
/ theory / in / prac t ice

Beautiful
JavaScript
Leading Programmers Explain
How They Think

Anton Kovalyov

www.allitebooks.com

http://www.allitebooks.org

/ theory / in / prac t ice

Beautiful JavaScript
JavaScript is arguably the most polarizing and misunderstood programming language in the
world. Many have attempted to replace it as the language of the Web, but JavaScript has survived,
evolved, and thrived. Why did a language created in such a hurry succeed where others failed?

This guide gives you a rare glimpse into JavaScript from people intimately familiar with it.
Chapters contributed by domain experts such as Jacob Thornton, Ariya Hidayat, and Sara Chipps
reveal what they love about their favorite language—whether it’s turning the most feared features
into useful tools, or how JavaScript can be used for self-expression.

About the editor:
Anton Kovalyov is a software engineer at Medium, creator of JSHint, and coauthor of Third-Party
JavaScript (Manning).

Contributors include:

 Jonathan Barronville

 Sara Chipps

Angus Croll

 Marijn Haverbeke

 Ariya Hidayat

 Daryl Koopersmith

 Anton Kovalyov

Rebecca Murphey

 Daniel Pupius

 Graeme Roberts

 Jenn Schiffer

 Jacob Thornton

 Ben Vinegar

 Rick Waldron

 Nicholas Zakas

Programming/JavaScript

“Reading this book is like sitting down with some of the masters of JavaScript
for lunch and hearing them talk about what's on their mind at the moment.
You'll leave with a new appreciation for the language, and with something you
can use to make your next project better.”

— Dave Camp, Director of Engineering, Firefox

ISBN: 978-1-449-37075-6
US $39.99 CAN $45.99

Twitter: @oreillymedia
facebook.com/oreilly
oreilly.com

www.allitebooks.com

http://www.allitebooks.org

Edited by Anton Kovalyov

Beautiful JavaScript

www.allitebooks.com

http://www.allitebooks.org

978-1-449-37075-6

[LSI]

Beautiful JavaScript
edited by Anton Kovalyov

Copyright © 2015 Anton Kovalyov. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online

editions are also available for most titles (http://safaribooksonline.com). For more information,

contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Simon St. Laurent
Editor: Allyson MacDonald
Production Editor: Matthew Hacker
Copyeditor: Rachel Head
Proofreader: Rachel Monaghan

Indexer: WordCo Indexing Services, Inc.
Interior Designer: David Futato
Cover Designer: Susan Thompson
Illustrator: Rebecca Demarest

August 2015: First Edition

Revision History for the First Edition
2015-08-07: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781449370756 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Beautiful JavaScript, the cover

image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the informa-

tion and instructions contained in this work are accurate, the publisher and the authors dis-

claim all responsibility for errors or omissions, including without limitation responsibility for

damages resulting from the use of or reliance on this work. Use of the information and instruc-

tions contained in this work is at your own risk. If any code samples or other technology this

work contains or describes is subject to open source licenses or the intellectual property rights

of others, it is your responsibility to ensure that your use thereof complies with such licenses

and/or rights.

www.allitebooks.com

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781449370756
http://www.allitebooks.org

T A B L E O F C O N T E N T S

Preface. vii

1 Beautiful Mixins. 1
Classical Inheritance 1

Prototypes 2

Mixins 3

The Basics 4

The Use Case 4

Classic Mixins 5

The extend Function 6

Functional Mixins 7

Adding Options 8

Adding Caching 9

Advice 10

Wrapup 11

2 eval and Domain-Specific Languages. 13
What About “eval Is Evil”? 13

History and Interface 14

Performance 15

Common Uses 16

A Template Compiler 16

Speed 18

Mixing Languages 19

Dependencies and Scopes 20

Debugging Generated Code 21

Binary Pattern Matches 21

Closing Thoughts 25

3 How to Draw a Bunny. 27
What Is a Rabbit? 27

iii

www.allitebooks.com

http://www.allitebooks.org

What Is a Bunny? 28

What Does This Have to Do with JavaScript? 29

With So Much Variation, Which Way Is Correct? 32

How Does This Affect the Classroom? 33

Is This Art? And Why Does That Matter? 34

What Does This Look Like? 36

What Did I Just Read? 38

4 Too Much Rope, or JavaScript for Teams. 39
Know Your Audience 39

Stupid Good 40

Keep It Classy 41

Style Rules 43

Evolution of Code 44

Conclusion 44

5 Hacking JavaScript Constructors for Model Harmony. 47
Doppelgangers 48

Miniature Models of Factories 50

Constructor Identity Crisis 51

Making It Scale 52

Conclusion 54

6 One World, One Language. 57
An Imperative, Dynamic Proposal 58

The Paradox of Choice 60

Globalcommunicationscript 60

7 Math Expression Parser and Evaluator. 61
Lexical Analysis and Tokens 61

Syntax Parser and Syntax Tree 66

Tree Walker and Expression Evaluator 72

Final Words 76

8 Evolution. 77
Backbone 79

CONTENTSiv

www.allitebooks.com

http://www.allitebooks.org

New Possibilities 79

9 Error Handling. 83
Assume Your Code Will Fail 83

Throwing Errors 84

When to Throw Errors 86

Types of Errors 86

Custom Errors 88

Handling Errors 89

Global Error Handling in Browsers 91

Global Error Handling in Node.js 92

Summary 93

10 The Node.js Event Loop. 95
Event-Driven Programming 95

Asynchronous, Nonblocking I/O 97

Concurrency 99

Adding Tasks to the Event Loop 99

11 JavaScript Is…. 101
JavaScript Is Dynamic 101

JavaScript Can Be Static 102

JavaScript Is Functional 102

JavaScript Does Everything 103

12 Coding Beyond Logic. 105
0. The Basement 105

1. Quine’s Paradox 105

2. The Conjecture 110

3. Peer Review 112

13 JavaScript Is Cutieful. 115
All This Loose Beauty 115

The Absurdity of Dalí 115

Dalí’s JavaScript 116

Is This Beauty Just Ugly? 116

An Unfortunate Necessity 116

The Beauty Is in the Madness 116

vCONTENTS

www.allitebooks.com

http://www.allitebooks.org

Let’s Have a Wee Look at map 116

Hello, thisArg 117

Okay! So That’s a Bunch of Stuff I Already Knew About
[].map—Now What? 117

calling All Cars 117

Number 117

Now I Know Everything 118

Wild 118

14 Functional JavaScript. 119
Functional Programming 119

Functional JavaScript 121

Objects 126

Now What? 127

15 Progress. 129

Index. 147

CONTENTSvi

www.allitebooks.com

http://www.allitebooks.org

Preface

FUNCTIONS ARE FIRST-CLASS CITIZENS, SYNTAX RESEMBLES JAVA, INHERITANCE

is prototypal, and (+"") equals zero. This is JavaScript, arguably the most polarizing

and misunderstood programming language in the world. It was created in 10 days and

had a lot of warts and rough edges. Since then, there have been many attempts to

replace it as the language of the Web. And yet, the language and the ecosystem around

it are thriving. JavaScript is the most popular language in the world—and the only

true language of the web platform. What made JavaScript special? Why did a language

that was created in such a hurry succeed where others failed?

I believe the reasons why JavaScript (and the Web in general) survived lie in its omni-

presence—it’s practically impossible to find a personal computer that doesn’t have

some sort of JavaScript interpreter—and its ability to gain from disorder, to use its

stressors for self-improvement.

JavaScript, like no other language, brought all kinds of different people to the plat-

form. Anyone with a text editor and a web browser could get started with JavaScript,

and many did. Its expressiveness and limited standard library prompted those people

to experiment with the language and push it to its limits. People were not only making

websites and applications; they were writing libraries and creating programming lan-

guages that could be compiled back into JavaScript. Those libraries competed with

each other, and their approaches to solving problems often contradicted one another.

The JavaScript ecosystem was a mess, but it was bursting with life.

vii

www.allitebooks.com

http://www.allitebooks.org

Many of those libraries and languages are now forgotten. Their best ideas, however—

the ones that proved themselves and stood the test of time—were absorbed into the

language. They made their way into JavaScript’s standard library and its syntax. They

made the language better.

Then there were languages and technologies that were designed to replace JavaScript.

But instead of succeeding, they unwillingly became its necessary stressors. Every time

a new language or system to replace JavaScript emerged, browser vendors would find

a way to make it faster, more powerful, and more robust. Once again, good ideas were

absorbed into newer versions of the language, and the bad ones were discarded. These

competing technologies didn’t replace JavaScript; instead, they made it better.

Today, JavaScript is unbelievably popular. Will it last? I don’t know. I cannot predict

whether it will still be popular 5 or 10 years from now, but it doesn’t really matter. For

me, JavaScript will always be a great example of a language that survived not despite

its flaws but because of them, and a language that brought people of so many different

backgrounds into this wonderful world of computer programming.

About This Book
This book was written by people who are intimately familiar with the language. Each

and every person who contributed a chapter is an expert in his or her domain. The

authors highlight different sides of JavaScript, some of which you can discover only by

writing lots of code, experimenting and making mistakes. As you make your way

through this book, you’ll get to see what JavaScript movers and shakers love about

their favorite language.

You’ll also learn a lot. I did. But do not mistake this book for a JavaScript tutorial,

because it is much bigger than that. There are chapters that challenge the conventional

wisdom and show how even the most feared features can be used as helpful tools.

Some authors show that JavaScript can be a tool for self-expression and a form of art,

while others share the wisdom of using JavaScript in codebases with hundreds of con-

tributors. Some authors share personal stories, while others look into the future.

There’s no common pattern that goes from one chapter to another—there’s even a

purely satirical chapter. This is intentional. I tried to give the authors as much freedom

as possible to see what they would come up with, and they came up with something

incredible. They came up with a book that resembles JavaScript itself, where each

chapter is a reflection of its author.

