
www.allitebooks.com

http://www.allitebooks.org

Blender 2.5 Character
Animation Cookbook

50 great recipes for giving soul to your characters by
building high-quality rigs and understanding the principles
of movement

Virgilio Vasconcelos

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Blender 2.5 Character Animation Cookbook

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: June 2011

Production Reference: 1130611

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849513-20-3

www.packtpub.com

Cover Image by Virgilio Vasconcelos (virgiliovasconcelos@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Virgilio Vasconcelos

Reviewers
Allan Brito

Martin Poirier

Acquisition Editor
Sarah Cullington

Development Editor
Hyacintha D'Souza

Technical Editor
Aaron Rosario

Project Coordinator
Joel Goveya

Proofreader
Aaron Nash

Indexer
Tejal Daruwale

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author

Virgilio Vasconcelos is an animator based in Brazil, who uses Blender as his 3D tool to
produce animations. He is also a university professor, teaching digital 3D and 2D animation
at Universidade Federal de Minas Gerais (UFMG). His specialties include character rigging
and animation, and his first tryst with Blender was back in 2003. He has worked as lead 3D
artist at Nitrocorpz Design Studio, and has several personal and commissioned productions
recognized by the Blender community, being awarded and nominated for artistic categories in
events such as Blender Conference and BlenderPRO.

You can watch his animations, read his blog and contact him at
http://www.virgiliovasconcelos.com.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgements

No book is the product of just the author—he just happens to be under the spotlight with his
name on the cover. The contribution of a number of people was crucial to bring this book to
fruition, and it would take far more space than I have available to thank each one individually.

A special note goes to Chaitanya Apte, Hyacintha D'Souza, and Joel Goveya from Packt
Publishing, without whom this book wouldn't exist. Thank you for believing in me, and for all
the wonderful guidance and professionalism throughout these months. You and the entire
Packt Publishing team did an outstanding job to help produce a high quality publication.

I must also thank the coding wizards who don't get tired of making Blender such an amazing
tool, which crosses the line of being just an open source graphics application to be a
respected tool by all CG professionals, regardless of its license. I'm grateful to people such as
Ton Roosendaal, the head of the Blender Foundation, who is the main man responsible for
what Blender has become; artists such as Bassam Kurdali and Nathan Vegdahl, from whom
I've learned a lot by studying their rigging approaches; and the active user community in
forums and discussion lists, such as blenderbrasil-dev in Google Groups. Aside from Blender
fellows, I'm also very thankful to the guys at Nitrocorpz Design Studio, where I gained more
experience and knowledge working on projects to write about in this book.

Along with all these people, a book isn't worth without a reader. If you're reading this now
I want to thank you and let you know that I've put a lot of effort into making something very
useful for you and your projects.

About the Reviewers

Allan Brito is a Brazilian architect, specialized in information visualization. He lives and
works in Recife, Brazil. He works with Blender 3D to produce animations and still images,
for visualization and instructional material. Besides his work with Blender as an artist, he
also has wide experience in teaching and researching about 3D modeling, animation,
and multimedia.

He is an active member in the Blender users community, writing about Blender 3D and its
development for websites in Brazilian Portuguese (http://www.allanbrito.com) and
English (http://www.blender3darchitect.com and http://www.blendernation.
com). Besides his two blogs, he has written three books about Blender, in both English
and Brazilian Portuguese, covering topics such as architectural visualization, mechanical
modeling, and general Blender guides.

To know more about the author, visit the website http://www.blender3darchitect.
com, where he covers the use of Blender and other tools for architectural visualization.

I want to thank my wife Erica for the support during the review of this book.

Martin Poirier is a software developer with a Master's Degree in Computer Graphics,
specialized in character animation and simulation. He's been involved with the FOSS Blender
project since early 2003, soon after its open source debut, working on plenty of things
here and there, but mostly on the transformation system. Lately, he has been developing
a distributed rendering solution for Blender animations.

Martin has reviewed and contributed to the official Blender 2.3 Guide. He is also contributing
to the wiki version of the Blender Manual (occasionally).

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt

•	 Copy and paste, print and bookmark content

•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

This book is dedicated to my love, Suryara, who brings so much happiness to my days;
and my mom and sister, Leonora and Letícia, who support me unconditionally

when I'm trying to draw with a computer.

This book would not have been possible without your love and understanding.

Table of Contents
Preface	 1
Chapter 1: Get Rigging	 5

Introduction	 5
Defining good orientations for your bones	 6
Using separate bone chains for different tasks	 11
Customizing shapes and colors for your bones	 18
Using corrective shape keys	 27
Making an IK-FK switcher	 33
Tips on weight painting your character	 40

Chapter 2: Rigging the Torso	 47
Introduction	 47
How to create a stretchy spine	 48
Rigging the pelvis	 56
Making your character breathe	 61
Controlling the neck and head	 63

Chapter 3: Eying Animation	 69
Introduction	 69
How to control where your characters look at	 69
The eyelids controllers	 74
Controlling the pupils	 82

Chapter 4: Poker Face? Facial Rigging	 91
Introduction	 91
Adding expressions using Shape Keys	 92
Face controls with lattices	 99
Creating the jaw controller	 105
Controlling your tongue	 109

ii

Table of Contents

Chapter 5: Hands Down! The Limbs Controllers	 113
Introduction	 113
Controlling fingers	 114
Creating IK legs with a three-pivot foot	 119
Stretch those limbs!	 127
Setting up the shoulders	 132
Cartoon bending for arms and legs	 135
Different spaces for IK hands	 139

Chapter 6: Blending with the Animation Workflow	 145
Introduction	 145
Animating in layers	 146
Changing between FK and IK in a shot	 153
Grasping and throwing objects	 157
Silhouette and mirrored rendering	 160
Tracking animation arcs	 164
Using video for background reference	 167
Working with linked assets and characters	 171
Non-linear animation	 177

Chapter 7: Easy to Say, Hard to Do: Mastering the Basics	 181
Introduction	 181
Adjusting and tracking the timing	 182
Spacing: favoring and easing poses	 186
Anticipating an action	 192
Using squash and stretch	 195
Breaking the symmetry	 200

Chapter 8: Shake That Body: The Mechanics of Body Movement	 205
Introduction	 205
Animating a tennis serve	 206
Heavy metal	 213
Glory for your team: kicking the ball	 220
Run, Forrest! (in cycles)	 225

Chapter 9: Spicing it Up: Animation Refinement	 233
Introduction	 233
It's time for secondary actions	 234
Hold, but not still: using moving holds	 238
Animating characters with appendages	 242
Like clay: refining with the AniSculpt technique	 247

iii

Table of Contents

Chapter 10: Drama King: Acting in Animation	 253
Introduction	 253
In the blink of an eye	 254
Walking with style	 259
Talking heads (and bodies)	 265

Appendix: Planning Your Animation	 273
Introduction	 273
Creating thumbnails with Grease Pencil	 273
Naming conventions	 276
Extremes, Breakdowns, Inbetweens, ones and twos	 277

Index	 281

Preface
This book offers clear, illustrative, and easy-to-follow recipes to create character rigs and
animations for common situations. Bring your characters to life by understanding the
principles, techniques, and approaches involved in creating rigs and animations; you'll
be able to adapt them to your own characters and films.

What this book covers
Chapter 1, Get Rigging—It's about the essential concepts and recipes you need to know before
creating the controllers for your character. Master them and you'll avoid lots of headaches in
the future.

Chapter 2, Rigging the Torso—Here we'll begin rigging our character's torso. It's a crucial set
of recipes where you'll learn how to control things such as the pelvis, the neck, and how to
stretch them in a cartoony way.

Chapter 3, Eyeing Animation—Here's a chapter dedicated to controlling our character's
eyes. The eyes are what our audience looks at the most, so we have to carefully create
good controllers for that part of the body.

Chapter 4, Poker Face? Facial Rigging—This chapter is dedicated to teaching you how to
enable our characters to talk and express their feelings through facial expressions.

Chapter 5, Hands Down! The Limbs Controllers—In this chapter, we'll see how to create all
kinds of controllers for arms, legs, feet, fingers, and shoulders.

Chapter 6, Blending with the Animation Workflow—It's time for animation, and in this chapter
we'll see some important concepts and techniques to get started on the right foot and
work efficiently.

Chapter 7, Easy to Say, Hard to Do: Mastering the Basics—Here we'll see some very important
principles of animation applied to our characters. These principles are crucial for virtually
every piece of animation you'll need to create.

Preface

2

Chapter 8, Shake That Body: The Mechanics of Body Movement—In this chapter we'll mix
everything we've learned until here and apply them to real world situations.

Chapter 9, Spicing it Up: Animation Refinement—Now that we have achieved proper
movement in our characters, it's time to take them to the next level with refinements.

Chapter 10, Drama King: Acting in Animation—Animators don't just move puppets around;
they make you believe the characters are alive. Here we'll see some recipes about why our
characters move, instead of how.

Appendix, Planning Your Animation—The Appendix talks a bit more about some concepts
related to animation and how you can prepare yourself to make the perfect shot.

Who this book is for
This book will be handy for those Blender users who already know the basics of adding,
modeling, and rendering objects within the program, but are eager to learn how to turn a
character's mesh into a more life like entity.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Select your entire bone, open the Specials menu
(press the W key), and choose Subdivide."

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "Open the file
001-Orientation.blend from this book's support files."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

Preface

3

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from
your account at http://www.PacktPub.com. If you purchased this book elsewhere, you
can visit http://www.PacktPub.com/support and register to have the files e-mailed
directly to you. Alternatively, the author also maintains a copy of the code on his website at
http://virgiliovasconcelos.com/blender-animation-cookbook/.

Downloading the color images of this book
We also provide a PDF file that has color images of the screenshots used in this book.
The high resolution color images will help you better understand changes in the output.
You can download this file from https://www.packtpub.com/sites/default/
files/3203OS_Color_Images.pdf.

The author also maintains a copy of the graphics as well as the other code files from this book
at http://virgiliovasconcelos.com/blender-animation-cookbook/.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you
find any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded on our website, or added to any list of existing errata, under the
Errata section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Preface

4

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Get Rigging

In this chapter, we will cover the following topics:

ff Defining good orientations for your bones

ff Using separate bone chains for different tasks

ff Customizing shapes and colors for your bones

ff Using corrective shape keys

ff Making an IK-FK switcher

ff Tips on weight painting you characters

Introduction
So, you've successfully modeled an awesome character in Blender. After hours of careful and
detailed work you have built a very appealing protagonist with a good topology for your next
animation, but there's an issue: how do we make it look more life like, and also, how do we
make it move?

Since a character model can be made of thousands of vertices, moving them individually
across the 3D space is virtually impossible. We need an easier way of moving our models,
and this way is called rigging.

Rigging is the process of creating a series of controls (the "Rig") to deform another object,
which is often a character mesh. It involves creating special objects that move selected
groups of vertices at once. This is the principle behind Skeletal Animation, where objects
called "bones" are used to control parts of our models.

Get Rigging

6

In Blender, there is a special object called Armature, which can be described roughly as a set
of related bones that are used to control a mesh. To use an analogy, bones are for armatures
as vertices are for meshes. Armatures can be added within the 3D View by pressing Shift + A
and choosing Armature | Single Bone on the menu. Similar to meshes, armatures also have
an Edit Mode accessible through the Tab key, where you can add, change, and remove bones
as you wish. Bones can also be linked, creating a chain of hierarchically related bones.

Rigging is often referred to as one of the most difficult subjects in 3D animation. When
creating a character rig, there are many aspects that you have to keep in mind, and two of
them should be observed as major guidelines:

ff The rig must be simple enough to be used by the animator

ff The rig must be complex enough to allow convincing movements for your characters

Finding an ideal balance between complexity of features and ease of use is the Holy Grail
of character rigging. On one hand, if a rig is too simple it can be harder for the animator to
give the character an "illusion of life". On the other hand, an extremely complex rig can be a
nightmare: the animator should not require a tutorial to be able to start posing a character. It
has to be straightforward enough to be used instinctively. Of course, a skilled animator should
be able to achieve an amazing piece of animation even with a very simple rig, but the job of a
character rigger is to make the animator's life easier.

Because every animation project has its own sorts of challenges and demands, there is no
absolute right or wrong way to build a character rig. What we will see here are best practices
that should apply to most situations. These recipes should be dealt with just as in a traditional
cookbook: feel free to add spice to suit your personal taste.

Defining good orientations for your bones
When creating rigs for 3D characters in Blender, there is one mistake that is probably
the most common of all, and it is also responsible for lots of headaches in the future:
the orientations of the bone chains.

Every time we have to create a bone chain to allow our character to do a specific movement,
some people (maybe in a hurry) often overlook this foundation of a good character rig. Since
our characters and its bones live in a three-dimensional space, everyone familiar with 3D
concepts should know that they are subject of the three world axes: X, Y and Z.

Along these concepts, we should be comfortable with the idea of "local" and "global"
coordinates. Global coordinates are the ones relative to the scene: every scene has its Up
or Down (Z axis), Left or Right (X axis), and Front or Back (Y axis) coordinates. Every object
in a scene also has its own, or local, coordinates to allow easier transformations. To make
an analogy with our world, "going East" would be the global coordinates while "turning right"
refers to your local coordinates.

Chapter 1

7

For instance, we should be allowed to bend a character forward regardless of its rotation and
position relative to the scene. This "bending forward" would be too difficult to achieve using
only the global coordinates; that's why we can use the local ones.

Getting ready
Using the concept of local coordinates, we have also to define some conventions such as
which axis we are talking about when bending "forward". We have to pay attention to the sane
organization of the bones, where a chosen local axis (for instance, local X) would be the same
for all "forward" transformations, be it a finger or a knee. The character Otto, which is used
throughout this book, uses the X local axis for the most common transformations, such as for
bending the elbows and knees, closing the fingers, or bending the torso forward. This makes
it easier to pose our character without having to worry about which axis you should use: if in
doubt, use X!

Here we'll see how to create and correct bone chains in order for them to be more coherent
and easier to manipulate.

How to do it...
Let's suppose you want a chain with three bones for a finger:

1.	 Open the file 001-Orientation.blend from this book's support files. You'll see a
hand model with four of its finger bones already set. I've let the ring finger for you to
rig, like in the next screenshot:

Get Rigging

8

2.	 Position your 3D cursor where the first finger bone should be created: select your
mesh, enter the Edit Mode (Tab), select a vertex or group of vertices at the base
of the finger and press Shift + S. Choose Cursor to Selected.

3.	 Go back to Object Mode (Tab), select the armature, enter its Edit Mode (Tab) and
press Shift + A to add a new bone under the cursor location.

In order to view better what we're doing, I've enabled the X-Ray
and Axes display modes, in the Properties panel, under the
Object Data tab.

Now you just move the tip of this bone until the finger's first joint and extrude the
bone two times, right? WRONG!

Extruding bones is just what one would normally do in order to create a bone chain,
but that brings to our new bones some unwanted rotations.

4.	 Select the tip of your bone and move (press the G key) it until the tip of the finger, as
seen in the next screenshot:

5.	 Select your entire bone, open the Specials menu (press the W key), and choose
Subdivide. Select one of the bones and repeat this process.

6.	 Move (press the G key) the joints to the appropriate places of the finger, and the
orientations will be consistent. Note that the X axis of each bone is always pointing
toward us, while the other bones on the hand have their Z axes pointing up. We need
them all consistent.

Chapter 1

9

7.	 Select the bones you have just created, press Ctrl + R, and type 90. This will correct
their rotations, making their Z axes point toward us (check the Axis conventions
section at the end of this recipe to know more about this).

8.	 Select the hand mesh, hold Shift, select a bone, and press Ctrl+ P. Choose With
Automatic Weights to get a basic deformation on the hand.

9.	 Now you can rotate the bones under their local X axis (R + X + X) to see what happens.

When you tell Blender to rotate (R), move (G), or scale (S) an
object, you can use some key modifiers to tell it in which axis that
transformation must happen. If you press X, Y, or Z one time, you're
telling it that one of these global coordinates must be used. If you
press the modifier key twice (X + X, Y + Y, or Z + Z) you're demanding
that the transformation happen regarding that local coordinate.

How it works...
When using a correct bone orientation upon its creation, you avoid the need to correct the
armature later. The orientation of the bones is often overlooked, and problems at this stage
will be painfully noticed on later stages, when the animator tries to move the bones in a
coherent way.

To demonstrate that, I've created the index finger bones with the usual "extrude" technique.
Let's say the animator wants to close the fingers: this should be accomplished by selecting
each bone and pressing R to rotate and X twice to select the local X axis. The next image
shows the results of the previous action with the bones hidden, to demonstrate how the
extruding technique on the index finger leads to unwanted results. We wanted to close the
finger, not twist it like that. An animator would have a hard time trying to figure out which
axis should be used for every finger. Talk about being counterproductive!

Get Rigging

10

There's more...
What if you have already created bone chains with this orientation disorder? Do you have
to recreate everything from scratch? No, there's hope for us all. This process is just to avoid
the need for correcting the bones later, by creating them with the right orientations from the
beginning. This means we can adjust the orientation by hand at any moment.

Correcting the orientation
You can always correct or define the orientation of a bone through its Roll value. In the
Armature's Edit Mode, select the bone(s) that you want to correct, press Ctrl + R, and move
your mouse. As with any transformation in Blender, you can use it along with Ctrl (to do it in
steps of five degrees) or Shift (to get softer transformations).

You can manually view and set the Roll angle of a bone through the Properties Panel
(press the N key), just below the Radius slider, as shown in the following screenshot:

Another shortcut for automatically correcting the Roll value is Ctrl + N, which tells Blender
to guess what the best roll angles are based on their Z axes, which will all point to the same
direction ("Up" or the cursor location).

Axis conventions
Another important thing to keep in mind when creating bones is axis conventions. It means
you should always set the "front" of a bone to a given axis. This "front" is the default axis for
a transformation, usually a rotation.

For instance, a humanoid character has some default movements, such as bending an elbow,
knee, or finger. The bones for all these parts point in different directions, but you can set their
roll values in a way that the animator's life becomes a little easier. A common approach is
setting the X axis of a bone as the default transformation angle, so when the animator wants
to bend and elbow, a knee, or a finger, it's just a matter of using the X local axis for that.

Chapter 1

11

There's no need to wonder "what local axis should I use for this transformation?". In the case
of our armature, we can select all the bones, press Ctrl + R, and type 90, so the bones' X axes
point at us in the Front view.

This way you get consistence throughout your rig, which is a must in professional workflows.
I've seen rigs where different fingers in a hand required a different default axes for bending.
A nightmare!

Rigify
A very cool way to add new bones and chains is by using the Rigify add-on which
comes bundled with Blender 2.5. You can enable it in the User Preferences Window
(press Ctrl + Alt + U), in the Add-ons tab.

With this add-on enabled you can add predefined bone chains for body parts or even a
full human body. The great advantage is that you don't need to worry about names or
orientations, since they come configured. You only have to worry about correctly adjusting
the preset chains to the proportion of your character mesh.

See also
Chapter 5: Controlling fingers

Using separate bone chains for different
tasks

A useful approach when building rigs is to create more than one bone chain to accomplish
different tasks. The idea behind this is to not overwhelm you with so many functions attached
to one single bone, making the rig easier to understand and modify.

It is useful to separate the bone chains by their main functions to make things easier to
manage: one chain that will only deform your character's mesh, one for creating Inverse
Kinematics (IK) controllers, another for Forward Kinematics (FK) controllers, interface,
helpers, and so on.

By creating them separately, you can make changes without breaking things in your rig. If you
stack all the functions and constraints on one single chain, a little change can make a real
mess. By separating them you can also make your rig more appealing and usable by defining
custom shapes, colors, and hiding bones that shouldn't be touched by the animator.

Get Rigging

12

Getting ready
You need a mesh to be deformed by the bones you'll create. Open the file 001-Chains.
blend from this book's support files. It contains a tail-like mesh so you can follow this recipe
to create separate chains, producing a scorpion-like movement.

How to do it...
1.	 Position the 3D cursor on the base of the tail, with a left mouse click in the 3D View,

as seen in the next screenshot:

2.	 Press Shift + A and select Armature | Single Bone to create one bone which extends
from the base to the tip of the tail. Enter in Edit Mode (press Tab), select its tip, and
move (press G) it to the tip of the tail.

Chapter 1

13

In order to better see the bones and their axes, go to the
Properties window, under the Object Data panel, and enable
the X-Ray and Axes properties.

3.	 Select the bone, press W, and select Subdivide. Repeat this two more times in order
to get eight bones. Select each joint and move (press G) it so it fits the tail nicely.

4.	 Select all the bones (the A key), press Ctrl + R, and type 90 so their orientation is set
with their X axes pointing towards us. The X local axis will be the default to the front or
back rotation.

5.	 Refer to the recipe called Defining good orientations for your bones if in doubt. You
should end up with something similar to the next screenshot, showing the front and
side views:

6.	 Still in Edit Mode, set the bones' names using the Properties panel (press the N key).
For their names, use a prefix such as D_, which stands for "Deformation". That's the
role of these bones: they're responsible for deforming our mesh. Good names can be
D_tail.1 to D_tail.8.

Get Rigging

14

In Blender versions prior to 2.5, finding the name of a bone in the list
displayed by the program could be a tough job, as seen in the next
screenshot. Using prefixes are crucial to help you find the desired bone
in a list and know its function without having to select it. With the arrival
of Blender 2.5, finding a bone (or any object) by its name is much easier:
just start typing in the appropriate field to narrow the selection options.

Now we're going to create the controller bone. This bone belongs to another "chain"
of bones responsible for controlling the deformation ones. The controllers don't
perform any mesh deformation by themselves. Although in this example this chain
has just one bone for the sake of simplicity, more complex rigs can easily have
dozens of them.

7.	 Still in the armature's Edit Mode, place your cursor just above the tip of the tail and
press Shift + A to add another bone. Press Ctrl + R and type 90 so that its orientation
is the same as the deformation chain ones. Define this bone's name as Tail. The
controller bones are usually named without prefixes in order to be friendlier to the
animator, who will look out for Tail instead of C_Tail.

Chapter 1

15

8.	 Disable the Deform option on the Bones tab in the Properties window, as seen in the
next screenshot, so this bone will not perform any deformations on the mesh:

9.	 Now we're going to add constraints to control our deformation chain. Go to the
armature's Pose Mode (press Ctrl + Tab). Then, select the bone Tail (which is the
controller one), press Shift and then select the bone on the tip of the deformation
chain, D_tail.8. Press Ctrl + Shift + C to bring up the Constraints menu and
choose Copy Rotation.

10.	 This will make the bone on the deformation chain copy the rotations of the controller
one, but you will notice that it will copy the absolute rotation (which is not what we
want). To make this bone copy the transformation based on its own rotation, select
it and go to the Bone Constraints panel, under the Properties window. Check the
Offset option and select Local Space on the two drop-down lists, as seen in the
next screenshot:

Get Rigging

16

11.	 Apply the same constraint to all other bones of the deformation chain: select them
and, lastly, the bone which has the constraint we want to copy. Go to the Pose menu
on the window header and select Constraints | Copy Constraints to Selected. That
will apply the same constraint to all bones of the deformation chain.

12.	 Still in Pose Mode, select the Tail bone and rotate it. You'll see that all the bones on
the deformation chain follow its rotation like a real tail, as seen in the next screenshot:

13.	 Since the animators wouldn't need to see or move the bones on the Deformation
chain, you should select and move (the M key) them to another (and invisible) bone
layer. I usually move my deformation bones to the last layer, so you can do the same
for yours. You should now also turn off the X-Ray option for this armature, since it's
no longer needed.

Chapter 1

17

14.	 Lastly, select the Tail mesh, hold Shift, click on one bone of the chain, press Ctrl + P,
and choose With Automatic Weight to make our armature object actually deform the
mesh, as seen in the next screenshot:

How it works...
By creating separate bone chains to accomplish different tasks, you end up with a very usable
and organized rig, which is easy to animate and to configure, since each bone does only what
is meant to do. This approach allows us to have a larger number of deformation bones to
achieve softer results while still being simple to animate, having fewer bones to be controlled
by the animator. This example showed how a scorpion-like tail can be controlled with only one
bone, although eight bones build its structure.

Get Rigging

18

There's more
The concept of separate bone chains will be discussed further throughout this book, notably
when creating different chains to control arms, legs, torso, face, and eyes.

Don't get tied up on those chains
As your rig grows in complexity, you should use the bone layers that Blender offers you to
manage the chains.

In some cases it is interesting to make a bone present on more than one layer. For instance,
you may want to keep your main controller bones (limbs, head, torso) only on layer 1 and leave
the detail controllers (facial expressions, fingers, eyes) on layer 2. But there are other bones
which act only to enable and disable features of your rig, such as the ability to stretch limbs
or switch between Inverse and Forward Kinematics (more about this in the recipe Making an
IK-FK switcher).

These "general rig properties" should be present on both layers 1 and 2. To accomplish that,
select the desired bone, press M to bring up the layer selection menu, hold Shift, and click on
all the layers that you want those bones to belong to.

And always remember to use prefixes for your chains in order to find what you want quicker.
You can use D_ for deformation bones, IK_ for Inverse Kinematics bones, FK_ for Forward
Kinematics chains, T_ for target bones, M_ for mechanism, and so on. There's more on these
uses in later recipes.

See also
Chapter 3: Controlling the pupils

Chapter 4: Creating the jaw controller

Chapter 5: Controlling fingers

Customizing shapes and colors for
your bones

Not only do we need to create rigs that work, but they also need to be usable for the animator.
Blender offers us a property for the bones called X-Ray, that allows us to view the bones
from any angle, regardless of the mesh it deforms. It can be useful sometimes, notably when
editing the bone chains, but using X-Ray in more complex rigs can confuse the animator. Take
a look at the clutter in the next screenshot, where all bones of our character Otto are visible
and with X-Ray enabled:

Chapter 1

19

As we mentioned at the beginning of the chapter, a rig must be visually simple and intuitive,
so anyone without prior guidance can start moving the character without trouble. It is possible
to change the default shape and color of your bones in Blender, making your rig much more
usable and intuitive.

Getting ready
Creating custom shapes and colors for your bones in Blender is easy, and we'll see some
good practices for your rigs. You can use any chain of bones in Blender.

Get Rigging

20

How to do it...
1.	 Open the file 001-Legs.blend. It has two chains of three bones indicative of two

legs of a human, as you can see in the next screenshot. We're going to make shapes
for all the bones, and we'll make the bones of each leg a different color:

2.	 In Object Mode, create a single plane through Shift + A | Mesh | Circle. On the
Operator tab, in the Tool Shelf (press the T key to open it), change the values of
Vertices to 8 and Radius to 100.

Chapter 1

21

3.	 In the Properties panel (press N), set the name of this object as SHAPE_Leg. Get in
Edit Mode (press Tab), select the two vertices positioned over the X axis, and make
an edge (F) between them. This would make a line to divide the octagon in half,
similar to the one in the next screenshot:

4.	 Go back to Object Mode (Tab) , select the armature, and enter into Pose Mode
(Ctrl + Tab).

Get Rigging

22

5.	 Select Thigh.L and go to the Bone tab in the Properties window. Under the section
Display, click on the field called Custom Shape and select SHAPE_Leg. Check the
box called Wireframe, which will make your custom shape always be drawn in a more
pleasing way, regardless of your current viewport shading. The next screenshot shows
these fields:

You'll see that your bone will change from the default octahedron to the shape you
just created. But you'll also notice that the rotation and position of the shape don't
help much, since we need it at the middle of the bone and perpendicular to its
direction. The next screenshot shows the problem:

Chapter 1

23

If you don't see the shapes after this step, go to the Object
Data tab under the Properties window and make sure that the
boxes Shapes and Colors are enabled.

6.	 Select your shape object again, enter in Edit Mode (Tab), select all the vertices (A),
and rotate (R) them 90 degrees in the local X axis. You'll see that the bone shapes
update automatically. To fix the position, making the shape stand about half of the
bone, move (G) the selected vertices in their local Y axes until you are happy with the
result. Still in Edit Mode, resize (S) the shape to achieve a reasonable size in your rig.
The next screenshot shows the result:

7.	 Now you can use the same shape for the Ankle.L bone, using the Display section in
the Bone tab under the Properties window.

Get Rigging

24

8.	 Repeat the same process and create another shape for the Foot.L bone: be
creative and make a bi-dimensional shape of a foot. Name it SHAPE_Foot.L Repeat
everything for the other leg and you should end up with something similar to what's in
the next screenshot (I've created a simple character mesh to make it easier to see):

Now, the colors! We can use them to distinguish the bones in various ways: a color for
the left limbs and other for the right ones, a color for IK and other for FK and so on.
The important here is to make it easier for the animator to visually understand the
difference between bones. Let's make the left ones red and the right ones green.

9.	 Select the left leg bones and press Ctrl + G. Choose Add Selected to Bone Group.
This will create a new group of bones called just Group.

10.	 Go to the Properties window and select the Object Data tab. Under Bone Groups,
you'll see a group called Group. Select it and change its name to Leg_Left on the
Name field.

Chapter 1

25

11.	 Under the Color Set list, select 01 – Theme Color Set and click on the Assign button
to make these bones red. Repeat the task for the bones on the right-hand side leg,
choosing an appropriate name and selecting the entry 04 – Theme Color Set to
make them blue.

The next screenshot shows our rig with shapes and different
colors applied along with the settings on the Properties
window (the color images can be downloaded from the
publisher's website or viewed in the digital version of this
book). The file 001-Legs-complete.blend has our
finished recipe for your reference.

How it works...
By setting custom shapes and colors for your bones, you can offer a much more intuitive
interface for your controls, making the task of animation easier. You should create shapes
that are larger than the mesh deformed by the armature, so that you can see the bones
without using the clutter caused by the X-Ray property.

Get Rigging

26

You should look for shapes that are simple and that show information about the control. In
our example, we created an octagon with an edge through its middle. This edge shows visually
the local X axis of the bone, making it easier for the animator to understand the default
transformation of it. Feet, hands, and eyes controllers are often made using figurative
shapes similar to the one in this example.

There's more
Along with getting an organized 3D View, you should also be able to easily manage your entire
scene. Blender has a special type of window, the Outliner, which allows us to see every object
in our scenes organized hierarchically. But the Outliner alone doesn't do all the tricks: you
have to create and name your objects properly in order to stay organized.

Pay attention to the Outliner
The Outliner is a great tool in Blender to see the hierarchy of objects in your file. But when
you create a rig with lots of custom shapes, the Outliner list can easily become full of objects
you won't use. To remove the clutter of it, it's recommended to create an object (normally an
"Empty" named "Shapes") to be parent of all Shape objects. This way, you can easily browse
on the Outliner without dozens of shape objects. It's also useful to make this Empty object
child of the Armature object, so all shapes are hierarchically related to the rig.

To prevent these objects from showing up in your render, a good practice is to select them all
(A), move (M) them to the last layer and hide (H) them from your scene. The next screenshot
shows the Outliner of this recipe's scene. Notice that the shapes are hidden (the disabled
"eye" icon) and will not be rendered (the disabled "camera" icon):

See also
Chapter 1: Get Rigging

Chapter 1

27

Using corrective shape keys
The ability to create bones that deform a mesh is great, but that alone doesn't solve all our
rigging problems. Some may argue that it's possible to create perfect deformations in every
movement of your character just with lots of extra bones and even more detailed weight
painting, but that's too time consuming. We want our rigs ready to be animated in a short
amount of time. We care about our character looking good on screen, not the purity of
the technique.

That's why we can solve some trickier rigging problems with corrective Shape Keys. Shape
Keys are saved states of our character's mesh, with the position of each vertex stored in
the computer's memory. We're going to create some custom deformations in our character
to correct specific issues caused by our rig. The example will take care of one of the most
common source of deformation problems: the bending of arms.

Getting ready
Open up the file 001-ShapeKeys.blend from this book's support files. You'll see an arm
with two bones already set to deform the mesh. Try rotating the forearm on its X local axis for
130o. You'll notice that the vertices located near the elbow don't deform like a real arm would:
there are noticeable intersections and the biceps should be contracted.

Even with the feature called Preserve Volume in the Armature modifier panel that uses the
dual quaternion method to deform meshes in a more realistic way, some things such as
muscles and specific skin deformations still need to be fixed manually. We're going to create a
Shape Key here to act as the extreme deformation of this mesh when the character bends its
arm to the maximum angle of 130o. Look at the next screenshot to see the before (left) and
after the driven corrective Shape Key, where the biceps muscle gets contracted and the skin
gets compressed between the arm and forearm.

Get Rigging

28

How to do it...
1.	 Keep the forearm bone rotated on its X axis for 130o. Select the mesh and enter Edit

Mode (Tab). You'll see that the arm goes back to its original position, as seen in the
next screenshot:

We can tell Blender to keep the armature's deformation on the mesh while we edit its
vertices, so that it's easier to create the corrective Shape Key.

2.	 Go to the Modifiers tab under the Properties window and locate the armature
modifier. Next to the eye button, enable the one with the tooltip Use modifier while
in edit mode. It will bring us another button next to it. Enable it too. Now we can edit
the mesh after the deformation performed by the armature. The following screenshot
shows the arm with our desired behavior and the Armature modifier panel with the
highlighted options:

Chapter 1

29

3.	 Go back to Object Mode (Tab), go to the Object Data panel under the Properties
window, and find the section called Shape Keys. Click twice on the plus sign to create
two Shape Keys: one called Basis, which is the base state of our mesh, and other
called Key 1, which is the one we will work on.

4.	 Change the last Shape Key name to Arm_Left. This is important when dealing with
complete characters and lots of Shape Keys.

We're going to use both the sculpting tool and the Edit Mode to build our corrective
shape. In order to be able to work on a Shape Key in Sculpt Mode, we have to pin
this shape.

5.	 With the Arm_Left key selected, click on the pin icon, just below the Shape Keys list.
You should disable it when you're done sculpting. The next screenshot shows the
Shape Keys section and the pin button highlighted:

Get Rigging

30

6.	 Sculpting in Blender is pretty straightforward: select the mesh, pick Sculpt Mode in
the 3D view mode list on the window header, and start sculpting the mesh. Under the
Tool Shelf (T) you can select the appropriate mode of sculpting, such as Inflate, Grab,
or Smooth, for instance. Use the Inflate tool for growing the biceps, such as in the
following screenshot:

6.	 Since not everything will look right just with sculpting, disable the Pin button for the
Shape Key you've enabled at step 5, enter into Edit Mode, and tweak the vertices
until you're happy with the result of the arm bending shape. Go back to Object Mode
when you're done.

Now comes the magic part: now that you have two shapes for your arm, we need
to set a driver, so the rotation of the forearm bone on its X local axis triggers the
morphing between those keys.

Chapter 1

31

7.	 Below the Shape Key's name in the Object Data tab is a slider called Value.
Right-click on it and select Add Driver. This will turn the slider into a pink color, which
is how Blender shows you that this channel is driven by another object, expression, or
property. The next screenshot demonstrates that:

8.	 Open a Graph Editor window to set up the forearm bone as the driver for this shape.
Select Drivers from the Modes list in the header.

9.	 On the left panel, click in Value (Arm_Left) in order to see the pink line in the editor.
On the Properties (N) panel, leave the driver type as Scripted Expression and
change the Expr value to var.

10.	 In the box just below the Add Variable Button, leave Transform Channel on the first
item; select Armature from the Ob/Bone selector and also the bone forearm in the
box that will appear after choosing the armature; select X Rotation in the last list
and check the Local Space box. This will tell Blender to take into account the local X
rotation of the forearm bone to control the blending between the Basis and Arm_Left
shape keys.

11.	 Rotate the forearm bone on its X axis to see the transformation. The biceps and skin
get changed when you rotate the forearm, but the transformation happens earlier
than we would expect.

Get Rigging

32

12.	 To fix that, look for the Generator box inside the Modifiers section on the Properties
panel. Change the Y value to -1 so that the blending between the Shape Keys starts
only when the arm bending is closer to its final position. The next screenshot shows
the driver and its values set:

The file 001-ShapeKeys-complete.blend has this finished recipe for your reference.

How it works...
Using a basic rig as starting point, you move the bones around and look for strange
deformations, which would occur mostly in joints. When you find such deformations, its time
to use them as a base to build new Shape Keys that correct the mesh in such situations. By
using drivers, you can use the same bone values that caused the bad deformations to trigger
the corrective Shape Key.

Chapter 1

33

There's more
In this recipe you've learned how to create simple drivers in Blender. You'll notice throughout
this book that most rigging features rely on them at some point. Fortunately they are not
difficult to create.

Drivers
The use of drivers in Blender 2.5 changed significantly from previous versions. Now, almost
every property in Blender can be animated, driven, and used as a driver for other properties.
It's just a matter of right-clicking over the property that you want to control and selecting Add
Driver, then setting it up on the Graph Editor window. You can even make complex drivers
using scripted expressions that can take into account more than one property and math
expressions, for example.

See also
Chapter 4: Adding expressions using Shape Keys

Making an IK-FK switcher
When creating rigs, we often face situations where we need to alter between two states
or properties. The most iconic case is to alter from Inverse Kinematics (IK) to Forward
Kinematics (FK) back and forth for a limb.

Forward Kinematics is the default state of regular chains of bones. When you move, rotate, or
scale a bone in FK mode, all of its children bones inherit the same transformation. Therefore,
we can say that the movement of a chain of bones in FK is driven by its base bone. It is often
used for arm controllers when the character does not have its hands on a fixed position (such
as doing push-ups).

Inverse Kinematics, on the other hand (no pun intended), works the opposite way: the
movement of a chain of bones in IK is driven by its tip. It is often used for leg controllers, when
the position of the foot bone drives the leg bones above it, and for arm controllers when the
character does have its hands on a fixed position.

Since we may need to alter between IK and FK for an arm, for example, we can create specific
controls to achieve that. These controls are normally made with bones that don't deform the
mesh with some custom shapes applied to them.

Get Rigging

34

Getting ready
Open the file 001-IK_FK_Switcher.blend from the book's support files. The file has an
arm mesh with three chains properly named and grouped: one for the mesh deformation
(green), one to act as the IK chain (blue), and another for the FK chain (red), as we can
see in the following screenshot:

The three chains have the exact same position, scale, rotation, and orientation on the
3D scene. This is crucial to make our setup work as expected.

