
T E C H N O L O G Y I N A C T I O N ™

BBC micro:bit
Recipes

Learn Programming with Microsoft
MakeCode Blocks
—
Pradeeka Seneviratne

www.allitebooks.com

http://www.allitebooks.org

BBC micro:bit
Recipes

Learn Programming with
Microsoft MakeCode Blocks

Pradeeka Seneviratne

www.allitebooks.com

http://www.allitebooks.org

BBC micro:bit Recipes: Learn Programming with Microsoft MakeCode

Blocks

ISBN-13 (pbk): 978-1-4842-4912-3 ISBN-13 (electronic): 978-1-4842-4913-0
https://doi.org/10.1007/978-1-4842-4913-0

Copyright © 2019 by Pradeeka Seneviratne

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Natalie Pao
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-4912-3.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Pradeeka Seneviratne
Udumulla, Mulleriyawa, Sri Lanka

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-4913-0
http://www.allitebooks.org

iii

About the Author ���xxiii

Table of Contents

Chapter 1: MakeCode Setup Fundamentals ��1

1 -1. Starting Microsoft MakeCode for BBC micro:bit ..1

Problem ...1

Solution ...1

How It Works ...4

1 -2. Saving a Project to a File ...7

Problem ...7

Solution ...7

How It Works ...8

1-3. Downloading a Project ...9

Problem ...9

Solution ...9

How It Works ...10

1 -4. Flashing a Hex File to the micro:bit ...10

Problem ...10

Solution ...10

How It Works ...12

1 -5. Changing the Download Location to micro:bit Drive with
Google Chrome ..13

Problem ...13

Solution ...13

How It Works ...14

www.allitebooks.com

http://www.allitebooks.org

iv

1 -6. Sharing a Project ...14

Problem ...14

Solution ...14

How It Works ...20

1 -7. Opening a File from the Computer ..20

Problem ...20

Solution ...20

How It Works ...23

1 -8. Opening a Shared Project ..23

Problem ...23

Solution ...23

How It Works ...24

1 -9. Deleting a Project ..24

Problem ...24

Solution ...24

How It Works ...26

1 -10. Deleting All Projects ..26

Problem ...26

Solution ...26

How It Works ...28

Chapter 2: MakeCode Extended Features ���29

2 -1. Adding an Extension from the Extension Page ..29

Problem ...29

Solution ...29

How It Works ...33

Table of ConTenTsTable of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

v

2 -2. Adding Extension from the Project URL ...34

Problem ...34

Solution ...34

How It Works ...36

2 -3. Removing an Extension from the Project ..39

Problem ...39

Solution ...39

How It Works ...41

2 -4. Pairing micro:bit for One-Click Download Using WebUSB41

Problem ...41

Solution ...41

How It Works ...43

Chapter 3: MakeCode Programming Basics ���������������������������������������47

3 -1. Adding Blocks onto Coding Area ..47

Problem ...47

Solution ...47

How It Works ...50

3 -2. Deleting a Block...51

Problem ...51

Solution ...51

How It Works ...53

3 -3. Duplicating a Block ..53

Problem ...53

Solution ...54

How It Works ...54

Table of ConTenTsTable of ConTenTs

vi

3 -4. Adding a Comment ..54

Problem ...54

Solution ...55

How It Works ...55

3 -5. Displaying Text ...56

Problem ...56

Solution ...56

How It Works ...58

3 -6. Displaying Numbers ..59

Problem ...59

Solution ...59

How It Works ...60

3 -7. Displaying Text Repeatedly ..60

Problem ...60

Solution ...61

How It Works ...61

3 -8. Displaying a Number Repeatedly ..61

Problem ...61

Solution ...62

How It Works ...62

3 -9. Turning on LEDs ...62

Problem ...62

Solution ...63

How It Works ...64

3 -10. Displaying Icons ..64

Problem ...64

Solution ...65

How It Works ...66

Table of ConTenTsTable of ConTenTs

vii

3 -11. Displaying Arrows ..69

Problem ...69

Solution ...69

How It Works ...69

3 -12. Pausing a Program ..70

Problem ...70

Solution ...70

How It Works ...72

3 -13. Clearing the Screen ...72

Problem ...72

Solution ...72

How It Works ...73

Chapter 4: Working with Text ���75

4 -1. Finding the Length of a Text ..75

Problem ...75

Solution ...75

How It Works ...76

4 -2. Joining Strings ..77

Problem ...77

Solution ...77

How It Works ...79

4 -3. Comparing Two Strings ..79

Problem ...79

Solution ...79

How It Works ...81

Table of ConTenTsTable of ConTenTs

viii

4 -4. Making Substrings ...82

Problem ...82

Solution ...83

How It Works ...84

4 -5. Getting a Character at a Position ...86

Problem ...86

Solution ...87

How It Works ...88

4 -6. Converting a String to a Number ...89

Problem ...89

Solution ...89

How It Works ...91

Chapter 5: Displaying Images ���93

5 -1. Displaying Built-in Images ...93

Problem ...93

Solution ...93

How It Works ...96

5 -2. Image Offsetting ..96

Problem ...96

Solution ...96

How It Works ...99

5 -3. Scrolling Images ..99

Problem ...99

Solution ...99

How It Works ...101

Table of ConTenTsTable of ConTenTs

ix

5 -4. Creating Your Own Images ..101

Problem ...101

Solution ...101

How It Works ...104

5 -5. Creating a Double-Sized Image ...104

Problem ...104

Solution ...104

How It Works ...107

5 -6. Displaying Arrows ..108

Problem ...108

Solution ...109

How It Works ...111

5 -7. Using Variable to Hold an Image ..112

Problem ...112

Solution ...112

How It Works ...116

Chapter 6: Inputs and Outputs ��117

6 -1. Using Edge Connector ...117

Problem ...117

Solution ...117

How It Works ...118

6 -2. Using Edge Connector Breakout ..120

Problem ...120

Solution ...120

How It Works ...121

Table of ConTenTsTable of ConTenTs

x

6 -3. Using Built-In Buttons ..121

Problem ...121

Solution ...121

How It Works ...125

6 -4. Using External Buttons ..126

Problem ...126

Solution ...126

How It Works ...128

6 -5. Controlling Brightness of an LED ...129

Problem ...129

Solution ...130

How It Works ...132

6 -6. Using Digital Input and Output ...133

Problem ...133

Solution ...133

How It Works ...134

6 -7. Writing a Number to a Device at a I2C Address ...135

Problem ...135

Solution ...135

How It Works ...136

6 -8. Reading a Number from a Device at a I2C Address138

Problem ...138

Solution ...138

How It Works ...139

6 -9. Writing Data to an SPI Slave Device ..139

Problem ...139

Solution ...139

How It Works ...140

Table of ConTenTsTable of ConTenTs

xi

Chapter 7: Loops and Logic ��143

7 -1. Repeating Some Code Blocks Several Times ..143

Problem ...143

Solution ...144

How It Works ...145

7 -2. Run a Same Sequence of Actions While a Condition Is Met145

Problem ...145

Solution ...146

How It Works ...147

7 -3. Using for Loop ...148

Problem ...148

Solution ...148

How It Works ...150

7 -4. Decision Making with if-then ..151

Problem ...151

Solution ...151

How It Works ...153

7 -5. Decision Making with If-then-else ..153

Problem ...153

Solution ...154

How It Works ...156

7 -6. Decision Making with if-then-else if-then- else ...156

Problem ...156

Solution ...156

How It Works ...159

Table of ConTenTsTable of ConTenTs

xii

7 -7. Comparing Numbers ..160

Problem ...160

Solution ...160

How It Works ...162

7 -8. Using Boolean Operators ...163

Problem ...163

Solution ...163

How It Works ...166

Chapter 8: Using Mathematical Functions ��169

8 -1. Using Basic Mathematical Operations ...169

Problem ...169

Solution ...169

How It Works ...172

8 -2. Finding Smaller and Larger Values of Two Numbers173

Problem ...173

Solution ...173

How It Works ...174

8 -3. Finding Absolute Value of a Number ..176

Problem ...176

Solution ...176

How It Works ...177

8 -4. Finding Square Root of a Number ...177

Problem ...177

Solution ...178

How It Works ...178

Table of ConTenTsTable of ConTenTs

xiii

8 -5. Rounding a Number ...179

Problem ...179

Solution ...179

How It Works ...180

8 -6. Generating Random Numbers ...181

Problem ...181

Solution ...181

How It Works ...182

8 -7. Mapping a Number in One Range to Another Range183

Problem ...183

Solution ...183

How It Works ...184

Chapter 9: Using Variables ���187

9 -1. Creating Integer Variables ...187

Problem ...187

Solution ...187

How It Works ...191

9 -2. Creating Float Variables ...192

Problem ...192

Solution ...192

How It Works ...195

9 -3. Creating String Variables ...196

Problem ...196

Solution ...196

How It Works ...199

Table of ConTenTsTable of ConTenTs

xiv

9 -4. Creating a Variable to Hold an Array of Numbers200

Problem ...200

Solution ...200

How It Works ...203

9 -5. Creating a Variable to Hold an Array of Text...203

Problem ...203

Solution ...204

How It Works ...207

9 -6. Creating a Variable to Hold Boolean Value ...207

Problem ...207

Solution ...207

How It Works ...210

9 -7. Changing the Value of an Integer Variable ...211

Problem ...211

Solution ...211

How It Works ...212

9 -8. Updating String Variables ..212

Problem ...212

Solution ...212

How It Works ...213

Chapter 10: Functions and Arrays ��215

10 -1. Creating a Function ...215

Problem ...215

Solution ...215

How It Works ...222

Table of ConTenTsTable of ConTenTs

xv

10 -2. Finding the Number of Items in an Array ...224

Problem ...224

Solution ...225

How It Works ...227

10 -3. Finding an Item at Specified Location in an Array227

Problem ...227

Solution ...227

How It Works ...229

10 -4. Replacing an Item in an Array ...229

Problem ...229

Solution ...230

How It Works ...231

10 -5. Inserting an Item to the End of an Array ..232

Problem ...232

Solution ...232

How It Works ...234

10 -6. Removing Last Item from an Array ..235

Problem ...235

Solution ...235

How It Works ...237

10 -7. Finding the Index of an Item in an Array ..238

Problem ...238

Solution ...238

How It Works ...239

10 -8. Inserting an Item to an Array ...239

Problem ...239

Solution ...240

How It Works ...242

Table of ConTenTsTable of ConTenTs

xvi

10 -9. Displaying All the Items of an Array ...242

Problem ...242

Solution ...243

How It Works ...244

10 -10. Reversing the Items of an Array ..244

Problem ...244

Solution ...245

How It Works ...246

Chapter 11: Playing Music ��247

11 -1. Connecting a Speaker to Pin 0 ..247

Problem ...247

Solution ...247

How It Works ...249

11 -2. Connecting a Speaker to Other Pins ..249

Problem ...249

Solution ...249

How It Works ...251

11 -3. Using Earphones ..251

Problem ...251

Solution ...252

How It Works ...253

11 -4. Using Amplifiers ..253

Problem ...253

Solution ...253

How It Works ...254

Table of ConTenTsTable of ConTenTs

xvii

11 -5. Playing Built-In Melodies ...254

Problem ...254

Solution ...255

How It Works ...255

11 -6. Playing a Tone or Note ...257

Problem ...257

Solution ...257

How It Works ...257

11 -7. Using Octaves ..263

Problem ...263

Solution ...263

How It Works ...264

11 -8. Playing a Note or Tone for Given Duration ...265

Problem ...265

Solution ...265

How It Works ...266

11 -9. Setting the Tempo ..268

Problem ...268

Solution ...268

How It Works ...269

11 -10. Getting the Tempo ..270

Problem ...270

Solution ...270

How It Works ...271

11 -11. Getting the Duration of a Beat ...271

Problem ...271

Solution ...271

How It Works ...272

Table of ConTenTsTable of ConTenTs

xviii

11 -12. Using Music Events ...272

Problem ...272

Solution ...272

How It Works ...273

11 -13. Adding Silence Between Notes and Tones...274

Problem ...274

Solution ...274

How It Works ...275

Chapter 12: Using Sensors ���277

12 -1. Using Built-In Accelerometer ...277

Problem ...277

Solution ...277

How It Works ...278

12 -2. Using Gestures ..280

Problem ...280

Solution ...280

How It Works ...281

12 -3. Using Compass ..283

Problem ...283

Solution ...283

How It Works ...285

12 -4. Calibrating the Compass ...285

Problem ...285

Solution ...285

How It Works ...286

Table of ConTenTsTable of ConTenTs

xix

12 -5. Using Built-In Temperature Sensor ..286

Problem ...286

Solution ...287

How It Works ...287

12 -6. Using Built-In Light Sensor ..288

Problem ...288

Solution ...288

How It Works ...289

12 -7. Using Touch Pins..290

Problem ...290

Solution ...290

How It Works ...290

Chapter 13: Using Bluetooth Services ��291

13 -1. Adding Bluetooth Services Extension ..291

Problem ...291

Solution ...291

How It Works ...293

13 -2. Pairing Your micro:bit ..293

Problem ...293

Solution ...293

How It Works ...297

13 -3. Setting the Transmission Power ..298

Problem ...298

Solution ...298

How It Works ...299

Table of ConTenTsTable of ConTenTs

xx

13 -4. Bluetooth Connecting ..299

Problem ...299

Solution ...299

How It Works ...300

13 -5. Bluetooth Disconnecting..300

Problem ...300

Solution ...300

How It Works ...301

13 -6. Using Bluetooth UART to Send String ..301

Problem ...301

Solution ...301

How It Works ...303

Chapter 14: Using Radio ���307

14 -1. Creating Radio Groups ...307

Problem ...307

Solution ...307

How It Works ...308

14 -2. Setting the Transmission Power ..308

Problem ...308

Solution ...308

How It Works ...309

14 -3. Broadcasting String Messages ..309

Problem ...309

Solution ...309

How It Works ...312

Table of ConTenTsTable of ConTenTs

xxi

14 -4. Broadcasting Numbers ..312

Problem ...312

Solution ...312

How It Works ...314

14 -5. Broadcasting Message as a Name- Value Pair ..315

Problem ...315

Solution ...315

How It Works ...317

14 -6. Getting Properties from the Last Received Radio Packet318

Problem ...318

Solution ...318

How It Works ...319

14 -7. Enabling and Disabling the Transmission of Serial Number320

Problem ...320

Solution ...320

How It Works ...321

Chapter 15: Building Simple Games ���323

15 -1. Creating a Sprite ..323

Problem ...323

Solution ...323

How It Works ...324

15 -2. Moving a Sprite Straightly ...326

Problem ...326

Solution ...327

How It Works ...328

Table of ConTenTsTable of ConTenTs

xxii

15 -3. Moving a Sprite by Turning ..329

Problem ...329

Solution ...330

How It Works ...331

15 -4. Deleting a Sprite ..333

Problem ...333

Solution ...333

How It Works ...334

15 -5. Holding and Displaying Score ..334

Problem ...334

Solution ...334

How It Works ...335

15 -6. Life ...336

Problem ...336

Solution ...336

How It Works ...337

15 -7. Hitting with Another Sprite ..337

Problem ...337

Solution ...338

How It Works ...340

Appendix: ASCII Table ���341

Index ���347

Table of ConTenTsTable of ConTenTs

xxiii

Pradeeka Seneviratne is a software engineer with over 10 years of

experience in computer programming and systems design. He is an

expert in the development of Arduino and Raspberry Pi-based embedded

systems. Currently he is a full-time embedded software engineer working

with embedded systems and highly scalable technologies. Previously,

Pradeeka worked as a software engineer for several IT infrastructure and

technology servicing companies.

Pradeeka is an author of many books: Building Arduino PLCs (Apress,

2017), Internet of Things with Arduino Blueprints (Packt, 2015), Raspberry

Pi 3 Projects for Java Programmers (Packt, 2017), Beginning BBC micro:bit

(Apress, 2018), and Hands-on Internet of Things with Blynk (Packt, 2018).

About the Author

1© Pradeeka Seneviratne 2019
P. Seneviratne, BBC micro:bit Recipes, https://doi.org/10.1007/978-1-4842-4913-0_1

CHAPTER 1

MakeCode Setup
Fundamentals
In this chapter, you will learn how to set up and work with MakeCode for

micro:bit, which is one of the most popular development tools to create

micro:bit applications. Like many other software frameworks, MakeCode

for micro:bit has a wide array of extensions (packages) to choose from.

You will also learn how to get started with the MakeCode for micro:bit

and build some basic applications for micro:bit.

 1-1. Starting Microsoft MakeCode for
BBC micro:bit
 Problem
You want to start the Microsoft MakeCode for BBC micro:bit to build a

micro:bit application using Blocks.

 Solution
• Using your web browser, go to https://www.

microsoft.com/en-us/makecode to open the

MakeCode landing page.

https://www.microsoft.com/en-us/makecode
https://www.microsoft.com/en-us/makecode

2

• In the Hands on computing education section, click

Start coding with micro:bit (Figure 1-1).

You can go directly to makecode.microbit.org.

• In the MakeCode for micro:bit home page, in the My
Projects section, click on the New Project (Figure 1-2).

Figure 1-1. Landing page for Microsoft MakeCode

Chapter 1 MakeCode Setup FundaMentalS

3

• The MakeCode editor for micro:bit will start on your

browser (Figure 1-3).

Figure 1-2. Landing page of the MakeCode for micro:bit

Figure 1-3. MakeCode editor for BBC micro:bit

Chapter 1 MakeCode Setup FundaMentalS

4

 How It Works
Microsoft MakeCode is a web-based online editor that allows you to

build programs using snappable blocks. It is also known as a graphical

programming language and supports all modern web browsers and

platforms.

The MakeCode website uses cookies for analytics, personalized

content, and ads. You don’t need a user account to create and save projects

with MakeCode. All projects are saved in the browser’s local cache.

MakeCode is based on the open source project Microsoft
programming experience toolkit (pXt), and its framework is available
at https://github.com/Microsoft/pxt.

MakeCode provides environments such as BBC micro:bit, adafruit
Circuit playground express, Minecraft, leGo MIndStroMS education
eV3, Cue, Chibi Chip, and Grove Zero.

The editor has the following areas and controls (Figure 1-4).

Simulator - Provides the output without the real hardware while you

are building the code. The following buttons can be used to control the

behavior of the simulator.

• (1) Start/Stop the simulator: Stops the program

and restarts from the beginning.

• (2) Restart the simulator: Restarts the program

(output) from the beginning.

• (3) Slow-Mo: Displays the output in slow motion.

Chapter 1 MakeCode Setup FundaMentalS

https://github.com/Microsoft/pxt

5

• (4) Mute audio: Mutes audio when you’re working

with music and speech.

• (5) Launch in full screen: Shows the simulator in

full screen mode.

• Toolbox - Provides blocks in categories. Also allows

you to search extensions in the toolbox and add more

extensions (packages) to the toolbox if available.

• Coding Area - The area you use the build the code with

Blocks and write the code with JavaScript.

• Editor Controls

• Home - Takes you to the home screen (https://

makecode.microbit.org/), which shows recent

projects and other activities.

• Share - Displays the Share Project window that

lets you publish your project to the public cloud

and embed your project in to a web page with

different options.

• Blocks or JavaScript - Allows you to switch the

code view from Blocks to JavaScript, or back again.

Press one of the view buttons at the top and center

of the window.

• Help - Shows a menu with help options such as

support, reference, blocks, JavaScript, hardware,

and where to buy.

• More… (gearwheel) - Allows you to access

project settings, adding extensions, deleting the

current project, deleting all the projects, choosing

a language, and pairing micro:bit for one-click

download.

Chapter 1 MakeCode Setup FundaMentalS

https://makecode.microbit.org/
https://makecode.microbit.org/

6

• Undo and Redo - Allows you to undo and redo

recent changes you make either in Blocks or

JavaScript with the Undo and Redo buttons in the

bottom right of the editor window.

• Zoom In and Zoom Out - The zoom buttons

change the size of the blocks when you’re working

in the Blocks view. When you’re working with the

code in the JavaScript view, the zoom buttons

change the size of the text.

• Save Project - You can type a name for your project

and save it. Type in a name for the project in the

text box, and press the disk icon to save.

• Download - The Download button will copy your

program to a drive on your computer.

• Show/Hide the simulator - The Show/Hide the
simulator button can be used to show or hide the

simulator.

Figure 1-4. Important areas and controls on the MakeCode editor

Chapter 1 MakeCode Setup FundaMentalS

7

By default, the coding area is focused to the Blocks view with on start

and forever blocks.

 1-2. Saving a Project to a File
 Problem
You want to save your work to a file.

 Solution
• In the project name box, type in a name for your

project and click on the Disk icon. The new name of

the project is updated in your browser’s local cache.

Meanwhile, a hex file will download to your computer.

• If you click on the Disk icon without providing a

new name for the project (with the default file name,

Untitled), the Rename your project modal box

(window) will pop up (Figure 1-5).

Figure 1-5. Renaming a project

Chapter 1 MakeCode Setup FundaMentalS

8

• Now type in a name for the project, and click on the

Save button. The project will save under the new file

name, and the new name of the project is updated in

your browser’s local cache. Meanwhile, a hex file will

download to your computer (Figure 1-6).

Files you’ve downloaded are automatically saved in the Downloads
folder. You can always move downloads from the downloads folder to
other places on your computer.

 How It Works
With MakeCode, your code will automatically save as you work under the

default project name Untitled. All projects are saved in the browser’s local

cache. You can save your project by providing a new file name. If you don’t

name your project, it’s kept as an ‘Untitled’ project. You can save your

project to a file or in the cloud (see Recipe 1-6. Sharing a Project).

The download location can be configured with your web browser. It

could be a local drive in your computer, a removable drive, or a network

drive.

• If you want to use the default project named Untitled,

just click on the Save button in the Rename your
project modal box without providing a new project

name.

Figure 1-6. Downloading a hex file

Chapter 1 MakeCode Setup FundaMentalS

9

• If you click on the Save icon after saving the project

under a new project name, any changes you have made

will save, and a hex file of the project will download to

your computer.

 1-3. Downloading a Project
 Problem
You want to download a project into your computer as a hex file.

 Solution
• Click on the Download button in the bottom of the

page. A hex file will download to your computer

(Figure 1-7).

Figure 1-7. Downloading the hex file

The downloaded hex file can be found with your browser.

• Google Chrome: The downloaded hex file will appear

(list) in the Download Bar at the bottom of the browser.

Click on the caret (circumflex) icon and from the

shortcut menu, click show in folder to open the folder it

was saved to using the default file browser on the system.

You can also access the downloaded file by clicking on

three dots (⋮) icon in the top-right corner of the browser

Chapter 1 MakeCode Setup FundaMentalS

10

and click Downloads from the menu or press Ctrl+J.
Then in the Downloads page, click Show in folder link

to open the folder for the corresponding file.

• Microsoft Edge: When asked what to do with this file,

select Save and it will be saved to your Downloads

folder. Selecting Open Folder will allow you to view

your downloads.

• Mac Safari: When you select Download in Safari, your

file will appear under downloads in the top right of the

screen; you can open your downloads folder from here.

 How It Works
When you click on the Download button, the code is compiled in the

browser and downloaded as a hex file.

Usually the downloaded hex file can be found in the Downloads folder

in your computer. The word microbit will append to the start of the file

name. As an example, if you have a project named Hello World, the name

of the downloaded hex file would be microbit-Hello-World.hex.

 1-4. Flashing a Hex File to the micro:bit
 Problem
You want to flash a downloaded hex file to the micro:bit.

 Solution
• Connect the micro:bit to your computer using a micro

USB cable (use the micro USB port on the top of the

micro:bit).

Chapter 1 MakeCode Setup FundaMentalS

11

• Once it has been mounted, find the micro:bit in the file

manager and open it. An example shows if a Windows-

based system is used (Figure 1-8). Drag and drop the

hex file into the open micro:bit window.

• If you’re using Google Chrome browser, you can drag

and drop the hex file on the micro:bit drive from the

browser’s Download Bar if available (Figure 1-9).

Figure 1-8. Copying a hex file to the micro:bit drive

Chapter 1 MakeCode Setup FundaMentalS

12

 How It Works
The process of transferring a hex file to the micro:bit is called flashing.

The LED on the back of your micro:bit flashes during the transfer. Once

this has completed, the micro:bit will automatically restart and start

executing your code.

Figure 1-9. Copying a hex file to the micro:bit drive

Chapter 1 MakeCode Setup FundaMentalS

13

 1-5. Changing the Download Location
to micro:bit Drive with Google Chrome
 Problem
You want to download the hex file from the MakeCode directly to the

micro:bit drive.

 Solution
• On your computer, open Chrome.

• At the top right, click Customize and control Google
Chrome (three-dotted button).

• From the drop-down menu, click Settings.

• Scroll down the page and at the bottom, click

Advanced to expand the page or type Downloads in

the search bar with the magnifying glass.

• Under the Downloads section, click on the Change

button and select the micro:bit drive (Figure 1-10).

Figure 1-10. Setting the downloads location

Chapter 1 MakeCode Setup FundaMentalS

14

 How It Works
Google Chrome allows you to configure the download location for your

files. Changing the default download location to the micro:bit drive allows

you to flash the hex file to the micro:bit with a single click.

 1-6. Sharing a Project
 Problem
You want to share your project.

 Solution
• In the Editor controls, click on the Share button

(Figure 1-11).

Figure 1-11. Sharing a project

Chapter 1 MakeCode Setup FundaMentalS

15

• In the Share Project window, click on the Publish
project button (Figure 1-12).

• In the Share Project modal box (window), click on

the Copy button to copy the address to the clipboard

(Figure 1-13).

Figure 1-12. Publishing a project

Figure 1-13. Sharing a project link

• If you want to embed your project in a website, click on

the Embed link to expand the Share Project modal box

(Figure 1-14).

Chapter 1 MakeCode Setup FundaMentalS

16

• The expanded section provides you three options.

• Code - Embeds Blocks or JavaScript of your project

(Figure 1-15).

Figure 1-14. Embedding a project in a website

Chapter 1 MakeCode Setup FundaMentalS

17

• Editor - Embeds the editor with minimal user interface.

You can jump to the full-featured editor by clicking on

the Edit button in the top-right corner of the embedded

view (Figure 1-16).

Figure 1-15. Embedding blocks or JavaScript of the project

Chapter 1 MakeCode Setup FundaMentalS

18

• Simulator - Embeds the simulator only (Figure 1-17).

Figure 1-16. Embedding the MakeCode editor with minimal user
interface

Chapter 1 MakeCode Setup FundaMentalS

19

• Click on the large Copy button to copy the html code to

the clipboard.

• Open a text editor, such as Notepad, and paste the html

code into the editor window.

• Save the file with an .html extension. This will allow the

system to know it’s a html file.

• After saving the file, open it with your web browser by

either typing the path in the address bar or dragging

and dropping the file into the browser window.

Figure 1-17. Embedding the micro:bit simulator

Chapter 1 MakeCode Setup FundaMentalS

20

 How It Works
When you create a project with MakeCode, it will receive a unique

identifier. This identifier is used with when sharing and embedding

your code.

 1-7. Opening a File from the Computer
 Problem
You want to open a micro:bit project on your computer with the MakeCode

editor for micro:bit.

 Solution
• In the MakeCode editor for micro:bit, click on the

Import button (Figure 1-18).

Chapter 1 MakeCode Setup FundaMentalS

21

• In the Import window, click on the Import File…

button (Figure 1-19).

Figure 1-18. Import button on the MakeCode editor

Figure 1-19. Importing a project from the file

Chapter 1 MakeCode Setup FundaMentalS

22

• In the Open hex file… modal box, click on the Choose
File button (Figure 1-20).

• In the Open dialog box, browse and locate the hex file

of the project you want. Then click on the Open button.

• If you want to open a different project, click on the

Choose File button again.

• In the Open hex file… modal box, click on the Go
ahead! button to open the project (Figure 1-21).

Figure 1-20. Choosing a hex file to open

Figure 1-21. Choosing a hex file to open

Chapter 1 MakeCode Setup FundaMentalS

23

• The project will load into the MakeCode editor for

micro:bit.

 How It Works
micro:bit code files use the .hex file extension. These are normally referred

to as ‘hex files’.

When MakeCode compiles the code, it compiles it in a format that is

compatible with itself and allows it to decompile a MakeCode hex file and

display the correct blocks.

Hex files that have been compiled in non-MakeCode environments,

such as MicroPython or Mbed, will have a differing format that MakeCode

will not be able to understand and display.