PREFACEviii

www.allitebooks.com

http://www.allitebooks.org

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele-

ments such as variable or function names, databases, data types, environment

variables, statements, and keywords.

TIP
This element signifies a tip or suggestion.

NOTE
This element signifies a general note.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at

https://github.com/oreillymedia/beautiful_javascript.

This book is here to help you get your job done. In general, if example code is offered

with this book, you may use it in your programs and documentation. You do not need

to contact us for permission unless you’re reproducing a significant portion of the

code. For example, writing a program that uses several chunks of code from this book

does not require permission. Selling or distributing a CD-ROM of examples from

O’Reilly books does require permission. Answering a question by citing this book and

quoting example code does not require permission. Incorporating a significant amount

of example code from this book into your product’s documentation does require per-

mission.

We appreciate, but do not require, attribution. An attribution usually includes the title,

author, publisher, and ISBN. For example: “Beautiful JavaScript, edited by Anton Kova-

lyov (O’Reilly). Copyright 2015 Anton Kovalyov, 978-1-449-37075-6.”

If you feel your use of code examples falls outside fair use or the permission given

above, feel free to contact us at permissions@oreilly.com.

ixPREFACE

https://github.com/oreillymedia/beautiful_javascript
mailto:permissions@oreilly.com

Safari® Books Online
Safari Books Online is an on-demand digital library that

delivers expert content in both book and video form

from the world’s leading authors in technology and

business.

Technology professionals, software developers, web designers, and business and crea-

tive professionals use Safari Books Online as their primary resource for research, prob-

lem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,

education, and individuals.

Members have access to thousands of books, training videos, and prepublication

manuscripts in one fully searchable database from publishers like O’Reilly Media,

Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,

Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf-

mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,

McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more

information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional

information. You can access this page at http://bit.ly/beautiful_javascript.

To comment or ask technical questions about this book, send email to bookques-

tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-

site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

PREFACEx

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com
http://bit.ly/beautiful_javascript
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

C H A P T E R O N E

Beautiful Mixins
Angus Croll

Developers love to create overly complex solutions to things that aren’t really

problems.

—Thomas Fuchs

In the beginning there was code, and the code was verbose, so we invented functions

that the code might be reused. But after a while there were also too many functions,

so we looked for a way to reuse those too. Developers often go to great lengths to

apply “proper” reuse techniques to JavaScript. But sometimes when we try too hard to

do the right thing, we miss the beautiful thing right in front of our eyes.

Classical Inheritance
Many developers schooled in Java, C++, Objective-C, and Smalltalk arrive at Java-

Script with an almost religious belief in the necessity of the class hierarchy as an

organizational tool. Yet humans are not good at classification. Working backward from

an abstract superclass toward real types and behaviors is unnatural and restrictive—a

superclass must be created before it can be extended, yet classes closer to the root are

by nature more generic and abstract and are more easily defined after we have more

knowledge of their concrete subclasses. Moreover, the need to tightly couple types a

priori such that one type is always defined solely in terms of another tends to lead to

an overly rigid, brittle, and often ludicrous model (“Is a button a rectangle or is it a

control? Tell you what, let’s make Button inherit from Rectangle, and Rectangle can

inherit from Control…no, wait a minute…”). If we don’t get it right early on, our sys-

tem is forever burdened with a flawed set of relationships—and on those rare occa-

sions that, by chance or genius, we do get it right, anything but a minimal tree struc-

ture usually represents too complex a mental model for us to readily visualize.

1

Classical inheritance is appropriate for modeling existing, well-understood

hierarchies—it’s okay to unequivocally declare that a FileStream is a type of Input

Stream. But if the primary motivation is function reuse (and it usually is), classical

hierarchies can quickly become gnarly labyrinths of meaningless subtypes, frustrating

redundancies, and unmanageable logic.

Prototypes
It’s questionable whether the majority of behaviors can ever be mapped to objectively

“right” classifications. And indeed, the classical inheritance lobby is countered by an

equally fervent band of JavaScript loyalists who proclaim that JavaScript is a prototy-

pal, not classical, language and is deeply unsuited to any approach that includes the

word class. But what does “prototypal” mean, and how do prototypes differ from

classes?

In generic programming terms, a prototype is an object that supplies base behavior to a

second object. The second object can then extend this base behavior to form its own

specialization. This process, also known as differential inheritance, differs from classical

inheritance in that it doesn’t require explicit typing (static or dynamic) or attempt to

formally define one type in terms of another. While classical inheritance is planned

reuse, true prototypal inheritance is opportunistic.

In general, when working with prototypes, one typically chooses not to cate-

gorize but to exploit alikeness.

—Antero Taivalsaari, Nokia Research Center

In JavaScript, every object references a prototype object from which it can inherit

properties. JavaScript prototypes are great instruments for reuse: a single prototype

instance can define properties for an infinite number of dependent instances. Proto-

types may also inherit from other prototypes, thus forming prototype chains.

So far, so good. But, with a view to emulating Java, JavaScript tied the prototype prop-

erty to the constructor. As a consequence, more often than not, multilevel object

inheritance is achieved by chaining constructor-prototype couplets. The standard

implementation of a JavaScript prototype chain is too grisly to appear in a book about

beautiful JavaScript, but suffice it to say, creating a new instance of a base prototype in

order to define the initial properties of its inheritor is neither graceful nor intuitive.

The alternative—manually copying properties between prototypes and then meddling

with the constructor property to fake real prototypal inheritance—is even less

becoming.

Syntactic awkwardness aside, constructor-prototype chaining requires upfront plan-

ning and results in structures that more closely resemble the traditional hierarchies of

classical languages than a true prototypal relationship: constructors represent types

CHAPTER ONE: BEAUTIFUL MIXINS2

(classes), each type is defined as a subtype of one (and only one) supertype, and all

properties are inherited via this type chain. The ES6 class keyword merely formalizes

the existing semantics. Leaving aside the gnarly and distinctly unbeautiful syntax char-

acteristic in constructor-prototype chains, traditional JavaScript is clearly less prototy-

pal than some would claim.

In an attempt to support less rigid, more opportunistic prototypes, the ES5 specifica-

tion introduced Object.create. This method allows a prototype to be assigned to an

object directly and therefore liberates JavaScript prototypes from constructors (and

thus categorization) so that, in theory, an object can acquire behavior from any other

arbitrary object and be free from the constraints of typecasting:

var circle = Object.create({
 area: function() {
 return Math.PI * this.radius * this.radius;
 },
 grow: function() {
 this.radius++;
 },
 shrink: function() {
 this.radius--;
 }
});

Object.create accepts an optional second argument representing the object to be

extended. Sadly, instead of accepting the object itself (in the form of a literal, variable,

or argument), the method expects a full-blown meta property definition:

var circle = Object.create({
 /*see above*/
}, {
 radius: {
 writable:true, configurable:true, value: 7
 }
});

Assuming no one actually uses these unwieldy beasts in real code, all that remains is

to manually assign properties to the instance after it has been created. Even then, the

Object.create syntax still only enables an object to inherit the properties of a single

prototype. In real scenarios, we often want to acquire behavior from multiple proto-

type objects: for example, a person can be an employee and a manager.

Mixins
Fortunately, JavaScript offers viable alternatives to inheritance chaining. In contrast to

objects in more rigidly structured languages, JavaScript objects can invoke any func-

tion property regardless of lineage. In other words, JavaScript functions don’t need to

MIXINS 3

be inheritable to be visible—and with that simple observation, the entire justification

for inheritance hierarchies collapses like a house of cards.

The most basic approach to function reuse is manual delegation—any public function

can be invoked directly via call or apply. It’s a powerful and easily overlooked feature.

However, aside from the verbosity of serial call or apply directives, such delegation is

so convenient that, paradoxically, it sometimes actually works against structural disci-

pline in your code—the invocation process is sufficiently ad hoc that in theory there is

no need for developers to organize their code at all.

Mixins are a good compromise: by encouraging the organization of functionality along

thematic lines they offer something of the descriptive prowess of the class hierarchy,

yet they are light and flexible enough to avoid the premature organization traps (and

head-spinning dizziness) associated with deeply chained, single-ancestry models. Bet-

ter still, mixins require minimal syntax and play very well with unchained JavaScript

prototypes.

The Basics
Traditionally, a mixin is a class that defines a set of functions that would otherwise be

defined by a concrete entity (a person, a circle, an observer). However, mixin classes

are considered abstract in that they will not themselves be instantiated—instead, their

functions are copied (or borrowed) by concrete classes as a means of inheriting behav-

ior without entering into a formal relationship with the behavior provider.

Okay, but this is JavaScript, and we have no classes per se. This is actually a good thing

because it means we can use objects (instances) instead, which offer clarity and flexi-

bility: our mixin can be a regular object, a prototype, a function, whatever, and the

mixin process becomes transparent and obvious.

The Use Case
I’m going to discuss a number of mixin techniques, but all the coding examples are

directed toward one use case: creating circular, oval, or rectangular buttons (some-

thing that would not be readily possible using conventional classical inheritance tech-

niques). Here’s a schematic representation: square boxes represent mixin objects, and

rounded boxes represent the actual buttons.

