
www.allitebooks.com

http://www.allitebooks.org

Bayesian
Programming

K13774_FM.indd 1 10/28/13 2:17 PM

www.allitebooks.com

http://www.allitebooks.org

Chapman & Hall/CRC
Machine Learning & Pattern Recognition Series

SERIES EDITORS

Ralf Herbrich
Amazon Development Center

Berlin, Germany

Thore Graepel
Microsoft Research Ltd.

Cambridge, UK

AIMS AND SCOPE

This series reflects the latest advances and applications in machine learning and pat-
tern recognition through the publication of a broad range of reference works, text-
books, and handbooks. The inclusion of concrete examples, applications, and meth-
ods is highly encouraged. The scope of the series includes, but is not limited to, titles
in the areas of machine learning, pattern recognition, computational intelligence,
robotics, computational/statistical learning theory, natural language processing,
computer vision, game AI, game theory, neural networks, computational neurosci-
ence, and other relevant topics, such as machine learning applied to bioinformatics
or cognitive science, which might be proposed by potential contributors.

PUBLISHED TITLES

MACHINE LEARNING: An Algorithmic Perspective
Stephen Marsland

HANDBOOK OF NATURAL LANGUAGE PROCESSING,
Second Edition
Nitin Indurkhya and Fred J. Damerau

UTILITY-BASED LEARNING FROM DATA
Craig Friedman and Sven Sandow

A FIRST COURSE IN MACHINE LEARNING
Simon Rogers and Mark Girolami

COST-SENSITIVE MACHINE LEARNING
Balaji Krishnapuram, Shipeng Yu, and Bharat Rao

ENSEMBLE METHODS: FOUNDATIONS AND ALGORITHMS
Zhi-Hua Zhou

MULTI-LABEL DIMENSIONALITY REDUCTION
Liang Sun, Shuiwang Ji, and Jieping Ye

BAYESIAN PROGRAMMING
Pierre Bessière, Emmanuel Mazer, Juan-Manuel Ahuactzin, and Kamel Mekhnacha

K13774_FM.indd 2 10/28/13 2:17 PM

www.allitebooks.com

http://www.allitebooks.org

Chapman & Hall/CRC
Machine Learning & Pattern Recognition Series

Bayesian
Programming

Pierre Bessière
CNRS, Paris, France

Emmanuel Mazer
CNRS, Grenoble, France

Juan-Manuel Ahuactzin
ProbaYes, Puebla, Mexico

Kamel Mekhnacha
ProbaYes, Grenoble, France

K13774_FM.indd 3 10/28/13 2:17 PM

www.allitebooks.com

http://www.allitebooks.org

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20131023

International Standard Book Number-13: 978-1-4398-8033-3 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

www.allitebooks.com

www.copyright.COM
http://www.allitebooks.org

To the late Edwin Thompson Jaynes

for his doubts about certitudes

and for his certitudes about probabilities

www.allitebooks.com

http://www.allitebooks.org

This page intentionally left blankThis page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

Contents

Foreword xv

Preface xvii

1 Introduction 1

1.1 Probability an alternative to logic 1

1.2 A need for a new computing paradigm 5

1.3 A need for a new modeling methodology 5

1.4 A need for new inference algorithms 8

1.5 A need for a new programming language and new hardware 10

1.6 A place for numerous controversies 11

1.7 Running real programs as exercises 12

I Bayesian Programming Principles 15

2 Basic Concepts 17

2.1 Variable . 18

2.2 Probability . 18

2.3 The normalization postulate 19

2.4 Conditional probability . 19

2.5 Variable conjunction . 20

2.6 The conjunction postulate (Bayes theorem) 20

2.7 Syllogisms . 21

2.8 The marginalization rule . 22

2.9 Joint distribution and questions 23

2.10 Decomposition . 25

2.11 Parametric forms . 26

2.12 Identification . 28

2.13 Specification = Variables + Decomposition +
Parametric forms . 29

2.14 Description = Specification + Identification 29

2.15 Question . 29

2.16 Bayesian program = Description + Question 31

2.17 Results . 32

vii

www.allitebooks.com

http://www.allitebooks.org

viii Contents

3 Incompleteness and Uncertainty 35
3.1 Observing a water treatment unit 35

3.1.1 The elementary water treatment unit 36
3.1.2 Experimentation and uncertainty 38

3.2 Lessons, comments, and notes 40
3.2.1 The effect of incompleteness 40
3.2.2 The effect of inaccuracy 41
3.2.3 Not taking into account the effect of ignored variables

may lead to wrong decisions 42
3.2.4 From incompleteness to uncertainty 43

4 Description = Specification + Identification 47
4.1 Pushing objects and following contours 48

4.1.1 The Khepera robot 48
4.1.2 Pushing objects . 49
4.1.3 Following contours 53

4.2 Description of a water treatment unit 56
4.2.1 Specification . 56
4.2.2 Identification . 59
4.2.3 Bayesian program . 59
4.2.4 Results . 60

4.3 Lessons, comments, and notes 60
4.3.1 Description = Specification + Identification 60
4.3.2 Specification = Variables + Decomposition + Forms 61
4.3.3 Learning is a means to transform incompleteness into

uncertainty . 62

5 The Importance of Conditional Independence 65
5.1 Water treatment center Bayesian model 65
5.2 Description of the water treatment center 66

5.2.1 Specification . 66
5.2.2 Identification . 70
5.2.3 Bayesian program . 71

5.3 Lessons, comments, and notes 71
5.3.1 Independence versus conditional independence 71
5.3.2 The importance of conditional independence 73

6 Bayesian Program = Description + Question 75
6.1 Water treatment center Bayesian model (end) 76
6.2 Forward simulation of a single unit 76

6.2.1 Question . 77
6.2.2 Results . 78

6.3 Forward simulation of the water treatment center 78
6.3.1 Question . 78
6.3.2 Results . 80

www.allitebooks.com

http://www.allitebooks.org

Contents ix

6.4 Control of the water treatment center 81

6.4.1 Question (1) . 81

6.4.2 Results (1) . 81

6.4.3 Question (2) . 82

6.4.4 Results (2) . 84

6.5 Diagnosis . 85

6.5.1 Question . 86

6.5.2 Results . 86

6.6 Lessons, comments, and notes 87

6.6.1 Bayesian Program = Description + Question 87

6.6.2 The essence of Bayesian inference 88

6.6.3 No inverse or direct problem 89

6.6.4 No ill-posed problem 89

II Bayesian Programming Cookbook 91

7 Information Fusion 93

7.1 “Naive” Bayes sensor fusion 94

7.1.1 Statement of the problem 94

7.1.2 Bayesian program . 94

7.1.3 Instance and results 96

7.2 Relaxing the conditional independence fundamental
hypothesis . 102

7.2.1 Statement of the problem 102

7.2.2 Bayesian program . 103

7.2.3 Instance and results 103

7.3 Classification . 105

7.3.1 Statement of the problem 105

7.3.2 Bayesian program . 106

7.3.3 Instance and results 106

7.4 Ancillary clues . 108

7.4.1 Statement of the problem 108

7.4.2 Bayesian program . 108

7.4.3 Instance and results 110

7.5 Sensor fusion with false alarm 113

7.5.1 Statement of the problem 113

7.5.2 Bayesian program . 114

7.5.3 Instance and results 114

7.6 Inverse programming . 116

7.6.1 Statement of the problem 116

7.6.2 Bayesian program . 117

7.6.3 Instance and results 118

www.allitebooks.com

http://www.allitebooks.org

x Contents

8 Bayesian Programming with Coherence Variables 121
8.1 Basic example with Boolean variables 122

8.1.1 Statement of the problem 122
8.1.2 Bayesian program . 123
8.1.3 Instance and results 124

8.2 Basic example with discrete variables 125
8.2.1 Statement of the problem 125
8.2.2 Bayesian program . 126
8.2.3 Instance and results 126

8.3 Checking the semantic of Λ 130
8.3.1 Statement of the problem 130
8.3.2 Bayesian program . 130
8.3.3 Instance and results 131

8.4 Information fusion revisited using coherence variables . . . 132
8.4.1 Statement of the problems 132
8.4.2 Bayesian program . 135
8.4.3 Instance and results 135

8.5 Reasoning with soft evidence 141
8.5.1 Statement of the problem 141
8.5.2 Bayesian program . 142
8.5.3 Instance and results 143

8.6 Switch . 145
8.6.1 Statement of the problem 145
8.6.2 Bayesian program . 145
8.6.3 Instance and results 146

8.7 Cycles . 147
8.7.1 Statement of the problem 147
8.7.2 Bayesian program . 148
8.7.3 Instance and results 148

9 Bayesian Programming Subroutines 153
9.1 The sprinkler model . 154

9.1.1 Statement of the problem 154
9.1.2 Bayesian program . 156
9.1.3 Instance and results 156

9.2 Calling subroutines conditioned by values 159
9.2.1 Statement of the problem 159
9.2.2 Bayesian program . 159
9.2.3 Instance and results 160

9.3 Water treatment center revisited (final) 162
9.3.1 Statement of the problem 162
9.3.2 Bayesian program . 162

9.4 Fusion of subroutines . 163
9.4.1 Statement of the problem 163
9.4.2 Bayesian program . 163

Contents xi

9.5 Superposition . 165
9.5.1 Statement of the problem 165
9.5.2 Bayesian program . 165
9.5.3 Instance and results 166

10 Bayesian Programming Conditional Statement 171
10.1 Bayesian if-then-else . 172

10.1.1 Statement of the problem 172
10.1.2 Bayesian program . 173
10.1.3 Instance and results 176

10.2 Behavior recognition . 179
10.2.1 Statement of the problem 179
10.2.2 Bayesian program . 179
10.2.3 Instance and results 179

10.3 Mixture of models and model recognition 180

11 Bayesian Programming Iteration 183
11.1 Generic iteration . 184

11.1.1 Statement of the problem 184
11.1.2 Bayesian program . 184
11.1.3 Instance and results 185

11.2 Generic Bayesian filters . 186
11.2.1 Statement of the problem 186
11.2.2 Bayesian program . 186
11.2.3 Instance and results 188

11.3 Markov localization . 191
11.3.1 Statement of the problem 191
11.3.2 Bayesian program . 192
11.3.3 Instance and results 192

III Bayesian Programming
Formalism and Algorithms 197

12 Bayesian Programming Formalism 199
12.1 Logical propositions . 200
12.2 Probability of a proposition 200
12.3 Normalization and conjunction postulates 200
12.4 Disjunction rule for propositions 201
12.5 Discrete variables . 201
12.6 Variable conjunction . 202
12.7 Probability on variables . 202
12.8 Conjunction rule for variables 202
12.9 Normalization rule for variables 203
12.10 Marginalization rule . 203
12.11 Bayesian program . 203
12.12 Description . 204

xii Contents

12.13 Specification . 204
12.14 Questions . 206
12.15 Inference . 206

13 Bayesian Models Revisited 209
13.1 General purpose probabilistic models 210

13.1.1 Graphical models and Bayesian networks 210
13.1.2 Recursive Bayesian estimation 213
13.1.3 Mixture models . 217
13.1.4 Maximum entropy approaches 219

13.2 Engineering oriented probabilistic models 220
13.2.1 Sensor fusion . 220
13.2.2 Classification . 222
13.2.3 Pattern recognition 222
13.2.4 Sequence recognition 222
13.2.5 Markov localization 223
13.2.6 Markov decision processes 224

13.3 Cognitive oriented probabilistic models 225
13.3.1 Ambiguities . 226
13.3.2 Fusion, multimodality, conflicts 229
13.3.3 Modularity, hierarchies 235
13.3.4 Loops . 241

14 Bayesian Inference Algorithms Revisited 247
14.1 Stating the problem . 248
14.2 Symbolic computation . 250

14.2.1 Exact symbolic computation 250
14.2.2 Approximate symbolic computation 265

14.3 Numerical computation . 266
14.3.1 Sampling high-dimensional distributions 267
14.3.2 Forward sampling . 267
14.3.3 Importance sampling 268
14.3.4 Rejection sampling 268
14.3.5 Gibbs sampling . 269
14.3.6 Metropolis algorithm 269
14.3.7 Numerical estimation of high-dimensional integrals . 270

14.4 Approximate inference in ProBT 271
14.4.1 Approximation in computing marginalization 271
14.4.2 Approximation in sampling distributions 273
14.4.3 Approximation in computing MAP 274

15 Bayesian Learning Revisited 281
15.1 Parameter identification . 282

15.1.1 Problem statement 282
15.1.2 Bayesian parametric estimation 283

Contents xiii

15.1.3 Maximum likelihood (ML) 285
15.1.4 Bayesian estimator and conjugate laws 287

15.2 Expectation–Maximization (EM) 290
15.2.1 EM and classification 293
15.2.2 EM and HMM . 297
15.2.3 Model selection . 301

15.3 Learning structure of Bayesian networks 302
15.3.1 Directed minimum spanning tree algorithm: DMST . 304
15.3.2 Score-based algorithms 305

IV Frequently Asked Questions — Frequently
Argued Matters 309

16 Frequently Asked Questions and Frequently Argued Matters 311
16.1 Alternative Bayesian inference engines 312
16.2 Bayesian programming applications 313
16.3 Bayesian programming versus Bayesian networks 316
16.4 Bayesian programming versus Bayesian modeling 317
16.5 Bayesian programming versus possibility theories 318
16.6 Bayesian programming versus probabilistic programming . 318
16.7 Computational complexity of Bayesian inference 319
16.8 Cox theorem . 320
16.9 Discrete versus continuous variables 321
16.10 Incompleteness irreducibility 322
16.11 Maximum entropy principle justifications 324
16.12 Noise or ignorance? . 326
16.13 Objectivism versus subjectivism controversy and the “mind

projection fallacy” . 326
16.14 Unknown distribution . 329

17 Glossary 331
17.1 Bayesian filter . 331
17.2 Bayesian inference . 332
17.3 Bayesian network . 333
17.4 Bayesian program . 334
17.5 Coherence variable . 335
17.6 Conditional statement . 335
17.7 Decomposition . 336
17.8 Description . 336
17.9 Forms . 337
17.10 Incompleteness . 337
17.11 Mixture . 337
17.12 Noise . 338
17.13 Preliminary knowledge . 338
17.14 Question . 339

xiv Contents

17.15 Specification . 339
17.16 Subroutines . 340
17.17 Variable . 340

Bibliography 341

Index 359

Foreword

Modern artificial intelligence (AI) has embraced the Bayesian paradigm, in
which inferences are made with respect to a given probability model, on the
basis of observed evidence, according to the laws of probability. The develop-
ment of Bayesian networks and other related formalisms for expressing prob-
ability models has dramatically broadened the class of problems that can be
addressed by Bayesian methods. Yet, practitioners have found that such mod-
els by themselves are too limited in their expressive power. For real-world
applications, additional machinery is needed to construct more complex mod-
els, especially those with repetitive substructures.

Bayesian Programming comprises a methodology, a programming lan-
guage, and a set of tools for developing and applying these kinds of complex
models. The programming language contains iteration constructs to facilitate
the inclusion of repetitive submodels as well as a useful extension to standard
Bayesian network modeling: the ability to specify conditional distributions for
multiple variables jointly, rather than just for individual variables.

The approach is described in great detail, with many worked examples
backed up by an online code repository. Unlike other books that tend to focus
almost entirely on mathematics, this one gives equal time to conceptual and
methodological guidance for the model-builder. It grapples with the knotty
problems that arise in practice, some of which do not yet have clear solutions.

Stuart Russell
University of California, Berkeley

xv

This page intentionally left blankThis page intentionally left blank

Preface

The Bayesian Programming project first began in the late 1980s, when we
came across Jaynes’ ideas and writings on the subject of “Probability as
Logic.”

We were convinced that dealing with uncertainty and incompleteness was
one of the main challenges for robotics and a sine qua non condition to the
advancement toward autonomous robots, but we had no idea of how to tackle
these questions.

Edwin T. Jaynes’ proposition of probability as an alternative and an exten-
sion of logic to deal with both incompleteness and uncertainty was a revelation
for us. The theoretical solution was described in his writings, especially in the
early version of his book Probability Theory: The Logic of Science [Jaynes,
2003] that he was distributing, already aware that illness may prevent him
from finishing it.

He described the principles of what he called “the robot,” which was not
a physical device, but an inference engine to automate probabilistic reasoning
— a kind of Prolog for probability instead of logic. We decided to try to
implement such an inference engine and to apply it to robotics.

The main lines of the Bayesian programming formalism were designed, no-
tably, by Olivier Lebeltel. The first prototype versions of the inference engine
were developed in Lisp and several applications to robotic programming were
designed.

In the late 1990s we realized, first, for research applications that proba-
bilistic modeling could be successfully applied to any sensory-motor systems,
whether artificial or living, and, second, that in industry, Bayesian program-
ming has numerous potential applications beyond robotics.

To investigate the research applications along with our international part-
ners, we set up two successive European projects: BIBA (Bayesian Inspired
Brain and Artifacts) and BACS (Bayesian Approach to Cognitive Systems).
In these projects we made progress on three different scientific questions:

• How can we develop better artifacts using Bayesian approaches?

• Is Bayesian reasoning biologically plausible at the behavioral level?

• Is Bayesian reasoning biologically plausible at a neuronal scale?

To advance with industrial applications, we started the company ProbaYes,
which applies probabilistic reasoning to help in decision making, whenever the

xvii

xviii Preface

information at hand is incomplete and uncertain. ProbaYes accomplished a
considerable task by completely redesigning and implementing the inference
engine (called ProBT) in C++ and provides a free distribution of this software
for the academic community.

We think that the Bayesian Programming methodology and tools are
reaching maturity. The goal of this book is to present them so that anyone is
able to use them.

We will, of course, continue to improve tools and develop new models.
However, pursuing the idea that probability is an alternative to Boolean logic,
we now have a new important research objective, which is to design specific
hardware, inspired from biology, to build a Bayesian computer.

Along with the coauthors of this book, the main developers of ProBT
were David Raulo, Ronan Le Hy, and Christopher Tay. We would like to
emphasize their hard work and their invaluable contributions, which have led
to an effective programming tool. Professor Philippe Lerray and Linda Smail
also contributed to the definition and implementation of key algorithms found
in ProBT, namely the structural identification and symbolic simplification
algorithms.

None of this would have been possible without the work of all the PhD
students and postdocs who have used and improved Bayesian programming
along the years either within our group at Grenoble University (France) or
elsewhere in Europe (in approximate chronological order): Eric Dedieu, Olivier
Lebeltel, Christophe Coué, Ruben Senen Garćıa Ramı́rez, Julien Diard, Cédric
Pradalier, Jihene Serkhane, Guy Ramel, Adriana Tapus, Carla Maria Chagas
e Cavalcante Koike, Miriam Amavizca, Jean Laurens, Francis Colas, Ronan Le
Hy, Pierre-Charles Dangauthier, Shrihari Vasudevan, Joerg Rett, Estelle Gilet,
Xavier Perrin, João Filipe Ferreira, Clement Moulin-Frier, Gabriel Synnaeve,
and Raphael Laurent. Many of these former students have been mentored or
coadvised by Julien Diard, Jorge Dias, Thierry Fraichard, Christian Laugier,
or Roland Siegwart, whom we also thank for the countless discussions we had
together.

A very special thanks to Jacques Droulez and Jean-Luc Schwartz for their
inspiring and essential collaborations.

We would also like to thank the team who assisted us during the actual
making of the book: Mr. Peter Bjornsen for correcting the many errors found in
the initial version, Mr. Shashi Kumar for tuning the configuration file needed
by LATEX, Ms. Linda Leggio and Mr. David Grubbs for the organization.

Finally thanks to CNRS (Centre National de la Recherche Scientifique),
INRIA, University of Grenoble, and the European Commission, who actively
supported this project.

Pierre Bessière
Emmanuel Mazer

Juan-Manuel Ahuactzin
Kamel Mekhnacha

Chapter 1

Introduction

1.1 Probability an alternative to logic . 1
1.2 A need for a new computing paradigm . 5
1.3 A need for a new modeling methodology . 5
1.4 A need for new inference algorithms . 8
1.5 A need for a new programming language and new hardware 10
1.6 A place for numerous controversies . 11
1.7 Running real programs as exercises . 12

The most incomprehensible thing about the world is that it is
comprehensible.

Albert Einstein or Immanuel Kant1

1.1 Probability an alternative to logic

Computers have brought a new dimension to modeling. A model, once
translated into a program and run on a computer, may be used to under-
stand, measure, simulate, mimic, optimize, predict, and control. During the
last 50 years science, industry, finance, medicine, entertainment, transport,
and communication have been completely transformed by this revolution.

However, models and programs suffer from a fundamental flaw: incom-
pleteness . Any model of a real phenomenon is incomplete. Hidden variables,
not taken into account in the model, influence the phenomenon. The effect of
the hidden variables is that the model and the phenomenon never have the
exact same behaviors. Uncertainty is the direct and unavoidable consequence

1This is how Antonina Vallentin quotes Einstein in the biography she wrote [Vallentin,
1954]. However, it seems that the exact quotation should rather be “the eternal mystery
of the world is its comprehensibility” [Einstein, 1936]. Furthermore, this sentence appears
itself between quotes in Einstein’s original text in a context where it could be attributed to
Immanuel Kant.

1

www.allitebooks.com

http://www.allitebooks.org

2 Bayesian Programming

of incompleteness. A model may neither exactly foresee the future observa-
tions of a phenomenon nor predict the consequences of its decisions as both
its observations and actions are biased by the hidden variables.

Computing a cost price to decide on a sell price may seem a purely arith-
metic operation consisting of adding elementary costs. However, often these
elementary costs may not be known exactly. For instance, a part’s cost may
be biased by exchange rates, production cost may be biased by the number of
orders, and transportation costs may be biased by the time of year. Exchange
rates, the number of orders, and the time of year when unknown are hidden
variables, which induce uncertainty in the computation of the cost price.

Analyzing the content of an e-mail to filter spam is a difficult task, because
no word or combination of words can give you an absolute certitude about
the nature of the e-mail. At most, the presence of certain words is a strong
clue that an e-mail is spam. It may never be a conclusive proof, because
the context may completely change its meaning. For instance, if one of your
friends is forwarding you a spam for discussion about the spam phenomenon,
its whole content is suddenly not spam any longer. A linguistic model of spam
is irremediably incomplete because of this boundless contextual information.
Filtering spam is not hopeless and some very efficient solutions exist, but the
perfect result is a chimera.

Machine control and dysfunction diagnosis is very important to industry.
However, the dream of building a complete model of a machine and all its pos-
sible failures is an illusion. One should recall the first “bug” of the computer
era: the moth located in relay 70 panel F of the Harvard Mark II computer.
Once again, it does not mean that control and diagnosis are hopeless, it only
means that models of these machines should take into account their own in-
completeness and the resulting uncertainty.

In 1781, Sir William Herschel discovered Uranus, the seventh planet of the
solar system. In 1846, Johann Galle observed for the first time, Neptune, the
eighth planet. In the meantime, both Urbain Leverrier, a French astronomer,
and John Adams, an English one, became interested in the “uncertain” tra-
jectory of Uranus. The planet was not following the exact trajectory that
Newton’s theory of gravitation predicted. They both came to the conclusion
that these irregularities could be the result of a hidden variable not taken into
account by the model: the existence of an eighth planet. They even went much
further, finding the most probable position of this eighth planet. The Berlin
observatory received Leverrier’s prediction on September 23, 1846, and Galle
observed Neptune the very same day!

Logic is both the mathematical foundation of rational reasoning and the
fundamental principle of present day computing. However, logic, by essence,
is restricted to problems where information is both complete and certain. An
alternative mathematical framework and an alternative computing framework
are both needed to deal with incompleteness and uncertainty.

Introduction 3

Probability theory is this alternative mathematical framework. It is a model
of rational reasoning in the presence of incompleteness and uncertainty. It is
an extension of logic where both certain and uncertain information have their
places.

James C. Maxwell stated this point synthetically:

The actual science of logic is conversant at present only with
things either certain, impossible, or entirely doubtful, none of
which (fortunately) we have to reason on. Therefore the true logic
for this world is the calculus of Probabilities, which takes account
of the magnitude of the probability which is, or ought to be, in a
reasonable man’s mind.

James C. Maxwell
quoted in Probability Theory — The Logic of Science

by Edwin T. Jaynes [2003]

Considering probability as a model of reasoning is called the subjectivist or
Bayesian approach. It is opposed to the objectivist approach, which considers
probability as a model of the world. This opposition is not only an epistemo-
logical controversy; it has many fundamental and practical consequences.2

To model reasoning, you must take into account the preliminary knowl-
edge of the subject who is doing the reasoning. This preliminary knowledge
plays the same role as the axioms in logic. Starting from different preliminary
knowledge may lead to different conclusions. Starting from wrong preliminary
knowledge will lead to wrong conclusions even with perfectly correct reason-
ing. Reaching wrong conclusions following correct reasoning proves that the
preliminary knowledge was wrong, offers the opportunity to correct it, and
eventually leads you to learning.

Incompleteness is simply the irreducible3 gap between the preliminary
knowledge and the phenomenon and uncertainty is a direct and measurable
consequence of this imperfection.

In contrast, modeling the world by denying the existence of a “subject” and
consequently rejecting preliminary knowledge leads to complicated situations
and apparent paradoxes. This rejection implies that if the conclusions are
wrong, either the reasoning could be wrong or the data could be aberrant,
leaving no room for improvement or learning. Incompleteness does not mean
anything without preliminary knowledge, and uncertainty and noise must be
mysterious properties of the physical world.4

The objectivist school has been dominant during the 20th century, but
the subjectivist approach has a history as long as probability itself. It can be
traced back to Jakob Bernoulli in 1713:

2See FAQ-FAM: Objectivism vs. subjectivism controversy and the “mind projection
fallacy,” Section 16.13.

3See FAQ-FAM: Incompleteness irreducibility, Section 16.10.
4See FAQ-FAM: Noise or ignorance, Section 16.12.

4 Bayesian Programming

Uncertainty is not in things but in our head: uncertainty is a
lack of knowledge.

Ars Conjectandi
Jakob Bernouilli [1713]

to the Marquis Simon de Laplace, one century later, in 1814:

One sees, from this Essay, that the theory of probabilities is
basically just common sense reduced to calculus; it makes one
appreciate with exactness that which accurate minds feel with a
sort of instinct, often without being able to account for it.5

Essai philosophique sur les probabilités
Marquis Simon de Laplace [1814]

to the already quoted James C. Maxwell in 1850 and to the visionary Henri
Poincaré in 1902:

Randomness is just the measure of our ignorance.
To undertake any probability calculation, and even for this cal-

culation to have a meaning, we have to admit, as a starting point,
an hypothesis or a convention, that always comprises a certain
amount of arbitrariness. In the choice of this convention, we can
be guided only by the principle of sufficient reason.

From this point of view, every science would just be uncon-
scious applications of the calculus of probabilities. Condemning
this calculus would be condemning the whole science.

La science et l’hypothèse
Henri Poincaré [1902]

and finally, by Edwin T. Jaynes in his book Probability theory: The logic
of science where he brilliantly presents the subjectivist alternative and sets
clearly and simply the basis of the approach:

By inference we mean simply: deductive reasoning whenever
enough information is at hand to permit it; inductive or proba-
bilistic reasoning when — as is almost invariably the case in real
problems — all the necessary information is not available. Thus
the topic of “Probability as Logic” is the optimal processing of
uncertain and incomplete knowledge.

Probability Theory: The Logic of Science
Edwin T. Jaynes [2003]

5On voit, par cet Essai, que la théorie des probabilités n’est, au fond, que le bon sens
réduit au calcul; elle fait apprécier avec exactitude ce que les esprits justes sentent par une
sorte d’instinct, sans qu’ils puissent souvent s’en rendre compte.

Introduction 5

1.2 A need for a new computing paradigm

Bayesian probability theory is clearly the sought mathematical alternative
to logic.6

However, we want working solutions to incomplete and uncertain prob-
lems. Consequently, we require an alternative computing framework based on
Bayesian probabilities.

To create such a complete computing Bayesian framework, we require a
new modeling methodology to build probabilistic models, we require new infer-
ence algorithms to automate probabilistic calculus, we require new program-
ming languages to implement these models on computers, and finally, we will
eventually require new hardware to run these Bayesian programs efficiently.

The ultimate goal is a Bayesian computer. The purpose of this book is to
describe the current first steps in this direction.

1.3 A need for a new modeling methodology

The existence of a systematic and generic method to build models is a sine
qua non requirement for the success of a modeling and computing paradigm.
This is why algorithms are taught in the basic course of computer science
giving students the elementary and necessary methods to develop classical
programs.

We propose Bayesian Programming as this generic methodology to build
subjective probabilistic models. It is very simple even if it is atypical and a
bit worrisome at the beginning.

The purpose of Chapters 2 to 11 is to present this new modeling method-
ology.

The presentation is intended for the general public and does not suppose
any prerequisites other than a basic foundation in mathematics.

Its purpose is to introduce the fundamental concepts, to present the novelty
and interest of the approach, and to initiate the reader to the subtle art of
Bayesian modeling. Numerous simple examples of applications are presented
in different fields.

It is divided in two parts, Chapters 2 to 6 which present the principles of
Bayesian programming and Chapters 7 to 11 which offer a cookbook for the
good practice of probabilistic modeling.

6See FAQ-FAM: Cox theorem, Section 16.8.

6 Bayesian Programming

Chapter 2 — Basic Concepts : The purpose of this chapter is to gently
introduce the basic concepts of Bayesian Programming.

We start with a simple example of Bayesian spam filtering, which helps to
eliminate junk e-mails. Commercially available software is based on a similar
approach.

The problem is very easy to formulate. We want to classify texts (e-mail)
into one of two categories, either nonspam or spam. The only information we
can use to classify the e-mails is their content: a set of words.

The classifier should furthermore be able to adapt to its user and to learn
from experience. Starting from an initial standard setting, the classifier should
modify its internal parameters when the user disagrees with its own decision.
It will hence adapt to the user’s criteria to categorize nonspam and spam. It
will improve its results as it encounters increasingly classified e-mails.

The classifier uses an N words dictionary. Each e-mail will be classified
according to the presence or absence of each of the words.

Chapter 3 — Incompleteness and Uncertainty: The goal of this chapter is
twofold: (i) to present the concept of incompleteness and (ii) to demonstrate
how incompleteness is a source of uncertainty.

Chapter 4 — Description = Specification + Identification: In this chapter,
we come back to the fundamental notion of description. A description is a
probabilistic model of a given phenomenon. It is obtained after two phases of
development:

1. A Specification phase where the programmer expresses in probabilis-
tic terms his own knowledge about the modeled phenomenon.

2. An Identification phase where this starting probabilistic canvas is
refined by learning from data.

Descriptions are the basic elements that are used, combined, composed,
manipulated, computed, compiled, and questioned in different ways to build
Bayesian programs.

Chapter 5 — The Importance of Conditional Independence: The goal of
this chapter is both to explain the notion of Conditional Independence and
to demonstrate its importance in actually solving and computing complex
problems.

Chapter 6 — Bayesian Program = Description + Question: In the two
previous chapters, as an example, we built a description (Bayesian model) of
a water treatment center. In this chapter, we use this description to solve dif-
ferent problems: prediction of the output, choice of the best control strategy,
and diagnosis of failures. This shows that multiple questions may be asked

Introduction 7

with the same description to solve very different problems. This clear separa-
tion between the model and its use is a very important feature of Bayesian
Programming.

Chapters 2 to 6 present the concept of the Bayesian program. Chapters 7 to
11 are used to show how to combine elementary Bayesian programs to build
more complex ones. Some analogies are stressed between this probabilistic
mechanism and the corresponding algorithmic ones, for instance the use of
subroutines or conditional and case operators.

Chapter 7 — Information Fusion: The most common application of
Bayesian technics is to merge sensor information to estimate the state of a
given phenomenon.

The situation is always the same: you want information about a given
phenomenon; this phenomenon influences sensors that you can read and from
these readings you try to estimate the phenomenon.

Usually the readings are neither completely informative about the phe-
nomenon, nor completely consistent with one another. Consequently, you are
compelled to a probabilistic approach and the question you want to address
is what is the state knowing the readings.

A very common difficulty is the profusion of sensors which leads to a very
high dimensionality state space for the joint distribution. A very common
solution to break this curse of dimensionality is to make the very strong as-
sumption that, knowing the phenomenon, the sensors may be considered to
provide independent readings. Knowing the common cause, the different con-
sequences are considered independent.

However, this hypothesis is often caricatured. In this chapter we present
this basic approach but, also, different ways to relax this “naive” hypothesis.

Chapter 8 — Bayesian Programming with Coherence Variables: What does
“equality” mean for Bayesian variables?

Two different calculi may lead to the same result. It is the case if you try
to compute the same thing with two different methods in a “consistent” or
“coherent” calculus system. You can impose it as a constraint of your model
by specifying that a given equation should be respected. Solving the equation
then consists in finding the conditions on the two terms of the equation in
order to make them “equal.” It can finally be used as a programming notion
when you “assign” the result of a calculus to a given variable in order to
use it in a subsequent calculus. However, for all these fundamental notions
of logic, mathematics and computing the results of the calculus are always
values either Boolean, numeric, or symbolic.

In probabilistic computing, the basic objects that are manipulated are not
values but rather probability distributions on variables. In this context, the
“equality” has a different meaning as it should say that two variables have
the same probability distribution. To realize this, we introduce in this chapter
the notion of a “coherence variable” linking two variables of any nature.

8 Bayesian Programming

A coherence variable is a Boolean variable. If the coherence variable is
equal to 1 (or “true”) it imposes that the two variables are “coherent” which
means that they should share the same probability distribution knowing the
same premisses.

Chapter 9 — Bayesian Programming Subroutines: The purpose of this
chapter is to exhibit a first mean to combine descriptions with one another in
order to incrementally build more and more sophisticated probabilistic models.
This is obtained by including in the decomposition, calls to Bayesian subrou-
tines. We show that, as in standard programming, it is possible to use existing
probabilistic models to build more complex ones and to further structure the
definition of complex descriptions, as some reusability of a previously defined
model is possible.

Chapter 10 — Bayesian Programming Conditional Statement : The pur-
pose of this chapter is to introduce probabilistic branching statements. We
will start by describing the probabilistic “if-then-else” statement which, as in
standard programming, can naturally be extended to a probabilistic “case”
statement. From an inference point of view, the probabilistic if-then-else state-
ment is simply the integration over the probability distribution on a binary
variable representing the truth value of the condition used in the classical “if”
statement. The main difference with the classical approach is that a Bayesian
program will explore both branches when the truth value of the condition is
given by a probability distribution. This allows us to mix behaviors and to
recognize models.

Chapter 11 — Bayesian Programming Iteration: In this chapter we propose
to define a description with distributions indexed by integers. By setting the
range of indexes, we define the number of distributions used in the description.
This way we define generic descriptions only depending on the range of the
indexes, just as we fixed the number of iterations in a “for” loop.

In pursuing this idea, we can revisit the notion of the filter, where each new
evidence is incorporated into the result of a previous inference. If the index
represents successive time intervals, we can then use these techniques to study
time sequences and use the Markov assumption to simplify the description.
The approach is useful for implementing dynamic Bayesian networks with the
Bayesian programming formalism.

1.4 A need for new inference algorithms

A modeling methodology is not sufficient to run Bayesian programs. We
also require an efficient Bayesian inference engine to automate the proba-
bilistic calculus. This assumes we have a collection of inference algorithms

Introduction 9

adapted and tuned to more or less specific models and a software architecture
to combine them in a coherent and unique tool.

Numerous such Bayesian inference algorithms have been proposed in the
literature. The purpose of this book is not to present these different computing
techniques and their associated models once more. Instead, we offer a synthesis
of this work and a number of bibliographic references for those who would like
more detail on these subjects.

Chapters 12 to 15 are dedicated to that.

Chapter 12 — Bayesian Programming Formalism: The purpose of this
chapter is to present Bayesian Programming formally and to demonstrate
that it is very simple and very clear but, nevertheless, very powerful and very
subtle. Probability is an extension of logic, as mathematically sane and simple
as logic, but with more expressive power than logic.

It may seem unusual to present the formalism at the end of the book. We
have done this to help comprehension and to assist intuition without sacrificing
rigor. After reading this chapter, anyone can check that all the examples and
programs presented earlier comply with the formalism.

Chapter 13 — Bayesian Models Revisited : The goal of this chapter is to
review the main probabilistic models currently used.

We systematically use the Bayesian Programming formalism to present
these models, because it is precise and concise, and it simplifies their com-
parison. We mainly concentrate on the definition of these models. Discussions
about inference and computation are postponed to Chapter 14 and discussions
about learning and identification are postponed to Chapter 15.

We chose to divide the different probabilistic models into three categories:
the general purpose probabilistic models, the engineering oriented probabilis-
tic models, and the cognitive oriented probabilistic models.

In the first category, the modeling choices are made independently of any
specific knowledge about the modeled phenomenon. Most of the time, these
choices are essentially made to keep the inference tractable. However, the
technical simplifications of these models may be compatible with large classes
of problems and consequently may have numerous applications.

In the second category, on the contrary, the modeling choices and simpli-
fications are decided according to some specific knowledge about the modeled
phenomenon. These choices could eventually lead to very poor models from
a computational viewpoint. However, most of the time, problem-dependent
knowledge, such as conditional independence between variables, leads to very
significant and effective simplifications and computational improvements.

Finally, in the cognitive-oriented probabilistic models category, different
models are presented according to a cognitive classification where common
cognitive problems are linked to common Bayesian solutions.

Several of these models were already presented with more detail in the
previous chapters. Certain models will appear several times in different cate-
gories but presented with a different point of view for each presentation. We

10 Bayesian Programming

think that these repetitions are useful as our goal in this chapter is to give a
synthetic overview of all these models.

Chapter 14 — Bayesian Inference Algorithms Revisited : This chapter sur-
veys the main available general purpose algorithms for Bayesian inference.

It is well known that general Bayesian inference is a very difficult problem,
which may be practically intractable. Exact inference has been proved to be
NP-hard [Cooper, 1990], as has the general problem of approximate inference
[Dagum and Luby, 1993].

Numerous heuristics and restrictions to the generality of possible inferences
have been proposed to achieve admissible computation time. The purpose of
this chapter is to make a short review of these heuristics and techniques.

Before starting to crunch numbers, it is usually possible (and wise) to make
some symbolic computations to reduce the amount of numerical computation
required. The first section of this chapter presents the different possibilities.
We will see that these symbolic computations can be either exact or approxi-
mate.

Once simplified, the expression obtained must be numerically evaluated.
In a few cases exact (exhaustive) computation may be possible thanks to
the previous symbolic simplification, but most of the time, even with the
simplifications, only approximate calculations are possible. The second section
of this chapter describes the principles of the main algorithms.

Chapter 15 — Bayesian Learning Revisited : In Chapter 4 we have seen
how data are used to transform a “specification” into a “description”: the
free parameters of the distributions are instantiated with the data making the
joint distribution computable for any value of the variables. This identifica-
tion process may be considered as a learning mechanism allowing the data to
shape the description before any inferences could be made. In this chapter, we
consider learning problems in more detail and show how some of them may
be expressed as special instances of Bayesian programs.

1.5 A need for a new programming language and new
hardware

A modeling methodology and new inference algorithms are not sufficient to
make these models operational. We also require new programming languages
to implement them on classical computers and, eventually, new specialized
hardware architectures to run these programs efficiently.

However captivating these topics may be, we chose not to deal with them
in this book.

Introduction 11

It is premature to discuss new hardware dedicated to probabilistic infer-
ence, and the book is already too long to make room for one more topic!

However, we would like to stress that 25 years ago, no one dared to dream
about graphical computers. Today, no one dares to sell a computer without a
graphical display with millions of pixels able to present real-time 3D anima-
tions or to play high quality movies thanks to specific hardware that makes
such marvels feasible.

We are convinced that 25 years from now, the ability to treat incomplete
and uncertain data will be as inescapable for computers as graphical abilities
are today. We hope that you will also be convinced of this at the end of
this book. Consequently, we will require specific hardware to face the huge
computing burden that some Bayesian inference problems may generate.

Many possible directions of researchmay be envisioned to develop such new
hardware. Some, especially promising, are inspired by biology. Indeed, some
researchers are currently exploring the hypothesis that the central nervous
system (CNS) could be a probabilistic machine either at the level of individual
neurons or assemblies of neurons. Feedback from these studies could provide
inspiration for this necessary hardware.

1.6 A place for numerous controversies

We believe that Bayesian modeling is an elegant matter that can be pre-
sented simply, intuitively, and with mathematical rigor. We hope that we
succeed in doing so in this book. However, the subjectivist approach to prob-
ability has been and still is a subject of countless controversies.

Some questions must be asked, discussed, and answered, such as for in-
stance: the comparison between Bayesian Programming and possibility the-
ories; the computational complexity of Bayesian inference; the irreducibility
of incompleteness; and, last but not least, the subjectivist versus objectivist
epistemological conceptions of probability itself.

To make the main exposition as clear and simple as possible, none of these
controversies, historical notes, epistemological debates, and tricky technical
questions are discussed in the body of the book. We have made the didactic
choice to develop all these questions into a special chapter (Chapter 16) ti-
tled “FAQ and FAM” (Frequently Asked Questions and Frequently Argued
Matters).

This chapter is organized as a collection of “record cards,” at most one page
long, presented in alphabetical order. Cross references to these subjects are
included in the main text for readers interested in going further than a simple
presentation of the principles of Bayesian modeling. You already encountered
a few of them earlier in this introduction.

www.allitebooks.com

http://www.allitebooks.org

12 Bayesian Programming

Finally, Chapter 17 is a short summary of the book, where the central
concepts are recalled in an extensive glossary.

1.7 Running real programs as exercises

One way to read this book and learn Bayesian programming is to run and
modify the Python programs given as examples.

Each example will be presented under the following format:

The program in file “chapter1/dice.py” emulates throwing a dice
twice with the pypl package.

from pyplpath import *

import all

from pypl import *

define a probabilistic variable

dice= plSymbol("Dice", plIntegerType(1,6))

#define a way to adress the values

dice_value = plValues(dice)

define a uniform probability distribution on the variable

P_dice = plUniform(dice)

print it

print ’P_dice = ’, P_dice

perform two random draws with the distribution

and print the result

for i in range(2):

P_dice.draw(dice_value)

print i+1,’th trow’, dice_value

Introduction 13

This may require some computer science proficiency, which is not required
from the readers of this book. Running these programs is a plus but is not
necessary in the comprehension of this book. To run these programs on a
computer, a Python package called pypl is needed. The source code of the
examples as well as the Python package can be downloaded free of charge
from “http:/www.probayes.com/Bayesian-Programming-Book/.”The Python
package is based on ProBT, a C++ multiplatform professional library used
to automate probabilistic calculus.

Additional exercises and programs are available on this Web site.

http://www.probayes.com/Bayesian-Programming-Book/

This page intentionally left blankThis page intentionally left blank

Part I

Bayesian Programming
Principles

15

This page intentionally left blankThis page intentionally left blank

Chapter 2

Basic Concepts

2.1 Variable . 18
2.2 Probability . 18
2.3 The normalization postulate . 19
2.4 Conditional probability . 19
2.5 Variable conjunction . 20
2.6 The conjunction postulate (Bayes theorem) . 20
2.7 Syllogisms . 21
2.8 The marginalization rule . 22
2.9 Joint distribution and questions . 23
2.10 Decomposition . 25
2.11 Parametric forms . 26
2.12 Identification . 28
2.13 Specification = Variables + Decomposition + Parametric forms . 29
2.14 Description = Specification + Identification . 29
2.15 Question . 29
2.16 Bayesian program = Description + Question . 31
2.17 Results . 32

Life, as many people have spotted, is, of course, terribly unfair.
For instance, the first time the Heart of Gold ever crossed the
galaxy the massive improbability field it generated caused two-
hundred-and-thirty-nine thousand lightly-fried eggs to materialize
in a large, wobbly heap on the famine-struck land of Poghril in
the Pansel system. The whole Poghril tribe had just died out from
famine, except for one man who died of cholesterol-poisoning some
weeks later.

The Hitchhiker’s Guide to the Galaxy

Douglas Adams [1995]

The purpose of this chapter is to gently introduce the basic concepts of
Bayesian Programming.

These concepts will be extensively used and developed in Chapters 4 to 11
and they will be revisited, summarized, and formally defined in Chapter 12.

We start with a simple example of Bayesian spam filtering, which helps to

17

18 Bayesian Programming

eliminate junk e-mails. Commercially available software is based on a similar
approach.

The problem is very easy to formulate. We want to classify texts (e-mail)
into one of two categories either nonspam or spam. The only information we
can use to classify the e-mails is their content: a set of words.

The classifier should furthermore be able to adapt to its user and to learn
from experience. Starting from an initial standard setting, the classifier should
modify its internal parameters when the user disagrees with its own decision.
It will hence adapt to the user’s criteria to differentiate between nonspam and
spam. It will improve its results as it encounters increasingly classified e-mails.

The classifier uses an N word dictionary. Each e-mail will be classified
according to the presence or absence of each of the words.

2.1 Variable

The variables necessary to write this program are as follows:

1. Spam1: a binary variable, false if the e-mail is not spam and true
otherwise.

2. W0,W1, ...,WN−1: N binary variables. Wn is true if the nth word of
the dictionary is present in the text.

These N + 1 binary variables sum up all the information we have about
an e-mail.

2.2 Probability

A variable can have one and only one value at a given time, so the value
of Spam is either true2 or false, as the e-mail may either be spam or not.

However, this value may be unknown. Unknown does not mean that you
do not have any information concerning Spam. For instance, you may know
that the average rate of nonspam e-mail is 25%.

This information may be formalized, writing:

• P ([Spam = false]) = 0.25 which stands for “the probability that an
e-mail is not spam is 25%”

1Variables will be denoted by their names in italics with initial capital.
2Variable values will be denoted by their names in Roman, in lowercase.

Basic Concepts 19

• P ([Spam = true]) = 0.75

2.3 The normalization postulate

According to our hypothesis, an e-mail is either interesting to read or spam.
It means that it cannot be both but it is necessarily one of them. This implies
that:

P ([Spam = true]) + P ([Spam = false]) = 1.0 (2.1)

This property is true for any discrete variable (not only for binary ones)
and consequently the probability distribution on a given variable X should
necessarily be normalized:

∑

∀x∈X

P ([X = x]) = 1.0 (2.2)

For the sake of simplicity, we will use the following notation:

∑

X

P (X) = 1.0 (2.3)

2.4 Conditional probability

We may be interested in the probability that a given variable assumes
a value based on some information. This is called a conditional probability.
For instance, we may be interested in the probability that a given word ap-
pears in spam: P ([Wn = true] | [Spam = true]). The sign “|” separates the
variables into two sets: on the right are the variables with values known with
certainty, on the left the probed variables. This notation may be generalized
as: P (Wn | [Spam = true]) which stands for the probability distribution on
Wn knowing that the e-mail is spam. This distribution is defined by two prob-
abilities corresponding to the two possible values of Wn. For instance:

1. P ([Wn = false] | [Spam = true]) = 0.9996

2. P ([Wn = true] | [Spam = true]) = 0.0004

Analogously to Expression 2.3 for any two variables X and Y we have:

20 Bayesian Programming

∀y ∈ Y
∑

∀x∈X

P ([X = x] | [Y = y]) = 1.0 (2.4)

Again we will use shorthand to denote the same formal equation:

∑

X

P (X | Y) = 1.0 (2.5)

Consequently,
∑

w∈{true,false}

P ([Wn = w] | [Spam = true]) = 1.0

2.5 Variable conjunction

We may also be interested in the probability of the conjunction of two
variables: P (Spam ∧Wn).

Spam∧Wn, the conjunction of the two variables Spam and Wn, is a new
variable which can take four different values:

{(false, false), (false, true), (true, false), (true, true)} (2.6)

This may be generalized as the conjunction of an arbitrary number of
variables. For instance, in the sequel, we will be very interested in the joint
probability distribution of the conjunction of N + 1 variables:

P (Spam ∧W0 ∧ ... ∧Wn... ∧WN−1) (2.7)

2.6 The conjunction postulate (Bayes theorem)

The probability of a conjunction of two variables X and Y may be com-
puted according to the Conjunction Rule:

P (X ∧ Y) = P (X)P (Y | X)

= P (Y)P (X | Y) (2.8)

This rule is better known under the form of the so-called Bayes theorem:

P (Y | X) =
P (Y)P (X | Y)

P (X)
(2.9)

However, we prefer the first form, which clearly states that it is a means

Basic Concepts 21

of computing the probability of a conjunction of variables according to both
the probabilities of these variables and their relative conditional probabilities.

For instance, we have:

P ([Spam = true] ∧ [Wn = true])
= P ([Spam = true])P ([Wn = true] | [Spam = true])
= 0.75× 0.0004
= 0.0003
= P ([Wn = true])P ([Spam = true] | [Wn = true])

(2.10)

2.7 Syllogisms

It is very important to acquire a clear intuitive feeling of what a condi-
tional probability and the conjunction rule mean. A first step toward this
understanding may be to restate the classical logical syllogisms in their prob-
abilistic forms.

Let us first recall the two logical syllogisms:

1. Modus Ponens: a ∧ [a⇒ b]→ b
if a is true and if a implies b then b is true3.

2. Modus Tollens: ¬b ∧ [a⇒ b]→ ¬a
if b is false and if a implies b then a is false.

For instance, if a stands for “x may be divided by 9” and b stands for “x
may be divided by 3,” we know that a⇒ b, and we have:

1. Modus Ponens: If “x may be divided by 9” then “x may be divided
by 3”.

2. Modus Tollens: If “x may be divided by 3” is false then “x may be
divided by 9” is also false.

Using probabilities, we may state:

1. Modus Ponens: P (b | a) = 1, which means that knowing that a is
true then we may be sure that b is true.

2. Modus Tollens: P (¬a | ¬b) = 1, which means that knowing that b is
false then we may be sure that a is false.

3Logical propositions will be denoted by names in italics and lowercase.

www.allitebooks.com

http://www.allitebooks.org

22 Bayesian Programming

P (¬a | ¬b) = 1 may be derived from P (b | a) = 1, using the normalization
and conjunction postulates:

P (¬a|¬b) = 1− P (a|¬b) from (2.5)

= 1− P (¬b|a)P (a)

P (¬b) from (2.9)

= 1− (1− P (b|a))P (a)

P (¬b) from (2.5)

= 1 because P (b | a) = 1

(2.11)

However, using probabilities we may go further than with logic:

1. From P (b | a) = 1, using normalization and conjunction postulates
we may derive that P (a | b) ≥ P (a), which means that if we know
that b is true, the probability that a is true is higher than it would
be if we knew nothing about b.

Obviously, the probability that “x may be divided by 9” is higher if
you do know that “x may be divided by 3” than if you do not.

This very common reasoning is beyond the scope of pure logic but is
very simple in the Bayesian framework.

2. From P (b | a) = 1, using the normalization and conjunction postu-
lates we may derive that P (¬b | ¬a) ≥ P (¬b), which means that if
we know that a is false the probability that b is false is more than it
would be if we knew nothing about a.

The probability that “x may be divided by 3” is less if you know that
x may not be divided by 9 than if you do not know anything about
x.

2.8 The marginalization rule

A very useful rule, called the marginalization rule, may be derived from
the normalization and conjunction postulates. This rule states:

∑

X

P (X ∧ Y) = P (Y) (2.12)

It may be derived as follows:

Basic Concepts 23

∑

X

[P (X ∧ Y)] =
∑

X

[P (Y)P (X |Y)] from (2.8)

= P (Y)
∑

X

[P (X |Y)]

= P (Y) from (2.5)

(2.13)

2.9 Joint distribution and questions

The joint distribution on a set of two variables X and Y is the distribution
on their conjunction: P (X ∧ Y). If you know the joint distribution, then you
know everything you may want to know about the variables. Indeed, using
the conjunction and marginalization rules you have:

1. P (Y) =
∑

X

P (X ∧ Y)

2. P (X) =
∑

Y

P (X ∧ Y)

3. P (Y | X) =
P (X ∧ Y)

∑

Y P (X ∧ Y)

4. P (X | Y) =
P (X ∧ Y)

∑

X P (X ∧ Y)

5. P (X ∧ Y) = P (X ∧ Y)

There are five and only five interesting possible computations with two
variables and these five calculi all come down to sum, product, and division
on the joint probability distribution P (X ∧ Y).

This is of course also true for a joint distribution on more than two vari-
ables.

For our spam instance, if you know the joint distribution:

P (Spam ∧W0 ∧ . . . ∧Wn ∧ . . . ∧WN−1) (2.14)

you can compute any of the 3N+1 − 2N+1 possible questions that you can
imagine on this set of N + 1 variables.

A question is defined by partitioning a set of variables in three subsets: the
searched variables (on the left of the conditioning bar), the known variables
(on the right of the conditioning bar), and the free variables. The searched
variables set must not be empty.

Examples of these questions are:

24 Bayesian Programming

1. The joint distribution itself:

P (Spam ∧W0 ∧ . . . ∧Wn ∧ . . . ∧WN−1) (2.15)

2. The a priori probability to be a spam:

P (Spam)

=
∑

W0∧···∧WN−1

[P (Spam ∧W0 ∧ · · · ∧WN−1)] (2.16)

3. The a priori probability for the nth word of the dictionary to appear:

P (Wn)

=

∑

Spam∧W0∧···∧Wn−1∧Wn+1∧···∧WN−1

[P (Spam ∧W0 ∧ · · · ∧WN−1)]

∑

Spam∧W0∧···∧WN−1

[P (Spam ∧W0 ∧ · · · ∧WN−1)]

(2.17)

4. The probability for the nth word to appear, knowing that the text is
a spam:

P (Wn| [Spam = true])

=

∑

W0∧···∧Wn−1∧Wn+1∧···∧WN−1

[P ([Spam = true] ∧W0 ∧ · · · ∧WN−1)]

∑

W0∧···∧WN−1

[P ([Spam = true] ∧W0 ∧ · · · ∧WN−1)]

(2.18)

5. The probability for the e-mail to be a spam knowing that the nth

word appears in the text:

P (Spam| [Wn = true])

=

∑

W0∧···Wn−1∧Wn+1···∧WN−1

[P (Spam ∧W0 ∧ · · ·wn · · · ∧WN−1)]

∑

Spam∧···Wn−1∧Wn+1···∧WN−1

[P (Spam ∧W0 ∧ · · ·wn · · · ∧WN−1)]

(2.19)

6. Finally, the most interesting one, the probability that the e-mail is a
spam knowing for all N words in the dictionary if they are present or
not in the text:

P (Spam|w0 ∧ · · · ∧ wN−1)

=
P (Spam ∧w0 ∧ · · · ∧wN−1)

∑

Spam

[P (Spam ∧ w0 ∧ · · · ∧ wN−1)]
(2.20)

Basic Concepts 25

2.10 Decomposition

The key challenge for a Bayesian programmer is to specify a way to com-
pute the joint distribution that has the three main qualities of being a good
model, easy to compute, and easy to learn.

This is done using a decomposition that restates the joint distribution as
a product of simpler distributions.

Starting from the joint distribution and applying recursively the conjunc-
tion rule we obtain:

P (Spam ∧W0 ∧ · · · ∧WN−1)
= P (Spam)× P (W0|Spam)× P (W1|Spam ∧W0)
× · · ·
×P (WN−1|Spam ∧W0 ∧ · · · ∧WN−2)

(2.21)

This is an exact mathematical expression.

We simplify it drastically by assuming that the probability of appearance
of a word knowing the nature of the text (spam or not) is independent of the
appearance of the other words.

For instance, we assume that:

P (W1 | Spam ∧W0) = P (W1 | Spam) (2.22)

We finally obtain:

P (Spam ∧W0 ∧ . . . ∧WN−1) = P (Spam)
N−1
∏

n=0

P (Wn | Spam) (2.23)

Figure 2.1 shows the graphical model of this expression.

Observe that the assumption of independence between words is clearly not
completely true. For instance, it completely neglects that the appearance of
pairs of words may be more significant than isolated appearances. However,
as subjectivists, we assume this hypothesis and may develop the model and
the associated inferences to test how reliable it is.

The file “chapter2/spam.py” contains the Bayesian program used
to set or to compute the numerical values found in this chapter. For
example, the encapsulated Postscript of Figure 2.1 was obtained with
the following instruction:

model.draw_graph(ProBT_Examples_Dir+"chapter2/data/spam_graph")

26 Bayesian Programming

W4W3W2 W1 W0

Spam

FIGURE 2.1: The graphical model of a small Bayesian spam filter based on
five words.

2.11 Parametric forms

To be able to compute the joint distribution, we must now specify the N+1
distributions appearing in the decomposition. We already specified P (Spam)
in Section 2.2:

• P (Spam):

– P ([Spam = true]) = 0.75

– P ([Spam = false]) = 0.25

In file “chapter2/spam.py”: a simple example of a variable declara-
tion and of a probability table based on nf and nt

#define a binary type

binary_type = plIntegerType(0,1)

#define a binary variable

Spam = plSymbol(‘‘Spam",binary_type)

#define a prior distribution probability on Spam

P_Spam = plProbTable(Spam,[nf,nt])

Each of the N forms P (Wn | Spam) must in turn be specified. The first
idea is to simply count the number of times the nth word of the dictionary
appears in both spam and nonspam. This would naively lead to histograms:

• P (Wn | Spam):

– P (Wn | [Spam = false]) =
anf
af

– P (Wn | [Spam = true]) =
ant
at

Basic Concepts 27

where anf stands for the number of appearances of the nth word in nonspam
e-mails and af stands for the total number of nonspam e-mails. Similarly, ant
stands for the number of appearances of the nth word in spam e-mails and at
stands for the total number of spam e-mails.

The drawback of histograms is that when no observation has been made,
the probabilities are null. For instance, if the nth word has never been observed
in spam then:

P ([Wn = true] | [Spam = true]) = 0.0 (2.24)

A very strong assumption indeed, which says that what has not yet been
observed is impossible! Consequently, we prefer to assume that the parametric
forms P (Wn | Spam) are Laplace succession laws rather than histograms:

• P (Wn | Spam):

– P (Wn | [Spam = false]) =
1 + anf
|Wn|+ af

– P (Wn | [Spam = true]) =
1 + ant
|Wn|+ at

where |Wn| stands for the number of possible values of variable Wn. Here,
|Wn| = 2 as Wn is a binary variable.

If the nth word has never been observed in spam then:

P ([Wn = true] | [Spam = true]) =
1

2 + at
(2.25)

which tends toward zero when at tends toward infinity but never equals zero.
An event not yet observed is not completely impossible, even if it becomes
very improbable if it has never been observed in a long series of experiments.

28 Bayesian Programming

It is possible to declare an array of probabilistic variables, for example
in chapter2/spam.py:

#define N binary variable with

W = plArray(‘‘W",binary_type,1,N)

The following instruction is used to define a conditional distribution
as a table of probability distributions indexed by Spam = 0 and Spam =
1.

#define a conditional distribution of each word i

P_Wi_K_Spam = plDistributionTable(W[i],Spam)

The next two instructions are used to define these two distributions
(according to the previous definitions) and to store them in the distri-
bution table.

#define the two distributions on Wi:

#one for Spam = 0

P_Wi_K_Spam.push(plProbTable(W[i],\

[1-((float(nfi[i])+1)/(2+nf)), \

(float(nfi[i])+1)/(2+nf)]) ,0)

#the other for Spam = 1

P_Wi_K_Spam.push(plProbTable(W[i],\

[1-((float(nti[i])+1)/(2+nt)),\

(float(nti[i])+1)/(2+nt)]) ,1)

2.12 Identification

The N forms P (Wn | Spam) are not yet completely specified because the

2N + 2 parameters an=0,...,N−1
f , an=0,...,N−1

t , af , and at have no values yet.
The identification of these parameters could be done either by batch pro-

cessing of a series of classified e-mails or by an incremental updating of the
parameters using the user’s classifications of the e-mails as they arrive.

Both methods could be combined: the system could start with initial stan-
dard values of these parameters issued from a generic database, then some
incremental learning customizes the classifier to each individual user.

Basic Concepts 29

2.13 Specification = Variables + Decomposition +
Parametric forms

We call specification the part of the Bayesian program specified by the
programmer. This part is always made of the same three subparts:

1. Variables : The choice of the relevant variables for the problem.

2. Decomposition: The expression of the joint probability distribution as
the product of simpler distributions.

3. Parametric forms : The choice of mathematical function forms of each
of these distributions.

2.14 Description = Specification + Identification

We call description the probabilistic model of our problem.
The description is the joint probability distribution on the relevant vari-

ables. It is completely specified when the eventual free parameters of the
specification are given values after an identification (learning) phase.

2.15 Question

Once you have a description (a way to compute the joint distribution), it
is possible to ask any question, as we saw in Section 2.9.

For instance, after some simplification, the answers to our six questions
are:

1.

P (Spam ∧W0 ∧ . . . ∧WN−1) = P (Spam)
N−1
∏

n=0

P (Wn | Spam)

(2.26)
By definition, the joint distribution is equal to the decomposition.

2.
P (Spam) = P (Spam) (2.27)

as P (Spam) appears as such in the decomposition.

30 Bayesian Programming

3.
P (Wn) =

∑

Spam

P (Spam)P (Wn | Spam) (2.28)

The a priori probability for the nth word of the dictionary to appear,
which gives:

P ([Wn = true]) =

(

0.25×
1 + anf
2 + af

)

+

(

0.75× 1 + ant
2 + at

)

(2.29)

We see that the denomination “a priori” is here misleading as P (Wn)
is completely defined by the description and cannot be fixed in this
model.

4.

P (Wn | [Spam = true]) =
1 + ant
2 + at

(2.30)

as the probability for the nth word to appear knowing that the text
is a spam is already specified in the description.

5.

P (Spam | [Wn = true]) =
P (Spam)P ([Wn = true] | Spam)

∑

Spam

P (Spam)P ([Wn = true] | Spam)

(2.31)
as the probability for the e-mail to be spam knowing that the nth

word appears in the text.

6.
P (Spam|w0 ∧ · · · ∧ wN−1)

=

P (Spam)

N−1
∏

n=0

[P (wn|Spam)]

∑

Spam

[

P (Spam)

N−1
∏

n=0

[P (wn|Spam)]

]

(2.32)

The denominator appears to be a normalization constant. It is not
necessary to compute it to decide if we are dealing with spam. For
instance, an easy trick is to compute the ratio:

P ([Spam = true] |w0 ∧ · · · ∧ wN−1)

P ([Spam = false] |w0 ∧ · · · ∧ wN−1)

=
P ([Spam = true])

P ([Spam = false])
×

N−1
∏

n=0

[

P (wn| [Spam = true])

P (wn| [Spam = false])

] (2.33)

This computation is faster and easier because it requires only 2N
products.

Basic Concepts 31

Generally speaking, any partition of the set of relevant variables in three
subsets defines a question. These subsets are:

1. The set of searched variables “Searched” which should not be empty,

2. The set of known variables “Known” which are often referred to as
evidence variables,

3. The complementary set of free variables “Free”.

These three sets define a valid question. For example, assuming you only
know two words of the message, the question P (Spam | W0 ∧W1) is defined
by the subsets:

1. Searched = {Spam}

2. Known = {W0,W1}

3. Free = {W2, . . . ,Wn−1}

Each question defines a set of distributions on the Searched variables,
each of them corresponding to a possible value of the Known variables. For
example P (Spam |W0 = false∧W1 = false) is one of the four correspond-
ing distributions which is the probability for a message to be spam knowing
that the words W0 and W1 are not in the message and knowing nothing else
about the other words.

A simple but inefficient way to compute these distributions is to use the
following equation:

P (Searched|known)

=

∑

Free

[P (Searched ∧ known ∧ Free)]

∑

Searched∧Free

[P (Searched ∧ known ∧ Free)]

(2.34)

In principle it is always possible to compute Equation 2.34 because
P (Searched ∧Known ∧ Free) is completely defined by the description.

2.16 Bayesian program = Description + Question

Finally, a Bayesian program will always have the following simple struc-
ture:

www.allitebooks.com

http://www.allitebooks.org

32 Bayesian Programming

Program































Description.



















Specification(π)











V ariables

Decomposition

Forms

Identification (based on δ)

Question

(2.35)

The Bayesian spam filter program is completely defined by:

Pr















































































































Ds



































































































Sp(π)



























































































V a : Spam,W0,W1 . . .WN−1

Dc :











P (Spam ∧W0 ∧ . . . ∧Wn ∧ . . . ∧WN−1)

= P (Spam)

N−1
∏

n=0

P (Wn | Spam)

Fo :



















































P (Spam) :

{

P ([Spam = false]) = 0.25

P ([Spam = true]) = 0.75

P (Wn | Spam) :































P (Wn | [Spam = false])

=
1 + an

f

2 + af

P (Wn | [Spam = true])

=
1 + an

t

2 + at

Identification (based on δ)

Qu : P (Spam | w0 ∧ . . . ∧ wn ∧ . . . ∧ wN−1)

(2.36)

2.17 Results

If we consider a spam filter with an N word dictionary, then any given
e-mail contains one and only one of the 2N possible subsets of the dictionary.

Here we restrict our spam filter to a five word dictionary so that we can
analyze the 25 = 32 subsets. Assume that a set of 1000 e-mails is used in the
identification phase and that the resulting numbers of nonspam are 250 and
750 respectively. Assume also that the resulting counter tables for anf and ant
are those shown in Table 2.1 and the corresponding distribution P (Wn|Spam)
is given in Table 2.2.

It is now possible to compute the probability for an e-mail to be a spam
or not given it contains or not each of the N words. This may be done using
equation 2.32.

Table 2.3 shows the obtained results for different subsets of words present
in the e-mail.

Basic Concepts 33

TABLE 2.1: Counters Resulting from an Analysis of 1000
E-mails. (The values anf and ant denote the number of e-mails that

contained the nth word in nonspam and spam e-mails, respectively.)

n Word n anf ant
0 fortune 0 375
1 next 125 0
2 programming 250 0
3 money 0 750
4 you 125 375

TABLE 2.2: The Resulting Distribution
P (Wn|Spam) from Table 2.1

n
P (Wn | [Spam = false]) P (Wn | [Spam = true])
Wn = false Wn = true Wn = false Wn = true

0 0.996032 0.00396825 0.5 0.5
1 0.5 0.5 0.99867 0.00132979
2 0.00396825 0.996032 0.99867 0.00132979
3 0.996032 0.00396825 0.00132979 0.99867
4 0.5 0.5 0.5 0.5

TABLE 2.3: Adding or Subtracting a Single Word from the Subset of
Words Present in the E-mail Can Greatly Change the Probability of It
Being Spam

Subset number Words present
P (Spam | w0 ∧ . . . ∧W4)

[Spam = false] [Spam = true]

3 {money} 5.24907e-06 0.999995
11 {next,money} 0.00392659 0.996073
12 {next,money you} 0.00392659 0.996073
15 {next,programming,money} 0.998656 0.00134393
27 {fortune,next,money} 1.57052e-05 0.999984

A single word can provide much, little or no information when classify-
ing an e-mail. For instance, an e-mail with {next,money} has a probability
of 0.996073 of being a spam, adding the word “you” does not change any-
thing, adding “programming” contradicts completely that this e-mail is a spam
(probability of 0.00134393), and adding “fortune” confirms it (probability of
0.999984).

34 Bayesian Programming

The file “chapter2/spam.py” contains the two basic functions to pro-
gram a spam filter: build spam question and use spam question. The fol-
lowing example shows how to use these two functions.

#tests

#number of e-mails considered as nonspam:

nf = 250

#number of e-mails considered as spam: nt

nt = 750

#number of time words i appears in nonspam messages

nfi = [0, 125, 250, 0, 125]

#number of time words i appears in spam messages

nti = [375 ,0 ,0 ,750 , 375]

build the question and print informations about the model

my_question = build_spam_question (nf, nfi, nt ,nti)

#what is the probability distribution for a mail containing

#‘‘next" ‘‘programming" and ‘‘you"

use_spam_question(my_question,[0,1,1,0,1])

Chapter 3

Incompleteness and Uncertainty

3.1 Observing a water treatment unit . 35
3.1.1 The elementary water treatment unit . 36
3.1.2 Experimentation and uncertainty . 38

3.2 Lessons, comments, and notes . 40
3.2.1 The effect of incompleteness . 40
3.2.2 The effect of inaccuracy . 41
3.2.3 Not taking into account the effect of ignored variables may

lead to wrong decisions . 42
3.2.4 From incompleteness to uncertainty . 43

What we know is not much. What we do not know is immense.1

Marquis Simon de Laplace

The goal of this chapter is twofold: (i) to present the concept of incomplete-
ness and (ii) to demonstrate how incompleteness is a source of uncertainty.

3.1 Observing a water treatment unit

The uncertainty of a phenomenon has two causes: (i) inaccuracies in the
model and (ii) ignored variables. In this section, we demonstrate this fact by a
second experiment: the water treatment unit. This experiment consists of two
stages. In the first stage, we describe the complete model of the water treat-
ment unit, giving all the variables and functions involved in the model. In the

1“Ce que nous connaissons est peu de chose, ce que nous ignorons est immense.” Reported
as his nearly last words by Joseph Fourier in his “Historical praise for M. le Marquis de
Laplace” in front of the French Royal Academy of Science in 1829 [Fourier, 1829]. The
complete citation is the following: “Les personnes qui ont assisté à ses derniers instants lui
rappelaient les titres de sa gloire, et ses plus éclatantes découvertes. Il répondit: “Ce que
nous connaissons est peu de chose, ce que nous ignorons est immense.” C’est du moins,
autant qu’on l’a pu saisir, le sens de ses dernières paroles à peine articulées. Au reste,
nous l’avons entendu souvent exprimer cette pensée, et presque dans les mêmes termes. Il
s’éteignit sans douleur.”

35

36 Bayesian Programming

second stage, we pretend that some of the variables and functions of the model
are not available. In other words, we generate a synthetic incompleteness of
our model. The goal is to show the consequences of this incompleteness and
to present a first step toward Bayesian modeling.

3.1.1 The elementary water treatment unit

We now describe the complete model of the water treatment unit. Figure
3.1 is a schematic representation.

F

C

I1

I0

OM1

S

H

FIGURE 3.1: The treatment unit receives two water streams of quality I0
and I1 and generates an output stream of quality O. The resulting quality
depends on I0, I1, two unknown variables H and F , and a control variable
C. An operator regulates C, while the value of F is estimated by a sensor
variable S.

The unit takes two water streams as inputs with respective water qualities
I0 and I1. Two different streams are used because partly purified water is
recycled to dilute the more polluted stream, to facilitate its decontamination.

The unit produces an output stream of quality O.

The internal functioning state of the water treatment unit is described by
the variable F . This variable F quantifies the efficiency of the unit but is not
directly measurable. For instance, as the sandboxes become more loaded with
contaminants the purification becomes less and less efficient and the value of
F becomes lower and lower.

A sensor S helps to estimate the efficiency F of the unit.

A controller C is used to regulate and optimize O, the quality of the water
in the output stream.

Finally, some external factor H may disturb the operation of the unit. For
instance, this external factor could be the temperature or humidity of the air.

For didactic purposes, we consider that these seven variables may each
take 11 different integer values ranging from 0 to 10. The value 0 is the worst
value for I0, I1, F , and O, and 10 is the best.

When all variables have their nominal values, the ideal quality Q of the
output stream is given by the equation:

Incompleteness and Uncertainty 37

Q = Int

(

I0 + I1 + F

3

)

(3.1)

Where Int (x) is the integer part of x.
The value of Q never exceeds the value O∗, reached when the unit is in

perfect condition, with:

O∗ = Int

(

I0 + I1 + 10

3

)

(3.2)

The external factor H may reduce the ideal quality Q and the control
C may try to compensate for this disturbance or the bad condition of the
treatment unit because of F . Consequently, the output quality O is obtained
according to the following equations:

α = Int

(

I0 + I1 + F + C −H

3

)

(3.3)

O =











α if (0 ≤ α ≤ O∗)

(2O∗ − α) if (α ≥ O∗)

0 Otherwise

(3.4)

We consider the example of a unit directly connected to the sewer: [I0 = 2],
[I1 = 8].

When [C = 0] (no control) and [H = 0] (no disturbance), Figure 3.2 gives
the value of the quality O according to F , (O∗ = 6).

When the state of operation is not optimal (F different from 10), it is
possible to compensate using C. However, if we over-control, then it may
happen that the output deteriorates. For instance, if [I0 = 2], [I1 = 8], [F = 8],
[H = 0], the outputs obtained for the different values of C are shown in Figure
3.3.

The operation of the unit may be degraded by H . For instance, if [I0 = 2],
[I1 = 8], [F = 8],[C = 0], the output obtained for the different values of H are
shown in Figure 3.4.

Finally, the value of the sensor S depends on I0 and F as follows:

S = Int

(

I0 + F

2

)

(3.5)

The outputs of S in the 121 possible situations for I0 and F are shown
in Figure 3.5. Note that, if we know I0, I1, F , H , and C, we know with
certainty the values of both S and O. At this stage, our water treatment unit
is a completely deterministic process. Consequently, a complete model can be
constructed. Now consider what happens if we ignore the exact equations that
rule the water treatment unit and, of course, the existence of the external
factor H . The starting point for constructing our own model is limited to

38 Bayesian Programming

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 1 2 3 4 5 6 7 8 9 10

O

F

FIGURE 3.2: The output O as a function of the functioning state F with
inputs, control, and external factor fixed to: [I0 = 2] ∧ [I1 = 8] ∧ [C = 0] ∧
[H = 0].

knowing the existence of the variables I0, I1, F , S, C, and O, and that the
value of O depends on I0 ∧ I1 ∧ S ∧ C and that of S depends on I0 ∧ F .

What do we need to do now? Observe the behavior of the water treatment
unit, in particular the quality of the output stream O, for different values
of I0 ∧ I1 ∧ S ∧ C, as well as the sensor value S for different values of I0
(remember that F cannot be observed). During these observations you will
note that there are different situations in which uncertainty appears. The goal
of the following section is to discuss this uncertainty.

3.1.2 Experimentation and uncertainty

3.1.2.1 Uncertainty on O because of inaccuracy of the sensor S

A given value of S corresponds to several possible values of I0 and F .
For instance, seven pairs of values of I0 ∧ F correspond to [S = 1] in Figure
3.5. Worse than this, even knowing I0 and S, two values of F are possible
most of the time (see Figure 3.6). This fact will introduce some “noise” in the
prediction of O.

To illustrate this effect let us first experiment with H = 0: the operation
of the water treatment unit is not disturbed. For [I0 = 2], [I1 = 8], [C = 2],
we can explore the different possible values of the output O when F varies.
However, as F is not directly observable, we can only collect data concerning
S and O. These data are presented on Figure 3.7.