 1-8. Opening a Shared Project
 Problem
You want to open a shared project from a URL or from the GitHub

repository.

 Solution
• In the MakeCode editor for micro:bit, click on the

import button.

• In the Import modal box (window), click on the

Import URL… button.

• In the Open project URL modal box, paste the URL of

the shared project or URL of the GitHub repository.

Chapter 1 MakeCode Setup FundaMentalS

24

• Click on the Go ahead! button.

• The project will load into the MakeCode editor for

micro:bit.

 How It Works
Publicly shared micro:bit projects can be accessed using the shared URL or

URL provided by the GitHub repository. However, be cautious when using

software or following instructions from unknown sources.

 1-9. Deleting a Project
 Problem
You want to delete a project from the MakeCode.

 Solution
• In the Editor controls, click on the More… button.

• In the drop-down menu, click Delete Project

(Figure 1-22).

Chapter 1 MakeCode Setup FundaMentalS

25

• In the delete confirmation modal box (window), click

on the Delete button (Figure 1-23).

Figure 1-22. Deleting a project

Chapter 1 MakeCode Setup FundaMentalS

26

 How It Works
The Delete Project option will remove your project from the browser’s

local cache.

 1-10. Deleting All Projects
 Problem
You want to delete all the projects in your MakeCode editor.

 Solution
• In the Editor controls, click on the More… button.

• In the drop-down menu, click Reset (Figure 1-24).

Figure 1-23. Confirm dialog box for delete a project

Chapter 1 MakeCode Setup FundaMentalS

27

• In the delete confirmation window, click on the Reset

button (Figure 1-25).

Figure 1-24. Deleting all the projects

Chapter 1 MakeCode Setup FundaMentalS

28

• This will delete all projects from the local storage.

 How It Works
The Reset option will remove all your projects from the browser’s local

cache.

Figure 1-25. Confirm dialog box for deleting all the projects

Chapter 1 MakeCode Setup FundaMentalS

29© Pradeeka Seneviratne 2019
P. Seneviratne, BBC micro:bit Recipes, https://doi.org/10.1007/978-1-4842-4913-0_2

CHAPTER 2

MakeCode Extended
Features
In this chapter you will learn some extended features of MakeCode that

allow you to manage extensions (packages) and pare them with your

micro:bit for One-Click download using WebUSB.

 2-1. Adding an Extension from the
Extension Page
 Problem
You want to add an extension to the toolbox of the MakeCode editor.

 Solution
• In the Editor controls, click on the More… button.

• In the drop-down menu, click Extensions (Figure 2-1)

or use the add Extensions under the Advanced tab.

30

• In the Extensions page, click on the extension that you

want to add to your project (e.g., Servo) (Figure 2-2).

Figure 2-1. Extensions menu option in the More... menu

Chapter 2 MakeCode extended Features

31

• If you can’t find the extension that you want to add to

your project in the Extensions page (e.g., SparkFun
Moto:bit), type the name of the extension (try typing

in what you trying to find, for example, with time

then type time in the search box.) in the Search or
enter project URL… textbox and click on the Search

button. The page will show you all the matching

extensions based on your search string. Now, click

on the correct extension to add to your project

(Figure 2-3).

Figure 2-2. Extensions page

Chapter 2 MakeCode extended Features

32

• The Blocks and JavaScript definitions for the new

extension will be automatically loaded in the editor

and can be found in the Toolbox as a Category

(Figure 2-4).

Figure 2-3. Search result for the SparkFun extensions

Chapter 2 MakeCode extended Features

33

 How It Works
By default, MakeCode displays enough blocks in the toolbox to allow

you to create code using the micro:bit out of the box. This toolbox can

be extended to allow the micro:bit to use expansions, such as a robot

board, and add functionality such as the ability to control NeoPixels or

similar.

The Extensions system also ensures that only compatible extensions

are installed and will automatically resolve any compatibility issues.

Figure 2-4. Newly added extensions in the Toolbox

Chapter 2 MakeCode extended Features

34

 2-2. Adding Extension from the Project URL
 Problem
You want to add an extension to the MakeCode editor from the

project URL.

 Solution
• In the Editor controls, click on the More… button.

• In the drop-down menu, click Extensions.

• In the Extensions page, in the Search or enter
project URL… textbox, type in the project URL of the

extension that you want to add (e.g., the project URL of

the 4tronix BitBot is https://github.com/4tronix/

BitBot).

When you’re going to install extensions on MakeCode, make sure not
to install them from unknown or unofficial sources.

• Click on the bitbot from the search result (Figure 2-5).

Chapter 2 MakeCode extended Features

https://github.com/4tronix/BitBot
https://github.com/4tronix/BitBot

35

• The Blocks and JavaScript definitions for the new

extension will be automatically loaded in the editor and

can be found in the Toolbox as a Category (Figure 2-6).

Figure 2-5. Adding an extension from the GitHub

Chapter 2 MakeCode extended Features

36

 How It Works
The advanced users have published their own extensions and can be

found in the MakeCode for micro:bit documentations page (https://

makecode.microbit.org/extensions).

extensions were previously called packages in MakeCode.

Figure 2-6. The Bitbot extension

Chapter 2 MakeCode extended Features

https://makecode.microbit.org/extensions
https://makecode.microbit.org/extensions

37

Here is the list of extensions currently available.

• Robotics

• 4tronix BitBot

• SRS BitBot

• Sunfounder Sloth

• UCL Junk Robot

• Kittenbot RobotBit

• inex iBit

• k8 robotics bit

• Gigglebot

• Robobit

• Pi Supply Bit Buggy

• ALS Robot Coo

• ALS Robot CruiseBit

• Hummingbird Bit

• Gaming

• Sparkfun Gamer:bit

• STEM

• micro:turtle

• NeoPixel

• Sparkfun Moto:bit

• Sparkfun Weather:bit

• Minode Kit

Chapter 2 MakeCode extended Features

38

• Grove inventor kit

• WS2812B

• Pimoroni Envirobit

• MakerBit

• Sensing and Individual Components

• MAX6675

• Sonar

• Bluetooth Temperature Sensor

• Bluetooth MAX6675

• ssd1306 OLED

• ky040 rotary

• GY521

• PCA9685 LED controller

• Imagimaker Magishield

• gator:light Light sensor

• gator:temp Temperature Sensor

• ALS Robot Electromagnet

• IoT

• Pi Supply Lora Node

• Other

• File System

• Code Dojo Olney

• File System

Chapter 2 MakeCode extended Features

39

• MIDI

• Bluetooth MIDI

• BlockyTalkyBLE

• Katakana

• Muselab WiFi IoT Shield

• LINE BLE beacon

• Pimoroni Scrollbit

• SBRICK

• Pimoroni Automationbit

• Annikken Andee

• ALS Robot Keyboard

 2-3. Removing an Extension from
the Project
 Problem
You want to remove an extension from the project.

 Solution
• In the Editor controls, click on the More… button.

• In the drop-down menu, click Project Settings.

• In the Project Settings page, click on the Explorer

menu (left navigation menu) to expand.

Chapter 2 MakeCode extended Features

40

• Find the extension that you want to delete and click on

the Delete icon (Figure 2-7).

Figure 2-7. Deleting an extension

• In the Remove extension window, click on the

Remove It button to confirm the deletion (Figure 2-8).

Chapter 2 MakeCode extended Features

41

 How It Works
You can’t remove core extensions from your project. The delete option is

only available for third-party extensions.

 2-4. Pairing micro:bit for One-Click
Download Using WebUSB
 Problem
You want to directly flash a hex file to the micro:bit from the MakeCode

editor using WebUSB.

 Solution
• Before pairing, check the firmware version of your

micro:bit (see How It Works section).

• Connect the micro:bit to your computer with a USB

cable.

• In the Editor controls, click on the More… button.

• In the drop-down menu, click Pair device.

Figure 2-8. Confirmation dialog box for delete an extension

Chapter 2 MakeCode extended Features

42

• In the Pair device for one-click downloads window,

click on the Pair device button (Figure 2-9).

• In the makecode.microbit.org wants to connect

window, select BBC micro:bit CMSIS-DAP or

DAPLink CMSIS-DAP from the list and click on the

Connect button (Figure 2-10).

Figure 2-9. Pairing device for one-click downloads

Chapter 2 MakeCode extended Features

43

• Once your micro:bit is paired, MakeCode will use

WebUSB to transfer the code without having to drag

and drop.

 How It Works
WebUSB currently supports the following platforms.

• Chrome 65+ browser for Android

• Chrome OS, Linux

• macOS

• Windows 10

Figure 2-10. Choosing DAPLink CMSIS-DAP

Chapter 2 MakeCode extended Features

44

Make sure that your micro:bit is running version 0249 or above of the

firmware. You can upgrade your firmware to the latest version by following

these steps.

• Go to the MICROBIT drive.

• Open the DETAILS.TXT file.

• Find the line says the version number of the firmware

(Figure 2-11).

Figure 2-11. Finding the micro:bit version number using details.
txt file

• If the version is 0234, 0241, or 0243, you need to

update the firmware on your micro:bit. If the version is

0249, 0250, or higher, you have the right firmware and

are ready to pair your device with the MakeCode.

• Now put your micro:bit into MAINTENANCE Mode.

To do this, unplug the USB cable from the micro:bit

and then reconnect the USB cable while you hold

down the reset button. Once you insert the cable, you

can release the reset button. You should now see a

MAINTENANCE drive instead of the MICROBIT drive

like before. Also, a yellow LED light will stay on next to

the reset button.

Chapter 2 MakeCode extended Features

45

• Download the latest firmware .hex file from https://

microbit.org/guide/firmware/.

• Once downloaded, drag and drop that file onto the

MAINTENANCE drive.

• The yellow LED will flash while the HEX file is copying

to the micro:bit. When the copy finishes, the LED will

turn off and the micro:bit resets. The MAINTENANCE

drive now changes back to MICROBIT.

• Now open the DETAILS.TXT file to check and see that

the firmware version changed to the match the version

of the HEX file you copied (Figure 2-12).

Figure 2-12. Content of the DETAILS.txt file

Chapter 2 MakeCode extended Features

https://microbit.org/guide/firmware/
https://microbit.org/guide/firmware/

47© Pradeeka Seneviratne 2019
P. Seneviratne, BBC micro:bit Recipes, https://doi.org/10.1007/978-1-4842-4913-0_3

CHAPTER 3

MakeCode
Programming Basics
In this chapter you will learn how to manage blocks in the coding area and

about programming basics with simple recipes. These recipes can be used

to build more advanced programs later with MakeCode. As an example,

the recipe displaying numbers can be used to display the results of a

formula in a complex program.

 3-1. Adding Blocks onto Coding Area
 Problem
You want to add blocks onto the coding area from the Toolbox.

 Solution
• In the Toolbox, click on any Category and from the

submenu, click on the block you want to place on the

coding area (Figure 3-1).

48

• Otherwise, you can drag and drop a block onto the

coding area (Figure 3-2).

Figure 3-1. Placing a block on the coding area by clicking on it

Chapter 3 MakeCode prograMMing BasiCs

49

• After placing the block, you can further move it to any

place on the coding area by dragging and dropping

(Figure 3-3).

Figure 3-2. Placing a block on the coding area by drag and drop

Chapter 3 MakeCode prograMMing BasiCs

50

 How It Works
MakeCode organizes blocks with categories by grouping similar or

related blocks together. By default, MakeCode shows the following block

categories in the Toolbox:

• Basic

• Input

• Music

• Led

• Radio

• Loops

• Logic

• Variables

• Math

• Functions

Figure 3-3. Moving a block on the code area

Chapter 3 MakeCode prograMMing BasiCs

51

• Arrays

• Text

• Game

• Images

• Pins

• Serial

• Control

 3-2. Deleting a Block
 Problem
You want to delete a block from the coding area.

 Solution
Do one of the following:

• In the coding area, click on the block you want to delete

and from the keyboard, press the DELETE key.

• In the coding area, right-click on the block you want

to delete. Then, click Delete Block from the shortcut

menu (Figure 3-4).

Chapter 3 MakeCode prograMMing BasiCs

52

• Drag and drop the block into the Toolbox (Figure 3-5).

Figure 3-4. Deleting a block

Chapter 3 MakeCode prograMMing BasiCs

53

 How It Works
This will remove the selected block from the coding area. You can undo it

by clicking on the Undo button in the bottom right of the window.

 3-3. Duplicating a Block
 Problem
You want to duplicate a block in the coding area.

Figure 3-5. Deleting a block

Chapter 3 MakeCode prograMMing BasiCs

54

 Solution
• In the coding area, right-click on the block you want to

duplicate.

• Click Duplicate from the shortcut menu. You will get a

duplicated block (Figure 3-6).

Figure 3-6. Duplicating a block

 How It Works
This option allows you to quickly duplicate an existing block in the coding

area without choosing it again from the Toolbox. Duplicate will create a

clone of a selected block.

 3-4. Adding a Comment
 Problem
You want to add a comment to a block.

Chapter 3 MakeCode prograMMing BasiCs

55

 Solution
• In the coding area, right-click on the block you want to

add a comment.

• Click Add Comment from the shortcut menu.

• In the comment box, type in a comment for the block.

• Click on the hide icon (arrow head) in the top-left

corner of the comment box to hide (Figure 3-7).

Figure 3-7. Adding a comment

 How It Works
Comment boxes are useful to add text note to a block to provide

explanatory information, usually about the function of the code. These

comment blocks are generally ignored by the compiler.

If hidden, you can show the comment box again by clicking on

the comment icon in the left side of the block. If you want to delete

the comment, just click on the delete icon on the top-right corner of the

comment box (Figure 3-8).

Chapter 3 MakeCode prograMMing BasiCs

56

 3-5. Displaying Text
 Problem
You want to scroll a text message across the display only once.

 Solution
You can use the on start block to build this program.

• In the Toolbox, click on the Basic category.

• Click and drag the show string block over and place it

inside of the on start block. (Figure 3-9).

Figure 3-8. Deleting a comment

Chapter 3 MakeCode prograMMing BasiCs

57

• The show string block contains default text, Hello!. If

you want to display a different text, simply click on the

text box and type in the new text.

• Your final code should look something like this

(Figure 3-10).

Figure 3-9. Displaying text

Figure 3-10. Code listing for display text

Chapter 3 MakeCode prograMMing BasiCs

58

 How It Works
With MakeCode, you can use the show string block to display any text

containing letters, numbers, and punctuation. This is known as a ‘string’

in coding terms. Usually, the text scrolls from left to right. If the string is

a single character, then it will be displayed on the screen; otherwise the

contents of the string will scroll from left to right (the micro:bit display only

fits for single character). The micro:bit display only supports with English

letters, numbers, and punctuation. All the valid letters, numbers, and

punctuation that can be used to build a string can be found in the ASCII
table (from DEC 32 to 126) shown in Appendix A.

Any code in the on start block will run when the micro:bit is powered

on or reset after powered on.

MakeCode blocks for micro:bit doesn’t allow you to define how fast the

string scrolls. If you would like to change the speed, you will need to switch

to the JavaScript editor by clicking on the selector at the top of the screen

(Figure 3-11). Then, in the basic. showString() function, type in a comma

followed by a value for how fast to shift characters (e.g., 150, 100, 200, −100).

You can switch back and forth between Blocks and JavaScript as

you program. If you switched back to the Blocks, the basic.showstring()

block becomes incompatible with Blocks. MakeCode uses a gray color to

indicate any errors in your code (Figure 3-12).

Figure 3-11. JavaScript equivalent of the code

Chapter 3 MakeCode prograMMing BasiCs

59

 3-6. Displaying Numbers
 Problem
You want to scroll a number across the display only once.

 Solution
You can use the on start block to build this program.

• In the Toolbox, click on the Basic category.

• Click and drag the show number block over and place

it inside of the on start block.

• In the show number block, simply click on the text

box and type in the new number (e.g., 1234). Your code

should look something like this (Figure 3-13).

Figure 3-12. Incompatible Block created by JavaScript

Chapter 3 MakeCode prograMMing BasiCs

60

 How It Works
The on start block is all your code that will execute at the very beginning

of your program and only run once. The show number block accepts digits

from 0 to 9. You can build any number with them. It only accepts numbers

and digits and doesn’t let you type characters and strings. You can’t type

more than one number in the show number block by separating with

spaces or punctuation marks. By default, the show number block contains

0. Usually, the numbers scroll from left to right. If the number fits on the

display (single digit), it doesn’t scroll.

The example in Figure 3-13 will scroll the number once and then

stop if the number is greater than 9. It will not display each number one

by one.

 3-7. Displaying Text Repeatedly
 Problem
You want to display text on micro:bit display, then loop it over and over

again.

Figure 3-13. Code listing for display a number

Chapter 3 MakeCode prograMMing BasiCs

61

 Solution
You can use the forever block to build this program.

• In the Toolbox, click on the Basic category.

• Click and drag the show string block over and place

it inside of the forever block. Your code should look

something like this (Figure 3-14).

• If you want to change the default text, click on the

textbox of the show string block and type in the new text.

 How It Works
When you want to repeat anything forever on the micro:bit display, the

easiest choice is to use the forever block. Simply, it repeats everything

placed inside it forever in the background.

 3-8. Displaying a Number Repeatedly
 Problem
You want to display a number on micro:bit display, then loop it over and

over again.

Figure 3-14. Code listing for display a text

Chapter 3 MakeCode prograMMing BasiCs

62

 Solution
You can use the forever block to build this program.

• In the Toolbox, click on the Basic category.

• Click and drag the show number block over and place

it inside of the forever block.

• In the show number block, click on the text box and

type in a number with at least two digits. Your code

should look something like this (Figure 3-15).

 How It Works
When you want to repeat anything forever on the micro:bit display, the

easiest choice is to use the forever block. Simply, it repeats everything

placed inside it forever in the background.

 3-9. Turning on LEDs
 Problem
You want to turn on some or all LEDs on the micro:bit display.

Figure 3-15. Code listing for display a number repeatedly

Chapter 3 MakeCode prograMMing BasiCs

63

 Solution
You will use the show leds block to build the following program.

• In the Toolbox, click on the Basic category.

• Click and drag the show leds block over, and place it

inside of the on start block (Figure 3-16).

• In the show leds block, click on the squares that you

want to select. Your code should look something like

this (Figure 3-17).

Figure 3-16. The show leds block

Chapter 3 MakeCode prograMMing BasiCs

64

 How It Works
The show leds block represents the micro:bit display. Each square in

the show leds block corresponds to a physical LED on the micro:bit

display. You can click on any square to select the corresponding LED on

the micro:bit display to turn on. To turn off an LED, simply click on the

selected square again to deselect it.

 3-10. Displaying Icons
 Problem
You want to display one of the built-in icons on the micro:bit display.

Figure 3-17. Choosing LEDs on the show leds block

Chapter 3 MakeCode prograMMing BasiCs

65

 Solution
• In the Toolbox, click on the Basic category.

• Click and drag the show icon block over and place it

inside of the on start block.

• In the show icon block, choose an icon (happy) click

from the drop-down list to display on the micro:bit

screen (Figure 3-18).

• Your code should look something like this

(Figure 3- 19).

Figure 3-18. Choosing an icon

Chapter 3 MakeCode prograMMing BasiCs

66

 How It Works
The show icon block can be used to display an icon at any point in your

program. The MakeCode supports 40 icons for your choice. Here is the list:

• Heart

• Small heart

• Yes

• No

• Happy

• Sad

• Confused

• Angry

• Asleep

• Surprised

• Silly

• Fabulous

• Meh

Figure 3-19. Code listing for display an icon

Chapter 3 MakeCode prograMMing BasiCs

67

• T-shirt

• Roller skate

• Duck

• House

• Tortoise

• Butterfly

• Stick figure

• Ghost

• Sword

• Giraffe

• Skull

• Umbrella

• Snake

• Rabbit

• Cow

• Quarter note

• Eight note

• Pitchfork

• target

• triangle

• left triangle

• chess board

• diamond

Chapter 3 MakeCode prograMMing BasiCs

68

• small diamond

• square

• small square

• scissors

If you want to display more icons sequentially, add more show icon

blocks to your program. The following program starts with the heart

icon and stops at the happy icon (Figure 3-20). If you want to add a

delay between icons, use the pause block (see Recipe 3-14, Pausing a
Program).

Figure 3-20. Displaying icons sequentially

Chapter 3 MakeCode prograMMing BasiCs

69

 3-11. Displaying Arrows
 Problem
You want to draw an arrow pointing to south east on the micro:bit display.

 Solution
You will use the show arrow block to build the following program.

• In the Toolbox, click on the Basic category, then click

the more tab.

• Click and drag the show arrow block over and place it

inside of the on start block.

• In the show arrow block, choose south east from the

drop-down list. Your code should look something like

this (Figure 3-21).

Figure 3-21. Code listing for display an arrow

 How It Works
The show arrow block is specialized to display arrows pointing to different

directions. The following is a list of directions that can be configured with

the show arrow block.

Chapter 3 MakeCode prograMMing BasiCs

70

• North

• North East

• East

• South East

• South

• South West

• West

• North West

 3-12. Pausing a Program
 Problem
You want to pause the execution of a program for several milliseconds that

are specified.

 Solution
You can use the pause block to add a delay between code blocks. As an

example, you will display a text containing two words (Hello, World!) and

add a 2-second delay between Hello, and World!

• In the Toolbox, click on the Basic category.

• Click and drag the show string block over and place it

inside of the on start block.

• Right-click on the show string block and from the

shortcut menu, click Duplicate.

• Change the text of the first show string block as Hello.

Chapter 3 MakeCode prograMMing BasiCs

71

• Change the text of the second show string block as

World!

• Again, click on the Basic category. Then click and drag

the pause block over and place it between the show
string blocks.

• In the pause block, click on the drop-down list and

choose 2 seconds (Figure 3-22).

• Your code should look something like this (Figure 3- 23).

Figure 3-22. Adding delay using the pause block

Chapter 3 MakeCode prograMMing BasiCs

72

 How It Works
The pause block accepts the time in milliseconds where 1 second equals

1000 milliseconds. You can provide any value in milliseconds or choose

some predefined values from the drop-down list.

 3-13. Clearing the Screen
 Problem
You want to clear the micro:bit display by turning off all the LEDs.

 Solution
You can build this program using the on start block.

• In the Toolbox, click on the Basic category.

• Click and drag the show string block over and place it

inside of the on start block.

Figure 3-23. Code listing for adding delay

Chapter 3 MakeCode prograMMing BasiCs

73

• In the show string block, click on the text box and type

in the letter X.

• In the Toolbox, under Basic category, click on …more.

• Click and drag the clear screen block over, and place

it inside of the on start block. Your code should look

something like this (Figure 3-24).

 How It Works
The clear screen block allows you to turn off all the LEDs in the micro:bit

display. You can use it to clear the screen after displaying a text, number,

image, icon, or anything.

Figure 3-24. Code listing for clearing the screen

Chapter 3 MakeCode prograMMing BasiCs

75© Pradeeka Seneviratne 2019
P. Seneviratne, BBC micro:bit Recipes, https://doi.org/10.1007/978-1-4842-4913-0_4

CHAPTER 4

Working with Text
MakeCode has many blocks to offer when it comes to manipulating text

strings. In this chapter you will learn how to find the length of a text,

joining together any number of pieces of text, comparing two strings,

extracting a part from a string, converting a string to a number, and

extracting a character from a string at the specified index.

 4-1. Finding the Length of a Text
 Problem
You want to find the length of a text.

 Solution
• In the Toolbox, click on the Basic category. Then click

and drag the show number block over, and place it

inside of the on start block.

• In the Toolbox, click on Advanced to expand the

category list, and then click on the Text category.

• Click and drag the length of block over and place it

inside of the show number block (Figure 4-1).

76

• Once finished, your code should look something like

this (Figure 4-2).

• The following will be the result.

5

 How It Works
The length of block returns the number of letters, including spaces in the

provided text as an integer. Therefore, you must use the show number

block with the length of block to show the output on the micro:bit display.

Figure 4-1. Placing the length of block

Figure 4-2. Full code listing

Chapter 4 Working With text

77

 4-2. Joining Strings
 Problem
You want to join two or more strings together to create a piece of text.

 Solution
As an example, you will join the following piece of strings to create a text.

You
are
awesome

• In the Toolbox, click on the Basic category. Then click

and drag the show string block over, and place it inside

of the on start block.

• In the Toolbox, click on Advanced to expand the

category list, and then click on the Text category.

• Click and drag the join block over and place it inside of

the show string block (Figure 4-3).

Figure 4-3. Placing the join block

Chapter 4 Working With text

78

• In the join block, click on the first text box and type

the string You followed by a space. Then, click on the

second text box, and type the string are followed by a

space.

• Click on the Add button (plus icon) to add a new text

box (third text box).

• In the third text box, type the string awesome.

• Once finished, your code should look something like

this (Figure 4-4).

• The following will be the result.

You are awesome

Figure 4-4. Full code listing

Chapter 4 Working With text

79

 How It Works
The join block creates a piece of text by joining together any number of

strings. It always returns a string. Therefore, you should place it inside a

show string block to direct the output to the micro:bit display.

The join block comes with two default strings (Hello World). You can

add or remove a text box in the join block by clicking on the Add button

(plus icon) or Remove button (minus icon), respectively (Figure 4-5).

 4-3. Comparing Two Strings
 Problem
You want to compare two strings based on which characters are first.

 Solution
As an example, you will compare the following two strings.

Apple
Pear

Figure 4-5. The join block

Chapter 4 Working With text

80

• In the Toolbox, click on the Basic category. Then click

and drag the show number block over, and place it

inside of the on start block.

• In the Toolbox, click on Advanced to expand the

category list, and then click on the Text category.

• Click and drag the compare block over and place it

inside of the show number block (Figure 4-6).

• In the compare block, click on the first text box and

type in the string Apple. Then, click on the second text

box and type in the string Pear.

• Once finished, your code should look something like

this (Figure 4-7).

Figure 4-6. Placing the compare block

Chapter 4 Working With text

81

• The following will be the result.

-1

 How It Works
The two strings are compared based on the order of their characters in

ASCII encoding. The complete ASCII encoding table with the English

alphabet for micro:bit can be found in Appendix A.

Here are some examples that will help you to understand the

comparison.

• The string ‘A’ is less than ‘B’ because ‘B’ comes after

the ‘A’.

• The string ‘TIGER’ is greater than ‘LION’ because ‘T’

comes after the ‘L’.

• The string ‘Tiger’ is less than ‘tiger’ because ‘t’ comes

after ‘T’.

• The string ‘100’ is greater than ‘Camel’ because ‘C’

comes after ‘1’.

Figure 4-7. Full code listing

Chapter 4 Working With text

82

The compare block has two text boxes to type string1 and string2
(Figure 4-8).

The output is based on the following conditions.

• If string1 is greater than string2, it returns 1.

• If both the strings are equal lexicographically, it

returns 0.

• If string1 is less than string2, it returns -1.

You can use the compare block with show number or show string

block to direct the output to the micro:bit display.

 4-4. Making Substrings
 Problem
You want to take some part from a string to make a smaller string.

Figure 4-8. The compare block

Chapter 4 Working With text

83

 Solution
As an example, you will take the substring el from the string Hello.

• In the Toolbox, click on the Basic category. Then click

and drag the show string block over, and place it inside

of the on start block.

• In the Toolbox, click on Advanced to expand the

category list, and then click on the Text category.

• Click and drag the substring of block over, and place it

inside of the show string block (Figure 4-9).

Figure 4-9. The substring of block

• In the substring of block, click on the first text box and

type in the string Hello. Then, click on the second text

box and type in the value 1. Finally, click on the third

text box and type in the value 2.

Chapter 4 Working With text

84

• Once finished, your code should look something like

this (Figure 4-10).

• The following will be the result.

el

 How It Works
The substring of block can be used to get part of a string. The length

of a string is the number of characters it contains, including spaces,

punctuation, and control characters. The index of the first character is

0, the second character is 1, and so on. The index of the last character is

(length of string) -1.

The first parameter of the substring of block accepts the string. The

second parameter accepts the index of the first character of the substring.

The third parameter accepts the number of characters in the substring,

including spaces, punctuation, and control characters.

Figure 4-10. Full code listing

Chapter 4 Working With text

85

For example, imagine that you want to get the substring, ‘bees’ from

the string ‘Now I see bees I won’.

• First, give index for characters in the string

(Figure 4- 11).

• Then find the index of the first letter of the substring,

which is 10.

• Finally, count the number of characters in the

substring, which is 4.

The graphical representation of the substring operation can be

illustrated as shown in Figure 4-12.