CHAPTER ONE: BEAUTIFUL MIXINS4

Classic Mixins
Scanning the first two pages returned from a Google search for “javascript mixin,” I

noticed the majority of authors define the mixin object as a full-blown constructor

type with its function set defined in the prototype. This could be seen as a natural pro-

gression—early mixins were classes, and this is the closest thing JavaScript has to a

class. Here’s a circle mixin modeled after that style:

var Circle = function() {};
Circle.prototype = {
 area: function() {
 return Math.PI * this.radius * this.radius;
 },
 grow: function() {
 this.radius++;
 },
 shrink: function() {
 this.radius--;
 }
};

In practice, however, such a heavyweight mixin is unnecessary. A simple object literal

will suffice:

var circleFns = {
 area: function() {
 return Math.PI * this.radius * this.radius;
 },
 grow: function() {
 this.radius++;
 },
 shrink: function() {
 this.radius--;
 }
};

MIXINS 5

Here’s another mixin defining button behavior (for the sake of demonstration, I’ve

substituted a simple log call for the working implementation of some function

properties):

var clickableFns = {
 hover: function() {
 console.log('hovering');
 },
 press: function() {
 console.log('button pressed');
 },
 release: function() {
 console.log('button released');
 },
 fire: function() {
 this.action.fire();
 }
};

The extend Function

How does a mixin object get mixed into your object? By means of an extend function

(sometimes known as augmentation). Usually extend simply copies (not clones) the

mixin’s functions into the receiving object. A quick survey reveals some minor varia-

tions in this implementation. For example, the Prototype.js framework omits a hasOwn

Property check (suggesting the mixin is not expected to have enumerable properties in

its prototype chain), while other versions assume you want to copy only the mixin’s

prototype object. Here’s a version that is both safe and flexible:

function extend(destination, source) {
 for (var key in source) {
 if (source.hasOwnProperty(key)) {
 destination[key] = source[key];
 }
 }
 return destination;
}

Now let’s extend a base prototype with the two mixins we created earlier to make a

RoundButton.prototype:

var RoundButton = function(radius, label) {
 this.radius = radius;
 this.label = label;
};

extend(RoundButton.prototype, circleFns);
extend(RoundButton.prototype, clickableFns);

var roundButton = new RoundButton(3, 'send');

CHAPTER ONE: BEAUTIFUL MIXINS6

roundButton.grow();
roundButton.fire();

Functional Mixins
If the functions defined by mixins are intended solely for the use of other objects, why

bother creating mixins as regular objects at all? Isn’t it more intuitive to think of mix-

ins as processes instead of objects? Here are the circle and button mixins rewritten as

functions. We use the context (this) to represent the mixin’s target object:

var withCircle = function() {
 this.area = function() {
 return Math.PI * this.radius * this.radius;
 };
 this.grow = function() {
 this.radius++;
 };
 this.shrink = function() {
 this.radius--;
 };
};

var withClickable = function() {
 this.hover = function() {
 console.log('hovering');
 };
 this.press = function() {
 console.log('button pressed');
 };
 this.release = function() {
 console.log('button released');
 };
 this.fire = function() {
 this.action.fire();
 };
}

And here’s our RoundButton constructor. We’ll want to apply the mixins to

RoundButton.prototype:

var RoundButton = function(radius, label, action) {
 this.radius = radius;
 this.label = label;
 this.action = action;
};

Now the target object can simply inject itself into the functional mixin by means of

Function.prototype.call, cutting out the middleman (the extend function) entirely:

MIXINS 7

withCircle.call(RoundButton.prototype);
withClickable.call(RoundButton.prototype);

var button1 = new RoundButton(4, 'yes!', function() {return 'you said yes!'});
button1.fire(); //'you said yes!'

This approach feels right. Mixins as verbs instead of nouns; lightweight one-stop func-

tion shops. There are other things to like here too. The programming style is natural

and concise: this always refers to the receiver of the function set instead of an abstract

object we don’t need and will never use; moreover, in contrast to the traditional

approach, we don’t have to protect against inadvertent copying of inherited properties,

and (for what it’s worth) functions are now cloned instead of copied.

Adding Options
This functional strategy also allows mixed in behaviors to be parameterized by means

of an options argument. The following example creates a withOval mixin with a cus-

tom grow and shrink factor:

var withOval = function(options) {
 this.area = function() {
 return Math.PI * this.longRadius * this.shortRadius;
 };
 this.ratio = function() {
 return this.longRadius/this.shortRadius;
 };
 this.grow = function() {
 this.shortRadius += (options.growBy/this.ratio());
 this.longRadius += options.growBy;
 };
 this.shrink = function() {
 this.shortRadius -= (options.shrinkBy/this.ratio());
 this.longRadius -= options.shrinkBy;
 };
}

var OvalButton = function(longRadius, shortRadius, label, action) {
 this.longRadius = longRadius;
 this.shortRadius = shortRadius;
 this.label = label;
 this.action = action;
};

withButton.call(OvalButton.prototype);
withOval.call(OvalButton.prototype, {growBy: 2, shrinkBy: 2});

var button2 = new OvalButton(3, 2, 'send', function() {return 'message sent'});
button2.area(); //18.84955592153876
button2.grow();
button2.area(); //52.35987755982988
button2.fire(); //'message sent'

CHAPTER ONE: BEAUTIFUL MIXINS8

www.allitebooks.com

http://www.allitebooks.org

Adding Caching
You might be concerned that this approach creates additional performance overhead

because we’re redefining the same functions on every call. Bear in mind, however,

that when we’re applying functional mixins to prototypes, the work only needs to be

done once: during the definition of the constructors. The work required for instance

creation is unaffected by the mixin process, since all the behavior is preassigned to the

shared prototype. This is how we support all function sharing on the twitter.com site,

and it produces no noticeable latency. Moreover, it’s worth noting that performing a

classical mixin requires property getting as well as setting, and in fact functional mix-

ins appear to benchmark quicker in the Chrome browser than traditional ones

(although this is obviously subject to considerable variance).

That said, it is possible to optimize functional mixins further. By forming a closure

around the mixins we can cache the results of the initial definition run, and the per-

formance improvement is impressive. Functional mixins now easily outperform classic

mixins in every browser.

Here’s a version of the withRectangle mixin with added caching:

var withRectangle = (function() {
 function area() {
 return this.length * this.width;
 }
 function grow() {
 this.length++, this.width++;
 }
 function shrink() {
 this.length--, this.width--;
 }
 return function() {
 this.area = area;
 this.grow = grow;
 this.shrink = shrink;
 return this;
 };
})();

var RectangularButton = function(length, width, label, action) {
 this.length = length;
 this.width = width;
 this.label = label;
 this.action = action;
}

withClickable.call(RectangularButton.prototype);
withRectangle.call(RectangularButton.prototype);

var button3 =
 new RectangularButton(4, 2, 'delete', function() {return 'deleted'});

MIXINS 9

button3.area(); //8
button3.grow();
button3.area(); //15
button3.fire(); //'deleted'

Advice
One danger with any kind of mixin technique is that a mixin function will accidentally

overwrite a property of the target object that, coincidentally, has the same name. Twit-

ter’s Flight framework, which makes use of functional mixins, guards against clobber-

ing by temporarily locking existing properties (using the writable meta property) dur-

ing the mixin process.

Sometimes, however, instead of generating a collision error we might want the mixin

to augment the corresponding method on the target object. advice redefines a function

by adding custom code before, after, or around the original implementation. The

Underscore framework implements a basic function wrapper that enables advice:

button.press = function() {
 mylib.appendClass('pressed');
};

//after pressing button, reduce shadow (using underscore)
button.pressWithShadow = _.wrap(button.press, function(fn) {
 fn();
 button.reduceShadow();
}

The Flight framework takes this a stage further: now the advice object is itself a func-

tional mixin that can be mixed into target objects to enable advice for subsequent

mixins.

Let’s use this advice mixin to augment our rectangular button actions with shadow

behavior. First we apply the advice mixin, followed by the two mixins we used earlier:

withAdvice.call(RectangularButton.prototype);
withClickable.call(RectangularButton.prototype);
withRectangle.call(RectangularButton.prototype);

And now the withShadow mixin that will take advantage of the advice mixin:

var withShadow = function() {
 this.after('press', function() {
 console.log('shadow reduced');
 };
 this.after('release', function() {
 console.log('shadow reset');
 };
};

withShadow.call(RectangularButton.prototype);

CHAPTER ONE: BEAUTIFUL MIXINS10

http://underscorejs.org/
http://bit.ly/advice_flight
http://bit.ly/advice_flight

1 See Charles Miller’s entire post at his blog, The Fishbowl.

var button4 = new RectangularButton(5, 4);
button4.press(); //'button pressed' 'shadow reduced'
button4.release(); //'button released' 'shadow reset'

The Flight framework sugarcoats this process. All flight components get withAdvice

mixed in for free, and there’s also a defineComponent method that accepts multiple mix-

ins at a time. So, if we were using Flight we could further simplify the process (in

Flight, constructor properties such as rectangle dimensions are defined as attr proper-

ties in the mixins):

var RectangularButton =
 defineComponent(withClickable, withRectangle, withShadow);
var button5 = new RectangularButton(3, 2);
button5.press(); //'button pressed' 'shadow reduced'
button5.release(); //'button released' 'shadow reset'

With advice we can define functions on mixins without having to guess whether

they’re also implemented on the target object, so the mixin can be defined in isolation

(perhaps by another vendor). Conversely, advice allows us to augment third-party

library functions without resorting to monkey patching.

Wrapup
When possible, cut with the grain. The grain tells you which direction the

wood wants to be cut. If you cut against the grain, you’re just making more

work for yourself, and making it more likely you’ll spoil the cut.

—Charles Miller1

As programmers, we’re encouraged to believe that certain techniques are indispensa-

ble. Ever since the early 1990s, object-oriented programming has been hot, and classi-

cal inheritance has been its poster child. It’s not hard to see how a developer eager to

master a new language would feel under considerable pressure to fit classical inheri-

tance under the hood.

But peer pressure is not an agent of beautiful code, and neither is serpentine logic.

When you find yourself writing Circle.prototype.constructor = Circle, ask yourself if

the pattern is serving you, or you’re serving the pattern. The best patterns tread lightly

on your process and don’t interfere with your ability to use the full power of the

language.