There is also a fourth chain with only one bone to act as the switcher interface. The bones are
presented in B-Bone wireframe visualization with X-Ray enabled, which allows us to view them
through the arm mesh and with different widths, since they are all on the same position.

Each bone on the deformation chain has two Copy Rotation constraints applied to it: one
pointing to its relative bone on the IK chain and other to the one on the FK chain.

Chapter 1

35

Constraints are restrictions applied to objects or bones. There are currently
more than 20 types of constraints built in Blender with a variety of purposes.
The Copy Rotation constraint used here is pretty straightforward: the
constrained bone (on the deformation chain) will copy the rotation of a target
(a bone on the IK or FK chain). To add a Copy Rotation constraint to a bone in
Pose Mode, first select the target bone (the one which will have the rotation
copied), hold Shift, select the bone which will receive the constraint, press
Ctrl + Shift + C, and choose Copy Rotation on the pop-up menu.

The constraints on each bone act in opposite ways, so we need a way to alter their influence
in order to make only one operational at a time. We're going to use the switcher bone to drive
the influence of each constraint: when the IK chain has full influence over the deformation
chain, the FK will have none, and vice versa.

Select each of the green deformer bones and take a look at the Bone Constraints tab in the
Properties window. You'll see that each bone has two Copy Rotation constraints already set:
one for the IK chain with an influence of 1, and other to the FK chain, with zero influence. If
you move the bone called IK_hand, you'll see that the green chain will follow it properly, while
the FK chain in red stands still, as shown in the following screenshot:

Get Rigging

36

How to do it...
1.	 Select the bone D_arm and go to its Bone Constraints tab under the Properties

window. Under the first constraint, named IK_arm, right-click on the Influence slider
and select Add Driver as seen in the next screenshot. You'll see that the Graph
Editor window above the 3D View gets updated and the Influence slider turns
into a pink color:

Chapter 1

37

2.	 Under the Graph Editor, click on the driver on the left-hand side panel. Its properties
will be shown on the Properties Panel (N). Navigate to the Drivers session, leave
it as Scripted Expression, and change the Expr field to var.

3.	 Below the Add Variable button, leave the first list value as Transform Channel, select
the Armature object on the Ob/Bone field and the bone called IK_FK_switcher.

4.	 Since we need this switcher bone to act as a horizontal slider, keep the X Location
value and just enable Local Space. The next image shows our driver set:

5.	 Go back to the Bone Constraints tab under the Properties window. Now, instead of
creating the driver from scratch, let's use one of the new useful features in Blender
2.5: right-click on the pink Influence slider on the IK_arm constraint and select Copy
Driver. Next, right-click on the Influence slider from the FK_arm constraint and select
Paste Driver. Now, both constraints will have the same driver.

Get Rigging

38

6.	 Since we need this FK driver to act contrary to the IK, head over the Graph Editor
and click on the FK driver (named Influence (D_arm: FK_arm)). On the Properties
Panel (N) at the right, you'll see that all values were copied from the first driver.
Since we need an inverted mapping, just change the Expr field value to 1-var. That's
all we need to do create the inverted driver. The next screenshot shows the driver
setup values:

Regular drivers act on an ascendant curve with linear mapping,
meaning that a value of zero on the driver object will make the
driven channel have the same value. When creating switchers, we
need an ascendant and one descendant mapping. This way we can
increase the amount of influence of one driver while decreasing
the concurrent one. As a tip, leave your desired driver in the default
state with a descendant mapping.

7.	 Now you should use the drivers set for the D_arm bone constraints as reference to
the remaining bones on the deformation chain. You can use the process described in
step 5 to copy the driver from the IK_arm constraint and paste it to the IK_forearm
and IK_hand constraints. Do the same to the FK constraints and you're done. No
need to change anything in the drivers values.

8.	 When you finish setting up the remaining drivers, move the FK and IK bones
to different locations and switch the IK-FK slider: you'll see that the deformation
bones (and the arm) alter between chains as you move the slider. The next
screenshot shows the switcher in an intermediate position, where the deformation
bones (and the arm) act under the influences of both IK (blue, medium width) and
FK (red, fatter) chains.

Chapter 1

39

The file 001-IKFK-Switcher-complete.blend has this complete example for
your reference.

How it works...
The logic behind a switcher is pretty simple, but the amount of chains and constraints may
cause a little confusion. The deformation chain bones have two constraints each: one Copy
Rotation with target to the FK chain and another one to the IK chain. The drivers are set
in a inverse way: if IK has an ascending mapping on the Graph Editor, the FK must have
a descending one. The controller bone does the rest: adding to one property reduces the
opposite at the same amount.

There's more
The switcher that we've just created is basically an interface to control a feature in our rig,
and the principle behind it can (and should) be used to control various other rigging features
beyond IK-FK. As a rigger, you should be ready to use all features that Blender offers you to
make your rig easier to use and understand.

Get Rigging

40

Custom interfaces
With custom shapes and colors, we can create special interfaces as the slider used in this
recipe. As we saw here, a single controller bone can drive more than one property in your rig.

In addition to these colors and shapes, user interface bones should also have constraints
applied. In our example, the slider acts under a Limit Location constraint, which allows its
transformation only on the local X axis, and just between the values 0 and 1.

More complex controls can act on some properties from its X location and other ones from its
Z location, as drivers for facial controls.

Along with bones, your custom interfaces may have simple meshes to indicate the purpose of
that control, such as the one on this recipe indicating the range and the IK and FK positions.
It's a good idea to make such meshes un-selectable using the Outliner: just disable the
pointer icon next to its name. This avoids unwanted selections, since the interface meshes
act just as a visual guide. It's also interesting to make these interface meshes children of the
Armature object to make them hierarchically related to it.

Blender 2.5 also enables us to add buttons and sliders to the application user interface
through Python scripts. Although they are not difficult to create, they are beyond the scope
of this book.

Stretching
The Copy Rotation constraints are not the only ones to be used when creating IK-FK switchers.
You can also add StretchTo constraints to the deformation chain bones in order to make them
stretch and match the sizes of FK or IK chains without changing the models' volume.

The StretchTo constraints should be added on a similar way: two for each bone of the
deformation chain. Each constraint should be mapped to the relevant bone of the IK or
FK chain, and its influence slider must have a Driver pointing to the switcher bone. These
stretching constraints should be used in conjunction with the Copy Rotation ones.

See also
Chapter 5: Hands down! The Limbs Controllers

Tips on weight painting your character
The process of weight painting is somewhat paradoxical: while it's one of the simplest in
theory, it can be extremely difficult to get good results.

The complexity of getting good results will depend on how good your mesh topology is, and how
you position and create your bones. Blender has an option to guess the bone weights when
you bind a rig to a mesh, and it often bring us decent results. With this basic weights set, it's a
matter of using the weight paint tools to define the deformation range of a bone into a mesh.

Chapter 1

41

The logic behind weight painting is very simple: you pick a deformation bone and visually paint
its influence on a mesh. Blender 2.5 offers some very neat features to allow us to turn this
often tedious process into something quicker, such as allowing pressure sensitivity for tablets,
mirroring weights, and custom brushes, just to name a few.

Getting ready
Open the file 001-WeightPaint.blend from this book's support files. You'll see the base
mesh of my character Otto along with a basic rig in X-Ray mode. The armature is in Object
Mode, so you can enter in Pose Mode (Ctrl + Tab) and try to move some bones. You'll notice
that these bones aren't deforming the mesh yet, so the armature still needs to be connected
to the mesh. The next screenshot shows the character and the armature:

Get Rigging

42

How to do it...
1.	 Select the mesh, hold Shift, select the armature (or one of its bones, in the case

the armature is in Pose Mode) and press Ctrl + P. Select Armature Deform With
Automatic Weights. This will tell Blender to guess the influence of each bone on the
mesh based on its size and position, painting the basic weights. This process is also
often called Bone Heat, and (if you have created a good bone structure, matching the
proportions of the mesh) brings us very reasonable results.

2.	 Enter in the armature's Pose Mode and try to move and rotate some bones. Notice
that besides the automatic weights having being assigned quite reasonably, you may
find some cases where the deformations need some adjustments.

3.	 Select the mesh again and enter in Weight Paint Mode (Ctrl + Tab). You'll see that
the mesh color turns into a deep blue, and the last bone you selected in Pose Mode
becomes selected again. The region affected by this bone gets colors in a gradient
that goes from zero influence (blue) until 100% influence (red). The next screenshot
shows different weight colors on the mesh after selecting the arm bone in Weight
Paint Mode:

Chapter 1

43

If you want to change the default color gradient used in weight painting,
you can do so by opening the User Preferences window (Ctrl + Alt
+ U). Navigate to the System tab, enable the Custom Weight Paint
Range box and define your desired colors. To save this gradient for
future sessions, press Ctrl + U to save the user preferences. Note that
everything in your file (including meshes and armatures) will be saved
too, so you might want to define a custom range in an empty file.

4.	 While in Weight Paint mode, you can still move the bones as you wish to test the
influences you set in real time. Every time you select a bone, the mesh is updated
to show the equivalent influence.

5.	 Make sure your Toolbox (T) is activated and select one of the painting tools available
to adjust the weights on the Tools section. They act much like in 2D applications such
as Gimp or Photoshop, allowing you to Add, Subtract, Blur, Darken, or Lighten weight
colors. The Blur option, for example, is very useful to get smoother transitions on the
weight colors.

6.	 If you use a graphics tablet, you can enable the pressure sensitivity on the Brush
Tools section by clicking on the pointing hand besides the brush values. If you enable
it, the sensitivity would pass values that go from zero to the value set on the slider.
You can enable the sensitivity per value, so you can use a fixed value for size and a
pressure driver for the brush strength, for example. The next screenshot indicates
the options:

The Auto Normalize option in the Brush section shown here makes
sure that the sum of all weights applied to a mesh region is not
greater than 1. This can be useful, but you may face problems if
you're used to adding big weight values for different bones, since
adding to one bone will subtract from the other.

Get Rigging

44

7.	 To paint weight values on both sides of a character at the same time, enable the X
Mirror option on the Toolshelf (T). You can paint the influences for the left limbs of
your character, and the same weights will be applied for the right ones. This will work
only when your bones have suffixes such as .L or .R to a proper identification.

8.	 When painting weights on the torso or head, for example, it is not possible to assign
mirrored weights by using only X Mirror because there are no mirrored bones to take
information from. This is when you should use the Topology Mirror option: it uses the
information from the underlying edge loops on the mesh to apply mirrored weights
based on the X axis.

9.	 To avoid painting on unwanted parts of the mesh, you can enable the Face Selection
mode to select only the parts of the mesh that you want to paint over. Click on the
Face Selection icon on the window header and select your desired faces as you would
do in Edit Mode. The B and C selection keyboard shortcuts work as expected. The
next screenshot shows the mesh with the Face Selection mode activated and an
indication to the relevant icon on the window header:

Chapter 1

45

How it works...
The logic behind weight painting is one of the simplest: based on a color scheme, you paint
the influences of a bone on the mesh. After using the automatic weights calculated by
Blender, you have some pretty neat tools to refine the results and get a proper deformation
on your characters.

There's more
Blender has some very useful tools to make the Weight Painting process quicker and easier.
It is optimized for using with a graphics tablet, making the process even more intuitive, but it
can be used nicely with a regular mouse.

Brush hardness
Even if you don't have a graphics tablet, you can use a custom hardness setting for your brush
when weight painting. The Curve section under the Toolbox (T) allows you to visually draw the
curve that drives the pressure, as pictured in the next screenshot.

See also
Chapter 4: Poker Face? Facial Rigging

Chapter 5: Hands Down! The Limbs Controllers

2
Rigging the Torso

In this chapter, we will cover the following topics:

ff How to create a stretchy spine

ff Rigging the pelvis

ff Making your character breathe

ff Controlling the neck and head

Introduction
Our first chapter was about some general and basic rigging practices that you can apply to
most situations, regardless of their purpose: they can be used for characters and props, for
example. From now on, the rigging chapters will talk about how to build our character by
focusing on its body parts. This chapter is about our character's torso: we're going to see
how to create hips, a spine, and a neck.

There are various ways of approaching this subject, and we're going to see a mix of solutions
ranging from unique to adapted ideas by reverse-engineering some well known rigs
available online, such as the ManCandy rig, Ludwig, or the Blender Foundation's open movie
characters. While these solutions are not the only way to go, you can achieve quite satisfactory
results and its building processes are far from being rocket science.

Aside from what you'll learn from here, it's important for you to take a look at how some
of those rigs were built. You'll see some similarities, but also some new ideas to apply to
your own characters. In this book you will learn enough to build your own characters, but it's
always refreshing to see some new approaches. It's pretty rare to see two rigs built the exact
same way.

Rigging the Torso

48

How to create a stretchy spine
A human spine, also called vertebral column, is a bony structure that consists of several
vertebrae (24 or 33, if you consider the pelvic region). It acts as our main axis and allows us a
lot of flexibility to bend forward, sideways, and backward. And why is this important to know?

That number of vertebrae is something useful for us riggers. Not that we're going to create all
those tiny bones to make our character's spine look real, but that information can be used
within Blender. You can subdivide one physical bone for up to 32 logical segments (that can
be seen in the B-Bone visualization mode), and this bone will make a curved deformation
based on its parent and child bones. That allows us to get pretty good deformations on our
character's spine while keeping the number of bones to a minimum.

This is good to get a realistic deformation, but in animation we often need the liberty to
squash and stretch our character: and this is needed not only in cartoony animations, but
to emphasize realistic poses too. We're going to see how to use some constraints to achieve
that. We're going to talk about just the spine, without the pelvic region. The latter needs a
different setup which is covered in another recipe in this book.

How to do it...
1.	 Open the file 002-SpineStretch.blend from this book's support files. It's

a mesh with some bones already set for the limbs, as you can see in the next
screenshot. There's no weight painting yet, because it's waiting for you to create
the stretchy spine.

Downloading the example code

You can download the example code files for all Packt books
you have purchased from your account at http://www.
PacktPub.com. If you purchased this book elsewhere,
you can visit http://www.PacktPub.com/support and
register to have the files e-mailed directly to you. Alternatively,
the author also maintains a copy of the code on his website
at http://virgiliovasconcelos.com/blender-
animation-cookbook/.

Chapter 2

49

2.	 Select the armature and enter into its Edit Mode (Tab). Go to side view (Numpad 3);
make sure the 3D cursor is located near the character's back, in the line of what
would be his belly button. Press Shift + A to add a new bone. Move its tip to a place
near the character's eyes.

3.	 Go to the Properties window, under the Object Data tab, and switch the armature's
display mode to B-Bone. You'll see that this bone you just created is a bit fat, let's
make it thinner using the B-Bone scale tool (Ctrl + Alt + S). With the bone still
selected, press (W) and select Subdivide.

Rigging the Torso

50

Do the same to the remaining bones so we end up with five bones. Still in side view,
you can select and move (G) the individual joints to best fit the mesh, building that
curved shape common in a human spine, ending with a bone to serve as the head,
as seen in the next screenshot:

4.	 Name these bones as D_Spine1, D_Spine2, D_Spine3, D_Neck, and D_Head.

5.	 You may think just five bones aren't enough to build a good spine. And here's when
the great rigging tools in Blender come to help us. Select the D_Neck bone, go to the
Properties Window, under the Bone tab and increase the value of Segments in the
Deform section to 6. You will not notice any difference yet.

Below the Segments field there are the Ease In and Ease Out
sliders. These control the amount of curved deformation on the
bone at its base and its tip, respectively, and can range from 0
(no curve) to 2.

Chapter 2

51

6.	 Select the next bone below in the chain (D_Spine3) and change its Segments value
to 8. Do the same to the remaining bones below, with values of 8 and 6, respectively.
To see the results, go out of Edit Mode (Tab). You should end up with a nice curvy
spine as seen in the following screenshot:

Since these bones are already set to deform the mesh, we could just add some
shapes to them and move our character's torso to get a nice spine movement. But
that's not enough for us, since we also want the ability to make this character stretch.

7.	 Go back into Edit Mode, select the bones in this chain, press Shift + W, and select
No Scale. This will make sure that the stretching of the parent bone will not be
transferred to its children. This can also be accomplished under the Properties
Window, by disabling the Inherit Scale option of each bone.

Rigging the Torso

52

8.	 Still in Edit Mode, select all the spine bones and duplicate (Shift + D) them. Press Esc
to make them stay at the same location of the original chain, followed by Ctrl + Alt +
S to make them fatter (to allow us to distinguish both chains). When in Pose Mode,
these bones would also appear subdivided, which can make our view quite cluttered.
Change back the Segments property of each bone to 1 and disable their deform
property on the same panel under the Properties Window. Name these new bones
as Spine1, Spine2, Spine3, Neck, and Head, go out of Edit Mode (Tab) and you
should have something that looks similar to the next screenshot:

9.	 Now let's create the appropriate constraints. Enter in Pose Mode (Ctrl + Tab), select
the bone Spine1, hold Shift, and select D_Spine1. Press Shift + Ctrl + C to bring
up the Constraints menu. Select the Copy Location constraint. This will make the
deformation chain move when you move the Spine_1 bone.

Chapter 2

53

The Copy Location constraint here is added because there is no
pelvic bone in this example, since it's creation involves a different
approach which we'll see in the next recipe, Rigging the pelvis.
With the pelvic bone below the first spinal bone, its location will
drive the location of the rest of the chain, since it will be the
chain's root bone. Thus, this constraint won't be needed with
the addition of the pelvis. Make sure that you check out our next
recipe, dedicated to creating the pelvic bone.

10.	 With those bones still selected, bring up the Constraints menu again and select the
Stretch To constraint. You'll see that the deformation chain will seem to disappear,
but don't panic.

11.	 Go to the Properties Panel, under the Bone Constraints tab and look for the Stretch
To constraint you have just created. Change the value of the Head or Tail slider to
1, so the constraint would be evaluated considering the tip of the Spine_1 bone
instead of its base. Things will look different now, but not yet correct. Press the
Reset button to recalculate the constraints and make things look normal again. This
constraint will cause the first deformation bone to be stretched when you scale (S)
the Spine_1 bone. Try it and see the results. The following screenshot shows the
constraint values:

Rigging the Torso

54

This constraint should be enough for stretching, and we may think it could replace the
Copy Rotation constraint. That's not true, since the StretchTo constraint does not apply
rotations on the bone's longitudinal Y axis. So, let's add a Copy Rotation constraint.

12.	 On the 3D View, with the Spine1 and D_Spine1 selected (in that order, that's
important!), press Ctrl + Shift + C and choose the Copy Rotation constraint. Since
the two bones have the exact same size and position in 3D space, you don't need
to change any of the constraint's settings.

13.	 You should add the Stretch To and Copy Rotation constraints to the remaining
controller bones exactly the same way you did with the D_Spine1 bone in steps
9 to 12.

14.	 As the icing on the cake, disable the X and Z scaling transformation on the controller
bones. Select each, go to the Transform Panel (N), and press the lock button near
the X and Z sliders under Scale. Now, when you select any of these controller bones
and press S, the scale is just applied on their Y axis, making the deforming ones
stretch properly. Remember that the controller bones also work as expected when
rotated (R). The next screenshot shows the locking applied:

15.	 Enter into Edit Mode (Tab), select the Shoulder.L bone, hold Shift, and select
both Shoulder.R and Spine3 (in this order; that's important). Press Ctrl + P and
choose Keep Offset to make both shoulder controllers children of the Spine3 bone
and disable its scale inheriting either through Shift + W or the Bone tab on the
Properties panel.

Chapter 2

55

When you finish setting these constraints and applying the rig to the mesh through weight
painting (refer to the recipe Tips on weight painting your character in Chapter 1, Get Rigging
if in doubt), you can achieve something stretchy, as you can see in the next screenshot:

The file 002-SpineStretch-complete.blend has this complete recipe, for your reference
in case of doubts.

Rigging the Torso

56

How it works...
When creating spine rigs in Blender, there's no need to create lots of bones, since Blender
allows us to logically subdivide each one to get soft and curved deformations. The amount of
curved deformation can also be controlled through the Ease In and Ease Out sliders, and it
also works well with stretching.

When you scale a bone on its local Y axis in Pose Mode, it doesn't retain its volume, thus
the mesh deformed by it would be scaled without the stretching feeling. You must create
controller bones to act as targets to the Stretch To constraint, so when they're scaled, the
constrained bones will stretch and deform the mesh with its volume preserved.

There's more...
You should notice that the spine controllers will be hidden inside the character's body when
you turn off the armature's X-Ray property. Therefore, you need to create some custom
shapes for these controller bones in order to make your rig more usable. Refer to the recipe
Customizing shapes and colors for your bones in Chapter 1, Get Rigging.

See also
Chapter 1: Tips on weight painting your character

Chapter 1: Customizing shapes and colors for your bones

Chapter 2: Rigging the pelvis

Rigging the pelvis
If you want your character to move like Elvis, you'd better pay attention to its pelvis. The
technique we're going to see in this recipe is often called "inverted pelvis", and you'll
understand why when you go through the next few paragraphs.

This approach is very useful to achieve more relaxed poses with your characters. The pelvis is
usually the first bone in the spine chain and, because of the nature of the bone structure, its
pivot point for transformation is not at the ideal position for the twist movement that we can
do with the pelvis. That's because our actual center of gravity is closer to our belly button than
it is to the base of the bone.

Chapter 2

57

The next screenshot shows a balanced pose that is easier to achieve with this kind of setup:

How to do it...
1.	 Open the file 002-Pelvis.blend from this book's support files. You'll see the

character Otto with a basic deformation rig already applied as our starting point. If
you select the D_Pelvis bone and rotate (R) it, you'll notice that the entire character
moves along according to this transformation. That's because the pelvic bone is the
parent of all other bones. What can we do to make him twist his pelvis to a more
relaxed pose?

Since the armature's visualization mode is set to B-Bone, you'll
see that all the spine bones are divided in segments in order to
achieve a desirable curved deformation.

Rigging the Torso

58

2.	 Go to the armature's Edit Mode (Tab), select the D_Pelvis bone, press W, and
choose Switch Direction. Go back to Pose Mode and try to rotate R and move G it
again. Besides having a good pivot point for this bone's rotation, some problems
arose from it: the deformations are ugly, the legs and other spinal bones are no
longer its children, and most importantly, the nice curved B-Bone deformation
between the pelvis and spine bone is gone! That's not what we want.

This second "wrong" step was intentional so that you can clearly understand what we
need and what we must avoid.

What we need is: the pelvis pivot point must be on its joint to the D_Spine1 bone;
a rotation on the pelvis or the spine must give the curved B-Bone deformations; the
pelvis should be the parent of the legs and spine.

3.	 Now you should reopen the source file (or hit Ctrl + Z a couple of times until you
revert to the original file) so we can start over and make it the right way.

4.	 With the original setup, enter the armature's Edit Mode (Tab), select the D_Pelvis
bone, duplicate (Shift + D) it, and press Esc so it remains in its original position.

5.	 Change its width (Ctrl + Alt + S) so we can see both bones and name it just Pelvis.

6.	 Bring up the Specials Menu (W) and choose Switch Direction. Since this bone
will act as a controller (thus not deforming the mesh directly), go to the Properties
Window, under the Bone tab, change this bone's number of segments to 1 and
disable its Deform property, as seen in the following screenshot:

7.	 Still in Edit Mode, select the D_Pelvis bone, hold Shift, and select the Pelvis that
you've just created. Press Ctrl + P to make it parent and choose Keep Offset.

8.	 Now, you must select the D_Spine1 bone, go to the Properties Window, under the
Bone tab, and disable both the Inherit Rotation and Inherit Scale options.

9.	 Go back to Pose Mode and rotate the Pelvis bone. Now you'll see that the spine
doesn't rotate along, the center of gravity for rotation is near the belly button region
and the soft curved B-Bones work as expected!

Chapter 2

59

If you have already set up a stretchy spine as described in a previous recipe, you should now
make the Pelvis bone parent of Spine1. You should also turn off Inherit Rotation for the
bone Spine1, so the Pelvis bone acts like the torso's root bone for translation and still
works correctly for the twist rotation.

You may wonder why the legs rotate along the pelvis, when they
should remain still. This is because this pelvis setup needs an Inverse
Kinematics (IK) constraint for the legs, but that's the subject of another
recipe called Creating IK legs with a three-pivot foot, in Chapter 5,
Hands Down! The Limbs Controllers.

The file 002-Pelvis-complete.blend has this complete recipe for your reference.

How it works...
By using an inverted copy of the pelvic bone as a controller, we can set the pivot center of
a rig around the belly button region. By inverting a copy, and not the original deformation
bone, we can make sure that the soft curved deformations from Blender's B-Bones are
applied as expected.

There's more
If you've just read the previous recipe, maybe you're wondering: what about stretching
the pelvis?

Stretching the pelvis
Although our pelvic region doesn't stretch, it can be useful for cartoony rigs to have this option
available. In order to do that, you must select the Pelvis bone, hold Shift, select D_Pelvis,
press Ctrl + Shift + C, and select the Stretch To Constraint, just like the process described in
the previous recipe. You also need to disable the Inherit Scale property from the D_Pelvis
and leg bones in the Bone tab under the Properties Window.

Rigging the Torso

60

For a better view of the rig, you should also lock the X and Z scaling for the Pelvis bone
under the Transform panel (N). This setup allows you to achieve distortions similar to what
you see in the next screenshot:

The file 002-Pelvis-complete.blend is also set up for stretching. Try scaling the Pelvis
bone and see for yourself!

See also
Chapter 2: How to create a stretchy spine

Chapter 5: Creating IK legs with a three-pivot foot

Chapter 2

61

Making your character breathe
When you animate a character, the main goal is to make it look alive, isn't it? All techniques
involved in the art of animation, regardless of the medium (paper, computers, clay...) have the
same goal: help you make the audience believe that your character is a living being.

It can be very useful to add a controller to make your character look like its breathing.
Although the breathing by itself isn't going to make your character believable, it can be
added as a layer of visual complexity, contributing to the mood of a scene. If your character
is nervous, scared, or has just finished a sprint for instance, you should probably make the
breathing more noticeable.

How to do it...
1.	 Open the file 002-Breathe.blend. You'll see a character with a very basic rig and

weight painting, and with a bone shaped like a pair of lungs, as seen in the next
screenshot. This is our room to work, since adding bones and shapes is not our focus
here. Take a look at Chapter 1, Get Rigging if you have any doubts on how to set up
the character like this.

Rigging the Torso

62

2.	 Select the Lungs bone, hold Shift, and select the D_Ribcage bone. Bring the
constraints menu with Shift + Ctrl + C and select the Copy Scale constraint.

3.	 Go to the Properties Window, under the Bone Constraints tab. You'll see that there
are two constraints assigned to that bone: the first is a Stretch To constraint, which
allows the bone to be scaled while maintaining its volume. The second constraint
is the one you have just created, and allows this deformation bone to be scaled
following the transformation applied to the Lungs bone. Now let's just change its
values in order to get a proper controller.

4.	 Disable the Y option, since our character's imaginary lungs are just going to inflate
and deflate, and the scaling would be applied only in the horizontal plane.

5.	 Make sure you also set the two values of Space to Local Space, and bring down
the influence slider to a value like 0.3. This will allow you to make bigger changes
in the Lungs scale and still get subtle results. The following screenshot shows the
constraint setup:

6.	 Repeat this process from steps 2 to 5 on the bone called D_Spine2, but use a lower
value for the Influence slider, like 0.1. These values may be different on your own
characters, but the principle here is that the distortion on the mesh would be bigger
on the ribs part of the mesh, and smaller on the belly. But you should feel free to
even invert this, if you seek a funnier effect.

Now, scaling (S) up and down the Lungs controller will make your character look like
it's breathing. The file 002-Breathe-complete.blend has this finished recipe for
your reference.

Chapter 2

63

How it works...
The breathing controller is nothing more than a bone which sets horizontal scaling on the ribs
and belly bones. The secret is to have different (and low) Influence values for the constrained
bones. When you scale the controller up, the character looks like it's breathing in. You should
use this controller as a secondary one, just for adding details on top of an existing animation.

There's more
In this recipe we saw something simple but important: more than one constraint can be
applied to a bone at the same time. Not only that, but a bone can have multiple targets for
its different constraints, making a rig considerably more complex as you add new constraints.

Stacking constraints
This example is based on a rig with more than one constraint applied to the spine bones,
showing that a single bone can have its properties changed by different controllers. You
must notice that the constraints are stacked, and this means that the order in which they
are applied is important. In our example, the breathing would be applied after the stretching.
Fortunately the order isn't important in this unique example, but you may be wary of stacking
too many constraints, since the results can be hard to predict.

See also
Chapter 2: How to create a stretchy spine

Chapter 1: Customizing shapes and colors for your bones

Controlling the neck and head
Our head movement can be broken down to basically two controllers: the head bone itself and
the neck. It is possible to rotate the neck while keeping the head straight and vice-versa. For
example, to move your head forward you have three options:

ff You rotate just your head (like when you nod affirmatively to someone
else's question).

ff You rotate just your neck and keep your head up (like when you try to read those
very tiny letters on a computer screen).

Rigging the Torso

64

ff You rotate both your neck and head (when you look to your belly button). You see
these three positions in the following screenshot:

It is very useful in rigs to have the freedom to choose how your neck and head should behave
when transforming their parent bones. You should be able, for example, bend your character's
torso forward while keeping its neck and head looking forward, without inheriting their
parents' rotation. This is often called hinge control. In this recipe we'll learn how to properly
control the "hinge" property of the neck and head.

How to do it...
1.	 Open the file 002-Neck.blend from this book's support files. You'll see the

character Otto with an deformation already set and controller bones for its spine
and pelvis, with support for stretching. There is also an interface called Hinge,
with two controller bones already created. Everything up until here is covered in
previous recipes, so you should take a look at them if you have any doubts on how
to create the interface, pelvis, spine, or stretch controls.

Chapter 2

65

The next screenshot shows our initial scene:

2.	 The first thing we would do is set the hinge controller for the Neck bone. Select the
Neck bone and go to the Properties Window, under the Bone tab. Right-click over
its Inherit Rotation property and choose Add Driver. The checkbox field will get a
pinkish hue.

As you noticed on the previous step, in Blender, even checkbox values
can have drivers applied or have its on or off state animated through
a keyframe. This is achieved by right-clicking over them and selecting
the appropriate option. Since checkboxes can have only True or False
values, Blender translates driver values as True=1 and every other
value as False.

Rigging the Torso

66

3.	 Open a Graph Editor window and pick the Drivers mode on its header. Click over the
Inherit Rotation (Neck) driver on the left-hand side panel to view its details on the
Properties Panel (N) on the right-hand side. Find the Drivers section on the Properties
Panel. Leave the driver type as Scripted Expression, but change the Expr field value
from True to 1-var.

4.	 On the box below the Add Variable button, set the Ob/Bone fields as Armature_
Otto and Hinge_Neck. Leave the Type value as X Location and enable the Local
Space checkbox. The next screenshot shows the driver and its values:

The Expr field has the value of 1-var, used to invert the mapping of
the bone driver. That's useful here, where our default behavior is to have
the bones to inherit the rotation of their parents. Having these default
behaviors properly planned is important when you just want to reset your
UI sliders with Alt + G and have the rig working on its default state.

5.	 Repeat the process of steps 2 to 4 for the Head bone, making the driver for its Inherit
Rotation property driven by the Hinge_Head bone.

6.	 In front view, rotate the Rib bone to the side. Move the sliders for the hinge controls,
and you'll have three possible situations, demonstrated in the next screenshot:

�� Both head and neck follow the torso

�� The head doesn't follow the neck and torso (it's "hinged")

�� The neck (and consequently the head) is "hinged"

The file 002-Neck-complete.blend has this finished recipe for your reference.

Chapter 2

67

How it works...
By adding drivers to the Inherit Rotation property of single bones, we can animate the "hinge"
feature of the neck and head bones, allowing the animators to pose the characters with more
freedom and flexibility. Blender 2.5 allows us to add drivers to user interface fields such as
checkboxes, making it easier to animate the on/off state of virtually any feature in our rigs.

There's more
The ability to animate and drive checkboxes in Blender 2.5 makes it easier to control features
that only have on/off states. In previous versions, that wasn't possible and the rigger would
have to try emulating that particular feature with fairly complex constraint setups.

Not just the neck and head
You can use the same principle shown here to make hinge controllers for other parts of
the body, notably the shoulders. When animating limbs with Forward Kinematics, it's often
desirable a hinge setting in order to have more freedom when posing your characters.

See also
Chapter 2: How to create a stretchy spine

Chapter 1: Customizing shapes and colors for your bones

Chapter 5: Setting up the shoulders

3
Eying Animation

In this chapter, we will cover the following topics:

ff How to control where your characters look at

ff The eyelids controllers

ff Controlling the pupils

Introduction
There is a famous quote which says The eyes are the window to the soul, and its through
them that we'll make our characters express most of their feelings. We must have a tight
control over how our character's eyes appear and behave on screen, because that's where
our viewers would naturally pay more attention to.

Subtle things such as the eyelids shape or the size of the pupil can make a big difference
when you want to make the audience believe that your character is alive. We're going to see
how to create rig features to enable a good amount of control for the animator. The objects
for this small region of the body can be a bit tricky to set up, requiring lots of bones and
constraints to achieve good expressions.

How to control where your characters look at
Unless your characters have a very unique style, their eyes will have to look at something.
Based on this idea, there is a common practice of making this "something" a bone where the
eyes will always point to. This is very useful when animating, since you can position this bone
to the exact place where your character should look at without further worries.

Eying Animation

70

How to do it...
1.	 Open the file 003-Eyes.blend. This file has a head mesh with two eyes ready for

you to work on them. Notice that the eyes are separate objects from the head.

2.	 Select the left eye object, press Shift + S, and choose Cursor to Selected to position
the 3D cursor into the center of the object.

3.	 Add an Armature: press Shift + A and select Armature | Single Bone. Go to Edit
Mode (Tab) in side view (Numpad 3) and move the tip of the bone so that it points to
the character's front, next to the eye's pupil, similar to the next screenshot. Activate
the armature's X-Ray display mode in the Properties Window, under the Object Data
tab, within the Display section to make things easier to see.

4.	 Name this bone as Eye.L and extrude (E) its tip, creating a small bone in front of
it. Name it as T_Eye.L ("T" stands for "target"), select it, press Alt + P, and choose
Clear Parent, so it's no longer a child of the eye bone. You should also disable its
Deform property by pressing Shift + W and selecting Deform. You should have the
two bones positioned as seen in the following screenshot:

Chapter 3

71

5.	 Now let's add a IK constraint: enter Pose Mode (Ctrl + Tab), select the target bone,
hold [Shift], select the Eye.L bone, press Shift + I, and select Add IK to Active
Bone. If you move (G) the T_Eye.L bone around, you'll see that the Eye.L bone
keeps pointing to it.

6.	 Enter in the Armature's Edit Mode (Tab) again. Place the 3D cursor at the front of the
character's head, between his eyes, and add another bone through Shift + A. Name
this bone as LookAt and scale it down to about half its height. Select the target
bone, hold Shift, select the LookAt bone, press Ctrl + P, and choose Keep Offset.
Now the movement of the LookAt bone will drive the target, and you can see this
new bone in the next screenshot:

Eying Animation

72

7.	 Go back to Pose Mode. Select the left eye mesh, hold Shift, select the Eye.L bone,
press Ctrl + P, and choose Set Parent to Bone. Move the LookAt bone and you'll see
that the left eye rotates accordingly, but you'll also notice that the eyeball rotates too
much depending on where you place the LookAt bone. We need to limit the amount
of its rotation.

8.	 Still in Pose Mode, select the Eye.L bone and go to the Properties Window. Under
the Bone tab, navigate to the Inverse Kinematics section.

9.	 Enable the Limit fields for the X and Z limits. The two sliders on the right-hand side
are for minimum and maximum angle values. An acceptable value for this setup is
-20o and 20o for the X axis and -45o and 45o for the Z axis, and you can see a visual
feedback of those limits while the Eye.L bone is selected: very useful for visualizing
what are the rotation limits. In the next screenshot you can see the values set up and
the limits shown on the 3D view:

Now, when you move the LookAt bone, the eyeball rotates only until the pupil
reaches the eye borders.

10.	 To the other eye, enter into the armature's Edit Mode, select the bones T_Eye.L and
Eye.L, go to Front View (Numpad 1), duplicate (Shift + D), and move (G) them across
the X axis until they are in the middle of the right eye.

11.	 With the bones still selected in Edit Mode, press W and select Flip Names, so
Blender automatically detects the bones' suffixes and alters them to the correct side.

When you append suffixes such as .L and .R, .left and .right
to your bones, Blender understands that these bones are mirrored
so you can make changes to one bone and have its "mirrored" one
update as well when you enable the X-Axis Mirror option in the
Toolshelf (T). These suffixes are not case sensitive, but you have
to stick to one convention, since Blender will not understand this
mirroring if you name one bone as Eye.left and the other Eye.R
or Eye.Right.

Chapter 3

73

12.	 Go back to Pose Mode, select the right eye mesh, hold Shift, select the Eye.R bone,
press Ctrl + P, and choose Set Parent to Bone. Now, if you move the LookAt bone,
both eyes should follow accordingly and within their limits.

13.	 The last thing that you should do is select the LookAt bone, go to the Transform
Panel (N), and lock all Rotation and the Y and Z scale values. Leaving the X axis
for scaling allows you to change the alignment of the eyes, as seen in the next
screenshot, where the LookAt bone was scaled (S) down in Front View:

The file 003-Eyes-complete.blend has this finished recipe for your reference.

How it works...
By creating two IK chains with one parent bone to control their targets, you can easily make
a LookAt controller. The IK chain consists of one bone located at the center of the eye and
another bone to act as its target. By using a separate bone parent of both targets, you can
make your character look at where you need. The use of an IK constraint on the eye bones
allows you to set the rotation limits so the eyeballs don't rotate further than you expect
them to.

Eying Animation

74

There's more...
When we look down or up, our eyelids follow the movement softly. This will be accomplished in
the next recipe, dedicated only to the eyelids.

The LookAt controller is normally a child of another bone: some like it to be linked to the
main head controller, so the eyes follow the head movement; some like it to be child of the
Root bone, so the point where the character looks is independent of the head position. You
can have the best of two worlds by setting a switcher to alter between these two "spaces". The
concept of different spaces and how to create a controller to switch between them is covered
in Chapter 5, Hands Down! The Limbs Controllers.