Figure 4-11. Indexing a string

Figure 4-12. Extracting a part from a string

Figure 4-13 shows the code for the Figure 4-12 built with MakeCode.

Chapter 4 Working With text

86

Here is the list of parameters used for substring of block in the

Figure 4-13.

• First parameter (substring of) - complete string,

which is Now I see bees I won.

• Second parameter (from) - index of the first character

of the substring, which is 10.

• Third parameter (of length) - number of characters in

the substring, which is 4.

The following will be the result.

bees

 4-5. Getting a Character at a Position
 Problem
You want to get a character from a position in the string.

Figure 4-13. Substring a string

Chapter 4 Working With text

87

 Solution
As an example, you will get the character at the index 1 from the string

Hello.

• In the Toolbox, click on the Basic category. Then click

and drag the show string block over, and place it inside

of the on start block.

• In the Toolbox, click on Advanced to expand the

category list, and then click on the Text category.

• Click and drag the char from block over, and place it

inside of the show string block (Figure 4-14).

Figure 4-14. The char from block

• In the char from block, in the first text box, type in

the string Hello. In the second text box, type in the

number 1.

• Once finished, your code should look something like

this (Figure 4-15).

Chapter 4 Working With text

88

• The following will be the result.

e

 How It Works
The char from block returns the character at the specified position of any

string. The position is known as the index. The index of the first character

of the string is 0, the second character is 1, and so on. The index of the last

character is (length of string) -1.

The first parameter of the char from block accepts the input string.

The second parameter accepts the index of the character that you want to

return. A character could be a space, punctuation, or control character.

If you are provided a number that is out of index or negative, the

micro:bit display doesn’t output anything.

Figure 4-15. Full code listing

Chapter 4 Working With text

89

 4-6. Converting a String to a Number
 Problem
You want to convert a string consisting of number characters to a number

value.

 Solution
As an example, you will convert the string -12.5 to the number value, -12.5.

• In the Toolbox, click on the Basic category. Then click

and drag the show number block over, and place it

inside of the on start block.

• In the Toolbox, click on the Advanced to expand the

category list and then click on the Text category.

• Click and drag the parse to number block over and

place it inside of the show number block (Figure 4-16).

Figure 4-16. The parse to number block

Chapter 4 Working With text

90

• In the parse to number block, click on the text box and

type in the string -12.5.

• Once finished, your code should look something like

this (Figure 4-17).

Figure 4-17. Full code listing

• The following will be the result.

-12.5

Chapter 4 Working With text

91

 How It Works
The parse to number block allows you to convert a string consisting of

number characters into a floating-point number value. The input string

can also have a ‘-’ (minus) and ‘.’ (decimal point) symbol. If the first

character of the string is the minus symbol, the string will convert into

a negative floating-point number value. If your string is something like

123abc, the numeric part will convert to the numeric value, which is 123.

If the string is something like abc123, you will get a NaN (Not a Number)

error, known as an exception, on the micro:bit display.

Table 4-1 shows the output for strings with different type of character

combinations.

Table 4-1. Output for strings with

different type of character combinations

String Output

123 123

abc nan

123abc 123

abc123 nan

a123bc nan

12 3 12

12-3 12

1.23 1.23

12/3 12

Chapter 4 Working With text

92

 Special Case

If your input string is something like 4e2, the number characters after the

e becomes an exponent of 10. The 2 after the e will calculate as 2 powers
of ten, which is 10 ∗ 10 or 100. The resulting value then is 4 ∗ 100, which

equals 400. Figure 4-18 shows the code for calculating the result for 4e2.

Figure 4-18. Calculating the result for 4e2

Chapter 4 Working With text

93© Pradeeka Seneviratne 2019
P. Seneviratne, BBC micro:bit Recipes, https://doi.org/10.1007/978-1-4842-4913-0_5

CHAPTER 5

Displaying Images
This chapter mainly focuses on how to show images on a micro:bit display.

MakeCode provides a set of built-in images and image editing blocks

to create your own images, limited up to two frames. You can play with

images by scrolling and offsetting them in different ways.

 5-1. Displaying Built-in Images
 Problem
You want to display a built-in image on the micro:bit LED matrix.

 Solution
• In the Toolbox, click on Advanced to expand the

category list, and then click on the Images category.

• Click and drag the show image block over and place it

inside of the on start block.

• In the Toolbox, click on the Images category, and then

click on the icon image block.

• Click and drag the icon image block over and place it

inside of the show image block (Figure 5-1).

94

• Click on the myImage variable block and from the

menu, choose Delete the “myImage” variable

(Figure 5-2).

• Click on the icon image and from the drop-down

menu, choose the happy icon. Keep the offset as 0

(Figure 5-3).

Figure 5-1. Placing the icon image block

Figure 5-2. Deleting the myImage variable block

Chapter 5 Displaying images

95

• Once finished, your code should look something like

this (Figure 5-4).

Figure 5-3. Choosing the happy icon

Chapter 5 Displaying images

96

 How It Works
MakeCode comes with 40 built-in images to show on the micro:bit display.

The full list of images can be found in Chapter 2, Recipe 2-1. MakeCode

uses the terms “icon” and “image” interchangeably. In the show image

block, the offset parameter determines the start position (or end position)

of the image to be displayed on the LED matrix.

 5-2. Image Offsetting
 Problem
You want to shift an image horizontally across the display with offset.

 Solution
• In the Toolbox, click on Advanced to expand the

category list, and then click on the Images category.

Figure 5-4. Full code listing

Chapter 5 Displaying images

97

• Click and drag the show image block over, and place it

inside of the on start block.

• In the Toolbox, click on the Images category, and then

click on the icon image block.

• Click and drag the icon image block over, and place it

inside of the show image block (Figure 5-5).

• Click on the myImage variable block and from the

menu, choose Delete the “myImage” variable.

• Click on the icon image and from the drop-down

menu, choose the happy icon. Change the offset to 2

(Figure 5-6).

Figure 5-5. The show image block

Chapter 5 Displaying images

98

• You will get an output as shown in Figure 5-7.

Figure 5-6. Offsetting an image

Figure 5-7. Offsetted output

Chapter 5 Displaying images

99

 How It Works
The micro:bit LED screen consists of 25 LEDs arranged as 5 columns and

5 rows (5 X 5 matrix). The index of the first column is 0 and the last column

is 4. The offset allows you to specify the number of LEDs from the left

or right of the picture that the micro:bit should start. You can use the

following values to make offset for different directions.

• 0 - no offset

• Any positive number - offsets from left

• Any negative number - offsets from right

The LED screen fits in a single frame. A frame is a part of the image.

It is a square with five LEDs on a side. An image can span multiple

frames. If you use the value 5 or -5 for the offset, you can completely hide

the image inside the micro:bit display.

 5-3. Scrolling Images
 Problem
You want to scroll an image on the micro:bit display with different speeds.

 Solution
• In the Toolbox, click on Advanced to expand the

category list, and then click on the Images category.

• Click and drag the scroll image block over, and place it

inside of the on start block.

• In the Toolbox, click on the Images category, and then

click on the icon image block.

Chapter 5 Displaying images

100

• Click and drag the icon image block over, and place it

inside of the scroll image block (Figure 5-8).

• Click on the myImage variable block and from the

menu, choose Delete the “myImage” variable.

• Type 2000 for interval (ms).

• Once finished, your code should look something like

this (Figure 5-9).

Figure 5-8. The scoll image block

Figure 5-9. Code listing

Chapter 5 Displaying images

101

 How It Works
The scroll image block allows you to scroll an image on the micro:bit

display from right to left or left to right. The offset parameter specifies

the number of LEDs from the left or right of the image that the micro:bit

should start and continue with the animation. The offset value 0 and 1

does the same effect. The offset 0 and any positive number makes the

image scroll from right to left. Any negative number makes the image scroll

from left to right. The speed of the scrolling effect can be changed by the

interval parameter. It accepts the time in milliseconds.

If you want to repeat the scrolling effect over and over again, place the

scroll image block inside the forever block.

 5-4. Creating Your Own Images
 Problem
You want to create an image to fit with the micro:bit display.

 Solution
• In the Toolbox, click on Advanced to expand the

category list, and then click on the Images category.

• Click and drag the show image block over, and place it

inside of the on start block.

• In the Toolbox, click on the Images category, and then

click on the create image block.

• Click and drag the create image block over, and place it

inside of the show image block (Figure 5-10).

Chapter 5 Displaying images

102

• Click on the myImage variable block and from the

menu, choose Delete the “myImage” variable

(Figure 5-11).

Figure 5-10. The create image block

Chapter 5 Displaying images

103

• In the create image block, click on the LEDs to

create the image that you want (e.g., robot) as shown in

Figure 5-12.

Figure 5-11. Deleting the myImage variable block

Chapter 5 Displaying images

104

 How It Works
The create image block represents the micro:bit’s physical LED screen. The

5 X 5 image block is known as a single frame image.

 5-5. Creating a Double-Sized Image
 Problem
You want to create a large image with two frames.

 Solution
• In the Toolbox, click on Advanced to expand the

category list, and then click on the Images category.

• Click and drag the show image block over, and place it

inside of the on start block.

Figure 5-12. Creating an image with the create image block

Chapter 5 Displaying images

105

• In the Toolbox, click on the Images category, and then

click on the create big image block.

• Click and drag the create big image block over, and

place it inside of the show image block (Figure 5-13).

Figure 5-13. The create big image block

• Click on the myImage variable block and from the

drop-down list, choose Delete the “myImage”
variable (Figure 5-14).

Chapter 5 Displaying images

106

• In the create big image block, draw two images

(giraffes) by clicking on the squares (Figure 5-15).

Figure 5-14. Deleting myImage variable

Figure 5-15. Image frames

Chapter 5 Displaying images

107

• When you run the code on micro:bit, you can only see

the Giraffe 1 (left) in Frame 1 on the micro:bit display

(Figure 5-16).

 How It Works
MakeCode allows you to create images with two frames. Each frame

consists of 5 rows and five columns of LEDs. When you run the code on the

micro:bit, the micro:bit display will show the first frame of the image. If you

want to see the second frame, you should use offset or scroll methods.

Figure 5-17 shows the code for displaying Frame 2 using the offset

method. You should type the index of the first column of the second frame,

which is 5 in the offset box.

Figure 5-16. Output on the LED screen

Chapter 5 Displaying images

108

Figure 5-18 shows how to use the scroll image block to display Frame

2 on the micro:bit LED screen.

 5-6. Displaying Arrows
 Problem
You want to display an arrow pointing to the south west direction.

Figure 5-17. Using the show image block

Figure 5-18. Using the scroll image block

Chapter 5 Displaying images

109

 Solution
• In the Toolbox, click Advanced followed by Images.

Then click and drag the show image block over and

place it inside of the on start block.

• In the Toolbox, click Images again. Then click and drag

the arrow image block over, and place it inside of the

show image block (Figure 5-19).

• Click on the myImage variable and from the drop-

down list, choose Delete the “myImage” variable.

• In the arrow image block, click on the drop-down list

and choose the South West option (Figure 5-20).

Figure 5-19. Placing the arrow image block

Chapter 5 Displaying images

110

• Once finished, your code should look something like

this (Figure 5-21).

Figure 5-20. Choosing the South West option

Figure 5-21. Full code listing

Chapter 5 Displaying images

111

• Figure 5-22 shows the output.

 How It Works
The arrow image block allows you to display an arrow pointing to different

directions. It is the only image group that you can find in the MakeCode

for micro:bit. It has the following set of arrows.

• North

• North East

• East

• South East

• South

• South West

• West

• North West

Figure 5-22. Output on the LED screen

Chapter 5 Displaying images

112

 5-7. Using Variable to Hold an Image
 Problem
You want to use a variable to hold an image.

 Solution
• In the Toolbox, click on the Variables category, and

then click on Make a Variable… (Figure 5-23).

Figure 5-23. Creating a variable

Chapter 5 Displaying images

113

• In the New variable name modal box (window), type

in the variable name (e.g., heart). Then click on the Ok

button (Figure 5-24).

• Now your Variables Toolbox should look something

like this (Figure 5-25). It contains the variable and two

blocks to set and change the variable.

Figure 5-24. Providing a name for the variable

Chapter 5 Displaying images

114

• Now click and drag the set heart to block over and

place it inside of the on start block.

• In the Toolbox, click Advanced followed by Images.

Then click and drag the icon image block over, and

place it inside of the set heart to block (Figure 5-26).

Figure 5-25. Variable toolbox

Figure 5-26. Assigning an icon image to a variable

Chapter 5 Displaying images

115

• In the Toolbox, click Images. Then click and drag

the show image block over and place it inside of the

forever block.

• In the show image block, click on the myImage and

from the drop-down list, choose the variable, heart

(Figure 5-27).

• Now your code should look something like this

(Figure 5-28).

Figure 5-27. Choosing the variable, heart

Chapter 5 Displaying images

116

 How It Works
Variables can hold built-in images and custom images. Once assigned an

image to a variable, you can use the variable name to display the image at

any point in your code.

Figure 5-28. Full code listing

Chapter 5 Displaying images

117© Pradeeka Seneviratne 2019
P. Seneviratne, BBC micro:bit Recipes, https://doi.org/10.1007/978-1-4842-4913-0_6

CHAPTER 6

Inputs and Outputs
In this chapter, you learn how to handle inputs and outputs with micro:bit

through the edge connector. The 21 I/O pins can be used to work with

analog, digital, I2C, SPI, and UART. Some I/O pins are also specialized to

build touch-sensitive applications. The micro:bit only exposes three I/O

pins through the edge connector for basic users. If you want to access the

full set of I/O pins, you can use an edge connector breakout.

 6-1. Using Edge Connector
 Problem
You want to connect the pins 0, 1, 2, 3V, and GND to an external

component.

 Solution
Connect the external components (or circuit) to the micro:bit with

Alligator/Crocodile clips (sometimes called Alligator/Crocodile leads) as

shown in Figure 6-1.

118

 How It Works
The micro:bit exposes its I/O pins through the edge connector, as shown

in Figure 6-2. The edge connector consists of large and small connection

pads. The large connection pads expose GPIO pins 0, 1, and 2 only. Apart

from that, you can find 3V and GND pads that can be used to power up

your sensors, actuators, and external circuits.

Figure 6-1. Using Alligator/Crocodile clips with the edge connector
(Image courtesy of Monk Makes: https://www.monkmakes.com)

Chapter 6 Inputs and Outputs

https://www.monkmakes.com

119

These alligator/crocodile clips are cheap, easy to use, and don’t require

any extra skills to connect them with the edge connector. You can purchase

bundles of these cables from various electronic resellers:

• MonkMakes (https://www.monkmakes.com/mb-

alligator-short/)

• Kitronik (https://www.kitronik.co.uk/2407-

crocodile-leads-pack-of-10.html)

• SparkFun (https://www.sparkfun.com/

products/12978)

These clips are not very stable and can lose the connection or touch

with other pins in the edge connector, resulting in a short circuit or

overheating of the processor.

Figure 6-2. I/O pins

Chapter 6 Inputs and Outputs

https://www.monkmakes.com/mb-alligator-short/
https://www.monkmakes.com/mb-alligator-short/
https://www.kitronik.co.uk/2407-crocodile-leads-pack-of-10.html
https://www.kitronik.co.uk/2407-crocodile-leads-pack-of-10.html
https://www.sparkfun.com/products/12978
https://www.sparkfun.com/products/12978

120

 6-2. Using Edge Connector Breakout
 Problem
You want to connect an external circuit to the small pads in the edge

connector.

 Solution
Figure 6-3 shows how to insert the micro:bit into the Kitronik edge

connector breakout. Make sure to insert it firmly into the slot of the edge

connector breakout, and the micro:bit should be face up.

Figure 6-3. Kitronik edge connector breakout (Image courtesy of
Kitronik: https://www.kitronik.co.uk/)

Chapter 6 Inputs and Outputs

https://www.kitronik.co.uk/

121

 How It Works
Alligator/Crocodile leads can’t be used to connect with small pads in the

edge connector. As a solution, you can use an edge connector breakout

to access all the 21 I/O pins. Usually edge connector breakouts break

the micro:bit edge connector into a row of pin headers. Here is the list of

manufacturers and vendors:

• Kitronik (https://www.kitronik.co.uk/5601b-edge-

connector-breakout-board-for-bbc-microbit-pre-

built.html)

• SparkFun (https://www.sparkfun.com/

products/13989)

• Waveshare (https://www.aliexpress.com/item/

Waveshare-Edge-connector-expansion-board-

for-micro-bit-breakout-the-I-O-pins-to-2-

54mm/32864979980.html)

 6-3. Using Built-In Buttons
 Problem
You want to display different images by pressing the buttons A and B for all

the possible combinations.

 Solution
• In the Toolbox, click on the Variables category and

then click on the Make a variable… button.

• In the New variable name modal box (window), type

“a” without the double quotation marks. Then click on

the Ok button to create the variable.

Chapter 6 Inputs and Outputs

https://www.kitronik.co.uk/5601b-edge-connector-breakout-board-for-bbc-microbit-pre-built.html
https://www.kitronik.co.uk/5601b-edge-connector-breakout-board-for-bbc-microbit-pre-built.html
https://www.kitronik.co.uk/5601b-edge-connector-breakout-board-for-bbc-microbit-pre-built.html
https://www.sparkfun.com/products/13989
https://www.sparkfun.com/products/13989
https://www.aliexpress.com/item/Waveshare-Edge-connector-expansion-board-for-micro-bit-breakout-the-I-O-pins-to-2-54mm/32864979980.html
https://www.aliexpress.com/item/Waveshare-Edge-connector-expansion-board-for-micro-bit-breakout-the-I-O-pins-to-2-54mm/32864979980.html
https://www.aliexpress.com/item/Waveshare-Edge-connector-expansion-board-for-micro-bit-breakout-the-I-O-pins-to-2-54mm/32864979980.html
https://www.aliexpress.com/item/Waveshare-Edge-connector-expansion-board-for-micro-bit-breakout-the-I-O-pins-to-2-54mm/32864979980.html

122

• Repeat the above step to create two more variables, “b”

and “ab” (without double quotes) (Figure 6-4).

• In the Toolbox, click on the Variables category. Then

click and drag the set variable to block over and place

it inside to the on start block. After that, choose the

variable “a” from the drop-down list.

• In the Toolbox, click the Images category. Then click

and drag the icon image block over and place it inside

the set variable to block. After that, choose the happy

icon from the drop-down list.

Figure 6-4. Variables toolbox

Chapter 6 Inputs and Outputs

123

• Repeat the above two steps to add and configure

two more set variable to blocks for the variables “b”

and “ab.” Also, choose “sad” and “confused” icons,

respectively, for the set variable to blocks (Figure 6-5).

• In the Toolbox, click the Input category and click

on the on button x pressed block. Then choose the

button “A” from the drop-down list if it has not already

selected by default.

• In the Toolbox, click on the Images category. Then

click and drag the show image block over and place

it inside the on button A pressed block. After that,

choose the variable “a” from the drop-down list if it has

not already selected by default.

• Repeat the above two steps for the on button B pressed

and on button AB pressed event handlers (Figure 6-6).

Figure 6-5. Assigning icons to variables

Chapter 6 Inputs and Outputs

124

• Once completed, your code shook look like this (Figure 6-7).

Figure 6-6. Using button press event handlers

Figure 6-7. Full code listing

Chapter 6 Inputs and Outputs

125

 How It Works
There are two momentary push buttons on the front side of the micro:bit

labeled as A and B (Figure 6-8).

Button A is internally connected to digital pin 5, and button B is

internally connected to digital pin 11. MakeCode provides three event
handlers to detect when these buttons are pressed. They are the following:

• on button A pressed

• on button B pressed

• on button A+B pressed (press both buttons together)

These event handlers allow you to trigger a piece of code during the

program execution. The variable a holds the icon image for the button A.
The variable b holds the icon image for the button B. The variable ab holds

the icon image for both buttons A+B.

Figure 6-8. Built-in two momentary push buttons A and B. The third
button can be simulated by pressing button A and B together.

Chapter 6 Inputs and Outputs

126

 6-4. Using External Buttons
 Problem
You want to connect a momentary push button to the micro:bit to read

inputs.

 Solution
You will need the following components to build the circuit:

• Momentary push button

• 1k Ohm resistor

• 4 Alligator Leads (https://www.monkmakes.com/product/)

Wire up the momentary push button with the pull-up resistor and

connect the button with micro:bit pin 0 as shown in Figure 6-9.

Chapter 6 Inputs and Outputs

https://www.monkmakes.com/product/

127

• In the MakeCode Toolbox, click Input. Then click on

the on pin x pressed block. Choose P0 from the

drop-down list if it has not already been selected.

• In the Toolbox, click Basic and then click and drag the

show icon block over, and place it inside the on pin P0
pressed block.

• Once completed, your code should look something like

this (Figure 6-10).

Figure 6-9. Connecting an external push button with Pin0

Chapter 6 Inputs and Outputs

128

 How It Works
With MakeCode, you can use micro:bit pins 0, 1, and 2 to connect with

external buttons to read inputs using on pin x pressed block. These pins

are labeled as P0, P1, and P2, respectively. They can be found in the edge

connector of the micro:bit board.

Typically, a momentary push button has four pins that can be labeled

as A, B, C, and D (Figure 6-11).

Figure 6-10. Full code listing

Figure 6-11. Pinout of the momentary push button

Chapter 6 Inputs and Outputs

129

The following pins are internally connected (Figure 6-12).

• A and D

• B and C

These switches are normally in the OPEN state, and they must be

pushed to complete or CLOSE the circuit. The circuit can be completed

through AB, CD, AC, or BD.

Make sure to connect external buttons with the micro:bit using pull-

up circuits. This will allow you to cut off electrical noise interference and

provide accurate on-off readings.

 6-5. Controlling Brightness of an LED
 Problem
You want to control the brightness of an LED with a potentiometer.

Figure 6-12. Internal connection between pins

Chapter 6 Inputs and Outputs

130

 Solution
You will need the following things to build the circuit:

• 10K Ohm potentiometer

• 3 mm LED

• 4 Alligator leads

Figure 6-13 presents the wiring diagram for the circuit.

Figure 6-13. Wiring diagram for analog read/write circuit

Chapter 6 Inputs and Outputs

131

Follow these steps to wire the circuit:

• Connect the positive lead of the LED to the micro:bit

pin 1.

• Connect the negative lead of the LED to the micro:bit

GND pin.

• Connect the middle pin of the potentiometer to the

micro:bit pin 0.

• Connect one of the outer pins of the potentiometer to

the micro:bit 3V.

• Connect the other outer pin of the potentiometer to the

micro:bit GND pin.

Also, follow these steps to build the code with MakeCode:

• In the Toolbox, click on the Pins category. Next, click

and drag the analog write pin block over and place

it inside the forever block. Then choose, P1 from the

drop-down menu.

• In the Toolbox, click on the Pins category again. Then

click and drag the analog read pin block over and

place it inside the placeholder of the analog write pin

block. Choose P0 from the drop-down menu if it has

not already been selected.

• Once completed, your code should look like this

(Figure 6-14).

Chapter 6 Inputs and Outputs

132

 How It Works
When you turn the shaft of the potentiometer, the voltage at the center

pin will change. The same effect will happen at the micro:bit pin 0. You

can read the voltage at the center pin with the analog read pin block and

write the same value at pin 1 to change the brightness of the LED using an

analog write pin block.

The analog read pin block returns an integer between 1–1023. The

same value can be passed to the analog write pin to control the voltage at

pin 1, which controls the brightness of the attached LED.

The following steps show you how to calculate the voltage on pin 1 for

an analog value 500 on pin 0.

• First, calculate the voltage for the analog read value 1

by dividing the maximum voltage, 3V, by 1023.

3.0 / 1023 = 0.002932551V

• Then multiply this result by 500:

0.002932551 x 500 = 1.46

• So, a value of 500 will send 1.46 volts into pin 1.

Figure 6-14. Full code listing

Chapter 6 Inputs and Outputs

133

 6-6. Using Digital Input and Output
 Problem
You want to turn an LED on and off based on the button status.

 Solution
You will need the following things to build the circuit:

• Momentary push button

• 3 mm LED

• 4 Alligator leads

Figure 6-15 presents the wiring diagram for the circuit.

Figure 6-15. Wiring diagram for digital read/write circuit

Chapter 6 Inputs and Outputs

134

Follow these steps to wire the circuit.

• In the Toolbox, click on the Pins category. Now, click

and drag the digital write pin block over and place

it inside the forever block. Then choose P1 from the

drop-down menu.

• In the Toolbox, click on the Pins category. Now, click

and drag the digital read pin block over and place it

inside the placeholder of the digital write pin block.

Then choose P0 from the drop-down menu if it has not

already been selected.

• In the Toolbox, click on the Basic category. Then

click and drag the pause (ms) block over and place it

underneath the digital write pin block.

• Once completed, your code should look like this

(Figure 6-16).

 How It Works
Digital signals or data can be expressed as a series of 0 and 1 digits.

Figure 6-17 shows a digital signal with two statuses over time. The voltage

level of HIGH takes 3.3V and LOW takes 0V.

Figure 6-16. Full code listing

Chapter 6 Inputs and Outputs

135

In the above example, when you press and hold the push button, the

digital read pin returns 1. When you release it, the digital read pin returns

0. The return value of the digital read pin is used as the input for the digital
write pin to turn on and off the LED; when the digital write pin receives 1, the

LED will turn on. When the digital write pin receives 0, the LED will turn off.

 6-7. Writing a Number to a Device at a I2C
Address
 Problem
You want to write the value 255 to a device at a I2C address 0x1d as an 8-bit

number.

 Solution
• In the Toolbox, click on the Pins category. Then click

and drag the i2c write number block over and place it

inside the on start block.

• Type the value 29 for the at address parameter.

• Type the value 255 for the with value parameter.

Figure 6-17. Digital 3.3V signal over time

Chapter 6 Inputs and Outputs

136

• Choose Int8LE from the drop-down menu for the

format parameter.

• Choose false for the repeated parameter.

• Figure 6-18 shows the i2c write number block

configured with all the required parameters.

 How It Works
The micro:bit supports with the I2C (Inter-Integrated Circuit) communication

protocol that allows you to connect devices through the I2C bus. You

can use SDA and SCL pins of the micro:bit to connect devices and

communicate through the I2C bus. Therefore, I2C requires two wires to

communicate.

Depending on the configuration, the I2C bus can support up to

1024 slave devices; however as 7 bit addressing is used with micro:bit

Figure 6-18. The i2c write number block

Chapter 6 Inputs and Outputs

137

MicroPython, the amount of slave devices is 128. Figure 6-19 shows the

communication paths between master and slave devices of a I2C bus.

Figure 6-19. Master and slave devices connected through the I2C bus

In the above example, the on-board accelerometer of the micro:bit,

which is internally connected with the I2C bus at the address 0x1d, is

used to write numbers using MakeCode. The decimal equivalent of the

0x1d (in hex) is 29.

Here is the list of parameters that can be used with the i2c write

number block:

• address: the 7-bit I2C address of the device to send to

send value to.

• value: the number to send to the address.

• format: the Number Format for value. You can learn

more about the number formats by visiting https://

makecode.microbit.org/types/buffer/number-format.

• repeated: if true, don’t send a stop condition after the

write. Otherwise, a stop condition is sent when false

(the default).

Chapter 6 Inputs and Outputs

https://makecode.microbit.org/types/buffer/number-format
https://makecode.microbit.org/types/buffer/number-format

138

 6-8. Reading a Number from a Device at
a I2C Address
 Problem
You want to read a number from the device at a 7-bit I2C address 0x1d as

an 8-bit number.

 Solution
• In the Toolbox, click on the Basic category. Then click

and drag the show number block over and place it

inside the on start block.

• In the Toolbox, click on the Pins category. Then click

and drag the i2c read number block over and place it

inside the placeholder of the show number block.

• Type the value 29 for the device address.

• Choose Int8LE for the number format.

• Choose false for repeated.

• Figure 6-20 shows the i2c write number block

configured with all the required parameters.

Figure 6-20. The i2c read number block

Chapter 6 Inputs and Outputs

139

 How It Works
In above example, the i2c read number block reads one byte from the

device connected to the I2C bus at the address 0x1d.

 6-9. Writing Data to an SPI Slave Device
 Problem
You want to write a data value to the SPI slave device.

 Solution
• In the Toolbox, click on the Pins category. Next, click

and drag the spi set pins block over and place it inside

the on start block. Then choose P15 for MOSI, P14 for

MISO, and P13 for SCK.