By repeatedly defining an object solely in terms of another, classical inheritance estab-

lishes a series of tight couplings that glue the hierarchy together in an orgy of mutual

dependency. Mixins, in contrast, are extremely agile and make very few organizational

WRAPUP 11

http://bit.ly/cut_with_the_grain

demands on your codebase—mixins can be created at will, whenever a cluster of com-

mon, shareable behavior is identified, and all objects can access a mixin’s functionality

regardless of their role within the overall model. Mixin relationships are entirely ad

hoc: any combination of mixins can be applied to any object, and objects can have any

number of mixins applied to them. Here, at last, is the opportunistic reuse that proto-

typal inheritance promised us.

CHAPTER ONE: BEAUTIFUL MIXINS12

C H A P T E R T W O

eval and Domain-Specific
Languages

Marijn Haverbeke

eval is a language construct that takes a string and executes it as code.

This means that in a language with an eval construct, the code that is being executed

can come not just from input files, but also from the running code itself.

There are several reasons why this is interesting and useful. In this chapter, I will

explore the degree to which JavaScript’s eval can be used to create simple language-

based abstractions.

What About “eval Is Evil”?
I know that some of my readers, at the mention of the word eval, are feeling the adre-

naline shoot into their veins, and hearing the solemn voice of a certain bearded Java-

Script evangelist boom in the back of their heads. “eval is evil!” this voice proclaims.

I’ve never found absolute moral judgments very applicable in engineering. But if you

do, and don’t want to reevaluate your faith, feel free to skip this chapter.

Practically speaking, there are a number of problematic issues that come up when eval

is used. Its semantics are confusing and error-prone, and its impact on performance is

not always obvious. I’m going to approach it as a tool, and try to clarify and study

these issues, in order to help you use the tool effectively.

13

History and Interface
An interpreter (in the broad sense of the word) for a language is a program that takes

text and executes it as code. When you have an interpreter available, exposing it as an

eval construct, which does pretty much the same thing, is easy and obvious.

The first language to do this was an early dialect of Lisp. More recent dynamic lan-

guages—Perl, Python, PHP, Ruby, and of course JavaScript—followed suit. Most of

these languages went through a similar process, where they initially introduced a

straightforward, naive evaluation construct, and later tried to refine, extend, or disable

it as a form of damage control.

The subtlety in designing an interface for code execution lies in the environment in

which the code is to be interpreted—the question of which variables it can see. In a

primitive interpreter, which often represents variables in a way that makes it easy to

inspect and manipulate them, it is no problem to give evaluated code full access to all

the variables that are visible at the point where the eval construct is used. The initial

design of a dynamic language is often intertwined with the first implementation of its

interpreter, and this makes it tempting to go with the model where the evaluated code

has access to the local environment.

There are two reasons why this is problematic. Firstly, there’s rarely a reason to want

to access local scope. You’ll occasionally see some confused JavaScript programmers do

something like eval("obj." + propertyName) because they fail to realize that the lan-

guage allows dynamic property access, or eval("var result = " + code) because they

are ignorant of the fact that eval already returns the result of the evaluation, and the

var result = part could be lifted out. When the code string comes from an external

source, there’s also the risk of a variable in the string accidentally using a variable

name that is also defined locally, causing a conflict between the two uses. The one case

where access to a local scope is not completely wrongheaded is when evaluated code

needs to have access to utility functions defined in the module that evaluates it. We’ll

see a decent way to work around that later.

The second reason that evaluating in the local scope is not a good idea is that it makes

life quite a bit harder for the compiler. Knowing exactly what the code it’s compiling

looks like enables a compiler to make a lot of decisions at compile time (rather than

runtime), which makes the code it produces faster. Most importantly, if it knows a

variable x refers to a specific x variable defined either globally or in one of its enclosing

scopes, it can generate very simple code to access this x. An eval could introduce a

new variable x, forcing the compiler to represent its environment in a more complex

way and to output more expensive code for each variable access.

And this last point is the reason for the very odd way in which JavaScript eval

behaves—the distinction between local and global evaluation.

CHAPTER TWO: EVAL AND DOMAIN-SPECIFIC LANGUAGES14

eval is, historically, a regular global variable that holds a function. That means you can

do everything with it that you can do with other values—store it in another variable

or in a data structure, pass it to a function, and so on. But because the people trying to

optimize JavaScript execution did not want to represent all environments and variable

accesses in the expensive, dynamic way I described previously, they introduced a sub-

tle rule, probably initially as a hack, that was later standardized into ECMAScript.

This rule is: the eval is only done in the local scope if we can see, during compilation,

that a call to eval takes place—there has to be a function call to the actual global vari-

able named eval in the code (and this global must still have its original value). If you

call eval in any other, more indirect way, it will not have access to the local scope, and

thus will be a global evaluation.

For example, eval("foo") is local, while (0 || eval)("foo") is global, and so is

var lave = eval; lave("foo").

Though this was conceived purely as an efficiency kludge, not as an attempt to provide

a better interface, people have been intentionally making use of it, since global evalua-

tion is often more useful and less error-prone than local evaluation.

Another variant of global evaluation is the Function constructor. It takes strings for the

argument names and function body as arguments, and returns a function in the con-

text of the global scope (it does not close over variables in the scope where it was cre-

ated). Note that the argument names can be passed either as separate arguments (new

Function("a", "b", "return a + b")) or as a single comma-separated string (new Func

tion("a, b", "return a + b")). For most purposes, this is the preferred way to evalu-

ate code.

Performance
Evaluating code is expensive. Not only does the JavaScript compiler have to be

invoked to compile the code, but modern JavaScript engines also tend to perform

analysis on the loaded program in order to perform certain optimizations. Introducing

new code can invalidate the results of such analysis, and cause recompilation of other

parts of the program.

Evaluation in local scope is extra worrying, for the reasons discussed before. I ran a

number of benchmarks on modern JavaScript engines, and found that variable access

that goes through a scope that can be accessed by a local eval form is significantly

slower. This means that if you’re using the closure module pattern (an anonymous

function as module scope), having a local evaluation anywhere in your module will

incur a cost for all code in the module. The scope just needs to have such a call—it

doesn’t even have to execute it—to incur this cost.

PERFORMANCE 15

On the other hand, the speed of a function created by new Function or a global eval is

not adversely affected by the fact that it was created dynamically.

So, a desirable pattern is one where the evaluation happens once (at program startup),

or outside of hot loops (we’re talking about few-millisecond delays here, not interface-

freezing disasters). The functions generated by the evaluation can then be used as

intensively as needed.

Common Uses
The most obvious use of eval is dynamically running code from an external source: for

example, in a module-manager library that fetches code from somewhere and then

uses a global eval to inject it into the environment, or an interactive repl (read-eval-

print loop) that executes code that the user types.

In the past, eval was the easiest way to parse strings of JSON data, whose representa-

tion is a subset of JavaScript’s own syntax. In modern implementations we have

JSON.parse for that, which has the significant advantage of not enabling code injection

attacks when parsing untrusted data.

Most JavaScript-based text templating systems use some form of eval to precompile

templates. They parse the template text once, produce a program that instantiates the

template, and use eval to have the JavaScript compiler compile that. In some cases this

is simply an optimization, but in others the templates may contain JavaScript code, so

some form of eval has to be involved. We’ll go over the compiler for a simple

JavaScript-based templating language in the next section.

A template is a kind of domain-specific language (DSL), a language designed to solve a

specific problem (in this case, building up strings) by being specialized to express the

elements of that problem more directly than plain JavaScript. Domain-specific lan-

guages are a more interesting application of eval. We’ll cover another one, a compact

and efficient notation for matching and extracting binary data, later on in this chapter.

A Template Compiler
Before you look at the code that follows, I should warn you. You opened a book called

Beautiful JavaScript, and I’m about to confront you with some rather ugly code. That

may seem disingenuous.

Code that builds up strings of code tends to look bad. If we had string interpolation, a

code-oriented templating system, or even a data structure that represented code,

things might be slightly better. But as it is, we’ll be crudely concatenating lots of

strings, many of them containing the same keywords and syntactic patterns as the

code around them. This does not make for very elegant or readable code.

CHAPTER TWO: EVAL AND DOMAIN-SPECIFIC LANGUAGES16

The function shown here accepts a template string as an argument and returns a func-

tion that represents a compiled version of this template. It recognizes templating direc-

tives written between hash signs. Here’s an example of a trivial template that it parses:

#$in.title#
==============

Items on today's list:
#for item in $in.items#
 * #item.name##if item.note# (Note: #item.note#) #end#
#end#

A directive starting with for opens a loop (over an array). An if directive opens a con-

ditional. Both are closed by an end directive. Anything else is interpreted as a value

that should simply be inserted as text into the output. The variable $in is used to refer

to the value passed into the template.

For brevity, the code does no input checking whatsoever. Here’s the implementation of

that function:

function compile(template) {
 var code = "var _out = '';", uniq = 0;
 var parts = template.split("#");
 for (var i = 0; i < parts.length; ++i) {
 var part = parts[i], m;
 if (i % 2) { // Odd elements are templating directives
 if (m = part.match(/^for (\S+) in (.*)/)) {
 var loopVar = m[1], arrayExpr = m[2];
 var indexVar = "_i" + (++uniq), arrayVar = "_a" + uniq;
 code += "for (var " + indexVar + " = 0, " + arrayVar + " = " +
 arrayExpr + ";" + indexVar + "<" + arrayVar + ".length; ++" +
 indexVar + ") {" + "var " + loopVar + " = " + arrayVar +
 "[" + indexVar + "];";
 } else if (m = part.match(/^if (.*)/)) {
 code += "if (" + m[1] + ") {";
 } else if (part == "end") {
 code += "}";
 } else {
 code += "_out += " + part + ";";
 }
 } else if (part) { // Even elements are plain text
 code += "_out += " + JSON.stringify(part) + ";";
 }
 }
 return new Function("$in", code + "return _out;");
}

To locate the directives, the function simply splits the template on hash characters, and

considers the even-numbered parts to be plain text and the odd-numbered elements

(the parts that appear between hash characters) as templating directives. Regular

expressions are used to recognize the if and for directives.