Incompleteness and Uncertainty 39

0

1

2

3

4

5

6

7

O
u
tp

u
t
(O

)

2 4 6 8 10
Control (C)

FIGURE 3.3: The output O as a function of control C with inputs, func-
tioning state, and external factor, fixed to: [I0 = 2], [I1 = 8], [F = 8], [H = 0].

For some S it is possible to predict exactly the output O:

1. [S = 1]⇒ [O = 4]

2. [S = 3]⇒ [O = 5]

3. [S = 4]⇒ [O = 6]

4. [S = 6]⇒ [O = 5]

For some other values of S it is not possible to predict the output O with
certainty:

1. If [S = 2], then O may take the value either four or five, with a slightly
higher probability for four. Indeed, when [S = 2], then F may be
either two or three (see Figure 3.6) and, O will, respectively, be either
four or five.

2. If [S = 5], then O may take the value either five or six, with a slightly
lower probability for five. When [S = 5], F may be either eight or
nine.

3.1.2.2 Uncertainty because of the hidden variable H

Let us now do the same experiment for a disturbed process (value of H
drawn at random from the 11 possible values). Of course, we obtain different

40 Bayesian Programming

0

1

2

3

4

5

6

7

O
u
tp

u
t
(O

)

2 4 6 8 10
External Factor (H)

FIGURE 3.4: The output O as a function the external factor H with inputs,
functioning state, and control fixed to: [I0 = 2], [I1 = 8], [F = 8], [C = 0].

results with more uncertainty due to the effect on the output of the hidden
variable H . The obtained data when [I0 = 2], [I1 = 8], [C = 2] is presented on
Figure 3.8.

In contrast with our previous experiment, this time no value of S is suffi-
cient to infer the value of O exactly.

The dispersion of the observations is the direct translation of the effect
of H . Taking into account the effect of hidden variables such as H and even
measuring their importance is one of the major challenges that Bayesian Pro-
gramming must face. This is not an easy task when you are not even aware
of the nature and number of these hidden variables!

3.2 Lessons, comments, and notes

3.2.1 The effect of incompleteness

We assume that any model of a “real” (i.e., not formal) phenomenon is
incomplete. There are always some hidden variables, not taken into account in
the model, that influence the phenomenon. Furthermore, this incompleteness
is irreducible: for any physical phenomenon, there is no way to build an exact

Incompleteness and Uncertainty 41

 0 1 2 3 4 5 6 7 8 9 10 11
I0 0

 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

 11

F

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

S

FIGURE 3.5: The sensor S as a function of input I0 and functioning state
F .

model with no hidden variables.2 The effect of these hidden variables is that
the model and the phenomenon never have exactly reproducible behavior.
Uncertainty appears as a direct consequence of this incompleteness. Indeed,
the model may not completely take into account the data and may not predict
exactly the behavior of the phenomenon.3 For instance, in the above example,
the influence of the hidden variable H makes it impossible to predict with
certainty the output O given the inputs I0 and I1, the reading of the sensor
S, and the control C.

3.2.2 The effect of inaccuracy

The above example also demonstrates that there is another source of un-
certainty: the inaccuracy of the sensors.

By inaccuracy, we mean that a given sensor may read the same value for
different underlying situations. Here, the same reading on S may correspond
to different values of F .

F is not a hidden variable as it is taken into account by the model. However,
F cannot be measured directly and exactly. The values of F can only be
inferred indirectly through the sensor S and they cannot be inferred with
certainty. It may be seen as a weak version of incompleteness, where a variable

2See FAQ/FAM, Section 16.10 “Incompleteness irreducibility” for further discussion of
that matter.

3See FAQ/FAM, Section 16.12 “Noise or ignorance?” for more information on this sub-
ject.

www.allitebooks.com

http://www.allitebooks.org

42 Bayesian Programming

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 1 2 3 4 5 6 7 8 9 10

S

F

FIGURE 3.6: The sensor reading S as a function of the functioning state F
when the input [I0 = 2].

is not completely hidden but is only partially known and accessible. Even
though it is weak, this incompleteness still generates uncertainty.

3.2.3 Not taking into account the effect of ignored variables
may lead to wrong decisions

Once the effects of the irreducible incompleteness of models are recog-
nized, a programmer must deal with them either ignoring them and using
the incomplete models, or trying to take incompleteness into account using a
probabilistic model.

Using a probabilistic model clearly appears to be the better choice as it
will always lead to better decisions, based on more information than the non-
probabilistic one.

For instance, a nonprobabilistic model of our production unit, not taking
into account the variable H , would be, for instance4:

α = Int

(

I0 + I1 + F + C

3

)

(3.6)

O =











α if (0 ≤ α ≤ O∗)

(2O∗ − α) if (α ≥ O∗)

0 Otherwise

(3.7)

4Note the absence of H.

Incompleteness and Uncertainty 43

 0
 2

 4
 6

 8
 10O 0

 2

 4

 6

 8

 10

S

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

P

FIGURE 3.7: The histogram of the observed sensor state S and the output
O when the inputs, the control, and the external factor are fixed to [I0 = 2],
[I1 = 8], [C = 2], [H = 0], and the internal function F is generated randomly
with a uniform distribution.

S = Int

(

I0 + F

2

)

(3.8)

It would lead to false predictions of the output O and, consequently, to
wrong control decision on C to optimize this output.

For instance, scanning the 11 different possible values for C when [I0 = 2],
[I1 = 8], [F = 8] and consequently [S = 5], the above model predicts that in-
differently for [C = 0], [C = 1], and [C = 2], O will take its optimal value: six
(see Figure 3.3).

The observations depict a somewhat different and more complicated “re-
ality” as shown in Figure 3.9. The choice of C to optimize O is now more
complicated but also more informed. The adequate choice of C to produce
the optimal output [O = 6] is now, with nearly equivalent probabilities, to
select a value of C greater than or equal to two. Indeed, this is a completely
different choice from when the “exact” model is used!

3.2.4 From incompleteness to uncertainty

Any program that models a real phenomenon must face a central difficulty:
how should it use an incomplete model of the phenomenon to reason, decide,
and act efficiently?

The purpose of Bayesian Programming is precisely to tackle this problem

44 Bayesian Programming

 0
 2

 4
 6

 8
 10O 0

 2

 4

 6

 8

 10

S

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

P

FIGURE 3.8: The histogram of the observed sensor state S and the output
O when the inputs and the control are set to [I0 = 2], [I1 = 8], [C = 2], and
the values of the external factor and the internal functioning H ∧F are drawn
at random.

with a well established formal theory: probability calculus. The sequel of this
book will try to explain how to do this.

In the Bayesian Programming approach, the programmer does not propose
an exact model but rather expresses a probabilistic canvas in the specification
phase. This probabilistic canvas gives some hints about what observations
are expected. The specification is not a fixed and rigid model purporting
completeness. Rather, it is a framework, with open parameters, waiting to
be shaped by the experimental data. Learning is the means of setting these
parameters. The resulting probabilistic descriptions come from both: (i) the
views of the programmer and (ii) the physical interactions specific of each
phenomenon. Even the influence of the hidden variables is taken into account
and quantified; the more important their effects, the more noisy the data, and
the more uncertain the resulting descriptions.

The theoretical foundations of Bayesian Programming may be summed up
by Figure 3.10.

The first step in Figure 3.10 transforms the irreducible incompleteness
into uncertainty. Starting from the specification and the experimental data,
learning builds probability distributions.

The maximum entropy principle is the theoretical foundation of this first
step. Given some specifications and some data, the probability distribution
that maximizes the entropy is the distribution that best represents the com-

Incompleteness and Uncertainty 45

 0
 2

 4
 6

 8
 10O 0

 2

 4

 6

 8

 10

C

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

P

FIGURE 3.9: The histogram of the observed output O and the control C
when the inputs are set to [I0 = 2], [I1 = 8], and the internal functioning F is
set to [F = 8] with H drawn at random.

bined specification and data. Entropy gives a precise, mathematical, and quan-
tifiable meaning to the quality of a distribution.5

Two extreme examples may help to understand what occurs:

1. Suppose that we are studying a formal phenomenon. There may not
be any hidden variables. A complete model may be proposed. The
phenomenon and the model could be identical. For instance, this
would be the case if we take the equations of Section 3.1.1 as the
model of the phenomenon described in that same section. If we select
this model as the specification, any data set will lead to a descrip-
tion made of Diracs. There is no uncertainty; any question may be
answered either by true or false. Logic appears as a special case of
the Bayesian approach in that particular context (see Cox [1979]).

2. At the opposite extreme, suppose that the specification consists of
very poor hypotheses about the modeled phenomenon, for instance,
by ignoring H and also the inputs I0 and I1 in a model of the above
process. Learning will only lead to flat distributions, containing no
information. No relevant decisions can be made, only completely ran-
dom ones.

Specifications allow us to build general models where inaccuracy and hidden

5See FAQ/FAM, Section 16.11 “Maximum entropy principle justifications” for justifica-
tions for the use of the maximum entropy principle.

46 Bayesian Programming

FIGURE 3.10: Theoretical foundation: from Incompleteness to Uncertainty
and from Uncertainty to Decision.

variables may be explicitly represented. These models may lead to good pre-
diction and decision. The formalism also allows us to take into account missing
variables. In real life, such models are in general poorly informative and may
not be useful in practical applications. They give no certitudes, although they
provide a means of taking the best possible decision according to the available
information. This is the case here when the only hidden variable is H .

The second step in Figure 3.10 consists of reasoning with the probability
distributions obtained by the first step. To do so, we only require the two
basic rules of Bayesian inference presented in Chapter 2. These two rules are
to Bayesian inference what the resolution principle is to logical reasoning (see
Robinson [1965], Robinson [1979], Robinson and Silbert [1982a], and Robinson
and Silbert [1982b]). These inferences may be as complex and subtle as those
usually achieved with logical inference tools, as will be demonstrated in the
different examples presented in the sequel of this book.

Chapter 4

Description = Specification +

Identification

4.1 Pushing objects and following contours . 48
4.1.1 The Khepera robot . 48
4.1.2 Pushing objects . 49
4.1.3 Following contours . 53

4.2 Description of a water treatment unit . 56
4.2.1 Specification . 56
4.2.2 Identification . 59
4.2.3 Bayesian program . 59
4.2.4 Results . 60

4.3 Lessons, comments, and notes . 60
4.3.1 Description = Specification + Identification 60
4.3.2 Specification = Variables + Decomposition + Forms 61
4.3.3 Learning is a means to transform incompleteness into

uncertainty . 62

The scientific methodology forbids us to have an opinion on
questions which we do not understand, on questions which we do
not know how to put clearly. Before anything else, we must know
how to state problems. In science, problems do not appear sponta-
neously. This “sense of problem” is precisely what characterizes a
true scientific mind. For such a mind, any knowledge is an answer
to a question. Without a question there cannot be scientific knowl-
edge. Nothing is obvious. Nothing is given. Everything is built.1

La Formation de l’Esprit Scientifique
Gaston Bachelard [1938]

1“L’esprit scientifique nous interdit d’avoir une opinion sur des questions que nous ne
comprenons pas, sur des questions que nous ne savons pas poser clairement. Avant tout, il
faut savoir poser les problèmes. Et quoi qu’on dise, dans la vie scientifique, les problèmes
ne se posent d’eux-mêmes. C’est précisément ce ‘sens du problème’ qui donne la marque du
véritable esprit scientifique. Pour un esprit scientifique, toute connaissance est une réponse
à une question. S’il n’y a pas eu de question, il ne peut y avoir connaissance scientifique.
Rien ne va de soi. Rien n’est donné. Tout est construit” [Bachelard, 1938].

47

48 Bayesian Programming

In this chapter, we come back to the fundamental notion of description.
A description is a probabilistic model of a given phenomenon. It is obtained
after two phases of development:

1. A specification phase where the programmer expresses in probabilistic
terms his own knowledge about the modeled phenomenon.

2. An identification phase where this starting probabilistic canvas is re-
fined by learning from data.

Descriptions are the basic elements that are used, combined, composed, ma-
nipulated, computed, compiled, and questioned in different ways to build
Bayesian programs.

4.1 Pushing objects and following contours

To introduce this notion of description we present two very simple robotic
experiments where we want a small mobile robot named Khepera either to
push objects or to follow their contours.

4.1.1 The Khepera robot

Khepera is a two-wheeled mobile robot, 57 millimeters in diameter and
29 millimeters in height, with a total weight of 80 grams (see Figure 4.1).
It was designed at EPFL2 and is commercialized by K-Team.3 The robot is
equipped with eight light sensors (six in front and two behind), which take val-
ues between 0 and 511 in inverse relation to light intensity, stored in variables
L0, . . . , L7 (see Figure 4.2). These eight sensors can also be used as infrared
proximeters, taking values between 0 and 1023 in inverse relation to the dis-
tance from the obstacle, stored in variables Px0, . . . , Px7 (see Figure 4.2). The
robot is controlled by the rotation speeds of its left and right wheels, stored
in variables Ml and Mr respectively. From these 18 basic sensory and motor
variables, we derive two new sensory variables (Dir and Prox) and one new
motor variable (Rot). They are described below:

• Dir is a variable that approximately corresponds to the bearing of the
closest obstacle (see Figure 4.2). It takes values between −10 (obstacle
to the left of the robot) and +10 (obstacle to the right of the robot),
and is defined as follows:

2Ecole Polytechnique Fédérale de Lausanne (Switzerland).
3http://www.K-team.com/.

http://www.K-team.com/

Description = Specification + Identification 49

FIGURE 4.1: The Khepera mobile robot.

Dir = Floor

(

90 (Px5 − Px0) + 45 (Px4 − Px1) + 5 (Px3 − Px2)

9 (1 + Px0 + Px0 + Px1 + Px2 + Px3 + Px4 + Px5)

)

(4.1)

• Prox is a variable that approximately corresponds to the proximity of
the closest obstacle (see Figure 4.2). It takes values between 0 (obstacle
a long way from the robot) and 15 (obstacle very close to the robot),
and is defined as follows:

Prox = Floor

(

Max (Px0, Px1, Px2, Px3, Px4, Px5)

64

)

(4.2)

• The robot is piloted solely by its rotation speed (the translation speed
is fixed). It receives motor commands from the Rot variable, calculated
from the difference between the rotation speeds of the left and right
wheels. Rot takes on values between −10 (fastest to the left) and +10
(fastest to the right).

4.1.2 Pushing objects

The goal of the first experiment is to teach the robot how to push objects.
First, in a specification phase, the programmer specifies his knowledge

about this behavior in probabilistic terms.

50 Bayesian Programming

Dir = −10 Dir = +10
0

1 4

32Prox

Dir

Dir=0

Rot

+−

67

5

FIGURE 4.2: The sensor and motor variables of the Khepera robot.

Then, in a learning phase (identification), we drive the robot with a joystick
to push objects. During that phase, the robot collects, every tenth of a second,
both the values of its sensory variables and the values of its motor variable
(determined by the joystick position). These data sets are then used to identify
the free parameters of the parametric forms.

Finally, the robot must autonomously reproduce the behavior it has just
learned. Every tenth of a second it decides the values of its motor variable,
knowing the values of its sensory variables and the internal representation of
the task (the description).

4.1.2.1 Specification

Having defined our goal, we describe the three steps necessary to define
the preliminary knowledge.

1. Choose the pertinent variables

2. Decompose the joint distribution

3. Define the parametric forms

Variables: First, the programmer specifies which variables are pertinent for
the task. To push objects it is necessary to have an idea of the position of the
objects relative to the robot. The front proximeters provide this information.
However, we chose to summarize the information from these six proximeters
by the two variables Dir and Prox.

We also chose to set the translation speed to a constant and to operate
the robot by its rotation speed Rot.

Description = Specification + Identification 51

These three variables are all we require to push obstacles. Their definitions
are summarized as follows

Dir ∈ {−10, . . . , 10} ,Card {Dir} = 21 (4.3)

Prox ∈ {0, . . . , 15} ,Card {Prox} = 16 (4.4)

Rot ∈ {−10, . . . , 10} ,Card {Rot} = 21 (4.5)

Decomposition: In the second specification step, we give a decomposition
of the joint probability P (Dir ∧ Prox ∧Rot) as a product of simpler terms.

P (Dir ∧ Prox ∧Rot) = P (Dir ∧ Prox)P (Rot|Dir ∧ Prox) (4.6)

This equality simply results from the application of the conjunction rule
(2.8).

Forms: To be able to compute the joint distribution, we must finally assign
parametric forms to each of the terms appearing in the decomposition:

P (Dir ∧ Prox) ≡ Uniform (4.7)

P (Rot | Dir ∧ Prox) ≡ B (µ (Dir, Prox) , σ (Dir, Prox)) (4.8)

We have no a priori information about the direction or distance of the
obstacles. Hence, P (Dir ∧ Prox) is a uniform distribution, with all directions
and proximities having the same probability. As we have 21 × 16 different
possible values for Dir ∧ Prox we get:

P (Dir ∧ Prox) =
1

21× 16
=

1

336
(4.9)

For each sensory situation, we believe that there is one and only one rotation
speed (Rot) that should be preferred. The distribution P (Rot | Dir ∧ Prox)
is thus unimodal. However, depending on the situation, the decision to be
made for Rot may be more or less certain. This is presumed by assigning a
bell-shaped4 parametric form to P (Rot | Dir ∧ Prox). For each possible po-
sition of the object relative to the robot we have a bell-shaped distribution.
Consequently, we have 21 × 16 = 336 bell-shaped distributions and we have
2× 21× 16 = 772 free parameters: 336 means and 336 standard deviations.

4Bell-shaped distributions are distributions of discrete variables that have a Gaussian
shape. They are noted with the B symbol and defined by their means and standard devia-
tions as regular Gaussian distributions of continuous variables.

www.allitebooks.com

http://www.allitebooks.org

52 Bayesian Programming

4.1.2.2 Identification

To set the values of these free parameters we drive the robot with a joystick
and collect a set of data.

Every tenth of a second, we obtain the value of Dir and Prox from the
proximeters and the value of Rot from the joystick. Let us call the particular
set of data corresponding to this experiment δpush. A datum collected at time
t is a triplet (rott, dirt, proxt). During the 30 seconds of learning, 300 such
triplets are recorded.

From the collection δpush of such data, it is very simple to compute the
corresponding values of the free parameters. We first sort the data in 336
groups, each corresponding to a given position of the object and then compute
the mean and standard deviations of Rot for each of these groups.

There are only 300 triplets for 336 groups. Moreover, these 300 triplets
are concentrated around some particular position often observed when push-
ing obstacles. Consequently, it may often happen that a given position never
occurs and that no data is collected for this particular situation. In that case,
we set the corresponding mean to 0 and the standard deviation to 10. The
bell-shaped distribution is then flat, close to a uniform distribution.

Figure 4.3 presents three of the 336 curves. The first one corresponds to an
obstacle very close to the left ([Dir = −10], [Prox = 13]), and shows that the
robot should turn to the left rapidly with average uncertainty. The second one
corresponds to an obstacle right in front and in contact ([Dir = 0], [Prox =
15]), and shows that the robot should go straight with very low uncertainty.
Finally, the last one shows an unobserved situation where the uncertainty is
maximal ([Dir = 3], [Prox = 0]).

 Dir=–10, Prox=13

Dir=0, Prox=15

Dir=3,Prox=0

0

0.1

0.2

0.3

0.4

P
ro

b
a

b
il
it
y

–8 –6 –4 –2 0 2 4 6 8 10
Rot

FIGURE 4.3: P (Rot | Dir ∧ Prox) when pushing objects for different situ-
ations.

Description = Specification + Identification 53

4.1.2.3 Results

To render the pushing obstacle behavior just learned, a decision on Rot is
made every tenth of a second according to the following algorithm.

1. The sensors are read and the values of dirt and proxt are computed.

2. The corresponding distribution P
(

Rot | Dir = dirt ∧ Prox = proxt
)

is selected from the 336 distributions stored in memory.

3. A value rott is drawn at random according to this distribution and
sent to the motors.

As shown in Movie5 1, the Khepera learns how to push obstacles in 30
seconds. It learns the particular dependency, corresponding to this specific
behavior, between the sensory variablesDir and Prox, and the motor variable
Rot. This dependency is largely independent of the particular characteristics
of the objects (such as weight, color, balance, or nature). Therefore, as shown
in Movie 2, the robot is able to push different objects. This, of course, is only
true within certain limits. For instance, the robot will not be able to push an
object if it is too heavy.

The file “chapter4/kepera.py” contains the code to learn and to
render the appropriate behavior. Learning P (V rot | Dir ∧ Prox) is ob-
tained by adding observed data to a learner.

for row in VrotDirProxReader:

sample[Vrot] = int(row[0])

sample[Dir] = int(row[1])

sample[Prox]= int(row[2])

learn with this new point

VrotDirProxLearner.add_point(sample)

Rendering the behavior is obtained by reading the values of Dir ∧
Prox and by drawing the value of V rot according to the corresponding
distribution.

render_question.instantiate([dir,prox]).draw(VrotValue)

4.1.3 Following contours

The goal of the second experiment is to teach the robot how to follow the
contour of an object.

We will follow the same steps as in the previous experiment: first, a speci-
fication phase, then an identification phase where we also drive the robot with
a joystick but this time to follow the contours.

5http:/www.probayes.com/Bayesian-Programming-Book/Movies.

http://www.probayes.com/Bayesian-Programming-Book/Movies

54 Bayesian Programming

We keep the exact same specification, changing only the data to be learned.
The resulting description is, however, completely different: following contours
of objects instead of pushing them.

4.1.3.1 Specification

Variables: To follow the contours, we must know where the object is situ-
ated relative to the robot. This is defined by the variables Dir and Prox, as
in the previous experiment. We must also pilot the robot using its rotation
speed with the variable Rot. The required variables are thus exactly the same
as previously:

Dir ∈ {−10, . . . , 10} ,Card {Dir} = 21 (4.10)

Prox ∈ {0, . . . , 15} ,Card {Prox} = 16 (4.11)

Dir ∈ {−10, . . . , 10} ,Card {Rot} = 21 (4.12)

Decomposition: The decomposition does not change either:

P (Dir ∧ Prox ∧Rot) = P (Dir ∧ Prox)P (Rot|Dir ∧ Prox) (4.13)

Forms: Finally, the parametric forms are also the same:

P (Dir ∧ Prox) ≡ Uniform (4.14)

P (Rot | Dir ∧ Prox) ≡ B (µ (Dir, Prox) , σ (Dir, Prox)) (4.15)

4.1.3.2 Identification

In contrast, the learned data are completely different, because we are driv-
ing the robot to do some contour following (see Movie 3). The learning process
is the same but the data set, called δfollow, is completely different.

The collection δfollow of data leads to completely different values of the 336
means and standard deviation of the bell-shaped distributions. This clearly
appears in the following distributions presented for the same relative positions
of the object and the robot as in the previous experiment:

• Figure 4.4 shows the two distributions obtained after learning for both
experiments (pushing objects and following contours) when the object
is close to the left ([Dir = −10], [Prox = 13]). When pushing, the robot
turns left to face the object; on the contrary, when following, the robot
goes straight, bordering the object.

Description = Specification + Identification 55

Following

Pushing

0

0.1

0.2

0.3

0.4

P
ro

b
a

b
il
it
y

–8 –6 –4 –2 0 2 4 6 8 10
Rot

FIGURE 4.4: P (Rot | Dir = −10] ∧ [Prox = 13]) when pushing objects and
when following contours.

• Figure 4.5 shows the two distributions obtained after learning for both
experiments (pushing objects and following contours) when the object is
in contact right in front of the robot P (Rot | Dir = 0] ∧ [Prox = 15]).
When pushing, the robot goes straight. On the contrary, when following,
the robot turns to the right to have the object on its left. However, the
uncertainty is larger in this last case.

Pushing

Following

0

0.1

0.2

0.3

0.4

P
ro

b
a

b
il
it
y

–8 –6 –4 –2 0 2 4 6 8 10
Rot

FIGURE 4.5: P (Rot | Dir = 0] ∧ [Prox = 15]) when pushing objects and
when following contours.

4.1.3.3 Result

The restitution process is also the same, but as the bell-shaped distribu-
tions are different, the resulting behavior is completely different, as demon-

56 Bayesian Programming

strated by Movie 3. It should be noted that one turn around the object is
enough to learn the contour following behavior.

By changing the data source in “chapter4/kepera.py” from “follow-
ing.csv” to “pushing.csv” it is possible to change the behavior of the
robot. These two files have been produced by the program in “chap-
ter4/simulatefollowing.py” and “chapter4/simulatepushing.py”.

4.2 Description of a water treatment unit

Let us return to the previous example of a water treatment unit, and try
to build the description of this process.

4.2.1 Specification

4.2.1.1 Variables

Following our Bayesian Programming methodology, the first step in build-
ing this description is to choose the pertinent variables.

The variables to be used by our Bayesian model are obviously the following:

I0, I1, F, S, C,O ∈ {0, . . . , 10} (4.16)

where every one of these variables has a cardinality of 11. Of course H is
missing.

4.2.1.2 Decomposition

Using the conjunction postulate (2.8) iteratively, we can write that the
joint probability distribution of the six variables is equal to:

P (I0 ∧ I1 ∧ F ∧ S ∧ C ∧O)
= P (I0)× P (I1|I0)× P (F |I0 ∧ I1)× P (S|I0 ∧ I1 ∧ F)
×P (C|I0 ∧ I1 ∧ F ∧ S)× P (O|I0 ∧ I1 ∧ F ∧ S ∧ C)

(4.17)

This is an exact mathematical expression. The designer knows more about
the process than this exact form. For instance, he or she knows that:

1. The qualities of the two input streams I0 and I1 are independent:

P (I1 | I0) = P (I1)

Description = Specification + Identification 57

2. The state of operation of the unit is independent of both entries:

P (F | I0 ∧ I1) = P (F)

3. The reading of the sensor depends only on I0 and F . It does not
depend on I1.

P (S | I0 ∧ I1 ∧ F) = P (S | I0 ∧ F) (4.18)

4. The control C may not be established without knowing the desired
output O. Consequently, as long as O is unknown, C is independent
of the entries and of the state of operation.

P (C | I0 ∧ I1 ∧ F ∧ S) = P (C) (4.19)

A few more thoughts may be necessary about this simplification,
which is rather subtle. If you do know the desired output O, the
control C will obviously depend on the entries, the state of opera-
tion, and the reading of the sensor. However, if you do not know the
objective, could you think of any reason to condition the control C
on these variables? If you do not know where you want to go, do you
have any good reason to choose a specific direction, even knowing the
map and where you are?

5. The output O depends on I0,I1,F ,S, and C. However, because
of the presence of the sensor, there is some redundancy between
I0, F , and S. If you know I0 and F , then obviously knowing S
does not bring any new information. This could be used to state:
P (O | I0 ∧ I1 ∧ F ∧ S ∧C) = P (O | I0 ∧ I1 ∧ F ∧ C). Knowing I0
and S, there is still some uncertainty about F (see Figures 3.9 and
3.10). However, as the value of F is not directly accessible for learn-
ing, we may consider as a first approximation that, knowing I0 and
S, F may be neglected:

P (O | I0 ∧ I1 ∧ F ∧ S ∧C) = P (O | I0 ∧ I1 ∧ S ∧C) (4.20)

Finally, the decomposition of the joint probability will be specified as:

P (I0 ∧ I1 ∧ F ∧ S ∧ C ∧O)
= P (I0)× P (I1)× P (F)× P (S|I0 ∧ F)
×P (C)× P (O|I0 ∧ I1 ∧ S ∧ C)

(4.21)

We see here a first example of the “art of decomposing” a joint distribution.
The decomposition is a means to compute the joint distribution and, conse-
quently, answer all possible questions. This decomposition has the following
qualities:

58 Bayesian Programming

• It is a better model than the basic joint distribution, because we add
some useful knowledge through points 1 to 5 above.

• It is easier to compute than the basic joint distribution, because instead
of working in a six-dimensional space, we will do the calculation in spaces
of smaller dimension (see Chapter 5 for more on this).

• It is easier (or at least possible) to identify. The simplification of point
5 has been made for that purpose.

Figure 4.6 represents the same decomposition with a graphical model.

FIGURE 4.6: The graphical model of Expression 4.21: a water treatment
unit.

4.2.1.3 Forms

To finish the specification task, we must still specify the parametric forms
of the distribution appearing in the decomposition:

1. We have no a priori information on the entries I0 and I1:

P (I0) ≡ Uniform (4.22)

P (I1) ≡ Uniform (4.23)

2. Neither do we have any a priori information on F :

P (F) ≡ Uniform (4.24)

3. We know an exact model of the sensor S:

P (S) = δ
Int(I0+F

2) (I0 ∧ F) (4.25)

Description = Specification + Identification 59

where:

δ
Int(I0+F

2) (4.26)

is a Dirac distribution with probability one if and only if:

S = Int

(

I0 + F

2

)

(4.27)

4. Not knowing the desired output O, all possible controls are equally
probable:

P (C) ≡ Uniform (4.28)

5. Finally, each of the 114 distributions P (O | I0 ∧ I1 ∧ S ∧ C) (one for
each possible value of I0 ∧ I1 ∧ S ∧ C) is defined as a histogram on
the 11 possible values of O.

4.2.2 Identification

After the specification phase, we end up with 115 = 161, 051 free param-
eters to identify. To do this we will run the simulator described in Chapter
3, drawing at random with uniform distributions I0, I1, F , H , and C. For
each of these draws (for instance, 10 of them), we compute the corresponding
values of the sensor S and the output O. We then update the 114 histograms
according to the values of I0, I1, S, C, and O.

4.2.3 Bayesian program

This may be summarized with the following Bayesian program:

60 Bayesian Programming

Pr































































































































Ds























































































































Sp(π)











































































































V a :

I0, I1, F, S, C,O

Dc :










P (I0 ∧ I1 ∧ F ∧ S ∧ C ∧O)

= P (I0)× P (I1)× P (F)× P (S|I0 ∧ F)

×P (C)× P (O|I0 ∧ I1 ∧ S ∧C)

Fo :

P (I0) = Uniform

P (I1) = Uniform

P (F) = Uniform

P (S|I0 ∧ F) = δ
S=Int(I0+F

2)

P (C) = Uniform

P (O|I0 ∧ I1 ∧ S ∧C) = Histograms

Id

Qu :

(4.29)

4.2.4 Results

Such histograms have already been presented in previous chapters, for in-
stance, in Figure 3.8 reproduced below as Figure 4.7 may be seen a collection of
11 of these histograms P (O | I0 ∧ I1 ∧ S ∧ C) when [I0 = 2],[I1 = 8],[C = 2],
and S varies. The complete description of the elementary water treatment
unit is made of 114 histograms, 113 times as much data as in Figure 4.7.

4.3 Lessons, comments, and notes

4.3.1 Description = Specification + Identification

Descriptions are the basic elements that are used, combined, composed,
manipulated, computed, compiled, and questioned in different ways to build
Bayesian programs.

A description is the probabilistic model of the observed phenomenon.
As such, it results from both the prior knowledge of the programmer about

this phenomenon6 and from the experimental data.

6We adopt here an unambiguous subjectivist epistemological position about probability.
Explanation about the fundamental controversy opposing objectivism and subjectivism

Description = Specification + Identification 61

 0
 2

 4
 6

 8
 10O 0

 2

 4

 6

 8

 10

S

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

P

FIGURE 4.7: The 11 probability distributions of O when S ∈ [0, . . . , 10],
the inputs and the control are set to [I0 = 2], [I1 = 8], [C = 2], and the values
of the external factor and the internal functioning H ∧ F are not known.

The programmer’s preliminary knowledge is expressed in a first phase
called the specification phase (see Section 4.3.2 next).

The experimental data are taken into account during an identification (or
learning) phase where the free parameters of the specification are given their
values. The two robotics experiments described above (pushing and following
contours) prove the importance of this identification phase. For a given spec-
ification but different experimental data, you can obtain completely different
descriptions (i.e., different models of the phenomenon).

4.3.2 Specification = Variables + Decomposition + Forms

The preliminary knowledge of the programmer is always expressed the
same way:

1. Choose the pertinent variables.

2. Decompose the joint distribution.

3. Define the parametric forms.

may be found in the FAQ/FAM: Objectivism vs. subjectivism controversy and the “mind
projection fallacy,” Section 16.13.

62 Bayesian Programming

This strict and simple methodology and framework for the expression of the
preliminary knowledge of the programmer present several fundamental advan-
tages:

1. It is a programming baseline that guides any development of a
Bayesian program.

2. It compels the programmer to express all available knowledge using
this formalism, thus forcing a rigorous modeling process.

3. It warrants that no piece of knowledge stays implicit. Everything that
is known about the phenomenon is expressed within this formalism.
Nothing is hidden elsewhere in any other piece of code of the program.

4. It is a formal and unambiguous common language to describe mod-
els. It could be used very efficiently to discuss and compare different
models.

5. As will be seen in the sequel, this formalism is generic and may be
used to express a huge variety of models. Although simple, it offers a
very strong power of expression.

It is important to note the huge difference between preliminary knowledge
and a priori knowledge. The term a priori knowledge is usually restricted to
the choice of the parameters of the distributions appearing in the description
which are not learned. The term preliminary knowledge covers a much larger
reality (choice of the variables, choice of the decomposition, and choice of the
parametric forms) thus recognizing the complete role of the programmer in
the modeling process.

4.3.3 Learning is a means to transform incompleteness into
uncertainty

Descriptions are probabilistic models of a phenomenon. Descriptions are
not complete. They do not escape the incompleteness curse of any nonproba-
bilistic model. For instance, the description of the elementary water treatment
unit does not take into account the variable H , which stays hidden.

However, because of learning, the influence of H is nevertheless taken into
account, as its effect on the phenomenon has been captured in the values of
the histograms. Learning is a means to transform incompleteness (the effect
of hidden variables) into uncertainty. The magic of this transformation is
that after incompleteness has been transformed into uncertainty (probability
distributions), then it is possible to reason with these distributions.

Furthermore, learning is also a means to estimate the importance of the
hidden variable and consequently the quality of the model (description). If
learning leads to flat distributions, it means that the neglected variables play
a very important role and that the model should be improved. On the other

Description = Specification + Identification 63

hand, if learning leads to very informative (low entropy) distributions, then it
confirms the quality of the model and the secondary influence of the hidden
variables.

This page intentionally left blankThis page intentionally left blank

Chapter 5

The Importance of Conditional

Independence

5.1 Water treatment center Bayesian model . 65
5.2 Description of the water treatment center . 66

5.2.1 Specification . 66
5.2.2 Identification . 70
5.2.3 Bayesian program . 71

5.3 Lessons, comments, and notes . 71
5.3.1 Independence versus conditional independence 71
5.3.2 The importance of conditional independence 73

What we call chance is, and may only be, the ignored cause of
known effect1

Dictionaire Philosophique
Voltaire [1993–1764, 2005]

The goal of this chapter is both to explain the notion of conditional inde-
pendence and to demonstrate its importance in actually solving and comput-
ing complex problems.

5.1 Water treatment center Bayesian model

In this chapter, we complete the construction of the Bayesian model for
the water treatment center.

The complete process consists of four single units. Similarly, the complete
Bayesian model is made of the four single models specified and identified in the
previous chapter. Putting these four models together presupposes some strong
structural knowledge that can be translated into conditional independence
hypotheses.

Figure 5.1 presents the functioning diagram of the water treatment center.

1Ce que nous appelons le hasard n’est, et ne peut être, que la cause ignorée d’un effet
connu.

65

66 Bayesian Programming

FIGURE 5.1: A complete water treatment center.

The units M0 and M1 take the same inputs I0 and I1. They respectively
produce O0 and O1 as outputs, which in turn are used as inputs by M2. M3

takes I3 and O3 as inputs, and finally produces O3 as output. The four water
treatment units have four internal states (respectively F0, F1, F2, and F3), four
sensors (respectively S0, S1, S2, and S3), four controllers (respectively C0, C1,
C2, and C3), and may all be perturbed by some external factors (respectively
H0, H1, H2, and H3). The production of each of these units is governed by
Equations 3.3 and 3.4. The sensors take their values according to Equation
3.5.

5.2 Description of the water treatment center

As in the previous chapter, to build the Bayesian model of the whole plant,
we assume that H0, H1, H2, and H3 are hidden variables not known by the
designer.

5.2.1 Specification

5.2.1.1 Variables

There are now 19 variables in our global Bayesian model:

I0, I1, I3, F0, F1, F2, F3, S0, S1, S2, S3, C0, C1, C2, C3, O0, O1, O2, O3 ∈ {0, . . . , 10}

Each of these variables has a cardinality equal to 11.

The Importance of Conditional Independence 67

5.2.1.2 Decomposition

Using the conjunction postulate (2.8) iteratively as in the previous chapter
it is possible to write the joint probability on the 19 variables as:

P (I0 ∧ I1 ∧ I3 ∧ . . . ∧O2 ∧O3)

= P (I0 ∧ I1 ∧ I3)

× P (F0 ∧ S0 ∧ C0 ∧O0 | I0 ∧ I1 ∧ I3)

× P (F1 ∧ S1 ∧ C1 ∧O1 | I0 ∧ I1 ∧ I3 ∧ F0 ∧ S0 ∧ C0 ∧O0)

× P (F2 ∧ S2 ∧ C2 ∧O2 | I0 ∧ I1 ∧ I3 ∧ F0 ∧ S0 ∧ C0 ∧O0 ∧ F1 ∧ S1 ∧ C1 ∧ O1)

× P (F3 ∧ S3 ∧ C3 ∧O3 | I0 ∧ I1 ∧ I3 . . . ∧ S1 ∧ C1 ∧O1 ∧ F2 ∧ S2 ∧ C2 ∧O2)

This is an exact mathematical formula where we tried to regroup variables
as they appeared in the four different units. Although it is exact, this for-
mula should obviously be further simplified! This can be done by using some
additional knowledge:

1. The operation of M0 depends on its entries I0 and I1 but is indepen-
dent of the water flow I3:

P (F0 ∧ S0 ∧C0 ∧O0|I0 ∧ I1 ∧ I3)
= P (F0 ∧ S0 ∧C0 ∧O0|I0 ∧ I1)

(5.1)

2. The functioning of unit M1 depends on its entries I0 and I1, but is
obviously independent of entry I3 and of the operation of unit M0

(specified by variables F0, S0, C0, and O0). This leads to:

P (F1 ∧ S1 ∧ C1 ∧O1|I0 ∧ I1 ∧ I3 ∧ F0 ∧ S0 ∧C0 ∧O0)
= P (F1 ∧ S1 ∧ C1 ∧O1|I0 ∧ I1)

(5.2)

3. The operation of M2 obviously depends on the operation of M0 and
M1, which produce its inputs. For instance, changing C0 will change
O0, which in turn will change S2, O2, and eventually C2. Apparently,
M2 depends on all the previous variables except I3, and the only
obvious simplification concerns I3:

P (F2 ∧ S2 ∧ C2 ∧O2 | I0 ∧ I1 ∧ I3 ∧ F0 ∧ S0 ∧ C0 ∧O0 ∧ F1 ∧ S1 ∧ C1 ∧O1)

= P (F2 ∧ S2 ∧ C2 ∧ O2 | I0 ∧ I1 ∧ F0 ∧ S0 ∧ C0 ∧O0 ∧ F1 ∧ S1 ∧ C1 ∧O1)

4. However, if we know the value of O0, then we do not care anymore
about the values of I0, I1, F0, S0, and C0, which all influence the
operation of M2 only by means of the output O0. Similarly, if we

68 Bayesian Programming

know the value of O1, then we do not care anymore about the values
of F1, S1, and C1. This is called conditional independence between
variables and is a main tool to build interesting and efficient descrip-
tions. One should be very careful that conditional independence has
nothing in common with independence. The variable S2 depends on
C0 (P (S2 | C0) 6= P (S2)), but is conditionally independent of C0 if
O0 is known (P (S2 | C0 ∧O0) = P (S2 | O0)).

See Section 5.3.1 in the sequel for further discussions of this point.
This finally leads to:

P (F2 ∧ S2 ∧C2 ∧O2|I0 ∧ I1 ∧ I3 ∧ F0 ∧ S0 ∧ · · · ∧ C1 ∧O1)
= P (F2 ∧ S2 ∧C2 ∧O2|O0 ∧O1)

(5.3)

5. For the same kind of reasons, we find:

P (F3 ∧ S3 ∧C3 ∧O3|I0 ∧ I1 ∧ I3 ∧ F0 ∧ S0 ∧ · · · ∧ C2 ∧O2)
= P (F3 ∧ S3 ∧C3 ∧O3|I3 ∧O2)

(5.4)

At this stage, we have the following decomposition:

P (I0 ∧ I1 ∧ I3 ∧ . . . ∧ O2 ∧O3)

= P (I0 ∧ I1 ∧ I3)

× P (F0 ∧ S0 ∧ C0 ∧ O0 | I0 ∧ I1)

× P (F1 ∧ S1 ∧ C1 ∧ O1 | I0 ∧ I1)

× P (F2 ∧ S2 ∧ C2 ∧ O2 | O0 ∧O1)

× P (F3 ∧ S3 ∧ C3 ∧ O3 | I3 ∧O2) (5.5)

Using the same kind of assumptions as in the previous chapter, we may
further simplify this expression, stating that:

1. Concerning M0:

P (F0 ∧ S0 ∧ C0 ∧ O0 | I0 ∧ I1)

= P (F0)

× P (S0 | I0 ∧ F0)

× P (C0)

× P (O0 | I0 ∧ I1 ∧ S0 ∧ C0) (5.6)

The Importance of Conditional Independence 69

2. Concerning M1:

P (F1 ∧ S1 ∧ C1 ∧ O1 | I0 ∧ I1)

= P (F1)

× P (S1 | I0 ∧ F1)

× P (C1)

× P (O1 | I0 ∧ I1 ∧ S1 ∧ C1) (5.7)

3. Concerning M2:

P (F2 ∧ S2 ∧ C2 ∧ O2 | O0 ∧O1)

= P (F2)

× P (S2 | O0 ∧ F2)

× P (C2)

× P (O2 | O0 ∧O1 ∧ S2 ∧ C2) (5.8)

4. Concerning M3:

P (F3 ∧ S3 ∧ C3 ∧O3 | I3 ∧ O2)

= P (F3)

× P (S3 | I3 ∧ F3)

× P (C3)

× P (O3 | I3 ∧O2 ∧ S3 ∧ C3) (5.9)

After some reordering, we obtain the following final decomposition and the
associated graphical model (Figure 5.2):

P (I0 ∧ I1 ∧ I3 ∧ . . . ∧O2 ∧ O3)

= P (I0)× P (I1)× P (I3)

× P (F0)× P (F1)× P (F2)× P (F3)

× P (C0)× P (C1)× P (C2)× P (C3)

× P (S0 | I0 ∧ F0)× P (S1 | I0 ∧ F1)× P (S2 | O0 ∧ F2)× P (S3 | I3 ∧ F3)

× P (O0 | I0 ∧ I1 ∧ S0 ∧ C0)× P (O1 | I0 ∧ I1 ∧ S1 ∧ C1)

× P (O2 | O0 ∧O1 ∧ S2 ∧ C2)× P (O3 | I3 ∧O2 ∧ S3 ∧ C3) (5.10)

70 Bayesian Programming

FIGURE 5.2: The graphical model of the decomposition of the joint distri-
bution as defined by Equation 5.10.

5.2.1.3 Forms

The distributions P (I0), P (I1), P (I3), P (F0), P (F1), P (F2), P (F3),
P (C0), P (C1), P (C2), and P (C3) are all assumed to be uniform distributions.

P (S0 | I0 ∧ F0), P (S0 | I0 ∧ F1) , P (S0 | O0 ∧ F2), and P (S3 | I3 ∧ F3)
are all Dirac distributions.

Finally, the four distributions relating the output to the inputs, the sensor,
and the control are all specified as histograms as in the previous chapter.

5.2.2 Identification

We have now four series of 114 histograms to identify (4× 115 free param-
eters).

In a real control and diagnosis problem, the four production units, even
though they are identical, would most probably function slightly differently
(because of incompleteness and some other hidden variables besides H). In
that case, the best thing to do would be to perform four different identification
campaigns to take these small differences into account by learning.

In this didactic example, as the four units are simulated and formal, they
really are perfectly identical (there are no possible hidden variables but H in
our formal model as specified by Equations 3.3, 3.4, and 3.5). Consequently,
we use the exact same histogram for the four units as was identified in the
previous chapter.

The Importance of Conditional Independence 71

5.2.3 Bayesian program

All this may be summarized by the following Bayesian program:

Pr



























































































































































Ds















































































































































Sp(π)







































































































































V a : I0, I1, I3, , F0, . . . C3, O0, O1, O2, O3

Dc :















































































P (I0 ∧ I1 ∧ I3 ∧ . . . ∧O2 ∧O3)

= P (I0)× P (I1)× P (I3)

×P (F0)× P (F1)× P (F2)× P (F3)

×P (C0)× P (C1)× P (C2)× P (C3)

×P (S0 | I0 ∧ F0)× P (S1 | I0 ∧ F1)

×P (S2 | O0 ∧ F2)× P (S3 | I3 ∧ F3)

×P (O0 | I0 ∧ I1 ∧ S0 ∧C0)

×P (O1 | I0 ∧ I1 ∧ S1 ∧C1)

×P (O2 | O0 ∧O1 ∧ S2 ∧ C2)

×P (O3 | I3 ∧O2 ∧ S3 ∧ C3)

Fo :































P (I0) . . . P (C3) ≡ Uniform

P (S0 | I0 ∧ F0) , . . . , P (S3 | I3 ∧ F3) ≡ Dirac

P (O0 | I0 ∧ I1 ∧ S0 ∧ C0) ≡ Histogram

. . .

P (O3 | I3 ∧ 02 ∧ S3 ∧ C3) ≡ Histogram

Identification

Qu :?

(5.11)

5.3 Lessons, comments, and notes

5.3.1 Independence versus conditional independence

To build this Bayesian model of our water treatment center we intensively
used independence between variables and overall conditional independence
between variables. Let us return briefly to these two concepts, which should
not be confused.

Two variables X and Y are independent from one another if and only
if P (X ∧ Y) = P (X) × P (Y) which is logically equivalent because of the
conjunction postulate to P (X | Y) = P (X) and of course also to P (Y | X) =
P (Y).

Two variables X and Y are independent conditionally to a third one, Z,
if and only if P (X ∧ Y | Z) = P (X | Z) × P (Y | Z), which is also logically

72 Bayesian Programming

equivalent because of the conjunction postulate to P (X | Y ∧ Z) = P (X | Z)
and to P (Y | X ∧ Z) = P (Y | Z).

However, two variables may be independent but not conditionally inde-
pendent to a third one. Two variables may also be conditionally independent
but not independent.

For the first case, for production unitM0, the first entry I0, and the internal
state F0, are independent but are not conditionally independent knowing S0

the reading of the sensor. Figure 5.3 shows, for instance, the corresponding
probabilities for I0 = 5 and S0 = 6.

P(F0 | IO=5)

P(F0)

P(F0 | I0=5 S0=6)

P(FO | SO=6)

0
2

4
6

8
10

Unit 0 efficiency (F0)

0

0.1

0.2

0.3

0.4

0.5

Frequency

FIGURE 5.3: The distributions P (F0 | I0), P (F0), P (F0 | I0 ∧ S0),
and P (F0 | S0) are represented. Note that P (F0 | I0) = P (F0) and
P (F0 | I0 ∧ S0) 6= P (F0 | S0).

This is a very common situation where the two causes of a phenomenon are
independent but are conditionally dependent on one another, knowing their
common consequence (see Figure 5.4). Otherwise, no sensor measuring several
factors would be of any use.

I0

F0

S0

FIGURE 5.4: Two independent causes for the same phenomenon.

For the second case, as already stated, S2 depends on C0 (P (S2 | C0) 6=

The Importance of Conditional Independence 73

P (S2)) but is conditionally independent of C0 ifO0 is known (P (S2 | C0 ∧O0) =
P (S2 | O0)).

Figure 5.5 shows this for C0 = 10 and O0 = 5.

- P(S2 | CO=10)

- P(S2)

- P(S2 | C0=10 O0=5)

- P(S2 | O0=5)

0
2

4
6

8
10Sensor 2 (S2)

0

0.04

0.08

0.12

0.16

0.2

Probability

P(S2 | CO=10) -
P(S2) -

P(S2 | C0=10 O0=5) -
P(S2 | O0=5) -

0
2

4
6

8
10

Sensor 2 (S2)

0

0.04

0.08

0.12

0.16

0.2

Probability

FIGURE 5.5: Two views of distributions P (S2 | C0), P (S2),
P (S2 | C0 ∧O0), and P (S2 | S0). Note that P (S2 | O0) 6= P (S2) and
P (S2 | C0 ∧O0) = P (S2 | O0).

This is also a very common situation where there is a causal chain between
three variables (see Figure 5.6).

S2C0 O0

FIGURE 5.6: Causal chain.

5.3.2 The importance of conditional independence

This kind of conditional independence is of great importance for Bayesian
programming for two main reasons:

• It expresses crucial designer’s knowledge.

• It makes the computation tractable by breaking the curse of dimension-
ality.

For any model of any phenomenon, knowing what matters with, what
does not influence what, and, most importantly, what bias could be neglected
compared to another one is fundamental knowledge.

A model where everything depends on everything else is a very poor model,
indeed. In probabilistic terms, such a model would be a joint distribution on
all the relevant variables coded as a huge table containing the probabilities
of all the possible cases. In our example, simple as it is, it would be a ta-
ble containing the 263 probability values necessary for the joint distribution

74 Bayesian Programming

P (I0 ∧ I1 ∧ I3 ∧ . . . ∧O2 ∧O3) on our 19 variables that take 11 values each:

1119 ≈ 263

Such a table would encode all the necessary information, but in a very
poor manner. Hopefully, a model does not usually code the joint distribution
in this way but rather uses a decomposition and the associated conditional
independencies to express the knowledge in a structured and formal way. The
probabilistic model of the production models as expressed by Equation 5.10
only requires 218 probability values to encode the joint distribution:

(11× 11) + (113 × 4) + (115 × 4) ≈ 218

Thanks to conditional independence the curse of dimensionality has been
broken! What has been shown to be true here for the required memory space
is also true for the complexity of inferences. Conditional independence is the
principal tool to keep the calculation tractable. Tractability of Bayesian in-
ference computation is of course a major concern as it has been proved NP-
hard [Cooper, 1990]. This subject will be developed in Chapter 14, which
reviews the main algorithms for Bayesian inference and is summed up in the
FAQ/FAM: “Computation complexity of Bayesian inference,” Section 16.7.

Chapter 6

Bayesian Program = Description +

Question

6.1 Water treatment center Bayesian model (end) . 76
6.2 Forward simulation of a single unit . 76

6.2.1 Question . 77
6.2.2 Results . 78

6.3 Forward simulation of the water treatment center 78
6.3.1 Question . 78
6.3.2 Results . 80

6.4 Control of the water treatment center . 81
6.4.1 Question (1) . 81
6.4.2 Results (1) . 81
6.4.3 Question (2) . 82
6.4.4 Results (2) . 84

6.5 Diagnosis . 85
6.5.1 Question . 85
6.5.2 Results . 86

6.6 Lessons, comments, and notes . 87
6.6.1 Bayesian Program = Description + Question 87
6.6.2 The essence of Bayesian inference . 88
6.6.3 No inverse or direct problem . 89
6.6.4 No ill-posed problem . 89

Far better an approximate answer to the right question which
is often vague, than an exact answer to the wrong question which
can always be made precise.1

The Future of Data Analysis
John W. Tukey [1962]

In the two previous chapters, we built a description (Bayesian model)
of our water treatment center. In this chapter, we use this description to
solve different problems: prediction of the output, choice of the best control
strategy, and diagnosis of failures. This shows that multiple questions may
be asked about the same description to solve very different problems. This

1Emphasized text is in the original citation.

75

76 Bayesian Programming

clear separation between the model and its use is a very important feature of
Bayesian Programming.

6.1 Water treatment center Bayesian model (end)

Let us first recall the present model of the process:

Pr































































































































































Ds



















































































































































Sp(π)











































































































































V a : I0, I1, I3, , F0, . . . C3, O0, O1, O2, O3

Dc :















































































P (I0 ∧ I1 ∧ I3 ∧ . . . ∧ O2 ∧O3)

= P (I0)× P (I1)× P (I3)

×P (F0)× P (F1)× P (F2)× P (F3)

×P (C0)× P (C1)× P (C2)× P (C3)

×P (S0 | I0 ∧ F0)× P (S1 | I0 ∧ F1)

×P (S2 | 00 ∧ F2)× P (S3 | I3 ∧ F3)

×P (O0 | I0 ∧ I1 ∧ S0 ∧ C0)

×P (O1 | I0 ∧ I1 ∧ S1 ∧ C1)

×P (O2 | 00 ∧ 01 ∧ S2 ∧ C2)

×P (O3 | I3 ∧ 02 ∧ S3 ∧ C3)

Fo :































P (I0) . . . P (C3) ≡ Uniform

P (S0 | I0 ∧ F0) , . . . , P (S3 | I3 ∧ F3) ≡ Dirac

P (O0 | I0 ∧ I1 ∧ S0 ∧ C0) ≡ Histogram

. . .

P (O3 | I3 ∧ 02 ∧ S3 ∧ C3) ≡ Histogram

Identification

Qu :?

(6.1)

Quite a simple model indeed, thanks to our knowledge of this process, even
if it took some time to make all its subtleties explicit! However, the question
is still unspecified. Specifying and answering different possible questions is the
purpose of the sequel of this chapter.

6.2 Forward simulation of a single unit

We first want to predict the output of a single unit (for instance M0)
knowing its inputs, sensor reading, and control, or some of these values.

Bayesian Program = Description + Question 77

6.2.1 Question

For instance, we may look for the value of O0 knowing the values of I0, I1,
S0, and C0. The corresponding question will be:

P (O0 | I0 ∧ I1 ∧ S0 ∧ C0)

This distribution is directly available since it is given to specify the de-
scription. This could also be inferred using the simple algorithm formulae
2.34.

Let’s define Free, Searched, and Known as:

Free = I3 ∧ F0 ∧ F1 ∧ F2 ∧ F3 ∧ S1 ∧ S2 ∧ S3 ∧ C1 ∧ C2 ∧ C3 ∧O1 ∧O2 ∧O3

Known = I0 ∧ I1 ∧ S0 ∧ C0

Searched = O0

(6.2)
In this particular case P (Search | Known) appears in the decomposition

and the previous Bayesian program may be rewritten as follows.

Pr



















































Ds







































Sp(π)































V a : Free,Known, Searched

Dc :

{

P (Free ∧ Searched ∧Known) =

P (Free ∧Known) × P (Search | Known)

Fo :

{

P (Free ∧Known)Any Distribution

P (Searched | Known)Any Distribution

Identification

Qu : P (Searched | known)

(6.3)

According to Equation 2.34:

P (Searched | known)

=

∑

Free

P (Free ∧ Searched ∧ known)

∑

Free

∑

Searched

P (Free ∧ Searched ∧ known)

This can be developed using the specification of P (Free ∧ Searched ∧Known)
into:

P (Searched | known)

=

∑

Free

[P (Free ∧ known)× P (Search | known)]
∑

Free

∑

Searched

[P (Free ∧ known)× P (Search | known)]

78 Bayesian Programming

using the marginalization rule
∑

Free

P (Free ∧ known) = P (known):

P (Searched | known)

=
P (known)× P (Search | known)

∑

Free

[P (Free ∧ known)]
∑

Searched

[P (Search | known)]

Using again the marginalization rule
∑

Free

P (Free ∧ known) = P (known)

and the normalization rule
∑

Searched

P (Search | known) = 1 we obtain:

P (Searched | known) = P (Searched | [Known = known])

Which could have been obtained directly since it appears in the decomposition.

6.2.2 Results

The corresponding results have already been presented in Chapter 4 for
[I0 = 2], [I1 = 8], [C0 = 2], and for all the values of S0 (see Figure 4.7).

6.3 Forward simulation of the water treatment center

6.3.1 Question

We may now want to predict the output of the whole water treatment
center, knowing the three inputs I0, I1, and I3, the four sensor readings S0,
S1, S2, and S3, and the four control values C0, C1, C2, and C3.

The corresponding question is:

P (O3 | I0 ∧ I1 ∧ I3 ∧ S0 ∧ S1 ∧ S3 ∧ S4 ∧ C0 ∧ C1 ∧ C2 ∧C3) (6.4)

It can be computed using the inference algorithms described in Chapter
14 or by invoking an inference engine as in the example below. However, it
is always useful to have a feeling of the complexity of a given inference. One
way is to apply the formulae 2.34 with:

Searched = {O3}
Known = {I0, I1, I3, S0, S1, S2, S3, S4, C0, C1, C2, C3}
Free = {F0, F1, F2, F3, O0, O1, O2}

(6.5)

Bayesian Program = Description + Question 79

P (Searched | known) =
∑

Free

P (Searched ∧ known ∧ Free)

P (known)

As the distributions for the entries, the sensors, and the con-
trollers are uniform distributions P (known) is a constant for any value
{i0, i1, i3, s0, s1, s2, s3, s4, c0, c1, c2, c3} of the Known variables.

P (O3 | i0 ∧ i1 ∧ i3 ∧ s0 ∧ s1 ∧ s2 ∧ s3 ∧ s4 ∧ c0 ∧ c1 ∧ c2 ∧ c3) =

1

Z
×

∑

F0,F1,F2,F3,O0,O1,O2





























P (i0)× P (i1)× P (i3)
×P (F0)× P (F1)× P (F2)× P (F3)
×P (c0)× P (c1)× P (c2)× P (c3)
×P (s0 | i0 ∧ F0)× P (s1 | i0 ∧ F1)
×P (s2 | O0 ∧ F2)× P (s3 | i3 ∧ F3)
×P (O0 | i0 ∧ i1 ∧ s0 ∧ c0)
×P (O1 | i0 ∧ i1 ∧ s1 ∧ c1)
×P (O2 | O0 ∧O1 ∧ s2 ∧ c2)
×P (O3 | i3 ∧O2 ∧ s3 ∧ c3)





























Uniform distributions can be further simplified by incorporating them in
the normalization constant to yield:

P (O3 | i0 ∧ i1 ∧ i3 ∧ s0 ∧ s1 ∧ s2 ∧ s3 ∧ s4 ∧ c0 ∧ c1 ∧ c2 ∧ c3) =

1

Z
×

∑

F0,F1,F2,F3,O0,O1,O2

















×P (s0 | i0 ∧ F0)× P (s1 | i0 ∧ F1)
×P (s2 | O0 ∧ F2)× P (s3 | i3 ∧ F3)
×P (O0 | i0 ∧ i1 ∧ s0 ∧ c0)
×P (O1 | i0 ∧ i1 ∧ s1 ∧ c1)
×P (O2 | O0 ∧O1 ∧ s2 ∧ c2)
×P (O3 | i3 ∧O2 ∧ s3 ∧ c3)

















Finally, after some reordering (see Chapter 14) of the sums to minimize
the amount of computation, we obtain:

80 Bayesian Programming

P (O3 | i0 ∧ i1 ∧ i3 ∧ s0 ∧ s1 ∧ s2 ∧ s3 ∧ s4 ∧ c0 ∧ c1 ∧ c2 ∧ c3) =

1

Z
×
∑

F0

P (s0 | i0 ∧ F0)×
∑

F1

P (s0 | i0 ∧ F1)×
∑

F3

P (s3 | i3 ∧ F3)×

∑

O0



















P (O0 | i0 ∧ i1 ∧ s0 ∧ c0)×
∑

F2

P (s2 | O0 ∧ F2)×

∑

O1







P (O1 | i0 ∧ i1 ∧ s1 ∧ c1)×
∑

O2

[

P (O2 | O0 ∧O1 ∧ s2 ∧ c2)×
P (O3 | i3 ∧O2 ∧ s3 ∧ c3)

]

























6.3.2 Results

The file “chapter6/treatmentcenter.py” contains the model of the
water treatment center. The conditional probability distributions on
O0, O1, O2, O3 are set using a file “calibration.txt” containing the 114

distributions. This file has been generated using the program found in
“chapter6/calibration.py” which contains a model of a water treatment
unit with the hidden variable H to generate uncertainties.

It is possible to obtain a symbolic representation of the joint distri-
bution with:

print model

As well as a symbolic representation of the simplification made by
the interpreter to compute the forward model.

P (O3 | i0 ∧ i1 ∧ i3 ∧ s0 ∧ s1 ∧ s2 ∧ s3 ∧ s4 ∧ c0 ∧ c1 ∧ c2 ∧ c3) (6.6)

print model.ask(O[3],I0^I1^I3^C^S)

The inference engine may provide other and extra simplifications:

Sum_{O1} {P(O1|I(0) I(1) S1 C1)

Sum_{O0} {P(O0|I(0) I(1) S0 C0)

Sum_{F2} {P(F2)P(S2|O0 F2) }

sum_{O2} {P(O2|O0 O1 S2 C2)

P(O3|I(3) O2 S3 C3)

}

}

}

Some of the results obtained for the forward simulation of the water treat-
ment center are presented in Figure 6.1. For the same three inputs (i0 = 1, i1 =

Bayesian Program = Description + Question 81

8, i3 = 10), with the same four sensor readings (s0 = 5, s1 = 5, s2 = 7, s3 = 9)
but with three different kinds of control we obtain completely different fore-
casts for the output. These three curves show clearly that with these specific
inputs and readings, an average control (c0 = c1 = c2 = c3 = 5) is more
efficient than no control or an overstated control.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 2 4 6 8 10

 P
(O

3
)

O3

(a) (c0,1,2,3 = 0)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 2 4 6 8 10

 P
(O

3
)

O3

(b) (c0,1,2,3 = 5)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 2 4 6 8 10

 P
(O

3
)

O3

(c) (c0,1,2,3 = 10)

FIGURE 6.1: Direct distributions for the output O3 for three different con-
trols.

6.4 Control of the water treatment center

Forecasting the output O3, as in the previous section, is certainly a valuable
tool to choose an appropriate control policy for the water treatment center.
However, there are 114 = 14, 641 such possible different policies. Testing all
of them, one after another, would not be very practical.

6.4.1 Question (1)

Bayesian Programming endeavors to offer a direct solution to the control
problem when asked the question:

P (C0 ∧ C1 ∧C2 ∧ C3 | i0 ∧ i1 ∧ i3 ∧ s0 ∧ s1 ∧ s2 ∧ s3 ∧ s4 ∧ o3) (6.7)

6.4.2 Results (1)

If we fix the objective O3 to nine given i0 = 2, i1 = 8, i3 = 10, s0 = 5, s1 =
5, s2 = 7, s3 = 9 the most probable values of the control are c0 = 5, c1 =
5, c2 = 4, c3 = 4.

However, many controls have the same or almost the same probability. This
means that the water treatment process is robust and that the sensitivity to
the control is low.

82 Bayesian Programming

The forecast for this control choice is presented in Figure 6.2. It shows
that even if this is the best control choice, the probability of obtaining o3 = 9
is only 3% when the probability of obtaining o3 = 6 is around 25%.

This suggests that searching the controls for a given value of o3 may still
not be the best question. Indeed this question could lead to a control choice
that ensures the highest probability for o3 = 9, but at the price of very high
probabilities for much worse outputs.

The same model defined in file “chapter6/treatmentcenter.py” may
be used to compute the optimal value C of

P (C0 ∧ C1 ∧ C2 ∧ C3 | i0 ∧ i1 ∧ i3 ∧ s0 ∧ s1 ∧ s2 ∧ s3 ∧ s4 ∧ o3)

with i0 = 2, i1 = 8, i3 = 10, s0 = 5, s1 = 5, s2 = 7, s3 = 9, and o3 = 9

question1=model.ask(C,I0^I1^I3^S^O[3])

resultD=question1.instantiate([2,8,10,5,5,7,9,9])

The optimization can be done with:

val_opt = resultD.best()

In this case the system chose to use a genetic algorithm to perform
optimization. An exact solution may be obtained with:

compiled_resultD= resultD.compile()

compiled_val_opt = compiled_resultD.best()

The following commands print several probability values for different
values of C reaching the maximum.

print compiled_resultD.compute(compiled_val_opt)

print compiled_resultD.compute(val_opt)

print compiled_resultD.compute([6,6,4,9])

6.4.3 Question (2)

We might rather try to keep O3 superior to a minimum value V ALMIN
(O3 ≥ V ALMIN). That is, we need to compute controls C which leads as
much as we can to a water quality better than V ALMIN . One way is to
introduce a constraint within the initial model by defining two new variables
H ∈ {0, 1} and V ALMIN , as well as a new Dirac distribution:

Bayesian Program = Description + Question 83

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 2 4 6 8 10

 P
(O

3
)

O3

FIGURE 6.2: P (O3 | i0 ∧ i1 ∧ i3 ∧ s0 ∧ s1 ∧ s2 ∧ s3 ∧ s4 ∧ c0 ∧ c1 ∧ c3) with i0 =
2, i1 = 8, i3 = 10, s0 = 5, s1 = 5, s2 = 7, s3 = 9, and c0 = 5, c1 = 5, c2 = 4, c3 = 4.

Pr



































































































































































































Ds



























































































































































































Sp(π)















































































































































































V a : I0, . . . O3,H, V ALMIN

Dc :























































































P (I0 ∧ I1 ∧ I3 ∧ . . . ∧ O2 ∧O3)

= P (V ALMIN)× P (H)

×P (I0)× P (I1)× P (I3)

×P (F0)× P (F1)× P (F2)× P (F3)

×P (C0)× P (C1)× P (C2)× P (C3)

×P (S0 | I0 ∧ F0)× P (S1 | I0 ∧ F1)

×P (S2 | O0 ∧ F2)× P (S3 | I3 ∧ F3)

×P (O0 | I0 ∧ I1 ∧ S0 ∧ C0)

×P (O1 | I0 ∧ I1 ∧ S1 ∧ C1)

×P (O2 | O0 ∧O1 ∧ S2 ∧ C2)

×P (O3 | I3 ∧ O2 ∧ S3 ∧ C3)

Fo :



























































P (V ALMIN)Uniform

P (I0) . . . P (C3) ≡ Uniform

P (S0 | I0 ∧ F0) , . . . , P (S3 | I3 ∧ F3) ≡ Dirac

P (O0 | I0 ∧ I1 ∧ S0 ∧ C0) ≡ Histogram

. . .

P (O3 | I3 ∧O2 ∧ S3 ∧ C3) ≡ Histogram

P (H | V ALMIN ∧O3) ≡ Dirac:

if(O3 ≥ V ALMIN) : H = 1elseH = 0

Identification

Qu : P (C0,1,2,3 | i0,1,3 ∧ s0,1,2,3 ∧ h ∧ valmin)

84 Bayesian Programming

6.4.4 Results (2)

Let us, for example, analyze the cases where V ALMIN ∈ {5, 6, 7}.
For example, P (C0,1,2,3 | i0,1,3 ∧ s0,1,2,3 ∧ h = 1 ∧ valmin = 5) will pro-

vide a distribution on controls C0,1,2,3 which maximizes the chances for O3 to
be greater than five.

Figure 6.3 presents, for the three considered values of V ALMIN , the
probability distribution

P
(

O3 | i0,1,3 = 2, 8, 10∧ s0,1,2,3 = 5, 5, 7, 9∧ c0,1,2,3 = ci0,1,2,3
)

(6.8)

for the most probable obtained controls:

ci0,1,2,3 = max
c∈CO,1,2,3

P (C0,1,2,3 | i0,1,3 ∧ s0,1,2,3 ∧ h = 1 ∧ valmin = i) (6.9)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2 4 6 8 10

 P
(O

3
)

O3

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2 4 6 8 10

 P
(O

3
)

O3

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2 4 6 8 10

 P
(O

3
)

O3

(c)

FIGURE 6.3: Distributions on O3 obtained with different controls maximiz-
ing P (C0,1,2,3 | i0,1,3 = 2, 8, 10∧ s0,1,2,3 = 5, 5, 7, 9∧ h = 1 ∧ valmin = i):
(a): V ALMIN = 5 which implies control: c∗0 = 5, c∗1 = 0, c∗2 = 0, c∗3 = 5
(b): V ALMIN = 6 which implies control: c∗0 = 5, c∗1 = 5, c∗2 = 5, c∗3 = 6
(c): V ALMIN = 7 which implies control: c∗0 = 5, c∗1 = 5, c∗2 = 4, c∗3 = 7

Note that for V ALMIN = 7 (Figure 6.3c) the probability that O3 = 6 is
not 0. Indeed, the question asked here is “Find the best control to maximize
the probability for the output O3 to be more than V ALMIN?” It does not
impose that O3 should absolutely be more than V ALMIN .

Yet another question could be “Find the best control that warrants that
the output will not be less than V ALMIN?”

Bayesian Program = Description + Question 85

The file “chapter6/treatmentcenter.py” contains the code used to
draw Figure 6.3. The constraint H is defined with a Python function:

def constraint(O_,I_):

if I_[O[3]].to_float() >= I_[VALMIN].to_float():

O_[H]=1

else:

O_[H]=0

The corresponding Dirac distribution and a uniform distribution on
V ALMIN are the decomposition initially defined for the program 6.1.

NewJointDistributionList=JointDistributionList

NewJointDistributionList.push_back(plUniform(VALMIN))

constraintmodel=plPythonExternalFunction(H, \

VALMIN^O[3], \

constraint)

NewJointDistributionList.push_back(\

plFunctionalDirac(H,VALMIN^O[3],constraintmodel))

For V ALMIN = 5 the C∗ is obtained with:

newquestion1=newmodel.ask(C,I0^I1^I3^S^H^VALMIN)

newresultD=newquestion1.instantiate([2,8,10,5,5,7,9,1,5])

compiled_newresultD= newresultD.compile()

new_opt_val = compiled_newresultD.best()

Finally we may combine the readings with the desired control and
use the initial model to compute the distribution on O3:

opt_known_val = known_val^new_opt_val

newresultA = question.instantiate(opt_known_val)

6.5 Diagnosis

We may also use our Bayesian model to diagnose failures. Let us suppose
that the output is only seven. This means that at least one of the four units
is in poor working condition. We want to identify these defective units so we
can fix them.

86 Bayesian Programming

6.5.1 Question

The question is: “What is going wrong?” We must look for the values of
F0, F1, F2, and F3 knowing the entries, the sensor values, the control, and the
final output. The corresponding question is:

P (F0 ∧ F1 ∧ F2 ∧ F3 | i0 ∧ i1 ∧ i3 ∧ s0 ∧ s1 ∧ s2 ∧ s3 ∧ c0 ∧ c1 ∧ c2 ∧ c3 ∧ o3)

6.5.2 Results

For O3 = 7, the usual entries I0 = 2, I1 = 8, I3 = 10, sensor readings equal
to S0 = 5, S1 = 5, S2 = 4, S3 = 9, and controls all set to 5. We obtain a
maximum of probabilities for F0 = 8, F1 = 8, F2 = 3, F3 = 8.

If we consider the values of F0, F1, F2, F3 making the 90% quantile we
obtain values for F2 below 5 with an average of 3 with the values of F0, F1, F3

always above 8, indicating a greater chance of failure for unit 2.

We can confirm this hypothesis by asking the question (see Figure 6.4):

P (F2 | i0 ∧ i1 ∧ i3 ∧ s0 ∧ s1 ∧ s2 ∧ s3 ∧ c0 ∧ c1 ∧ c2 ∧ c3 ∧ o3)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 2 4 6 8 10

 P
(F

2
)

F2

FIGURE 6.4: P (F2 | i0 ∧ i1 ∧ i3 ∧ s0 ∧ s1 ∧ s2 ∧ s3 ∧ s4 ∧ c0 ∧ c1 ∧ c3 ∧ o3) with
i0 = 2, i1 = 8, i3 = 10, s0 = 5, s1 = 5, s2 = 7, s3 = 9, and c0 = 5, c1 = 5, c2 = 5, c3 =
5, o3 = 7.

Bayesian Program = Description + Question 87

In the file “chapter6/treatmentcenter.py,” Python is used to sort the
values of F according to their probabilities.

#Diagnosis

#question

diagnosisquestion = model.ask(F,I0^I1^I3^S^C^O[3])

for a given value of the Known variables

resultdiagnosis = diagnosisquestion.instantiate(\

[2,8,10,5,5,4,9,5,5,5,5,7])

#allow faster access

compiled_resultdiagnosis = resultdiagnosis.compile()

vF = plValues(F)

indexed_proba_table = []

#One way to store the result in a list (probal,

value1,

value2,....)

for v in vF:

indexed_proba_table.append(\

[compiled_resultdiagnosis.compute(v)] \

+ [vF[F[x]] for x in range(4)])

#Using Python to sort this list

sorted_indexed_prob_table = sorted(indexed_proba_table, \

key=lambda el: el[0], \

reverse = True)

6.6 Lessons, comments, and notes

6.6.1 Bayesian Program = Description + Question

A Bayesian program consists of two parts: a description, which is the prob-
abilistic model of the observed phenomenon, and a question used to interrogate
this model.

Any partition of the set of relevant variables in three subsets: the set of
searched variables (which should not be empty), the set of known variables,
and the complementary set of free variables, defines a valid question.

If we call Searched the conjunction of variables of the searched set,Known
the conjunction of variables with known values, and Free the conjunction of
variables in the complementary set, a question corresponds to the bundle of
distributions:

P (Search | Known) (6.10)

One distribution may be obtained by setting the values of theKnown variables

88 Bayesian Programming

a to particular value knowni

P (Search | knowni) (6.11)

This may be summarized by:

“Bayesian Program = Description + Question.”

6.6.2 The essence of Bayesian inference

The essence of Bayesian inference is to be able to compute:

P (Search | known)

This computation is always made by applying the same steps:

1. Utilization of the marginalization rule (2.12):

P (Search | known) =
∑

Free

P (Search ∧ Free | known) (6.12)

2. Utilization of the conjunction rule (2.8):

P (Search | known) =
∑

Free

P (Search ∧ Free ∧ known)

P (known)
(6.13)

3. Replacement of the denominator by a normalization constant:

P (Search | Known) =
1

Z
×
∑

Free

P (Search ∧ Free ∧ known) (6.14)

As the decomposition gives us a means to compute the joint distribution
P (Search ∧ Free ∧Known) as a product of simpler distributions, we are
always able to compute the wanted distribution.

However, the number of possible values for the variable Searched may be
huge. Exhaustive and explicit computation of P (Search ∧ Free ∧Known) is
then impossible even for a single value of Known = knowni. It must be either
approximated, sampled, or used to find the most probable values. In any of
these three cases, the regions of interest in the searched space are the areas of
high probability, which most often cover a tiny portion of the whole space. The
fundamental problem is to find them, which is a very difficult optimization
problem, indeed.