• In the Toolbox, click on the Pins category. Next, click

and drag the spi format bits block over and place it

underneath the spi set pins block. Then type 8 for bits

and 3 for mode.

• In the Toolbox, click on the Pins category. Next, click

and drag the spi frequency block over and place

it underneath the spi format bits block. Then type

1000000 for frequency.

• In the Toolbox, click on the Basic category. Then click

and drag the show number block over and place it

underneath the spi frequency block.

• In the Toolbox, click on the Pins category. Next, click

and drag the spi write block over and place it inside the

placeholder of the show number block. Then type 64 in

the number box.

Chapter 6 Inputs and Outputs

140

• Figure 6-21 shows the completed code.

 How It Works
The SPI (Serial Peripheral Interface) allows you to connect devices with

the micro:bit through the SPI bus. The SPI uses master-slave architecture

with a single master device. The SPI requires three wires to communicate

between master and slave. They are:

• SCLK: Serial Clock (output from master).

• MOSI: Master Output, Slave Input (output from master).

• MISO: Master Input, Slave Output (output from slave).

There is a separate line used for CS (Chip Select), and it can be any

digital pin in the edge connector of the micro:bit.

The spi write block accepts a number that is the data value to send

to the SPI slave device. Also, the spi write block returns a number value,

which is the response from the SPI slave device. Before starting, write any

value to an SPI slave device; you must configure and set some important

parameters using the following blocks.

Figure 6-21. Full code listing

Chapter 6 Inputs and Outputs

141

• spi set pins – Set the Serial Peripheral Interface (SPI)

signaling pins. An SPI connection uses hreee signaling

lines called MOSI, MISO, and SCK. If you don’t

set the pins for the SPI connection, the default pin

assignments are used:

• P15 = MOSI, micro:bit SPI data output pin

• P14 = MISO, micro:bit SPI data input pin

• P13 = SCK, micro:bit SPI serial clock output pin

• spi frequency – Sets the Serial Peripheral Interface

(SPI) clock frequency. The default clock frequency is

1 Mhz (10000000 Hz). You can set the frequency for

the SPI connection to some other value if you need a

different data rate.

• spi format – Sets the Serial Peripheral Interface (SPI)

format. The bits parameter is used to set the number

of bits to represent each value. The mode parameter

presents a mode value for the SPI clock (SCK) signaling.

Following are the different types of modes you can use:

• 0: the data line is active when SCK goes to high, and

the data values are read when SCK goes to high.

• 1: the data line is active when SCK goes to high, and

the data values are read when SCK goes to low.

• 2: the data line is active when SCK goes to low, and

the data values are read when SCK goes to high.

• 3: the data line is active when SCK goes to low, and

the data values are read when SCK goes to low.

Chapter 6 Inputs and Outputs

143© Pradeeka Seneviratne 2019
P. Seneviratne, BBC micro:bit Recipes, https://doi.org/10.1007/978-1-4842-4913-0_7

CHAPTER 7

Loops and Logic
This chapter presents some recipes about how to use loops and logic with

MakeCode. MakeCode provides four type of loops to continually repeat

blocks until a certain condition is reached:

• repeat

• while

• for

• for element

It also provides three types of block categories for decision making:

• conditional

• comparison

• Boolean

 7-1. Repeating Some Code Blocks Several
Times
 Problem
You want to display numbers from 1 to 10 using a loop.

144

 Solution
• In the Toolbox, click the Variables category. Then

click on the Make a Variable… button. In the New
variable name modal box, type x. Then click on the

Ok button.

• Again, click on the Variables category, and then

click and drag the set variable to block over and

place it inside the on start block. Then choose the

variable name x from the drop-down list if it has

not already been selected. Also type 1 for the initial
value.

• In the Toolbox, click the Loops category. Then click

and drag the repeat n times block over again, and

place it inside the on start block just below the set

variable to block. Type 10 for the number of times that

you want to repeat the action.

• In the Toolbox, click the Basic category. Then

click and drag the show number block over, and

place it inside the repeat 10 times block. Choose

the variable x from the drop-down list if it has not

already been selected.

• In the Toolbox, click the Variables category. Then click

and drag the change variable by block over, and place

it inside the repeat 10 times block just below the show
number block. Choose the variable x from the drop-

down list if it has not already been selected.

• Once completed, your code should look something like

this (Figure 7-1).

Chapter 7 Loops and LogiC

145

 How It Works
The repeat n times block allows you to execute a group of blocks several

times. The number of times can be defined in the text box of the repeat n

times block.

 7-2. Run a Same Sequence of Actions While
a Condition Is Met
 Problem
You want to print numbers from 1 to 10 using a while loop.

Figure 7-1. Full code listing

Chapter 7 Loops and LogiC

146

 Solution
• In the Toolbox, click the Variables category. Then click

on the Make a Variable… button. In the New variable
name modal box, type x. Then click on the Ok button.

• Again, click on the Variables category, and then click

and drag the set variable to block over and place it

inside the on start block. Then choose the variable

name x from the drop-down list if it has not already

been selected. Also type 1 for the initial value.

• In the Toolbox, click the Loops category. Then click

and drag the while-do block over again, and place it

inside the on start block just below the set variable to

block.

• In the while block, choose the variable x from the first

drop-down list. Then choose less than or equal (≤)

from the second drop-down list for the condition. After

that, type 10 in the text box for the value you want to

compare with the result using the condition.

• In the Toolbox, click the Basic category. Then click and

drag the show number block over, and place it inside

the while-do block. Choose the variable x from the

drop-down list if it has not already been selected.

• In the Toolbox, click the Variables category. Then

click and drag the change variable by block over, and

place it inside the while-do block just below the show
number block. Choose the variable x from the drop-

down list if it has not already been selected.

Chapter 7 Loops and LogiC

147

• Once completed, your code should look something like

this (Figure 7-2).

 How It Works
The while-do loop allows you to repeat a block until a specific

condition is met. In the above example, the while loop prints numbers

from 1 and increments by 1 in each step until the result is less than

or equal to 10 where 10 is considered as the condition. In each step,

the show number block prints the result, and the change x by 1 block

increments the result by 1.

The while-do block supports the following conditions.

• = Return true if both inputs are equal each other.

• ≠ Return true if both inputs are not equal to each

other.

Figure 7-2. Full code listing

Chapter 7 Loops and LogiC

148

• < Return true if the first input is smaller than the

second input.

• ≤ Return true if the first input is smaller than or

equal to the second input.

• > Return true if the first input is greater than the

second input.

• ≥ Return true if the first input is greater than or

equal to the second input.

 7-3. Using for Loop
 Problem
You want to display even numbers from 0 to 10 on the micro:bit screen.

 Solution
• In the Toolbox, click the Variables category. Then

click on the Make a Variable… button. In the New
variable name modal box, type x. Then click on the

Ok button.

• In the Toolbox, click on the Variables category again.

Then click and drag the set variable to block over, and

place it inside the on start block. Choose the variable x

from the drop-down list.

• In the Toolbox, click the Loops category. Then click

and drag the for block over, and place it inside the on
start block just below the set variable to block. In the

textbox, type 5 for the end number (end step).

Chapter 7 Loops and LogiC

149

• In the Toolbox, click the Basic category. Then click and

drag the show number block over, and place it inside

the for block. Choose the variable x from the drop-

down list.

• In the Toolbox, click the Variables category. Then click

and drag the change variable by block over, and place

it inside the for block just below the show number

block. Choose the variable x from the drop-down list,

and type 2 for the increment value.

• Once completed, your code should look something like

this (Figure 7-3).

Figure 7-3. Full code listing

Chapter 7 Loops and LogiC

150

 How It Works
The for loop allows you to run same code over and over again, the number

of times you specify. In the above solution under Recipe 7-3, the for loop

repeats the code 6 times (0 to 5), and every time the value of the variable x

is displayed on the micro:bit LED screen and incremented by 2. Table 7-1

shows how the output is calculated in each step.

Table 7-1. Calculation steps of the ‘for’ loop

Index Print value of x Calculation (x = x + 2)

0 0 0 + 2 = 2

1 2 2 + 2 = 4

2 4 4 + 2 = 6

3 6 6 + 2 = 8

4 8 8 + 2 = 10

5 10 Calculation stops

Chapter 7 Loops and LogiC

151

 7-4. Decision Making with if-then
 Problem
You want to display the ‘yes’ icon on the micro:bit LED screen if the

randomly generated number is greater than 5.

 Solution
• In the Toolbox, click the Input category and then click

on the on button A pressed event block.

• In the Toolbox, click the Variables category. Then click

on the Make a Variable… button. In the New variable
name modal box, type x. Then click on the Ok button.

• In the Toolbox, click on the Variables category again.

Then click and drag the set variable to block over, and

place it inside the on button A pressed block. After

that, choose the variable x from the drop-down list.

• In the Toolbox, click the Math category. Then click and

drag the pick random 0 to 10 block over, and place it

on the placeholder of the set x to block (Figure 7-4).

Figure 7-4. Placing the pick random block

Chapter 7 Loops and LogiC

152

• In the Toolbox, click on the Logic category. Then click

and drag the if-then block over, and place it inside

the on button A pressed block just below the set x to

block.

• In the Toolbox, click on the Logic category again.

Under the Comparison section, click and drag one of

the comparison blocks over, and place it inside the

placeholder of the if-then block. Choose > (greater
than) from the drop-down list. Then click on the

Variables category. Then click and drag the variable

x over, and place it inside the first placeholder of

the comparison block. Then type 5 in the second

placeholder.

• Click on the Basic category. Then click and drag the

show icon block over, and place it inside the if-then

block. Choose the “yes” icon from the drop-down list

if it has not already been selected. Also, drag and drop

the clear screen block from the Basic category, and

place it inside the if-then block just below the show
icon block.

• Once completed, your code should look something like

this (Figure 7-5).

Chapter 7 Loops and LogiC

153

 How It Works
The if-then block allows you to identify if a certain condition is true or

false and executes a block of code accordingly. In the above solution

under Recipe 7-4, when you press the button A, a random number (0 to

10 between mix and max included) will assign to the variable x. Next, the

if section of the if-else block is used to determine whether the variable x

is greater than 5. If true, the “yes” icon will display on the LED screen and

then clear the screen to prepare it for the next event.

 7-5. Decision Making with If-then-else
 Problem
You want to display the ‘yes’ icon on the micro:bit LED screen if the

randomly generated number is greater than 5 and display the ‘no’ icon if

the randomly generated number is less than 5.

Figure 7-5. Code listing

Chapter 7 Loops and LogiC

154

 Solution
• In the Toolbox, click the Input category, and then click

on the on button A pressed event block.

• In the Toolbox, click the Variables category. Then click

on the Make a Variable… button. In the New variable
name modal box, type x. Then click on the Ok button.

• In the Toolbox, click on the Variables category again.

Then click and drag the set variable to block over, and

place it inside the on button A pressed block. After

that, choose the variable x from the drop-down list.

• In the Toolbox, click the Math category. Then click and

drag the pick random 0 to 10 block over, and place it

on the placeholder of the set x to block (Figure 7-6).

• In the Toolbox, click on the Logic category. Then click and

drag the if-then-else block over, and place it inside the on
button A pressed block just below the set x to block.

• In the Toolbox, click on the Logic category again.

Under the Comparison section, click and drag one of

Figure 7-6. Placing the pick random block

Chapter 7 Loops and LogiC

155

the comparison blocks over, and place it inside the

placeholder of the if-then block. Choose > (greater than)

from the drop-down list. Then click on the Variables

category. Then click and drag the variable x over, and

place it inside the first placeholder of the comparison

block. Then type 5 in the second placeholder.

• Click on the Basic category. Then click and drag the

show icon block over, and place it inside the then

section of the if-then-else block. Choose the “yes” icon

from the drop-down list. Also, drag and drop another

show icon block from the Basic category, and place it

inside the else section of the if-then-else block. Then

choose the “no” icon from the drop-down list.

• Once completed, your code should look something like

this (Figure 7-7).

Figure 7-7. Code listing

Chapter 7 Loops and LogiC

156

 How It Works
The if-then-else block allows you to identify if a certain condition is true

or false and executes a block of code accordingly. In the above solution

under Recipe 7-5, when you press the button A, a random number (0 to

10 between mix and max included) will assign to the variable x. Next, the

if section of the if-else block is used to determine whether the variable x

is greater than 5. If true, the then section of the if-then-else will execute

and display the “yes” icon on the LED screen. If the variable x is less

than 5, the block inside the else section will execute and the “no” icon

will display on the LED screen.

 7-6. Decision Making with if-then-else
if-then- else
 Problem
You want to display the ‘yes’ icon on the micro:bit LED screen if the

randomly generated number is greater than 5 and display the ‘no’ icon if

the randomly generated number is less than 5. Also, display the square
icon, if the random number is equal to 5.

 Solution
• In the Toolbox, click the Input category, and then click

on the on button A pressed event block.

• In the Toolbox, click the Variables category. Then

click on the Make a Variable… button. In the New
variable name modal box, type x. Then click on the

Ok button.

Chapter 7 Loops and LogiC

157

• In the Toolbox, click on the Variables category

again. Then click and drag the set variable to block

over, and place it inside the on button A pressed

block. After that, choose the variable x from the

drop-down list.

• In the Toolbox, click the Math category. Then click and

drag the pick random 0 to 10 block over, and place it

on the placeholder of the set x to block (Figure 7-8).

• In the Toolbox, click on the Logic category. Then click

and drag the if-then-else block over, and place it inside

the on button A pressed block just below the set x to

block. Click on the plus icon to add another section to

the if-then-else block.

• In the Toolbox, click on the Logic category again.

Under the Comparison section, click and drag one of

the comparison blocks over, and place it inside the

placeholder of the if-then block. Choose > (greater
than) from the drop-down list. Then click on the

Figure 7-8. Placing the pick random block

Chapter 7 Loops and LogiC

158

Variables category. Then click and drag the variable

x over, and place it inside the first placeholder of

the comparison block. Then type 5 in the second

placeholder.

• Click on the Basic category. Then click and drag the

show icon block over, and place it inside the then

section of the if-then-else block. Choose the “yes” icon

from the drop-down list.

• In the Toolbox, click on the Logic category. Under

the Comparison section, click and drag one of the

comparison blocks over, and place it inside the second

placeholder if it belongs to the else if section of the

if- then block. Choose < (less than) from the drop-

down list. Then click on the Variables category. Then

click and drag the variable x over, and place it inside

the first placeholder of the comparison block. Then

type 5 in the second placeholder.

• Also, drag and drop another show icon block from the

Basic category, and place it inside the else if section of

the if-then-else block. Then choose the “no” icon from

the drop-down list.

• Finally, drag and drop one more show icon block from

the Basic category, and place it inside the else section

of the if-then-else block. Then choose “square” icon

from the drop-down list.

• Once completed, your code should look something like

this (Figure 7-9).

Chapter 7 Loops and LogiC

159

 How It Works
The if-then-else block allows you to identify if certain conditions are true

or false and executes a block of code accordingly. In the above solution

under Recipe 7-6, when you press the button A, a random number (0 to

10 between mix and max included) will assign to the variable x. Next, the

if section of the if-else block is used to determine whether the variable

x is greater than 5. If true, the code block inside the first then section of

the if-then-else block will execute and display the “yes” icon on the LED

screen. If the variable x is less than 5, the block inside the else if section

Figure 7-9. Code listing

Chapter 7 Loops and LogiC

160

will execute, and the “no” icon will display on the LED screen. If the

variable x is equal to 5, the block inside the else section will execute, and

the “square” icon will display on the LED screen.

 7-7. Comparing Numbers
 Problem
You want to compare two numbers.

 Solution
• In the Toolbox, click on the Variables category and

then click on the Make a Variable… button. In the New
variable name box, type x. Finally, click on the Ok

button.

• Follow the above step again to make another variable

named y.

• In the Toolbox, click on the Variables category. Then

click and drag the set y to block over, and place it inside

the on start block. Now right-click on the set y to block,

and from the shortcut menu, choose Duplicate. Place

the duplicated block just above the set y to block and

choose the variable x from the drop-down list. Type the

value 5 for both variables.

• In the Toolbox, click on the Logic category. Then click

and drag the if-then-else block over and place it inside

the on start block just below the set y to block.

Chapter 7 Loops and LogiC

161

• Click on the Logic category again. Under the

Comparison section, click and drag one of the

blocks over, and place it on the placeholder of the

if-then- else block (by default, the placeholder has a

true-false block). Then choose “=” from the drop-

down list.

• Click on the Variables category. Then click and drag

the variable x over and place it on the first placeholder

of the comparison block. Also, click and drag the

variable y block over, and place it on the second
placeholder of the comparison block.

• Click on the Basic category. Then click and drag the

show icon block over, and place it inside the then

section of the if-then-else block. After that, choose the

“yes” icon from the drop-down list.

• Follow the above step to place another show icon block

inside the else section of the if-then-else block, and

choose the “no” icon from the drop-down list.

• Once completed, your code should look something like

this (Figure 7-10).

Chapter 7 Loops and LogiC

162

 How It Works
The comparison block allows you to compare two numbers (inputs).

• = Return true if both inputs equal each other.

• ≠ Return true if both inputs are not equal to each

other.

• < Return true if the first input is smaller than the

second input.

• ≤ Return true if the first input is smaller than or

equal to the second input.

Figure 7-10. Code listing

Chapter 7 Loops and LogiC

163

• > Return true if the first input is greater than the

second input.

• ≥ Return true if the first input is greater than or

equal to the second input.

 7-8. Using Boolean Operators
 Problem
You want to check if the user has pressed both buttons connected to the

pin0 and pin1.

 Solution
You will need following things to build the circuit.

• micro:bit

• Two toggle switches

(https://www.sparkfun.com/products/9276)

• Two 10 kilo Ohm resistors

• Alligator leads

First, build the circuit as shown in Figure 7-11.

Chapter 7 Loops and LogiC

https://www.sparkfun.com/products/9276

164

Then follow the steps below to build the code with MakeCode.

• In the Toolbox, click on the Input category and then

click on the on button A pressed event block.

• In the Toolbox, click on the Variables category and

then click on the Make a Variable… button. In the New
variable name box, type x. Finally, click on the Ok button.

• Follow the above step again to make another variable

named y.

• In the Toolbox, click on the Variables category. Then

click and drag the set y to block over, and place it inside

the on button A pressed block. Now right-click on

the set y to block and from the shortcut menu, choose

Duplicate. Place the duplicated block just above the

set y to block and choose the variable x from the drop-

down list.

Figure 7-11. Wiring diagram

Chapter 7 Loops and LogiC

165

• Click on the Pins category. Then click and drag the

digital read pin P0 block over, and place it inside the

placeholder of the set x to block.

• Follow the above step to place another digital read pin

P0 block inside the placeholder of the set y to block.

Then choose the pin P1 from the drop-down list.

• In the Toolbox, click on the Logic category. Then click

and drag the if-then-else block over, and place it inside

the on start block just below the set y to block.

• Click on the Logic category again. Under the Boolean

section, click and drag the Boolean and block over, and

place it on the placeholder of the if-then-else block (by

default, the placeholder has a true-false block).

• Click on the Variables category. Then click and drag

the variable x over, and place it on the first placeholder

of the comparison block. Also, click and drag the

variable y block over, and place it on the second
placeholder of the comparison block.

• Click on the Basic category. Then click and drag the

show icon block over, and place it inside the then

section of the if-then-else block. After that, choose the

“yes” icon from the drop-down list.

• Follow the above step to place another show icon block

inside the else section of the if-then-else block, and

choose the “no” icon from the drop-down list.

• Once completed, your code should look something like

this (Figure 7-12).

Chapter 7 Loops and LogiC

166

 How It Works
Boolean operators allow you to take Boolean inputs (true and false, 1 and 0)

and evaluate to a Boolean output. MakeCode provides three Boolean

operators:

• And: Evaluates to true if-and-only-if both inputs are

true. Table 7-2 shows the truth table for the Boolean

And.

Figure 7-12. Code listing

Chapter 7 Loops and LogiC

167

• Or: Evaluates to true if-and-only-if either input is

true. Table 7-3 shows the truth table for the Boolean

operator Or.

Table 7-2. Truth table for AND operator

Input A Input B Output

true ture true

true False False

False true False

False False False

Table 7-3. Truth table for OR operator

Input A Input B Output

true ture true

true False true

False true true

False False False

• Not: Evaluates to the opposite of the input. Table 7-4

shows the truth table for the Boolean operator Not.

Chapter 7 Loops and LogiC

168

Table 7-4. Truth table for NOT operator

Input Output

true False

False true

In the above solution under Recipe 7-8, when you press the button A,

the variables x and y take the status of the switches connected to the pin0

and pin1. The status of a switch can be either 1 or 0 (ON or OFF). Then

the Boolean And operator evaluates to true if-and-only-if both inputs are

1 (both switches are turned ON). If true, the ‘yes’ icon will display on the

LED screen. If false, the ‘no’ icon will display on the LED screen.

Chapter 7 Loops and LogiC

169© Pradeeka Seneviratne 2019
P. Seneviratne, BBC micro:bit Recipes, https://doi.org/10.1007/978-1-4842-4913-0_8

CHAPTER 8

Using Mathematical
Functions
This chapter presents how to use the built-in mathematical functions to

add, subtract, multiply, or divide numeric values; create pseudorandom

numbers; find the absolute values of numbers; calculate the remainders;

find max and min values; and convert ASCII characters to text.

 8-1. Using Basic Mathematical Operations
 Problem
You want to use basic mathematical operations such as addition,

subtraction, multiplication, and quotient division with two numbers.

 Solution
• In the Toolbox, click on the Variables category and

then click on the Make a Variable… button. In the New
variable name modal box, type x and click on the Ok

button.

• Repeat the above step again to create another variable

named y.

170

• Again, click on the Variables category. Then click and

drag the set variable to block over, and place it inside

the on start block. Then choose the variable x from the

drop-down list and type 8 in the text box.

• Repeat the above step to place another set variable

to block just below the set x to block, and choose the

variable y from the drop-down list and type 2 in the text

box.

• In the Toolbox, click on the Basic category. Then click

and drag the show number block over, and place it

inside the on start block just below the set y to block.

• In the Toolbox, click on the Math category. Then click

and drag the addition block over, and place it inside

the placeholder of the show number block.

• In the Toolbox, click on the Variables category. Then

click and drag the variable x over, and place it inside

the first placeholder of the addition block.

• Repeat the above step again to place the variable y in

the second placeholder of the addition block.

• Right-click on the show number block, and from the

shortcut menu, click Duplicate. Then place it inside the

on start block just below the first show number block.

After that, choose subtraction from the drop-down list.

• Repeat the above step to create and place blocks for

multiplication and quotient division.

• In the Toolbox, click on the Basic category. Then click

and drag the show string block over, and place it just

above the addition block. Type “Addition” in the text

box of the show string block.

Chapter 8 Using MatheMatiCal FUnCtions

171

• Repeat the above step to create another three show
string blocks for “Subtraction,” “Multiplication,”

and “Division.” Place them just above the respective

mathematical operation blocks.

• Once completed, your code should look something like

this (Figure 8-1).

Figure 8-1. Full code listing

Chapter 8 Using MatheMatiCal FUnCtions

172

• After flashing the code, micro:bit will display the

following result on the LED screen.

Addition: 10 Subtraction: 6 Multiplication: 16 Division: 4

 How It Works
Mathematical operation blocks accept integers and floating-point

numbers (includes positive and negative) as inputs. Figure 8-2 shows how

to assign −0.8 and 2 to the variables x and y, respectively, for calculating

the sum.

The micro:bit will display following result on the LED screen.

1.2

Figure 8-2. Assigning a floating-point number to a variable

Chapter 8 Using MatheMatiCal FUnCtions

173

 8-2. Finding Smaller and Larger Values
of Two Numbers
 Problem
You want to find the smaller value of two numbers.

 Solution
• In the Toolbox, click on the Variables category and

then click on the Make a Variable… button. In the New
variable name window, type x and click on the Ok

button.

• Follow the above step again to create another variable

named y.

• Again, go to the Variables category. Then click and drag

the set variable to block over, and place it inside the on
start block. Then from the drop-down list, choose the

variable x and in the text box, type the value 2.

• Follow the above step again to place another set

variable to block just below the set x to block. Then

from the drop-down list, choose the variable y and in

the text box, type the value 8.

• In the Toolbox, click on the Basic category. Then click

and drag the show number block over, and place it

inside the on start block just below the set y to block.

• In the Toolbox, click on the Math category. Then click

and drag the min of block over, and place it inside the

placeholder of the show number block.

Chapter 8 Using MatheMatiCal FUnCtions

174

• In the Toolbox, click on the Variables category. Then

click and drag the variable x block over, and place it

inside the first placeholder of the min of block.

• Follow the above step again to place the variable y in

the second placeholder of the min of block.

• Once completed, your code should look something like

this (Figure 8-3).

• When you run the code, the micro:bit display will show

the following output.

2

 How It Works
The min of block allows you to find the smaller value of two numbers. With

the min of block, you can use variables, or you can type the values in the

placeholders as inputs.

Figure 8-3. Full code listing

Chapter 8 Using MatheMatiCal FUnCtions

175

If you want to find the smaller value from more than two numbers,

you can use a nested min of blocks. Figure 8-4 shows the code to find the

smaller value from the numbers 8, 2, 3, and 5. It has three nested min of

blocks.

If you click on the drop-down box of the min block, you can choose

the max option from the list. This will change the functionality of the

block and can be used to find the larger value of two numbers. As

an example, Figure 8-5 shows how to find the larger value from two

numbers.

The micro:bit display will show the following answer as the output.

8

Figure 8-4. Finding the smaller value from more than two numbers

Figure 8-5. Finding the larger value from two numbers

Chapter 8 Using MatheMatiCal FUnCtions

176

 8-3. Finding Absolute Value of a Number
 Problem
You want to find the absolute value of a number.

 Solution
• In the Toolbox, click on the Basic category. Then click

and drag the show number block over, and place it

inside the on start block.

• In the Toolbox, click on the Math category. Then click

and drag the absolute of block over, and place it inside

the placeholder of the show number block.

• Type the value 8 in the text box of the absolute of

block.

• Once completed, your code should look something like

this (Figure 8-6).

Figure 8-6. Full code listing

Chapter 8 Using MatheMatiCal FUnCtions

177

• When you run the code, micro:bit will display the

following as the output.

8

 How It Works
The absolute value tells only how far a number is from zero. As an

example, “5” is 5 away from zero, and “−5” is also 5 away from zero. So,

the absolute value of 5 is 5, and the absolute value of −5 is also 5.

Here are some more examples:

• The absolute value of −8 is 8.

• The absolute value of 2 is 2.

• The absolute value of 0 is 0.

• The absolute value of −156 is 156.

• The absolute value of 3.7 is 3.7.

• The absolute value of −3.7 is 3.7.

The absolute of block provides the absolute value of any number you

have entered in the text box. It also accepts any number as a variable or

number returned by another block.

 8-4. Finding Square Root of a Number
 Problem
You want to find the square root of a number.

Chapter 8 Using MatheMatiCal FUnCtions

178

 Solution
• In the Toolbox, click on the Basic category. Then click

and drag the show number block over. and place it

inside the on start block.

• In the Toolbox, click on the Math category. Then click

and drag the square root block over. and place it inside

the placeholder of the show number block.

• Type the value 4 in the text box of the square root block.

• Once completed, your code should look something like

this (Figure 8-7).

• When you run the code, the micro:bit displays the

following as the output.

2

 How It Works
The square root block outputs the square root of any positive number.

It provides NaN (Not a Number) error message for any negative number,

because negative numbers don’t have a square root.

Figure 8-7. Full code listing

Chapter 8 Using MatheMatiCal FUnCtions

179

If you click on the drop-down list of the square root block, you can

find a list of some useful mathematical functions. When you choose a

function from the list, the name of the block will change and show the

respective function name. They are the following:

• sin

• cos

• tan

• atan2

• integer ÷

• integer x

 8-5. Rounding a Number
 Problem
You want to round a number.

 Solution
• In the Toolbox, click on the Basic category. Then click

and drag the show number block over, and place it

inside the on start block.

• In the Toolbox, click on the Math category. Then click

and drag the round block over, and place it inside the

placeholder of the show number block.

• Type the value 4.3 in the text box of the round block.

• Once completed, your code should look something like

this (Figure 8-8).

Chapter 8 Using MatheMatiCal FUnCtions

180

• When you run the code, the micro:bit displays the

following as the output.

4

 How It Works
The round block rounds any decimal number to the nearest whole

number. Here are some examples:

Example: Round 2.4 to the nearest whole number.