A TEMPLATE COMPILER 17

The _out variable in the generated code is used to build up the output string. The

underscore is an attempt to avoid name clashes, since we’ll be mixing generated code

with code found in the template.

To build a loop for a for directive, we need to introduce two additional variables into

the generated code—one for the index and one to hold the array. We need a variable

that holds the array to ensure that whatever expression is used to produce it is not

evaluated repeatedly, since it might be expensive to compute or have side effects. In

order to make sure that these variable names do not clash, even for nested loops, a

counter (uniq) is added to the variable name (_i1, _i2, etc.).

Finally, the Function constructor is used to create a function with our generated code

as the body and a single argument, $in.

If we feed the template compiler the example template, it will spit out a function like

this (whitespace added):

function($in) {
 var _out = '';
 _out += $in.title;
 _out += "\n==============\n\nItems on today's list:\n";
 for (var _i1 = 0, _a1 = $in.items; _i1 < _a1.length; ++_i1) {
 var item = _a1[_i1];
 _out += "\n * ";
 _out += item.name;
 if (item.note) {
 _out += " (Note: ";
 _out += item.note;
 _out += ") "
 }
 }
 return _out;
}

We could make that code cleaner by adding some intelligence to the compiler (for

example, it could combine subsequent += statements to simply use +), but you can see

how it expresses the steps needed to instantiate the template.

With a few extensions, such as the option to escape the inserted strings for your out-

put format of choice (HTML, for example), and some error checking, this code can be

built into a practical templating engine.

Speed
It is always possible to interpret a domain-specific language on demand. But just as

compilers tend to run programs faster than interpreters, precompiling a template leads

to faster instantiation than interpreting it from its source every time it is instantiated.

CHAPTER TWO: EVAL AND DOMAIN-SPECIFIC LANGUAGES18

www.allitebooks.com

http://www.allitebooks.org

If we forget for a second that the templating language contains JavaScript code, it

would be possible to do a form of compilation without new Function—we could parse

the template, and build up a data structure that allows us to instantiate it quickly with

little repeated work. But it’d take a lot of effort to come close to the speed of the pre-

ceding approach that way.

The JavaScript compiler is much more powerful (and has more direct access to the

machine) than our puny compiler, so by first translating to JavaScript and then hand-

ing off the rest of the work to its more advanced peer, we can get good results with

very little work.

This idea of building on top of a compiler for another language in order to run your

own language or notation is widely applicable. The various compile-to-JavaScript lan-

guages make use of it. But it also works well on a smaller scale, such as for writing a

tiny compiler for a simple language to solve a very specific problem.

Mixing Languages
Let’s look a bit more at the fact that the templates in the toy templating language con-

tain JavaScript code. They are, in a way, JavaScript programs with a syntactic exten-

sion that optimizes them for text expansion.

Whether this is a good idea is a question that can be answered in several ways. If you

don’t trust the source of your templates, or you want to expand the templates in an

environment that doesn’t run JavaScript, then it is definitely a bad idea. The authors

of the templates can inject arbitrary code into your program, and expanding these

templates in, for example, a Ruby program would be awkward.

But we do get the full expressive power of a real programming language in our tem-

plates. The alternative would be to define a simple expression language as part of the

templating language, parse that, and either interpret it during expansion or convert it

to the output language (JavaScript, in our case). This approach has its own problems,

though. It’s more work, obviously. But it is also hard to find a balance between offer-

ing enough features to allow people to do what they need to do without the language

becoming huge and complex.

We already know JavaScript, so if we wanted, in the example template, to render only

items whose category property contains the string important, we could simply type

#if /\bimportant\b/.test(item.category)#. If we had to express that in a sublanguage,

we’d either be out of luck if the language didn’t have string search, or need to first

spend 10 minutes digging through documentation to figure out how to express string

search in the language.

(Tangentially related is the argument that templating languages should be weak

because they should contain presentation logic only. My take on that is that, firstly,

MIXING LANGUAGES 19

presentation logic can get quite complicated, and secondly, taking away my hammer to

ensure that I don’t use it on screws is a lousy way of enforcing good style.)

A tricky issue that comes up when you’re mixing languages is “hygiene.” The gener-

ated code and the code that appeared in the template both run in the same scope.

Thus, there is a danger that the two sources of code will disagree on what a certain

variable name refers to. The toy template compiler generates variables like _a3 to avoid

accidentally clashing with variables from the included code. This mostly works, but is

of course far from perfect (#for _a1 in [1, 2, 3]# causes a clash). You could use more

obscure variable names (_$$_o_O_a3) to further reduce the chance of clashes, but it’ll

never be elegant. Languages that use this kind of metaprogramming more intensively

have mechanisms to cope with these kinds of problems. JavaScript doesn’t, but

because its metaprogramming support is so minimal, that’s usually not a problem.

Dependencies and Scopes
Since the toy template compiler used new Function to evaluate its code, that code will

only be able to see the global scope.

What if the code that sits in the template needs access to, for example, a date format-

ting function? Or what if the generated part of the code needs an HTML escaping

function to escape the dynamic parts of the output? You could put them in the global

scope, but if you’re using modern, disciplined scoping in the style of CommonJS

(Node.js) or RequireJS modules, that would be unfortunate.

The key to a workable solution to this problem is that, though we can’t control what

the generated function itself closes over, we can wrap our result function in an addi-

tional function, and thus inject stuff for it to close over.

Here’s a crude utility that does this:

function newFunctionWith(env, args, body) {
 var code = "";
 for (var prop in env)
 code += "var " + prop + " = $$env." + prop + ";";
 code += "return function(" + args + ") {" + body + "};";
 return new Function("$$env", code)(env);
}

console.log(newFunctionWith({x: 10}, "y", "return x + y;")(20));
// → 30

Given an object mapping variables to values, an argument list string, and a function

body string, this helper acts like new Function(args, body), except that it makes sure

that all the properties in the env object are visible as closed-over variables to the body

of the function.

CHAPTER TWO: EVAL AND DOMAIN-SPECIFIC LANGUAGES20

It does this by generating a wrapping function that unpacks its argument into local

variables, and then, immediately after evaluating this function, calling it. For simple

values like integers, it could also have inserted the string form of the value directly

into the wrapping function (var x = 10;). However, that doesn’t work for complex

values, so we need to pass the environment object to the evaluated code, allowing it to

extract the actual values from that object.

Using this utility, the templating system could do something like allowing templates to

declare their dependencies and require-ing those in, making the code close over them.

Debugging Generated Code
Debugging generated code is rarely a pleasant experience. When you write a compiler

like the one we just looked at, and try it out, you will most likely be greeted by some

kind of syntax error. Details differ between JavaScript engines, but if this error has ori-

gin information at all, it’ll often point to the line that did the evaluation, not to the

generated code.

So what now? Unfortunately, there’s no good answer that I know of. One approach is

to make your compiler function log the code before it evaluates it, autoformat it, put it

in a file, and try to load it. Then, the error will at least point to the actual place where

the code is broken.

If it’s not a syntax error but a logic error, this might not be necessary—you might just

be able to insert console.log or debugger statements into your generated code.

Where it gets really bad is when, as in the templating system I discussed, code from

the input is mixed into the generated code. Debugging a compiler once is one thing.

Getting strange, contextless exceptions whenever you make a typo in your template

can ruin your whole day. For production-strength systems, you probably want serious

syntax checking of your templates. There are a variety of good JavaScript parsers

(written in JavaScript) available nowadays, and they can be used to properly parse the

expressions or statements you expect in your template, at compile time. This also helps

to determine their extent in a reliable way (a directive like #if $in.type == "#" #

would not parse in the code shown earlier, because it doesn’t understand that the sec-

ond hash sign is quoted), and would make it possible to emit a meaningful error

(including the template name and line offset) when nonsense is encountered.

Binary Pattern Matches
The second example I want to show you largely follows the same pattern as the first:

we compile a domain-specific language down to JavaScript, in order to gain both

speed and expressivity.

DEBUGGING GENERATED CODE 21

There is a feature in the Erlang programming language that allows you to pattern-

match against binary data by specifying a sequence of fields and, for each field, a vari-

able name or constant. Variables will be bound to the content of the field, and con-

stants will be compared to the content of the field in order to determine whether the

pattern matches. This provides a very convenient way of checking and extracting data

from binary blobs.

Let’s say we want something like this in JavaScript. Ideally, it’d look like this:

function gifSize(bytes) {
 binswitch (bytes) {
 case <<"GIF89a" width:uint16 height:uint16>>:
 return {width: width, height: height};
 default:
 throw new Error("not a GIF file");
 }
}

where binswitch is like switch, except that it matches a series of fields in the given

chunk of binary data (a typed array, presumably). This pattern would mean “first the

bytes corresponding to the string "GIF89a", then a two-byte unsigned integer, which is

bound to width, and finally another unsigned integer bound to height.” Patterns that

bind variables like that are found in many modern programming languages, and are a

very pleasant feature.

If you’re willing to do heavyweight full-file preprocessing, you could write your own

JavaScript dialect in which this code is valid. But in this chapter, we’re looking for

lightweight tricks, not alternative languages. We need to find some kind of operator

that gets us close enough to this goal, but can be expressed in the existing syntax of

the language.

Here’s what I came up with:

var pngHead = binMatch("'\x89PNG\\r\\n\x1a\\n':str8 _:uint4 'IHDR':str4 " +
 "width:uint4 height:uint4 depth:uint1");

function pngSize(bytes) {
 var match;
 if (match = pngHead(bytes, 0))
 return {width: match.width, height: match.height};
 else
 throw new Error("Not a PNG file.");
}

Patterns are precompiled from strings to functions, much like in the template example.