Worse, for each single value searchj of Search, we need to sum on Free
(see Equation 6.14) to compute P (searchj | knowni). The number of pos-
sible values for Free may also be huge and the integration problem itself

Bayesian Program = Description + Question 89

may be a heavy computational burden. An approximation of the sum must
be made, which means that it must effectively be computed on a sample
of the whole space. Where should we sample? Obviously, to find a good
estimation of the sum we should sample in areas where the probability of
P (searchj ∧ Free ∧ knowni) is high. This is yet another optimization prob-
lem where we must search the high-probability areas of a distribution.

All the algorithms of Bayesian inference try to deal with these two over-
lapped optimization problems using various methods. A survey of these algo-
rithms will be presented in Chapter 14.

6.6.3 No inverse or direct problem

When using a functional model defined as:

Y = F(X)

computing Y knowing X is a direct problem. A search for X knowing Y is an
inverse problem.

Most of the time, the direct problem is easy to solve, as we know the func-
tion. Often the inverse one is very difficult because F−1, the inverse function,
is at best unknown and even, sometimes, nonanalytic. Unfortunately, most of
the time, the inverse problem is much more interesting than the direct one.

For instance, if F is the function that predicts the performance of a racing
yacht, based on a knowledge of her characteristics, what is really of interest
is to find the characteristics that ensure the best performance.

When using a probabilistic model defined as:

P (X ∧ Y)

the difference between direct and inverse problems vanishes.
In the joint distribution, indeed, all the variables play the exact same

mathematical role. Whatever the decomposition, any of the variables can in
turn, in different questions, be considered as either searched, known, or free.
There is no difference in the nature of the computation to calculate either
P (Y | X) or P (X | Y). However, even if any question can be asked of the
probabilistic model, we stressed in the previous section that some of them can
be time and resource consuming to answer.

There may be no more direct or inverse problems, but there are still some
difficult problems characterized by either a huge integration space (Free), or
a huge search space (Searched), or both.

6.6.4 No ill-posed problem

When using functional models, inverse problems, even when they are solv-
able, may be ill-posed in the sense that X = F−1(Y) may have several solu-
tions. This is a very common situation in control problems. For instance, if

90 Bayesian Programming

you are given some values of the control variables, you can predict the outputs
exactly, but if you are given the goal, you have numerous control solutions to
achieve it.

In these cases, functional models do not have enough information to give
you any hint to help you choose between the different values of X satisfying
X = F−1(Y).

In contrast, P (X | Y) gives much more information, because it allows you
to find the relative probabilities of the different solutions.

Part II

Bayesian Programming
Cookbook

91

This page intentionally left blankThis page intentionally left blank

Chapter 7

Information Fusion

7.1 “Naive” Bayes sensor fusion . 94
7.1.1 Statement of the problem . 94
7.1.2 Bayesian program . 94
7.1.3 Instance and results . 96

7.2 Relaxing the conditional independence fundamental hypothesis 102
7.2.1 Statement of the problem . 102
7.2.2 Bayesian program . 103
7.2.3 Instance and results . 103

7.3 Classification . 105
7.3.1 Statement of the problem . 105
7.3.2 Bayesian program . 106
7.3.3 Instance and results . 106

7.4 Ancillary clues . 108
7.4.1 Statement of the problem . 108
7.4.2 Bayesian program . 108
7.4.3 Instance and results . 110

7.5 Sensor fusion with false alarm . 113
7.5.1 Statement of the problem . 113
7.5.2 Bayesian program . 114
7.5.3 Instance and results . 114

7.6 Inverse programming . 116
7.6.1 Statement of the problem . 116
7.6.2 Bayesian program . 117
7.6.3 Instance and results . 118

Based on your pupil dilation, skin temperature, and motor
functions, I calculate an 83% probability that you will not pull
the trigger.

Terminator 3: Rise of the Machines

93

94 Bayesian Programming

7.1 “Naive” Bayes sensor fusion

7.1.1 Statement of the problem

The most common application of Bayesian techniques is the fusion of in-
formation coming from different sensors to estimate the state of a given phe-
nomenon.

The situation is always the same: you want information about a given
phenomenon, this phenomenon influences sensors that you can read, and from
these readings you try to estimate the phenomenon.

Usually the readings are neither completely informative about the phe-
nomenon, nor completely consistent with one another. Consequently, you are
compelled to a probabilistic approach and the question you want to answer
is:

P (S|r1 ∧ . . . ∧ rN ∧ π) (7.1)

where S is the state and {r1, . . . , rN} the readings.

A very common difficulty is the profusion of sensors which leads
to a very high dimensionality state space for the joint distribution
P (S ∧R1 ∧ . . . ∧RN |π).

A very common solution to break this curse of dimensionality is to make
the very strong assumption that knowing the phenomenon the sensors may
be considered to provide independent readings. Knowing the common cause,
the different consequences are considered independent:

P (S ∧R1 ∧ . . . ∧RN |π) = P (S|π)×
N
∏

n=1

[P (Rn|S ∧ π)] (7.2)

7.1.2 Bayesian program

The corresponding Bayesian program is the following:

Information Fusion 95

Pr























































































Ds







































































Sp(π)



























































V a :

S,R1, . . . , RN

Dc :










P (S ∧R1 ∧ . . . ∧RN |π)

= P (S|π)×
N
∏

n=1

[P (Rn|S ∧ π)]

Fo :

any

Id

Qu :

P (S|r1 ∧ . . . ∧ rN ∧ π)

(7.3)

P (S|r1 ∧ . . . ∧ rN ∧ π) can be computed very efficiently as it is simply
equal to:

P (S|r1 ∧ . . . ∧ rN ∧ π) =
1

Z
× P (S|π)×

N
∏

n=1

[P (rn|S ∧ π)] (7.4)

where Z is a normalization constant.
The major interest of this decomposition is that it dispels the curse of

complexity. Indeed, when you need potentially card(R)N×card(S) parameters
to store P (S ∧R1 ∧ . . . ∧RN |π), you need only (card(R)− 1)×N × card(S)

parameters to store P (S|π)×
N
∏

n=1

[P (Rn|S ∧ π)].

Furthermore, P (Rn|S ∧ π) is usually much easier to learn than
P (S|r1 ∧ . . . ∧ rN ∧ π) and needs much less data.

Finally, another interesting property of this decomposition is that if one (or
several) of the observations is missing it just vanishes from the computation:

P (S|r1 ∧ . . . ∧ rN−1 ∧ π)

=
1

Z
×
∑

RN

[

P (S|π)×
N
∏

n=1

[P (Rn|S ∧ π)]

]

=
1

Z
× P (S|π)×

N−1
∏

n=1

[P (rn|S ∧ π)]×
∑

RN

[P (RN |S ∧ π)]

=
1

Z
× P (S|π)×

N−1
∏

n=1

[P (rn|S ∧ π)]

(7.5)

96 Bayesian Programming

7.1.3 Instance and results

There are very numerous applications of this principle.
We saw a first instance in the second chapter of this book, where the

phenomenon was spam, and the sensors the presence or absence of words in
the analyzed text.

Credit card fraud detection is another example, where the phenomenon is
fraud and the sensors are about a hundred characteristics of the transaction
such as, for instance, the amount, the hour, the activity of the seller, the
country where the transaction took place, or the number of transactions with
this card in the previous 24 hours.

Localization relative to landmarks is yet another, where the phenomenon
is the position of the observer, and the observations, the measures of distances,
and the bearings1 of known landmarks. Let us develop a simple version of this
last example in some detail for illustration.

Before the GPS era, landmarks were used for locations by doing triangula-
tion either with optical (for instance, bearing compass), electromagnetic (for
instance, radio-goniometry or radar landmarks) or, even, sound information
(for instance, using bells mounted on buoys or lighthouses when low visibil-
ity weather conditions prevented the use of optical devices). These different
devices provided bearings of landmarks and possibly distances with various
precision.

Let us take an example inspired from this situation (see Figure 7.1).

Boat(0,0) X

Y

World refernce frame

L2(−50,0)

L1(−50,−50) L3(0,−50)

L2(−50,0)

FIGURE 7.1: In this section, the boat is located at X = Y = 0 and the
three landmarks are located at (−50,−50), (−50, 0), and (0,−50).

In this instance, S ≡ X ∧Y , where X and Y are spatial coordinates, both

1In the sequel of this text we use “bearing” for “compass bearing” or “azimuth”: the
angle between the direction of a target and north counted in degrees in a clockwise direction.

Information Fusion 97

in the range {−50, 50}. R1 ≡ D1, R2 ≡ D2, R3 ≡ D3 (in the range {0, 141})
are the measured distances to three known and identifiable landmarks located
at coordinates (−50,−50), (−50, 0), and (0,−50). R4 ≡ B1, R5 ≡ B2, and
R6 ≡ B3 are the measured bearings in degrees of these three same landmarks,
the three of them in the range {0, 359} .2

The Bayesian program used is:

Pr































































































































Ds











































































































Sp(π)



































































































V a :

X,Y,D1, D2, D3, B1, B2, B3

Dc :










P (X ∧ Y ∧ . . . ∧B3|π)

= P (X ∧ Y |π)×
3
∏

n=1

[

P (Dn|X ∧ Y ∧ π)

× P (Bn|X ∧ Y ∧ π)

]

Fo :






























P (X ∧ Y |π) = Uniform

P (Dn|X ∧ Y ∧ π) =

B ([µ = fn
d (X,Y)] , [σ = gnd (X,Y)])

P (Bn|X ∧ Y ∧ π) =

B ([µ = fn
b (X,Y)] , [σ = 10])

Id

Qu :

P (X ∧ Y |d1 ∧ d2 ∧ d3 ∧ b1 ∧ b2 ∧ b3 ∧ π)

(7.6)
The central hypothesis is that knowing the position of the observer, the

distances and the bearings of the three landmarks are independent from one
another.

The measured distances are supposed to be distributed according to nor-
mal laws with the readings as means, and with varying standard deviations
increasing with distance. However, as distances can take only discrete values
we use “bell-shaped” distributions (denoted B(µ, σ)) which are approxima-
tions of continuous Gaussians for discrete variables.

The measured bearings are supposed to be distributed according to normal
laws with the readings as means, and with a fixed standard deviation of 10◦.

The specification includes several conditional distributions which are de-
fined with functions: fn

d , g
n
d , f

n
b . These functions are the sensor models used to

model the sensor readings and their uncertainties according to the location of
the boat. For example f1

d (X,Y) computes the distance to the first landmark
knowing the location of the boat:

f1
d (X,Y) =

√

(X + 50)2 + (Y + 50)2

2These angles are in degrees, and do not follow the navigation conventions: north = 90
and bearings are measured counterclockwise.

98 Bayesian Programming

We assume the uncertainty gets bigger as the boat is further away from the
landmark and becomes:

g1d(X,Y) =
f1
d (X,Y)

10
+ α

where α is some minimal uncertainty on the reading of the distance. Similarly
we define the bearing knowing the location of the boat:

f1
b = arctan

Y − 50

X − 50

The above Bayesian program is implemented in “chapter7/fusion.py”.
In these programs, sensor models are python functions. For example, to
define P (D1|X ∧ Y ∧ π) = B

([

µ = f1
d (X,Y))

]

,
[

σ = g1d (X,Y))
])

we
first describe the sensor model with two functions.

def f_d_1(Output_,Input_):

Output_[0] = hypot(Input_[X]+50.0,Input_[Y]+50.0)

def g_d_1(Output_,Input_):

Output_[0]= hypot(Input_[X]+50.0,Input_[Y]+50.0)/10.0 + 5

These functions are used to define a conditional probability distribu-
tion on D1:

plCndNormal(D1,X^Y, \

plPythonExternalFunction(X^Y,f_d_1), \

plPythonExternalFunction(X^Y,g_d_1)))

This distribution is added to the list (JointDistributionList) of all
the distributions defining the specification. The joint distribution is then
defined as:

localisation_model=plJointDistribution(X^Y^D1^D2^D3^B1^B2^B3,\

JointDistributionList)

We can ask a lot of different questions to this description as, for instance,
for a supposed observer in position (0, 0):

1. The distribution on the position knowing the three distances and the
three bearings (see Figure 7.2a):

P (X ∧ Y |d1 ∧ d2 ∧ d3 ∧ b1 ∧ b2 ∧ b3 ∧ π)

2. The distribution on the position knowing only the bearings of the
three landmarks (the most common situation in our boat navigation
scenario — see Figure 7.2b):

P (X ∧ Y |b1 ∧ b2 ∧ b3 ∧ π)

Information Fusion 99

-40
-20

 0
 20

 40
-40

-20

 0

 20

 40

 0
 0.0005
 0.001

 0.0015
 0.002

 0.0025
 0.003

 0.0035
 0.004

 0.0045
 0.005

P

X

Y

P

(a)

-40
-20

 0
 20

 40
-40

-20

 0

 20

 40

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

P

X

Y

P

(b)

FIGURE 7.2: The probability of being at a given location given the readings:
(a): P (X ∧ Y |d1 = 70 ∧ d2 = 50 ∧ d3 = 50 ∧ b1 = 225 ∧ b2 = 180 ∧ b3 = 270 ∧ π);
(b): P (X ∧ Y |b1 = 225 ∧ b2 = 180 ∧ b3 = 270 ∧ π).

100 Bayesian Programming

-40
-20

 0
 20

 40
-40

-20

 0

 20

 40

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

P

X

Y

P

(a)

-40
-20

 0
 20

 40
-40

-20

 0

 20

 40

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

P

X

Y

P

(b)

FIGURE 7.3: The probability of being at a given location given the readings:
(a): P (X ∧ Y |d2 = 50 ∧ d3 = 50 ∧ π)
(b): P (X ∧ Y |d1 = 70 ∧ d2 = 50 ∧ d3 = 70 ∧ π)

Information Fusion 101

3. The distribution on the position knowing only the distance of the
landmarks (L2 and L3) (see Figure 7.3a).

P (X ∧ Y |d2 ∧ d3 ∧ π)

4. A question with the three distances but with a wrong value (d3 = 70)
for the reading d3 (see Figure 7.3b).

Finally, a different kind of question where we look for the distribution on
the bearing of the third landmark knowing the distances and bearings to the
two first ones (see Figure 7.4):

P (B3|b1 ∧ b2 ∧ d1 ∧ d2 ∧ π)

The result of this question could be either used to search for the third
landmark if you do not know which direction to look for it (most probable
direction 270) or, even, to detect a potential problem with your measure of B3

if it is not coherent with the other readings (i.e., it has a very low probability,
for instance for b3 = 150).

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 50 100 150 200 250 300 350

 P
(B

3
)

B3

FIGURE 7.4: The probability distribution on the location of the third land-
mark knowing b1 = 225, b2 = 180, d1 = 70, d2 = 50.

102 Bayesian Programming

The questions 1, 3, and 4 are defined as follows in the file “chap-
ter7/fusion.py”:

PXY_K_D1D2D3B1B2B3=localisation_model.ask(X^Y,D1^D2^D3^B1^B2^B3)

PXY_K_D2D3=localisation_model.ask(X^Y,D2^D3)

PXY_K_D1D2D3=localisation_model.ask(X^Y,D1^D2^D3)

All the questions use the same description “localization model”.

7.2 Relaxing the conditional independence fundamental
hypothesis

7.2.1 Statement of the problem

The “naive” sensor fusion model assumes the complete conditional inde-
pendence of the sensors knowing the phenomenon. It is obviously a very strong
hypothesis.

This hypothesis is always wrong, or rather never totally true, as there are
always in the physical world some factors (hidden variables) other than the
observed phenomenon that correlate the readings of the sensors.

Deciding whether these correlations may be neglected is a choice of mod-
eling usually made based on two contradictory criteria: (i) Does this simpli-
fication lead to results of a sufficient quality for the problem we are dealing
with? (ii) Does it lead to a tractable model in terms of computing time and
resources?

For instance, in the spam example of the second chapter, it is obvious that
knowing that a text is spam or not is far from sufficient to explain all the
correlations between the words appearing in this text. But even with a model
assuming such a wrong hypothesis, as the obtained results are satisfying and
as this hypothesis leads to very fast computation, the “naive” model can be
used satisfactorily.

However, in some cases the “naive” hypothesis is clearly not sufficient. In
such cases the obvious solution is to complicate the model by adding more
variables explaining these correlations, as will be shown in the sequel. Yet, a
first possibility to take into account these correlations does not suppose to in-
troduce new variables. It consists in relaxing the “naive” hypothesis assuming,
not the conditional independence of single variables, but of tuples of variables
knowing the phenomenon:

P (S ∧R1 ∧ . . . ∧RN |π) = P (S|π)×
K
∏

k=1

[

P
(

R1
k ∧ . . . ∧RMk

k |S ∧ π
)]

(7.7)

Information Fusion 103

with

K
∑

k=1

[Mk] = N .

7.2.2 Bayesian program

The corresponding Bayesian program is the following:

Pr























































































Ds







































































Sp(π)



























































V a :

S,R1, . . . , RN

Dc :










P (S ∧R1 ∧ . . . ∧RN |π)

= P (S|π)×
K
∏

k=1

[

P
(

R1
k ∧ . . . ∧RMk

k |S ∧ π
)]

Fo :

any

Id

Qu :

P (S|r1 ∧ . . . ∧ rN ∧ π)

(7.8)
P (S|r1 ∧ . . . ∧ rN ∧ π) can still be computed very efficiently as it is simply

equal to:

P (S|r1 ∧ . . . ∧ rN ∧ π) =
1

Z
×P (S|π)×

K
∏

k=1

[

P
(

r1k ∧ . . . ∧ rMk

k |S ∧ π
)]

(7.9)

However, if the tuples are too large, storing the distributions

P
(

R1
k ∧ . . . ∧RMk

k |S ∧ π
)

may very quickly either become very costly in

terms of memory or complicated if a parametric representation is used.

7.2.3 Instance and results

Coming back to our previous example, if we are using radar, it may be
difficult to assume that the reading of distance and bearing are independent.
Indeed, the propagation of radar waves is organized in “lobes” that introduce
dependencies between them.

These dependencies may be difficult to model but the joint distributions
P (Dn ∧Bn|X ∧ Y ∧ π) could eventually be learned by experience.

To keep things simple for didactic purposes, let say that:

P (Dn ∧Bn|X ∧ Y ∧ π) = P (Dn|X ∧ Y ∧ π)× P (Bn|Dn ∧X ∧ Y ∧ π)
(7.10)

104 Bayesian Programming

We can express in this way that the measure of the bearing depends on
the distance of the landmark. For instance, by having a decreasing function
gnb (Dn) we may say that the further the landmark the more precise the mea-
sure of the bearing:

P (Bn|Dn ∧X ∧ Y ∧ π) = B ([µ = fn
b (X,Y)] , [σ = gnb (Dn)])

For this example, we choose to set the standard deviation to vary from a
minimum of 5 to a maximum of 20:

gnb = max(5, (20− 500

10 + dn
)

This leads to the following Bayesian program:

Pr







































































































































Ds



















































































































Sp(π)











































































































V a :

X,Y,D1, D2, D3, B1, B2, B3

Dc :


















P (X ∧ Y ∧ . . . ∧B3|π)

= P (X ∧ Y |π)×
3
∏

n=1







P (Dn|X ∧ Y ∧ π)

×
P (Bn|Dn ∧X ∧ Y ∧ π)







Fo :






























P (X ∧ Y |π) = Uniform

P (Dn|X ∧ Y ∧ π)

= B ([µ = fn
d (X,Y)] , [σ = gnd (X,Y)])

P (Bn|Dn ∧X ∧ Y ∧ π)

= B ([µ = fn
b (X,Y) bn] , [σ = gnb (Dn)])

Id

Qu :

P (X ∧ Y |b1 ∧ b2 ∧ b3 ∧ π)

(7.11)

We may use this description to recompute the distribution on the location
of the boat using only the bearing readings:

P (X ∧ Y |b1 ∧ b2 ∧ b3 ∧ π)

As expected, the result is quite different (see Figure 7.5, to be compared
with Figure 7.2b).

Information Fusion 105

-40
-20

 0
 20

 40
-40

-20

 0

 20

 40

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

P

X

Y

P

FIGURE 7.5: The probability distribution on the location of the boat assum-
ing the precision of the bearings depends on the distance with the following
readings: b1 = 225, b2 = 180, b3 = 270 (to be compared with Figure 7.2b).

7.3 Classification

7.3.1 Statement of the problem

It may happen quite often that we are not interested in knowing the state
in all its details. It may also happen that the information provided by the
sensors is so imprecise that we can only access a rough evaluation of this
state.

In both cases, it is possible to introduce a variable C to classify the states
into categories that are either considered sufficient for the task or are imposed
as the best that can be achieved.

Rather than P (S|r1 ∧ . . . ∧ rN ∧ π), the question asked to this model is:

P (C|r1 ∧ . . . ∧ rN ∧ π) (7.12)

106 Bayesian Programming

7.3.2 Bayesian program

The classification Bayesian program is as follows:

Pr























































































Ds







































































Sp(π)



























































V a :

S,C,R1, . . . , RN

Dc :










P (S ∧C ∧R1 ∧ . . . ∧RN |π)

= P (S|π)× P (C|S ∧ π)×
N
∏

n=1

[P (Rn|S ∧ π)]

Fo :

any

Id

Qu :

P (C|r1 ∧ . . . ∧ rN ∧ π)

(7.13)
P (C|S ∧ π) encodes the definition of the classes.
P (S|π)×P (C|S ∧ π) may be eventually replaced by P (C|π)×P (S|C ∧ π)

if more convenient to defined the classes by specifying the constraints on the
states knowing the classes.

P (C|r1 ∧ . . . ∧ rN ∧ π) can be computed by the following formula:

P (C|r1 ∧ . . . ∧ rN ∧ π)

=
1

Z
×
∑

S

[

P (S|π)× P (C|S ∧ π)×
N
∏

n=1

[P (rn|S ∧ π)]

]

(7.14)

The sum on S may be costly but often, hopefully, reduced as the classes
impose by definition that P (C|S ∧ π) is zero for large ranges of S.

7.3.3 Instance and results

Returning to our boat navigation example, if the weather conditions (thick
fog) prevent you from using any visual landmarks and if no modern localization
devices (radar, GPS, etc.) are available, the minimum you may try to ensure
is to stay in a safe zone (no rocks, no shallows) based, for instance, only on
very rough bearing information obtained from the sound of the bells.

Assuming the landmark L1 is above a shipwreck we may define the status of
our boat as “safe” or “unsafe.” C takes these two values and P (C|X ∧ Y ∧ π)
may be defined as follows:

P (C = unsafe | X ∧ Y ∧ π) = Min(1.0,
30

√

(Y + 50)2 + (X + 50)2
) (7.15)

Information Fusion 107

If we are very close (d < 30) the danger is certain and it becomes less and
less probable when we get further from the shipwreck.

One feature of ProBT (see file “chapter7/classification.py”) is to al-
low the user to define his own conditional probability distribution.

def danger_prob_function(Input_):

proba_for_danger = \

min(1.0,30.0 / \

(1+sqrt(pow((Input_[2]+50),2)+ \

pow((Input_[1]+50),2))))

if Input_[0] == 1:

return proba_for_danger

else:

return 1-proba_for_danger

This function is the probability distribution associated with
P (C | X ∧ Y). An order is assumed for the values of the probabilistic
variables:

C -> Input_[0]

X -> Input_[1]

Y -> Input_[2]

This order is given when declaring this function as a conditional
probability distribution.

plPythonExternalProbFunction(C^X^Y,danger_prob_function)

We will assume we can approximatively relate the direction of the bells to
one of the following four cardinal directions: “NE,” “NW,” “SE,” and “SW.”

Knowing the location of the boat we may compute P (Bn|X ∧ Y ∧ π) as
follows (essentially saying in which quarter of space you are hearing a given
bell):

P (Bn | X ∧ Y ∧ π) ::

θ = atan2(−(Y + LY
n),−(X + LX

n))

if(0 < θ <
π

2
: P (Bn = NE) = 0.5;P (Bn = SE) = 0.2

P (Bn = NW) = 0.2;P (Bn = SW) = 0.1

if(
π

2
< θ < π) : P (Bn = NE) = 0.2;P (Bn = SE) = 0.1

P (Bn = NW) = 0.5;P (Bn = SW) = 0.2;

if(−π

2
< θ < 0) : P (Bn = NE) = 0.2;P (Bn = SE) = 0.5

P (Bn = NW) = 0.1;P (Bn = SW) = 0.2;

if(0 < θ < −π

2
) : P (Bn = NE) = 0.1;P (Bn = SE) = 0.2

P (Bn = NW) = 0.2;P (Bn = SW) = 0.5;

(7.16)

The corresponding Bayesian program is now:

108 Bayesian Programming

Pr























































































































Ds



































































































Sp(π)























































































V a :

X,Y,C,B1, B2, B3

Dc :






















P (X ∧ Y ∧ . . . ∧B3|π)
= P (X ∧ Y |π)× P (C|X ∧ Y ∧ π)

×
3
∏

n=1

[P (Bn|X ∧ Y ∧ π)]

Fo :










P (X ∧ Y |π) = Uniform

P (C|X ∧ Y ∧ π) : equation(7.15)

P (Bn|X ∧ Y ∧ π) = equation(7.16)

Id

Qu :

P (C|B1 ∧B2 ∧B3 ∧ π)

(7.17)

We can divide the space into four regions labeled with the true reading
of the bearings in that region: If we use these readings as examples, we can
obtain the probability of being “unsafe” with the corresponding reading (see
Figure 7.6). Note this probability does not correspond to the probability of
being in that region but to the probability of being in danger if we have this
reading.

7.4 Ancillary clues

7.4.1 Statement of the problem

Ancillary clues (variable A) may help you in your prediction. These clues
are not, strictly speaking, part of the state S of the phenomenon but it is
important to take them into account in the sensor models. Consequently, each
sensor model P (Rn|S ∧ π) should be replaced by:

P (Rn|S ∧A ∧ π) (7.18)

7.4.2 Bayesian program

The Bayesian program including ancillary clues has the following structure:

Information Fusion 109

L1
L3

L2

SW,SW,SE SW,SW,SW

SW,NW,SWSW,NW,SE

0,57

0,44

0,44

0,37

FIGURE 7.6: The probability of being “unsafe” if the readings correspond
to one of the labels of the danger regions.

Pr



































































































Ds







































































Sp(π)



























































V a :

S,A,R1, . . . , RN

Dc :










P (S ∧ A ∧R1 ∧ . . . ∧RN |π)

= P (A ∧ S|π)×
N
∏

n=1

[P (Rn|S ∧ A ∧ π)]

Fo :

any

Id

Qu :
{

P (S|r1 ∧ . . . ∧ rN ∧ π)

P (S|a ∧ r1 ∧ . . . ∧ rN ∧ π)

(7.19)
P (A ∧ S|π) encodes the eventual relations between the state of the phe-

nomenon and the ancillary clues.
There could be none. The ancillary clue could be independent of the state:

P (A ∧ S|π) = P (A|π) × P (S|π).
But if there are some relations that deserve to be taken into account, as

in the classification case, P (A ∧ S|π) could be either defined as P (A|π) ×
P (S|A ∧ π) or as P (S|π)× P (A|S ∧ π).

110 Bayesian Programming

The real important innovation here is that the sensor models depend on
both S and A. Either A is used to refine the value of the parameters of the sen-
sor models or it can even completely change the very nature and mathematical
form of this sensor model.

This model may be used to estimate the state either knowing the value a
of the ancillary clue or ignoring it.

If the value of A is known, then the computation of
P (S|a ∧ r1 ∧ . . . ∧ rN ∧ π) is straightforward.

If the value of A is unknown, the computation of P (S|r1 ∧ . . . ∧ rN ∧ π)
supposes to marginalize on A. In that case, P (A|π) can be seen as “soft
evidence” (see the next chapter for details on “soft evidence”), which is useful
for a better estimation of S.

7.4.3 Instance and results

Returning to the boat localization problem in presence of fog, we may
introduce a new Boolean variable V (A ≡ V) with the semantic that if V is
true, the visibility is perfect, and if V is false, there is no visibility at all.

If the visibility is perfect (V = true), the sensor model used is the same
as the one used in the Bayesian program 7.6 at the beginning of this chapter.
If there is no visibility (V = false), the sensor model assumes a larger uncer-
tainty. For example, the sensor readings with no visibility will have a standard
deviation of 30, which will be reduced to 10 when there is good visibility.

The resulting Bayesian program is:

Information Fusion 111

Pr



















































































































































Ds































































































































Sp(π)























































































































a :

X,Y, V,B1, B2, B3

Dc :






















P (X ∧ Y ∧ . . . ∧B3|π)
= P (X ∧ Y |π)× P (V |π)

×
3
∏

n=1

[P (Bn|V ∧X ∧ Y ∧ π)]

Fo :






































P (X ∧ Y |π) = Uniform

P (V |π) = Soft− evidence

P (Bn| [V = false] ∧X ∧ Y ∧ π)

= B ([µ = fn(X,Y)] , [σ = 30])

P (Bn| [V = true] ∧X ∧ Y ∧ π)

= B ([µ = fn(X,Y)] , [σ = 10])

Id

Qu :

P (X ∧ Y |b1 ∧ b2 ∧ b3 ∧ π)

(7.20)

Computing P (X ∧ Y |b1 ∧ b2 ∧ b3 ∧ π) supposes to marginalize on V :

P (X ∧ Y |b1 ∧ b2 ∧ b3 ∧ π)

=
1

Z
×
∑

V

[

P (V |π)×
3
∏

n=1

[P (bn|V ∧X ∧ Y ∧ π)]

]

=
1

Z
×













P ([V = 0] |π)×
3
∏

n=1

[P (bn| [V = 0] ∧X ∧ Y ∧ π)]

+ P ([V = 1] |π)×
3
∏

n=1

[P (bn| [V = 1] ∧X ∧ Y ∧ π)]













(7.21)
P (V |π) may be considered as “soft evidence.” Indeed, the weather forecast

gives you an estimation of the visibility in percent that can be used as the
value for this soft evidence.

The computation above appears as a weighting sum between the two mod-
els, the weights being the estimation of the visibility.

We may compute P (X ∧ Y |b1 ∧ b2 ∧ b3 ∧ π) for different values of this soft
evidence:

1. P ([V = false] |π) = 1 (no visibility) see Figure 7.7a.

2. P ([V = false] |π) = 0.9 (almost no visibility) see Figure 7.7b.

112 Bayesian Programming

3. P ([V = true] |π) = 0.5 (partial visibility) see Figure 7.7c.

4. P ([V = true] |π) = 1 (clear weather) see Figure 7.7d (identical to
Figure 7.2b).

-40
-20

 0
 20

 40
-40

-20

 0

 20

 40

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 P(X Y)

X

Y

 P(X Y)

(a)

-40
-20

 0
 20

 40
-40

-20

 0

 20

 40

 0
 0.0001
 0.0002
 0.0003
 0.0004
 0.0005
 0.0006
 0.0007
 0.0008
 0.0009

 P(X Y)

X

Y

 P(X Y)

(b)

-40
-20

 0
 20

 40
-40

-20

 0

 20

 40

 0
 0.0002
 0.0004
 0.0006
 0.0008
 0.001

 0.0012
 0.0014
 0.0016
 0.0018
 0.002

 P(X Y)

X

Y

 P(X Y)

(c)

-40
-20

 0
 20

 40
-40

-20

 0

 20

 40

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 P(X Y)

X

Y

 P(X Y)

(d)

FIGURE 7.7: Distributions with several soft evidences:
(a): P (V = false) = 1, b1 = 225, b2 = 180, b3 = 270
(b): P (V = false) = 0.9, b1 = 225, b2 = 180, b3 = 270
(c): P (V = false) = 0.5, b1 = 225, b2 = 180, b3 = 270
(d): P (V = true) = 1, b1 = 225, b2 = 180, b3 = 270

Information Fusion 113

The file “chapter7/ancillary.py” provides an example of how to
change soft evidence by replacing one distribution in a decomposition.

#estimating the location with poor visibility

localisation_model.replace(V,plProbTable(V,[0.1,0.9]))

PXY_K_B1B2B3=localisation_model.ask(X^Y,B1^B2^B3)

PXY=PXY_K_B1B2B3.instantiate(sensor_reading_values)

The initial distribution on V (P (V = 1) = 0) is replaced with an-
other distribution P (V = 1) = 0.1, changing the inference on the loca-
tion.

7.5 Sensor fusion with false alarm

7.5.1 Statement of the problem

Sensors are never completely reliable.

The readings they provide are never exactly the ground truth of what they
are supposed to measure. Hidden variables are always the explanation for these
discrepancies. For instance, a sensor usually does not measure solely what it
is supposed to measure.3 Thus, an infrared proximeter measures the distance
of the target but it measures also its colors: red targets reflect more infrared
light than blue ones, consequently they return more energy to the sensor and,
finally, they appear closer. These discrepancies are taken into account by the
probabilistic sensor model P (R|S ∧ π).

Sensors may also miss certain detections. In these cases, the sensor does
not give any reading even when this information should be available (this
happens frequently when doing fusion on information coming from a database
where some fields may not always be filled). This is also, most of the time,
taken into account by the parametric form of P (R|S ∧ π).

Finally, the sensor may return some “false alarm.” In these cases, the
sensor provides a reading as if a “target” was present even if there is none. To
deal with this problem a common solution is to introduce a binary variable F ,
meaning that there is no false alarm if F = 0 and that there is one if F = 1.
The sensor model then gets a little bit more complicated as P (R|S ∧ π) is
replaced by P (R|S ∧ F ∧ π).

If F = 0 there is no false alarm and we use the original sensor model:

3This is a main concern in physical experiments where considerable effort is made to
build the setup that will warrant that the sensors measure only the search quantity. For
instance, neutrino detectors are buried several thousand meters under mountains so as to
be free from cosmic radiation.

114 Bayesian Programming

P (R|S ∧ [F = 0] ∧ π) = P (R|S ∧ π) (7.22)

On the contrary, is F = 1 there is a false alarm and whatever the state of
the phenomenon, we have no information on the reading:

P (R|S ∧ [F = 1] ∧ π) = Uniform (7.23)

7.5.2 Bayesian program

This may be summarized as the following Bayesian program:

Pr



































































































Ds















































































Sp(π)







































































V a :

S, F1, . . . , FN , R1, . . . , RN

Dc :










P (S ∧ F1 ∧ . . . ∧RN |π)

= P (S ∧ F1 ∧ . . . ∧ FN |π)×
N
∏

n=1

[P (Rn|S ∧ Fn ∧ π)]

Fo :

P (Rn|S ∧ [Fn = 0] ∧ π) = P (R|S ∧ π)

P (Rn|S ∧ [Fn = 1] ∧ π) = Uniform

Id

Qu :

P (S|r1 ∧ . . . ∧ rN ∧ π)

(7.24)

which can be compared to the Bayesian program 7.19. False alarms appear as
a special case of ancillary clues.

7.5.3 Instance and results

Radar often observes “ghost” targets.

This is especially true for onboard radar due to the lack of stability of
the platform and to echoes generated by the waves (especially in rough sea
conditions).

We can revisit the example of Figure 7.3b, but this time taking into account
a probability of false alarm P (F = 1|π) = 0.3.

Information Fusion 115

Pr



























































































































































Ds







































































































































Sp(π)



























































































































V a :

X,Y, F1, F2, F3, D1, D2, D3

Dc :






























P (X ∧ Y ∧ . . . ∧D3|π)

= P (X ∧ Y |π)×
3
∏

n=1

[P (Fn|π)]

×
3
∏

n=1

[P (Dn|X ∧ Y ∧ Fn ∧ π)]

Fo :


































P (X ∧ Y |π) = Uniform

P (Fn = true|π) = 0.3

P (Dn|X ∧ Y ∧ [Fn = 0] ∧ π)

= G

(

[µ = dn] ,

[

σ = 1 +
dn
10

])

P (Dn|X ∧ Y ∧ [Fn = 1] ∧ π) = Uniform

Id

Qu :

P (X ∧ Y |d1 ∧ d2 ∧ d3 ∧ π)

(7.25)

P (X ∧ Y |d1 ∧ d2 ∧ d3 ∧ π) is a weighted sum between the different varia-
tions of the models according to the different combinations of false alarms for
the different targets. The weights are given by the product of the probabilities
of false alarms:

P (X ∧ Y |d1 ∧ d2 ∧ d3 ∧ π)

=
1

Z
×

∑

F1∧F2∧F3













P (X ∧ Y |π)×
3
∏

n=1

[P (Fn|π)]

×
3
∏

n=1

[

P (Dn|X ∧ Y ∧ Fn ∧ π)
]













(7.26)

We observe in Figure 7.8 (to be compared to Figure 7.3b) that this new
model with a false alarm is more robust than the one without one when we
have a wrong reading on D3.

116 Bayesian Programming

-40
-20

 0
 20

 40
-40

-20

 0

 20

 40

 0
 0.0001
 0.0002
 0.0003
 0.0004
 0.0005
 0.0006
 0.0007
 0.0008
 0.0009
 0.001

 P(X Y)

X

Y

 P(X Y)

FIGURE 7.8: P (X ∧ Y | d1 = 50 ∧ d2 = 70 ∧ d3 = 70) with P (Fn = 1) =
0.3.

7.6 Inverse programming

7.6.1 Statement of the problem

Often, some “action” (any kind of computer process with or without con-
sequences on a physical device) has to be triggered by a given situation.

This is very commonly implemented using rules that state that “if con-
dition r1 & condition r2 & ... & condition rN are true then action a should
be executed” (see, for instance, finite state automata scripting languages, or
expert systems).

This approach has both the advantages of being intuitive and very efficient
in terms of computing time.

However, one fundamental drawback it has is that the number of rules
may very rapidly become huge when the complexity of the system augments.
Indeed, you potentially need one rule for each possible tuple of the N condi-
tions even if some rules may group ranges of values having the same effect.
As a consequence, the readability and the maintenance of these systems may
become cumbersome and even intractable.

Information Fusion 117

A possible solution, inspired from the above information fusion models, is
“inverse programming.” The symptom of the curse of dimensionality is the
same as for information fusion: the number of cases to be taken into account
for the conjunction of conditions R1 ∧ . . . ∧ RN grows exponentially with N .
The solution to break this curse of dimensionality is of the same nature as
in Section 7.1.1: that makes the assumption that by knowing the action A
(instead of the state S) the sensors provide independent readings:

P (A ∧R1 ∧ . . . ∧RN |π) = P (A|π)×
N
∏

n=1

[P (Rn|A ∧ π)] (7.27)

This is called “inverse” programming because instead of having to specify
rules of the formR1∧. . .∧RN → A, we need to specify probability distributions
of the form P (Rn|A ∧ π).

7.6.2 Bayesian program

The Bayesian program summarizing the inverse programming approach is
the following:

Pr























































































Ds







































































Sp(π)



























































V a :

A,R1, . . . , RN

Dc :










P (A ∧R1 ∧ . . . ∧RN |π)

= P (A|π) ×
N
∏

n=1

[P (Rn|A ∧ π)]

Fo :

any

Id

Qu :

P (A|r1 ∧ . . . ∧ rN ∧ π)

(7.28)

As this Bayesian program is mathematically identical to 7.3, it has the
same appealing properties to answer the question: P (A|r1 ∧ . . . ∧ rN ∧ π).
The difference between the two is in the semantics of the question because
instead of looking for the state of the phenomenon, we are searching for the
appropriate action.

It also has the same weakness and may be extended in parallel ways to
overcome them. For instance, in inverse programming you often need to relax
the conditional independence hypothesis (as in Section 7.2) to express that a
specific conjunction of conditions is necessary to trigger the action.

118 Bayesian Programming

7.6.3 Instance and results

Inverse programming has been, for instance, successfully used to program
and to train video game avatars to play autonomously (see Le Hy et al. [2004],
Le Hy [2007], and Le Hy and Bessière [2008]).

Coming back to our navigation example, we would like to decide the head-
ing direction to go toward landmark 1, avoiding a new landmark 0 located at
the center of the map. The action is the heading direction H and the sensors
are two bearings B0 and B1.

Knowing the heading direction, whatever the position of the boat, the
bearing of the goal landmark should be approximately the same, as we want
to go toward this landmark:

P (B1|H) = B (µ = H,σ) (7.29)

Knowing the heading direction, whatever the position of the boat the bear-
ing of the obstacle should be different, as we want to avoid it.

P (B0|H) =
1

Z
[1− λB (µ = H,σ′)]

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0 50 100 150 200 250 300 350

 P
(B

0)

B0

FIGURE 7.9: The probability of going toward a given direction (225) is
lower than all other directions. It is a way to avoid certain directions making
them much less probable.

The Bayesian program is the following:

Information Fusion 119

Pr















































































































Ds



























































































Sp(π)



















































































V a :

H,B1, B0

Dc :










P (H ∧B0 ∧B1 ∧B3|π)

= P (H |π)×
3
∏

n=0

[P (Bn|H ∧ π)]

Fo :














P (H |π) = Uniform

P (B0|H) =
1

Z
[1− λB (µ = H,σ′)]

P (B1|H) = B (B1, µ = H,σ)

Id :

Qu :

P (H |b0 ∧ b1 ∧ π)

(7.30)

P (H |b0 ∧ b1 ∧ π) can be computed at any point in space. The resulting
vector field is displayed in Figure 7.10.

Figure 7.10 has been generated using the program “chap-
ter7/invpgm.py”. The following instruction allows us to get to the most
probable value for the heading H given the readings.

PH=PHkB0B1.instantiate(sensor_reading_values)

best=PH.compile().best()

best is a vector: the angle value can be obtained with

best[0]

120 Bayesian Programming

B0

B1

FIGURE 7.10: The vector field corresponding to max
h

P (H = h|b0 ∧ b1 ∧ π).

Chapter 8

Bayesian Programming with

Coherence Variables

8.1 Basic example with Boolean variables . 122
8.1.1 Statement of the problem . 122
8.1.2 Bayesian program . 123
8.1.3 Instance and results . 124

8.2 Basic example with discrete variables . 125
8.2.1 Statement of the problem . 125
8.2.2 Bayesian program . 126
8.2.3 Instance and results . 126

8.3 Checking the semantic of Λ . 130
8.3.1 Statement of the problem . 130
8.3.2 Bayesian program . 130
8.3.3 Instance and results . 131

8.4 Information fusion revisited using coherence variables 132
8.4.1 Statement of the problems . 132
8.4.2 Bayesian program . 135
8.4.3 Instance and results . 135

8.5 Reasoning with soft evidence . 141
8.5.1 Statement of the problem . 141
8.5.2 Bayesian program . 142
8.5.3 Instance and results . 143

8.6 Switch . 145
8.6.1 Statement of the problem . 145
8.6.2 Bayesian program . 145
8.6.3 Instance and results . 146

8.7 Cycles . 147
8.7.1 Statement of the problem . 147
8.7.2 Bayesian program . 148
8.7.3 Instance and results . 148

Today’s posterior distribution is tomorrow’s prior

Bayesian Analysis in Regression Problems

David Lindley [1970]

121

122 Bayesian Programming

What means “equality” for Bayesian variables?

Two different calculi may lead to the same result. This is the case if you
try to compute the same thing with two different methods in a “consistent”
or “coherent”1 calculus system.

You can impose it as a constraint of your model by specifying that a given
equation should be respected. Solving the equation then consists of finding the
conditions of the two terms of the equation in order to make them “equal.”2

It can finally be used as a programming notion when you “assign”3 the
result of a calculus to a given variable in order to use it in a subsequent
calculus.4

However, for all these fundamental notions of logic, mathematic, and com-
puting the results of the calculus are always values either Boolean, numeric,
or symbolic.

In probabilistic computing, the basic objects that are manipulated are not
values but rather probability distributions on variables. In this context, the
“equality” has a different meaning as it should say that two variables have
the same probability distribution.

To realize this, we introduce in this chapter the notion of coherence vari-
ables. A coherence variable is a Boolean variable. If the coherence variable is
equal to 1 (or “true”) it imposes that the two variables are “coherent” which
means that they should share the same probability distribution knowing the
same premises.

8.1 Basic example with Boolean variables

8.1.1 Statement of the problem

To begin, let us examine the simplest case with two Boolean variables
(A and B) and one coherence variable (Λ). The decomposition of the joint
distribution is the following:

P (A ∧B ∧ Λ) = P (A)× P (B)× P (Λ|A ∧B) (8.1)

A and B are assumed to be independent.

1“Consistent” and “coherent” are equivalent notions. “Consistent” is usually used as a
semantic notion for “satisfiability” when “coherence” is usually used as a syntactic notion
for “noncontradictory.”

2“Equal” here stands for “=” if the terms have numeric values, “⇔” if they have Boolean
values, “unifiable” if they are more complex logical expressions.

3Often denoted in computer languages by “=” or “:=”.
4This case is quite different from the two first as the two terms do not play symmetric

roles, the right term being computed first in order to assign its result to the left one.

Bayesian Programming with Coherence Variables 123

P ([Λ = 1] |A ∧B) is a Dirac distribution with value one if and only if
A = B:

P ([Λ = 1] |A ∧B) = δA=B (8.2)

8.1.2 Bayesian program

This may be summarized by the following Bayesian program:

Pr























































































Ds



























































Sp(π)



















































V a :

A,B,Λ

Dc :
{

P (A ∧B ∧ Λ|π)
= P (A|π)× P (B|π)× P (Λ|A ∧B ∧ π)

Fo :

P ([Λ = 1] |A ∧B ∧ π) = δA=B

Id

Qu :

P (A| [Λ = 1] ∧ π)

P (B| [Λ = 1] ∧ π)

(8.3)

The interesting question is P (A| [Λ = 1] ∧ π):

P (a|λ ∧ π)

=
1

Z
×
∑

B

[P (a|π)× P (B|π)× P (λ|a ∧B ∧ π)]

=
1

Z
×
[

P (a|π)× P
(

b̄|π
)

× P
(

λ|a ∧ b̄ ∧ π
)

P (a|π)× P (b|π)× P (λ|a ∧ b ∧ π)

]

=
1

Z
× P (a|π)× P (b|π)

(8.4)

where we use the more compact logical notation: a ≡ [A = 1] and ā ≡ [A = 0].

If we compute the normalization constant Z we obtain:

P (a|λ ∧ π)

=
P (a|π)× P (b|π)

P (a|π)× P (b|π) + P (ā|π) × P
(

b̄|π
)

(8.5)

We check that P (A| [Λ = 1] ∧ π) = P (B| [Λ = 1] ∧ π) which means that
the semantic of the coherence variable is respected.

124 Bayesian Programming

8.1.3 Instance and results

8.1.3.1 Logical and algebraic interpretation

If we know that B is true (i.e., P (b|π) = 1), then whatever the prior on A
we get: P (a|λ ∧ π) = 1 meaning that A is necessarily true. In logical terms,
if Λ is true then b ⇒ a. We also obtain the same result asking the question
P (a|b ∧ λ ∧ π) which, indeed, is the exact same semantic.

If we know that B is false (i.e. P (b|π) = 0), then whatever the prior on A
we get: P (a|λ ∧ π) = 0 meaning that A is necessarily false. In logical terms,
if Λ is true then b̄⇒ ā.

Consequently, if Λ is true then in logical terms a⇔ b or in algebraic terms
A = B. If we have certainty on B then Λ = 1 has the semantic of a classical
equality.

The only exception is when we have at the same time: [Λ = 1], P (b|π) = 1,
and P (a|π) = 0. In that case, P (a|λ ∧ π) is not determined, which may
be interpreted as a signal that we are trying to reason with contradictory
hypotheses and a way to detect the incoherence of our hypotheses.5

8.1.3.2 Probabilistic interpretation

If we have no certainty on B (i.e., P (b|π) 6= 1 and P (b|π) 6= 0), but we
know a probability distribution on B (i.e., P (b|π) = x) then there are two
cases:

1. If we have a uniform prior on A (P (a|π) = 1

2
) then we have:

P (a|λ ∧ π) = P (b|π) = x (8.6)

If we have no certainty on B and a noninformative prior on A then
Λ = 1 has the semantic of transmitting the probability distribution
on B to A, a kind of probabilistic “assignment.”

2. If we have a nonuniform prior on A (i.e., P (a|π) = y) then we get:

P (a|λ ∧ π) =
y × x

y × x+ (1− y)× (1− x)
(8.7)

If we have both constraints at the same time (as expressed by
P (a|π) = y and P (b|π) = x) then P (a|λ ∧ π) (and P (b|λ ∧ π) as
they are equal) is a compromise between these two constraints ex-
pressed by Equation 8.7.

5See Section 2.6.2 titled “Godel’s theorem” of Jaynes’ book [2003] (pages 45–47) for a
very stimulating discussion on this subject and about the perspectives it opens relatively
to the meaning of Godel’s theorem in probability.

Bayesian Programming with Coherence Variables 125

8.1.3.3 P(a|λ̄∧ π)

What happens if Λ is set to false?
In that case we get:

P
(

a|λ̄ ∧ π
)

=
1

Z
× P (a|π)× P

(

b̄|π
) (8.8)

If B is true, we get that A is false and if B is false, we get that A is true.
The logical interpretation is that a ⇔ b̄ and the algebraic interpretation is
that the value of ¬B is equal to A.

If we have no certainty on B and a uniform prior on A then we get:

P
(

a|λ̄ ∧ π
)

= P
(

b̄|π
)

= 1− P (b|π) (8.9)

8.2 Basic example with discrete variables

8.2.1 Statement of the problem

A common need in Bayesian programming is to express that a given dis-
crete variable A should have the same probability distribution as another
discrete variable B.

The same approach as for Boolean variables, using coherence variables, can
be used with discrete variables. If we have two discrete variables A and B and
one Boolean coherence variable Λ, the decomposition of the joint distribution
is the same as that in the case of Boolean variables:

P (A ∧B ∧ Λ) = P (A)× P (B)× P (Λ|A ∧B) (8.10)

A and B are still assumed independent and P ([Λ = 1] |A ∧B) is again a
Dirac distribution with a value of one if and only if A = B:

P ([Λ = 1] |A ∧B) = δA=B (8.11)

We check that P (A| [Λ = 1] ∧ π) and P (B| [Λ = 1] ∧ π) are proportional
which means that the semantic of the coherence variable is respected. Indeed,
we can not impose a strict equality as the range of A and B may be different
(see details in the sequel of this section).

If we want to “assign” A we also have to assume that P (A) is uniform.

Different assumptions than this noninformative prior will be treated fur-
ther in this chapter, particularly in Section 8.5 titled: “Reasoning with soft
evidence.”

126 Bayesian Programming

8.2.2 Bayesian program

The corresponding Bayesian program is exactly the same as in the case of
Boolean variables:

Pr























































































Ds



























































Sp(π)



















































V a :

A,B,Λ

Dc :
{

P (A ∧B ∧ Λ|π)
= P (A|π)× P (B|π)× P (Λ|A ∧B ∧ π)

Fo :

P ([Λ = 1] |A ∧B ∧ π) = δA=B

Id

Qu :

P (A| [Λ = 1] ∧ π)

P (B| [Λ = 1] ∧ π)

(8.12)
For P (A| [Λ = 1] ∧ π) we get:

P (A|λ ∧ π)

=
1

Z
×
∑

B

[P (A|π) × P (B|π)× P (λ|A ∧B ∧ π)]

=
1

Z
× P (A|π) × P ([B = A] |π)

(8.13)

And, if we further assume that P (A) is uniform, we get for all possible
values of A:

P ([A = x] |λ ∧ π) ∝ P ([B = x] |π) (8.14)

8.2.3 Instance and results

8.2.3.1 B has a known value

If B has a known value b, then we get:

P (A|b ∧ λ ∧ π) = δA=b (8.15)

which is the semantic of the classical (nonprobabilistic) assignment.

8.2.3.2 A and B with the same range

If A and B have the same range, Equation 8.14 turns to be an equality:

P ([A = x] |λ ∧ π) = P ([B = x] |π) (8.16)

Bayesian Programming with Coherence Variables 127

8.2.3.3 Range of B included in range A

If the range of B is included in the range of A, we can reduce to the case
where they have the same range assuming that P (B|π) = 0 for the missing
values of B.

If A is out of the range of B, we get:

P (A|λ ∧ π) = 0 (8.17)

If A is in the range of B, we get:

P ([A = x] |λ ∧ π) =
P ([B = x] |π)

∑

a∈A

[P ([B = a] |π)]
(8.18)

where the sum on A is made only for the values of A that are in the range of
B (see Figure 8.1).

8.2.3.4 Range of A included in range B

Similarly, if the range of A is included in the range of B, we can reduce
to the previous case assuming that A and B have the same range and that
P (A|π) = 0 for the missing values of A. We then get for all possible values of
A:

P ([A = x] |λ ∧ π) =
P ([B = x] |π)

∑

a∈A

[P ([B = a] |π)]
(8.19)

8.2.3.5 Range of A and range of B intersect

The same can be done if the range of A and the range of B intersect.

If A is out of the range of B we get:

P (A|λ ∧ π) = 0 (8.20)

If A is in the range of B, we get:

P ([A = x] |λ ∧ π) =
P ([B = x] |π)

∑

a∈A

[P ([B = a] |π)]
(8.21)

where the sum on A is made only for the values of A that are in the range of
B.

128 Bayesian Programming

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 8 10 12 14 16 18 20

 P
(A

)

A

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 12 13 14 15 16 17 18 19

 P
(B

)

B

(b)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 8 10 12 14 16 18 20

 P
(A

|λ
 =

1
)

A

(c)

FIGURE 8.1: The assignment operator when the range of B is included in
the range of A:
(a): P (A)
(b): P (B)
(c): P (A | λ = 1)

8.2.3.6 More complicated mapping of B to A

The coherence variable Λ may also be used to encode more complicated
mapping from B to A.

In such a case P ([Λ = 1] |A ∧B) = 1 if and only if A = f(B) where f is
the function encoding the mapping from B to A.

P ([Λ = 1] |A ∧B) = δA=f(B) (8.22)

A coherence variable can be used, for instance, to change the discretiza-
tion of the variable (which is always a delicate question) or even for a non-

Bayesian Programming with Coherence Variables 129

linear mapping such as, for instance, a logarithmic mapping where f (B) =
int (log2 (B)). We get:

P ([A = x] |λ ∧ π) =

∑

B

[

P (B|π)× δx=int(log2(B))

]

∑

a∈A

[

∑

B

[

P (B|π)× δa=int(log2(B))

]

] (8.23)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 1 2 3 4 5 6 7 8

 P
(A

|λ
=

1
)

A

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 1 2 3 4 5 6 7 8

 P
(A

|λ
=

1
)

A

(b)

FIGURE 8.2: The variable B ∈ [1, 255] is mapped into the variable A ∈
[1, 7] using the log2 function: (a) P (A|λ ∧ π) with a uniform prior on B, (b)
P (A|λ ∧ π) with a Gaussian prior on B.

The program “chapter8/logcoding.py” has been used to produce Fig-
ure 8.2. A Python function was used to define the value of λ from A and
B.

def LogCoding(Output_, Input_):

if Input_[A] == math.floor(math.log(Input_[B],2)) :

Output_[LAMBDA]=1

else:

Output_[LAMBDA]=0

return

The following statement produced a Dirac distribution based on the
previous function.

diracDistrib = plFunctionalDirac(LAMBDA,A^B,\

plPythonExternalFunction(LAMBDA,A^B, \

LogCoding))

130 Bayesian Programming

8.3 Checking the semantic of Λ

8.3.1 Statement of the problem

As stated at the beginning of this chapter, the semantic of the coherence
variable should be that if the coherence variable is equal to 1 (or “true”) it
imposes that the two bound variables are “coherent” which means that they
should share the same probability distribution knowing the same premises.

Let us check that this can effectively be realized with a generic model of
the form:

P (A ∧B ∧ C ∧D ∧E ∧ Λ)
= P (A ∧ C ∧ E)× P (Λ|A ∧B)× P (B ∧D ∧ E)

(8.24)

It is generic in the sense that: (i) A and B are bound by the coherence
variable λ, (ii) A is part of a model including C not shared with B and E
shared with B, and (iii) symmetrically B is part of a model including D not
shared with A and E shared with A.

Our objective is to prove that whatever the premises p: P (A|p ∧ λ ∧ π) ≺
P (B|p ∧ λ ∧ π). We will establish this property for five different cases as all
the other possibilities can be reduced to these five cases by symmetry consid-
erations.

8.3.2 Bayesian program

The corresponding Bayesian program and questions are the following:

Bayesian Programming with Coherence Variables 131

Pr































































































































Ds



































































Sp(π)



























































V a :

A,B,C,D,E,Λ

Dc :










P (A ∧B ∧ ∧ ∧ ∧Λ|π)
= P (A ∧ C ∧ E|π)× P (Λ|A ∧B ∧ π)

×P (B ∧D ∧ E|π)
Fo :

any

Id

Qu :

P (A|λ ∧ π)

P (A|c ∧ λ ∧ π)

P (A|e ∧ λ ∧ π)

P (A|c ∧ e ∧ λ ∧ π)

P (A|d ∧ c ∧ e ∧ λ ∧ π)

(8.25)

8.3.3 Instance and results

For any value x of the variable A, we have:

P ([A = x] |λ ∧ π)

≺
∑

B∧C∧D∧E

[P ([A = x] ∧ C ∧ E|π)× P (λ|A ∧B ∧ π)× P (B ∧D ∧E|π)]

≺
∑

B∧E

[P ([A = x] ∧E|π) × P (λ|A ∧B ∧ π)× P (B ∧E|π)]

≺
∑

E

[P ([A = x] ∧ E|π)× P ([B = x] ∧E|π)]

≺ P ([B = x] |λ ∧ π)
(8.26)

We have also:

P ([A = x] |c ∧ λ ∧ π)

≺
∑

B∧D∧E

[P ([A = x] ∧ c ∧ E|π)× P (λ|A ∧B ∧ π)× P (B ∧D ∧E|π)]

≺
∑

E

[P ([A = x] ∧ c ∧ E|π)× P ([B = x] ∧E|π)]

≺ P ([B = x] |c ∧ λ ∧ π)
(8.27)

132 Bayesian Programming

and:

P ([A = x] |e ∧ λ ∧ π)

≺
∑

B∧C∧D

[P ([A = x] ∧ C ∧ e|π)× P (λ|A ∧B ∧ π)× P (B ∧D ∧ e|π)]

≺ P ([A = x] ∧ e|π)× P ([B = x] ∧ e|π)
≺ P ([B = x] |e ∧ λ ∧ π)

(8.28)
and also:

P ([A = x] |c ∧ e ∧ λ ∧ π)

≺
∑

B∧D

[P ([A = x] ∧ c ∧ e|π)× P (λ|A ∧B ∧ π)× P (B ∧D ∧ e|π)]

≺ P ([A = x] ∧ c ∧ e|π)× P ([B = x] ∧ e|π)
≺ P ([B = x] |c ∧ e ∧ λ ∧ π)

(8.29)
and, finally:

P ([A = x] |d ∧ c ∧ e ∧ λ ∧ π)

≺
∑

B

[P ([A = x] ∧ c ∧ e|π)× P (λ|A ∧B ∧ π)× P (B ∧ d ∧ e|π)]

≺ P ([A = x] ∧ c ∧ e|π)× P ([B = x] ∧ d ∧ e|π)
≺ P ([B = x] |d ∧ c ∧ e ∧ λ ∧ π)

(8.30)

which proves that the semantic of [Λ = 1] is respected.

8.4 Information fusion revisited using coherence vari-
ables

8.4.1 Statement of the problems

8.4.1.1 Expression of ignorance in sensor fusion models

The basic sensor model P (S ∧Rn) = P (S)×P (Rn|S), as proposed in the
previous chapter, encounters some difficulties with the expression of ignorance.

For instance, if we have no informative prior on the phenomenon then
we assume that P (S) is uniform. At the same time we may want to assume
that we also have a noninformative prior on the reading: P (Rn) is uniform.
These two assumptions are not compatible, beginning with the first one we
can compute P (Rn):

P (Rn) =
∑

S

[P (S)× P (Rn|S)] (8.31)

which, most of the time, is not uniform.

Bayesian Programming with Coherence Variables 133

You may not be convinced that expressing both these noninformative pri-
ors is a practical necessity. Let us get back to the “false alarm” example of
Section 7.5 of Chapter 7. The sensor model is the following:

P (S ∧ F ∧Rn) = P (S)× P (F)× P (Rn|S ∧ F) (8.32)

We use the regular sensor model if there is no false alarm (F = 0) but we
have no information on Rn if there is a false alarm (F = 1). In that last case,
we would like to state that P (Rn|[F = 1]) is uniform. This may be obtained
if we state that P (Rn|S ∧ [F = 1]) is uniform. However, if we do so, the value
of P (Rn|S ∧ [F = 1]) is the inverse of the cardinality of the variable Rn. This
presents the drawback that a false alarm has consequences that depend on
this cardinality, which is not desirable. Indeed, a false alarm on two different
sensors with different ranges should have the same consequences on the fusion
process.

8.4.1.2 Expert knowledge fusion

Often you want to do the fusion between information about a variable of
interest S coming from N different“experts,” each forming his opinion accord-
ing to his own information, which can be summarized as a variable Rn.

The opinion of each expert is formalized by P (S|Rn).
We are interested by the synthesis P (S|r1 ∧ . . . ∧ rN ∧ π).

A tempting approach is to mimic the naive Bayesian fusion of the previous
chapter by using a decomposition of the kind:

P (S ∧R1 ∧ . . . ∧RN |π) =
N
∏

n=1

[P (Rn|π)× P (S|Rn ∧ π)] (8.33)

This is, of course, an invalid approach as the variable S appears several
times on the left of a distribution in this decomposition.

Another possible track is to use the following decomposition:

P (S ∧ S1 ∧ . . . ∧ SN ∧R1 ∧ . . . ∧RN |π)

= P (S|S1 ∧ . . . ∧ SN)×
N
∏

n=1

[P (Rn|π)× P (Sn|Rn ∧ π)]
(8.34)

where each expert expresses his own opinion Sn and where the distribution
P (S|S1 ∧ . . . ∧ SN) is in charge of the synthesis of these diverging opinions. It
has two essential shortcomings as (i) P (S|S1 ∧ . . . ∧ SN) is a very big dis-
tribution, most of the time very difficult to formalize and (ii) computing
P (S|r1 ∧ . . . ∧ rN ∧ π) supposes to marginalize out the N variables Sn which
is a very cumbersome computation.

134 Bayesian Programming

Yet another approach could be to say that we use the “regular” fusion
model:

P (S ∧R1 ∧ . . . ∧RN |π) = P (S|π)×
N
∏

n=1

[P (Rn|S ∧ π)] (8.35)

But we add that P (Rn|S ∧π) is obtained from a nonregular submodel πn:

P (Rn|S ∧ π) =
P (Rn|πn)× P (S|Rn ∧ πn)

∑

Rn

[P (Rn|πn)× P (S|Rn ∧ πn)]
(8.36)

Introducing this expression in Equation 8.35, we get:

P (S ∧R1 ∧ . . . ∧RN |π)

= P (S|π)×
N
∏

n=1









P (Rn|πn)× P (S|Rn ∧ πn)
∑

Rn

[P (Rn|πn)× P (S|Rn ∧ πn)]









(8.37)

Computing P (S|r1 ∧ . . . ∧ rN ∧ π) gives:

P (S|r1 ∧ . . . ∧ rN ∧ π)

=
P (S|π)

P (r1 ∧ . . . ∧ rN |π)
×

N
∏

n=1









P (rn|πn)× P (S|rn ∧ πn)
∑

Rn

[P (Rn|πn)× P (S|Rn ∧ πn)]









(8.38)

Contrary to the regular sensor fusion, where P (S|r1 ∧ . . . ∧ rN ∧ π) is
proportional to the product of the P (Rn|S ∧ π) if P (S|π) is uniform, here,
P (S|r1 ∧ . . . ∧ rN ∧ π) is not proportional to the product of the P (S|Rn ∧ πn)
terms. We lose one of the main advantages of the fusion process: its compu-
tation efficiency. Indeed, we need now to compute all the normalization terms

(
∑

Rn

[P (Rn|πn)× P (S|Rn ∧ πn)]), which may be very cumbersome.

8.4.1.3 Coherence variable fusion

All these difficulties result from the asymmetry of the the sensor model as
expressed by: P (S ∧Rn) = P (S)× P (Rn|S).

The semantic of this expression is that the readings depend on the state.
We would rather express that the readings and the state should be “co-

herent.” To do so, we propose a slightly different model:

P (S ∧Rn ∧ Λn|π) = P (S|π)× P (Rn|π)× P (Λn|Rn ∧ S ∧ π) (8.39)

where Λn is a coherence variable.

Bayesian Programming with Coherence Variables 135

8.4.2 Bayesian program

This coherence variable fusion may be summarized by the following
Bayesian program:

Pr



































































































Ds







































































Sp(π)



























































V a :

S,R1, . . . , RN ,Λ1, . . . ,ΛN

Dc :










P (S ∧R1 ∧ . . . ∧ ΛN |π)

= P (S|π)×
N
∏

n=1

[P (Rn|π)× P (Λn|S ∧Rn ∧ π)]

Fo :

see− text

Id

Qu :

P (S|r1 ∧ . . . rN ∧ λ1 ∧ . . . ∧ λN ∧ π)

P (S|λ1 ∧ . . . ∧ λN ∧ π)

(8.40)

The answer to the first question is the following:

P (S|r1 ∧ . . . rN ∧ λ1 ∧ . . . ∧ λN ∧ π)

=
1

Z
× P (S|π)×

N
∏

n=1

[P (λn|S ∧ rn ∧ π)]
(8.41)

when the answer to the second is:

P (S|λ1 ∧ . . . ∧ λN ∧ π)

=
1

Z ′
× P (S|π)×

N
∏

n=1

[

∑

Rn

[P (Rn|π)× P (λn|S ∧Rn ∧ π)]

]

(8.42)

Both will lead to different results depending on how P (λn|S ∧Rn ∧ π) is
specified.

8.4.3 Instance and results

8.4.3.1 Value assignment: P (λn|S ∧Rn ∧ π) = δS=Rn

In that case, for the first question, either all the values rn are equal and
we get that P ([S = r1] |r1 ∧ . . . rN ∧ λ1 ∧ . . . ∧ λN ∧ π) = 1, which means that
we assigned this common value to S, or, they are different and the value of
P (S|r1 ∧ . . . rN ∧ λ1 ∧ . . . ∧ λN ∧ π) is undefined (the normalization constant
Z in Equation 8.41 is null).

136 Bayesian Programming

This undefined value is revelatory in that we ask a question with contra-
dictory hypotheses.6

For the second question we get:

P (S|λ1 ∧ . . . ∧ λN ∧ π)

=
1

Z
× P (S|π)×

N
∏

n=1

[P ([Rn = S] |π)] (8.43)

P (S|λ1 ∧ . . . ∧ λN ∧ π) is the normalized product of all the priors.

8.4.3.2 Distance assignment: P (λn|S ∧Rn ∧ π) ∝ e
−dn(S,Rn)

Let us suppose that we have a distance dn that can be applied to S and
Rn.

We may want to express that the closer S is to Rn, the more coherent they
are.

This can easily be done by stating:

P (λn|S ∧Rn ∧ π) ∝ e−dn(S,Rn) (8.44)

In that case we get for the first question that:

P (S|r1 ∧ . . . rN ∧ λ1 ∧ . . . ∧ λN ∧ π)

=
1

Z
× P (S|π)×

N
∏

n=1

[

e−dn(S,Rn)
] (8.45)

If, for instance, S, R1, and R2 are three integer variables varying between

1 and 100 and dn (S,Rn) =
abs(S −Rn)

σn

, we can compute the distribution

on S P (S | R0 = 50 ∧R1 = 70 ∧ λ0 ∧ λ1) when we have two different readings
R0 = 50 and R1 = 70. Figure 8.3 shows two cases: one with an identical pre-
cision for the reading σ0 = σ1 = 10 and the other for two different precisions:
σ0 = 10 and σ1 = 20.

For the second question, we have:

P (S|λ1 ∧ . . . ∧ λN ∧ π)

=
1

Z
× P (S|π)×

N
∏

n=1

[

∑

Rn

[

P (Rn|π) × e−dn(S,Rn)
]

]

(8.46)

6The same remark as above. See Section 2.6.2 titled “Godel’s theorem” of Jaynes’ book
[2003] (pages 45–47) for a very stimulating discussion on this subject and about the per-
spectives it opens relative to the meaning of Godel’s theorem in probability.

Bayesian Programming with Coherence Variables 137

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 20 40 60 80 100

 P
(S

)

S

(a)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 20 40 60 80 100

 P
(S

)

S

(b)

FIGURE 8.3: Distance assignment with two precisions: (a) σ0 = σ1 = 10
and (b) σ0 = 10, σ1 = 20.

8.4.3.3 Sensor fusion: P (λn|S ∧Rn ∧ π) = P (Rn|S ∧ πn)

If we state that P (λn|S ∧Rn ∧ π) = P (Rn|S ∧ πn) we get for the first
question:

P (S|r1 ∧ . . . rN ∧ λ1 ∧ . . . ∧ λN ∧ π)

=
1

Z
× P (S|π)×

N
∏

n=1

[P (rn|S ∧ πn)]
(8.47)

which is the exact same expression as for the naive Bayesian fusion (see Equa-
tion 7.4).

However, we now have the freedom to specify priors for the readings as
the P (Rn|π) appears in the decomposition of the Bayesian program (Equation
8.40). The answer to the second question is then:

P (S|λ1 ∧ . . . ∧ λN ∧ π)

=
1

Z ′
× P (S|π)×

N
∏

n=1

[

∑

Rn

[P (Rn|π)× P (Rn|S ∧ πn)]

]

(8.48)

8.4.3.4 Sensor fusion with false alarm revisited

Let us revisit, using coherence variables, the sensor fusion with the false
alarm example in Section 7.5 of Chapter 7.

The Bayesian program (7.25) may be transformed into:

138 Bayesian Programming

Pr











































































































































































Ds



























































































































































Sp(π)















































































































































V a :

X,Y, F2, F3, D2, D3,Λ2,Λ3

Dc :






























P (X ∧ Y ∧ . . . ∧ Λ3|π)

= P (X ∧ Y |π)×
3
∏

n=2

[P (Dn|π)× P (Fn|π)]

×
3
∏

n=2

[P (Λn|X ∧ Y ∧Dn ∧ Fn ∧ π)]

Fo :






















































P (X ∧ Y |π) = Uniform

P ([F2 = 1] |π) = 0.3

P ([F3 = 1] |π) = 0.3

P (Dn|π) = Uniform

P (λn|X ∧ Y ∧Dn ∧ [Fn = 0] ∧ π)

= G

(

[µ = dn] ,

[

σ = 1 +
dn
10

])

P (λn|X ∧ Y ∧Dn ∧ [Fn = 1] ∧ π) = 1/2

Id

Qu :

P (X ∧ Y |d2 ∧ d3 ∧ λ2 ∧ λ3 ∧ π)

(8.49)

If there is no false alarm, the position of the boat (X∧Y) and the different
distances should be coherent and, on the contrary, if there is a false alarm there
is no reason to justify any relation between the position and the observed
readings.

When there is no false alarm a good measure of the coherence is given by
the regular sensor model. This can be encoded as:

P (λn|X ∧ Y ∧Dn ∧ [Fn = 0] ∧ π)
= P (Dn|X ∧ Y ∧ π)

= G

(

[µ = dn] ,

[

σ = 1 +
dn
10

]) (8.50)

When there is a false alarm, we do not know if the position of the boat
and the distances are coherent:

P (λn|X ∧ Y ∧Dn ∧ [Fn = 1] ∧ π) = 1/2 (8.51)

Bayesian Programming with Coherence Variables 139

P (X ∧ Y |d2 ∧ d3 ∧ λ2 ∧ λ3 ∧ π) is given by:

P (X ∧ Y |d2 ∧ d3 ∧ λ2 ∧ λ3 ∧ π)

=
1

Z
×
∑

F2∧F3













P (X ∧ Y |π)×
3
∏

n=2

[P (Fn|π)]

×
3
∏

n=2

[P (λn|X ∧ Y ∧ dn ∧ Fn ∧ π)]













(8.52)

which leads to the same results as in Chapter 7.

8.4.3.5 Expert fusion: P (λn|S ∧Rn ∧ π) = P (S|Rn ∧ πn)

If we state that P (λn|S ∧Rn ∧ π) = P (S|Rn ∧ πn) then we solve correctly
the expert fusion problem.

The answer to the first question is:

P (S|r1 ∧ . . . rN ∧ λ1 ∧ . . . ∧ λN ∧ π)

=
1

Z
× P (S|π)×

N
∏

n=1

[P (S|rn ∧ πn)]
(8.53)

which has the appealing property of being again a simple product of proba-
bility distributions as in the sensor fusion case.

The answer to the second question is:

P (S|λ1 ∧ . . . ∧ λN ∧ π)

=
1

Z ′
× P (S|π)×

N
∏

n=1

[

∑

Rn

[P (Rn|π)× P (S|Rn ∧ πn)]

]

=
1

Z ′
× P (S|π)×

N
∏

n=1

[P (S|πn)]

(8.54)

It is the normalized product of all the priors on S.

8.4.3.6 Proscriptive versus prescriptive assignment

Instead of specifying that we want a given variable to have a given value,
we often desire to specify that we do not want this variable to take this value.
We want a “proscriptive” specification instead of a “prescriptive” one.

For instance, as we saw in the inverse programming example in Section 7.6
in Chapter 7, going toward the nth landmark may be expressed as:

P (Bn|H ∧ πn) = B (µ = H,σ) (8.55)

where Bn is the bearing of the landmark and H is the heading direction. We
state in this expression that when going toward a landmark, the bearing of
this landmark should be approximately the same as the heading direction.

140 Bayesian Programming

A commonly used approach to avoid an obstacle is to specify what should
be done to avoid it. For instance, we could state that P (Bn|H ∧ πn) =
B (µ = H + 90, σ) to express that avoiding a landmark consists in heading
90 to its left. This has two drawbacks: (i) by prescribing a direction where to
go we provide more information than necessary, and this extra information
may be a handicap in certain situations and (ii) fusion of prescriptive infor-
mation may convey very poor information when evaluating a solution in the
queues of the distributions.

A more interesting approach is to say that avoiding a landmark consists
in not heading toward this landmark. This is what we did in Section 7.6 by
specifying:

P (Bn|H) =
1

Z
[1−B (µ = H,σ′)] (8.56)

for the landmark to avoid.
However, there is an even more simple solution using the values of co-

herence variables to decide if we want Bn and H to be coherent ([Λ = 1]
meaning heading toward this landmark) or to be incoherent ([Λ = 0] meaning
not heading toward this landmark).

