttpMethod;

import org.springframework.http.HttpStatus;

import org.springframework.http.ResponseEntity;

import org.springframework.test.context.testng.

AbstractTestNGSpringContextTests;

import org.testng.annotations.DataProvider;

import org.testng.annotations.Test;

import java.util.List;

import static org.testng.Assert.*;

@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT)

public class TestArtistController extends AbstractTestNGSpringContextTests

{

 @LocalServerPort

 private int port;

 @Autowired

 private TestRestTemplate restTemplate;

Chapter 7 Spring Boot

201

 @DataProvider

 Object[][] artistData() {

 return new Object[][]{

 new Object[]{1, "Threadbare Loaf"},

 new Object[]{2, "Therapy Zeppelin"},

 new Object[]{3, "Clancy in Silt"},

 new Object[]{-1, null},

 new Object[]{-1, "Not A Band"}

 };

 }

 @Test(dataProvider = "artistData")

 public void testGetArtist(int id, String name) {

 String url = "http://localhost:" + port + "/artist/" + id;

 ResponseEntity<Artist> response =

 restTemplate.getForEntity(url, Artist.class);

 if (id != -1) {

 assertEquals(response.getStatusCode(), HttpStatus.OK);

 Artist artist = response.getBody();

 Artist data = new Artist(id, name);

 assertEquals(artist, data);

 } else {

 assertEquals(response.getStatusCode(), HttpStatus.NOT_FOUND);

 }

 }

 @Test(dataProvider = "artistData")

 public void testSearchForArtist(int id, String name) {

 String url = "http://localhost:" + port + "/artist/search/" +

 (name != null ? name : "");

 ResponseEntity<Artist> response =

 restTemplate.getForEntity(url, Artist.class);

 if (name != null) {

 if (id == -1) {

 assertEquals(response.getStatusCode(),

 HttpStatus.NOT_FOUND);

Chapter 7 Spring Boot

202

 } else {

 assertEquals(response.getStatusCode(), HttpStatus.OK);

 Artist artist = response.getBody();

 Artist data = new Artist(id, name);

 assertEquals(artist, data);

 }

 } else {

 assertEquals(response.getStatusCode(),

 HttpStatus.INTERNAL_SERVER_ERROR);

 }

 }

 /*
 * This method tries to save an artist that should already

 * exist in the database; this will validate that the

 * Repository's saveArtist() method returns a valid artist

 * in all cases, as it should return the original artist reference.

 */

 @Test

 public void testSaveExistingArtist() {

 String url = "http://localhost:" + port + "/artist";

 Artist newArtist =

 restTemplate.getForObject(url + "/1", Artist.class);

 ResponseEntity<Artist> response =

 restTemplate.postForEntity(url, newArtist, Artist.class);

 assertEquals(response.getStatusCode(), HttpStatus.OK);

 Artist artist = response.getBody();

 assertNotNull(artist);

 int id = artist.getId();

 assertEquals(id, newArtist.getId());

 assertEquals(artist.getName(), newArtist.getName());

 response =

 restTemplate.getForEntity(url + "/" + id, Artist.class);

 assertEquals(response.getStatusCode(), HttpStatus.OK);

Chapter 7 Spring Boot

203

 Artist foundArtist = response.getBody();

 assertNotNull(foundArtist);

 assertEquals(artist, foundArtist);

 }

 @DataProvider

 public Object[][] artistSearches() {

 return new Object[][]{

 new Object[]{"", 3},

 new Object[]{"T", 2},

 new Object[]{"Th", 2},

 new Object[]{"Thr", 1},

 new Object[]{"C", 1},

 new Object[]{"Z", 0}

 };

}

 @Test(dataProvider = "artistSearches")

 public void testSearches(String name, int count) {

 // this is used to help Spring figure out what types

 // are returned by restTemplate.exchange()

 ParameterizedTypeReference<List<Artist>> type =

 new ParameterizedTypeReference<>() {

 };

 String url = "/artist/match/" + name;

 ResponseEntity<List<Artist>> response = restTemplate.exchange(

 url,

 HttpMethod.GET,

 null,

 type

);

 assertEquals(response.getStatusCode(), HttpStatus.OK);

 List<Artist> artists = response.getBody();

 assertNotNull(artists);

 assertEquals(artists.size(), count);

 }

Chapter 7 Spring Boot

204

 /*
 * We need this to run AFTER testSearches completes, because

 * testSaveArtist() adds to the artist list and therefore we

 * might get one more artists than we're expecting out of

 * some searches.

 */

 @Test(dependsOnMethods = "testSearches")

 public void testSaveArtist() {

 String url = "http://localhost:" + port + "/artist";

 Artist newArtist = new Artist(0, "The Broken Keyboards");

 ResponseEntity<Artist> response = restTemplate.postForEntity(

 url,

 newArtist,

 Artist.class

);

 assertEquals(response.getStatusCode(), HttpStatus.OK);

 Artist artist = response.getBody();

 assertNotNull(artist);

 int id = artist.getId();

 assertNotEquals(id, 0);

 assertEquals(artist.getName(), newArtist.getName());

 response =

 restTemplate.getForEntity(url + "/" + id, Artist.class);

 assertEquals(response.getStatusCode(), HttpStatus.OK);

 Artist foundArtist = response.getBody();

 assertNotNull(foundArtist);

 assertEquals(artist, foundArtist);

 }

}

Naturally, it looks more difficult than it actually is; it has a series of tests that follow

the same pattern that we saw in TestGreetingController, in that they build a request

and issue it against the ArtistController endpoint, then check for the expected HTTP

response and the expected HTTP entity content (i.e., it makes sure that we get the right

Chapter 7 Spring Boot

205

HTTP status, and then we check the data the response contained). Most of the code is

built around making assertions based on the data we know our database will contain;

artistData() (one of our data provider methods) contains the Artist names and

identifiers, artistSearches() keeps track of the number of responses matching the

content supplied (if the request contains "Th" then artists Threadbare Loaf and Therapy

Zeppelin should be returned, for a record count of 2).

There’s one method that needs to take place after testSearches() –

testSaveArtist() – because testSaveArtist() mutates the database and potentially

changes the result of one of the searches. It really wouldn’t matter which one executes

first, but the order should be deterministic. (Otherwise, the methods won’t be able to

predict the database state, and that’s not a good thing.)

7.5  �Next Steps
In this chapter, we introduced Spring Boot – a project that integrates many of

Spring’s features into a single umbrella project, making dependency management

easier and offering many services as convention rather than requiring the developer

to pick and choose modules to include. We also demonstrated how to create and

configure a microcontainer such that our process from compilation to execution

became much simpler.

In the next chapter, we’re going to cover one of this chapter’s weakest aspects: data

access, with Spring Data.

Chapter 7 Spring Boot

207
© Joseph B. Ottinger and Andrew Lombardi 2019
J. B. Ottinger and A. Lombardi, Beginning Spring 5, https://doi.org/10.1007/978-1-4842-4486-9_8

CHAPTER 8

Spring Data Access
with JdbcTemplate
It’s time we started looking at how we actually access data. Spring has multiple ways of

accessing data; here, we’re going to look at JdbcTemplate, a facade that provides trivial

access to common operations, and we’re going to address some of Chapter 7’s other

issues with data access.

8.1  �Introduction
Chapter 7 was an “umbrella” chapter, a chapter focused on introducing Spring Boot. We

then walked through some of the common things Spring Boot does for us, like handling

dependency resolution and providing an easy starting point for features developers

use often like trivial web deployment, a conveniently executable archive, and nearly

transparent database configuration.

We followed all of that up with database access that most experienced developers –

and many inexperienced ones – would describe as, perhaps, “quaint.” We also made a

slight reference to a crucial problem in our database access code – one that ended up

limiting our services to working with one of our two database entities, because solving it

in the context of Chapter 7 would be more work than it was worth. Instead, we chose to

model simpler things in Chapter 7, to defer proper database access to this chapter and

the next.

208

What do you think the “crucial problem” was in Chapter 7, besides the obvious
answer of “There was no reference to a ‘Song’”? Spoiler in three… two… one…

Chapter 7 didn’t manage transactions at all. There was no way to address
coordination of database requests without introducing database abstractions that
were out of scope for Chapter 7. Instead, we chose to keep things very simple and
lay the groundwork for Chapters 8 and 9, both of which address database access
in far more elegant (and correct) ways.

In this chapter, we’re going to demonstrate the use of JdbcTemplate, which itself

serves as a model for many of Spring’s simpler data access facilities. JdbcTemplate gives

us a single, common workflow model as well as providing easy mechanisms to map from

relational data into classes as well as a simple model for exception handling and central

logging. We’re also going to round out what should have been Chapter 7’s feature set, by

adding controllers to access all of our data, as well as tests for everything.

8.2  �Project Setup
This is a simple, fairly straightforward project. First, let’s create our project directory

structure.

Listing 8-1.  Creating the directory structure with POSIX

mkdir -p chapter8/src/main/java/com/bsg5/chapter8

mkdir -p chapter8/src/main/resources

mkdir -p chapter8/src/test/java/com/bsg5/chapter8

mkdir -p chapter8/src/test/resources

As always, we need a build.gradle. We’re going to use the Spring Boot dependency

resolution we saw first in Chapter 7 and include four things of particular note. Let’s take

a look at the build.gradle and then we’ll look at the dependencies in more detail.

Chapter 8 Spring Data Access with JdbcTemplate

209

Listing 8-2.  chapter8/build.gradle

plugins {

 id 'org.springframework.boot' version '2.1.4.RELEASE'

}

apply plugin: 'io.spring.dependency-management'

dependencies {

 compile "com.h2database:h2:1.4.199"

 compile "org.springframework.boot:spring-boot-starter-web"

 compile "org.springframework.boot:spring-boot-starter-jdbc"

 compileOnly "org.projectlombok:lombok"

 // we want the most recent release of lombok, so "1.+"

 annotationProcessor "org.projectlombok:lombok:1.+"

 testCompile "org.springframework.boot:spring-boot-starter-test"

}

First, note that we’re including spring-boot-starter-jdbc. This will bring in

everything Spring needs to make sure we have Spring’s JDBC support and ecosystem,

which means we get all kinds of goodies like a connection pool (HikariCP1 by default),

test-specific datasources, and data loading features (as described in Chapter 7, with

schema.sql and data.sql).

The next dependency we want to make sure we’ve included is actually the least

relevant, because it’s one we saw in Chapter 7: spring-boot-starter-web. We’re

including it here because this chapter will in fact contain a fully working back end for our

band gateway.

The last dependency we want to examine is fairly important, because we’re going to

use it for the rest of the book: Lombok. Lombok is an annotation processor for Java that

is incredibly useful in generating boilerplate code. It provides annotations for use at class

level, attribute level, and method level, depending on what you need. It’s probably worth

its own section in the Table of Contents, so let’s give it one.

1�HikariCP is one of many decent JDBC connection pools available for Java and can be found at
https://github.com/brettwooldridge/HikariCP.

Chapter 8 Spring Data Access with JdbcTemplate

https://github.com/brettwooldridge/HikariCP
https://github.com/brettwooldridge/HikariCP

210

8.2.1  �Lombok: Eliminating Boilerplate Code
Lombok, as stated, is an annotation processor for Java. You add it to your compilation

classpath (and, with Gradle, tell it to apply Lombok as an annotation processor as part

of the compilation cycle), and it will generate code for javac based on the annotations

used and the annotation parameters, if any. The result is that we can use annotations

and expect full-blown, standard-issue methods – like equals(), hashCode(),

toString(), mutators, accessors, and constructors, which are the most common usage –

for classes to be generated for us as if by magic.

Lombok is a compilation dependency, not a runtime dependency. You don’t need
to have Lombok in your classpath at runtime at all.

For example, if we have an attribute called name in an Artist class – and we will, of

course – we can declare an accessor for that attribute with Lombok quite simply.

Listing 8-3.  Eliminating boilerplate Java code with Lombok

class Artist {

 @Getter

 String name;

}

This annotation will cause the creation of a standard getName() method2 in the

compiled code. There’s also a matching @Setter annotation – so we could have used

@Getter @Setter String name; to get both setName(String) and getName() in our

generated class.

2�The statement that Lombok generates “standard methods” is a little wrong – in general,
Lombok will generate better methods than most programmers will. We’ll take a look at what
Lombok generates for a simple Artist.java in a page or so. It’s a little verbose, but by golly,
it’s generally “more correct” than what your authors would have written on their own for such
a simple class.

Chapter 8 Spring Data Access with JdbcTemplate

211

At the class level, there are a number of very helpful annotations, including but not

limited to the following.

Annotation Description

@ToString This will create a toString() implementation for all of

the attributes in this class; can have options to include

superclasses’ toString()as well as other features.

@EqualsAndHashCode This will create both equals() and hashCode() for this

class. As with @ToString, a superclass’ method can be

included. There are some truly wiggly bits here for JPA, but

Lombok generally does the right thing.

@NoArgsConstructor This will define a, well, no-argument constructor for you, as an

inverse analog to @AllArgsConstructor.

@RequiredArgsConstructor This will create a constructor using all attributes that are

“required,” with a “required” field being either final or marked

with @NonNull (with @NonNull coming from any one of

many, many frameworksa), nonstatic (i.e., instance level), and

not starting with $.

@AllArgsConstructor This will generate a constructor that includes all properties in

the class.

@Data This annotation implies the use of @ToString,

@EqualsAndHashCode, @RequiredArgsConstructor

at the class level, and @Getter and @Setter for every

attribute of the class. If the class has other constructors

specified – such as with @NoArgsConstructor – the

@RequiredArgsConstructor is not automatically

generated. With JPA, you’ll usually see @Data and

@NoArgsConstructor used for entity types, so it may be

required that you include this annotation if you want it included

(or, of course, you could write the constructor manually).

aIf you’re interested in seeing which @NonNull annotations are acceptable for this, see https://
github.com/rzwitserloot/lombok/blob/master/src/core/lombok/core/handlers/

HandlerUtil.java and look for NONNULL_ANNOTATIONS.

Chapter 8 Spring Data Access with JdbcTemplate

https://github.com/rzwitserloot/lombok/blob/master/src/core/lombok/core/handlers/HandlerUtil.java
https://github.com/rzwitserloot/lombok/blob/master/src/core/lombok/core/handlers/HandlerUtil.java
https://github.com/rzwitserloot/lombok/blob/master/src/core/lombok/core/handlers/HandlerUtil.java

212

Lombok has a lot of features that aren’t being described here; this is a very light

and cursory overview that is trying to cover just enough that we can benefit from

Lombok without feeling like our readers have been thrown into the deep end of a pool.

You can read more about Lombok’s full feature set at https://projectlombok.org/

features/all.

To show the usefulness of Lombok, let’s take a look at our Artist class. First, let’s

take a look at what we actually wrote – the version that uses Lombok to generate most

of the class content. Then we’ll take a look at what Lombok actually generates for the

compiler.

Listing 8-4.  chapter8/src/main/java/com/bsg5/chapter8/Artist.java

package com.bsg5.chapter8;

import lombok.AllArgsConstructor;

import lombok.Data;

import lombok.NoArgsConstructor;

import lombok.RequiredArgsConstructor;

import org.springframework.lang.NonNull;

@Data

@AllArgsConstructor

@RequiredArgsConstructor

@NoArgsConstructor

public class Artist {

 Integer id;

 @NonNull

 String name;

}

Now let’s take a look at what Lombok actually feeds to the compiler, as generated

by using delombok (see https://projectlombok.org/features/delombok). This code

is actually more verbose (and careful) than what most code generators would have

produced, and from the standpoint of coding safety and correctness, it’s better – and it’s

95 lines (before formatting for print) compared to 17. Lines of code is a terrible metric to

measure productivity, but the savings in time is entirely worth it.

Chapter 8 Spring Data Access with JdbcTemplate

https://projectlombok.org/features/all
https://projectlombok.org/features/all
https://projectlombok.org/features/delombok

213

Listing 8-5.  The Artist.java implementation as generated by Lombok

package com.bsg5.chapter8;

import org.springframework.lang.NonNull;

public class Artist {

 Integer id;

 @NonNull

 String name;

 @java.lang.SuppressWarnings("all")

 public Integer getId() {

 return this.id;

 }

 @NonNull

 @java.lang.SuppressWarnings("all")

 public String getName() {

 return this.name;

 }

 @java.lang.SuppressWarnings("all")

 public void setId(final Integer id) {

 this.id = id;

 }

 @java.lang.SuppressWarnings("all")

 public void setName(@NonNull final String name) {

 if (name == null) {

 throw new java.lang.NullPointerException(

 "name is marked @NonNull but is null"

);

 }

 this.name = name;

 }

 @java.lang.Override

 @java.lang.SuppressWarnings("all")

Chapter 8 Spring Data Access with JdbcTemplate

214

 public boolean equals(final java.lang.Object o) {

 if (o == this) return true;

 if (!(o instanceof Artist)) return false;

 final Artist other = (Artist) o;

 if (!other.canEqual((java.lang.Object) this)) return false;

 final java.lang.Object this$id = this.getId();

 final java.lang.Object other$id = other.getId();

 if (this$id == null ? other$id != null :

 !this$id.equals(other$id)) return false;

 final java.lang.Object this$name = this.getName();

 final java.lang.Object other$name = other.getName();

 if (this$name == null ? other$name != null :

 !this$name.equals(other$name)) return false;

 return true;

 }

 @java.lang.SuppressWarnings("all")

 protected boolean canEqual(final java.lang.Object other) {

 return other instanceof Artist;

 }

 @java.lang.Override

 @java.lang.SuppressWarnings("all")

 public int hashCode() {

 final int PRIME = 59;

 int result = 1;

 final java.lang.Object $id = this.getId();

 result = result * PRIME + ($id == null ? 43 : $id.hashCode());

 final java.lang.Object $name = this.getName();

 result = result * PRIME + ($name == null ? 43 : $name.hashCode());

 return result;

 }

Chapter 8 Spring Data Access with JdbcTemplate

215

 @java.lang.Override

 @java.lang.SuppressWarnings("all")

 public java.lang.String toString() {

 return "Artist(id=" + this.getId() + ", name=" + this.getName() + ")";

 }

 @java.lang.SuppressWarnings("all")

 public Artist(final Integer id, @NonNull final String name) {

 if (name == null) {

 throw new java.lang.NullPointerException(

 "name is marked @NonNull but is null"

);

 }

 this.id = id;

 this.name = name;

 }

 @java.lang.SuppressWarnings("all")

 public Artist(@NonNull final String name) {

 if (name == null) {

 throw new java.lang.NullPointerException(

 "name is marked @NonNull but is null"

);

 }

 this.name = name;

 }

 @java.lang.SuppressWarnings("all")

 public Artist() {

 }

}

Now imagine that we add some kind of manual validation to an artist’s name – such

as “it must have a special character in the name.” (We might be interested in having

a list of artists comprised of only Ke$ha and the Artist Formerly Known as Prince,

perhaps…) We’d normally write that in a method called setName(), but with the verbose

implementation, the implementation has to sit alongside every other standard method

Chapter 8 Spring Data Access with JdbcTemplate

216

in the class, and therefore it has a harder time standing out. It’d be easy (well, easier)

to miss such a custom implementation, although there are ways to highlight it with

comments, and the fact that it’d have to be longer than one line might help highlight the

method, too… but with Lombok, it’d stand out like a sore thumb.3

Lombok isn’t a mandatory tool, of course; as demonstrated, you could easily write

the boilerplate methods yourself, or (more likely) have the IDE generate them. With that

said, it is very useful, especially in a book where readers tend to have their eyes glaze

over at code that isn’t actually entirely relevant. For the rest of this book, you can expect

to see Lombok used, because our object models are getting full-featured enough that the

savings in space are significant.

8.3  �Our Entity and Data Models
We’re using the same entity model we described in Chapter 3 and that we’ve used since

then. However, we want to change the data model slightly, to make data management

more efficient.

What’s the difference between an “entity model” and a “data model?” Well, in
concrete terms, they’re largely interchangeable. There’s not a formal definition
that one would use to say “this is an entity model, that is a data model.” However,
colloquially speaking – and as used here – an entity model describes the overall
relationships between things we’re working with (the entities), and a data model is
a more specific description of the actual managed elements.

For example, in an entity model, an Artist exists (therefore it’s an entity!) and
it has a name. In a data model, we might include things that make working with
an Artist more convenient – a generated primary key or a count of the songs
for that Artist, for example – things that might be relevant for an Artist from
a programming standpoint, but that aren’t necessarily part of the definition of an
Artist as a concept.

3�I wonder if anyone’s ever scanned a crowd, looking for people with sore thumbs, to see if they
actually are easy to detect. When my thumb is sore, I don’t wave it about making sure people
know it.

Chapter 8 Spring Data Access with JdbcTemplate

217

Our entity model (again, Chapter 3) looks like this:

Our data model adds a few attributes to the entities, to create relationships and make

managing the objects much more efficient:

This isn’t entirely descriptive – we’re not including nullability or sizes into our

models, but we’re also not quite trying to build a formal entity model, either. We’re

mostly thinking about how we design our class structure. This is the “right way” to model

data when you’re proceeding from a SQL-first access model (i.e., when you anticipate

using JDBC to access your data, as we are in this chapter); in our next chapter, when we

look at Spring Data, we can actually design our classes first and then make sure they

generate a workable database schema, rather than starting with the schema and building

a workable class structure.

We’ve already seen the Artist.java from the Lombok section, but for the sake of

completeness, let’s take a look at it again.

Chapter 8 Spring Data Access with JdbcTemplate

218

Listing 8-6.  chapter8/src/main/java/com/bsg5/chapter8/Artist.java

package com.bsg5.chapter8;

import lombok.AllArgsConstructor;

import lombok.Data;

import lombok.NoArgsConstructor;

import lombok.RequiredArgsConstructor;

import org.springframework.lang.NonNull;

@Data

@AllArgsConstructor

@RequiredArgsConstructor

@NoArgsConstructor

public class Artist {

 Integer id;

 @NonNull

 String name;

}

Now let’s see what a Song looks like.

Listing 8-7.  chapter8/src/main/java/com/bsg5/chapter8/Song.java

package com.bsg5.chapter8;

import lombok.AllArgsConstructor;

import lombok.Data;

import lombok.NoArgsConstructor;

import lombok.RequiredArgsConstructor;

import org.springframework.lang.NonNull;

@Data

@NoArgsConstructor

@AllArgsConstructor

@RequiredArgsConstructor

public class Song {

 Integer id;

 @NonNull

Chapter 8 Spring Data Access with JdbcTemplate

219

 Integer artistId;

 @NonNull

 String name;

 int votes;

}

There’s nothing magical here; we’re basically echoing our data model in Java source,

with Lombok creating our object’s methods and constructors for us. (The source file as it

would be generated by delombok turns out to be 138 lines long, compared to 20 lines.)

We will want to manually create our database schema as described in Chapter 7,

by setting our platform to h2 in application.properties and then creating a

schema-h2.sql file. These files don’t go in the same parts of the source tree, because the

application.properties is going to apply only to our tests – we might want to use a

different database in production, after all – but our schemah2.sql would be appropriate

no matter what the H2 instance happens to be, whether in-memory (as in our tests) or as

an external database, or whatever it might be.

H2 can run as an embedded database or as a separate database server. In
addition, it can create databases on disk or in-memory, so we could have one of
four different configurations.

Embedded and in-memory Useful for testing

Embedded and on-disk Useful for applications that run in single containers and

therefore don’t need to share access

External and in-memory Useful for creating side caches, perhaps; this would be fairly

rare in the real world

External and on-disk Useful for application where multiple processes use the

database, and mirrors how most other databases are used

First, the simple (and blessedly short) application.properties, which we’re going

to put in chapter8/src/test/resources – remember, this is for testing only, so we

want it in the testing directory tree. (If we want a production version, we can create that

Chapter 8 Spring Data Access with JdbcTemplate

220

in chapter8/src/main/ resources, with specific properties for production use – like

an explicit JDBC URL and so forth. The version in the test directory tree would have

precedence for our tests.)

The main purpose of this file is to make sure that Spring Boot knows what database

platform we’re using, so it will use schema-h2.sql to create our database tables.

Listing 8-8.  chapter8/src/test/resources/application.properties

spring.datasource.platform=h2

Our schema-h2.sql file – which goes into our chapter8/src/main/resources

directory, as it’s a schema that we would want in a production application (not just for

tests) – is fairly simple as well and models our entities in about as straightforward a

fashion as can be done while representing our data model’s intent.

Listing 8-9.  chapter8/src/main/resources/schema-h2.sql

CREATE TABLE IF NOT EXISTS artists

(

 id IDENTITY,

 name VARCHAR(64) NOT NULL

);

CREATE UNIQUE INDEX IF NOT EXISTS artist_name

 ON artists(name);

CREATE TABLE IF NOT EXISTS songs

(

 id IDENTITY,

 artist_id INT,

 name VARCHAR(64) NOT NULL,

 votes INT DEFAULT 0,

 FOREIGN KEY (artist_id) REFERENCES artists (id)

 ON UPDATE CASCADE

);

CREATE UNIQUE INDEX IF NOT EXISTS song_artist

 ON SONGS (artist_id, name);

Chapter 8 Spring Data Access with JdbcTemplate

221

The foreign key for songs deliberately cascades updates through the foreign key – so

if we update an artists' record's id field, it should propagate to the songs table.

We don’t cascade deletes quite on purpose; imagine if we had an artist with 40 songs

recorded. Deleting the artist would delete all of their song data as well. Not propagating

deletions means that we’d have to explicitly delete the songs records associated with an

artist before deleting the artist’s data as well.

Lastly, it’d be nice to have some test data by default. Foreshadowing: We’re going

to have three different test classes in this chapter, and two of them will create their own

data, but one of them won’t. (ArtistControllerTest is a read-only test. As such, we

need to make sure it has the data it needs in order to run properly. Thus, default data!)

In anticipation of that one test, let’s go ahead and take a look at our default database

content, which – as it’s test data and relies on no H2-specific features – is located in

chapter8/src/test/resources/data.sql.

Listing 8-10.  chapter8/src/test/resources/data.sql

INSERT INTO ARTISTS (ID, NAME)

VALUES (1, 'Threadbare Loaf');

INSERT INTO ARTISTS (ID, NAME)

VALUES (2, 'Therapy Zeppelin');

INSERT INTO ARTISTS (ID, NAME)

VALUES (3, 'Clancy In Silt');

INSERT INTO SONGS (ID, ARTIST_ID, NAME, VOTES)

VALUES (1, 1, 'Someone Stole the Flour', 4);

INSERT INTO SONGS (ID, ARTIST_ID, NAME, VOTES)

VALUES (2, 1, 'What Happened to Our First CD?', 17);

INSERT INTO SONGS (ID, ARTIST_ID, NAME, VOTES)

VALUES (3, 2, 'Medium', 4);

INSERT INTO SONGS (ID, ARTIST_ID, NAME, VOTES)

VALUES (4, 3, 'Igneous', 5);

The last class we want to include here is a configuration. As we’re using Spring Boot,

this configuration relies on sensible defaults (or defaults constructed from application.

properties) – so it’s nearly completely empty, with the annotations driving everything.

Chapter 8 Spring Data Access with JdbcTemplate

222

Listing 8-11.  chapter8/src/main/java/com/bsg5/
chapter8/JdbcConfiguration.java

package com.bsg5.chapter8;

import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication

public class JdbcConfiguration {

}

Here, we’re telling Spring that it’s a Spring Boot configuration, to scan this package

(and packages whose names start with this one, so any class in the com.bsg5,chapter8

package hierarchy) for Spring components and to enable Spring Web configuration.

Now we finally get to start doing things. All this was necessary to varying degrees,

and all of it’s relevant, but it’s mostly been preparatory for actually working with data.

8.4  �Accessing Data
Let’s revisit our MusicService, as we’ve seen in Chapter 3 and in subsequent chapters.

Our service has five primary operations:

•	 Retrieve songs for an artist, ordered by popularity (the most popular

song is the better “hook”)

•	 Retrieve song names for an artist (for use in autocompletion

operations, which we’re anticipating a more full-featured application

would use)

•	 Retrieve a list of artist names (for use in autocompletion operations)

•	 Record that a song exists

•	 Vote for a song as a hook for a given Artist

The mechanism to implement these with JdbcTemplate is really rather easy. What

we want to do is have a class – MusicService – that receives a JdbcTemplate as an

autowired attribute. It can then use JdbcTemplate.query() and JdbcTemplate.update()

to issue SQL against the database as needed. Let’s take a look at what an implementation

of MusicService might look like with only one method implemented.

Chapter 8 Spring Data Access with JdbcTemplate

223

Probably the simplest of the methods in our requirements is the one to retrieve

matching artist names, such that if we pass in a “T” we get a list of strings reflecting artist

names that, well, start with the letter “T.” For simplicity’s sake, we’ll make articles like

“the,” “a,” and “an”4 significant – that is, “The Who” and “Who” are different band names

for the purpose of matching artists. There are definitely ways of making the articles

optional, and that would actually be a good idea for an enhanced version of the API, but

that’s outside of the scope of this chapter.