The pattern string contains any number of binding:type pairs, where type is a word

like str or uint followed by a byte size, and binding can be _ (an underscore) to ignore

a field, a literal (in which case the pattern matches only when the value is equal to the

literal), or a field name in which to store the value.

CHAPTER TWO: EVAL AND DOMAIN-SPECIFIC LANGUAGES22

The very ugly string at the start of the pattern contains the first eight bytes of the PNG

header. The double backslashes are needed because the content of the string is inter-

preted as a string literal (again) in the generated code, so it may not contain raw new-

lines. After the file-identifying string, a four-byte field is found, which we ignore.

Next, the string 'IHDR' announces the start of the image header, which starts with

width, height, and color depth fields.

A function produced by binMatch takes a Uint8Array and an offset integer, and returns

null for failed matches and an object containing the matched values when the match

succeeds. The return object will have an additional field, end, which indicates the byte

offset of the end of the match.

Here is the core of the match compiler. It is pleasantly small:

function binMatch(spec) {
 var totalSize = 0, code = "", match;
 while (match = /^([^:]+):(\w+)(\d+)\s*/.exec(spec)) {
 spec = spec.slice(match[0].length);
 var pattern = match[1], type = match[2], size = Number(match[3]);
 totalSize += size;

 if (pattern == "_") {
 code += "pos += " + size + ";";
 } else if (/^[\w$]+$/.test(pattern)) {
 code += "out." + pattern + " = " + binMatch.read[type](size) + ";";
 } else {
 code += "if (" + binMatch.read[type](size) + " !== " +
 pattern + ") return null;";
 }
 }
 code = "if (input.length - pos < " + totalSize + ") return null;" +
 "var out = {end: pos + " + totalSize + "};" + code + "return out;";
 return new Function("input, pos", code);
}

It does a (crude, non-error-checking) parse of the input string using a regular expres-

sion that matches a single pattern:type element. For wildcard (_) patterns, it simply

generates code to move the offset (pos) forward. For other patterns, it uses a helper

from binMatch.read (which we’ll look at momentarily) to generate an expression that

builds up a JavaScript value from the bytes at the current position. For literals, it gen-

erates an if that returns null when the value found doesn’t match the literal.

Finally, an extra conditional is generated at the start of the function, which verifies

that there are enough bytes in the array to match the pattern, and code that initializes

and returns the output object is added.

These are the type-parsing functions needed for the example:

BINARY PATTERN MATCHES 23

binMatch.read = {
 uint: function(size) {
 for (var exprs = [], i = 1; i <= size; ++i)
 exprs.push("input[pos++] * " + Math.pow(256, size - i));
 return exprs.join(" + ");
 },
 str: function(size) {
 for (var exprs = [], i = 0; i < size; ++i)
 exprs.push("input[pos++]");
 return "String.fromCharCode(" + exprs.join(", ") + ")";
 }
};

Given a size, they return a string that contains the expression that will advance the pos

variable and produce a value of the specified type. Note that uint is big-endian (net-

work byte order). Obvious extensions would be to write a little-endian type (uintL),

which we’d need when parsing our earlier GIF example, and of course signed types

(int, intL).

Further optimizations are possible. For example, we could pick literal strings and inte-

gers apart into bytes at compile time, and compare those bytes one by one instead of

building up the composite value and comparing that. Or, we could first check all liter-

als in a pattern and only then extract the output fields, so that the match does as little

work as possible if it fails. This is a nice property of static metaprogramming—the static

part of the input (in this case, the pattern string) gives us a rather high-level view of

the desired dynamic behavior, and we can pick a compilation strategy based on that

information. If you were to interpret such a pattern at runtime, there would be less

room for such decisions.

If you want to test this code out, here’s a tiny HTML page that, using the code shown

previously, allows you to pick a PNG file and will console.log its size:

<!doctype html>
<script src="binMatch.js"></script>
<input type="file" id="file">
<script>
 var pngHead = binMatch("'\x89PNG\\r\\n\x1a\\n':str8 _:uint4 " +
 "'IHDR':str4 width:uint4 height:uint4 depth:uint1");
 document.getElementById("file").addEventListener("change", function(e) {
 var reader = new FileReader();
 reader.addEventListener("loadend", function() {
 var match = pngHead(new Uint8Array(reader.result), 0);
 if (match)
 console.log("Your image is ", match.width, "x", match.height, "pixels.");
 else
 console.log("That is not a PNG image.");
 });
 reader.readAsArrayBuffer(e.target.files[0]);
 });
</script>

CHAPTER TWO: EVAL AND DOMAIN-SPECIFIC LANGUAGES24

The binary pattern compiler, by putting pieces of code (literals) from the input string

directly in the generated code (without sanity-checking them), could, in slightly con-

trived situations such as building up the pattern string from user input, be used to

inject code into a system. Always take a moment to consider this angle when you use

eval-like constructs. For some tools, like the template compiler, giving the sublanguage

the ability to run arbitrary code is part of the design. For others, like this one, it isn’t,

and it is a good idea to make sure they can’t be used for that purpose. We could fix

this by checking whether the syntax of the literals actually conforms to JavaScript lit-

erals, or by defining and parsing our own string and number syntax (which could also

get rid of the double backslash problem) and not inserting any raw, unparsed code

from the template at all.

Closing Thoughts
There is a major convenience gap between my fantasy syntax for pattern matching

and the reality of what I came up with. Instead of elegantly expressing our pattern

inline, we have to build it up beforehand, in order to ensure that it is built only once—

reparsing and recompiling it every time it gets run would, in a situation where the

matching happens multiple times, be embarrassingly wasteful. Instead of simply bind-

ing the variables in the pattern to local variables, we have to store them in an object.

In this case, I think that if you are doing actual binary parsing, the abstraction is help-

ful enough to live with the not-quite-ideal interface. But the case is representative of a

wall that you hit when trying to push eval-based abstractions beyond a certain point.

There’s a pattern that works well—compiling a domain-specific language down to a

piece of code. Some languages can be expressed as JSON-like composite data, rather

than plain strings (for example, a decision tree modeled as nested objects).

The awkward part lies in the interaction between the domain-specific language and

the code around it. They can’t be mixed, due to the requirement that the compilation

happens only once, whereas the code that makes use of the domain-specific function-

ality will typically run many times.

Small snippets of code with little external dependencies can be made part of the

domain language. In some cases, you might even decide to include closures in your

source data structure, in order to be able to access the local environment—yet even

those won’t be able to close over the incoming data for a specific invocation of the func-

tionality, but only over data that has the same lifetime as the compiled artifact.

For this reason, many domain-specific languages are better expressed using interpreta-

tion rather than compilation. jQuery is a good example of a successful interpreted

domain language in JavaScript—it hacks method chaining in a way that allows for

CLOSING THOUGHTS 25

succinct DOM operations. This abstraction would be completely unpractical (though

probably faster) when executed as a compiled language.

The pattern where you should consider reaching for a compiled domain-specific lan-

guage is:

• You’re writing chunks of repetitive, low-density code.

• Performance is important.

• The code chunks can conveniently be isolated in functions.

• You can think of a shorter, more elegant notation.

CHAPTER TWO: EVAL AND DOMAIN-SPECIFIC LANGUAGES26

C H A P T E R T H R E E

How to Draw a Bunny
Jacob Thornton

This chapter is not about rendering rabbits with JavaScript.

This chapter is about language and the difference between what it means to draw a

“rabbit” and what it means to draw a “bunny.”

This chapter is not a tutorial. It’s an exegesis. This chapter is at play.

What Is a Rabbit?
So she was considering, in her own mind (as well as she could, for the hot

day made her feel very sleepy and stupid), whether the pleasure of making a

daisy-chain would be worth the trouble of getting up and picking the daisies,

when suddenly a White Rabbit with pink eyes ran close by her.

—Lewis Carroll, Down the Rabbit Hole

A “rabbit” is an animal you might find in a field, forest, or pet shop. It is a gregarious

plant-eater with a short tail and floppy ears. It is an actual rabbit existing in reality. A

“rabbit” cannot talk to itself. A “rabbit” does not run late. From this point forward,

when we speak of rabbits, we speak of these ordinary, everyday rabbits.

For the purposes of this chapter, to “draw a rabbit” is to apply various drawing techni-

ques in such a way as to render an image of a rabbit indistinguishable from the actual

rabbit itself. It is to approach a level of realism on par with that of a photograph. A

rabbit drawing is strictly referential. It strives to be a copy.

Drawing a rabbit is mechanical and spec-based. There is a correct way to draw a rabbit

and an incorrect way to draw a rabbit.

27

When you draw a rabbit, you are always drawing a very particular rabbit. Deviations

from the rabbit model should be regarded as errors. The more your rabbit rendering

stays on model, the better.

What Is a Bunny?
After a time she heard a little pattering of feet in the distance, and she hastily

dried her eyes to see what was coming. It was the White Rabbit returning,

splendidly dressed, with a pair of white kid gloves in one hand and a large fan

in the other: he came trotting along in a great hurry, muttering to himself as

he came, “Oh! the Duchess, the Duchess! Oh! won’t she be savage if I’ve kept

her waiting!”

—Lewis Carroll, Down the Rabbit Hole

A “bunny” is not just a young, cute rabbit.

A bunny is a splendidly dressed abstraction. A playful resemblance that prioritizes an

identity other than the rabbit. It is a symbol.

There are several examples from pop culture of bunnies: Bugs Bunny, the Energizer

Bunny, etc. These icons are always characters first and rabbits second (or third). Here,

the rabbit identity is hijacked and subjugated to serve a new ruling identity.

To “draw a bunny” is to play within the loose constraints of an already existing iden-

tity (the rabbit) to create something entirely new. The connotation of the word

“bunny” itself invokes a lack of seriousness which serves to disarm and undermine the

rigid structure of the rabbit, promoting both creative exploration and expression.