Pr











































































































Ds























































































Sp(π)















































































V a :

H,B1, B2, B3,Λ1,Λ2,Λ3

Dc :










P (H ∧B1 ∧ . . . ∧ Λ3|π)

= P (H |π)×
3
∏

n=1

[P (Bn|π)× P (Λn|H ∧Bn ∧ π)]

Fo :










P (H |π) = Uniform

P (Bn|π) = Uniform

P (λn|H ∧Bn ∧ π) = B (Bn, µ = H,σ)

Id

Qu :

P
(

H |b1 ∧ λ1 ∧ b2 ∧ λ̄2 ∧ b3 ∧ λ̄3 ∧ π
)

(8.57)
This way we obtain for the question P

(

H |b1 ∧ λ1 ∧ b2 ∧ λ̄2 ∧ b3 ∧ λ̄3 ∧ π
)

:

P
(

H |b1 ∧ λ1 ∧ b2 ∧ λ̄2 ∧ b3 ∧ λ̄3 ∧ π
)

=
1

Z
×B (B1, µ = H,σ)× [1−B (B2, µ = H,σ)]× [1−B (B2, µ = H,σ)]

(8.58)
which is the same expression as in Section 7.6.3 and, of course leads to the
same result (see Figure 7.10 in Chapter 7).

The advantage is that with the same model, we can, by changing the
question, decide which landmarks are attractive and which are repulsive.

Bayesian Programming with Coherence Variables 141

8.5 Reasoning with soft evidence

8.5.1 Statement of the problem

The information at our disposal to reason with is often probability distri-
butions on variables instead of the values of these variables. In the literature,
this is often called: “reasoning with soft evidence.”

For instance, if we have the most simple model we can imagine:

P (A ∧B|π) = P (A|π)× P (B|A ∧ π) (8.59)

Instead of being interested by the classical questions P (B|a ∧ π) or
P (A|b ∧ π), we may want to infer the probability of B knowing a distribution
on A P (A|π′) or the probability of A knowing a distribution P (B|π′).

A tempting notation for both these questions is P (B|P (A|π′) ∧ π) and
P (A|P (B|π′) ∧ π). However, these are not valid notations of the formalism
for two reasons: (i) there is no variable in the model to encode P (A|π′) and
P (B|π′) and (ii) P (A|π′) and P (B|π′) are not values but probability dis-
tributions and, as such, are not supposed to appear on the right part of a
question.

The first question “P (B|P (A|π′) ∧ π)” is often solved by replacing the
prior P (A|π) by the soft evidence P (A|π′) and by computing P (B|π):

P (B|π) =
∑

A

[P (A|π′)× P (B|A ∧ π)] (8.60)

Even if it performs something which intuitively is close to what we would
like to do, it is not completely satisfactory because we have to use two tricks,
on one hand, by replacing the prior P (A|π) by P (A|π′) and, on the other
hand, by replacing the question “P (B|P (A|π′) ∧ π)” by P (B|π). Further-
more, when replacing P (A|π) by P (A|π′) we lose the freedom to express a
prior on A.

Most of the time, no practical solution is proposed for the second question:
“P (A|P (B|π′) ∧ π)” as the two previous tricks do not work.

Coherence variables propose a generic solution for the formal treatment of
soft evidence reasoning using the following decomposition:

P (ΠA′ ∧A′ ∧ ΛA ∧ A ∧B|π)
= P (ΠA′ |π)P (A′|ΠA′ ∧ π)× P (ΛA|A′ ∧ A ∧ π)× P (A ∧B|π) (8.61)

where A′ is a “mirror” variable of A, ΠA′ stands for the parameter of the
distribution on A′, and where ΛA is a coherence variable used to constrain
the distribution on A′ and A to be proportional for their common values.

142 Bayesian Programming

8.5.2 Bayesian program

More details about this solution are provided by the complete Bayesian
program:

Pr



















































































































Ds























































































Sp(π)















































































V a :

ΠA′ , A′,ΛA, A,B

Dc :










P (ΠA′ ∧A′ ∧ ΛA ∧ A ∧B|π)
= P (ΠA′ |π)× P (A′|ΠA′ ∧ π)

×P (ΛA|A′ ∧ A ∧ π)× P (A ∧B|π)
Fo :










P (ΠA′ |π) = Uniform

P (A′|ΠA′ ∧ π) = f (A′,ΠA′)

P (λA|A′ ∧ A ∧ π) = δA=A′

Id

Qu :

P (A|πA′ ∧ λA ∧ π)

P (B|πA′ ∧ λA ∧ π)

(8.62)

Our goal is to propose a clearly formalized form to transcript the semantic
of the question loosely stated as “P (B|P (A|π′) ∧ π).”

The proposed form is:

P (B|πA′ ∧ λA ∧ π) (8.63)

As already mentioned, the first difficulty is to assign the variable A with a
probability distribution imposed as known for a given inference. This can be
easily solved using coherence variables which have been designed especially to
solve this kind of problem. It leads to the following decomposition:

P (A′ ∧ ΛA ∧ A ∧B|π)
= P (A′|π)× P (ΛA|A′ ∧ A ∧ π)× P (A|π)× P (B|A ∧ π)

(8.64)

where we add a variable A′ to mirror A and a coherence variable ΛA to ensure
that the probability distributions on A′ and A are bound.

The second difficulty is the need to represent probability distribution by
values. This can be accomplished by adding a parameter variable ΠA′ such
that if ΠA′ has a known value πA′ then P (A′|πA′ ∧ π) is completely de-
termined. We first assume that we have a uniform prior on the parameter:
P (ΠA′ |π) = Uniform. Second, we state that if the parameters are known
then the value of the probability may be obtained by a function f (usually
called the “parametric form”): P (A′|πA′ ∧ π) = f (A′, πA′). For instance, if
we want to have a Gaussian then P (A′|πA′ ∧ π) = G (A′, µA′ , σA′) where we

Bayesian Programming with Coherence Variables 143

have two parameters µA′ the mean and σA′ the standard deviation and where

G(x, y, z) =
1√

2π × z
× e−

(x−y)2

z2 .

The answer to the question P (B|πA′ ∧ λA ∧ π) is obtained as:

P (B|πA′ ∧ λA ∧ π)

=
1

Z
×
∑

A∧A′

[

P (πA′ |π)× P (A′|πA′ ∧ π)
×P (λA|A′ ∧ A ∧ π)× P (A ∧B|π)

]

=
1

Z ′
×
∑

A

[P ([A′ = A] |πA′ ∧ π)× P (A ∧B|π)]
(8.65)

If P (A ∧B|π) = P (A|π) × P (B|A ∧ π) we get:

P (B|πA′ ∧ λA ∧ π)

=
1

Z ′
×
∑

A

[P ([A′ = A] |πA′ ∧ π)× P (A|π)× P (B|A ∧ π)] (8.66)

which is similar to Equation 8.60 but where both appear as the imposed
probability distribution P ([A′ = A] |πA′ ∧ π) and the prior P (A|π).

If P (A ∧B|π) = P (B|π) × P (A|B ∧ π) we get:

P (B|πA′ ∧ λA ∧ π)

=
1

Z ′
×
∑

A

[P ([A′ = A] |πA′ ∧ π)× P (B|π)× P (A|B ∧ π)] (8.67)

which is an answer to the second question usually not treated.

8.5.3 Instance and results

Modern radar, especially military radar, provides not only readings for the
distance and bearing of a target, but also some evaluations of the confidence
in these readings. Typically, they give the two parameters of a Gaussian,
the mean being the reading and the standard deviation being this confidence
measure.

If our goal is to fusion information of this kind about different targets to
localize as in the previous chapter, then we are exactly in the situation of
reasoning with soft evidence just described. The entries are the parameters of
one probability distribution by target and the question is to localize knowing
these parameters.

The Bayesian program (Section 7.6)7 corresponding to naive sensor fusion
then becomes (we omit the bearings to simplify the notation):

7Section 7.1 of Chapter 7.

144 Bayesian Programming

Pr







































































































































































Ds



















































































































































Sp(π)











































































































































V a :

X,Y,D1, D2, D3, D
′
1, D

′
2D

′
3,Λ1,Λ2,Λ3,

M1,M2,M3,Σ1,Σ2,Σ3

Dc :


















































P (X ∧ Y ∧ . . . ∧Σ3|π)

=

3
∏

n=1

[P (Mn ∧ Σn|π)× P (D′
n|Mn ∧ Σn ∧ π)]

×P (X ∧ Y |π)×
3
∏

n=1

[P (Dn|X ∧ Y ∧ π)]

×
3
∏

n=1

[P (Λn|Dn ∧D′
n ∧ π)]

Fo :


















P (D′
n|µn ∧ σn ∧ π) = B (D′

n, µn, σn)

P (X ∧ Y |π) = Uniform

P (Dn|X ∧ Y ∧ π) = δDn=d−n(X,Y)

P (Λn|Dn ∧D′
n ∧ π) = δDn=D′

n

Id

Qu :

P (X ∧ Y |µ1 ∧ µ2 ∧ µ3 ∧ σ1 ∧ σ2 ∧ σ3 ∧ λ1 ∧ λ2 ∧ λ3 ∧ π)

(8.68)
P (D′

n|µn ∧ σn ∧ π) is a bell-shaped distribution of parameters µn and σn.
P (Dn|X ∧ Y ∧ π), the previous sensor model, does not necessarily need to

encode uncertainty anymore as this uncertainty is provided by the sensor itself
with the soft evidence µn and σn. It may be chosen as a Dirac distribution,
taking a value of one when Dn is equal to the distance d−n(X,Y) of the boat
from the nth target.

P (Λn|Dn ∧D′
n ∧ π) is the coherence variable Dirac distribution used to

bound the soft evidence distribution from D′ to D.

The answer to the localization question is:

P (X ∧ Y |µ1 ∧ µ2 ∧ µ3 ∧ σ1 ∧ σ2 ∧ σ3 ∧ λ1 ∧ λ2 ∧ λ3 ∧ π)

∝
3
∏

n=1

[B (d− n(X,Y), µn, σn)]
(8.69)

It may seem a very complicated model to finally obtain the same result as
with the naive fusion model.

However, we have now a complete separation between the soft evidence

Bayesian Programming with Coherence Variables 145

modeling the sensors and the internal model describing the geometrical rela-
tions. Especially, we are completely free to specify this internal model as we
want; all dependencies and all priors are acceptable.

8.6 Switch

8.6.1 Statement of the problem

A complex model is most of the time made of several submodels, partially
independent from one another, only connected by well-defined interfaces.

An interesting feature is to be able to switch on or off some part of the
model when needed. This feature could be implemented with coherence vari-
ables.

8.6.2 Bayesian program

Let us take an example in which we have three submodels, each of them
sharing one variable used as an interface.

We have the following Bayesian program:

Pr











































































































































Ds



























































































Sp(π)















































































V a :

A, I1, B, I2, C, I3,Λ12,Λ13,Λ23

Dc :






























P (A ∧ . . . ∧ Λ23|π)
= P (A ∧ I1|π)× P (B ∧ I2|π)
×P (C ∧ I3|π)
×P (Λ12|I1 ∧ I2 ∧ π)× P (Λ13|I1 ∧ I3 ∧ π)

×P (Λ23|I2 ∧ I3 ∧ π)

Fo :
{

P (Λij |Ii ∧ Ij ∧ π) = δIi=Ij

Id

Qu :

P (A|b ∧ λ12 ∧ π)

P (A|b ∧ c ∧ λ12 ∧ λ13 ∧ π)

P (C|b ∧ λ12 ∧ λ13 ∧ π)

P (C|b ∧ λ23 ∧ π)

(8.70)
This decomposition is a good example to prove that algebraic notation is

146 Bayesian Programming

more powerful than graphical representation. Indeed, a graphical representa-
tion of such a simple decomposition is quite difficult to present and cannot be
proposed without augmenting the model with some supplementary variables.8

We have three submodels: P (A ∧ I1), P (B ∧ I2), and P (C ∧ I3) and three
coherence variables Λ12 between the interface variables I1 and I2, Λ13 between
I1 and I3, and Λ23 between I2 and I3.

Among the possible different questions let us examine four of them:

P (A|b ∧ λ12 ∧ π)

=
1

Z
×
∑

I1

[

P (A ∧ I1|π)× P (b ∧ [I2 = I1] |π)
] (8.71)

where two submodels are activated to search for the probability distribution
on A knowing b.

P (A|b ∧ c ∧ λ12 ∧ λ13 ∧ π)

=
1

Z
×
∑

I1

[

P (A ∧ I1|π)× P (b ∧ [I2 = I1] |π)× P (c ∧ [I3 = I1] |π)
]

(8.72)
where the three submodels are used to compute the probability on A knowing
b and c.

P (C|b ∧ λ12 ∧ λ13 ∧ π)

=
1

Z
×
∑

A∧I1

[

P (A ∧ I1|π)× P (b ∧ [I2 = I1] |π) × P (c ∧ [I3 = I1] |π)
]

(8.73)
where the three submodels are used to find the probability on C knowing b.

P (C|b ∧ λ23 ∧ π)

=
1

Z
×
∑

I2

[

P (b ∧ I2|π)× P (C ∧ [I3 = I2] |π)
] (8.74)

where only the two submodels P (B ∧ I2) and P (C ∧ I3) are used to compute
the probability on C knowing b.

8.6.3 Instance and results

For instance, such an approach has been used in the PhD thesis of Es-
telle Gilet (see Gilet [2009] and Gilet et al. [2011]) titled “Bayesian Action–
Perception Computational Model: Interaction of Production and Recognition
of Cursive Letters.”

The purpose of this work is to study the complete perception–action loop

8This is one of the arguments in favor of using Bayesian programming instead of Bayesian
networks, see the FAQ-FAM, “Bayesian programming versus Bayesian networks” in Section
16.3.

Bayesian Programming with Coherence Variables 147

involved in handwriting. It proposes a mathematical formulation for the whole
loop, based on a probabilistic model called the Bayesian Action–Perception
(BAP) model. Six cognitive tasks are solved using Bayesian inference: (i) let-
ter recognition (purely sensory), (ii) writer recognition, (iii) letter production
(with different effectors), (iv) copying of trajectories, (v) copying of letters,
and (vi) letter recognition (with internal simulation of movements).

One of the main interrogation is the relative role of different submodels,
essentially the perception submodel, the motor one and the internal represen-
tation submodel. Coherence variables have been introduced to be able to solve
the different cognitive tasks choosing which submodel to activate to compute
the answer.

In this work, each I1, I2, and I3 is a conjunction of about 40 scalar vari-
ables. These variables have been selected to best discriminate between letters.
For example, some are a temporal discretization of the key features found in
the geometrical representation of letters such as curvature.

The model of P (A ∧ I1) is learned. It captures the model of letters for
a given writer. P (B ∧ I2) is a model of the perceptive system (reading) to
pass visual information B to the internal encoding I2. Finally, P (C ∧ I3) is a
model of the motor system (writing) describing how to control an effector C
knowing the internal representation of a letter I2.

The meaning of the first question (P (A|b ∧ λ12 ∧ π)) is to recognize the
letter and writer using only visual information.

P (A|b ∧ c ∧ λ12 ∧ λ13 ∧ π) stands for recognizing the letter and writer us-
ing both perceptive and motor information.

P (C|b ∧ λ12 ∧ λ13 ∧ π) is a letter copy taking into account the writer style.
In a sense, the computation may be seen as, first, recognizing the read let-
ter and, second, as generating the appropriate motor command to write the
recognized letter.

Finally, P (C|b ∧ λ23 ∧ π) is a trace copy, where the motor commands are
generated without any recognition of the letter, but rather by trying to repro-
duce exactly the read trajectory even if it does not correspond to any known
letter.

8.7 Cycles

8.7.1 Statement of the problem

Another common problem appears when you have several “tracks” of rea-
soning to draw the same conclusion.

In this case, you have cycles in your Bayesian graph which lead to problems
expressing the model in the Bayesian programming formalism.

148 Bayesian Programming

The most simple case may be expressing this with only three variables A,
B, and C.

Let us suppose that we know, on the one hand, a dependency between A
and C (P (C|A)) and, on the other hand, a dependency between A and B
(P (B|A)) followed by a dependency between B and C (P (C|B)).

In this case, we cannot express the joint probability distribution as a prod-
uct of these three elementary distributions, as C appears twice on the left.

An attractive solution is to write that P (A ∧B ∧C) = P (A)×P (B|A)×
P (C|A ∧B), but then the known distributions P (C|A) and P (C|B) do not
appear in the decomposition, instead in this decomposition the distribution
P (C|A ∧B) appears, which is not known and may be very difficult to express.

Here again, the coherence variables offer an easy solution. C is the variable
that may be deduced from A when a new variable C′ may be deduced from
the inference chain starting from A to infer B to finally infer C′. We then
only need a coherence variable Λ to express that the distributions on C and
C′ should be “equal.”

8.7.2 Bayesian program

This leads to the following Bayesian program:

Pr



































































































Ds















































































Sp(π)







































































V a :

A,B,C,C′,Λ

Dc :


















P (A ∧B ∧ C ∧ C′ ∧ Λ|π)
= P (A|π) × P (C|A ∧ π)

×P (B|A ∧ π)× P (C′|B ∧ π)

×P (Λ|C ∧ C′ ∧ π)

Fo :
{

P (Λ|C ∧ C′ ∧ π) = δC=C′

Id

Qu :

P (C|a ∧ λ ∧ π)

(8.75)

8.7.3 Instance and results

There are numerous such examples, however nice and simple instances
may be extracted from robotic Computer Aided Design (CAD) systems taking
into account uncertainty (see for instance the PhD work of Kamel Mekhnacha
[Mekhnacha, 1999; Mekhnacha et al., 2001]).

Bayesian Programming with Coherence Variables 149

Let us take a very simple example made of a robot in a one-dimensional
environment (see Figure 8.4).

Robot Link

Object Location Robot Location

Pr

Po

L

R
Range Sensor

Robot Actuator

World

C

Pa

Pe

FIGURE 8.4: A simple planar robot with one degree of freedom.

The position of this robot’s base in the world reference frame is stored in
a variable Pr.

The robot has a range sensor that is able to measure the distance of an
object (variable R). Knowing Pr and R you may infer the position of the
object Po as in a perfect world we would have: Po = Pr +R.

The robot bears a prismatic joint. The command of this joint is the variable
C. Knowing Pr and C you can infer the position of the link Pa as, yet in a
perfect world we would have: Pa = Pr + C.

The length of the link is supposed to be L. Knowing Pa and L, we know
the position of the extremity of the arm Pe as Pe = Pa + L.

However, the world is not perfect. We may have some uncertainty on the
position of the robot P (Pr), the precision of the sensor P (Po|Pr ∧ R), the
command of the robot P (Pa|Pr∧C), and even the length of the arm P (Pe|Pa∧
L).

The goal of the robot is to touch the object with its arm. When the contact
is made, then we have Po < Pe and Pe − Po < ǫt. The two kinematic chains
make a closed loop. This is modeled by a coherence variable Λ equal to one if
and only if the contact is realized.

This finally leads to the following Bayesian program:

150 Bayesian Programming

Pr















































































































































































Ds







































































































































Sp(π)































































































































V a :

Pr, R, Po, C, Pa, L, Pe,Λ

Dc :






























P (Pr ∧ . . . ∧ Λ|π)
= P (Pr|π) × P (R|π)× P (Po|Pr ∧R ∧ π)

×P (C|π)× P (Pa|Pr ∧ C ∧ π)

×P (L|π)× P (Pe|Pa ∧ L ∧ π)

×P (Λ|Po ∧ Pe ∧ π)

Fo :






































P (Po|Pr ∧R ∧ π) = Normal(Pr , ǫr)

P (C|π) = Uniform

P (Pa|Pr ∧C ∧ π) = Normal(pr + c, ǫc)

P (L|π) = Normal(L0, ǫL)

P (Pe|Pa ∧ L ∧ π) = δpe=pa+l

P (Λ|Po ∧ Pe ∧ π) = δ0≤pe−po≤ǫt

Id

Qu :

P (C|r ∧ λ ∧ π)

P (Po|r ∧ c ∧ λ ∧ π)

P (L|r ∧ c ∧ λ ∧ π)

(8.76)
This program assumes the following error models:

1. Normal(Pr, ǫr): error model for the sensor.

2. Normal(pr + c, ǫc): error model for the control.

3. Normal(L0, ǫL): error model for the manufacturing.

4. δ0≤pe−po≤ǫt : error model for the task.

Numerous interesting questions may be asked about this model. Let us
take three of them as examples:

P (C|r ∧ λ ∧ π) (8.77)

where knowing the distance measured by the sensor we search the control that
will drive the robot to the contact with the object (inverse kinematic).

(Po|r ∧ c ∧ λ ∧ π) (8.78)

where we look for the position of the object knowing both the reading of the
sensor and the command that leads to contact (localization).

P (L|r ∧ c ∧ λ ∧ π) (8.79)

Bayesian Programming with Coherence Variables 151

where we derive the probability distribution on the length of the arm knowing
the sensor’s reading and the command (calibration).

The program “chapter8/inverse k.py” is an implementation of Equa-
tion 8.76. It uses intervals and continuous variables. Uncertainties are
modeled using conditional normals which use functions to compute the
mean.

Pa =plSymbol("Pa",worldrange)

def actuator_model(Output_,Input_):

Output_[0]=Input_[Pr]+Input_[C]

PPa=plCndNormal(Pa,Pr^C, \

plPythonExternalFunction(Pr^C, \

actuator_model),

2)

A functional Dirac is used to implement the distribution on the
cohrence variable Λ:

Lambda = plSymbol("Lambda",plIntegerType(0,1))

def Coherence(Output_,Input_):

r = Input_[Pe]- Input_[Po]

if r.to_float() > 0 and r.to_float() < 1 :

Output_[Lambda]=1

else :

Output_[Lambda]=0

DiracLambda=plFunctionalDirac(Lambda,Pe^Po, \

plPythonExternalFunction(Lambda,Pe^Po, \

Coherence))

inverse_kinematic = model.ask_mc_sample(C,Lambda^R,500)

Approximate inference is made by controlling the number of samples
used to approximate each integral of the inference process.

The inverse kinematic (Equation 8.77) is obtained with:

inverse_kinematic = model.ask_mc_sample(C,Lambda^R,500)

the location (Equation 8.78)

location= model.ask_mc_sample(C,Lambda^R,500)

and the calibration with (Equation 8.79)

calibration = model.ask_mc_sample(C,Lambda^R,500)

This page intentionally left blankThis page intentionally left blank

Chapter 9

Bayesian Programming Subroutines

9.1 The sprinkler model . 154
9.1.1 Statement of the problem . 154
9.1.2 Bayesian program . 156
9.1.3 Instance and results . 156

9.2 Calling subroutines conditioned by values . 159
9.2.1 Statement of the problem . 159
9.2.2 Bayesian program . 159
9.2.3 Instance and results . 160

9.3 Water treatment center revisited (final) . 162
9.3.1 Statement of the problem . 162
9.3.2 Bayesian program . 162

9.4 Fusion of subroutines . 163
9.4.1 Statement of the problem . 163
9.4.2 Bayesian program . 163

9.5 Superposition . 165
9.5.1 Statement of the problem . 165
9.5.2 Bayesian program . 165
9.5.3 Instance and results . 166

Whatever the progress of human knowledge, there will always
be room for ignorance, hence for chance and probability.1

Le Hasard

Emile Borel [1914]

The purpose of this chapter is to exhibit a first means to combine descrip-
tions with one another in order to incrementally build more and more sophisti-
cated probabilistic models. This is obtained by including in the decomposition
calls to Bayesian subroutines. We show that, as in standard programming, it
is possible to use existing probabilistic models to build more complex ones and
to further structure the definition of complex descriptions as some reusability
of previously defined models is possible.

1Quels que soient les progrès des connaissances humaines, il y aura toujours place pour
l’ignorance et par suite pour le hasard et la probabilité.

153

154 Bayesian Programming

9.1 The sprinkler model

9.1.1 Statement of the problem

Let’s consider a simple toy model of a garden equipped with an auto-
matic sprinkler designed not to operate on rainy days, which is classically
used to present Bayesian nets. The model deals with three Boolean variables:
Rain, Sprinkler, and GrassWet. These variables are short names for the
corresponding predicates: “it rained,” “the sprinkler was activated,” and “the
grass is wet.” This Bayes net is hypothetically used to infer whether or not it
rained based on the evidence given by the state of the grass. The corresponding
Bayesian program is given in Equation 9.1.

Pr



































































































































Ds















































































































Sp(π)



































































































V a :

Rain, Sprinkler,GrassWet

Dc :










P (Sprinkler ∧Rain ∧GrassWet|π1)

= P (Rain|π1)× P (Sprinkler|Rain ∧ π1)

×P (GrassWet|Rain ∧ Sprinkler ∧ π1)

Fo :

P ([Rain = 1] |π1) =
171

365
P ([Sprinkler = 1] | [Rain = 0] ∧ π1) = 0.40

P ([Sprinkler = 1] | [Rain = 1] ∧ π1) = 0.01

P ([GrassWet = 1] |Rain ∧ Sprinkler ∧ π1)

= δRain∨Sprinkler

Id

Qu :

P (Rain| [GrassWet = 1] ∧ π1)

(9.1)
where 171 is the number of rainy days in the considered area, 40% is the
percentage of times the sprinkler triggers when the weather is dry, and 1%
the percentage of times the sprinkler triggers when it should not as the rain
already watered the vegetation.

The answer to the question may be computed by the following formula:

P (Rain| [GrassWet = 1] ∧ π1)
≺ P (Rain|π1)

×
∑

Sprinkler

[

P (Sprinkler|Rain ∧ π1)
×P ([GrassWet = 1] |Rain ∧ Sprinkler ∧ π1)

] (9.2)

Bayesian Programming Subroutines 155

Numerically it leads to:

P ([Rain = 1] | [GrassWet = 1] ∧ π1) = 69% (9.3)

Suppose now, that someone wants to take into account the status of an-
other part of the house (say, the roof). One possibility would be to add one
variable and to duplicate the previous code as in Equation 9.4.

Pr























































































































































Ds



































































































































Sp(π)























































































































V a :

Rain, Sprinkler,GrassWet,RoofWet

Dc :


















P (Sprinkler ∧Rain ∧GrassWet ∧RoofWet|π2)

= P (Rain|π2)× P (Sprinkler|Rain ∧ π2)

×P (GrassWet|Rain ∧ Sprinkler ∧ π2)

×P (RoofWet|Rain ∧ π2)

Fo :

P ([Rain = 1] |π2) =
171

365
P ([Sprinkler = 1] | [Rain = 0] ∧ π2) = 0.40

P ([Sprinkler = 1] | [Rain = 1] ∧ π2) = 0.01

P ([GrassWet = 1] |Rain ∧ Sprinkler ∧ π2)

= δRain∨Sprinkler

P ([RoofWet = 1]|Rain ∧ π2) = δ[Rain=1]

Id

Qu :
{

P ([RoofWet = 1] | [GrassWet = 1] ∧ π2)

(9.4)
The answer to the question may be computed by the following formula:

P ([RoofWet = 1] | [GrassWet = 1] ∧ π2)

≺
∑

Rain









P ([RoofWet = 1] |Rain ∧ π2)
P (Rain|π2)
∑

Sprinkler

[

P (Sprinkler|Rain ∧ π2)
P ([GrassWet = 1] |Rain ∧ Sprinkler ∧ π2)

]









(9.5)
As P ([RoofWet = 1] |Rain ∧ π2) = δ[Rain=1], we finally get:

P ([RoofWet = 1] | [GrassWet = 1] ∧ π2)
= P ([Rain = 1] | [GrassWet = 1] ∧ π2)
= 69%

(9.6)

156 Bayesian Programming

9.1.2 Bayesian program

Another possibility is to write a new Bayesian program (Equation 9.7)
using directly the information on the coupling between Rain and GrassWet
provided by the Bayesian program (Equation 9.1):

Pr



































































































Ds















































































Sp(π)



































































V a :

Rain,GrassWet,RoofWet

Dc :










P (Rain ∧GrassWet ∧RoofWet|π3)

= P (Rain ∧GrassWet|π3)

×P (RoofWet|Rain ∧ π3)

Fo :

P (Rain ∧GrassWet|π3) = P (Rain ∧GrassWet|π1)

P (RoofWet|Rain ∧ π3) = δRain=1

Id

Qu :
{

P ([RoofWet = 1] | [GrassWet = 1] ∧ π3)

(9.7)
P (Rain ∧GrassWet|π3) = P (Rain ∧GrassWet|π1) may be seen as call-

ing the Bayesian program (9.1) as a probabilistic subroutine. We get directly:

P ([RoofWet = 1] | [GrassWet = 1] ∧ π3)
= P ([Rain = 1] | [GrassWet = 1] ∧ π1)
= 69%

(9.8)

9.1.3 Instance and results

9.1.3.1 Advantages of Bayesian programming subroutines

There are several advantages to Bayesian programming subroutine calls:

• As in standard programming, subroutines make the code more compact
and easier to read.

• As in standard programming the use of a submodel allows the hiding
of the details regarding the definition of this model (here the existence
and effect of the sprinklers and the detailed decomposition used in π1).

• Finally, calling subroutines gives the ability to use Bayesian programs
that have been specified and learned by others. For instance, the value
171/365 does not appear in π3 and could have been fixed or learned in
π1.

Bayesian Programming Subroutines 157

However, it is probabilistic as, contrary to standard subroutine calls, it
does not transmit to the calling code a single value but a whole probability
distribution.

The program “chapter9/sprinkler.py” makes use of Bayesian subrou-
tines:

• P (GrassWet ∧ πParis),

• P (Rain | GrassWet ∧ πParis).

A submodel is built: it uses Sprinkler as a variable.

submodel=plJointDistribution(Rain^Sprinkler^GrassWet,\

jointlist)

The following statements build a description for a new model by
using questions made with the previously defined submodel.

#define the new decomposition

#using a question to another program

jointlist=plComputableObjectList()

jointlist.push_back(submodel.ask(GrassWet^Rain))

jointlist.push_back(plCndDistribution(Roof,Rain,[1,0,0,1]))

model=plJointDistribution(Rain^Roof^GrassWet,\

jointlist)

In this model the variable Sprinkler is not used, but it will produce
the exact same result for all the questions with the variable Rain, Roof ,
and GrassWet as the extended model built for verification:

extendedmodel=plJointDistribution(Rain^Roof^GrassWet^Sprinkler,\

jointlist)

9.1.3.2 Defining new subroutines with data

As Bayesian programs, subroutines depend on the data used to instantiate
the parametric forms.

For instance, 171 in the Bayesian program (Equation 9.1) is the average
number of rainy days in Paris. It is a parameter that has been identified using
a set of climate data δParis. To be more exact, Bayesian program (Equation
9.1) should have been written:

158 Bayesian Programming

Pr











































































































































Ds























































































































Sp(π)



































































































V a :

Rain, Sprinkler,GrassWet

Dc :










P (Sprinkler ∧Rain ∧GrassWet|π1)

= P (Rain|π1)× P (Sprinkler|Rain ∧ π1)

×P (GrassWet|Rain ∧ Sprinkler ∧ π1)

Fo :

P ([Rain = 1] |δParis ∧ π1) =
n

365
P ([Sprinkler = 1] | [Rain = 0] ∧ π1) = 0.40

P ([Sprinkler = 1] | [Rain = 1] ∧ π1) = 0.01

P ([GrassWet = 1] |Rain ∧ Sprinkler ∧ π1)

= δRain∨Sprinkler

Id :

learn n as the average number of rainy days in the data set δParis

Qu :

P (Rain| [GrassWet = 1] ∧ δParis ∧ π1)

(9.9)

Using another set of data as, for instance, δnice, would lead to another
value of this parameter n, namely 88.

Of course, the questions:

P (Rain| [GrassWet = 1] ∧ δParis ∧ π1) (9.10)

and

P (Rain| [GrassWet = 1] ∧ δNice ∧ π1) (9.11)

lead to different results:

P ([Rain = 1] | [GrassWet = 1] ∧ δParis ∧ π1) = 69%
P ([Rain = 1] | [GrassWet = 1] ∧ δNice ∧ π1) = 44%

(9.12)

Bayesian Programming Subroutines 159

The program “chapter9/sprinkler.py” contains examples to replace
one distribution by another in an already defined model. A first possi-
bility is to locally redefine the submodel by changing P (Rain ∧ πParis)
by P (Rain ∧ πNice). This can be done with the “replace” method.

PRainNice=plProbTable(Rain,[0.9,0.1])

submodel.replace(Rain,PRainNice)

And then it is possible to completely redefine the model.

#define the new decomposition using question to another program

jointlist=plComputableObjectList()

jointlist.push_back(submodel.ask(GrassWet^Rain))

jointlist.push_back(plCndDistribution(Roof,Rain,[1,0,0,1]))

model=plJointDistribution(Rain^Roof^GrassWet,\

jointlist)

It is also possible to directly make the change in the calling model.
For example, if we want to go back to the model working in Paris we
could use the following instruction:

model.replace(Rain,PRainParis)

9.2 Calling subroutines conditioned by values

9.2.1 Statement of the problem

The next step would be to be able to call different subroutines conditionally
to values of a given variable, for example, using either the “Paris” or the “Nice”
model according to the place of interest.

9.2.2 Bayesian program

We can introduce a new variable Location with two values: nice and paris
and use a conditional probability distribution to select the submodel we would
like to use knowing our location.

The resulting Bayesian program is the following:

160 Bayesian Programming

Pr



























































































































































Ds































































































































Sp(π)



















































































































V a :

Rain,GrassWet,RoofWet, Location

Dc :


















P (Rain ∧GrassWet ∧RoofWet ∧ Location|π4)

= P (Location|π4)

×P (Rain ∧GrassWet|Location ∧ π4)

×P (RoofWet|Rain ∧ π4)

Fo :

P (Location|π4) = any

P (Rain ∧GrassWet| [Location = paris] ∧ π4)

= P (Rain ∧GrassWet|δparis ∧ π1)

P (Rain ∧GrassWet| [Location = nice] ∧ π4)

= P (Rain ∧GrassWet|δnice ∧ π1)

P ([RoofWet = 1]|Rain ∧ π4) = δ[Rain=1]

Id

Qu :
{

P ([RoofWet = 1] | [GrassWet = 1] ∧ [Location = paris] ∧ π4)

P ([RoofWet = 1] | [GrassWet = 1] ∧ [Location = nice] ∧ π4)

(9.13)
where we state that knowing the location, we call the Bayesian program spec-
ified by preliminary knowledge π1 with learning done either on the data set
δParis

P (Rain ∧GrassWet| [Location = paris] ∧ π4)
= P (Rain ∧GrassWet|δParis ∧ π1)

(9.14)

or on the data set δNice

P (Rain ∧GrassWet| [Location = nice] ∧ π4)
= P (Rain ∧GrassWet|δNice ∧ π1)

(9.15)

9.2.3 Instance and results

You can easily check that the results for the two questions are as expected:

P ([RoofWet = 1] | [GrassWet = 1] ∧ [Location = paris] ∧ π4)
= P ([Rain = 1] | [GrassWet = 1] ∧ δParis ∧ π1) = 69%

P ([RoofWet = 1] | [GrassWet = 1] ∧ [Location = nice] ∧ π4)
= P ([Rain = 1] | [GrassWet = 1] ∧ δNice ∧ π1) = 44%

(9.16)

Bayesian Programming Subroutines 161

In “chapter9/sprinkler.py” we again use the “replace” method to
change the preliminary knowledge of an existing description. This de-
scription is used according to the value of a key: Location to perform
the same inferences but with different data to define the description.

#selecting subroutines

#defines a new variable

Location = plSymbol(‘‘Location", plLabelType([’Paris’,’Nice’]))

locval=plValues(Location)

jointlist=plComputableObjectList()

#

#push a uniform distribution for the location

jointlist.push_back(plUniform(Location))

#

#define the two distributions corresponding to Paris and Nice

PGrasswetkLocation=plDistributionTable(GrassWet,Location)

locval[Location]=’Paris’

submodel.replace(Rain,PRainParis)

PGrasswetkLocation.push(submodel.ask(GrassWet),locval)

locval[Location]=’Nice’

submodel.replace(Rain,PRainNice)

PGrasswetkLocation.push(submodel.ask(GrassWet),locval)

#and push it in the joint distribution list

jointlist.push_back(PGrasswetkLocation)

#

#idem for the conditional ditribution on Rain

PRainkGrasswetLocation=\

plDistributionTable(Rain,GrassWet^Location,Location)

locval[Location]=’Paris’

submodel.replace(Rain,PRainParis)

PRainkGrasswetLocation.push(submodel.ask(Rain,GrassWet),locval)

locval[Location]=’Nice’

submodel.replace(Rain,PRainNice)

PRainkGrasswetLocation.push(submodel.ask(Rain,GrassWet),locval)

#and push it in the joint distribution list

jointlist.push_back(PRainkGrasswetLocation)

#dirac model: when it has rained,the roof is wet

jointlist.push_back(plCndDistribution(Roof,Rain,[1,0,0,1]))

model=plJointDistribution(Rain^Roof^GrassWet^Location,\

jointlist)

162 Bayesian Programming

9.3 Water treatment center revisited (final)

9.3.1 Statement of the problem

Despite its very modular structure, the water treatment center model was
quite cumbersome to write and read (see Bayesian program in Section 5.2.3).

We would like to give a simpler final specification of this model using
Bayesian programing subroutine calls and the model of a single unit as spec-
ified by the Bayesian program 4.29.

9.3.2 Bayesian program

The Bayesian program for the water treatment center using subroutine
calls to the Bayesian program for water treatment units is very simple and
compact:

Pr































































































Ds























































































Sp(π)















































































V a :

I0, I1, SO, C0, O0, S1, C1, O1, S2, C2, O2, I3, S3, C3, O3

Dc :






































P (I0 ∧ II ∧ · · · ∧O3|πcenter)

=

















P (I0 ∧ I1 ∧ I3|πcenter)

P (S0 ∧ C0 ∧O0|I0 ∧ I1 ∧ πunit1)

P (S1 ∧ C1 ∧O1|I0 ∧ I1 ∧ πunit2)

P (S2 ∧C2 ∧O2|O0 ∧O1 ∧ πunit3)

P (S3 ∧ C3 ∧O3|I3 ∧O2 ∧ πunit4)

















Fo :

Id

Qu :

(9.17)
The obtained results for the different questions are evidently the same but

for the diagnosis ones. Indeed, in Equation 9.17 we have chosen to hide the
Fi variables and consequently we cannot anymore ask questions using them.
Here again, it is similar to what occurs with the use of classical subroutine
calls where you cannot, in the calling program, use internal variables of the
subroutines. An alternative would have been to explicitly use the Fi variables
in the above program to preserve the ability to ask diagnosis questions.

Bayesian Programming Subroutines 163

9.4 Fusion of subroutines

9.4.1 Statement of the problem

Another example where Bayesian subroutines may be used to hide the
implementation details or specificities can be found in fusion models. For
example, we may refine the model of a sensor by further modeling its behavior,
in particular we may describe a fault tree leading to a probability of false
alarm. No matter how complex this model is, we can use Bayesian subroutines
to encapsulate it into a simple form which gives the probability distribution on
the state of the system knowing the readings, hiding all the details concerning
the variables used in the fault tree.

9.4.2 Bayesian program

We may once more revisit the sensor fusion example of Chapter 7 but this
time taking into account two models of sensors with two different models of
false alarms. Bayesian subroutines may be used to hide all the details about
the sensor models and can directly be used in a standard fusion program:

Pr



















































































































Ds































































































Sp(π)























































































V a :

X,Y,D2, D3

Dc :


















P (X ∧ Y ∧D2 ∧D3 | π)
= P (X ∧ Y | π)×

P (D2 | X ∧ Y ∧ π)×
P (D3 | X ∧ Y ∧ π)

Fo :










P (X ∧ Y | π) = Uniform

P (D2 | X ∧ Y ∧ π) = P (D2 | X ∧ Y ∧ πS2)

P (D3 | X ∧ Y ∧ π) = P (D3 | X ∧ Y ∧ πS3)

Id

Qu :

P (X,Y | d2 ∧ d3 ∧ π)

(9.18)

The first sensor becomes faulty if two conditions A2 and B2 are met while
the other becomes faulty if one of the other conditions A3 or B3 is met. We
obtain two descriptions πS1 and πS2 which relate the position X,Y to the
sensor readings.

164 Bayesian Programming

Pr























































































































































Ds



































































































































Sp(π)



























































































































V a : X, Y, F2, D2, A2, B2

Dc :










P (X ∧ Y ∧ F2 ∧D2 ∧A2 ∧B2 | πS2)

= P (X ∧ Y | πS2)P (A2 | πS2)P (B2 | πS2)

P (F2 | A2 ∧B2 ∧ πS2)P (D2 | X ∧ Y ∧ F2 ∧ πS2)

Fo :






























































P (X ∧ Y | πS2) = Uniform

P (A2 = true | πS2) = 0.2, P (B2 = true | πS2) = 0.1

P (F2 | A2 ∧B2 ∧ πS2) = δA2∧B2

P (D2 | X ∧ Y ∧ F2 ∧ πS2)


























[F2 = 0] : B
([

µ = f
2
d (X,Y)

]

,
[

σ = g
2
d (X, Y)

])







f
2
d =

√

(X + 50)2 + Y 2

g
2
d = 1 +

f2
d (X,Y)

10
[F2 = 1] : Uniform

Id

Qu :

P (D2 | X ∧ Y ∧ πS2)

(9.19)

Pr























































































































































Ds



































































































































Sp(π)



























































































































V a : X, Y, F3, D3, A3, B3

Dc :










P (X ∧ Y ∧ F3 ∧D3 ∧A3 ∧B3 | πS3)

= P (X ∧ Y | πs3)P (A3 | πs3)P (B3 | πs3)

P (F3 | A3 ∧B3 ∧ πs3)P (D3 | X ∧ Y ∧ F3 ∧ πs3)

Fo :






























































P (X ∧ Y | πS3) = Uniform

P (A3 = true | πS3) = 0.01, P (B3 = true | πS3) = 0.03

P (F3 | A3 ∧B3 ∧ πs3) = δA3∨B3

P (D3 | X ∧ Y ∧ F3 ∧ πS3)


























[F3 = 0] : B
([

µ = f
2
d (X,Y)

]

,
[

σ = g
3
d (X, Y)

])







f
3
d =

√

X2 + (Y + 50)2

g
3
d = 1 +

f3
d (X,Y)

10
[F3 = 1] : Uniform

Id

Qu :

P (D3 | X ∧ Y ∧ πS3)

(9.20)

Bayesian Programming Subroutines 165

These two descriptions differ by the type of fault model: δA2∧B2 versus
δA3∨B3 and also by the sensor models which have to take into account the loca-

tion of the landmarks: f2
d =

√

(X + 50)2 + Y 2 versus f3
d =

√

X2 + (Y + 50)2.

In “chapter9/subroutinefusion.py” we have defined two sensor mod-
els: sensor model2 and sensor model3, corresponding to the programs
9.19 and 9.20. These two models are used to build a simple “main”
Bayesian program to perform the fusion of the two sensors.

JointDistributionList=plComputableObjectList()

JointDistributionList.push_back(plComputableObject\

(plUniform(X)*plUniform(Y))

JointDistributionList.push_back(sensor_model3.ask(D3,X^Y))

JointDistributionList.push_back(sensor_model2.ask(D2,X^Y))

main_model=plJointDistribution(X^Y^D3^D2,JointDistributionList)

question=main_model.ask(X^Y,D2^D3)

9.5 Superposition

9.5.1 Statement of the problem

In some occasions, it may be necessary to select the ranges of values for
which the result of a model is or is not valid. For example, in the localization
example we may consider the use of bearings is only valid if the result is
in a given region, for example: XB ≥ 0, Y B ≥ 0, where XB and Y B are
the localization parameters given by the bearings. If the result is not within
the specified range we may decide to use a uniform distribution on our final
estimation of the location X,Y . More generally, we can use different sensors
in different places. For example, we may use the distances only in the region
XD ≤ 0, Y D ≤ 0 and the bearing in the region XB ≥ 0, Y B ≥ 0.

9.5.2 Bayesian program

The standard fusion program for our localization problem (see Section
7.3) can be restated as follows (at first, dropping the distances for the sake of
simplicity):

166 Bayesian Programming

Pr



























































































































































Ds







































































































































Sp

(πB)



















































































































V a :

X,Y,XB, YB, B1, B2, B3

Dc :


















P (X ∧ Y ∧XB ∧ YB ∧B1 ∧B2 ∧B3|πB)

= P (B1 ∧B2 ∧B3 ∧ πB)

×P (XB ∧ YB | B1 ∧B2 ∧B3 ∧ πB)

×P (X ∧ Y | XB ∧ YB ∧B1 ∧B2 ∧B3 ∧ πB)

Fo :






































P (B1 ∧B2 ∧B3|πB |=)Uniform

P (XB ∧ YB | B1 ∧B2 ∧B3 ∧ πB) =

P (XB ∧ YB | B1 ∧B2 ∧B3 ∧ πk)

P (X ∧ Y | XB ∧ YB ∧B1 ∧B2 ∧B3 ∧ πB) =
{

ifXB > 0, Y B > 0 : P (X ∧ Y | B1 ∧B2 ∧B3 ∧ πk)

else : Uniform

Id

Qu :

P (X ∧ Y |b1 ∧ b2 ∧ b3 ∧ πB)

(9.21)

The program 9.21 implements the following idea: if the position corre-
sponding to the measurements is within the specified region the distribution
of the location remains unchanged; otherwise it is unknown.

9.5.3 Instance and results

The Figure 9.1 represents the distribution for a given measurement of the
bearings corresponding to the location X = Y = 0.

We may generalize the previous example, by associating other regions to
other sensors. For example, if we assume P (XD ∧ YD | D1 ∧D2 ∧D3 ∧ πk) is
the question allowing us to locate the boat with the distance measurements,
we may allocate these sensors to the region XD ≤ 0, YD ≤ 0 (see Figure 9.1b).

Bayesian Programming Subroutines 167

-40
-20

 0
 20

 40
-40

-20

 0

 20

 40

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

P

X

Y

P

(a)

-40
-20

 0
 20

 40
-40

-20

 0

 20

 40

 5e-05
 0.0001

 0.00015
 0.0002

 0.00025
 0.0003

 0.00035
 0.0004

 0.00045
 0.0005

P

X

Y

P

(b)

FIGURE 9.1: Superposition with a uniform distribution:
(a): P (X ∧ Y |b1 = 225 ∧ b2 = 180 ∧ b3 = 270 ∧ π)
(b): P (X ∧ Y |d1 = 70 ∧ d2 = 50 ∧ d3 = 50 ∧ π)

Since the two regions do not overlap we can can stitch our two localization
procedures on the same space with the program in Equation 9.22. The result

168 Bayesian Programming

is presented Figure 9.2. The sensor superposition still gives good results on
the boundaries of the regions.

Should the regions overlap, it is then possible to fuse all the sensors in that
region. For example, if we use the program (Equation 7.6) and if we assume a
new valid region XB ≥ −20, Y B ≥ −20 for the localization with bearings we
may introduce two new variables XF , Y F and use the sensor fusion program
in the region −20 ≤ XF ≤ 0,−20 ≤ Y F ≤ 0.

Pr























































































































































































































































Ds































































































































































































































































Sp

(πS)











































































































































































































































V a :

X,Y,XB , YB, XD, YD, B1, B2, B3, D1, D2, D3, CB , CD

Dc :


















































P (X ∧ Y ∧XB ∧ YB ∧XD ∧ YD ∧ B1 . . . ∧D3 ∧ πS)

= P (B1 ∧B2 ∧ B3 ∧D1 ∧D2 ∧D3 ∧ πS)

×P (XB ∧ YB | B1 ∧B2 ∧B3 ∧ πS)

×P (CB | XB ∧ YB ∧ πs)

×P (XD ∧ YD | D1 ∧D2 ∧D3 ∧ πS)

×P (CD | XD ∧ YD ∧ πs)

×P (X ∧ Y | CB ∧ CD)

Fo :






























































































































P (B1 . . . ∧D3|πS |=)Uniform

P (XB ∧ YB | B1 ∧B2 ∧B3 ∧ πS) =

P (XB ∧ YB | B1 ∧B2 ∧B3 ∧ πk)

P (XD ∧ YD | D1 ∧D2 ∧D3 ∧ πS) =

P (XD ∧ YD | D1 ∧D2 ∧D3 ∧ πk)

P (CB | XB ∧ YB ∧ πs) =
{

ifXB ≥ 0, YB ≥ 0 : P (CB = 1) = 1

else : P (CB = 1) = 0

P (CD | XD ∧ YD ∧ πs) =
{

ifXD < 0, YD < 0 : P (CD = 1) = 1

else : P (CD = 1) = 0

P (X ∧ Y | CD ∧ CB ∧ πS) =










ifCD = 1 : P (XD ∧ YD | D1 ∧D2 ∧D3 ∧ πk)

else : ifCD = 1 : P (XB ∧ YB | B1 ∧B2 ∧B3 ∧ πk)

else : Uniform

Id

Qu :

P (X ∧ Y |d1 ∧ d2 ∧ d3 ∧ b1 ∧ b2 ∧ b3 ∧ πs)

(9.22)

Bayesian Programming Subroutines 169

-40
-20

 0
 20

 40
-40

-20

 0

 20

 40

 0
 0.0001
 0.0002
 0.0003
 0.0004
 0.0005
 0.0006
 0.0007
 0.0008
 0.0009

P

X

Y

P

FIGURE 9.2: Probability of location at the boundary of two sensing regions.

In “chapter9/stitching.py” we use these questions as subroutines:

• PXBYB_K_B1B2B3=\

localisation_model_with_bearings.ask(XB^YB,B1^B2^B3)

• PXDYD_K_D1D2D3=\

localisation_model_with_bearings.ask(XD^YD,D1^D2^D3)

Since these conditional distributions will be used as a model to the
conditional distribution on X,Y it is necessary to make a copy of them
and to rename the variables using:

PXBYB_K_B1B2B3bis=plCndDistribution(PXBYB_K_B1B2B3)

PXY_K_B1B2B3=PXBYB_K_B1B2B3bis.rename(X^Y^B1^B2^B3)

Dirac distributions on constraints may be defined as follows:

def cdf(out, XdYd):

out[0] = XdYd[0]

out[1] = XdYd[1]

CD = plSymbol(‘‘CD", PL_BINARY_TYPE)

PCD__XdYd = plIneqConstraint(CD,\

plPythonExternalFunction(XD^YD, cdf), 2)

JointDistributionList.push_back(PCD__XdYd)

Finally, the conditional distribution on X and Y is defined as:

PXY = plDistributionTable(X^Y, D1^D2^D3^B1^B2^B3^CD^CB, CD^CB)

vcdcb = plValues(CD^CB)

vcdcb[CD] = 1

vcdcb[CB] = 0

PXY.push(PXY_K_D1D2D3, vcdcb)

vcdcb[CD] = 0

vcdcb[CB] = 1

PXY.push(PXY_K_B1B2B3, vcdcb)

PXY.push_default(plUniform(X^Y))

This page intentionally left blankThis page intentionally left blank

Chapter 10

Bayesian Programming Conditional

Statement

10.1 Bayesian if-then-else . 172
10.1.1 Statement of the problem . 172
10.1.2 Bayesian program . 173
10.1.3 Instance and results . 176

10.2 Behavior recognition . 179
10.2.1 Statement of the problem . 179
10.2.2 Bayesian program . 179
10.2.3 Instance and results . 179

10.3 Mixture of models and model recognition . 180

The probability of ten consecutive heads is 0.1 percent; thus,
when you have millions of coin tossers, or investors, in the end there
will be thousands of very successful practitioners of coin tossing,
or stock picking.

The Age of Turbulence

Alan Greenspan [2007]

The purpose of this chapter is to introduce probabilistic branching state-
ments. We will start by describing the probabilistic “if-then-else” statement
which, as in standard programming, can naturally be extended to a proba-
bilistic “case” statement. From an inference point of view, the probabilistic
if-then-else statement is simply the integration over the probability distribu-
tion on a binary variable representing the truth value of the condition used in
the classical “if” statement. The main difference with the classical approach
is that the Bayesian program will explore both branches when the truth value
of the condition is given by a probability distribution. This allows us to mix
behaviors and to recognize models.

171

172 Bayesian Programming

10.1 Bayesian if-then-else

10.1.1 Statement of the problem

Let’s recall the Khepera robot (see Chapter 4) and formalize the programs
to push a part or to follow its contour. The probabilistic variables Dir, Prox,
and Rot, respectively, denote the direction of the nearest obstacle, its prox-
imity, and the rotational speed of the robot (the robot is assumed to move at
constant speed).

Pr











































































































Ds



































































































Sp(πb ∧ δb) :


























































V a : Dir, Prox,Rot

Dc :










P (Dir ∧ Prox ∧Rot | πb ∧ δb)

= P (Dir ∧ Prox | πb ∧ δb)

×P (Rot | Dir ∧ Prox ∧ πb ∧ δb)

Fo :
{

P (Dir ∧ Prox | πb ∧ δb) = Uniform

P (Rot | Dir ∧ Prox ∧ πb ∧ δb) = Normal(σb, µb)

Id :
{

σb(Dir, Prox)← δb

µb(Dir, Prox)← δb

Qu : P (Rot | Dir ∧ Prox ∧ πb ∧ δb)

(10.1)

As explained in Chapter 4, the desired program is obtained by using the
data set δb recorded during the learning of the desired behavior. For exam-
ple, it is possible to obtain a program to avoid obstacles by controlling the
robot to do so during the learning phase and by building the probability ta-
ble P (Rot | Dir ∧ Prox ∧ πavoidance ∧ δavoidance) based on the data δavoidance
recorded during learning.

The light sensors of the robot may also be used to build a new variable
θl indicating the direction of a light beam in the robot reference frame. This
new variable may be used to move toward the light (phototaxis) using the
program in Equation 10.2.

Bayesian Programming Conditional Statement 173

Pr































































































Ds























































































Sp(πphototaxis) :


































































V a : Θl, Rot

Dc :










P (Θl ∧Rot | πphototaxis)

= P (Θl | πphototaxis)

×P (Rot | Θl ∧ πphototaxis)

Fo :










P (Θl | πphototaxis) = Uniform

P (Rot | Θl ∧ πphototaxis)

= Normal(µ = Θl, σ = 2)

Id :

Qu : P (Rot | Θl ∧ πphototaxis)

(10.2)

Contrary to the program in Equation 10.1, the description for “phototaxy
behavior” does not require any learning.

The probabilistic conditional statement will be used to combine the two be-
haviors: “phototaxy” and “avoidance” into a more complex behavior (“home”)
leading the robot to reach its base (where the light is located) while avoiding
the obstacles.

To do so, we define a binary variable H to switch from one behavior to
another. The probability distribution over this variable will be conditioned by
the distance (Prox) to the obstacles: if we are close to one obstacle, the robot
is asked to perform the “avoidance” behavior or it is asked to perform the
“phototaxy” behavior.

10.1.2 Bayesian program

The program in Equation 10.3 will achieve the “home” behavior.

174 Bayesian Programming

Pr































































































































Ds



















































































































Sp(πhome) :






























































































V a : Dir, Prox,Θl, H,Rot

Dc :



















P (Dir ∧ Prox ∧Θl ∧H ∧Rot | πhome)

= P (Dir ∧ Prox ∧Θl | πhome)

×P (H | Prox ∧ πhome)

×P (Rot | Dir ∧ Prox ∧H ∧Θl ∧ πhome)

Fo :















































P (Dir ∧ Prox ∧Θl | πhome) = Uniform

P (H = avoidance | Prox ∧ pihome) = S Shape(Prox)

P (Rot | Dir ∧ Prox ∧H ∧Θl ∧ πhome) =


















H = avoidance :

P (Rot | Dir ∧ Prox ∧ πavoidance ∧ δavoidance)

H = phototaxy :

P (Rot | Θl ∧ πphototaxy)

Id :

Qu : P (Rot | Dir ∧ Prox ∧Θl ∧ πhome)

(10.3)

The S Shape function is used to tune the level of mixing according to
the distance to the obstacles. For example, Figure 10.1 represents a dis-
cretized version of the function used to compute the probability distribution
P (H | Prox ∧ πhome).

P (H | Prox ∧ πhome) =
1

1 + eβ(α−prox)
(10.4)

The parameter α of Equation 10.4 is the threshold at which the probability
for doing the “phototaxy” behavior becomes greater than the probability for
doing the “avoidance” behavior. The β (β ≥ 0) parameter tunes how close
from a standard choice based on a threshold the final behavior will be. When
β → ∞ then the program 10.3 will lead to the same behavior as the one
programmed with a classical program (see 10.5). On the contrary, if β → 0
the result will lead to a random choice between the two behaviors.

IF Prox > α “phototaxy” ELSE “avoidance” (10.5)

Bayesian Programming Conditional Statement 175

FIGURE 10.1: The shape of the sigmoid defines the way to mix behaviors.
Far from the obstacle (Prox = 0) the probability of [H = 1] is 0 meaning that
you want to do phototaxy, on the contrary, close to the obstacle (Prox = 15)
the probability of [H = 1] is 1 meaning that you only care about avoiding
the obstacle. In between the behavior will be a combination of phototaxy and
avoidance behaviors (see below).

A program similar to the one used to learn the “pushing/following”
behavior, “chapter4/kepera.py” may be used with the appropriate data
(δavoidance) to create the Bayesian program described in 10.1 to learn
the “avoidance behavior.” The conditional probability distribution on
Rot for the “avoidance” behavior is obtained by:

define the description

render_description= \

plJointDistribution(Vrot^Dir^Prox,Decomposition)

define the associated question

render_question= \

render_description.ask(Vrot,Dir^Prox)

The conditional probability distribution on Rot for the “phototaxy”
behavior is obtained with the following program (“chapter10/Bif.py”)

Theta = plSymbol(’Theta’,plIntegerType(-10,10))

PTheta=plUniform(Theta)

Decomposition=plComputableObjectList()

Decomposition.push_back(PTheta)

Decomposition.push_back(plCndNormal(Vrot,Theta,2))

phototaxy_description=plJointDistribution(Decomposition)

phototaxy_question=phototaxy_description.ask(Vrot,Theta)

176 Bayesian Programming

The Bayesian If-Then-Else is defined by a conditional distribution on
H based on an S Shape function:

def generic_H_prob_function(alpha,beta):

def H_prob_function(Input_) :

v = 1.0/(1.0+exp(beta*(alpha-Input_[1].to_float())))

if Input_[0].to_int() == 0 : #H=0 means Avoidance

return v

else:

return 1-v

return H_prob_function

The conditional probability distribution on H is then defined as:

PH = plCndAnonymousDistribution(\

H,Prox,plPythonExternalProbFunction(\

H^Prox,generic_H_prob_function(9,0.25)))

To combine the two behaviors, the following program may be used:

#H is used as a key to select the proper behavior

PVrot=plDistributionTable(Vrot,Dir^Prox^Theta^H,H)

PVrot.push(phototaxy_question,1) #phototaxy

PVrot.push(render_question,0) #avoidance

#define the decomposition

JointDistributionList=plComputableObjectList()

JointDistributionList.push_back(plUniform(Prox))

JointDistributionList.push_back(plUniform(Theta))

JointDistributionList.push_back(plUniform(Dir))

JointDistributionList.push_back(PH)

JointDistributionList.push_back(PVrot)

#define the specification and the question

home_specification=plJointDistribution(JointDistributionList)

home_question=home_specification.ask(Vrot,Dir^Prox^Theta)

10.1.3 Instance and results

Figures 10.2 and 10.3 present the probability distributions obtained when
a robot must avoid an obstacle on the left with a light source also on the
left.1 When the object is on the left, the robot needs to turn right to avoid it.
This is what happens when the robot is close to the objects (see Figure 10.2).
However, when the robot is further from the object, the presence of the light
source on the left influences the way the robot will avoid obstacles. In this
case, the robot may turn left despite the presence of the obstacle (see Figure
10.3).

1These results are given in Lebeltel et al. [2004].

Bayesian Programming Conditional Statement 177

FIGURE 10.2: The top left distribution shows the knowledge on Rot given
by the phototaxy description; the top right is the probability on Rot given
by the “avoidance” description; the bottom left shows the knowledge of the
“command variable” H ; finally, the bottom right shows the probability distri-
bution on Rot resulting from the marginalization (weighted sum) of variable
H , and the robot will most probably turn right.

178 Bayesian Programming

FIGURE 10.3: We are now far from the obstacle; the probability of [H =
phototaxy] is higher than the probability of [H = avoidance] (bottom left).
Consequently, the result of the combination is completely different than in the
previous case and the robot will most probably turn left.

Bayesian Programming Conditional Statement 179

10.2 Behavior recognition

10.2.1 Statement of the problem

In the previous example, the variableH is used to select a particular behav-
ior: “avoidance” or “phototaxy.” This makes it possible to combine existing
models. The same specification may be used to infer the behavior from the
sensors and the motor readings. In other words, if someone is maneuvering
the robot it is possible to infer the behavior that is currently being used by
the operator. This method provides a first approach to behavior recognition
and model selection. It can be easily extended to several behaviors or models
by simply extending the cardinality of the variable H .

10.2.2 Bayesian program

The specification is identical to the program in 10.3 but the question now
concerns the variable H :

Pr :



















Ds :











Sp(πhome) :
{

V a : Dir, Prox,Θl, H,Rot

Dc : identical to 10.3

Qu : P (H | Dir ∧ Prox ∧ Thetal ∧Θl ∧ πhome)

(10.6)

10.2.3 Instance and results

The question in Equation 10.6 may be used at any time to infer the current
behavior of the robot from its current sensory-motor status. This is a way to
abstract a state within a large dimension (Rot×Dir×Prox×Θl) into a much
smaller dimension space H .

This basic idea has been considerably extended to build “Bayesian maps”
in the PhD thesis of Julien Diard [Diard, 2003; Diard et al., 2004; Diard and
Bessière, 2008; Diard et al., 2010].

Using the description in file “chapter10/Bif.py” the questionon H is
expressed as:

#define a new question on H

behavior_question=home_specification.ask(H,Vrot^Dir^Prox^Theta)

180 Bayesian Programming

10.3 Mixture of models and model recognition

In the previous section, the probability distribution on the variable H is
conditioned by a sensor value. The probability distribution on H may also
be given as a prior or may be learned. The program in Equation 10.7 is the
general form of a mixture of models.

Pr :







































































































































Ds :































































































































Sp(πM) :










































































































V a : H ∈ [1, . . . , n], I, S1, . . . , Sn

Dc :







































P (H ∧ I ∧ S1 . . . Sn | πM)

= P (I | πM)

×P (H | I ∧ πM)

×P (S1 | H ∧ I ∧ πM)

. . .

×P (Sn | H ∧ I ∧ πM)

Fo :







































P (I | πM) , P (H | I ∧ πM) =






























H = 1 :

P (S | I ∧ π1)

. . .

H = n :

P (S | I ∧ πn)

Id :

Qu : P (S | I ∧ πM)

(10.7)

As the variable H is used to select the appropriate model πi in the para-
metric forms, the answer to the question in Equation 10.7 is a weighted sum
of the submodels given by:

P (S | I ∧ πM) =
1

Z
×

∑

h=1,...,n

(P (H = h | I ∧ πM)P (S | I ∧ πh)) (10.8)

Many variations exist around this general framework which depend on
the parametric forms and on the choices made for the identification. For
example, by learning P (H | I ∧ πhome) it is possible to register several be-
haviors during a learning phase and to identify them when they take place
in another experiment. In the program 10.9 we assume the two behaviors
“Avoidance” and “Phototaxy” have been previously defined using learn-
ing and explicit programming. The program uses the data δhome to learn
P (H | Prox ∧ πhome ∧ δhome) with the Expectation-Maximization (EM) al-
gorithm (see 15.2) during a “Homing” behavior. Instead of having to set this

Bayesian Programming Conditional Statement 181

conditional distribution with an algebraic formula, the learning approach al-
lows the program to adapt itself to what is considered by the operator as “to
be closed” from the obstacle.

Pr































































































































Ds



















































































































Sp(πhome ∧ δhome) :






























































































V a : Dir, Prox,Θl, H,Rot

Dc :



















P (Dir ∧ Prox ∧Θl ∧H ∧Rot | πhome)

= P (Dir ∧ Prox ∧Θl | πhome)

×P (H | Prox ∧ πhome)

×P (Rot | Dir ∧ Prox ∧H ∧Θl ∧ πhome)

Fo :















































P (Dir ∧ Prox ∧Θl | πhome) = Uniform

P (H = avoidance | Prox ∧ pihome) = Histogram

P (Rot | Dir ∧ Prox ∧H ∧Θl ∧ πhome) =


















H = avoidance :

P (Rot | Dir ∧ Prox ∧ πavoidance ∧ δavoidance)

H = phototaxy :

P (Rot | Θl ∧ πphototaxy)

Id : P (H = avoidance | Prox ∧ πhome ∧ δhome) = EM

Qu : P (H | Rot ∧Dir ∧ Prox ∧Θl ∧ πhome ∧ δhome)

(10.9)

The file “chapter10/EMbehavior.py” implements the program in
Equation 10.9. It makes use of a generic EM learner. First the probabil-
ity distribution P (Rot | Dir ∧ Prox ∧H ∧Θl ∧ πhome) is defined using
H as a switch:

PVrot=plDistributionTable(Vrot,Dir^Prox^Theta^H,H)

PVrot.push(phototaxy_question,1) #phototaxy

PVrot.push(render_question,0) #avoidance

Since the EM learning algorithm is used to learn

P (H | Prox ∧ δhome ∧ πhome)

we specify an initial distribution: for each value of Prox the binomial
law on H is chosen at random.

#init the distribution

PH_init= plDistributionTable(H,Prox,Prox)

random=1

for i in plValues(Prox):

PH_init.push(plProbTable(H,random),i)

182 Bayesian Programming

The user specifies which kind of distribution on H must be learned.

PH_learned = plCndLearnHistogram(H,Prox)

We start defining an “plEMLearner.” The first argument is the initial
value for the joint distribution to be learned. The second argument is
the list of learners used to infer the joint distribution from data:

The plLearnFrozenDistribution object is used to tell the algorithm
that the distribution passed as an argument that should not be learned.

The learner object PH learned is part of this list to tell the algorithm
which learner to use for H .

#define the distribution which needed to be learned

HLearner =plEMLearner(\

plUniform(Prox)* \

plUniform(Dir)* \

plUniform(Theta)* \

PH_init * \

PVrot\

,\

[plLearnFrozenDistribution(plUniform(Prox)),\

plLearnFrozenDistribution(plUniform(Dir)),\

plLearnFrozenDistribution(plUniform(Theta)),\

PH_learned,\

plLearnFrozenDistribution(PVrot)])

The following instruction runs the learning algorithm on data previ-
ously recorded during a homing experiment. The second argument tells
the precision at which the EM algorithm should stop.

HLearner.run(datahoming,0.01)

Finally, the joint distribution is obtained and can be used as in the
previous examples.

#Extract a model from the learner

learned_model = HLearner.get_joint_distribution()

#use this question at 0.1 Hz to drive the robot

home_question=learned_model.ask(Vrot,Dir^Prox^Theta)

#use this question to classify the behavior

behavior_question=home_specification.ask(^H,Vrot,Dir^Prox^Theta)

Chapter 11

Bayesian Programming Iteration

11.1 Generic iteration . 184
11.1.1 Statement of the problem . 184
11.1.2 Bayesian program . 184
11.1.3 Instance and results . 185

11.2 Generic Bayesian filters . 186
11.2.1 Statement of the problem . 186
11.2.2 Bayesian program . 186
11.2.3 Instance and results . 188

11.3 Markov localization . 191
11.3.1 Statement of the problem . 191
11.3.2 Bayesian program . 192
11.3.3 Instance and results . 192

Probability does pervade the universe, and in this sense, the
old chestnut about baseball imitating life really has validity. The
statistics of streaks and slumps, properly understood, do teach
an important lesson about epistemology, and life in general. The
history of a species, or any natural phenomenon, that requires un-
broken continuity in a world of trouble, works like a batting streak.
All are games of a gambler playing with a limited stake against
a house with infinite resources. The gambler must eventually go
bust. His aim can only be to stick around as long as possible, to
have some fun while he’s at it, and, if he happens to be a moral
agent as well, to worry about staying the course with honor!

The Streak of Streaks Stephen Jay Gould [1988]

In this chapter we propose to define a description with distributions in-
dexed by integers. By setting the range of indexes, we define the number of
distributions used in the description. This way we define generic descriptions
only depending on the range of the indexes, just as we fixed the number of
iterations in a “for” loop. In pursuing this idea, we can redefine the notion of
filter where each new evidence is incorporated into the result of a previous in-
ference. If the index represents successive time intervals, we can then use these
techniques to study time sequences and use the Markov assumption to sim-

183

184 Bayesian Programming

plify the description. The approach is useful to implement dynamic Bayesian
networks within the Bayesian programming formalism.

11.1 Generic iteration

11.1.1 Statement of the problem

To define an iteration we may index by i the variables and the distribu-
tions found in a description. For example, considering we are throwing dice N
times we may be interested in summing the values which turn up each time.
By modeling this process with the proper description we can answer many
questions related to the sum obtained after N throws. We call Si the sum
after the step i and Oi the value obtained at throw i. With this notation we
can define a generic program only depending on the number N of throws.

11.1.2 Bayesian program

The program 11.1 is designed to model a game with N fair dices. It used
N probabilistic variables Si ∈ [i, i × 6] and Oi ∈ [1, . . . 6] indexed by i ∈
[1..N] to model the outcomes of the throws and the sum after each throw.
Uniform distributions are used to model the outcomes and the conditional
probability distributions on the sums are modeled with Dirac distribution
P (Si | Oi ∧ Si−1) = δoi+si−1 as they are deterministic.

Pr































































































































Ds























































































































Sp























































































































V a :











O1 ∈ [1, 6], S1 ∈ [1, 6]

. . .

ON ∈ [i, 6], SN ∈ [N,N × 6]

Dc :































P (O1 ∧ S1, . . . Oi ∧ Si . . . ON ∧ SN)

= P (O1)× P (S1 | O1)×

P (O2)P (S2 | S1 ∧O2)×

. . .

P (ON)P (SN | SN−1 ∧ON)

Fo :































P (O1) = P (O2) = . . . = P (ON) = Uniform

P (S1 | O1) = δo1

P (S2 | S1 ∧ O2) = δs1+o2

. . .

P (SN | SN−1 ∧ON) = δsN−1+oN

Id :

Qu : P (SN)

(11.1)

Bayesian Programming Iteration 185

11.1.3 Instance and results

The Bayesian program in Equation 11.1 allows for several questions:

• P (SN): to obtain probability of the sum when throwing N fair dices.

• P (SN | om ∧ . . . ∧ ok): the probability of the sum knowing the outcomes
of throws m. . . k.

• P (Om ∧ . . . ∧Ok | sN): the probability of the outcomes given the sum

For example, for a game with three dices, Figure 11.1 represents the
probability of the sum after the game knowing the outcome of the first roll
P (S3 | [O1 = 4]) and the probability distribution for the last roll knowing the
final sum P (O3 | [S3 = 14]).

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 2 4 6 8 10 12 14 16 18

 P
(S

3
)

S3

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 1 2 3 4 5 6 7

 P
(O

3
 |
 S

3
 =

 1
4

)

O3

(b)

FIGURE 11.1: Distributions are obtained with the description in 11.1:
(a): P (S3 | [O1 = 4])
(b): P (O3 | [S3 = 14])

The file “chapter11/sumdices.py” contains a function to create the
description of program in Equation 11.1 with N dices with two arrays
of probabilistic variables O and S of dimension N + 1.

D3=dices_game(O,S)

Figure 11.1a,b is obtained with the following instructions:

D3=dices_game(O,S)

PS3kO1=D3.ask(S[3],O[1])

PS3=PS3kO1.instantiate(4).compile()

#to draw the distribution used in the book

PS3.plot(’fileS3’)

PO3kS3=D3.ask(O[3],S[3])

PO3=PO3kS3.instantiate(14).compile()

PO3.plot(ExDir+’chapter11/figures/PO3kS3’)

186 Bayesian Programming

11.2 Generic Bayesian filters

11.2.1 Statement of the problem

Often a sequence of measurements helps to better characterize the state
of a system. Bayesian filters serve this purpose. They may be seen as special
cases of dynamic Bayesian networks and are often used to process time series
of sensor readings.

11.2.2 Bayesian program

The following program (Equation 11.2) defines a generic Bayesian filter.

Pr











































































Ds



































































Sp



































































V a :

{

St, ∀t ∈ [0, . . . , T] : St ∈ DS

Ot, ∀t ∈ [1, . . . , T] : Ot ∈ DO

Dc :







P
(

S0 ∧O1, . . . St ∧Ot . . . ST ∧OT
)

=

P
(

S0
)

t∈[1...T]
∏

(P
(

St | St−1
)

P
(

Ot | St
)

)

Fo :











P
(

S0
)

= Initial condition

P
(

St | St−1
)

= Transition Model

P
(

Ot | St
)

= Sensor Model

Id :

Qu : P
(

ST | o1 . . . oT
)

(11.2)
The variables St have the same definition domain and denote the states

of the system at time t. For example, a sequence s0, s1, ..., sT represents a
possible evolution for the system. The variable Ot denotes the observation
of the system at time t. These variables share the same definition domain.
The Bayesian program 11.2 encodes the two main hypotheses used in classical
Bayesian filters.

• The probability distribution on the current state only depends on the
previous state P

(

St | St−1
)

(order 1 Markov hypothesis).

• The observation only depends on the current state: P
(

Ot | St
)

.

The distribution P
(

S0
)

describes the knowledge about the initial condi-

tions. The parametric form P
(

St | St−1
)

does not depend on t and defines the

priors relative to the evolution of the system. If DS is discrete, P
(

St | St−1
)

is usually represented as a probabilistic transition matrix. P
(

Ot | St
)

is the
sensor model.

As such, the Bayesian program in Equation 11.2 permits answering several
interesting questions:

Bayesian Programming Iteration 187

• Filtering: P
(

ST | o1 . . . oT
)

: the purpose of this question is to infer the
current state according to the past sequence of measurements.

• Smoothing: P
(

Sk | o1 . . . ok . . . oT
)

(k < T) estimates a past state of the
system by taking into account more recent measurements.

• Forecasting: P
(

ST | o1 . . . ok
)

estimates the state of the system in the
future (T > k) based on the current measurements.