See also
Chapter 3: The eyelids controllers

Chapter 5: Different spaces for IK hands

The eyelids controllers
A blink of an eye. That's a pretty fast action, but the mechanics behind it may require some
thinking by the rigger to be applied correctly. With careful weight painting, some constraints
and bones correctly positioned, we can accomplish good results.

How to do it...
1.	 Open the file 003-Eyelids.blend from this book's support files. It's a head with

some bones already set up for the eye's tracking. That's exactly what you would end
up with in the previous recipe.

2.	 Select the armature and enter into Edit Mode (Tab). In side view (Numpad 3), select
the base of the Eye.L bone, press Shift + S, and pick Cursor to Selected in order to
move the 3D cursor to that position.

3.	 Add a new bone by pressing Shift + A, and move (G) its tip roughly to where the upper
eyelid makes contact with the eye. Name that bone as D_UpEyelid.L. With its tip
selected, extrude (E) to create another bone. Select it, name it as T_UpEyelid.L,
remove its parent relationship by pressing Alt + P and choosing Clear Parent. Disable
its Deform property by pressing Shift + W and choosing Deform. You should end up
with a setup similar to the following screenshot:

Chapter 3

75

4.	 Repeat step 3 to address the lower eyelid. Define the resulting bones' names as
D_BottomEyelid.L and T_BottomEyelid.L.

5.	 Go to Pose Mode (Ctrl + Tab). Select the T_UpEyelid.L, hold Shift, select the
D_UpEyelid.L, press Shift + I, and choose Add IK To Active Bone. Do the same to
the lower eyelid bones and you'll have one IK setup for each eyelid, as you can see in
the next screenshot:

Eying Animation

76

If you named the bones correctly and try to move one of the eyelids'
targets, you'll see that the eyelids follow the rig, since there are some
basic bone weights applied to speed things up for you..

6.	 Go back to the armature's Edit Mode and place the 3D cursor in front of the bones
you have created. Add another bone through Shift + A, call it M_Eyelids.L ("M"
stands for "mechanism", since it's a helper bone to our setup). Disable its Deform
property by selecting it after pressing Shift + W.

7.	 Parent (with offset) both eyelids' targets to the M_Eyelids.L bone. Still in
Edit Mode, make sure the M_Eyelids.L bone has its base slightly above
T_BottomEyelid.L as seen in the next screenshot. This will make the bottom
eyelid move just a little when its parent is scaled in Pose Mode.

8.	 Now enter in Pose Mode. Select the M_Eyelids.L bone, lock all its rotation values,
and the X and Z for both location and rotation, under the Transform Panel (N). If you
scale (S) this bone down, the eyelids will close.

These steps provide the basic functionality we need, but we should take things
a bit further:

9.	 Enter the armature's Edit Mode again, go to front view, select and duplicate
(Shift + D) the LookAt bone. Move it to the side, so it's in front of the left eye. Scale it
down a bit, so it's smaller than the LookAt bone, and lock all its transform channels
in the Properties Panel (N), leaving only the Y scale channel unlocked.

Chapter 3

77

10.	 Name this bone as Eyelids.L and disable its Deformation property by hitting
Shift + W. Make it a child of the LookAt bone (keeping its offset distance). This new
bone will act as the controller for the eyelids, conveniently placed next to the main
eye tracking bone as you can see in the next screenshot:

11.	 Go to Pose Mode, select the Eyelids.L bone, hold Shift, select the M_Eyelids.L
bone, press Ctrl + Shift + C and pick Copy Location. Things will seem to break, but
don't panic.

12.	 Navigate to the Properties Window, under the Bone Constraints tab, and change
the values in the Copy Location constraint: disable X and Z, pick Local With
Parent and Local Space, just like in the next screenshot, where you can see the
constraint values:

Eying Animation

78

This would make the eyelids follow when you move the main eye controller, but their
movements should be limited.

13.	 Select only the M_Eyelids.L bone, press Ctrl + Shift + C, and pick the Limit
Location constraint. Find this constraint on the Bone Constraints tab in the
Properties Window, check both the Minimum Y and Maximum Y fields and set the
sliders to -.005 and 0.014, respectively. Finally, change the Convert field to Local
Space, as you can see in the next screenshot:

Now, try moving the LookAt bone. The eyelids will follow the eye up or down
movements naturally.

14.	 To finish the left eyelids setup, select the Eyelids.L bone, hold Shift, select the
M_Eyelids.L bone, press Ctrl + Shift + C and pick the Transformation constraint.
Next, navigate to the Properties Window, in the Bone Constraints tab and locate the
constraint that you've just created.

15.	 Check the Extrapolate field and, under the Source fields, click on the Scale button
and change the Y Min and Max sliders to 0.5 and 1.0, respectively. Set all the
remaining source axis sliders to 1.0.

Chapter 3

79

16.	 Head over to the Destination fields, click on the Scale button, and set all sliders
(except the Y Max, which should remain 0) to 1. You must also change both Space
fields to Local Space. Refer to the next screenshot to see the values set in the panel:

These constraint values will make the left eye blink when you
scale the Eyelids.L bone, without the need to scale it to 0
in order to close the lids, making the rig more usable. Another
usability feature is having all eyes controllers in only one place,
near the LookAt bone. This way you don't have to navigate
much in order to adjust the character's eyes.

17.	 Now the finishing touches. Select the Eyelids.L bone and press Ctrl + Shift + C.
Pick the Limit Scale constraint and navigate to the Properties Window, under the
Bone Constraints tab.

18.	 In the Constraint panel, check both the Minimum Y and Maximum Y fields and
define their values to 0.5 and 1.0, respectively. You also need to check the For
Transform field and change the Convert value to Local Space. This will ensure
that our eyelids controller will behave as expected.

Eying Animation

80

19.	 Your left eye setup is now done. Enter in Edit Mode, select all the bones that
you've created (D_UpEyelid.L, D_BottomEyelid.L, T_UpEyelid.L, T_
BottomEyelid.L, M_Eyelids.L and Eyelids.L), duplicate (Shift + D) them,
move (G) them to the right-hand side eye position, bring up the Specials menu (W),
and select Flip Names. The right-hand side eye is now done, as a mirrored copy with
all proper constraints applied!

20.	 To remove the visual clutter for the animator, you should leave only the LookAt,
Eyelids.R, and Eyelids.L bones visible, and move (M) the remaining eye bones
to an invisible layer.

In a complete rig, all the bones you have just hid must be children
of the main Head bone, so the eyes move accordingly when you
move the character's head.

Your character will now be able to blink, as you can see in the next screenshot. If you have
any doubts about this recipe, refer to the file 003-Eyelids-complete.blend to see the
finished result.

Chapter 3

81

How it works...
The eyelids setup can be a little confusing due to the number of bones involved, but it's
basically an IK setup for each lid, where the targets are driven by scaling a controller bone
with some constraints to limit the amount of transformation.

There's more...
You should also define some custom bone shapes to the eyelids controllers, so it's easier for
the animator to understand what those bones are for and how they should be used. In the
complete character rig that comes with the book support files, Otto.blend, the Eyelids
have an eye shape with up and down arrows, inside the main LookAt shape, as seen in
the next screenshot:

More control to the eyelids
There are other ways of controlling eyelids that can be used alone or along with this technique
to improve the amount of control you have over their shapes:

ff You can use custom shape keys, modeling detailed shapes for each eyelid, and use
drivers to set their influence

ff You can use lattices to enhance the amount of deformation on each lid

Both techniques, although not focusing on eyelids but on general facial expressions, can be
found in the next chapter.

Eying Animation

82

See also
Chapter 1: Tips on weight painting your character

Chapter 1: Customizing shapes and colors for your bones

Chapter 3: How to control where your characters looks at

Chapter 4: Adding expressions using Shape Keys

Chapter 4: Face controls with lattices

Controlling the pupils
The size of our pupils can say a lot about how we're feeling. Some methods of marketing
research relate the size of the pupils to the attractiveness of TV commercials, for example.

Greater sizes can indicate that the person is attracted, happy, or just likes what it is seeing.
Smaller usually denote the opposite, and that kind of control can be very useful in close up
shots to help indicate how your character is feeling.

How to do it...
1.	 Open the file called 003-Pupils.blend from the book's support files. You'll see

a rig to control the eyes and eyelids, with shapes applied to the bones. That's our
starting point, as you can see in the next screenshot:

Chapter 3

83

2.	 First we need to create two Shape Keys for each eye. Select the Eye.L object,
navigate to the Properties Window, in the Object Data tab, and locate the Shape
Keys panel. Press the plus button to create the Basis shape. Click two more times
to create our shapes. Select each on the panel and name them Pupil_Small and
Pupil_Big, as seen in the following screenshot:

3.	 Select the Pupils_Small shape, go to the 3D View, and enter the eye mesh
Edit Mode (Tab). Select the loop of vertices that define the pupil by holding Alt,
right-clicking on one edge of this loop and scaling (S) it down, as seen in the
following screenshot:

Eying Animation

84

4.	 Go back to the Shape Keys panel, click on the Pupils_Big shape name to activate it.
You'll see that the loop of vertices remain selected. Scale (S) them up so you get a
dilated pupil.

We could just repeat the last three steps now to create similar shapes as the right
eye, but we'll see a nice Blender feature to make our lives easier.

5.	 In Object Mode (Tab), select the left eye, hold Shift, and select the Eye.R object.
Go to the Shape Keys panel in the Properties Window, click on the button with a
down arrow below the minus button and pick Transfer Shape Key, as seen in the
following screenshot:

This will transfer the active Shape Key (currently Pupil_Big) from the left eye object
to the right eye, since they have the same topology.

6.	 Disable the Pin button for the transferred shape to the left of the "eye" button, just
above the Shape Key name, as shown in the following screenshot:

Chapter 3

85

7.	 Select the Eye.L object again, activate the Pupil_Small shape, and repeat steps 5
and 6 to transfer this Shape Key to the Eye.R mesh.

Now that we have the necessary Shape Keys for each eye, it's just a matter of
creating a driver controller for them.

8.	 Select the Armature object, enter in its Edit Mode (Tab). Make sure the X-Axis
Mirror property is turned on in the Tool Shelf (T) panel.

9.	 Select the base of the Eyelids.L bone, extrude (E) it to roughly half the height
of the eyelids controller. This will create a smaller bone in the same position of the
Eyelids.L bone. You'll notice that another bone will be created at the base of the
right eyelids controller, since we're in X-Axis Mirror mode, as you can see in the
following screenshot:

10.	 Select the bone you've just created, hold Shift, select the Eyelids.L bone and
press Ctrl + P (Keep Offset) to make it child of the eyelids controller. Name the
created bones as Pupil.L and Pupil.R.

Eying Animation

86

11.	 Enter in Pose Mode and lock all the Transform channels of these bones, except the
Scale in the Y axis. You should end up with a setup that looks similar to the next
screenshot. It's a good idea to add a circle shape for the pupils controllers.

Now you should add a Driver for each Shape Key

12.	 Select the left eye mesh, go to the Shape Keys panel in the Properties Window, click
on the Pupil_Big shape, right-click on its Value slider and choose Add Driver. The
slider will get a pinkish hue.

13.	 Open a Graph Editor window, choose the Drivers mode on the window header, click
on the Value (Pupil_Big) name in the left-hand side panel and change the following
settings in the Properties (N) panel: in the Drivers section, change the Expr field
to var on the box below the Add Variable button, change its type to Transform
Channel; select the Otto_Armature object and the Pupil.L bone in the Ob/Bone
fields; choose the Y Scale type and enable the Local Space field. The driver setup
values are shown in the next screenshot, and the left eye pupil should dilate when
you scale (S) up the Pupil.L bone:

Chapter 3

87

The var-1 value on the Expr field is because the default scaling
value of objects and bones in Blender is equal to 1, in contrast
to location and rotation which get default values of 0. This value
allows us to get the desired result when scaling up the bone driver.

14.	 For the Pupil_Small shape you should repeat steps 12 and 13, with the only
difference being that the Expr value should be set to 1-var. The next screenshot
shows the driver setup values, and the contracted pupil achieved by scaling down
the Pupil.L bone:

Eying Animation

88

15.	 To apply the drivers on the right eye, you can copy the ones that you've set for the left
eye. Select the left eye mesh, go to the Shape Keys panel in the Properties Window,
select the desired shape, right-click on its pinkish Value slider and select Copy
Driver, as seen in the next screenshot:

16.	 Then you should select the right eye and its equivalent shape in the same panel, right
click on its Value slider and choose Paste Driver. The only thing that you need to do
next is to change the target bone from Pupil.L to Pupil.R in the driver properties
on the Graph Editor window. Repeat it for the other shape and you're done with the
pupil controllers!

The file 003-Pupils-complete.blend has this finished recipe for your reference.

Chapter 3

89

How it works...
By creating shape keys for the pupil sizes and assigning bone drivers to their values, you
can control the amount of their dilation. To use the same controller for both contraction
and dilation shapes, you must use inverted expression values for evaluation in the Graph
Editor window.

There's more...
Besides the fact that the human iris doesn't contract nor expand, you can apply the same
techniques shown here to control their size. If used very carefully, this kind of control can
help you express your character's emotional state. This is most applicable to cartoon
characters, though.

See also
Chapter 1: Using corrective shape keys

Chapter 1: Making a IK-FK switcher

Chapter 3: How to control where your characters looks at

Chapter 3: The eyelids controllers

4
Poker Face?

Facial Rigging

In this chapter, we will cover the following topics:

ff Adding expressions using Shape Keys

ff Face controls with lattices

ff Creating the jaw controller

ff Controlling your tongue

Introduction
The face is the most complex part of the human body to set up. We spend our entire lives
looking at human faces, and we're pretty good at detecting the subtlest changes and what
they mean emotionally. It's a tough job trying to replicate this amount of complexity in CG:
from the carefully built mesh topology to the detailed shading, texturing, and—of course—the
animation controllers and movements.

The more you try to build a realistic human face in CG, the more details you have to add
in order to avoid the uncanny valley effect. This terms refers to a hypothesis in the field of
robotics which holds that the human observers tend to be repulsed by something that looks
and moves barely like a human being: if it's not exactly like a human nor a clear abstraction of
it (like a cartoon character), the observers notice that there's something "wrong" or "strange"
to the character—often referred to as "zombie like".

There are books dedicated to the subject of facial rigging, and it wouldn't be feasible to try
and cover all the details in this cookbook. We're going to learn some general guidelines and
techniques which are applied to a cartoon character that would help you get acceptable
results, though. Grosso modo, it's the amount of detail and refinement used with these
techniques that will lead you to better results.

Poker Face? Facial Rigging

92

A good thing to do is using a mixed approach when rigging faces: you should use Shape
Keys controllers for specific expressions (such as a smile), a free deformation tool (such
as a Lattice or a MeshDeform modifier), and Armatures (as drivers or to accomplish pivotal
deformations, such as the jaw movement) to deform the character's mesh as you wish. In
this chapter, we'll see how to create these kinds of controllers.

Adding expressions using Shape Keys
Shape Keys, as you may already know, are saved states of your mesh that can be blended
from one to another. For creating facial expressions, which can drastically change the shape
of your character's face (like from a smile to an angry face), these are indispensable in the
rigger's toolbox.

As a rule of thumb, you should use Shape Keys whenever a facial expression is too specific
or complicated to achieve with regular bones. For instance, while smiling, the facial muscles
create specific forms for your mouth and cheeks, creating skin folds (even your eyes and ears
can move in a smile). Reproducing this kind of deformation with bones can be very hard, so
you'd better model the specific shapes to accomplish this expression.

How to do it...
1.	 Open the file 004-Face.blend. It has our character head model, ready for the

creation of shape keys.

2.	 Select it, go to the Properties window, under the Object Data tab and look for the
Shape Keys section. Click on the plus sign icon to add the Basis shape on which the
others will be based on. Click on the same button again to create the first shape and
name it Mouth_cornerUp.L, as you can see in the next screenshot:

Chapter 4

93

3.	 Enter in the mesh's Edit Mode (Tab) and model the shape of a half smile at the left
side of the mouth. You can move (G) the vertices, edges, and faces as you wish,
using modeling tools such as the Proportional Editing (O) mode. The next screenshot
demonstrates our modeled shape. Notice the modeled skin fold, giving shape
to a smile line around the mouth. This kind of deformation would be difficult to
accomplish with bones.

4.	 To create the right side of the expression, you can model it yourself or mirror the
current one. In order to accomplish the latter, set the Mouth_cornerUp.L shape
slider value to 1, add another shape key through the plus sign, click on the down arrow
button, and select Mirror Shape Key, as seen in the next screenshot. Then you can
name this shape properly as Mouth_cornerUp.R and tweak its shape if you wish.

Poker Face? Facial Rigging

94

Another approach to this bilateral symmetry is to model the full
expression with both its sides and create two vertex groups (one for
each side of the face, such as Face.L and Face.R). Then you can
duplicate that shape and set each copy to affect only one of these vertex
groups. Each Shape Key has a field to select a vertex group: if one is
selected, its weights would be used as a "mask" for the influence of the
Shape Key; if none is selected, the entire mesh will be influenced by it.

After you create this shape, go on to model new shapes for different facial expressions.
Building a Shape Key library is a somewhat long and repetitive task, so you should only model
the shapes that are required to achieve a good variety of facial expressions. For instance,
the main character from the Blender Foundation's short movie Sintel required more than
50 shapes.

Along with facial expressions, some professionals also choose to model
phonemes (such as the character saying the letters "a", "o", "e", "m",
"f", and so on). That's very useful, but you should use these phoneme
shapes only as an addition to your existing library, since the emotional
state of your character (thus his facial expression) will probably be
different regardless of the spoken words.

You can have a look at some commonly used shapes in the following list and what they look
like in the next screenshot:

1.	 Mouth_cornerUp (left and right)

2.	 Mouth_cornerSide (left and right)

3.	 Mouth_cornerDown (left and right)

4.	 Mouth_wide (top and bottom lips)

5.	 Mouth_curled (top and bottom lips)

6.	 Mouth_puck (only one shape)

7.	 Mouth_sneer (left and right)

8.	 Cheek_puff (left and right)

9.	 Cheek_suck (left and right)

10.	 Brow_mad (left and right)

11.	 Brow_sad (left and right)

12.	 Brow_surprise (left and right)

Chapter 4

95

To stay organized, you should adopt some naming conventions for
the shapes. Use prefixes such as Mouth_, Eyebrow_ and the
suffixes .L and .R.

After you model all your needed shape keys, it's time to create the appropriate
drivers. This is a matter of creating some controller bones and mapping their
channels (location, rotation, scale, and so on) to the amount of influence of each
shape key. The good thing is that one bone can drive more than one shape key.

5.	 Let's create the drivers for the left corner of the mouth: open the file 004-Face-
shapes.blend. This file has the head mesh with all shapes already modeled and
an armature with the bones properly named and positioned after the face parts.

6.	 Select the head mesh, go to the Object Data tab in the Properties window,
and navigate to the Shape Keys panel. Select the Mouth_cornerUp.L shape,
right-click over the Value slider and choose Add Driver. Do the same for the
Mouth_cornerSide.L and Mouth_cornerDown.L shapes. We'll map these
drivers to different channels and values of the Mouth_corner.L bone.

Poker Face? Facial Rigging

96

7.	 Go to a Graph Editor window, select the Drivers mode, and select the driver
Mouth_cornerUp.L on the left side of the window. In the Properties panel (N),
find the Drivers tab and enter var*10 in the Expr field. This will make a small
amount of movement on the Mouth_corner.L bone to give a high level of
influence on the shape.

8.	 Below the Add Variable button, leave the variable type as Transform Channel, select
the Armature object, and the Mouth_corner.L bone. Select the Y Location channel
and check the Local Space field. The next screenshot shows the setup values:

9.	 Now you should repeat steps 6 and 7 for the Mouth_cornerSide.L and Mouth_
cornerDown.L drivers, with a few changes: for the Mouth_cornerSide.L you
should use the X Location channel and set the remaining values exactly as you did
before; for the Mouth_cornerDown.L the only difference to the Mouth_cornerUp
driver is the Expr value, which should be inverted with the var*-10 expression.

Chapter 4

97

When you finish setting up these three drivers, the controller will act like this: when
moved up, the Mouth_cornerUp shape is triggered; when translated to the side, the
Mouth_cornerSide.L shape is activated; and when moved down, it will trigger the
Mouth_cornerDown.L shape. The cool thing about this is that you can mix related
shapes when moving the controller in a diagonal direction.

Using the principles and procedures shown here you can now set up the remaining
drivers using the other bones. As a guideline, you should map:

�� The Cheek_puff.L and Cheek_suck.L shapes to the Cheek.L bone,
using the positive and negative X local location channels, respectively. The
opposite goes for the right-hand side.

�� The Mouth_wide.top shape to the Mouth_lip.Top bone, using the up Y
local location channel.

�� The Mouth_curled.top shape to the Mouth_lip.Top bone, using the
down Y local location channel.

�� The Mouth_sneer.L shape to the Mouth_lip.Top bone, using the left X
local location channel. Use the inverted expression to the right equivalent.

�� The Mouth_wide.bottom shape to the Mouth_lip.Bottom bone, using
the down Y local location channel.

�� The Mouth_curled.bottom shape to the Mouth_lip.Bottom bone,
using the up Y local location channel.

�� The Mouth_puck shape to the Mouth_lip.Bottom bone, using the front
Z local location channel.

�� The Eyebrow_mad.L, Eyebrow_sad.L, and Eyebrow_surprise.L
shapes to the Eyebrow.L bone, using the negative local X location, the
positive local X location, and the local Y location respectively.

Poker Face? Facial Rigging

98

The complete setup can be found in the file 004-Face-complete.blend, for your reference
if you have any doubts regarding the drivers configuration. With this setup you can achieve
facial expressions like the one you see in the following screenshot:

How it works...
By carefully creating a library of shape keys, we can set up drivers and mix them to achieve
good facial expressions. A single controller can (and should in some cases) drive more than
one shape key. It's good to map opposite channels to opposite shapes so they don't overlap:
this is the reason for mapping the Mouth_cornerUp.L shape to the positive local Y location
and the Mouth_cornerDown.L to the negative local Y location of the same bone.

There's more...
The facial expressions based on driven shape keys are good, but they aren't very flexible since
the modeled shapes act like the extreme positions. In the next recipe we'll see how to use
lattices to add more flexible deformations.

Chapter 4

99

See also
Chapter 4: Face controls with lattices

Face controls with lattices
The use of shape keys allows us to model some very specific facial expressions, notably those
which produce deformations such as skin folds and creases. By building a shape key library
you can interpolate between them to create very convincing facial expressions. The problem
is that you're always limited to the size of your library, and building a huge one requires an
equally huge amount of time and effort.

A good solution to achieve more freedom when building facial expressions is to add another
layer of lattice-based controllers so that the animator can mold the face as desired in real
time. This is easier, quicker, and makes your file lighter for not having an insane amount of
modeled shapes. But the real benefit is that it allows you to achieve pretty good results.

With this mixed-technique approach we can get the best of each tool: modeling specific
creases and wrinkles with shape keys; freely deforming the mesh in real time with lattices;
and using bones where we need rotation (for the eyelids or the jaw, as we'll cover in the
next recipe).

How to do it...
1.	 Open the file 004-Lattice.blend. You'll see a face already set up with shape key

controllers as the result of our previous recipe. This is our starting point.

We're going to create some Lattice modifiers to deform our head mesh, but we'll
make them deform only specific regions. We need one lattice to deform the face as
a whole, one for fine tuning the upper lip, and another for the bottom lip. In order
to achieve this, we need to create three vertex groups: one for each lattice.

A lattice is a special object in 3D applications: visually, it's shape is similar
to a subdivided mesh box, but it's not visible on the rendered image. It's
purpose is to deform a mesh object based on the position of its control
points. There is another modifier in Blender that allows us to achieve
similar results: the MeshDeform modifier. Instead of using this special
lattice object to deform our mesh, it uses another mesh (with fewer
vertices) as the reference for the deformation.

Poker Face? Facial Rigging

100

2.	 Select the head mesh and go to the Vertex Groups section, under the Properties
window, in the Object Data tab. There will be some groups already created, but we
need more. Add three groups by clicking on the plus button and name them
face, lips_bottom, and lips_top, as seen in the following screenshot:

3.	 On the 3D View, select the head mesh and activate the Weight Paint mode on
the window header or through Ctrl + Tab. Make sure that the face vertex group is
activated in the Properties window, set your painting tool to Add in the Toolbox panel
(T), and start painting the influence zone of the face. When painting, leave the eyes
and nose regions with no influence (blue, in Blender default colors; white in the
grayscale image given next) and full influence (red, in Blender default colors; dark
grey in the grayscale picture given next) from the chin to the forehead.

Chapter 4

101

4.	 Repeat the process for the lips_bottom and lips_top vertex groups, painting its
regions as seen in the next screenshot. Notice that the lips_top vertex group also
adds the nose to its influence region (dark):

With the regions of influence properly painted, it's time to create the Lattices to
deform our mesh.

5.	 Go back to Object Mode, position the 3D cursor in front of the face, go to front view
(Numpad 1), press Shift + A, and choose Lattice.

6.	 In the Object Data tab, under the Properties window, set this lattice to have 5, 1, and
7 points on its U, V, and W coordinates respectively.

7.	 On the 3D view, scale (S) and position (G) the lattice so it fits the face size, similar to
what you see in the next screenshot. Set its name as Lattice_Face.

Now that we have the Lattice and Vertex Group properly created, let's add the modifier.

Poker Face? Facial Rigging

102

8.	 Select the head mesh, go to the Properties window in the Modifiers tab, and add a
Lattice Modifier. Set the Object field value as Lattice_Face and choose face as the
Vertex Group, as seen in the following screenshot:

If you enter into the lattice's Edit Mode and move any of its points, you'll see that the
mesh is deformed accordingly. Now we just need to set some controllers to act on the
Lattice. Since we already have an armature (on layer 2) to control the eyes and
shape keys, it's a good idea to use it to also control the Lattice points.

9.	 Select the armature, enter in its Edit Mode, and add a bone between the eyebrows
and name it Eyebrows_Center. Move (M) it to an empty armature layer (such
as layer 3), and make it the only armature's visible layer by pressing Shift + M and
choosing that layer. This layer should have only bones that affect lattices, so you know
where to find them. You should now have something similar to the next screenshot:

Chapter 4

103

10.	 Select the Lattice, go to the Properties window in the Modifiers tab, and add a new
Hook modifier. In the Object field, choose Otto_Armature; for the Bone field, pick
Eyebrows_Center.

11.	 It's time to assign the lattice's points to that bone. Enter into the lattice's Edit Mode
(Tab). You should notice that the Hook modifier panel in the Properties window
had changed a bit. Now you have two new buttons called Select and Assign
for that modifier.

12.	 Select the Lattice point near the Eyebrows_Center bone. Go to the Hook modifier
panel and click on Assign and then Reset to recalculate the modifier.

13.	 Exit the Edit Mode, select, and move the Eyebrows_center bone. You'll see that
the assigned point follows it and the face shape is deformed by the Lattice, as seen
in the following screenshot:

14.	 Repeat steps 9 till 13 to add new bones to the Armature and more Hook modifiers
to control the other points of the Lattice. Once you're finished, you'll have a good
amount of control over the face, even if you have a shape key applied.

15.	 After finishing with the first lattice, create two more: one for the bottom lip and
another for the upper lip, with their sizes and number of control points relevant
to the vertex groups you've created: lips_bottom and lips_top respectively.

Poker Face? Facial Rigging

104

16.	 Repeat the process from steps 5 to 14 for each Lattice, defining their deformation
range to their relevant vertex group and creating more bones and hook modifiers
as you wish. To follow the head movement, all lattices should be parented to the
Head bone.

This process can also be applied to have a finer control over the
shapes shapes of eyelids, if you need more control than just
opening and closing them.

After you finish assigning all the lattices, bones, and hook modifiers, you should end up with
a very flexible rig, which allows you to freely deform the mesh on top of previously assigned
shape keys. The following screenshot shows an example of it, and you can find the complete
exercise in the file 004-Lattice-complete.blend. The shape keys controllers are the
square bones, while the lattice controllers are the cross-shaped ones:

How it works...
By assigning lattices to specific regions of the face through vertex groups, you can control
them with bones through the Hook modifier, thus easily creating free deformations on top
of any existing shape keys.

Chapter 4

105

There's more...
This method is good for creating smooth and subtle changes in the mesh, but you shouldn't
be limited only to faces. Bouncy bellies in fat characters or muscles can also be tweaked with
this technique.

See also
Chapter 4: Adding expressions using Shape Keys

Creating the jaw controller
The action of opening the mouth is defined by the jaw bone. Although at first it seems like a
simple movement, a more careful look shows there's more to it. More than just rotating in
one axis, the jaw moves towards the front, back, and to the sides as well, allowing us to make
somewhat complex movements.

When creating the jaw controller, we should not only pay attention to its unique movements,
but also to the hierarchy of bones, since we'll have controllers such as the lips and tongue
that should follow its movements.

How to do it...
1.	 Open the file 004-Jaw.blend from this book's support files. This file holds

our character's head mesh along with some controllers for its eyes and facial
expressions. You'll also see a visible Lattice for controlling the lower lip of our
character, as a result of our previous recipe, as seen in the next screenshot:

Poker Face? Facial Rigging

106

2.	 Select the Armature, enter into Edit Mode, and add a bone to act as the jaw. It should
have its root on the jaw's imaginary axis of rotation, near the center of the head. Its
tip should be located at the chin, as seen in the next screenshot (the other bones are
hidden for clarity's sake). Name it D_Jaw. Since the mesh already has a vertex
group with the same name, when you move this bone the mesh should be
deformed accordingly.

You should pay attention to the bones and objects hierarchy. All the
bones that have names starting with Lip_Bottom and the Mouth_
lip.Bottom should be parented (Ctrl + P) to the D_Jaw bone so
that they follow its movement. In addition to these bones, you should
also parent two more objects to the D_Jaw bone: Lattice_Jaw
and Otto_Teeth.Bottom. Finally, the D_Jaw bone should be
parented to the Head bone so that it follows the head movement.

Chapter 4

107

This jaw bone would only deform the mesh, and won't be touched by the animator.
Since it would perform some specific movements, we're going to control it using the
Action constraint. The Action constraint is based on a series of preset animations,
triggered by a controller.

3.	 With the D_Jaw bone selected in Pose Mode, open a DopeSheet window, select the
Action Editor mode on the window header, and add a new Action using the plus
button. Call it jaw.

Now you will move and rotate the D_Jaw bone, defining keyframes on this newly
created action.

4.	 For the first frame, just press I and choose LocRot in the 3D View to define a
keyframe to the rest position.

5.	 Go up 10 frames (up arrow), rotate the jaw bone until the mouth is fully open, and
set a keyframe (I) (choosing LocRot) there. Remember the keyed frames: 1 and 11.
We're going to need these.

6.	 Repeat step 4 for the remaining key poses, all spaced by 10 frames to make
things easier:

�� Frame 21 with a rest position

�� Frame 31 with a fully closed mouth

�� Frame 41 with a rest position

�� Frame 51 with the jaw rotated left

�� Frame 61, rest again

�� Frame 71, rotated right

�� Frame 81, rest

�� Frame 91 with the jaw moved to the front

�� Frame 101, rest

�� And finally, 111 with the jaw moved back

You don't need to create new positions for the resting poses. Just
duplicate (Shift + D) the first key position, which holds the resting
pose, and move the copies to frames 21, 41, 61, 81, and 101.

Poker Face? Facial Rigging

108

The next screenshot shows all the different key poses: rest (side), open, closed, front,
back, rest (front), rotated right, and left.

Now comes the fun part. We're going to set the controller for the jaw movements.

7.	 Create a new bone just in front of the chin. Make it smaller and call it just Jaw. With
this bone still selected and in Pose Mode, hold Shift, select the D_Jaw bone, press
Ctrl + Shift + C and select the Action constraint.

8.	 Go to the Properties window, under the Bone Constraints tab and change the settings
for the constraint you've just created: select jaw for the Action field; Location Y, for
Transform Channel; Start:1, End:11 for the Action Length; Min:0, Max:-0.1 for
Target Range; and finally, Local Space in the Convert combo. This will make the
character's mouth open when you move the controller down.

9.	 For the other movements, repeat the previous step and change only the values for
Action Length, Target Range, and Transform Channel. You should create five more
constraints so that the jaw closes with the controller up movement; go left, right,
back, and front with the relevant controller transform channels. The settings for
all six constraints are shown in the next screenshot:

Chapter 4

109

Now you can move the Jaw controller freely and the character will move accordingly. The
complete example is in the file 004-Jaw-complete.blend, so you can refer to in case
of any doubts.

How it works...
By creating predefined positions for the jaw in a separate action, you can trigger parts of that
animation with a controller and an Action constraint. Because the jaw movements are a bit
more complex, involving rotation and translation, it's a good idea to use a separate controller
and predefined keys.

See also
Chapter 5: Creating IK legs with a three-pivot foot

Controlling your tongue
The tongue is very important when animating your character, helping to create good facial
expressions which are fundamental when animating dialogues. Although subtle in essence, it
makes a big difference when animating your character while it's saying things such as "hello".

Not only when speaking, but what if your character wants to have an ice cream?

Poker Face? Facial Rigging

110

How to do it...
1.	 Open the file 004-Tongue.blend from this book's support files. You'll find our

character's face rigged with shape keys, lattices, and a jaw controller as the result
of previous recipes.

If you move the Jaw controller down, you'll see that there's a mesh called
Otto_Tongue inside the character's mouth. It is parented to the D_Jaw bone,
so it follows the jaw movement.

2.	 Enter into the armature's Edit Mode and add a chain of two bones for the tongue, as
you can see in the next screenshot. Name them D_TongueBase and TongueTip
and make them both children of the D_Jaw bone: (Ctrl + P) | Keep Offset.

3.	 Enter into the armature's Pose Mode (Ctrl + Tab). Select the TongueTip bone, hold
Shift, select the D_TongueBase bone, press Ctrl + Shift + C, and choose the Stretch
To constraint. This will make the base stretch to the position of the TongueTip bone.

4.	 Select the Otto_Tongue object, hold Shift, select the TongueTip bone, press Ctrl
+ P, and choose With Automatic Weights. This will bind the tongue mesh to the
armature. Adjust the influences of each bone using weight painting.

Chapter 4

111

In order to better visualize the tongue object and its bones, you can
select the Otto_Body mesh and move it (M) to another layer. You can
also hide (H) it (press Alt + H to unhide) or use a Mask Modifier, with the
D_Head vertex group and the Invert option selected.

5.	 Now you can apply a shape to the TongueTip bone and move (M) the
D_TongueBase bone to a hidden armature layer. The tongue will be deformed to
match the position and rotation of this bone, while inheriting the transformations
from the D_Jaw bone.

The file 004-Tongue-complete.blend has this finished recipe for your reference,
in case of any doubts. You can see the resulting deformation in the next screenshot:

How it works...
With a simple setup of two bones parented to the jaw and a Stretch To constraint, we can
create a flexible yet convincing controller for our character's tongue.

See also
Chapter 4: Creating the jaw controller

5
Hands Down! The
Limbs Controllers

In this chapter, we will cover the following topics:

ff Controlling fingers

ff Creating IK legs with a three-pivot foot

ff Stretch those limbs!

ff Setting up the shoulders

ff Cartoon bending for arms and legs

ff Different spaces for IK hands

Introduction
In your animations, your characters will often need to walk, run, hold things, fight, jump,
or just express their feelings. These, and countless other actions, can be achieved even in
pantomime using arms, legs, and hands.

We've already seen some techniques to control our characters' eyes, face, head, and torso.
Now it's time to take a look at how to create the limbs controllers and finish our basic set of
character rigging recipes. Now, let's get hands on!

Hands Down! The Limbs Controllers

114

Controlling fingers
The human hand is a pretty complex device. The range of actions it allows us to accomplish
is pretty unique: we can make very subtle and delicate movements, necessary to create a
piece of art, prepare food, write, build things, play instruments, and so on; we can also make
broader movements to help us in our locomotion, fight, play sports, and even express our
feelings through our hand movements. Our fingers play a huge part in what we can do with
our hands.

Due to its innate complexity, with lots of joints and possible combinations of their use, our
ideal rig should offer some general controllers together with the ability to fine-tune the results.

How to do it...
1.	 Open the file 005-Fingers.blend. It has a hand mesh with some basic bones for

deformation, ready for us to work on its constraints.

You'll see a few chains of bones to deform this mesh: one for the hand and one for
each finger. Pay attention to their orientation: the default rotation of joints the bone's
local X axis. Since this is a left hand, all bones have the .L suffix at the end of their
names. Refer to Chapter 1, Get Rigging if you have any doubts about how to define
these orientations. The following screenshot shows this basic setup:

Chapter 5

115

The bones already deform the mesh, so you can rotate them as you wish. The issue
that arises is: if our character has five fingers, with three bones each, we'll have to
pose 15 bones in order to animate only the fingers! That's neither practical, nor quick
to animate. We need a quicker solution to easily pose each finger.

2.	 Enter into the armature's Edit Mode and create five more bones above each finger
and roughly of the same size, pointing in the same direction as them. These will be
our main controllers for each finger, and should be children of the D_Hand.L bone.
Name them Thumb.L, Index.L, Middle.L, Ring.R, and Pinky.L. Select all these
five bones and disable their Deform property after pressing Shift + W. Refer to the
next screenshot to see the bones that we've created from the top and side views:

3.	 Enter into the armature's Pose Mode (Ctrl + Tab), select the Pinky.L bone, hold
Shift, select the D_Pinky1.L bone, press Ctrl + Shift + C, and pick the Copy
Rotation constraint. Under the Bone Constraints tab in the Properties window for
the D_Pinky1.L bone, you'll see the constraint that we've just created. Disable the
Y axis box (since fingers don't rotate on this axis), enable Offset, and change both
Space combos to Local Space, as seen in the following screenshot:

Hands Down! The Limbs Controllers

116

4.	 Repeat step 3 to add the Copy Rotation constraint to the D_Pinky2.L and
D_Pinky3.L bones, but instead of disabling only the Y axis box, disable both
Y and Z. This is because these joints only rotate on their local X axis.