CHAPTER THREE: HOW TO DRAW A BUNNY28

www.allitebooks.com

http://www.allitebooks.org

Consider the bunny heads of Ray Johnson (pictured above), a correspondence artist

from New York.

In January 1964, Ray Johnson signed a letter to his friend William (Bill) S.

Wilson with a small picture of a bunny head next to his name. This image

rapidly proliferated, primarily becoming Johnson’s signature and “self por-

trait” as personifications of how he felt on a given day. Johnson also used the

bunny head to represent other “characters” who populate his works, as well

as the subject of one of his “How to draw” series.

—Frances F.L. Beatty, Ph.D. The Ray Johnson Estate

When you draw bunnies, their proximity to a real image of a rabbit isn’t called into

question. For Johnson, the bunnies ceased to be rabbits, instead becoming a vehicle for

alternative expression; a means to creativity; and an exercise in play, imagination,

inventiveness, and originality.

What Does This Have to Do with JavaScript?
JavaScript is an expressive language.

Expressions are what lie beyond the literal compiled logic of a program. They are what

we as humans read and interpret. The expressiveness of JavaScript is a vehicle through

which software developers speak. It is a way for developers to infuse their code with

semantic value: different styles, dialects, and character. And this potential for linguistic

play inherent in JavaScript is precisely where we begin to see “bunnies.”

To draw a rabbit in JavaScript is to copy patterns out of books and slides, to mimic

specific styles from blogs, and more generally to reproduce already established forms

and expressions. Alternatively, to draw a bunny here is to undertake an exercise in

experimentation. It is to unearth alternative forms from within the language and then

combine these forms in functional yet inventive ways.

In drawing JavaScript bunnies, you’re playing. It’s fun. It challenges and evolves both

your individual and the community’s understanding of the language. It opens up new

potential solutions to old problems, and exposes flaws in old assumptions. It estab-

lishes a personal relationship between you and the code you produce. It makes writing

JavaScript a craft. An art. It makes reading software personal and purposeful. It estab-

lishes an audience for your program other than just the compiler. Intent becomes

clearer. Code becomes more consistent. And you grow as a developer.

With this in mind, consider the following conditional statement, which checks to see if

a property exists; if the property doesn’t exist, it calls a method to set it. Traditionally,

this logic might have looked something like this:

WHAT DOES THIS HAVE TO DO WITH JAVASCRIPT? 29

if (!this.username) {
 this.setUsername();
}

As an expression, this logic reads: if not a username, then set a username. However,

using the logical OR operator you could express this same statement in a more mini-

malist way:

this.username || this.setUsername()

The expression: a username exists, or set a username.

These two code blocks are functionally equivalent, yet their expressions are different.

They read differently. Where the former has a sort of exactness and formality, the lat-

ter is pithy and short. Exploring these variations in expression is precisely what draw-

ing bunnies is all about. And what’s more, by using expressions in conjunction with

other like expressions a developer can begin to architect an overarching voice or tone

in a program.

Let’s consider a second reduced example. Imagine looking inside an array for a user-

name. If the username is not present, you want to add the username to the array. The

logic for this might be expressed as follows:

if (users.indexOf(this.username) === -1) {
 users.push(this.username)
}

This code reads: if the username has an index in the users array that is equal to -1,

then push the username into the users array.

An alternative way to express this statement might be to make use of the bitwise NOT

operator. The bitwise NOT operator inverts the bits of its operand, turning a -1 into a 0

(or falsy). The preceding logic might then be rewritten simply as:

~users.indexOf(this.username) || users.push(this.username)

The expression: the username is in the array, or add it.

As you begin to build up these expressions into programs, a certain rhythm and time

signature emerges. And as you improve as an engineer, you can begin to orchestrate

different phrasings and melodies into your software as well. This establishes a consis-

tent rhythm at the project level, which will make it much easier to flow from one piece

of a program to another.

The following is a simple function that, given x, y, w, h, and placement arguments,

returns an offset object with a top and left value. It is written in a decidedly slow man-

ner, with a very deliberate, heavy rhythm (switch > case… case… case… case…

return):

CHAPTER THREE: HOW TO DRAW A BUNNY30

function getOffset (x, y, w, h, placement) {
 var offset
 switch (placement) {
 case 'bottom':
 offset = {
 top: y + h,
 left: x + w/2
 }
 break
 case 'top':
 offset = {
 top: y,
 left: x + w/2
 }
 break
 case 'left':
 offset = {
 top: y + h/2,
 left: x
 }
 break
 case 'right':
 offset = {
 top: y + h/2,
 left: x + w
 }
 break
 }
 return offset
}

Notice the difference between this function and the following function, not in terms of

computing performance (where the difference is inconsequential), but rather in pure

cognitive pacing. The next function returns the same result, but with a quicker, more

succinct rhythm (return > this/that, this/that, this/that):

function getOffset (x, y, w, h, placement) {
 return placement == 'bottom' ? { top: y + h, left: x + w/2 } :
 placement == 'top' ? { top: y, left: x + w/2 } :
 placement == 'left' ? { top: y + h/2, left: x } :
 { top: y + h/2, left: x + w }
}

A third function might even exaggerate the pacing further, focusing in on the return

object itself—clearly calling out expected properties “top” and “left”—but with a more

complex rhythm, forking the conditions at the object’s properties:

function getOffset (x, y, w, h, placement) {
 return {
 top : placement == 'bottom' ? y + h :
 placement == 'top' ? y : y + h/2,
 left : placement == 'right' ? x + w :

WHAT DOES THIS HAVE TO DO WITH JAVASCRIPT? 31

 placement == 'left' ? x : x + w/2
 }
}

As you’ve begun to see, expressions guide our reading of software. In JavaScript, the

potential for this sort of variation both enables and is enabled by experimentation and

play—which therefore should be championed and not discouraged.

With So Much Variation, Which Way Is Correct?
Imagine sitting several adults down in a room and providing them with an actual

image of a rabbit and adequate drawing supplies. Imagine asking them each to draw a

rabbit.

Depending on the group’s exposure to various drawing techniques, you’d likely

receive a variety of renderings, ranging from rather crude to rather capable.

Variety here becomes a metric for the lack of experience in drawing amongst the

group. Which is to say, if everyone were perfect at illustration they would each have

rendered a photorealistic image, indistinguishable from the image of the rabbit; there

wouldn’t have been any variety at all.

This is because to draw a rabbit is to exercise one’s ability to duplicate. It is an exercise

in experience and mimicry. There is a right answer, and thus, there isn’t room for

creativity.

But what if you had asked the same group to draw a bunny?

Arguably the request is at once less threatening, less rigid, and less scientific. To draw a

bunny is to draw a rabbit-like thing. It is exceedingly difficult to be critical of a bunny

drawing because at most it’s only ever a resemblance.

Following this, you could expect the variety in the group’s images to be even more

exaggerated. To draw a bunny is to celebrate and to lean on variety. Here, however, vari-

ety no longer takes a negative form. Instead, it is symptomatic of the potential for creative

expression implicit in the act of drawing without bounds. It is a positive metric for

inventiveness and imagination.

To draw a bunny is to engage with variety. It serves to challenge the image of the rab-

bit by introducing new means of achieving likeness.

Consider immediately invoked function expressions (IIFEs). By convention, an IIFE

takes one of the two following forms:

(function (){})()
(function (){}())

CHAPTER THREE: HOW TO DRAW A BUNNY32

But drawing bunnies is not about convention. Rather, it’s an exercise in upsetting con-

vention. And yet at the same time it’s about positive variation—one manifestation of

an expression not being absolutely superior to another. With this in mind, here are a

few other ways you may write an IIFE:

!function (){}()
~function (){}()
+function (){}()
-function (){}()
new function (){}
1,function (){}()
1&&function (){}()
var i=function (){}()

Each manifestation has its own unique qualities and advantages—some with fewer

bytes, some safer for concatenation, each valid and each executable.

How Does This Affect the Classroom?
Because school is limited by grades, it spends much of its time propagandizing the

drawing of rabbits.

HOW DOES THIS AFFECT THE CLASSROOM? 33

If you’ve taken a drawing class, you’ve almost certainly drawn a block of wood.

You’ve spent hours shading a piece of fruit. You’ve studied proportions. You’ve been

lectured on perspective. You’ve been given tools to break things down to a grid. And,

after a few months of intense studying, your apple does begin to look a bit more like

the apple sitting in front of you.

To be sure, this isn’t a bad thing. In fact, quite the opposite. These practices give you

foundational knowledge on top of which you can build more complex structures. Fur-

thermore, you can turn the tools in on themselves and exploit them in very interesting

ways. And perhaps best of all, they introduce conventions and a new language

through which you can engage with your peers.

The problem emerges when students think of these tools in absolute ways. This is the

right way to do X; this is the only way to do Y. As you might imagine, this absolutism

breeds arrogance, narcissism, and an environment rooted in peer opposition.

Is This Art? And Why Does That Matter?
It’s true to say that when you paint anything, you are also painting not only

the subject, but you are painting yourself as well as the object that you are

trying to record. Because painting is a dual performance. Because, for

instance, if you look at a Rembrandt painting, I feel like I know very much

more about Rembrandt than I do about the sitter.

—Francis Bacon, interview with David Sylvester

Briefly consider two libraries I’ve contributed to this past year: Ratchet and Bootstrap.

Functionally, the content of both libraries is as it should be. What’s interesting are the

undertones—or rather, the potential for the same sort of undertones you would expect

to find in painting, music, or creative writing. Which is to say, the differences in style

between these two projects aren’t just arbitrary preferences. They’re very definite,

derived expressions, representative of a certain mood over time.

CHAPTER THREE: HOW TO DRAW A BUNNY34

http://bit.ly/sliders_ratchet
http://bit.ly/carousel_bootstrap

Bootstrap reads very fun, not serious—nearly every line is a joke. It’s trying to provoke

you. Taking shortcuts. Demanding that you reread it. Reread it again. It’s very pop.