Answer: 2

(2.4 gets rounded down)

Example: Round 2.7 to the nearest whole number.

Answer: 3

(2.7 gets rounded up)

Example: Round 2.5 to the nearest whole number.

Answer: 3

(2.5 gets rounded up)

Example: Round 2.48 to the nearest whole number.

Figure 8-8. Full code listing

Chapter 8 Using MatheMatiCal FUnCtions

181

Answer: 2

(2.48 gets rounded down)

Example: Round 2.59

Answer: 3

(2.59 gets rounded up)

 8-6. Generating Random Numbers
 Problem
You want to generate random numbers, including minimum and

maximum numbers provided.

 Solution
Let’s generate random numbers between 5 and 12 included.

• In the Toolbox, click on the Basic category. Then click

and drag the show number block over, and place it

inside the on start block.

• In the Toolbox, click on the Math category. Then click

and drag the pick random block over, and place it

inside the placeholder of the show number block.

• Type 5 in the first text box of the pick random block as

the minimum number.

• Type 12 in the second text box of the pick random block

as the maximum number.

• Once completed, your code should look something like

this (Figure 8-9).

Chapter 8 Using MatheMatiCal FUnCtions

182

When you run the code, the micro:bit display shows one of the

following numbers as the output.

5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

 How It Works
The pick random block outputs a random number between the minimum

number and maximum number included. You can generate integers or

decimal numbers, including negative and positive. Decimal numbers

can be generated by providing at least one number for the minimum or

maximum number.

The example below shows how to build a code to generate random

numbers between 2.5 and 4.7 included (Figure 8-10).

Figure 8-10. Generating random numbers between two numbers

Figure 8-9. Full code listing

Chapter 8 Using MatheMatiCal FUnCtions

183

Here are some output numbers generated by the above code. Note

that some numbers have two decimal places, and some have one decimal

place.

3.98, 2.64, 3.6, 3.91, 2.97, 4.44, 4.11.

 8-7. Mapping a Number in One Range to
Another Range
 Problem
You want to map numbers in the range from 0–5 to another range from

0–1023.

 Solution
• In the Toolbox, click on the Basic category. Then click

and drag the show number block over, and place it

inside the on start block.

• In the Toolbox, click on the Math category. Then click

and drag the map block over, and place it inside the

placeholder of the show number block.

• Type 2 in the first text box (map) as the voltage you

want to map.

• Type 0 in the second text box (from low) as the

minimum number of the range to convert from.

• Type 5 in the third text box (from high) as the

maximum number of the range to convert from.

• Type 0 in the fourth text box (to low) as the minimum

number of the range to convert to.

Chapter 8 Using MatheMatiCal FUnCtions

184

• Type 1023 in the fifth text box (to high) as the

maximum number of the range to convert to.

• Once completed, your code should look something like

this (Figure 8-11).

• When you run the above code, the micro:bit display

shows the output as 409.2.

 How It Works
The map block converts a value in one number range to a value in another

number range. Following are the parameters of the map block.

• value: a number to convert from one range to another.

• from low: the minimum number of the range to

convert from.

• from high: the maximum number of the range to

convert from.

• to low: the minimum number of the range to

convert to.

• to high: the maximum number of the range to

convert to.

Figure 8-11. Full code listing

Chapter 8 Using MatheMatiCal FUnCtions

185

As an example, you can scale a length in the range 0–10 cm to the

range 0–100 cm. Table 8-1 shows some mapped lengths from a small range

to a large range.

Table 8-1. Mapping Numbers from One Range to Another Range

Length in range (0–10 cm) Length in range (0–100 cm) after mapped

0 0

1 10

2 20

3 30

4 40

5 50

6 60

7 70

8 80

9 90

10 100

Chapter 8 Using MatheMatiCal FUnCtions

187© Pradeeka Seneviratne 2019
P. Seneviratne, BBC micro:bit Recipes, https://doi.org/10.1007/978-1-4842-4913-0_9

CHAPTER 9

Using Variables
This chapter presents how to create variables to hold various types of

data such as numbers, strings, arrays, and Boolean values. It also presents

how to take data out from the variables for further processing, and how to

change data stored in the variables during the execution of the code.

 9-1. Creating Integer Variables
 Problem
You want to create a variable and store the value 100 in it, then display the

content on the micro:bit display.

 Solution
• In the Toolbox, click on the Variables category and

then click the Make a Variable... button (Figure 9-1).

188

• In the New Variable name: window, type x as the

variable name. Then click on the Ok button

(Figure 9-2).

Figure 9-1. The Variables toolbox

Figure 9-2. Creating a new variable

Chapter 9 Using Variables

189

• In the Toolbox, click on the Variables category again.

Then click and drag the set x to block over, and place it

inside the on start block (Figure 9-3).

• Type the value 100 in the text box of the set x to block

(Figure 9-4).

• In the Toolbox, click the Basic category. Then click and

drag the show number block over, and place it inside

the on start block just below the set x to block.

Figure 9-3. Placing a set variable to block inside the on start block

Figure 9-4. Assigning a value to a variable

Chapter 9 Using Variables

190

• In the Toolbox, click the Variables category. Then click

and drag the variable x block over, and place it inside

the placeholder of the show number block

(Figure 9-5).

• Once completed, your code should look something like

this (Figure 9-6).

Figure 9-5. Placing a variable into the show number block

Figure 9-6. Full code listing

Chapter 9 Using Variables

191

 How It Works
When you create a variable, MakeCode doesn’t know the type of the

variable, until you first assign data to it. MakeCode supports the following

standard data types:

• Number

• String

• Array

• Boolean

In the above example, the name of the variable x is known as the

operand. When you store the number 100 as the initial value in the

variable x, it will implicitly declare as an integer variable. MakeCode

supports the following numerical types.

• int (includes signed and unsigned integers)

• float (including floating-point real values, signed and

unsigned floating-point numbers)

Figure 9-7 shows how to assign a signed integer (negative integer

value) to a variable by typing with a minus sign in front of it.

Figure 9-7. Assigning a negative number to a variable

Chapter 9 Using Variables

192

 9-2. Creating Float Variables
 Problem
You want to create a variable and store the value 10.1 in it, then display the

content on the micro:bit display.

 Solution
• In the Toolbox, click on the Variables category and

then click the Make a Variable... button (Figure 9-8).

• In the New Variable name: window, type y

as the variable name. Then click on the Ok button

(Figure 9-9).

Figure 9-8. The Variables toolbox

Chapter 9 Using Variables

193

• In the Toolbox, click on the Variables category again.

Then click and drag the set y to block over, and place it

inside the on start block (Figure 9-10).

Figure 9-9. Creating a variable

Figure 9-10. Placing a set variable to block inside the on start block

• Type the value 10.1 in the text box of the set y to block

(Figure 9-11).

Chapter 9 Using Variables

194

• In the Toolbox, click the Basic category. Then click and

drag the show number block over, and place it inside

the on start block just below the set y to block.

• In the Toolbox, click the Variables category. Then

click and drag the variable y block over, and place

it inside the placeholder of the show number block

(Figure 9-12).

Figure 9-11. Assigning a value to a variable

Figure 9-12. Placing a variable into the show number block

Chapter 9 Using Variables

195

• Once completed, your code should look something like

this (Figure 9-13).

 How It Works
Numbers created using a float variable declaration will have digits on

both sides of a decimal point. When you first assign a decimal value to a

variable, it will implicitly declare as a decimal variable. The decimal value

could be unsigned or signed. Figure 9-14 shows how to assign a signed

decimal value (negative decimal value) to a variable by typing with a

minus sign in front of.

Figure 9-13. Full code listing

Figure 9-14. Assigning a negative number to a variable

Chapter 9 Using Variables

196

 9-3. Creating String Variables
 Problem
You want to create a variable and store the string “micro:bit” in it, then

display the content on the micro:bit display.

 Solution
• In the Toolbox, click on the Variables category and

then click the Make a Variable... button (Figure 9-15).

• In the New Variable name: window, type y

as the variable name. Then click on the Ok button

(Figure 9-16).

Figure 9-15. The Variables toolbox

Chapter 9 Using Variables

197

• In the Toolbox, click on the Variables category again.

Then click and drag the set hardware to block over,

and place it inside the on start block (Figure 9-17).

Figure 9-16. Creating a variable name

Figure 9-17. Placing a set variable to block inside the on start block

• In the Toolbox, click on the Text category. Then click

and drag the text block over, and place it inside the

placeholder of the set hardware to block (Figure 9-18).

Chapter 9 Using Variables

198

• Type the string micro:bit in the text block of the set
hardware to block (Figure 9-19).

• In the Toolbox, click the Basic category. Then click and

drag the show string block over, and place it inside the

on start block just below the set hardware to block.

• In the Toolbox, click the Variables category. Then

click and drag the variable hardware block over, and

place it inside the placeholder of the show string block

(Figure 9-20).

Figure 9-18. Placing a text block into the set variable to block

Figure 9-19. Assigning a text to a variable

Chapter 9 Using Variables

199

• Once completed, your code should look something like

this (Figure 9-21).

 How It Works
By default, the set variable to block only accepts numbers and doesn’t

allow you to type strings in its input box. As a solution, you can replace the

default input box with a text block from the Text category. This will allow

the set variable to block to accept and hold any string.

Figure 9-20. Placing a variable into the show string block

Figure 9-21. Full code listing

Chapter 9 Using Variables

200

 9-4. Creating a Variable to Hold an Array
of Numbers
 Problem
You want to create a variable to hold an array of scores and find the score

at index 4.

 Solution
• In the Toolbox, click on the Variables category and

then click the Make a Variable... button (Figure 9-22).

Figure 9-22. The Variables toolbox

Chapter 9 Using Variables

201

• In the New Variable name: window, type scores as the

variable name. Then click on the Ok button

(Figure 9-23).

• In the Toolbox, click on the Array category. Then click

and drag the set list to block over, and place it inside

the on start block. The set list to block has an array
of block that can hold numbers. By default, it has two

number boxes for numeric inputs.

• Click on the drop-down box of the set list to block and

from the drop-down list, choose the variable scores.

• Click on the + icon to add three more number boxes.

Then type the scores in each number box (2, 3, 0, 2, 1)

(Figure 9-24).

Figure 9-23. Creating a variable

Chapter 9 Using Variables

202

• In the Toolbox, click on the Basic category. Then click

and drag the show number block over, and place it

inside the on start block just below the set scores to

block.

• In the Toolbox, click on the Arrays category. Then

click and drag the get value at block over, and place

it inside the placeholder of the show number block

(Figure 9-25).

• In the get value at block, choose the variable scores

from the drop-down list. Then in the text box, type the

index of the value you want to find (e.g., 4).

Figure 9-24. Using the array of block

Figure 9-25. Placing the get value at block

Chapter 9 Using Variables

203

• Once completed, your code should look something like

this (Figure 9-26).

 How It Works
The set list to block allows you to store an array of numbers. Each number

in the array has an index and starts from 0. In the above example, the

first number, which is, 2 has the index 0. The last number, which is 1, has

the index 4. The get value at block is used to find the value at any valid

index. For the above example, the valid indexes are, 0, 1, 2, 3, and 4. The

show number block is used to display the retrieved value on the micro:bit

display.

 9-5. Creating a Variable to Hold
an Array of Text
 Problem
You want to create a variable to hold an array of five names and find the

name at index 4.

Figure 9-26. Full code listing

Chapter 9 Using Variables

204

 Solution
• In the Toolbox, click on the Variables category and

then click the Make a Variable... button (Figure 9-27).

• In the New Variable name: window, type names

as the variable name. Then click on the Ok button

(Figure 9-28).

Figure 9-27. The Variables toolbox

Chapter 9 Using Variables

205

• In the Toolbox, click on the Array category. Then click

and drag the set text list to block over, and place it

inside the on start block. The set text list to block has

an array of blocks that can hold strings. By default, it

has two text boxes for inputs.

• Click on the drop-down box of the set text list to block

and from the drop-down list, choose the variable

names.

• Click on the + icon to add three more text boxes. Then

type the names in each text box (Emma, Olivia, Ava,
Isabella, Sophia) (Figure 9-29).

Figure 9-28. Creating a variable

Chapter 9 Using Variables

206

• In the Toolbox, click on the Basic category. Then click

and drag the show string block over, and place it inside

the on start block just below the set names to block.

• In the Toolbox, click on the Arrays category. Then click

and drag the get value at block over, and place it inside

the placeholder of the show string block (Figure 9-30).

Figure 9-29. Using the array of block

Figure 9-30. Placing the get value at block

• In the get value at block, choose the variable names

from the drop-down list. Then in the text box, type the

index of the name (string) you want to find (e.g., 4).

• Once completed your code should look something like

this (Figure 9-31).

Chapter 9 Using Variables

207

 How It Works
The set text list to block allows you to store an array of strings. Each string

in the array has an index and starts from 0. In the above example, the first

number, which is 2, has the index 0. The last number, which is 1, has the

index 4. The get value at bock is used to find the value at any valid index.

For the above example, the valid indexes are, 0, 1, 2, 3, and 4. The show

string block is used to display the retrieved string on the micro:bit display.

 9-6. Creating a Variable to Hold Boolean
Value
 Problem
You want to create a variable to hold the value false.

 Solution
• In the Toolbox, click on the Variables category and

then click the Make a Variable... button (Figure 9-32).

Figure 9-31. Full code listing

Chapter 9 Using Variables

208

• In the New Variable name: window, type win

as the variable name. Then click on the Ok button

(Figure 9-33).

Figure 9-32. The Variables toolbox

Figure 9-33. Creating a variable

Chapter 9 Using Variables

209

• In the Toolbox, click on the Variables category. Then

click and drag the set variable to block over, and place

it inside the on start block. Then choose the variable

win from the drop-down list.

• Click on the Logic category. Then click and drag

the Boolean false block over, and place it inside the

placeholder of the set variable to block (Figure 9-34).

• Click on the Basic category. Then click and drag the

show string block over, and place it inside the on start

block just below the set win to block.

• Click on the Variables category. Then click and drag

the variable block named win over, and place it inside

the placeholder of the show string block (Figure 9-35).

Figure 9-34. Placing a boolean block

Chapter 9 Using Variables

210

• Once completed, your code should look something like

this (Figure 9-36).

 How It Works
MakeCode allows you to create variables that can hold two statuses: either

true or false and known as Boolean variables. There are two Boolean

blocks that can be found in the Logic category: true and false. You can

choose either one and change the status by choosing true or false from the

drop-down list.

Figure 9-35. Placing a variable

Figure 9-36. Full code listing

Chapter 9 Using Variables

211

 9-7. Changing the Value of an Integer
Variable
 Problem
You want to change the value stored in the integer variable in Recipe 9-1

by 10.

 Solution
• Open the project you have created in Recipe 9-1.

• In the Toolbox, click on the Variables category. Then

click and drag the change variable by block over, and

place it inside the on start block just below the show
number block.

• In the change variable by block, choose the variable x

from the drop-down list. Then type the value 10 in the

number box.

• Duplicate the show number block, and place it just

below the change x by block. Then type 10 in the

number box.

• Once completed, your code should look something like

this (Figure 9-37).

Chapter 9 Using Variables

212

 How It Works
Once assigned a value to an integer or float variable, you can change its

value using one of the following ways.

• Use a set variable to block to assign a new value.

• Use a change variable by block to increment or

decrement the current value by a specified value.

 9-8. Updating String Variables
 Problem
You want to change the content of the string variable created in Recipe 9-3.

 Solution
• Open the code that you have created in Recipe 9-3.

• Duplicate the set y to block, and place the duplicated

block just below the show string block. Then type

Calliope Mini in the text box.

Figure 9-37. Full code listing

Chapter 9 Using Variables

213

• Duplicate the show string block, and place the

duplicated block just below the second set y to block.

• Once completed, your code should look something like

this (Figure 9-38).

 How It Works
By storing text in a string variable, you can change its content by using a

set variable to block. You can also store numbers but make MakeCode

treat them as just text and not used for mathematical calculations unless

you first convert them to numbers using a parse to number block.

Figure 9-38. Full code listing

Chapter 9 Using Variables

215© Pradeeka Seneviratne 2019
P. Seneviratne, BBC micro:bit Recipes, https://doi.org/10.1007/978-1-4842-4913-0_10

CHAPTER 10

Functions and Arrays
First, this chapter presents how to create functions and use them in your

code to reduce the coding time and debugging time. It also increases the

readability of code and will make your code cleaner and more concise.

Then it presents how to create different type of arrays and offer some

useful functions that can be applied to arrays such as finding the number

of items, replacing items, inserting items, removing items, finding the

index of an item, traversing through arrays, and reversing arrays.

 10-1. Creating a Function
 Problem
You want to convert 12 inches to centimeters and display the result on the

micro:bit screen.

 Solution
• In the Toolbox click Functions. Then click on the Make

a Function… button (Figure 10-1).

216

• In the New function name window, type

inchesToCentimeters as the function name. Then click

on the Ok button (Figure 10-2).

Figure 10-1. The Functions toolbox

Chapter 10 FunCtions and arrays

217

• The function block for inchesToCentimeters will add

to the code area (Figure 10-3).

Figure 10-2. Creating a function name

Figure 10-3. A function block

• In the Toolbox, click Variables. Then click on the Make
a Variable… button.

• In the New variable name… window, type inches as

the variable name. Then click on the Ok button.

• Repeat the above two steps to create the variable

centimeters.

Chapter 10 FunCtions and arrays

218

• In the Toolbox, click the Variables category. Then click

and drag the set variable to block over, and place it

inside the function block. Then choose the variable

centimeters from the drop-down list (Figure 10-4).

• In the Toolbox, click on the Math category. Then

click and drag the division block over, and place it

inside the placeholder of the set centimeters to block

(Figure 10-5).

Figure 10-4. Building the function

Figure 10-5. Placing the division block

Chapter 10 FunCtions and arrays

219

• In the Toolbox, click on the Variables category. Then

click and drag the inches variable block over, and place

it inside the left-side value box of the division block

(Figure 10-6).

• Type 0.3937 in the right-side value box of the division

block (Figure 10-7).

Figure 10-6. Placing the inches variable

Figure 10-7. Building the function

• In the Toolbox, click on the Basic category. Then

click and drag the show number block over, and

place it inside the function block just below the set
centimeters to block (Figure 10-8).

Chapter 10 FunCtions and arrays

220

• Click on the Variables category. Then click and drag

the centimeters variable block over, and place it inside

the value box of the show number block (Figure 10-9).

Figure 10-8. Building the function

Figure 10-9. Building the function

Chapter 10 FunCtions and arrays

221

• In the Toolbox, click on the Variables category. Next,

click and drag the set variable to block over, and place

it inside the on start block. After that, choose the

variable inches from the drop-down list. Then type 12

in the value box (Figure 10-10).

• In the Toolbox, click on the Functions category. Next,

click and drag the call function block over, and place

it inside the on start block underneath the set inches
to block. Then select inchesToCentimeters from the

drop-down list (Figure 10-11).

Figure 10-10. Assigning a number to the inches variable

Figure 10-11. Calling the function

Chapter 10 FunCtions and arrays

222

• Once completed, your code should look something like

this (Figure 10-12).

 How It Works
Functions are a fundamental building block of your code. They allow you

to create blocks of code that can be reused anywhere in the code.

Functions can accept data to process. These are known as parameters.

The function that is used in the above solution under Recipe 10-1,

inchesToCentimeters() takes one parameter, inches, which the function

then uses to work out the value in centimeters. Some functions don’t

require parameters; an example of such would be a function that has been

created to display a greeting on the screen.

Figure 10-12. Full code listing

Chapter 10 FunCtions and arrays

223

In the above solution under Recipe 10-1, the function

inchesToCentimeters contains the code to calculate inches into

centimeters by dividing the inches by 0.3937. The calculated result is

stored in the variable centimeters.

Before you call a function, first pass arguments for each parameter. In

the above solution under Recipe 10-1, the argument 12 is passed to the

parameter inches inside the on start block. Then you can call the function.

Figure 10-13 show how to reuse a function to calculate the area of some

rectangles and squares in a code. First write a function (e.g., calculateArea)

to calculate the area and store the calculated area in a variable (e.g., area).

Then you can reuse the function by first assigning values to the parameters

(e.g., x and y). Then call the function to execute the hidden code inside. The

function will store the calculated area in a variable (e.g., area). Now you can

print the calculated value stored in the variable using the show number

block. The same function can be called to calculate the area of other

rectangles and squares by following the same procedure.

Chapter 10 FunCtions and arrays

224

 10-2. Finding the Number of Items in an Array
 Problem
You want to find the number of items in a number array and display the

result on the micro:bit LED screen.

Figure 10-13. Calculating the area of rectangles and squares using
the same function

Chapter 10 FunCtions and arrays

225

 Solution
• In the Toolbox, click on the Arrays category. Then click

and drag the set list to block over, and place it inside

the on start block. By default, the set list to block holds

a number array (array of block) with two items. When

you drop the set list to block onto the code area, the

variable, named list will create automatically.

• Add five items to the array of block; 2, 4, 6, 8, and 10.

First replace the default values of two number boxes

with 2 and 4, respectively. After that, use the plus

icon to add three more number boxes. Then type

the remaining numbers, 6, 8, and 10, respectively

(Figure 10-14).

the Array category can be found in the Toolbox by expanding the
Advanced group.

• Click on the Basic category. Then click and drag the

show number block over, and place it inside the on
start block just below the set list to block.

Figure 10-14. Assigning an array to a variable

Chapter 10 FunCtions and arrays

226

• Click on the Arrays category again. Then click and drag

the length of array block over, and place it inside the

placeholder of the show number block (Figure 10-15).

In the length of array block, choose list as the variable

that holds the number array.

• Once completed, your code should look something like

this (Figure 10-16).

Figure 10-15. Placing the length of array block

Figure 10-16. Full code listing

Chapter 10 FunCtions and arrays

227

 How It Works
The length of array block can be used to find the number of items in an

array. It can be used with the number arrays as well as the string arrays.

an array can have zero items known as an ‘empty array’.

In the above solution under Recipe 10-2, the number array is assigned

to the variable named list. Then the length of array block is used to find

the number of items in the array. Finally, the show number block is used to

display the result on the LED screen. The show string block should also work.

Output: 5

 10-3. Finding an Item at Specified Location
in an Array
 Problem
You want to find the item at index (position) 3 in a number array.

 Solution
• Use the number array named list that you created in

Recipe 10-2 (Figure 10-17).

Figure 10-17. Assigning a number array to a variable

Chapter 10 FunCtions and arrays

228

• In the Toolbox, click on the Basic category. Then click

and drag the show number block over, and place it

inside the on start block just below the set list to block.

• In the Toolbox, click on the Arrays category. Next, click

and drag the get value at block over, and place it inside the

placeholder of the show number block (Figure 10-18).

After that, make sure to choose the variable list from the

drop-down menu. Then type 3 in the number box for the

position of the item.

Figure 10-18. Placing the get value at block

• Once completed, your code should look like this

(Figure 10-19).

Chapter 10 FunCtions and arrays

229

 How It Works
The get value at block can be used to find any value at a specified index

(position) in an array. The index starts from 0. The first item of an array has

the index 0, the second item has the index 1, and so on. Likewise, the last

item of an array has the index (number of items −1).

In the above solution under Recipe 10-3, the variable named list holds

a number array that has five items. Then, the get value at block is used to

find the item at index (position) 3, which is 8. Finally, the show number

block is used to display the output on the LED screen.

When you run the code, you will get the following output.

8

The same thing can be applied to find an item in a string array. Just

place the get value at block in the placeholder of the show string block.

 10-4. Replacing an Item in an Array
 Problem
You want to replace the item at index 2 with the letter ‘d’ in a string array.

Then display the new item on the micro:bit LED screen.

Figure 10-19. Full code listing

Chapter 10 FunCtions and arrays

230

 Solution
• Click on the Arrays category. Then click and drag the

set text list to block over, and place it inside the on
start block. By default, the set text list to block has a

string array with three items. When you add the set
text list to block onto the editor, a variable named text
list will create automatically.

• Click on the Arrays category again. Next, click and drag

the set value at block over, and place it inside the on
start block just below the set text list to block. After

that, make sure to choose the variable text list from the

drop-down menu. Then type 2 in the value box.

• Click on the Text category. Next, click and drag the

text box block over, and place it inside the second

placeholder of the set value at block. Then type the

letter d in the text box (Figure 10-20).

Figure 10-20. Replacing an item in an array

• Click on the Basic category. Then click and drag the

show string block over, and place it inside the on start

block.

Chapter 10 FunCtions and arrays

231

• Click on the Arrays category. Next, click and drag

the get value at block over, and place it inside the

placeholder of the show string block. Then type 2 in

the value box (Figure 10-21).

 How It Works
The set value at block can be used to replace a value in an array at a

specified index. In the above solution under Recipe 10-4, initially the index

2 holds the letter c. Next, the set value at block is used to replace the

letter c with the letter d. After that, the get value at block is used to get the

updated value at index 2. Then the show string block is used to display the

returned value from the get value at block on the micro:bit LED screen.

When you run the code, you will get the following output.

d

Figure 10-21. Replacing an item in an array followed by verifying

Chapter 10 FunCtions and arrays

232

 10-5. Inserting an Item to the End
of an Array
 Problem
You want to insert an item to the end of a string array.

 Solution
• In the Toolbox, click on the Arrays category. Then click

and drag the set text list to block over, and place it

inside the on start block. By default, the set text list to

block has a string array with three items.

• Click on the Arrays category again. Then click and drag

the add value to end block over, and place it inside the

on start block just below the set list to block. Make sure

to choose the variable text list from the drop-down

menu.

• In the Toolbox, click on the Text category. Then click

and drag the text box block over, and place it inside

the placeholder of the set value to end block. Now

type the letter d in the text box for the new item

(Figure 10-22).

Chapter 10 FunCtions and arrays

233

• In the Toolbox, click on the Basic category. Then click

and drag the show string block over, and place it inside

the on start block just below the add value to end

block.

• In the Toolbox, click on the Arrays category. Now, click

and drag the get value at block over, and place it inside

the placeholder of the show string block. After that,

choose the variable text list from the drop-down menu.

Then type 3 in the value box.

• Once completed, your code should look like the

following (Figure 10-23).

Figure 10-22. Inserting an item to the end of an array

Chapter 10 FunCtions and arrays

234

 How It Works
The add value to end block allows you to add a new item to the end of an

array. In the above solution under Recipe 10-5, initially, the string array

had three items. Next, the string ‘d’ is added to the end of the string array

using the add value to end block. After added, the resulting array has four

items. Finally, the last item is displayed by combining the show string and

get value at block.

When you run the code, you will get the following output.

d

In the same way, you can insert an item at beginning of an array using

the insert at beginning block.

Figure 10-23. Inserting an item to the end of an array followed by
verifying

Chapter 10 FunCtions and arrays

235

 10-6. Removing Last Item from an Array
 Problem
You want to get and remove the last item of a string array. Then display

the removed item, followed by a new last item, followed by the number of

items on the micro:bit display.

 Solution
• In the Toolbox, click on the Arrays category. Then click

and drag the set text list to block over, and place it

inside the on start block. By default, the set text list to

block has a string array with three items. When you add

the set text list to block onto the code area, a variable

named text list will create automatically.

• In the Toolbox, click on the Basic category. Then click

and drag the show string block over, and place it inside

the on start block just below the set text list to block.

• In the Toolbox, click on the Arrays category. Then click

and drag the get and remove last value from block

over, and place it inside the placeholder of the show
string block. Choose the variable text list from the

drop-down menu (Figure 10-24).

Chapter 10 FunCtions and arrays

236

• Click on the Basic category. Then click and drag the

show string block over, and place it inside the on start

block just below the get and remove last value from

block.

• Click on the Arrays category. Then click and drag

the get value at block over, and place it inside the

placeholder of the show string block. Then type 1 in

the value box.

• In the Toolbox, click on the Basic category. Then click

and drag the show number block over, and place it

inside the on start block just below the show string

block.

• In the Toolbox, click on the Arrays category. Then

click and drag the length of array block over, and place

it inside the placeholder of the show number block.

Choose the variable text list from the drop-down

menu.

Figure 10-24. Removing an item from an array

Chapter 10 FunCtions and arrays

237

• Once completed, your code should look like the

following (Figure 10-25).

 How It Works
The get and remove last value from block allows you to find the last item

in an array and remove it from the list.