If you’re interested, one way this could be accomplished is by adding another
field to the Artist table, a field that contained the name with all of the articles
stripped out. You might also “stem” the remaining words – where “stemming”
means translating the word to its base, most simple form, “improbably” becomes
“improb,” and “threadbare loaf” becomes threadbar loaf. Then you’d use this
artificial and internal-use-only content to do matches, perhaps in combination
with the actual band name. (After all, you would want a search for “The Who” to
work when typing Th and not just Wh.) This isn’t even beginning to look at access
patterns or machine learning for such purposes. As we said, this is better left as
an exercise for future enhancement, because this exercise alone would fill a few
chapters of a book.

If you’re interested, there are some research papers on the topic, including

•	 “Algorithmic and user study of an autocompletion algorithm on a
large medical vocabulary”: www.sciencedirect.com/science/
article/pii/S153204641100164X

•	 Apache Solr’s Suggester implementation, which can hide a lot
of details from you: https://lucene.apache.org/solr/
guide/7_7/suggester.html

4�Just in case you’re interested, “a,” “an,” and “the” are in fact all of the articles in English. “A” and
“an” are called “indefinite articles,” because they refer to one of a set of objects without specifying
which one of the set is being referred to, while “the” is called a “definite article” because it’s
specifying a particular object.

Chapter 8 Spring Data Access with JdbcTemplate

http://www.sciencedirect.com/science/article/pii/S153204641100164X
http://www.sciencedirect.com/science/article/pii/S153204641100164X
https://lucene.apache.org/solr/guide/7_7/suggester.html
https://lucene.apache.org/solr/guide/7_7/suggester.html

224

•	 Naturally, with Java’s giant ecosystem, someone ported something
from Python that can help quite a bit: Python’s fuzzywuzzy library.
See https://github.com/xdrop/fuzzywuzzy for more
details.

•	 Lastly, a good overview that provides insight into autocomplete
at Bing can be found at https://blogs.bing.com/search-
quality-insights/September-2016/more-intelligent-
autocomplete.5

Others can be found, although searching on Google (or Bing, or DuckDuckGo,
or whatever search engine you prefer) will return a lot of user interface–
oriented autocompletion mechanisms and not so much server-side
information. Good hunting!

We’ll get to the full implementation of MusicRepository soon, but let’s look at an

incomplete version just to get our feet wet with the API.

Listing 8-12.  Part of chapter8/src/main/java/com/bsg5/

chapter8/MusicRepository.java

@Repository

public class MusicRepository {

 JdbcTemplate jdbcTemplate;

 MusicRepository(JdbcTemplate template) {

 jdbcTemplate=template;

 }

 @Transactional

 public List<String> getMatchingArtistNames(String prefix) {

 String selectSQL = "SELECT name FROM artists WHERE " +

 "lower(name) like lower(?) " +

 "order by name asc";

 /*

5�Worth mentioning: James Moore was a giant help in creating this section.

Chapter 8 Spring Data Access with JdbcTemplate

https://github.com/xdrop/fuzzywuzzy
https://blogs.bing.com/search-quality-insights/September-2016/more-intelligent-autocomplete
https://blogs.bing.com/search-quality-insights/September-2016/more-intelligent-autocomplete
https://blogs.bing.com/search-quality-insights/September-2016/more-intelligent-autocomplete

225

 * Note use of Object[] for query arguments, and

 * the use of a lambda to map from a row to a String

 */

 return jdbcTemplate.query(

 selectSQL,

 new Object[]{prefix + "%"},

 (rs, rowNum) -> rs.getString("name"));

 }

}

These are the core observations:

•	 MusicRepository is marked with @Repository and is therefore a

Spring bean.

•	 We have a JdbcTemplate reference provided by the constructor;

Spring will automatically provide this for us.

•	 We have a single method, annotated with @Transactional, that calls

JdbcTemplate.query().

There are two things about getMatchingArtistNames() that we want to think about.

The first is the query() call itself – what with this chapter centering on JdbcTemplate –

and the other is about transaction support.

8.4.1  �JdbcTemplate.query()
There are 19 variants of query() in JdbcTemplate, and that’s not even counting query

methods like queryForMap, queryForObject, and queryForList, each of which has

a series of overloaded signatures available. (There are more than 40 methods whose

names start with query in the JdbcTemplate class.) The one used in Listing 8-12 is one of

the simplest.

public <T> List<T> query(

 String sql,

 @Nullable Object[] args,

 RowMapper<T> rowMapper

) throws DataAccessException

Chapter 8 Spring Data Access with JdbcTemplate

226

The first argument here is a SQL query. As with JDBC, an interrogative symbol – ?,

the question mark – is used as a placeholder.

The second argument is an array of Object. Each element of this array is placed into

the SQL query, corresponding with the ordinal position – which means that the first ?

is replaced by the first element in the Object[], the second ? is replaced by the second

element in the Object[], and so forth and so on.

This version accepts a RowMapper<T> as a final argument. A RowMapper is a simple

interface with one method (and returning a specific type, represented by <T>, making it

a “Single Access Method” class in Java – which means it can be represented by a lambda.

A RowMapper is responsible for accepting a ResultSet and a row number – an int – and

mapping that row into a type of some kind; our method for querying for artist names,

then, is responsible for accepting a ResultSet and returning an artist’s name from that

ResultSet’s current row. In lambda form, it looks like:

(rs, rowNum) -> rs.getString("name")

In “traditional Java” form, it would look a little longer:

new RowMapper<String>() {

 @Override

 String mapRow(ResultSet rs, int rowNum) throws SQLException {

 return rs.getString("name");

 }

}

Either form is acceptable; they both actually compile to nearly the same code in

practice, and they accomplish exactly the same thing.

This method, then, is horribly simple: it contains a SQL statement, with a parameter

placeholder, that retrieves artist names from an artists table. The parameter is mangled

to add a SQL wildcard character (“%”) for use by the SQL LIKE operator, and the resulting

data is translated from a ResultSet into a single String for each row – and as query()

returns a typed List, we’re able to return the resulting List<String> to the caller. (We

could have used any Java type as the return type for a RowMapper; it just so happens that

here we’re working with simple String instances. We also don’t need to worry about

coercing the types, because the declarations give the compiler enough information that

the compiler knows what types are being returned.)

Chapter 8 Spring Data Access with JdbcTemplate

227

As query() returns a List, we can then manipulate the List however we like to get

specific results. Consider a method where we might look an Artist up by its id.

Listing 8-13.  Part of chapter8/src/main/java/com/bsg5/chapter8/

MusicRepository.java

@Repository

public class MusicRepository {

 JdbcTemplate jdbcTemplate;

 MusicRepository(JdbcTemplate template) {

 jdbcTemplate=template;

 }

 @Transactional

 Artist findArtistById(Integer id) {

 return jdbcTemplate.query(

 "SELECT id, name FROM artists WHERE id=?",

 new Object[]{id},

 (rs, rowNum) ->

 new Artist(

 rs.getInt("id"),

 rs.getString("name"

)

)

)

 .stream()

 .findFirst()

 .orElse(null);

 }

}

If you’re wondering about the lambda still, here’s the “traditional form”:

new RowMapper<Artist>() {

 @Override

 String mapRow(ResultSet rs, int rowNum) throws SQLException {

 return new Artist(

Chapter 8 Spring Data Access with JdbcTemplate

228

 rs.getInt("id"),

 rs.getString("name")

);

 }

}

In Listing 8-13, we’re doing the same thing that we saw in

getMatchingArtistNames(), in structure. We have a simple SQL query with a

placeholder for the id, and we pass in an object array with the id method parameter. We

have a simple lambda (a one-liner, really, split apart to respect page widths for print) just

as we did in getMatchingArtistNames(), except here we’re mapping the ResultSet to

an Artist object.

We then let Java’s Stream API grab the first result of the List – which will have at

most one entry. Stream.findFirst() returns an Optional<T>, so if the List<Artist> is

empty, we can convert that to a null with Optional<T>.orElse(). We’ll see this pattern

in other places of the MusicRepository, too, where we search for data and take action if

it isn’t present.

Before we go too much farther into MusicRepository – and before we see the actual

full implementation instead of snippets – let’s talk about @Transactional for a bit.

8.4.2  �@Transactional
If you recall Chapter 7’s database interaction service, we only supported working with

Artist entities, for a few reasons.

One reason was that we knew that the code was going to be thrown away (in this

chapter, in the section you’re reading right now), and adding support for Song wasn’t

going to add any value to the service; the Artist support was enough to communicate

the points we were trying to understand.

The main reason, though, was that our code wasn’t structured in a way that made

supporting transactions very easy. With Spring’s data access tools (like JdbcTemplate)

in our toolbox, we can indicate that methods are expected to participate in a transaction

very easily.

What @Transactional means is that the method annotated needs to run in a

transaction context of some sort, which might even include “no transaction at all.” A

transaction context is referred to as its propagation. The default propagation is REQUIRED,

which means that if a transaction has not yet been started, one should be started;

Chapter 8 Spring Data Access with JdbcTemplate

229

you can also have REQUIRES_NEW, which says that a new transaction will be started

for the method call even if a transaction has been started (which … may or may not

work, depending on your datastore and configuration), and SUPPORTS, which says that

transaction semantics will be respected if a transaction has already been started, but the

method will execute nontransactionally if there is no transaction.

Propagation Description

REQUIRED This will participate in a transaction that’s already begun or will create a

transaction if none exists.

SUPPORTS This will participate in a transaction that’s already begun or will execute

nontransactionally if none exists.

REQUIRES_NEW This will suspend a transaction if one is already underway and begin a

new one; the old transaction will be resumed when the new transaction

completes. This may not work in all contexts.

MANDATORY This will participate in a transaction if one currently exists and will throw an

exception if a transaction does not already exist.

NOT_SUPPORTED This will suspend a transaction if one is underway and will execute outside

of the context of a transaction.

NEVER This is the inverse of MANDATORY; it will throw an exception if a

transaction is underway. If there’s no current transaction, it will execute

nontransactionally.

NESTED This will create a new transaction within a currently running transaction

(if one is underway). This may not work in all contexts, as the transaction

manager being used needs to support nested transactions.

A @Transaction annotation can also specify that a transaction context is read-only

(with the readOnly attribute, which accepts a boolean: therefore, it would look like

@Transaction(readOnly=true) in use).

Another attribute of a transaction is isolation, which affects the visibility of actions

taken by the transaction before the transaction is committed. For example, imagine if

a transaction that takes 5 seconds to run deletes a record in the first 50 milliseconds of

Chapter 8 Spring Data Access with JdbcTemplate

230

the transaction; should other transactions be able to see the effect of the deletion before

the transaction is complete? There are four specific isolation levels allowed, with an

additional level of DEFAULT being provided, which means to use the underlying default

isolation level for the datastore.

Isolation Level Description

READ_UNCOMMITTED This allows a row changed by one transaction to be read by another

transaction before any changes have been committed. If the transaction

fails, the second transaction might have invalid data.

READ_COMMITTED This prevents transactions from reading data that has been changed

by other transactions, until the other transactions' changes have been

committed.

REPEATABLE_READ This prevents rows from being read with changes in them (much like

READ_COMMITTED) but also prevents situations where queries refetch

data if it’s been changed. Databases are odd, but this still makes sense

when you go far enough down the rabbit hole.

SERIALIZABLE This prevents a transaction from seeing changed data (as in

REPEATABLE_READ) but also enforces that the transaction cannot see

data from any other live transactions until this transaction is done; it’s

as if the transaction has a snapshot view of the data as it was when the

transaction was begun.

NEVER This means that if a transaction is in progress when the method is

called, an exception will be thrown! (This one is fairly rare in the real

world, as far as your authors can tell; they’ve never seen it used.)

There are other fields for the @Transactional annotation; two of them are

particularly worth pointing out, even though we don’t use them in this chapter.

The first is timeout. If this is provided (with something like

@Transactional(timeout=5)), the transaction will end with an exception if the

transaction lasts longer than the timeout value. (The default is -1, which means “no

timeout.”) This is valuable if you have a long-running transaction – or if you encounter a

deadlock situation.

Chapter 8 Spring Data Access with JdbcTemplate

231

A deadlock can occur when transactions require resources that aren’t available.
For example, imagine if transaction “X” – tX – acquires a lock on resource A, and
at the same moment, transaction “Y” – tY – acquires a lock on resource B. There’s
no deadlock here yet – unless in the next moment tX tries to acquire a lock on B,
while tY tries to acquire a lock on A. Neither tX nor tY can proceed, because the
resources they need are locked by the other transaction.

A transaction timeout will end the transactions after the timeout period ends,
giving the program a chance to recover and proceed – and hopefully informing the
programmer of the problem.

There are lots of ways to address locks like this, but they’re outside of the scope
of this book; you’d really need to consider the exact situation that causes the
deadlock and the transactional capabilities of the specific database you’re using.

With that said, a quick and simple rule of thumb is to always acquire resources in
the same order – so tX and tY would always try to acquire resources A and B in
that order so that tY wouldn’t proceed until tX was done with both A and B. This
is, as stated, a “quick and dirty” rule of thumb, and that’s said very seriously; your
specific problem domain may not allow such simple solutions.

The @Transactional annotation also supports a number of properties related to

rollback. A rollback will cancel all changes created by a transaction; all locks, updates, or

deletes are cancelled by a rollback. (It’s a cancellation of the transaction and restores the

database to its status before the transaction was begun.)

With @Transactional, you can add rollbackFor, followed by an array of classes

that extend Throwable, or rollbackForClassName, followed by an array of class names –

as strings, for example. If these exceptions are thrown by the annotated method, the

transaction is rolled back as part of the method exit. There’s also a noRollback and

noRollbackForClassName that indicate that the transactions are not rolled back if the

exceptions are thrown by the methods. The default is to rollback on exceptions thrown

by a @Transactional method – but it’s fully tuneable.

The defaults are actually quite enough for our MusicRepository. Speaking of

MusicRepository, let’s get back to it and actually see what the real, live implementation

looks like, all 150+ lines of it.

Chapter 8 Spring Data Access with JdbcTemplate

232

8.4.3  �The Actual MusicRepository
Here’s the actual content of MusicRepository. There’s one method we want to

examine in detail: intFindArtistByName(). There are other methods that follow

some of the same principles (e.g., getSong() follows nearly the same pattern that

findArtistByName() uses, and voteForSong() is an essentially similar operation),

but findArtistByName introduces some architecturally significant ideas into our

implementation.

For completeness’ sake, the content of getMatchingArtistNames() and

findArtistById() is included in Listing 8-14 as well.

Listing 8-14.  chapter8/src/main/java/com/bsg5/chapter8/MusicRepository.
java

package com.bsg5.chapter8;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.jdbc.core.JdbcTemplate;

import org.springframework.jdbc.support.GeneratedKeyHolder;

import org.springframework.jdbc.support.KeyHolder;

import org.springframework.stereotype.Repository;

import org.springframework.transaction.annotation.Transactional;

import java.sql.PreparedStatement;

import java.sql.Statement;

import java.util.List;

// tag::declaration[]

@Repository

public class MusicRepository {

 JdbcTemplate jdbcTemplate;

 MusicRepository(JdbcTemplate template) {

 jdbcTemplate=template;

 }

 // end::declaration[]

 @Autowired

 SongRowMapper songRowMapper;

Chapter 8 Spring Data Access with JdbcTemplate

233

 // tag::findArtistById[]

 @Transactional

 Artist findArtistById(Integer id) {

 return jdbcTemplate.query(

 "SELECT id, name FROM artists WHERE id=?",

 new Object[]{id},

 (rs, rowNum) ->

 new Artist(

 rs.getInt("id"),

 rs.getString("name"

)

)

)

 .stream()

 .findFirst()

 .orElse(null);

 }

 // end::findArtistById[]

 @Transactional

 Artist findArtistByName(String name) {

 return internalFindArtistByName(name, true);

 }

 @Transactional

 Artist findArtistByNameNoUpdate(String name) {

 return internalFindArtistByName(name, false);

 }

private Artist internalFindArtistByName(String name, boolean update) {

 String insertSQL = "INSERT into artists (name) values (?)";

 String selectSQL = "SELECT id, name FROM artists " +

 "WHERE lower(name)=lower(?)";

 return jdbcTemplate.query(

 selectSQL,

 new Object[]{name},

Chapter 8 Spring Data Access with JdbcTemplate

234

 (rs, rowNum) -> new Artist(

 rs.getInt("id"),

 rs.getString("name")

)

)

 .stream()

 .findFirst()

 .orElseGet(() -> {

 if (update) {

 KeyHolder keyHolder = new GeneratedKeyHolder();

 jdbcTemplate.update(conn -> {

 PreparedStatement ps = conn.prepareStatement(

 insertSQL,

 Statement.RETURN_GENERATED_KEYS

);

 ps.setString(1, name);

 return ps;

 }, keyHolder);

 return new Artist(keyHolder.getKey().intValue(), name);

 } else {

 return null;

 }

 });

 }

 @Transactional

 public List<Song> getSongsForArtist(String artistName) {

 String selectSQL = "SELECT id, artist_id, name, votes " +

 "FROM songs WHERE artist_id=? " +

 "order by votes desc, name asc";

 Artist artist = internalFindArtistByName(artistName, true);

 return jdbcTemplate.query(

 selectSQL, new Object[]{artist.getId()},

 songRowMapper);

 }

Chapter 8 Spring Data Access with JdbcTemplate

235

 @Transactional

 public List<String> getMatchingSongNamesForArtist(

 String artistName,

 String prefix

) {

 String selectSQL = "SELECT name FROM songs WHERE artist_id=? " +

 "and lower(name) like lower(?) " +

 "order by name asc";

 Artist artist = internalFindArtistByName(artistName, true);

 return jdbcTemplate.query(

 selectSQL, new Object[]{artist.getId(), prefix + "%"},

 (rs, rowNum) -> rs.getString("name"));

 }

 // tag::getMatchingArtistNames[]

 @Transactional

 public List<String> getMatchingArtistNames(String prefix) {

 String selectSQL = "SELECT name FROM artists WHERE " +

 "lower(name) like lower(?) " +

 "order by name asc";

 /*
 * Note use of Object[] for query arguments, and

 * the use of a lambda to map from a row to a String

 */

 return jdbcTemplate.query(

 selectSQL,

 new Object[]{prefix + "%"},

 (rs, rowNum) -> rs.getString("name"));

 }

 // end::getMatchingArtistNames[]

 @Transactional

 public Song getSong(String artistName, String name) {

 return internalGetSong(artistName, name);

 }

Chapter 8 Spring Data Access with JdbcTemplate

236

 private Song internalGetSong(String artistName, String name) {

 String selectSQL = "SELECT id, artist_id, name, votes FROM songs " +

 "WHERE artist_id=? " +

 "and lower(name) = lower(?)";

 String insertSQL = "INSERT INTO SONGS (artist_id, name, votes) " +

 "values(?,?,?)";

 Artist artist = internalFindArtistByName(artistName, true);

 Song song = jdbcTemplate.query(

 selectSQL,

 new Object[]{artist.getId(), name},

 songRowMapper)

 .stream()

 .findFirst()

 .orElseGet(() -> {

 KeyHolder keyHolder = new GeneratedKeyHolder();

 jdbcTemplate.update(conn -> {

 �PreparedStatement ps = conn.prepareStatement

(insertSQL,

 Statement.RETURN_GENERATED_KEYS);

 ps.setInt(1, artist.getId());

 ps.setString(2, name);

 ps.setInt(3, 0);

 return ps;

 }, keyHolder);

 return new Song(keyHolder.getKey().intValue(),

 artist.getId(),

 name,

 0);

 });

 return song;

 }

 @Transactional

 public Song voteForSong(String artistName, String name) {

 String updateSQL = "UPDATE songs SET votes=? WHERE id=?";

 Song song = internalGetSong(artistName, name);

Chapter 8 Spring Data Access with JdbcTemplate

237

 song.setVotes(song.getVotes() + 1);

 jdbcTemplate.update(conn -> {

 PreparedStatement ps = conn.prepareStatement(updateSQL);

 ps.setInt(1, song.getVotes());

 ps.setInt(2, song.getId());

 return ps;

 });

 return song;

 }

}

Remember to pay no attention to the // tag:: and // end:: comments. This
book was written with AsciiDoctor (https://asciidoctor.org), and these are
typesetting comments to help us extract specific bits of the code as needed. The
result is that we’re not copying code from a source tree into the book and hoping
the sample code and the book contents stay in sync; we’re actually using the real
code to generate the book content. There are a few exceptions, including some in
this chapter (the delombok output, e.g., and the RowMapper declaration earlier),
but for the most part, you’re seeing the real code when you read the book, the
code that is used to actually compile and run everything, so when (and if) you
type it in or copy it, you’re getting something that actually worked when the book
was written.

The first of the things we want to examine now: intFindArtistByName(), an internal

method with access points through two public methods. The first public method

(findArtistByName) expects a String (the name of the artist). The second public

method (findArtistByNameNoUpdate()) has the same argument – an artist’s name – but

calls the internal method such that an update is not attempted.

The private method is not annotated with @Transactional – it’s a private internal

method and expects to be called from a public method, one that has been marked as

@Transactional. This avoids problems with exception propagation; in this class, we have

enough control over exception conditions that it’s probably not an issue, but we might as

well try to do it right.

Chapter 8 Spring Data Access with JdbcTemplate

https://asciidoctor.org/

238

Internally, the first part of internalFindArtistByName() mirrors the

findArtistById() method from Listing 8-13; we have a query that returns a

List<Artist>, and we convert it to a stream. The .orElse() code is a little more

involved, though.

This method might be used in two ways, you see: the first way implies that an

Artist should be created, and the second does not. That’s because when we do a

search for a list of songs, we don’t necessarily want to create an Artist; a search is a

read-only operation, so there’s no need or requirement to try to write anything – in

fact, there’s a desire not to write anything. The default “mode” of the method is to

write an Artist, but we want access to a version that does not. Thus, the public version

(findArtistByName()) assumes an update, and the internal version – the one that does

all the work – checks to see what operations are desired.

If it’s a read-only operation, we return null – our signal value for “nothing found.”

We could have thrown an exception, or returned an Optional, but in context, null is

simpler; plus, we’ve already used it in other places in our code (see findArtistById() –

again, Listing 8-13 – as an example).

If an update is required, then we have a few things to factor in. We need to return

an Artist object, of course, and that object should be fully populated. The name is easy;

we’re searching for the Artist by name, so that’s a logical value for the name attribute.

(Does this even need to be said? … Probably not, but we’re aiming for some level of

completeness here.)

However, we need to grab the id that the database assigns to the Artist, too. The

way we do that is fairly simple, but there are some moving parts to consider.

	 1.	 First, we create a KeyHolder (an interface with a concrete

realization of GeneratedKeyHolder). This interface has a few

access methods to get keys – but the most useful (and relevant in

this case) is getKey(), which returns a java.lang.Number.

	 2.	 We then use a lambda as an instance of a

PreparedStatementCreator. This is a single-access method

class (with the method being createPreparedStatement()

and accepting a Connection); you’re meant to, well, create a

PreparedStatement with the proper placeholders populated. We

only have one placeholder (as an Artist has only one attribute

besides id) so that’s … rather simple.

Chapter 8 Spring Data Access with JdbcTemplate

239

	 3.	 We pass the KeyHolder as the final argument to the

JdbcTemplate.update() method.

Lastly, we pull out the key from the KeyHolder – with keyHolder.getKey().

intValue(), which gets an integer from the Number abstraction – and use that to build an

Artist reference.

Could we have written this to be simpler, or at least to be more straightforward?

Well… sort of. In this case, “straightforward” means “without streams or Optional,” and

truthfully… it can be done, but involves a lot of temporary variables to contain local state.

The “simpler” version is actually going to have a higher cyclomatic complexity6 than the

streaming version; the way it’s written now has a design complexity of 2 and a cyclomatic

complexity of 2, and the old approach using if and checking List.size() for presence

actually has complexity scores of 3 – where lower numbers are better.

You see the same pattern in getSong(), with a private internalGetSong() method

being used to avoid nesting transactional calls made from the same class. voteForSong()

uses the internalGetSong() when it needs to, well, get a Song – the transaction

semantics are applied at the public method layer only.

In practice, you can get away (sort of) with nested transactional calls if you’re careful,

but they’re generally bad practice (due to how transactions are applied by Spring) and

can create some odd errors.

�Testing MusicRepository

Writing MusicRepository is all well and good, but as usual, it’s not worth much if it

doesn’t actually work. We need a test. Luckily, we already wrote one – all the way back in

Chapter 3. What’s presented here is a modification of MusicServiceTests from Chapter 3

(Listing 3-17), without the superclass structure.

6�Cyclomatic complexity is, well, way out of scope for this book, but now that we’ve mentioned
it, it’s a way of calculating the number of independent paths through a method, by looking at
the control flow. Basically, every nested difference in control flow adds to the complexity of a
method. The streamed version of findArtistByName(String, boolean) looks complex because
it’s got some nested method calls and it’s a less familiar set of operations for many programmers,
but it’s actually simpler because there are fewer branches in the code; thus it gets a lower real
complexity score. With that said, the goal of programming is to get something done, as opposed
to a mandate to use streams or whatever – so you should feel free to do what makes sense to you
and what you are able to make work.

Chapter 8 Spring Data Access with JdbcTemplate

https://doi.org/10.1007/978-1-4842-4486-9_3-7

240

Chapter 3 created MusicServiceTests as an abstract superclass for a series
of tests, so we could issue the same tests against multiple implementations of
MusicService by altering configuration mechanisms. We don’t have that concern
in this chapter, so this test is slightly simpler in organization. The actual code to do
the tests is the same, even though every method is slightly different because we’ve
added things like @BeforeMethod to our toolbox since Chapter 3.

Listing 8-15.  chapter8/src/test/java/com/bsg5/
chapter8/MusicRepositoryTest.java

package com.bsg5.chapter8;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.boot.test.context.SpringBootTest;

import org.springframework.jdbc.core.JdbcTemplate;

import org.springframework.test.context.testng.

AbstractTestNGSpringContextTests;

import org.testng.annotations.BeforeMethod;

import org.testng.annotations.Test;

import java.util.List;

import java.util.function.Consumer;

import static org.testng.Assert.assertEquals;

@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT)

public class MusicRepositoryTest extends AbstractTestNGSpringContextTests {

 @Autowired

 MusicRepository musicRepository;

 @Autowired

 JdbcTemplate jdbcTemplate;

 private Object[][] model = new Object[][]{

 {"Threadbare Loaf", "Someone Stole the Flour", 4},

 {"Threadbare Loaf", "What Happened To Our First CD?", 17},

Chapter 8 Spring Data Access with JdbcTemplate

241

 {"Therapy Zeppelin", "Medium", 4},

 {"Clancy in Silt", "Igneous", 5}

 };

 void iterateOverModel(Consumer<Object[]> consumer) {

 for (Object[] data : model) {

 consumer.accept(data);

 }

 }

 void populateData() {

 iterateOverModel(data -> {

 for (int i = 0; i < (Integer) data[2]; i++) {

 �musicRepository.voteForSong((String) data[0], (String)

data[1]);

 }

 });

 }

 @BeforeMethod

 void clearDatabase() {

 jdbcTemplate.update("DELETE FROM songs");

 jdbcTemplate.update("DELETE FROM artists");

 populateData();

 }

 @Test

 void testSongVoting() {

 iterateOverModel(data ->

 assertEquals(

 musicRepository.getSong((String) data[0],

 (String) data[1]).getVotes(),

 ((Integer) data[2]).intValue()

));

 }

Chapter 8 Spring Data Access with JdbcTemplate

242

 @Test

 void testSongsForArtist() {

 �List<Song> songs = musicRepository.getSongsForArtist

("Threadbare Loaf");

 assertEquals(songs.size(), 2);

 assertEquals(songs.get(0).getName(), "What Happened To Our First CD?");

 assertEquals(songs.get(0).getVotes(), 17);

 assertEquals(songs.get(1).getName(), "Someone Stole the Flour");

 assertEquals(songs.get(1).getVotes(), 4);

 }

 @Test

 void testMatchingArtistNames() {

 List<String> names = musicRepository.getMatchingArtistNames("Th");

 assertEquals(names.size(), 2);

 assertEquals(names.get(0), "Therapy Zeppelin");

 assertEquals(names.get(1), "Threadbare Loaf");

 }

 @Test

 void testMatchingSongNamesForArtist() {

 List<String> names = musicRepository.getMatchingSongNamesForArtist(

 "Threadbare Loaf", "W"

);

 assertEquals(names.size(), 1);

 assertEquals(names.get(0), "What Happened To Our First CD?");

 }

}

There’s a few things of note.

First, we have a method annotated with @BeforeMethod. TestNG (and other testing

frameworks) has mechanisms to run specific methods before and after different stages

in a given test; in this case, we want to run clearDatabase() (which clears the database

and then populates it with known data) before executing any and every method marked

with @Test. We could also run methods after each test, with @AfterMethod, and we have

other annotations available as well, like @BeforeClass and @BeforeTest, each of which

Chapter 8 Spring Data Access with JdbcTemplate

243

have their own significant behaviors. See https://testng.org/doc/documentation-

main.html#annotations for more details. JUnit certainly has its own analogs to this

behavior with @BeforeEach and @BeforeAll.