5.	 The last step for this finger is adding another constraint to its first bone. Select
the Pinky.L bone, hold Shift, select the D_Pinky1.L, press Ctrl + Shift + C,
and choose the Copy Location constraint. Locate this constraint under the Bone
Constraints tab in the Properties window and change both Space selectors to
Local Space.

The Copy Location constraint is necessary because our fingers don't
just rotate from a fixed point. Our hand is a somewhat flexible device,
so the base of our fingers can move to better adapt to the surface it's
touching, or holding. By using the Copy Location constraint, you can
subtly move the controller in order to get a nicer deformation on the
character's hand.

6.	 To improve our controller, select the Pinky.L bone and disable its rotation on the Y
axis and all scaling fields on the Properties panel (N) in the 3D view, as seen in the
next screenshot:

Chapter 5

117

7.	 Repeat steps 3 to 6 to create the remaining fingers, and you'll be able to control them
with only one controller for each, as you can see in the next screenshot:

But wait, there's more!

These general finger controllers allow us to quickly pose the fingers in their closed and open
states, but these are not the only possible positions for the fingers. You should be able, for
instance, to bend only one joint of the fingers.

Since we've enabled the Offset option on each Copy Rotation constraint, we can build our
custom finger pose on top of the transformation produced by the controller. In order to do this,
simply select the desired bone and rotate it until you get what you want.

The deformation bones are inside the mesh, so we need to be able to see them properly
without relying on the X-Ray property. In the provided file, there is a ready-to-use shape
named Fingers, and you should assign it to each finger bone, from the Bone tab in the
Properties window, on the Custom Shape field.

Hands Down! The Limbs Controllers

118

Once you assign this shape to all finger bones, you can disable the X-Ray property of the
armature and make custom poses, as seen in the next screenshot:

You can view the final result of this recipe in the file 005-Fingers-complete.blend for
your reference.

How it works...
By assigning a Copy Rotation constraint to a separate controller, you can make the basic
(and often used) poses for your character's fingers. The use of the Offset property on each
constraint enables you to further refine each finger's pose on top of the transformation
created by the constraints.

There's more...
Since the finger bones are in a FK chain, if you want a cartoony stretching effect, you can
use the same principles applied to the FK arms, legs, and torso covered in different recipes
in this book.

See also
Chapter 1: Customizing shapes and colors for your bones

Chapter 1: Defining good orientations for your bones

Chapter 5

119

Creating IK legs with a three-pivot foot
Legs are often controlled with an Inverse Kinematics constraint. Why? Because of the very
nature of the IK constraint, which controls a chain by the position of its tip, rather than by its
root. Our character's legs position will often be controlled by where its feet are in relation to
the ground. This is a somewhat general rule: whenever a limb (arm or leg) has its control point
dictated by its tip (hand or foot), you should use an IK constraint.

That's the case we'll find very often for legs, so the feet remain still on the ground while your
character moves. The big issue is that there's more than one pivot point to the foot movement:
your character can stand over its ankle, ball of the foot, or the tip of its toes. We need an easy
way to control the leg regardless of what pivot point is used.

When the chain's control point resides on its root (such as the
shoulders or hips), FK can be a good solution to achieve nice and
fluid motion arcs.

How to do it...
1.	 Open the file 005-IK-Leg.blend. It has a leg mesh with a deformation bone chain

already set up for our work, as you can see in the next screenshot:

Hands Down! The Limbs Controllers

120

By default, all bone chains act in Forward Kinematics mode. If you rotate the
D_Thigh.L bone, the whole leg will follow, as you would expect from an FK chain.

2.	 To create the IK motion, let's create another bone chain to drive our deformation
ones. In the armature's Edit Mode, select the D_LowerLeg.L bone, hold Shift, select
the D_Thigh bone and duplicate them using Shift + D. Press Esc so the duplicates
remain in the same place.

3.	 Change to the B-Bone display mode in the Object Data tab under the Properties
window and press Ctrl + Alt + S to change these bones' thickness so you can tell
them apart from the deformation bones. Disable their Deform property (Shift + W)
and rename them to IK_Thigh.L and IK_LowerLeg.

4.	 Select the IK_Thigh.L bone, hold Shift, select the D_Thigh.L bone, press Ctrl +
Shift + C and select the Copy Rotation constraint. Repeat the same for the lower leg
bones, then move (M) both D_LowerLeg.L and D_Thigh.L to a disabled armature
layer in order to remove the visual clutter, since we won't touch them anymore.

5.	 Go back to the Octahedral bone display mode, select the tip of IK_LowerLeg.L,
and extrude (E) it to the back of the foot. Name it T_Leg.L and clear its parent
relationship (Alt + P). We need this because this bone will drive the leg movement,
acting as the IK target. The IK target cannot have a parent-child relationship with the
constrained bone chain. The next screenshot shows the created target:

The prefix T stands for Target bone. Next we'll see another one: M is
for Mechanism bones, which shouldn't be touched by the animator;
and P stands for Pole target for IK constrained chains.

Chapter 5

121

6.	 Go back to Pose Mode, select the T_Leg.L bone, hold Shift, select the
IK_LowerLeg.L bone, and press Shift + I to add an IK constraint. Try moving the
T_Leg.L bone around to see the IK constraint in action. Under the Bone Constraints
tab, in the Properties window, change the Chain Length slider to 2, since we need
the constraint to affect only the lower and upper leg bones.

After moving the target bone, you'll see that the foot rotates too, since it's a child of
the D_LowerLeg.L bone. We want it to remain still, rotating just when we want it to.

7.	 Select the D_Foot.L bone, and disable its Inherit Rotation property in the
Properties window, under the Bone tab. In the 3D view, select the T_Leg.L bone,
hold Shift, select the D_Foot.L bone, press Ctrl + Shift + C, and pick the Child Of
constraint. Things will look messy, but don't panic: go to the Bone Constraints tab
under the Properties window and click on the Set Inverse button in the constraint
section. Now the foot rotation will follow the target bone instead of inheriting the
lower leg properties, as you can see in the next screenshot:

Hands Down! The Limbs Controllers

122

8.	 Now we need to set up three bones to act as pivots for the foot rotation. Go back to
the armature's Edit Mode and add three bones, named M_Pivot1.L, M_Pivot2.L,
and M_Pivot3.L, located at the ankle, ball of the foot, and tips of the toes,
respectively, as you can see in the next screenshot:

9.	 Still in Edit Mode, select the T_Leg.L bone, hold Shift, select the M_Pivot2.L
bone, press Ctrl + P, and choose Keep Offset to make the target bone children of the
second pivot. Repeat this process, now making the ankle pivot parent of the tip of the
foot one (M_Pivot3.L); and the M_Pivot3.L parent of M_Pivot2.L.

This chain of parent relationships will result in the following: if you go back to Pose
Mode, rotating the M_Pivot1.L bone will make the foot and leg rotate around the
ankle; rotating the M_Pivot2.L bone will rotate them around the ball; and rotating
the M_Pivot3.L bone will rotate them around the tip of the toes, as shown in the
next screenshot:

Chapter 5

123

Now we just need a way to control these three pivots with only one bone, and
you probably noticed that when we rotate the second pivot, the toes should have
remained planted on the ground. Lets do that now.

Since this is a somewhat complex transformation requiring different rotations on
different bones, we'll use an Action constraint. This is very useful for when we have
definite yet complex transformations, because we can "record" that transformation in
a separate Action.

10.	 Open a DopeSheet window, making sure the Action Editor type is selected. Click on
New to add a new Action, and name it FootRoll. In the first frame of this action,
select all three pivot bones plus the D_Toes.L bone and insert a keyframe (I) to
define their rest rotation states.

11.	 Go up ten frames (Up Arrow), select the M_Pivot2.L bone, rotate it 60 degrees left
in side view (Numpad 3), holding Ctrl for precision, and press I to set a new keyframe
for its rotation. Select the D_Toes.L bone and rotate it up the same 60 degrees, so
it goes back to its rest position, as seen in the following screenshot:

Hands Down! The Limbs Controllers

124

12.	 Select the M_Pivot3.L bone and set a keyframe for its rotation too. Go up further
10 frames, rotate the M_Pivot3.L bone 80 degrees to the left and insert a new
keyframe for it. Rotate both the M_Pivot2.L and the D_Toes.L bones 60 degrees
back to their original positions, so you get the foot up on its toes, as seen in the
next screenshot:

13.	 Almost there! Now, go up 10 more frames, select the keyframes from the first frame,
duplicate (Shift + D), and drag them to frame 31. We're creating another resting
position to precede the ankle rotation.

14.	 Go up 10 more frames, select the M_Pivot1.L bone and rotate it 45 degrees to
the right, making the foot stand over the ankle. Set another keyframe for its rotation.
Remember the position keyframes: from 1 to 21 we get the action of standing up on
the toes, with the intermediate position of standing over the ball first; from 31 to 41
we get the final rotation over the M_Pivot1.L bone to stand over the ankle. We'll
need these values to set up the foot roll controller.

15.	 Go back to the first frame of the animation, enter into the armature's Edit Mode, and
add a new bone near the ankle, but pointing in the opposite direction as the foot.
This will act as our controller. Name it FootRoll.L and go back to Pose Mode.

16.	 With the FootRoll.L bone still selected, hold Shift, select the M_Pivot1.L bone,
press Ctrl + Shift + C, and choose the Action constraint. In the Properties window,
under the Bone Constraints tab, choose FootRoll under the Action field; Rotation X
under Transform Channel; Start: 1, End: 21 in Action Length; Min: 0, Max: 40
in Target Range; and finally, Local Space in Convert. Repeat this process for the
M_Pivot2.L, M_Pivot3.L, and D_Toes.L bones.

If you rotate the controller up, you'll see our recorded action taking place, and the foot
will stand on its toes nicely. We just need another constraint on the ankle bone, for
the opposite action.

Chapter 5

125

17.	 Select the FootRoll.L bone, hold Shift, select the M_Pivot1.L bone, press Ctrl +
Shift + C, and choose the Action constraint. In this constraint panel, choose FootRoll
under the Action field; Rotation X under Transform Channel; Start: 31, End: 41
in Action Length; Min: 0, Max: -60 in Target Range; and finally, Local Space in
Convert. The next screenshot shows the values for both Action constraints:

It's a good practice to give names to your constraints, so that you can
easily remember what they are up to. That's also valid for modifiers:
It's not uncommon to have various constraints and modifiers in your
mesh and bones. In the previous screenshot we have two very similar
constraints, and their names help us understand what they do.

To finish our leg rig we need only two more bones: the main foot controller and the
IK pole, to control the direction of the knee bending. Let's add them.

18.	 Go back into the armature's Edit Mode and add a bone below the foot of roughly the
same size of it, having its base near the ankle and tip near the toes. Name it Foot.L.
Make it a parent of both FootRoll.L and M_Pivot1.L.

19.	 Still in Edit Mode and in side view (Numpad 3), select the knee joint and position the
cursor there through (Shift + S) | Cursor to Selected. Add a new small bone there
and drag it to the left, so it stays on the front of the leg. Name it P_Leg.L and make
it a child of the Foot.L bone.

20.	 Back in Pose Mode, select the IK_LowerLeg.L bone and go to its Bone Constraints
tab under the Properties window. In the IK constraint attached to it, define Armature
as the value for the Pole Target field and P_Leg.L in the Bone field which will
appear. The leg will bend to the side, which is definitely not what we want. To correct
this, set the Pole Angle slider to 90 degrees.

Hands Down! The Limbs Controllers

126

Remember to disable the Deform property (Shift + W) of all
bones except those with the D prefix!

That's it! Now you can move all other bones to a disabled armature layer (M) and keep only
the Foot.L, FootRoll.L, and P_Leg.L ones visible, since they're the only bones needed
to control the leg. It's also a good idea to define custom shapes to them. The following
screenshot shows the finished leg set up with only those three bones visible:

If you want to compare your results, there is a file with this complete recipe called
005-Leg-complete.blend.

How it works...
By using three helper bones to act as the foot pivots and a recorded action of the foot
movement, we can use a single controller to move an IK leg based on three different
points. By using a careful set of parent-children relationships, we can reduce the number of
controllers of the leg to just three. It can be a bit tricky to set up, but it gives the animator a
very easy and flexible rig to use.

Chapter 5

127

There's more...
IK arms work in a similar but much simpler way, since you don't need to create pivots nor
actions: just create a bone to act as the hand controller, used as a target bone for the IK chain
and to drive the rotation of the hand with a Copy Rotation constraint; and another bone to act
as the pole target. That's all!

See also
Chapter 5: Stretch those limbs!

Stretch those limbs!
If you want to build a cartoon character rig, it's a good idea to enable it to squash and stretch.
Even if your character is not cartoony, some animated shots may require a little stretching in
order to achieve more convincing and clear poses. Depending on your project and schedule,
it can be a good idea to enable this feature in all of your rigs.

How to do it...
1.	 Open the file 005-Stretch.blend. It has an IK leg setup similar to the result of the

previous recipe. Move the Foot.L bone around and see how it works. We need the
leg to stretch to the position of the foot controller.

2.	 Select the IK_Thigh.L bone and go to the Bone tab, under the Properties window.
You'll see a panel called Inverse Kinematics. Change the Stretch field value to 0.1.
Do the same for the IK_LowerLeg.L bone.

If you move the foot controller, you'll see that IK chain bones change their size,
but the leg mesh doesn't follow. It happens because we have two chains: one for
deforming the mesh and another for the IK movement. The deformation chains only
have Copy Rotation constraints, so it won't follow the size of the IK chain bones.

Hands Down! The Limbs Controllers

128

You can see the results in the following screenshot:

If we were using only one chain to both deform and have the
IK constraint, we would have a bigger problem: the stretching
would not retain the mesh volume. This is one reason why we
need separate bone chains. We need one to give the IK motion,
while the other follows it maintaining its volume.

3.	 Select the Foot.L controller and reset its position (Alt + G) and rotation (Alt + R) if
you have it anywhere else than its rest position. Go to the wireframe (Z) visualization
mode in the 3D view, so you can view both chains of bones clearer.

To stretch our mesh we're going to keep the Copy Rotation constraints applied on the
deform chain and add another one: the Stretch To constraint.

Chapter 5

129

4.	 Select the IK_Thigh.L bone, hold Shift, select the D_Thigh.L bone, press (Ctrl +
Shift + C), and choose the Stretch To constraint.

5.	 Things will seem very wrong and messy, but don't panic. Go to the Properties window,
under the Bone Constraints tab for the D_Thigh.L bone, change
the Head/Tail field value to 1, and click on the Reset button in the Stretch To
constraint panel.

6.	 Repeat steps 4 and 5 for the D_LowerLeg.L bone.

7.	 Now, select both D_LowerLeg.L and D_Thigh.L bones and move (M) them to
a disabled armature layer. Move the Foot.L controller around and you'll have a
good stretchy IK leg. The next screenshot shows the result with the IK chain hidden
for clarity:

A good thing about this setup is the fact that you are able to adjust the amount of
stretching in each segment of the limb. You can, for instance, select the IK_Thigh.L
bone and scale it (S) up and down to achieve the desired amount of stretching
and squashing.

Hands Down! The Limbs Controllers

130

8.	 This file has some ready-to-use shapes for the leg IK bones called SHAPE_Legs.
Select the IK_Thigh.L bone, go to the Properties window, in the Bone tab and set
the Custom Shape value in the Display panel to SHAPE_Legs.

9.	 Repeat step 8 for the IK_LowerLeg.L bone. After that, scaling up and down both
bones gives you a flexible stretching setup, as you can see in the next screenshot:

This process of adding Stretch To constraints to the leg bones can also be applied to IK arms
and FK setups. Refer to the file 005-Stretch-complete.blend to the see the complete
recipe for your reference.

How it works...
By using separate bone chains for deformation and control, along with the Stretch To and
Copy Rotation constraints applied on the deformation bones, you can make your character
squash and stretch its limbs easily by scaling the controller bones.

There's more...
And what if you want to turn the ability to squash and stretch on and off? Thanks to the new
"everything can be animated" paradigm in Blender 2.5, it's just a matter of creating a driver
to control the influence of the Stretch property on the IK chain:

1.	 Open the file 005-Stretch-toggle.blend, which has the result of this recipe with
a bone to act as the driver.

Chapter 5

131

2.	 Select the IK_LowerLeg.L bone, go to its Bone tab in the Properties window, right-
click on the Stretch slider, and choose Add Driver, as shown in the next screenshot:

3.	 Go to a Graph Editor window in the Drivers mode and click on the name of the
driver you've just created: IK Stretch (IK_LowerLeg.L). On the Properties tab
(N), choose Armature/LegStretch.L in the Ob/Bone fields and check the Local
Space box.

4.	 Finish by entering var*.1 (without quotes) in the Expr field. This is because
a value of 1 for the stretch property is too much. The next screenshot shows
the driver values:

Hands Down! The Limbs Controllers

132

5.	 To replicate the driver to the IK_Thigh.L bone, go to the Bone tab on the Properties
window for the IK_LowerLeg.L bone, where you've created the first driver.

6.	 Right-click on the purple slider (the color indicates it's driven) and choose Copy
Driver. Then select the IK_Thigh.L bone, right-click on the Stretch slider, choose
Paste, and you're done! The file 005-Stretch-Toggle-complete.blend has this
complete setup.

See also
Chapter 5: Creating IK legs with a three-pivot foot

Chapter 1: Making an IK-FK switcher

Chapter 1: Customizing shapes and colors for your bones

Chapter 2: How to create a stretchy spine

Setting up the shoulders
When the animator is posing a character's arm (specially when using FK), it's often required
to have two opposite features for their shoulder: with or without rotation inheritance from the
torso. This is also called a "hinged" shoulder, when it doesn't inherit the rotation.

The "hinged" shoulder technique is very useful for enabling the animator to rotate the
character's torso and have its arms still on the same direction. This affords similar
independence to the arms from the torso as found in IK setups, while still allowing the
animator to work in FK mode to have a finer control over the animation arcs.

How to do it...
1.	 Open the file 005-Shoulders.blend. It has our character model with an FK setup

for his arms, ready for our work. We have custom shapes applied to the bones and
a ready to use UI, with two bones (one to drive each shoulder) and an unselectable
mesh in wire display mode to help us view the controller.

As the shoulder bones are parented to the Rib controller in the default FK mode, if
you rotate any of the torso bones they will follow the transformation, as you can see
in the next screenshot:

Chapter 5

133

That's fine for some situations when animating your character, but we need to
give the animator the control over whether or not the shoulders should follow
the body rotation.

In Blender, all bones have the properties Inherit Rotation and Inherit Scale, which
are located on the Bone tab, under the Properties window, as we can see in the next
screenshot for the Shoulder.L bone:

You can see that the Inherit Scale property is already disabled, so you can scale the
character's spine without affecting the arms' size. The Inherit Rotation is checked
but, different from the previous recipes, we don't have a slider value to drive. Is there
a way to drive the on or off state of a box? Yes!

Hands Down! The Limbs Controllers

134

2.	 Select the Shoulder.L bone, right-click on the Inherit Rotation box in the
Properties window and choose Add Driver, like you would do for a slider. The field
will acquire a purple hue, which indicates that it has a driver attached to it.

3.	 Open a Graph Editor, selecting the Drivers mode in the window header. Click on
the name of the driver that you've just created in the left panel: Inherit Rotation
(Shoulder.L).

4.	 In the Properties tab (N), under the Driver section, set the Ob/Bone field values as
Otto_Armature and Hinge-Arm.L; leave the X Location channel and check the
Local Space box. In the Expr field, above the Add Variable button, type just var. The
next screenshot shows the panel setup:

5.	 Now, moving the Hinge-Arm.L bone on its X axis will drive the value, similar to a
regular slider. That happens because Blender will read any driven value lower than 1
as False (thus, the disabled state), assigning True when the value is equal to 1.

Since there are only two possible (Boolean) values, the slider in our UI doesn't offer
any intermediate situations: the shoulder is either "hinged" when the controller has
its X position from 0 to .999, or it follows the torso rotation when the controller's X
location is equal to or more than 1. The next screenshot shows our character with
both shoulders in "hinged" mode:

Chapter 5

135

The file 005-Shoulders-complete.blend has this finished recipe for your reference in
case of any doubts.

How it works...
By assigning a regular driver to a Boolean (True or False) field, we can control its state by
having values lower than 1 interpreted as "False" and equal or higher ones as "True".

There's more...
With this principle in mind, you can control a number of features that were impossible to
animate in previous versions of Blender: from the X-Ray property of an armature to options
inside constraint panels, you can drive everything!

See also
Chapter 2: Controlling the neck and head

Cartoon bending for arms and legs
Curves. Animators love curves. So why do we offer just those rigid limbs to our
characters? Let's make them bend with a smooth curve, to help the sensation
of fluidity in their movements!

Hands Down! The Limbs Controllers

136

How to do it...
1.	 Open the file 005-Bending.blend. It has our character model nearly completely

rigged, with all the principles covered until now applied, such as IK-FK switchers and
hinged shoulders. But Otto is asking for some "bendiness": that's why we also have
an interface slider set up (you know, just a bone to act as a driver).

Each limb has three bone chains: one for IK, another for FK, and one for the
deformation. Lets pick, for instance, the left lower arm. The three bones which
compound it are IK_LowerArm.L, FK_LowerArm.L, and D_LowerArm.L. The
deformation bones have two Stretch To and two Copy Rotation constraints each: one
of each pointing to the IK bone and the others to the IK one. Their influences are driven
by a bone, with opposite values: when the IK gets 1, the FK gets 0 and vice-versa.

Chapter 5

137

This is good for several reasons. The obvious one is that by keeping bone chains
separate we have a clear view of what each bone is doing. A less obvious benefit is
that we can easily apply the bend effect without worrying about the IK and FK chains:
the effect is applied to the deformation chain, so the bending occurs before the IK
and FK chains.

2.	 Select the D_UpperArm.L bone, go the Bone panel in the Properties window,
change its Segments value in the Deform section to 16, set its Ease In value to 0,
right-click on the Ease Out value, and pick Add Driver. The field will get a purple hue,
and the bone and its properties will look similar to the next screenshot:

3.	 Now the fun part. Open a Graph Editor window, in the Drivers mode. You'll see a bunch
of drivers listed on the left-hand side panel, which is normal for a nearly complete
character rig. Find and click on the one called B-Bone Ease Out (D_UpperArm.L).

4.	 At the right, on the Drivers sections of the Properties (N) panel, choose Otto_
Armature and Bend_Arm.L on the Ob/Bone fields. Keep the X Location channel and
enable the Local Space box. To finish this driver, set the value of the Expr field above
the Add Variable button as var*2. The next screenshot shows the driver setup:

Hands Down! The Limbs Controllers

138

5.	 Back to the Bone panel for the D_UpperArm.L bone, right-click over its Ease Out
value and pick Copy Driver. Select the D_LowerArm.L bone on the 3D View, go to
the Bone panel, change the Segments field value to 16. Now we're going to do the
inverse as we did to the upper arm bone: set its Ease Out value to 0, right-click on
the Ease In field and choose Paste Driver.

We've inverted the settings here because we need the bend effect to occur on the
elbow. The Ease In value controls the curve deformation on the root of the bone,
while the Ease Out value affects the bone tip. Since the elbow is the connection
between the tip of the upper arm bone and the root of the lower arm one, we need
this inverted setup.

That's it! The easing values of both upper and lower arms are driven by the Bend_Arm.L
bone. If you rotate the FK_LowerArm.L bone and switch the bend controller on and off,
you'll get the results seen in the next screenshot in top view (Numpad 7):

Now you can apply the same principles to the right arm and legs, binding their drivers to the
Bend_Arm.R, Bend_Leg.L, and Bend_Leg.R bones. The file 005-Bending-complete.
blend has this setup done for all limbs, if you have any doubts. Turning off both the last
armature layer, which holds the deformation bones, and the X-Ray property, will give you a
ready-to-use setup, allowing you to achieve poses similar to the next screenshot:

Chapter 5

139

How it works...
By properly using drivers to set the Ease In and Ease Out values of bones with segments, we
can easily apply the bend effect to arms or any desired bone.

See also
Chapter 5: Stretch those limbs!

Different spaces for IK hands
When using arms in Inverse Kinematics mode, the target hand controllers are disconnected
from the actual chain. These controllers are often children of a "root" controller, which is
the topmost level in the hierarchy of bones. This is something animators often call the
"world space".

Hands Down! The Limbs Controllers

140

The "world space" is good for various situations, such as when the character's hands need to
be held still at one point while the rest of the body moves (imagine a circus acrobat holding
himself in a rope, for instance), but we often need other "spaces". For example, animators
should be able to rotate the character's Ribcage controller and have its IK hands to follow
the movement. That would be the "Ribcage space", as many others which can be required
by your animation.

How to do it...
1.	 Open the file 005-Spaces.blend. It has our character rig with enabled IK for both

arms. Since the arms have a regular IK constraint, they are in the default "world
space", with its controllers parented to the Root bone. There is a new UI slider to
switch between "world" and "ribcage" spaces so that we can work on creating
the controller.

2.	 If you go to side view (Numpad 3) and move the Hips controller to the character's
front, you'll see that his hands and arms remain in place. That's okay for the legs,
since we assume that they are planted on the ground, but the arms look like they are
held by something. Is our character in a dungeon, with handcuffs attached to a wall?

We need the arms controllers to follow the ribcage position and rotation, so the
animator can make a basic pose with the character torso and then pose the arms,
which will be in a more appropriate position.

Chapter 5

141

3.	 Go back to front view (Numpad 1), select the Ribcage controller, hold Shift and select
the Hand.L controller. Press Ctrl + Shift + C and pick the Child Of constraint. Things
will look weird, but we're going to fix it now.

4.	 With the Hand.L bone selected, go to its Bone Constraints tab, under the Properties
window and click on the Set Inverse button. Things will be back to normal. Now, right-
click over the Influence slider and pick Add Driver. It will gain a purple hue.

5.	 Let's bind the driver to the appropriate controller now. In a Graph Editor, make sure
it's in the Drivers mode, look for and click on the driver that we've just created:
Influence(Hand.L: Child Of).

6.	 In the Properties panel (N) on the right-hand side, under the Drivers section,
select Otto_Armature and Space_Arm.L for the Ob/Bone fields. Leave the X
Location channel untouched and check the Local Space option. In the Expr field,
above the Add Variable button, write just var. The following screenshot shows the
driver setup values:

Now, by moving the Space_Arm.L controller to the "Ribcage" position, the left hand
will follow the movement of the character's torso.

You may notice that we have a hierarchy of constraints here. Since the arm is at a
lower level than the shoulder controller, you may get unwanted deformations if you set
its space to Ribcage and the Shoulder is in hinged mode. You should use the Hinge
controller for the shoulders only when the IK arm is in the world space. We can fix that
with a driver. First, lets see the problem.

Hands Down! The Limbs Controllers

142

The next screenshot shows the weird deformation when we rotate the torso with the
Hand.L bone in the Ribcage space and the Shouder.L bone in hinged mode:

Fortunately this is very easy to do with our setup. Every controller on our UI has a
Limit Location constraint attached to it. This constraint is to allow only the values 0
to 1 in their local X Location, since that is what we need for the drivers.

All we have to do is to set a driver for the Minimum X value in the Hinge-Arm.L
controller. If the Space-Arm.L is set to 1, the Hinge-Arm.L must have its position
locked to 1, having both Minimum and Maximum X values equal to 1. But, wait: we
already have a driver set to read the X position of the Space-Arm.L bone, since it
drives the Child Of constraint of the Hand.L controller. Let's copy and paste it!

7.	 Select the Hand.L bone and go to its Bone Constraints tab in the Properties window.
Right-click on the purple Influence slider and select Copy Driver. Now select the
Hinge-Arm.L controller, go to its Limit Location constraint in the Properties window,
right-click on the Minimum X slider, and select Paste Driver. That's it!

Now, if you set the Space-Arm.L controller to Ribcage, you can't move the
Hinge-Arm.L slider to the "Hinge" position. It's only allowed if you set the world
space. The next screenshot shows the desired behavior with the Hand.L bone
in the Ribcage space:

Chapter 5

143

The file 005-Spaces-complete.blend has this final setup applied to both left and right
hand controllers, so you can refer to it in case of doubt.

How it works...
By assigning a Child Of constraint of the IK hand controllers to the ribcage controller as target,
we can change the default "space" from which the IK controllers' positions are evaluated.
This gives a lot of flexibility to the animator in the way of approaching an animation scene.
Because of the inherent nature of bone chains, we have to pay attention to bones between
the IK controller and its target space: in this case, the shoulder controller gave us unwanted
deformations when in hinged mode. A simple copy of the main driver fixes that.

There's more...
Don't just be limited to creating a "Ribcage space"! Every animation shot is different in nature,
and may require you to set various different "spaces". Imagine if your character glued its hand
to its head! You should be able to move the head and affect the "glued" hand. Creating a
"head" space using the principle showed in this recipe you can do that.

See also
Chapter 1: Making an IK-FK switcher

Chapter 5: Setting up the shoulders

6
Blending with the

Animation Workflow

In this chapter, we will cover the following topics:

ff Animating in layers

ff Changing between IK and FK in a shot

ff Grasping and throwing objects

ff Silhouette and mirrored rendering

ff Tracking animation arcs

ff Using video for background reference

ff Working with linked assets and characters

ff Non-linear animation

Introduction
Even the shortest piece of animation may require a lot of time to be made. For the uninitiated,
producing 60 seconds of animation may sound like an easy task, but you can spend months
until these few seconds are ready to hit the screen. Since animation is a very time consuming
activity, having a streamlined workflow is a must.

You have to be organized in order to make things quicker and be able to fix errors easily.
Imagine yourself having to throw away a week of work because things got so confusing in your
scene that you found it easier to restart from scratch rather than try and fix it. That may sound
acceptable if you're only making personal studies, but in a professional scenario with tight
deadlines you're simply not allowed this luxury.

Blending with the Animation Workflow

146

From this chapter on, we'll see some practices to help you stay organized, productive, and
approach several kinds of animated shots. Of course, this is not a "one size fits all" set of
recipes. There are various ways of bringing your characters to life, and different professionals
often have unique workflows that work best for them, so be free to adapt and use what you
feel its best for your productions.

Animating in layers
If you're animating a character for the first time, you'll likely start by moving several bones
and posing your character in the timeline until you're happy with the movements. That's quite
similar to the "straight ahead" method in traditional 2D animation: this method is where you
draw one frame after the other until you complete your animation, and it can enable you to
achieve very expressive and fluid movements.

There's nothing "wrong" with that approach, but you may find yourself in trouble if you need
to make changes to your scene after you have made all the poses. A good way to avoid
such trouble and get a quicker feel of what your animation will look like before it's finished
is working in "layers". If we keep the analogy of the traditional principles of animation, this
method is more related to the "pose to pose" approach, where you define the key poses first,
and then add the intermediate drawings.

A quick intro to the 12 basic principles of animation can be found at
http://en.wikipedia.org/wiki/12_basic_principles_
of_animation.

For the sake of clarity, this method will be demonstrated with a bouncing ball, but the same
principles can be used with complex characters.

How to do it...
1.	 Open the file 006-Layers.blend. It has two meshes: a beach ball and one to act

as our ground, with two levels of height. We're going to animate the ball roll from the
left, fall and bounce until it stops. The Blender screen is divided, so you can see the
scene in front view, camera view, an Action Editor and a F-Curve editor, as seen
in the following screenshot:

Chapter 6

147

First we will define the key poses. The key poses are the most important ones in a
scene, the storytelling ones. Here the "story" is: the ball rolls, falls, bounces few times
on the ground and stops. Our key poses may be the first position, where the ball is
still in the platform; the point where the ball leaves the platform; the first contact of
the ball with the ground after falling; and the final resting position.

2.	 Set these four Location keyframes (I), evenly spaced by 10 frames in the timeline.
We don't care about timing here, just poses. A good thing to do now is make sure
all (A) keyframes are selected (with an orange hue) in the DopeSheet window, press
Shift + T, and select Constant as the interpolation mode. This will remove any
automatic interpolation that can confuse you when playing the animation with
Shift + A. The following image shows the key poses in sequence:

This was the first "layer", where we care only about the key positions of the scene. If
we want the ball to stop further from the platform, or make the first bounce closer to
it, it's easier to adjust it now. If we went on to make a fully animated ball, rolling and
bouncing a few times through the floor, it would be much harder to change that.

Blending with the Animation Workflow

148

When working with a character rig, in this first layer you should make
rough key poses, without the fine details such as fingers or facial
expressions. Start by positioning the pelvic bone, which normally
drives the position of the remaining FK chains, and the feet (if your
character is with its legs in IK mode).

Once we're happy with the key poses, let's add another layer of refinement. Now it's
time to add the "Extreme" poses. These are, essentially, the positions where a change
in direction occurs. In our case, the Extremes are every contact position of the ball
with the ground on each kick.

The key poses in a scene are normally also Extremes, but the inverse
is not necessarily true.

3.	 Select the last column of keyframes you saved on the DopeSheet window with a
right-click on one of the saved points in the column and pressing K.

4.	 Still in the DopeSheet window, move (G) that column to the right, to frame 90, so
we can save the Extremes between the third and fourth key poses. Position the ball
at the places you find ideal for the bounces and set new keyframes (I) through the
timeline. Six bounces between the key poses is a reasonable number. Remember
that the spaces between each bounce get shorter until the ball stops: look at the next
screenshot to see the marked points and frames where the poses have been set:

Chapter 6

149

You can see that our timeline is very organized and easy to adjust, with keyframes set
in a visually easy to understand manner.

The next step is to create the Breakdown positions, which are in essence the inter-
mediate poses between two Extremes. In our case, the Breakdowns can be the peaks
between each bounce.

5.	 We can visually distinguish the Extremes, Breakdowns, and regular keyframes on
the DopeSheet by applying different colors for them. Select the keyframes you want
to mark on the DopeSheet and press R. A menu will appear with the option to mark
them as Extremes (pink), Breakdowns (blue), regular keyframes (white), or "Jitter"
(green), a special type for marking any other saved positions you wish to tell apart
from the rest. Position the ball (G) and insert new keyframes (I) between each saved
Extreme, and remember that in each bounce the ball goes up lower than the previous
one. The next screenshot shows our Breakdowns set:

Until now we have just worried about spacing, which is about "where" our action
occurs. Now we're going to set the timing, which - as you've probably guessed - is
about "when" an action happens.

Blending with the Animation Workflow

150

6.	 Since we're working with just one thing at a time in an organized way, it's easy to
adjust the timing after we're happy with the positioning. It's just a matter of selecting
the columns (K) on the DopeSheet window and moving (G) them to the sides. Press
Alt + A to check the timing.

The technique of creating key poses, Extremes (and sometimes
the Breakdowns), along with rough Timing adjustment is
called Blocking. It's a widely used technique in professional
environments, allowing the animator to have a preview of the timing
and placement of the characters and objects in a scene. Usually,
there's no interpolation between poses (the Constant interpolation
mode that we've been using up until here) so the animator can see
the action without unwanted automatic interpolation.

7.	 Until now the keyframes have no interpolation between them. Select all keyframes
on the DopeSheet (A) and press Shift + T to select the Bezier interpolation mode. You
can always press Alt + A to view a playback of the animation to see if the timing is
fine. The next screenshot shows the first timing adjustment on the DopeSheet:

You will notice that until now our animations don't really look like a bouncing ball. The
saved positions and timing may be fine, but we need to have better control over the
interpolation between the keyframes. That's when we need the Graph Editor window
to add another layer of refinement.

Take a look at the Z Location channel curve at the Graph Editor window. Since the Z
Location represents the up or down movement of the ball, it's easier for us to relate
the curve to the actual animation. When a ball bounces, it spends little time on the
ground and more time in the air. We need to change the automatic curves generated
by Blender.

Chapter 6

151

8.	 Right-click on the handles and move (G) them until you have shorter times on the
Extremes and longer on the Breakdowns. The next screenshot shows the Z Location
curve before (above) and after (below) our changes, where the timing was also
adjusted a little:

Now if you look to the X Location curve on the Graph Editor you'll see a big
ascending and irregular curve. This curve drives the horizontal movement of our
ball, and this irregularity can cause some unwanted results. Since we want our ball
to make a regular translation, decreasing its speed until it stops, it's a good idea to
remove the unnecessary keyframes.

Blending with the Animation Workflow

152

The following screenshot shows this curve before (above) and after (below) we
remove the extra keyframes to achieve a smoother movement:

After you're happy with the main ball movement, it's time to add the secondary
transformations. One of them is the ball rotation. Now that you can see where the ball
starts and ends its movement, along with its velocity, it's easier to guess how many
rotations the ball should make.

9.	 Go to the first frame of the animation and set a rotation keyframe by pressing I and
choosing Rotation. Go to the last one, press R, and make it spin a few times and
add another Rotation keyframe. After that, adjust the X Euler Rotation curve in the
Graph Editor until you're happy with the results.

Other secondary movements can include very small bounces just before the ball
stops and a subtle movement backwards after the ball stops. These new movements
will add more keyframes on top of the ones you're already happy with.

Chapter 6

153

When animating characters, these layers of details range from the basic
blocking of the torso and limbs to the subtleties of facial expressions, eyes,
and fingers. You can save each layer as a separate Action in the DopeSheet
window: when you finish one layer, make sure that you're in the Action
Editor mode and click on the plus (+) sign next to the action name. This will
duplicate the current action so that you can work on it without modifying the
original. Our example file was created this way.

The file 006-Layers-complete.blend has the final animation of the bouncing ball, and
you can see all layered steps mentioned in this recipe in the DopeSheet window, by selecting
the appropriate Actions.

How it works...
Using an organized approach of adding layers of refinement, you can achieve animations
that are quicker and easier to manage. You should start from the basic poses, from Keys,
Extremes, Breakdowns, and then adjust the channel curves to achieve smooth movements.
Only after you have a solid foundation should you go to the next level of detail.

See also
Appendix: Extremes, Breakdowns, Inbetweens, ones and twos

Chapter 6: Non-linear animation

Chapter 7: Easy to Say, Hard to Do: Mastering the Basics

Changing between FK and IK in a shot
Inverse or Forward Kinematics? This is a question that haunts most animators. Some only use
IK, while others claim that IK arms make the characters look like puppets pulled by strings.
Both have pros and cons, and it's a good idea to take advantage of what they are best at.

Normally legs are in IK mode by default. That's because their main point of control is where
the feet touch the ground, and IK allows the feet to remain fixed while the rest of the body
moves. Making a walk cycle with FK legs would be something very difficult. Arms, by contrast,
are normally an appendage of the torso and are held by the shoulders, rotating around them.