In the above solution under Recipe 10-6, initially, the string array had

three items (a, b, c). First, the get and remove last value from block is

used to get and remove the last item of the string array, which is the letter

‘c’ at index 2. Then the removed item is displayed using the show string

block. Once removed, the (new) last item is found using the get value at
block and displayed using the show string block, which is the letter ‘b’ at

index 1. Next, we verified the number of items using the length of array

block. When you run the code, you will get the following output.

c b 2

Figure 10-25. Full code listing

Chapter 10 FunCtions and arrays

238

In the same way, you can use the get and remove first value from

block to remove the first item from an array.

 10-7. Finding the Index of an Item
in an Array
 Problem
You want to find the index of an item in an array.

 Solution
• In the Toolbox, click on the Arrays category. Next,

click and drag the set text list to block over, and place it

inside the on start block. By default, the set text list to

block has a string array with three items (a, b, c). Then

click on the plus button to add two more text boxes and

type a and b, respectively, in that text boxes. Now you

should have a string array with five items.

• In the Toolbox, click on the Basic category. Then click

and drag the show number block over, and place it

inside the on start block just below the set text list to

block.

• Click on the Arrays category. Click and drag the find
index of block over, and place it inside the placeholder

of the show number block.

• Click on the Text category. Then click and drag the text
box block over, and place it inside the placeholder of

the find index of block. Now type the letter ‘b’ in the

text box.

Chapter 10 FunCtions and arrays

239

• Once completed, your code should look like the

following (Figure 10-26).

 How It Works
The find index of block allows you to find the index of an item in an array.

Remember, it can only be used to find the first occurrence from the start of

an array for the given item.

In above solution under Recipe 10-9, the find index of block captured

the index of the first occurrence of the letter b, which is 1. The show

number block is used to display the output on the LED screen. When you

run the code, you will get the following output.

1

If you try to find an element that is not existing in the array, micro:bit

shows −1 as the output.

 10-8. Inserting an Item to an Array
 Problem
You want to insert the letter z at index 1 of a string array with three items,

a, b, and c. Then display the recently inserted item and number of items in

the updated array.

Figure 10-26. Finding the index of an item in an array

Chapter 10 FunCtions and arrays

240

 Solution
• In the Toolbox, click on the Arrays category. Then

click and drag the set text list to block over, and place it

inside the on start block. By default, the set text list to

block has a string array with three items (a, b, c).

• Click on the Arrays category again. Next, click and drag

the insert at value block over, and place it inside the

on start block just below the set text list to block. After

that, the variable text list from the drop-down menu.

Then type index 1 in the value box.

• Click on the Text category. Then click and drag the

text box block over, and place it inside the second
placeholder of the insert at value block. Then type the

letter z in the text box (Figure 10-27).

Figure 10-27. Inserting an item to an array

• Click on the Basic category. Then click and drag the

show string block over, and place it inside the on start

block just below the insert at value block.

Chapter 10 FunCtions and arrays

241

• Click on the Arrays category. Next, click and drag the

get value at block, and place it inside the placeholder

of the show string block. After that, choose the variable

text list from the drop-down menu. Then type index 1

in the value box (Figure 10-28).

• Click on the Basic category. Then click and drag the

show number block over, and place it inside the on
start block just below the show string block.

• In the Toolbox, click on the Arrays category. Then

click and drag the length of array block over, and place

it inside the placeholder of the show number block.

Choose the variable text list from the drop-down

menu.

• Once completed, your code should look like the

following (Figure 10-29).

Figure 10-28. Inserting an item to an array followed by verifying

Chapter 10 FunCtions and arrays

242

 How It Works
The insert at value block allows you to insert an item to an array at the

specified index (position). You can use it with any number array or string

array.

In the above solution under Recipe 10-8, initially the string array had

three items, a, b, and c. Then the insert at value block is used to insert

item z at index 1. When you run the code, you will get the following output.

z 4

 10-9. Displaying All the Items of an Array
 Problem
You want to display all the items in an array on the micro:bit LED screen.

Figure 10-29. Full code listing

Chapter 10 FunCtions and arrays

243

 Solution
• In the Toolbox, click on the Arrays category. Then

click and drag the set text list to block over, and place it

inside the on start block. By default, the set text list to

block has a string array with three items (a, b, c). When

you add the set text list to block onto the code area, a

variable named text list will create automatically.

• Click on the Loops category. Next click and drag the

for element block over, and place it inside the on start

block just below the set text list to block. Then choose

the variable text list from the drop-down menu.

• Click on the Basic category. Then click and drag the

show string block over, and place it inside the for
element block.

• Click on the Variables category. Then click and

drag the value block over, and place it inside the

placeholder of the show string block.

• Once completed, your code should look like the

following (Figure 10-30).

Chapter 10 FunCtions and arrays

244

 How It Works
Initially the array had three elements in the following sequence: a, b, c.

Then the for element block is used to traverse through each item and

display on the micro:bit LED screen using the show string block.

When you run the solution provided under Recipe 10-9, you will get

the following output.

a b c

 10-10. Reversing the Items of an Array
 Problem
You want to reverse the items in an array and display them.

Figure 10-30. Full code listing

Chapter 10 FunCtions and arrays

245

 Solution
• In the Toolbox, click on the Arrays category. Then

click and drag the set text list to block over, and place it

inside the on start block. By default, the set text list to

block has a string array with three items (a, b, c). When

you add the set text list to block onto the code area, a

variable named text list will create automatically.

• In the Toolbox, click on the Arrays category again.

Next, click and drag the reverse block over, and place

it inside the on start block just below the set text list to

block. Then choose the variable text list from the drop-

down menu.

• Click on the Loops category. Next, click and drag the

for element block over, and place it inside the on start

block just below the reverse block. Then choose the

variable text list from the drop-down menu.

• Click on the Basic category. Then click and drag the

show string block over, and place it inside the for
element block.

• Click on the Variables category. Then click and

drag the value block over, and place it inside the

placeholder of the show string block.

• Once completed, your code should look like the

following (Figure 10-31).

Chapter 10 FunCtions and arrays

246

 How It Works
The reverse block allows you to reverse an array. Once applied, the first

item of the array becomes the last, and the last item of the array becomes

the first.

In the above solution under Recipe 10-10, initially the array had three

elements in the following sequence: a, b, c. After applying the reverse

block, the for element block is used to traverse through each element and

display on the micro:bit LED screen using the show string block.

When you run the solution under Recipe 10-10, you will get the

following output.

c b a

Figure 10-31. Full code listing

Chapter 10 FunCtions and arrays

247© Pradeeka Seneviratne 2019
P. Seneviratne, BBC micro:bit Recipes, https://doi.org/10.1007/978-1-4842-4913-0_11

CHAPTER 11

Playing Music
In this chapter, you will learn how to use the Music package of the

MakeCode for micro:bit to build and play simple tunes. MakeCode allows

you to build music by combining music tones, octaves, beats (duration),

accidentals (flats and sharps), and so forth. You can also use the built-in

melodies with your applications.

 11-1. Connecting a Speaker to Pin 0
 Problem
You want to connect a speaker to the micro:bit pin 0.

 Solution
Connect the speaker with the micro:bit using alligator (crocodile) clips as

explained below.

• Connect one wire to pin0 and the other wire to ground

pin. A speaker will work either way around.

• Once completed, your hardware setup should look like

that shown in Figure 11-1.

248

Now create the code as described below and flash it into your micro:bit.

• In the Toolbox, click on the Music category. Then click

and drag the ring tone (Hz) block over, and place it

inside the on start block (Figure 11-2).

Figure 11-1. Wiring diagram

Figure 11-2. Placing the ring tone block inside the on start block

Chapter 11 playing MusiC

249

 How It Works
By default, MakeCode expects the speaker to be connected through

micro:bit’s pin 0 through the edge connector using alligator (crocodile)

clips. A speaker has two wires: positive (usually red) and negative (usually

black). Some speakers use different color codes for positive and negative

leads. With some speakers, you must solder wires to the solder tabs before

using them.

pin 0 is the default pin used to generate music.

 11-2. Connecting a Speaker to Other Pins
 Problem
You want to connect a speaker to a micro:bit pin1.

 Solution
Connect the speaker with the micro:bit using alligator (crocodile) clips as

explained below.

• Connect the positive lead of the speaker to the

micro:bit pin 1.

• Connect the negative lead of the speaker to the

micro:bit pinging.

• Once completed, your hardware setup should look like

that shown in Figure 11-3.

Chapter 11 playing MusiC

250

Now create the code as described below and flash it into your

micro:bit.

• In the Toolbox, click on the Pins category. Next, click

and drag the analog set pitch pin block over, and place

it inside the on start block. Then select P1 from the

drop-down menu.

• In the Toolbox, click on the Music category. Then click

and drag the ring tone (Hz) block over, and place it

inside the on start block underneath the analog set
pitch pin block (Figure 11-4).

Figure 11-3. Wiring diagram

Chapter 11 playing MusiC

251

 How It Works
The analog set pitch pin block allows you to prepare some pins on the

edge connector to output audio signals. Here is the list of pins you can use

to connect a speaker.

• P0

• P1

• P2

• P3

• P4

• P10

 11-3. Using Earphones
 Problem
You want to connect an earphone with the micro:bit to listen to music.

Figure 11-4. Full code listing

Chapter 11 playing MusiC

252

 Solution
You can use alligator (crocodile) clips to connect an earphone to the

micro:bit without cutting off the jack. Figure 11-5 shows how you can

make the wire connections. The steps below further explain the hack.

• Take two alligator (crocodile) leads (black and red).

• Connect one end of the black alligator lead to the

micro:bit GND and the other end to the base of your

earphone jack.

• Connect one end of the red crocodile lead to the

micro:bit pin 0 and the other end to the tip of the

earphone jack.

Figure 11-5. Wiring diagram

Chapter 11 playing MusiC

253

 How It Works
If you don’t have a speaker, you can still use your micro:bit with earphones.

Earphones produce quiet music and are better for testing purposes. If you

don’t have alligator leads, just cut off the earphone jack and connect the

leads to the edge connector (tip to pin 0 and base to GND) of the micro:bit.

However, pre-built audio cables are available to quickly connect earphone

or headphones to the micro:bit. You can simply plug the earphone jack to

the 3.5 mm socket of the audio cable and connect two crocodile clips to the

edge connector of the micro:bit.

 11-4. Using Amplifiers
 Problem
You want to play tunes loudly with a micro:bit.

 Solution
You will need MonkMakes Speaker for micro:bit (https://www.

monkmakes.com/mb_speaker/) to build this project. Table 11-1 lists the pin

connection between two boards. You can use alligator (crocodile) clips to

make connections.

Table 11-1 Wiring Between

MonkMakes Speaker and micro:bit

Speaker Micro:bit

in pin 0

3V 3V

gnD gnD

Chapter 11 playing MusiC

https://www.monkmakes.com/mb_speaker/
https://www.monkmakes.com/mb_speaker/

254

Figure 11-6 shows the wiring between the two boards.

 How It Works
Some vendors offer speakers with a built-in amplifier to make louder

music. MonkMakes (https://www.monkmakes.com/) manufactures a

speaker breakout module with a built-in amplifier to produce loud music.

It also has a built-in LED to indicate power. The MonkMakes speaker

module uses three wires for connectivity and draws additional power from

the micro:bit’s 3V pin.

 11-5. Playing Built-In Melodies
 Problem
You want to play a built-in melody.

Figure 11-6. Wiring between the MonkMakes speaker module
and the micro:bit (Image credits: MonkMakes at https://www.
monkmakes.com/mb_speaker/)

Chapter 11 playing MusiC

https://www.monkmakes.com/
https://www.monkmakes.com/mb_speaker/
https://www.monkmakes.com/mb_speaker/

255

 Solution
• In the Toolbox, click on the Music category. Next, click

and drag the start melody block over, and place it

inside the on start block. Then choose birthday from

the drop-down menu (Figure 11-7).

 How It Works
A melody also called a tune, voice, or line is a sequence of single notes

that is musically satisfying. The start melody block provides you a set of

melodies that can be easily integrated with the micro:bit applications. Here

is the list:

• dadadadum

• entertainer

• prelude

• ode

• nyan

• ringtone

• funk

• blues

Figure 11-7. Full code listing

Chapter 11 playing MusiC

256

• birthday

• wedding

• funeral

• punchline

• python

• baddy

• chase

• ba ding

• wawawawaa

• jump up

• jump down

• power up

• power down

The behavior of the melody can be changed with repeating options:

• once - plays the melody in the foreground one time.

• forever - plays the melody in the foreground and keeps

repeating it.

• once in background - plays the melody in the

background one time.

• forever in background - plays the melody in the

background and keeps repeating it.

Chapter 11 playing MusiC

257

 11-6. Playing a Tone or Note
 Problem
You want to play the note Middle C when button A is pressed.

 Solution
• In the Toolbox, click on the Input category. Then click

on the on button A pressed event block.

• In the Toolbox, click on the Music category. Then click

and drag the ring tone (Hz) and place it inside the on
button A pressed event block (Figure 11-8).

Figure 11-8. Full code listing

When you play a note or tone inside the forever block, you will hear
crappy sound.

 How It Works
The ring tone (Hz) block allows you to play a tone of specific frequency.

The default frequency of the ring tone block is set to 262 Hz (tone), which

is Middle C (note). When you click on the parameter box of the ring tone

block, a 21-key visual piano keyboard (Figure 11-9) will display and allows

you to choose a note.

Chapter 11 playing MusiC

258

When you choose a note from the visual piano keyboard, the

frequency of the note will display in the parameter box of the ring tone

(Hz) block. If you know the frequency of the note you want to play, just

type the frequency in the parameter box without choosing it from the

visual piano keyboard. The precision of the frequency of a note is ± 1 Hz.

As an example, for Middle C, the valid frequencies are 261, 262, and 263 Hz

(Figure 11-10).

Figure 11-9. 21-key visual piano keyboard

Figure 11-10. Playing Middle C

Chapter 11 playing MusiC

259

If you type a frequency that does not belongs to a note, the ring tone

(Hz) block will recognize it as a tone (Figure 11-11).

You can also play tones not belonging to the music notes in human

hearable range (20 Hz–20000 Hz). Figure 11-12 shows the code to play a

15,000 Hz tone for 4 beats. Can you hear?

all notes are tones but not all tones are notes. in other words, notes
are taken from the frequency range (20 hz to 20 khz) that humans
can hear.

Table 11-2 lists names of all the notes available to choose and their

frequencies in Hertz in the 21-key piano keyboard.

Figure 11-11. Playing 264 Hz tone

Figure 11-12. Playing 15000 Hz tone for 4 beat

Chapter 11 playing MusiC

260

Table 11-2. Notes and Their Frequencies

Note Frequency (Hz)

low C 131

low C# 139

low D 147

low D# 156

low e 165

low F 175

low F# 185

low g 196

low g# 208

low a 220

low a# 233

low B 247

Middle C 262

Middle C# 277

Middle D 294

Middle D# 311

Middle e 330

Middle F 349

Middle F# 370

Middle g 392

Middle g# 415

(continued)

Chapter 11 playing MusiC

261

Note Frequency (Hz)

Middle a 440

Middle a# 466

Middle B 494

high C 523

high C# 554

high D 587

high D# 622

high e 659

high F 698

high F# 740

high g 784

high g# 831

high a 880

high a# 932

high B 988

Table 11-2. (continued)

in music, sharp (#) means higher in pitch. More specifically, in
musical notation, sharp means "higher in pitch by one semitone (half
step)." sharp is the opposite of flat, which is a lowering of pitch. as
an example, the Middle C# resides halfway between Middle C (262
hz) and Middle D (294 hz).

Chapter 11 playing MusiC

262

Musical notes can have flats and sharps known as accidentals. A flat

can be written as b (lowercase), and a sharp can be written as # (hash).

Sharps and flats are not the black keys. All black keys are either a sharp

or flat, but not all sharps and flats are black keys. Remember, an accidental

(a sharp or flat) merely means to play the next higher or lower key on a

piano, and that next key may be black or white (Figure 11-13).

Figure 11-14 shows how to play sharps and flats using MakeCode.

Here are the sound of the notes that you can hear:

• C# - C Sharp

• Ab - A Flat

• Cb - C Flat

Figure 11-13. Sharp and flat keys in an octave (Image Credits:
https://www.key-notes.com/blog/piano-key-chart)

Chapter 11 playing MusiC

https://www.key-notes.com/blog/piano-key-chart

263

 11-7. Using Octaves
 Problem
You want to play the musical note C in octave 3.

 Solution
• In the Toolbox, click on the Arrays category. Next,

click and drag the set text list to block over, and place

it inside the on start block. Then replace each text box

with c, c4, and c3, respectively.

• In the Toolbox, click on the Music category. Then click

and drag the start melody block over, and place it

underneath the set text list to block.

• In the Toolbox, click on the Variables category.

Then click and drag the text list variable over, and place

it on the melody list of the start melody block

(Figure 11-15).

Figure 11-14. Playing sharps and flats

Chapter 11 playing MusiC

264

 How It Works
In music, an octave or perfect octave is the interval between one musical

pitch and another with half or double its frequency. Generally, a piano

keyboard consists of keys spanning octaves. Figure 11-16 shows an octave

of a piano keyboard.

Figure 11-15. Full code listing

Figure 11-16. An octave on the piano keyboard (Image: Freepik.com)

Chapter 11 playing MusiC

http://freepik.com

265

An octave has seven musical notes (C, D, E, F, G, A, B). A musical note

can present with its octave (octave number) to indicate the position of

the key on the keyboard. You can write a musical note with its octave as

follows.

NOTE[octave]
As an example, the musical note C in octave 3 can be written as C3.

By default, micro:bit plays musical notes in octave 4 unless you

explicitly mention it. As an example, the musical note C is equivalent to C4.

 11-8. Playing a Note or Tone for Given
Duration
 Problem
You want to play a note for 4 beats.

 Solution
• In the Toolbox, click on the Music category. Next, click

and drag the play tone for block over, and place it

inside the on start block. Then select 4 from the drop-

down menu (Figure 11-17).

Figure 11-17. Full code listing

Chapter 11 playing MusiC

266

 How It Works
In music, a beat is the basic unit of time. You can play a musical note or tone

for a number of beats. The play tone for block offers the following beats.

• 1

• 1/2

• 1/4

• 1/8

• 1/16

• 2

• 4

By default, the duration of a beat is 500 milliseconds.

When you run the above code, the Middle C will play for 2 seconds.

the duration of a beat specifies the arbitrary length of time defined
by tempo.

Alternatively, you can mention the duration as one of the following.

• Write the musical note followed by a colon followed by

the number of beats. Figure 11-18 shows an example

to play three musical notes sequentially. Here are the

musical notes you can hear.

Chapter 11 playing MusiC

267

Figure 11-18. Playing three musical notes sequentially

• C4#:3 - Plays the note C Sharp in octave 4 for 3

beats. If the duration of a beat is 500 milliseconds,

the C4#:3 will play for 1.5 seconds.

• Ab:4 - Plays the note A Flat IN octave 4 for 4 beats. If

the duration of a beat is 500 milliseconds, the Ab:4

will play for 2 seconds.

• D3b:2 - Plays the note D Flat in octave 3 for 2 beats.

If the duration of a beat is 500 milliseconds, the

D3b:2 will play for 1 second.

• Use time as milliseconds instead of beat. Figure 11-19

shows an example to set 400 milliseconds duration for the

musical note Middle C. Originally, the play tone block

presents the duration in beats with a drop-down box. To type

the value 400, first you should replace it with a value box.

You can get an empty value box from the Math category.

Figure 11-19. Setting a duration for a musical note

Chapter 11 playing MusiC

268

 11-9. Setting the Tempo
 Problem
You want to set the tempo to 400 for your music.

 Solution
• In the Toolbox, click on the Music category. Next, click

and drag the set tempo to (bpm) block over, and place

it inside the on start block. Then type 400 in the value

box. Alternatively, you can use the slider to change the

value.

• In the Toolbox, click on the Music category again. Then

click and drag the play tone for block over, and place it

inside the on start block underneath the set tempo to
(bpm) block (Figure 11-20).

Figure 11-20. Full code listing

Chapter 11 playing MusiC

269

 How It Works
Tempo defines the speed of a piece of music. In your code, the default
amount of the tempo is 120. Tempo can be expressed in bpm (beats

per minute). You can set the tempo for the music using the set tempo to
(bpm) block. You can type any positive value for the tempo, but MakeCode

recommends 4 to 400.

When you change the tempo, the duration of a beat gets changed

accordingly. By default, the duration of a beat is 500 milliseconds for the

tempo, 120. You can calculate the duration of a beat in milliseconds for a

given tempo as follows.

Duration of a beat in milliseconds = 60000 / tempo (bps)

Example: Calculate the duration of a beat for
tempo 120.

= 60,000 milliseconds / 120

= 500 milliseconds

In the above example, first the tempo is set to 400 using the set tempo
to (bpm) block. Then it plays the Middle C for 1 beat using the play tone
for block. The duration of the beat is,

= 60,000 milliseconds / 400

= 150 milliseconds

If you want to change the tempo to a different value during the music,

use change tempo by (bpm) block. Figure 11-21 shows an example code

to change the tempo from 400 to 300.

Chapter 11 playing MusiC

270

the larger the tempo value, the faster the notes (tunes) will play.

 11-10. Getting the Tempo
 Problem
You want to get the current tempo in beats per minute.

 Solution
• In the Toolbox, click on the Basic category. Then click

and drag the show number block over, and place it

inside the on start block.

• In the Toolbox, click on the Music category. Then

click and drag the tempo (bpm) block over, and place

it inside the placeholder of the show number block

(Figure 11-22).

Figure 11-21. Changing the tempo from 400 to 300

Chapter 11 playing MusiC

271

 How It Works
The tempo (bpm) block returns the tempo in beats per minute.

 11-11. Getting the Duration of a Beat
 Problem
You want to get the duration of a beat in milliseconds.

 Solution
• In the Toolbox, click on the Basic category. Then click

and drag the show number block over, and place it

inside the on start block.

• In the Toolbox, click on the Music category. Then click

and drag the beat block over, and place it inside the

placeholder of the show number block (Figure 11-23).

Figure 11-22. Full code listing

Figure 11-23. Full code listing

Chapter 11 playing MusiC

272

 How It Works
By default, the beat block returns the duration of a beat in milliseconds. It

also returns the duration of 1/2, 1/4, 1/8, 1/16, 2, and 4 beats.

 11-12. Using Music Events
 Problem
You want to display a happy icon once the happy birthday melody has

ended.

 Solution
• In the Toolbox, click on the Music category. Next, click

and drag the start melody block over, and place it

inside the on start block. Then choose, birthday from

the drop-down menu.

• In the Toolbox, click on the Music category. Next,

click and drag the music on event block. Then choose

melody ended from the drop-down menu.

• In the Toolbox, click on the Basic category. Next, click

and drag the show icon block over, and place it inside

the music on block. Then choose happy from the drop-

down menu (Figure 11-24).

Chapter 11 playing MusiC

273

 How It Works
The music on block raises actions for the following musical events.

• melody note played

• melody started

• melody ended

• melody repeated

• background melody note played

• background melody started

• background melody ended

• background melody repeated

• background melody paused

• background melody resumed

Figure 11-24. Full code listing

Chapter 11 playing MusiC

274

 11-13. Adding Silence Between Notes
and Tones
 Problem
You want to add 2 seconds of silence between two notes.

 Solution
• In the Toolbox, click on the Music category. Then click

and drag the play tone for block over, and place it

inside the on start block.

• In the Toolbox, click on the Music category. Next, click

and drag the reset (ms) block over, and place it inside

the on start block underneath the play tone for block.

Then choose 4 for the beat from the drop-down menu.

• Right-click on the play tone for block, and from the

shortcut menu, click Duplicate. Next, click and drag the

duplicated play tone for block and place it underneath

the reset (ms) block. Then select the tone (note) Middle
D from the visual piano keyboard (Figure 11-25).

Figure 11-25. Full code listing

Chapter 11 playing MusiC

275

 How It Works
The reset(ms) block allows you to add silence between notes, tones, or

melodies. The duration of a silence can be in beats or milliseconds.

Figure 11-26 shows how to use 2000 milliseconds to add a duration for

silence.

Figure 11-26. Using 2000 milliseconds to make silence

Chapter 11 playing MusiC

277© Pradeeka Seneviratne 2019
P. Seneviratne, BBC micro:bit Recipes, https://doi.org/10.1007/978-1-4842-4913-0_12

CHAPTER 12

Using Sensors
This chapter presents how to use sensors with micro: bit to sense the

physical environment. It has some built-in sensors such as accelerometers,

compasses, temperatures, lights, and touch. You can use them without

attaching any external components to your micro:bit.

 12-1. Using Built-In Accelerometer
 Problem
You want to get the acceleration values in the left and right direction

(x-axis).

 Solution
• In the Toolbox, click on the Basic category. Then click

and drag the show number block over, and place it

inside the forever block.

• In the Toolbox, click on the Input category. Then click

and drag the acceleration (mg) block over, and place

it inside the placeholder of the show number block.

By default, the acceleration (mg) block outputs the

acceleration values in the x-axis.

278

• In the Toolbox, click on the Basic category. Then

click and drag the pause (ms) block over, and place it

underneath the show number block.

• Once completed, your code should look like this

(Figure 12-1).

 How It Works
The micro:bit has an on-board three-axis accelerometer chip that can

be used to measure the acceleration. The accelerometer is internally

connected to the micro:bit’s I2C bus. It measures the acceleration or

movement along the three axes: x and y axes (the horizontal panes) and

the z axes (the vertical pane), which it experiences relative to free fall. This

is most commonly called the G-force. With the micro:bit’s accelerometer,

you will get acceleration values in mG (milliG).

When you place the micro:bit board on the surface of the earth, it

will measure acceleration due to the earth’s gravity, straight upward of

g~9.81 m/s2. The micro:bit accelerometer can measure accelerations

between +2g and −2g. This range is suitable to use with a wide range of

applications.

Figure 12-1. Full code listing

Chapter 12 Using sensors

279

The acceleration (mg) block outputs the acceleration values in one of

three directions (x, y, and z) or as the strength of acceleration from all three

directions (dimensions). Following are the options that you can choose to

get the output values:

x - Outputs the acceleration values in the x-axis.

Put your micro:bit on a level table with the screen

pointing up. Initially, x=0, y=0, and z=-1023. Now,

tilt your micro:bit board from the left to right or

the right to left. Your micro:bit will display values

ranging from −1023 to +1023.

y - Outputs the acceleration values in the y-axis.

Put your micro:bit on a level table with the screen

pointing up. Initially, x=0, y=0, and z=-1023. Now,

tilt your micro:bit board forward and backward.

Your micro:bit will display values ranging from

−1023 to +1023.

z - Outputs the acceleration values in the z-axis.

Put your micro:bit on a level table with the screen

pointing up. Initially, x=0, y=0, and z=-1023. Now,

move your micro:bit up and down. Your micro:bit

will display values ranging from −1023 to +1023.

strength - Outputs combined force in all directions

(x, y, and z) also known as the overall acceleration.

The overall acceleration can be calculated by

the Pythagorean theorem. The formula uses the

acceleration along the x, y, and z axes as shown

below.

acceleration x y z= + +2 2 2

Chapter 12 Using sensors

280

The same formula can be implemented with MakeCode as shown in

Figure 12-2.

Watch this great video located at https://youtu.be/byngcwjO51U to

learn how the accelerometer on micro:bit works.

 12-2. Using Gestures
 Problem
You want to display a random number from 1 to 6, when you shake your

micro:bit.

 Solution
• In the Toolbox, click on the Input category and then

click on the on shake block.

• In the Toolbox, click on the Basic category. Then click

and drag the show number block over, and place it

inside the on shake block.

Figure 12-2. Displaying overall acceleration

Chapter 12 Using sensors

https://youtu.be/byngcwjO51U

281

• In the Toolbox, click on the Math category. Then click

and drag the pick random block over, and place it

inside the placeholder of the show number block.

• In the pick random block, type 1 for the minimum and

6 for the maximum value.

• Once completed, your code should look like that in

Figure 12-3.

 How It Works
The micro:bit’s built-in accelerometer can also be used to create

interactive applications based on gestures. In MakeCode, on shake is the

default block for gesture detection. If you want to test different gestures,

click on the drop-down list and choose one of the following.

• Shake

• Logo up

• Logo down

• Screen up

• Screen down

• Tilt left

Figure 12-3. Full code listing

Chapter 12 Using sensors

282

• Tilt right

• Free fall

• 3g

• 6g

• 8g

Figure 12-4 shows the graphical representation of each gesture so that

you can get an idea about how to make gestures with micro:bit by holding

the micro:bit in your hand.