Second, note the use of @SpringBootTest (webEnvironment = SpringBootTest.

WebEnvironment.RANDOM_PORT) for the class-level annotation. In the context of this test,

the port makes little sense – but we’re going to use it later in this chapter, so bear with

it for now. We’re using this annotation here because of the configuration itself (and it’s

copied from the other tests from the rest of the chapter, actually, so it becomes part of

standard practice for this section of the book); it’s simple enough that we simply marked

this as a web-enabled configuration, and therefore in order to get the full initialization

to run properly, we need to mark this as a test that is also web-enabled. We could have

avoided this by using multiple configurations, all tied together in a sort of “top-level”

configuration class, but that’d serve little purpose other than preventing the need for one

annotation and consuming more trees when the book is printed.

It’d be nice to reuse the test from Chapter 3, but it’s fundamentally difficult to
do as written – because the base class for Chapter 3 tests is in the src/tests
directory, and therefore it isn’t exported for use by other projects. We could have
created a testsupport project that did export classes for use in testing, but
that would have introduced a lot of complexity for such an early chapter. We will
see this technique applied in Chapter 9, when we want to reuse tests for two
completely separate persistence layers.

8.5  �Adding the REST Endpoints
We now have a MusicService implementation that uses a database to store data with

JdbcTemplate – so our interactions with the database are reasonably safe, easy to

maintain, and clear to anyone moderately familiar with SQL. It’s time for us to tie all of it

together into an actual web application to show all of the pieces working together.7

7�This chapter will finish what we started in Chapter 7. Our prior chapter added a web interface
for parts of a music service, but didn’t include all of our requirements because it wasn’t the right
place to bring up transactions. After this section, you could write a rich client to interact with the
services and have a functioning application.

Chapter 8 Spring Data Access with JdbcTemplate

https://testng.org/doc/documentation-main.html#annotations
https://testng.org/doc/documentation-main.html#annotations

244

8.5.1  �The ArtistController
Let’s start small, by recreating our ArtistController from Chapter 7, except better

this time. (We can’t reuse the code because the underlying services have changed.)

This is effectively the same code as in Chapter 7, except it adds a decode() method as

mentioned briefly in Chapter 6 for completeness (we want to be able to handle band

names with spaces, question marks, and other odd characters) and autowires the

MusicService via the constructor. We’ll also need an ArtistNotFoundException just as

in Chapter 7.

Listing 8-16.  chapter8/src/main/java/com/bsg5/chapter8/
ArtistController.java

package com.bsg5.chapter8;

import org.springframework.http.MediaType;

import org.springframework.web.bind.annotation.*;

import org.springframework.web.util.UriUtils;

import java.nio.charset.Charset;

import java.util.List;

@RestController

public class ArtistController {

 private MusicRepository service;

 ArtistController(MusicRepository service) {

 this.service = service;

 }

 String decode(Object data) {

 return UriUtils.decode(data.toString(), Charset.defaultCharset());

 }

 @GetMapping(value = "/artists/{id}",

 produces = MediaType.APPLICATION_JSON_VALUE)

 Artist findArtistById(@PathVariable int id) {

 Artist artist = service.findArtistById(id);

Chapter 8 Spring Data Access with JdbcTemplate

245

 if (artist != null) {

 return artist;

 } else {

 throw new ArtistNotFoundException();

 }

 }

 /*
 * if no artist name is provided, the exception path is

 * always chosen and an IllegalArgumentException is thrown.

 */

 @GetMapping(value = {"/artists/search/{name}", "/artist/search/"},

 produces = MediaType.APPLICATION_JSON_VALUE)

 Artist findArtistByName(

 @PathVariable(required = false) String name

) {

 if (name != null) {

 Artist artist = service.findArtistByNameNoUpdate(decode(name));

 if (artist != null) {

 return artist;

 } else {

 throw new ArtistNotFoundException();

 }

 } else {

 throw new IllegalArgumentException("No artist name submitted");

 }

 }

 @PostMapping(value="/artists",

 produces = MediaType.APPLICATION_JSON_VALUE)

 Artist saveArtist(@RequestBody Artist artist) {

 return service.findArtistByName(artist.getName());

 }

 @GetMapping(value={"/artists/match/{name}", "/artists/match/"},

 produces = MediaType.APPLICATION_JSON_VALUE)

Chapter 8 Spring Data Access with JdbcTemplate

246

 List<String> findArtistByMatchingName(

 @PathVariable(required = false)

 String name

) {

 �return service.getMatchingArtistNames(name != null ?

decode(name) : "");

 }

}

We can see in findArtistByName() the use of “traditional” (i.e., non-streamed)

straightforward code to work with the result of findArtistByName(). We could have

written this with streams; this next example includes a method to convert the null from

MusicService.findArtistByName() into an Optional<Artist>. Let’s take a look and

then work out what it all means.

We’re still doing REST badly. When we create an Artist – or a Song, as we’ll
see – we should be returning a Location header in the response that includes an
endpoint that will return a newly created object.

Why not?

Well… one reason is that the web interface here isn’t really meant to be all that
complete – the web layer of Spring is very thorough, and we’re barely skimming
the surface of what it can do; we’re mostly showing code that can work, as
opposed to code that works fantastically well. This chapter’s long enough as it is.

Listing 8-17.  A streamed version of findArtistByName

/*
 * this method serves to migrate the MusicService' findArtistByName()

 * to something that accepts and returns an Optional

 */

Optional<Artist> findArtistByName(Optional<String> name, boolean update) {

 return Optional.of(service.findArtistByName(

 decode(

 name.orElseThrow(

Chapter 8 Spring Data Access with JdbcTemplate

247

 () -> new IllegalArgumentException("No artist name supplied")

)

)

));

}

@GetMapping({"/artist/search/{name}", "/artist/search/"})

Artist findArtistByName(

 @PathVariable(required = false) Optional<String> name

) {

 Optional<Artist> artistOptional = findArtistByName(name, false);

 return artistOptional.orElseThrow(

 ArtistNotFoundException::new

);

}

The class-local findArtistByName() here exists for two reasons: one is to convert

the result of MusicService.findArtistByName() into an Optional<Artist>. Obviously,

if the service returned an Optional itself instead of returning null for “no artist found,”

we wouldn’t need the conversion. The other reason is to make sure we call decode() if a

valid-looking name is passed in, and to throw an exception otherwise.

Do we need this functionality? Actually, no. We could always simply not map

"/artists/search/" in the controller. However, this would mean that calling /artists/

search/ – with no artist name – would return an HTTP “not found” error instead of an

“invalid invocation” error (a 404 instead of a 400, in HTTP error code parlance). You

could solve that by adding a specific mapping that returned the correct error code.

Which way is best? Well… the one that works. There’s not really a “best” here,

although arguments can be made for every aspect of the code. You should use the

approach you find most sensible.

The cyclomatic complexity of the “simple” version – the one in the actual sample

code – is 3 (it has multiple branches and execution paths). The cyclomatic complexity of

the streamed code – all of it, both methods – is 1. In terms of code metrics, the streamed

versions are actually simpler than the more straightforward code. That doesn’t mean

that the streamed versions are better – and we’re not using them, since the API of

MusicService doesn’t return an Optional<Artist> anyway. This example is just to

illustrate the (ahem) options available to programmers.

Chapter 8 Spring Data Access with JdbcTemplate

248

And now the exception class, which has an annotation to tell Spring to convert it to

an HTTP error code just as in Chapter 7.

Listing 8-18.  chapter8/src/main/java/com/bsg5/chapter8/
ArtistNotFoundException.java

package com.bsg5.chapter8;

import org.springframework.http.HttpStatus;

import org.springframework.web.bind.annotation.ResponseStatus;

@ResponseStatus(code = HttpStatus.NOT_FOUND, reason = "Artist not found")

public class ArtistNotFoundException extends RuntimeException{

 /**
 *
 */

 private static final long serialVersionUID = 7057185664051689118L;

}

Now, we have a workable interface for working with Artist entities over HTTP.

We can’t do anything with Song entities yet, but let’s get the simple things running first.

(We can’t do anything with a Song if we can’t do anything with an Artist, after all.)

Of course we can’t have an ArtistController without something to actually test

it, so let’s take a look at ArtistControllerTest – again, a near analog to what we saw

in Chapter 7, although it’s slightly different to accommodate the slight difference in

configuration approaches. We’re not actually touching the MusicService directly here –

everything is through the controller, using the form of actual HTTP requests; it’s possible

(and likely) there are error conditions not being tested, but in general if these tests all

pass, our ability to work with Artist records is guaranteed.

Listing 8-19.  chapter8/src/test/java/com/bsg5/
chapter8/ArtistControllerTest.java

package com.bsg5.chapter8;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.boot.test.context.SpringBootTest;

import org.springframework.boot.test.web.client.TestRestTemplate;

Chapter 8 Spring Data Access with JdbcTemplate

249

import org.springframework.boot.web.server.LocalServerPort;

import org.springframework.core.ParameterizedTypeReference;

import org.springframework.http.HttpMethod;

import org.springframework.http.HttpStatus;

import org.springframework.http.ResponseEntity;

import org.springframework.test.context.testng.

AbstractTestNGSpringContextTests;

import org.springframework.web.util.UriUtils;

import org.testng.annotations.DataProvider;

import org.testng.annotations.Test;

import java.nio.charset.Charset;

import java.util.List;

import static org.testng.Assert.*;

import static org.testng.Assert.assertEquals;

@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT)

public class ArtistControllerTest extends AbstractTestNGSpringContextTests

{

 @LocalServerPort

 private int port;

 @Autowired

 private TestRestTemplate restTemplate;

 String encode(Object data) {

 return UriUtils.encode(data.toString(),

 Charset.defaultCharset());

 }

 @DataProvider

 Object[][] artistData() {

 return new Object[][]{

 new Object[]{1, "Threadbare Loaf"},

 new Object[]{2, "Therapy Zeppelin"},

 new Object[]{3, "Clancy in Silt"},

Chapter 8 Spring Data Access with JdbcTemplate

250

 new Object[]{-1, null},

 new Object[]{-1, "Not A Band"}

 };

 }

 @Test(dataProvider = "artistData")

 public void testGetArtist(int id, String name) {

 String url = "http://localhost:" + port + "/artists/" + id;

 ResponseEntity<Artist> response =

 restTemplate.getForEntity(url, Artist.class);

 if (id != -1) {

 assertEquals(response.getStatusCode(), HttpStatus.OK);

 Artist artist = response.getBody();

 Artist data = new Artist(id, name);

 assertEquals(artist.getId(), data.getId());

 // note: the corrected service returns the *proper* name

 assertEquals(

 artist.getName().toLowerCase(),

 data.getName().toLowerCase()

);

 } else {

 assertEquals(response.getStatusCode(), HttpStatus.NOT_FOUND);

 }

 }

 @Test(dataProvider = "artistData")

 public void testSearchForArtist(int id, String name) {

 String url = "http://localhost:" + port + "/artists/search/" +

 (name != null ? encode(name) : "");

 ResponseEntity<Artist> response =

 restTemplate.getForEntity(url, Artist.class);

 if (name != null) {

 if (id == -1) {

 assertEquals(response.getStatusCode(),

 HttpStatus.NOT_FOUND);

Chapter 8 Spring Data Access with JdbcTemplate

251

 } else {

 assertEquals(response.getStatusCode(), HttpStatus.OK);

 Artist artist = response.getBody();

 Artist data = new Artist(id, name);

 assertEquals(artist.getId(), data.getId());

 // note: the corrected service returns the *proper* name

 assertEquals(

 artist.getName().toLowerCase(),

 data.getName().toLowerCase()

);

 }

 } else {

 assertEquals(

 response.getStatusCode(),

 HttpStatus.BAD_REQUEST

);

 }

 }

 @Test

 public void testSaveExistingArtist() {

 String url = "http://localhost:" + port + "/artists";

 �Artist newArtist = restTemplate.getForObject(url + "/1",

Artist.class);

 ResponseEntity<Artist> response =

 restTemplate.postForEntity(url, newArtist, Artist.class);

 assertEquals(response.getStatusCode(), HttpStatus.OK);

 Artist artist = response.getBody();

 assertNotNull(artist);

 int id = artist.getId();

 assertEquals(id, newArtist.getId().intValue());

 assertEquals(artist.getName(), newArtist.getName());

Chapter 8 Spring Data Access with JdbcTemplate

252

 response = restTemplate.getForEntity(url + "/" + id, Artist.class);

 assertEquals(response.getStatusCode(), HttpStatus.OK);

 Artist foundArtist = response.getBody();

 assertNotNull(foundArtist);

 assertEquals(artist, foundArtist);

 }

 @DataProvider

 public Object[][] artistSearches() {

 return new Object[][]{

 new Object[]{"", 3},

 new Object[]{"T", 2},

 new Object[]{"Th", 2},

 new Object[]{"Thr", 1},

 new Object[]{"C", 1},

 new Object[]{"Z", 0}

 };

 }

 @Test(dataProvider = "artistSearches")

 public void testSearches(String name, int count) {

 ParameterizedTypeReference<List<Artist>> type =

 new ParameterizedTypeReference<>() {

 };

 String url = "/artists/match/" + encode(name);

 ResponseEntity<List<Artist>> response = restTemplate.exchange(

 url,

 HttpMethod.GET,

 null,

 type

);

 assertEquals(response.getStatusCode(), HttpStatus.OK);

 List<Artist> artists = response.getBody();

 assertNotNull(artists);

 assertEquals(artists.size(), count);

 }

Chapter 8 Spring Data Access with JdbcTemplate

253

 // We need this to run AFTER testSearches completes, because

 // testSearches adds to the artist list and therefore we

 // might get one more artist than we're expecting out of

 // some searches.

 @Test(dependsOnMethods = "testSearches")

 public void testSaveArtist() {

 String url = "http://localhost:" + port + "/artists";

 Artist newArtist = new Artist(0, "The Broken Keyboards");

 ResponseEntity<Artist> response = restTemplate.postForEntity(

 url,

 newArtist,

 Artist.class

);

 assertEquals(response.getStatusCode(), HttpStatus.OK);

 Artist artist = response.getBody();

 assertNotNull(artist);

 int id = artist.getId();

 assertNotEquals(id, 0);

 assertEquals(artist.getName(), newArtist.getName());

 response = restTemplate.getForEntity(url + "/" + id, Artist.class);

 assertEquals(response.getStatusCode(), HttpStatus.OK);

 Artist foundArtist = response.getBody();

 assertNotNull(foundArtist);

 assertEquals(artist, foundArtist);

 }

}

8.5.2  �The SongController
Now for new code – let’s add a SongController. This is a fairly simple controller, as you

can see – nearly everything is delegated to the MusicService. The same approaches that

we discussed for ArtistController apply here as well.

Chapter 8 Spring Data Access with JdbcTemplate

254

Listing 8-20.  chapter8/src/main/java/com/bsg5/chapter8/SongController.
java

package com.bsg5.chapter8;

import org.springframework.http.MediaType;

import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.PathVariable;

import org.springframework.web.bind.annotation.RestController;

import org.springframework.web.util.UriUtils;

import java.nio.charset.Charset;

import java.util.List;

@RestController

public class SongController {

 private MusicRepository service;

 SongController(MusicRepository service) {

 this.service = service;

 }

 String decode(Object data) {

 return UriUtils.decode(data.toString(), Charset.defaultCharset());

 }

 @GetMapping(value="/artists/{name}/vote/{title}",

 produces = MediaType.APPLICATION_JSON_VALUE)

 Song voteForSong(@PathVariable String name, @PathVariable String title) {

 return service.voteForSong(decode(name), decode(title));

 }

 @GetMapping(value="/artists/{name}/song/{title}",

 produces = MediaType.APPLICATION_JSON_VALUE)

 Song getSong(@PathVariable String name, @PathVariable String title) {

 return service.getSong(decode(name), decode(title));

 }

Chapter 8 Spring Data Access with JdbcTemplate

255

 @GetMapping(value="/artists/{name}/songs",

 produces = MediaType.APPLICATION_JSON_VALUE)

 List<Song> getSongsForArtist(@PathVariable String name) {

 return service.getSongsForArtist(decode(name));

 }

 @GetMapping(value={"/artists/{name}/match/{title}",

 "/artists/{name}/match/"},

 produces = MediaType.APPLICATION_JSON_VALUE)

 List<String> findSongsForArtist(@PathVariable String name,

 @PathVariable(required = false)

 String title) {

 return service.getMatchingSongNamesForArtist(decode(name),

 title != null ? decode(title) : "");

 }

}

At last, we come to what is arguably the most important test in the project – the

SongControllerTest. Our other tests are important for incremental development and

test-specific things. This test, however, covers nearly everything our project does in one

class. (It doesn’t quite cover everything, because we didn’t want to repeat some of the

simpler tests in ArtistControllerTest.)

Listing 8-21.  chapter8/src/test/java/com/bsg5/
chapter8/SongControllerTest.java

package com.bsg5.chapter8;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.boot.test.context.SpringBootTest;

import org.springframework.boot.test.web.client.TestRestTemplate;

import org.springframework.boot.web.server.LocalServerPort;

import org.springframework.core.ParameterizedTypeReference;

import org.springframework.http.HttpMethod;

import org.springframework.http.HttpStatus;

import org.springframework.http.ResponseEntity;

import org.springframework.jdbc.core.JdbcTemplate;

import org.springframework.test.context.testng.AbstractTestNGSpringContextTests;

Chapter 8 Spring Data Access with JdbcTemplate

256

import org.springframework.web.util.UriUtils;

import org.testng.annotations.BeforeMethod;

import org.testng.annotations.Test;

import java.nio.charset.Charset;

import java.util.List;

import java.util.function.Consumer;

import static org.testng.Assert.assertEquals;

import static org.testng.Assert.assertNotNull;

@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT)

public class SongControllerTest extends AbstractTestNGSpringContextTests {

 @LocalServerPort

 private int port;

 @Autowired

 private TestRestTemplate restTemplate;

 @Autowired

 JdbcTemplate jdbcTemplate;

 private Object[][] model = new Object[][]{

 {"Threadbare Loaf", "Someone Stole the Flour", 4},

 {"Threadbare Loaf", "What Happened To Our First CD?", 17},

 {"Therapy Zeppelin", "Medium", 4},

 {"Clancy in Silt", "Igneous", 5}

 };

 @BeforeMethod

 void clearDatabase() {

 jdbcTemplate.update("DELETE FROM songs");

 jdbcTemplate.update("DELETE FROM artists");

 populateData();

 }

 void iterateOverModel(Consumer<Object[]> consumer) {

 for (Object[] data : model) {

 consumer.accept(data);

 }

 }

Chapter 8 Spring Data Access with JdbcTemplate

257

 String encode(Object data) {

 return UriUtils.encode(data.toString(), Charset.defaultCharset());

 }

 void populateData() {

 iterateOverModel(data -> {

 for (int i = 0; i < (Integer) data[2]; i++) {

 String url = "http://localhost:"

 + port

 + "/artists/"

 + encode(data[0])

 + "/vote/"

 + encode(data[1]);

 ResponseEntity<Song> response =

 restTemplate.getForEntity(url, Song.class);

 assertEquals(response.getStatusCode(), HttpStatus.OK);

 }

 });

 }

 @Test

 void testSongVoting() {

 iterateOverModel(data -> {

 String url = "http://localhost:"

 + port

 + "/artists/"

 + encode(data[0])

 + "/song/"

 + encode(data[1]);

 ResponseEntity<Song> response =

 restTemplate.getForEntity(url, Song.class);

 assertEquals(response.getStatusCode(), HttpStatus.OK);

 Song song = response.getBody();

 assertNotNull(song);

Chapter 8 Spring Data Access with JdbcTemplate

258

 assertEquals(song.getName(), data[1]);

 assertEquals(song.getVotes(), ((Integer) data[2]).intValue());

 });

 }

 @Test

 void testSongsForArtist() {

 ParameterizedTypeReference<List<Song>> type =

 new ParameterizedTypeReference<>() {

 };

 String url = "http://localhost:"

 + port

 + "/artists/"

 + encode("Threadbare Loaf")

 + "/songs";

 ResponseEntity<List<Song>> response = restTemplate.exchange(

 url,

 HttpMethod.GET,

 null,

 type

);

 assertEquals(response.getStatusCode(), HttpStatus.OK);

 List<Song> songs =response.getBody();

 assertEquals(songs.size(), 2);

 �assertEquals(songs.get(0).getName(), "What Happened To Our

First CD?");

 assertEquals(songs.get(0).getVotes(), 17);

 assertEquals(songs.get(1).getName(), "Someone Stole the Flour");

 assertEquals(songs.get(1).getVotes(), 4);

 }

 @Test

 void testMatchingSongNamesForArtist() {

 ParameterizedTypeReference<List<String>> type =

 new ParameterizedTypeReference<>() {

 };

Chapter 8 Spring Data Access with JdbcTemplate

259

 String url = "http://localhost:"

 + port

 + "/artists/"

 + encode("Threadbare Loaf")

 + "/match/" +

 encode("W");

 ResponseEntity<List<String>> response = restTemplate.exchange(

 url,

 HttpMethod.GET,

 null,

 type

);

 List<String> names = response.getBody();

 assertEquals(names.size(), 1);

 assertEquals(names.get(0), "What Happened To Our First CD?");

 }

}

From a coding standpoint, it’s not particularly complex, but it is fairly comprehensive.

8.6  �Next Steps
This chapter has been a bit of a journey through transaction support, JdbcTemplate

usage, and testing of integrated services. Thankfully, the core concepts are fairly easy to

summarize: using Spring’s data access mechanism gives you trivial access to transaction

support, and the Spring interfaces are really easy to use despite presenting a wide array

of options. One limitation, though, is that we’re still manually writing SQL for use with a

relational database.

In our next chapter, we are going to take a look at another data abstraction from

Spring, called “Spring Data.” With Spring Data, we can write interfaces to access nearly

any database, whether relational or not, and we will see how to make our queries

programmatically verifiable.

Chapter 8 Spring Data Access with JdbcTemplate

261
© Joseph B. Ottinger and Andrew Lombardi 2019
J. B. Ottinger and A. Lombardi, Beginning Spring 5, https://doi.org/10.1007/978-1-4842-4486-9_9

CHAPTER 9

Persistence with Spring
and Spring Data
In Chapter 8 we finally stopped looking at configuration and presentation mechanisms,

and we looked at accessing a relational database with JdbcTemplate. In this chapter,

we’re going to look at accessing data again – with a Spring project called “Spring Data,”

which can provide a mostly data-agnostic view of data access.

Spring Data unifies data access for Spring, providing common access to not only

different databases but different APIs – like JPA (the Java Persistence API) and our old

friend JDBC, but different types of databases like MongoDB, Neo4J, and others.

9.1  �Introduction
We’ve tended to progress from the simplest use of technology to more advanced, but

this chapter will invert things slightly, starting with JPA; JDBC and SQL are base-level

technologies (and are used under the hood of JPA), but the problem with JDBC is that

it is, well, JDBC – and it relies heavily on a live data structure, something you’d see in

a running database with a fully functional, realized schema. That means that there

are aspects of rigid data access that may or may not work, depending on the database,

because it is the “system of record,” the canonical description of what the data looks like.

When we compile our application, we don’t know if the database even exists, or what the

schema looks like, which makes automatic tooling for that database rather difficult.

JPA, however, allows us to describe what the application should see as a data model.

We can use a JPA data model and change the underlying structure all we like (as long as

we also tell JPA what the underlying structure is), but we can also know at compile time

what the program sees as the data model. That means that when we first compile our

application, regardless of whether the database exists or not, we can know how to expect

262

to access our data (because it’s described in code) – which means we can have a high

degree of assurance that our application will access the data correctly, if perhaps not

efficiently.1

Why don’t we know if the data access is efficient or not? The answer is simple: we
might design our object model in such a way that the database uses unindexed data,
or more tables than it needs, for example, such that queries require table scans and
so forth. JPA isn’t a magic bullet that gives you an excellent schema no matter how
you describe the data; it’ll generally help you create a functioning schema, but you
still have to understand how relational databases work to really fine-tune the data
model. It sure would be nice to have magic performance sauce, though.

We’re going to cover a few different storage mechanisms behind the Spring Data

abstraction layer, but this chapter will hearken back to Chapters 3 and 8 and their usage

of tests. Once we have the services working, it’s a trivial matter to add REST endpoints

in front of the services (as we saw in Chapters 7 and 8), so we’re not going to distract

ourselves here by adding a web-enabled front end in this chapter.

9.2  �General Architecture
Spring Data extends the concept of a Repository<T,ID>, a generalized access layer for

a given datastore and entity. We’ve already seen the @Repository annotation, but here

we’ll see an interface (also called Repository<T,ID>, where T is the type being stored

and ID is a primary key type, extended with CrudRepository<T,ID>> and PagingAndSort

ingRepository<T,ID>) that Spring will implement for you (for the most part) via proxies.

Proxies> in Java aren’t really in scope for this book, unfortunately. With that said,
though, here’s a very cursory overview of one method: you can define an object
(called a Proxy) that intercepts method calls, and arbitrarily execute code in a
handler object. Since the proxy has access to the method signatures of the calls and
the instance being called, the handler can execute code before or after the actual
method bodies – or it can avoid calling the actual method bodies in the first place.

1�Remember when we mentioned “suffering-oriented programming” back in Chapter 2?

Chapter 9 Persistence with Spring and Spring Data

263

With classes that implement Repository<T,ID>, the interface is used to
manufacture method bodies out of (nearly) whole cloth, and the effect is that we
define a simple interface and Spring magically implements the interface for us.
There’s obviously no magic – it’s just a Proxy – but it makes using Spring Data a
lot easier than it might have otherwise been.

It’s worth noting that there are multiple mechanisms for proxies in Spring. The
default is to use Java’s innate proxy mechanisms, but under certain circumstances,
Spring will use a library called CGLIB and build a different kind of proxy with it
instead.

You will define the entity with Java and then create an interface (or set of

interfaces) to describe how to manipulate that entity in the data storage system. The

Repository<T,ID> interface is just a marker, in and of itself; it has no methods, but

indicates to Spring that implementations work with databases somehow.

What’s the use of Repository<T,ID> if it has no methods?

Well, sometimes you want to limit access to methods through the use of fine-
grained interfaces. For example, one might have a Controller that has no ability
to save entities; if we wanted to, we could define a Repository<T,ID> that only
defined methods to read data, while the actual instance had methods to save or
update entities. The Controller might receive a copy of the read-only interface
from Spring, and therefore the compiler can enforce the requirement that it never
save entities.

The CrudRepository<T,ID> interface, which extends Repository<T,ID>, defines

operations for reading, writing, updating, removing, and even querying the database –

and Spring Data applies some magic such that you can even specify queries in the
interface without you having to know how to actually query the database itself. In

Chapter 7 we saw methods like findAllArtistsByName(), which selected all artists

whose names matched a wildcard, without being case-sensitive; with Spring Data, we

define a method signature in the repository and get nearly the same functionality.

(We’d want to build the wildcard externally, although there are ways to do it with the

interface itself.)

Chapter 9 Persistence with Spring and Spring Data

264

Listing 9-1.  Spring Data’s equivalent to findAllArtistsByName from Chapter 7

public interface ArtistRepository extends Repository<Artist, Integer> {

 List<Artist> findLikeNameIgnoreCase(String name);

}

Building a Repository<T,ID> involves three source files. For a given repository, you

will have

	 1.	 A Spring configuration (which can, of course, serve for multiple

repositories)

	 2.	 An entity type (an object that represents data), with a primary key

of some sort

	 3.	 An interface that implements Repository<T,ID>

(or CrudRepository<T,ID>, or PagingAndSortingRepository

<T,ID>, in practice), with the entity type and its primary key type

There are also variations of interface creation, to allow for different levels of method

access. We’ll show some of these as we go through the chapter.

9.2.1  �An Important Note About Requirements
This chapter will demonstrate accessing two database systems: an embedded H2

database (just as in Chapters 7 and 8) and a MongoDB database. We’re going to use a

project that allows us to embed MongoDB, so you don’t have to have MongoDB running

(or installed).

9.3  �Creating Our Project Structure
Chapter 9 is actually made up of four subprojects. They are

•	 chapter9common, which contains base classes and interfaces used by

the other Chapter 9 projects

•	 chapter9test, which contains tests that our Spring Data

implementations should be able to pass

Chapter 9 Persistence with Spring and Spring Data

265

•	 chapter9jpa, which contains an implementation and configuration

for JPA

•	 chapter9mongodb, which contains an implementation and

configuration for MongoDB

The chapter9test module has its test classes in src/main/java, which means the

classes are available to projects that import chapter9test – and we’ll be using them as

dependencies for the testing phase.

Now let’s start creating our project structure – as there are four separate projects,

there’s a lot here, but it’s rather repetitive.