The filtering question P
(

ST | o1 . . . oT
)

has the very appealing property
to lead to a recursive computation. Indeed, the answer to this question is
obtained by marginalizing the missing variables:

P
(

ST |o1 ∧ · · · ∧ oT
)

≺
∑

S1···ST−1

[

T
∏

t=1

[

P
(

ot|St
)

P
(

St|St−1
)]

P (S0)

]

(11.3)

The term P
(

oT |ST
)

P
(

ST |ST−1
)

may be factored out of the sum of vari-

ables S1 · · ·ST−2:

P
(

ST |o1 ∧ · · · ∧ oT
)

≺ P
(

oT |ST
)

∑

ST−1







P
(

ST |ST−1
)

∑

S1···ST−2

[

T−1
∏

t=1

[

P
(

ot|St
)

P
(

St|St−1
)]

P (S0)

]







(11.4)

In the term
∑

S1···ST−2

[

T−1
∏

t=1

[

P
(

ot|St
)

P
(

St|St−1
)]

P (S0)

]

we recognize the

same filtering question at the preceding instant:

P
(

ST−1|o1 ∧ · · · ∧ oT−1
)

≺
∑

S1···ST−2

[

T−1
∏

t=1

[

P
(

ot|St
)

P
(

St|St−1
)]

P (S0)

]

(11.5)
And we finally get the recursive expression:

P
(

ST |o1 ∧ · · · ∧ oT
)

≺ P
(

oT |ST
)

∑

ST−1

[

P
(

ST |ST−1
)

P
(

ST−1|o1 ∧ · · · ∧ oT−1
)

]

(11.6)

This recursive expression is a fundamental characteristic of Bayesian fil-
tering as it ensures that the corresponding computations are kept tractable.1

1Note that this recursive property is only true for the filtering question and not for
the smoothing or forecasting ones. These two last questions lead to much cumbersome
computation as some supplementary marginalizations are required.

188 Bayesian Programming

The computation of
∑

ST−1

[

P
(

oT |ST−1
)

P
(

ST−1|o1 ∧ · · · ∧ oT−1
)]

is often

called the prediction step where we try to predict the state at time T knowing
the observation until time T − 1:

∑

ST−1

[

P
(

o
T |ST−1

)

P
(

S
T−1|o1 ∧ · · · ∧ o

T−1
)]

= P
(

S
T |o1 ∧ · · · ∧ o

T−1
)

(11.7)

The product P
(

oT |ST
)

P
(

ST |o1 ∧ · · · ∧ oT−1
)

is called the estimation

step as we update the prediction using the new observation oT .

11.2.3 Instance and results

Again we use the localization problem presented in Section 7.1.3. The state
variable is the location of the boat S = X ∧Y . The observation variables O =
B1 ∧B2 ∧B3 are the bearing angles as in the program (Equation 9.21). This
time, the bearing measurements will be taken T times t ∈ 1, . . . , T : Bt

i=1,2,3.

The probability on the initial state X0 ∧ Y 0 is supposed to be uniform.

The sensor model and a transition model are defined by:

• The sensor model uses a fixed precision:

P
(

Bt
i | Xt ∧ Y t ∧ π

)

= B
([

µ = f i
b

(

Xt, Y t
)]

, [σ = 10]
)

(11.8)

• The transition model assumes the boat to be almost stationary during
the sequence of measurements:

P
(

Xt | Xt−1 ∧ π
)

= B
([

µ = Xt−1
]

, [σ = 5]
)

(11.9)

P
(

Y t | Y t−1 ∧ π
)

= B
([

µ = Y t−1
]

, [σ = 5]
)

(11.10)

This can be summarized by the Bayesian program in Equation 11.11.

Figure 11.2 shows how the uncertainty is reduced as more readings are
added into the model. The program in Equation 11.11 has a strong similarity
with a Kalman filter with the noticeable difference that it uses a nonlinear
observational model.

Bayesian Programming Iteration 189

Pr































































































Ds



















































































Sp(π)











































































V a : X0
, Y

0
, · · · , XT

, Y
T
, B

1
1 , · · · , B

T
3

Dc :























P
(

X
0 ∧ · · · ∧B

T
3

)

=

T
∏

t=1







P
(

X
t|Xt−1

)

P
(

Y
t|Y t−1

)

3
∏

i=1

[

P
(

B
t
i |X

t ∧ Y
t
)]






× P

(

X
0 ∧ Y

0
)

Fo :























P
(

X
0 ∧ Y

0
)

= Uniform

P
(

X
t|Xt−1

)

= B
([

µ = X
t−1
]

, [σ = 5]
)

P
(

Y
t|Y t−1

)

= B
([

µ = Y
t−1
]

, [σ = 5]
)

P
(

B
t
i |X

t ∧ Y
t
)

= B
([

µ = f
i
b

(

X
t
, Y

t
)

]

, [σ = 10]
)

Id

Qu : P
(

X
T ∧ Y

T |B0
1 ∧ · · · ∧B

T
3

)

(11.11)

-40
-20

 0
 20

 40
-40

-20

 0

 20

 40

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

P

X

Y

P

(a)

-40
-20

 0
 20

 40
-40

-20

 0

 20

 40

 0
 0.0005
 0.001

 0.0015
 0.002

 0.0025
 0.003

 0.0035
 0.004

 0.0045

P

X

Y

P

(b)

-40
-20

 0
 20

 40
-40

-20

 0

 20

 40

 0
 0.0005

 0.001
 0.0015

 0.002
 0.0025

 0.003
 0.0035

 0.004
 0.0045

 0.005

P

X

Y

P

(c)

FIGURE 11.2: The precision of the location is improved by feeding the
model with several measurements: (a) 1, (b) 2, and (c) 3 measurements.

190 Bayesian Programming

The file “chapter11/pseudokalman.py” has been used to create the
drawings in Figure 11.2. There are two parts in the file:

1. The first part defines the recursive Bayesian program.

2. The second part shows how to use this program in a “read the
sensor” and “evaluate the probability distribution on states” loop.

To define a recursive program we have to create a special kind of
distribution denoted as “Mutable” on Xt−1 ∧ Yt−1 and to initialize it.

PXt_1Yt_1=plMutableDistribution(plUniform(Xt_1^Yt_1))

Mutable distributions may be considered as global distributions.
When their values are changed, the new values are used in all the previ-
ously defined definitions. For example, if the value of P (Xt−1 ∧ Yt−1) is
changed to P (Xt ∧ Yt | b1, b2, b3), then the question at time t+1 will take
P (Xt ∧ Yt | b1, b2, b3) as prior on the location of the boat and effectively
compute P (Xt+1 ∧ Yt+1 | B1 ∧B2 ∧B3).

JointDistributionList=plComputableObjectList()

#use the mutable distribution as the state distribution

JointDistributionList.push_back(PXt_1Yt_1)

#define the transition model

JointDistributionList.push_back(plCndNormal(Xt,Xt_1,5))

JointDistributionList.push_back(plCndNormal(Yt,Yt_1,5))

#define the sensor model

JointDistributionList.push_back(plCndNormal(B1,Xt^Yt, \

plPythonExternalFunction(Xt^Yt,f_b_1), \

10.0))

JointDistributionList.push_back(plCndNormal(B2,Xt^Yt, \

plPythonExternalFunction(Xt^Yt,f_b_2), \

10.0))

JointDistributionList.push_back(plCndNormal(B3,Xt^Yt, \

plPythonExternalFunction(Xt^Yt,f_b_3), \

10.0))

#define the joint distribution

filtered_localisation_model= \

plJointDistribution(JointDistributionList)

#define the question to get the new state

PXY_K_B1B2B3=filtered_localisation_model.ask(Xt^Yt,B1^B2^B3)

Bayesian Programming Iteration 191

Finally, a standard filter may be written as a loop which sequentially
performs the following tasks:

1. Reads the observations.

2. Estimates the current state.

3. Sets the prior knowledge for the next iteration with the
“mutate” method.

This sequence is implemented as follows:

for val in V:

#read the observations

sensor_reading_values[B1]= val[0]

sensor_reading_values[B2]= val[1]

sensor_reading_values[B3]= val[2]

#estimate the state

PXY=PXY_K_B1B2B3.instantiate(sensor_reading_values)

compiled_PXY=PXY.compile()

outputfile = ’C:PXY_{0}’.format(i)

compiled_PXY.plot(outputfile)

#Prepare the next iteration

compiled_PXY.rename(Xt_1^Yt_1)

PXt_1Yt_1.mutate(compiled_PXY)

i=i+1

11.3 Markov localization

11.3.1 Statement of the problem

The generic Bayesian filter as it is described by the program in Equation
11.2 offers a large variety of refinements. For example, we can change the
structure as in the autoregressive hidden Markov model (HMM) where the
observation at time t depends on the state at time t and t− 1, leading to the
observational model P (Ot | St ∧ St−1). Another direction is to add “control”
variables to the state variables. In this case the transition model could reflect
the future state of the system knowing the current state and the control. This
approach is useful to keep track of a moving vehicle with external sensors
knowing its current speed.

192 Bayesian Programming

11.3.2 Bayesian program

The resulting Bayesian program is the following:

Pr







































































































Ds































































































Sp































































































V a :











S0 . . . St, ∀t ∈ [0, . . . , T] : St ∈ DS

M0 . . .M t, ∀t ∈ [0, . . . , T] : M t ∈ DM

O1 . . . Ot, ∀t ∈ [0, . . . , T] : Ot ∈ DO

Dc :



















P
(

S0 ∧M0, . . . St ∧Ot . . . ST ∧OT
)

=

P
(

S0
)

P
(

M0
)

×
∏

t∈[1...T]

[P
(

M t
)

P
(

St | St−1 ∧M t−1
)

P
(

Ot | St
)

]

Fo :



















P
(

S0
)

= Initial condition

P
(

M t
)

= Priors on commands

P
(

St | St−1 ∧M t−1
)

= Transition Model

P
(

Ot | St
)

= Sensor Model

Id :

Qu : P
(

ST | o0 ∧m0 ∧ o1 ∧m1 . . . oT
)

(11.12)
The specification of Equation 11.2 permits adding several interesting ques-

tions to the questions already attached to a Bayesian filter, for instance:

• Filtering: P
(

ST | m0 ∧ o1 ∧m1 . . . ∧mT−1 ∧ oT
)

, the purpose of this
question is to infer the current state according to the past sequence
of measurements and commands.

• Forecasting: P
(

Sk | m0 ∧ o1 ∧m1 . . . oT ∧mT ∧mT+1 . . .mk
)

, to esti-
mate the state of the system in the future (k > T) with the past and
present measurements and the past and future commands.

• Control: P
(

MT | m0 ∧ o1 ∧m1 . . . oT ∧ sk
)

(k > T), to search the cur-

rent control to reach a given state in the future (sk) knowing the past
and present measurements and the past commands.

• Interpreting: P
(

S0 ∧ S1 . . . ST | o0 ∧ o1 ∧m1 . . . oT
)

, to infer the set of
states from the past observations and commands.

Note that the recursive property is only valid for the filtering question.
The other question, even if completely valid from a mathematical point of
view, may be intractable in practice due to some cumbersome computations.

11.3.3 Instance and results

Using our previous example, we replace the initial assumption about the
stationarity of the boat, assuming it is now moving. At each time step t the

Bayesian Programming Iteration 193

boat is instructed to move with constant speed V x, V y during the next time
interval. This hypothesis leads to the following transition model:

P
(

Xt|Xt−1 ∧ V t−1
x

)

= B
([

µ = Xt−1 + V xt−1 × δt
]

, [σ = 5]
)

(11.13)

P
(

Y t|Y t−1 ∧ V t−1
y

)

= B
([

µ = Y t−1 + V yt−1 × δt
]

, [σ = 5]
)

(11.14)

This transition model is used to modify the program in Equation 11.11
into the program in Equation 11.15, which implements an elementary version
of the Markov localization.

Pr























































































































































































Ds



































































































































































Sp(π)























































































































































V a :

X
0
, Y

0
, V

0
x , V

0
y · · · , V T

y , B
1
1 , · · · , B

T
3

Dc :










































P
(

X
0 ∧ · · · ∧B

T
3

)

=
T
∏

t=1













P
(

V
t
x

)

P
(

V
t
y

)

P
(

X
t|Xt−1 ∧ V

t−1
x

)

P
(

Y
t|Y t−1 ∧ V

t−1
y

)

3
∏

i=1

[

P
(

B
t
i |X

t ∧ Y
t
)]













×P
(

X
0 ∧ Y

0
)

P
(

V
0
x

)

P
(

V
0
y

)

Fo :

P
(

X
0 ∧ Y

0
)

= Uniform

P
(

V
t
x

)

= Constant

P
(

V
t
y

)

= Constant

P
(

X
t|Xt−1 ∧ V

t−1
x

)

= B
([

µ = X
t−1 + V x

t−1 × δt
]

, [σ = 5]
)

P
(

Y
t|Y t−1 ∧ V

t−1
y

)

= B
([

µ = Y
t−1 + V y

t−1 × δt
]

, [σ = 5]
)

P
(

B
t
i |X

t ∧ Y
t
)

= B
([

µ = f
i
b

(

X
t
, Y

t
)

]

, [σ = 10]
)

Id

Qu :

P
(

X
T ∧ Y

T |v0x ∧ · · · ∧ b
T
3

)

(11.15)

This program may be, for instance, used to estimate the position of the
boat knowing successive observations of the bearings and assuming a constant
velocity toward the upper right corner as in Figure 11.3.

194 Bayesian Programming

-40
-20

 0
 20

 40
-40

-20

 0

 20

 40

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

P

X

Y

P

(a)

-40
-20

 0
 20

 40
-40

-20

 0

 20

 40

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

P

X

Y

P

(b)

-40
-20

 0
 20

 40
-40

-20

 0

 20

 40

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

P

X

Y

P

(c)

FIGURE 11.3: The precision of the location is increasing even with the boat
moving at constant speed toward the upper right corner. Such a model is very
similar to what is used in a GPS (global positioning system).

Bayesian Programming Iteration 195

The file “chapter11/markovloc.py” has been used to create the draw-
ings of Figure 11.3. The structure of the program is identical to the sta-
tionary case. The only difference lies in the specification which now in-
cludes a “ prediction” term: P (Xt | Xt−1 ∧Mxt−1) whereMxt−1+Xt−1

is used as the mean for Xt. An external function f vx is used to compute
Mxt−1 +Xt−1.

#recursive specification:

#define the initial distribution X_0 Y_0

PXt_1Yt_1=plMutableDistribution(plUniform(Xt_1^Yt_1))

JointDistributionList=plComputableObjectList()

#use the mutable distribution as the prior

#on the state distribution

JointDistributionList.push_back(PXt_1Yt_1)

#use avialable knowledge on M_t:

JointDistributionList.push_back(plUniform(Mxt_1^Myt_1))

#define the prediction term

JointDistributionList.push_back(plCndNormal(Xt,Xt_1^Mxt_1,\

plPythonExternalFunction(Xt_1^Mxt_1,f_vx),2))

JointDistributionList.push_back(plCndNormal(Yt,Yt_1^Myt_1, \

plPythonExternalFunction(Yt_1^Myt_1,f_vy),2))

#define the sensor model

JointDistributionList.push_back(plCndNormal(B1,Xt^Yt, \

plPythonExternalFunction(Xt^Yt,f_b_1), \

10.0))

JointDistributionList.push_back(plCndNormal(B2,Xt^Yt, \

plPythonExternalFunction(Xt^Yt,f_b_2), \

10.0))

JointDistributionList.push_back(plCndNormal(B3,Xt^Yt, \

plPythonExternalFunction(Xt^Yt,f_b_3), \

10.0))

#define the joint distribution

filtered_localisation_model = \

plJointDistribution(JointDistributionList)

This page intentionally left blankThis page intentionally left blank

Part III

Bayesian Programming
Formalism and Algorithms

197

This page intentionally left blankThis page intentionally left blank

Chapter 12

Bayesian Programming Formalism

12.1 Logical propositions . 200
12.2 Probability of a proposition . 200
12.3 Normalization and conjunction postulates . 200
12.4 Disjunction rule for propositions . 201
12.5 Discrete variables . 201
12.6 Variable conjunction . 202
12.7 Probability on variables . 202
12.8 Conjunction rule for variables . 202
12.9 Normalization rule for variables . 203
12.10 Marginalization rule . 203
12.11 Bayesian program . 203
12.12 Description . 204
12.13 Specification . 204
12.14 Questions . 206
12.15 Inference . 206

It is a truth very certain that when it is not in our power to
determine what is true we ought to follow what is most probable.

Discours de la Méthode

Descartes [1637]

The purpose of this chapter is to present Bayesian Programming formally
and to demonstrate that it is very simple and very clear but, nevertheless, very
powerful and subtle. Probability is an extension of logic, as mathematically
sane and simple as logic, but with more expressive power than logic.

It may seem unusual to present the formalism toward the middle of the
book. We have done this to help comprehension and to assist intuition without
sacrificing rigor. After reading this chapter, anyone will be able to check that
all the examples and programs presented earlier comply with the formalism.

199

200 Bayesian Programming

12.1 Logical propositions

The first concept we use is the usual notion of logical propositions. Propo-
sitions are denoted by lowercase names. Propositions may be composed to
obtain new propositions using the usual logical operators: a ∧ b, denoting the
conjunction of propositions a and b, a∨ b their disjunction, and ¬a, the nega-
tion of proposition a.

12.2 Probability of a proposition

To be able to deal with uncertainty, we attach probabilities to propositions.
We consider that, to assign a probability to a proposition a, it is necessary

to have at least some preliminary knowledge, summed up by a proposition
π. Consequently, the probability of a proposition a is always conditioned, at
least, by π. For each different π, P (•|π) is an application that assigns to each
proposition a a unique real value P (a|π) in the interval [0, 1].

Of course, we are interested in reasoning about the probabilities of con-
junctions, disjunctions, and negations of propositions, denoted, respectively,
by P (a ∧ b|π), P (a ∨ b|π), and P (¬a|π).

We are also interested in the probability of proposition a conditioned by
both the preliminary knowledge π and some other proposition b. This is de-
noted P (a|b ∧ π).

12.3 Normalization and conjunction postulates

Probabilistic reasoning requires only two basic rules:

1. The conjunction rule, which gives the probability of a conjunction of
propositions.

P (a ∧ b|π) = P (a|π)× P (b|a ∧ π)
= P (b|π)× P (a|b ∧ π)

(12.1)

2. The normalization rule, which states that the sum of the probabilities
of a and ¬a is one.

P (a|π) + P (¬a|π) = 1 (12.2)

Bayesian Programming Formalism 201

In this book, we take these two rules as postulates.1

As in logic, where the resolution principle (Robinson [1965], Robinson
[1979]) is sufficient to solve any inference problem, in discrete probabilities,
these two rules (Equations 12.1 and 12.2) are sufficient for any probabilistic
computation. Indeed, we may derive all the other necessary inference rules
from these two.2

12.4 Disjunction rule for propositions

For instance, the rule concerning the disjunction of propositions

P (a ∨ b|π) = P (a|π) + P (b|π)− P (a ∧ b|π) (12.3)

may be derived as follows:

P (a ∨ b|π) = 1− P (¬a ∧ ¬b|π)
= 1− P (¬a|π) × P (¬b|¬a ∧ π)
= 1− P (¬a|π) × (1− P (b|¬a ∧ π))
= 1− P (¬a|π) + P (¬a|π)× P (b|¬a ∧ π)
= P (a|π) + P (¬a ∧ b|π)
= P (a|π) + P (b|π)× P (¬a|b ∧ π)
= P (a|π) + P (b|π)× (1− P (a|b ∧ π))
= P (a|π) + P (b|π)− P (a ∧ b|π)

(12.4)

12.5 Discrete variables

The notion of discrete variable is the second concept we require. Variables
are denoted by names starting with one uppercase letter.

By definition, a discrete variable X is a set of logical propositions xi, such
that these propositions are mutually exclusive (for all i, j with i 6= j, xi ∧ xj

is false) and exhaustive (at least one of the propositions xi is true). xi means
that variable X takes its ith value. Card (X) denotes the cardinality of the
set X (the number of propositions xi).

1For sources giving justifications of these two rules, see Chapter 16, Section 16.8 on the
Cox theorem.

2These two rules are sufficient as long as we work with discrete variables. To use con-
tinuous variables much more elaborated math is required. See Chapter 16, “Discrete versus
continuous variables” (Section 16.9) for a discussion on this matter.

202 Bayesian Programming

12.6 Variable conjunction

The conjunction of two variables X and Y , denoted X ∧ Y , is defined as
the set of Card (X)×Card (Y) propositions xi∧xj . X∧Y is a set of mutually
exclusive and exhaustive logical propositions. As such, it is a new variable.3

Of course, the conjunction of n variables is also a variable and, as such, it
may be renamed at any time and considered as a unique variable.

12.7 Probability on variables

For simplicity and clarity, we also use probabilistic formulas with variables
appearing instead of propositions.

By convention, each time a variable X appears in a probabilistic formula
Φ (X), it should be understood as: ∀xi ∈ X,Φ (xi).

For instance, given three variables X , Y , and Z:

P (X ∧ Y |Z ∧ π) = P (X |Z ∧ π) (12.5)

stands for:
∀xi ∈ X, ∀yj ∈ Y, ∀zk ∈ Z,

P (xi ∧ yj |zk ∧ π) = P (xi|zk ∧ π)
(12.6)

12.8 Conjunction rule for variables

P (X ∧ Y |π) = P (X |π)× P (Y |X ∧ π)
= P (Y |π)× P (X |Y ∧ π)

(12.7)

According to our convention for probabilistic formulas including variables,
this may be restated as:

∀xi ∈ X, ∀yj ∈ Y,
P (xi ∧ yj |π) = P (xi|π) × P (yj|xi ∧ π) = P (yj |π)× P (xi|yj ∧ π)

(12.8)

which may be directly deduced from the conjunction rule for propositions
(Equation 12.1).

3In contrast, the disjunction of two variables, defined as the set of propositions xi ∨ xj ,
is not a variable. These propositions are not mutually exclusive.

Bayesian Programming Formalism 203

12.9 Normalization rule for variables

∑

X

[P (X |π)] = 1 (12.9)

The normalization rule may obviously be derived as follows:

1 = P (x1|π) + P (¬x1|π)
= P (x1|π) + P

(

x2 ∨ · · · ∨ xCard(X)|π
)

= P (x1|π) + P (x2|π) + · · ·+ P
(

xCard(X)|π
)

=
∑

xi∈X

[P (xi|π)]
(12.10)

where the first equality derives from the normalization rule for propositions
(Equation 12.2), the second from the exhaustiveness of propositions xi, and
the third from both the application of Equation 12.3 and the mutual exclu-
sivity of propositions xi.

12.10 Marginalization rule

∑

X

[P (X ∧ Y |π)] = P (Y |π) (12.11)

The marginalization rule is derived by the successive application of the
conjunction rule (Equation 12.7) and the normalization rule (Equation 12.9):

∑

X

[P (X ∧ Y |π)] =
∑

X

[P (Y |π)× P (X |Y ∧ π)]

= P (Y |π)×
∑

X

[P (X |Y ∧ π)]

= P (Y |π)

(12.12)

12.11 Bayesian program

We define a Bayesian program as a means of specifying a family of proba-
bility distributions.

204 Bayesian Programming

The constituent elements of a Bayesian program are presented below:

Program































Description



















Specification (π)











V ariables

Decomposition

Forms (Parametric or Program)

Identification (based on δ)

Question

1. A program is constructed from a description and a question.

2. A description is constructed using some specification (π) as given
by the programmer and an identification or learning process for the
parameters not completely specified by the specification, using a data
set (δ).

3. A specification is constructed from a set of pertinent variables, a
decomposition, and a set of forms.

4. Forms are either parametric forms or questions to other Bayesian
programs.

12.12 Description

The purpose of a description is to specify an effective method of computing
a joint distribution on a set of variables {X1, X2, · · · , XN} given a set of ex-
perimental data δ and some specification π. This joint distribution is denoted
as: P (X1 ∧X2 ∧ · · · ∧XN |δ ∧ π).

12.13 Specification

To specify preliminary knowledge, the programmer must undertake the
following:

1. Define the set of relevant variables {X1, X2, · · · , XN} on which the
joint distribution is defined.

2. Decompose the joint distribution:

Bayesian Programming Formalism 205

Given a partition {X1, X2, · · · , XN} into K subsets, we define K
variables L1, · · · , LK , each corresponding to one of these subsets.

Each variable Lk is obtained as the conjunction of the variables
{Xk1 , Xk2 , · · · } belonging to the kth subset. The conjunction rule
(Equation 12.7) leads to:

P (X1 ∧X2 ∧ · · · ∧XN |δ ∧ π)
= P (L1 ∧ · · · ∧ LK |δ ∧ π)
= P (L1|δ ∧ π)× P (L2|L1 ∧ δ ∧ π)
× · · · × P (LK |LK−1 ∧ · · · ∧ L1 ∧ δ ∧ π)

(12.13)

Conditional independence hypotheses then allow further simplifica-
tions. A conditional independence hypothesis for variable Lk is de-
fined by choosing some variable Xn among the variables appearing in
conjunction Lk−1 ∧ · · · ∧L2 ∧L1, calling Rk the conjunction of these
chosen variables and setting:

P (Lk|Lk−1 ∧ · · · ∧ L1 ∧ δ ∧ π) = P (Lk|Rk ∧ δ ∧ π) (12.14)

We then obtain:

P (X1 ∧X2 ∧ · · · ∧XN |δ ∧ π)
= P (L1|δ ∧ π)× P (L2|R2 ∧ δ ∧ π)× · · · × P (LK |RK ∧ δ ∧ π)

(12.15)

Such a simplification of the joint distribution as a product of simpler
distributions is called a decomposition.

This ensures that each variable appears at the most once on the left
of a conditioning bar, which is the necessary and sufficient condition
to write mathematically valid decompositions.

3. Define the forms:

Each distribution P (Lk|Rk ∧ δ ∧ π) appearing in the product is then
associated with either a parametric form (i.e., a function fµ (Lk)) or
a question to another Bayesian program. In general, µ is a vector of
parameters that may depend on Rk or δ or both. Learning takes place
when some of these parameters are computed using the data set δ.

206 Bayesian Programming

12.14 Questions

Given a description (i.e., P (X1 ∧X2 ∧ · · · ∧XN |δ ∧ π)), a question is ob-
tained by partitioning {X1, X2, · · · , XN} into three sets: the searched vari-
ables, the known variables, and the free variables.

We define the variables Searched, Known, and Free as the conjunction
of the variables belonging to these sets. We define a question as the set of
distributions:

P (Searched|Known ∧ δ ∧ π) (12.16)

made of as many “instantiated questions” as the cardinal of Known, each
instantiated question being the distribution:

P (Searched|known ∧ δ ∧ π) (12.17)

12.15 Inference

Given the joint distribution P (X1 ∧X2 ∧ · · · ∧XN |δ ∧ π), it is always pos-
sible to compute any possible question using the following general inference:

P (Searched|known ∧ δ ∧ π)

=
∑

Free

[P (Searched ∧ Free|known ∧ δ ∧ π)]

=

∑

Free

[P (Searched ∧ Free ∧ known|δ ∧ π)]

P (known|δ ∧ π)

=

∑

Free

[P (Searched ∧ Free ∧ known|δ ∧ π)]

∑

Free∧Searched

[P (Searched ∧ Free ∧ known|δ ∧ π)]

=
1

Z
×
∑

Free

[P (Searched ∧ Free ∧ known|δ ∧ π)]

(12.18)

where the first equality results from the marginalization rule (Equation 12.11),
the second results from the conjunction rule (Equation 12.7), and the third
corresponds to a second application of the marginalization rule. The denom-
inator appears to be a normalization term. Consequently, by convention, we
will replace it by Z.

Theoretically, this allows us to solve any Bayesian inference prob-
lem. In practice, however, the cost of computing exhaustively and exactly

Bayesian Programming Formalism 207

P (Searched|known ∧ δ ∧ π) is too great in most cases. Chapter 14 reviews
and explains the main techniques and algorithms that can be used to deal
with this inference problem.

Before that, Chapter 13 revisits the main Bayesian models using the
present formalism.

This page intentionally left blankThis page intentionally left blank

Chapter 13

Bayesian Models Revisited

13.1 General purpose probabilistic models . 210
13.1.1 Graphical models and Bayesian networks 210
13.1.2 Recursive Bayesian estimation . 213
13.1.3 Mixture models . 217
13.1.4 Maximum entropy approaches . 219

13.2 Engineering oriented probabilistic models . 220
13.2.1 Sensor fusion . 220
13.2.2 Classification . 222
13.2.3 Pattern recognition . 222
13.2.4 Sequence recognition . 222
13.2.5 Markov localization . 223
13.2.6 Markov decision processes . 224

13.3 Cognitive oriented probabilistic models . 225
13.3.1 Ambiguities . 226
13.3.2 Fusion, multimodality, conflicts . 229
13.3.3 Modularity, hierarchies . 235
13.3.4 Loops . 241

Remember that all models are wrong; the practical question is
how wrong do they have to be to not be useful

Empirical Model-Building and Response Surfaces
Box and Draper [1987]

The goal of this chapter is to review the main probabilistic models currently
used.

We systematically use the Bayesian Programming formalism to present
these models, because it is precise and concise, and it simplifies their compar-
ison.

We mainly concentrate on the definition of these models. Discussions about
inference and computation are postponed to Chapter 14 and discussions about
learning and identification are postponed to Chapter 15.

We chose to divide the different probabilistic models into three categories:
the general purpose probabilistic models, the engineering oriented probabilis-
tic models, and the cognitive oriented probabilistic models.

In the first category, the modeling choices are made independently of any

209

210 Bayesian Programming

specific knowledge about the modeled phenomenon. Most of the time, these
choices are essentially made to keep the inference tractable. However, the
technical simplifications of these models may be compatible with large classes
of problems and consequently may have numerous applications.

In the second category, on the contrary, the modeling choices and simpli-
fications are decided according to some specific knowledge about the modeled
phenomenon. These choices could eventually lead to very poor models from
a computational viewpoint. However, most of the time, problem-dependent
knowledge, such as conditional independence between variables, leads to very
significant and effective simplifications and computational improvements.

Finally, in the cognitive oriented probabilistic models category, the differ-
ent models are presented according to a cognitive classification where common
cognitive problems are links to common Bayesian solutions.

Several of these models were already presented with more detail in previous
chapters. Certain models will appear several times in different categories but
are presented with a different point of view for each presentation. We think
that these repetitions are useful as our goal in this chapter is to give a synthetic
overview of all these models.

13.1 General purpose probabilistic models

13.1.1 Graphical models and Bayesian networks

13.1.1.1 Bayesian networks

Bayesian networks (BNs), first introduced by Pearl [1988], have emerged
as a primary method for dealing with probabilistic and uncertain information.
They are the result of the marriage between the theory of probabilities and
the theory of graphs.

BNs are defined by the following Bayesian program:

Bayesian Models Revisited 211

Pr























































































Ds







































































Sp(π)



























































V a :

X1, · · · , XN

Dc :










P (X1 ∧ · · · ∧XN |π)

=

N
∏

n=1

[P (Xn|Rn ∧ π)]

Fo :

any

Id

Qu :

P (Xn|known)

(13.1)

• The pertinent variables are not constrained and have no specific seman-
tics.

• The decomposition, on the contrary, is specific: it is a product of distri-
butions with one and only one variable Xn conditioned by a conjunc-
tion of other variables Rn, called its parents. An obvious bijection exists
between joint probability distributions defined by such decompositions
and directed acyclic graphs (DAG): nodes are associated with variables,
and oriented edges are associated with conditional dependencies. Us-
ing graphs in probabilistic models leads to an efficient way to define
hypotheses over a set of variables, an economic representation of joint
probability distribution, and, most importantly, an easy and efficient
way to perform probabilistic inference (see Chapter 14).

• The parametric forms are not constrained but they are very often re-
stricted to probability tables.

• Very efficient inference techniques have been developed to answer ques-
tions P (Xn|known), however, some difficulties appear with more general
questions (see Chapter 14).

Readings on Bayesian networks and graphical models should start with the
following introductory textbooks: Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference [Pearl, 1988], Graphical Models [Lau-
ritzen, 1996], Learning in Graphical Models [Jordan, 1999], and Graphical
Models for Machine Learning and Digital Communication [Frey, 1998].

See FAQ-FAM, Chapter 16, Section 16.3 for a summary of the differences
between Bayesian programming and Bayesian networks.

212 Bayesian Programming

13.1.1.2 Dynamical Bayesian networks

To deal with time and to model stochastic processes, the framework of
BNs has been extended to dynamic Bayesian networks (DBNs) (see [Dean
and Kanazawa, 1988]). Given a graph representing the structural knowledge
at time t, supposing this structure to be time invariant and time to be discrete,
the resulting DBN is the repetition of the first structure from a start time to
a final time. Each part at time t in the final graph is called a time slice.

They are defined by the following Bayesian program:

Pr























































































Ds







































































Sp(π)



























































V a :

X0
1 , · · · , X0

N , · · · , XT
1 , · · · , XT

N

Dc :










P
(

X0
1 ∧ · · · ∧XT

N |π
)

=

T
∏

t=0

[

N
∏

n=1

[

P
(

Xt
n|Rt

n ∧ π
)]

]

Fo :

any

Id

Qu :

P
(

Xt
n|known

)

(13.2)

• Rt
n is a conjunction of variables taken in the set

{

Xt
1, · · · , Xt

n−1

}

∪
{

Xt−1
1 , · · · , Xt−1

N

}

. This means that Xt
n depends only on its parents at

time t (
{

Xt
1, · · · , Xt

n−1

}

), as in a regular BN and on some variables from

the previous time slice (
{

Xt−1
1 , · · · , Xt−1

N

}

).

•

N
∏

n=1

[

P
(

Xt
n|Rt

n ∧ π
)]

defines a graph for a time slice and all time slices

are identical when the time index t changes.1

• A DBN, as a whole, “unrolled” over time, may be considered as a large
regular BN. Consequently, the usual inference techniques applicable to
BNs are still valid for such “unrolled” DBNs.

The best introduction, survey, and starting point on DBNs is the PhD
thesis of K. Murphy, Dynamic Bayesian Networks: Representation, Inference
and Learning [Murphy, 2002].

1The first time slice may be different as it expresses initial conditions.

Bayesian Models Revisited 213

13.1.2 Recursive Bayesian estimation

13.1.2.1 Bayesian filtering, prediction, and smoothing

Recursive Bayesian estimation is the generic name for a very large applied
class of probabilistic models of time series.

They are defined by the following Bayesian program:

Pr







































































































































Ds























































































Sp(π)















































































V a :

S0, · · · , ST , O0, · · · , OT

Dc :










P
(

S0 ∧ · · · ∧ ST ∧O0 ∧ · · · ∧OT |π
)

= P
(

S0 ∧O0
)

×
T
∏

t=1

[

P
(

St|St−1
)

× P
(

Ot|St
)]

Fo :










P
(

S0 ∧O0
)

P
(

St|St−1
)

P
(

Ot|St
)

Id

Qu :


















P
(

St+k|O0 ∧ · · · ∧Ot
)

(k = 0) ≡ Filtering

(k > 0) ≡ Prediction

(k < 0) ≡ Smoothing

(13.3)

• Variables S0, · · · , ST are a time series of state variables considered to
be on a time horizon ranging from 0 to T . Variables O0, · · · , OT are a
time series of observation variables on the same horizon.

• The decomposition is based:

– on P
(

St|St−1
)

, called the system model, transition model, or dy-
namic model, which formalizes the transition from the state at time
t− 1 to the state at time t;

– on P
(

Ot|St
)

, called the observation model, which expresses what
can be observed at time t when the system is in state St;

– on an initial state at time 0: P
(

S0 ∧O0
)

.

• The question usually asked of these models is P
(

St+k|O0 ∧ · · · ∧Ot
)

:
what is the probability distribution for the state at time t+ k knowing
the observations from instant 0 to t? The most common case is Bayesian
filtering where k = 0, which means that one searches for the present

214 Bayesian Programming

state, knowing the past observations. However it is also possible to do
prediction (k > 0), where one tries to extrapolate a future state from
past observations, or to do smoothing (k < 0), where one tries to recover
a past state from observations made either before or after that instant.
However, some more complicated questions may also be asked (see the
later section on hidden Markov models).

Bayesian filters (k = 0) have a very interesting recursive property, which
contributes greatly to their attractiveness. P

(

St|O0 ∧ · · · ∧Ot
)

may be com-

puted simply from P
(

St−1|O0 ∧ · · · ∧Ot−1
)

with the following formula:

P
(

St|O0 ∧ · · · ∧Ot
)

= P
(

Ot|St
)

×
∑

St−1

[

P
(

St|St−1
)

× P
(

St−1|O0 ∧ · · · ∧Ot−1
)]

(13.4)

Another interesting point of view for this equation is to consider that there
are two phases, a prediction phase and an estimation phase:

• During the prediction phase, the state is predicted using the dynamic
model and the estimation of the state at the previous moment:

P
(

St|O0 ∧ · · · ∧Ot−1
)

=
∑

St−1

[

P
(

St|St−1
)

× P
(

St−1|O0 ∧ · · · ∧Ot−1
)]

(13.5)

• During the estimation phase, the prediction is either confirmed or inval-
idated using the last observation:

P
(

St|O0 ∧ · · · ∧Ot
)

= P
(

Ot|St
)

× P
(

St|O0 ∧ · · · ∧Ot−1
) (13.6)

13.1.2.2 Hidden Markov models

Hidden Markov models (HMMs) are a very popular specialization of
Bayesian filters.

They are defined by the following Bayesian program:

Bayesian Models Revisited 215

Pr























































































































Ds



































































































Sp(π)























































































V a :

S0, · · · , ST , O0, · · · , OT

Dc :






















P
(

S0 ∧ · · · ∧OT |π
)

=







P
(

S0 ∧O0|π
)

T
∏

t=1

[

P
(

St|St−1 ∧ π
)

× P
(

Ot|St ∧ π
)]







Fo :










P
(

S0 ∧O0|π
)

≡Matrix

P
(

St|St−1 ∧ π
)

≡Matrix

P
(

Ot|St ∧ π
)

≡Matrix

Id

Qu :

MaxS1∧···∧ST−1

[

P
(

S1 ∧ · · · ∧ ST−1|ST ∧O0 ∧ · · · ∧OT ∧ π
)]

(13.7)

• Variables are treated as being discrete.

• The transition model P
(

St|St−1 ∧ π
)

and the observation model

P
(

Ot|St ∧ π
)

are both specified using probability matrices.

• The question most frequently asked of HMMs is:

MaxS1∧···∧ST−1

[

P
(

S1 ∧ · · · ∧ ST−1|ST ∧O0 ∧ · · · ∧OT ∧ π
)]

(13.8)

What is the most probable series of states that leads to the present state,
knowing the past observations?2

This particular question may be answered with a specific and very efficient
algorithm called the Viterbi algorithm, which is presented in Chapter 14.

A specific learning algorithm called the Baum–Welch algorithm has also
been developed for HMMs (see Chapter 15).

A good introduction to HMMs is Rabiner’s tutorial [Rabiner, 1989].

13.1.2.3 Kalman filters

The very well-known Kalman filters [Kalman, 1960] are another special-
ization of Bayesian filters.

They are defined by the following Bayesian program:

2A common example of the application of HMM is automatic speech recognition. The
states are either words or phonemes and one wants to recognize the most probable sequence
of states (the sentence) corresponding to the observations (the heard frequencies).

216 Bayesian Programming

Pr











































































































Ds



























































































Sp(π)















































































V a :

S0, · · · , ST , O0, · · · , OT

Dc :






















P
(

S0 ∧ · · · ∧OT |π
)

=







P
(

S0 ∧O0|π
)

T
∏

t=1

[

P
(

St|St−1 ∧ π
)

× P
(

Ot|St ∧ π
)]







Fo :
{

P
(

St|St−1 ∧ π
)

≡ G
(

St, A • St−1, Q
)

P
(

Ot|St ∧ π
)

≡ G
(

Ot, H • St, R
)

Id

Qu :

P
(

ST |O0 ∧ · · · ∧OT ∧ π
)

(13.9)

• Variables are continuous.

• The transition model P
(

St|St−1 ∧ π
)

and the observation model

P
(

Ot|St ∧ π
)

are both specified using Gaussian laws with means that
are linear functions of the conditioning variables.

With these hypotheses, and using the recursive formula in Equation 13.4,
it is possible to solve the inference problem analytically to answer the usual
P
(

ST |O0 ∧ · · · ∧OT ∧ π
)

question. This leads to an extremely efficient algo-
rithm, which explains the popularity of Kalman filters and the number of their
everyday applications.3

When there are no obvious linear transition and observation models, it is
still often possible, using a first-order Taylor’s expansion, to treat these models
as locally linear. This generalization is commonly called extended Kalman
filters.

A good tutorial by Welch and Bishop may be found on the Web
(http://www.cs.unc.edu/ welch/kalman/). For a more complete mathemat-
ical presentation, one should refer to a report by Barker et al. [1994], but
these are only two sources from the vast literature on this subject.

3A very popular application of Kalman filters is the GPS (global positioning system).
The recursive evaluation of the position explains why the precision is poor when you turn
on your GPS and improves rapidly after a while. The dynamic model takes into account
the previous position and speed to predict the future position (Equation 13.5), when the
observation model confirms (or invalidates) this position knowing the signal coming from
the satellites (Equation 13.6).

http://www.cs.unc.edu/welch/kalman/

Bayesian Models Revisited 217

13.1.2.4 Particle filters

The fashionable particle filters may also be seen as a specific implementa-
tion of Bayesian filters.

The distribution P
(

St−1|O0 ∧ · · · ∧Ot−1 ∧ π
)

is approximated by a set
of N particles having weights proportional to their probabilities. The recur-
sive Equation 13.4 is then used to inspire a dynamic process that produces
an approximation of P

(

St|O0 ∧ · · · ∧Ot ∧ π
)

. The principle of this dynamic
process is that the particles are first moved according to the transition model
P
(

St|St−1 ∧ π
)

, then their weights are updated according to the observation

model P
(

Ot|St ∧ π
)

.
Arulampalam’s tutorial gives a good overview of this [Arulampalam et al.,

2002].

13.1.3 Mixture models

Mixture models try to approximate a distribution on a set of variables
{X1, · · · , XN} by adding up (mixing) a set of simple distributions.

The most popular mixture models are Gaussian mixtures in which the
component distributions are Gaussian. However, the component distributions
may be of any nature, for instance, logistic or Poisson distributions.

Such a mixture is usually defined as follows:

Pr



























































































Ds















































































Sp(π)







































































V a :

X1, · · · , XN

Dc :










P (X1 ∧ · · · ∧XN |π)

=

M
∑

m=1

[αmP (X1 ∧ · · · ∧XN |πm)]

Fo :
{

For − instance :

P (X1 ∧ · · · ∧XN |πm) ≡ G (X1 ∧ · · · ∧XN , µm, σm)

Id :

Qu :

(13.10)
It should be noted that this is not a valid Bayesian program. In particular,

the decomposition does not have the right form:

P (X1 ∧ · · · ∧XN |π) = P (L1|π)×
K
∏

k=2

[P (Lk|Rk ∧ π)] (13.11)

It is, however, a very popular and convenient way to specify distributions
P (X1 ∧ · · · ∧XN |π), especially when the types of the component distributions

218 Bayesian Programming

P (X1 ∧ · · · ∧XN |πm) are chosen to ensure efficient analytical solutions to
some of the inference problems.

Furthermore, it is possible to specify such a mixture as a correct Bayesian
program by adding one model selection variable H to the previous definition:

Pr























































































































Ds















































































Sp(π)



































































V a :

X1, · · · , XN , H

Dc :
{

P (X1 ∧ · · · ∧XN ∧H |π)
= P (H |π)× P (X1 ∧ · · · ∧XN |H ∧ π)

Fo :










P (H |π) ≡ Table

P (X1 ∧ · · · ∧XN | [H = m] ∧ π)

≡ P (X1 ∧ · · · ∧XN |πm)

Id

Qu :










P (X1 ∧ · · · ∧XN |π)

=

M
∑

m=1

[P ([H = m] |π)× P (X1 ∧ · · · ∧XN |πm)]

(13.12)

• H is a discrete variable takingM values.H is used as a selection variable.
Knowing the value ofH , we suppose that the joint distribution is reduced
to one of its component distributions:

P (X1 ∧ · · · ∧XN | [H = m] ∧ π) = P (X1 ∧ · · · ∧XN |πm) (13.13)

• In these simple and common mixture models, H , the selection variable,
is assumed to be independent of the other variables. We saw in Chapter
10 a discussion of more elaborate mixing models in which H depends
on some of the other variables. This is also the case in expert mixture
models, as first described by Jordan and Jacobs [1994].

• Identification is a crucial step for these models, when the val-
ues of P (H |π) and the parameters of the component distributions
P (X1 ∧ · · · ∧XN |πm) are searched to find the best possible fit between
the observed data and the joint distribution. This is usually done using
the EM algorithm or some of its variants (see Chapter 15).

• The questions asked of the joint distribution are of the form
P (X1 ∧ · · · ∧XN |π) where the selection variable H is unknown. Con-
sequently, solving the question assumes a summation for the possible

Bayesian Models Revisited 219

value of H , and we finally retrieve the usual mixture form:

P (X1 ∧ · · · ∧XN |π) =
M
∑

m=1

[P ([H = m] |π)× P (X1 ∧ · · · ∧XN |πm)]

(13.14)

A reference on mixture models is provided in McLachlan and Peel’s book
Finite Mixture Model [2000].

13.1.4 Maximum entropy approaches

Maximum entropy approaches play a very important role in physical ap-
plications. The late E.T. Jaynes, in his regrettably unfinished book [Jaynes,
2003], gives a wonderful presentation of these approaches as well as a fasci-
nating apologia for the subjectivist epistemology of probabilities.

The maximum entropy models may be described by the following Bayesian
program:

Pr



















































































































Ds







































































































Sp(π)































































































V a :

X1, · · · , XN

Dc :


































P (X1 ∧ · · · ∧XN |π)

=
M
∏

m=0

[

e− [λm × fm (X1 ∧ · · · ∧XN)]
]

= e

−
M
∑

m=0

[λm × fm (X1 ∧ · · · ∧XN)]

Fo :
{

f0 (X1 ∧ · · · ∧XN) = 1

f1, · · · , fM
Id :

Qu :

(13.15)

• The variables X1, · · · , XN are not constrained.

• The decomposition is made of a product of exponential distributions
e−[λm×fm(X1∧···∧XN)] where each fm is called an observable function.
An observable function may be any real function on the space defined

220 Bayesian Programming

by X1, · · · , XN , such that its expectation may be computed:

〈fm (X1 ∧ · · · ∧XN)〉
=

∑

X1∧···∧XN

[P (X1 ∧ · · · ∧XN |π)× fm (X1 ∧ · · · ∧XN)]

(13.16)

• The constraints on the problem are usually expressed by M real
values Fm called levels of constraint, which impose the condition
〈fm (X1 ∧ · · · ∧XN)〉 = Fm. These levels of constraint may either be
arbitrary values fixed a priori by the programmer, or the results of ex-
perimental observation. In this latter case, the levels of constraint are
equal to the observed mean values of the observable functions on the
data set. The constraint imposed on the distribution is that the expec-
tations of the observable functions according to the distribution should
be equal to the means of these observable functions.

• The identification problem is, then, knowing the level of constraint Fm,
to find the Lagrange multipliers λm that maximize the entropy of the
distribution P (X1 ∧ · · · ∧XN |π).

The maximum entropy approach is a very general and powerful way to
represent probabilistic models and to explain what is going on when one wants
to identify the parameters of a distribution, choose its form, or even compare
models. Unfortunately, finding the values of the Lagrange multipliers λm can
be very difficult.

A sound introduction is of course Jaynes’ book Probability Theory — The
Logic of Science [Jaynes, 2003]. Other references are the edited proceedings
of the yearly MaxEnt conferences, which cover both theory and applications
since 1979 (see Mohammad-Djafari et al. [2010], for the most recent one).

13.2 Engineering oriented probabilistic models

13.2.1 Sensor fusion

Sensor fusion is a very common and crucial problem for both living sys-
tems and artifacts. The problem is as follows: given a phenomenon and some
sensors, how can we derive information on the phenomenon by combining the
information from the different sensors?

The most common and simple Bayesian modeling for sensor fusion is the
following:

Bayesian Models Revisited 221

Pr























































































Ds







































































Sp(π)



























































V a :

Φ, R1, · · · , RN

Dc :










P (Φ ∧R1 ∧ · · · ∧RN |π)

= P (Φ|π)×
N
∏

n=1

[P (Rn|Φ ∧ π)]

Fo :

any

Id :

Qu :

P (Φ|r1 ∧ · · · ∧ rN ∧ π)

(13.17)

• Φ is the variable used to describe the phenomenon, when R1, · · · , RN

are the variables encoding the readings of the sensors.

• The decomposition:

P (Φ ∧R1 ∧ · · · ∧RN |π) = P (Φ|π)×
N
∏

n=1

[P (Rn|Φ ∧ π)] (13.18)

may seem peculiar, as the readings of the different sensors are obviously
not independent from one another. The exact meaning of this equation
is that the phenomenon Φ is considered to be the main reason for the
contingency of the readings. Consequently, it is stated that knowing
Φ, the readings Rn are independent. Φ is the cause of the readings
and, knowing the cause, the consequences are independent. Indeed, this
is a very strong hypothesis, far from always being satisfied. However,
it very often gives satisfactory results and has the main advantage of
considerably reducing the complexity of the computation.

• The distributions P (Rn|Φ ∧ π) are called sensor models. Indeed, these
distributions encode the way a given sensor responds to the observed
phenomenon. When dealing with industrial sensors, this is the kind of in-
formation directly provided by the device manufacturer. However, these
distributions may also be identified very easily by experiment.

• The most common question asked of this fusion model is:

P (Φ|r1 ∧ · · · ∧ rN ∧ π) (13.19)

It should be noted that this is an inverse question as the model has been
specified the other way around by giving the distributions P (Rn|Φ ∧ π).
The capacity to answer such inverse questions easily is one of the main
advantages of probabilistic modeling, thanks to Bayes’ rule.

222 Bayesian Programming

13.2.2 Classification

The classification problem may be seen as the same as the sensor fusion
problem just described. Usually, the problem is called a classification problem
when the possible value for Φ is limited to a small number of classes and it is
called a sensor fusion problem when Φ can be interpreted as a “measure.”

A slightly more subtle definition of classification uses one more variable.
In this model, not only is there the variable Φ, used to merge the information,
but there is C, used to classify the situation. C has far fewer values than Φ
and it is possible to specify P (Φ|C), which, for each class, makes the possible
values of Φ explicit. Answering the classification question P (C|r1 ∧ · · · ∧ rN)
supposes a summation over the different values of Φ.

The Bayesian program then obtained is as follows:

Pr























































































Ds







































































Sp(π)



























































V a :

C,Φ, R1, · · · , RN

Dc :










P (C ∧ Φ ∧R1 ∧ · · · ∧RN |π)

= P (C|π) × P (Φ|C ∧ π)×
N
∏

n=1

[P (Rn|Φ ∧ π)]

Fo :

any

Id :

Qu :

P (C|r1 ∧ · · · ∧ rN ∧ π)

(13.20)

13.2.3 Pattern recognition

Pattern recognition is another form of the same problem as the two preced-
ing ones. However, it is called recognition because the emphasis is on deciding a
given value for C rather than finding the distribution P (C|r1 ∧ · · · ∧ rN ∧ π).

Consequently, the pattern recognition community usually does not make a
clear separation between the probabilistic inference part of the reasoning and
the decision part, using a utility function. Both are considered as a single and
integrated decision process.

13.2.4 Sequence recognition

The problem is to recognize a sequence of states knowing a sequence of
observations and, possibly, a final state.

In Section 13.1.2.2 we presented hidden Markov models (HMMs) as a spe-
cial case of Bayesian filters. These HMMs have been specially designed for

Bayesian Models Revisited 223

sequence recognition, which is why the most common question asked of these
models is P

(

S1 ∧ · · · ∧ ST−1|ST ∧O0 ∧ · · · ∧OT ∧ π
)

(see Equation 13.8).

13.2.5 Markov localization

Another possible variation of the Bayesian filter formalism is to add a
control variable to the system. This extension is sometimes called an input–
output HMM [Bengio and Frasconi, 1995; Ghahramani, 2002]. However, in
the field of robotics, it has received more attention under the name of Markov
localization [Burgard et al., 1996; Thrun et al., 2005]. In this field, such an
extension is natural, as the robot can observe its state by sensors, but can
also influence its state via motor commands.

Starting from a Bayesian filter structure, the control variable is used
to refine the transition model P

(

St|St−1 ∧ π
)

of the Bayesian filter into

P
(

St|St−1 ∧ At−1 ∧ π
)

, which is then called the action model. The rest of
the Bayesian filter is unchanged. The Bayesian program then obtained is as
follows:

Pr



































































































Ds















































































Sp(π)







































































V a :

S0, · · · , ST , A0, · · · , AT , O0, · · · , OT

Dc :






























P
(

S0 ∧ · · · ∧OT |π
)

=













P
(

S0 ∧O0|π
)

×
T
∏

t=0

[

P
(

At|π
)]

T
∏

t=1

[

P
(

St|St−1 ∧At−1 ∧ π
)

× P
(

Ot|St ∧ π
)]













Fo :

Id

Qu :

P
(

ST |a0 ∧ · · · ∧ aT−1 ∧ o0 ∧ · · · ∧ oT−1 ∧ π
)

(13.21)

The resulting model is used to answer the question

P
(

ST |a0 ∧ · · · ∧ aT−1 ∧ o0 ∧ · · · ∧ oT−1 ∧ π
)

(13.22)

which estimates the state of the robot, given past actions and observations.
When this state represents the position of the robot in its environment, this
amounts to localization.

A reference for Markov localization and its use in robotics is Thrun’s book
titled Probabilistic Robotics [Thrun et al., 2005].

224 Bayesian Programming

13.2.6 Markov decision processes

13.2.6.1 Partially observable Markov decision processes

Partially observable Markov decision processes (POMDPs) are used to
model a robot that must plan and execute a sequence of actions.

Formally, POMDPs use the same probabilistic model as Markov localiza-
tion except that they are enriched by the definition of a reward (and/or cost)
function.

This reward function R models those states that are good for the robot,
and which actions are costly. In the most general notation, it is therefore a
function that associates, for each state–action couple, a real-valued number.
The reward function also helps to drive the planning process. Indeed, the
aim of this process is to find an optimal plan in the sense that it maximizes a
certain measure based on the reward function. This measure is most frequently
the expected discounted cumulative reward:

〈

T
∑

t=0

[

γt ×Rt
]

〉

(13.23)

where γ is a discount factor (less than one), R(t) is the reward obtained
at time t, and 〈〉 is the mathematical expectation. Given this measure, the
goal of the planning process is to find an optimal mapping from probability
distributions over states to actions (a policy). This planning process, which
leads to intractable computation, is sometimes approximated using iterative
algorithms called policy iteration or value iteration. These algorithms start
with random policies, and improve them at each step until some numerical
convergence criterion is met.

An introduction to POMDPs is provided by Kaelbling et al. [1998].

13.2.6.2 Markov decision process

Another approach for tackling the intractability of the planning problem
in POMDPs is to suppose that the robot knows what state it is in. The
state becomes observable, therefore the observation variable and model are
no longer needed; the resulting formalism is called a (fully observable) MDP,
and is summarized by the following Bayesian program:

Bayesian Models Revisited 225

Pr



































































































Ds















































































Sp(π)







































































V a :

S0, · · · , ST , A0, · · · , AT

Dc :






























P
(

S0 ∧ · · · ∧ AT |π
)

=













P
(

S0|π
)

×
T
∏

t=0

[

P
(

At|π
)]

T
∏

t=1

[

P
(

St|St−1 ∧At−1 ∧ π
)]













Fo :

Id

Qu :

P
(

A0 ∧ · · · ∧ AT |s0 ∧ sT ∧ π
)

(13.24)

• The variables are: S0, · · · , ST , a temporal sequence of states, and
A0, · · · , AT , a temporal sequence of actions.

• The decomposition makes a first-order Markov assumption by specifying
that the state at time t depends on the state at time t− 1 and also on
the action taken at time t− 1.

• P
(

St|St−1 ∧At−1 ∧ π
)

is usually represented by a matrix and is called
the “transition matrix” of the model.

• The question addressed to the MDP is P
(

A0 ∧ · · · ∧ AT |s0 ∧ sT ∧ π
)

:

What is the sequence of actions required to go from state s0 to state
sT ?

A introductory review of POMDPs and MDPs is proposed by Boutilier
et al. [1999]. MDPs can cope with planning in state spaces bigger than
POMDPs, but are still limited to some hundreds of states. Therefore, many
research efforts have been aimed toward hierarchical decomposition of the
planning and modeling problems in MDPs, especially in robotics, where the
full observability hypothesis makes their practical use difficult [Hauskrecht
et al., 1998; Lane and Kaelbling, 2001; Pineau and Thrun, 2002; Diard et al.,
2004].

13.3 Cognitive oriented probabilistic models

It is remarkable that a wide variety of common cognitive issues (in the
sense that they appear frequently) can be tackled by a small set of common

226 Bayesian Programming

models (in the sense that these models are shared by these issues). In other
words, a few template mathematical constructs, based only on probabilities
and Bayes’ rule, can be applied to a large assortment of problems that have
to be addressed by cognitive systems.

Our purpose, in this section, is to demonstrate these assertions by propos-
ing a step by step inspection of these cognitive problems and, for each of
them, by describing a candidate Bayesian model.4 The book titled Probabilis-
tic Reasoning and Decision Making in Sensory-Motor Systems [Bessière et al.,
2008] proposed much more detail on several of these models. A recent paper
in Science by Tenenbaum et al. [2011] offers an interesting general overview
of this matter.

13.3.1 Ambiguities

Natural cognitive systems are immersed in rich and widely variable envi-
ronments. It would be difficult to assume that such systems apprehend their
environments in all their details, all the time, if only because of limited sensory
or memory capacities. As a consequence, relations between the characteristics
of external phenomena and internal states cannot always be bijections. In
other words, internal states will sometimes be ambiguous with respect to ex-
ternal situations.

13.3.1.1 Inverse problem

A problem is said to be inverse when we know a direct (or forward) relation
and we seek the reverse relation. The inversion of a deterministic function,
which often does not have a closed-form solution, can be very difficult.

The Bayesian program corresponding to an inverse problem is the follow-
ing:

Pr































































































Ds



























































Sp(π)



















































V a :

Φ, S

Dc :
{

P (Φ ∧ S|π)
= P (Φ|π)× P (S|Φ ∧ π)

Fo :

any

Id

Qu :

P (Φ|s ∧ π) =
P (Φ|π)× P (s|Φ ∧ π)

∑

Φ

[P (Φ|π) × P (s|Φ ∧ π)]

(13.25)

4A large part of this section was originally published in Acta Biotheoretica under the
title “Common bayesian models for common cognitive issues” by Colas et al. [2010]

Bayesian Models Revisited 227

• In the Bayesian framework, an inverse problem is addressed using the
symmetry of Bayes’ rule. In a generic example of perception, let Φ be a
variable representing some characteristics of the phenomenon and let S
be a variable representing the sensation. The joint probability distribu-
tion is typically factored as:

P (Φ S) = P (Φ)P (S | Φ). (13.26)

In this expression, P (Φ) is a prior on the phenomenon; that is, the ex-
pectation about the phenomenon before any observation has occurred.
P (S | Φ) is the probability distribution over sensations, given the phe-
nomenon, which is also known as the likelihood of the phenomenon (when
considered not as a probability distribution but as a function of Φ); it
is the direct model.

• The probabilistic question of perception is P (Φ | S), the probability
distribution on the phenomenon, based on a given sensation. This ques-
tion, which is the posterior distribution on the phenomenon after some
observation, is solved by Bayesian inference:

P (Φ|s ∧ π) =
P (Φ|π)× P (s|Φ ∧ π)

∑

Φ

[P (Φ|π)× P (s|Φ ∧ π)]
(13.27)

Sensation is commonly defined as the effect of some phenomenon on the
senses. Perception involves recovering information about the phenomenon,
given the sensation. Perception is an inverse problem [Poggio, 1984; Yuille
and Bülthoff, 1996; Pizlo, 2001]. Indeed, it is often easy to predict the sensa-
tions corresponding to a particular phenomenon (see Section 13.3.2). In this
case, the direct function yields the sensation given the phenomenon, whereas
perception is the inverse problem of extracting the phenomenon given the
sensation.

For example, when we know the shape of an object, basic geometry allows
us to derive its projection on the retina. Conversely, it is difficult to reconstruct
the shape of an object given only its projection on the retina [Colas, 2006;
Colas et al., 2008b].

13.3.1.2 Ill-posed problem

A problem is said to be well posed when it admits a unique solution.
Conversely, an ill-posed problem admits either many solutions or no solution
at all. In most of the nontrivial inverse problems, the direct functions are not
injective. Therefore, the inverse relation is not properly a function. When the
direct function is not injective, the inverse problem is ill-posed.

Perception is often an ill-posed problem. One illustrative example (see Fig-
ure 13.1) is the well-known Necker’s cube, in which a wire-frame 2-D drawing
of a cube is often perceived as a cube in one of two possible positions (even

228 Bayesian Programming

if it can actually correspond to the projection of an infinite number of 3-D
structures).

FIGURE 13.1: Necker’s cube: bistable percept.

There are many other examples of ill-posed perceptions, including recover-
ing the shape of an object from lighting or motion. Such examples have led to
the development of Bayesian models of perception, which are reviewed in the
book by Knill and Richards [1996] and in the more recent article by Kersten
et al. [2004].

It has also been argued that illusions arise when ill-posed problems are
solved by choosing a solution that does not correspond to the reality of the
percept (an example can be found in Geisler and Kersten [2002]).

In robotics, a common instance of an ill-posed problem is perceptual alias-
ing, which occurs in robot localization when two different locations in an
environment produce identical sensor readings [Kuipers, 2000; Thrun, 2000b].

In speech recognition or generation, recovering the seven-dimensional
shape of the vocal tract [Maeda, 1990] from the first four dimensions (for-
mants) of the acoustic signal alone would be another example of an ill-posed
problem. More generally, the control of any redundant motor system (i.e., one
with more degrees of freedom than the dimension of the space to be accessed)
is an ill-posed problem.

In the Bayesian framework, the focus is not on finding a solution matching
all the constraints of the problem. Instead, a probability distribution is com-
puted. The analogy of a well-posed problem is a distribution with exactly one
mode. An ill-posed problem will typically yield a multimodal distribution, or
a distribution with a plateau.

The theoretical issue with inverse problems is that a direct function does
not always admit an inverse function. In the Bayesian framework, the prob-
ability distribution can always be reversed, even if it is difficult to compute.
Notice that the property of an ill-posed problem is defined by the result of the

Bayesian Models Revisited 229

inference. On the other hand, a problem is inverse by virtue of its structure.
Therefore, an ill-posed problem is not necessarily an inverse problem.

13.3.1.3 Discussion

An ambiguity is a difficulty in finding a unique interpretation for a given
stimulus. This often leads to multistable percepts, in which case, different
interpretations can be actually perceived in the same conditions. Perceptual
reversals can be involved when a transition occurs from one percept to another.
Ambiguity often arises as a consequence of an ill-posed, inverse problem.

However, an ambiguous likelihood for a given stimulus does not always
induce multiple percepts. Indeed, as Equation 13.27 shows, the likelihood is
multiplied by the prior, which can filter out part of the solutions. An illusion
can occur precisely when the likelihood produces multiple interpretations and
the prior rules out the correct one.

13.3.2 Fusion, multimodality, conflicts

Natural cognitive systems are equipped with a variety of rich sensors: rich,
as they continuously provide several measurements about a given phenomenon
(e.g., multiple cells in the retina), and various, as they can measure differ-
ent manifestations of the same phenomenon (e.g., both hearing and seeing a
falling object). The difficulty arises when several of these measurements are to
be used together to recover characteristics of the phenomenon. We argue that
the concepts of fusion, multimodality, and conflict can generally be cast into
the same model structure. This model is structured around the conditional
independency assumption. We also present extensions of this model that alle-
viate this assumption, thus trading model simplicity for expressiveness.

13.3.2.1 Fusion

Often, there are multiple sources of information that can be exploited
for any given phenomenon. Fusion is the process of forming a single percept
starting from multiple sources of information. The classical model of naive
Bayesian fusion (sometimes called weak fusion in the psychology literature) is
defined by the following Bayesian program which has already been presented

230 Bayesian Programming

several times:

Pr



































































































Ds







































































Sp(π)



























































V a :

Φ, S1, S2, · · · , SN

Dc :










P (Φ ∧ S1 ∧ · · ·SN |π)

= P (Φ|π)×
N
∏

n=1

[P (Sn|Φ ∧ π)]

Fo :

any

Id

Qu :

P (Φ|s1 ∧ · · · sN ∧ π) ∝ P (Φ|π)×
N
∏

n=1

[P (sn|Φ ∧ π)]

(13.28)

• This model relies on the assumption that each piece of information
is independent from the others, conditioned on knowledge of the phe-
nomenon. Each piece of information is related to the phenomenon using
an inverse model similar to that discussed in Section 13.3.1.1. For in-
stance, once the cause is known, the consequences follow independently.
This very strong hypothesis is far from always being satisfied. However,
it often gives satisfactory results.

With S1, . . . , SN representing the variables corresponding to the N
pieces of information that are to be part of the fusion, and Φ being the
variable corresponding to characteristics of interest in the phenomenon,
the naive fusion model assumes the following decomposition of the joint
probability distribution:

P (Φ S1 · · ·SN) = P (Φ)

N
∏

i=1

P (Si | Φ). (13.29)

• This model can be used to compute the probability distribution on the
phenomenon, Φ, given all the sensations, S1, . . . , SN :

P (Φ | s1 · · · sN) ∝ P (Φ)

N
∏

i=1

P (si | Φ).

• This model offers the advantage of being much simpler than a complete
model without any independence, as the joint is written as a product
of low dimensional factors. The size of a complete joint probability dis-
tribution is exponential in the number of variables, whereas it is only
linear when assuming naive fusion.

Bayesian Models Revisited 231

• Furthermore, the use of many information sources generally allows for an
increase in the signal. For example, in the case of Gaussian uncertainty
for the sensor models, P (Si | Φ), and the prior, P (Φ), the uncertainty of
the posterior distribution, P (Φ | s1 · · · sN), can be proven to be smaller
with such a model than if the pieces of information are not fused at all.

Note that some models rely on maximum likelihood estimation (MLE).
That is, they do not compute the posterior probability distribution,
P (Φ | s1 · · · sN), but instead they are concerned with the likelihood of
the phenomenon, P (s1 · · · sN | Φ). For a given set of sensations, this
is a function of Φ that reflects how well the phenomenon explains the
sensations. Thus, the MLE selects the phenomenon that best matches
the data.

Moreover, Bayes’ rule is written as:

P (Φ | S1 · · ·SN) ∝ P (Φ)P (S1 · · ·SN | Φ) (13.30)

With a uniform prior, this states that the posterior is proportional to
the likelihood. Therefore, the MLE is tantamount to assuming a uniform
prior or dismissing it altogether.

A common example of fusion in the study of perception is cue combination
(or intramodal fusion).

For instance, Jacobs [1999] studied the perception of the depth of a sim-
ulated rotated cylinder. The depth of the cylinder can be perceived by the
motion of the texture, the deformation of the texture, or both.

Weiss et al. [2002] studied the perception of the motion of a rhombus, and
proposed a model of fusion of the velocity estimates obtained from the edges
that, in particular, can account for an illusion in the perception of the motion
of a flat rhombus.

Hillis et al. [2004] proposed a model for combining texture and disparity
cues for perceiving the slant of a plane.

One last example is given by Drewing and Ernst [2006], who modeled the
perception of curvature from haptic feedback, using both position and force
information.

13.3.2.2 Multimodality

Fusion is often considered within a sensory modality, such as vision or
touch. However, it is often beneficial to consider multiple sources of informa-
tion from various sensory modalities when forming a percept in what is known
as multimodality.

The model for multimodality match the assumptions of the naive Bayesian
fusion model presented above. The main assumption is that the probability
distribution over each sensation is independent of the others given the phe-
nomenon. Some of these models use MLE, while others compute the complete
posterior distribution.

232 Bayesian Programming

Bayesian modeling has often been used to study multimodal fusion.

For example, Anastasio et al. [2000] have proposed a model of multisensory
enhancement in the superior colliculus. Enhancement occurs when the neural
response to a stimulus in one modality is augmented by a stimulus in another
modality. In their work, they proposed a model of the probability of a target
in the colliculus with respect to the presence or absence of visual and auditory
input.

Zupan et al. [2002] have proposed a model for visuo-vestibular interaction
in which they use a sensory weighing model, interpreted as an MLE.

Gepshtein and Banks [2003], who studied visuo-haptic integration, used a
maximum likelihood model in which the reliability of the visual cues is related
to the projection.

Körding and Wolpert [2004] performed experiments on sensorimotor learn-
ing. Using a Bayesian model of integration between visual feedback and pro-
prioception, they inferred and manipulated the prior distributions assumed
for the participants in their experiments.

Jürgens and Becker [2006] used Bayesian fusion for the combination of
vestibular, optokinetic, podokinesthetic, and cognitive information for the per-
ception of rotation.

Finally, Haith et al. [2008] looks into sensorimotor adaptation in a visually
guided reaching experiment and proposes a model that can also account for
perceptual after-effects. This model predicts a visual shift after adaptation of
reaching in a force field, which has been confirmed by an experiment.

Although the models are the same as those for intramodal fusion, they
differ in robustness. The conditional independence hypothesis is never totally
valid. Part of the uncertainty that exists between sensations may not be ex-
plained by Φ. These additional correlations are more likely smaller between
different modalities than within the same modality, as different physical pro-
cesses are involved. For example, while fog or lack of illumination can jointly
degrade different types of visual information, such as color or motion, hearing
performance is not affected.

13.3.2.3 Conflicts

When various sources of information are involved, each can sometimes lead
to significantly different individual percepts. In experiments, a conflict arises
when sensations from different modalities induce different behavior compared
with when each modality is observed individually.

The models accounting for conflicts are still naive fusion and maximum
likelihood (with a naive fusion decomposition). Conflicts arise when the prob-
ability distributions corresponding to each sensation are significantly different.

The concept of a conflict is of a similar nature to that of an ill-posed
problem. Both are defined with respect to characteristics of the result. Con-
versely, inversion and fusion are both structural properties of a problem and
its associated model.

Bayesian Models Revisited 233

Introducing conflicts offers good experimental leverage for providing a lot
of information on the fusion process. For instance, the relative importance
of different cues can be assessed by observing the frequencies of behavior
corresponding to each of the cues. Sometimes, the response to conflicting
situations is mixed behavior that is also interesting to study when compared
with that occurring in the original situations.

To study the integration of visual and haptic information, Ernst and Banks
[2002] designed experiments in which the height of a bar had to be evaluated
either by simulated visual input, simulated tactile input, or both. In this
latter condition when different heights for both visual and haptic stimuli were
simulated, a maximum-likelihood model provided a good match to their data.

Battaglia et al. [2003] designed a localization task with conflicting visual
and auditory input to compare the classical visual capture model with a max-
imum likelihood model. They argued for taking into account the observers’
perceptual biases. One special case of this conflict is the ventriloquist effect
[Alais and Burr, 2004; Banks, 2004].

13.3.2.4 Less naive fusion

Many models assume that if the phenomenon is known then the sensations
may be considered as conditionally independent of one another. This is often
too strong an assumption. A model could assume no conditional independence
between the cues. This is sometimes called strong fusion, and leads to arbi-
trarily complex models that are not tested easily. Less naive fusion models lie
between strong fusion and naive (or weak) fusion.

The corresponding Bayesian model has already been presented in Chapter
7, Equation 7.19:

Pr



































































































Ds







































































Sp(π)



























































V a :

Φ, A, S1, . . . , SN

Dc :










P (Φ ∧ A ∧ S1 ∧ . . . ∧ SN |π)

= P (A ∧ Φ|π)×
N
∏

n=1

[P (Sn|Φ ∧A ∧ π)]

Fo :

any

Id

Qu :
{

P (Φ|s1 ∧ . . . ∧ sN ∧ π)

P (Φ|a ∧ s1 ∧ . . . ∧ sN ∧ π)

(13.31)

This model is the same as a naive fusion model but with a phenomenon
augmented by the ancillary cues, Φ′ = Φ ∧ A. The only difference is in the

234 Bayesian Programming

questions asked, this new model is only concerned with the part Φ of the
global phenomenon Φ′, either knowing the ancillary cues, A, or not.

For instance, Landy et al. [1995] introduced a modified weak fusion frame-
work. They tackled the cue combination problem in depth estimation and
argued for the addition of so-called ancillary cues.5 These cues do not provide
direct information on depth but help to assess the reliability of the various cues
that appear in the fusion process. Ancillary cues are the basis for a dynamic
reweighing of the depth cues.

Yuille and Bülthoff [1996] propose the term strong coupling for nonnaive
Bayesian fusion. They consider the examples of shape recovery from shading
and texture, and the coupling of binocular depth cues with monocular cues
obtained from motion parallax.

13.3.2.5 Discussion

Fusion is often seen as a product of models. It can be used when the under-
lying models are defined independently so that they can be combined to form
a shared variable. Each model links this variable to distinct properties, and
the fusion operates on the conjunction (logical product) of these properties.

This idea of fusion as a product of independent models is also mirrored
by the inference process. Indeed, most of the time, the result of the fusion
process is proportional to the product of each individual result obtained by

the underlying models, P (Φ | s1 · · · sn) ∝
N
∏

n=1

P (Φ | sn). However, this may

not be the case, depending on the exact specification of the underlying models.
There are some more complex fusion models that ensure that this inference
product holds (see [Pradalier et al., 2003] and Section 8.4 on fusion with
coherence variables).

It is also interesting to note that, when all the probability distributions in
the product are Gaussian, the resulting probability distribution is also Gaus-
sian. Its mean is a weighted sum of the means of each Gaussian weighted
according to a function of their variance. Therefore, many weighted models
proposed in the literature can be interpreted as Bayesian fusion models with
Gaussian uncertainty. The weights also acquire the meaning of representing
uncertainty, which can sometimes be manipulated.

Finally, a conflict can only occur when it is assumed that a unique object is
to be perceived. When the discrepancy is too large, segmentation occurs, lead-
ing to the perception of separate objects (e.g., perception of transparency).
Likewise, fusion is a process of combining information from different sources
for one object or feature. Therefore, to account for segmentation, there is a
need for more complex models. Such models can deal with either one or mul-
tiple objects, as well as provide a mechanism for deciding whether there is one
or more objects. This theoretical issue is called binding, unity assumption, or

5See Section 7.4.

Bayesian Models Revisited 235

pairing [Sato et al., 2007], and has received recent attention using hierarchical
Bayesian models.