Figure 12-4. Accelerometer gestures

Chapter 12 Using sensors

283

 12-3. Using Compass
 Problem
You want to find which direction on a compass the micro:bit is facing.

 Solution
• In the Toolbox, click on the Variables category. Next,

click on the Make a Variable button. In the New
variable name window, type degrees. Then click on

the Ok button.

• In the Toolbox, click on the Input category. Then click

and drag the compass heading block over, and place

it inside the placeholder of the of the set degrees to

block.

• In the Toolbox, click on the Logic category. Next,

click and drag the if-then-else block over, and place it

underneath the set degrees to block. Then add more

else if branches as shown in Figure 12-5. Use the show
arrow block to display different directions.

• The conditional statements for if, else if, and else are as

follows:

• If degrees < 45, then show arrow north

• If degrees < 135, then show arrow east

• If degrees < 255, then show arrow south

• If degrees < 315, then show arrow west

• Else, show arrow north

Chapter 12 Using sensors

284

Figure 12-5. Full code listing

Chapter 12 Using sensors

285

 How It Works
The dedicated magnetometer chip located on the back of your micro:bit

measures the compass heading from 0 to 359 degrees. If the compass is

not ready, it returns −1003. The micro:bit compass is based on the NXP/

Freescale MAG3110, which is a three-axis magnetometer sensor that can

be accessed through the I2C bus. The compass can also act as a metal

detector.

In the above solution under Recipe 12-3, the following ranges of values

are used to find the direction the micro:bit is facing:

• North: 315–44 degree

• East: 45–134 degrees

• South: 135–224 degrees

• West: 225–314 degrees

 12-4. Calibrating the Compass
 Problem
You want to calibrate the built-in compass.

 Solution
• In the Toolbox, click on the Input category. Then click

and drag the calibrate compass block over, and place it

inside the on start block (Figure 12-6).

Chapter 12 Using sensors

286

 How It Works
Before using the compass, you should calibrate it to ensure correct

readings. It is also wise to calibrate the compass each time you use it in a

new location.

In some situations, when the compass needs to be calibrated, the

micro:bit will automatically prompt the user to calibrate it. However, the

calibration sequence can also be manually started with the calibrate
compass block.

You can place the calibrate compass block at any point in your code,
when you need to calibrate the compass. sometimes the compass
may not work even after calibration. it can give spurious results, so it
shouldn’t be relied on fully for navigation.

 12-5. Using Built-In Temperature Sensor
 Problem
You want to read the air temperature surrounding your micro:bit in

Celsius.

Figure 12-6. Full code listing

Chapter 12 Using sensors

287

 Solution
• In the Toolbox, click on the Basic category. Then click

and drag the show number block over, and place it

inside the forever block.

• In the Toolbox, click on the Input category. Then click

and drag the temperature block over, and place it

inside the placeholder of the show number block.

• In the Toolbox, click on the Basic category. Then

click and drag the pause (ms) block over, and place it

underneath the show number block.

• Once completed, your code should look like the

following (Figure 12-7).

Figure 12-7. Full code listing

 How It Works
The micro:bit doesn’t have a dedicated temperature sensor. Instead,

the temperature block outputs the temperature of the micro:bit’s main

CPU. The temperature is a good approximation of the air temperature

where your micro:bit is kept and known as ambient temperature.

Chapter 12 Using sensors

288

In the above solution under Recipe 12-5, the temperature block

outputs the CPU temperature in Celsius. The forever and the show
number blocks are used to continually update and display the

temperature values on the micro:bit’s LED screen.

If you want to display the temperature in Fahrenheit, implement the

following formula to convert Celsius into Fahrenheit using blocks.

Fahrenheit = ((Celsius x 9) / 5) + 32

Figure 12-8 shows how to arrange blocks to convert Celsius to Fahrenheit.

 12-6. Using Built-In Light Sensor
 Problem
You want to find the light level around your micro:bit.

 Solution
• In the Toolbox, click on the Variables category. Next,

click on the Make a Variable button. In the New
variable name window, type reading. Then click on

the Ok button.

Figure 12-8. Converting Celsius to Fahrenheit

Chapter 12 Using sensors

289

• In the Toolbox, click on the Input category. Then click

and drag the light level block over, and place it inside

the placeholder of the set reading to block.

• In the Toolbox, click on the Led category. Then click

and drag the plot bar graph of block over, and place it

underneath the set reading to block.

• In the Toolbox, click on the Variables category. Next,

click and drag the variable named reading over and

place it inside the first placeholder of the plot bar
graph of block. Then type 255 in the second value box.

• Once completed, your code should look like the

following (Figure 12-9).

Figure 12-9. Full code listing

 How It Works
The micro:bit doesn’t have a dedicated light sensor. Instead, when you

shine light on the front of your micro:bit, it measures the capacitance

across a number of LEDs on the front of the board. Then these values

are averaged together and give you a number between 0 and 255. The 0

indicates darkness and the 255 indicates bright light. The plot bar graph

block is used to display a vertical bar graph based on the light level.

Chapter 12 Using sensors

290

 12-7. Using Touch Pins
 Problem
You want to display the happy icon when you touch the pin 0.

 Solution
• In the Toolbox, click on the Input category and then

click on the on pin P0 pressed block.

• In the Toolbox, click on the Basic category. Now, click

and drag the show icon block over, and place it inside

the on pin P0 pressed block. Then choose the happy

icon from the drop-down list.

• Once completed, your code should look like that shown

in Figure 12-10.

 How It Works
Micro:bit board has three specialized pins in the edge connector with

large pads, known as touch pins. They are pins 0, 1, and 2. These pins can

be used to build touch-sensitive applications based on the analog input.

The large connector pads allow you to touch them with your fingertips to

change the capacitance of the internal circuit.

Figure 12-10. Full code listing

Chapter 12 Using sensors

291© Pradeeka Seneviratne 2019
P. Seneviratne, BBC micro:bit Recipes, https://doi.org/10.1007/978-1-4842-4913-0_13

CHAPTER 13

Using Bluetooth
Services
The micro:bit uses Bluetooth Low Energy, a power-friendly version of

Bluetooth technology that allows for wireless communication between

smartphones and tablets, allowing for seamless connection to the Internet

of things. This chapter presents some of the basic things that you can do

with Bluetooth Low Energy.

 13-1. Adding Bluetooth Services Extension
 Problem
You want to add the Bluetooth Services extension to the MakeCode editor.

 Solution
• In the Toolbox, click on Advanced to expand the

package list. Now, scroll down the package list and click

on Extensions.

• In the Extensions page, click on the bluetooth
(Bluetooth services) (Figure 13-1).

292

• In the Some extensions will be removed window,

click Remove extension(s) and add bluetooth button

(Figure 13-2).

Figure 13-1. Extensions page

Figure 13-2. Confirmation dialog box

Chapter 13 Using BlUetooth serviCes

293

 How It Works
Bluetooth extension allows device like a smartphone to use any of the

Bluetooth “services” that the micro:bit has. If you want to use the features

of the Bluetooth extension, it must first be paired with the micro:bit.

Once enabled, the extension can be found in the Toolbox and ready

for access. The Bluetooth extension is incompatible with the radio,

radio-broadcast, and NeoPixel extensions. You must first remove these

extensions to add the Bluetooth extension.

 13-2. Pairing Your micro:bit
 Problem
You want to pair your micro:bit with your smartphone or tablet using

Bluetooth.

 Solution
The following steps guide you on how to pair your micro:bit with a

smartphone or tablet running on an Android operating system.

• Go to Google Play Store and search for the BBC
micro:bit. From the search result, choose the official

micro:bit app (Figure 13-3).

Chapter 13 Using BlUetooth serviCes

294

Figure 13-3. The official micro:bit app

Chapter 13 Using BlUetooth serviCes

295

• Choose INSTALL to install the app on your Android

smartphone or tablet (Figure 13-4).

• After installed, open the app by choosing the OPEN

button.

Figure 13-4. Installing the micro:bit app

Chapter 13 Using BlUetooth serviCes

296

• From the micro:bit app, select the CONNECT button.

• In the Connect page, select the PAIR A NEW
MICRO:BIT button.

• In STEP 1, on the micro:bit, hold down the button A

and B on the front of the board and reset button on the

back of the board for 3 seconds and then release the

reset button.

• The micro:bit display will fill up and display the

Bluetooth logo to indicate that it has entered the

pairing mode.

• Select NEXT on the Android device, and copy the

pattern that is displayed on the micro:bit into the

micro:bit app.

• In STEP 2, Select PAIR on the Android device to search

for the micro:bit.

• If the pairing is successful, you will get a message on

the screen and a tick on the micro:bit.

• Finally, press the reset button on the micro:bit to

complete the pairing process.

The following steps guide you on how to pair your micro:bit with a

smartphone or tablet running iOS.

• Go to the iTunes app store and search for the BBC
micro:bit.

• Then install the official micro:bit app; on your iPhone

or iPad, Open the app.

• From the micro:bit app, select Choose micro:bit.

Chapter 13 Using BlUetooth serviCes

297

• In the Choose micro:bit page, select Pair a new
micro:bit.

• On the micro:bit, hold down the button A and B on the

front of the board and reset button on the back of the

board for 3 seconds and then release the reset button.

• The micro:bit display will fill up and display the

Bluetooth logo to indicate that it has entered the

pairing mode.

• Select NEXT on the iOS device, and copy the pattern

that is displayed on the micro:bit into the micro:bit app.

• In STEP 2, Select PAIR on the iOS device to search for

the micro:bit.

• If the pairing is successful, you will get a message on

the screen and a tick on the micro:bit.

• Finally, press the reset button on the micro:bit to

complete the pairing process.

 How It Works
The micro:bit app allows you to create code, flash the compiled hex file

onto micro:bit hardware, and interface with the device components (e.g.,

Camera) of a smartphone or tablet.

Connecting your micro:bit to your smartphone or tablet using

Bluetooth for the first time is known as pairing. As a prerequisite, you

must install an app on your Android or iOS device to pair, connect, and

communicate with your micro:bit.

You can download the official micro:bit app for Android, developed

by Samsung Electronics, UK, at Google play (https://play.google.com/

store/apps/details?id=com.samsung.microbit&hl=en). This will require

Android 4.4 or higher installed on your mobile device.

Chapter 13 Using BlUetooth serviCes

https://play.google.com/store/apps/details?id=com.samsung.microbit&hl=en
https://play.google.com/store/apps/details?id=com.samsung.microbit&hl=en

298

If you have an Apple iPhone or iPad, you can download the micro:bit

app from iTunes app store at https://itunes.apple.com/us/app/micro-

bit/id1092687276?mt=8. The micro:bit app for iOS is currently compatible

with a wide range of iPhone and iPad devices with different combinations

of hardware components and iOS versions. The list of compatible devices

can be found on the app’s download page.

 13-3. Setting the Transmission Power
 Problem
You want to set the transmission power of the Bluetooth module to 3.

 Solution
• In the Toolbox, click on the Bluetooth category. Then

click and drag the bluetooth set transmit power block

over and place it inside the on start block.

• Type 3 in the value box (Figure 13-5).

Figure 13-5. Full code listing

Chapter 13 Using BlUetooth serviCes

https://itunes.apple.com/us/app/micro-bit/id1092687276?mt=8
https://itunes.apple.com/us/app/micro-bit/id1092687276?mt=8

299

 How It Works
The bluetooth set transmit power block allows you to set the transmission

power of the Bluetooth radio module on your micro:bit board. You can

provide the transmission power as a number in the range 0 to 7, where 0 is

the lowest power and 7 is the highest power. The default power is 7.

Using high transmit power results in a longer range but requires more
battery power.

 13-4. Bluetooth Connecting
 Problem
You want to display ‘connected’ or something like that on the screen when

your phone (or tablet) gets connected to your micro:bit using Bluetooth.

 Solution
• In the Toolbox, click on the Bluetooth category. Then

click on the on bluetooth connected event handler

block.

• In the Toolbox, click on the Basic category. Next, click

and drag the show string block over, and place it inside

on bluetooth connected block. Then type Connected

in the textbox (Figure 13-6).

Chapter 13 Using BlUetooth serviCes

300

 How It Works
Any code you put inside the on bluetooth connected will run when

something connects to your micro:bit using Bluetooth. This is very useful

to indicate to users about the status of the Bluetooth connection between

your smartphone (or tablet) and the micro:bit.

 13-5. Bluetooth Disconnecting
 Problem
You want to display ‘Disconnected’ or something like that on the screen

when the Bluetooth connection gets disconnected between your phone (or

tablet) and the micro:bit.

 Solution
• In the Toolbox, click on the Bluetooth category. Then

click on the on bluetooth disconnected event handler

block.

• In the Toolbox, click on the Basic category. Next,

click and drag the show string block over, and place

it inside on bluetooth disconnected block. Then type

Disconnected in the textbox (Figure 13-7).

Figure 13-6. Full code listing

Chapter 13 Using BlUetooth serviCes

301

 How It Works
Any code you put inside the on bluetooth disconnected will run when the

Bluetooth connection disconnects between your phone and the micro:bit.

This is very useful to indicate to users about the status of the Bluetooth

connection between your smartphone (or tablet) and the micro:bit.

 13-6. Using Bluetooth UART to Send String
 Problem

• You want to send text from your micro:bit to your

Android running smartphone (or tablet) using the

Bluetooth UART service.

 Solution
This solution assumes that you have already installed micro:bit UART
Terminal app (https://play.google.com/store/apps/details?id=com.

ble.microbit.uart) on your smartphone (or tablet) running Android

and also paired your micro:bit with the same smartphone (or tablet) using

Bluetooth.

Figure 13-7. Full code listing

Chapter 13 Using BlUetooth serviCes

https://play.google.com/store/apps/details?id=com.ble.microbit.uart
https://play.google.com/store/apps/details?id=com.ble.microbit.uart

302

• In the Toolbox, click on the Bluetooth category. Next,

click and drag the bluetooth uart service block over,

and place it inside the on start block (Figure 13-8).

• In the Toolbox, click on the Input category and then

click on the on button A pressed event block.

• In the Toolbox, click on the Bluetooth category. Next,

click and drag the bluetooth uart write string block

over, and place it inside the on button A pressed block.

Then type Hello in the text box (Figure 13-9).

Figure 13-8. Placing the bluetooth uart services block

Figure 13-9. Bluetooth UART writing

Chapter 13 Using BlUetooth serviCes

303

• Connect your micro:bit with the micro:bit UART

terminal app by first clicking on the ‘double arrow’

button, followed by the selecting the micro:bit from the

scanned device list (Figure 13-10).

 How It Works
The Bluetooth UART (Universal Asynchronous Receiver/Transmitter)
service allows you to exchange small chunks of data between your

micro:bit and the smartphone (or tablet).

The bluetooth uart write string block allows micro:bit to send data to

a Bluetooth connected device. Sending text involves using the Bluetooth

UART service so you must make sure that bluetooth uart service has

been included in your code, usually inside the on start block. In the

above solution under Recipe 13-6, when you press the button A, the string

Hello will send to the Bluetooth connected smartphone (or tablet) over

UART. The micro:bit UART terminal app will show the data chunks

coming from the micro:bit (Figure 13-11).

Figure 13-10. Connecting micro:bit with the UART terminal app

Chapter 13 Using BlUetooth serviCes

304

Similarly, you can use the bluetooth uart write number block to send

numbers to a Bluetooth connected device. You can also use the bluetooth
uart write value block to send values as a name-value pair to a Bluetooth

connected device. This is useful when you want to send a set of two linked

Figure 13-11. Displaying data chunks on the UART terminal app

Chapter 13 Using BlUetooth serviCes

305

data items: a name, which is a unique identifier for some item of data; and

the value, which is the data that is identified. As an example, the ambient

temperature can be sent as shown in Figure 13-12.

Figure 13-12. Sending the ambient temperature

Chapter 13 Using BlUetooth serviCes

307© Pradeeka Seneviratne 2019
P. Seneviratne, BBC micro:bit Recipes, https://doi.org/10.1007/978-1-4842-4913-0_14

CHAPTER 14

Using Radio
Micro:bit’s CPU (Central Processing Unit) has a built-in 2.4 GHz radio

module that allows you to send and receive messages wirelessly for

short distances about 70 meters (230 feet) when using the maximum

transmission power. With MakeCode for micro:bit, you can build a wide

range of applications that can be used to exchange data between micro:bit

boards (e.g., broadcasting sensor data).

 14-1. Creating Radio Groups
 Problem
You want your micro:bit to communicate with other micro:bits.

 Solution
• In the Toolbox, click on the Radio category. Then click

and drag the radio set group over, and place it inside

the on start block.

• Type 32 in the value box of the radio set group block

(Figure 14-1).

308

 How It Works
The radio set group block allows you to connect your micro:bit to a

virtual group, allowing it to communicate with other members of the

virtual group. This allows multiple micro:bit radio projects to run without

interfering with each other.

Your micro:bit can only ever be a member of one group at a time, and

any packets sent will only be received by other micro:bits in the same

group. You can assign your micro:bit a group number from 0 to 255. The

default group number is 0.

 14-2. Setting the Transmission Power
 Problem
You want to set the transmission power to 4.

 Solution
• In the Toolbox, click on the Radio category. Then click

and drag the radio set transmit power over, and place

it inside the on start block.

• Type 4 in the value box of the radio set transmit power

block (Figure 14-2).

Figure 14-1. Full code listing

Chapter 14 Using radio

309

 How It Works
Transmission power of the radio module in the micro:bit indicates the

strength of the signal and how far it can go from the source. You can set

the transmission power for the micro:bit radio module using the radio

set transmit power block. It accepts values from 0 (weak) to 7 (strong);

the default is 6. The higher the value, the more power the radio module

consumes from the micro:bit. However, using a strong signal will help

you reach more micro:bit radio modules. But remember, the higher the

transmission power, the shorter you can use your micro:bit on battery

power.

 14-3. Broadcasting String Messages
 Problem
You want to broadcast a string (text) message to other micro:bits in the

same group.

 Solution
You will need two or more micro:bits to get an idea of broadcasting and

receiving messages in the same group.

Figure 14-2. Full code listing

Chapter 14 Using radio

310

• In the Toolbox, click on the Radio category. Then click

and drag the radio set group block over, and place

them inside the on start block. Same as place the radio
set transmit power block underneath the radio set
group block.

• In the Toolbox, click on the Input category and then

click on the on button A pressed event.

• In the Toolbox, click on the Radio category. Next,

click and drag the radio send string block over, and

place inside the on button A pressed block. Then type

"Hello!" In the text box.

• In the Toolbox, click on the Basic category. Next, click

and drag the show string block over, and place it inside

the on button A pressed block underneath the radio
send string block. Then type "Sent." in the text box.

• In the Toolbox, click on the Radio category and then

click on the on radio received receivedString event

block.

• In the Toolbox, click on the Basic category. Next, click

and drag the show string block over, and place it inside

the on radio received receivedString block. After that,

click on the Variables category. Then click and drag the

receivedString variable block over, and place it inside

the text box of the show string block.

• In the Toolbox, click on the Basic category. Next,

click and drag the show string block over, and place

it inside the on radio received receivedString block

underneath the show string receivedString block.

After that, click on the Variables category. Then click

Chapter 14 Using radio

311

and drag the received packet block over, and place it

inside the text box of the show string block. Finally,

choose serial number from the drop-down menu of

the received packet block.

• Once completed, your code should look like the

following (Figure 14-3).

Figure 14-3. Full code listing

Chapter 14 Using radio

312

 How It Works
Your micro:bit can both transmit and receive messages. The radio send
string block accepts any string up to 19 characters. When you broadcast a

message, all the micro:bits in the same group can receive the message.

If you flashed the above code onto one or more micro:bits, you can send

the string message, Hello! from one of them to others by pressing the

button A. The other micro:bits will receive and immediately display the

message along with the serial number of the sender’s micro:bit.

With string messages, you can also send numbers (digits), punctuation

marks, and common symbols.

 14-4. Broadcasting Numbers
 Problem
You want to broadcast numbers as messages to other micro:bits in the

same group.

 Solution
You will need two or more micro:bits to get an idea of broadcasting and

receiving messages in the same group.

• In the Toolbox, click on the Radio category. Then click

and drag the radio set group block over, and place

them inside the on start block. Same as place the radio
set transmit power block underneath the radio set
group block.

• In the Toolbox, click on the Input category and then

click on the on button A pressed event.

Chapter 14 Using radio

313

• In the Toolbox, click on the Radio category. Next, click

an drag the radio send number block over, and place it

inside the on button A pressed block. Then type 1.5 in

the text box.

• In the Toolbox, click on the Basic category. Next, click

and drag the show string block over, and place it inside

the on button A pressed block underneath the radio
send number block. Then type "Sent." in the text box.

• In the Toolbox, click on the Radio category and then

click on the on radio received receivedNumber event

block.

• In the Toolbox, click on the Basic category. Next, click

and drag the show number block over, and place it

inside the on radio received receivedNumber block.

After that, click on the Variables category. Then click

and drag the receivedNumber variable block over, and

place it inside the value box of the show number block.

• In the Toolbox, click on the Basic category. Next,

click and drag the show string block over, and place it

inside the on radio received receivedNumber block

underneath the show string receivedNumber block.

After that, click on the Variables category. Then click

and drag the received packet block over, and place it

inside the text box of the show string block. Finally,

choose serial number from the drop-down menu of

the received packet block.

• Once completed, your code should look like the

following (Figure 14-4).

Chapter 14 Using radio

314

 How It Works
Your micro:bit can both transmit and receive messages. The radio send
number block accepts any integer and decimal (including negative

integers and negative decimal numbers). When you broadcast a message,

all the micro:bits in the same group can receive the message. If you flashed

the above code onto one or more micro:bits, you can send the number

message, 1.5, from one of them to others by pressing the button A. The

other micro:bits will receive and immediately display the message along

with the serial number of the sender’s micro:bit.

Figure 14-4. Full code listing

Chapter 14 Using radio

315

 14-5. Broadcasting Message as a
Name- Value Pair
 Problem
You want to broadcast the ambient temperature of your micro:bit as a

labeled message (name-value pair) to other micro:bits in the same group.

 Solution
You will need two or more micro:bits to get an idea of broadcasting and

receiving messages in the same group.

• In the Toolbox, click on the Radio category. Then click

and drag the radio set group block over, and place

them inside the on start block. Same as place the radio
set transmit power block underneath the radio set
group block.

• In the Toolbox, click on the Input category and then

click on the on button A pressed event.

• In the Toolbox, click on the Radio category. Next, click

and drag the radio send value block over and place

inside the on button A pressed block. Next, type temp

in the text box. After that, click on the Input category.

Then click and drag the temperature block over, and

place it inside the value box of the radio send value

block (Figure 14-5).

Chapter 14 Using radio

316

• In the Toolbox, click on the Radio category, and then

click on the on radio received name value event block.

• In the Toolbox, click on the Basic category. Next, click

and drag the show string block over, and place it inside

the on radio received name value block. After that,

click on the Variables category. Then click and drag

the name variable block over, and place it inside the

text box of the show string block. Same as place a show
number block and replace its default value with the

variable block value.

• In the Toolbox, click on the Basic category. Next,

click and drag the show string block over and place it

inside the on radio received receivedNumber block

underneath the show string receivedNumber block.

After that, click on the Variables category. Then click

and drag the received packet block over, and place it

inside the text box of the show string block. Finally,

choose serial number from the drop-down menu of

the received packet block.

• Once completed, your code should look like the

following (Figure 14-6).

Figure 14-5. Creating a name-value pair

Chapter 14 Using radio

317

 How It Works
The radio send value block allows you to send messages as name-value

pairs over radio. The name can be anything that can be used to label your

value. This is very useful for the receiving party to identify the values with

their names.

In the above solution under Recipe 14-5, when you press the button

A, micro:bit broadcasts its CPU temperature as a name-value pair over the

radio (e.g., name=temp, value=23).

Figure 14-6. Full code listing

Chapter 14 Using radio

318

 14-6. Getting Properties from the Last
Received Radio Packet
 Problem
You want to get the signal strength, serial number, and time from the last

received radio data packet (message).

 Solution
You will need two micro:bits in the same group to get an idea of the

message properties.

Flash the following code into the micro:bit to work as the sender to

continually broadcast 0 (or you can use any number) (Figure 14-7).

The steps below will explain how to build the code for the receiver to

get properties from the last received message from the above sender.

• In the Toolbox, click on the Radio category. Then click

on the on radio received receivedNumber block.

• In the Toolbox, click on the Basic category. Then click

and drag the show number block over, and place it

inside the on radio received receivedNumber block.

Figure 14-7. Sending a number

Chapter 14 Using radio

319

• In the Toolbox, click on the Radio category. Then click

and drag the received packet block over, and place it

inside the placeholder of the show number block. By

default, the received packet block returns the signal
strength of the sender.

• Duplicate the show number block twice and place

them inside the on radio received receivedNumber

block. Click on the drop-down menu of the second

block and choose time. Also, click on the drop-down

list of the third block and choose serial number

(Figure 14-8).

 How It Works
The received packet block allows you to access three properties from the

last received message. You can choose one of the following options from

the drop-down menu of the received packet block.

• signal strength: the strength of the radio signal when

the packet was received. The value ranges from −128

(weak) to −42 (strong).

Figure 14-8. Receiving the number

Chapter 14 Using radio

320

• serial number: the serial number of the board sending

the packet.

• time: the time when the packet was sent, which is the

system time since power on, in microseconds, of the

sender.

When you run the above codes with two micro:bits, the receiver will

continually get and display the signal strength, time, and serial number

from the sender’s message.

 14-7. Enabling and Disabling
the Transmission of Serial Number
 Problem
You want to disable the transmission of the serial number of your

micro:bit.

 Solution
• In the Toolbox, click on the Radio category. Then click

and drag the radio set transmit serial number block

over, and place it inside the on start block.

• Select false from the drop-down menu of the radio set
transmit serial number block (Figure 14-9).

Chapter 14 Using radio

321

 How It Works
The radio set transmit serial number block allows you to disable the

transmission of the serial number of your micro:bit. When you broadcast

a message to a group by disabling the serial number, still other micro:bits

can receive your messages, but they cannot identify the serial number of

your micro:bit. By default, micro:bit transmits its serial number along with

the message unless you choose false from the drop-down menu of the

radio set transmit serial number block.

Figure 14-9. Full code listing

Chapter 14 Using radio

323© Pradeeka Seneviratne 2019
P. Seneviratne, BBC micro:bit Recipes, https://doi.org/10.1007/978-1-4842-4913-0_15

CHAPTER 15

Building Simple Games
This chapter provides some basic techniques that you can use to develop

simple games with the micro:bit LED display and two built-in buttons.

 15-1. Creating a Sprite
 Problem
You want to create a sprite at (x2,y2) on the micro:bit LED screen.

 Solution
• In the Toolbox, click on the Variables category. Next,

click on the Make a Variable… button. In the New
variable name box, type sprite for the variable name.

Then click the Ok button.

• In the Toolbox, click on the Variables category. Then

click and drag the set sprite to block over, and place it

inside the on start block.

• In the Toolbox, click on the Game category. Then

click and drag the create sprite block over, and place

it inside the placeholder of the set sprite to block to

replace the 0.

324

• In the create sprite at block, type the value 2 for x and

type the value 2 for y.

• Once completed, your code should look like the

following (Figure 15-1).

 How It Works
When you build games with micro:bit, the LEDs on the front side of the

board will act as the graphical user interface just like the LCD or CRT

screen of a video game console. Sprites are the building blocks of a game.

You can create sprites, tell them to move and turn, detect whether a sprite

has bumped into another sprite, and many more things. Cool!

The LED screen consists of 5 columns and 5 rows, for a total of 25

LEDs. The columns belong to the x-axis and the rows belong to the y-axis,

like a Cartesian chart. The address of the LED in the top-left corner can

be written as (x0,y0). The address of the LED in the top-right corner can

be written as (x4,y0). Figure 15-2 shows the column and row numbers

associated with the LED grid. You can read the column numbers (0 to 5)

along the x-axis and row numbers (0 to 5) along the y-axis.

Figure 15-1. Full code listing

Chapter 15 Building Simple gameS

325

The create sprite block accepts the x and y positions of the sprite that

you want to create:

x: between 0 and 4

y: between 0 and 4

When you run the above code, the LED at (x2,y2) will turn on

(Figure 15-3).

Figure 15-2. Built-in LED display consists of columns and rows

Chapter 15 Building Simple gameS

326

any number less than 0 or greater than 4 is considered as 0 and
4, respectively. as an example, −1 is considered as 0 and 5 is
considered as 4.