Listing 9-2.  Creating the directory structure with POSIX

mkdir -p chapter9common/src/main/java

mkdir -p chapter9common/src/main/resources

mkdir -p chapter9common/src/test/java

mkdir -p chapter9common/src/test/resources

mkdir -p chapter9test/src/main/java

mkdir -p chapter9test/src/main/resources

mkdir -p chapter9test/src/test/java

mkdir -p chapter9test/src/test/resources

mkdir -p chapter9jpa/src/main/java

mkdir -p chapter9jpa/src/main/resources

mkdir -p chapter9jpa/src/test/java

mkdir -p chapter9jpa/src/test/resources

mkdir -p chapter9mongodb/src/main/java

mkdir -p chapter9mongodb/src/main/resources

mkdir -p chapter9mongodb/src/test/java

mkdir -p chapter9mongodb/src/test/resources

There’s an alternative to this, of course, and since we’re programmers, it’s actually

nicer and easier, using the bash shell and a touch of scripting. (It’s also the way the

project was actually created when writing this chapter. Just don’t tell the editor!)

Chapter 9 Persistence with Spring and Spring Data

266

Listing 9-3.  Creating the directory structure with POSIX

for i in common test jpa mongodb; do

 for j in main test; do

 for k in java resources; do

 mkdir -p chapter9$i/src/$j/$k;

 done;

 done;

done

We need to walk through our chapter9common and chapter9test projects before

actually getting into code we can actually execute, because these projects serve as the

basis for our chapter9jpa and chapter9mongodb projects. (They also contain more

code than the jpa and mongodb projects do. The chapter9jpa and chapter9mongodb

projects’ source code is mostly made up of classes that extend or implement classes from

chapter9common or chapter9test, with very little actual source code.)

9.3.1  �The Common Code
The chapter9common project contains five interfaces, one abstract class, and one class

that will end up being a Spring component. They are

•	 BaseEntity – A generic interface that defines accessors and mutators

for a generic identifier

•	 BaseArtist – An interface that defines access to a name field for an

artist and extends BaseEntity

•	 BaseSong – An interface that defines access to an implementation of

BaseArtist, a song’s name, and the number of votes for a song as

well as extending BaseEntity

•	 BaseArtistRepository – An interface which defines how we will

access entities that extend BaseArtist

•	 BaseSongRepository – An interface which defines how we will access

entities that extend BaseSong

Chapter 9 Persistence with Spring and Spring Data

267

•	 BaseMusicService – An abstract class that orchestrates the various

repository methods

•	 WildcardConverter – A class that provides a mechanism for

constructing wildcards for services

Here’s a class diagram, in UML, that purports to show the relationship between the

various classes. When we implement concrete versions of this structure in chapter9jpa

and chapter9mongodb, we’ll basically be finalizing versions of the base classes.

Most of these are really pretty simple. Because they’re generic, though, their class

declarations tend to be rather long; the reason is that different databases might treat

primary keys differently; therefore we need to have a way to define primary keys on a

case-by-case basis.

We’re using “database” in the general sense of “application that stores data,” not
in the “relational database” sense.

For example, for relational databases, primary keys are often best generated as

integers of some sort, but with document databases like MongoDB, the primary keys

are generated as UUIDs represented as String instances. We could coerce the types

to be common (therefore using UUIDs everywhere, or integers), but that feels like

Chapter 9 Persistence with Spring and Spring Data

268

we’re pouring optimizations down the drain for no good reason (unless, of course, you

consider a simpler interface a “good reason,” which you very well might).

First, let’s take a look at the build script for chapter9common. It has some variations

on some of our prior build scripts.

Listing 9-4.  chapter9common/build.gradle

plugins {

 id 'org.springframework.boot' version '2.1.4.RELEASE' apply false

}

apply plugin: 'io.spring.dependency-management'

dependencyManagement {

 imports {

 mavenBom org.springframework.boot.gradle

 .plugin.SpringBootPlugin.BOM_COORDINATES

 }

}

dependencies {

 compile "org.springframework.data:spring-data-commons"

 compile "org.springframework:spring-tx"

 compile "org.springframework:spring-beans"

}

We actually do some magic in this build to get the dependency resolution to work

without marking this as an actual Spring Boot project itself; we include the Spring

Boot plugin, but then add apply false. This means that the io.spring.dependency-

management is available to the project, and we can apply it without the rest of Spring Boot

being kicked into motion.

However, the dependency management requires information about the versions

to import; thus, we also add a dependencyManagement block and forcibly include the

versions from the Spring Boot plugin.

It’s a little backward, in that we’re importing a plugin, disabling it, and then

reenabling specific aspects of it, but it’s caused by Spring Boot’s design in and of itself;

Spring Boot emphasizes simple projects rather than nested projects (like the projects in

this chapter) so we’re having to use mechanisms to give us access to the bits of Spring

Chapter 9 Persistence with Spring and Spring Data

269

Boot that we want, and nothing more, as chapter9common is not actually a Spring Boot

project; it’s an artifact that uses Spring Boot.

This is slightly dependent on the version of Gradle in use. With newer versions of
Gradle, you can use an enforcedPlatform to do this; it’s a little cleaner to use.
If you’re on the current version of Gradle, you can alter these projects to be cleaner
(and use the new scopes, too); see https://docs.gradle.org/current/
userguide/ managing_transitive_dependencies.html#sec:bom_
import for more detail.

So let’s take a look at our entity interfaces, to start with; they’re simple (except for

the generic declarations, which are only going to get worse as we progress through the

chapter9common project).

First, the BaseEntity interface, which accepts an ID type.

Listing 9-5.  chapter9common/src/main/java/com/bsg5/chapter9/common/
BaseEntity.java

package com.bsg5.chapter9.common;

public interface BaseEntity<ID> {

 ID getId();

 void setId(ID id);

}

This is simple enough; it’s an interface, so it contains no state itself (no properties),

but it does indicate that any class that implements BaseEntity has access to an Id

property of some kind, passed to the compiler as a generic type, <ID>.

Let’s take a look at BaseArtist, next, as it uses BaseEntity and adds access to a

property of its own.

Chapter 9 Persistence with Spring and Spring Data

https://docs.gradle.org/current/userguide/
https://docs.gradle.org/current/userguide/

270

Listing 9-6.  chapter9common/src/main/java/com/bsg5/chapter9/common/
BaseArtist.java

package com.bsg5.chapter9.common;

public interface BaseArtist<ID>

 extends BaseEntity<ID> {

 /**

 * Get the artist name

 */

 String getName();

 void setName(String name);

}

It has a generic parameter, just as BaseEntity does, but only uses it to defer to

BaseEntity.

BaseSong is a little more complicated, because it needs to provide access to

something that implements BaseArtist. It has two generic parameters: one is a type that

implements BaseArtist, and the other is the type for the identifier for BaseEntity.

Listing 9-7.  chapter9common/src/main/java/com/bsg5/chapter9/common/
BaseSong.java

package com.bsg5.chapter9.common;

public interface BaseSong<

 T extends BaseArtist<ID>,

 ID

 > extends BaseEntity<ID> {

 T getArtist();

 void setArtist(T artist);

 /**

 * Get the song name

 */

Chapter 9 Persistence with Spring and Spring Data

271

 String getName();

 void setName(String name);

 int getVotes();

 void setVotes(int votes);

}

Now we start getting into the fun stuff; we’re going to look at BaseArtistRepository,

which actually uses Spring Data to provide functionality, and after that we’ll look at

BaseSongRepository, BaseMusicService, and WildcardConverter. Once we understand

BaseArtistRepository, the other classes will be fairly simple to walk through.

Listing 9-8.  chapter9common/src/main/java/com/bsg5/chapter9/common/
BaseArtistRepository.java

package com.bsg5.chapter9.common;

import java.util.List;

import java.util.Optional;

import org.springframework.data.repository.CrudRepository;

public interface BaseArtistRepository<

 T extends BaseArtist<ID>,

 ID

 > extends CrudRepository<T, ID> {

 List<T> findAllByNameIsLikeIgnoreCaseOrderByName(String name);

 Optional<T> findByNameIgnoreCase(String name);

}

On its surface, this interface seems fairly simple. It has two generic parameters; one

is something that implements BaseArtist, and the other is the primary key type. It also

implements an interface, CrudRepository, which is our bridge to a lot of functionality.

CrudRepository exposes a number of useful and standard methods for, well, CRUD –

“create,” “read,” “update,” and “delete” – operations. The ArtistRepository’s declaration

means that this is an implementation of CrudRepository that works with types that

extend BaseArtist, with a primary key type represented by ID. The CrudRepository

interface itself exposes the following methods.

Chapter 9 Persistence with Spring and Spring Data

272

Method Signature Description

<S extends T>

S save(S entity)

This saves an entity and returns a type assignable to the

entity type. (If passed an Artist, what you will get back will

be equivalent to an Artist.) It may also mutate the entity

passed as an argument if the save operation assigns visible

values (i.e., if saving the entity generates a primary key).

It might not be the same type because some persistence

mechanisms (like Hibernate) return a proxy that is assignable

to the type instead of a simple type itself.

<S extends T> Iterable<S>

saveAll(Iterable<S>

entities)

This will save a collection of entities; you can pass it any

collection that the JVM can iterate through. This can emulate

a batch operation in some limited circumstances, although

transactional operations at a service level might be better.

Optional<T>

findById(ID id)

This will do a primary key lookup for the entity type based

on the primary key passed to it. If it is not found, it will return

Optional.empty().

boolean existsByid(ID id) This will indicate if the database has an entity of the correct

type with the passed-in id.

Iterable<T> findAll() This will return an Iterable of the entity type.

Iterable<T>

findAllById(Iterable<ID>

ids)

This will return an Iterable for every existing entity that has

a matching id in the collection of primary keys.

long count() This will give you the count of all entities of the correct type in

the repository. (This is a surprise, we’re sure.)

void deleteById(ID id) This will delete an entity from the datastore if one exists with

this id.

void delete(T entity) This will delete an entity from the datastore if the entity

matches one that exists.

void deleteAll(Iterable<?

extends T> entities)

This will delete all matching entities from the datastore.

void deleteAll() This will delete all existing entities of this type from the

datastore.

Chapter 9 Persistence with Spring and Spring Data

273

PagingAndSortingRepository() adds two methods to CrudRepository to aid

with pagination (and sorting!) as well as serving as a marker for other methods to be

available. The methods are findAll(Sort), where Sort represents options for sorting,

and findAll(Pageable pageable), where pageable represents pagination and sorting

options. They’re both fairly simple methods, but they’re not part of this chapter’s scope.

However, BaseArtistRepository also defines two other methods:

List<T> findAllByNameIsLikeIgnoreCaseOrderByName(String name);

Optional<T> findByNameIgnoreCase(String name);

These methods are implemented by Spring Data via a dynamic proxy, and their

functionality is derived from their names, in a fairly specific grammar. The grammar can

be thought of like this:

•	 A query type, such as

•	 find, which can return a collection or a single entity; you can

get a collection by having a return type of List, for example;

you can also return a java.util.Stream of the entity type if the

underlying data persistence mechanism supports it.

•	 read, which operates in the same way as find.

•	 query, which operates in the same way as find.

•	 get, which operates in the same way as find. get, read, query,

and find are all equivalent in application and meaning; they’re

just present to allow programmers to use whatever query

semantics they choose.

•	 count, which returns a count of entities matching the query.

•	 A modifier, such as

•	 Top, First, or Bottom followed by an optional number (1 is the

default, so Top1 and Top are the same).

•	 Distinct to apply distinctiveness to the results; this would apply

to queries based on attributes other than the id or other unique

fields.

Chapter 9 Persistence with Spring and Spring Data

274

•	 An optional entity type (which is not necessary but might

add human-readability to the method name). You might say

findArtistByName or findByName – which you prefer is up to you.

•	 By, which indicates the beginning of the criteria for the query

•	 A list of criteria, comprised of…

•	 An attribute of the entity, such as Name (for Artist.name).

Traversals are acceptable, so if you were to have, say, a Person

entity with a reference to an Address which itself contained a

city, it’s acceptable to say findByAddressCity to use the city

name as part of the query criteria.

•	 IgnoreCase will cause the query to be case-insensitive, with the

actual implementation depending on the datastore – JPA will call

UPPER() on the attributes, for example.

•	 Operators, the availability of which depends on the specific

datastore implementation. Examples include

•	 Between

•	 LessThan

•	 GreaterThan

•	 Like

•	 Optional ordering, comprised of

•	 OrderBy

•	 An attribute name, like Name for an Artist or Song

•	 An optional direction of either Asc or Desc

•	 A separator of And between the first and all subsequent criteria

This is not the actual grammar, obviously – for that we’d end up with four or five

pages of Backus-Naur diagrams, which are designed to illustrate formal grammars – but

hopefully it makes the naming system more clear.

Chapter 9 Persistence with Spring and Spring Data

http://artist.name

275

If we have an ArtistRepository<Artist, Integer> (and we will!), if we want

to find an Artist – here denoted by <T>, since T extends BaseArtist – by name

without worrying about exact case matches, our query name would be expressed

as findByNameIgnoreCase(String name). It might return an Optional<Artist> or

an Artist reference; if it’s Artist, it will return null if the name doesn’t exist in the

database (i.e., the criteria failed). If it’s Optional<Artist>, then a failure to match the

criteria will return Optional.empty() – a form useful primarily for work with streams.

Worth noting: While Spring Data’s query generator is amazingly powerful, it tends
to yield rather complicated method names, and validation of the query name is a
little… lacking. This places the burden for getting it right on you, the programmer.
However, there’s a library called “Querydsl” (www.querydsl.com/) that can fix
this somewhat, by providing typesafe queries for Spring Data.

With Querydsl, you’d use an annotation processor to generate a “metamodel” –
much like JPA’s criteria modeling, actually – and use that model to generate
queries that can be validated by the compiler itself. You’d use the metamodel’s
methods and attributes to build programmatic criteria for the query, instead of
typing in names. This means you’d also (hopefully) have method names that were
much easier to type.

However, Querydsl integration is still somewhat in flux. If you’re using Maven and
a particular project organization, it’s (probably) fine, but Gradle integration is still in
progress. For the purposes of this book, Querydsl is something to watch, but it’s
not ready.

Let’s take a quick look at BaseSongRepository. This interface is substantively the

same as BaseArtistRepository, although the declaration is longer because it has

to have a reference to something that extends BaseArtist (because the BaseSong

declaration needs it, too). This is also why we use A extends BaseArtist<ID> in the

declaration; the Repository itself doesn’t use A, but needs A declared to understand how

a BaseSong<A, ID> is constructed. (There are other ways we could have constructed this,

but this involved less nesting of types.)

Chapter 9 Persistence with Spring and Spring Data

http://www.querydsl.com/

276

Listing 9-9.  chapter9common/src/main/java/com/bsg5/chapter9/common/
BaseSongRepository.java

package com.bsg5.chapter9.common;

import org.springframework.data.repository.CrudRepository;

import java.util.List;

import java.util.Optional;

public interface BaseSongRepository<

 A extends BaseArtist<ID>,

 S extends BaseSong<A, ID>,

 ID

 > extends CrudRepository<S, ID> {

 Optional<S> findByArtistIdAndNameIgnoreCase(

 ID artistId, String name

);

 List<S> findByArtistIdOrderByVotesDesc(ID artistId);

 List<S> findByArtistIdAndNameLikeIgnoreCaseOrderByNameDesc(

 ID artistId, String name

);

}

Next, let’s take a quick look at our WildcardConverter, which mainly provides a

single method, called convertToWildCard(String). It’s very simple, of course. The

reason this class exists is because some databases use special characters to match

wildcards; SQL uses %, for example, while Neo4J uses a regular expression (like

".*"). Other databases might use different characters or, as we’ll see with MongoDB,

nothing at all. With this class, we can get our Spring configuration to build our

WildcardConverter appropriately for our database, and our BaseMusicService doesn’t

have to change at all.

Chapter 9 Persistence with Spring and Spring Data

277

Listing 9-10.  chapter9common/src/main/java/com/bsg5/chapter9/common/
WildcardConverter.java

package com.bsg5.chapter9.common;

public class WildcardConverter {

 private final String append;

 public WildcardConverter(String append) {

 this.append = append;

 }

 public String convertToWildCard(String data) {

 return data + append;

 }

}

It’s time for us to look at BaseMusicService, which uses classes that implement

BaseSongRepository and BaseArtistRepository. This is an abstract class. Classes that

extend BaseMusicService will need to do four things:

•	 Have the correct class signature

•	 Delegate to this class' constructor

•	 Implement createArtist(String), which creates an instance of

something that implements BaseArtist

•	 Implement createSong(Artist, String), which creates an instance

of something that implements BaseSong

Apart from that – and we’ll see how this class is used shortly, we promise! – this class

implements every functional requirement of our music service from Chapters 3 and 8,

along with providing two extra methods to access a Song and an Artist directly, by their id.

(This is a useful feature for REST services, as we’ll see in limited fashion in Chapter 10.)

It actually looks more daunting than it actually is. We know the code’s verbose – it’s a

factor of this class being one of the most important ones in the entire chapter.

Chapter 9 Persistence with Spring and Spring Data

278

Listing 9-11.  chapter9common/src/main/java/com/b0sg5/chapter9/common/
BaseMusicService.java

package com.bsg5.chapter9.common;

import org.springframework.transaction.annotation.Transactional;

import java.util.List;

import java.util.stream.Collectors;

public abstract class BaseMusicService<

 A extends BaseArtist<ID>,

 S extends BaseSong<A, ID>,

 ID

 > {

 private BaseArtistRepository<A, ID> artistRepository;

 private BaseSongRepository<A, S, ID> songRepository;

 private WildcardConverter converter;

 protected BaseMusicService(

 BaseArtistRepository<A, ID> artistRepository,

 BaseSongRepository<A, S, ID> songRepository,

 WildcardConverter converter

) {

 this.artistRepository = artistRepository;

 this.songRepository = songRepository;

 this.converter = converter;

 }

 protected abstract A createArtist(String name);

 protected abstract S createSong(A artist, String name);

 @Transactional

 public void voteForSong(String artistName, String songTitle) {

 S song = getSong(artistName, songTitle);

 song.setVotes(song.getVotes() + 1);

 songRepository.save(song);

 }

Chapter 9 Persistence with Spring and Spring Data

279

 @Transactional

 public S getSong(String artistName, String songTitle) {

 A artist = getArtist(artistName);

 return songRepository

 .findByArtistIdAndNameIgnoreCase(artist.getId(), songTitle)

 .orElseGet(() -> {

 S entity = createSong(artist, songTitle);

 songRepository.save(entity);

 return entity;

 });

 }

 @Transactional

 public A getArtist(String artistName) {

 return artistRepository

 .findByNameIgnoreCase(artistName)

 .orElseGet(() -> {

 A entity = createArtist(artistName);

 artistRepository.save(entity);

 return entity;

 });

 }

 @Transactional

 public List<S> getSongsForArtist(String artistName) {

 A artist = getArtist(artistName);

 �return songRepository.findByArtistIdOrderByVotesDesc(artist.

getId());

 }

 @Transactional(readOnly = true)

 public List<String> getMatchingArtistNames(String artistName) {

 return artistRepository

 .findAllByNameIsLikeIgnoreCaseOrderByName(

 converter.convertToWildCard(artistName))

 .stream()

 .map(A::getName)

Chapter 9 Persistence with Spring and Spring Data

280

 .collect(Collectors.toList());

 }

 @Transactional

 public A getArtistById(ID id) {

 return artistRepository.findById(id).orElse(null);

 }

 @Transactional

 public S getSongById(ID id) {

 return songRepository.findById(id).orElse(null);

 }

 @Transactional(readOnly = true)

 public List<String> getMatchingSongNamesForArtist(

 String artistName,

 String songTitle

) {

 A artist = getArtist(artistName);

 return songRepository

 �.findByArtistIdAndNameLikeIgnoreCaseOrderByNameDesc(artist.

getId(),

 converter.convertToWildCard(songTitle))

 .stream()

 .map(S::getName)

 .collect(Collectors.toList());

 }

}

Now we’ve seen a set of classes that can be used to build an application. It’s time

for us to create the second of this chapter’s four projects: chapter9test, which will

contain three abstract classes that represent test suites. As with BaseMusicService,

they’re not extremely short (but they’re also not extremely long!) – and the result will be

that the “test code” in our JPA and MongoDB projects will be impressively short (mostly

consisting of class declarations, in fact).

Chapter 9 Persistence with Spring and Spring Data

281

9.3.2  �The chapter9test Project
The chapter9test project, like chapter9common, is not a “real” Spring Boot project; it’s

an artifact that a Spring Boot project would use. It’s a little unique in that it’s meant to be

imported into other modules’ test scopes, so it exports everything via src/main/java.

The build.gradle for chapter9test is very similar to the build.gradle for

chapter9common.

Listing 9-12.  chapter9test/build.gradle

plugins {

 id 'org.springframework.boot' version "2.1.4.RELEASE" apply false

}

apply plugin: 'io.spring.dependency-management'

dependencyManagement {

 imports {

 mavenBom org.springframework.boot.gradle

 .plugin.SpringBootPlugin.BOM_COORDINATES

 }

}

dependencies {

 compile "org.springframework.boot:spring-boot-starter-test"

 compile "org.testng:testng:$testNgVersion"

 compile project(":chapter9common")

}

Note that it has a compile dependency on TestNG and spring-boot-starter-test.

When we import this project into chapter9jpa and chapter9mongodb, we’ll do it at

testCompile scope, so the TestNG and spring-boot-starter-test dependencies will

be at test scope for downstream dependencies, too. (We’re not polluting our classpaths.)

There are three sets of tests in chapter9test: BaseArtistRepositoryTests,

BaseSongRepositoryTests, and BaseMusicServiceTests. Every one of them is

fairly simple; the goal is to exercise the target of the tests, but with Spring injecting

implementations of the services.

Chapter 9 Persistence with Spring and Spring Data

282

Thus, when we use these tests, we’ll have a Spring configuration that references

the necessary services, and these classes will use whatever is provided. As with

chapter9common, this makes for some odd declarations, but it’s nothing too

complicated – just verbose.

Let’s take a look at our first test, BaseArtistRepositoryTests.

Listing 9-13.  chapter9test/src/main/java/com/bsg5/chapter9/test/
BaseArtistRepositoryTests.java

package com.bsg5.chapter9.test;

import com.bsg5.chapter9.common.BaseArtist;

import com.bsg5.chapter9.common.BaseArtistRepository;

import com.bsg5.chapter9.common.WildcardConverter;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.test.context.testng.

AbstractTestNGSpringContextTests;

import org.testng.annotations.BeforeMethod;

import org.testng.annotations.Test;

import java.util.List;

import java.util.Optional;

import static org.testng.Assert.assertEquals;

import static org.testng.Assert.assertTrue;

public abstract class BaseArtistRepositoryTests<

 A extends BaseArtist<ID>,

 ID

 > extends AbstractTestNGSpringContextTests {

 @Autowired

 BaseArtistRepository<A, ID> artistRepository;

 // to allow access to createWildcard...

 @Autowired

 WildcardConverter converter;

 protected abstract A createArtist(String name);

Chapter 9 Persistence with Spring and Spring Data

283

 @BeforeMethod

 public void clearDatabase() {

 artistRepository.deleteAll();

 }

 @Test

 public void testOperations() {

 // see if the database is empty

 assertEquals(artistRepository.count(), 0);

 A firstEntity = createArtist("Threadbare Loaf");

 A secondEntity = createArtist("Therapy Zeppelin");

 // save the first artist only.

 artistRepository.save(firstEntity);

 �Optional<A> artist = artistRepository.findById(firstEntity.getId());

 assertTrue(artist.isPresent());

 assertEquals(artist.get(), firstEntity);

 List<A> query =

 artistRepository.findAllByNameIsLikeIgnoreCaseOrderByName(

 converter.convertToWildCard("th")

);

 assertEquals(query.size(), 1l);

 assertEquals(query.get(0), firstEntity);

 artistRepository.save(secondEntity);

 query = artistRepository.findAllByNameIsLikeIgnoreCaseOrderByName(

 converter.convertToWildCard("th")

);

 assertEquals(query.size(), 2);

 }

}

Everything here is fairly straightforward for a base class; implementations will need

to provide a way to create an artist instance somehow (via createArtist()) – but as

we’ll see in a few pages, a concrete instance of BaseArtistRepositoryTests is mostly

boilerplate. The class itself fits in three lines.

Chapter 9 Persistence with Spring and Spring Data

284

Note that in Chapter 3 we used a different approach; instead of putting tests in a
superclass, we had child classes delegate to a superclass. Chapter 3’s approach
is probably “safer” in a lot of ways, especially as your tests grow in complexity
and features. We opted for this approach in this chapter mostly because we
didn’t want to repeat more code than we absolutely needed to. The chapter’s long
enough and got enough code in it as it is without adding another set of identical
lines in every concrete test class.

BaseSongRepositoryTests is longer, but that’s because BaseSongRepository does

more work; it has to interact with artists, after all. It uses @BeforeMethod to reset the

database (whichever database it is!) before testing the BaseSongRepository instance.

Listing 9-14.  chapter9test/src/main/java/com/bsg5/chapter9/test/
BaseSongRepositoryTests.java

package com.bsg5.chapter9.test;

import static org.testng.Assert.assertEquals;

import static org.testng.Assert.assertNotNull;

import java.util.List;

import java.util.Optional;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.test.context.testng.

AbstractTestNGSpringContextTests;

import org.testng.annotations.BeforeMethod;

import org.testng.annotations.Test;

import com.bsg5.chapter9.common.BaseArtist;

import com.bsg5.chapter9.common.BaseArtistRepository;

import com.bsg5.chapter9.common.BaseSong;

import com.bsg5.chapter9.common.BaseSongRepository;

import com.bsg5.chapter9.common.WildcardConverter;

Chapter 9 Persistence with Spring and Spring Data

285

public abstract class BaseSongRepositoryTests<

 A extends BaseArtist<ID>,

 S extends BaseSong<A, ID>,

 ID>

 extends AbstractTestNGSpringContextTests {

 @Autowired

 BaseArtistRepository<A, ID> artistRepository;

 @Autowired

 BaseSongRepository<A, S, ID> songRepository;

 @Autowired

 WildcardConverter converter;

 protected abstract A createArtist(String name);

 protected abstract S createSong(A artist, String name);

 @BeforeMethod

 public void clearDatabase() {

 songRepository.deleteAll();

 artistRepository.deleteAll();

 buildModel();

 }

 private Object[][] model = new Object[][]{

 {"Threadbare Loaf", "Someone Stole the Flour", 4},

 {"Threadbare Loaf", "What Happened To Our First CD?", 17},

 {"Therapy Zeppelin", "Mfbrbl Is Not A Word", 0},

 {"Therapy Zeppelin", "Medium", 4},

 {"Clancy in Silt", "Igneous", 5}

 };

 private void buildModel() {

 for (Object[] data : model) {

 String artistName = (String) data[0];

 String songTitle = (String) data[1];

 Integer votes = (Integer) data[2];

Chapter 9 Persistence with Spring and Spring Data

286

 Optional<A> artistQuery = artistRepository

 .findByNameIgnoreCase(artistName);

 A artist = artistQuery.orElseGet(() -> {

 A entity = createArtist(artistName);

 artistRepository.save(entity);

 return entity;

 });

 Optional<S> songQuery = songRepository

 .findByArtistIdAndNameIgnoreCase(artist.getId(),

 songTitle);

 if (songQuery.isEmpty()) {

 S song = createSong(artist, songTitle);

 song.setVotes(votes);

 songRepository.save(song);

 }

 }

 }

 @Test

 public void testOperations() {

 A artist = artistRepository

 .findByNameIgnoreCase("therapy zeppelin")

 .orElseThrow();

 List<S> songs = songRepository

 .findByArtistIdAndNameLikeIgnoreCaseOrderByNameDesc(

 artist.getId(),

 converter.convertToWildCard("m")

);

 assertEquals(songs.size(), 2);

 songs = songRepository

 .findByArtistIdOrderByVotesDesc(artist.getId());

 assertEquals(songs.size(), 2);

 // we know the votes assigned by default,

 // and they should be in descending order.

Chapter 9 Persistence with Spring and Spring Data

287

 // "Medium" has four votes...

 assertEquals(songs.get(0).getName(), "Medium");

 assertEquals(songs.get(0).getVotes(), 4);

 // "Mfbrbl" is liked by nobody. I mean, REALLY.

 assertEquals(songs.get(1).getVotes(), 0);

 }

}

Lastly, we have the longest of our test classes, BaseMusicServiceTests. This

one is conceptually the same as BaseSongRepositoryTests, except it works with

BaseMusicService instead; the mechanisms it uses are pretty much exactly the same as

what we see in BaseSongRepositoryTests.

There’s one thing to note, though: the abstract ID getNonexistentId() method.

The base class has no idea what a valid ID looks like, so classes that use this will need to

implement this method, hopefully with an identifier that won’t naturally occur, such that

the tests that use this method – testFindArtistById() and testFindSongById() – will

successfully check for an object that doesn’t exist.