Blending with the Animation Workflow

154

This setup with IK legs and FK arms usually works fine in most situations, but there are cases
in which you need to change modes. Imagine a scene where your character is walking, slips
on a banana peel and falls to the ground, using the hands to absorb the impact. During the
impact, the arms stay fixed on the ground while the torso is falling, so we need to change their
mode to IK.

Normally, during the planning phase of your shot, you already know what modes are needed
based on what will happen. That's when you can decide for going only IK, only FK or using
a mix of both on the same shot.

How to do it...
1.	 Open the file 006-IK-FK.blend. It has a very basic animation of our character

Otto walking and slipping on a banana peel. His arms are on FK mode, because they
are only moving for his balance on the walk and don't hold onto anything. At frame
11, the character starts his contact with the ground after the slip, and must use
his hands to absorb the impact. The next screenshot shows three frames from
this animation:

2.	 As you can see, in the last frame of the animation both arms cross the ground line,
following their parent bones as you'd expect from a FK chain. Press Alt + A to play the
animation and see the slipping action and the arms passing through the ground.

We need to, at some point in the animation, set the arms in IK mode so we can
position the hands touching the ground and have the arms to be properly positioned.

3.	 Go to frame 9 and, in front view (Numpad 1), select four controller bones on the rig
UI: IK-FK_Arm.L, IK-FK_Arm.R, Space_Arm.L, and Space_Arm.R. Insert
a location keyframe (I) for all of them in their default positions, as seen in the
next screenshot:

Chapter 6

155

4.	 Still in frame 9, select both hand bones and set a LocRot keyframe (I) for them. Now
go up one frame (Right arrow), with the hands still selected, press I one more time
and select Visual LocRot in the menu.

5.	 Next, select again the four IK/FK and Space controllers that we set a keyframe for
earlier and move them (G) to the right to enable the IK and World modes for the arms.
Press I and choose Location to set a keyframe for them.

Now both arms are in IK mode, with the hands on the same position where they were
in FK mode, because we set the Visual LocRot keyframe just before we changed the
sliders. If we didn't do that in this exact order, the hand controllers would go back to
the rest position and we would have trouble positioning them back.

We set the IK arms to the World space because the default mode on
this rig is to have both IK hands to follow the ribcage controller. Since
we need the hands to be independent from the torso in this scene, this
is the right choice for us. Otherwise we would have the same trouble
positioning the arms as we would have with FK arms.

Blending with the Animation Workflow

156

6.	 Now we can move, rotate, and set keyframes to the hands and elbow controllers to
pose the arms in IK mode, so that our character can protect himself from the fall.
Frame 11 is a good one to insert a keyframe of both hands touching the ground. The
next screenshot shows a sequence of the animation with the arms in IK mode:

You can see the final exercise in the file 006-IK-FK_complete.blend for your reference in
case of any doubts.

How it works...
Using a rig with controllers to switch between IK and FK modes, you should carefully set
keyframes in order to make a seamless transition between each mode. By setting a Visual
LocRot keyframe, you can position the controller properly to create a one-frame seamless
transition between FK and IK.

This workflow is for use with this rig, and may be a bit different in other setups. The important
thing to know is that you must be careful with posing both IK and FK chains before and after
the switch in order to achieve a seamless transition.

See also
Chapter 1: Making an IK-FK switcher

Chapter 5: Hands down! The limbs controllers

Chapter 6

157

Grasping and throwing objects
When animating a scene, you will often have to animate a character interacting with props,
such as grasping a cup of tea, a sword, a gun, or a flower bouquet. These props are not part
of the main rig, but you need a way to control them easily.

Let's imagine a scene where our character finds a giant diamond and picks it up with his
left hand.

How to do it...
1.	 Open the file 006-Props.blend. It has our character Otto in front of a stand with

a big diamond on top. The character has a very basic animation with three Extreme
positions defined to pick the diamond with his left hand. The next screenshot shows
the first keyframe:

2.	 Press Alt + A to see the animation. The character reaches out for the diamond with
his left hand and tries to take it from the stand, but there's something wrong: the
diamond remains still. That's because we need to tell Blender to make the diamond
follow the character's hand at a certain point in the animation, and we're going to do
this with a constraint.

Blending with the Animation Workflow

158

3.	 Go to frame 8, where the character reaches the diamond and closes his hand over
it. This is the moment where the "holding" happens, and the diamond needs to start
following the hand. This frame is also where we need to set the constraint.

4.	 Select the Hand.L bone, hold Shift, and select the Diamond mesh. Blender
automatically changes to Object Mode, since you're selecting two objects of different
types. Now, press Ctrl + Shift + C and choose the Child Of constraint, as seem in the
next screenshot:

5.	 With the Diamond mesh selected, go to the Object Constraints tab in the Properties
window and find the constraint you've just added. In the Bone field, select Hand.L.
You'll see that the diamond changes its position, so click on the Set Inverse button to
make it go back to its original place. That's why we need to set the constraint on the
frame where the holding action begins: this is the position Blender has to take into
account when evaluating the constraint, and the reason why we clicked on the Set
Inverse button.

Chapter 6

159

Now, if you play the animation again, you'll see that the diamond is attached to the
hand even before the hold action happens, which is not what we want. We need to
animate the influence of the constraint.

6.	 Go to frame 8, where the holding happens, and navigate to the Object Constraints
tab in the Properties window for the Diamond object. Right-click over the Influence
slider and select the Insert Keyframe option.

7.	 Now go back one frame (Left Arrow), set the Influence slider to 0, right-click over
it again, and set a new keyframe. If you play the animation again, you'll see that
everything works as expected, and our character successfully takes the giant
diamond. The file 006-Props.blend has the complete example, and the next
screenshot shows the three keyframes of this animation:

How it works...
You can use a Child Of constraint for an object to make it follow a character's bone. By
carefully defining the constraint in the frame where the contact takes place and animating
its influence on the timeline, you can make your character interact with props.

There's more...
You can use the same principle to throw an object away. You should set a constraint and
animate its influence in the opposite way, from 1 to 0 on the frame where the object should be
thrown. From that point, you should animate the object independently.

See also
Chapter 8: Animating a Tennis Serve

Blending with the Animation Workflow

160

Silhouette and mirrored rendering
Rendered frames of a 3D animation can be thought of as individual drawings of traditional 2D
animation. Similar to animating with pencil and paper, we must check our digital 3D drawings
to see if everything looks proper on the screen.

Two often used techniques to check the quality of a pose for animation are viewing it as a
silhouette and with a mirror. When we stare at our work for great amounts of time—and that
is particularly true for animators—it becomes difficult to spot imperfections.

When you have a silhouette version of your drawing, all fine details such as textures and
shading are removed, and you can focus only on the main shape of your pose. If your pose
can be "read" by the audience in silhouette form and communicates what your character feels,
you can be sure it will work in the full, shaded version.

Traditional animators also often use mirrors to check their drawings. After being so long in
front of a picture, our eyes get used to that shape and we can't see all of the imperfections.
A mirror "creates" another shape, one that we're not accustomed to and that we can look at
to spot mistakes.

How to do it...
1.	 Open the file 006-Silhouette-and-mirror.blend. It has our character Otto

with a basic pose as if he is running. Looking at it for a long time, moving and rotating
bones can deceive our eyes, causing us to lose focus, making us unable to pay proper
attention to some bad shapes. Lets try to spot them.

Chapter 6

161

2.	 Open a Node Editor window and select the Compositing Nodes type on the window
header. Select the Use Nodes and Backdrop options. The latter shows the result of
the composite in the background of the nodes window, while the former makes the
scene nodes actually used by Blender.

3.	 Hit F12 to render this frame, pressing Esc when it's done to return to the previous
screen. This step is necessary so that you can actually use the scene information for
the composite. If you need more space, keep the mouse cursor over the Node Editor
window and press Ctrl + Up Arrow to maximize it.

To create the silhouette view, all the information that we need to
use in this scene is held by the Alpha channel, since there are no
concurrent meshes in front of or behind our character, such as
props or walls. In more complex scenes, make sure you only have
the meshes you want to check in the silhouette visible. You can
move the extra meshes to a disabled layer for this purpose.

4.	 Lets add a ColorRamp node. Press Shift + A and select Convertor | ColorRamp on
the menu, as seen in the next screenshot:

Blending with the Animation Workflow

162

5.	 Now, click on the Alpha grey circle on the Render Layers node and drag its output to
the grey input circle at the left-hand side of the ColorRamp node, connecting them. To
see the result on the backdrop, select the ColorRamp node by clicking over it, press
Shift + A, and select Output | Viewer. This will create a Viewer node connected to
the output of the ColorRamp and show the resulting image on the backdrop, as seen
in the following screenshot:

To move the nodes around, just click on them and press G, as you do
with objects in the 3D View. To move the backdrop, hold Alt, right-click
over the image and drag it around. You can make the backdrop bigger
with V and smaller with Alt + V.

This would make our silhouette view of the scene, but we can enhance it further by
making the character black over a white background (or the color that you like best).
First, take a look at the gradient box on the ColorRamp node: there is a dotted line on
the left border and a black and white one on the right. The dotted one indicates that
it's the active point, and you can drag it over the ramp. You can also click on the other
point to make it the active one.

6.	 Select the first point on the ramp and change its color from black to white on the
color selector just below the Add, Delete, and F buttons. Do the same to the second
point, changing its color to black, as seen in the following screenshot:

Chapter 6

163

This will finish our silhouette setup. Now you can check for problems on the overall
shape to correct the pose.

7.	 To make further observations on the shape, we're going to create the mirrored setup
on top of this one. With the ColorRamp node selected, press Shift + A and select
Distort | Flip to add the Flip node already connected to the ramp node. With the Flip
node selected, press Shift + A and pick Output | Viewer to create a second viewer
node already connected to it. Now, by clicking on each of the viewer nodes you can
switch the backdrop image to check for imperfections in your pose, as seen in the
next screenshot:

Blending with the Animation Workflow

164

Now, while creating your poses, you can use this setup to check them quickly by viewing them
in silhouette and mirrored modes. Just remember to render the scene again after you make
the changes.

Since our goal here is just a quick view of our poses, we don't need to enable the compositing
nodes on our Render panel in the Properties window, but you can render an animation this
way if you wish (specially if you want to render the full scene in silhouette to see the result
in motion). The file 006-Silhouette-and-mirror-complete.blend has this complete
example, waiting for you to press F12.

How it works...
Using the Alpha information of a scene, you can use the ColorRamp and Flip nodes to check
your character's poses in silhouette and mirrored modes, to look for imperfections that are
harder to spot on detailed images.

There's more...
To speed up this already quick rendering process, make sure that you disable all options on
the Shading panel in the Render settings of your scene. You can also move all the lamps
in your scene to a disabled layer, since we're only making use of the Alpha channel and
discarding everything else. Just remember to enable these options back to make the final
renders of your scene.

See also
Chapter 7: Easy to Say, Hard to Do: Mastering the Basics

Tracking animation arcs
Arcs. Animators are obsessed with arcs. This is because most organic actions happen along
an arched path, giving fluidity and realism to human and animal motions.

Mechanical movements, on the other hand, usually happen along straight paths.

Whether you are animating an organic being or a mechanical device, Blender allows the
tracking of motion paths. This is extremely helpful when animating, and can give you answers
when you watch the movements you create and feel that "something isn't quite right".

Chapter 6

165

How to do it...
1.	 Open the file 005-Tracking.blend. It has our character Otto with some very

basic and unfinished animation of a jump. Let's track the arcs so we can make
our animation better.

2.	 First, let's track the path made by the Hips bone, since it's the center of gravity
for our character. Select it, make sure you're on side view (Numpad 3), go to the
Properties window, on the Object Data tab, and find the Motion Paths panel. Make
sure the options Frame Numbers, Keyframes, and Keyframe Numbers are selected
and click on Calculate Paths. You'll see a result similar to the next screenshot:

Blender has tracked the path of the Hips bone in the 3D View with highlights on the
frames, marking the keyframes with squares and the interpolated frames with dots.
The frame numbers also have a different hue where the keyframes are set. It's very
helpful to really see the path and keyframes in 3D, so we can spot any imperfections
in the motion. Let's enhance it.

If you scroll the timeline, the path remains in place and the current frame is
highlighted. First, let's try to adjust our current keyframes.

3.	 In frame 1, move the Hips bone a bit below its current position and replace its
LocRot keyframe (I). At frame 4, drag it up a little and replace its keyframe.

4.	 You'll notice that the path hasn't changed despite your updates. You need to click on
Calculate Paths again to see the updated arc of motion. The change may be subtle,
but isn't that what animation is about?

Blending with the Animation Workflow

166

5.	 Let's continue tweaking the keyframes. On a Graph Editor window, make the Y
Location the only channel visible for the Hips bone. This channel controls the up
or down movement. Edit its handles until you get a softer curve. You can change
the way the handles behave by selecting the desired mode in the V menu. The next
screenshot shows it before and after the editing:

6.	 If you click on the Calculate Paths button again, you'll see that the motion curve for
the Hips bone has improved significantly. The following screenshot shows the new
and improved path:

7.	 When you're happy with the Hips path, click on the Clear Paths button on the
Motion Paths panel. It's time to check the paths for other interesting bones. After the
hips controller, you can check the head, arms, and feet, since they are commonly the
center of attention in this kind of broad movement.

Chapter 6

167

Just be sure to remember the bone hierarchy when correcting paths: when you change the
position of a parent bone, such as the Hips, the paths of its children (FK arms, head, and so
on) will also change. That's why we should begin with top level bones on the rig hierarchy. The
file 006-Tracking-complete.blend has this recipe with the Hips path corrected.

How it works...
Blender has a nice feature for calculating the Motion Paths for bones and other animated
objects in the 3D View. These traced paths allow the animator to easily see what problems
occur in the motion path and what frames should be corrected. By carefully tweaking
the bones which are higher on the rig hierarchy first, the animator can quickly build good
animation arcs.

There's more...
Along with the Motion Paths feature, Blender has a similar feature called Ghost. This feature
is also called "Onion Skin" in other animation software, and allows the animator to see a
translucent copy of the selected bone or object for different positions on the timeline.

This feature is located on the same Object Data tab as the Motion Paths, and can be
configured to display the translucent copies in various ways. One advantage of it over the
Motion Paths is that the copies are automatically updated on the 3D View when you change a
keyframe. The Ghost feature can be used alone or together with the Motion Paths, giving very
good visual aids to the animator.

See also
Chapter 7: Easy to Say, Hard to Do: Mastering the Basics

Using video for background reference
Some animators say using video reference is cheating. Don't be fooled by that. Since the
days of the Nine Old Men—the core pioneer animators of Walt Disney Productions who created
classics such as Snow White and Pinocchio, which helped define the art of animation as we
know it—animators have studied and used video reference. The main difference is that today
it's much easier and more accessible for us to do that.

Reference is something extremely important for animators to get inspiration from and
understand the essence, physics, and motivation behind movements. From video reference
you can get good visual ideas to apply to your animations, especially for acting subtleties,
secondary actions and timing.

Blending with the Animation Workflow

168

Blender allows us to easily insert videos or image sequences on the 3D View background
to use as reference, and we're going to see how to do it. For this recipe, an excerpt video
is used from a public domain movie called WILLIAM BENDIX IN RILEY, SAVINGS BONDS
SALESMAN; maintained by the National Archives and Records Administration. It's available
at http://www.archive.org/details/gov.archives.arc.11866.

You can also visit a group page on the Vimeo website, which is maintained by animators and
allows you to watch hundreds of live action video footage for reference at http://vimeo.
com/groups/aniref/videos.

How to do it...
1.	 Open the file 006-VideoReference.blend. It has our character Otto in his resting

position. In the support files there is a file called 006-VideoReference.mp4, which
is an excerpt from a public domain video encoded with a MPEG-4 codec and a frame
rate of 30 frames per second. We'll use it for help posing our character.

Most common video containers and codecs are supported by
Blender to be used as background. Movies in .mov, .avi,
.mp4, or .flv can usually be loaded without any hassles.

Knowing the frame rate of the video is essential, because
our Blender file has to match it. You can discover the video's
frame rate using the free and cross-platform multimedia player
VLC (available at http://www.videolan.org/vlc/), by
opening the video with this player and pressing Ctrl + I to see
the media information. The frame rate of the video is shown in
the Codec Details tab.

2.	 Go to the Properties window, on the Render tab, and find the Dimensions sections.
Change the FPS field to 30.

3.	 Go back to the 3D Window, and open the Properties panel (N). Scroll it down until
you see the Background Images section. Enable that option, click on the triangle
on the left-hand side and click on Add Image to access the background settings, as
seen in the next screenshot:

Chapter 6

169

After clicking on the Add Image button, a new slot is created so you can select a
background image or movie.

4.	 To select the file, click on the triangle next to Not Set. A new set of buttons will
appear on the bottom, where you can select an existing file within Blender or select
an external one. Click on the Open button to look for our video file. The window will
turn into a file selector, and you'll be able to see thumbnails of the video and image
files to find what you want easily.

5.	 Click on our video file and then on Open to load it into our scene. Blender will
automatically set the first frame of the movie as the background, and our panel will
change to accommodate more settings, as you can see in the following screenshot:

Among these settings, it's important to enable the Auto Refresh option, which will
update the viewport when you change the current frame in the timeline. There are
also two similar options: Start, which tells Blender to start the background playback
on a specific frame, useful for when you want to use the reference on a later part of
your animation; and Offset, useful if you want the first frame of your timeline to be
synchronized to a later part of the reference movie. There are also quite easy to
understand settings such as Size, Transparency, X and Y, to control size, opacity,
and position.

Since the video reference uses a real world perspective, using it in orthographic views
doesn't make much sense, as these views are only mathematical representations
of a real perspective. We can tell Blender to use the background video only in the
Camera view, with a matching perspective.

Blending with the Animation Workflow

170

6.	 Select the Camera option in the Axis field in the video reference slot. Now, you'll
see the movie as a background only when in Camera view (Numpad 0). A good use
for this setup is with the Quad View Ctrl + Alt + Q, which is new in Blender 2.5 and
divides your 3D window in four views: Top Ortho, Camera Persp, Front Ortho, and
Right Ortho. After enabling it, you'll be able to pose your character nicely within
the views and have your background video set only in Camera view, as seen in the
next screenshot:

Another nice thing about using background videos and images in Blender is that you
can use more than one at a time.

7.	 Click one more time on the Add Image button in the Properties panel to create
another image slot. Repeat the same you did for the movie file, but now select the
image called 006-VideoReference.png in the same folder and set it to be shown
only in Camera view. It's a grid with the Rule of Thirds to help you set up your camera
and achieve a better visual composition. Set its Transparency value to 0, so it's fully
visible on top of the video reference, as seen in the next screenshot:

Chapter 6

171

The file 006-VideoReference.blend has this complete example, so you can refer to it and
compare your results.

How it works...
Using video reference is very important for animators, and Blender allows the use of both
images and video as a background on the 3D view. By stacking video and compositing guides,
along with taking care of the frame rate of the scene and video reference, it's a nice feature
on the animator's toolbox.

See also
Chapter 7: Easy to Say, Hard to Do: Mastering the Basics

Working with linked assets and characters
When working in a production environment, in a studio with other professionals or even as
a freelance artist, it's important to work with linked assets. Having separate Blender files for
characters, environments and props is crucial for an organized and sane workflow, avoiding
redundancy and making the update process easier.

Blending with the Animation Workflow

172

Imagine if, at a later stage of your animation, you have to make changes in the shape or
materials of your main character. If, in order to do that, you have to reopen and alter all your
already finished shots, your workflow is far from optimized. If using linked libraries, all you
have to do is change the main source file and automatically all scenes making reference
to it will be updated.

The use of linked libraries also allows different professionals to work on different aspects of a
production at the same time. While the animator is posing the character, another professional
can work on refining its mesh or materials, for example.

How to do it...
1.	 Open the file 006-Libraries.blend. It has an empty scene with only a camera

and some lamps. Lets add our character to this scene. On the top header, in the
Info window, go to the File menu and choose the Link option, as seen in the next
screenshot:

The Link option is to create a reference to an external library, while
the Append one is for creating a local (and independent) copy of it.

Chapter 6

173

2.	 The Blender window will open a file browser, through which you should find and click
on the file 006-Libraries-Otto.blend. When you click on it the file browser
interprets it as a regular folder, which has sub-folders to represent the various kinds
of data in a Blender file, as you can see in the next screenshot:

3.	 Make sure all options under the Link/Append from Library panel are enabled,
navigate to the Group folder, select the Otto group, and click on the Link/Append
from Library button to bring it to our scene.

It's important to have an established file hierarchy on your system.
If you keep renaming or moving the library file to another location,
all scenes with links to it will be broken!

You'll see our character positioned at the center of our scene, already selected. Since
we've linked our character as a linked group, you cannot select individual items such
as the mesh or armature. You also cannot enter in Edit Mode, because all structural
changes must be made in the original library file.

Blending with the Animation Workflow

174

4.	 To be able to pose and animate the character, we need to create a proxy instance of
the armature. A proxy acts like a linked and limited copy that enables you to work on
to add keyframes. With the group already selected on the 3D view, press Ctrl + Alt + P
and select Otto_Armature from the list, as seen in the next screenshot:

This would create a proxy instance of our armature, making it the selected object in
the 3D View. Now you can press Ctrl + Tab to enter in Pose Mode and animate our
character. If you try to enter in the armature's Edit Mode with Tab, nothing happens
because of the limited nature of the proxy object.

Chapter 6

175

5.	 Save this file and open the original library file, 006-Libraries-Otto.blend. Try
changing something on its mesh or materials and reopen the scene file. Everything
you changed will be automatically updated on the linked instance.

This method of linking a group is very useful for its simplicity: when linking an external
library, only the group should be selected. On the other hand, you should be very
careful when creating the group. You must make sure that every object needed for
the rig is on the group.

6.	 Open the library file, 006-Libraries-Otto.blend, again. In an Outliner window,
select the Groups display mode. You'll see the only group on that file, Otto, as
the root of a hierarchy of several objects, including the character meshes, armature,
and helper objects, such as empties, shapes for bones and lattices. Notice that
even hidden objects are included. The next screenshot shows the group with all
included objects:

It's far easier to pick only a group of objects instead of linking each one separately.
This linked group, for instance, has 41 different objects. Another advantage is that
you can add or remove objects from the group on the library and all linked instances
are updated.

Blending with the Animation Workflow

176

7.	 Let's add another object to this Otto group. Add a sphere in the 3D View through Shift
+ A | Mesh | UV Sphere. Move (G) and rotate (R) it as you wish, then go to the Object
tab on the Properties window, under the Groups section. Click on the Add to Group
button and select Otto. Save the file and open the file 006-Libraries.blend
again. You'll see the new object automatically added on the scene, as you can see
in the following screenshot:

The file 006-Libraries-complete.blend has this completed example, with the only
difference that it has a linked group from the file 006-Libraries-Otto-final.blend.

How it works...
Working with linked assets makes your workflow organized, easier to manage and without
unnecessary redundancies. For characters, it's a good idea to create a group with all
necessary objects, including shapes used for the rig. Linking a group is a good practice,
since you can add or remove objects to a rig without breaking existent scenes.

Chapter 6

177

See also
Appendix: Naming conventions

Non-linear animation
Along with the more "traditional" way of animating characters, Blender offers the Non-linear
Animation (NLA) Editor, where you can mix different actions to produce new movements. This
editor allows a lot of flexibility, with the ability of stacking simple movements to create a more
complex animation. Tasks such as repeating and reversing an animation, which demands
time and care to do in the DopeSheet, are very simple to do on the NLA.

How to do it...
1.	 Open the file 006-NLA.blend. It has our character Otto with a basic animation of a

jumping jack exercise. You'll notice that the arms movement is missing. Let's do them
using the NLA Editor. The following screenshot shows our starting point, with the first
pose in the 3D View and its keyframes set in a DopeSheet window:

Blending with the Animation Workflow

178

2.	 Press Alt + A to playback the animation. You'll see that, along with the missing arm
movements, there is only one jump. We need this action to be repeated for a number
of times so we have a real jumping jack exercise.

3.	 Change the Properties window below the DopeSheet into a NLA Editor using the
window header. You'll notice a red line with some keyframes. This is our jumping
action defined on the DopeSheet. Let's turn it into an Action Strip, so it can be treated
independently as a layer of animation. Click on the "snowflake" icon right next to the
action name to turn it into a strip, as shown in the next screenshot:

You'll notice that all keyframes set on the DopeSheet window are gone. They are now
grouped inside the yellow action strip you see in the NLA Editor. To edit the keyframes
of this action, select it on the NLA Editor and press Tab, just like you do to enter Edit
Mode for objects. Once you finish editing, press Tab again.

4.	 Now let's create the arms action. The first frame has the legs spread wide, so
the hands need to be touching overhead. Move and rotate the arms, hands and
shoulders on frame 1, setting a new keyframe (I) when you're happy with the results.
When you set the first keyframe, you'll see that a new Action is automatically created
on the NLA Editor above the saved strip, as you can see in the following screenshot:

The first action of the legs and torso has 16 frames, and we want our arms action to
be the same length to a perfect match. Since it's a repeating action, the first frame
should be identical to the last.

5.	 Select all keyframes set on the first frame by holding Alt and right-clicking over one of
the yellow keyframes; press Shift + D to create a copy and move them to frame 16.

Chapter 6

179

6.	 Frame 9 is where the feet stay together and the torso is straight, so the arms and
hands need to be down. Create another extreme keyframe there. Continue adding
more keyframes to create good breakdown positions and in-betweens until you have
a nice movement of the arms. Once you finish, go to the NLA Editor window and click
on the "snowflake" icon for this new action to create another strip.

7.	 You may rename the strips and tracks on the Properties panel (N) at the
right-hand side.

8.	 Now, for the repetition. This is very easy to do in the NLA Editor. In the DopeSheet
you'd have to manually duplicate the keyframes, causing an undesirable redundancy.
In the NLA however, it's just a matter of selecting the desired strip and changing the
Repeat value in the Action Clip section of the Properties panel, as seen in the next
screenshot, where the strip is set to repeat five times:

9.	 Select the bottom strip and change its Repeat value to 5 also, so both strips have a
matching length. In the NLA you can drag strips around to change their sync, so you
can easily offset motions to increase the sense of overlapping actions. If you play the
animation with Alt + A, you'll see the animation repeating seamlessly for five times.

Using the Properties panel in the NLA Editor you can also
change the overall timing of a strip by changing its Scale value.
Reversing a strip is just a matter of enabling the Reversed
option. Strips can also receive modifiers, so you can add a
random noise to movements or simulate the feel of a stop-
motion video by using a stepped interpolation.

10.	 Make a quick OpenGL rendering of the active 3D viewport by clicking on the
clapperboard button on the 3D view header. After finishing, play the results by
pressing Ctrl + F11. You may feel this animation is too quick, so it's a good idea
to slow it down a bit.

Blending with the Animation Workflow

180

In the "traditional" way, using the DopeSheet, we would have to move keyframes around to
adjust the timing, but on the NLA Editor you can just change the Scale value on the Properties
panel to 1.5 for both strips. Blender will automatically resize the strips and calculate the new
timing for them. That's very useful when you need to adjust the timing for an entire action.

The file 006-NLA-complete.blend has this finished recipe, and you can refer to it if in
doubt or to compare your results.

How it works...
The Non-linear Animation (NLA) Editor in Blender allows us to logically separate and stack
pieces of animation, making it easy to combine different movements, and make repetitions
and timing adjustments. The pieces, or strips, are seen by Blender just like film strips in a
non-linear video editor, where you can move around and mix layers of different actions.

There's more...
You can use the NLA Editor to apply the layered refinement approach that we talked about on
the recipe Animating in layers. Each step of refinement (key poses, Extremes, Breakdowns)
can be a separate action visually layered on the NLA Editor. This way you can also keep the
steps separate in a non-destructive way.

See also
Chapter 6: Animating in layers

Chapter 7: Adjusting and tracking the timing

Chapter 9: It's time for secondary actions

7
Easy to Say,
Hard to Do:

Mastering the Basics

In this chapter, we will cover the following topics:

ff Adjusting and tracking the timing

ff Spacing: favoring and easing poses

ff Anticipating an action

ff Using squash and stretch

ff Breaking the symmetry

Introduction
The most difficult thing in animation is, quite ironically, mastering the basics. Young animators
often have an urge to do "complicated" things such as complex dialogues and action scenes,
but fail to understand aspects such as timing, spacing, asymmetry, or squash and stretch.

Following the principle of working in layers of refinement, covered in the previous chapter
we must take care to make the basic underlying layers first, and make them well. Before
attempting the fancy stuff, we need to make sure we have a good foundation. This foundation
must work on its own: you should be able to communicate the actions and its motivations
without all the polish.

Easy to Say, Hard to Do: Mastering the Basics

182

Adjusting and tracking the timing
Timing, by itself, is a subject that goes well beyond the scope of a simple recipe. It is, in
fact, the main subject of a number of animation-related books. Strictly speaking, Timing in
animation is how long it takes (in frames or seconds) between two Extreme poses.

You can have your character in great poses, but if the timing between them is not right, your
shot may be ruined. Maybe it is a difficult thing to master because there are no definite rules
for it: everyone is born with a particular sense of timing. Despite that, it's enormously important
to look at video and real life references to understand the timing for different actions.

Imagine a tennis ball falling to the ground and bouncing. Think of the time between its first
and second contact with the ground. Now replace it with a bowling ball and think of the time
required for this bounce. You know, from your life experience, that the tennis ball bounces
slower than the bowling ball. The timing between these two balls is different. The timing here
(along with spacing, subject of the next recipe) is the main factor that makes
us perceive the different nature and weight of each ball.

The "rules" of timing can also be broken for comedic effect: something that purposely moves
faster or slower than usual may get a laugh from the audience. We're going to see how
different timings can change how we perceive a shot with the same poses.

How to do it...
1.	 Open the file 007-Timing.blend. It has our character Otto with three poses,

making him look from one side to the other:

Chapter 7

183

2.	 Press Alt + A to play the animation. You may think the timing is acceptable for this
head turn, but this method of checking the timing is not ideal. When you tell Blender
to play the animation through Alt + A, you're relying in your computer's power to
process all the information of your scene in real time. You'd probably end up seeing
something slower than what you'll actually get after rendering the frames.

When playing the animation inside the 3D view, you can see the actual
playback frame rate on the top left corner of the window. If it's slower than
the scene frame rate (in this case, 24 fps), it means that the rendered
animation will be faster than what you're seeing.

When adjusting the timing, we must be sure of the exact results of every keyframe
set. Even a one-frame change can make a huge impact on the scene, but rendering a
complex scene just to test the timing is out of the question, because it just takes too
long to see the results. We need a quick way to check the timing precisely.

Fortunately, Blender allows us to make a quick "render" of our 3D view, with only the
OpenGL information. This is also called "playblast", and is exactly what we need. Take
a look at the header of our 3D view and find the button with a clapperboard icon, as
seen in the next screenshot:

OpenGL stands for Open Graphics Library, and is a free cross-platform
specification and API for writing 2D and 3D computer graphics. Not only are
the objects inside Blender's 3D view made using this library, but also the
user interface with all its buttons, icons, and text are drawn on the screen
with OpenGL. From OpenGL version 2.0 it's possible to use GLSL, a high
level shading language heavily used to create games and supported by
Blender to enhance the way objects are displayed on the screen in real time.
From Blender 2.5, GLSL is the default real time rendering method when the
user selects the Textured viewport shading mode, but that option has to be
supported by your graphics card.

Easy to Say, Hard to Do: Mastering the Basics

184

3.	 Click on that clapperboard button, and the active 3D view will be used for a quick
OpenGL render of your scene. This preview rendering shares the Render panel
settings in the Properties window, so the picture size, frame rate, output folder, file
format, duration, and stamp will be the same. If you can't see the button in your 3D
View header (it is available only in the header) it may be an issue of lack of space; you
can click with the middle button (or the scroll wheel) of your mouse over the header
and drag it to the sides to find it.

4.	 After the OpenGL rendering is complete, press Esc to go back to your scene and
press Ctrl + F11 to preview the animation with the correct frame rate to check
the timing.

Starting with the Blender 2.5 series, there's no built-in player in the
program, so you have to specify one in the User Preferences window
(Ctrl + Alt + U), on the File tab. This player can even be a previous
version of Blender in the 2.4 series or any player you wish, such as
DJV (http://djv.sourceforge.net/) or Mplayer (http://
www.mplayerhq.hu). With any of these options you must tell
Blender the file path where the player is installed.

Now that you can watch the animation with the correct frame rate, you'll notice
that the head turns quite fast, since it only takes five frames to complete. This fast
timing makes our action seem to happen after the character listens to an abrupt and
loud noise coming from his left, so he has to turn his head quickly and look to see
what happened.

Let's suppose our character is watching a tennis match in Wimbledon, and his seat is
in line with the net, at the middle of the court (yep, lucky guy). Watching the ball from
the serve until it reaches the other side of the court should take longer than what we
have just set up, so let's adjust our keyframes now.

5.	 In the DopeSheet window, leave the first keyframe at frame 1. Select the last column
of keyframes by holding Alt and right-clicking on any keyframe set at frame 5. Move
(G) the column to frame 15 (hold Ctrl for snapping to the frames), so our action takes
three times longer than the original.

Another way of selecting a column of keyframes is through the
DopeSheet Summary option on the window header. It creates an
extra line above all channels. If you select the diamond on this line,
all keyframes on that column will be selected. You can even collapse
all channels and use only the DopeSheet Summary to move the keys
along the timeline to make timing adjustments easily.

Chapter 7

185

6.	 Now, the Breakdown, or intermediate position between two Extreme poses. It doesn't
have to be at the exact middle of our action. Actually, it's good to avoid symmetry not
only in our models and poses, but in our motions too. Move (G) the Breakdown to
frame 6, and you'll have something similar to the next screenshot:

Now you can make another OpenGL render to preview the action with the new timing. You
can choose to disable the layer where the armature is located, the second, by holding Shift
and clicking over it, so you don't have the bones on the preview. Of course this is far from a
finished shot: it's a good idea to make the character blink during the head turn, add some
moving holds, animate the eyeballs, add some facial expressions, and so on. This rough
example is only to show how drastically the timing can change the feel of an action. If you set
the timing between the positions even higher, our character may seem like he's looking at
something slower (someone on a bike, maybe?) moving in front of him.

How it works...
Along with good posing, the timing is crucial to make our actions vivid, believable, and with a
sense of weight. The timing also is very important to help your audience understand what is
happening in the scene, so it must be carefully adjusted. To have a precise view of how the
timing is working in an action within Blender, it's best to use the OpenGL preview mode, since
the usual Alt + A shortcut to preview the animation inside the 3D View can be misleading.

Easy to Say, Hard to Do: Mastering the Basics

186

There's more...
Depending on the complexity of your scene, you can achieve the correct frame rate within the
3D view with Alt + A. You can disable the visibility of irrelevant objects or some modifiers to
help speed up this real time processing, like lowering (or disabling) the Subdivision Surface
modifier and hiding the armature and background layers.

See also
Appendix: Extremes, Breakdowns, Inbetweens, ones and twos

Chapter 6: Non-linear animation

Chapter 7: Spacing: favoring and easing poses

Spacing: favoring and easing poses
The previous recipe shows us how to adjust the timing of our character's actions, which is
something extremely important to make our audience not only understand what is happening
on the screen, but also know the weight and forces involved in the motion. Since timing is
closely related to spacing, there is often confusion between the two concepts.

Timing in animation is the number of frames between two Extreme poses. Spacing is how
the animated subject moves and shows variations of speed along these frames. Actions with
the same timing and different spacing are perceived differently by the audience, and these
principles combined are responsible for the feeling of weight of our actions.

We're going to see how the spacing works and how we can create eases and favoring poses
to enhance movements.

How to do it...
1.	 Open the file 007-Spacing.blend. It has our character Otto turning his head from

right to left, just like in the timing recipe. We don't have a Breakdown position defined
yet, and this action has a timing set to 15 frames.

First, let's understand the most elementary type of spacing: linear, or even spacing.
This is when the calculated intermediate positions between two keyframes have the
same distance among them, without any kind of acceleration. This isn't something
we're used to seeing in nature, thus it's not the default interpolation mode in Blender.

Chapter 7

187

2.	 To use it, select the desired keyframes in a DopeSheet or a Graph Editor window,
press Shift + T, and choose the Linear interpolation mode. The curves between the
keyframes will turn into straight lines, as you can see in the next screenshot showing
the channels for the Head bone.

If you preview the animation with Alt + A, you'll see that the movement is very
mechanical and unappealing, something we don't see in nature. That's why this
interpolation mode isn't the default one.

Movements in nature all have some variation in speed, going from a resting state,
accelerating to a peak velocity, then slowing down until another resting state. These
variations of speed are called eases, and are represented with curved lines on the
Graph Editor. When there is an increase in speed we have an ease out. When the
movement slows down to a resting state, we have an ease in.

3.	 This variation in speed is the default interpolation method in Blender, and you can
enable it by selecting the desired keyframes in a DopeSheet or Graph Editor window,
press Shift + T and select the Bezier interpolation mode. The next screenshot shows
the same keyframes with easing:

Easy to Say, Hard to Do: Mastering the Basics

188

When we adjust the curve handles on the Graph Editor, we're actually defining the
eases of that movement. When you insert keyframes in Blender, it automatically
creates both eases: out and in (with same speeds). Since not all movements have
the same variation of speed at their beginning and end, it's a good idea to change
the handles on the Graph Editor. This difference of speed between the start and
end keyframes is called favoring.

When the Spacing between two poses have different eases, we say the movement
"favors" one of the poses, notably the one which has the bigger ease. In the next
screenshot, the curves for the Head bone were adjusted so the movement favors the
second pose. Note that there is a softer curve near the second pose, while the first
has sharper lines near it. This will make the head leave the first pose very quick and
slowly settle into the second one.

In order to create sharp angles with the handles in the Graph Editor
window, you need to select the desired curve channels, press V and
choose the Free handle type.