13.3.3 Modularity, hierarchies

It would be difficult to assume that natural cognitive systems process their
complex sensory inputs in a single layer of computation. Therefore, compu-
tations can probably be apprehended as processes that communicate inter-
mediate results. This is similar to the notion of modularity, which is central
to structured computer programming. A flow of computation can be broken
down into structured sequences. First, we recall Bayesian models that amount
to probabilistic versions of subroutine calls and conditional switches that have
already been presented before but are presented here in the cognitive context.
More complex constructs occur when parts of the computations are based on
observing other computation processes. By so doing, we also recall Bayesian
model recognition and Bayesian model abstraction.

13.3.3.1 Modularity

Hierarchies rely on the notion of modularity, the simplest instance of which
is the subroutine; that is, the use of part of a model (submodel) within another
model. A model can be seen as a resource that can be exploited by other
models.

The corresponding Bayesian model is the following (see Chapter 9):

Pr















































































Ds



























































Sp(π)



















































V a :

A,B

Dc :
{

P (A ∧B|π1)

= P (A|π1)× P (B|A ∧ π1)

Fo :

P (B|A ∧ π1) = P (B|A ∧ π2)

Id

Qu :

any

(13.32)

• A call to a subroutine can be performed simply by specifying that a
distribution for this model is the same as that for another model:

P (B|A ∧ π1) = P (B|A ∧ π2) (13.33)

where π2 is another model concerned with variables A and B. Equa-
tion 13.33 is an assumption that the distribution over B given A in
model π1 is the same as in π2.

236 Bayesian Programming

• Naturally, this requires model π2 to be specified. Most of the time,
P (B|A ∧ π2) is the result of an inference in model π2. As a Bayesian
Program, π2 can be asked any probabilistic question related to its vari-
ables and can be arbitrarily complex. Moreover, many different models
can question π2. In this sense, π2 can be considered as a resource.

For example, Laskey and Mahoney [1997] propose the network fragments
framework, inspired by object oriented software analysis and design to define
submodules of a global probabilistic model. They apply this tool to military
situation assessment, where a military analyst has to reason on various levels
(basic units, regiment, overall situation, etc.).

Koller and Pfeffer [1997] also propose object oriented Bayesian networks as
a modeling language for Bayesian models based on an object oriented frame-
work.6

13.3.3.2 Weighing and switching

A common idea in behavior modeling is to express a behavior as a weighted
sum of more elementary ones. This is often referred to as “weighing” in the
cognitive literature where it appears in various forms.

The generic Bayesian program for these approaches is the following (see
Chapter 10):

Pr























































































































Ds















































































Sp(π)



































































V a :

Y,H,X

Dc :
{

P (Y ∧H ∧X |π)
= P (Y |π)P (H |Y ∧ π)P (X |H ∧ Y ∧ π)

Fo :










P (Y |π) ≡ Any

P (H |Y ∧ π) ≡ Any

P (X | [H = m] ∧ Y ∧ π) ≡ P (X |Y ∧ πm)

Id

Qu :










P (X |y ∧ π)

≺
M
∑

m=1

[P ([H = m] |y ∧ π)× P (X |y ∧ πm)]

(13.34)

• The most simple form is obtained when there is no variable Y and when

6See more on this subject in the FAQ-FAM, Section 16.3 “Bayesian programming versus
Bayesian networks.”

Bayesian Models Revisited 237

P (H |π) is defined as a table of constant values cm, one for each of the
M possible values of H .

In that case, we get:

P (X |π) ≺
M
∑

m=1

[cm × P (X |πm)] (13.35)

which is the standard expression of a mixture.

• A more elaborate one is when Y conditions H but not X .

In this case we get:

P (X |y ∧ π) ≺
M
∑

m=1

[P ([H = m] |y ∧ π)× P (X |πm)] (13.36)

where the weighting between the different behaviors is decided according
to the value of Y .

• Finally, Y may conditions both H and X and we get:

P (X |y ∧ π) ≺
M
∑

m=1

[P ([H = m] |y ∧ π)× P (X |y ∧ πm)] (13.37)

If Y gives all the necessary information without any uncertainty to
choose between the different behaviors P (X |y ∧ πm), then for a given y,
P ([H = m] |y ∧ π) is a Dirac with a value of 0 for all m but one. In that
case the sum on m simplifies to a single term, and we get:

P (X |y ∧ π) = P (X |y ∧ πm) (13.38)

The value of Y is sufficient to switch from one behavior to another.
Weighing and switching may be seen as the same probabilistic model.

Reducing the uncertainty on the choice variable H progressively transforms
weighting into switching. This leads us to reconsider all the debate about
“weighting versus switching” (see for instance [Stocker and Simoncelli, 2008]
and [Aly and Yonelinas, 2012]) as low uncertainty makes them indistinguish-
able.

13.3.3.3 Learning as a probabilistic inference process

The weighting model allows for a combination of different models into
one. Another issue that can be addressed using Bayesian modeling is model
recognition. In particular, when the class of models is a parameter space and
recognition is based on experimental data, this recognition amounts to a ma-
chine learning problem.

238 Bayesian Programming

These models can be fit using the general framework of Bayesian model
recognition. Let ∆ = {∆i} be the variables corresponding to the data used
for learning (∆i, a variable for each datum), and let Π be the variable corre-
sponding to the model. Generally, model recognition is performed using the
following decomposition:

P (Π ∆) = P (Π)P (∆ | Π) (13.39)

where P (Π) is a prior on the various models and P (∆ | Π) is the probability
of observations given the model (i.e., the likelihood of models).

Typically, the data are assumed to be independently and identically dis-

tributed (the i.i.d. assumption); that is, P (∆ | Π) =

N
∏

i=1

P (∆i | Π), where

P (∆i | Π) does not depend on index i of each datum. For each possible model,
πj , the distribution, P (∆i | [Π = πj]), is a call to the submodel, πj , as defined
in Section 13.3.3.1.

The probabilistic question for model recognition is:

P (Π | δ) ∝ P (Π)

N
∏

i=1

P (δi | Π). (13.40)

The expression 13.40 enables the computation of a probability distribution
on the various models based on some of the data. This mechanism is hierar-
chical in the sense that we build a model for reasoning about an underlying
set of models.

A common instance of model recognition is parameter learning. In this
case, the models, Π, share a common parametric form, π′, and the recognition
occurs on the parameters, Θ: Π = Θ ∧ π′. We can modify the decomposition
presented above by including knowledge of the parametric form:

P (Θ ∆ | π′) = P (Θ | π′)P (∆ | Θ π′) = P (Θ | π′)

N
∏

i=1

P (∆i | Θ π′) (13.41)

where P (Θ | π′) is a prior distribution on the parameters and P (∆ | Θ π′) (or
N
∏

i=1

P (∆i | Θ π′) with the i.i.d. assumption) is the likelihood of parameters.

So, learning can be accomplished by using the following question:

P (Θ | δ π′) ∝ P (Θ | π′)P (δ | Θ π′) ∝ P (Θ | π′)

N
∏

i=1

P (δi | Θ π′) (13.42)

The likelihood functions are usually completely specified by the paramet-
ric form, π′, and the parameters, Θ. However, the prior on the parameters,
P (Θ | π′), may need some additional parameters called hyper-parameters. The

Bayesian Models Revisited 239

Bayesian formalism allows for these hyper-parameters in the same way. Let
Λ be the variable representing these hyper-parameters. We write the joint
probability distribution as:

P (Λ Θ ∆ | π′′) = P (Λ | π′′)P (Θ | Λ π′′)P (∆ | Θ π′′) (13.43)

where P (Λ | π′′) is a prior on hyper-parameters, P (Θ | Λ π′′) is the distri-
bution on parameters Θ according to hyper-parameters and P (∆ | Θ π′′) is
the likelihood function, as above. As a result, inference on the parameters is
modified slightly:

P (Θ | δ π′′) ∝
∑

Λ

[P (Λ | π′′)P (Θ | Λ π′′)]P (δ | Θ π′′) (13.44)

The prior on the hyper-parameters could also be parametric, and it is pos-
sible to add another set of parameters. It all amounts to what knowledge the
modeler wants to include in the model. Moreover, it can be shown that deep
layers of priors have much less influence on parameter estimation [MacKay,
2003].

All the entropy principles (maximum entropy principle, minimum relative
entropy principle, Kullback–Leibler divergence) and their numerous applica-
tions are closely and simply related to the above models.

Indeed, to take the simplest case of Equation 13.40, if we consider that
there are K different possible observations (i.e., the variable ∆i can take
K different values), by gathering the same observations, we can restate this
equation as:

P (Π | δ) ∝ P (Π)

K
∏

k=1

P ([∆i = k] | Π)nk (13.45)

where nk is the number of times that the observation, [∆i = k], has been
made. To a first approximation, this number is proportional to the probability
P ([∆i = k] | Π) itself and we obtain, with N the total number of observations:

P (Π | δ) ∝ P (Π)

K
∏

k=1

P ([∆i = k] | Π)NP ([∆i=k] | Π) (13.46)

Finally, if we assume a uniform prior on the different models, and if we take
the logarithm of Equation 13.46, we obtain the maximum entropy principle:

log (P (Π | δ)) = N

K
∑

k=1

[P ([∆i = k] | Π) log (P ([∆i = k] | Π))] + C (13.47)

For example, Gopnik and Schulz [2004] studied the learning of causal de-
pendencies by young children. The experiments included trying to decide

240 Bayesian Programming

which objects are “blickets” (imaginary objects that are supposed to illu-
minate a given machine). Some objects are put on a machine that lights
up depending on which objects are placed on it. The patterns of response
were predicted well by a causal Bayesian network, even after adding some
prior knowledge (“blickets are rare”). The learning phase involved selecting
the causal dependency structure that matches the observations among all the
possibilities.

Xu and Garcia [2008] made this impressive experiment with 8 month old
children demonstrating that they are already able to do model recognition.
They are, indeed, able to estimate the proportion of blue and red balls in an
urn from few samples.

Another example is the application of embedded hidden Markov models.
These are models in which a top-level Bayesian model reasons on nodes that
are themselves Bayesian models. Nefian and Hayes [1999] proposed such a
formalism in the context of face recognition. Each submodel is responsible
for the recognition of a particular feature of the face (forehead, eyes, nose,
mouth, and chin). The global model ensures perception of the facial structure
by recognizing each feature in the correct order. Neal et al. [2003] applied
embedded HMMs to the tracking of 3-D human motion from 2-D tracker
images. The high dimensionality of the problem proved to be less an issue for
their algorithm than it was for the previous approach.

13.3.3.4 Abstraction

Usually, a modeler uses learning in order to select a unique model or set
of parameter values, which is then applied to the problem at hand. That
is, the learning process computes a probability distribution over models (or
their parameters) to be applied, and a decision, based on this probability
distribution, is used to select only one model or parameter set.

Another way to use model recognition is to include it as part of a higher-
level program in order to maintain the uncertainty on the models at the time
of their application. This is called model abstraction.

Let Π be the variable representing the submodels, let ∆ be the variable
representing the data, and let X be the sought-after variable that depends
on the model. The joint probability distribution can be decomposed in the
following way:

P (X ∆ Π) = P (Π)P (∆ | Π)P (X | Π) (13.48)

where P (Π) and P (∆ | Π) are the priors and likelihood functions defined as
before and P (X | Π) describes the influence of the model, Π, on the variable
of interest, X .

The question is concerned with the distribution over X given the data, ∆:

P (X | δ) ∝
∑

Π

[P (Π)P (δ | Π)P (X | Π)] . (13.49)

This inference is similar to model recognition except for the factor P (X | Π).

Bayesian Models Revisited 241

With respect to the question, P (X | δ), the details of the models can be
abstracted.

When applied to classes of models and their parameters (i.e., when X is
Θ), this abstraction model yields the Bayesian model selection (BMS) method.
It can also be used to jointly compute the distribution over joint models and
parameters, using P (Π Θ | ∆) [Kemp and Tenenbaum, 2008].

Diard and Bessière [2008] used abstraction for robot localization. They
defined several Bayesian maps corresponding to various locations in the en-
vironment. Each map is a model of sensorimotor interactions with a part of
the environment. Then, they built an abstracted map based on these models.
In this new map, the location of the robot is defined in terms of the submap
that best fits the observations obtained from the robot’s sensors. The aim
of their abstracted map was to navigate in the environment. Therefore, they
were more interested in the action to be taken than in the actual location.
However, the choice of an action was made with respect to the uncertainty of
the location.

A similar model was also recently applied to the domain of multimodal
perception, under the name of causal inference [Körding et al., 2007; Sato
et al., 2007]. When sensory cues are close, they could originate from a sin-
gle source, and the small spatial discrepancies could be explained away by
noise; on the other hand, when cues are largely separated, they more prob-
ably originate from distinct sources, instead, and their spatial positions are
not correlated. The optimal strategy, when estimating the positions of these
cues, is then to have both alternative models coexist and to integrate over the
number of sources during the final estimation.

13.3.4 Loops

It would be hard to assume that natural cognitive systems process their
complex sensory systems in a single direction, uniquely from sensory input
toward motor outputs. Indeed, neurophysiology highlights a variety of ways
that neural system activity can be fed back in loops. Models that include loops
are mainly temporal in nature and deal with memory systems. Examples are
mostly taken frommodels of artificial systems, and especially from the robotics
community.

13.3.4.1 Temporal series of observations

In order to model the temporal behavior of a phenomenon, it is usually
assumed that a sequential series of observations is available. These are usually
used for state estimation: recovering the evolution of some internal state that
is not observed.

The corresponding Bayesian program (13.50) has been already presented
a number of times (see Chapter 11 and Section 13.1.2).

Kalman filters are the most common examples of models in this category,

242 Bayesian Programming

probably because of strong assumptions that lead to a closed-form solution
for state estimation [Kalman, 1960; Ghahramani et al., 1997]. They are widely
used in robotics [Thrun et al., 2005] and in the life sciences [van der Kooij
et al., 1999; Kiemel et al., 2002]. When the state space can be assumed to be
discrete, hidden Markov models can be applied [Rabiner, 1989; Rabiner and
Juang, 1993]. A common technique for approximating the inference required
for state estimation is to model the state probability distribution using par-
ticle filters; this can also be seen as the application of a mixture model to
a loop model [Arulampalam et al., 2002]. More generally, these models are
instances of Bayesian filters [Leonard et al., 1992; Bessière et al., 2003]. When
the independence assumptions do not vary over time, this class of models is
called dynamic Bayesian networks [Dean and Kanazawa, 1989; Murphy, 2002].
These models have also been extensively covered in the statistics literature,
sometimes using different vocabularies [Harvey, 1992; Brockwell and Davis,
2000]. Interesting extensions have been proposed to occupancy grids for ap-
plication in the automotive industry [Coué, 2003; Coué et al., 2006; Tay et al.,
2007, 2008].

Pr







































































































































Ds























































































Sp(π)















































































V a :

S0, · · · , ST , O0, · · · , OT

Dc :










P
(

S0 ∧ · · · ∧ ST ∧O0 ∧ · · · ∧OT |π
)

= P
(

S0 ∧O0
)

×
T
∏

t=1

[

P
(

St|St−1
)

× P
(

Ot|St
)]

Fo :










P
(

S0 ∧O0
)

P
(

St|St−1
)

P
(

Ot|St
)

Id

Qu :


















P
(

St+k|O0 ∧ · · · ∧Ot
)

(k = 0) ≡ Filtering

(k > 0) ≡ Prediction

(k < 0) ≡ Smoothing

(13.50)

13.3.4.2 Efferent copy

Usually, in robotics and control contexts, the state of the observed sys-
tem can be not only observed but also acted upon. The previous models are
enriched with control variables as additional inputs for state estimation. Read-
ing the values of these control variables after they have been decided, in order

Bayesian Models Revisited 243

to ameliorate state estimation or prediction, is one possible reason for there
being efferent copies of motor variables in animal central nervous systems.

Let us recall this model (13.51) that has been already presented and com-
mented upon (see Chapter 11 and Section 13.2.5).

Input/output HMMs [Bengio and Frasconi, 1995] have been introduced in
the machine learning literature and applied as benchmarks in grammatical
inference.

In the robotic localization context, the Markov localization model is the
most common example of this model category [Thrun et al., 2005].

In life sciences, Laurens and Droulez [2007, 2008] applied Bayesian state
estimation using efferent copies to the modeling of 3-D head orientation in
space in humans and showed that such models could account for a variety of
known perceptual illusions.

Pr



































































































Ds















































































Sp(π)







































































V a :

S0, · · · , ST , A0, · · · , AT , O0, · · · , OT

Dc :






























P
(

S0 ∧ · · · ∧OT |π
)

=













P
(

S0 ∧O0|π
)

×
T
∏

t=0

[

P
(

At|π
)]

T
∏

t=1

[

P
(

St|St−1 ∧At−1 ∧ π
)

× P
(

Ot|St ∧ π
)]













Fo :

Id

Qu :

P
(

ST |a0 ∧ · · · ∧ aT−1 ∧ o0 ∧ · · · ∧ oT−1 ∧ π
)

(13.51)

13.3.4.3 Attention focusing and action selection

Instead of trying to find a structural decomposition of the state space
automatically, alternative approaches can be pursued in order to reduce the
computational complexity of the planning and control processes. It is assumed
that the model already incorporates knowledge about the task or domain.

For instance, modeling cognitive systems requires including in the model
knowledge about the environment structure or task progression structure, so
as to separate elementary filters, and to reduce the complexity and dimension-
ality of the internal state space. Attention systems must also be defined so
that computations are performed only in those subsets of the state space that
are thought to be relevant. Finally, elementary motor tasks can be identified
and modeled as behaviors, so that they are not planned completely through
each time period.

244 Bayesian Programming

Incorporating such knowledge into models makes them less generic and
more sophisticated. Figure 13.2 shows the joint distribution of the full model
from Koike [2008].

P (A0:t S0:t O0:t B0:t C0:t λ0:t β0:t α0:t | π)

=







































t
∏

j=1

































Ni
∏

i=1

P (Sj
i | S

j−1
i Aj−1

i πi)

Ni
∏

i=1

P (Oj | Sj−1
i Cj πi)

P (Bj | π)
Ni
∏

i=1

P (βj | Bj Sj
i Bj−1 πi)

P (Cj | π)
Ni
∏

i=1

P (αj | Cj Sj
i Bj πi)

P (Aj | π)
Ni
∏

i=1

P (λj | Aj Bj Sj
i Aj−1 πi)

































P (A0 S0 O0 B0 C0 λ0 β0 α0 | π)







































FIGURE 13.2: Joint probability factorization for the full model as designed
by Koike [2005].

In Figure 13.2, πi refers to the i elementary filters, which are assumed

to be independent (hence all the

Ni
∏

i=1

products). P (Sj
i | Sj−1

i Aj−1
i πi)

are their dynamic models, P (Oj | Sj−1
i Cj πi) are their sensor models,

P (βj | Bj Sj
i Bj−1 πi) are their behavior models, P (αj | Cj Sj

i B
j πi) are their

attention models, and P (λj | Aj Bj Sj
i Aj−1 πi) are their motor command

models. Finally, P (A0 S0 O0 B0 C0 λ0 β0 α0 | π) encodes the initial state of
the system. This model is then used to compute the probability distribution
over the next action to be performed, given the past history of observation
and control variables: P (At | O0:T A0:T−1).

Koike [2005] and Koike et al. [2008] applied this approach in the domain of
autonomous mobile sensorimotor systems. Koike showed how time and space
limits on computations, and limited on-board processing power, could be ac-
commodated, thanks to simplifying assumptions such as the stationarity of the
temporal models, partial independence between sensory processes, domain-of-
interest selection at the processing stages (attention focusing), and behavior
selection.

13.3.4.4 Discussion

There is no clear definition of a loop. In this section, we have only presented
the definition and examples of temporal loops. These loops can be compared
to loops in the field of computer science, occurring when the execution flow

Bayesian Models Revisited 245

gets several times through the same set of instructions. Such instructions are
specified once for all the executions of the loop, and the global program is its
replication through time.

This replication often occurs with fixed time spans. However, in biologi-
cal systems, multiple loops may take place simultaneously with different and
sometimes varying time constants. In robotics, many processes are run concur-
rently with different levels of priority. There is a need in Bayesian modeling for
a proper way of integrating and synchronizing loops with different time scales.
Finally, loops can also be considered without reference to time. Bayesian fil-
ters are a single model that is replicated at each time step, with an optional
temporal dependency on preceding time steps. Models have also been pro-
posed for spatial replication of models, with dependencies occurring over a
neighborhood. One interesting difference is that temporal relations between
instances are oriented according to the passage of time, whereas models of
spatial loops, such as the Markov random field, rely on a symmetrical relation
between neighbors.

This page intentionally left blankThis page intentionally left blank

Chapter 14

Bayesian Inference Algorithms

Revisited

14.1 Stating the problem . 248
14.2 Symbolic computation . 250

14.2.1 Exact symbolic computation . 250
14.2.2 Approximate symbolic computation . 265

14.3 Numerical computation . 266
14.3.1 Sampling high-dimensional distributions 267
14.3.2 Forward sampling . 267
14.3.3 Importance sampling . 268
14.3.4 Rejection sampling . 268
14.3.5 Gibbs sampling . 269
14.3.6 Metropolis algorithm . 269
14.3.7 Numerical estimation of high-dimensional integrals 270

14.4 Approximate inference in ProBT . 271
14.4.1 Approximation in computing marginalization 271
14.4.2 Approximation in sampling distributions 273
14.4.3 Approximation in computing MAP . 274

“Five to one against and falling?” she said, “four to one against
and falling...three to one...two...one...probability factor of one to
one...we have normality, I repeat we have normality.” She turned
her microphone off, then turned it back on, with a slight smile and
continued:“Anything you still can’t cope with is therefore your
own problem.”

The Hitchhiker’s Guide to the Galaxy
Douglas Adams [1995]

This chapter surveys the main available general purpose algorithms.
It is well known that general Bayesian inference is a very difficult prob-

lem, which may be practically intractable. Exact inference has been proved
to be NP-hard [Cooper, 1990] as has the general problem of approximate in-
ference [Dagum and Luby, 1993].1 Numerous heuristics and restrictions to

1For more details, see Chapter 16, Section 16.7, “Computational complexity of Bayesian
inference.”

247

248 Bayesian Programming

the generality of possible inferences have been proposed to achieve admissible
computation time. The purpose of this chapter is to make a short review of
these heuristics and techniques.

Before starting to crunch numbers, it is usually possible (and wise) to make
some symbolic computations to reduce the amount of numerical computation
required. The first section of this chapter presents the different possibilities.
We will see that these symbolic computations can be either exact or approxi-
mate.

Once simplified, the expression obtained must be numerically evaluated.
In a few cases exact (exhaustive) computation may be possible thanks to
the previous symbolic simplification, but most of the time, even with the
simplifications, only approximate calculations are possible. The second section
of this chapter describes the principles of the main algorithms to do so.

Finally, in a third section we present the specific algorithms used in ProBT:
the inference engine used to interpret the programs given as examples in this
book.

14.1 Stating the problem

Given the joint distribution:

P (X1 ∧X2 ∧ · · · ∧XN |δ ∧ π)
= P (L1|δ ∧ π)× P (L2|R2 ∧ δ ∧ π)× · · · × P (LK |RK ∧ δ ∧ π)

(14.1)

it is always possible to compute any possible instantiated question:

P (Searched|known ∧ δ ∧ π) (14.2)

using the following general inference:

P (Searched|known ∧ δ ∧ π)

=
∑

Free

[P (Searched ∧ Free|known ∧ δ ∧ π)]

=

∑

Free

[P (Searched ∧ Free ∧ known|δ ∧ π)]

P (known|δ ∧ π)

=

∑

Free

[P (Searched ∧ Free ∧ known|δ ∧ π)]

∑

Free∧Searched

[P (Searched ∧ Free ∧ known|δ ∧ π)]

=
1

Z
×
∑

Free

[P (Searched ∧ Free|known ∧ δ ∧ π)]

=
1

Z
×
∑

Free

[

P (L1|δ ∧ π)×
K
∏

k=2

[P (Lk|Rk ∧ δ ∧ π)]

]

(14.3)

Bayesian Inference Algorithms Revisited 249

where the first equality results from the marginalization rule (12.11), the sec-
ond results from the conjunction rule (12.7), and the third corresponds to a
second application of the marginalization rule.

The denominator appears to be a normalization term. Consequently, by
convention, we will either replace it with Z or write a proportional equation
(∝) instead of an equality one (=).

Finally, it is possible to replace the joint distribution by its decomposition
(14.1).

The problem of symbolic simplification can be stated very simply. How
can we modify the expression:

1

Z
×
∑

Free

[

P (L1|δ ∧ π)×
K
∏

k=2

[P (Lk|Rk ∧ δ ∧ π)]

]

(14.4)

to produce a new expression requiring less computation that gives the same
result or a good approximation of it?

Section 14.2 presents the different possibilities. We will see that these
symbolic computations can be either exact (Section 14.2.1) or approximate
(Section 14.2.2), in which case they lead to an expression that, while not
mathematically equal to Equation 14.4, should be close enough.

Once simplified, the expression obtained is used to compute:

P (Searched|known ∧ δ ∧ π) (14.5)

must be evaluated numerically.
In a few cases, exact (exhaustive) computation may be possible, thanks

to the previous symbolic simplification, but normally, even with the simpli-
fications, only approximate calculation is possible. Section 14.3 describes the
principles of the main algorithms used.

Two main problems must be solved: searching the modes in a high-
dimensional space, and marginalizing in a high-dimensional space.

Because Searched may be a conjunction of numerous variables, each of
them possibly having many values or even being continuous, it is seldom
possible to compute exhaustively P (Searched|known ∧ δ ∧ π) and find the
absolute most probable value for Searched. One may then decide to either
build an approximate representation of this distribution or to directly sample
from this distribution. In both cases, the challenge is to find the modes of:

P (Searched|known ∧ δ ∧ π) ∝
∑

Free

[

P (L1|δ ∧ π)×
K
∏

k=2

[P (Lk|Rk ∧ δ ∧ π)]

]

(14.6)
(on the search space defined by Searched), where most of the probability
density is concentrated. This may be very difficult, as most of the probability
may be concentrated in very small subspaces of the whole search space.

250 Bayesian Programming

The situation is even worse, as computing the value of P (Searched|known)
for a given value of Searched (a single point of the search space of the preced-
ing paragraph) is by itself a difficult problem. Indeed, it requires marginalizing
the joint distribution on the space defined by Free. Free (like Searched) may
be a conjunction of numerous variables, each of them possibly having many
values or even being continuous. Consequently, the sum should also be either
approximated or sampled. The challenge is then to find the modes of:

P (L1|δ ∧ π)×
K
∏

k=2

[P (Lk|Rk ∧ δ ∧ π)] (14.7)

(on the search space defined by Free), where most of the probability density is
concentrated and which mostly contribute to the sum. Finally, marginalizing
in a high-dimensional space appears to be a very similar problem to searching
the modes in a high-dimensional space.

14.2 Symbolic computation

In this section, we give an overview of the principal techniques to simplify
the calculation needed either to evaluate P (Searched|known), or to find the
most probable value for Searched, or to draw values for Searched according
to this distribution.

The goal is to perform symbolic computation on the expression:

1

Z
×
∑

Free

[

P (L1|δ ∧ π)×
K
∏

k=2

[P (Lk|Rk ∧ δ ∧ π)]

]

(14.8)

to obtain another expression to compute the same result with far fewer el-
ementary operations (sum and product). It is called symbolic computation
because this can be done independently of the possible numerical values of
the considered variables.

We will present these different algorithms as pure and simple algebraic
manipulations of expression 14.8 above, even if most of them have been his-
torically proposed from different points of view (especially in the form of
manipulation of graphs and message passing along their arcs).

14.2.1 Exact symbolic computation

We first restrict our analysis to mathematically exact symbolic computa-
tions that lead to a simplified expression mathematically equivalent to the
starting one.

Bayesian Inference Algorithms Revisited 251

14.2.1.1 Question-specific symbolic computation

It is seldom possible to solve analytically the question P (Searched|known).
Most of the time, the integral in expression 14.8 has no explicit solution.

However, this is possible for Kalman filters as defined by the Bayesian
program in Equation 13.9. This explains their popularity and their importance
in applications. Indeed, once analytically solved, the answer to the question
may be computed very efficiently.

14.2.1.2 Question-dependent symbolic computation

We first take an example to introduce the different possible simplifications.

This example is defined by the following decomposition (Equation 14.9) of
a joint distribution of nine variables:

P (X1 ∧X2 ∧ · · · ∧X9)
= P (X1)× P (X2|X1)× P (X3|X1)× P (X4|X2)× P (X5|X2)
×P (X6|X3)× P (X7|X3)× P (X8|X6)× P (X9|X6)

(14.9)

corresponding to the Bayesian network defined in Figure 14.1:

FIGURE 14.1: The Bayesian network corresponding to the decomposition
in Equation 14.9.

Take, for instance, the instantiated question P (X1|x5 ∧ x7) where
Searched = X1, known = x5 ∧x7, and Free = X2 ∧X3 ∧X4 ∧X6 ∧X8 ∧X9.
We know that:

252 Bayesian Programming

P (X1|x5 ∧ x7)

∝
∑

X2 ∧X3

X4 ∧X6

X8 ∧X9









P (X1)× P (X2|X1)× P (X3|X1)
×P (X4|X2)× P (x5|X2)
×P (X6|X3)× P (x7|X3)
×P (X8|X6)× P (X9|X6)







 (14.10)

If each of the variables Xn may take 10 different possible values, then
evaluating expression 14.10 for a given value of X1 requires 9×106 elementary
operations.

To reduce this number, we can first reorder the different summations the
following way:

P (X1|x5 ∧ x7)

∝
∑

X2 ∧X3





















P (X1)× P (X2|X1)× P (X3|X1)
×P (x5|X2)× P (x7|X3)

∑

X4













P (X4|X2)

∑

X6









P (X6|X3)

∑

X8





P (X8|X6)
∑

X9

[P (X9|X6)]













































(14.11)

and we see that
∑

X9

[P (X9|X6)] vanishes as it sums to one. We obtain:

P (X1|x5 ∧ x7)

∝
∑

X2 ∧X3

















P (X1)× P (X2|X1)× P (X3|X1)
×P (x5|X2)× P (x7|X3)

∑

X4









P (X4|X2)

∑

X6





P (X6|X3)
∑

X8

[

P (X8|X6)
]





























(14.12)

This same simplification can also be applied to the sums on X8, X6, and
X4 to yield:

P (X1|x5 ∧ x7)

∝
∑

X2 ∧X3

[

P (X1)× P (X2|X1)× P (X3|X1)
×P (x5|X2)× P (x7|X3)

]

(14.13)

Evaluating expression 14.13 requires 5× 102 elementary operations. Elim-
inating the parts of the global sum that sum to one is indeed a very efficient
simplification.

Bayesian Inference Algorithms Revisited 253

However, further rearranging the order of the sums in Equation 14.13 may
lead to more gains.

First, P (X1) may be factorized out of the sum:

P (X1|x5 ∧ x7)

∝ P (X1)×
∑

X2 ∧X3

[

P (X2|X1)× P (X3|X1)
×P (x5|X2)× P (x7|X3)

]

(14.14)

Then, the sum on X2 and X3 can be split, leading to:

P (X1|x5 ∧ x7)

∝ P (X1)×
∑

X2





P (X2|X1)× P (x5|X2)

×
∑

X3

[P (X3|X1)× P (x7|X3)]





(14.15)

and as
∑

X3

[P (X3|X1)× P (x7|X3)] is only a function of X1, it can be factored

out of the sum on X2, to finally have:

P (X1|x5 ∧ x7)

∝ P (X1)×
∑

X2

[

P (X2|X1)× P (x5|X2)
]

×
∑

X3

[P (X3|X1)× P (x7|X3)]

(14.16)

Evaluating expression 14.16 requires 19 + 19 + 2 = 40 elementary opera-
tions, five orders of magnitude less than that required for the initial expression
to perform the exact same calculation!

Other questions lead to similar symbolic simplifications. For instance, for
the question P (X2|x5 ∧ x7), we have:

P (X2|x5 ∧ x7)

∝ P (x5|X2)×
∑

X1





P (X1)× P (X2|X1)

×
∑

X3

[P (X3|X1)× P (x7|X3)]





(14.17)

However, the final simplification step is not similar to the simplification

of P (X1|x5 ∧ x7) because
∑

X3

[P (X3|X1)× P (x7|X3)] depends on X1 and

consequently cannot be factored out of the sum on X1.
Evaluating expression 14.17 requires (21× 10) + 9 + 1 = 220 elementary

operations.

To perform these symbolic simplifications, it is only necessary to apply
two fundamental rules: the distributive law and the normalization rule.

254 Bayesian Programming

The simplification of:

=
1

Z
×
∑

Free

[

P (L1|δ ∧ π)×
K
∏

k=2

[P (Lk|Rk ∧ δ ∧ π)]

]

may be done in three steps:

1. Eliminate distributions that sum to one: When a term

P (Lk|Rk ∧ δ ∧ π)

appears in the sum, if all the variables appearing in Lk are
summed and none of them appears in any of the other Rj , then
P (Lk|Rk ∧ δ ∧ π) sums to one and vanishes out of the global sum. Of
course, the list of summed variables, initialized to Free, must then
be updated by removing the variables of Lk. This process can be re-
cursively applied until no more terms of the product can be removed.
It leads to an expression of the form:

P (Searched|known ∧ δ ∧ π)

=
1

Z
×

∑

Summed

[

∏

k

[P (Lk|Rk ∧ δ ∧ π)]

]

(14.18)

where Summed ⊆ Free. An example of this was given in Equation
14.13.

2. Factorize: Each term of the remaining product
∏

k

[P (Lk|Rk ∧ δ ∧ π)],

where all the variables are either Searched or known, is independent
of the variables appearing in Summed, and consequently it can be
factored out of the sum. We then obtain a new expression of the form:

P (Searched|known ∧ δ ∧ π)

=
1

Z
×
∏

k

[P (Lk|Rk ∧ δ ∧ π)]×
∑

Summed

[

∏

l

[P (Ll|Rl ∧ δ ∧ π)]

]

(14.19)

An example of this factorization was given in Equation 14.14.

3. Order the sums cleverly: Finally, the last type of simplification that

can be made is to reorder the sums of
∑

Summed

[

∏

l

[P (Ll|Rl ∧ δ ∧ π)]

]

to minimize the number of operations required. This third step is
much more complicated than the two previous ones: finding the opti-
mal ordering is indeed NP-hard [Arnborg et al., 1987]. Only heuristics
can be proposed but they are useful even if they do not find the opti-
mal ordering. Any ordering helps to break the exponential complexity
of the computation of the sum.

Bayesian Inference Algorithms Revisited 255

Numerous algorithms have been proposed to deal with these simplifica-
tions. Among the most interesting or most well known are the Symbolic Prob-
abilistic Inference (SPI) algorithm [Shachter et al., 1990; Li and D’Ambrosio,
1994], the variable elimination family [Zhang and Poole, 1996], the bucket
elimination family of algorithms [Dechter, 1999; Dechter and Rish, 1997], the
Query-DAG framework [Darwiche and Provan, 1997], the general distribu-
tive law algorithm [Aji and McEliece, 2000], and the Successive Restriction
Algorithm (SRA) [Mekhnacha et al., 2007].

14.2.1.3 Question-independent symbolic computation

Instead of trying to simplify only:

P (Searched|known ∧ δ ∧ π)

=
1

Z
×
∑

Free

[

P (L1|δ ∧ π) ×
K
∏

k=2

[P (Lk|Rk ∧ δ ∧ π)]

]

(14.20)

we can try to simplify for a family of such questions.
For instance, in Bayesian nets, where all the Lk of the decomposition are

restricted to a single variable (13.1) it may be interesting to apply symbolic
computation to minimize globally the number of numerical operations required
for the family of questions:















P (X1|known)
P (X2|known)
· · ·
P (XN |known)















(14.21)

Each of these questions is called a belief. The given value of known is called
the evidence.

We return to the example of the previous section. The family of interesting
questions is:







































P (X1|x5 ∧ x7)
P (X2|x5 ∧ x7)
P (X3|x5 ∧ x7)
P (X4|x5 ∧ x7)
P (X6|x5 ∧ x7)
P (X8|x5 ∧ x7)
P (X9|x5 ∧ x7)







































(14.22)

Using the simplification scheme of the previous section for each of these
seven questions, we obtain:

P (X1|x5 ∧ x7)

∝ P (X1)×
∑

X2

[

P (X2|X1)× P (x5|X2)
]

×
∑

X3

[P (X3|X1)× P (x7|X3)]

(14.23)

256 Bayesian Programming

P (X2|x5 ∧ x7)

∝ P (x5|X2)×
∑

X1





P (X1)× P (X2|X1)

×
∑

X3

[P (X3|X1)× P (x7|X3)]





(14.24)

P (X3|x5 ∧ x7)

∝ P (x7|X3)×
∑

X1





P (X1)× P (X3|X1)

×
∑

X2

[P (X2|X1)× P (x5|X2)]





(14.25)

P (X4|x5 ∧ x7)

∝
∑

X2









P (X4|X2)× P (x5|X2)

×
∑

X1





P (X1)× P (X2|X1)
∑

X3

[P (X3|X1)× P (x7|X3)]













(14.26)

P (X6|x5 ∧ x7)

∝
∑

X3









P (X6|X3)× P (x7|X3)

×
∑

X1





P (X1)× P (X3|X1)
∑

X2

[P (X2|X1)× P (x5|X2)]













(14.27)

P (X8|x5 ∧ x7)

∝
∑

X6













P (X8|X6)×
∑

X3

[P (X6|X3)× P (x7|X3)]

×
∑

X1





P (X1)× P (X3|X1)
∑

X2

[P (X2|X1)× P (x5|X2)]

















(14.28)

P (X9|x5 ∧ x7)

∝
∑

X6













P (X9|X6)×
∑

X3

[P (X6|X3)× P (x7|X3)]

×
∑

X1





P (X1)× P (X3|X1)
∑

X2

[P (X2|X1)× P (x5|X2)]

















(14.29)

These seven expressions share many terms. To minimize the number of
elementary numerical operations, they should not be computed several times
but only once. This implies an obvious order in these computations:

1. Step 0 : First, P (x5|X2) and P (x7|X3), which appear everywhere and
can be computed immediately.

2. Step 1 : Then
∑

X2

[P (X2|X1)× P (x5|X2)] and
∑

X3

[P (X6|X3)× P (x7|X3)]

can be computed directly.

Bayesian Inference Algorithms Revisited 257

3. Step 2 : In the third step, the first belief can be evaluated:

P (X1|x5 ∧ x7)

∝ P (X1)×
∑

X2

[

P (X2|X1)× P (x5|X2)
]

×
∑

X3

[P (X3|X1)× P (x7|X3)]

(14.30)

4. Step 3 : Then the two questions P (X2|x5 ∧ x7) and P (X3|x5 ∧ x7)
can be solved:

P (X2|x5 ∧ x7)

∝ P (x5|X2)×
∑

X1





P (X2|X1)

× P (X1|x5 ∧ x7)
∑

X2
[P (X2|X1)× P (x5|X2)]





(14.31)
P (X3|x5 ∧ x7)

∝ P (x7|X3)×
∑

X1





P (X3|X1)

× P (X1|x5 ∧ x7)
∑

X3 [P (X6|X3)× P (x7|X3)]





(14.32)

5. Step 4 : The next two expressions, P (X4|x5 ∧ x7) and P (X6|x5 ∧ x7),
can be deduced directly from the two previous ones as:

P (X4|x5 ∧ x7)

∝
∑

X2

[

P (X4|X2)× P (X2|x5 ∧ x7)
]

(14.33)

P (X6|x5 ∧ x7)

∝
∑

X3

[

P (X6|X3)× P (X3|x5 ∧ x7)
]

(14.34)

6. Step 5 : Finally, the last two questions can be computed:

P (X8|x5 ∧ x7)

∝
∑

X6

[

P (X8|X6)× P (X6|x5 ∧ x7)
]

(14.35)

P (X9|x5 ∧ x7)

∝
∑

X6

[

P (X9|X6)× P (X6|x5 ∧ x7)
]

(14.36)

This order of computation may be interpreted as a message-passing algo-
rithm in the Bayesian network (see Figure 14.2 below).

This algorithm was simultaneously and independently proposed by Judea

258 Bayesian Programming

FIGURE 14.2: The order of computation described by steps 0 to 5 (above)
may be interpreted as a message-passing algorithm in the Bayesian net.

Pearl [Pearl, 1988] under the name of Belief Propagation, and by Lauritzen
and Spiegelhalter [Lauritzen and Spiegelhalter, 1988; Lauritzen, 1996] as the
Sum–Product algorithm.

When the graph associated with the Bayesian network has no undirected
cycles,2 it is always possible to find this ordering, ensuring that each sub-
expression is evaluated once and only once.

On the other hand, when the graph of the Bayesian net has some undi-
rected cycles the situation is trickier and such a clever ordering of the compu-
tation may not be found.

For instance, let us modify the above example by adding a dependency
between X2 and X3. We then obtain the new decomposition:

P (X1 ∧X2 ∧ · · · ∧X9)
= P (X1)× P (X2|X1)× P (X3|X2 ∧X1)× P (X4|X2)× P (X5|X2)
×P (X6|X3)× P (X7|X3)× P (X8|X6)× P (X9|X6)

(14.37)
which corresponds to the graph of Figure 14.3 below.

Applying the simplification rules to the different questions, we obtain:

P (X1|x5 ∧ x7)

∝ P (X1)×
∑

X2∧X3

[

P (X2|X1)× P (X3|X2 ∧X1)
×P (x5|X2)× P (x7|X3)

]

(14.38)

2It is either a tree or a polytree.

Bayesian Inference Algorithms Revisited 259

FIGURE 14.3: The Bayesian network corresponding to the joint distribution
in Equation 14.37.

P (X2|x5 ∧ x7)

∝ P (x5|X2)×
∑

X1∧X3

[

P (X1)× P (X2|X1)
×P (X3|X2 ∧X1)× P (x7|X3)

]

(14.39)

P (X3|x5 ∧ x7)

∝ P (x7|X3)×
∑

X1∧X2

[

P (X1)× P (X2|X1)
×P (X3|X2 ∧X1)× P (x5|X2)

]

(14.40)

The four other cases are unchanged relative to these three (see Equations
14.33, 14.34, 14.35, and 14.36).

Obviously, the different elements appearing in these three expressions may
not be neatly separated as in the previous case. The conjunction of variables
X1 ∧X2 ∧X3 must be considered as a whole: they form a new variable A =
X1 ∧X2 ∧X3. The decomposition (Equation 14.37) becomes:

P (X1 ∧X2 ∧ · · · ∧X9)
∝ P (A)× P (X4|A)× P (X5|A)× P (X6|A)× P (X7|A)
×P (X8|X6)× P (X9|X6)

(14.41)

This corresponds to the graph in Figure 14.4 below, which again has a tree
structure.

We have recreated the previous case, where the message-passing algorithms
may be applied. However, this has not eliminated our troubles completely,
because to compute P (X1|x5 ∧ x7), P (X2|x5 ∧ x7), and P (X3|x5 ∧ x7), we
shall now require marginalization of the distribution P (A|x5 ∧ x7):

P (X1|x5 ∧ x7) ∝
∑

X2∧X3

[P (A|x5 ∧ x7)] (14.42)

260 Bayesian Programming

FIGURE 14.4: The Bayesian network resulting from the introduction of a
new variable A = X1 ∧X2 ∧X3 in the Bayesian network as shown in Figure
14.3.

P (X2|x5 ∧ x7) ∝
∑

X1∧X3

[P (A|x5 ∧ x7)] (14.43)

P (X3|x5 ∧ x7) ∝
∑

X1∧X2

[P (A|x5 ∧ x7)] (14.44)

Indeed, the computation of these sums may be very expensive.

The junction tree algorithm, also often called JLO after its inventors
(Jensen, Lauritzen, and Olesen [Jensen et al., 1990]), searches for such
a decomposition and implements the corresponding computation to solve
P (Xn|known).

The main idea of the junction tree algorithm is to convert the Bayesian
network into a tree by clustering the nodes together. After building this tree
of clusters, inference can be done efficiently by the single message-passing
algorithm.

All the details of this popular algorithm may be found in the textbooks
concerning graphical models cited previously (see Section 13.1.1) and also in
Jensen’s book [Jensen, 1996].

It is very important to note that this JLO algorithm may lead to very
poor simplification, as, in some cases, the required marginalizations may be
very expensive. The cost of these marginalizations grows exponentially with
the number of variables in the conjunctions being considered.

Historically, another solution was proposed by Pearl [1988] to deal with
graphs, with undirected cycles. It is called the cut-set algorithm. The principle
of the cut-set algorithm is to break the cycles by fixing the values of some of
the variables in these cycles and computing in turn the different questions for
these different possible values.

Bayesian Inference Algorithms Revisited 261

14.2.1.4 Viterbi, max-product, and min-sum algorithms

When there are no Free variables and if we are interested in the most
probable value of Searched, the usual equation:

P (Searched|known ∧ δ ∧ π)

=
1

Z
×
∑

Free

[

P (L1|δ ∧ π) ×
K
∏

k=2

[P (Lk|Rk ∧ δ ∧ π)]

]

(14.45)

is transformed into:

MaxSearched [P (Searched|known ∧ δ ∧ π)]

= MaxSearched

[

P (L1|δ ∧ π)×
K
∏

k=2

[P (Lk|Rk ∧ δ ∧ π)]

]

(14.46)

The distributive law applies to the couple
(

Max,
∏

)

in the same way

as it applies to the couple
(

∑

,
∏

)

. Consequently, most of the previous

simplifications are still valid with this new couple of operator.

The sum-product algorithm becomes the max-product algorithm, or more
commonly, the min-sum algorithm, as it may be further transformed by op-
erating on the inverse of the logarithm [MacKay, 2003].

It is also known as the Viterbi algorithm [Viterbi, 1967] and it is partic-
ularly used with hidden Markov models (HMMs) to find the most probable
series of states that lead to the present state, knowing the past observations
as stated in the Bayesian program in Equation 13.7.

14.2.1.5 Optimality considerations for exact inference

As previously mentioned, ordering the sums is NP-hard. As a consequence,
all inference algorithms are doomed to select heuristics to obtain reasonable
orderings. For optimality considerations, additional criteria concerning the
computational cost of the inferred expression can be taken into account when
selecting the heuristic.

For example, consider the Bayesian network in Figure 14.5, for which we
are interested in constructing the target distribution P (B | A). The d param-
eter represents the “depth” of the network.

The purpose of this example is to show different orderings of sums for the
target distribution P (B | A) depending on the chosen optimization criterion.
The corresponding computational costs are quantified for each case.

First, we assume that the d parameter (the depth of the Bayesian network)
is fixed to one. We will also assume that all variables of the network take values
in a finite set with n elements.

262 Bayesian Programming

A

C C CC
0 1 2 3

C
4

C
5

C
6

C
7

C
4d

C
4d+1

C
4d+2

C
4d+3

C
4d+4

C
4d+5

B

d

FIGURE 14.5: A Bayesian network from which P (B | A) must be computed.
In our example, two criteria concerning the computational cost are considered.

Bayesian Inference Algorithms Revisited 263

Using the “first compilation time minimization” criterion
Let us suppose that the time required to compile the target distribution

P (B | A) for a single evidence value a is the main issue. In this case, we will
select the following ordering for sums:

P (B | a) =
∑

C3























































































































































































































P (C3 | a)×
∑

C2






























































































































































































P (C2 | a)×
∑

C7


































































































































































P (C7 | C2 ∧ C3)×
∑

C1






































































































































P (C1 | a)×
∑

C6














































































































P (C6 | C1 ∧ C2)×
∑

C9


















































































P (C9 | C6 ∧ C7)×
∑

C0


























































P (C0 | a)×

∑

C5



































P (C5 | C0 ∧ C1)×
∑

C4






P (C4 | C0)×
∑

C8

P (C8 | C4 ∧ C5)× P (B | C8 ∧ C9)

(14.47)

Using this ordering, the number NC of the arithmetic operations (additions
and multiplications) required to compute P (B | a) and the one number NU

required to update this table for a new evidence value of a′ are respectively:

NC = 10n5 + 6n4 + 2n3 + 2n2

NU = 4n5 + 6n4 + 2n3 + 2n2 (14.48)

Notice that the constant part of the sum (requiring no update when the
evidence value of A changes) are quite deep in the nested loops.

Using the “update time minimization” criterion
Suppose now that we are interested in computing the target distribution

264 Bayesian Programming

P (B | a) in a program loop with a different observed evidence value of A
at each iteration. In this case, minimizing the time required to update the
corresponding probability table is the main issue, and we should use a different
ordering of sums.

P (B | a) =

∑

C3















































































































































































































P (C3 | a)×
∑

C2






















































































































































































P (C2 | a)×
∑

C1






























































































































































P (C1 | a)×
∑

C0


































































































































P (C0 | a)×

∑

C7











































































































P (C7 | C2 ∧ C3)×
∑

C6


















































































P (C6 | C1 ∧ C2)×
∑

C9


























































P (C9 | C6 ∧ C7)×
∑

C5






























P (C5 | C0 ∧ C1)×
∑

C4






P (C4 | C0)×
∑

C8

P (C8 | C4 ∧ C5)× P (B | C8 ∧ C9)

(14.49)

Using this ordering, the number NC of the arithmetic operations (additions
and multiplications) required to compute P (B | a) and the one number NU

required to update this table for a new evidence value of a′ are respectively:

NC = 6n6 + 8n5 + 2n4 + 2n3 + 2n2

NU = 2n5 + 2n4 + 2n3 + 2n2 (14.50)

Notice that the constant part of the sum (requiring no update when the evi-
dence value of A changes) is now much higher in the nested loops, which leads
to fewer computations when changing the evidence A, but at a bigger initial
cost.

Let us now assume that n is fixed to 2. Table 14.1 gives the number
of arithmetic operations (addition and multiplication) required to compute

Bayesian Inference Algorithms Revisited 265

P (B | a) (NC) and to update it (NU) as a function of the parameter d for
the “first compilation time minimization” and “update time minimization”
criteria.

Optimization criterion
Compilation Update

d NC NU NC NU

1 440 248 696 120
2 1112 536 1592 120
3 2072 600 2488 120
6 5016 216 5176 120

10 7064 216 7224 120
100 53144 216 53304 120
300 155544 216 155704 120

TABLE 14.1: Computational Cost for Different Values of d When Using the
“First Compilation Time Minimization” (Left) and “Update Time Minimiza-
tion” (Right) Criteria (The results of the chosen optimization criterion are
shown in bold.)

The file “chapter14/optimization.py” provides an example to change
the optimization criterion.

question_S=model.ask(B,A,PL_OPTIMIZE_COMPILATION_TIME)

question_U=model.ask(B,A,PL_OPTIMIZE_UPDATE_TIME)

The optional key “PL OPTIMIZE COMPILATION TIME” should
be used for a single inference such as:

Va=plValues(A)

Va=0

pBka = question_S.instantiate(Va).compile()

while the key “PL OPTIMIZE UPDATE TIME” should be in code
such as:

for i in range(10):

Va=i

pBka = question_U.instantiate(Va).compile()

14.2.2 Approximate symbolic computation

Often, the exact symbolic simplification methods described previously
are not sufficient. We must then use approximate symbolic simplifica-
tions that lead to mathematical expressions that approach the values of
P (Searched|known ∧ δ ∧ π).

266 Bayesian Programming

14.2.2.1 Variational methods

The key to variational methods is to convert a probabilistic inference prob-
lem into an optimization problem. In this way, the standard tools of con-
strained optimization can be used to solve the inference problem. The idea is
to replace a joint distribution P (X) = P (X1 ∧X2 ∧ · · · ∧XN) (represented
by an acyclic graph in the case of a Bayesian net) by an approximation Q (X),
and to compute the Kullback–Leibler divergence between the two distribu-
tions.

The variational free energy (or Kullback–Leibler distance) is defined as:

F (Q,P) =
∑

X

[

Q (X)× log

(

Q (X)

P (X)

)

− log (Z)

]

(14.51)

This distance is minimized when P (X) = Q (X).
Of course, minimizing F is as difficult as the original inference problem.

However, by considering a different family of Q (X), we obtain a different
approximation of F and as a consequence, different variational methods.

For example, if one restricts oneself to the family of factorized independent
distributions:

Q (X) =

I
∏

i=1

[Qi (Xi)] (14.52)

the variational method boils down to the mean field approximation. Minimiz-
ing F (Q,P) is greatly simplified using the acyclic graph structure of P (X).

These approaches have been used successfully in a considerable number of
specific models where exact inference becomes intractable, that is, when the
graph is highly connected. A general introduction to variational methods may
be found in introductory texts by Jordan [1999], Jordan and Weiss [2002], and
Jaakkola and Jordan [1999].

14.3 Numerical computation

A major problem in probabilistic modeling with many variables is the
computational complexity involved in typical calculations for inference. For
sparsely connected probabilistic networks, this problem has been solved by
the introduction of efficient algorithms for exact inference. However, in large
or densely connected models, exact inference is often intractable. This means
that the computation time increases exponentially with the problem size. In
such cases, approximate inference techniques are alternative solutions that
make the problem more tractable.

This section will briefly review the main approximate probabilistic infer-
ence techniques. These techniques are presented in two classes of approaches.

Bayesian Inference Algorithms Revisited 267

The first class groups the sampling-based techniques, while the second con-
cerns the variational methods.

Sampling-based (or Monte Carlo) approaches for approximate Bayesian
inference group together several stochastic simulation techniques that can be
applied to solve optimization and numerical integration problems in large-
dimensional spaces. Since their introduction in the physics literature in the
1950s, Monte Carlo methods have been at the center of the recent Bayesian
revolution in applied statistics and related fields [Geweke, 1996]. They are
applied in numerous other fields such as, for instance, image synthesis [Keller,
1996], CAD modeling [Mekhnacha et al., 2001], and mobile robotics [Dellaert
et al., 1999; Fox et al., 1999].

The aim of this section is to present some of the most popular sampling-
based techniques and their use in the problem of approximate Bayesian infer-
ence.

14.3.1 Sampling high-dimensional distributions

Sampling distributions is a central issue in approximate inference. Sam-
pling is required when: (i) using Monte Carlo methods for numerical estimation
of integrals (see Section 14.3.7), (ii) sampling a posteriori distributions.

The problem of drawing samples from a given distribution is still a chal-
lenging one, especially in high-dimensional spaces.

If we have an acceptable uniform random generator at our disposal, it is
possible in some simple cases to use a “transformation function” to sample
a given nonuniform parametric distribution [Rubinstein, 1981]. One of the
more important and well-known transformation functions is the “Box–Muller
transformation” [Box and Muller, 1958]. It permits generation of a set of
random numbers drawn from a one-dimensional normal distribution using
another set of random numbers drawn from a uniform random generator.

Therefore, direct sampling techniques are available for some standard sim-
ple distributions. However, for more complicated cases, indirect sampling
methods such as “forward sampling”, “importance sampling,” “rejection sam-
pling,” and “Markov Chain Monte Carlo” (MCMC) are alternative solutions.

In this section we present some of the most popular variants of these
algorithms. Two excellent starting points on Monte Carlo methods are the
tutorials by Neal [1993] and MacKay [1996].

14.3.2 Forward sampling

Using the “forward sampling” algorithm to sample a joint distribution
represented as a Bayesian network consists of drawing values of the variables
one by one, starting with the root nodes and continuing in the implicit order
defined by the Bayesian network graph. In other words, first each root variable
Xi is drawn from P (Xi). Then each nonroot variable Xj is drawn, in the

268 Bayesian Programming

ancestral ordering, from P (Xj | pa(Xj)), where pa(Xj) are the parents of Xj ,
for which values have been already drawn.

Suppose for example that we are interested in drawing a point from the
distribution P (X1X2) = P (X1) P (X2 | X1) where P (X1) and P (X2 | X1) are
simple distributions for which direct sampling methods are available. Drawing

a point x(i) = (x
(i)
1 , x

(i)
2) from P (X1X2) using forward sampling consists of:

(i) drawing x
(i)
1 from P (X1), then (ii) drawing x

(i)
2 from P (X2 | X1 = x

(i)
1).

This sampling scheme may be used when no evidence values are available
or when evidence concerns only the conditioning (right side) variables.

When evidence on the conditioned (left side) variables is available, forward
sampling may also be used by introducing rejection of samples that are not
consistent with the evidence. In this case, this algorithmmay be very inefficient
(have a high rejection rate) for evidence values with small probabilities of
occurrence. Moreover, applying this algorithm is impossible when evidence
concerns continuous variables.

14.3.3 Importance sampling

Suppose we are interested in sampling a distribution P (X) for which no
direct sampling method is available and that we are able to evaluate this
distribution for each point x of the state space.

Suppose also that we have a simpler distribution Q(X) (called the “pro-
posal distribution”) that we can evaluate for each point x and for which a
direct sampling method is available.

Using “importance sampling” to sample P (X) consists of generating
n pairs {(wi, x

(i)
q)}ni=1 where {x(i)

q }ni=1 are drawn from Q(X) and wi =

P (x(i)
q)/Q(x(i)

q).

The reader is referred to Yuan and Druzdzel [2006] for a more complete
presentation of importance sampling techniques. It also presents a more so-
phisticated algorithm for importance sampling in Bayesian networks.

14.3.4 Rejection sampling

Suppose, as in the previous case, that we are interested in sampling a
distribution P (X) for which no direct sampling method is available and that
we can evaluate this distribution for each point x of the state space.

Suppose also that we have a simpler distribution Q(X) that we can eval-
uate for each point xi and for which a direct sampling method is available,
respecting the constraint: ∃c, ∀x, c×Q(x) > P (x).

Using rejection sampling to draw a point of P (X) consists of drawing a

point xq from Q(X) and accepting it with a probability of
c×Q(xq)

P (xq)
:

1. draw a candidate point xq from Q(X),

Bayesian Inference Algorithms Revisited 269

2. evaluate c×Q(xq),

3. generate a uniform random value u in [0, c×Q(xq)],

4. if P (x) > u then the point xq is accepted. Otherwise, the point is
rejected.

It is clear that this rejection sampling is efficient if the distribution Q(X)
is a good approximation of P (X). Otherwise, the rejection rate will be very
important.

14.3.5 Gibbs sampling

Gibbs sampling is an example of “Markov chain Monte Carlo” (MCMC)
sampling techniques. MCMC methods use a Markovian process in which a
sequence of states {x(t)} is generated. Each new state x(t) depends on the
previous one x(t−1). These algorithms are based on the theory of Markov
chains [Neal, 1993].

The Gibbs sampling method came into prominence with the work of Ge-
man and Geman [1984] and Smith and Roberts [1993]. It is a method for
sampling from distributions over at least two dimensions. It is assumed that
while P (X) is too complex to draw samples from directly, its conditional dis-
tributions P (Xi|{Xj}i6=j) are tractable to work with. In the general case of a
system of N variables, a single iteration involves sampling one parameter at
a time:

x
(t+1)
1 ∼ P (X1 | x(t)

2 x
(t)
3 · · ·x

(t)
N)

x
(t+1)
2 ∼ P (X2 | x(t)

1 x
(t)
3 · · ·x

(t)
N)

...

x
(t+1)
N ∼ P (XN | x(t)

1 x
(t)
2 x

(t)
3 · · ·x

(t)
N−1).

14.3.6 Metropolis algorithm

The Metropolis algorithm [Metropolis et al., 1953] is another example of
MCMC methods. It is one of the more widely used techniques for sampling
high-dimensional probability distributions and densities. This algorithm only
requires a way to evaluate the sampled expression for each point of the space.

The main idea of the Metropolis algorithm is to use a proposal distribution
Q(xc, x

(t)), which depends on the current state x(t). This proposal distribution
can be a simple distribution (a normal distribution having x(t) as a mean value,
for example).

Suppose the current state is x(t). A candidate xc is generated from
Q(Xc, x

(t)). To accept or reject this candidate we must compute

a =
P (xc)Q(xc, x

(t))

P (x(t))Q(x(t), xc)
.

270 Bayesian Programming

If a > 1 then xc is accepted, otherwise it is accepted with probability a. If
xc is accepted, we set x(t+1) = xc. If xc is rejected, then we set x(t+1) = x(t).

If the proposal distribution Q(Xc, x
(t)) is symmetrical (a normal distribu-

tion having x(t) as a mean value, for example), then
Q(xc, x

(t))

Q(x(t), xc)
= 1 and we

obtain: a = P (xc)/P (x(t)).

One drawback of MCMC methods is that we must in general wait for the
chain to reach equilibrium. This can take a long time and it is sometimes
difficult to tell when it happens.

14.3.7 Numerical estimation of high-dimensional integrals

Integral (sums) calculus is a central issue in Bayesian inference. Unfor-
tunately, analytic methods for integral evaluation seem very limited in real-
world applications, where integrands may have complex shapes and integra-
tion spaces may have very high dimensionality. Furthermore, these techniques
are not useful for general purpose inference, where the distributions may be
simple probability tables.

In this section, we will generally assume that X is a k-dimensional vector
with real or discrete components, or a mixture of real and discrete components.

We will also use the symbol

∫

as a generalized integration operator for both

real integrals (over real components) and sums (over discrete components).

The aim of Monte Carlo methods for numerical integration is to approxi-
mate efficiently the k-dimensional (where k can be very large) integral

I =

∫

P (X)g(X) dkX. (14.53)

Assuming that we cannot visit every location x in the state (integration)
space, the simplest solution we can imagine to estimate the integral 14.53 is
to uniformly sample the integration space and then estimate I by Î:

Î =
1

N

∑

i

P (x(i))g(x(i)).

where {x(i)}Ni=1 are randomly drawn in the integration space.

Because high-dimensional probability distributions are often concentrated
on a small region T of the state (integration) space, known as its “typical set”
[MacKay, 1996, 2003], the number N of points drawn uniformly for the state
(integration) space must be sufficiently large to cover the region T containing
most of the probability mass of P (X).

Instead of exploring the integration space uniformly, Monte Carlo methods
try to use the information provided by the distribution P (X) to explore this
space more efficiently. The main idea of these techniques is to approximate

Bayesian Inference Algorithms Revisited 271

the integral 14.53 by estimating the expectation of the function g(X) under
the distribution P (X):

I =

∫

P (X)g(X) dkX = 〈g(X)〉.

Clearly, if we are able to generate a set of points (vectors) {x(i)}Ni=1 from
P (X), the expectation of Î is I. As the number of samples N increases, the

variance of the estimator Î will decrease as
σ2

N
where σ2 is the variance of g:

σ2 =

∫

P (X)(g(X)− 〈g(X)〉)2 dkX.

Suppose we are able to obtain a set of samples {x(i)}Ni=1 (k-vectors) from
the distribution P (X). We can use these samples to find the estimator

Î =
1

N

∑

i

g(x(i)). (14.54)

This Monte Carlo method assumes the capacity to sample the distribution
P (X) efficiently. It is called “perfect Monte Carlo integration”. A a good
survey of Monte Carlo sampling techniques can be found in Neal [1993].

14.4 Approximate inference in ProBT

Exact inference is often intractable for large and/or densely connected
models. This is especially the case when the variables involved take values
in huge sets of states. Moreover, exact inference is impossible for arbitrary
models involving continuous variables.3

ProBT uses a set of sampling-based techniques to propose three levels of
approximation. These techniques are used for variables taking values in finite
sets as well as for continuous ones.

14.4.1 Approximation in computing marginalization

The first level of approximation proposed in ProBT concerns the problem
of numerically estimating integrals. When evaluating an expression E (X) for
a given point of the target space, ProBT allows the computation of a more
or less accurate numerical estimation of the integrals (sums) involved in this
expression using perfect Monte Carlo methods (see Section 14.3.7). When the

3Exact inference using continuous variables is only possible for models allowing analytical
calculation.

272 Bayesian Programming

evaluated expression involves a marginalization over a conjunction of numer-
ous variables that possibly take values in a huge (or infinite for continuous
variables) set of states, its exact evaluation may have a very high computa-
tional cost. When using this approximation scheme, the expression is said to
be a “Monte Carlo expression.”

Let us take as an example the following decomposition:

P (A ∧B ∧C ∧D ∧ E ∧ F)
= P (A)P (B)P (C|A ∧B)P (D||B)

P (E|C)P (F |D)
(14.55)

The problem is to find an efficient way to approximate P (a b | e f) using
a Monte Carlo estimation of the integral:

I =

∫

P (C | a b) P (D | b) P (e | C) P (f | D) dC dD. (14.56)

Is it more efficient to use:

Î1 =
1

N

∑

i

P (e | c(i)) P (f | d(i)), (14.57)

where {c(i)}Ni=1 and {d(i)}Ni=1 are generated from P (C | a b) and P (D | b), or:

Î2 =
(1

NC

∑

j

P (e | c(j))
) (1

ND

∑

k

P (f | d(k))
)

, (14.58)

where {c(j)}NC

j=1 and {d(k)}ND

k=1 are generated from P (C | a b) and P (D | b)?
More generally, is it more efficient to use the sum/product evaluation tree

built using the SRA algorithm (see Section 14.2.1.2) to estimate the integrals
(sums) using Monte Carlo approximation?

To answer this question, we must consider error propagation in the estima-
tion of intermediate terms and the convergence of this estimation. In ProBT,
we use Equation 14.57 rather than 14.58 to estimate integrals (sums). In other
words no elimination ordering is done. This choice is motivated as follows:

• It is more efficient to use the estimator in Equation 14.57 to avoid error
propagation.

• Monte Carlo methods for integral estimation perform better in high-
dimensional spaces [Neal, 1993].

ProBT allows two ways to control the cost/accuracy of the estimate.
The first way is to specify the number of sample points to be used for

estimating the integral. This allows the user to express constraints on the
computational cost and on the required accuracy of the estimate. This param-
eter (i.e., the number of sample points) is also used internally in the MCSEM
algorithm (see Section 14.4.3) for a posteriori distributions optimization.

Bayesian Inference Algorithms Revisited 273

The second way to control the cost/accuracy of the estimate is to provide
a convergence threshold. The convergence of the estimate is supposed to be
reached when adding sampling points does not sensibly modify the value of
the estimate. This is accomplished by checking the convergence criterion at
each incremental estimation of the integral as follows. Starting with an initial
number n0 of sampling points, an estimate Ên0(x) is computed. For each step
s, the number of sampling points is increased according to a given scheduling
scheme and the estimate Êns−1(x) is updated to give the estimate Êns

(x).
Then, given a threshold value ǫestim , the convergence criterion is checked.
This convergence criterion is defined as:

|Êns
(x) − Êns−1(x)|
Êns−1(x)

< ǫestim .

14.4.2 Approximation in sampling distributions

ProBT implements a drawing method for each probability distribution (or
density function), whether or not it is a standard built-in distribution or an
inferred expression.

ProBT implements standard direct sampling methods for simple distribu-
tions such as normal (with one or many dimensions), Poisson, gamma, and so
on.

For inferred expressions (exact or approximate), a direct sampling is pos-
sible if we construct an explicit numerical representation of the expression by
compiling it. Compilation may be exhaustive, to obtain a corresponding prob-
ability table, or approximate, to obtain a corresponding MRBT4 [Bessière,
2002]. In both cases, a direct drawing method is available. Unfortunately,
this compilation process is often very expensive and seldom possible for high-
dimensional distributions.

An alternative to compiling an expression before sampling it is to use an in-
direct sampling method that does not require a global numerical construction
of the target distribution. The idea is to apply an indirect sampling method
on the expression to be sampled. The following two cases must be considered.

14.4.2.1 Expressions with no evidence on the conditioned variables

For expressions containing no evidence or containing evidence exclusively
on the conditioning variables, the simple (without rejection) forward sampling
algorithm (see Section 14.3.2) is used. Suppose we have a given expression

E (X1X2) = P (X1X2 | e) = P (X1 | e) P (X2 | X1),

where P (X1 | e) is a given probability table and P (X2 | X1) is a normal
distribution having the value of X1 as mean and a fixed value as variance.

4Multi Resolution Binary Tree.

274 Bayesian Programming

Drawing a point x(i) = (x
(i)
1 , x

(i)
2) using forward sampling consists of: (i)

drawing x
(i)
1 from P (X1 | e) using the corresponding repartition function,

(ii) drawing x
(i)
2 from the normal distribution P (X2 | X1 = x

(i)
1) using the

Box–Muller algorithm.
The same method is used for expressions involving sums (integrals) and

containing no evidence values in the left side of all components (i.e., simple
marginalization expressions). This is done by drawing from the corresponding
joint distribution and then simply projecting the drawn point on the target
space. For example, suppose we have the expression

E (X) = P (X | e) ∝
∫

P (Y | e) P (X | Y) dY.

To draw from E (X), we must draw P (X Y | e) from the joint distribution
using the forward sampling method, then take the X component as a sampling
point of E (X).

14.4.2.2 Expressions with evidence on the conditioned variables

Suppose now that we have the task of sampling the expression

E (X1X2) = P (X1X2 | e) ∝ P (X1) P (e | X1) P (X2 | X1).

This expression contains evidence on the conditioned variable E. Using
forward sampling with rejection in this case consists of drawing points from
P (X1X2 E) using the standard forward sampling above, then rejecting points
that are not coherent with the evidence (i.e., points where e(i) 6= e). This
algorithm may be very inefficient (high rejection rate), especially for evidence
values having small probability of occurrence (small value of P (e)) and/or for
continuous variables (i.e., when E is continuous).

Therefore, for expressions containing evidence on the conditioned variables
of at least one component, ProBT uses the Metropolis algorithm (see Section
14.3.6).

14.4.3 Approximation in computing MAP

Searching a maximum a posteriori (MAP) solution for a given infer-
ence problem consists of maximizing the corresponding target distribution
P (X | E = e) (i.e., finding x∗ = argmax

X
P (X | E = e)), where e is a given

evidence value.
X may be a conjunction of numerous variables that possibly take values in

a huge (or infinite for continuous variables) set of states. Moreover, evaluating
P (X | E = e) for a given value x of the space may require evaluating an
integral (or sum) over numerous variables. In these cases, evaluating the target
distribution P (X | E = e) for all possible states of the space is intractable
and an appropriate numeric optimization technique must be used.

Bayesian Inference Algorithms Revisited 275

MAP is known to be a very hard problem. Its complexity has been inves-
tigated in Park [2002] and some approximation methods have been proposed
for discrete Bayesian networks. However, we think that the continuous case is
harder and needs more adapted algorithms.

For general purpose Bayesian inference problems, the optimization method
to be used must satisfy a set of criteria in relation to the shape and nature of
the objective function (target distribution) to optimize. The method must:

1. be global, because the distribution to optimize (objective function) is
often multimodal,

2. allow multiprecision evaluation of expressions requiring integral
(sums) computing; estimation with high accuracy may require long
computation times,

3. allow parallel implementation to improve efficiency.

The resolution method used in ProBT to solve this double integra-
tion/optimization problem is based on an adaptive genetic algorithm. The
accuracy of integral numerical estimation is controlled by the optimization
process to reduce computation time.

Genetic algorithms (GAs) are stochastic optimization techniques inspired
by the biological evolution of species. Since their introduction by Holland
[Holland, 1975] in the 1970s, these techniques have been used for numerous
global optimization problems, thanks to their ease of implementation and
their relative independence of application fields. They are widely used in a
large variety of domains including artificial intelligence and robotics [Mazer
et al., 1998].

Biological and mathematical motivations of genetic algorithms and their
principles are not discussed in this chapter. We only discuss the practical prob-
lems we face when using standard genetic algorithms in Bayesian inference.
We give the required improvements and the corresponding algorithms.

In the following, we use E(X) to denote the probability expression corre-
sponding to the target distribution to be optimized. This expression is used
as an evaluation function in our genetic algorithm. E(X) may contain in-
tegrals (sums) to be evaluated exactly if the expression is an exact one, or
approximately (using Monte Carlo) if the expression is an approximate one.

14.4.3.1 Narrowness of the objective function: Constraint
relaxation

The objective function E(X) may have a narrow support (the region where
the value is not null) for very constrained problems. The initialization of the
population with random individuals from the search space may give null values
of the function E(X) for most individuals. This will make the evolution of the
algorithm very slow and its behavior will be similar to random exploration.

To deal with this problem, a concept inspired from classical simulated

276 Bayesian Programming

FIGURE 14.6: A normal (Gaussian) distribution at different temperature
values.

annealing algorithms [Corana et al., 1987] consists of introducing a notion of
“temperature.” The principle is to first widen the support of the function by
changing the original function to obtain nonnull values even for configurations
that are not permitted (i.e., with probability zero). To do so, we introduce
an additional parameter T (for temperature) in the objective function E(X).
Our goal is to obtain another function ET (X) that is smoother and has wider
support, with

lim
T→0

ET (X) = E(X).

To widen the support of E(X), all elementary terms (distributions) of
E(X) are widened.

Because the main idea is to perform successive optimization cycles for suc-
cessive values of the temperature T , we must respect the following additional
condition:

∀x1, x2 ∈ S, ∀t1, t2 ∈ IR+, Et1(x1) ≤ Et1(x2)⇒ Et2(x1) ≤ Et2(x2).

To do so, all elementary distributions must accept an additional tempera-
ture parameter and must themselves satisfy the following condition:

∀x1, x2 ∈ S, ∀t1, t2 ∈ IR+, f t1(x1) ≤ f t1(x2)⇒ f t2(x1) ≤ f t2(x2).

For example, for a normal (Gaussian) distribution (see Figure 14.6) we
have:

f(x) =
1√
2πσ

e−
1
2

(x−µ)2

σ2 , and fT (x) =
1√

2πσ(1 + T)
e
− 1

2
(x−µ)2

[σ(1+T)]2 .

For nonparametric distributions (probability tables for example), this ad-
ditional parameter may be simply ignored.

Bayesian Inference Algorithms Revisited 277

14.4.3.2 Accuracy of the estimates: Multiprecision computing

When solving problems involving approximate expressions (i.e., Monte
Carlo numerical estimation of integrals), the second problem we face is that
only an approximation Ê(X) of E(X) is available, of unknown accuracy.

This accuracy depends on the number of points N used for the estimation:
more points mean more accurate estimations. However, using a large number
of points to obtain sufficient accuracy in the whole optimization process may
be very expensive in computation time and is seldom possible for complicated
problems. The main idea we propose to solve this problem is to introduce N
as an additional parameter to define a new function ÊN (X).

The main assumption in using this additional parameter is that the final
population of a GA initialized and run for some cycles with ÊN1(X) as its
evaluation function is a good initialization for another GA having ÊN2(X) as
evaluation function with N2 > N1.