Listing 9-15.  chapter9test/src/main/java/com/bsg5/chapter9/test/
BaseMusicServiceTests.java

package com.bsg5.chapter9.test;

import com.bsg5.chapter9.common.*;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.test.context.testng.

AbstractTestNGSpringContextTests;

import org.testng.annotations.BeforeMethod;

import org.testng.annotations.Test;

import java.util.List;

import java.util.function.Consumer;

import static org.testng.Assert.*;

public abstract class BaseMusicServiceTests<

 A extends BaseArtist<ID>,

 S extends BaseSong<A, ID>,

 ID

Chapter 9 Persistence with Spring and Spring Data

288

 > extends AbstractTestNGSpringContextTests {

 @Autowired

 BaseMusicService<A, S, ID> musicService;

 @Autowired

 BaseArtistRepository<A, ID> artistRepository;

 @Autowired

 BaseSongRepository<A, S, ID> songRepository;

 private Object[][] model = new Object[][]{

 {"Threadbare Loaf", "Someone Stole the Flour", 4},

 {"Threadbare Loaf", "What Happened To Our First CD?", 17},

 {"Therapy Zeppelin", "Medium", 4},

 {"Clancy in Silt", "Igneous", 5}

 };

 @BeforeMethod

 public void clearDatabase() {

 songRepository.deleteAll();

 artistRepository.deleteAll();

 populateService();

 }

 protected abstract ID getNonexistentId();

 void iterateOverModel(Consumer<Object[]> consumer) {

 for (Object[] data : model) {

 consumer.accept(data);

 }

 }

 void populateService() {

 iterateOverModel(data -> {

 for (int i = 0; i < (Integer) data[2]; i++) {

 �musicService.voteForSong((String) data[0], (String)

data[1]);

 }

 });

 }

Chapter 9 Persistence with Spring and Spring Data

289

 @Test

 void testSongVoting() {

 iterateOverModel(data ->

 assertEquals(

 musicService.getSong((String) data[0],

 (String) data[1]).getVotes(),

 ((Integer) data[2]).intValue()

));

 }

 @Test

 void testSongsForArtist() {

 List<S> songs =

 musicService.getSongsForArtist("Threadbare Loaf");

 assertEquals(songs.size(),

 2);

 assertEquals(songs.get(0).getName(),

 "What Happened To Our First CD?");

 assertEquals(songs.get(0).getVotes(),

 17);

 assertEquals(songs.get(1).getName(),

 "Someone Stole the Flour");

 assertEquals(songs.get(1).getVotes(),

 4);

 }

 @Test

 void testMatchingArtistNames() {

 List<String> names = musicService.getMatchingArtistNames("Th");

 assertEquals(names.size(), 2);

 assertEquals(names.get(0), "Therapy Zeppelin");

 assertEquals(names.get(1), "Threadbare Loaf");

 }

Chapter 9 Persistence with Spring and Spring Data

290

 @Test

 void testFindArtistById() {

 A artist = musicService.getArtist("Threadbare Loaf");

 assertNotNull(artist);

 A searched = musicService.getArtistById(artist.getId());

 assertNotNull(searched);

 assertEquals(artist.getName(), searched.getName());

 searched = musicService.getArtistById(getNonexistentId());

 assertNull(searched);

 }

 @Test

 void testFindSongById() {

 S song = musicService.getSong("Therapy Zeppelin",

 "Medium");

 assertNotNull(song);

 S searched = musicService.getSongById(song.getId());

 assertNotNull(searched);

 assertEquals(song.getName(), searched.getName());

 searched = musicService.getSongById(getNonexistentId());

 assertNull(searched);

 }

 @Test

 void testMatchingSongNamesForArtist() {

 List<String> names =

 musicService.getMatchingSongNamesForArtist(

 "Threadbare Loaf", "W"

);

 assertEquals(names.size(),

 1);

 assertEquals(names.get(0),

 "What Happened To Our First CD?");

 }

}

It’s time we actually got to using Spring Data instead of preparing to use it.

Chapter 9 Persistence with Spring and Spring Data

291

9.3.3  �The chapter9jpa Project
JPA – the Java Persistence API – is a specification that provides idiomatic object/

relational mapping (or “ORM”) for Java. In other words, it’s designed to map data from

a database table (or sets of tables), where data is stored in rows and columns, and a Java

object model.

We saw some of that in Chapter 8, except we were doing the conversion manually

(and only when querying the database).

There are a number of JPA implementations. Hibernate (https://hibernate.org) is

probably the most influential object-relational mapper for Java, just as Spring is probably

the most influential Dependency Injection library for Java. Alternatives to Hibernate

include OpenJPA (https://openjpa.apache.org/), EclipseLink (www.eclipse.org/

eclipselink/), and DataNucleus (www.datanucleus.org/) – among others – but in this

chapter we’re going to use what Spring Data provides for us, which is Hibernate.

Let’s take a quick look at our build.gradle. There are a few things to note:

•	 It includes a test-time dependency on chapter9test.

•	 It has the same limited plugin configuration and dependency

management that chapter9common and chapter9test have. This is

because we’re going to use chapter9jpa as a dependency in Chapter 10.

•	 It uses Lombok (as described in Chapter 8) and specifies Lombok as

an annotation processor in the same manner that Chapter 8 did.

•	 It has a dependency on spring-boot-starter-data-jpa and on h2

as a sample database.

•	 It imports jackson-annotations because we want to use an

annotation in one of the entity classes – which we’ll see (and explain)

when we look at the Artist implementation.

Listing 9-16.  chapter9jpa/build.gradle

plugins {

 id 'org.springframework.boot' version "2.1.4.RELEASE" apply false

}

apply plugin: 'io.spring.dependency-management'

Chapter 9 Persistence with Spring and Spring Data

https://hibernate.org/
https://openjpa.apache.org/
https://openjpa.apache.org/
https://www.eclipse.org/eclipselink/
https://www.eclipse.org/eclipselink/
http://www.datanucleus.org/

292

dependencyManagement {

 imports {

 mavenBom org.springframework.boot.gradle

 .plugin.SpringBootPlugin.BOM_COORDINATES

 }

}

dependencies {

 compile "com.h2database:h2:1.4.199"

 compile "org.springframework.boot:spring-boot-starter-data-jpa"

 compile project(":chapter9common")

 �compile "com.fasterxml.jackson.core:jackson-

annotations:$jacksonVersion"

 compileOnly "org.projectlombok:lombok:1.+"

 annotationProcessor "org.projectlombok:lombok"

 testCompile project(":chapter9test")

}

The hard work for us is actually already done, in chapter9common. What this project

needs to do is verbose (because it’s in Java, and Java idiomatically puts classes in their

own source files, which means a lot of repetitive boilerplate), but it’s still surprisingly

simple:

•	 Implement all of the base classes

•	 Provide a Spring configuration

Let’s get to it. We have to implement BaseArtist, BaseSong, BaseArtistRepository,

BaseSongRepository, and BaseMusicService; thankfully, all of them are very short, but

we still have to have them. Then we’ll have to build a configuration, and then we’ll need

to extend our test classes, too.

First, the Artist class. This is a JPA entity, and we’re going to use Lombok to fill it

out; note that it extends BaseArtist and uses Integer as the identifier type. It also uses

regular JPA annotations to define relationships between artists and songs.

You’ll note the use of @JsonIgnore as an annotation on the songs reference; this

is required in this case by our rather simple object structure, in which an Artist has a

reference to a set of Song objects, and each of those Song objects has a reference back

Chapter 9 Persistence with Spring and Spring Data

293

to the Artist. This has implications when serializing object structures – and since this

module is used in Chapter 10, we have to account for serialization issues or else we’ll see

stack overflows.

Listing 9-17.  chapter9jpa/src/main/java/com/bsg5/chapter9/jpa/Artist.
java

package com.bsg5.chapter9.jpa;

import com.bsg5.chapter9.common.BaseArtist;

import com.fasterxml.jackson.annotation.JsonIgnore;

import lombok.Data;

import lombok.EqualsAndHashCode;

import lombok.NoArgsConstructor;

import lombok.RequiredArgsConstructor;

import org.springframework.lang.NonNull;

import javax.persistence.*;

import java.util.ArrayList;

import java.util.List;

@Entity

@Data

@NoArgsConstructor

@RequiredArgsConstructor

@EqualsAndHashCode(exclude = "songs")

public class Artist implements BaseArtist<Integer> {

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 Integer id;

 @NonNull

 String name;

 @OneToMany(

 cascade = CascadeType.ALL,

 mappedBy = "artist",

 fetch = FetchType.EAGER

)

Chapter 9 Persistence with Spring and Spring Data

294

 @OrderBy("votes DESC")

 @JsonIgnore

 List<Song> songs = new ArrayList<>();

}

We can’t use this without a reference to Song.

Listing 9-18.  chapter9jpa/src/main/java/com/bsg5/chapter9/jpa/Song.java

package com.bsg5.chapter9.jpa;

import com.bsg5.chapter9.common.BaseSong;

import lombok.AllArgsConstructor;

import lombok.Data;

import lombok.NoArgsConstructor;

import lombok.RequiredArgsConstructor;

import org.springframework.lang.NonNull;

import javax.persistence.*;

@Entity

@Data

@NoArgsConstructor

@RequiredArgsConstructor

@AllArgsConstructor

@Table(indexes = {

 @Index(

 name = "artist_song",

 columnList = "artist_id,name",

 unique = true

)

})

public class Song implements BaseSong<Artist, Integer> {

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 Integer id;

 @ManyToOne

 @NonNull

Chapter 9 Persistence with Spring and Spring Data

295

 Artist artist;

 @NonNull

 String name;

 int votes;

}

Again, this is a fairly standard (and probably naïve) implementation of a JPA entity.

The ArtistRepository is actually incredibly simple: it’s just an interface that uses

concrete types for BaseArtistRepository. That’s it. The only information added here is

in the interface definition.

Listing 9-19.  chapter9jpa/src/main/java/com/bsg5/chapter9/jpa/
ArtistRepository.java

package com.bsg5.chapter9.jpa;

import com.bsg5.chapter9.common.BaseArtistRepository;

public interface ArtistRepository

 extends BaseArtistRepository<Artist, Integer> {

}

The SongRepository is done in the exact same manner: it exists solely to add type

information to BaseSongRepository.

Listing 9-20.  chapter9jpa/src/main/java/com/bsg5/chapter9/jpa/
SongRepository.java

package com.bsg5.chapter9.jpa;

import com.bsg5.chapter9.common.BaseSongRepository;

public interface SongRepository

 extends BaseSongRepository<Artist, Song, Integer> {

}

Lastly, we have MusicService – and here we have something a little more

complicated, but not very much so. We need to implement two methods to create

instances of Artist and Song, and we also want to delegate to BaseMusicService'

constructor.

Chapter 9 Persistence with Spring and Spring Data

296

It’s not marked as a @Component, however, because we’re going to specifically

construct it in the Spring configuration. (The type resolution, caused by all of the

generics being thrown about, makes explicit configuration far easier to use.)

Listing 9-21.  chapter9jpa/src/main/java/com/bsg5/chapter9/jpa/
MusicService.java

package com.bsg5.chapter9.jpa;

import com.bsg5.chapter9.common.BaseMusicService;

import com.bsg5.chapter9.common.WildcardConverter;

import org.springframework.stereotype.Component;

public class MusicService extends BaseMusicService<Artist, Song, Integer> {

 MusicService(

 ArtistRepository artistRepository,

 SongRepository songRepository,

 WildcardConverter converter

) {

 super(artistRepository, songRepository, converter);

 }

 @Override

 protected Artist createArtist(String name) {

 return new Artist(name);

 }

 @Override

 protected Song createSong(Artist artist, String name) {

 return new Song(artist, name);

 }

}

The only thing left, then, is a Spring configuration. We’ll do this with a class called

JpaConfiguration.

Chapter 9 Persistence with Spring and Spring Data

297

Listing 9-22.  chapter9jpa/src/main/java/com/bsg5/chapter9/jpa/
JpaConfiguration.java

package com.bsg5.chapter9.jpa;

import com.bsg5.chapter9.common.WildcardConverter;

import org.springframework.boot.SpringBootConfiguration;

import org.springframework.boot.autoconfigure.domain.EntityScan;

import org.springframework.context.annotation.Bean;

import org.springframework.data.jpa.repository.config.

EnableJpaRepositories;

@SpringBootConfiguration

@EnableJpaRepositories

@EntityScan

public class JpaConfiguration {

 @Bean

 WildcardConverter converter() {

 return new WildcardConverter("%");

 }

 @Bean

 MusicService musicService(

 ArtistRepository artistRepository,

 SongRepository songRepository,

 WildcardConverter converter

) {

 return new MusicService(artistRepository, songRepository, converter);

 }

}

Here, we leverage Spring Boot to do most of the work, with @SpringBootConfiguration.

This will scan the current package (and any packages whose names start with com.

bsg5.chapter9.jpa) for Spring components – which will catch our MusicService and

ArtistRepository and SongRepository interfaces; with @EnableJpaRepositories we’re

informing Spring of what kind of services to implement (and where to look for classes

that have the @Repository annotation).

Chapter 9 Persistence with Spring and Spring Data

298

We also use the @EntityScan annotation to force scanning for entities (classes

marked with @Entity) in the current package (and any “subpackages” – i.e., packages

whose names start with this package’s name). We won’t need this to run our tests – the

test annotations will do this for us – but in “real code” we’ll want it.

We also create our JPA-compatible WildcardConverter as a component.

Note that we’re not doing anything to create any resources for JPA; no datasources,

no EntityManager references, nothing. Spring Boot is doing that for us, through the

spring-boot-starter-data-jpa dependency. By default we’ll have an in-memory

version of whatever database is in our classpath (H2, in this project); if we wanted to

(and we do), we can use application.properties and set a JDBC URL with spring.

datasource.url=jdbc:h2:file:chapter9jpa, or whatever value makes sense. As an

example, see Listing 9-23.

Listing 9-23.  chapter9jpa/src/main/resources/application.properties

spring.datasource.url=jdbc:h2:./chapter9jpa;DB_CLOSE_DELAY=-1;

spring.datasource.username=sa

spring.datasource.password=

spring.jpa.hibernate.ddl-auto=update

Our tests for chapter9jpa look a lot like the rest of the code. We have three tests, each

extending one of the classes from the chapter9test project, adding type information

specific to chapter9jpa and, occasionally, implementing a method or two to help the

tests instantiate classes of the right type.

Here’s the first test, ArtistRepositoryTests.

Listing 9-24.  chapter9jpa/src/test/java/com/bsg5/chapter9/jpa/
ArtistRepositoryTests.java

package com.bsg5.chapter9.jpa;

import com.bsg5.chapter9.test.BaseArtistRepositoryTests;

import org.springframework.boot.test.autoconfigure.orm.jpa.DataJpaTest;

Chapter 9 Persistence with Spring and Spring Data

299

@DataJpaTest

public class ArtistRepositoryTests

 extends BaseArtistRepositoryTests<Artist, Integer> {

 protected Artist createArtist(String name) {

 return new Artist(name);

 }

}

Note the use of @DataJpaTest.

SongRepositoryTests is effectively the same.

Listing 9-25.  chapter9jpa/src/test/java/com/bsg5/chapter9/jpa/
SongRepositoryTests.java

package com.bsg5.chapter9.jpa;

import org.springframework.boot.test.autoconfigure.orm.jpa.DataJpaTest;

import com.bsg5.chapter9.test.BaseSongRepositoryTests;

@DataJpaTest

public class SongRepositoryTests

 extends BaseSongRepositoryTests<Artist, Song, Integer> {

 @Override

 protected Artist createArtist(String name) {

 return new Artist(name);

 }

 @Override

 protected Song createSong(Artist artist, String name) {

 return new Song(artist, name);

 }

}

And lastly, let’s see MusicServiceTests, which is similar to the prior two tests in

that it mostly serves to provide concrete types to the generic superclass, along with

implementing getNonexistentId(), with an absurdly high identifier.

Chapter 9 Persistence with Spring and Spring Data

300

Listing 9-26.  chapter9jpa/src/test/java/com/bsg5/chapter9/jpa/
MusicServiceTests.java

package com.bsg5.chapter9.jpa;

import org.springframework.boot.test.autoconfigure.orm.jpa.DataJpaTest;

import com.bsg5.chapter9.test.BaseMusicServiceTests;

@DataJpaTest

public class MusicServiceTests

 extends BaseMusicServiceTests<Artist, Song, Integer> {

 @Override

 protected Integer getNonexistentId() {

 return 1928491;

 }

}

As you can see, the chapter9jpa project really doesn’t add much. It

provides concrete entities (Artist and Song), and the configuration provides a

WildcardConverter; MusicService, too, provides an easy way to build our entity

instances, but that’s about it. The rest of the project’s code is providing concrete types for

various interfaces.

Could we have built our base classes differently, in particular to make it so we
didn’t have to provide methods like createArtist() and createSong()?
The answer, of course, is “yes,” and in multiple ways. We could have derived the
concrete class references in BaseMusicService, for example (the references
aren’t available for BaseMusicService but would have been for child classes,
and we could have exploited that).

We could also have passed in concrete references (i.e., Artist.class) to
BaseMusicService’s constructor and used those references to build new
objects, as well.

In the end, which approach you choose really depends on which approach you prefer.
Here, one of the simplest approaches possible was chosen – abstract methods that,
given data, pass back valid instances. It’s simple, and hard to screw up.

Chapter 9 Persistence with Spring and Spring Data

301

It violates DRY – “don’t repeat yourself” – especially when you consider that the
signature of each of the copied methods looks exactly the same. In this case, the
choice was made deliberately to write the methods over again in the interest of
space and simplicity; if we abstracted everything out, we’d have another whole set
of classes to go through.

If we wanted to, we could write a configuration that ran a Spring Boot application

as we saw in Chapter 8; all that would be left would be the creation of a functional user

interface, and we’d have a working music application, using a relational database for

data storage.

Now let’s see how much work we have to do to use a different data provider –

MongoDB.

9.3.4  �The chapter9mongodb Project
MongoDB (https://mongodb.com) is an open source database that represents data as

collections of documents in binary JSON. As such, it uses a dynamic, flexible schema. It’s

loosely grouped among “NoSQL databases,” those data management systems that don’t

SQL to manipulate data. It’s also a good example of what makes NoSQL both good and

bad: incredible speed and scalability, occasionally obscure querying and modeling, and

a typical provider-specific approach to transactions.2

Thankfully, Spring Data makes using MongoDB fairly trivial, and it matches the

pattern we saw in the JPA example, with the use of the Spring Data MongoDB module.

9.3.5  �Getting MongoDB
We’re going to use a library that allows us to embed MongoDB for our tests, so you don’t

have to have MongoDB installed. Of course, you might actually want to have MongoDB

installed locally, rather than relying on an embedded installation; if you build an

application using MongoDB, an external dependency isn’t unexpected, after all. Here’s

2�This explanation of what MongoDB is was edited from https://searchdatamanagement.
techtarget.com/definition/MongoDB, which is actually a good reference. This book isn’t trying
to sell you on MongoDB (or anything else, beyond Spring, of course), so we’re covering products
only as much as we need to.

Chapter 9 Persistence with Spring and Spring Data

https://mongodb.com/
https://searchdatamanagement.techtarget.com/definition/MongoDB
https://searchdatamanagement.techtarget.com/definition/MongoDB
https://searchdatamanagement.techtarget.com/definition/MongoDB

302

how you can install MongoDB should you so choose; note that the tests will still use an

embedded version, but it’s easy to run MongoDB if that’s what you want to do.

On OSX, it’s as simple as running brew install mongo.

On Ubuntu, MongoDB can be installed with apt-get install mongodb.

On Windows, you can install MongoDB by going to its download page (www.

mongodb.com/download-center/community) and grabbing the proper MSI file.

You’d start MongoDB trivially by finding an empty directory and running it.

Listing 9-27.  Starting MongoDB

mkdir /var/tmp/musicdata

mongod --noauth -dbpath /var/tmp/musicdata

Consult the instructions on https://mongodb.com for your specific operating
system if this doesn’t work properly for you. Note also that this starts MongoDB
without authentication; this is solely useful for running tests and other such
operations of little long-term value.

9.3.6  �The Code for the chapter9mongodb Project
Our build.gradle looks very similar to our chapter9jpa build.gradle. Instead of

spring-boot-starter-data-jpa, it uses spring-boot-starter-data-mongodb, and it

also includes one more test dependency, de.flapdoodle.embed:de.flapdoodle.embed.

mongo:2.2.0. This dependency is going to allow our tests to actually download and start

an embedded MongoDB instance so we don’t have to make sure MongoDB is running

before executing any of our tests.

Listing 9-28.  chapter9mongodb/build.gradle

plugins {

 id 'org.springframework.boot' version '2.1.4.RELEASE'

}

apply plugin: 'io.spring.dependency-management'

dependencies {

Chapter 9 Persistence with Spring and Spring Data

https://www.mongodb.com/download-center/community
https://www.mongodb.com/download-center/community
https://www.mongodb.com/download-center/community
https://mongodb.com/

303

 compile("org.springframework.boot:spring-boot-starter-data-mongodb")

 compile project(':chapter9common')

 compileOnly 'org.projectlombok:lombok:1.+'

 annotationProcessor 'org.projectlombok:lombok:1.+'

 testCompile 'de.flapdoodle.embed:de.flapdoodle.embed.mongo:2.2.0'

 testCompile project(':chapter9test')

}

The entities for the chapter9mongodb project are actually the core substantive

difference between this and the chapter9jpa project. The other classes will look pretty

much exactly the same, with the primary differences being in package declarations

(since the chapter9mongodb project uses com.bsg5.chapter9.mongodb instead of com.

bsg5.chapter9.jpa).

However, even in our entities the differences are minor; in Artist, for example,

instead of using @Entity, we use @Document, for example, and the primary key is a

String instead of an Integer.

Listing 9-29.  chapter9mongodb/src/main/java/com/bsg5/chapter9/
mongodb/Artist.java

package com.bsg5.chapter9.mongodb;

import com.bsg5.chapter9.common.BaseArtist;

import lombok.Data;

import lombok.NoArgsConstructor;

import lombok.RequiredArgsConstructor;

import org.springframework.data.annotation.Id;

import org.springframework.data.mongodb.core.mapping.Document;

import org.springframework.lang.NonNull;

@Document

@Data

@NoArgsConstructor

@RequiredArgsConstructor

public class Artist implements BaseArtist<String> {

 @Id

Chapter 9 Persistence with Spring and Spring Data

304

 String id;

 @NonNull

 String name;

}

The Song is also nearly identical. There are differences, of course; we see the use of

@CompoundIndexes to declare a unique index between the artist and the name of the

song. (In this, it’s a close analog to how a relational database implements compound

indexes. The ":1" in the index structure refers to sort order, which isn’t relevant for our

application but still needs to be specified.) We also refer to an Artist as a @DBRef, which

is a way of telling Spring to store a reference to a valid Artist document in the field. The

result is that we still use the object in the exact same way as we would have with JPA –

after all, we’re using the exact same interfaces – but we’re helping Spring Data determine

what the object model should look like.

Listing 9-30.  chapter9mongodb/src/main/java/com/bsg5/chapter9/
mongodb/Song.java

package com.bsg5.chapter9.mongodb;

import com.bsg5.chapter9.common.BaseSong;

import lombok.Data;

import lombok.NoArgsConstructor; import lombok.RequiredArgsConstructor;

import org.springframework.data.annotation.Id;

import org.springframework.data.mongodb.core.index.CompoundIndex;

import org.springframework.data.mongodb.core.index.CompoundIndexes;

import org.springframework.data.mongodb.core.mapping.DBRef;

import org.springframework.data.mongodb.core.mapping.Document;

import org.springframework.lang.NonNull;

@Document

@Data

@NoArgsConstructor

@RequiredArgsConstructor

@CompoundIndexes(

 @CompoundIndex(unique = true, def = "{'artist':1, 'name':1}")

)

Chapter 9 Persistence with Spring and Spring Data

305

public class Song implements BaseSong<Artist, String> {

 @Id

 String id;

 @NonNull

 @DBRef

 Artist artist;

 @NonNull

 String name;

 int votes;

}

Now we get to the truly repetitive bits of the chapter: we’re going to see

ArtistRepository, SongRepository, and MusicService for the chapter9mongodb

project, and except for the package, all three will look nearly exactly like the versions

from chapter9jpa.

First, the ArtistRepository.

Listing 9-31.  chapter9mongodb/src/main/java/com/bsg5/chapter9/mongodb/
ArtistRepository.java

package com.bsg5.chapter9.mongodb;

import com.bsg5.chapter9.common.BaseArtistRepository;

public interface ArtistRepository

 extends BaseArtistRepository<Artist, String> {

}

Next, the SongRepository.

Listing 9-32.  chapter9mongodb/src/main/java/com/bsg5/chapter9/mongodb/
SongRepository.java

package com.bsg5.chapter9.mongodb;

import com.bsg5.chapter9.common.BaseSongRepository;

import org.springframework.stereotype.Repository;

Chapter 9 Persistence with Spring and Spring Data

306

public interface SongRepository

 extends BaseSongRepository<Artist, Song, String> {

}

Next, the MusicService.

Listing 9-33.  chapter9mongodb/src/main/java/com/bsg5/chapter9/mongodb/
MusicService.java

package com.bsg5.chapter9.mongodb;

import com.bsg5.chapter9.common.BaseMusicService;

import com.bsg5.chapter9.common.WildcardConverter;

import org.springframework.stereotype.Component;

@Component

public class MusicService extends BaseMusicService<Artist, Song, String> {

 MusicService(

 ArtistRepository artistRepository,

 SongRepository songRepository,

 WildcardConverter converter

) {

 super(artistRepository, songRepository, converter);

 }

 @Override

 protected Artist createArtist(String name) {

 return new Artist(name);

 }

 @Override

 protected Song createSong(Artist artist, String name) {

 return new Song(artist, name);

 }

}

Chapter 9 Persistence with Spring and Spring Data

307

Before we get to the tests – which will, by the way, look very familiar, just like our

other classes so far – we should look at the MongoConfiguration. It, too, will be very

familiar, with a few differences: we use @EnableMongoRepositories instead of

@EnableJpaRepositories.

Just as we saw in the chapter9jpa project, we initialize a WildcardConverter – but

here, the wildcard is applied by MongoDB, and not with a special character.

Listing 9-34.  chapter9mongodb/src/main/java/com/bsg5/chapter9/mongodb/
MongoConfiguration.java

package com.bsg5.chapter9.mongodb;

import com.bsg5.chapter9.common.WildcardConverter;

import org.springframework.boot.SpringBootConfiguration;

import org.springframework.boot.autoconfigure.domain.EntityScan;

import org.springframework.context.annotation.Bean;

import org.springframework.data.mongodb.repository.config.

EnableMongoRepositories;

@SpringBootConfiguration

@EnableMongoRepositories

@EntityScan

public class MongoConfiguration {

 @Bean

 WildcardConverter converter() {

 return new WildcardConverter("");

 }

 @Bean

 MusicService musicService(

 ArtistRepository artistRepository,

 SongRepository songRepository,

 WildcardConverter converter

) {

 �return new MusicService(artistRepository, songRepository, converter);

 }

}

Chapter 9 Persistence with Spring and Spring Data

308

We could have declared this as a @Bean in a configuration, rather than having it

picked up as a @Component, of course. We’d have done so in a test-only configuration

class (remember, this is a class located in src/test/java so it will only be in the

classpath for the tests). This way, though, we have a single configuration that we could

reuse for a running application without modification or duplication.

It’s time to see our tests. However, here we have a new class to consider:

MongodDBRunner. This class is a simple Spring bean (marked with @Component), and

it uses the de.flapdoodle.embed.mongo dependency to create a valid (and running)

MongoDB instance. The instance will shut down when the Spring context shuts down.

Since it’s located in the com.bsg5.chapter9.util package – and we’re scanning

for components – when this component is loaded, a local copy of MongoDB will be

downloaded and run for the duration of the tests. The MongoDB code will be cached for

future invocations, so it won’t have to be downloaded over and over again.

Here’s the code.

Listing 9-35.  chapter9mongodb/src/test/java/com/bsg5/chapter9/util/
MongoDBRunner.java

package com.bsg5.chapter9.util;

import de.flapdoodle.embed.mongo.MongodExecutable;

import de.flapdoodle.embed.mongo.MongodProcess;

import de.flapdoodle.embed.mongo.MongodStarter;

import de.flapdoodle.embed.mongo.config.IMongodConfig;

import de.flapdoodle.embed.mongo.config.MongodConfigBuilder;

import de.flapdoodle.embed.mongo.config.Net;

import de.flapdoodle.embed.mongo.distribution.Version;

import de.flapdoodle.embed.process.runtime.Network;

import org.springframework.stereotype.Component;

import java.io.IOException;

@Component

public class MongoDBRunner {

 private MongodStarter starter = MongodStarter.getDefaultInstance();

 public MongoDBRunner() {

 try {

Chapter 9 Persistence with Spring and Spring Data

309

 String bindIp = "localhost";

 int port = 12345;

 IMongodConfig mongodConfig = new MongodConfigBuilder()

 .version(Version.Main.PRODUCTION)

 .net(new Net(bindIp, port, Network.localhostIsIPv6()))

 .build();

 �MongodExecutable mongodExecutable = starter.

prepare(mongodConfig);

 MongodProcess mongod = mongodExecutable.start();

 } catch(IOException e) {

 throw new RuntimeException(e);

 }

 }

}

After that, it’s all downhill and mercifully short, to boot. First, the

ArtistRepositoryTests class.