4.	 Open the video file 007-Spacing.mov in a video player, which enables navigating
through the frames (such as DJV—http://djv.sourceforge.net), to watch
the three actions at the same time. Although the timing of the action is unchanged,
you can clearly notice how the interpolation changes the motion. In the next
screenshot, you can see that at frame 8, the Favoring version has the face closer
to the second pose:

Chapter 7

189

Now that you understand what spacing is, know the difference between the
interpolation types, and can use eases to favor poses, let's add a Breakdown
position. This action is pretty boring, since the head turn happens without any arcs.
It's a good idea to tilt the head down a little during the turn, making an imaginary
arc with the eyes.

Especially during quick head turns, it's a good idea to make
your character blink during the turn. Unless your character is
following something with the eyes—such as in a tennis court in
our example—a quick blink is useful to make a "scene cut" in our
minds from one subject to the other.

Easy to Say, Hard to Do: Mastering the Basics

190

5.	 On the DopeSheet window, in the Action Editor, select the Favoring action. Go to
frame 6, where the character looks to the camera. Select and rotate (R) the Head
and Neck bones to front on their local X axis, as seen in the next screenshot, and
insert a keyframe (I) for its rotation:

Since Blender automatically creates symmetrical eases on each new keyframe, it's
time to adjust our spacing for the Head and Neck bones on the Graph Editor window.
If you play the animation with Alt + A, you'll notice that the motion goes very weird
because of that automatic ease. The F-Curves on the X axis of each bone for this
motion are not soft. Ideally, since this is a Breakdown position, the curves between
it and its surrounding Extreme poses should be smooth, regardless of the favoring.

6.	 Select the curve handles on frames 1 and 6, and move (G) them in order to soften
the curve peak in that Breakdown position. The next screenshot shows the curves
before and after editing. Notice how the peak curves at the Breakdown in the middle
get smoother after editing:

Chapter 7

191

Now the action looks more natural, with a nice Breakdown and favoring created using the
F-Curves. The file 007-Spacing-complete.blend has this finished example for your
reference, in which you can play the animation with Alt + A to see the results.

How it works...
By understanding the principle of Spacing, you can create eases and favoring in order to
create snappy and interesting motions. Just like visible shapes, the pace of motion in nature is
often asymmetrical. To make your motions not only more interesting, but also more believable
and with accents to reinforce the purpose behind the movements, you should master Spacing.
Be sure to check out the interpolation curves in your animations: interesting movements
normally have different eases between two Extreme positions.

Easy to Say, Hard to Do: Mastering the Basics

192

See also
Appendix: Extremes, Breakdowns, Inbetweens, ones and twos

Chapter 6: Non-linear animation

Chapter 6: Tracking animation arcs

Chapter 7: Adjusting and tracking the timing

Anticipating an action
In nature, most actions have a preceding movement. Be it a subtle eye or eyebrow movements
to anticipate a head turn, or a full-body preparation for a jump.

Giving proper premise to your characters' actions will not only make them look more natural,
but will also give visual clues to your audience so they know what's happening on the screen
and where to look next. If you think of it like that, you may conclude that the anticipation
principle is a storytelling resource in the animator's tool set.

As any other animation principle, you can use it (or remove it) for dramatic or comedic
purposes. For instance, a character may leave the screen without anticipation, leaving
only dust in its place and a proper sound to make the audience laugh.

How to do it...
1.	 Open the file 007-Anticipation.blend. It has our character Otto with some basic

poses for a jump. From right to left in the next screenshot: he is standing before the
jump; the start of the jump; the moment where he finishes the jump, with his left foot
touching the ground. We have a very important missing position here, the anticipation
pose where he takes impulse for the jump. This pose must be between the first and
second positions.

Chapter 7

193

If you play the animation using Alt + A or render a playblast, you'll see that our
character needs an impulse to accomplish the jump in a natural way. The timing
is also something that we need to adjust, since we have only basic poses equally
distributed on the timeline.

2.	 On a DopeSheet window, leave our first keyframe at frame 1. Move (G), the second
column of keyframes to frame 17, the third to frame 19, the fourth to frame 22,
and the last to frame 26. You'll notice a big empty space between the first and
second keyframes, as shown in the next screenshot. We're going to fill it with an
anticipation pose.

Easy to Say, Hard to Do: Mastering the Basics

194

3.	 Go to frame 11 and adjust the pose so our character bends his torso and both knees
in order to prepare for the jump. Rotate (R) the IK_Roll.R controller to make the left
leg stand over the ball of the foot, and also the finger controllers to close them a bit.

4.	 You'll notice the right foot in the next keyframe is a bit forward to help the impulse.
You can select the diamond related to the Foot.R bone on frame 17, duplicate
(Shift + D) it, and bring the copy to frame 11. Refer to the next screenshot to base
your pose on:

Now, with our basic poses ready and with a proper anticipation to the jump, it's just a matter of
adding more subtleties and fixes to our motion. Since the computer is a "dumb" inbetweener,
we need to add more positions before and after our Extremes and Breakdowns in order to
achieve good arcs (refer to the Tracking animation arcs recipe, in the previous chapter).

The file 007-Anticipation-complete.blend has this complete exercise with some more
positions added, so you can refer to it and compare your own results.

Chapter 7

195

How it works...
By understanding the principles behind motion, you'll be able to add proper anticipation to
your character's actions. Along with more physical examples similar to those in this recipe,
you should think of this principle as a storytelling device with subtleties, such as making your
character look at an object before picking it up, or looking to one side prior to a head turn.

See also
Appendix: Extremes, Breakdowns, Inbetweens, ones and twos

Chapter 6: Tracking animation arcs

Chapter 7: Using squash and stretch

Using squash and stretch
The animators at Disney, notably Frank Thomas and Ollie Johnston, stated that the animation
principles were discovered instead of defined. Among those discoveries, arguably the most
important is the fact that organic bodies squash and stretch its shapes during movement.

Most people associate this principle only with cartoony and exaggerated animation, but
small amounts of squash and stretch are very welcome to "realistic" types of motion to help
emphasize extreme poses. That's why it's a good idea to have a squash and stretch enabled
character rig.

How to do it...
1.	 Open the file 007-Stretch.blend. It has our character Otto making a jump,

just like the result of our previous recipe on anticipation. To enhance the feeling of
impulse and help lead the eyes of our audience, we're going to add a little squash
and stretch to the torso and legs.

First, the torso. Our rig enables us to stretch the torso region by simply scaling the
desired controllers. In our scene, the character gets into its crouching position at
frame 11. We need a soft squashing here to enhance the feeling of weight after the
body stops the down movement.

2.	 At frame 11 the torso shouldn't have squashed yet, so go to this frame, select the
Belly and Spine bones, and insert a keyframe (I) for their resting sizes.

Easy to Say, Hard to Do: Mastering the Basics

196

3.	 Our character starts its ascending movement and makes the jump at frame 17. Go
to this frame and insert another keyframe to the resting size of the bones. Up until
now nothing has changed: we have just defined when the squashing action will start
and end.

4.	 Now go to frame 13. Scale (S) down these bones slightly so you have a nice squashing
action in the middle of the crouching action, as seen in the next screenshot:

This will create a subtle squashing action. Besides being subtle, it enhances the pose
and the feeling of weight behind the action.

Chapter 7

197

5.	 Now we're going to do the same for the peak of the jump, when the torso should be
fully stretched. Go to frame 19 and scale (S) the two bones up, inserting another size
keyframe (I) for them, as you can see in the next screenshot:

6.	 Go to frame 23 and, since this is where the impact happens, scale down the
controllers to achieve another squashing. Finally, go to the last frame of the action
(23), return the size of both controllers to their default (Alt + S) and save another
scale keyframe for them. This will create a nice and subtle variation of squashing and
stretching during the action, reinforcing the feeling of weight and forces involved.

Easy to Say, Hard to Do: Mastering the Basics

198

If you expand the channels for the Belly and Spine controllers on the DopeSheet
window you'll see that the number of rotation and location keyframes is higher than
the number of scaling ones, which are responsible for this "layer" of squashing and
stretching, as you can see in the next screenshot:

7.	 Now, the legs. Since they're in IK mode, we need to enable the stretching feature
in our rig. Go to front view (Numpad 1) at the first frame of the animation, select
and move (G) both stretch controllers for the legs to the right, and insert a location
keyframe (I) for them, as seen in the following screenshot:

Chapter 7

199

8.	 Now go back to side view and adjust the Foot.L and Foor.R controllers to slightly
stretch the legs where applicable. When you move the controller beyond the regular
extension of each leg, they'll stretch to follow it. It's a good idea to add a little
stretching to the right leg at frame 18 in order to enhance the feeling of impulse,
and the left leg at frame 21 to enhance the foot contact to the ground. The next
screenshot shows the two legs stretching at their frames:

Those stretching actions on the torso and legs last for a couple of frames, look weird when
viewed alone, but they do add some charm and help the action when watched in continuous
motion. Now it's just a matter of rendering an OpenGL playblast (the clapperboard icon on
the 3D window header) and watching the animation on its correct timing.

The file 007-Stretch-complete.blend has this completed example for your reference.

How it works...
In nature, all organic structures are somewhat flexible, achieving levels of squashing and
stretching while in motion. The squash-and-stretch principle can enhance the feeling of weight
and forces involved in motion, and should be used not only in cartoon animations, but also as
a layer of improvement.

Easy to Say, Hard to Do: Mastering the Basics

200

See also
Chapter 6: Animating in layers

Chapter 7: Anticipating an action

Breaking the symmetry
Among the 12 basic principles stated by the animation legends Frank Thomas and Ollie
Johnston, there is one called Solid Drawing. Even if you can't draw anything else other than
a stick figure, this principle remains as important for those who use the computer as is does
for classical 2D animators.

Think of the computer and its software as a highly sophisticated and expensive kind of pencil.
A pencil doesn't make a masterpiece for itself, nor the computer. It's the person behind the
tool who makes the difference.

When posing your character on the screen you're creating a "drawing", even if there's no pencil
and paper involved. Thus, you have to take control of the shapes presented on the screen
to make this drawing more appealing to the audience and tell a story.

Images rendered in a 3D application tend to look too perfect and symmetrical, and that
does not feel natural. A big part of the work of artists involved in the processes of modeling,
texturing, and lighting is to add "imperfections" to their work in order to make the images look
more natural, believable, and interesting. The work of an animator shouldn't be different.

How to do it...
1.	 Open the file 007-Symmetry.blend. It has our character with four basic poses

applied to it in an action of falling to the ground. We are not worried about the timing
just yet, because we need to finish our poses first. You will notice that his poses are
absolutely symmetrical, as the next screenshot shows it in front and side views:

Chapter 7

201

Nobody falls like that! In the side view, we can't even tell whether he has more than
one arm or leg, since they are at the exact same position. We need to bring a bit of
asymmetry to these poses to make the fall appear more natural.

Easy to Say, Hard to Do: Mastering the Basics

202

Although a symmetrical pose isn't something desirable for a
natural motion, it can be useful to use this symmetry as a starting
point. In this case, I've posed only the torso and left limbs and
copied the flipped pose to the right limbs. Since the bones have
the .L and .R suffixes, you can use the X-Axis Mirror option on
the Toolshelf panel (T) or the Copy Pose and Paste Flipped Pose
buttons on the 3D Window header.

2.	 Go to frame 1 and start breaking this symmetry. Rotate (R) and move (G) the bones
to have a more relaxed and natural pose on each of the four "drawings" we have
on the timeline. Don't forget to replace the keyframes (I) of each bone that you've
changed. It's also useful to check your changes in all views at the same time with the
quad-view split option toggle (Ctrl + Alt + Q). The next screenshot shows our first pose
with a more natural shape:

3.	 This is looking much better. Once you feel happy with the resulting first pose, go
change the next ones. Remember to make the adjustments in a coherent way; for
instance, if the right leg is closer to the ground prior to the impact, it will most likely
touch the ground first.

Chapter 7

203

That leads us to another way of thinking about the asymmetry: not only the shapes
on the screen shouldn't be symmetrical, but also the motion. The animation principle
of the Overlapping Action tells us that different parts of an organic body move at
different speeds. Taking this into consideration, both our character's hands and feet
shouldn't touch the ground at the same time, for instance.

Another implication of it is that we'll need more positions set in our timeline than
what we already have to address this overlapping actions. That shouldn't be an issue,
since we're actually going to add more positions anyway: the computer is a "dumb"
inbetweener and obligates us to add more keyframes than the regular Extreme and
Breakdown positions.

The following screenshot shows our adjusted poses, and the file 007-Symmetry.blend has
our complete recipe with the correction applied to the poses for your reference. To finish this
action we need to add some extra keyframes and adjust the timing and spacing, but that is
out of the scope of this recipe. Check our recipes covering timing, spacing, and arcs to learn
more about this.

How it works...
Most organic (or non-mechanical) creatures move in a non-symmetrical way. Despite having
some sort of physiological symmetry, such as the bilateral symmetry on humans, there are
some "imperfections" that our eyes are very used to perceive. The lack of these imperfections
both in shape and motion is something we notice very quickly, breaking the "illusion of life"
that we want to create as animators. Adding a fair amount of asymmetry helps our animations
to be more believable, looking more natural and fluid.

Easy to Say, Hard to Do: Mastering the Basics

204

See also
Appendix: Extremes, Breakdowns, Inbetweens, ones and twos

Chapter 6: Non-linear animation

Chapter 6: Silhouette and mirrored rendering

8
Shake That Body: The

Mechanics of Body
Movement

In this chapter, we will cover the following topics:

ff Animating a tennis serve

ff Heavy metal (weight lifting)

ff Glory for your team: kicking the ball

ff Run, Forrest! (in cycles)

Introduction
The previous chapter was about some basic aspects of character animation, things you
should learn and know by heart. With practice you'll notice that these principles will become
second nature to you when you animate.

In fact, the next few recipes don't require much more than what we've already learned in
the previous chapter: we're going to use what we've learned, and more than one principle at
a time. We're going to apply what we know about timing, spacing, anticipation, asymmetric
posing, squash-and-stretch, and a few new things that we'll see along the way.

Shake That Body: The Mechanics of Body Movement

206

Since we're going to deal with scenes are a bit more complete, it's strongly recommended
that you read the Creating thumbnails with Grease Pencil article in the Appendix of this
book. Planning is an often overlooked step when animating, but it's hard to stress enough
how important planning is to help you make better animated shots. Along with planning, it's
also crucial to look at moving references (record yourself, your friends, search YouTube, rent
a movie, watch people on the street, and so on; whatever works for you) to figure out the
mechanics behind the particular movement you need to create.

Animating a tennis serve
One of the nice things about being an animator is the chance to bring the illusion of life to
different characters. These characters often don't have similarities with your own personality,
but you have to study them and create appropriate movements in order to tell a story and
make the audience believe what they see on the screen.

You don't need (although it may help if you are) to be a skilled martial artist to create a fight
scene, or be a tennis player in order to animate a character playing tennis. What you really
need is to look for good references and study the movements you need to create.

In this recipe we're going to animate our character making a tennis serve. Nowadays it's
just a matter of browsing through a website to see lots of good references on almost every
subject imaginable, so a quick search for "tennis serve lesson" on YouTube offers you a long
list of detailed video lessons intended to teach you how to perform a tennis serve with your
own body. The difference is just that you'll transpose the principles behind that lesson to your
character's body. Pick the video lesson you like best and pay attention to the timing, weight,
anticipation, position of hands, feet, and torso.

A bonus of using this kind of reference is that you'll not only be able to animate your character,
but you'll also know what to do when you're in a tennis court with a racket
and a yellow ball in your hands!

How to do it...
1.	 Open the file 008-Tennis.blend. It has our character Otto properly dressed in a

tennis court with a ball and racket near his hands, as seen in the next screenshot:

Chapter 8

207

2.	 The first thing you should do after the planning phase and studying visual references
is to place the racket and the ball in his hands. The racket will be attached to the
hand for the complete duration of the shot, while the ball will be thrown in the air
for the serve. Both situations can be solved with a Child Of constraint, with the
difference that only the ball will have an Influence value for the constraint animated.
Chapter 6, Blending With the Animation Workflow has a recipe called Grasping and
throwing objects, which talks about this kind of situation.

3.	 With our character rig still at its resting position, select, move (G), and rotate (R) the
Tennis_Racket and Tennis_Ball objects so they stand near the palm of the right
and left hands of the character, respectively.

Shake That Body: The Mechanics of Body Movement

208

4.	 After you're happy with these objects' positioning, select and rotate the fingers'
controllers so that the hands look like they're holding the racket and ball. Make sure
you're at frame 1, insert a rotation keyframe (I) for the fingers' controllers, and add a
Child Of constraint so they follow the hands' controllers. The next screenshot shows
both the racket and ball being held after these steps:

With the objects in place, we're going to the blocking phase. By watching the
references we'll define the Extreme positions over which we're building our animation.
Don't worry about timing yet, just make sure you have Extreme poses that tell the
visual story of this action.

When making these Extreme positions, set only the Location and Rotation keyframes
(I | LocRot) for the head, torso, and limb bones for now. The squash-and-stretch effect
should be added later. In our case, we can define the following Extreme positions:

�� The character starts leaning forward and looks to the other side of the court.

�� The body swings back, with his weight over the right leg, while the left leg is
totally straight.

�� He swings towards the front, while both arms go down and behind his torso.

Chapter 8

209

�� The character throws the ball up, having the left arm totally straight up and
forming an imaginary straight line with his torso; the right arm holds the
racket behind his head to a strong serve and both legs bend in anticipation
to the jump.

�� He jumps towards the front with the body to hit the falling ball.

�� After the serve, his body touches the ground with the left foot in a follow
through action. The right arm with the racket goes down in front of the torso,
while the left arm goes back to give balance. This pose is a good example of
the Follow Through animation principle in action.

�� His body goes again to a straight up position, getting ready to attack the ball
again (if the opponent succeeds in his defense).

5.	 After you're happy with the Extreme poses, make a basic timing adjustment in the
DopeSheet window. Make sure you have the DopeSheet Summary enabled to make
it easier to adjust the saved positions, as you can see in the next screenshot:

The following screenshot shows the Extremes along with the frame number where
they were set for your reference:

Remember that these frames are just for guiding you, and you may
find that a different timing gives a more pleasing result for your eyes.
Another thing is that these poses presented here are in side view
only for clarity's sake.

Shake That Body: The Mechanics of Body Movement

210

The most important view for your blocking process is the Camera view (Numpad 0).
That is the only one your audience will actually see, and this is where you must focus
your efforts. You should use all orthographic views to help you build your poses, but
the poses must only look good in Camera View. For example, it's OK to have a pose
that doesn't look perfect in Side view if it looks good in the Camera view. The next
screenshot shows how the pose at frame 33 looks very different in the Side and
Camera views:

6.	 Once you're happy with the Extreme poses and the timing, make the remaining
Breakdown positions and set keyframes wherever you need to achieve better arcs
and overlapping action.

To make it easier to distinguish Extremes, Breakdowns, and extra
keyframes in the DopeSheet window, you can use the shortcut (R);
this will make the selected saved positions in a different color (pink
for Extremes, blue for Breakdowns, and white for other keyframes).

Chapter 8

211

Chapter 7, Easy to Say, Hard to Do: Mastering the Basics has
a recipe on Breaking the symmetry, which is about creating
uneven and natural poses and overlapping action. The principle
of overlapping action says that different parts of an organic body
move at different speeds.

7.	 After you make these adjustments and are pleased with the overall movement, it's
time to animate the tennis ball. Since it has a Child Of constraint, you should animate
this constraint's influence along with the position of the ball in the 3D space. First, go
to the last frame where the ball is still held by the left hand, open the constraints tab
on the Properties window, locate the Child Of constraint, right-click on the Influence
slider at value of 1, and choose Insert Keyframe.

8.	 Go up one frame, change the slider value to 0 and add another keyframe. Position
the ball a bit over the hand, as if it had been just released and then add another
keyframe for its location. Then you animate it over the next few frames to make it
go up, fall, and be hit by the racket.

9.	 After animating the ball and making any necessary timing adjustments on the
character, it's time to clean up the animation curves and tweak the Eases. As most
things in animation, this takes some time to do. The next screenshot shows an
adjusted curve where (1) an unnecessary control point was removed to achieve
a softer curve and (2) the easing was changed:

Shake That Body: The Mechanics of Body Movement

212

After you're done with the curve editing, it's time to work on facial expressions and
details such as fingers and squash and stretch. Since this shot is a Full Shot, where
we can see our entire character and its surroundings, the audience cannot see
much detail in the eyes and facial expressions. Also, this is a physical action, with no
dialogue. Although the audience tends to look at the face of our characters most of
the time, this scene focuses on the body movement. Nevertheless, we need to create
some expressions in order to make our action more believable:

�� Before the serve, make the character look to the other side of the court as if
he is deciding where the ball should go.

�� While throwing the ball up, he must follow it with his eyes to know the time
and place to hit it. Eyebrows should go up, and the mouth is possibly opened.

�� During the hit, make his facial expression exhibit the physical strength
needed to make the serve. Possibly a blink just after the hit, so the eyes
change their focus from the sky to the other side of the court.

�� After the serve, you can choose what his face should look like; happy after
making an "ace", sad after missing the field, or worried because the other
player successfully hit the ball back to his court.

Always remember to go back and forth to Camera view and
check that everything looks as expected. If it does, call it Final!

The file 008-Tennis-complete.blend has an example of this shot for your reference.

How it works...
By watching the video reference closely, using an organized workflow, and understanding
the principles of movement and animation, you can create physical actions such as a tennis
serve. While animating, you may face the issue of dealing with objects such as the racket
and ball. This is solved by using animated constraints. You should also remember to make
the Extreme poses first, adjust the timing, add Breakdown poses, and then start working on
refinement and details.

Chapter 8

213

Another point to focus on is that your poses need to look good only in camera view. That is
the only thing your audience will see. If your pose looks great in all angles, this is great, but
not strictly necessary. If your planning phase was properly finished, you should already know
where your camera is. Use it to ensure your poses and animation really tell the story for
the camera.

See also
Appendix: Extremes, Breakdowns, Inbetweens, ones and twos

Chapter 6: Grasping and throwing objects

Chapter 6: Animating in layers

Chapter 7: Easy to Say, Hard to Do: Mastering the Basics

Heavy metal
The feeling of weight is something extremely important to your animations, making them look
believable. When looking at shapes on a screen (be they realistic, cartoon, or abstract), the
way they move frame to frame is what makes the audience perceive their mass.

The weight lifting exercise is one of the most repeated in animation schools worldwide. This
is where animation students can test and learn the body mechanics necessary to express the
feeling of weight with animated shapes. In this recipe, our character is dressed as a thief and
will try to take a safe full of money with him.

It's a good idea to act it out yourself (maybe recording it, if you have a webcam or better
equipment) to figure out the body mechanics involved. As with in any animation shot, you
should plan what you want to accomplish with rough sketches or using Blender's Grease
Pencil function.

Shake That Body: The Mechanics of Body Movement

214

How to do it...
1.	 Open the file 008-Weight.blend. It has our character properly dressed as a thief

and a safe in front of him. By the size and nature of the safe you see in the next
screenshot, we can tell this is not going to be easy for him:

Here we're going to focus only on the strict act of lifting the safe. In
a complete scene, it could be interesting to add a little preparation
before the attempt at lifting. When planning for the shot, maybe you
can make the character look at a good place to hold it, try using
devices or tools to break in, and so on. For learning and brevity's
sake, only the mechanics involved in the actual lifting will be
covered. The acting required to make this shot more interesting is
beyond our scope here.

Chapter 8

215

2.	 Since our character's hands will be fixed holding the safe, this is a perfect case for
using IK in both arms. Trying to match the position of the arms, hands, and the safe
in FK would be too difficult, and it would affect the overall quality of your animation.
So, make sure you're at frame 1, move (G) both IK-FK sliders for left and right arms to
put them in the IK position, and insert a location keyframe (I) for them, as seen in the
next screenshot:

3.	 Another thing that you should consider changing is the "space" evaluation for both
IK hands from "Ribcage" to "World". In the "Ribcage" mode, the hands controllers
will follow every transformation made to the torso. Here we need to make the hands
stick to the safe while being able to move the character's torso freely to enhance the
feeling of weight involved. Move the two hand "space" controllers (Space_Arm.R and
Space_Arm.L) to the World position and also insert a location keyframe for them.

Now you have the rig set up to start the blocking phase. It's important to have this
configuration defined prior to the blocking stage because it can be harder to fix the
poses if you change the settings after creating them.

You may also enable the stretching of arms to enhance the
poses. This can make the safe look heavier, along with helping
the fluidity and comic feeling of this animation.

Shake That Body: The Mechanics of Body Movement

216

4.	 In the planning phase we define the basic Extreme poses needed for this action.
Here, the first Extreme is when the character holds the safe to start the lifting. You
should use the Quad View (Ctrl + Alt + Q) to have a better notion of what your pose
looks like from all angles, as seen in the following screenshot:

5.	 Now that you have the first contact between the character and the safe set in the
Extreme pose, you need to create a Child Of constraint for the safe object. This is the
same situation described in Chapter 6, Blending With the Animation Workflow, in the
recipe Grasping and throwing objects.

Chapter 8

217

6.	 Since both hands are holding the safe, it would be good to move them together so
they remain fixed on the safe's surface while moving it around. This is just a matter of
adding another Child Of constraint to one of the hands just like we did with the safe
object. In our case, make Hand.R the child of Hand.L. When moving the Hand.L
bone, both the safe and the Hand.R bone will follow nicely. You can move the right
hand and add keyframes to it at anytime, if you wish.
A different challenge is when you need to rotate the safe in a pivot point different
from the bone that is a "parent" of the safe and the other hand. The pivot point of the
hand is in its wrist, but we need it to rotate around the safe's edge.

7.	 To achieve this, place the 3D cursor at the position where you want this pivoted
rotation to happen either with a left-click on the 3D View on the desired location; or
selecting an object located exactly at the place where the pivoting should happen,
press Shift + S and choose Cursor to Selected. Then you should select both hands
controllers, press . (the period key), and rotate them nicely. The . shortcut tells
Blender to rotate the selected objects around the cursor instead of the objects'
centers. You can also choose how the pivot point should be evaluated on the
selector placed at the 3D View header, as seen in the following screenshot:

The following screenshot shows our pivot in action. Here the 3D cursor is placed near
the edge of the safe, as if the safe edge is in contact with the ground. If we didn't use
a pivot in this case, the safe would rotate around the root of the Hand.L bone, which
is located above the ground. The arrows indicate both the pivot point and the rotation
that happens with this method:

Shake That Body: The Mechanics of Body Movement

218

8.	 Now start making the next Extreme poses without thinking about the Timing between
them. Just make sure your poses look good and can be clearly "read" in Camera View
(Numpad 0) for now. The Extreme poses here are crucial to give the feeling of weight:
since the safe is very heavy, it shouldn't move much despite our character's huge
efforts. The timing, which we'll adjust later, will work along with the spacing to make
the safe look very heavy.

Chapter 7, Easy to Say, Hard to Do: Mastering the Basics has
more information on Timing and Spacing, if you need a clearer
understanding on those concepts.

In order to move the safe out of the frame, our character needs to make an enormous
effort. In this case, that means we need a good amount of Extreme positions to reflect
all of his pulling and pushing to take the safe with him. In the complete example,
there are 18 Extreme positions to reflect all of his effort to move the safe. For brevity's
sake, the next screenshot shows just some of them:

9.	 After you're happy with your Extreme poses, let's make the timing adjustment. In
the DopeSheet window, select all saved Extremes, press R, and select Extremes to
shade them in a pink hue and make it easier to distinguish them from Breakdowns
and regular keyframes later. Make sure the Summary option is enabled in the
window header and start dragging the Extremes on the timeline until you're happy
with the timing.

Chapter 8

219

10.	 With the Extremes carefully created and with its Timing adjusted, you now may create
the Breakdowns and additional keyframes to make the animation more fluid, with
overlapping actions and follow through. Don't forget to use the tools in Blender to
track the arcs made by the bones as demonstrated in Chapter 6, Blending With the
Animation Workflow.

11.	 Once the main body movement looks good, move on to add details such as fingers,
eyes, and facial expressions. It's a must to work from the lesser to the higher levels
of detail to ensure a workflow where it's easier to make adjustments and fixes. Having
the saved positions colored in different hues to distinguish Extremes, Breakdowns,
and regular keyframes is also very important. The facial controllers are located on
the first bone layer of the armature, as indicated in the next screenshot:

12.	 When you finish setting all those positions, it's time to work on the F-Curves, adjusting
the eases and creating favors as explained in Chapter 7, Easy to Say, Hard to Do:
Mastering the Basics.

The file 008-Weight-complete.blend has this finished example which you can explore
for reference, although it's strongly suggested that you to come up with your own touch for
this scene.

How it works...
By combining the concepts and principles of motion such as easing, timing, spacing,
anticipation, and use of the Child Of constraints, you can create a scene where your character
lifts a heavy object. A proper planning phase and reference analysis allow you to know what
features of the rig should be used, while understanding how Blender works with different pivot
points helps you to be more efficient and create convincing actions.

Shake That Body: The Mechanics of Body Movement

220

See also
Appendix: Extremes, Breakdowns, Inbetweens, ones and twos

Chapter 6: Grasping and throwing objects

Chapter 6: Animating in layers

Chapter 7: Easy to Say, Hard to Do: Mastering the Basics

Glory for your team: kicking the ball
Another common animation exercise to understand body mechanics involves your
character kicking a soccer ball. It includes anticipating the action, the actual kick,
and the follow-through movements.

As with all other animation shots, you should look for video references on the Internet or even
record yourself performing the action. Then you should make quick sketches on the best ideas
for poses prior to moving controllers around.

How to do it...
1.	 Open the file 008-BallKick.blend. It has our character Otto properly dressed as a

soccer player with a ball in front of him. It also has a camera set for this action, from
which we see the objects in 3D view as default, as pictured in the following screenshot:

Chapter 8

221

During the research and planning phase, you should notice some peculiarities to this
action. Let's assume that the character kicks the ball with his right leg:

�� The soccer player runs towards the ball looking firmly towards it.

�� His torso remains a bit curved to the front, reinforcing his attention towards
the ball.

�� Just before the kick, he takes a bigger step to position the left foot on the
ground next to the ball while moving the right foot up and behind his body
in order to make a strong hit.

�� Just after the kick, his body gets twisted in the follow-through: the right leg
is up and pointing towards the left, the torso gets more curved towards the
front and twisted to the right, and the left arm follows it and points towards
the right, while the right arm points to his back.

�� During the whole action, his arms swing in opposite directions to his legs,
to balance his body.

2.	 Keeping these points in mind, it's time to make sure that our rig is properly set up
before we start making the Extreme poses. Since the hands will not hold anything,
we're going to leave the arms in the default FK mode. Our first observation tells us
that the character looks firmly towards the ball while running at it, so it's a good idea
to enable the Hinge property for the Neck, as seen in the next front view screenshot.
The neck and head will rotate independently of the ribcage, and it would be easier to
make the character look at a fixed point.

Shake That Body: The Mechanics of Body Movement

222

3.	 Now you should start with the Extreme poses, using the sketches, annotations, and
references you've made so far. Use the Quad View Toggle (Ctrl + Alt + Q) to see the
poses from more angles to help you create the Extremes.

At this stage you shouldn't worry about timing yet. Just make sure you have a good set
of Extreme poses defined on the DopeSheet to adjust them later. When creating the
Extremes, it would be good to think of the overlapping action on the hands: creating
this sense of "drag" on the Extreme poses will save you a good time, since you don't
need to make lots of changes on your Extremes later.

4.	 Once you have all Extreme poses set, it's a good idea to have them marked as such in
the DopeSheet window to tell them apart from the Breakdowns and other keyframes.
With all Extreme poses selected on the DopeSheet window (A), press (R) and choose
Extreme to give the diamonds a pinkish hue.

The following screenshot shows four Extreme poses for this action as reference:

5.	 After you're happy with your Extreme poses, move on to the timing adjustment. Make
sure the DopeSheet Summary option is enabled on the DopeSheet window and
move (G) the Extreme poses on the timeline. You may find your poses need a bit of
adjustment when you navigate through the timeline, and it's now the perfect time
to do that. The following screenshot shows the Extreme positions with the timing
adjustment on the DopeSheet window:

Chapter 8

223

6.	 After the timing adjustment, start adding the Breakdown positions and additional
keyframes. Make sure you get good arcs described by the character's limbs. This
is also good to ensure the overlapping action, especially in the arms and hands,
looks good.

You can tweak your pose by using some built in tools in Blender.
With the armature in Pose Mode, the Toolshelf panel (T) shows
three buttons: Push, used to exaggerate a pose; Relax, which
does the opposite, making it look closer to the surrounding ones;
and Breakdowner, which tries to figure out how the Breakdown
position should be. Be wary to use them only as helpers, not the
main pose builders.

7.	 When you're happy with the new poses and—eventually—further adjustments on the
timing, start focusing on the details such as fingers, facial expressions, and moving
holds for when the character goes to a resting pose. You can even add a little squash
and stretch to enhance the feeling of the strength involved in the kick, although it's
not required.

Shake That Body: The Mechanics of Body Movement

224

8.	 As a final touch, animate a slight rotation of the camera from right to left,
following our character performing the kick for the glory of the team. The file
009-BallKick-complete.blend has this finished example for your reference,
along with a background to make this shot more interesting, as you can see in the
next screenshot:

How it works...
With both planning and study of video references, you can make a convincing action of a ball
kick. By setting up a hinged neck, the character keeps the head still and looking at his target
while running. The workflow of creating Extreme poses, adjusting the Timing, adding the
remaining Breakdown and regular keyframes and refinement keeps your timeline organized,
easy to understand and to adjust.

See also
Appendix: Extremes, Breakdowns, Inbetweens, ones and twos

Chapter 6: Animating in layers

Chapter 7: Easy to Say, Hard to Do: Mastering the Basics

Chapter 8

225

Run, Forrest! (in cycles)
Whether you're animating for a game or film, you're likely to face the need to create cycled
animations, and that is especially true for the former.

Run and walk cycles are normally created in two ways: the character may stay in a fixed
position, while his feet "slide" on the ground with its positioning set at a later stage; or
the character really makes two steps forward, while Blender takes care of appending the
beginning of the next cycle where the first ended—making the character really move
forward in a straight line. The latter is what we'll cover here.

How to do it...
1.	 Open the file 008-RunCycle.blend. It has our character Otto in its resting pose,

ready for our work. We're going to create a funny jog run cycle. When the term "cycle"
is used in animation, it means the last position of the action must be equal to its first
one. This ensures that it can be repeated indefinitely in a seamless manner.

2.	 First let's create the Extreme positions of this run cycle. We can set them as frames
where the character's body is on one foot, with the supporting leg flexed a bit in order
to transition to the next step. This way, we'll have two different Extreme positions
here: one for the right leg and one for the left. The third Extreme should be where our
second cycle begins, so the difference between this and the first is only the position
on the Y axis. For this funny run cycle, an animated sequence by the renowned
animator Richard Williams was used as reference. The next screenshot shows our
Extreme positions set:

Shake That Body: The Mechanics of Body Movement

226

3.	 In order to create the second Extreme position, you can use the mirrored first pose as
the base. To do that, go to the frame where you've set the first Extreme, select all the
bones from the character's body (not the switcher ones, such as IK-FK, nor the Root
bone), press Ctrl + C, go up 10 frames (Up arrow), and press Ctrl + Shift + C. This will
copy the first pose and paste it mirrored on the selected frame in the timeline.

For the cycle action, you shouldn't add keyframes for the Root
bone. We're going to use it to make the cycle move forward later,
so it shouldn't have any keyframes set or we could end up with
unexpected results.

4.	 You'll notice that the character remains on its Y axis position, so you need to select
the bones Foot.R, Foot.L, and Hips, and then move (G) them to the front until you
think it's is a good distance for the second step. With all bones selected, insert a new
keyframe (I) to save this position.

Since nobody walks on mirrored steps, use this mirrored pose only
as a base for your work. Make it slightly different so the character's
motion looks natural.

5.	 The third Extreme needs to be an exact copy of the first, so you can go to the first
pose, select all the character's bones and copy the pose with Ctrl + C. Then you go up
20 frames (since the second step is at frame 11) and paste the pose with Ctrl + V.
Now you just need to move the character on the Y axis, using the same three bones
we used to create the second Extreme, and insert a new keyframe for this pose.

6.	 After you're satisfied with your Extreme poses, mark them as such on the DopeSheet
window by selecting them all (A), pressing (R), and selecting Extreme on the
pop-up menu.

7.	 On the DopeSheet window, make sure the Summary is enabled and make a quick
Timing adjustment by moving the summary diamonds on the timeline (hold Ctrl to
snap them to the exact frames). Press Alt + A to watch it or make a playblast using
the OpenGL render preview.

When you're happy with the timing, start creating the Breakdown positions. In this jog
run action, the Breakdown happens when both feet are off the ground, in the middle
of the step.

8.	 Move the character's torso up, leaving the supporting foot from the first Extreme behind
his body on the air and the other foot up in front, in preparation for the next step. The
second Breakdown can be created by using a mirrored copy from the first Breakdown
as a starting point, just as you did with the Extreme positions. The next screenshot
shows the five positions (three Extremes and two Breakdowns superimposed):

Chapter 8

227

9.	 After adding the Breakdowns, add the remaining poses: notably the one where the
foot loses contact with the ground and the one where it touches it again with the
heel. The next screenshot shows all poses from this cycle superimposed:

Now our first part is done. We have defined the cycle, but how can we make it really
loop while going forward? This is where we're going to use the Root bone and the
NLA Editor.

Shake That Body: The Mechanics of Body Movement

228

10.	 Still in the DopeSheet window, change the window mode to Action Editor and
define the name of this action as Cycle. Make sure the Root bone doesn't have
any keyframes set on this action.

The Root bone is the parent of all bone chains on the rig, so
moving it makes everything move along.

11.	 Once you set the name of the cycle action, click on the plus (+) sign next to its name
to create a new action. Define its name as Stride.

12.	 In the 3D View, go to frame 1 (or the first frame of your cycle action), select the Root
bone and insert a LocRot keyframe (I) for it. We need to position the Root bone
forward on the exact same timing and spacing it takes from the first Extreme of the
cycle to the last. But how do you know exactly how much you need to move the Root
bone forward? Using the Transform panel on the 3D View!