14.4.3.3 General optimization algorithm

In the following, we label the evaluation function (the objective function)
by the temperature T and the number N of points used for estimation. It is
denoted by ET

N (X).
Our optimization algorithm may be described by the following three

phases:

1. Initialization and initial temperature determination.

2. Reduction of temperature to recreate the original objective function.

3. Augmentation of the number of points to increase the accuracy of the
estimates.

14.4.3.4 Initialization

The population of the GA is initialized at random from the search space. To
minimize computing time in this initialization phase, we use a small number
N0 of points to estimate integrals. We propose the following algorithm as an
automatic initialization procedure for the initial temperature T0, able to adapt
to the complexity of the problem.

INITIALIZATION()
FOR each population[i] DO

REPEAT
population[i] = random(Space)

value[i] = ET
N0

(population[i])
if (value[i] == 0.0)
T = T + ∆T

UNTIL (value[i]> 0.0)
END FOR
Reevaluate population()

278 Bayesian Programming

where ∆T is a small increment value.

This phase of the algorithm is schematized in Figure 14.7.

14.4.3.5 Temperature reduction

To obtain the original objective function (T = 0.0), a possible scheduling
procedure consists of multiplying the temperature, after running the GA for
a given number of cycles nc1, by a factor α (0 < α < 1). A small value for
α may cause the divergence of the algorithm, while a value too close to 1.0
may considerably increase the computation time. In ProBT, the value of α
has been experimentally fixed to 0.8 as the default; however, it can be fixed
by the user. We summarize the algorithm as follows:

TEMPERATURE REDUCTION()
WHILE (T > Tǫ) DO

FOR i=1 TO nc1 DO
Run GA()

END FOR
T = T * α

Reevaluate population()
END WHILE
T = 0.0
Reevaluate population()

where Tǫ is a small threshold value.

This phase of the algorithm is schematized in Figure 14.8.

14.4.3.6 Increasing the number of points N

At the end of the temperature reduction phase, the population may contain
several possible solutions for the problem. To decide between these solutions,
we must increase the accuracy of the estimates. One approach is to increaseN ,
after running the GA for a given number of cycles nc2, by a factor β (β > 1)
so that the variance of the estimate is divided by β:

V ar(E0
β∗N (X)) =

1

β
V ar(E0

N (X)).

We can describe this phase by the following algorithm.

NUMBER OF POINTS INCREASING()
WHILE (N < Nmax) DO

FOR i=1 TO nc2 DO
Run GA()

END FOR
N = N * β

Reevaluate population()
END WHILE

Bayesian Inference Algorithms Revisited 279

where Nmax is the number of points that allow convergence of the estimates
Ê0

N (X) for all individuals of the population.
This phase of the algorithm is schematized in Figure 14.9.
ProBT also provides an anytime version of the MCSEM algorithm. In this

version, the user is allowed to fix the maximum number of evaluations of the
objective function or the maximum time to be used to maximize it.

A preliminary implementation of the MCSEM algorithm and its use in
high-dimensional inference problems has been presented in Mekhnacha et al.
[2001, 2000] in which this algorithm is used as a resolution module in a prob-
abilistic CAD system.

280 Bayesian Programming

0

0.1

0.2

0.3

0.4

0.5

–20 –10 10 20 0

0.1

0.2

0.3

0.4

0.5

–20 –10 10 20 0

0.1

0.2

0.3

0.4

0.5

–20 –10 10 20 0

0.1

0.2

0.3

0.4

0.5

–20 –10 10 20

FIGURE 14.7: The initialization phase of the MCSEM algorithm. In black,
the theoretical distribution to maximize and in gray, the estimated one using
Monte Carlo numerical integration. From left to right, the T (temperature)
parameter is increased starting from zero (i.e., the initial distribution).

0

0.1

0.2

0.3

0.4

0.5

–20 –10 10 20 0

0.1

0.2

0.3

0.4

0.5

–20 –10 10 20 0

0.1

0.2

0.3

0.4

0.5

–20 –10 10 20 0

0.1

0.2

0.3

0.4

0.5

–20 –10 10 20

FIGURE 14.8: The “temperature reduction” phase of the MCSEM algo-
rithm. In black, the theoretical distribution to maximize and in gray, the esti-
mated one using Monte Carlo numerical integration. From left to right, the T
(temperature) parameter is decreased to obtain the original distribution (i.e.,
T = 0.0).

0

0.1

0.2

0.3

0.4

0.5

–20 –10 10 20 0

0.1

0.2

0.3

0.4

0.5

–20 –10 10 20 0

0.1

0.2

0.3

0.4

0.5

–20 –10 10 20 0

0.1

0.2

0.3

0.4

0.5

–20 –10 10 20

FIGURE 14.9: The “increasing number of points” phase of the MCSEM
algorithm. In black, the theoretical distribution to maximize and in gray, the
estimated one using Monte Carlo numerical integration. From left to right,
the parameter N (number of sampling points used to estimate the integral)
is increased to obtain increasingly accurate estimations of the distribution.

Chapter 15

Bayesian Learning Revisited

15.1 Parameter identification . 282
15.1.1 Problem statement . 282
15.1.2 Bayesian parametric estimation . 283
15.1.3 Maximum likelihood (ML) . 285
15.1.4 Bayesian estimator and conjugate laws . 287

15.2 Expectation–Maximization (EM) . 290
15.2.1 EM and classification . 293
15.2.2 EM and HMM . 297
15.2.3 Model selection . 301

15.3 Learning structure of Bayesian networks . 302
15.3.1 Directed minimum spanning tree algorithm: DMST 304
15.3.2 Score-based algorithms . 305

The scientist shall organize; science is done with facts as a
house with stones, but an accumulation of facts is no more a science
than a heap of stones is a house.1

La Science et l’Hypothèse

Henri Poincaré [1902]

In Chapter 4 we have seen how data are used to transform a “specification”
into a “description”: the free parameters of the distributions are instantiated
with the data, making the joint distribution computable for any value of the
variables. This identification process may be considered as a learning mech-
anism allowing the data to shape the description before any inferences could
be made. In this chapter, we consider learning problems in more detail and
show how some of them may be expressed as special instances of Bayesian
programs.

1Le savant doit ordonner ; on fait la science avec des faits comme une maison avec des
pierres ; mais une accumulation de faits n’est pas plus une science qu’un tas de pierres n’est
une maison.

281

282 Bayesian Programming

15.1 Parameter identification

15.1.1 Problem statement

Let’s recall the general form of a Bayesian program as it is presented in
Chapter 2:

Program































Description.



















Specification(π)











V ariables

Decomposition

Forms

Identification (based on δ)

Question

The identification part is based on a data set δ. For example, in Chapter 4
we used data to instantiate P (V rot | Dir ∧ Prox ∧ π ∧ δ). The data are ob-
tained either by driving the robot to perform a “pushing” (δpush) or a “follow-
ing” (δfollow) behavior. As a result, we obtained with the same specifications
π two distinct descriptions depending on the data set δbehavior .

Pr



















































































































Ds































































































Sp(π)














































































V a :

V rot,Dir, Prox

Dc :










P (V rot ∧Dir ∧ Prox ∧ π)

= P (Dir ∧ Prox | π)
×P (V rot | Dir ∧ Prox ∧ π)

Fo :










P (Dir ∧ Prox ∧ π) = Uniform

P (V rot | Dir ∧ Prox ∧ π) =

B(µ = f(δ)), σ = g(δ))

Id(δbehavior) : µdir,prox = f(δbehavior), σdir,prox = g(δbehavior)

Qu :

P (V rot | Dir ∧ Prox ∧ π ∧ δbehavior)

(15.1)
For this particular identification, k = card(Dir) × card(Prox) probabil-

ity distributions P (V rot)1,...,k are computed from the set of observations
δbehavior = {vroti, diri, proxi} : i ∈ {1, l}. These distributions are indexed
by the values dir and prox. The parameters of each distribution µdir,prox and
σdir,prox are obtained by pruning the set {vroti, diri, proxi} : i ∈ {1, . . . , l} to
obtain a subset {vrotj , dirj , proxj} with dirj = dir and proxj = prox and by
computing the experimental mean and standard deviation:

Bayesian Learning Revisited 283

µdir,prox = E(vrotj)
σdir,prox = E((vrotj −mudir,prox)

2)

This shows that multiple descriptions may be obtained with multiple data
sets, however, many hypotheses remain hidden in that implementation.

15.1.2 Bayesian parametric estimation

Our goal is to obtain a probability distribution on a given variable O which
summarizes some previous observations δ = o1, . . . , oN on this variable. We
denote this distribution P (O | δ ∧ π). The parametric approach consists of
choosing a family of probability distributions (for example Normal laws) pa-
rameterized by a set of variables Λ = λ1,∧ . . . ,∧λM (for example the mean
and/or the variance). The choice of the distribution and of the parameters are
part of the modeling process and belong to the prior knowledge of the pro-
grammer: π. We discuss the Bayesian approach to the parametric estimation
by considering the program in Equation 15.2.

Pr































































































































Ds



















































































































Sp(π0)






























































































V a :

O,O1, . . . , On,Λ

Dc :










P (O ∧O1 ∧ . . . ∧ON ∧ Λ ∧ π0)

= P (Λ | π0)

×P (O1 | Λ ∧ π0)× . . . P (ON | Λ ∧ π0)

Fo :






























P (Λ | π0) = prior knowledge on the distribution Λ

P (O | Λ ∧ π0) = prior on the distribution on O

P (O1 | Λ ∧ π0) = prior on the distribution on O

. . .

P (ON | Λ ∧ π0) = prior on the distribution on O

Id :

Qu : P (O | O1 ∧ON ∧ π0)

(15.2)

P (O | O1 = o1 . . . ∧ON = oN ∧ π0) is the probability distribution ob-
tained by instantiating the question of the Bayesian program 15.2 with the
data set δ. It is the result of several modeling choices:

1. The parametric forms and the parameters are modeling choices.

2. The model assumes δ is the result of independent trials.

284 Bayesian Programming

This distribution may also be obtained with another approach: let’s con-
sider the following subprogram.

Pr



















































































































Ds











































































































Sp(πλ)






















































































V a :

O1, . . . , On,Λ

Dc :










P (O1 ∧ . . . ∧ON ∧ Λ ∧ πλ)

= P (Λ | πλ)

×P (O1 | Λ ∧ πλ)× . . . P (ON | Λ ∧ πλ)

Fo :


















P (Λ | πλ) = prior knowledge on the distribution Λ

P (O1 | Λ ∧ πλ) = prior on the distribution on O

. . .

P (ON | Λ ∧ πλ) = prior on the distribution on O

Id :

Qu : P (Λ | O1 . . . ∧ON ∧ πλ)

(15.3)

We denote by P (Λ | δ ∧ πλ) = P (Λ | O1 = o1 . . . ∧ON = on ∧ πλ) the
probability distribution obtained by instantiating the question of program
15.3 with the previous readings δ. We can now define a simple program:

Pr















































































Ds







































































Sp(δ ∧ π)


















































V a :

O,Λ

Dc :
{

P (Λ ∧O ∧ π) = P (Λ | δ ∧ π)× P (O | Λ ∧ π)

Fo :
{

P (Λ | δ ∧ π) : instantiated question of program 15.3

P (O | Λ ∧ π) : prior distribution on O

Id :

Qu : P (O | δ ∧ π)

(15.4)

We can show that:

P (O | δ ∧ π) = P (O | O1 = o1 . . . ∧ON = on ∧ π0) (15.5)

On the one hand, the question of the program in Equation 15.3 can be

Bayesian Learning Revisited 285

computed as:

P (Λ | O1 . . . ∧ON ∧ πλ) =
P (Λ | πλ)× P (O1 | Λ ∧ πλ)× . . . P (On | Λ ∧ πλ)

∑

Λ

P (Λ | πλ)× P (O1 | Λ ∧ πλ)× . . . P (On | Λ ∧ πλ)

(15.6)
while the question of the program in Equation 15.4 can be computed as:

P (O | δ ∧ π) =
∑

Λ

P (Λ | δ ∧ π)× P (O | Λ ∧ π) (15.7)

which can also be written as:
∑

Λ

P (Λ | πλ)× P (O1 = o1 | Λ ∧ πλ)× . . . P (On = on | λ ∧ πλ)× P (O | Λ ∧ π)

∑

Λ

P (Λ | πλ)× P (O1 = o1 | Λ ∧ πλ)× . . . P (On = on | Λ ∧ πλ)

(15.8)
On the other hand, the question in Equation 15.2 can be computed as:

P (O | O1 . . . ∧ON ∧ π0)

=

∑

Λ

P (Λ | π0)× P (O | Λ ∧ π0)× P (O1 | Λ ∧ π0)× . . . P (On | Λ ∧ π0)

∑

Λ

(

P (Λ | π0)× P (O1 | Λ ∧ π0)× . . . P (On | Λ ∧ π0)×
∑

O

P (O | Λ ∧ π0)

)

=

∑

Λ

P (Λ | π0)× P (O | Λ ∧ π0)× P (O1 | Λ ∧ π0)× . . . P (On | Λ ∧ π0)

∑

Λ

P (Λ | π0)× P (O1 | Λ ∧ π)× . . . P (On | Λ ∧ π)

(15.9)
leading to the desired result:

P (O | O1 = o1 . . . ∧ON = on ∧ π0) =
∑

Λ

P (Λ | πλ)× P (O1 = o1 | Λ ∧ πλ)× . . . P (On = on | Λ ∧ πλ)× P (O | Λ ∧ πλ)

∑

Λ

P (Λ | πλ)× P (O1 = o1 | Λ ∧ πλ)× . . . P (On = on | Λ ∧ πλ)

(15.10)

The distribution P (Λ | δ ∧ π) is a means to summarize and to reuse
the previous experiments and the initial priors. Several methods and hy-
pothesis are used to set the initial priors P (Λ | π) and to compute
P (Λ | O1 = o1 . . . ∧ON = on ∧ π) leading to several types of parametric esti-
mations. We describe two of them in the next two sections.

15.1.3 Maximum likelihood (ML)

The most common approach to parametric estimation is to assume a uni-
form distribution for the prior: P (Λ | π) = Uniform and to replace the poste-
rior distribution P (Λ | δ ∧ π) by a Dirac distribution:

δΛ∗ : λ∗ = max
λ∈Λ

: P (λ | δ ∧ π)

286 Bayesian Programming

For example, if we consider a Gaussian distribution for P (O | Λ ∧ π) with
a given variance σ, the maximum likelihood estimator for the mean µ∗ is

obtained by solving a least square µ∗ = min
µ

:
∑

i

((µ − oi)
2) leading to a

simplified Bayesian program:

Pr



























































































Ds







































































Sp(δ ∧ π)


















































V a :

O,Λ

Dc :
{

P (O ∧ π) = P (Λ | δ ∧ π)× P (O | Λ ∧ π)

Fo :
{

P (Λ | δ ∧ π) : δµ∗

P (O | λ ∧ π) : N(λ, σ)

Id :

Qu :

P (O | δ ∧ π)

(15.11)

and a simple solution for the question: P (O | δ ∧ π) = N(µ∗, σ).

The program in Equation 15.11 is implemented in the file: “chap-
ter15/ML.py”. DataDescriptors are used to connect with data. They
offer a convenient way to parse the data and to interface with database,
csv files, streams, and so forth:

O = plSymbol(’O’,plRealType(-100,100))

file = ’C:/Users/mazer/Documents/Publications/\

BPbook/Chapters/chapter15/code/previous_O.csv’

#define the data source ignoring unknown fields

previous_O=plCSVDataDescriptor(file,O^O_I)

previous_O.ignore_unknown_variables()

#define the type of ML learner

learner_O=plLearn1dNormal(O)

#use data

i= learner_O.learn_using_data_descriptor(previous_O)

#retrieve the distribution

distrib = learner_O.get_distribution()

#print it

print distrib

Bayesian Learning Revisited 287

Several distributions may be learned with ML from a single source:
here a histogram on the variable “O I”.

#learning another distribution from the same source

previous_O.rewind()

learner_O_I=plLearnHistogram(O_I)

i= learner_O_I.learn_using_data_descriptor(previous_O)

distrib_I = learner_O_I.get_distribution()

print distrib_I

To speed up the learning process, these distributions may be learned
at the same time from a single data source.

#same as above but brows the data only once

#define a vector of distributions to learn

global_learner = plLearnDistribVector([learner_O_I,learner_O],O_I^O)

i=global_learner.learn_using_data_descriptor(previous_O)

list_distrib=global_learner.get_computable_object_list()

print ’global learning \n’,list_distrib[0],’\n’,list_distrib[1]

ML learners are incremental: new data may be added to update the
current estimators.

previous_O1=plCSVDataDescriptor(file1,O)

previous_O1.ignore_unknown_variables()

i= learner_O.learn_using_data_descriptor(previous_O)

i= learner_O.learn_using_data_descriptor(previous_O1)

distrib = learner_O.get_distribution()

15.1.4 Bayesian estimator and conjugate laws

The Bayesian estimator is obtained when choosing a nonuniform distribu-
tion for the initial prior P (Λ | π) and by using a Dirac δλ∗ for the posterior
with λ∗ = E(P (Λ | δ ∧ π)).

In some cases, it is possible to find P (Λ | π) and P (Oi | Λ ∧ π) such
that the posterior P (Λ | Oi ∧ π) has the same parametric form as the prior
P (Λ | π): then P (Λ | π) and P (Oi | Λ ∧ π) are said to be conjugate.

For example if P (Oi | Λ = λ ∧ π) is a binomial distribution:

P (Oi = 1) = λ
P (Oi = 0) = 1− λ

288 Bayesian Programming

and if the prior on P (Λ | π) is a beta distribution having α and β as param-
eters:

P (λ) =
λα−1(1− λ)β−1

beta(α, β)

beta(α, β) =

∫ 1

0

tα−1(1 − t)β−1dt

then P (Λ | Oi = oi ∧ π) follows a beta distribution beta(α+ oi, β + 1).
The conjugate property allows us to obtain a new prior after each observa-

tion and to obtain a close formula for N observations. Following our previous
example we have:

P (Λ | O1 = o1 . . . ∧ON = on ∧ π) = beta(α+

N
∑

i=1

oi, β +N)

λ∗ = E(P (Λ | δ ∧ π) =
α+

∑N
i=1 oi

β +N

(15.12)

leading to:
P (O = 1 | δ ∧ π) = λ∗

The file “chapter15/BE.py” contains an example showing how to ob-
tain the Bayesian estimator for a binomial distribution. Here, the priors
α and β are set to 1 (corresponding to a uniform prior).

from pypl import *

O = plSymbol(’O’,plIntegerType(0,1))

file = ’ExDir+’chapter15/data/B_O.csv’

#define the data source ignoring unknown fields

previous_O=plCSVDataDescriptor(file,O)

#define the type of Bayesian learner

#the prior beta distribution (here uniform : alpha=1 beta=1)

learner_O=plBayesLearnBinomial(O,1,1)

#print the distribution before learning

distrib = learner_O.get_distribution()

print distrib

#use data

i= learner_O.learn_using_data_descriptor(previous_O)

#retrieve the distribution

distrib = learner_O.get_distribution()

#print it

print distrib

Using a Bayesian estimator is a way to reduce the computation load to
infer P (O | δ ∧ π). In fact, replacing the program in Equation 15.13 with the
program in Equation 15.14 is a way to avoid computing:

∫

λ

P (Λ | δ ∧ π)× P (O | Λ ∧ π)

Bayesian Learning Revisited 289

by considering only a single value λ∗ = E(P (Λ | δ ∧ π)). On some occasions,
it is worthwhile considering to keep all the information at hand on Λ and to
perform an approximate inference.

Pr



























































































Ds



















































































Sp(δ ∧ π)






























































V a :

O,Λ

Dc :
{

P (O ∧ Λ ∧ π) = P (Λ | δ ∧ π)× P (O | Λ ∧ π)

Fo :










P (Λ | δ ∧ π) := beta(α+

N
∑

i=1

oi, β +N)

P (O | Λ ∧ π) : Binomial distribution

Id :

Qu : P (O | δ ∧ π)

(15.13)

Pr















































































Ds







































































Sp(δ ∧ π)


















































V a :

O,Λ

Dc :
{

P (O ∧ π) = P (Λ | δ ∧ π)× P (O | Λ ∧ π)

Fo :
{

P (Λ | δ ∧ π) := δE(beta(α+
∑

N
i=1 oi,β+N))

P (O | Λ ∧ π) : Binomial distribution

Id :

Qu : P (O | δ ∧ π)

(15.14)

290 Bayesian Programming

The file “chapter15/BE.py” shows how to implement the program
in Equation 15.13 to use the information contained in P (Λ | δ ∧ π). To
build the decomposition the posterior distribution is obtained from the
learner. Approximate inference is used to compute P (O | δ ∧ π). Note
that it is possible to control either the precision of the integration or the
number of steps used to approximate the sum.

#get the posterior distribution

posterior=learner_O.get_aposteriori_distribution(L)

#write the decomposition

decomposition= posterior*plCndBinomial(O,L)

#define de joint distribution

joint = plJointDistribution(decomposition)

#tell the interpreter to use 1000 sampling points

#to appoximate the integral

qu=joint.ask_mc_sample(O,1000)

print qu.compile()

#another way is to tell the interpreter to stop integrating

#when the precision is below 0.0001

qu=joint.ask_mc_threshold(O,0.0001)

print qu.compile()

15.2 Expectation–Maximization (EM)

The expectation–maximization (EM) is a class of iterative algorithms that
generalize the parameter estimation to models with latent or partially ob-
servable variables (see Dempster et al. [1977]). It is used in a wide variety of
situations best described as incomplete-data problems. The idea behind the
EM algorithms is intuitive and natural and it is used as a common basis in
many classical learning algorithms. The EM algorithms are named from their
two phases: the expectation and the maximization steps. Both steps may be
seen as Bayesian programs. The two programs in Equation 15.15 could be
interleaved in a loop to produce a version of the EM algorithm.

Bayesian Learning Revisited 291























































































































PrE : Program for E Step

Ds


























































































Sp(π ∧ πi)






































































V a :

O,Z,Λ

Dc :










P (O ∧ Z ∧ Λ | π ∧ πi)

= P (Λ | πi)

×P (O ∧ Z | Λ ∧ π)

Fo :
{

P (Λ | πi) : (i)

P (O ∧ Z | Λ ∧ π) : Model

Id :

Qu : P (Z | O ∧ πi)























































































































PrM : Program for the M step

Ds


























































































Sp(π)






































































V a :

O,Z,Λ

Dc :










P (O ∧ Z ∧ Λ | π ∧ πi)

= P (Λ | π)

×P (O ∧ Z | Λ ∧ π)

Fo :
{

P (Λ | π) : (ii)

P (O ∧ Z | Λ ∧ π) : Model

Id :

Qu : P (Λ | O ∧ Z ∧ π)

(15.15)

Both programs share the same variables:

• O: The conjunction of all observable variables.

• Z: The conjunction of all latent variables.

• Λ: The conjunction of all the parameters used in the parametric forms
to define the probability distributions.

They also share the same model:

P (O ∧ Z | Λ ∧ π)

On this basis, it is possible to design a variety of EM algorithms. We
describe one particular version among many:

292 Bayesian Programming

Kullback-Leibler-distance = +∞
define P (Λ | π0){E step Prior}
i=0
while Kullback-Leibler-distance > ǫ do
{E Step}
define PrE with P (Λ | πi) as prior
infer P (Z | O ∧ πi)
Instantiate with readings P (Z | O = δ ∧ πi)
{M Step}
define PrM with P (Λ | π) {Initial Prior}
infer P (Λ | O ∧ Z ∧ π)
Compute the soft evidence

P (Λ | πi+1) =
∑

z∈Z

P (z | O = δ ∧ πi)× P (Λ | O = δ ∧ Z = z ∧ π)

i=i+1
compute Kullback-Leibler-distance(P (Λ | πi+1) , P (Λ | πi))

end while
return P (Λ | πi+1)

The algorithm starts with the E step: a prior distribution on the pa-
rameters P (Λ | π0) is given to initialize the process. The result of the in-
ference P (Z | O ∧ πi) is instantiated with the observed data P (Z | δ ∧ πi) =
P
(

Z | O = oi1...o
i
n ∧ πi

)

. The algorithm then proceeds with the program de-
signed for the M step. The distribution P (Λ | π) is set with the prior on Λ be-
fore considering any data. The program is used to compute P (Λ | O ∧ Z ∧ π).
In this version, we use soft evidence 8.5 to compute the new prior P (Λ | πi+1)
for the next E step:

P (Λ | πi+1) =
∑

z∈Z

P (z | O = δ ∧ πi)× P (Λ | O = δ ∧ Z = z ∧ π)

The Kullback–Leibler distance between P (Λ | πi+1) and P (Λ | πi) could
be used as a stopping condition: k denotes the value of i+1 when the condition
is reached.

The result P (Λ | πk) could be used to define a parametric form in a classi-
fication program in Equation 15.16, where R and X are limited to the observ-
able and latent variables attached to a single occurrence of the phenomenon.

Bayesian Learning Revisited 293

Pr











































































































Ds























































































Sp(π ∧ δ)


































































V a :

Λ, R,X

Dc :










P (R ∧X ∧ Λ ∧ π ∧ δ)

= P (Λ | π ∧ δ)

×P (R ∧X | Λ ∧ π)

Fo :
{

P (Λ | π ∧ δ) = P (Λ | πk)

P (R ∧X | Λ ∧ π) : model

Id :

Qu :

P (X | R ∧ π ∧ δ)

(15.16)

Given an initial template for the EM algorithm we can design further varia-
tions leading to different results, computing times, and convergence properties.
For example, a Dirac distribution δλ∗ may be used in the E step to describe
P (Λ | πi+1).

P (Λ | πi+1) =
∑

z∈Z

P (z | O = δ ∧ πi)× P (Λ | O = δ ∧ Z = z ∧ π)

λ∗ = max
λ

P (Λ = λ | πi+1)

P (Λ | πi+1) = δλ∗

(15.17)

Also, the EM algorithms may be seen as filters. The result P (Λ | π ∧ δ) =
P (Λ | πk) is a summary of the information given by a data set δ. If a new
data set comes along, it can be used as an initial prior in the program for the
M step. Note that regrouping the two data sets may lead to a different result.

Nothing forbids continuously redefining the latent and the observable vari-
ables. Special models may also be used to ease the computation, for example,
using conjugate laws in the M step.

At this point, no assumption have been made concerning P (O ∧ Z | Λ ∧ π).
For this reason, the EM algorithm applies to a variety of applications: classi-
fication, HMM, model selection, and so forth.

15.2.1 EM and classification

One instance of the classification problem is a model where the distribu-
tions on the observations i on the attributes A depend on a given class C. In
general, the problem is to learn and then to infer the class from the observa-
tions. In this particular case the learning problem is defined as in the program
in Equation 15.18.

294 Bayesian Programming

Pr



















































































































Ds











































































































Sp(π)






















































































V a :

A1, . . . , An;Ai : observations ; n cardinality of learning set

C1, . . . , Cn;Ci ∈ [1, . . . k] : k number of classes

Λ

Dc :










P (A1 ∧ C1 . . . AN ∧ CN ∧ Λ ∧ π)

= P (Λ | π)
×P (A1 ∧ C1 | Λ ∧ π)× . . .× P (AN ∧ CN | Λ ∧ π)

Fo :
{

P (Λ | π) = prior knowledge on the distribution Λ

P (Ai ∧ Ci | Λ ∧ π) = Observational model

Id :

Qu : P (Λ | A1 ∧ C1 . . . AN ∧ CN ∧ π)

(15.18)
The distribution on Λ is then given by

P (Λ | δ ∧ π) = P (Λ | A1 = a1 ∧ C1 = c1 . . . AN = an ∧ CN = cn ∧ π)
(15.19)

When the class is not observed in the data, it is an instance of the un-
supervised learning problem. Unsupervised learning may be used to classify
multidimensional data, to discretize variables, to approximate a complex dis-
tribution, or to learn with an incomplete data set. For example, we may want
to study the weight of a species. One possible assumption is to consider that
the weight is dependent on the gender of each individual. The EM algorithm
will be used to obtain a classifier (female or male) while only being able to
observe the weight. Let’s describe a version of this classifier.

We consider a population of N individuals. The descriptions will use the
following variables:

• Wj : stands for weight of the individual j: O = W1 ∧ . . . ∧WN .

• Cj = {0, 1}: stands for the class of the individual j: Z = C1 ∧ . . . ∧CN .

• Λσ
f ,Λ

µ
f are the parameters of the Normal distributions used to represent

the probability on the weights for females.

• Λσ
m,Λµ

m are the parameters of the Normal distributions used to represent
the probability on the weights for males.

• Λg is the parameter of the binomial distribution used to model the prob-
ability to have a female or a male.

Bayesian Learning Revisited 295

• Λ = Λg ∧ Λσ
f ∧ Λµ

f ∧ Λσ
m ∧ Λµ

m

The model P (O ∧ Z | Λ ∧ π) for the E and M steps is defined as a mixture
of Normal distributions:











































P (O ∧ Z | Λ ∧ π) =

P
(

Wj | Cj ∧ Λσ
f ∧ Λµ

f ∧ Λσ
m ∧ Λµ

m ∧ π
)

=






















Cj = 0 :

P
(

Wj | Λσ
f ∧ Λµ

f

)

= N(Λσ
f ,Λ

µ
f)

Cj = 1 :

P (Wj | Λσ
m ∧ Λµ

m) = N(Λσ
m,Λµ

m)

(15.20)

The prior for the E step is defined as a Dirac (see Equation 15.17):

(i) P (Λ | πi+1) = δλ∗

.

The initial prior for the E step is defined according to some background
knowledge: λ∗

g = 0.7, λµ∗
f < λµ∗

m

The prior for the M step is defined as a uniform distribution:

(ii) P (Λ | π) = Uniform

.

The result of this EM algorithm will give the following result:

P (Λ | πk) = λk
g ,Λ

σk

f ,Λµk

f ,Λσk
m ,Λµk

m

which are the parameters of the distributions on the gender and on weights
knowing the gender. These parameters may be used to classify any individual
knowing its weight using the program in Equation 15.21.

296 Bayesian Programming

Pr







































































































































Ds



















































































































Sp(π ∧ δ)






























































































V a : C,W

Dc :










P (C ∧W ∧ π ∧ δ)

= P (C | π ∧ δ)

×P (W | C ∧ π ∧ delta)

Fo :






































P (C | π ∧ δ) = Binomial(λk
g)

P (W | C ∧ π ∧ δ) =


















C = 0 :

P (W | C ∧ π ∧ δ) = N(Λσk

f ,Λµk

f)

Cj = 1 :

P (W | C ∧ π ∧ δ) = N(Λσk
m ,Λµk

m)

Id :

Qu :

P (C |W ∧ π ∧ δ)

(15.21)

Figure 15.1 represents the joint distribution of a Gaussian mixture with
two components and unknown parameters. Table 15.1 shows how an EM al-
gorithm may retrieve the parameters with 1000 samples drawn out from this
distribution.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 20 40 60 80 100

 P
(W

)

W

FIGURE 15.1: A Gaussian mixture with two components.

Bayesian Learning Revisited 297

TABLE 15.1: The EM Algorithm Could Retrieve a Given
Mixture with a Good Precision While Being Intialized with
Relatively Poor Initial Condition

Λ Used for generation Prior E step Found by EM

λg 0.55 0.7 0.66
λµ
f 45.0 20.0 45.1

λσ
f 10 40 9.9

λµ
m 55 70 52.8

λσ
m 15 40 13.7

The program in file: “chapter15/genweights.py” generates a set of
data based on known parameters (see Table 15.1). It samples the dis-
tribution represented in Figure 15.1. The file “chapter15/getlambda.py”
contains a program to retrieve these parameters with an EM algorithm
(see Table 15.1).

from pypl import *

C = plSymbol(’C’,plIntegerType(0,1))

W = plSymbol(’W’,plRealType(0,100))

#define a ML learner for a binomial law

pC_learner = plLearnHistogram(C)

pW_learner = plCndLearn1dNormal(W,C)

#define intial guess : P(Lambda|pi_0)

pC_init = plBinomial(C,0.70)

pWkC_init = plDistributionTable(W,C)

pWkC_init.push(plNormal(W,20.0,40.0),0)

pWkC_init.push(plNormal(W,70.0,40.0),1)

#define the learner

learner=plEMLearner(pC_init*pWkC_init,

[pC_learner,pW_learner])

#define the data source

data = plCSVDataDescriptor(’weights.csv’,W)

#perform learning stop with a threshold

learner.run(data,10e-9)

#get the prameters

print learner.get_distribution(0)

print learner.get_distribution(1)

15.2.2 EM and HMM

Hidden Markov models are special cases of generic Bayesian filters (see
Equation 11.2) designed to learn and to label temporal sequences of sensor
readings. They are used in many applications, more notably in applications
related to speech and behavior recognition. We describe the model of HMM

298 Bayesian Programming

(Section 15.2.2.1), how to learn the model parameters of an HMM (Section
15.2.2.2), how to use this model to infer the distribution on states from a series
of observations (Section 15.2.2.3), and finaly how to detect a behavior from
time series among N , by using N HMMs running in parallel, each indexed by
u (Section 15.2.2.4).

15.2.2.1 HMM

A HMM indexed with u is defined as Bayesian program 15.22. The vari-
ables Ou

t , S
u
t respectively denote the observations and the states at time t and

Λu
0 ,Λ

u
M ,Λu

S are the model parameters. Λu
0 is the set of parameters for the

initial condition on states, Λu
M is the set of parameters for the sensor model,

and

Λu
s = Λu

1 ∧ Λu
2 . . . ∧ Λu

j . . . ∧ Λu
a(u)−1

are the parameters for the state transitions, with P (St | St−1 = j) parame-
terized by Λu

j . The cardinality a(u) of the states Su
0,...,T may vary from one

HMM to another.

Pr



























































































































Ds



















































































































Sp(πu)






































































































V a :











Λu
0 ,Λ

u
M ,Λu

S,

Su
t , ∀t ∈ [0, . . . , T] : Su

t ∈ 1,, a(u)

Ou
t , ∀t ∈ [1, . . . , T] : Ou

t ∈ D

Dc :



























P (Su
o ∧O1, . . . S

u
t ∧Ou

t . . . Su
T ∧Ou

T ∧ Λu
0 ∧ Λu

M ∧ Λu
S | πu) =

P (Λu
0 ∧ Λu

M ∧ Λu
S | πu)

P (Su
0 | Λu

0 ∧ πu)
∏

t∈[1...T]

P
(

Su
t | Su

t−1 ∧ Λu
S ∧ πu

)

P (Ou
t | St ∧ Λu

M ∧ πu))

Fo :



















P (Λu
0 ∧ Λu

0 ∧ Λu
S∧ | πu)

P (S0 | Λu
0 ∧ πu) = multinomial

P
(

Su
t | Su

t−1 ∧ Λu
S ∧ πu

)

= multinomial

P (Ou
t | Su

t ∧ Λu
M ∧ πu) = Sensor Model

Id : P (Λu
0 ∧ Λu

0 ∧ Λu
S | πu) = identified with EM

Qu : P (Su
T | Ou

1 ∧ . . . ∧Ou
T)

(15.22)

15.2.2.2 Learning HMM with EM

In this framework, we have to find Λ = Λu
0 ∧Λu

O ∧Λu
S given several occur-

rences of the sequence u.

We use the EM algorithm by stating:

• Z = Su
0 ∧ Su

1 ∧ . . . ∧ Su
T−1

Bayesian Learning Revisited 299

• O = Ou
0 ∧Ou

1 ∧ . . . ∧Ou
T ∧ Su

T

• Λ = Λu
0 ∧ Λu

O ∧ Λu
S

In practice, we perform supervised learning for each sequence by consid-
ering several sequences of observations j ∈ 1, . . . , L : Oj , each leading to the
desired type u. The following algorithm is used:

P (Λ | π)=Uniform
for j = 1→ L do
set δ = {oj1, . . . ojn(j), a(u)}
RUN EM
Update P (Λ | π) {Use EM as a filter}

end for
return P (Λ | π) as P (Λ | πu)

Here, we choose to constrain the parametric space by asserting that each
learning sequence of type u should reach the state a(u) at the end of the
sequence: Su

T = a(u). The algorithm accommodates sequences of any length
and uses the EM as a filter which updates the prior on P (Λ | π) after each
sequence is recognized as belonging to the same class.

15.2.2.3 State estimation with HMM

Given P (Λu
0 ∧ Λu

M ∧ Λu
S | πu) and a sequence of observations {o1, . . . oT },

the question P (ST | O1 ∧ . . . OTπ
u) is used to assert:

P (ST | O1 = o0 ∧ . . . OT = oT ∧ πu)

In practice, the recursive version of Bayesian filters is used at each time step
using the program in Equation 15.23.

Pr











































































































Ds



































































































Sp(πu
t)























































































V a :











S
u
t , S

u
t−1 ∈ 1,, a(u)

Λ

O
u
t ,∈ D

Dc :











P (Λ ∧ S
u
t−1 ∧ S

u
t ∧O

u
t ∧ π

u
t) =

P (Λ | πu
t)P (Su

t−1 | πu
t)

P (Su
t | Su

t−1 ∧ ΛS ∧ π
u
t)P (Ou

t | St ∧ ΛM ∧ π
u
t)

Fo :



















P (Λ | πu
t) = obtained during learning

P (St−1 | πu
t) = P (Su

t−1 | Ou
t−1 = ot−1 ∧ π

u
t−1)

P (Su
t | Su

t−1 ∧ Λu
S ∧ π

u
t) = transition Model

P (Ou
t | Su

t ∧ ΛM ∧ π
u
t) = Sensor Model

Id :

Qu : P (Su
t | Ou

t ∧ π
u
t)

(15.23)

300 Bayesian Programming

The question is used to obtain a probability distribution over the Su
t given

an observation out . In turn, it can be used in a prediction step at time t to be
compared with other sequences u′.

Pr







































































Ds



























































Sp(π′u
t)



















































V a :

{

Su
t ,∈ 1,, a(u)

Ou
t ,∈ D

Dc :

{

P (Su
t ∧Ou

t ∧ π′u
t) =

P (Su
t | π′u

t)P (Ou
t | St ∧ π′u

t)

Fo :

{

P (St | π′u
t) = P (Su

t | Ou
t = ot ∧ πu

t) see 15.23

P (Ou
t | Su

t ∧ π′u
t) = Sensor Model

Id :

Qu : P (Ou
t | π′u

t)

(15.24)

15.2.2.4 Using a bank of HMMs

To detect a type of sequence u among m we use the program in Equation
15.25 as a filter to deliver a probability distribution over each type of sequence
after each reading. The transition probability distribution may be given or also
identified with the EM algorithm.

Pr



























































































































Ds



















































































































Sp(πu
T)







































































































V a :











Ut, Ut−1 ∈ 1,,m; current and previous sequence

Ot =
⋃

u∈[1...m]

{Ou
t } : Ou

t ∈ D; current observation vector

Dc :

{

P (Ut−1 ∧ Ut ∧Ot ∧ πu
t) =

P (Ut−1 | πt)P (Ut | Ut−1 ∧ πt)P (Ot | Ut ∧ πt)

Fo :















































P (Ut−1 | πt) = previous estimation

P (Ut | Ut−1) = transition model

P (Ot | Ut = u ∧ πt)

=



















P (Ou
t | π′u

t) ; prediction with model u (15.24)

×
Uniform(Ot −

⋃

u∈[1...m]

{Ou
t })

Id :

Qu : P (Ut | Ot ∧ πu
T)

(15.25)

Bayesian Learning Revisited 301

15.2.3 Model selection

The model selection is of paramount importance in machine learning.
Bayesian programs help to deal with a limited set of known models.

One simple version of the model selection problem has already been pre-
sented in Chapter 10. A variable H is used to select among several existing
models P (S ∧ Iπi) based on some input I. We recall the general program in
Equation 15.26 for mixing models and show how to learn P (H | I ∧ πM) with
the EM algorithm.

Pr :



























































































































































Ds :















































































































































Sp(πM) :






























































































































V a : H ∈ [1, . . . , n], I, S1, . . . , Sn

Dc :



















P (H ∧ I ∧ S | πM)

= P (I | πM)

×P (H | I ∧ πM)

×P (S | H ∧ I ∧ πM)

Fo :















































































P (I | πM) = Uniform

P (H | I ∧ πM) = Given or learned with EM

P (S | H ∧ I ∧ πM)

=















































H = 1 :

P (S | I ∧ π1)

. . .

P (S | I ∧ πi) = Question to model πi

. . .

H = n :

P (S | I ∧ πn)

Id :

Qu : P (S | I ∧ πM)

(15.26)
To learn P (H | I ∧ πM), we use the EM algorithm by stating:

• Z = H

• O = S

• Λ = parameters of a multinomial law for H

This approach is used in Chapter 10 to learn select and mixed models
attached to the behaviors “Phototaxy” and “Avoidance.”

However, in many applications the analyst has to consider families of mod-
els. For example, the models may be parameterized by the number of classes
or by the number of states as in the classification or as in the hidden Markov
models. Choosing the right models among many is a problem which requires

302 Bayesian Programming

the analyst to consider the bias-variance trade-off. In the next section we con-
sider selecting a model among a huge number of possible models: given a set
of variables and a data set on these variables, we select the most appropriate
decomposition.

15.3 Learning structure of Bayesian networks

Learning the decomposition from a data set can be seen as a model selec-
tion problem where the number of possible decompositions d(n) is a function
of the number of variables n. A lower bound of d(n) may be found by consid-
ering the cardinality of the set of Bayesian networks or acyclic graphs with n
nodes: Bn. The cardinality Card(Bn) = b(n) is given by Equation 15.27:

b(1) = 1
n
∑

i=1

(−1)i+1

(

n
i

)

2i(n−i)b(n− i) = n2O(n) (15.27)

For example, the number of acyclic graphs for 10 variables is of the order
of 1018. It may not be necessary to consider all the possibilities since several
descriptions may lead to the same results no matter which data are given as
a learning example: they may belong to the same Markov equivalence class.

For example, if we could equally learn P (A), P (B), P (C), P (A | B),
P (B | A), P (C | B), and P (B | C) from a set of triplets ai, bi, Ci, then the
three decompositions P (C)P (B | C)P (A | B), P (A)P (B | A)P (C | B),
and P (B)P (C | B)P (A | B) will lead to the same joint distribution
P (A ∧B ∧ C) while the decomposition P (A)P (C)P (B | C ∧ A) will lead
to another decomposition since P (B | C ∧A) 6= P (B | C).

The double exponential number of possible models makes the problem
intractable, and methods such as the model selection algorithm presented in
Section 15.2.3 cannot be applied. The existing algorithms rely on heuristics,
and could be classified into two classes:

• The algorithms based on mutual information.

• The algorithms based on scores.

We use the work of Leray [2006] to briefly present the main approaches.

Bayesian Learning Revisited 303

In the program in the file: “chapter15/structure learning.py” the
function “generate data” generates a data set from a known joint distri-
bution, here the distribution corresponding to the famous Asia model
which is built with the function make model asia(). The goal of the fol-
lowing algorithms is to reconstruct a good approximation of the decom-
position used to build this model from the produced data set.

def make_model_asia():

VARIABLES SPECIFICATION

A = plSymbol ("A", PL_BINARY_TYPE); # visit to Asia?

S = plSymbol ("S", PL_BINARY_TYPE); # Smoker?

T = plSymbol ("T", PL_BINARY_TYPE); # has Tuberculosis

L = plSymbol ("L", PL_BINARY_TYPE); # has Lung cancer

B = plSymbol ("B", PL_BINARY_TYPE); # has Bronchitis

O = plSymbol ("O", PL_BINARY_TYPE); # has tuberculosis \

or cancer

X = plSymbol ("X", PL_BINARY_TYPE); # positive X-Ray

D = plSymbol ("D", PL_BINARY_TYPE); # Dyspnoea?

PARAMETRIC FORM SPECIFICATION

tableA = [0.99, 0.01];

tableS = [0.5, 0.5];

tableT = [0.99, 0.01, # P(T | [A=f])

0.95, 0.05]; # P(T | [A=t])

tableL = [0.99, 0.01,

0.9, 0.1];

tableB = [0.7, 0.3,

0.4, 0.6];

tableO = [1, 0, # P(O | [T=f]^[L=f])

0, 1, # P(O | [T=f]^[L=t])

0, 1, # P(O | [T=t]^[L=f])

0, 1]; # P(O | [T=t]^[L=t])

tableX = [0.95, 0.05,

0.02, 0.98];

tableD = [0.9, 0.1,

0.3, 0.7,

0.2, 0.8,

0.1, 0.9];

DECOMPOSITION

P_A = plProbTable(A, tableA);

P_S = plProbTable(S, tableS);

P_T_k_A = plDistributionTable (T, A, tableT);

P_L_k_S = plDistributionTable (L, S, tableL);

P_B_k_S = plDistributionTable (B, S, tableB);

P_O_k_T_L = plDistributionTable (O, T^L, tableO);

P_X_k_O = plDistributionTable (X, O, tableX);

P_D_k_O_B = plDistributionTable (D, O^B, tableD);

variables = A^S^T^L^B^O^X^D;

jd = plJointDistribution(variables, P_A * P_S * \

P_T_k_A * P_L_k_S *

P_B_k_S * P_O_k_T_L * \

P_X_k_O * P_D_k_O_B);

return jd

304 Bayesian Programming

15.3.1 Directed minimum spanning tree algorithm: DMST

The search space is limited to valid decompositions having the format used
in the program in Equation 15.28, in other words, to any valid oriented tree
having X1 as its root.

Pr :







































































Ds :



























































Sp(π) :










































V a : X1, . . . , Xn

Dc :











P (X1 ∧ . . . Xn | π)
= P (X1 | π)
∏

P (Xk | Xl ∧ π)

Fo :

{

P (X1 | π) = Laplace

P (Xk | Xl ∧ π) = Laplace

Id :

Qu :

(15.28)

The search space is reduced further by considering nonoriented trees
since all the oriented trees built from this initial structure belong to the
same Markov equivalent class. Intuitively, we should select P (Xk | Xl) or
P (Xl | Xk) as a possible member of the decomposition if Xl and Xk are
strongly correlated. Starting from this idea and a correlation measure to
weight each pair Xk, Xl the DMST algorithm builds the spanning tree cover-
ing all the variables of interest and maximizing the sum of weights (measure of
correlation) on the selected edges (using the Kruskal algorithm). This tree is
then oriented starting from the variable having the highest rank, and standard
learning could take place on each distribution to obtain the description.

Various correlation measures may be used, for example:

• Mutual information:

MI(Xl, Xk) =
∑

xl∈Xl

∑

xk∈Xk

P (xl ∧ xk) log

(

P (xl ∧ xk)

P (xl)P (xk)

)

where P (xl ∧ xk),P (xl),P (xk) are computed as histograms from the
data set.

• Laplace mutual information: as the MI measure but where P (xl ∧ xk),
P (xl), P (xk) are computed as Laplace laws from the data set.

• Normalize mutual information:

NMI(Xl, Xk) = −
MI(Xl, Xk)

H(Xl, Xk)

where the entropy H(Xl, Xk) is computed as
∑

xl∈Xl

∑

xk∈Xk

−P (xl ∧ xk) log (P (xl ∧ xk))

Bayesian Learning Revisited 305

In the program in the file: “chapter15/structure learning.py” we use
the MDL score to call the DMST algorithm.

score_dmst = plEdgeScoreMDL_(dataset)

result = learner.DMST(score_dmst, order, root_index)

result_dmst = learner.get_joint_distribution(dataset)

The vector order will be used by the K2 algorithm.

15.3.2 Score-based algorithms

Unlike the previous method that attempts to use conditional independence
between variables, these approaches will find the structure that maximizes a
certain score on the decomposition.

For these approaches to be feasible, it requires the score to be locally
decomposable, that is to say equal to the sum of the local scores at each
node. As an exhaustive search is not possible, the algorithms proposed work
in a smaller space (scheduling nodes), or perform a greedy search (GS) in the
search space.

15.3.2.1 Possible scores

Most of the existing scores are based on the Occam Razor principle: they
tend to favor simple descriptions (Ds) while trying to best explain the avail-
able data. As such, most of the scores are made of two terms. A first term
maximizes the likelihood P (D | Θ ∧Dc) where Θ are the parameters neces-
sary to instantiate the decompositionDc. A second term penalizes too complex
models as the ones having many parameters: dimΘ.

For example, if we have N independent observations D =

N
⋃

i

Di, the

BIC(Ds,D) (Bayesian information criterion) score for a description Ds given
a data set D is defined as follows:

BIC(Ds,D) = log

(

n
∑

i

P (Di | Θ ∧Dc)

)

− 1

2
dim(Θ) log (N)

In the same spirit the score based on the minimum description length,
MDL, penalizes descriptions having a large number (NDc) of distributions in
their decomposition:

MDL(Ds,D) = log

(

n
∑

i

P (Di | Θ ∧Dc)

)

−NDc log (N)− c dim(Θ) log (N)

306 Bayesian Programming

Many other scores are used to compare one description to another for ex-
ample, Akaike’s information criterion (AIC) and Bayesian Dirichlet equivalent
uniform criterion (BDEU). Once a score has been selected it is used to locally
navigate among the large space of descriptions.

15.3.2.2 The K2 algorithm

As MWST, the K2 algorithm considers a subspace of the decomposition
set. An ordered set of variables OS : {X1 < X2 . . . < Xn} implicitly defines
a subset of valid decompositions. Intuitively we will use the K2 algorithm if
we have an idea of this ordering (for example if we believe they are causal
relationships between the variables). We define the subspace as the valid de-
composition which could be written as in Equation 15.29 (Bayes network) and
having the following property:

∀P
(

Xk | Xk
1 ∧ . . . ∧Xk

p ∧ π
)

∈ Dc : ∀j, k : Xk > Xk
j

Pr :







































































Ds :



























































Sp(π) :










































V a : X1, . . . , Xn

Dc :











P (X1 ∧ . . .Xn | π)
= P (X1 | π)
∏

P
(

Xk | Xk
1 ∧ . . . ∧Xk

p ∧ π
)

Fo :

{

P (X1 | π) = Histograms

P
(

Xk | Xk
1 ∧ . . . ∧Xk

p ∧ π
)

= Histograms

Id :

Qu :

(15.29)

Given a score function score(), a training and an evaluation sets D′ and
D, as well as an upper limit UMax for the number of conditioning variables,
one version of the K2 algorithm could be defined as:

Bayesian Learning Revisited 307

Dc = P (X1)P (X2) ...P (Xn)
Ds = identify(Dc,D′) {use data to identify each term of the decomposi-
tion}
Smax = score(Ds,D) {score it with another set}
for i = 1→ N do
A = Φ {Reset the ancestor of variable i}
U=0 {Reset the number of ancestor}
for j = i− 1→ 1 do
{Find suitable ancestors}
while U < Umax do
Dc′ = Dc
A′ = A ∧Xj

Replace P (Xi | A) by P (Xi | A′) inDc′

Ds′ = identify(Dc′, D′)
if score(Ds′, D) > Smax then
A = A′

Smax = score(Ds′, D)
U = U + 1
Dc = Dc′

end if
end while

end for
end for
return Dc

The main idea of the algorithm is to condition the probability distribution
on a given variable by a limited number of variables with a higher rank in the
given order OS.

The K2 algorithm uses the output of the DMST algorithm to define
the distribution order.

Apply the K2 algorithm with BDeu score on the same dataset.

Nprime = 100.0; #BDeu parameter

score_k2 =plNodeScoreBDeu_ (dataset, Nprime);

max_parents = 2; #K2 parameter

learner.K2(score_k2, order, max_parents);

result_k2 = learner.get_joint_distribution(dataset);

15.3.2.3 The greedy search

The greedy search algorithms are based on elementary operations to
change the decomposition. In the context of Bayesian networks, these opera-

308 Bayesian Programming

tions are ways to walk in the search space moving from one graph to another
by modifying edges. The chosen score is used to evaluate the quality of a move
and a decision is made selecting the best alternative. The algorithm never goes
back and stops when no move leads to a better solution than the current one.

For example, we may consider the following operations on Bayesian net-
works provided they lead to a valid decomposition:

• remove:
P
(

Xk | Xk
1 ∧ . . . Xk

j . . . ∧Xk
p

)

→ P
(

Xk | Xk
1 ∧ . . . ∧Xk

p

)

• add:
P
(

Xk | Xk
1 ∧ . . . ∧Xk

p

)

→ P
(

Xk | Xk
1 ∧ . . . Xk

j . . . ∧Xk
p

)

• reverse:
P
(

Xk | Xk
1 ∧ . . . Xk

j . . . ∧Xk
p

)

→ P
(

Xk | Xk
1 ∧ . . . ∧Xk

p

)

P
(

Xj
k | Xk

)

For a decomposition Dc, we define by V (Dc) the neighborhood of Dc as
the set of the valid decompositions which may be obtained my applying one
of the above transformations on the decomposition Dc. Given a score, one
version of the greedy search algorithm may be sketched as follows:

Dc = P (X1)P (X2) ...P (Xn) {or any initial decomposition}
Ds = I(Dc,D′) {use data to identify each term of the decomposition}
Smax = score(Ds,D) {score it with another data set}
while true do
Dc′ : ∀dc ∈ V (Dc)score(I(Dc′, D′), D) > score(I(dc,D′), D)
if score(I(Dc′, D′), D) < Smax then
Return(Ds = I(Dc,D′)) {return local maximum}

end if
end while

The variations among this type of algorithm are numerous. They could
also be used to explore very small subspaces of the initial search space by
only considering a small subset of the conditional distribution which may be
modified.

The greedy search (GS) algorithm uses the output of the DMST
algorithm to define the initial structure.

learner = plStructureLearner(result_dmst);

score_gs = plNodeScoreBIC_ (dataset);

learner.GS(score_gs);

result_gs = learner.get_joint_distribution(dataset);

Part IV

Frequently Asked
Questions — Frequently

Argued Matters

309

This page intentionally left blankThis page intentionally left blank

Chapter 16

Frequently Asked Questions and

Frequently Argued Matters

16.1 Alternative Bayesian inference engines . 312
16.2 Bayesian programming applications . 313
16.3 Bayesian programming versus Bayesian networks 316
16.4 Bayesian programming versus Bayesian modeling 317
16.5 Bayesian programming versus possibility theories 317
16.6 Bayesian programming versus probabilistic programming 318
16.7 Computational complexity of Bayesian inference . 319
16.8 Cox theorem . 320
16.9 Discrete versus continuous variables . 321
16.10 Incompleteness irreducibility . 322
16.11 Maximum entropy principle justifications . 324
16.12 Noise or ignorance? . 326
16.13 Objectivism versus subjectivism controversy and the “mind

projection fallacy” . 326
16.14 Unknown distribution . 329

The modern scientist is a more apt recipient than any one
else of Kipling’s austere advice: “If you can see your life’s work
suddenly collapse and then start work again, if you can suffer,
struggle and die without complaint, you will be a man my son.”
Only the work of science can make you love what you destroy, only
here can you continue the past by repudiating it, only here can you
honor your professor by contradicting him.1

La Formation de l’Esprit Scientifique: Contribution a une
Psychanalyse de la Connaissance Objective

Gaston Bachelard [1938]

1C’est au savant moderne que convient, plus qu’à tout autre, l’austère conseil de Kipling:
“Si tu peux voir s’écrouler soudain l’ouvrage de ta vie, et te remettre au travail, si tu peux
souffrir, lutter, mourir sans murmurer, tu seras un homme, mon fils.” Dans l’oeuvre de la
science seulement on peut aimer ce qu’on détruit, on peut continuer le passé en le niant, on
peut vénérer son mâıtre en le contredisant.

311

312 Bayesian Programming

We believe that Bayesian modeling is an elegant matter that can be pre-
sented simply, intuitively, and with mathematical rigor. We hope that we
succeed in doing so in this book. However, the subjectivist approach to prob-
ability has been and still is a subject of countless controversies.

To make the main exposition as clear and simple as possible, none of these
controversies, historical notes, epistemological debates, and tricky technical
questions are discussed in the body of the book. We have made the didactic
choice to develop all these questions in this chapter titled “FAQ and FAM”
(“Frequently Asked Questions and Frequently Argued Matters”).

This chapter is organized as a collection of “record cards,” at most three
pages long, presented in alphabetical order. Cross references to these subjects
are included in the main text for readers who are interested in going further
than a simple presentation of the principles of Bayesian modeling.

16.1 Alternative Bayesian inference engines

ProBT is of course not the only probabilistic inference engine available but
it is the only one designed to implement Bayesian programming. Around 70
of them are present in the inventory by Kevin Murphy, made available on the
Web at the following URL:

http://www.cs.ubc.ca/~murphyk/Software/bnsoft.html

This list is in constant evolution. It gathers very different software, either
industrial or academic, either commercial or free, either open-source or not.
Some are very specialized for a given type of inference or graphical model, some
are more general. They are also at very different states of development as some
are industrial products or advanced collaborative projects resulting from many
years of work while some others are more “experimental.” Among the most
well known, we will cite in alphabetical order and without the probabilistic
programming languages addressed in the specific Section 16.6:

• BayesiaLab: an industrial product implementing essentially Bayesian
networks.

• BUGS: a very active open-source project presented in detail in the book
titled The BUGS Book: A Practical Introduction to Bayesian Analysis
[Lunn et al., 2012].

• Hugin expert: another industrial product dedicated to Bayesian nets
which was the very first one available on the market 20 years ago.

• Infer.NET: an inference engine under development by Microsoft Re-
search and combining graphical models and probabilistic programming.

• Netica: an historical reference for the inference in Bayesian nets.

http://www.cs.ubc.ca/~murphyk/Software/bnsoft.html

Frequently Asked Questions and Frequently Argued Matters 313

• Stan: an academic inference engine running in C++ and R.

16.2 Bayesian programming applications

In this section we list the different applications of Bayesian programming.
On one hand we have the academic applications, essentially 23 PhD theses
defended in different universities around Europe during the past 15 years and,
on the other hand, industrial applications mainly developed by the ProbaYes
company.

The academic applications are summarized in the following list in chrono-
logical order. Twelve of them are described in the book titled Probabilistic
Reasoning and Decision Making in Sensory-Motor Systems [Bessière et al.,
2008].

• Eric Dedieu, PhD thesis titled “Contingent Representation,” which iden-
tifies the intrinsic difficulty of incompleteness in robot programming and
first proposed to use the Jaynes’ “Probability as Logic” approach to deal
with it (see [Dedieu, 1995](in French) and [Dedieu and Mazer, 1992;
Bessiere et al., 1994, 1997]).

• Olivier Lebeltel, PhD thesis titled “Bayesian Robot Programming,”
where the original proposition of the Bayesian programming method-
ology can be found (see [Lebeltel, 1999](in French) and [Lebeltel et al.,
2000, 2004]).

• Kamel Mekhnacha, PhD thesis titled “A Robotic CAD System Using a
Bayesian Framework,” which presents a methodology based on Bayesian
formalism to represent and to handle geometric uncertainties in robotics
and CAD systems (see [Mekhnacha, 1999](in French) and [Mekhnacha
et al., 2000, 2001; Mekhnacha and Bessière, 2008]).

• Christophe Coué, PhD thesis titled “Bayesian Occupancy Filtering
(BOF) for Multi-Target Tracking: An Automotive Application,” where
a new approach for robust perception and risk assessment in highly
dynamic environments is proposed. This approach is called Bayesian
Occupancy Filtering (BOF). Tt basically combines a four-dimensional
occupancy grid representation of the obstacle state space with Bayesian
filtering techniques (see [Coué, 2003](in French) and Coué et al. [2006]).

• Ruben Seren Garcia Ramirez, PhD thesis titled “Bayesian Program-
ming of Robotic Arm,” in which a pick and place task has been entirely
probabilistically programmed (see [Garcia-Ramirez, 2003](in French)).

314 Bayesian Programming

• Julien Diard, PhD thesis titled “The Bayesian Map: A Hierarchical
Probabilistic Model for Mobile Robot Navigation,” where a represen-
tation of space using hierarchies of Bayesian behavioral representations
is proposed (see [Diard, 2003](in French) and [Diard et al., 2004; Diard
and Bessière, 2008; Diard et al., 2010]).

• Céderic Pradalier, PhD thesis titled “Perceptual Navigation Around a
Sensory-Motor Trajectory,” where behavioral replay of a sensory-motor
trajectory has been completely modeled using Bayesian programming
(see [Pradalier, 2004](in French) and [Pradalier et al., 2003, 2004, 2005;
Pradalier and Bessière, 2008]).

• Jihene Serkhane, PhD thesis titled “Building a Talking Baby Robot: A
Contribution to Speech Acquisition and Evolution,” in which a Bayesian
model of babies speech early acquisition is proposed (see [Serkhane,
2005](in French) and [Serkhane et al., 2002, 2003, 2005; Schwartz et al.,
2004; Serkhane et al., 2007, 2008; Boë et al., 2008]).

• Guy Ramel, PhD thesis which proposes a new approach for objects
recognition that incorporates visual and range information with spatial
arrangement between objects (see [Ramel, 2006](in French) and [Ramel
and Siegwart, 2008]).

• Adriana Tapus, PhD thesis titled “Topological SLAM—Simultaneous
Localization and Mapping with Fingerprints of Places” (see [Tapus,
2005] and [Tapus, 2008]).

• Carla Maria Chagas e Cavalcante Koike, PhD thesis titled “Bayesian
Approach to Action Selection and Attention Focusing. An Application in
Autonomous Robot Programming” (see [Koike, 2005] and [Koike et al.,
2008]).

• Miriam Amavizca, PhD thesis titled “3D Human Hip Volume Recon-
struction with Incomplete Multimodal Medical Images” (see [Amavizca,
2005](in French) and [Amavizca, 2008]).

• Jean Laurens, PhD thesis titled “Bayesian Model of Visuo-Vestibular
Interaction,” which proposes a Bayesian model of motion estimation
using both visual and vestibular information and reproduces different
classical human illusions (see [Laurens, 2006](in French) and [Laurens
and Droulez, 2007, 2008]).

• Francis Colas, PhD thesis titled “Perception of Shape from Motion,”
where a unique Bayesian model of human perception of planes from the
optical flow is proposed justifying the results of six different psychophysic
experiments from the literature (see [Colas, 2006](in French) and [Colas
et al., 2008a,b]).

Frequently Asked Questions and Frequently Argued Matters 315

• Ronan Le Hy, PhD thesis titled “Playing to Train Your Video Game
Avatar,” where it is demonstrated how a player of an FPS video game
can teach an avatar how to play (see [Le Hy, 2007](in French) and [Le Hy
et al., 2004; Le Hy and Bessière, 2008]).

• Pierre-Charles Dangauthier, PhD thesis titled “Bayesian Learning:
Foundations, Method and Applications,” which deals with different
aspects of learning and especially addresses the automatic selection
and creation of relevant variables to build a model (see [Dangauthier,
2007](in French) and [Dangauthier et al., 2004, 2005, 2007]).

• Shrihari Vasudevan, PhD thesis titled “Spatial Cognition for Mobile
Robots: A Hierarchical Probabilistic Concept-Oriented Representation
of Space” (see [Vasudevan, 2008] and [Vasudevan and Siegwart, 2008]).

• Francis Colas investigated the role of position uncertainty in the pe-
ripheral visual field to guide eye movement saccades (see [Colas et al.,
2009]).

• Jorg Rett, PhD thesis titled “Robot-Human Interface Using Laban
Movement Analysis Inside a Bayesian Framework” (see [Rett, 2008] and
[Rett et al., 2010]).

• Estelle Gilet, PhD thesis titled “Bayesian Modeling of Sensory-Motor
Loop: An Application to Handwriting,” where a Bayesian Action Per-
ception (BAP) model of the reading-writing sensory motor loop is pro-
posed (see [Gilet, 2009](in French) and [Gilet et al., 2011]).

• Xavier Perrin, PhD thesis titled “Semi-Autonomous Navigation of an
Assistive Robot Using Low Throughput Interfaces,” where a Bayesian
strategy to help a disabled person to drive a wheelchair using an EEG
signal is proposed (see [Perrin, 2009] and [Perrin et al., 2010]).

• Joao Filipe Ferreira, PhD thesis titled “Bayesian Cognitive Models for
3D Structure and Motion Multimodal Perception” (see [Ferreira, 2011]
and [Ferreira et al., 2012]).

• Clement Moulin-Frier, PhD thesis titled “Emergence of Articulatory-
Acoustic Systems from Deictic Interaction Games in a ‘Vocalize to Local-
ize’ Framework”(see [Moulin-Frier, 2011](in French) and [Moulin-Frier
et al., 2011, 2012]).

• Gabriel Synnaeve, PhD thesis titled “Bayesian Programming and Learn-
ing for Multi-Player Video Games: Application to RTS AI,” where a
probabilistic model of a “bot” to automatically play Starcraft is pro-
posed (see [Synnaeve, 2012] and also [Synnaeve and Bessière, 2010,
2011a,b,c]).

For an up-to-date description of the industrial applications please consult
the Web site of ProbaYes (http://probayes.com).

http://www.probayes.com

316 Bayesian Programming

16.3 Bayesian programming versus Bayesian networks

At first, the Bayesian programming syntax presented in this book may
seem less convenient than the graphical presentation of standard Bayesian
network software. The absence of an evident human-machine interface is not
an oversight but a choice. This choice was made for four main reasons:

• We think that graphical representations impose supplementary con-
straints which do not result from the rules of probability nor from the
logic of the problem. For instance, the rules of probability allow us
to specify a decomposition including a distribution with two or more
variables on the left part of the conditioning mark as, for example,
P (B ∧ C|A ∧ π). This is not possible in a Bayesian network graphi-
cal representation without introducing an intermediate variable. This
limitation becomes even more bothersome as seen in Equation 16.1.
The two variables B and C are defined with the same joint distribution
P (B ∧ C|π), while D is conditionally dependent on B and E on C.

P (B ∧ C|π)P (D|B ∧ π)P (E|C ∧ π) (16.1)

This decomposition becomes really difficult to represent in a graphical
way. Any Bayesian network can be represented in the Bayesian pro-
gramming formalism, but the opposite is not true. Indeed, the graphical
representation with the same power of expression as Bayesian program-
ming is probabilistic factor graphs [Loeliger, 2004].

• The algebraic notation used in Bayesian programming is very conve-
nient for expressing iteration or recurrences. This greatly simplifies the
specification of models that include the same submodel duplicated sev-
eral times, such as Bayesian filters or hidden Markov models where
T
∏

t=1

[

P
(

St|St−1
)

P
(

Ot|St
)]

specifies everything in a very compact and

rigorous manner.

• Bayesian programming, using the subroutine call mechanism described
in Chapter 9, offers a very simple way to build hierarchical complex
probabilistic models built from simpler elementary bricks. Much simpler
and rigorous than the attempt to do the same thing with graphical
notation such as for instance the network fragment approach [Laskey
and Mahoney, 1997] or the Object Oriented Bayesian Network (OOBN)
[Koller and Pfeffer, 1997] to cite only the oldest ones.

• As shown in Chapter 14, the algebraic notation used by Bayesian pro-
graming may be used to revisit the different inference algorithms with a
simpler and more systematic point of view, demonstrating that all these

Frequently Asked Questions and Frequently Argued Matters 317

algorithms finally reduce to clever applications of the distributive and
normalization laws.

16.4 Bayesian programming versus Bayesian modeling

Why did we call this book Bayesian “Programming”?

As stated in the very first paragraph, the use of computers makes the
difference between “programming” and “modeling”:

“Computers have brought a new dimension to modeling. A model, once
translated into a program and run on a computer, may be used to under-
stand, measure, simulate, mimic, optimize, predict, and control. During the
last 50 years, science, industry, finance, medicine, entertainment, transport,
and communication have been completely transformed by this revolution.”

What is proposed in this book is a programming language and methodol-
ogy.

The goal is to have probabilistic models running on computers. Bayesian
programming goes one step further than modeling by providing the adequate
tools to do so. Even if other approaches may be explored (see, for instance,
the discussion “Bayesian programming versus probabilistic programming” in
Section 16.6 just below) Bayesian programming offers all the features required
from a programming language (as presented in Part II of this book).

A parallel can be made, for instance, with geometry. Geometry model-
ing was of course very interesting and has been very useful to humans since
they owned land and had to compute the surface of their fields to buy or sell
them. However, since geometry programming has been implemented on com-
puters and especially since specific hardware has been developed to allow for
incredibly efficient geometrical computation, revolutionary applications have
appeared such as CAD systems to conceive 3D objects and buildings, mapping
and localization systems, special effects for moving pictures and video-game
animation.

Will our computers offer us embedded capabilities for perception, action,
learning, and decision with incomplete and uncertain knowledge? Will they
offer us completely new applications? Only the near future will provide the
answer.

318 Bayesian Programming

16.5 Bayesian programming versus possibility theories

The comparison between probabilistic approaches (not only Bayesian pro-
gramming) and possibility theories has been debated for a long time and is,
unfortunately, a very controversial matter.

Possibility theories (like, for instance, fuzzy sets [Zadeh, 1965], fuzzy logic
[Zadeh, 1974, 1975] and possibility theory [Dubois and Prade, 2001]) propose
different alternatives to probability to model uncertainty. They argue that
probability is insufficient or inconvenient to model certain aspects of incom-
plete and uncertain knowledge.

The defense of probability is mainly based on Cox’s theorem (see Section
16.8 below) which, starting from four postulates concerning rational reason-
ing in the presence of uncertainty, demonstrates that the only mathematical
framework that satisfies these postulates is probability theory. The argument
then goes like this: if you use a different approach than probability, then you
necessarily infringe on one of these postulates. Let us see which one and dis-
cuss its utility. The debate is still open and it is beyond the scope of this book
to discuss it in detail.

16.6 Bayesian programming versus probabilistic pro-
gramming

The purpose of probabilistic programming is to unify the scope of classi-
cal programming languages with probabilistic modeling (especially Bayesian
networks) in order to be able to deal with uncertainty but still profit from the
power of expression of programming languages to describe complex models.

The extended classical programming languages can be logical languages as
proposed in Probabilistic Horn Abduction [Poole, 1993], Independent Choice
Logic [Poole, 1997], PRISM [Sato and Kameya, 2001], and ProbLog [Raedt
et al., 2007] which propose an extension of Prolog. It can also be extensions
of functional programming languages (essentially Lisp and Scheme) such as
IBAL [Pfeffer, 2001] or CHURCH [Goodman et al., 2008]. The inspiring pro-
gramming languages can even be object oriented like in BLOG [Milch et al.,
2004] and FACTORIE [Mccallum et al., 2009] or more standard like in CES
[Thrun, 2000a] and FIGARO [Pfeffer, 2012].

An interesting paper presenting a synthesis of the probabilistic program-
ming approach and especially the semantics of these languages is proposed by
Poole [2010].

The purpose of Bayesian programming is different. Following Jaynes’ pre-
cept of “probability as logic” we defend that probability is an extension of

Frequently Asked Questions and Frequently Argued Matters 319

and alternative to logic above which a complete theory of rationality, compu-
tation, and programming can be rebuilt. We do not search to extend classical
languages but rather to replace them by a new programming approach based
on probability and taking fully into account incompleteness and uncertainty.
As stated in the Introduction, “the next step in this direction would be to de-
velop specific hardware, a probabilistic computer, with Bayesian gates instead
of Boolean gates and a Bayesian algebra to formalize probabilistic computa-
tion instead of the Boolean algebra used for logic-based calculus.” We are
working in this direction, but this is not in the scope of this book.

The precise comparison between the semantic and power of expression of
Bayesian and probabilistic programming is still an open question. It would
be very interesting, for instance, to exhibit examples of problems that can be
addressed with one of the approaches and not with the other, or, at least that
are much more simple to describe in one of the approaches than the other.

16.7 Computational complexity of Bayesian inference

As already stated several times, Bayesian inference is a very time con-
suming problem. The major problems of probabilistic inference have been
proved NP-hard or worse. This is the case, for instance, for exact inference in
singly connected Bayesian nets [Wu and Butz, 2005] and in multiply connected
Bayesian nets [Cooper, 1990], for approximate inference [Dagum and Luby,
1993]), for optimal triangulation [Jordan and Weiss, 2002], and for optimal
ordering [Arnborg et al., 1987]. Darwiche [2009] proposes a synthetic review
of these questions.

The only way out is to simplify the problem. There are two approaches.

The first one is problem independent and consists of using generic approx-
imation algorithms based on heuristics and sampling. Some of these have been
described in Chapter 14. Markov chain Monte Carlo (MCMC) algorithms are
obviously an immense success in this category. However, until proven other-
wise, NP-hard problems stay NP-hard and this implies that there exist nec-
essary cases where these algorithms will fail.

The second one is problem dependent and consists of dividing the problem
into a combination of more simple ones using an additional conditional inde-
pendence assumption. This is the central purpose of the decomposition step
in the Bayesian programming approach. The efficacy of this process has been
demonstrated numerous times in this book. However, any new conditional in-
dependence hypothesis is paid by a certain loss of information and transforms
the initial problem into a different one. The very difficult challenge the pro-
grammer has to take is to find the conditional independence hypotheses that
make sense and lead to acceptable results.

320 Bayesian Programming

16.8 Cox theorem

The Cox theorem [Cox, 1946, 1961] demonstrates how the intuitive notion
of plausibility can be and should be formalized by the mathematical concept
of probability.

Let us note (a|c) the plausibility of a given proposition a knowing a set of
knowledge c.

The following postulates explicitly the plausibility notion:

1. Plausibilities are represented by real numbers2

(a|c) ∈ R (16.2)

2. Plausibilities are consistent: if there exist several correct calculi for
the same plausibility, they should all lead to the same result.

3. If some new information c′ replaces c and increases the plausibility of
a, then the plausibility of the negation ā should decrease.

[(a|c′) > (a|c)]⇒ [(ā|c′) < (ā|c)] (16.3)

4. If some new information c′ increases the plausibility of a but does not
concern in any way the plausibility of b, then the plausibility of the
conjunction a ∧ b should increase:

[[(a|c′) > (a|c)] ∧ [(b|a ∧ c′) = (b|a ∧ c)]]⇒ [(a ∧ b|c′) > (a ∧ b|c)]
(16.4)

Starting from these postulates, Richard T. Cox has demonstrated that plau-
sible reasoning should follow the two rules from which all the theories can be
rebuilt:

1. The normalization rule:

P (a|c) + P (ā|c) = 1 (16.5)

2. The conjunction rule:

P (a ∧ b|c) = P (a|c)P (b|a ∧ c) = P (b|c)P (a|b ∧ c) (16.6)

Furthermore, this theorem shows that any technic for plausibility calculus
that would not respect these two rules would contradict at least one of the

2See an interesting discussion in Appendix A.3, p. 656 of Jaynes’ book [2003] arguing
that rational numbers are sufficient.