Listing 9-36.  chapter9mongodb/src/test/java/com/bsg5/chapter9/mongodb/

ArtistRepositoryTests.java

package com.bsg5.chapter9.mongodb;

import com.bsg5.chapter9.test.BaseArtistRepositoryTests;

import org.springframework.boot.test.autoconfigure.data.mongo.

DataMongoTest;

@DataMongoTest

public class ArtistRepositoryTests

 extends BaseArtistRepositoryTests<Artist, String> {

 protected Artist createArtist(String name) {

 return new Artist(name);

 }

}

Here, we see the use of @DataMongoTest instead of DataJpaTest.

Next, the SongRepositoryTests class.

Chapter 9 Persistence with Spring and Spring Data

310

Listing 9-37.  chapter9mongodb/src/test/java/com/bsg5/chapter9/mongodb/
SongRepositoryTests.java

package com.bsg5.chapter9.mongodb;

import com.bsg5.chapter9.test.BaseSongRepositoryTests;

import org.springframework.boot.test.autoconfigure.data.mongo.

DataMongoTest;

@DataMongoTest

public class SongRepositoryTests

 extends BaseSongRepositoryTests<Artist, Song, String> {

 @Override

 protected Artist createArtist(String name) {

 return new Artist(name);

 }

 @Override

 protected Song createSong(Artist artist, String name) {

 return new Song(artist, name);

 }

}

And now the MusicServiceTests class, which is as simple as we’ve come to expect,

with the getNonexistentId() method returning a random UUID (which should fulfill the

requirements of nonexistence).

Listing 9-38.  chapter9mongodb/src/test/java/com/bsg5/chapter9/mongodb/
MusicServiceTests.java

package com.bsg5.chapter9.mongodb;

import com.bsg5.chapter9.test.BaseMusicServiceTests;

import org.springframework.boot.test.autoconfigure.data.mongo.

DataMongoTest;

import java.util.UUID;

Chapter 9 Persistence with Spring and Spring Data

311

@DataMongoTest

public class MusicServiceTests

 extends BaseMusicServiceTests<Artist, Song, String> {

 @Override

 protected String getNonexistentId() {

 return UUID.randomUUID().toString();

 }

}

9.4  �Tying Up Loose Ends
So far, we’ve seen how Spring Data makes accessing data storage much easier than it

might otherwise be, allowing us to access both relational database and a MongoDB

database with two sets of classes that are far more similar than different – even though

the underlying data models are incredibly different. You can see the same sort of benefit

from accessing nearly any database that has support in Spring Data.

It’s worth noting that the interfaces we’ve seen in this chapter could actually

slide fairly easily into the web front end shown in Chapter 8. We’ve maintained

transactionality and actually gained simplicity and flexibility; with JPA, we get support

for most (if not all) relational databases, and changing the code for MongoDB is trivial.

We could migrate to other databases like Cassandra or Neo4J with just as little effort.

9.5  �Next Steps
In Chapter 10, we shift away from data management and into Spring Security, which

provides authentication and authorization support for Spring applications – with a

particular focus on managing access via the Web.

Chapter 9 Persistence with Spring and Spring Data

313
© Joseph B. Ottinger and Andrew Lombardi 2019
J. B. Ottinger and A. Lombardi, Beginning Spring 5, https://doi.org/10.1007/978-1-4842-4486-9_10

CHAPTER 10

Spring Security
Security is critical in any application with access to live information – even public

information.1 Security means controlling access to features and information; unless

Annie is specifically granted access to Frank’s information, Frank’s data should be safe

and, from Annie’s perspective, invisible. Naturally, Spring has a powerful and capable

security project – called, of all things, Spring Security – that allows you to control nearly

every aspect of application security.

In this chapter, we’re going to develop two modules – chapter10 and

chapter10custom – and we’re going to use one of the simple web applications we built in

Chapter 9, the chapter9jpa project, and layer on a simple interface to authenticate and

control authorization to our resources.

10.1  �Introduction
The Spring Security subproject was originally a separate project started in 2003 named

Acegi Security System.2 After developing separately from Spring itself for 3 years, it

was officially adopted in 2007 by Spring and renamed Spring Security. Today, the

subproject is the standard for authentication and access control for Spring. It provides

enough boilerplate to allow you to use it without any customization and is extensible

enough to allow any specific implementation details your particular authentication and

authorization requirements might need.

1�Even public information needs to be controlled – see how sources like Wikipedia have to
constantly combat users including their own biases as sources of truth.

2�Fun thing discovered while researching the origin of Spring Security: “Acegi” is a made-up word
using the first, third, fifth, seventh, and ninth letters of the Latin alphabet. Your authors do not
know why people think computer programmers are weird.

314

Like many other Spring projects (including Spring Data, as shown in Chapter 8), the

Spring Security subproject is further subdivided into many other subprojects based on

features. At its most basic level, the three Spring Security libraries you’ll generally want to

include by default are spring-security-core, spring-security-config, and spring-

security-web.

Here we’ll talk about several of the most prominent modules and the requirement

they can help you achieve.

Library Description

spring-security-core The core library is required for all applications using Spring

Security. It includes access control and authentication classes

and interfaces and can be used for standalone or remote

needs.

spring-security-config This is a core library as well – providing, of all things,

configuration via Java or XML.

spring-security-web This library includes the necessary filters and web security

infrastructure for using Spring Security in your web

applications.

spring-security-test This provides support for testing a Spring Security application.

It maps easiest with JUnit but we’ll be able to do the same

trickery with TestNG.

spring-security-acl This provides access control to specific operations on

specific Java object instances in your application. With this,

you can say that a specific user has the ability to execute

specific methods on specific object instances, for example,

although you can certainly rely on access control that isn’t

quite that specific. (Usually, people rely on role access

and not specific user access… but you have the ability to

choose what features you require.)

spring-security-ldap This library provides access to LDAP, the “Lightweight Directory

Access Protocol,” for authentication and provisioning.

Chapter 10 Spring Security

315

There are plenty of other libraries to mention like OAuth (which has its own artifact

group, org.springframework.security.oauth, with many artifacts to provide specific

features) and JOSE.3 Support also exists for CAS (a single sign-on system; CAS stands

for “Central Authentication Service”) and OpenID (a broad Internet authentication

specification) and, well, insert your security apparatus here, whether in an

official capacity or through one of the many open source integrations out there. There

are libraries that focus on just the authentication aspect and those that integrate the

different ideas surrounding authorization.

Authentication and Authorization

When we speak about authentication, we’re trying to correctly assert that the
thing hitting our resources is what, or who, it claims to be. When we speak about
this in regard to web-based authentication, we’re generally talking about a host of
different methods, with the simplest being HTTP BASIC access, all the way to more
involved mechanisms like OpenID or CAS.

Authorization is a set of one or many rules that determine who, once authenticated,
is allowed to do what. For example, if Jennifer authenticates as an ADMIN, then
she may have Create/Read/Update/Delete access to all entities in the system,
whereas John may have USER access and only be able to view and update items
associated with their account.

Let’s take a look at how we can start configuring a web application and then a REST

API using Spring Security.

10.2  �Configuration
In this section we’ll discuss a lot of the configurable options available to us with Spring

Security. We’re going to keep the module structure simple so we can focus on how to get

up and running quickly.

First, we need to create our directory structure, starting in the overall project directory.

3�JOSE stands for Javascript Object Signing and Encryption. See https://tools.ietf.org/html/
rfc7165, for example.

Chapter 10 Spring Security

https://tools.ietf.org/html/rfc7165
https://tools.ietf.org/html/rfc7165

316

Listing 10-1.  Creating the directory structure with POSIX

mkdir -p chapter10/src/main/java/com/bsg5/chapter10

mkdir -p chapter10/src/webapp/WEB-INF/templates

mkdir -p chapter10/src/test/java/com/bsg5/chapter10

We will need to set up our Gradle configuration file – build.gradle – as in previous

chapters.4 We’ll be adding some dependencies for Spring Security – namely, spring-

security-core, spring-security-config, and spring-security-web. The rest has

been copied from previous chapters to give us the ability to run a Tomcat instance with a

simple Gradle target.

Listing 10-2.  chapter10/build.gradle

plugins {

 id 'war'

 id 'java'

 id 'org.gretty' version '2.2.0'

}

dependencies {

 compileOnly 'javax.servlet:javax.servlet-api:4.0.1'

 compile "org.springframework:spring-core:$springFrameworkVersion"

 compile "org.springframework:spring-context:$springFrameworkVersion"

 compile "org.springframework:spring-web:$springFrameworkVersion"

 compile "org.springframework:spring-webmvc:$springFrameworkVersion"

 compile group: "org.springframework.security",

 name: "spring-security-core",

 version: "$springFrameworkVersion"

 compile group: "org.springframework.security",

 name: "spring-security-config",

 version: "$springFrameworkVersion"

4�Also note that it uses the properties of the top-level build.gradle from Chapter 2, so the Java
version and Spring versions are inherited.

Chapter 10 Spring Security

317

 compile group: "org.springframework.security",

 name: "spring-security-web",

 version: "$springFrameworkVersion"

 compile "org.jtwig:jtwig-web:5.87.0.RELEASE"

 compile "org.jtwig:jtwig-spring:5.87.0.RELEASE"

 compile "com.fasterxml.jackson.core:jackson-databind:$jacksonVersion"

 testCompile "org.springframework:spring-test:$springFrameworkVersion"

 testCompile "org.testng:testng:$testNgVersion"

 testCompile 'org.hamcrest:hamcrest-all:1.3'

 compile project(":chapter3")

}

For simplicity’s sake, we’re going to focus on Java-only configuration; XML

configuration is certainly doable, but it’s rather verbose.

Without further ado5 let’s see what steps we’ll need to secure our first web

application.

The first thing we’ll do is make sure that Spring Security is registered for every URL

in our application. Spring Security needs to register itself within the war for its servlet

filter or the springSecurityFilterChain which is the name Spring Security uses for the

FilterChainProxy namespace.

Spring Security works over the Web by using the servlet filter mechanism to
intercept HTTP calls, matching the calls’ contents to the security mappings. It does
the same thing for method calls, except with a dynamic proxy instead of a servlet
filter. Therefore, we need to make sure the security filter is registered with the
servlet container, or the classloaders, for Security to work its magic.

To do this, we’ll create a class named GatewaySecurityWebApplicationInitializer

which just extends AbstractSecurityWebApplicationInitializer and Spring Security

will do the rest. Let’s look at it now.

5�Your authors aren’t sure exactly how much “ado” we’ve had so far, or how to measure “ado” or in
what unit, but by golly, we’re done with the “ado.”

Chapter 10 Spring Security

318

Listing 10-3.  chapter10/src/main/java/com/bsg5/chapter10/
GatewaySecurityWebApplicationInitializer.java

package com.bsg5.chapter10;

import org.springframework.security.web.context.

AbstractSecurityWebApplicationInitializer;

public class GatewaySecurityWebApplicationInitializer extends

AbstractSecurityWebApplicationInitializer

}

Now that Spring Security is ready to filter any route going to our application, let’s

finish configuring Spring MVC and point it to our security-based config. Let’s have

another look at our initializer class, and we’ll look at how it changes for our Spring

Security changes.

Listing 10-4.  chapter10/src/main/java/com/bsg5/chapter10/
GatewayAppInitializer.java

package com.bsg5.chapter10;

import org.springframework.web.servlet.support.

AbstractAnnotationConfigDispatcherServletInitializer;

public class GatewayAppInitializer extends

AbstractAnnotationConfigDispatcherServletInitializer

 @Override

 protected Class<?>[] getRootConfigClasses() {

 return new Class[]{GatewaySecurityConfig.class};

 }

 @Override

 protected Class<?>[] getServletConfigClasses() {

 return new Class[]{GatewayAppWebConfig.class};

 }

Chapter 10 Spring Security

319

 @Override

 protected String[] getServletMappings() {

 return new String[]{"/"};

 }

}

Our initializer which does a lot of the work that our web.xml used to do is set up

mostly the same as before. We have some web-based configurations we identify with

the getServletConfigClasses method just like before. The other common thread

that we’ve seen before is getServletMappings – and we’re looking to process all things

in this instance from the root so we pass back a /. The new entry is for our non-web-

related config (which Spring Security falls under) so we return that config from our

getRootConfigClasses method.

Listing 10-5.  chapter10/src/main/java/com/bsg5/chapter10/

GatewayAppWebConfig.java

package com.bsg5.chapter10;

import org.jtwig.spring.JtwigViewResolver;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.ComponentScan;

import org.springframework.context.annotation.Configuration;

import org.springframework.web.servlet.ViewResolver;

import org.springframework.web.servlet.config.annotation.EnableWebMvc;

import org.springframework.web.servlet.config.annotation.

ViewResolverRegistry;

import org.springframework.web.servlet.config.annotation.WebMvcConfigurer;

@Configuration

@EnableWebMvc

@ComponentScan(basePackages = {"com.bsg5.chapter10", "com.bsg5.chapter3.mem03"})

public class GatewayAppWebConfig implements WebMvcConfigurer {

 @Override

 public void configureViewResolvers(ViewResolverRegistry registry) {

 registry.viewResolver(jtwigViewResolver());

 }

Chapter 10 Spring Security

320

 @Bean

 public ViewResolver jtwigViewResolver() {

 JtwigViewResolver viewResolver = new JtwigViewResolver();

 viewResolver.setPrefix("web:/WEB-INF/templates/");

 viewResolver.setSuffix(".jtwig.html");

 return viewResolver;

 }

}

Listing 10-5 should look familiar since we started doing this with Spring MVC in

Chapter 6. We’re ensuring that Spring MVC is enabled with the annotation

@EnableWebMvc, doing a @ComponentScan of the relevant packages we’ll need for this

project, and configuring the Jtwig view resolvers with the configureViewResolvers and

jtwigViewResolver methods. Let’s move on to the more relevant to this chapter piece

which is the security config.

Listing 10-6.  chapter10/src/main/java/com/bsg5/
chapter10/GatewaySecurityConfig.java

package com.bsg5.chapter10;

import org.springframework.context.annotation.Bean;

import org.springframework.security.config.annotation.web.builders.

HttpSecurity;

import org.springframework.security.config.annotation.web.configuration.

EnableWebSecurity;

import org.springframework.security.config.annotation.web.configuration.

WebSecurityConfigurerAdapter;

import org.springframework.security.core.authority.SimpleGrantedAuthority;

import org.springframework.security.core.userdetails.User;

import org.springframework.security.core.userdetails.UserDetails;

import org.springframework.security.core.userdetails.UserDetailsService;

import org.springframework.security.crypto.bcrypt.BCryptPasswordEncoder;

import org.springframework.security.crypto.password.PasswordEncoder;

import org.springframework.security.provisioning.

InMemoryUserDetailsManager;

Chapter 10 Spring Security

321

import java.util.Collections;

@EnableWebSecurity

public class GatewaySecurityConfig extends WebSecurityConfigurerAdapter {

 @Override

 @Bean

 public UserDetailsService userDetailsService() {

 �InMemoryUserDetailsManager manager = new InMemoryUserDetails

Manager();

 UserDetails adminUser = User

 .withUsername("admin")

 .password(encoder().encode("admin123"))

 .authorities("FULL_PRIVILEGES")

 .roles("ADMIN")

 .build();

 manager.createUser(adminUser);

 return manager;

 }

 @Bean

 public PasswordEncoder encoder() {

 return new BCryptPasswordEncoder();

 }

 @Override

 protected void configure(HttpSecurity http) throws Exception {

 http.authorizeRequests()

 .antMatchers("/home").permitAll()

 .antMatchers("/dashboard").authenticated()

 .and()

 .formLogin();

 }

}

Let’s take this in sections. First we’ll talk through the class definition.

Chapter 10 Spring Security

322

Listing 10-7.  chapter10/src/main/java/com/bsg5/chapter10/
GatewaySecurityConfig.java

@EnableWebSecurity

public class GatewaySecurityConfig extends WebSecurityConfigurerAdapter {

The annotation @EnableWebSecurity will let Spring Security know to use this class

for configuration. Our extended abstract base class WebSecurityConfigurerAdapter is a

convenience class which has sensible defaults already defined. We’re going to override a

few simple methods in our first example, namely, userDetailsService and configure.

Listing 10-8.  chapter10/src/main/java/com/bsg5/chapter10/
GatewaySecurityConfig.java

@Override

@Bean

public UserDetailsService userDetailsService() {

 InMemoryUserDetailsManager manager = new InMemoryUserDetailsManager();

 UserDetails adminUser = User

 .withUsername("admin")

 .password(encoder().encode("admin123"))

 .authorities("FULL_PRIVILEGES")

 .roles("ADMIN")

 .build();

 manager.createUser(adminUser);

 return manager;

}

Our example is meant to be simple and get you started so we’ll use the convenient

InMemoryUserDetailsManager6 to achieve that. We can create our UserDetails object

using the User object’s builder pattern.

6�InMemoryUserDetailsManager is provided as a developer-friendly way to “manage users” so that
developers can focus on the actual security mechanisms without having to worry about having
to configure how to track users. It’s in-memory only, so it isn’t useful outside of the context of
testing or early development.

Chapter 10 Spring Security

323

Some things to note as we progress, we’re storing the password encoded and

identifying that by making our encoder available in the encoder method which

just so happens to use BCrypt. Each user needs to have a GrantedAuthority and

Role attached to it, and while it may not seem so, the particular String used here is

arbitrary. (There are best practices for what values to use. See the Note following this

paragraph for more.)

We will use our manager object to create a user and return that manager as part of

our UserDetailsService.

The class we used earlier being in-memory is only good for proof of concept uses,

not for anything production level. What’s important is that whatever implementation is

chosen implements UserDetailsService at a minimum. If you are implementing your

lookup via a database, you can look into JdbcUserDetailsManager which will work for

UserDetails and Group management.

GrantedAuthority and Roles

It may be confusing at first to see two different distinctions for a user, one being
GrantedAuthority and the other being Role. A GrantedAuthority is a privilege
which is finer grained than a role, something like READ_AUTHORITY or WRITE_
AUTHORITY, and is purely arbitrary and up to you how to name or handle. Spring
Security offers a method for this to check the authority hasAuthority. On the other
end, we have Role which can be a more coarse-grained definition of what a user
is within your system. A Role can be used with the hasRole method and is usually
represented like ADMIN or USER or SUPERUSER – again it is arbitrary and up to you.

Listing 10-9.  chapter10/src/main/java/com/bsg5/chapter10/
GatewaySecurityConfig.java

@Override

protected void configure(HttpSecurity http) throws Exception {

 http.authorizeRequests()

 .antMatchers("/home").permitAll()

 .antMatchers("/dashboard").authenticated()

 .and()

 .formLogin();

}

Chapter 10 Spring Security

324

There are going to always be several ways of performing some functions with

Spring, and Spring Security is no exception. The HttpSecurity object follows a builder

pattern, and if we choose to do the configuration in this class, we can override configure

which passes in an HttpSecurity object for us to use. The other configuration method

commonly used is with XML which we won’t be covering as we’re opting for class-based

configuration, and annotation-based on the method level which will be discussed later

in the chapter.

The HttpSecurity uses the builder pattern that we can use to configure things,

so we’re going to show the most important options in a table. Not all of the following

methods are members of HttpSecurity, but all of them can run .build() because they

extend from HttpSecurityBuilder.

Method Description

and Useful for method chaining as it returns the SecurityBuilder object

authorizeRequests Restricts access based upon HttpServletRequest

antMatchers Matchers that allow you to permit or restrict used in conjunction with

the authorizeRequests call

formLogin Ensures we’re using a form-based login

httpBasic Utilizes the simple HTTP Basic authentication method

hasRole Ensures that for the configured matched route, it has a specific role

permitAll URLs matched before this method are allowed by anyone

loginPage Specifies URL to send users if login required; if using

WebSecurityConfigurerAdapter, a default login page is generated

if not specified

cors Adds a corsFilter to the matched requests, can use a corsFilter

named bean, or a corsConfigurationSource can be specified

rememberMe Allows you to configure remember me authentication even if

HttpSession is empty

Chapter 10 Spring Security

325

For several of the preceding methods, and the even more available in the

HttpSecurity object, there may be other builder methods which won’t return

HttpSecurity; the and method will return HttpSecurity so that you have access to chain

other SecurityBuilder implementations together.

In the next section, we’ll talk about defining custom login and logout routes. For

now, we’ll take full advantage of the default behavior in Spring Security and the power

that affords for rapid prototyping of your application. Later you will see what the default

Spring Security login page looks like.

Listing 10-10.  The configure() method

protected void configure(HttpSecurity http) throws Exception {

 http

 .antMatcher("/")

 .authorizeRequests()

 .anyRequest().hasRole("ADMIN")

 .and()

 .httpBasic();

}

The preceding code will ensure any request to this page is met with a BASIC auth

challenge using .httpBasic() and needing a role for the authenticated user of ADMIN.

If you remember from the previous section, here’s how we defined everything to get

this page:

Chapter 10 Spring Security

326

Spring Security is going to handle any of the messaging and display options if we

don’t define anything custom, so if the user enters invalid credentials, they’ll receive an

appropriate error message:

In our configuration earlier, we’re defining the route at the root needing to have

ADMIN-based privileges in order to continue. It makes sense for us to define a simple page

to show the user upon successful login. For now we’re using a very simple controller.

Listing 10-11.  chapter10/src/main/java/com/bsg5/chapter10/
HomeController.java

package com.bsg5.chapter10;

import org.springframework.stereotype.Controller;

import org.springframework.web.bind.annotation.GetMapping;

@Controller

public class HomeController {

 @GetMapping("/home")

 public String home() {

 return "home";

 }

}

Chapter 10 Spring Security

327

Our template which we’ve defined will use the Jtwig resolver as defined in our

WebMvcConfigurer.

Listing 10-12.  chapter10/src/main/webapp/WEB-INF/templates/home.jtwig.html

<!DOCTYPE html>

<html>

<head>

 <title>Home Page</title>

</head>

<body>

Admin Dashboard

</body>

</html>

After a successful login, Spring Security will handle the functionality necessary to

authenticate and further authorize the user to view the home page:

10.2.1  �Customizing Your Security
In order to show a few more customizable features of Spring Security, we’ll be creating

another top-level project for chapter10custom. To create the directory structure, follow a

similar path.

Chapter 10 Spring Security

328

Listing 10-13.  Creating the chapter10custom directory structure with POSIX

mkdir -p chapter10custom/src/main/java/com/bsg5/chapter10

mkdir -p chapter10custom/src/webapp/WEB-INF/templates

mkdir -p chapter10custom/src/test/java/com/bsg5/chapter10

Probably the easiest thing is to copy the build.gradle and the

following classes from the chapter10 project to our new project

GatewaySecurityWebApplicationInitializer.java, GatewayAppWebConfig,

GatewayAppInitializer, and the rest we’ll edit and show later. If you’d like to do this

from the command line from the src directory, you can do the following.

Listing 10-14.  Copying over unchanged Java code

cp chapter10/src/main/java/com/bsg5/chapter10/

GatewaySecurityWebApplicationInitializer.ja

 �/chapter10custom/src/main/java/com/bsg5/chapter10/GatewaySecurity

WebApplicationInitializer.

cp chapter10/src/main/java/com/bsg5/chapter10/GatewayAppWebConfig.java \

 �chapter10custom/src/main/java/com/bsg5/chapter10/GatewayAppWebConfig.java

cp chapter10/src/main/java/com/bsg5/chapter10/GatewayAppInitializer.java \

 �chapter10custom/src/main/java/com/bsg5/chapter10/GatewayAppInitializer.java

cp chapter10/build.gradle chapter10custom/build.gradle

Defining your own custom login/logout routes within Spring Security is probably the

first thing to do once you’ve gotten a handle on things. We can do this with an update to

our config – and to make things easier, we’ll be pulling from a class that we’ll modify to

support custom login/logout.

Listing 10-15.  chapter10custom/src/main/java/com/bsg5/
chapter10/GatewaySecurityConfig.java

package com.bsg5.chapter10;

import org.springframework.context.annotation.Bean;

import org.springframework.security.config.annotation.method.configuration.

EnableGlobalMethodSecurity;

import org.springframework.security.config.annotation.web.builders.

HttpSecurity;

Chapter 10 Spring Security

329

import org.springframework.security.config.annotation.web.configuration.

EnableWebSecurity;

import org.springframework.security.config.annotation.web.configuration.

WebSecurityConfigurerAdapter;

import org.springframework.security.core.userdetails.User;

import org.springframework.security.core.userdetails.UserDetails;

import org.springframework.security.core.userdetails.UserDetailsService;

import org.springframework.security.crypto.bcrypt.BCryptPasswordEncoder;

import org.springframework.security.crypto.password.PasswordEncoder;

import org.springframework.security.provisioning.

InMemoryUserDetailsManager;

import org.springframework.security.web.util.matcher.AntPathRequestMatcher;

@EnableWebSecurity

@EnableGlobalMethodSecurity(

 securedEnabled = true,

 jsr250Enabled = true,

 prePostEnabled = true)

public class GatewaySecurityConfig extends WebSecurityConfigurerAdapter {

 @Bean

 public UserDetailsService userDetailsService() {

 InMemoryUserDetailsManager manager = new InMemoryUserDetailsManager();

 UserDetails adminUser = User

 .withUsername("admin")

 .password(encoder().encode("admin123"))

 .authorities("FULL_PRIVILEGES")

 .roles("ADMIN")

 .build();

 UserDetails regularUser = User

 .withUsername("user")

 .password(encoder().encode("user123"))

 .authorities("READ_ACCESS")

 .roles("USER")

 .build();

Chapter 10 Spring Security

330

 manager.createUser(adminUser);

 manager.createUser(regularUser);

 return manager;

 }

 @Bean

 public PasswordEncoder encoder() {

 return new BCryptPasswordEncoder();

 }

 @Override

 protected void configure(HttpSecurity http) throws Exception {

 http.authorizeRequests()

 .antMatchers("/home", "/login").permitAll()

 .antMatchers("/dashboard").authenticated()

 .and()

 .formLogin()

 .loginPage("/login")

 .defaultSuccessUrl("/dashboard")

 .and()

 .logout()

 .logoutRequestMatcher(new AntPathRequestMatcher("/logout"));

 }

}

The configure() method is the only change here, and we’ve basically added

/login to the permitAll chain and defined our own custom loginPage which will

use /login and a defaultSuccessUrl which will forward the user to /dashboard. In

the config you’ll see some attributes for EnableGlobalMethodSecurity which we’ll

cover in the next section on Securing Service Methods. It is not common to enable all

of these at once, you’ll likely use securedEnabled or the jsr250Enabled if you want to

use the standard. The most flexible option is to use prePostEnabled which will allow

you to use Method Security Expressions and is further defined in the docs: https://

docs.spring.io/spring-security/site/docs/5.0.x/reference/html5/#method-

security-expressions.

That along with a new HomeController as defined here.

Chapter 10 Spring Security

https://docs.spring.io/spring-security/site/docs/5.0.x/reference/html5/#method-security-expressions
https://docs.spring.io/spring-security/site/docs/5.0.x/reference/html5/#method-security-expressions
https://docs.spring.io/spring-security/site/docs/5.0.x/reference/html5/#method-security-expressions

331

Listing 10-16.  chapter10custom/src/main/java/com/bsg5/chapter10/
HomeController.java

package com.bsg5.chapter10;

import org.springframework.stereotype.Controller;

import org.springframework.web.bind.annotation.GetMapping;

@Controller

public class HomeController {

 @GetMapping("/home")

 public String home() {

 return "home";

 }

 @GetMapping("/login")

 public String login() {

 return "login";

 }

}

Our new template being the login template.

Listing 10-17.  chapter10custom/src/main/webapp/WEB-INF/templates/login.
jtwig.html

<!DOCTYPE html>

<html>

<head>

 <title>Login Page</title>

</head>

<body>

<form action="login" method="POST">

 <p>

 <label for="username">Username</label>

 <input type="text" id="username" name="username" />

 </p>

Chapter 10 Spring Security

332

 <p>

 <label for="password">Password</label>

 <input type="password" id="password" name="password" />

 </p>

 <button type="submit">Login</button>

</form>

</body>

</html>

As you can see, we’re pointing our template to POST to log in with username and

password as parameters. This will yield the following page when you attempt to access a

protected resource (one marked with authenticated and in this case it’s /dashboard):

10.3  �Securing a REST Application
In the last section, we were pretty sure we were done creating new subprojects, but

security always has other plans. We’ll create our last top-level project and name it

chapter10jpa. This section will pull in the subproject chapter9jpa and see how to

integrate Spring Security with our work from Chapter 9. Here’s how we’ll create the

directory structure.