13.	 Still in the first frame, enable the Transform panel on the 3D View (N), select the
Foot.R bone (which is planted on the ground), and check its Y location value.
In this case the value is 0, as you can see in the following screenshot:

14.	 Now, navigate through the timeline until the last position of the cycle, on the third
Extreme. Look at the value of the Y location for that bone again. In this case, it's
7.668. This is how much we need to move the Root bone forward, on its Y axis.
The math for this is the last position minus the first one.

15.	 Go to the last frame of your cycle and move the Root bone forward to the position
you've got at the previous step. You may accomplish it through the Transform panel,
typing the value on the Y field and inserting a new keyframe (I) for it.

Chapter 8

229

16.	 Now, with the Root bone still selected, open a Graph Editor window and look to its Y
Location curve. We need to turn it from a soft curve to a step where the bone "jumps"
from one position to the other directly. We also need to repeat this movement in an
incremental way: the Root bone should go forward more steps in order to allow more
repetitions of this cycle.

17.	 With its Y Location channel selected, go to the Key menu at the header and choose
Interpolation Mode | Constant. This will make the Root bone "jump" from one
position to the other directly, without inbetweens.

Another good way of accomplishing this non-interpolated motion
is through the Stepped F-Curve modifier, adjusting the Step Size
and Offset according to the Timing of your cycle.

18.	 Once you set this stepped motion for the Root bone, let's make it repeat
incrementally. With the Y Location channel still selected, open the Properties (N)
panel on the Graph Editor window and look for the Modifiers section. Click on the
Add Modifier button and choose the Cycles modifier. Leave the Before values
unchanged. For the After values, set Repeat with Offset on the first field and the
number of cycles you need on the After Cycles field. Your curve and modifier values
should look similar to what's shown in the next screenshot:

We're almost done. Now we have two actions: one with the weird jog run cycle
animation and the other with the Root bone "steps", to move the cycle forward.
It's time to do some NLA magic!

19.	 Open a NLA Editor window. On its left-hand side panel it should have your currently
open active Action highlighted in red, which should be Stride. Click on the snowflake
icon next to its name to turn into a NLA Action Strip.

Shake That Body: The Mechanics of Body Movement

230

On the Properties (N) panel to the right-hand side, set this new track name as Stride
on the Active Track section. Scroll down the panel and look for the Action Clip
section. The End Frame field has the number of frames of the Action, but it doesn't
consider the cycle modifier we've set, so we need to multiply this value by the number
of cycles we need.

20.	 In a DopeSheet window, open the Cycle action. Back to the NLA Editor window,
you'll notice this action is now highlighted in red as the active action. Click on the
snowflake icon to turn it into another NLA Strip and set its name as Cycle on the
Active Track section. You'll see both actions layered on the NLA timeline, as seen
in the next screenshot:

21.	 Scroll down the Properties panel and look for the Action Clip section for the Cycle
action. On the Playback Settings values, change the Repeat field to the number of
cycles you need.

The number of cycles for the run cycle here is one unit higher
than the number of cycles set on the Stride modifier. For
example, if the stride moves forward four times, the cycled run
must repeat five times. It happens because the stride controls
the starting point of the cycle, so the fourth stride jump is
actually the beginning of the fifth run cycle.

Chapter 8

231

Almost done! If you hit Alt + A to play the animation, you'll notice that there is a weird
jump between each cycle. It happens because we need to remove the last frame of
the Cycle action from the NLA evaluation, since it overlaps with the first frame of the
next cycle.

22.	 Back to the Action Clip section on the NLA window, with the Cycle strip still selected,
just reduce the value set on the End Frame field by 1 and you're done. Now the
playback (and your character) should run just as expected.

If you need to edit the contents of an Action Strip inside the NLA, just
select it and press Tab, just like you do to enter the Edit Mode of objects
on the 3D View. You'll enter on some kind of Edit Mode for actions, and
you'll be able to tweak the keyframes inside the DopeSheet window.

The file 009-RunCycle-complete.blend has this finished recipe for your reference.

How it works...
By carefully building a cyclic run, where the first frame equals its last, you can use the NLA
Editor and the Root bone to repeat the cycle as you wish. The Root bone, which is the parent
of all bones in the armature, should move forward the exact length of the cycle without any
interpolation between its first and last position. The length of the entire run can be controlled
through F-Curve modifiers and the NLA strips.

See also
Appendix: Extremes, Breakdowns, Inbetweens, ones and twos

Chapter 6: Non-linear animation

Chapter 6: Animating in layers

Chapter 7: Easy to Say, Hard to Do: Mastering the Basics

9
Spicing it Up:

Animation Refinement

In this chapter, we will cover the following topics:

ff It's time for secondary actions

ff Hold, but not still: using moving holds

ff Animating characters with appendages

ff Like clay: refining with the AniSculpt technique

Introduction
A strong foundation is important to make your actions express the feeling of weight and
strength behind each motion, but you can enhance the fluidity by using "layers" of refinement.
It's in the details of your animations that you can really make your audience forget they are
watching a virtual puppet.

With a consistent base, you'll be able to deliver animated shots of reasonable quality with
tight deadlines. But as you get more generous time frames, you can work on top of this good
foundation and add engaging refinements to make the shot even more fluid, entertaining,
and believable. In this chapter, we'll see some useful tips to make refinements to our
animated shots.

Spicing it Up: Animation Refinement

234

It's time for secondary actions
We may be used to seeing the term "multitasking" related to computers, where they are able
to run multiple programs at the same time. Something quite similar happens with us all the
time, when we're doing more than one action at once.

The animation principle of secondary actions deals with this nature: while we're performing
a main action there are a number of complementary secondary actions. For instance, if our
character is walking on the sidewalk in a hurry to catch a bus, some possible secondary
actions may be looking at his wristwatch—meaning he's probably late—or adjusting his
necktie—meaning he was so late when leaving home that he couldn't even properly wear it.

The important thing to notice here is that secondary actions should be used in your shots just
as an accessory to the main action. They should reinforce the idea of your shot and add to the
main idea you're trying to portray.

How to do it...
1.	 Open the file 009-Secondary-actions.blend. It has our character Otto walking

in a hurry through a rough sidewalk model, as you can see in the next screenshot:

After hitting Alt + A, you'll notice that he's marching down the sidewalk with a fast
pace and a serious facial expression. The action itself may look a bit boring, since
it's just a repeating walk cycle. Let's make it more interesting by adding a secondary
action to reinforce the feeling of hurry in our character.

Chapter 9

235

2.	 Go to an NLA Editor window and look at the existing layers. We have one called
Stride, which is used to make the character walk forward, and one called Cycle
containing a repeating two-step walk. The cycle is set to repeat 14 times within
the NLA editor, as you can see in the next screenshot:

You can select each strip in the NLA and enter its "Edit Mode" by
pressing Tab and changing its keyframes on a DopeSheet window.

3.	 Open a DopeSheet window and select the Action Editor mode on the header. Click
on the New button next to it in order to create a new action and name it Watch.
In this action we're going to pose only those bones necessary to make him look
at his wristwatch.

4.	 Move the timeline marker to frame 50, so our character walks a few steps before he
starts looking at his watch. Select the following bones:

�� FK_UpperArm.L

�� FK_LowerArm.L

�� Shoulder.L

�� Hand.L

�� Neck

�� Head

Spicing it Up: Animation Refinement

236

5.	 With these bones selected, insert a new LocRot keyframe (I) for them. Your
DopeSheet window should look like this:

Now, when you hit Alt + A, something weird happens: up until frame 50 the animation
looks fine, but after that the bones for which we've set a keyframe remain still. That
happens because of the default way that the NLA Editor works: this new "Watch" strip
is layered on top of the existing animation, replacing any information below it.

In order to change that behavior, we need to change the Action Extrapolation value
for this strip in the NLA Editor.

6.	 Open an NLA Editor window and make sure the Properties (N) panel is opened.
On the Animation Data section, ensure the active Action is "Watch" and change
the Action Extrapolation field to Nothing. Leave the Action Blending field
unchanged.

That will make our new action overwrite any animation below it, but without
considering anything after its last keyframe set.

7.	 Go back to a DopeSheet window and move the timeline marker to frame 111.
Select the same bones as you did in step 4 and insert a new keyframe for them.
Now we have set our first and last positions for this action, and they are identical to
the positions set on the actions beneath it on the NLA Editor. This will ensure our
secondary action will be added seamlessly on top of the walk cycle.

8.	 After that, go to the 3D View window and pose our selected bones between frames
50 and 111, making our character raise his left arm, look at his wristwatch, and
return to his cycled and worried walk. The next screenshot shows the DopeSheet
with some poses set for this action, along with the character pose on frame 60:

Chapter 9

237

9.	 Now you may select the keyframes set on frame 60, representing the final position of
him looking at his wristwatch, duplicate (Shift + D) them on the DopeSheet window
and move them to frame 100.

10.	 Change their rotation (R) slightly on the 3D View and replace the keyframes (I). If
you hit Alt + A again, you'll see that the walk animation transitions seamlessly to
the secondary action of looking at the watch.

11.	 Back to the NLA Editor window, you can click on the snowflake icon to convert the
Walk action into a NLA strip. This way you can repeat the process shown in this recipe
to add more subtle secondary actions, making the scene look more natural. The
file 009-Secondary-actions-complete.blend has this complete example for
your reference.

Spicing it Up: Animation Refinement

238

How it works...
After having a solid base animation complete, you can add secondary actions using the
NLA Editor. The secondary actions are layered on top of the base animation, using its
positions as a starting point to make a seamless transition. The secondary actions should be
an accessory to the main action, supporting the basic idea of the scene. This approach leads
to a non-destructive workflow, meaning your main action remains unchanged as you add new
layers of secondary animations.

See also
Appendix: Understanding Extremes, Breakdowns, Inbetweens, ones and twos

Chapter 6: Non-linear animation

Chapter 6: Animating in layers

Chapter 7: Easy to Say, Hard to Do: Mastering the Basics

Hold, but not still: using moving holds
Since the Golden Age of traditional animation in the previous century, animators know that
regardless of the action performed by our characters, they must feel alive to our audience.
When a character reaches the end of one action, it shouldn't remain completely still. When
it happens, it looks like something went wrong—is he dead? Frozen? Is the TV broken?

To avoid that, we must add a slightly modified and carefully built pose after the hold so
the character keeps moving and "alive". This is specially true in CG animation, where the
animation is on Ones (meaning that each new frame brings a new "drawing") by default. In
traditional 2D animation, where the number of drawings per second of footage is normally
reduced, this principle is relevant but not always so crucial.

The animation principles are often related, so we generally find and use moving holds along
with the principles of Follow Through, Anticipation, Slow In, and Slow Out. Thus, we shouldn't
just add a random pose after the hold just to keep our character moving. This motion should
be relevant to the timing and spacing of its surrounding poses.

How to do it...
1.	 Open the file 009-MovingHolds.blend. It has our character Otto with a basic

action where he turns his head from his right to his left, as if something called his
attention. The next screenshot shows the last keyframe, where he looks to his left:

Chapter 9

239

2.	 Although it does have a saved position on frame 1, our character holds its position
until frame 12, when he starts the head turn. If you press Alt + A, you'll notice he's
still like a statue before and after the turning action. Nobody (except some robots)
move like that. We need to add some slightly different poses before and after the
head turn in order to make the action look natural. This transformation on the poses
shouldn't be random, though. Move the DopeSheet timeline marker back and forth
until frame 19, where the Breakdown position is set, and check the speed and
direction each of these bones go.

3.	 Since his body makes a quick turn to the left, it's a good idea to make this moving
hold also act as a subtle anticipation. Go to frame 12 and rotate (R) some bones
such as the Belly, Head, FK_UpperArm.L, FK_UpperArm.R, FK_LowerArm.L,
and FK_LowerArm.R slightly (hold Shift for precision) to the opposite direction
of the main action.

Spicing it Up: Animation Refinement

240

The next screenshot demonstrates this subtle difference by comparing the before and
after using the local Y rotation axis curve of the Belly bone:

By making the moving hold go in a direction opposite to the main movement, we
create a contrasting movement that acts as an anticipation to the turning action. The
transformation for the hold should happen in a balanced amount and, although there
are no rules for a moving hold (as they rely on the nature of each movement), here
are some general issues to care about:

�� If the transformation difference is subtle and the timing of the hold is too big,
the action will look weightless.

�� The hold should happen with a consistent speed to its surrounding actions,
reinforcing the feeling of weight and avoiding linear movements.

�� Remember: it's a moving hold, so you should avoid too much movement on
it.

�� You also shouldn't go the other extreme and add an unperceivable
movement, or it won't have any effect.

�� If the moving hold happens in the same direction as the related main action,
the Extreme positions next to it will lose their strength. The action will lose
contrast, and the poses won't be very defined.

Now that you have created the moving hold preceding the action, let's create another
one after it.

Chapter 9

241

4.	 Hit Alt + A again and notice that our character stops suddenly just after the turn. The
last Extreme set for this action happens on frame 25, so go up five frames on the
DopeSheet timeline.

5.	 On the same bones as before, make a subtle adjustment on their rotation (R). Make
them rotate back slightly, as if the Extreme set on frame 25 was too extreme and
needed to go back and settle. This will bring fluidity to the movement, making it
come to rest in a gradual pace while emphasizing the Extreme position.

The next screenshot shows the same Y local rotation curve for the Belly bone, with
the Extreme position set on frame 25 followed by its moving hold:

The file 009-MovingHolds-complete.blend has this finished example for reference.
Take a look at how the torso and arms bones have their moving holds at different frames,
enhancing the movement with a subtle overlapping action.

How it works...
Before and after each action, our characters normally stay in a held position. While at it, it's
important to add subtle movements in order to keep them moving—or look alive—to the eyes
of our audience. With this in mind, it's also crucial to add this Moving Hold while considering
the preceding and succeeding actions in order to make this motion look natural.

See also
Appendix: Understanding Extremes, Breakdowns, Inbetweens, ones and twos

Chapter 6: Animating in layers

Chapter 7: Easy to Say, Hard to Do: Mastering the Basics

Chapter 9: Animating characters with appendages

Spicing it Up: Animation Refinement

242

Animating characters with appendages
We often need to animate characters with appendages such as long ears, tails, antennas,
a necktie, or even mesh-based hair. Their motion follows the body part they are attached to,
usually at a different pace due to their soft and bouncy nature.

When the character stops its movement, the appendages continue to follow it and keep
moving for some time until they overcome inertia. This nature is described by the Follow
Through principle of animation, and is often applied as a layer of detail over the main action.

The appendages are often animated after the main body parts—as the torso or head—
because it's easier to visualize and test their behavior after you have finished the main action.
In this recipe we'll apply the Follow Through principle to a ponytail.

How to do it...
1.	 Open the file 009-Appendages.blend. You'll see our character Otto with a beard and

new hairstyle—and a ponytail—with the same action we got as a result of the previous
recipe on moving holds, in which he turns his head to the left. Press Alt + A and you'll
notice something looks weird, since the ponytail is too stiff and doesn't have the
delayed and soft action we would expect. Did he use too much hair spray?

Chapter 9

243

We need to add a nice follow-through action to his ponytail. This principle tells us
that soft appendages must follow the main source of movement in a delayed and
bouncy fashion.

Blender offers a wide range of simulations tools, including the
ability to create hair, cloth, and bouncy elements such as gelatin.
These tools allow us to simulate very realistic movements,
but are beyond the scope of this book. Our goal here is to
understand the animation principles so we can create realistic or
exaggerated movements.

To achieve this, it's good to use a FK bone setup to control the ponytail, since the
head leads the movement of the hair. With a FK setup, we can control the base of the
ponytail and adjust each bone of the chain until the tip. There is a simple FK setup
linked to the Head bone to control the ponytail. The bones in that chain are:

�� D_Tail.1

�� D_Tail.2

�� D_Tail.3

�� D_Tail.4

All bones are set to have 16 segments, so they perform a curved deformation on the
mesh. The next screenshot portrays them in a resting position:

Spicing it Up: Animation Refinement

244

Now, for the actual animation! Since the head action is roughly a rotation on the
global Z axis, we're going to mainly use the top (Numpad 7) and side (Numpad 3)
views. We're going to animate the ponytail in four "steps"—one for each bone of the
chain, starting from its root.

2.	 Select the D_Tail.1 bone. On the DopeSheet window, go to frame 12 (which is
when the head turn begins) and set a rotation keyframe (I) for it.

3.	 Move the timeline marker to frame 19, which has our character's head in the
Breakdown position for the turn. Using the top and side views, rotate the D_Tail.1
bone so that the ponytail looks like it follows the head with a small delay.

If you move the timeline marker back and forth, you'll notice that the character's
head goes from looking to its right-hand side (frame 12) to looking to its front
(frame 19). A delayed rotation to the D_Tail.1 bone means that it shouldn't be
pointing in the same direction as the head on frame 19, but to a point a few frames
in the 'past'; make it point a bit to the right, as is highlighted with a curve in the
following screenshot:

Chapter 9

245

4.	 Go to frame 25, which is when our character's head begins to stop its movement.
Rotate the D_Tail.1 bone so that the overall shape of the ponytail describes a
curve pointing to the character's back. The root of the ponytail is now closer to the
head movement, but the remaining bones of the chain are still 'in the past'. That
means the farther on the chain a bone is, the greater is its delay to the source of
the movement.

On frame 28 the character's head is almost still, but the ponytail movement should
continue. Rotate the D_Tail.1 bone so that the ponytail now points to the opposite
side of frame 25. That will bring the feeling of "bounciness" to the ponytail. The head
stopped its rotation on frame 25, but the ponytail reaches its peak movement on
frame 28. The next screenshot shows a comparison between frames 25 and 28:

5.	 Now, to complete the base movement of the ponytail, add four more rotation
keyframes to it—each will make the hair point to its opposite direction, gradually
reducing the spacing and timing until it stops, around frame 41.

6.	 After you're happy with the follow-through action, timing, and spacing, applied to
the root of the ponytail, move on to the next bone on the chain, D_Tail.2. Go back
to frame 12, where the head turn begins, and save a keyframe for this bone on
its current rotation.

7.	 Now it's time for the second "step": it's just a matter of repeating the process you
did for the ponytail's root bone, but now you should use the D_Tail.1 bone as a
reference for movement instead of the Head bone. The D_Tail.2 bone will now be
delayed in comparison to the D_Tail.1 bone. This will lead to a "S" shaped ponytail,
as you apply the follow-through to the remaining bones of the chain in steps 3 and 4.

Spicing it Up: Animation Refinement

246

The following screenshot shows some frames of the ponytail movement after
completing the animation for each of its bones:

The file 009-Appendages-complete.blend has this complete example for your reference.

How it works...
The follow-through animation principle tells us that soft body parts or objects continue their
movement in a delayed fashion after the main source of the motion stops. To achieve this
effect, it's optimal to use a Forward Kinematics chain and animate it from its root to its tip,
always using the parent object's motion as reference.

This technique is useful to animate soft elements such as hair, clothing, or fat when the use
of built-in Blender simulations tools is out of the question.

See also
Appendix: Understanding Extremes, Breakdowns, Inbetweens, ones and twos

Chapter 6: Animating in layers

Chapter 6: Tracking animation arcs

Chapter 7: Easy to Say, Hard to Do: Mastering the Basics

Chapter 9: Hold, but not still: using moving holds

Chapter 9

247

Like clay: refining with the AniSculpt
technique

Among Blender's very interesting features is the ability to "sculpt" meshes in the 3D view,
deforming their shapes without having to worry about individual vertices, edges, or faces.
While—at first—this is something useful only for character modelers, it's been used as
a new paradigm for animation refinement in Blender.

The use of sculpting tools in Blender to enhance the character's shapes in movement, saving
separate Shape Keys for each enhancement during the timeline, is called AniSculpt. This
technique was first demonstrated by the well known character animator and teacher Daniel
Martinez Lara, also known as Pepeland.

This technique is incredibly useful because it liberates the character riggers from the
impossible pursuit of the "perfect character rig", suitable for every single action imaginable.
Every character rig brings imperfections and gives some unwanted deformations that
animators dread. Fixing every imperfection is a somewhat tedious, slow, and painful task,
since the model has to "look good" from every possible position and angle.

With AniSculpt, the animator can sculpt the shapes of the characters after the animation is
finished, as a layer of refinement to fix imperfections and make the overall shapes nicer on
the screen. It represents a new step in the animation workflow, but can save a lot of time in
the rigging stage. The rigs no longer need to give "perfect" deformations, only "acceptable"
ones to be adjusted in the sculpting phase.

It doesn't mean, of course, that the rig shouldn't be good. The better the rig, the fewer the
corrections that need to be made. It's a matter of leaving the right amount of work for each
stage, without overloading either the rigger nor the animator.

At the time of writing this book, Blender doesn't allow the
use of AniScupt on linked group meshes. You have to append
the objects before the AniSculpt stage. A workaround for it
is animating with a linked group and, when the animation is
finished and ready to render, appending the needed objects and
applying the action to it before sculpting.

Spicing it Up: Animation Refinement

248

How to do it...
1.	 Open the file 009-Anisculpt.blend. It has our character Otto with a run cycle

action applied to it. All deformations on its mesh are made by the rig, and we need
to adjust it in order to make the shapes look better.

Take a look at the NLA Editor window. It has two layers of actions set for the run cycle,
as you can see in the following screenshot:

2.	 Since the sculpting phase is the final "layer" of refinement, we can create an
actual layer on the NLA Editor window to accommodate these changes. Select the
Otto_Body object on the 3D View, go to a DopeSheet window, select the ShapeKey
Editor mode on its header, and press the New button to add a new action. Name
it AniSculpt.

3.	 Back on the NLA Editor window, you'll see a new line for the Otto_Body object. Click
on the triangle next to its name to unveil the line underneath named Key (reserved
for Shape Key actions).

4.	 Click on the triangle next to Key to see the layer containing our AniSculpt action. This
is where our refinement layer will be placed, as you can see in the next screenshot:

Chapter 9

249

5.	 Go to the 3D View window and make sure our character's mesh is selected. Open a
Properties window, in the Object Data tab, and locate the Shape Keys section. Select
the Basis shape and click on the plus (+) sign on the right-hand side to create a new
shape based on it. Name this new shape as AniSculpt.01 and click on the pin
button in order to enable the sculpting on this shape. The following screenshot
shows our new shape selected and the enabled pin button highlighted:

This shape is where our first sculpted correction will be stored. There may be dozens
of sculpted shapes for your scene, and that number can be as high as one sculpted
shape per frame, although normally one sculpted shape works for more than one
frame. For each new shape you need to repeat step 5.

Spicing it Up: Animation Refinement

250

6.	 Go back to the DopeSheet window with our AniSculpt action selected. Move the
timeline marker and look closely at our character's mesh to find places that need
correction (you can even hide the Armature layer, since we won't touch it anymore).

7.	 Now, the fun part! When you find a frame that needs corrections, make sure your
mesh is selected and the Shape Key you've created in step 5 is pinned. Enter in
Sculpt Mode on the 3D View window header and start sculpting your corrections.
You'll get finer control if you're using a pen tablet, since Blender can use the pressure
information to the sculpt brush values.

8.	 Sculpting the mesh is easy: the mouse cursor becomes a sculpting brush and lets
you change the shape interactively with tools such as Grab, Smooth, or Inflate on the
Toolshelf (T). Try creating nice arched shapes that follow an imaginary line of action.

Try to avoid going too crazy with the sculpting; just make
the corrections to the overall shape of our character on that
position. Altering the mesh too much can give you a hard time
when trying to blend all different shapes seamlessly on the
timeline, but that's up to your artistic choice.

The next screenshot shows our original mesh (left) and our sculpted shape (right) with
the added refinements. Notice how some skin folds were softened and the overall
shape of the limbs and torso were curved to enhance the line of action. Also in the
sculpted version the toes were correctly positioned on the ground and the elbows
had their joints softened.

Chapter 9

251

9.	 Move the timeline marker on the DopeSheet. You'll notice that, besides looking good
on the frame you have worked on, the shape can look weird when our character
reaches different positions. This is why we need to set keyframes for it.

10.	 Go back to the Shape Keys section in the Properties window, under the Object
Data tab, and disable the pin button you've set to create the sculpted shape. On
the DopeSheet window, make sure you're in the ShapeKey Editor mode and with
the AniSculpt action selected. Locate and click over the AniSculpt.01 shape on the
left-hand side panel. Go to the frame where you made your sculpted corrections and
insert a keyframe for it; it's just a matter of moving the slider value for that channel
to 1, and a keyframe will be placed on the current frame, as you can see in the
next screenshot:

11.	 Now, for preceding and succeeding frames, you just have to move the timeline and
adjust the AniSculpt.01 channel slider to set a keyframe with lower values on
those frames. A new keyframe will be automatically added as you change the channel
slider. Change it to 0 when you feel the sculpted shape no is no longer needed.

Now it's just a matter of repeating the process from steps 5 to 12 in order to create
as many sculpted corrections as you need. This can be a bit time consuming, but it
is a lot easier and quicker than trying to build the all-purpose perfect character rig.

The AniSculpt script published by the animator Pepeland on
his website (http://www.pepeland.com) automates
a good amount of the steps covered in this recipe, but it
is currently (at the time of writing) not compatible with the
Blender version 2.57, but now you know what is needed to
accomplish the same results.

12.	 After you're happy with all the necessary corrections, go to the NLA Editor window and
click on the snowflake icon next to the AniSculpt channel. This will make this layer of
refinement independent and non-destructive to your already built animation.

The file 009-AniSculpt-complete.blend has this complete example for your reference.

Spicing it Up: Animation Refinement

252

How it works...
The AniSculpt technique, developed by the animator Daniel Martinez Lara, allows an easy
way to make refinements to your animations. It uses Blender's built-in sculpting tools to let
the animator make adjustments to the characters in an intuitive way.

See also
Appendix: Understanding Extremes, Breakdowns, Inbetweens, ones and twos

Chapter 1: Using corrective Shape Keys

Chapter 6: Animating in layers

Chapter 6: Tracking animation arcs

Chapter 7: Easy to Say, Hard to Do: Mastering the Basics

Chapter 8: Run, Forrest! (in cycles)

10
Drama King:

Acting in Animation

In this chapter, we will cover the following topics:

ff In the blink of an eye

ff Walking with style

ff Talking heads (and bodies)

Introduction
All animation principles and techniques portrayed in this book will help you create appealing
and fluid movements for your characters. But movements alone are useless: they need a
reason to exist; they ought to have meaning. From subtleties such as blinking eyes, to full
body motion and lip sync, everything must have a purpose.

The animator must know the character and understand the motivations behind each action.
You need to ask yourself some questions before you start drawing or moving controls on
screen. There is a useful and widely used acting technique known as W.O.F.A.I.M. that helps
us answer the main questions. It stands for:

ff Wants: Ask yourself what your character wants and, and more importantly, why does
it want it?

ff Objectives: When your character wants something, it's probably with an objective
in mind. This can be an immediate one, such as throwing a baseball, or a long term
objective (our character may be throwing that baseball in training for the final game).

ff Feelings: How is your character feeling? Is he nervous? Shy? Afraid? Angry?
Frustrated? Know the emotional state of your character.

Drama King: Acting in Animation

254

ff As-if: Is your character impersonating someone else? Think of a child character trying
to fake his voice and talk like his father over the telephone.

ff Intentions: A bit like the objectives, people perform actions with an intention behind
them. If the objective is throwing a baseball, the intention may be to make the batter
miss it.

ff Moment before: What happened to our character just before this scene? This is
important to know how and where to start.

Ask yourself these questions before each shot. This quick technique very efficiently allows
you to plan and create convincing animation clips, and you should use it in every recipe of
this chapter.

Note that covering all aspects of acting for animation is definitely beyond the scope of this
book. Along with books, specific training in acting for animation or regular acting classes,
you can try searching for tips and lessons on the Internet (once again, YouTube could be
your best friend).

Something you probably already do is watch movies and TV shows. While doing that, pay
attention to how your favorite characters are portrayed by their actors. Try to understand
how some words written in the script are brought to life with great finesse by the actors. It's
a good idea to look for movie excerpts you think have a similar mood to what you're trying
to portray.

In the blink of an eye
Although a very simple body mechanism to animate, the blinking of our eyes is a very important
method of communicating. We can look at the action of our blinking eyes in the following ways:

ff Organically, it's a way to keep our eyes moist. This is the technical aspect we needn't
care about. Our audience really doesn't care if our characters' eyes are wet or not.

ff As an "editing" device: as we look around, our blinking eyes "cut" between scenes.
When you turn your head quickly from left to right for example, your eyes normally
blink in the middle of this action. This blinking helps your eyes accommodate the
change of focus when looking at different things. If we think of it as a movie inside
our head, it would be something like: "Looking at my left side". Cut (blink). "Looking
at my right side". This is relevant to our animation process, but not nearly as
important as...

ff Showing our emotional state: this should be our main concern when moving controls
to make our characters blink. The frequency of blinking eyes is directly affected
by our emotional state. For instance, if you are scared, you'll probably keep your
eyes open for as long as possible to pay attention to what's threatening you. Shy
or insecure characters tend to blink more often and at a faster pace than relaxed
characters. Relaxed and sleepy characters have slow and long blinks.

Chapter 10

255

Here we're going to see how eye blinks can change the overall feel of the actions. We will also
talk about the eyeball movements.

How to do it...
1.	 Open the file 010-Blinking.blend. It has a Blender scene with our character Otto

looking at a fixed point, as you can see in the following screenshot:

2.	 Hit Alt + A to watch this preset action. Our character's eyes are wide open while
looking somewhere, then something catches his attention and he turns his head
to the left. But something is not right...

�� His eyes don't move a bit! He looks like a zombie! Let's first move his eyes
and then make him blink.

�� If you pay close attention to someone's eyes, you'll notice some very small
and fast movements in the eyeballs while the person is looking at something,
even if it's a fixed object. These fast movements are called saccades, and
while recreating physically accurate eye movements is beyond our scope, it's
important to add some of them to our characters.

Drama King: Acting in Animation

256

3.	 A quick way to simulate these quick movements it to remove the interpolation
between keyframes for the eye tracker bone. On a DopeSheet window, press A
with the cursor over the timeline until all keyframes are deselected (white). Select
the keyframes on the LookAt channel, press Shift + T, and select the Constant
interpolation mode, as you can see in the next screenshot:

In Blender 2.5 you can set different interpolation modes at
a keyframe level, so you can alternate between modes over
the timeline. This makes your current keyframe selection
relevant when applying the new interpolation mode. In previous
versions, the interpolation modes were applied to the entire
curve channel.

4.	 Now you should go to frame 10, move (G) the LookAt bone slightly, and insert a new
Location keyframe for it (I). Repeat this process a few more times between frames 1
and 72, in which the head turn action begins. Just be sure to do the following:

�� Don't add too many keyframes, or the eye movements will be too distracting.
Three or four (at most!) different positions should be enough.

�� Make the saccades movements subtle. Try using Shift while moving the
LookAt controller in order to add subtle changes to the bone's location, so
our character keeps looking at the same region. Big changes are just for
when our character starts looking at some other point in space, and these
should have a different interpolation mode, such as Bézier.

Chapter 10

257

�� Make the timing between each movement uneven. Even timing between
each change will make the movements look unnatural.

After adding the subtle and quick eye movements, you'll notice that the action
appears more natural. Our character looks firmly at some point, and he's with his
eyes wide open.

If we added blinking between frames 1 and 72, we would break the feeling of
importance about what our character is looking at. Keeping his eyes open without
blinking tells the audience that our character is concentrating on something.

In frame 72, something happened and made our character shift his focus. He
turns his head to the left. The next screenshot shows him looking at his left side
in frame 86:

Drama King: Acting in Animation

258

5.	 Anticipating this head turn, it's a good idea to lead this movement with the eyes. Go
to frame 75, select the LookAt bone and move it so his eyes point to the new center
of attention. Since this movement is not a saccade, we want a smooth movement
here. Select the saved positions in frames 72 and 75, press Shift + T with the mouse
over the DopeSheet timeline, and choose the Bézier interpolation mode, as shown in
the next screenshot:

6.	 It's also interesting to raise his left eyebrow a little in frame 75 to enhance this
anticipation.

In the middle of this head turn there should be a "cut" between our character's
mental "scenes". He went from looking at something important to looking at
something even more important to his left-hand side. To make a mental transition
between these "scenes", his eyes should blink during the head turn.

7.	 In frame 75, select both the Eyelids.L and Eyelids.R bones and insert a new
Scaling keyframe (I) for them. This is the starting point of this blink.

A popular approach for blinking eyes in CG is the "Pixar blink".
This is an informal way to refer to an action where the eyes blink
on different frames to break the symmetry. You don't have to
always use this approach, but it helps in some cases, such as
this example.

8.	 Go to frame 77 and scale down the Eyelids.L bone until the left eye is closed. Go
up to frame 78 and do the same to the Eyelids.R bone. At frames 81 and 82, fully
open the left and right eyes respectively. This asymmetrical blinking happens in a
subtle but efficient way to reinforce the head turn, since the left eye blinks first.

Chapter 10

259

Note that "regular" blinks normally happen with a faster closing (2 frames) and a
slower opening of the eyelids (3 or 4 frames long). Try variations of this pattern to
achieve faster and slower blinks. For slower actions, you can even experiment with
the eyes fully closed for more than 1 frame.

The file 010-Blinking-complete.blend has our finished example for your reference.

How it works...
Animating eyes and eyelids requires lots of attention to detail and an understanding of the
emotional state of your character. The use of constant interpolation to emulate the saccadic
movement of the eyes helps enhancing the realism.

The animator must plan and understand when and how often the character should blink
based on its physical actions and emotional state. As a general pattern, blinking can be
divided in a faster closing of eyelids and slower opening.

There's more...
Try changing the emotional state of our character only by adding blinks. Make him blink a few
times before turning his head, and make sure his eyes are not so wide open.

See also
Appendix: Understanding Extremes, Breakdowns, Inbetweens, ones and twos

Chapter 6: Animating in layers

Chapter 7: Easy to Say, Hard to Do: Mastering the Basics

Walking with style
In Chapter 8, Shake That Body: The Mechanics of Body Movement we saw both the technical
aspects and body mechanics needed to create a run cycle. Now it's time to bring a little
emotion into it.

A "personality" walk is nothing more than taking the emotional state of your character
into account when creating the cycle. Refer to the W.O.F.A.I.M. technique at this chapter's
introduction to ask and answer a few important questions before you begin.

In this recipe, we're going to create a "happy" walk. Let's imagine our character walking home
just after receiving some good news. Maybe he's just got a promotion at work. He wants to
celebrate, but he has to hold himself a bit because his boss is still looking at him. His walk
must show this "controlled celebration".

Drama King: Acting in Animation

260

Technically speaking, this chapter is quite similar to other recipes talking about cyclic runs
and walks. The main difference is the subjectivity behind the creation of poses and the
timing adjustment.

How to do it...
1.	 Open the file 010-WalkStyle.blend and you'll see our character Otto with some

clothing and in its rest position, as seen in the following screenshot:

2.	 Go to the side view (Numpad 3) and let's pose our character in its first key position.
Since this is not a "regular" walk, it's important to use the animation principle
of exaggeration.

We're going to use the first key position as the moment where our character makes
contact with the ground using his left foot. Since acting nuances are a matter of
personal choice, feel free to make this contact position as you wish. The following
screenshot shows an example of this first pose in both front and side views. Notice how
the position of the limbs and torso are exaggerated in comparison to a regular walk.

Chapter 10

261

3.	 When you're happy with the first pose, select all related bones and insert a keyframe
for them (I) in frame 1. Go up a few frames (we're not thinking of timing yet, so we
can set a fixed 10 frames for each pose) and insert the Breakdown position, where
his left leg is straight up, supporting his body. The next screenshot shows an example
of it:

After creating the Breakdown, let's create the next key pose. This is the next contact
position, where the right foot touches the ground.

Drama King: Acting in Animation

262

4.	 Go back to frame 1, and select all body controls except the Foot.R bone (see why in
the next Information box) in the 3D View. Press Ctrl + C to copy their transformation.

5.	 Go 10 frames after the Breakdown pose and press Ctrl + Shift + V with your mouse
cursor over the 3D View. This will paste the flipped pose of our first contact position
to serve as the starting point for our second key position. Notice that things will look
weird, since flipping the first key pose will make our character go back in space to the
position of the first step, as shown in the next screenshot:

The naming conventions applied to the rig, using the .L suffix for
bones on the left-hand side of our character and the .R suffix for
the right-hand side bones, are used by Blender to calculate the
flipped pose.

6.	 Now it's just a matter of selecting the Hips and the Foot.R bones and moving them
(G) forward, and our pose will look normal again. Select all body controls and insert
a new keyframe for them here.

When copying the first key pose to make a flipped version, we didn't
select the Foot.R bone. When pasting a flipped pose, the Foot.R
transformation would be applied to the Foot.L bone, but the Foot.L
bone was already planted on the ground in the Breakdown pose. We
need to keep the Foot.L bone in its place to avoid any "slipping"
during the walk.

Chapter 10

263

7.	 Repeat this process to add a new Breakdown position based on the one you have
already created and a final key position, which should be a copy of the first keyframe
set (but, of course, two steps ahead). The next screenshot shows an overlay of
these positions:

Once you have your Extreme and Breakdown poses set, it's time to work on the
remaining poses. Now you can play with the timing and intermediate poses to bring
even more "style" to this walk cycle. You can speed up the Breakdowns, emphasizing
the contact key positions. The intermediate poses can be exaggerated, adding funny
movements (such as little jumps) instead of just following the "natural" curve
of motion.

It's always good, for organization's sake, to define the colors of each
keyframe set on the DopeSheet. Select all keyframes set in frame 1, for
example, press R and choose Extreme. This will give a reddish hue to
those saved positions. Repeat that with Breakdown and Keyframe, or
leave the default color for additional positions in order to make it what
you need on the DopeSheet timeline easier to find.

Another way of bringing "happiness" to this walk is to refer to a widely used kind of
cycle in the 1930's: the double-bounce walk. This is achieved by adding a second
"down" position to a regular walk.

Drama King: Acting in Animation

264

Normally our body goes down in a walk just after the contact of the foot with the
ground, going up to the Breakdown position. In a double-bounce walk, we keep this
down position and add another just after the "up" position of the Breakdown. This
was often in sync with the upbeat music of the cartoon.