Frequently Asked Questions and Frequently Argued Matters 321

preceding postulates. Consequently, if we accept these postulates, probability
calculus is the only means to do plausible reasoning.3

Chapter 2 of Jaynes’ book [2003] is completely devoted to the demonstra-
tion and discussion of Cox’s theorem and is a reference on this matter.

Cox’s theorem has been partially disputed by Halpern [1999a; 1999b], him-
self contradicted by Arnborg and Sjödin [2000].

16.9 Discrete versus continuous variables

In this book we mainly restricted ourselves to the use of discrete variables.
The main reason for this is that we believe that continuous variables are

a pure fiction on the computer, at worst a quite dangerous one. For instance,
real numbers coded by types “float,” “double,” or “long double” are all coded
using discrete values either on 32, 64, or 80 bits. Unfortunately, discretization
of continuous values may lead to numerous problems would this discretization
be using 2 bits or 80 bits. For instance, two different roots of a polynomial
function may be indistinguishable as they may take the same value once dis-
cretized. Well-posed mathematical methods can lead to ill-behaved computer
algorithms due to the effect of discretization.

We think that “discretization” is a very important and difficult modeling
choice that deserves careful thinking and cannot be blindly left to computer
float encoding.

For instance, if you have a signal with a high dynamic either in energy as
light for optical sensors or sound for auditory ones, or in range as distance for
laser devices, a logarithmic discretization is often wise to preserve accuracy
for small values yet cover the whole range of the signal.

Another example is given by dynamical environment (with rapid change
in time) where rough (with few values) discretization is often a clever choice.
Indeed, there is a trade-off between the precision of discretization and the
required computing time for inference. In some cases, lowering the accuracy
in order to speed up computation may lead to better results by improving the
reactivity to rapidly changing environments.

In Bayesian programming, the first and most difficult modeling choice is
the selection of relevant variables. To be more complete and exact, we should
say that this first modeling choice is the selection of the relevant variables and
their encoding as discrete variables. This encoding choice is a very important
component of the model which is too often neglected as it is a delicate question.

Furthermore, considering continuous variables obliges us to use measure

3See the corresponding discussion about “Bayesian programming versus possibility the-
ories” in section 16.5.

322 Bayesian Programming

theory as defined by Emile Borel and Henri-Léon Lebesgue and leads to An-
drey Kolmogorov’s axiomatization of probability. Of course this approach to
probability is of primary importance and has countless applications. However,
it is a very different concept and viewpoint on probability than the episte-
mological position adopted in this book where probability is considered as an
alternative and extension of logic (see Jaynes [2003] for an extended discussion
and comparison between his approach and Kolmogov’s).

16.10 Incompleteness irreducibility

Incompleteness (the fact that a model neglects some factors influencing
the phenomenon it is modeling) has been proved all along in this book to
be the major difficulty encountered by the classical approaches to modeling
(logic and usual programming). This difficulty is the central justification for
the adoption of Bayesian programming proposed as a way to take into account
this incompleteness.

However, a legitimate question is: “Is this incompleteness reducible?” or
stated in other terms: “Is it possible, by adding more and more variables to
our model, to obtain a model with no hidden variables?”

If the studied phenomenon is not formal the answer to these questions is
NO.

There are three fundamental arguments in favor of this negative answer:

• The very idea of exhaustivity is in contradiction to the concept of the
model. A model is interesting if, and only if, it is (much) simpler than
the studied phenomenon.

• The fundamental laws of physics are boundless in distance: any single
particle is in interaction with all the others in the universe. Consequently,
the entire universe should be necessary to describe completely any phys-
ical phenomenon even the simplest.

• “Chaotic” systems prove that it is impossible to provide a “simplified”
model of some phenomenon, even some elementary ones, as it is neces-
sary to know “exactly” their initial conditions to be able to predict their
evolution.

Henri Poincaré summarized this in beautiful words:

To find a better definition of hazard, we have to look for facts
that we agree to qualify as fortuitous and for which probability
calculus applies. We will then look for their common characteris-
tics. The first instance that we can choose in unstable equilibrium.

Frequently Asked Questions and Frequently Argued Matters 323

If a cone rests on its point we know that it will fall down but we
don’t know on which side. It seems that only hazard will decide.
Would the cone be perfectly symmetric, would its axis be perfectly
vertical, would there be absolutely no other force than gravity, it
will not fall. But the slightest symmetry break will tilt it on one
side or another and, as soon as it will be tilted, so little that it is,
it will completely fall on that side. Even with a perfect symmetry,
an infinitesimal juddering, a breath of air will tilt it of a few arc
seconds and it will be sufficient to cause its fall and to determine
the direction of this fall toward the initial inclination.

An infinitesimal cause that we overlook may determine a major
effect that we cannot miss. We then say that this effect is due
to hazard. Would we know exactly the laws of nature and the
state of the universe at the initial instant, we could exactly predict
the state of this same universe at the next moment. But, even
with this perfect knowledge of the laws of nature, we have only an
approximate knowledge of the initial state. If we can predict the
next state with the same approximation, it’s all what we need, the
phenomenon has been forecast, it is ruled by laws. However, it is
not always the case, it may happen that slight differences in initial
conditions generate huge ones in final phenomenon. The prediction
becomes impossible and we are facing a fortuitous phenomenon.4

Calcul des Probabilités

Henri Poincaré [1912]

4Pour trouver une meilleure définition du hasard, il nous faut examiner quelques-uns des
faits qu’on s’accorde à regarder comme fortuits, et auxquels le calcul des probabilités parâıt
s’appliquer; nous rechercherons ensuite quels sont leurs caractères communs. Le premier
exemple que nous allons choisir est celui de l’équilibre instable; si un cône repose sur sa
pointe, nous savons bien qu’il va tomber, mais nous ne savons pas de quel côté; il nous
semble que le hasard seul va en décider. Si le cône était parfaitement symétrique, si son axe
était parfaitement vertical, s’il n’était soumis à aucune autre force que la pesanteur, il ne
tomberait pas du tout. Mais le moindre défaut de symétrie va le faire pencher légèrement
d’un côté ou de l’autre, et dès qu’il penchera, si peu que ce soit, il tombera tout à fait de ce
côté. Si même la symétrie est parfaite, une trépidation très légère, un souffle d’air pourra
le faire incliner de quelques secondes d’arc; ce sera assez pour déterminer sa chute et même
le sens de sa chute qui sera celui de l’inclinaison initiale. Une cause très petite, qui nous
échappe, détermine un effet considérable que nous ne pouvons pas ne pas voir, et alors nous
disons que cet effet est dû au hasard. Si nous connaissions exactement les lois de la nature
et la situation de l’univers à l’instant initial, nous pourrions prédire exactement la situation
de ce même univers à un instant ultérieur. Mais, lors même que les lois naturelles n’auraient
plus de secret pour nous, nous ne pourrions connâıtre la situation qu’approximativement.
Si cela nous permet de prévoir la situation ultérieure avec la même approximation, c’est
tout ce qu’il nous faut, nous disons que le phénomène a été prévu, qu’il est régi par des
lois; mais il n’en est pas toujours ainsi, il peut arriver que de petites différences dans les
conditions initiales en engendrent de très grandes dans les phénomènes finaux; une petite
erreur sur les premières produirait une erreur énorme sur les derniers. La prédiction devient
impossible et nous avons le phénomène fortuit.

324 Bayesian Programming

In practice, however, it is not necessary to invoke these fundamental rea-
sons to justify the irreducibility of incompleteness. A sensory motor system,
either living or artificial, should evidently be able to take decisions with only
a very partial knowledge of its interaction with its environment. Can we imag-
ine that a bee has a complete model of its aerodynamic interaction with the
environment to fly around without running into obstacles?

16.11 Maximum entropy principle justifications

The most intuitive justification of maximum entropy approaches consists in
a combinatory argument coming directly from its statistical mechanic origins.
This was first proposed by Boltzmann.

Let us suppose that we have N identical particles and that each of these
particles can be in Q different microscopic states. We can define a macroscopic
state νk as a set {n1, · · · , nQ} of Q numbers such that each nq is the number
of particles in microscopic state q.

We must have, of course:

Q
∑

q=1

[nq] = N (16.7)

The system must also verify some energetic constraints:

Q
∑

q=1

[nq × eq] = E (16.8)

where E is the global energy of the system and where eq is the energy of state
q.

If W (νk) is the number of permutations of microscopic states that realize
the macroscopic state νk ,

W (νk) =
N !

n1!× · · · × nQ!
(16.9)

For Boltzmann, the most probable macroscopic state is the one that can
be realized by the highest number of possible permutations of microscopic
states. In other words, the macroscopic state that maximizes W (νk).

Using the Stirling formula to approximate the factorial for large n:

log (n!) = n× log(n)− n+
√
2πn+

1

12n
+ o

(

1

n2

)

(16.10)

Frequently Asked Questions and Frequently Argued Matters 325

we get:

log (W (νk)) ≃ −N ×
Q
∑

q=1

[nq

N
× log

(nq

N

)]

(16.11)

and the most probable macroscopic state is the one that maximizes the entropy
yet respects the constraints of Equations 16.7 and 16.8.

An exact parallel reasoning can be made for probability distributions.
Let us suppose that we have N observations (analogous to particles) and

that each of these observations consist in observing that one of the Q mutually
exclusive propositions is true (analogous to the microscopic state). We can de-
fine a description (analogous to the macroscopic state) δk as a set {n1, · · · , nQ}
of Q numbers such that each nq is the number of observations of the propo-
sition q.

If we want this description to be a normalized probability distribution, we
must have:

Q
∑

q=1

[nq

N

]

=

Q
∑

q=1

[pq] = 1 (16.12)

On the one hand, suppose we have M functions fm(q) (called “observable
functions”) and assume further we can impose a constraint on each of these
functions by setting the value of its expectation to FM (called “constraint
levels”):

∀m,m ∈ {1, · · · ,M}
Q
∑

q=1

[pq × fm (q)] = Fm (16.13)

On the other hand, if W (δk) is the number of permutations of observations
that realize the decomposition δk, again using the Stirling formula, we get:

log (W (δk)) ≃ −N ×
Q
∑

q=1

[pq × log (pq)] (16.14)

then the most probable probability distribution is the one that maximizes the
entropy yet respects the M constraints in Equation 16.13. The most probable
probability distribution is the one that corresponds to the highest number
of possible permutations of the observations compatible with the imposed
constraints.

Different rigorous justifications of the entropy principles exist in the liter-
ature. The more interesting, may be the entropy concentration theorems as
initially demonstrated by Jaynes [1982] for the discrete case and by Robert
[1990] for the continuous case.

326 Bayesian Programming

16.12 Noise or ignorance?

What is noise?
Let us consider the throw of a dice.
It is a very “complex” physical phenomenon. Complex in the sense that

many factors ought to be taken into account as, for instance, initial forces,
gravity, aerodynamics, bouncing forces, and so forth. Initial forces themselves
depend on the musculature, the shape, the health of the body, on the rough-
ness of the skin, and precise shape of the hands and fingers, on the motor
control and even “will” of the thrower. Gravity depends on the balance of the
dice and the main gravity attraction of earth, but also on local perturbations
due to geological constraints and eventually the presence of heavy objects in
the vicinity. It also depends on far away attractions as, to cite only the most
preeminent one, the position of the moon at the time of the throw. Aero-
dynamics depend on anything that may generate a breath of air, from the
neighbor’s sneeze to the butterfly effect on the local climate.

Is the trajectory of the dice a deterministic physical process? A very argued
question but absolutely not relevant to our problem. Would it be completely
deterministic, it will not help us to predict the outcome as, obviously, we lack
boundless information to be able to reconstruct the course of events.

If the dice is “loaded,” for instance, toward an outcome of 6 and if we
consider only a standard vertical gravity, we may predict the probability of
this outcome. Any deviation from this prediction can be interpreted as “noise.”
However, it is not related to any physical property of the system, this deviation
is only the result of our ignorance (or simplification choices) that makes us
discard all the relevant information enumerated above.

To ensure that a throw is “honest”, you withdraw any observable infor-
mation using, for instance, a balanced dice that prevents you from using any
macroscopic gravity prediction and a cup that deprives you from any reach-
able information about the initial forces. “Noise” is then so preeminent, your
ignorance is so complete, that the best prediction you can reach is a uniform
distribution on the six possible outcomes.

16.13 Objectivism versus subjectivism controversy and
the “mind projection fallacy”

There are two extreme positions in the epistemology of probability: the
objectivist and the subjectivist ones. On the one hand, the objectivists con-
sider that probability is a mathematical tool to model the real world. On the
other hand, the subjectivists consider probabilities as a way to model the rea-

Frequently Asked Questions and Frequently Argued Matters 327

soning of a given subject about the world. It is considered by many as only
philosophical quibbling, but they are wrong as it has very important practical
consequences in the way probabilities are used and in how the obtained results
may be interpreted.

For the objectivists, one should use probabilities to build models of the
world as objective as possible, meaning that these models should depend on
the observable data and only on them and should be independent of their
own knowledge of any possible observers.5 It is a praiseworthy goal, a direct
heritage of the idea that science can provide an objective, an exact, or even a
true description of the world.

The subjectivists consider that probability is a model of reasoning. As
such, the subject who is reasoning and who’s own knowledge about the world
is central for the model; is at least as important as the data he collects by mak-
ing observations. Subjectivists even deny the possibility of building a model of
the world independent of any preliminary knowledge to interpret these data.
They propose probability as an alternative and an extension of logic to for-
malize rational reasoning when information is incomplete and uncertain. Pre-
liminary knowledge plays the same role for probability that axiomatic plays
for logic. Starting from “wrong” axioms (not true in the world) will lead to
“wrong” conclusions (not describing, explaining, or predicting the behavior of
the world) even with exact logical inferences. Starting from “wrong” prelim-
inary probabilistic knowledge will also lead to “wrong” conclusions whatever
the data and even with perfectly valid probabilistic calculus. The “objectivity”
of the subjectivist approach then lies in the fact that two different subjects
with same preliminary knowledge and same observations will inevitably reach
the same conclusions. A quite different meaning of objectivity than the one
adopted by the objectivists.

The Laplace succession law controversy which has made for an exciting
debate for the last 150 years is an interesting example of the two different
points of view. Laplace proposed to model a series of experiments using the
following law:

P (x) =
1 + nx

Ω+ n
(16.15)

where nx is the number of times the x value appears in the series, Ω is the
cardinal of variable X , and n is the total number of observations in the series.

If the observed series is the life of an individual and the variable X stands
for “the individual survives this year,” then Ω = 2 and we get for a 14-year-
old boy a probability of surviving one more year equal to 15/16 when for his
75-year-old grandfather we get a probability of 76/77.

Using this kind of argument, the objectivists have been making fun of
Laplace and his succession law, saying that they were both stupid.

The subjectivists’ position is that the Laplace succession law is just one

5They even often deny the existence or, at least, the necessity of these observers.

328 Bayesian Programming

element of the reasoning subject to preliminary knowledge, and if the obtained
result is in contradiction with “common sense” it just means that “common
sense” has more information to make its judgment than solely this rule. Adding
the knowledge that human life has an upper limit, indeed easily solves the
question of the probability of survival of a given individual.

Edwin T. Jaynes in his book Probability Theory: The Logic of Science
[Jaynes, 2003] presents a fervent plea for the subjectivist point of view. He
warns us again of what he calls the “mind projection fallacy”:

Common language — or at least, the English language — has
an almost universal tendency to disguise epistemological state-
ments by putting them into a grammatical form which suggests
to the unwary an ontological statement. A major source of error
in current probability theory arises from an unthinking failure to
perceive this. To interpret the first kind of statement in the on-
tological sense is to assert that one’s own private thoughts and
sensations are realities existing externally in Nature. We call this
the “Mind Projection Fallacy,” and note the trouble it causes many
times in what follows. But this trouble is hardly confined to prob-
ability theory; as soon as it is pointed out, it becomes evident that
much of the discourse of philosophers and Gestalt psychologists,
and the attempts of physicists to explain quantum theory, are re-
duced to nonsense by the author falling repeatedly into the Mind
Projection Fallacy.

Probability Theory: The Logic of Science
Edwin T. Jaynes [2003]

You can find in Jaynes’ book many examples of misuses of probability due
to an objectivist interpretation and especially a review of apparent paradoxes
that can be easily solved with a subjectivist point of view.

Of course we presented here only the two extreme positions, when a lot of
intermediary approaches exist. For instance, a usual definition for “Bayesian-
ism” refers to probabilists that accept the use of priors as reasoning subjects’
knowledge. Even this position has been largely attacked by objectivists with
endless discussions on the relevance of the used priors. From a subjectivist
position, the subject is free and takes his own risks when using a given prior.
If he makes a wrong choice then he will get an inappropriate model.

In this book we went much further in the subjectivist direction. We do not
only use priors but “preliminary knowledge.” Priors are limited to the specifi-
cation of a few parametric forms to summarize subject preliminary knowledge,
when, in contrast, preliminary knowledge is made of the specification part of
the Bayesian program made of (i) the choice of the relevant variables, (ii) the
choice of the decomposition assuming conditional independences, and (iii) the

Frequently Asked Questions and Frequently Argued Matters 329

choice of the parametric forms for each of the distributions appearing in the
decomposition.

A major contribution of this book is precisely this formalization of the
preliminary knowledge which, we hoped, has been proved in these pages to be
general and generic enough to model a lot of different problems.

16.14 Unknown distribution

In a lot of models we stated that some distributions are Uniform.
For instance, this is the case in the model of a water treatment unit as

stated in the Bayesian program in Equation 4.29 reproduced below:

Pr































































































































Ds























































































































Sp(π)











































































































V a :

I0, I1, F, S, C,O

Dc :










P (I0 ∧ I1 ∧ F ∧ S ∧ C ∧O)

= P (I0)× P (I1)× P (F)× P (S|I0 ∧ F)

×P (C)× P (O|I0 ∧ I1 ∧ S ∧C)

Fo :

P (I0) = Uniform

P (I1) = Uniform

P (F) = Uniform

P (S|I0 ∧ F) = δ
S=Int(I0+F

2)

P (C) = Uniform

P (O|I0 ∧ I1 ∧ S ∧C) = Histograms

Id

Qu :

(16.16)
However, these hypotheses are not always necessary. If for a given model,

you are sure that some of the variables appearing in your model will always
be known (appearing only in the right part of a question), then you do not
need to specify prior distributions for these variables as these distributions
will be canceled out in the inference by appearing both at the numerator and
denominator of the expression required to be computed to solve any of the
possible questions.

This is the case in the water treatment example for variables I0 and
I1, which are always known. The answer to any question of the form
P (Search|known ∧ i0 ∧ i1) is obtained by:

330 Bayesian Programming

P (Search|known ∧ i0 ∧ i1)

=

∑

Free

[P (i0)P (i1)P (F)P (S|i0 ∧ F)P (C)P (O|i0 ∧ i1 ∧ S ∧ C)]

∑

Free∧Search

[P (i0)P (i1)P (F)P (S|i0 ∧ F)P (C)P (O|i0 ∧ i1 ∧ S ∧ C)]

=

∑

Free

[P (F)P (S|i0 ∧ F)P (C)P (O|i0 ∧ i1 ∧ S ∧ C)]

∑

Free∧Search

[P (F)P (S|i0 ∧ F)P (C)P (O|i0 ∧ i1 ∧ S ∧ C)]

(16.17)
The answer depends on neither P (I0) nor on P (I1).
The situation is not the same for variables F and C that are, for some

interesting questions, either searched or let free. For them, P (F) and P (C)
must be specified.

Consequently, in Bayesian programming you can specify a distribution as
Unknown and ProBT will provide an error message if you try to ask a question
that supposes to use this distribution.

Chapter 17

Glossary

17.1 Bayesian filter . 331
17.2 Bayesian inference . 332
17.3 Bayesian network . 333
17.4 Bayesian program . 334
17.5 Coherence variable . 335
17.6 Conditional statement . 335
17.7 Decomposition . 336
17.8 Description . 336
17.9 Forms . 337
17.10 Incompleteness . 337
17.11 Mixture . 337
17.12 Noise . 338
17.13 Preliminary knowledge . 338
17.14 Question . 339
17.15 Specification . 339
17.16 Subroutines . 340
17.17 Variable . 340

Knowledge advances integrating uncertainty, not exorcising it.1

La Méthode
Edgar Morin [1981]

This chapter is a very short summary of the book where the central con-
cepts are recalled as an extended glossary.

17.1 Bayesian filter

Bayesian filters are a particular case of Bayesian programs (see Section
17.4) defined as follows:

1La connaissance progresse en intègrant en elle l’incertitude, non en l’exorcisant.

331

332 Bayesian Programming

Pr







































































































































Ds























































































Sp(π)















































































V a :

S0, · · · , ST , O0, · · · , OT

Dc :










P
(

S0 ∧ · · · ∧ ST ∧O0 ∧ · · · ∧OT |π
)

= P
(

S0 ∧O0
)

×
T
∏

t=1

[

P
(

St|St−1
)

× P
(

Ot|St
)]

Fo :










P
(

S0 ∧O0
)

P
(

St|St−1
)

P
(

Ot|St
)

Id

Qu :


















P
(

St+k|O0 ∧ · · · ∧Ot
)

(k = 0) ≡ Filtering

(k > 0) ≡ Prediction

(k < 0) ≡ Smoothing

(17.1)

See Section 13.1.2 for details and special cases like hidden Markov models
(HMMs), Kalman filters, and particle filters.

17.2 Bayesian inference

Bayesian inference consists of computing the probability distribution cor-
responding to a question (17.14) knowing a description (17.8). The computa-
tion to be made is the following:

Glossary 333

P (Searched|known ∧ δ ∧ π)

=
∑

Free

[P (Searched ∧ Free|known ∧ δ ∧ π)]

=

∑

Free

[P (Searched ∧ Free ∧ known|δ ∧ π)]

P (known|δ ∧ π)

=

∑

Free

[P (Searched ∧ Free ∧ known|δ ∧ π)]

∑

Free∧Searched

[P (Searched ∧ Free ∧ known|δ ∧ π)]

=
1

Z
×
∑

Free

[P (Searched ∧ Free|known ∧ δ ∧ π)]

=
1

Z
×
∑

Free

[

P (L1|δ ∧ π)×
K
∏

k=2

[P (Lk|Rk ∧ δ ∧ π)]

]

(17.2)

The difficulty in this elementary computation is the dimension of the search
space (variable Searched) and the dimension of the integration space (variable
Free).

Most of the time only approximate inference is acceptable and all the algo-
rithms tried to solve these optimization problems in clever ways. See Chapter
14 for details.

However, the main means of keeping Bayesian inference tractable is to
make the right simplification choices in the decomposition (see Section 17.7)
by assuming conditional independencies between variables numerous enough
to reduce dimensionality, yet sparse enough, to keep the model relevant.

17.3 Bayesian network

Bayesian networks are a particular case of Bayesian programs (see Section
17.4) defined as follows:

334 Bayesian Programming

Pr























































































Ds







































































Sp(π)



























































V a :

X1, · · · , XN

Dc :










P (X1 ∧ · · · ∧XN |π)

=

N
∏

n=1

[P (Xn|Rn ∧ π)]

Fo :

any

Id

Qu :

P (Xn|known)

(17.3)

Note the particularity of the decomposition (see Section 17.7) where one
and only one variable Xn is appearing left of the conditioning sign and de-
pending of its “antecedents” Rn.

See Section 13.1.1 for details and Section 16.3 for a discussion on “Bayesian
programming versus Bayesian networks.”

17.4 Bayesian program

Bayesian program is a central notion of this book. It is the framework
implementing the Bayesian programming modeling methodology.

Program































Description.



















Specification(π)











V ariables

Decomposition

Forms

Identification (based on δ)

Question

A Bayesian program is made of two parts: the description (see Section
17.8) which formalizes the probabilistic models and the question (see Section
17.14), which specifies what problem has to be solved.

The description itself is made of two parts: the specification (see Section
17.15), which formalizes the preliminary knowledge (see Section 17.13) of the
modeler, and the identification where learning of the nonspecified parameters
is made.

Finally, the specification is made of three parts: the choice of the variables
(see Section 17.17), the decomposition (see Section 17.7) where the modeler

Glossary 335

adds knowledge to simplify the model, and the forms (see Section 17.9) where
the modeler specifies the mathematical means to compute and learn the ele-
ments of the decomposition.

17.5 Coherence variable

A coherence variable is a Boolean variable which, when true, imposes that
two other variables are “coherent” which means that they should share the
same probability distribution knowing the same premises.

A coherence variable Λ appears in a decomposition under the basic form:

P ([Λ = 1] |A ∧ A′) = δA=A′ (17.4)

Chapter 8 discusses the semantic of coherence variables and details their
numerous usages as, for instance, to reason with soft evidence, to activate or
deactivate part of a model (switch), and to deal with cycles.

17.6 Conditional statement

Conditional statements in Bayesian programs are implemented using a
choice variable which conditions the use of different probabilistic models.

It is very similar to the use of a conditional statement in classical pro-
gramming, where the value of the choice variable decides which branch of the
program should be executed.

However, in Bayesian programming we usually do not know the value of
the choice variable but rather a probability distribution on this choice variable.
Consequently, the choice variable has to be marginalized out, leading to taking
in accounting for all the different models that it conditioned but with a focus
on the importance proportional to the probability of the choice variable for
this branch.

Details and examples can be found in Chapter 10.

336 Bayesian Programming

17.7 Decomposition

Decomposition is an essential modeling step. It consists in expressing the
joint distribution of the model as a product of simpler distributions assuming
conditional independencies between variables.

P (X1 ∧X2 ∧ · · · ∧XN |δ ∧ π)
= P (L1|δ ∧ π)× P (L2|R2 ∧ δ ∧ π)× · · · × P (LK |RK ∧ δ ∧ π)

(17.5)

It is the algebraic analogous of defining a Bayesian net’s graph even if more
general (see Chapter 12 for a complete formal definition).

The art of decomposing is delicate. Indeed, the assumed conditional inde-
pendencies between variables shall be carefully chosen in order to satisfy three
contradictory constraints: (i) reducing the dimensionality to have tractable
computation, (ii) not oversimplifying to keep most of the relevant informa-
tion, and (iii) selecting elementary distributions that can be easily learned.

17.8 Description

Description in a Bayesian program is the probabilistic model considered.

This model results from, on one hand, knowledge provided by the program-
mer called specification (see Section 17.15) and, on the other hand, knowledge
coming from the “environment” and learned during identification.

Any valid probabilistic model can be a description. In particular, descrip-
tions are more general than Bayesian nets (see Section 17.3) as they are an
algebraic way to express probabilistic factor graphs.

Glossary 337

17.9 Forms

Forms are the third necessary ingredient in the specification (see Section
17.15) part of a Bayesian program to be able to compute the joint distribution.
A form can either be a parametric form or a question (see Section 17.14) to
another Bayesian program.

17.10 Incompleteness

Incompleteness is the fundamental problem that Bayesian programming
addresses.

We believe that it is impossible to build a complete model of any “real”
(nonformal) phenomenon. There are always some hidden variables that influ-
ence the phenomenon and are not taken into account by the model. The effect
of these hidden variables is that the model cannot completely account for the
behavior of the phenomenon. Uncertainty appears as a direct consequence of
this incompleteness.

Using probability is then a necessity to describe these nonformal phe-
nomenon.

Details may be found in Chapter 3 and a discussion about “incompleteness
irreducibility” in Section 16.10.

17.11 Mixture

Mixtures are usually presented in the literature as an approximation func-
tion problem where a given probability distribution is modeled by a weighted
sum of simpler distributions.

We propose to present systematically these approaches using a hidden
variable H that could explain the obtained mixture but is ignored most of the
time. We then obtain the following Bayesian program:

338 Bayesian Programming

Pr























































































































Ds















































































Sp(π)



































































V a :

X1, · · · , XN , H

Dc :
{

P (X1 ∧ · · · ∧XN ∧H |π)
= P (H |π)× P (X1 ∧ · · · ∧XN |H ∧ π)

Fo :










P (H |π) ≡ Table

P (X1 ∧ · · · ∧XN | [H = m] ∧ π)

≡ P (X1 ∧ · · · ∧XN |πm)

Id

Qu :










P (X1 ∧ · · · ∧XN |π)

=

M
∑

m=1

[P ([H = m] |π)× P (X1 ∧ · · · ∧XN |πm)]

(17.6)

The usual form of the mixture (the weighted sum) appears as the result
of the inference done by ignoring and marginalizing out the variable H .

It is then easy to go one step further in generalization by considering that
the variable H could be conditioned by some of the variables. Doing this
we obtain the standard probabilistic conditional statement form (see Section
17.6).

17.12 Noise

Noise is anything that is not music, anything not written in the score,
anything not specified in your model, everything that you are ignoring, which
may be much.

See the discussion “Noise or ignorance?” in Section 16.12.

17.13 Preliminary knowledge

Preliminary knowledge is the set of knowledge brought to the system by
the programmer. It is very strictly defined by specifications (see Section 17.15)
made of three components, the choice of the variables (see Section 17.17), the
decomposition (see Section 17.7), and the forms (see Section 17.9).

Glossary 339

Preliminary knowledge made of these three components is sufficient to
define any probabilistic model.

Preliminary knowledge is really what is defining our subjectivist approach
to probability (see the discussion “Objectivism versus subjectivism” in Section
16.13). It goes much further than some definitions of “Bayesanism” restricted
to models using priors. To specify a probabilistic model using preliminary
knowledge the programmer must answer three fundamental questions:

• What are you talking about?: the variables ;

• How is your knowledge structured?: the decomposition;

• How is your knowledge mathematically represented?: the forms .

Priors are limited to the values of some parameters of some of the forms, a
very tiny part of the preliminary knowledge indeed.

17.14 Question

Questions are formally defined as a partition of the set of variables in three
sub-sets:

• The known variables for which a value is imposed.

• The searched variables for which you are computing a probability dis-
tribution knowing the known variables.

• The free variables that you are ignoring and that have to be marginalized
out.

A question is a family of probability distributions defined P (Searched|Known)
made up of as many distributions as the possible values of Known. Each in-
stantiated question is defined by P (Searched|known) and the answer is given
by the computation:

P (Searched|known) = 1

Z

∑

Free

[P (Searched ∧ known ∧ Free)] (17.7)

17.15 Specification

Specification is where the preliminary knowledge (see Section 17.13) of a
programmer is specified in a Bayesian program.

340 Bayesian Programming

17.16 Subroutines

Subroutine calls in Bayesian programming consist in specifying a form of
one distribution appearing in the decomposition of a Bayesian program π1 as
a question (see Section 17.14) to another Bayesian program π2 (see Chapter
9 for details and examples).

When a question is asked to π1, during the necessary inferences, each time
the form corresponding to the question to π2 has to be evaluated, it triggers
supplementary inferences to answer this question.

This mechanism allows the conception of hierarchical models where a
Bayesian program can be conceived using other Bayesian programs, eventually
written by others, as its elementary components.

17.17 Variable

Variables in Bayesian programming are defined formally as a set of mutu-
ally exclusive and exhaustive logical propositions. More intuitively this corre-
sponds to the concept of discrete variables. Continuous variables when neces-
sary are discretized (see the discussion on this matter in Section 16.9).

These variables have absolutely no intrinsic character of randomness. They
are not “random variables” formally defined as functions from the set of events
into R (or R

n for a random vector). The knowledge about these variables
may be probabilistic but it is not the nature of the variable itself. Indeed,
in Bayesian programming either a variable has a known value which appears
on the right part of a conditioning symbol, or it is known by a probability
distribution on its possible values.

When writing a Bayesian program the choice of the relevant variables that
should appear in this program is the most difficult part. When the appropriate
set of variables has been selected a large part of the modeling work has been
done. However, this remark is not specific to probabilistic modeling but is true
for any kind of modeling work.

Bibliography

D. Adams. The Hitchhiker’s Guide to the Galaxy. Del Rey, 1995.

S. Aji and R. McEliece. The Generalized Distributive Law. IEEE Trans.
Information Theory, 46(2), 2000.

D. Alais and D. Burr. The ventriloquist effect results from near-optimal bi-
modal integration. Current Biology, 14:257–262, February 2004.

M. Aly and A. P. Yonelinas. Bridging consciousness and cognition in memory
and perception: Evidence for both state and strength processes. PLoS ONE,
7(1), 2012.

M. Amavizca. Reconstruction 3D du bassin humain a partir d’images medi-
cales multimodales incompletes. Application a l’assistance de la chirurgie de
la prothese totale de la hanche (PTH). PhD thesis, Inst. Nat. Polytechnique
de Grenoble, 2005.

M. Amavizca. 3D Human Hip Volume Reconstruction with Incomplete Multi-
modal Medical Images. In P. Bessière, C. Laugier, and R. Siegwart, editors,
Probabilistic Reasoning and Decision Making in Sensory-Motor Systems.
Springer, 2008.

T. J. Anastasio, P. E. Patton, and K. Belkacem-Boussaid. Using Bayes’ rule
to model multisensory enhancement in the superior colliculus. Neural Com-
putation, 12(5):1165–87, 2000.

S. Arnborg and G. Sjödin. Bayes Rules in Finite Models. In Proceedings of
European Conference on Artificial Intelligence, pages 571–575, 2000.

S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding em-
beddings in a k-tree. SIAM J. Algebraic Discrete Methods, 8:277–284, April
1987. ISSN 0196-5212.

S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A Tutorial on Par-
ticle Filter for Online Nonlinear/Non-Gaussian Bayesian Tracking. IEEE
Transactions on Signal Processing, 50(2), 2002.

G. Bachelard. La formation de l’esprit scientifique : Contribution a une psych-
analyse de la connaissance objective. Librairie philosophique J. Vrin, 1938.

341

342 Bibliography

M. S. Banks. Neuroscience: what you see and hear is what you get. Current
Biology, 14(6):236–238, 2004.

A. Barker, D. Brown, and W. Martin. Bayesian Estimation and the Kalman
Filter. Technical Report IPC-TR-94-002, University of Virginia, 1994.

P. W. Battaglia, R. A. Jacobs, and R. N. Aslin. Bayesian integration of visual
and auditory signals for spatial localization. Journal of the Optical Society
of America A, 20(7):1391–1397, 2003.

Y. Bengio and P. Frasconi. An Input/Output HMM Architecture. In
G. Tesauro, D. Touretzky, and T. Leen, editors, Advances in Neural In-
formation Processing Systems 7, pages 427–434. MIT Press, Cambridge,
MA, 1995.

J. Bernouilli. Ars Conjectandi. Thurneysen Brothers, 1713.

P. Bessière. Procédé de détermination de la valeur à donner à différents
paramètres d’un système, 2002. European Patent N=EP1525520.

P. Bessiere, E. Dedieu, and E. Mazer. Representing Robot/Environment Inter-
actions Using Probabilities: the“Beam in the Bin” Experiment. In PerAc’94
(From Perception to Action), Lausanne, Suisse, 1994.

P. Bessiere, E. Dedieu, and O. Lebeltel. Wings Were Not Designed to Let An-
imals Fly. In Third European Conference on Artificial Evolution (Megève,
France), volume 1363 of Lecture Notes in Computer Science, pages 237–250.
Springer-Verlag, 1997.

P. Bessière, J.-M. Ahuactzin, O. Aycard, D. Bellot, F. Colas, C. Coué, J. Di-
ard, R. Garcia, C. Koike, O. Lebeltel, R. LeHy, O. Malrait, E. Mazer,
K. Mekhnacha, C. Pradalier, and A. Spalanzani. Survey: Probabilistic
Methodology and Techniques for Artefact Conception and Development.
Technical Report RR-4730, INRIA Rhône-Alpes, Montbonnot, France,
2003.

P. Bessière, C. Laugier, and R. Siegwart. Probabilistic Reasoning and Decision
Making in Sensory-Motor Systems. Springer, 2008.

L.-J. Boë, L. Ménard, J. Serkhane, P. Birkholz, B. J. Kröger, P. Badin, G. Cap-
tier, M. Canault, and N. Kielwasser. La croissance de l’instrument vocal:
Contrôle, modélisation, potentialités acoustiques et conséquences percep-
tives. Revue française de linguistique appliquée, XIII(2):59–80, 2008.

E. Borel. Le hasard. Felix Alcan, Paris, France, 1914.

C. Boutilier, T. Dean, and S. Hanks. Decision theoretic planning: structural
assumptions and computational leverage. Journal of Artificial Intelligence
Research (JAIR), 11:1–94, 1999.

Bibliography 343

G. E. P. Box and N. R. Draper. Empirical Model-Building and Response
Surfaces. Wiley, 1987.

G. E. P. Box and M. E. Muller. A note on the generation of random normal
deviates. Annals Math. Stat., 29:610–611, 1958.

P. J. Brockwell and R. A. Davis. Introduction to Time Series and Forecasting
(Second Edition). Springer-Verlag, 2000.

W. Burgard, D. Fox, D. Hennig, and T. Schmidt. Estimating the Absolute
Position of a Mobile Robot Using Position Probability Grids. In Proceed-
ings of the Thirteenth National Conference on Artificial Intelligence and the
Eighth Innovative Applications of Artificial Intelligence Conference, pages
896–901, Menlo Park, August 1996. AAAI Press / MIT Press.

F. Colas. Perception des objets en mouvementComposition bayésienne du
flux optique et du mouvement de l’observateur. These, Institut National
Polytechnique de Grenoble — INPG, Jan. 2006.

F. Colas, P. Bessière, J. Droulez, and M. Wexler. Bayesian Modelling of Per-
ception of Structure from Motion. In P. Bessière, C. Laugier, and R. Sieg-
wart, editors, Probabilistic Reasoning and Decision Making in Sensory-
Motor Systems, pages 301–328. Springer, 2008a.

F. Colas, J. Droulez, M. Wexler, and P. Bessière. A unified probabilistic model
of the perception of three-dimensional structure from optic flow. Biological
Cybernetics, pages 132–154, 2008b.

F. Colas, F. Flacher, T. Tanner, P. Bessière, and B. Girard. Bayesian models
of eye movement selection with retinotopic maps. Biological Cybernetics,
100(3):203–14, Mar. 2009. BACS FP6-IST-027140.

F. Colas, J. Diard, and P. Bessière. Common Bayesian models for common
cognitive issues. Acta Biotheoretica, 58(2-3):191–216, 2010.

G. F. Cooper. The computational complexity of probabilistic inference using
Bayesian belief networks. Artif. Intell., 42(2-3):393–405, 1990.

A. Corana, C. Martini, and S. Ridella. Minimizing multimodal functions of
continuous variables with the simulated annealing algorithm. ACM Trans-
actions on Mathematical Software, 13:262–280, 1987.

C. Coué. Modèle bayésien pour l’analyse multimodale d’environnements dy-
namiques et encombrés : Application à l’assistance à la conduite en milieu
urbain. These, Institut National Polytechnique de Grenoble — INPG, 2003.

C. Coué, C. Pradalier, C. Laugier, T. Fraichard, and P. Bessière. Bayesian
occupancy filtering for multitarget tracking: an automotive application. In-
ternational Journal of Robotics Research, 25(1):19–30, Jan. 2006.

344 Bibliography

R. T. Cox. Probability, frequency, and reasonable expectation. American
Journal of Physics, 14:1–13, 1946.

R. T. Cox. The Algebra of Probable Inference. John Hopkins Univ. Press:
Baltimore, 1961.

R. T. Cox. Of Inference and Inquiry — An Essay in Inductive Logic. MIT
Press, Cambridge, MA, 1979.

P. Dagum and M. Luby. Approximating probabilistic inference in Bayesian
belief networks is NP-hard. Artif. Intell., 60(1):141–153, 1993.

P. Dangauthier, A. Spalanzani, and P. Bessière. Statistical methods and ge-
netic algorithms for prior knowledge selection. In Actes du congrès franco-
phone de Reconnaissance des Formes et Intelligence Artificielle, Toulouse
(FR), France, Jan. 2004.

P. Dangauthier, P. Bessière, and A. Spalanzani. Auto-Supervised Learning in
the Bayesian Programming Framework. In Proc. of the IEEE International
Conference on Robotics and Automation (ICRA), Barcelona (Spain), pages
1–6, 2005.

P. Dangauthier, R. Herbrich, T. Minka, and T. Graepel. TrueSkill Through
Time: Revisiting the History of Chess. In M. Press, editor, Advances in
Neural Information Processing Systems, Vancouver, Canada, 2007.

P.-C. Dangauthier. Fondations, méthode et applications de l’apprentissage
bayésien. These, Institut National Polytechnique de Grenoble — INPG,
Dec. 2007.

A. Darwiche. The Complexity of Probabilistic Inference. Cambridge University
Press, 2009.

A. Darwiche and G. Provan. Query DAGs: a practical paradigm for imple-
menting belief-network inference. J. Artif. Int. Res., 6(1):147–176, May
1997. ISSN 1076-9757.

T. Dean and K. Kanazawa. Probabilistic Temporal Reasoning. In AAAI,
pages 524–529, 1988.

T. Dean and K. Kanazawa. A model for reasoning about persistence and
causation. Computational Intelligence, 5(3):142–150, 1989.

R. Dechter. Bucket Elimination: A Unifying Framework for Reasoning. Arti-
ficial Intelligence, pages 41–85, 1999.

R. Dechter and I. Rish. A Scheme for Approximating Probabilistic Inference.
In In Proceedings of Uncertainty in Artificial Intelligence (UAI97), pages
132–141, 1997.

Bibliography 345

E. Dedieu. La représentation contingente. PhD thesis, Inst. Nat. Polytech-
nique de Grenoble, September 1995.

E. Dedieu and E. Mazer. An Approach to Sensorimotor Relevance. In
F. Varela and P. Bourgine, editors, Proc. of the 1st European Conference
on Artificial Life (ECAL91), Paris (France). MIT Press / Bradford Books,
1992.

F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte Carlo Localization for
Mobile Robots. In Proc. of the IEEE Int. Conf. on Robotics and Automa-
tion, Detroit, MI, May 1999.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical
Society. Series B, 39(1):1–38, 1977.

R. Descartes. Discours de la méthode. Imprimerie Ian Maire, 1637.

J. Diard. La carte bayséienne — Un modèle probabiliste hiérarchique pour
la navigation en robotique mobile. Thèse de doctorat, Institut National
Polytechnique de Grenoble, Grenoble, France, Janvier 2003.

J. Diard and P. Bessière. Bayesian Maps: Probabilistic and Hierarchical Mod-
els for Mobile Robot Navigation. In P. Bessière, C. Laugier, and R. Siegwart,
editors, Probabilistic Reasoning and Decision Making in Sensory-Motor Sys-
tems, volume 46 of Springer Tracts in Advanced Robotics, pages 153–176.
Springer-Verlag, 2008.

J. Diard, P. Bessière, and E. Mazer. Hierarchies of Probabilistic Models of
Navigation: the Bayesian Map and the Abstraction Operator. In Proceed-
ings of the IEEE International Conference on Robotics and Automation
(ICRA04), pages 3837–3842, New Orleans, LA, USA, 2004.

J. Diard, E. Gilet, E. Simonin, and P. Bessière. Incremental learning of
Bayesian sensorimotor models: from low-level behaviours to large-scale
structure of the environment. Connection Science, 22(4):291–312, Dec.
2010.

K. Drewing and M. Ernst. Integration of force and position cues for shape
perception through active touch. Brain Research, 1078:92–100, 2006.

D. Dubois and H. Prade. Possibility theory, probability theory and multiple-
valued logics: a clarification. Ann. Math. Artif. Intell., 32(1-4):35–66, 2001.

A. Einstein. Physics and reality. Journal of the Franklin Institute, 1936.

M. O. Ernst and M. S. Banks. Humans integrate visual and haptic information
in a statistically optimal fashion. Nature, 415(6870):429–33, 2002.

346 Bibliography

J. Ferreira. Bayesian cognitive models for 3D structure and motion multimodal
perception. PhD thesis, Universidade de Coimbra, Faculdade de Ciencaias
E Tecnologia, July 2011.

J. Ferreira, J. Lobo, P. Bessière, M. Castelo-Branco, and J. Dias. A Bayesian
Framework for Active Artificial Perception. IEEE Transactions on Systems,
IEEE Transactions on Systems, Man, and Cybernetics, Part B, 99:1–13,
2012.

J. Fourier. Eloge historique de M. le Marquis de Laplace. Académie Royale
des Sciences, 1829.

D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte Carlo Localization:
Efficient Position Estimation for Mobile Robots. In Proc. of the Sixteenth
National Conference on Artificial Intelligence (AAAI’99), 1999.

B. J. Frey. Graphical Models for Machine Learning and Digital Communica-
tion. MIT Press, 1998.

R. S. Garcia-Ramirez. Programmation bayesienne des bras manipulateurs.
PhD thesis, Inst. Nat. Polytechnique de Grenoble, May 2003.

W. S. Geisler and D. Kersten. Illusions, perception and Bayes. Nature Neu-
roscience, 5(6):598–604, 2002.

S. Geman and D. Geman. Stochastic Relaxation, Gibbs Distributions and the
Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 6:721–741, 1984.

S. Gepshtein and M. S. Banks. Viewing geometry determines how vision and
haptics combine in size perception. Current Biology, 13(6):483–488, 2003.

J. Geweke. Monte Carlo Simulation and Numerical Integration. In H. Amman,
D. Kendrick, and J. Rust, editors, Handbook of Computational Economics,
volume 13, pages 731–800. Elsevier North-Holland, Amsterdam, 1996.

Z. Ghahramani. An Introduction to Hidden Markov Models and Bayesian
Networks, pages 9–42. World Scientific Publishing Co., Inc., River Edge,
NJ, USA, 2002.

Z. Ghahramani, D. M. Wolpert, and M. I. Jordan. Computational Models
of Sensorimotor Integration. In P. G. Morasso and V. Sanguineti, editors,
Self-Organization, Computational Maps and Motor Control, pages 117–47.
Elsevier, 1997.

E. Gilet. Modélisation Bayésienne d’une boucle perception-action : application
à la lecture et à l’écriture. These, Université Joseph-Fourier — Grenoble I,
Oct. 2009.

Bibliography 347

E. Gilet, J. Diard, and P. Bessière. Bayesian action–perception computational
model: interaction of production and recognition of cursive letters. PLoS
ONE, 6(6):e20387, 2011.

N. D. Goodman, V. K. Mansinghka, D. M. Roy, K. Bonawitz, and J. B.
Tenenbaum. Church: A language for generative models. In UAI, pages
220–229, 2008.

A. Gopnik and L. Schulz. Mechanisms of theory formation in young children.
Trends in Cognitive Sciences, 8(8):371–377, 2004.

S. J. Gould. The Streak of Streaks. The New York Review of Books, 35(13),
1988.

A. Greenspan. The Age of Turbulence. Penguin Press, 2007.

A. Haith, C. Jackson, C. Miall, and S. Vijayakumar. Unifying the Sensory
and Motor Components of Sensorimotor Adaptation. In Advances in Neural
Information Processing Systems (NIPS 2008), 2008.

J. Y. Halpern. A counterexample to theorems of Cox and Fine. Journal of
Artificial Intelligence Research, 10:67–85, 1999a. ISSN 1076-9757.

J. Y. Halpern. Cox’s theorem revisited. Journal of Artificial Intelligence
Research, 11:429–435, 1999b. ISSN 1076-9757.

A. C. Harvey. Forecasting, Structural Time Series Models and the Kalman
Filter. Cambridge University Press, Cambridge, 1992.

M. Hauskrecht, N. Meuleau, L. Boutilier, L. Kaelbling, and T. Dean. Hi-
erarchical Solution of Markov Decision Processes Using Macro-Actions. In
Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence,
pages 220–229, 1998.

J. M. Hillis, S. J. Watt, M. S. Landy, and M. S. Banks. Slant from texture
and disparity cues: optimal cue combination. Journal of Vision, 4:967–992,
2004.

J. H. Holland. Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, MI, 1975.

T. S. Jaakkola and M. I. Jordan. Variational probabilistic inference and the
QMR-DT network. J. Artif. Intellig. Res. (JAIR), 10:291–322, 1999.

R. A. Jacobs. Optimal integration of texture and motion cues to depth. Vision
Research, 39:3621–9, 1999.

E. T. Jaynes. On the rationale of maximum-entropy methods. Proc. IEEE,
70(9):939–952, 1982.

348 Bibliography

E. T. Jaynes. Probability Theory: the Logic of Science. Cambridge University
Press, 2003.

F. Jensen. An Introduction to Bayesian Networks. UCL Press, 1996.

F. V. Jensen, S. L. Lauritzen, and K. G. Olesen. Bayesian updating in recursive
graphical models by local computations. Comput. Stat. Quarterly, 4:269–
282, 1990.

M. I. Jordan. Learning in Graphical Models. MIT Press, 1999. Edited Volume.

M. I. Jordan and R. A. Jacobs. Hierarchical mixtures of experts and the EM
algorithm. Neural Computation, 6(2):181–214, 1994.

M. I. Jordan and Y. Weiss. Graphical Models: Probabilistic Inference. In
M. A. Arbib, editor, Handbook of Neural Networks and Brain Theory. MIT
Press, Cambridge, MA, 2002.

R. Jürgens and W. Becker. Perception of angular displacement without land-
marks: evidence for Bayesian fusion of vestibular, optokinetic, podokines-
thetic, and cognitive information. Experimental Brain Research, 174:528–
543, 2006.

L. P. Kaelbling, M. Littman, and A. Cassandra. Planning and acting in
partially observable stochastic domain. Artificial Intelligence, 101(1-2):99–
134, 1998.

R. E. Kalman. A New Approach to Linear Filtering and Prediction Problems.
Transactions of the ASME–Journal of Basic Engineering, 82(Series D):35–
45, 1960.

A. Keller. The Fast Calculation of Form Factors Using Low Discrepancy Point
Sequence. In Proc. of the 12th Spring Conf. on Computer Graphics, pages
195–204, Bratislava, 1996.

C. Kemp and J. Tenenbaum. The discovery of structural form. Proc. Natl.
Acad. Sci. USA, 105(31):10687–10692, 2008.

D. Kersten, P. Mamassian, and A. Yuille. Object perception as Bayesian
inference. Annual Review of Psychology, 55:271–304, 2004.

T. Kiemel, K. Oie, and J. Jeka. Multisensory fusion and the stochastic struc-
ture of postural sway. Biological Cybernetics, 87:262–277, 2002.

D. C. Knill and W. Richards. Perception as Bayesian Inference. MIT Press,
Cambridge, MA, 1996.

C. Koike. Bayesian Approach to Action Selection and Attention Focusing.
Application in Autonomous Robot Programming. Thèse de doctorat, Inst.
Nat. Polytechnique de Grenoble, Grenoble (FR), November 2005.

Bibliography 349

C. Koike, P. Bessière, and E. Mazer. Bayesian Approach to Action Selection
and Attention Focusing. In P. Bessière, C. Laugier, and R. Siegwart, editors,
Probabilistic Reasoning and Decision Making in Sensory-Motor Systems,
volume 46 of STAR. Springer Verlag, 2008.

D. Koller and A. Pfeffer. Object-oriented Bayesian networks. In Proceedings
of the Thirteenth Conference on Uncertainty in Artifical Intelligence, pages
302–313. Morgan Kaufmann publishers, 1997.

K. P. Körding and D. M. Wolpert. Bayesian integration in sensorimotor learn-
ing. Nature, 427:244–7, 2004.

K. P. Körding, U. Beierholm, W. J. Ma, S. Quartz, J. B. Tenenbaum, and
L. Shams. Causal inference in multisensory perception. PLoS one, 2(9):
e943, 2007.

B. J. Kuipers. The spatial semantic hierarchy. Artificial Intelligence, 119
(1–2):191–233, 2000.

M. S. Landy, L. T. Maloney, E. B. Johnston, and M. Young. Measurement
and modeling of depth cue combination: in defense of weak fusion. Vision
Research, 35:389–412, 1995.

T. Lane and L. P. Kaelbling. Toward Hierarchical Decomposition for Planning
in Uncertain Environments. In Proceedings of the 2001 IJCAI Workshop on
Planning under Uncertainty and Incomplete Information, pages 1–7, 2001.

P. S. Laplace. Essai philosophique sur les probabilités. Gauthier-Villars, 1814.

K. B. Laskey and S. M. Mahoney. Network Fragments: Representing Knowl-
edge for Constructing Probabilistic Models. In Proceedings of the thirteenth
conference on uncertainty in artifical intelligence, pages 334–341. Morgan
Kaufmann publishers, 1997.

J. Laurens. Modélisation bayésienne des interactions visuo-vestibulaires. PhD
thesis, Université Pierre et Marie Curie, November 2006.

J. Laurens and J. Droulez. Bayesian processing of vestibular information.
Biological Cybernetics, 96:389–404, 2007.

J. Laurens and J. Droulez. Bayesian Modeling of Visuo-Vestibular Interac-
tions. In P. Bessière, C. Laugier, and R. Siegwart, editors, Probabilistic
Reasoning and Decision Making in Sensory-Motor Systems, volume 46 of
STAR. Springer Verlag, 2008.

S. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities
on graphical structures and their application to expert systems (with dis-
cussion). Journal of the Royal Statistical Society series B, 50:157–224, 1988.

350 Bibliography

S. L. Lauritzen. Graphical Models. Oxford University Press, Oxford, UK,
1996.

R. Le Hy. Programmation et apprentissage bayésien de comportements pour
personnages synthétiques — application aux personnages de jeux vidéos.
These, Institut National Polytechnique de Grenoble — INPG, Apr 2007.

R. Le Hy and P. Bessière. Playing to Train Your Video Game Avatar. In
Probabilistic Reasoning and Decision Making in Sensory-Motor Systems,
pages 263–276. Springer, 2008.

R. Le Hy, A. Arrigoni, P. Bessière, and O. Lebeltel. Teaching Bayesian be-
haviours to video game characters. Robotics and Autonomous Systems, 47:
177–185, 2004.

O. Lebeltel. Programmation Bayésienne des Robots. Thèse de doctorat, In-
stitut National Polytechnique de Grenoble, Grenoble, France, Septembre
1999.

O. Lebeltel, J. Diard, P. Bessière, and E. Mazer. A Bayesian Framework for
Robotic Programming. In A. Mohammad-Djafari, editor, Twentieth Inter-
national Workshop on Bayesian Inference and Maximum Entropy Methods
in Science and Engineering (Maxent 2000), pages 625–637, Melville, New
York, USA, 2000. American Institute of Physics Conference Proceedings.

O. Lebeltel, P. Bessière, J. Diard, and E. Mazer. Bayesian robot programming.
Advanced Robotics, 16(1):49–79, 2004.

J. Leonard, H. Durrant-Whyte, and I. Cox. Dynamic map-building for an
autonomous mobile robot. The Intl. J. of Robotics Research, 11(4):286–
298, 1992.

P. Leray. Réseaux bayésiens : apprentissage et modélisation de systèmes com-
plexes. Habilitation a diriger les recherches, Université de Rouen, Rouen,
France, November 2006.

Z. Li and B. D’Ambrosio. Efficient inference in Bayes networks as a combinato-
rial optimization problem. International Journal of Approximate Reasoning,
11(1):55–81, 1994. ISSN 0888-613X.

D. V. Lindley. Bayesian Analysis in Regression Problem. In D. L. Meyer and
R. O. Collier, editors, Bayesian Statistics. Peacok, 1970.

H.-A. Loeliger. An introduction to factor graphs. Signal Processing Magazine,
IEEE, 21(1):28–41, Jan. 2004. ISSN 1053-5888.

D. Lunn, C. Jackson, N. Best, A. Thomas, and D. Spiegehalter. The BUGS
Book: A Practical Introduction to Bayesian Analysis. Chapman and Hall,
2012.

Bibliography 351

D. G. C. MacKay. Introduction to Monte Carlo Methods. In Proc. of an Erice
summer school, ed. M. Jordan, 1996.

D. J. MacKay. Information Theory, Inference, and Learning Algorithms. Cam-
bridge University Press, 2003.

S. Maeda. Compensatory Articulation During Speech: Evidence from the
Analysis and Synthesis of Vocal-Tract Shapes Using an Articulatory Model.
In W. J. Hardcastle and A. Marchal, editors, Speech Production and Speech
Modelling, pages 131–149. Dordrecht: Kluwer, 1990.

E. Mazer, J. M. Ahuactzin, and P. Bessière. The Ariadne’s clew algorithm.
J. Artif. Intellig. Res. (JAIR), 9:295–316, 1998.

A. Mccallum, K. Schultz, and S. Singh. Factorie: Probabilistic programming
via imperatively defined factor graphs. In Advances in Neural Information
Processing Systems 22, pages 1249–1257, 2009.

G. McLachlan and D. Peel. Finite Mixture Models. Wiley, 2000.

K. Mekhnacha. Méthodes probabilistes baysiennes pour la prise en compte
des incertitudes géométriques: application à la CAO-robotique. Thèse de
doctorat, Institut National Polytechnique de Grenoble (INPG), Grenoble
(FR), juillet 1999.

K. Mekhnacha and P. Bessière. BCAD: A Bayesian CAD System for Geo-
metric Problems Specification and Resolution. In Probabilistic Reasoning
and Decision Making in Sensory-Motor Systems, pages 205–231. Springer,
2008.

K. Mekhnacha, E. Mazer, and P. Bessière. A Robotic CAD System Using a
Bayesian Framework. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS 2000), volume 3 of Best Paper Award, pages
1597–1604, France, 2000.

K. Mekhnacha, E. Mazer, and P. Bessière. The design and implementation of
a Bayesian CAD modeler for robotic applications. Advanced Robotics, 15
(1):45–69, 2001.

K. Mekhnacha, J.-M. Ahuactzin, P. Bessière, E. Mazer, and L. Smail. Exact
and approximate inference in ProBT. Revue d’Intelligence Artificielle, 21/3:
295–332, 2007.

N. Metropolis, A. W. Rosenblusth, M. N. Rosenblusth, A. Teller, and E. Teller.
Equation of state by fast computing machines. Journal of Chemical Physics,
21:1087–1092, 1953.

B. Milch, B. Marthi, and S. Russell. Blog: Relational Modeling with Unknown
Objects. In ICML 2004 Workshop on Statistical Relational Learning and
Its Connections, pages 67–73, 2004.

352 Bibliography

A. Mohammad-Djafari, J.-F. Bercher, and P. Bessière. Bayesian Inference and
maximum Entropy Methods in Science and Engineering. American Institute
of Physics, 2010.

E. Morin. La méthode. Seuil, 1981.

C. Moulin-Frier. Rôle des relations perception-action dans la communication
parlée et l’émergence des systèmes phonologiques : étude, modélisation com-
putationnelle et simulations. These, Université de Grenoble, June 2011.

C. Moulin-Frier, J.-L. Schwartz, J. Diard, and P. Bessière. Emergence of
Articulatory-Acoustic Systems from Deictic Interaction Games in a ”Vo-
calize to Localize” Framework. In Primate Communication, and Human
Language Vocalisation, Gestures, Imitation and Deixis in Humans and Non-
Humans, pages 193–220. John Benjamins, 2011.

C. Moulin-Frier, R. Laurent, P. Bessière, J.-L. Schwartz, and J. Diard. Ad-
verse conditions improve distinguishability of auditory, motor and percep-
tuo-motor theories of speech perception: an exploratory Bayesian model-
ing study. Language and Cognitive Processes, 27(7-8 Special Issue: Speech
Recognition in Adverse Conditions):1240–1263, 2012.

K. Murphy. Dynamic Bayesian networks: representation, inference and learn-
ing. PhD thesis, UC Berkley, Computer Science Division, July 2002.

R. M. Neal. Probabilistic inference using Markov Chain Monte Carlo methods.
Research Report CRG-TR-93-1, Dept. of Computer Science, University of
Toronto, 1993.

R. M. Neal, M. J. Beal, and S. T. Roweis. Inferring State Sequences for
Non-Linear Systems with Embedded Hidden Markov Models. In S. Thrun,
editor, Advances in Neural Information Processing Systems 16. MIT Press,
Cambridge, MA, 2003.

A. Nefian and M. Hayes. Face Recognition Using an Embedded HMM. In
Proceedings of the IEEE Conference on Audio and Video-based Biometric
Person Authentication, pages 19–24, 1999.

J. Park. MAP Complexity Results and Approximation Methods. In Proc. of
the 17th Conference on Uncertainty in Artificial Intelligence (UAI), pages
388–396, 2002.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, 1988.

X. Perrin. Semi-Autonomous navigation of an assistive robot using low
throughput interfaces. PhD thesis, ETH Zurich, 2009.

Bibliography 353

X. Perrin, R. Chavarriaga, F. Colas, R. Siegwart, and J. Millan. Brain-coupled
interaction for semi-autonomous navigation of an assistive robot. Robotics
and Autonomous Systems, 58:1246–1255, 2010.

A. Pfeffer. IBAL: A Probabilistic Rational Programming Language. In In
Proc. 17th IJCAI, pages 733–740. Morgan Kaufmann Publishers, 2001.

A. Pfeffer. Creating and Manipulating Probabilistic Programs with Figaro.
In UAI Workshop on Statistical Relational Artificial Intelligence (StarAI),
2012.

J. Pineau and S. Thrun. High-Level Robot Behaviour Control with POMDPs.
In AAAI Workshop on Cognitive Robotics, 2002.

Z. Pizlo. Perception viewed as an inverse problem. Vision Research, 41(24):
3141–61, 2001.

T. Poggio. Vision by man and machine. Scientific American, 250:106–116,
1984.

H. Poincaré. La science et l’hypothèse. Flammarion, Paris, 1902.

H. Poincaré. Calcul des probabilités. Gauthier-Villars, 1912.

D. Poole. Probabilistic Horn abduction and Bayesian networks. Artificial
Intelligence, 64:81–129, 1993.

D. Poole. The independent choice logic for modelling multiple agents under
uncertainty. Artificial Intelligence, 94:7–56, 1997.

D. Poole. Probabilistic Programming Languages: Independent Choices and
Deterministic Systems. In R. Dechter, H. Geffner, and J. Y. Halpern, edi-
tors, Heuristics, Probability and Causality: A Tribute to Judea Pearl, pages
253–269. College Publications, 2010.

C. Pradalier. Navigation intentionnelle d’un robot mobile. These, Institut
National Polytechnique de Grenoble — INPG, Sept. 2004.

C. Pradalier and P. Bessière. The CyCab: Bayesian Navigation on Sensory–
Motor Trajectories. In Probabilistic Reasoning and Decision Making in
Sensory-Motor Systems, pages 51–75. Springer, 2008.

C. Pradalier, F. Colas, and P. Bessière. Expressing Bayesian Fusion as a
Product of Distributions: Applications in Robotics. In Proc. IEEE Int.
Conf. on Intelligent Robots and Systems, 2003.

C. Pradalier, J. Hermosillo, C. Koike, C. Braillon, P. Bessière, and C. Laugier.
An Autonomous Car-Like Robot Navigating Safely Among Pedestrians. In
Proc. of the IEEE Int. Conf. on Robotics and Automation, New Orleans,
LA (US), France, 2004.

354 Bibliography

C. Pradalier, J. Hermosillo, C. Koike, C. Braillon, P. Bessière, and C. Laugier.
The CyCab: a car-like robot navigating autonomously and safely among
pedestrians. Robotics and Autonomous Systems, 50(1):51–68, 2005.

L. R. Rabiner. A Tutorial on Hidden Markov Models and Selected Applica-
tions in Speech Recognition. Proc. of the IEEE, 77(2):257–286, February
1989.

L. R. Rabiner and B.-H. Juang. Fundamentals of Speech Recognition, chap-
ter Theory and implementation of Hidden Markov Models, pages 321–389.
Prentice Hall, Englewood Cliffs, NJ, 1993.

L. D. Raedt, A. Kimmig, and H. Toivonen. ProbLog: A Probabilistic Prolog
and its Application in Link Discovery. In In Proceedings of 20th Interna-
tional Joint Conference on Artificial Intelligence, pages 2468–2473. AAAI
Press, 2007.

G. Ramel. Analyse du contexte à l’aide de méthodes probabilistes pour
l’interaction hommes-robots. PhD thesis, Ecole Polytechnique Fédérale de
Lausanne (EPFL), April 2006.

G. Ramel and R. Siegwart. Probabilistic Contextual Situation Analysis. In
Probabilistic Reasoning and Decision Making in Sensory-Motor Systems.
Spinger, 2008.

J. Rett. Robot-human interface using Laban movement analysis inside a
Bayesian framework. PhD thesis, University of Coimbra, June 2008.

J. Rett, J. Dias, and J.-M. Ahuactzin. Bayesian reasoning for Laban move-
ment analysis used in human-machine interaction. Int. J. Reasoning-based
Intelligent Systems, 2(1):13–35, 2010.

C. Robert. An entropy concentration theorem: applications in artificial in-
telligence and descriptive statistics. Journal of Applied Probabilities, 37:
303–313, 1990.

J. A. Robinson. A machine-oriented logic based on the resolution principle.
Journal of the ACM, 12(1):23–41, Jan. 1965.

J. A. Robinson. Logic: Form and Function. North-Holland, 1979.

J. A. Robinson and E. E. Silbert. LOGLISP: An Alternative to PROLOG.
Machine Intelligence, Edinburgh Univ. Press, 1(10):399–419, 1982a. Edin-
burgh Univ. Press, Edinburgh.

J. A. Robinson and E. E. Silbert. Loglisp: Motivation, Design and Imple-
mentation. In K. L. Clark and S.-A. Tärnlund, editors, Logic Programming,
pages 299–313. Academic Press, London, 1982b.

Bibliography 355

R. Y. Rubinstein. Simulation and the Monte Carlo Method. John Wiley and
Sons, 1981.

T. Sato and Y. Kameya. Parameter learning of logic programs for symbolic-
statistical modeling. Journal of Artificial Intelligence Research, page 454,
2001.

Y. Sato, T. Toyoizumi, and K. Aihara. Bayesian inference explains perception
of unity and ventriloquism aftereffect: Identification of common sources of
audiovisual stimuli. Neural Computation, 19(12):3335–3355, 2007.

J.-L. Schwartz, J. Serkhane, P. Bessière, and L.-J. Boë. La robotique de
la parole, ou comment modéliser la communication par gestes orofaciaux.
Primatologie, 6:329–352, 2004.

J. Serkhane, J.-L. Schwartz, L.-J. Boë, B. Davis, P. Bessière, and E. Mazer.
Etude comparative de vocalisations de bébés humains et de bébés robots. In
XXIVème Journées d’Etude sur la Parole (JEP), LORIA et ATLIF, Nancy
(France), 2002.

J. Serkhane, J.-L. Schwartz, and P. Bessière. Simulating Vocal Imitation
in Infants, using a Growth Articulatory Model and Speech Robotics. In
International Congress of Phonetic Sciences (ICPhS), Barcelona, Spain,
page x, 2003.

J. Serkhane, J.-L. Schwartz, and P. Bessière. Building a talking baby robot: A
contribution to the study of speech acquisition and evolution. Interaction
Studies, 6(2):253–286, 2005.

J. Serkhane, J.-L. Schwartz, L.-J. Boë, B. Davis, and C. Matyear. Infants’
vocalizations analyzed with an articulatory model: A preliminary report.
Journal of Phonetics, 35(3):321–340, Mar. 2007.

J. Serkhane, J.-L. Schwartz, and P. Bessière. Building a Talking Baby Robot:
A Contribution to the Study of Speech Acquisition and Evolution. In
P. Bessière, editor, Probabilistic Reasoning and Decision Making in Sensory-
Motor Systems, pages 329–357. Springer, 2008.

J. E. Serkhane. Un bébé andröıde vocalisant: Etude et modélisation
des mécanismes d’exploration vocale et d’imitation orofaciale dans le
développement de la parole. PhD thesis, Inst. Nat. Polytechnique de Greno-
ble, November 2005.

R. D. Shachter, B. D’Ambrosio, and B. A. Del Favero. Symbolic Probabilistic
Inference in Belief Networks. In Proceedings of the Eighth National Confer-
ence on Artificial Intelligence, AAAI’90, pages 126–131. AAAI Press, 1990.

A. F. Smith and G. O. Roberts. Bayesian computation via the Gibbs sampler
and related Monte Carlo methods. Journal of the Royal Statistical Society
B, 55:3–23, 1993.

356 Bibliography

A. Stocker and E. Simoncelli. A Bayesian Model of Conditioned Perception.
In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural
Information Processing Systems, pages 1409–1416. MIT Press, Cambridge,
MA, 2008.

G. Synnaeve. Bayesian programming and learning for multi-player video
games: application to RTS AI. PhD thesis, Institut National Polytechnique
de Grenoble — INPG, October 2012.

G. Synnaeve and P. Bessière. Bayesian Modeling of a Human MMORPG
Player. In 30th International Workshop on Bayesian Inference and Maxi-
mum Entropy, Chamonix, France, July 2010.

G. Synnaeve and P. Bessière. A Bayesian Model for Opening Prediction in
RTS Games with Application to StarCraft. In Proceedings of 2011 IEEE
CIG, Seoul, Corée, République De, Sept. 2011a.

G. Synnaeve and P. Bessière. A Bayesian Model for RTS Units Control Ap-
plied to StarCraft. In Proceedings of IEEE CIG 2011, page 000, Seoul,
Corée, République De, Sept. 2011b.

G. Synnaeve and P. Bessière. A Bayesian Model for Plan Recognition in
RTS Games Applied to StarCraft. In AAAI, editor, Proceedings of the Sev-
enth Artificial Intelligence and Interactive Digital Entertainment Confer-
ence (AIIDE 2011), Proceedings of AIIDE, pages 79–84, Palo Alto, États-
Unis, Oct. 2011c.

A. Tapus. Topological SLAM — Simultaneous localization and mapping with
fingerprints of places. PhD thesis, Ecole Polytechnique Fédérale de Lau-
sanne (EPFL), October 2005.

A. Tapus. Topological SLAM Using Fingerprints of Places. In P. Bessière,
C. Laugier, and R. Siegwart, editors, Probabilistic Reasoning and Decision
Making in Sensory-Motor Systems. Springer, 2008.

C. Tay, K. Mekhnacha, C. Chen, M. Yguel, and C. Laugier. An efficient
formulation of the Bayesian occupation filter for target tracking in dynamic
environments. International Journal of Autonomous Vehicles, 2007.

M. Tay, K. Mekhnacha, M. Yguel, C. Coué, C. Pradalier, C. Laugier,
T. Fraichard, and P. Bessière. The Bayesian Occupation Filter. In Prob-
abilistic Reasoning and Decision Making in Sensory-Motor Systems, pages
77–98. Springer, 2008.

J. B. Tenenbaum, C. Kemp, T. L. Griffiths, and N. D. Goodman. How to grow
a mind: statistics, structure, and abstraction. Science, 331(6022):1279–1285,
2011.

S. Thrun. Towards Programming Tools for Robots that Integrate Probabilistic
Computation and Learning. In ICRA, pages 306–312. IEEE, 2000a.

Bibliography 357

S. Thrun. Probabilistic algorithms in robotics. AI Magazine, 21(4):93–109,
2000b.

S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005.

J. W. Tukey. The future of data analysis. Annals of Mathemtical Statistics,
33(1):1–67, 1962.

A. Vallentin. Einstein: A Biography. Weidenfeld and Nicolson, 1954.

H. van der Kooij, R. Jacobs, B. Koopman, and H. Grootenboer. A multisen-
sory integration model of human stance control. Biological Cybernetics, 80:
299–308, 1999.

S. Vasudevan. Spatial cognition for mobile robots: A hierarchical probabilistic
concept-oriented representation of space. PhD thesis, ETH Zurich, 2008.

S. Vasudevan and R. Siegwart. Bayesian space conceptualization and place
classification for semantic maps. Robotics and Autonomous Systems, 56:
522–537, 2008.

A. Viterbi. Error bounds for convolutional codes and an asymptotically opti-
mum decoding algorithm. IEEE Trans. Information Theory, 13(2):260–269,
1967.

Voltaire. Dictionnaire philosophique ou la raison par l’alphabet. Flammarion,
Paris, 1993–1764.

Voltaire. Philosophical Dictionary. Penguin Books, 2005.

Y. Weiss, E. P. Simoncelli, and E. H. Adelson. Motion illusions as optimal
percepts. Nature Neuroscience, 5(6):598–604, 2002.

D. Wu and C. Butz. On the Complexity of Probabilistic Inference in Singly
Connected Bayesian Networks. In Proceedings of the 10th International
Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Com-
puting, RSFDGrC’05, pages 581–590, Berlin, Heidelberg, 2005. Springer-
Verlag.

F. Xu and V. Garcia. Intuitive statistics by 8-month-old infants. Proc. Natl.
Acad. Sci. USA, 105(13):5012–5015, 2008.

C. Yuan and M. J. Druzdzel. Importance sampling algorithms for Bayesian
networks: principles and performance. Mathematical and Computer Model-
ing, 43:1189–1207, 2006.

A. L. Yuille and H. H. Bülthoff. Bayesian Decision Theory and Psychophysics,
pages 123–161. MIT Press, Cambridge, MA, 1996.

L. A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965.

358 Bibliography

L. A. Zadeh. Fuzzy Logic and Its Application to Approximate Reasoning. In
IFIP Congress, pages 591–594, 1974.

L. A. Zadeh. Fuzzy logic and approximate reasoning. Synthese, 30(3-4):407–
428, 1975.

N. L. Zhang and D. Poole. Exploiting causal independence in Bayesian net-
work inference. Journal of Artificial Intelligence Research, 5:301–328, 1996.

L. H. Zupan, D. M. Merfeld, and C. Darlot. Using sensory weighting to model
the influence of canal, otolith and visual cues on spatial orientation and eye
movements. Biological Cybernetics, 86(3):209–230, 2002.

	Front Cover
	Dedication
	Contents
	Foreword
	Preface
	Chapter 1: Introduction
	Part I: Bayesian Programming Principles
	Chapter 2: Basic Concepts
	Chapter 3: Incompleteness and Uncertainty
	Chapter 4: Description = Specification + Identification
	Chapter 5: The Importance of Conditional Independence
	Chapter 6: Bayesian Program = Description + Question

	Part II: Bayesian Programming Cookbook
	Chapter 7: Information Fusion
	Chapter 8: Bayesian Programming with Coherence Variables
	Chapter 9: Bayesian Programming Subroutines
	Chapter 10: Bayesian Programming Conditional Statement
	Chapter 11: Bayesian Programming Iteration

	Part III: Bayesian Programming Formalism and Algorithms
	Chapter 12: Bayesian Programming Formalism
	Chapter 13: Bayesian Models Revisited
	Chapter 14: Bayesian Inference Algorithms Revisited
	Chapter 15: Bayesian Learning Revisited

	Part IV: Frequently Asked Questions — Frequently Argued Matters
	Chapter 16: Frequently Asked Questions and Frequently Argued Matters
	Chapter 17: Glossary

	Bibliography