Chapter 10 Spring Security

333

Listing 10-18.  Creating the chapter10jpa directory structure with POSIX

mkdir -p chapter10jpa/src/main/java/com/bsg5/chapter10

mkdir -p chapter10jpa/src/webapp/WEB-INF/templates

mkdir -p chapter10jpa/src/test/java/com/bsg5/chapter10

One other great thing about pulling in the code from Chapter 9 is it uses Spring Boot

which we haven’t dealt with in this chapter yet. As we’ve seen in other chapters that

leveraged Spring Boot, Boot makes a lot of this stuff very easy.

First things first, let’s build our new Gradle configuration file – build.gradle – and as

always note that the top-level build.gradle is used for some inherited properties. We’ll

pull in the necessary dependencies for Spring Boot including a new one spring-boot-

starter-security which will do a lot of the leg work for us and the chapter9common and

chapter9jpa subprojects which give us access to MusicService and the dependencies.

Listing 10-19.  chapter10jpa/build.gradle

plugins {

 id 'org.springframework.boot' version '2.1.5.RELEASE'

}

apply plugin: 'io.spring.dependency-management'

apply plugin: 'org.springframework.boot'

dependencies {

 compile("org.springframework.boot:spring-boot-starter-web")

 compile project(':chapter9jpa')

}

To use Spring Boot, we will need to define a @SpringBootApplication class which

we’ll do later in our MainApplication. We are making use of @Bean classes in the Chapter

9 codebase so our scanBasePackages will include com.bsg5.chapter9.jpa along with

our package in Chapter 10 com.bsg5.chapter10.

Listing 10-20.  chapter10jpa/src/main/java/com/bsg5/chapter10/
MainApplication.java

package com.bsg5.chapter10;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;

Chapter 10 Spring Security

334

@SpringBootApplication(scanBasePackages = {

 "com.bsg5.chapter9.jpa",

 "com.bsg5.chapter10"

})

public class MainApplication {

 public static void main(String[] args) {

 SpringApplication.run(MainApplication.class, args);

 }

}

With this one class, we now have a Spring Boot application and can run it using

the following Gradle command: gradle :chapter10jpa:bootRun. Once it starts up,

you’ll have a working Tomcat instance ready for action. We haven’t actually defined

any endpoints yet though, so you’ll be met with a lot of 404 (not found) errors. Let’s fix

that and create a @RestController for accessing and creating Song entries in our data

source. We will define two endpoints just to keep things simple, one will retrieve (GET) a

resource by identifier and the other will create (POST) a new resource.

Listing 10-21.  chapter10jpa/src/main/java/com/bsg5/chapter10/
SongController.java

package com.bsg5.chapter10;

import com.bsg5.chapter9.jpa.MusicService;

import com.bsg5.chapter9.jpa.Song;

import org.springframework.http.MediaType;

import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.PathVariable;

import org.springframework.web.bind.annotation.PostMapping;

import org.springframework.web.bind.annotation.RequestBody;

import org.springframework.web.bind.annotation.RestController;

 private MusicService service;

 SongController(MusicService service) {

 this.service = service;

 }

Chapter 10 Spring Security

335

 @GetMapping(value = "/songs/{id}",

 produces = MediaType.APPLICATION_JSON_VALUE)

 Song song = service.getSongById(id);

 if (song != null) {

 return song;

 } else {

 throw new SongNotFoundException();

 }

 }

 @PostMapping(value="/songs",

 consumes = MediaType.APPLICATION_JSON_VALUE,

 produces = MediaType.APPLICATION_JSON_VALUE)

 �Song songLookup = service.getSong(song.getArtist().getName(),

song.getName());

 if(songLookup != null) {

 return songLookup;

 } else {

 throw new SongNotFoundException();

 }

 }

}

We are defining two methods here; the first is getSongById which takes a

@PathVariable of id which we’ll use the MusicService to look up in the database. If it

doesn’t exist, we’re going to throw a SongNotFoundException which is the same code we

saw in Chapter 9 for ArtistNotFoundException.

The second method is for creating a new Song. It’s going to consume a JSON object

which we’ll create a sample you can use to submit later and will produce/return the

newly created object in the response. You can use the following curl command to see

this in action for the save.

Listing 10-22.  Curl request to save song

curl --header "Content-Type: application/json" \

 --request POST \

Chapter 10 Spring Security

336

 �--data '{"name":"Someone Stole The Flour","artist":{"name": "Threadbare Loaf"}}' \

 http://localhost:8080/songs

After creating this new song entry, we can use a simple curl again to request our entry.

Listing 10-23.  Curl to get song

curl --header "Content-Type: application/json" http://localhost:8080/songs/2

Now that we have a very simple REST controller in place, let’s see what it would look

like with Spring Security integrated. The only thing we really have to do to secure the app

and start requiring authentication is to add the following build.gradle dependency to

the project after spring-boot-starter-web.

Listing 10-24.  Adding spring-boot-starter-security

compile("org.springframework.boot:spring-boot-starter-security")

This will set up some magic defaults adding security to all URLs starting from /*,

using BASIC authentication as the default, and having a default username with user.

You may be asking yourself: "That’s great but what about the password?" When you

run the app with gradle :chapter10jpa:bootRun, you will see something similar in the

output.

Listing 10-25.  Generated password from Spring Boot

Using generated security password: df1a58e9-7ac2-4d01-9e6e-41e36c06ddb9

If you were to try and hit the GET endpoint without authentication details, you’d see

something like this from Spring Boot.

Listing 10-26.  Curl response without authentication

{"timestamp":"2019-06-27T16:22:16.070+0000","status":401,"error":"Unauthorized",

"message":"

So instead let’s authenticate and get our Threadbare Loaf entry with our credentials.

If you remember from earlier, that means the username of user and whatever was listed

in the generated security password section. In the following example, we’ll just use

the one I’ve already listed earlier for consistency.

Chapter 10 Spring Security

337

Listing 10-27.  Curl with authentication

curl \

 -u user:df1a58e9-7ac2-4d01-9e6e-41e36c06ddb9 \

 --header "Content-Type: application/json" \

 http://localhost:8080/songs/2

{"id":2,"artist":{"id":1,"name":"Threadbare Loaf"},"name":"Someone Stole

The Flour","votes":

So simple and easy to do, and you get it nearly for free here. This is obviously not

going to work for a production application and the single user is only for test purposes.

Let’s take a look at a new config that we can create which allows us to create our own

users and roles and override the Spring Boot defaults.

Listing 10-28.  chapter10jpa/src/main/java/com/bsg5/
chapter10/GatewaySecurityConfig.java

package com.bsg5.chapter10;

import org.springframework.context.annotation.Configuration;

import org.springframework.security.config.annotation.authentication.

builders.AuthenticationManagerBuilder;

import org.springframework.security.config.annotation.web.builders.

HttpSecurity;

import org.springframework.security.config.annotation.web.configuration.

WebSecurityConfigurerAdapter;

import org.springframework.security.crypto.password.NoOpPasswordEncoder;

@Configuration

public class GatewaySecurityConfig extends WebSecurityConfigurerAdapter {

 @Override

 �protected void configure(AuthenticationManagerBuilder auth) throws

Exception {

 auth.inMemoryAuthentication()

 .passwordEncoder(NoOpPasswordEncoder.getInstance())

 .withUser("user").password("user123")

 .roles("USER").and()

Chapter 10 Spring Security

338

 .withUser("admin").password("admin123")

 .roles("USER", "ADMIN");

 }

 @Override

 protected void configure(HttpSecurity http) throws Exception {

 http

 .httpBasic()

 .and()

 .authorizeRequests()

 .antMatchers("/songs/**")

 .hasRole("USER")

 .antMatchers("/**")

 .hasRole("ADMIN")

 .and()

 .csrf().disable()

 .headers().frameOptions().disable();

 }

}

A good portion of the preceding code should be very familiar to you already.

Our configure() method does a similar thing to the previous userDetailsService

override which we used in previous examples. We’re setting up two users using the

NoOpPasswordEncoder using the credentials of user:user123 for the USER role and

admin:admin123 for a role with both USER and ADMIN privileges.

Our second overridden configure method we’ve seen previously but are using a

few new methods on HttpSecurity. Due to the usage of REST here, we don’t need to

use CSRF – which is used to prevent cross-site request forgery with JavaScript – and we’ll

disable the special frame headers that are added by default. Other than those things,

we’re securing /songs/** with role USER and can now use the simpler credentials

already defined. When you’ve got this new class added, terminate the existing bootRun

and rerun it with gradle :chapter10jpa:bootRun. We can copy the existing curl

command in Listing 10-27 and replace the credentials with user:user123 and should

see a similar result.

Now you have seen how simple it is to set up security with Spring Boot and REST

endpoints.

Chapter 10 Spring Security

339

10.4  �New in Spring Security 5
The latest version of Spring Security comes with several new and exciting features

as well. In the short sections later, we’ll go into a little more detail but they include a

new OAuth 2.0 Login class, security support in your Reactive programs, and a new

DelegatingPasswordEncoder.

10.4.1  �OAuth 2.0 Login
Spring Security 5 has introduced a convenience for configuring OAuth 2.07 external

authorization servers via the OAuth2LoginConfigurer class. We’ll talk briefly about how

we can use this class at a very bare bones level which makes configuration for OAuth 2.0

even easier. In order to use the new spring-security-oauth2-client, you’ll need to

include the following in gradle:

compile group: 'org.springframework.security', name: 'spring-security-

oauth2-client', version:

Naturally, Spring Boot makes all of this much easier. Here, we’re going to show how to

set up Google and Facebook logins with Spring Boot. In order to use OAuth 2.0 with either,

you’ll need to obtain client credentials for each. By default Spring Boot will configure the

redirect URI in the following format /login/oauth2/code/{registrationId} so keep that

in mind when entering that into the forms for Google and/or Facebook.

Next, in our application.properties file, we’ll need to put in the relevant client id

and secret that you received from Google and Facebook:

spring.security.oauth2.client.registration.google.client-id=<your client id>

spring.security.oauth2.client.registration.google.client-secret=<your

client secret>

spring.security.oauth2.client.registration.facebook.client-id=<your client id>

spring.security.oauth2.client.registration.facebook.client-secret=<your

client secret>

7�OAuth is an open standard for authorizing access to a web site or application without supplying
passwords and is commonly used by Google, Facebook, Twitter, and many more.

Chapter 10 Spring Security

340

When these properties show up in your Spring Boot application, it will initialize the

OAuth2ClientAutoConfiguration class and all the supporting beans.

The basic config that we can get setup for authenticating with the OAuth2 Client is

listed as follows:

@Configuration

public class OAuthSecurityConfig extends WebSecurityConfigurerAdapter {

 @Override

 protected void configure(HttpSecurity http) throws Exception {

 http.authorizeRequests()

 .anyRequest().authenticated()

 .and()

 .oauth2Login();

 }

}

With the preceding configuration whenever we’re attempting to access a protected

URL, the application will redirect to an autogenerated Spring Boot login page with

buttons for Google and Facebook available for login. Methods available from the

oauth2Login() method are varied but some that are pretty useful to configure and not

accept the defaults:

•	 loginPage("/my_login") – Allows you to configure an endpoint to

serve the login screen rather than the Spring Boot default

•	 defaultSuccessUrl() – The redirect to use upon success

•	 failureUrl() – The redirect to use should the login fail (i.e., the user

uses invalid credentials)

•	 successHandler() – Custom logic handler for a

successful user authentication which must implement

AuthenticationSuccessHandler that generally would be a redirect

or forward to a success page

•	 failureHandler() – Custom logic handler for authentication failure

which implements AuthenticationFailureHandler that usually

redirects to the authentication page to try again

Chapter 10 Spring Security

341

There are certainly more options which you can view more of within the

documentation. See https://spring.io/projects/spring-security-oauth.

10.4.2  �Reactive Support
The Spring framework with version 5 has brought the Reactive Stack as a first class

citizen with its libraries. We’ll touch on a bit of the reactive support in Spring 5 in the

next chapter (which discusses a bit more of the reactive programming paradigm with

Reactor and RxJava). We’ll just shamelessly copy the example available in the docs.

Listing 10-29.  Using Spring Security with WebFlow

@Bean

WebFilter springSecurityFilterChain(ReactiveAuthenticationManager manager) {

 HttpSecurity http = http();

 http.authenticationManager(manager);

 http.httpBasic();

 AuthorizeExchangeBuilder authorize = http.authorizeExchange();

 authorize.antMatchers("/admin/**").hasRole("ADMIN");

 �authorize.antMatchers("/users/{user}/**").access(this::currentUser

MatchesPath);

 authorize.anyExchange().authenticated();

 return http.build();

}

In Listing 10-29 you’ll see that just as in other cases that were nonreactive, we’re

setting up any specific mappings using the springSecurityFilterChain. You’ll add the

preceding code into your config for Spring Security just like you would for the Servlet

stack. A full example of how to secure a Reactive WebFlux application is out of scope

for this small section, so we’ll just link off to the sample provided in the Spring Security

project on GitHub available at https://github.com/spring-projects/spring-

security/tree/5.1.x/samples/boot/hellowebflux.

Chapter 10 Spring Security

https://spring.io/projects/spring-security-oauth
https://github.com/spring-projects/spring-security/tree/5.1.x/samples/boot/hellowebflux
https://github.com/spring-projects/spring-security/tree/5.1.x/samples/boot/hellowebflux

342

10.4.3  �DelegatingPasswordEncoder
If you’ve ever had to migrate to a new encoding method for passwords due to requirements

changing or because you finally realized that MD5 is not secure, Spring Security 5 brings you

flexibility and power of supporting multiple password encoders using a prefix. The password

will be stored with a key such as {bcrypt} and then the encoded password.

If you’re okay with using the defaults available in the PasswordEncoderFactories,

you can grab an instance like so.

Listing 10-30.  Getting default Spring Security DelegatingPasswordEncoder

PasswordEncoder passwordEncoder =

 PasswordEncoderFactories.createDelegatingPasswordEncoder();

By default it will encode with bcrypt and decode with prefix any of the following

keys: ldap, MD4, MD5, noop, pbkdf2, scrypt, SHA-1, SHA-256, sha256. If you have

an existing set of passwords in the database and they are not prefixed with the preceding

method, you’ll have to perform updates to the password data, or you can choose to use

a custom DelegatingPasswordEncoder where you can specify the decodings you want

to support and the encoding you’ll use for any new passwords and can set a default for

any passwords that don’t have an encoding prefix prior to the password data. Let’s take a

look at Listing 10-31 to see how this works.

Listing 10-31.  chapter10/src/main/java/com/bsg5/chapter10/
CustomDefaultPasswordEncoderFactories.java

@SuppressWarnings("deprecation")

static PasswordEncoder createDelegatingPasswordEncoder() {

 String idForEncode = "bcrypt";

 PasswordEncoder defaultEncoder = NoOpPasswordEncoder.getInstance();

 Map<String, PasswordEncoder> encoders = new HashMap<>();

 encoders.put("bcrypt", new BCryptPasswordEncoder());

 encoders.put("noop", defaultEncoder);

 encoders.put("SHA-256", new MessageDigestPasswordEncoder("SHA-256"));

 DelegatingPasswordEncoder delegatingPasswordEncoder =

 new DelegatingPasswordEncoder(idForEncode, encoders);

 �delegatingPasswordEncoder.setDefaultPasswordEncoderForMatches

(defaultEncoder);

Chapter 10 Spring Security

343

 return delegatingPasswordEncoder;

}

As you can see from the preceding snippet, we’re encoding all passwords with

bcrypt. We have defined a custom set of methods for decryption including bcrypt,

SHA-256, and plaintext (coded as noop). We’ve chosen to restrict our list to these three

rather than the default Spring PasswordEncoderFactories which includes ldap, MD4,

MD5, noop, pbkdf2, scrypt, SHA-1, SHA-256, and sha256. To use it we can inject

the @Bean into our code that uses the PasswordEncoder like so.

Listing 10-32.  Injected @Bean for PasswordEncoder

@Bean

public PasswordEncoder passwordEncoder() {

 return DefaultPasswordEncoderFactories.createDelegatingPasswordEncoder();

}

Now we have a PasswordEncoder that is flexible enough to accept historic encodings

and is set up to allow for changes in the future to how passwords are stored based on the

ever-changing landscape of best practices for password storage. We’ve only scratched

the very surface of the power that exists in Spring Security. The subproject has support

for the simple like HTTP BASIC, Digest, and Form-based authentication to the more

complex like OpenID, JOSSO, and SSO using Central Authentication Service (CAS). It

has integrations which allow you to pull data from LDAP, Kerberos, and even Windows

NTLM. It offers functionality that you would expect for a security framework to provide

and with configurability at its core to modify to your heart’s content.

The most important thing about the preceding text is if you’re using anything standard or

best practice in the industry, Spring Security likely has you covered. If not, it is fully pluggable

and customizable to work with your particular custom authentication implementations.

10.5  �Next Steps
In our 11th and final chapter, we’ll look at some of the other projects that make up the

Spring ecosystem – not many of them, because there are many, many fully functioning

and useful projects that provide features to Spring, but these are some of the ones that

have caught our eyes recently.

Chapter 10 Spring Security

345
© Joseph B. Ottinger and Andrew Lombardi 2019
J. B. Ottinger and A. Lombardi, Beginning Spring 5, https://doi.org/10.1007/978-1-4842-4486-9_11

CHAPTER 11

Next Steps
By now, we’ve read about Spring and Dependency Injection, along with topics like web

services (particularly REST services), transaction, persistence, and security. These are

likely to be the “most important” parts of the Spring ecosystem, generally speaking, but

we’ve barely scratched the surface of the Spring ecosystem itself, much less projects that

use Spring without being part of the Spring project.

In this chapter, we’d like to look at some of the things programmers will possibly

run into in the real world. It’s very far from complete; a book covering everything would

take up multiple volumes and, in the end, be incomplete: new projects and features are

developed all the time.

Note that this chapter has no code to speak of. This chapter isn’t trying to

demonstrate features, even with limited scope; here, we’re merely pointing out some

interesting projects in the wider Spring ecosystem. As such, they tend to be things the

authors noticed as being interesting or relevant in some way, and that we thought might

spark readers’ interest as they develop their own projects.

11.1  �Spring WebMVC.fn
In Chapters 6, 7, and 10, we looked at using WebMVC, Spring’s project for creating HTTP

endpoints. WebMVC isn’t your only option for creating endpoints, even in Spring, but

one new project, called “WebMVC.fn,” can make creating a web front end even easier.

An example showing WebMVC.fn can be found at https://github.com/spring-

tips/webmvc-fn – it’s still under development, but it provides a “Domain-Specific

Language” for creating controllers. You’d declare a Component of some kind with

methods that return ServerResponse objects – much like we do today with WebMVC.

https://github.com/spring-tips/webmvc-fn
https://github.com/spring-tips/webmvc-fn

346

A Domain-Specific Language – or DSL – is a language or subset of grammar
specialized for a specific application domain.

Languages like Java are very generalized, but code written in Java can target
specific domains quite easily; you can, for example, create an abstraction of a
Door that understands how to open or close itself.

However, you’re still expressing the actions in Java. Opening and closing doors
is a fundamentally simple process to model, but consider simulating electronic
signals as an example; it’s easy to write Java code to express concrete electronics
concepts, but to an engineer, the Java code would have all kinds of extra
information that the engineer wouldn’t need and might not understand.

A DSL, on the other hand, is usually designed to fit the problem space it describes
very tightly, and an engineer would ideally be able to read an “electronics DSL”
without having to deal with very much of the underlying programming language
being used.

Popular examples of DSLs for the JVM include Gradle (which uses a DSL for
building projects, as we’ve seen through the entire book), JavaFX, and Processing
(see https://processing.org/). There are, of course, many, many more –
including WebMVC.fn itself. But you knew that, because we started off by
describing WebMVC.fn as a DSL!

Instead of mapping the endpoints in the Component, though, you’d create another

bean, of type RouterFunction<ServerResponse>, which has a convenient fluent API for

creating endpoints for handling GET requests, POST requests, filtering, and so forth.

Listing 11-1 shows the WebMVC.fn sample project.

Listing 11-1.  WebMVC.fn route configuration example

@Bean

RouterFunction<ServerResponse> routes(PersonHandler ph) {

 var root = "";

 return route()

 .GET(root + "/people", ph::handleGetAllPeople)

 .GET(root + "/people/{id}", ph::handleGetPersonById)

Chapter 11 Next Steps

https://processing.org/

347

 .POST(root + "/people", ph::handlePostPerson)

 .filter((serverRequest, handlerFunction) -> {

 try {

 log.info("entering HandlerFilterFunction");

 return handlerFunction.handle(serverRequest);

 }

 finally {

 log.info("exiting HandlerFilterFunction");

 }

 })

 .build();

}

It takes a little bit of getting used to, in part because Java isn’t quite as flexible for creating

domain-specific languages as programming languages like Scala, Kotlin, or Groovy, so the

DSL isn’t quite as clean as it might be – it’s going to have Java-isms like lambdas, method

references, and concrete type declarations, as you can see from Listing 11-1.

However, WebMVC.fn does allow you to centralize the endpoint configuration. If

you have 17 different classes that are serving as Controller objects today, WebMVC.

fn would allow you to change them back to ordinary Component classes – and have one

location for configuration of all of the endpoints, instead of forcing a programmer to

chase down which of those 17 classes actually provides a specific endpoint.

Is this a worthy goal? Honestly, yes (or, well, “maybe”); a good design will allow

you to easily map between an endpoint and a specific Controller, but having the

Controller objects handle their own endpoint construction means that they have a

wider visibility to the grand design and deployment of the application than perhaps

they should.

It’s a minor design decision, in the end (after all, WebMVC works now, and you

can manually register endpoints just as WebMVC.fn does, just with more code and in

idiomatic Java), but it’s still a neat idea. You can still accomplish similar things without

WebMVC.fn (by registering the endpoints in a central location, but without WebMVC.

fn’s DSL), but the DSL makes it far more convenient than it otherwise might be.

As usual, Spring provides flexibility such that you can design your application in

nearly any fashion you would like.

Chapter 11 Next Steps

348

11.2  �Spring Reactive
Reactive programming is easily summarized as “programming with asynchronous data

streams.”1

We’ve seen example code where streams were preferred to traditional loops and

other such iterative mechanisms (in particular, in Chapters 3, 8, and 9) – the primary

difference between traditional streams and reactive streams is that reactive code tends to

have asynchronous datasources, so there’s typically not an explicit end to the stream.

In a traditional streaming model, there’s a data collection phase – where you’re

getting a list of Artist or Song instances – and when you have all of those instances, then

you can process them. Retrieving the instances is a blocking operation and represents a

place in your code that cannot progress until the blocking operation completes.

On the other hand, reactive programming is asynchronous, as we stated: we

might indicate that we want to get a list of instances, and when they are available,

do something with them. We don’t block execution of the code while waiting for the

instances to come back from a data source; we set up something to handle the instances

when they arrive, and exit.

In practice, this tends to yield some incredible performance gains, because a database

call (for example) might mean a 10-millisecond pause for a given thread; with reactive

programming, there is no pause at all. The thread can be used to do other things instead.

The cost, of course, is that you have to write your code to use reactive models. We’ve

been leaning that direction throughout the book, with the emphasis on lambdas and

streams, but for many Java programmers, this is still a somewhat new approach – even

though it was introduced with Java 8, in 2014.

With Spring 5, Spring provides a spring-webflux module that serves as nearly

a drop-in replacement for WebMVC. Spring Web Reactive adapts the concepts in

WebMVC and migrates them to a reactive model, including the option to specify inputs

and outputs that don’t necessarily have to block on input or output; you could use this

to provide a series of data points as they become available (like stock ticker prices) –

both as input and output – simply by changing the types from Artist, for example, to

Flux<Artist>.

1�”Reactive programming is programming with asynchronous data streams” is taken from
https://gist.github.com/staltz/868e7e9bc2a7b8c1f754, which summarizes reactive
programming quite well, despite some adult language that may not be perfectly appropriate for
some minors.

Chapter 11 Next Steps

https://gist.github.com/staltz/868e7e9bc2a7b8c1f754

349

If this sounds complex on first read, don’t worry – it isn’t very simple. However, if

you can write code to use WebMVC, it’s fairly easy to migrate to Spring Web Reactive

and add features and performance gains as you understand how to leverage the

reactive model.

There’s even a spring-boot-starter-webflux to allow easy usage with Spring Boot –

and if you’re going to work with Spring Reactive, this is probably the way you should go.

11.3  �Message Queues and Spring
A message queue is a form of asynchronous service-to-service communication.2 In a

queue architecture, there are three basic components:

•	 A host application like RabbitMQ (www.rabbitmq.com) or ActiveMQ

(https://activemq.apache.org/)

•	 A producer (something that sends messages to the host application)

•	 A consumer (something that retrieves messages from the host

application)

Note that a given service can be both a producer and a consumer, and that this is

actually quite common; also, a producer isn’t limited to one type of production, nor is it

limited to one type of consumption.

There are two primary message models in queueing systems: publish/subscribe

(or “pub/sub”) and point-to-point (or “PtP”).

The two models are different in how messages are delivered:

•	 In a pub/sub model, a message is delivered immediately to every

available consumer. This message stream is often referred to as being

a “topic” (and this is indeed how the Java Message Service refers to

pub/sub queues).

•	 In a PtP model, a message is distributed to one and only one

consumer, no matter how many consumers might be listening on a

given message stream; the message stream is also called a “queue”

2�This definition is shamelessly taken verbatim from https://aws.amazon.com/message-queue/ –
we wanted to write our own purely original definition but this one kept being better than
everything we came up with.

Chapter 11 Next Steps

https://www.rabbitmq.com/
https://activemq.apache.org/
https://aws.amazon.com/message-queue/

350

to differentiate it from a topic. How the messages are assigned

to consumers is up to the queue itself – but usually messages are

distributed in a “round robin” algorithm, meaning that messages are

usually evenly distributed among available listeners.

A chat room is a good example of a topic; a message from one person goes to every

other person who happens to be in the room when the message is sent.

An asynchronous logging service is a good example of a queue; a producer generates

a log message and sends it to the message service, where one of multiple possible

listeners retrieves the message and decides what to do with it.

As referred to earlier, Java has a standard specification for working with message queues,

called the Java Message Service (or “JMS”). JMS is like JDBC: the specification covers how

the API is used, but not how the API works. You’d use a JMS library for each given message

queue host; ActiveMQ has one, and RabbitMQ has one of its own. (For RabbitMQ, see

www.rabbitmq.com/jms-client.html for how to access RabbitMQ over JMS.)

Spring also has a module for working with JMS, spring-amqp; in particular, it

provides the JmsTemplate class as well as providing annotations like @JmsListener to

allow components to retrieve messages from a queue or topic with fairly little effort

(see https://spring.io/guides/gs/messaging-jms/ for more details). You still have

to configure the host connection, but after that, using a queue or topic is a matter of

using the JmsTemplate.send() method (although the JmsTemplate class is actually

extraordinarily flexible, and it’s quite possible you’d never use send() by itself, as there

are other methods that are likely to fit an exact scenario more completely).

RabbitMQ actually deserves some special treatment here.

Most messaging providers use version 1.0 of the Advanced Message Queueing
Protocol, or AMQP (www.amqp.org). RabbitMQ, however, by default uses AMQP
0.9, and the JMS client for RabbitMQ is designed to work with RabbitMQ’s
message service.

You have options, though: you can always install AMQP 1.0 as a plugin
for RabbitMQ, or you can use AMQP 0.9 directly from Spring, using a
RabbitTemplate as provided by the spring-rabbit dependency, which would
be a rough equivalent to the JmsTemplate as provided by the spring-amqp
module.

Chapter 11 Next Steps

http://www.rabbitmq.com/jms-client.html
https://spring.io/guides/gs/messaging-jms/
https://www.amqp.org/

351

Why would you use a message queue? They’re ideal for massively scaled and

transactional asynchronous operations; consider bank transactions as an example.

Normally, when you create charges against your bank account, the bank stores a set of

operations (withdrawals and deposits) and posts them at a specific time; since message

queues can be transactional, failures can be reprocessed until they’re successfully

handled. In addition to making a complex architecture fairly simple to work with (as

processes have simple inputs and outputs), the transactional nature of consumption in

PtP scenarios makes the code safe.3

11.4  �GraphQL
In Chapter 6 we mentioned REpresentational State Transfer, or REST, which is a

common and popular way to work with data models over HTTP. REST is usually pretty

simple; the hardest thing about REST is creating endpoints that make sense from an

external API’s perspective. (Another thorny problem is how to handle versioning of

endpoints, for when things change and yet you still need to support the “old way.”)