 15-2. Moving a Sprite Straightly
 Problem
You want to move the sprite created in Recipe 15-1 to the left by 1 LED

each time when you press the button A and to the right by 1 LED each time

when you press the button B.

Figure 15-3. Creating a sprite at x2,y2

Chapter 15 Building Simple gameS

327

 Solution
• In the Toolbox, click on the Input category and then

click on the on button A pressed event block.

• In the Toolbox, click on the Games category. Next,

click and drag the move by block over, and place it

inside the on button A pressed block. Then type the

value −1 in the value box.

• Duplicate the on button A pressed block. Next, choose

B from the drop-down menu. Then in the move by

block, type the value 1 in the value box.

• Once completed, your code should look like this

(Figure 15-4).

Chapter 15 Building Simple gameS

328

 How It Works
With the move by block, you can tell a sprite to move straight on a row

from left to right or right to left. In the above example, when you press the

button A, the sprite moves to left by 1 LED. When you press the button B,

the sprite moves to the right by 1 LED. A negative value tells how many

LEDs the sprite should move to the left, and a positive value tells how

many LEDs the sprite should move to the right. You can move a sprite

straightly to the left, until it reaches to the first column. Similarly, you can

move a sprite straightly to the right, until it reaches to the last column.

Figure 15-4. Full code listing

Chapter 15 Building Simple gameS

329

When you run the above code, you can move the sprite to the left and

right by pressing the buttons A and B. Figure 15-5 shows the left and right

boundaries.

 15-3. Moving a Sprite by Turning
 Problem
You want to create a sprite in the middle of the screen. Then move the

sprite by turning 45 degrees to the right each time by 1 LED.

Figure 15-5. Left and right boundaries for the sprite. The sprite can
only move on row 2.

Chapter 15 Building Simple gameS

330

 Solution
• In the Toolbox, click on the Variables category. Next,

click on the Make a Variable… button. In the New
variable name box, type sprite for the variable name.

Then click the Ok button.

• In the Toolbox, click on the Variables category. Then

click and drag the set sprite to block over, and place it

inside the on start block.

• In the Toolbox, click on the Game category. Then

click and drag the create sprite block over, and place

it inside the placeholder of the set sprite to block to

replace the 0.

• In the create sprite at block, type the value 2 for x and

type the value 2 for y.

• In the Toolbox, click on the Input category and then

click on the on button A pressed event block.

• In the Toolbox, click on the Game category. Then click

and drag the turn right by 45 block over, and place it

inside the on button A pressed block.

• In the Toolbox, click on the Game category. Then

click and drag the move by block over, and place it

underneath the turn right by 45 block.

• Once completed, your code should look like this

(Figure 15-6).

Chapter 15 Building Simple gameS

331

 How It Works
The turn block allows your sprite to turn left or right by a number of

degrees. Figure 15-7 and Figure 15-8 show the path of the sprite, each

time when you press the button A.

Figure 15-6. Full code listing

Chapter 15 Building Simple gameS

332

Figure 15-7. Moving to the right by turning 45 degrees

Figure 15-8. Path from start to end and continues the same path

Chapter 15 Building Simple gameS

333

 15-4. Deleting a Sprite
 Problem
You want to delete a sprite.

 Solution
This solution assumes that you already have a variable named sprite and it

holds a sprite (initially at x2,y2).

• In the Toolbox, click on the Input category and then

click on the on button A pressed event block.

• In the Toolbox, click on the Game category. Then click

on the delete block over, and place it inside the on
button A pressed block (Figure 15-9).

Figure 15-9. Full code listing

Chapter 15 Building Simple gameS

334

 How It Works
The delete block allows you to delete a sprite from the game. If you have

more than one sprite in your game, choose the correct variable for the

sprite from the drop-down list.

In the above example, when you press the button A, the sprite at x2,y2

will be deleted from the screen.

 15-5. Holding and Displaying Score
 Problem
You want to increment the score by pressing the button A and displaying

the current score by pressing the button B.

 Solution
• In the Toolbox, click on the Game category. Then click

and drag the set score block over, and place it inside

the on start block.

• In the Toolbox, click on the Input category and then

click on the on button A pressed event block.

• Repeat the above step to add an on button B pressed

event block.

• In the Toolbox, click on the Game category. Then click

and drag the change score by block over, and place it

inside the on button A pressed block.

• In the Toolbox, click on the Basic category. Then click

and drag the show number block over, and place it

inside the on button B pressed block.

Chapter 15 Building Simple gameS

335

• In the Toolbox, click on the Game category. Then click

and drag the score block over, and place it inside the

placeholder of the show number block.

• Once you have completed these steps, your code

should look like this (Figure 15-10).

 How It Works
The score of your game can be initialized, updated, and accessed from the

following blocks.

• set score: sets the score of the game by assigning an

initial value.

• change score: update the score by a given value.

• score: holds the current score.

Figure 15-10. Full code listing

Chapter 15 Building Simple gameS

336

 15-6. Life
 Problem
You want to add and remove life from your game.

 Solution
• In the Toolbox, click on the Game category. Next, click

and drag the set life block over, and place it inside the

on start block. Then type the value 100 in the value box.

• In the Toolbox, click on the Input category and then

click on the on button A pressed event block.

• Repeat the above step to add an event block, on button
B pressed.

• In the Toolbox, click on the Game category. Next, click

and drag the add life block over, and place it inside the

on button A pressed block. Then type the value 50 in

the value box.

• In the Toolbox, click on the Game category. Next, click

and drag the remove life block over, and place it inside

the on button B pressed block. Then type the value

50 in the value box.

• Once completed, your code should look like this

(Figure 15-11).

Chapter 15 Building Simple gameS

337

 How It Works
The set life block allows you to add life to your game. In the above solution

under Recipe 15-6, initially the life is set to 100. The add life block is

used to add a number of play-turns that a player character has, to the life

variable. The remove life block is used to remove a number of play-turns

from the life variable. When the life reaches 0, the game will finish and

display ‘GAME OVER’ on the LED screen.

 15-7. Hitting with Another Sprite
 Problem
Your game has two sprites. One sprite is defined as the enemy, and the

other sprite is defined as the hero. You can move the hero by pressing the

button A. If the hero hits with the enemy, the game should be over.

Figure 15-11. Full code listing

Chapter 15 Building Simple gameS

338

 Solution
• In the Toolbox, click on the Variables category. Next,

click on the Make a Variable… button. In the New
variable name box, type hero for the variable name.

Then click the Ok button.

• In the Toolbox, click on the Variables category. Then

click and drag the set hero to block over, and place it

inside the on start block.

• In the Toolbox, click on the Game category. Then

click and drag the create sprite block over, and place

it inside the placeholder of the set hero to block to

replace the 0.

• In the create sprite at block, type the value 0 for x and

type the value 2 for y.

• Repeat the above steps to create another variable

named enemy and create a sprite at x2,y2.

• In the Toolbox, click on the Input category and then

click on the on button A pressed event block.

• In the Toolbox, click on the Game category. Next, click

and drag the move by block over, and place it inside the

on button A pressed block. Then choose the variable

hero from the drop-down menu.

• In the Toolbox, click on the Logic category. Next,

click and drag the if-then block over, and place it

underneath the move by block.

Chapter 15 Building Simple gameS

339

• In the Toolbox, click on the Game category. Next, click

and drag the touching block over, and place it inside

the placeholder of the if-then block. Then choose the

first operand as the hero and the second operand as

the enemy.

• In the Toolbox, click on the Game category. Then click

and drag the game over block over, and place it inside

the then branch of the if-then block.

• Once completed, your code should look like this

(Figure 15-12).

Figure 15-12. Full code listing

Chapter 15 Building Simple gameS

340

 How It Works
The touching block can be used to detect touching (hitting) of two sprites.

The game over block will finish the game.

Chapter 15 Building Simple gameS

341© Pradeeka Seneviratne 2019
P. Seneviratne, BBC micro:bit Recipes, https://doi.org/10.1007/978-1-4842-4913-0

 APPENDIX

ASCII Table
Table A-1 shows all the valid letters, numbers, and punctuation that can be

used to build a string. They can be found in the ASCII table from 32–126.

Table A-1. ASCII Table

DEC CHR

32 Space

33 !

34 "

35 #

36 $

37 %

38 &

39 '

40 (

41)

42 *

43 +

(continued)

https://doi.org/10.1007/978-1-4842-4913-0

342

Table A-1. (continued)

DEC CHR

44 ,

45 -

46 .

47 /

48 0

49 1

50 2

51 3

52 4

53 5

54 6

55 7

56 8

57 9

58 :

59 ;

60 <

61 =

62 >

63 ?

64 @

(continued)

APPENDIX ASCII TABLE

343

Table A-1. (continued)

DEC CHR

65 A

66 B

67 C

68 D

69 E

70 F

71 G

72 H

73 I

74 J

75 K

76 L

77 M

78 N

79 O

80 P

81 Q

82 R

83 S

84 T

85 U

(continued)

APPENDIX ASCII TABLE

344

DEC CHR

86 V

87 W

88 X

89 Y

90 Z

91 [

92 \

93]

94 ^

95 _

96 `

97 a

98 b

99 c

100 d

101 e

102 f

103 g

104 h

105 i

106 j

Table A-1. (continued)

(continued)

APPENDIX ASCII TABLE

345

DEC CHR

107 k

108 l

109 m

110 n

111 o

112 p

113 q

114 r

115 s

116 t

117 u

118 v

119 w

120 x

121 y

122 z

123 {

124 |

125 }

126 ~

Table A-1. (continued)

APPENDIX ASCII TABLE

347© Pradeeka Seneviratne 2019
P. Seneviratne, BBC micro:bit Recipes, https://doi.org/10.1007/978-1-4842-4913-0

Index

A
acceleration (mg)

block, 277, 279
Accelerometer, 277–280
add value to end block, 234
Alligator, 247, 249, 252, 253
Alligator/Crocodile clips, 117
Ambient temperature, 287
Amplifiers, 253, 254
analog set pitch pin

block, 250, 251
And operator, 166, 167
Array category, 225
Array functions

display all items, 242, 244
index of item, find, 238, 239
insert an item, 232–234,

239, 241, 242
item at specified

location, 227–229
number of items, 224–226
remove, last item, 235–238
replace item, 229, 231
reverse items, 244–246

Arrow image, 108–111
arrow image block, 109
ASCII table, 341–345

B
Block categories, 50
Blocks in coding area

add comment, 54–56
adding, 47–50
arrows, 69, 70
clear screen, 72, 73
deletion, 51–53
display numbers, 59–62
duplication, 53, 54
icons display, 64–66, 68
LEDs, 62–64
pause, execution of

program, 70–72
repeated text display, 60, 61
text display, 56–59

Bluetooth
disconnected, 300, 301
micro:bit connection, 299, 300
transmission power, 298, 299

Bluetooth low energy, 291
Bluetooth services extension

Extensions page, 291
MakeCode editor, 291
smartphone, 293

bluetooth set transmit power
block, 299

https://doi.org/10.1007/978-1-4842-4913-0

348

Bluetooth UART service
block, 302
bluetooth uart write number

block, 304
bluetooth uart write string

block, 302, 303
bluetooth uart write

value block, 304
micro:bit UART Terminal app, 301

Boolean false block, 209
Boolean operators, 163–168
Boolean variables, 210
Built-in image display, 93–96
Built-in melodies display, 254–256

C
calibrate compass block, 285, 286
change tempo by (bpm) block, 269
change variable by block, 211, 212
clear screen block, 152
Compass, 283, 285, 286
compass heading block, 283
create big image block, 105, 106
create image block, 101, 103

D
Decision making

Boolean operators, 163–168
compare, 160–163
if-then, 151–153
if-then-else, 153, 154, 156
if-then-else if-then-else, 156–160

Develop simple games
add and remove life, 336, 337
creating sprite, 323–326
delete sprite, 333, 334
hits with enemy, 337–340
holding and displaying

score, 334, 335
move sprite, 326, 328, 329
move sprite by turning,

329, 330, 332
Digital input and output, 133–135
Digital read pin, 135
Digital signals, 134
Digital write pin, 135
Double-sized image, 104–108

E
Edge connector breakout, 120, 121
for element block, 244, 246
Extensions (packages)

adding from project URL, 34–39
adding to toolbox, 29–33
pairing micro:bit, WebUSB,

41, 43–45
removing from project

URL, 39–41

F
Fahrenheit, 288
find index of block, 239
Flashing, 12
Float variable, 192–195

INDEX

349

for loop, 148–150
Function creation

area calculation, 223, 224
basic category, 219
call function block, 221
division block, 219
inchesToCentimeters,

216, 217, 221
Make a Function button, 215
Math category, 218
parameters, 222
variables, 217, 221

G, H
Gestures, 280–282
get and remove last value from

block, 237
get value at block, 202, 206, 207,

229, 231, 234
G-force, 278
Graphical programming language, 4

I, J
I2C address, 135
icon image block, 93, 97, 100, 114
i2c read number block, 139
if-then-else if-then-else loop,

156–160
if-then-else loop, 153, 154, 156
if-then loop, 151–153
Image, creation, 101–104
Image offsetting, 96–99

insert at value block, 242
Integer variable, 187–191
Inter-Integrated Circuit (I2C)

bus, 136, 137
I/O pins, micro bit

built-in buttons, 121–125
data value, SPI slave

device, 139–141
digital read/write circuit, 133
edge connector, 117–119
edge connector

breakout, 120, 121
I2C communication

protocol, 136, 137
LED, brightness control,

129, 131, 132
momentary push button, 126–129
number read, I2C address,

138, 139
pin x pressed block, 128

K
Kitronik edge connector

breakout, 120

L
LED

brightness controlling,
129, 131, 132

turn on/off, button status,
62–64, 133–135

length of array block, 227

Index

350

light level block, 289
Light sensor, 288, 289

M
Magnetometer chip, 285
MakeCode, 96, 262, 280, 281

for BBC micro:bit, 1–7
delete all projects, 26–28
to download project, 9, 10
flashing downloaded hex file to

micro:bit, 10–12
hex file from micro:bit

drive, 13, 14
opening delete project, 24–26
opening file from

computer, 20–23
opening shared project, 23
saving project to file, 7, 8
share project, 14, 15, 17–20

Manipulating text strings
comparing, 79, 80, 82
converting string to

number, 89–92
fining length of text, 75, 76
getting character, 86–88
joining, 77–79
making substrings, 82–86

Mathematical operations, 169, 172
absolute values, 176, 177
addition block, 170
map numbers, 183–185
random numbers, 181–183
rounding a number, 179–181

set variable to block, 170
show number block, 170
smaller and larger

values, 173–175
square root, 177–179

micro:bit pairing
Android, 293, 295–297
iOS, 296, 297
iPhone or iPad, 298
smartphone or tablet, 293

Microsoft MakeCode, 4
min of block, 174
Momentary push button, 126–129
MonkMakes speaker module, 254
Music

amplifiers, 253, 254
beat, 271, 272
built-in melody, 254–256
earphone, 251–253
events, 272, 273
21-key piano keyboard, 259–261
octaves, 263–265
play note/tone, 257–263, 265–267
silence, notes, 274, 275
speaker, 247–249, 251
tempo, 268–271

music on event block, 272
myImage variable block, 94, 97,

100, 102, 105

N
nested min of blocks, 175
Not operator, 167, 168

INDEX

351

O
Octaves, 263–265
on Bluetooth

connected, 300
on Bluetooth

disconnected, 301
on button A pressed block,

310, 313, 315
on button A pressed event

block, 257
on pin P0 pressed block, 290
on radio received name value

block, 316
on radio received receivedNumber

block, 313, 316, 318
on radio received receivedString

block, 310
on shake block, 280
on start block, 144, 148, 160
Operand, 191
Or operator, 167

P, Q
Pairing, 297
parse to number block, 213
pause (ms) block, 278, 287
pick random block, 281
play tone block, 265–267,

269, 274
plot bar graph block, 289
Programming Experience

Toolkit (PXT), 4
Pythagorean theorem, 279

R
Radio

broadcasting numbers, 312–314
data packet, 318–320
groups creation, 307, 308
name-value pair, 315–317
string messages, 309–312
transmission power, 308, 309
transmit serial number, 320, 321

radio send number block, 313, 314
radio send string block, 310, 312
radio send value block, 315, 317
radio set group block, 307, 308,

312, 315
radio set transmit power

block, 308, 310
radio set transmit serial number

block, 320, 321
received packet block, 311, 313,

316, 319
Repeat loop, 143–145
repeat n times block, 144, 145
reset (ms) block, 274, 275
reverse block, 246
ring tone (Hz) block, 248, 250, 257

S
scroll image block, 99, 108
Scrolling images, 99–101
Sensors

accelerometer, 277–280
calibrate, compass, 285, 286
compass, 283, 285

Index

352

gestures, 280–282
light, 288, 289
temperature, 286–288
touch pins, 290

set degrees to block, 283
set hardware to block, 197, 198
set heart to block, 114
set list to block, 201
set names to block, 206
set reading to block, 289
set tempo to (bpm) block, 268, 269
set text list to block, 205, 263
set value at block, 231
set variable to block, 146, 148, 151,

209, 212, 213
show arrow block, 283
show icon block, 152, 155,

158, 161, 290
show image block, 93, 97, 101,

104, 109, 115
show number block, 144, 146, 149,

178, 179, 183, 189, 190, 194,
203, 223, 227, 278, 280, 287,
288, 313

show string block, 207, 209, 244,
246, 310, 313

Simulator, 4
Single frame image, 104
Slider, 268

SPI slave device, 139–141
spi write block, 140
square root block, 178, 179
start melody block, 255, 263
String variable, 196–199

T, U
temperature block, 287, 315
Temperature sensor, 286–288
tempo (bpm) block, 271
Time, 267
Toolbox, 5
Touch pins, 290

V
Variables

array of numbers, hold, 200–203
Boolean value, 207–210
float, 192–195
hold, array of text, 203–207
hold image, 112–116
integer, 187–191, 211, 212
string, 196–199, 212, 213

W, X, Y, Z
WebUSB, 43
While loop, 145–148

Sensors (cont.)

INDEX

	Table of Contents
	About the Author
	Chapter 1: MakeCode Setup Fundamentals
	1-1. Starting Microsoft MakeCode for BBC micro:bit
	Problem
	Solution
	How It Works

	1-2. Saving a Project to a File
	Problem
	Solution
	How It Works

	1-3. Downloading a Project
	Problem
	Solution
	How It Works

	1-4. Flashing a Hex File to the micro:bit
	Problem
	Solution
	How It Works

	1-5. Changing the Download Location to micro:bit Drive with Google Chrome
	Problem
	Solution
	How It Works

	1-6. Sharing a Project
	Problem
	Solution
	How It Works

	1-7. Opening a File from the Computer
	Problem
	Solution
	How It Works

	1-8. Opening a Shared Project
	Problem
	Solution
	How It Works

	1-9. Deleting a Project
	Problem
	Solution
	How It Works

	1-10. Deleting All Projects
	Problem
	Solution
	How It Works

	Chapter 2: MakeCode Extended Features
	2-1. Adding an Extension from the Extension Page
	Problem
	Solution
	How It Works

	2-2. Adding Extension from the Project URL
	Problem
	Solution
	How It Works

	2-3. Removing an Extension from the Project
	Problem
	Solution
	How It Works

	2-4. Pairing micro:bit for One-Click Download Using WebUSB
	Problem
	Solution
	How It Works

	Chapter 3: MakeCode Programming Basics
	3-1. Adding Blocks onto Coding Area
	Problem
	Solution
	How It Works

	3-2. Deleting a Block
	Problem
	Solution
	How It Works

	3-3. Duplicating a Block
	Problem
	Solution
	How It Works

	3-4. Adding a Comment
	Problem
	Solution
	How It Works

	3-5. Displaying Text
	Problem
	Solution
	How It Works

	3-6. Displaying Numbers
	Problem
	Solution
	How It Works

	3-7. Displaying Text Repeatedly
	Problem
	Solution
	How It Works

	3-8. Displaying a Number Repeatedly
	Problem
	Solution
	How It Works

	3-9. Turning on LEDs
	Problem
	Solution
	How It Works

	3-10. Displaying Icons
	Problem
	Solution
	How It Works

	3-11. Displaying Arrows
	Problem
	Solution
	How It Works

	3-12. Pausing a Program
	Problem
	Solution
	How It Works

	3-13. Clearing the Screen
	Problem
	Solution
	How It Works

	Chapter 4: Working with Text
	4-1. Finding the Length of a Text
	Problem
	Solution
	How It Works

	4-2. Joining Strings
	Problem
	Solution
	How It Works

	4-3. Comparing Two Strings
	Problem
	Solution
	How It Works

	4-4. Making Substrings
	Problem
	Solution
	How It Works

	4-5. Getting a Character at a Position
	Problem
	Solution
	How It Works

	4-6. Converting a String to a Number
	Problem
	Solution
	How It Works
	Special Case

	Chapter 5: Displaying Images
	5-1. Displaying Built-in Images
	Problem
	Solution
	How It Works

	5-2. Image Offsetting
	Problem
	Solution
	How It Works

	5-3. Scrolling Images
	Problem
	Solution
	How It Works

	5-4. Creating Your Own Images
	Problem
	Solution
	How It Works

	5-5. Creating a Double-Sized Image
	Problem
	Solution
	How It Works

	5-6. Displaying Arrows
	Problem
	Solution
	How It Works

	5-7. Using Variable to Hold an Image
	Problem
	Solution
	How It Works

	Chapter 6: Inputs and Outputs
	6-1. Using Edge Connector
	Problem
	Solution
	How It Works

	6-2. Using Edge Connector Breakout
	Problem
	Solution
	How It Works

	6-3. Using Built-In Buttons
	Problem
	Solution
	How It Works

	6-4. Using External Buttons
	Problem
	Solution
	How It Works

	6-5. Controlling Brightness of an LED
	Problem
	Solution
	How It Works

	6-6. Using Digital Input and Output
	Problem
	Solution
	How It Works

	6-7. Writing a Number to a Device at a I2C Address
	Problem
	Solution
	How It Works

	6-8. Reading a Number from a Device at a I2C Address
	Problem
	Solution
	How It Works

	6-9. Writing Data to an SPI Slave Device
	Problem
	Solution
	How It Works

	Chapter 7: Loops and Logic
	7-1. Repeating Some Code Blocks Several Times
	Problem
	Solution
	How It Works

	7-2. Run a Same Sequence of Actions While a Condition Is Met
	Problem
	Solution
	How It Works

	7-3. Using for Loop
	Problem
	Solution
	How It Works

	7-4. Decision Making with if-then
	Problem
	Solution
	How It Works

	7-5. Decision Making with If-then-else
	Problem
	Solution
	How It Works

	7-6. Decision Making with if-then-else if-then-else
	Problem
	Solution
	How It Works

	7-7. Comparing Numbers
	Problem
	Solution
	How It Works

	7-8. Using Boolean Operators
	Problem
	Solution
	How It Works

	Chapter 8: Using Mathematical Functions
	8-1. Using Basic Mathematical Operations
	Problem
	Solution
	How It Works

	8-2. Finding Smaller and Larger Values of Two Numbers
	Problem
	Solution
	How It Works

	8-3. Finding Absolute Value of a Number
	Problem
	Solution
	How It Works

	8-4. Finding Square Root of a Number
	Problem
	Solution
	How It Works

	8-5. Rounding a Number
	Problem
	Solution
	How It Works

	8-6. Generating Random Numbers
	Problem
	Solution
	How It Works

	8-7. Mapping a Number in One Range to Another Range
	Problem
	Solution
	How It Works

	Chapter 9: Using Variables
	9-1. Creating Integer Variables
	Problem
	Solution
	How It Works

	9-2. Creating Float Variables
	Problem
	Solution
	How It Works

	9-3. Creating String Variables
	Problem
	Solution
	How It Works

	9-4. Creating a Variable to Hold an Array of Numbers
	Problem
	Solution
	How It Works

	9-5. Creating a Variable to Hold an Array of Text
	Problem
	Solution
	How It Works

	9-6. Creating a Variable to Hold Boolean Value
	Problem
	Solution
	How It Works

	9-7. Changing the Value of an Integer Variable
	Problem
	Solution
	How It Works

	9-8. Updating String Variables
	Problem
	Solution
	How It Works

	Chapter 10: Functions and Arrays
	10-1. Creating a Function
	Problem
	Solution
	How It Works

	10-2. Finding the Number of Items in an Array
	Problem
	Solution
	How It Works

	10-3. Finding an Item at Specified Location in an Array
	Problem
	Solution
	How It Works

	10-4. Replacing an Item in an Array
	Problem
	Solution
	How It Works

	10-5. Inserting an Item to the End of an Array
	Problem
	Solution
	How It Works

	10-6. Removing Last Item from an Array
	Problem
	Solution
	How It Works

	10-7. Finding the Index of an Item in an Array
	Problem
	Solution
	How It Works

	10-8. Inserting an Item to an Array
	Problem
	Solution
	How It Works

	10-9. Displaying All the Items of an Array
	Problem
	Solution
	How It Works

	10-10. Reversing the Items of an Array
	Problem
	Solution
	How It Works

	Chapter 11: Playing Music
	11-1. Connecting a Speaker to Pin 0
	Problem
	Solution
	How It Works

	11-2. Connecting a Speaker to Other Pins
	Problem
	Solution
	How It Works

	11-3. Using Earphones
	Problem
	Solution
	How It Works

	11-4. Using Amplifiers
	Problem
	Solution
	How It Works

	11-5. Playing Built-In Melodies
	Problem
	Solution
	How It Works

	11-6. Playing a Tone or Note
	Problem
	Solution
	How It Works

	11-7. Using Octaves
	Problem
	Solution
	How It Works

	11-8. Playing a Note or Tone for Given Duration
	Problem
	Solution
	How It Works

	11-9. Setting the Tempo
	Problem
	Solution
	How It Works

	11-10. Getting the Tempo
	Problem
	Solution
	How It Works

	11-11. Getting the Duration of a Beat
	Problem
	Solution
	How It Works

	11-12. Using Music Events
	Problem
	Solution
	How It Works

	11-13. Adding Silence Between Notes and Tones
	Problem
	Solution
	How It Works

	Chapter 12: Using Sensors
	12-1. Using Built-In Accelerometer
	Problem
	Solution
	How It Works

	12-2. Using Gestures
	Problem
	Solution
	How It Works

	12-3. Using Compass
	Problem
	Solution
	How It Works

	12-4. Calibrating the Compass
	Problem
	Solution
	How It Works

	12-5. Using Built-In Temperature Sensor
	Problem
	Solution
	How It Works

	12-6. Using Built-In Light Sensor
	Problem
	Solution
	How It Works

	12-7. Using Touch Pins
	Problem
	Solution
	How It Works

	Chapter 13: Using Bluetooth Services
	13-1. Adding Bluetooth Services Extension
	Problem
	Solution
	How It Works

	13-2. Pairing Your micro:bit
	Problem
	Solution
	How It Works

	13-3. Setting the Transmission Power
	Problem
	Solution
	How It Works

	13-4. Bluetooth Connecting
	Problem
	Solution
	How It Works

	13-5. Bluetooth Disconnecting
	Problem
	Solution
	How It Works

	13-6. Using Bluetooth UART to Send String
	Problem
	Solution
	How It Works

	Chapter 14: Using Radio
	14-1. Creating Radio Groups
	Problem
	Solution
	How It Works

	14-2. Setting the Transmission Power
	Problem
	Solution
	How It Works

	14-3. Broadcasting String Messages
	Problem
	Solution
	How It Works

	14-4. Broadcasting Numbers
	Problem
	Solution
	How It Works

	14-5. Broadcasting Message as a Name-Value Pair
	Problem
	Solution
	How It Works

	14-6. Getting Properties from the Last Received Radio Packet
	Problem
	Solution
	How It Works

	14-7. Enabling and Disabling the Transmission of Serial Number
	Problem
	Solution
	How It Works

	Chapter 15: Building Simple Games
	15-1. Creating a Sprite
	Problem
	Solution
	How It Works

	15-2. Moving a Sprite Straightly
	Problem
	Solution
	How It Works

	15-3. Moving a Sprite by Turning
	Problem
	Solution
	How It Works

	15-4. Deleting a Sprite
	Problem
	Solution
	How It Works

	15-5. Holding and Displaying Score
	Problem
	Solution
	How It Works

	15-6. Life
	Problem
	Solution
	How It Works

	15-7. Hitting with Another Sprite
	Problem
	Solution
	How It Works

	Appendix: ASCII Table
	Index