8.	 Go a few frames after your Breakdown position and add two more positions: one
down and another up, in this order. This is what we need to achieve the second
"bounce". The next screenshot shows the difference between our regular (above)
and double-bounce (below) walk:

Chapter 10

265

9.	 Once you're done with your happy walk cycle, you can make it really cycle using the
NLA Editor, in the process described in Chapter 8, Shake That Body: The Mechanics
of Body Movement.

The finished example for your reference is in the file 010-WalkStyle-complete.blend.

How it works...
By carefully adjusting the timing and creating exaggerated poses, you can turn a regular
(and boring!) walk into something appealing. The careful construction of the 'in between'
poses, without making them simply follow the imaginary path described by the Extremes and
Breakdowns, can make your motion very interesting. Knowledge of animation's tried and
tested historic techniques also helps, so you can be inspired by the old animation masters'
legacies, such as the use of the double-bounce method in this recipe.

See also
Appendix: Understanding Extremes, Breakdowns, Inbetweens, ones and twos

Chapter 6: Animating in layers

Chapter 7: Easy to Say, Hard to Do: Mastering the Basics

Chapter 8: Run, Forrest! (in cycles)

Talking heads (and bodies)
Lip syncing is normally a hot topic for animation students. The good news is that it's quite
an easy task, if you follow some basic guidelines:

ff Animate what you hear, not what you read on the transcript.

ff Focus on the basic mouth shapes first; add details and polishing later.

ff Asymmetry is a good thing.

ff Talking isn't just about the mouth: the whole face and body has to be taken into
consideration.

As with most things in animation, lip syncing gets easier once you have an organized workflow.
Looking for a good reference is also important to get inspiration: notice how every person says
the same word a bit differently than the others.

Drama King: Acting in Animation

266

How to do it...
1.	 Open the file 010-Talk.blend. It has our character Otto with all his facial

controllers, looking at someone behind our camera, as seen in the following
screenshot:

We have an audio file recorded for our scene in the file 010-Talk.wav, in which we
have a man's voice saying "So... what do you want to do?"

2.	 We first need to import it to our scene and set up this audio as background. For that
we must use the Blender Video Sequence Editor (VSE). Open a new VSE window,
press Shift + A, and choose Sound in the menu, as seen in the following screenshot:

Chapter 10

267

3.	 Blender will open a file browser window, in which you should select and load the file
010-Talk.wav. Make sure that you set the Start Frame slider to 1 on the left-hand
side of the window, so our sound strip starts on the first frame of our scene. You
should also enable the Cache option to load this audio file into system memory.

The Cache option is important because it enables us to actually
see the audio waveform. This is useful for visually spotting the
louder parts on the audio strip. You can enable caching for audio
strips anytime at the properties panel (N) on the VSE.

4.	 Once your audio strip is loaded into the VSE, press Alt + A to listen to the file.
Maximize the window (Ctrl + Up Arrow) to see a better visualization of the waveform.
You will notice that the louder parts (or accents) of the audio are represented with
larger waveforms, as seen in the next screenshot:

Drama King: Acting in Animation

268

5.	 On a Timeline window, make sure the Audio Scrubbing, AV-sync, and Frame
Dropping options are enabled on the Playback menu, so you can move through
the timeline and listen to portions of the audio strip. The next screenshot shows
these options:

Back to the VSE window, and we're going to add some markers to indicate the
syllables and frame positions we need to animate. These markers are visible in all
timeline-type windows, such as the DopeSheet, the Video Sequence Editor, and the
actual Timeline window. This makes it easier to spot where we should insert the
keyframes to match the audio strip.

6.	 Position the frame indicator on frame 11, which is where we listen to the "O" sound.
Press M to add a marker on this position, and then press Ctrl + M to rename it to So.
You can move markers by selecting them with the right mouse button and pressing G.
Repeat this process for the other sounds that you think are stronger.

Remember that not every syllable should be animated. You
should identify the stronger sounds, because they are the ones
you should focus on. In our example, the stronger sounds are set
in bold: "So, what you wanna do?"

The following screenshot shows our markers set and named properly on the VSE:

Chapter 10

269

7.	 We now have our scene set up for animation work. Open a DopeSheet window and a
3D View window to start animating.

The layered animation approach we use for our characters' bodies is also relevant for
animating mouth shapes. We're going to animate the basic shapes first and then add
layers of details until we finish the shot.

8.	 The first "layer" is created only by animating the movements of opening and closing
the mouth. Move the marker through the timeline, move only the Jaw bone and insert
keyframes to make our character open and close his mouth to match the sounds
of the audio strip. Remember that we're only focusing on the jaw here; the lips will
be taken care of in the next layer. The next screenshot shows our character with his
mouth a bit open to match the sound of the word "so...".

On the next layer, we'll match the narrowing or widening of the mouth shape. The
vowel sounds "O" and "U", for instance, require narrow mouth shapes while "A", "E"
and "I" need wider shapes.

9.	 Once again, go through the timeline, move and insert keyframes for the mouth
controller bones to match these sounds. Notice that some near sounds (and mouth
shapes) overlap each other, such as the words "you" and "wanna"; the end of the first
sound is the beginning of the second. That's why you should animate the sounds you
hear, not the text in the transcript.

Drama King: Acting in Animation

270

10.	 After you're happy with the second layer of mouth shapes, start adding details to
make the forms more interesting. It's nice to have some asymmetrical contours:
not only the mouth controllers, but the jaw and head may be changed to add some
interesting shapes. The next screenshot shows the mouth closed after the word
"so..."; notice that the controllers were set so the jaw is rotated a bit to his left,
and the mouth shape is not symmetrical:

11.	 Repeat until you're happy with the results. Remember that nobody talks only
with their mouth; head, eye, eyebrow, and body movements must enhance what's
being said.

That holds true for any scene that you're animating. If your audio has someone
screaming in anger at someone, for example, the whole body should follow the sound
accents. In your planning phase, it's useful to act the scene in front of a mirror or
camera, sketch thumbnails of your pose ideas regarding those sounds and then
transpose them to your character rig.

A useful tip when making these acting choices is to avoid being too obvious or literal; if your
character says the word "big", you don't have to make his pose say the same. Try to make your
character's body match the emotional state, not the word's meaning.

The file 010-Talk-complete.blend has this finished recipe for your reference.

Chapter 10

271

How it works...
By loading an audio file and setting up markers for the sound accents, you can have visual
feedback to help create the mouth shapes for lip syncing. Building the mouth shapes in a
layered fashion—just like you do with the body motion—is a good way to be more productive
when animating your character while speaking.

You should always build asymmetry into the facial movements in order to achieve natural
and fluid results. Remember that nobody speaks only with their mouth; the full body must
be taken into account. When animating the body on top of a sound file, try to match the
emotional state of your character. Avoid being too obvious and literal in your acting choices.

See also
Appendix: Understanding Extremes, Breakdowns, Inbetweens, ones and twos

Chapter 6: Non-linear animation

Chapter 6: Animating in layers

Chapter 7: Easy to Say, Hard to Do: Mastering the Basics

Planning Your
Animation

In this chapter, we will cover the following topics:

ff Creating thumbnails with Grease Pencil

ff Naming conventions

ff Extremes, Breakdowns, Inbetweens, ones and twos

Introduction
When we think of animation, all we want is to get our hands dirty as soon as possible and
bring our characters to life. But if we do that, we'll soon face problems that could easily have
been solved with some careful planning.

To model facial shape keys, for example, a good planning phase will offer a list of necessary
facial expressions, so you won't face any surprises such as missing shapes at the animation
stage. You will also have a clearer picture of what rigging features you'll have to build for your
character; this way you won't spend too much time creating things that won't be used.

Creating thumbnails with Grease Pencil
Creating a finished animation in 3D isn't usually a quick task. We have to model, create
materials, textures, rig controls, light setups, animate, and render. It may take a very long
time until you see something moving on your screen.

Planning Your Animation

274

That's why it's useful to quickly sketch our poses to see if what we have in mind will work on
screen. Those sketches are great to test the poses and timing in a matter of minutes, and
lots of animators draw them on paper or 2D animation programs to use as reference.

Fortunately for us, Blender has a great feature called Grease Pencil, which allows us to
sketch directly over the interface. It's very useful not only for creating thumbnails, but also for
the director to annotate the corrections directly over the scene as reference for the animators.

The name Grease Pencil is based on the wax writing tool used
by some directors to draw over the physical CRT monitors to
annotate over the work of the animators of early CG productions.
Since it can be easily removed, that was a quick way to make
corrections and annotations over early digital work.

Drawing with Grease Pencil over the 3D View is as easy as holding D and sketching with the
left mouse button. If you have a drawing tablet, Blender interprets the pressure applied to the
drawing. You can erase the lines by holding D and pressing the right mouse button. The next
screenshot shows a quick sketch with Grease Pencil's default settings:

Appendix

275

In the previous screenshot, you can also see the Grease Pencil section on the Properties
panel (N). There you can add new layers, change the color and thickness of the drawing,
and enable Onion Skinning. This last feature indicates you can animate with Grease Pencil!

When you draw something in a frame, it's just a matter of sketching. A new keyframe
drawing is created automatically at the new frame, and you can see a translucent version
of the previous and next drawings with the Onion Skinning feature, as you can see in the
next screenshot:

After you create a few keyframes with Grease Pencil, you can adjust the timing on the
DopeSheet window by selecting the Grease Pencil mode on the window header. In this mode,
everything works exactly like regular keyframes for objects in the 3D view; you can select and
move them around. Every drawing is held on the screen until the next keyframe.

The Grease Pencil drawings are not visible to the internal renderer, but you can transform
those sketches in images using the OpenGL render feature, by clicking on the clapperboard
icon in the 3D View window header.

Since we're drawing on the 3D View, we can set how the drawing will be positioned on the 3D
space by using the options in the panel section; the drawings can be aligned to your current
view, to the cursor position, to the surface of existing objects, or to the surface of existing
Grease Pencil drawings.

Planning Your Animation

276

The lines you create can even be converted to Blender Paths or Bézier curves, so you can
edit them and even make a vector based animation! One advantage of that is converting
your drawings into something visible by Blender renderer, so you can even use Blender for
producing 2D-ish animations.

Naming conventions
Naming conventions seems like a boring subject huh? Well... it's not the most exciting
part of the animation process, but it helps keeping all other activities more pleasurable
and streamlined.

Blender 2.5 has a nifty feature of searching for the name of virtually anything you built in
your 3D scene, but that doesn't mean we don't need to be organized. A very useful feature in
Blender and most 3D apps is the ability to view your scene in a hierarchical tree-like structure,
the Outliner window, as you can see in the following screenshot:

Appendix

277

The Outliner shows all objects in our scene organized alphabetically and these are displayed
according to their Parent-Child relationship. This is very useful, but you can make things easier
to manage by adopting some organized naming conventions.

Our character Otto, for example, has his name as a prefix to all related objects. Meshes,
Armatures, Lattices, Materials, and Textures—all start with Otto_. This is useful to separate
them from any other object on the scene.

Another useful tip to make our Outliner easier to manage is to add
some Empty objects as parents of large groups of objects. The Otto rig
for example, has lots of meshes created only to act as custom bone
shapes. These objects would create an unnecessary clutter on our
Outliner, so there is an Empty object named Otto_Shapes, with all
shape objects as its children.

We can have two characters on the scene. Both of them may have a "skin" material applied to
them, but they are not necessarily the same. Which one is Otto's skin and which is from the
other character? And what about that "Shoe" object? It's easier to indicate the object's owner
in the prefix, especially in larger productions.

When rigging, it's important to name bones according to their functions. Having prefixes such
as D_ for deformation bones or M_ for mechanism, T_ for target, and so on, is useful for
understanding the role of each bone, especially in complex rigs.

For the bones actually made visible to the animator, it's best to name them by their functions
or areas of control, such as "Head", "Hand.L", and so on.

Extremes, Breakdowns, Inbetweens, ones
and twos

So you want to create great animations but are still confused by some terms? Let's try to
make them clear for you.

Every time you press I on the Blender 3D View for an object or bone, you're creating or
replacing a keyframe. In digital animation, a keyframe is a saved property for an object at
one frame of the timeline. This can be the location, rotation, scale, color, and basically any
property value that you can change and save.

One thing that causes confusion is the fact that a vast terminology developed during years
of 2D animation is still used in 3D, and there is an overlap of old and new terms. For the
software, every property saved in the timeline is a keyframe. For an animator, each keyframe
can be something else.

Planning Your Animation

278

The digital keyframes can be:

ff Key drawings: This is the most important drawing of the scene. It's the storytelling
snapshot (or frame), which can alone be used to tell the story behind the scene.
Normally key drawings were made by the director, so that animators could work
based on it. The Key drawing is often also an Extreme, but not all Extremes are Keys.

ff Extremes: These are the drawings that reproduce the maximum points of movement
by a character or object. These points usually happen when a change in the direction
of motion occurs.

ff Breakdown: This is the intermediate drawing to portray the motion between two
Extreme drawings. It's very useful to describe curved natural motions (or arcs), so
the movement between two Extreme poses don't happen in a straight line.

Since we need 24 frames to make one second of animation for movies, more drawings are
needed in order to fill the gaps between the Extremes and Breakdowns. This is where we have
the Inbetween drawings. In traditional animation these are drawn by assistant animators,
while in 3D the computer is responsible for the interpolation between keyframes. So, when we
define the Interpolation Mode in Blender, we're actually telling the computer how to draw the
Inbetween positions.

The big difference is that the computer is a "dumb inbetweener", without any sense of
aesthetics. While it does help by automatically creating the Inbetweens, it requires the
animator to create more keyframes and adjust the animation curves in order to guide
the computer on how to create proper Inbetween drawings.

Since the computer is very quick to create these Inbetween drawings, we often have 3D
animation "on ones". Animation "on ones" means that every frame of a movie clip has a
different drawing. This is very expensive to do in traditional 2D animation, so normally one
drawing is held on the screen for at least two frames.

When we have 12 drawings for a second of animation, we say that this was made "on twos".
It means that every drawing is held on the screen for two frames. It's very common to see
animations on 3s and 4s, and even a mix between them. From an administrative point of
view, it's quicker and cheaper to produce animations with fewer drawings.

Appendix

279

Although the default mode in 3D is to make animation on ones, you can change that
depending on the style that you want to achieve. 3D animations that try to emulate analog
visuals are often rendered with fewer drawings per second to enhance that analog feel.

In Blender, we can achieve that by using a modifier over the animation curve on the F-Curve
editor. Select the desired channel, click over the Add Modifier button at the Properties panel
(N) and choose Stepped. The Step Size value is the mode you want to achieve: 2 for an
animation on twos, and so on. This modifier has to be applied over all channels of animation
on which you want to enact this effect.

Index
Symbols
001-Chains.blend file 12
001-IK_FK_Switcher.blend file 34
001-IKFK-Switcher-complete.blend file 39
001-Legs.blend file 20
001-Legs-complete.blend file 25
001-Orientation.blend file 7
001-ShapeKeys.blend file 27
001-ShapeKeys-complete.blend file 32
001-WeightPaint.blend file 41
2D animation 146
002-Pelvis-complete.blend file 59, 60
002-SpineStretch.blend file 48
003-Eyelids-complete.blend file 80
003-Eyelids file 74
003-Pupils.blend file 82
003-Pupils-complete.blend file 88
004-Face.blend file 92
004-Face-complete.blend file 98
004-Face_drivers.blend file 95
004-Jaw.blend file 105
004-Jaw-complete.blend file 109
004-Lattice.blend file 99
004-Lattice-complete.blend file 104
004-Tongue.blend file 110
004-Tongue-complete.blend file 111
005-Bending.blend file 136
005-Fingers.blend file 114
005-Fingers-complete.blend file 118
005-IK-Foot.blend file 119
005-Leg-complete.blend file 126
005-Shoulders.blend file 132
005-Shoulders-complete.blend file 135
005-Spaces.blend file 140
005-Spaces-complete.blend file 143

005-Stretch.blend file 127, 130
005-Stretch-toggle.blend file 130
005-Tracking.blend file 165
006-IK-FK.blend file 154
006-IK-FK_complete.blend file 156
006-Layers.blend file 146
006-Layers-complete.blend file 153
006-Libraries.blend file 172, 176
006-Libraries-complete.blend file 176
006-Libraries-Otto.blend file 173, 175
006-NLA.blend file 177
006-NLA-complete.blend file 180
006-Props.blend file 157, 159
006-Silhouette-and-mirror.blend file 160
006-Silhouette-and-mirror-complete.blend file

164
006-Tracking-complete.blend file 167
006-VideoReference.blend file 168, 171
006-VideoReference.png file 170
007-Anticipation.blend file 192
007-Anticipation-complete.blend file 194
007-Spacing.blend file 186
007-Spacing-complete.blend file 191
007-Spacing.mov file 188
007-Stretch.blend file 195
007-Stretch-complete.blend file 199
007-Symmetry.blend file 200, 203
007-Timing.blend file 182
008-BallKick.blend file 220
008-RunCycle.blend file 225
008-Tennis.blend file 206
008-Tennis-complete.blend file 212
008-Weight.blend file 214
008-Weight-complete.blend file 219
009-Anisculpt.blend file 248
009-AniSculpt-complete.blend file 251

282

009-Appendages.blend file 242
009-Appendages-complete.blend file 246
009-BallKick-complete.blend file 224
009-MovingHolds.blend file 238
009-MovingHolds-complete.blend file 241
009-RunCycle-complete.blend file 231
009-Secondary-action-complete.blend file

237
009-Secondary-actions.blend file 234
010-Blinking.blend file 255
010-Blinking-complete.blend file 259
010-Talk.blend file 266
010-Talk-complete.blend file 270
010-Talk.wav file 267
010-WalkStyle.blend file 260
12 basic principles of animation

URL 146

A
action

anticipating 192-195
Action constraint 107, 123
Action Editor 146
Action Editor mode 107, 235
Action Extrapolation value 236
Add Driver, selecting 86
Add IK to Active Bone 71
Add Variable button 86, 96
animation

about 145
refining, with AniSculpt technique 247-252
timing, adjusting in 182-185
timing, tracking in 182-185

animation arcs
tracking 165-167

Animation Data section 236
animation refinement 233
animator 253
AniSculpt technique

about 247
animation, refining with 247-252

appendages
characters, animating with 242-246

Armature 6
Armature object 85, 96
Armature | Single Bone 70

Auto Normalize option 43
Auto Refresh option 169
axis conventions, for bones 10, 11

B
background reference

video, using for 167-171
ball kicking exercise, body mechanics 220-

224
Basis shape 92
B-Bone scale tool 49
B-Bone wireframe visualization 34
bi-dimensional shape 24
Blender

about 5
action, anticipating 192-195
animation arcs, tracking 165-167
animation refinement 233
animation, refining with AniSculpt technique

247-252
body mechanics 205
bone chains, managing 18
bone chains, separating 11-17
breathing property, adding to character 61-63
character, animating in layers 146-153
character looks, controlling 69
characters, animating with appendages 242-

246
character walking exercise 259-265
colors, customizing for bones 18, 19, 24, 25,

26
corrective shape keys, using 27-32
drivers 33
expressions adding, shape keys used 92
eye 70
eye blinking action 254-259
eyelids controllers 74
Forward Kinematics (FK) controllers 11
head, controlling 63
IK-FK switcher, creating 35-39
Inverse Kinematics (IK) controllers 11
jaw controller, creating 105
lattices, face controls with 99
lip syncing feature 266-271
mirrored rendering techinque 160-164
naming conventions 276, 277

283

neck, controlling 63
NLA Editor 177-180
non-linear animation 177-180
objects, grabbing in scene 157-159
objects, throwing in scene 157-159
orientation, defining for bones 6-9
Outliner tool 26
pelvis, rigging 56
poses, easing 186-191
poses, favoring 186-191
pupils, controlling 82, 83
sculpting tools 247
secondary actions 234-238
shapes, customizing for bones 18-26
Silhouette 160-164
spacing, working 186-191
squash-and-stretch principle 195-199
stretchy pine, creating 48, 49
subtle movements, adding to character 238-

241
switching between IK and FK 153-156
symmetry, breaking 200-203
timing, adjusting in animations 182-185
tips, for weight painting 42-45
tongue, controlling 109
weight painting 42-45
W.O.F.A.I.M. technique 253, 254

Blender screen 146
blocking 150
body mechanics, Blender

about 205
ball kicking exercise 220-224
cycled animations 225-231
tennis serve exercise 206-212
weight lifting exercise 213-219

bone chains
creating 7-9
managing 18
separating, for different tasks 11-17

Bone Constraints panel 15
Bone Constraints tab 36, 53, 62, 79, 108,

115
Bone Heat process 42
bones

about 5, 6
colors, customizing for 18, 19, 24, 25, 26
orientation, defining for 69

shapes, customizing for 18-26
breakdown 278
Breakdown positions 149
breathing property

002-Breathe.blend, opening 61
adding, to character 61-63
Bone Constraints tab 62
constraints, stacking 63
Local Space 62
Lungs bone, selecting 62
Lungs controller 62
Stretch To constraint 62

Brow_mad (left and right) 94
Brow_sad (left and right) 94
Brow_surprise (left and right) 94
Brush section 43

C
camera view 146, 210
CG animation 238
character

animating, in layers 146-153
animating, with appendages 242-246
breathing property, adding 61-63
looks, controlling 69
subtle movements, adding to 238-241
working with 172-176

character mesh 5
character rig 148
character walking exercise 259-265
Cheek_puff (left and right) 94
Cheek_puff.L shape 97
Cheek_suck (left and right) 94
Cheek_suck.L shape 97
Child Of constraint 143, 207
ColorRamp node 161
colors

customizing, for bones 18, 19, 24, 25, 26
Constant interpolation mode 256
constraints 35
controller bone

creating 14, 15
Copy Location constraint 52, 53, 116
Copy Rotation constraint 54
Copy Rotation constraints 34, 40, 115
Cursor to Selected 70

284

Curve section 45
Custom Weight Paint Range box 43
cycled animations, body mechanics 225-231

D
D_BottomEyelid.L 75
deformation 13
deformation bones 117
Deformation property 77
Deform option 15
Deform property 70, 74, 115
Destination fields 79
D_Head vertex group 111
digital keyframes

about 278
breakdown 278
extremes 278
key drawings 278

D_Jaw bone 107, 110
DJV

URL 184
D_Neck bone 50
DopeSheet window 107, 184, 235
D_Ribcage bone 62
drivers 33
Drivers section 86
D_TongueBase 110
D_TongueBase bone 110, 111
D_UpEyelid.L 74

E
Ease In sliders 50
Ease Out sliders 50
Edit Mode 6
Edit Mode (Tab) 49
expressions

004-Face.blend file 92
004-Face-complete.blend file 98
004-Face_drivers.blend file 95
adding, shape keys used 92
Add Variable button 96
Armature object 96
Basis shape 92, 93
Cheek_puff.L shape 97
Cheek_suck.L shape 97
Expr field 96

Eyebrow_mad.L 97
Eyebrow_sad.L 97
Eyebrow_surprise.L 97
Local Space field 96
Mirror Shape Key, selecting 93
Mouth_cornerDown.L 96, 98
Mouth_cornerDown.L shape 95, 97
Mouth_corner.L bone 96
Mouth_cornerSide.L shape 95
Mouth_cornerUp driver 96
Mouth_cornerUp.L 92, 96
Mouth_cornerUp.L shape 95, 98
Mouth_cornerUp.L shape slider value 93
Mouth_cornerUp.R 93
Mouth_cornerUp shape 97
Mouth_curled.bottom shape 97
Mouth_curled.top shape 97
Mouth_lip.Bottom bone 97
Mouth_lip.Top bone 97
Mouth_puck shape 97
Mouth_sneer.L shape 97
Mouth_wide.bottom shape 97
Mouth_wide.top shape 97
Object Data tab 92, 95
right side, creating 93
Shape Keys section 92
shapes, list 94

Expr field 66, 96
Extrapolate field 78
extremes 278
eye

003-Eyes.blend, opening 70
Add IK to Active Bone 71
Armature | Single Bone 70
Cursor to Selected 70
Deform property 70
Eye.L bone 70, 72
Flip Names, selecting 72
Inverse Kinematics section 72
LookAt bone 71-73
LookAt controller 73, 74
Object Data tab 70
Set Parent to Bone, selecting 72
T_Eye.L 70
working 73

eye blinking action, Blender 254-259
Eyebrow_mad.L 97

285

Eyebrow_sad.L 97
Eyebrows_Center 102
Eyebrows_Center bone 103
Eyebrow_surprise.L 97
Eye.L bone 70, 72, 74
eyelids controllers

003-Eyelids-complete.blend file 80
003-Eyelids file 74
about 74
Add IK To Active Bone, selecting 75
Bone Constraints tab 79
D_BottomEyelid.L 75
Deformation property 77
Deform property 74
Destination fields 79
D_UpEyelid.L 74
Extrapolate field 78
Eye.L bone 74
Eyelids.L bone 77
For Transform field 79
LookAt bone 76, 79
LookAt shape 81
M_Eyelids.L 76
M_Eyelids.L bone, selecting 78
Specials menu (W) 80
T_BottomEyelid.L 76
Transform Panel (N) 76
T_UpEyelid.L 74
ways 81
working 81

Eyelids.L bone 77, 85
Eye.R object 84

F
face controls

with lattices 99
face vertex group 100
F-Curve editor 146
For Transform field 79
Forward Kinematics (FK) 11, 33
front view 146

G
general finger controllers 117
general rig properties 18

Gimp 43
global coordinates 6
GLSL 183
Graph Editor window 33
Grease Pencil

about 274
thumbnails, creating with 273-276

H
head

002-Neck.blend file, opening 64
controlling 63
Hinge interface 64
moving, options 63, 64

Hinge controller 141
hinged shoulder technique 132, 133
Hinge property 221
Hips controller 140
Hook modifier 104
humanoid character 10

I
IK-FK switcher

creating 35-39
Inbetween drawings 278
Influence slider 36, 62
Inherit Rotation (Neck) driver 66
Inherit Rotation property 67
Inherit Scale option 51
Inherit Scale options 58
Inverse Kinematics (IK) 11, 33
Inverse Kinematics (IK) constraint 59
Inverse Kinematics (IK) section 72
Invert option 111

J
jaw controller

004-Jaw.blend file 105
004-Jaw-complete.blend file 109
Action constraint 107
Armature, selecting 106
Bone Constraints tab 108
creating 105
D_Jaw bone 107

286

DopeSheet window 107
moving 109
Transform Channel 108

K
Keep Offset 54
key drawings 278
keyframe 277
key poses 148

L
Lattice modifier 99
lattices

004-Lattice.blend file 99
004-Lattice-complete.blend file 104
Eyebrows_Center 102
Eyebrows_Center bone 103
face controls with 99
face vertex group 100
Hook modifier 104
Lattice_Face 101
Lattice modifier 99
lips_bottom vertex group 100
lips_top 100
lips_top vertex group 101
MeshDeform modifier 99
modifiers tab 102
Object Data tab 101
Otto_Armature 103
Vertex Groups section 100
Weight Paint mode, activating 100

layers
characters, animating in 146-153

leg bone 59
limbs controllers

about 113
cartoons, bending for arms 135-139
cartoons, bending for legs 135-139
fingers, controlling 114-118
IK legs, creating with three-pivot foot 119-

126
limbs, streching 127-132
shoulders, setting up 132-135
spaces, for IK hands 139-143

Limit Location constraint 40

linked assets
working with 172-176

lips_bottom vertex group 100
lips_top 100
lip syncing feature

about 265-267
guidelines 265

local coordinates 6
Local Space field 86, 96
LocRot keyframe 155, 165, 236
LookAt bone 71, 72, 76, 79
LookAt controller 73, 74
LookAt shape 81

M
MeshDeform modifier 99
meshes 6
mesh topology 40
M_Eyelids.L 76
mirrored rendering 160-164
modifiers tab 102
Motion Paths feature 167
Mouth_cornerDown.L 96, 98
Mouth_cornerDown (left and right) 94
Mouth_cornerDown.L shape 95, 97
Mouth_corner.L bone 96
Mouth_cornerSide (left and right) 94
Mouth_cornerSide.L shape 95
Mouth_cornerUp driver 96
Mouth_cornerUp.L 92
Mouth_cornerUp (left and right) 94
Mouth_cornerUp.L shape 95, 98
Mouth_cornerUp.R 93
Mouth_cornerUp shape 97
Mouth_curled.bottom shape 97
Mouth_curled (top and bottom lips) 94
Mouth_curled.top shape 97
Mouth_lip.Bottom bone 97
Mouth_lip.Top bone 97
Mouth_puck (only one shape) 94
Mouth_puck shape 97
Mouth_sneer (left and right) 94
Mouth_sneer.L shape 97
Mouth_wide.bottom shape 97
Mouth_wide (top and bottom lips) 94
Mouth_wide.top shape 97

287

Mplayer
URL 184

multitasking 234

N
naming conventions, Blender 276, 277
neck

Add Variable button 66
controlling 63
Expr field 66
hinge controller, setting 65
Hinge_Head bone 66
Inherit Rotation (Neck) driver 66
inherit rotation property 65
Inherit Rotation property 66, 67
Local Space checkbox 66

NLA Editor 177-180, 227, 235
non-linear animation 177-180
Non-linear Animation Editor. See NLA Editor

O
Object Data panel 13
Object Data tab 49, 70, 83, 92, 95
objects

grabbing, in scene 157-159
throwing, in scene 157-159

onion skinning feature 275
OpenGL 183
Open Graphics Library. See OpenGL
Operator tab 20
orientation

correcting 10
defining, for bones 6-9

Otto 7
Otto_Armature 103
Otto_Body mesh 111
Otto_Tongue 110
Otto_Tongue object 110
Outliner 26

P
pelvis

002-Pelvis.blend, opening 57
Deform property, disabling 58

D_Pelvis bone 57
D_Spine1 bone 58
Inherit Scale property, disabling 59
inverted pelvis 56
rigging 56
rigging, steps 57
Specials Menu (W) 58
stretching 59
Switch Direction, selecting 58
Transform panel (N) 60
working 59

Pepeland
about 247
URL 251

Photoshop 43
Pin button 84
playblast 183
Pole Angle slider 125
Preserve Volume feature 27
Properties panel 54
Properties window 49
pupils

003-Pupils.blend file 82
003-Pupils-complete.blend file 88
Add Driver, selecting 86
Add Variable button 86
Armature object 85
controlling 82
Drivers section 86
Eyelids.L bone 85
Eye.R object 84
Local Space field 86
Object Data tab 83
Pin button 84
Pupil_Big shape 83
Pupil_Small shape 83
Pupils_Small shape, selecting 83
Shape Key name 84
Shape Keys, creating 83
Shape Keys panel 83, 84
Transform channels 86
var-1 value 87
working 89
X-Axis Mirror mode 85
X-Axis Mirror property 85

288

R
Radius slider 10
Reset button 53
Reversed option 179
Ribcage controller 140, 141
Rib controller 132
rig

about 5
complex rig 6
guidelines, for creating 6
simple rig 6

rigging
about 5, 6
issues 27

Rigify
about 11
benefits 11

rotation 10

S
saccades 255
scene

objects, grabbing in 157-159
objects, throwing in 157-159

sculpting tools 247
secondary actions 234-238
Segments field 50
Segments property 52
Set Inverse button 141
Set Parent to Bone, selecting 72
Shape Key name 84
Shape Keys

about 27
creating 27
used, for adding expressions 92
using 27-32

Shape Keys, creating 83
Shape Keys panel 83, 84
Shape Keys section 92
SHAPE_Leg object 21
shapes

customizing, for bones 18-26
shapes, list

Brow_mad (left and right) 94
Brow_sad (left and right) 94

Brow_surprise (left and right) 94
Cheek_puff (left and right) 94
Cheek_suck (left and right) 94
Mouth_cornerDown (left and right) 94
Mouth_cornerSide (left and right) 94
Mouth_cornerUp (left and right) 94
Mouth_curled (top and bottom lips) 94
Mouth_puck (only one shape) 94
Mouth_sneer (left and right) 94
Mouth_wide (top and bottom lips) 94

silhouette version 160
silhouette view

creating 161
skeletal animation 5
Solid Drawing 200
spacing 186
Specials Menu (W) 58, 80
squash-and-stretch principle 195-199
straight ahead method 146
Stretch property 130
Stretch To constraint 53, 62, 111
StretchTo constraints 40
stretchy spine

002-SpineStretch.blend file, opening 48
Bone Constraints tab 53
bones, naming 50
constraints, creating 52
constraint, values 53
Copy Location constraint 52, 53
Copy Rotation constraint 54
creating 48-50
Edit Mode 52
Inherit Scale option 51
Segments property 52
Segments value, changing 51
Stretch To constraint 53, 56
StretchTo constraint 54
working 56

Stride 228
subtle movements

adding, to characters 238-241
Switch Direction 58
symmetry

breaking 200-203

289

T
T_BottomEyelid.L 76
Tennis_Ball obejct 207
Tennis_Racket obejct 207
tennis serve exercise, body mechanics 206-

212
T_Eye.L 70
three-pivot foot

IK legs, creating with 119-126
thumbnails

creating, with Grease Pencil 273-276
timing

about 182, 186
adjusting, in animation 182-185
tracking, in animation 182-185

tongue
004-Tongue.blend file 110
004-Tongue-complete.blend file 111
controlling 109
D_Head vertex group 111
D_Jaw bone 110
D_TongueBase 110
D_TongueBase bone 110, 111
Invert option 111
Otto_Body mesh 111
Otto_Tongue 110
Otto_Tongue object 110
Stretch To constraint 111
TongueTip bone 110, 111
With Automatic Weights, selecting 110

TongueTip bone 110, 111
Toolshelf panel 223
Topology Mirror option 44
traditional animators 160
Transform Channel 108
Transform channels 86
Transform Panel (N) 54, 73, 76
T_UpEyelid.L 74

U
user interface bones 40
User Preferences window 43

V
var-1 value 87
Vertex Groups section 100
video

using, for background reference 167-171
Video Sequence Editor (VSE) 266
Visual LocRot keyframe 155
VLC 168

W
wax writing tool 274
weight lifting exercise, body mechanics 213-

219
weight painting

about 40
settings, for brush 45

Wireframe box 22
With Automatic Weight option 17
With Automatic Weights, selecting 110
W.O.F.A.I.M. technique 253, 254

X
X-Axis Mirror mode 85
X-Axis Mirror property 85
X-Ray property 18, 117

Z
Z Location channel curve 150

Thank you for buying
Blender 2.5 Character Animation Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Blender 2.5 Materials and
Textures Cookbook
ISBN: 978-1-84951-288-6 Paperback: 312 pages

Over 80 great recipes to create life-like Blender objects

1.	 Master techniques to create believable natural
surface materials

2.	 Take your models to the next level of realism or
artistic development by using the material and
texture settings within Blender 2.5.

3.	 Take the hassle out of material simulation by
applying faster and more efficient material and
texture strategies

Blender 2.5 Lighting and
Rendering
ISBN: 978-1-84719-988-1 Paperback: 252 pages

Bring your 3D world to life with lighting, compositing, and
rendering

1.	 Render spectacular scenes with realistic lighting
in any 3D application using interior and exterior
lighting techniques

2.	 Give an amazing look to 3D scenes by applying
light rigs and shadow effects

3.	 Apply color effects to your scene by changing the
World and Lamp color values

Please check www.PacktPub.com for information on our titles

Blender 3D 2.49 Architecture,
Buildings, and Scenery
ISBN: 978-1-84951-048-6 Paperback: 376 pages

Create photo-realistic 3D architectural visualizations
of buildings, interiors, and environmental scenery with
Blender

1.	 Study modeling, materials, textures, and light
basics in Blender

2.	 Learn special tricks and techniques to
create walls, floors, roofs, and other specific
architectural elements

3.	 Create realistic virtual tours of buildings
and scenes

4.	 Develop a library of textures, materials, and
objects that you can use over and over again

Blender 2.49 Scripting
ISBN: 978-1-849510-40-0 Paperback: 292 pages

Extend the power and flexibility of Blender with the help
of the high-level, easy-to-learn scripting language, Python

1.	 Gain control of all aspects of Blender using the
powerful Python language

2.	 Create complex meshes programmatically and
apply materials and textures

3.	 Automate the rendering process and extend
Blender's image manipulation capabilities

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Get Rigging

	Introduction
	Defining good orientations for your bones
	Using separate bone chains for different tasks
	Customizing shapes and colors for
your bones
	Using corrective shape keys
	Making an IK-FK switcher
	Tips on weight painting your character

	Chapter 2: Rigging the Torso
	Introduction
	How to create a stretchy spine
	Rigging the pelvis
	Making your character breathe
	Controlling the neck and head

	Chapter 3: Eying Animation
	Introduction
	How to control where your characters look at
	The eyelids controllers
	Controlling the pupils

	Chapter 4: Poker Face? Facial Rigging
	Introduction
	Adding expressions using Shape Keys
	Face controls with lattices
	Creating the jaw controller
	Control your tongue

	Chapter 5: Hands Down! The Limbs Controllers
	Introduction
	Controlling fingers
	Creating IK legs with a three-pivot foot
	Stretch those limbs!
	Setting up the shoulders
	Cartoon bending for arms and legs
	Different spaces for IK hands

	Chapter 6: Blending with the Animation Workflow
	Introduction
	Animating in layers
	Changing between FK and IK in a shot
	Grasping and throwing objects
	Silhouette and mirrored rendering
	Tracking animation arcs
	Using video for background reference
	Working with linked assets and characters
	Non-linear animation

	Chapter 7: Easy to Say, Hard to Do: Mastering the Basics
	Introduction
	Adjusting and tracking the timing
	Spacing: favoring and easing poses
	Anticipating an action
	Using squash and stretch
	Breaking the symmetry

	Chapter 8: Shake That Body: The Mechanics of Body Movement
	Introduction
	Animating a tennis serve
	Heavy metal
	Glory for your team: kicking the ball
	Run, Forrest! (in cycles)

	Chapter 9: Spicing it Up: Animation Refinement
	Introduction
	It's time for secondary actions
	Hold, but not still: using moving holds
	Animating characters with appendages
	Like clay: refining with the AniSculpt
technique

	Chapter 10: Drama King: Acting in Animation
	Introduction
	In the blink of an eye
	Walking with style
	Talking heads (and bodies)

	Appendix: Planning Your Animation
	Introduction
	Creating thumbnails with Grease Pencil
	Naming conventions
	Extremes, Breakdowns, Inbetweens, ones and twos

	Index