For example, do we access Song instances through their Artist reference or by

title? It makes more sense to use song titles, because a given song title might be used by

multiple artists… but how, then, do you refer to songs created by a specific artist? We

have answers that satisfy us for the sake of this book, of course, but in more complex

models, questions like these can be less easy to answer.

Also, REST endpoints tend to be fairly coarse; if you request a Song, you’re typically

going to get every attribute of that Song, whether the request needs it or not. You

can obviously tune the output of a REST request such that it does not contain every

attribute (as we do when we create the autocompletion services), but usually creating

a projection4 involves creating extra object classes to represent the projection, and that

ends up being a lot of work for most projects (even though projections can be far more

3�For topics, “safe” means slightly different things. If there are no listeners for a pub/sub topic,
the messages sent to the topic tend to vanish: imagine saying something in an empty room and
you’ll have an example of what would happen. There’s nobody to listen, so whatever you said will
be lost. With a queue, however, it’s more like a bulletin board; put a message on a bulletin board,
and a consumer will pick up the message when they come by.

4�A “projection,” if you aren’t aware, is a custom collection of fields, normally in the context of a
database query of some kind. If you were to request a name from one source and an account
balance from a different source, that’d be called a “projection.” Yes, this is awfully stuffy.

Chapter 11 Next Steps

352

efficient than returning large objects). It’s simpler just to return giant objects, even

though that can impact processing speed and network transfer time.

Is returning “giant objects” a bad thing? Well… as usual, it depends. If the objects
can be represented in serialized form in relatively little space, it probably doesn’t
matter, especially if it can be represented in a few thousand bytes.

A network packet – or segment, actually – is usually sized around 1500 bytes,
roughly 1400 of which are usable by applications; the remainder makes up
headers and other metadata for the packet. If the serialized form of an object fits
into one or two network packets, it’s probably not a big deal to not worry about
the extra data being transmitted.

Of course, if you’re handling millions of such requests and your data takes up two
network packets and you only need to transfer some of that data… maybe it’d be
cost-effective to trim the results down such that they’re slimmer.

Or, of course, one could look into libraries like GraphQL.

GraphQL (https://graphql.org/) is a query language and library designed to work

with APIs such that clients can actually define what attributes are requested and can also

specify that a graph of the data is to be returned.

In our music gateway example, we might have two endpoints to get an Artist and

every Song for that artist, if we wanted all of the related data. With GraphQL, we could

build a request that requested both sets of data (the Artist and related Song objects),

possibly only including specific attributes from both object types instead of everything.

Since it’s done with a query language, the API designer doesn’t even have to

anticipate ahead of time what fields should be included or what the resulting graph

should look like. (The consumer of the API, of course, has to be aware of what is being

returned; the consumer has to be aware of the data, but that’s why the consumer

specifies the nature of the data in the first place.)

The programmer simply defines what fields and objects might be available and then

uses the GraphQL library to handle the request’s inputs and outputs.

Since the query language is actually separated from the object model, it’s trivial to add

features to the endpoints without having to change client code; the clients would request

the data they need, and the presence of additional data in the API wouldn’t matter.

Chapter 11 Next Steps

https://graphql.org/

353

Does this mean, then, that programmers should toss out their musty and archaic

REST endpoints in favor of GraphQL?

Probably not. GraphQL is, like many other things, a useful tool; it implies that

clients have a certain responsibility in knowing what data is to be requested, and that’s

not always the case. In fact, one developer known by the authors has run into multiple

environments where GraphQL was used as “magic sauce” – only to rip it out and see

benefits across the projects. That doesn’t mean that GraphQL is bad – it only means

that GraphQL is a tool and, like most other tools, needs to be used in the appropriate

environment and conditions. Under those conditions, GraphQL can be very useful;

when those conditions aren’t present, it’s like the proverbial bicycle to a fish.

The Java library for GraphQL can be found at https://github.com/graphql-java/

graphql-java; there’s also a Spring Boot starter for GraphQL, at www.graphql-java-

kickstart.com/spring-boot/.

11.5  �Rivescript
It’s been a goal of programmers for at least 70 years to have computers able to converse

intelligently with humans; Alan Turing developed the “Turing Test” in 1950 as a measure

of how well computers could exhibit intelligent behavior, long before computers were

powerful enough to even try convincing conversation.

The first well-known (to your authors!) “conversation program” was ELIZA (see

https://en.wikipedia.org/wiki/ELIZA), written by Joseph Weizenbaum a full 16
years later, and it did so by recognizing key phrases and words and echoing them back

to participants. (Some consider ELIZA to have passed the Turing Test, but this tends to

rely on a naîve human as a participant; ELIZA’s pretty predictable, even over the course

of a single conversation.)

There have been other conversational programs – ALICE (www.chatbots.org/

chatbot/a.l.i.c.e/) comes to mind. ALICE uses a language for creating conversations,

called AIML (see www.pandorabots.com/docs/aiml-reference/ for more). We’ll look at

some AIML in a bit, for comparison purposes.

ALICE and ELIZA are interesting historically, but are they useful? The Magic 8-ball

says yes; it turns out that the requirements for having a conversation, even scripted, are

incredibly useful from a customer service perspective, regardless of industry.

Chapter 11 Next Steps

https://github.com/graphql-java/graphql-java
https://github.com/graphql-java/graphql-java
http://www.graphql-java-kickstart.com/spring-boot/
http://www.graphql-java-kickstart.com/spring-boot/
https://en.wikipedia.org/wiki/ELIZA
http://www.chatbots.org/chatbot/a.l.i.c.e/
http://www.chatbots.org/chatbot/a.l.i.c.e/
http://www.pandorabots.com/docs/aiml-reference/

354

For example, consider reporting a power outage; a program can easily navigate a

conversation about power outages, because most people report power outages in similar

ways (e.g., “My power is out! I live at…”).

When you have a pattern of conversation, you can write a script to navigate that

conversation and extract relevant information, something that a program can use just as

well as telemarketers can.

Telemarketers typically use literal scripts for their sales calls. They open with
a predetermined greeting and follow a script based on responses. In this,
telemarketers are basically acting as mechanical turks: they’re humans doing
exactly what a computer would do, just with different inputs and outputs…
although it should be noted that there are in fact ways for computers to understand
the spoken word as well as generate speech, so a computer can indeed replace
a human being in the telemarketing industry, given enough investment in the
scripting and interfaces for speech.

That means that you could create a workable script to take pizza orders, or respond

to inquiries about order statuses, or even respond to problem reports as with the earlier

power outages example.

The solution space for chatbots, as programs that converse with humans are called,

involves two core areas: one is the communication medium, and the other is the

conversation itself.

The medium might be Internet Relay Chat, or Twitter, or Slack, or Facebook, or even

SMS or a live telephone call; really, if you can imagine a way for a computer to receive or

send information, you can set a program to use it. It would then be a matter of handling

speech recognition or language recognition.

The conversation is a little trickier, because programmers have to anticipate the

variety and flexibility of input.

Imagine a greeting: one of your authors might say “Hey, y’all!” instead of “Hello,”

because he’s from Florida, while the other author might say “Greetings, person” because

he’s from California and he’s slightly odd.

Are these both greetings? After all, they’re not “Hello.” What’s more, if they are

greetings – and they are – what’s the appropriate response? To one, the appropriate

response might be “What up, yo?” while “Hi there, person!” might be appropriate

Chapter 11 Next Steps

355

for another; scripts have to consider whether to maintain context and tone in

their interactions. (If I’m ordering a pizza, “What up, yo?” might be okay, but if I’m

complaining about a broken water main, I don’t want to have my angry salutation to get

a flippant “How’s it going?” as a response.)

AIML is actually quite powerful, but there are alternatives, some of which

might fit a flexible chatbot implementation even better. One is called “RiveScript”

(www.rivescript.com).

Both AIML and RiveScript have a format based around call and response; you write

an expression that matches an input (such as “hello”) and then produce a response

(“hi there”). AIML uses XML or CSV to create a script, with the XML being much longer

but also much clearer.

Listing 11-2.  AIML script to say “hello” back to a user

<?xml version = "1.0" encoding = "UTF-8"?>

<aiml version="1.0.1" encoding = "UTF-8"?>

 <category>

 <pattern>HELLO</pattern>

 <template>Hi there!</template>

 </category>

</aiml>

RiveScript, on the other hand, uses a more freeform input format.

Listing 11-3.  RiveScript salutations

!version=2.0

+ hello

- hi there!

RiveScript also has support for context (it can sample words from input),

randomization of output, and calling subroutines to generate output based on input; as

such, it’s actually incredibly powerful. The scripting language is quite clear compared

to AIML’s XML or CSV formats (the CSV equivalent for the salutation looks like

0,HELLO,,,Hi there!,salutation.aiml), and the ability to call out to executable code

to generate or parse input is really convenient.

Chapter 11 Next Steps

https://www.rivescript.com/

356

RiveScript itself is a loose specification, and thus the conversations can be used

in many, many programming languages. A Java port of RiveScript can be found at

https://github.com/aichaos/rivescript-java, and there’s even a Spring Boot starter

(rivescript-spring-boot-starter) to help create a working RiveScript interpreter for

use in Spring Boot applications.

11.6  �What’s Next?
We hope you’ve enjoyed learning more about Spring. We’ve covered the basics of Spring,

including why it was written and why it still exists and how it still affects Java developers

today. We’ve also covered using Spring to serve content over the Web and how to interact

with multiple data sources; we’ve also addressed how to identify users and limit what

they can do based on their identities and roles. Lastly, we’ve started gently peeking

beyond the Web, persistence, and security to consider the wider Spring ecosystem.

Now it’s your turn: develop fascinating applications with Spring! Change the world

for the better, and tell the world what you’ve done and how you’ve done it. We’ll be

watching and cheering you on.

Chapter 11 Next Steps

https://github.com/aichaos/rivescript-java

357
© Joseph B. Ottinger and Andrew Lombardi 2019
J. B. Ottinger and A. Lombardi, Beginning Spring 5, https://doi.org/10.1007/978-1-4842-4486-9

Index

A
abstract ID getNonexistentId()

method, 287
Acegi security system, 313
Annotation, configuration

choose component, 62
CapLeadingNormalizer, 64–66
MusicService3.java, 67, 69
Normalizer, 63
@Qualifier, 63, 66
SimpleNormalizer, 64

@Component
abstract class, 51
ApplicationContext, 50, 53
testConfiguration(), 54
testMusicService(), 54
TestMusicService1.java, 52, 53

constructor (see Constructor injection)
managed objects, 49
wiring components (see @Autowired)
XML, 49

Annotation web application
build.gradle, 131, 132
dependencies, 131
directory structure, 131
FirstHelloServlet, 132, 133
hello1, 135
Jtwig template, 133
render() method, 134

servlets, Spring
AnnotationConfig

WebApplicationContext, 138
AnnotationContextListener, 136, 137
contextDestroyed() event, 137
contextInitialized event, 137
curl command, 139
ServletContextListener, 136
@WebServlet annotation, 139

Apache Tomcat, 122, 169, 170
Application, Greeter

ApplicationContext, 32
ByteArrayOutputStream, 31
GreeterTest, 31
OutputStream, 34
PrintStream, 31
test, 32, 33
XML file, 30

Artifact, 22
Authorization, 315
@Autowired

iterateOverModel() method, 60
MusicServiceTests

class, 57–59, 61, 62
MusicService2 class, 55, 56
NameNormalizer, 56, 57
Normalizer, 55, 56
populateService() method, 60
reset() method, 60

https://doi.org/10.1007/978-1-4842-4486-9

358

B
Band gateway, 37

build.gradle, 39
classes, 38
model

Artist class, 42, 43
immutable classes, 40
Song.java, 40, 41

music service
AbstractMusicService, 46–48
database, 49
getMatchingSongNames

ForArtist(), 49
interface, 44, 45
reset() method, 48
Resettable, 45

normalizer interface, 44
read, write operations, 38

Blocking operation, 348

C
Chatbots, 354
Common module

build.gradle, 126
directory structure, 126
GetSongsForArtistServlet, 129, 130
intermodule dependency, 127
transitive dependency, 127
VoteForSongServlet, 127–129

Constructor injection
@Autowired, 69
∗∗/∗.class, 71
@DataProvider, 72
<import>, 70
modules, 70

MusicService4.java, 74, 75
musicservicetest.xml, 70, 71
private final, 75
resource-pattern, 70, 71
TestConfigurationImport.java, 73, 74
TestMusicService4.java, 76

Container, 3, 35, 36
Context and Dependency Injection (CDI),

15, 121, 122
@ContextConfiguration

annotation, 53, 81, 117
CORS requests, 152
curl command line

application, 135, 139, 335–337

D
Data accessing

core observations, 225
JdbcTemplate.query() (see

JdbcTemplate.query())
MusicRepository (see MusicRepository)
MusicRepository.java, 224, 225
MusicService, 222
operations, 222
@Transactional (see @Transactional)

Database connections, Spring Boot
ArtistService

Artist class, 188–190
ArtistService.java

excerpt, 191, 192
Connection object, 191
implementation, 194–199
overloaded method, 192
services, 190, 191
testing, 200–205

data initialization

INDEX

359

application.properties, 185
data.sql file, 187
SQL commands, 184
user’s directory, 185

exceptional handling, 192, 193
MusicService (H2), 183, 184

Deadlock, 231
Dependency Injection, 1, 97

defined, 8
example (see J2EE Hello World)
J2EE, 8
JNDI container, 9
widget, 8

DisposableBean
interface, 108, 110, 115

doGet() method, 124, 133
Domain-Specific

language (DSL), 345, 346

E
@EnableWebSecurity, 322
Enterprise Java Bean (EJB), 4, 121
Entity and data models

application.properties, 219, 220
Artist.java, 217, 218
data.sql, 221
difference, 216
JdbcConfiguration.java, 222
memory, 219
schema-h2.sql, 220
Song.java, 218, 219

equals() method, 39, 100, 210
Error handling

GetArtistsExceptionController.java,
165, 166

ModelAndView object, 165, 166
RuntimeException, 164

F
findArtistById() method, 191, 232, 238

G
@GetMapping annotation, 148, 154
getServletConfigClasses method, 159, 319
GlassFish, 122
Gradle, 20, 171

build.gradle, 24
gradle command, 25
installation, 21
Java plugin, 22, 23
Maven, 20
plugin-based system, 22
settings.gradle, 23
TestNG, 25

GrantedAuthority, 323
GraphQL, 351–353

H
Hello World application

Gradle (see Gradle)
suffering-oriented, 18, 19

HelloWorldEJBImplementation, 13
Hello, World testing

Greeter interface, 26
GreeterTest, 26, 27
GreeterTest failure, 28, 29
HelloWorldGreeter, 28
TestNG, 29

HttpSecurityBuilder, 324

I
InitializingBean interface, 108–110, 115
InMemoryUserDetailsManager, 322

Index

360

J, K
J2EE Hello World

EJB, 9, 10
client code, 11, 12
home object, 10
implementation, 11

Spring’s vision
HelloBean, 14
HelloWorldBean, 12
HelloWorld client, 13
HelloWorldImplementation, 13

Jakarta EE
GlassFish, 122
servlet API

HTTP, 123, 124
javax.servlet.Filter, 123
service() method, 123, 124

web applications, 125
Java bean, 4
Java, configuration

ApplicationContext, 84
ClassPathXmlApplicationContext, 86
MusicServiceRunner, 86, 87

@Autowired, 87, 88
@Bean, 85, 86
constructor injection, 89, 90
lifecycle

configuration class, 117
@ContextConfiguration, 117
HasData, 117
TestLifeCycle07.java, 117, 118

@Qualifier, 88, 89
static, 84
testing, DataProvider, 91

runMethod()
method, 91

TestMusicService10.java, 92–94

Java EE API, 15
Java Message Service (JMS), 121, 350
Java Persistence API (JPA), 261
Java 2 Platform, Enterprise Edition (J2EE)

application design, 2
container, 3
distributed architectures, 4
EJB, 4, 5
real applications, 2
without EJB

Spring, 7
themes, 6
Widget, 7
XML, 7

Java virtual machine, 97, 193
JdbcTemplate, 207, 208
JdbcTemplate.query()

getMatchingArtistNames(), 228
MusicRepository, 227
RowMapper, 226
SQL query, 226
traditional Java form, 226

JmsTemplate.send() method, 350
JPA project, Spring Data

application.properties, 298
Artist.java, 293
ArtistRepository, 295
ArtistRepositoryTests, 298, 299
build.gradle, 291, 292
@EntityScan annotation, 298
Hibernate, 291
JpaConfiguration, 296, 297
MusicService, 295, 296
MusicServiceTests, 299, 300
Song.java, 294
SongRepository, 295
SongRepositoryTests, 299
@SpringBootConfiguration, 297

INDEX

361

JSR-250 annotations, lifecycle
beans with scopes

@Scope, 110, 111
TestLifecycle01 class, 111, 113

calling methods
javax.annotation-api artifact, 113
TestLifeCycle06.java, 113, 114
TestLifeCycle07.java, 115, 116

constructors, 113
jtwig-spring package, 161

L
Lifecycle

ConfigurableApplicationContext, 107
constructor, 103, 105
Dependency Injection, 97
destroy-method, 105, 106
init-method, 105, 106
Java virtual machine, 97
listeners, 108–110
scope

beans, 101
build.gradle, 99
HasData, 99, 100
project directory, 98
prototype, 98
singleton, 98
test, 102, 103

test method, 107
Lombok, 209

annotation processor, 210
annotations, 211
Artist.java, 212–215
boilerplate Java code, elimination, 210
getName() method, 210
setName() method, 215

Lotus 1-2-3, 2

M, N
Message queue

asynchronous logging service, 350
asynchronous operations, 351
components, 349
JMS, 350
models, 349

Microcontainers, 169
MockMvc class, 149
Model view controller (MVC)

configuration
GatewayAppInitializer, 159, 160
GatewayAppWebConfig, 160, 161
Jtwig, 161

controller, 146
endpoint

getSongsByArtist method, 154
GetSongsController, 153–158
@PathVariable, 155
@RequestParam, 154
URLDecoder class, 156

Hello world
build.gradle, 146, 147
directory structure, 146
@GetMapping, 148
GreetingController, 147–149
String, 148

model, 145
REST

base URI, 150
HTTP methods, 150–152

templates and models
Jtwig templates, 162, 163
ModelAndView class, 163
Model class, 161, 162
ModelMap class, 163

view, 145

Index

362

MongoDB project, Spring Data
Artist.java, 303, 304
ArtistRepository, 305
ArtistRepositoryTests, 309
build.gradle, 302, 303
directory, 302
MongoConfiguration, 307, 308
MongodDBRunner, 308, 309
MusicService, 306, 307
MusicServiceTests, 310, 311
Song.java, 304, 305
SongRepository, 305, 306
SongRepositoryTests, 310

MusicRepository, 232–237
Artist object, 238
@BeforeMethod, 242
findArtistById() method, 238
internalGetSong() method, 239
intFindArtistByName(), 237
KeyHolder, 238
MusicRepositoryTest.java, 240–242
PreparedStatementCreator, 238
@SpringBootTest, 243

O
OAuth, 315
OAuth 2.0 login

authentication, 340
OAuth2LoginConfigurer class, 339
oauth2Login() method, 340, 341
spring-security-oauth2-client, 339

P, Q
PasswordEncoderFactories, 342, 343
@PostConstruct, 113
PostgreSQL, 3
@PreDestroy, 113

R
RabbitMQ, 349, 350
@ResponseStatus(HttpStatus.NOT_

FOUND), 193
REST application, secure

authentication, 336, 337
bootRun, 338
curl command, 335
directory structure, 332
GatewaySecurityConfig.java, 337, 338
getSongById method, 335
Gradle command, 334
HttpSecurity, 338
@RestController, 334
@SpringBootApplication, 333
spring-boot-starter-security, 333, 336

REST Endpoints
ArtistController, 244–246
ArtistControllerTest.java, 248–253
ArtistNotFoundException, 248
findArtistByName(), 246, 247
SongController, 254, 255
SongControllerTest.java, 255–259

RiveScript
AIML, 355
ALICE program, 353
ELIZA program, 353
Java port, 356
scripting language, 355

S
saveArtist() method, 199
Security, customization

configure() method, 330
directory structure, 327
GatewaySecurityConfig.java, 328–330
HomeController, 330, 331

INDEX

363

login/logout routes, 328
login template, 331, 332

Servlet filter mechanism, 317
ServletRequest interface, 123, 129
Spring Boot

application, 173
configuration, 179, 180
database connections (see Database

connections, Spring Boot)
defined, 169
directory structure, 208
Hello, 175, 176
project setup

build.gradle, 171, 172, 208, 209
directory structure, 171, 208
spring-boot-starter-jdbc, 209

static content, 180–182
testing, 176–178
transport object, 173–175

@SpringBootApplication
annotation, 172, 179, 333

spring-boot-starter-jdbc, 183, 209
spring-boot-starter-webflux, 349
spring-core library, 1
Spring Data

CrudRepository<T,ID>>, 262, 263
findAllArtistsByName(), 263, 264
JPA, 261
project structure

common code (see Spring Data
common code)

directory with POSIX, 265, 266
jpa project (see JPA project, Spring

Data)
mongodb project (see MongoDB

project, Spring Data)
test project (see Spring Data test

project)

proxies, 262
Repository<T,ID>, 262–264

Spring Data common code
BaseArtist, 269, 270
BaseArtistRepository, 271

attribute entity, 274
IgnoreCase, 274
modifier, 273
operators, 274
optional entity, 274
optional ordering, 274
query type, 273

BaseEntity, 269
BaseMusicService, 277–280
BaseSong, 270, 271
BaseSongRepository, 275, 276
build.gradle, 268
CrudRepository, 271, 272
dependency management, 268
PagingAndSortingRepository(), 273
Querydsl, 275
UML class diagram, 267
WildcardConverter, 276, 277

Spring Data test project
BaseArtistRepositoryTests, 282, 283
BaseMusicServiceTests, 287–290
BaseSongRepositoryTests, 284–287
build.gradle, 281
compile dependency, 281

Spring reactive, 348, 349
Spring security

configuration
ADMIN-based

privileges, 326
build.gradle, 316
directory structure, 315
encoder method, 323
GatewaySecurityConfig.java, 320, 321

Index

364

GatewaySecurityWebApplication
Initializer, 317, 318

getServletConfigClasses, 319
.httpBasic(), 325
HttpSecurity, 324
JdbcUserDetailsManager, 323
Jtwig, 320
login page, 325
methods, 324
springSecurityFilterChain, 317
WebMvcConfigurer, 327
WebSecurityConfigurerAdapter, 322

customizing (see Security,
customization)

libraries, 314
Spring security 5

DelegatingPasswordEncoder, 342
bcrypt, 342, 343
@Bean, inject, 343
custom, 342, 343
decryption, 343

reactive support, 341
Spring Web, 145
spring-webflux module, 348

T, U, V
TestArtistController class, 200
@Transactional

deadlock, 231
defined, 228

isolation, 229, 230
propagation, 229
rollback, 231

transform() method, 64

W
WebMVC.fn

controller objects, 347
DSL, 345
route configuration, 346, 347

X, Y, Z
XML, configuration

AbstractTestNGSpringContextTests, 77
<bean/>

attributes, 77, 78
MusicServiceTests, 79

<constructor-arg />, 82–84
<property />

attributes, 80
@ContextConfiguration, 81
MusicService, 80
tests, 81, 82

XML, spring context
application

build.gradle, 140, 141
directory structure, 140
Gradle, 143
testing, 143
XmlWebApplicationContext, 141–143

Spring security (cont.)

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: History and Justification
	1.1 Setting the Stage for Better Development
	1.2 Rod and Juergen Change the (Java) World
	1.3 The Lever: Dependency Injection
	1.3.1 J2EE Hello World, as of 2005
	1.3.2 Spring’s Better Vision of Hello World

	1.4 Spring Breaks Free and Fixes Java EE
	1.5 Next Steps

	Chapter 2: Hello, World!
	2.1 A Simple Application
	2.1.1 Suffering-Oriented Programming

	2.2 Building
	2.2.1 Installing Gradle
	2.2.2 Building the Project

	2.3 Testing
	2.4 A Simple Application with Spring
	2.5 Next Steps

	Chapter 3: Configuration and Declaration of Beans
	3.1 The Container
	3.2 The Sample Application
	3.2.1 The Code for the Band Gateway
	The Build
	The Model
	The Normalizer Interface
	The Music Service

	3.3 Configuration Through Annotation
	3.3.1 Declaring a Spring Bean with @Component
	3.3.2 Wiring Components Together with @Autowired
	3.3.3 Choosing Components with @Qualifier and Bean Names
	3.3.4 Constructor Injection with Annotations

	3.4 Configuration Through XML
	3.4.1 Declaring a Bean with <bean />
	3.4.2 Wiring Components Together with <property />
	3.4.3 Wiring Components Together with <constructor-arg />

	3.5 Configuration Through Java
	3.5.1 Declaring Components with @Bean
	3.5.2 Using a Programmatic Configuration for ApplicationContext
	3.5.3 Wiring Components Together with @Autowired with Static Configuration
	3.5.4 Using @Qualifier to Select Specific Components for Wiring
	3.5.5 Constructor Injection with Static Configuration
	3.5.6 Testing Every Configuration with a DataProvider

	3.6 Next Steps

	Chapter 4: Lifecycle
	4.1 Introduction of Lifecycle
	4.1.1 Scope
	4.1.2 Calling Constructors
	4.1.3 Calling Methods After Construction and Before Destruction
	4.1.4 Lifecycle Listeners

	4.2 Lifecycle with JSR-250 Annotations
	4.2.1 Annotated Beans with Scopes
	4.2.2 Constructors with Annotated Classes
	4.2.3 Calling Methods After Construction and Before Destruction

	4.3 Lifecycle with Java Configuration
	4.4 Additional Scopes
	4.5 Next Steps

	Chapter 5: Spring and Jakarta EE
	5.1 Introduction to Jakarta EE
	5.1.1 The Servlet API
	5.1.2 Modern Web Application Design Principles

	5.2 Module Structure
	5.2.1 The Common Module
	5.2.2 The Annotation-Based Web Application
	Our First Standalone Working Servlet
	Adding a Spring Context for Our Servlets

	5.2.3 The XML-Based Spring Context Application

	5.3 Next Steps

	Chapter 6: Spring Web
	6.1 Introduction to Spring MVC
	6.2 MVC
	6.3 Hello, World with MVC
	6.3.1 REST Concepts
	Using HTTP Methods Appropriately

	6.4 Developing Our First Endpoint with MVC
	6.5 Configuration
	6.6 Templates and Models
	6.7 Error Handling
	6.8 Next Steps

	Chapter 7: Spring Boot
	7.1 What Is Spring Boot?
	7.2 Setting Up a Project
	7.3 Checking the Foundation
	7.3.1 Building the Application
	7.3.2 Building Our Transport Object
	7.3.3 Actually Saying “Hello”
	7.3.4 Testing with Spring Boot
	7.3.5 Configuration in Spring Boot
	7.3.6 Static Content with Spring Boot
	7.3.7 Summary of the “Hello, World” Boot Mechanism

	7.4 Spring Boot and Database Connections
	7.4.1 Initializing Data with Spring Boot
	7.4.2 Building an ArtistService
	7.4.3 Handling Exceptions in Spring Boot
	7.4.4 The Actual Implementation of ArtistService and Its Little Controller, Too
	7.4.5 Testing Our ArtistController: Does It Work?

	7.5 Next Steps

	Chapter 8: Spring Data Access with JdbcTemplate
	8.1 Introduction
	8.2 Project Setup
	8.2.1 Lombok: Eliminating Boilerplate Code

	8.3 Our Entity and Data Models
	8.4 Accessing Data
	8.4.1 JdbcTemplate.query()
	8.4.2 @Transactional
	8.4.3 The Actual MusicRepository
	Testing MusicRepository

	8.5 Adding the REST Endpoints
	8.5.1 The ArtistController
	8.5.2 The SongController

	8.6 Next Steps

	Chapter 9: Persistence with Spring and Spring Data
	9.1 Introduction
	9.2 General Architecture
	9.2.1 An Important Note About Requirements

	9.3 Creating Our Project Structure
	9.3.1 The Common Code
	9.3.2 The chapter9test Project
	9.3.3 The chapter9jpa Project
	9.3.4 The chapter9mongodb Project
	9.3.5 Getting MongoDB
	9.3.6 The Code for the chapter9mongodb Project

	9.4 Tying Up Loose Ends
	9.5 Next Steps

	Chapter 10: Spring Security
	10.1 Introduction
	10.2 Configuration
	10.2.1 Customizing Your Security

	10.3 Securing a REST Application
	10.4 New in Spring Security 5
	10.4.1 OAuth 2.0 Login
	10.4.2 Reactive Support
	10.4.3 DelegatingPasswordEncoder

	10.5 Next Steps

	Chapter 11: Next Steps
	11.1 Spring WebMVC.fn
	11.2 Spring Reactive
	11.3 Message Queues and Spring
	11.4 GraphQL
	11.5 Rivescript
	11.6 What’s Next?

	Index