Very optimistic. Forward. Playful.

The code for Ratchet is very different. It’s very conservative. It’s not meant to draw

attention to itself. It’s very explicit. Assertive, necessary. It’s easy to approach. It’s a

vanilla milkshake.

Insofar as art has been characterized in terms of mimesis, expression, communication

of emotion, and other such values, it follows that software, when written expressively,

is also an artistic gesture. What’s more, this realization reinforces our insistence on the

importance of drawing bunnies inasmuch as the exercise stretches one’s creative and

expressive capacities, enabling the formation of opinions and development of style,

while also helping to strengthen communication, exploration, and imaginative facul-

ties in the programmer.

Along these lines, my good friend Angus Croll has been exploring further creative

manifestations of code with his great articles on literary figures writing JavaScript. In

his articles, he writes several functions to return a Fibonacci series of a given length,

each program in the style of a different literary figure: Hemingway, Breton, Shake-

speare, Poe. The results are comedic, but the point is consistent:

The joy of JavaScript is rooted in its lack of rigidity and the infinite possibili-

ties that this allows for. Natural languages hold the same promise. The best

authors and the best JavaScript developers are those who obsess about lan-

guage, who explore and experiment with language every day and in doing so

develop their own style, their own idioms, and their own expression.

—Angus Croll, If Hemingway wrote JavaScript

Beautiful JavaScript is an art. Reading through it should feel uniform; it should allow

you to flow from expression to expression. It’s not just about executing logic; it’s about

establishing pace and reflecting a little bit of yourself. It’s about taking pride in what

you create.

IS THIS ART? AND WHY DOES THAT MATTER? 35

http://bit.ly/hemingway_js

What Does This Look Like?

In 1945, Picasso released a suite of 11 lithographs entitled “Bull.” In this series he

deconstructs the image of the bull, from realist rendering to hyperreduced line draw-

ing, progressively subtracting from and reimagining its form with each plate.

What’s of particular interest here is the progression. Beginning with the realistic brush

drawing, Picasso bulks the form up, increasing its expression of power before dissect-

ing it with lines of force, following the contours of its muscles and skeleton, ultimately

reducing and simplifying the image into a line. This study is considered the ultimate

master class in abstraction, and what’s more, it’s a classic example of Picasso drawing

bunnies.

This same exercise in abstraction can be applied to JavaScript.

I had the privilege of working with Alex Maccaw during my time at Twitter. There, we

had a number of conversations about interview philosophies and code challenges.

During one of our discussions he mentioned that he had always asked the same intro-

ductory interview question during phone screens—and since then, I have adopted it as

my first question as well.

CHAPTER THREE: HOW TO DRAW A BUNNY36

The question goes, given the following condition, define explode:

if ('alex'.explode() === 'a l e x') interview.nextQuestion()
else interview.terminate()

There are a number of ways to answer this question. Let’s begin with the most

verbose:

String.prototype.explode = function () {
 var i
 var result = ''
 for (i = 0; i < this.length; i++) {
 result = result + this[i]
 if (i < result.length - 1) {
 result = result + ' '
 }
 }
 return result
}

This block is swollen and distended, yet deliberate. There’s nothing clever. It’s by the

book. And it’s easily the most common response to the question.

Simply put, we declare variables i and result, iterating over the string’s value, pushing

its characters to result and conditionally adding a space between each character until

eventually we return.

Fine. But now let’s try something a bit cleverer:

String.prototype.explode = function (f,a,t) {
 for (f = a = '', t = this.length; a++ < t;) {
 f += this[a-1]
 a < t && (f += ' ')
 }
 return f //ollow @fat
}

If you write code like this, people will hate you. Without question. It’s playful. It looks to

trick you. To trick the language. It assaults the reader. It’s concerned with everything,

except its own logic. It’s vain. But it’s beautiful (to me).

In this block, we’re scoping the variables to the function by including them as pseu-

doarguments (which spell my Twitter handle). The for loop saves some characters by

setting both f and a to new string, and the a is then coerced in the next expression to 1

by the ++ increment operator_, just in time to be used in the equality comparison. On

the next line the program subtracts 1 from a before indexing the string to make up for

starting the loop at 1 (rather than 0). It then conditionally adds a space to the end,

before completing the loop and returning the result.

WHAT DOES THIS LOOK LIKE? 37

The next iteration of the solution is by far the simplest, leaning heavily on the langua-

ge’s tool belt. Perhaps surprisingly, this response is actually very uncommon to receive

in real interviews:

String.prototype.explode = function () {
 return this.split('').join(' ')
}

This solution is about getting to the next question. It’s clever, but not overly so. It’s

blunt. It’s mature. If the previous solution was crass, this one is urbane.

And finally, the absolute simplest:

String.prototype.explode = function (/*smart a$$*/) {
 return 'a l e x'
}

Which I’ve never gotten.

What Did I Just Read?
If drawing rabbits in JavaScript means copying patterns out of books or mimicking

specific styles from blogs, drawing bunnies is about experimentation and creative

expression.

To draw a bunny is to pervert the conventions of the language. To draw your breath or

to get it all out as fast as possible. It’s an exercise in discovering and pushing the

bounds of your understanding of the language. It’s about reinforcing and challenging

JavaScript as a craft.

In drawing JavaScript bunnies, you’re always at play. And you’re getting better.

CHAPTER THREE: HOW TO DRAW A BUNNY38

www.allitebooks.com

http://www.allitebooks.org

C H A P T E R F O U R

Too Much Rope, or
JavaScript for Teams

Daniel Pupius

Beauty is power and elegance, right action, form fitting function, intelligence,

and reasonability.

—Kim Stanley Robinson, Red Mars

JavaScript is a flexible language. In fact, this entire book is a testament to its expres-

siveness and dynamism. Within these pages you’ll hear stories of how to bend the lan-

guage to your will, descriptions of how to use it to experiment and play, and sugges-

tions for seemingly contradictory ways to write it.

My job is to tell a more cautionary tale.

I’m here to ask the question: what does it mean to write JavaScript in a team? How do

you maintain sanity with 5, 10, 100 people committing to the same codebase? How do

you make sure new team members can orient themselves quickly? How do you keep

things DRY without forcing broken abstractions?

Know Your Audience
In 2005 I joined the Gmail team in sunny Mountain View, California. The team was

building what many considered at the time to be the pinnacle of web applications.

They were awesomely smart and talented, but across Google, JavaScript wasn’t consid-

ered a “real programming language”—you engineered backends, you didn’t engineer

web UIs—and this mentality affected how they thought about the code.

Furthermore, even though the language was 10 years old, JavaScript engines were still

limited: they were designed for basic form validation, not building applications. Gmail

was starting to hit performance bottlenecks. To get around these limitations much of

39

the application was implemented as global functions, anything requiring a dot lookup

was avoided, sparse arrays were used in place of templates, and string concatenation

was a no-no.

The team was writing first and foremost for the JavaScript engine, not for themselves

or others. This led to a codebase that was hard to follow, inconsistent, and sprawling.

Instead of optimizing by hand, we transitioned to a world where code was written for

humans and the machine did the optimizations. This wasn’t a new language, mind

you—it was important that the raw code be valid JavaScript, for ease of understand-

ing, testing, and interoperability. Using the precursor to the Closure Compiler, we

developed optimization passes that would collapse namespaces, optimize strings, inline

functions, and remove dead code. This is work much better suited to a machine, and it

allowed the raw code to be more readable and more maintainable.

TIP
Lesson 1: Code for one another, and use tools to perform mechanical
optimizations.

Stupid Good
As the old adage goes, debugging is harder than writing code, so if you write the clev-

erest code you can, you’ll never be clever enough to debug it.

It can be fun to come up with obscure and arcane ways of solving problems, especially

since JavaScript gives you so much flexibility. But save it for personal projects and

JavaScript puzzlers.

When working in a team you need to write code that everyone is going to understand.

Some parts of the codebase may go unseen for months, until a day comes when you

need to debug a production issue. Or perhaps you have a new hire with little Java-

Script experience. In these types of situation, keeping code simple and easy to under-

stand will be better for everyone. You don’t want to spend time decoding some

bizarro, magical incantation at two in the morning while debugging production issues.

Consider the following:

var el = document.querySelector('.profile');
el.classList[['add','remove'][+el.classList.contains('on')]]('on');

And an alternative way of expressing the same behavior:

var el = document.querySelector('.profile');
if (el.classList.contains('on')) el.classList.remove('on');
else el.classList.add('on');

CHAPTER FOUR: TOO MUCH ROPE, OR JAVASCRIPT FOR TEAMS40

Saying that the second snippet is better than the first may seem in conflict with the

concept that “succinctness = power.” But I believe there is a disconnect that stems

from the common synonyms for succinct: compact, brief.

I prefer terse as a synonym:

using few words, devoid of superfluity, smoothly elegant

The first snippet is more compact than the second snippet, but it is denser and actually

includes more symbols. When reading the first snippet you have to know how coer-

cion rules apply when using a numeric operator on a Boolean, you have to know that

methods can be invoked using subscript notation, and you have to notice that square

brackets are used for both defining an array literal and method lookup.

The second snippet, while longer, actually has less syntax for the reader to process.

Furthermore, it reads like English: “If the element’s class list contains ‘on’, then

remove ‘on’ from the class list; otherwise, add ‘on’ to the class list.”

All that said, an even better solution would be to abstract this functionality and have

the very simple, readable, and succinct:

toggleCssClass(document.querySelector('.profile'), 'on');

TIP
Lesson 2: Keep it simple; compactness != succinctness.

Keep It Classy
When I’m talking with “proper programmers,” they often complain about how terrible

JavaScript is. I usually respond that JavaScript is misunderstood, and that one of the

main issues is that it gives you too much rope—so inevitably you end up hanging

yourself.

There were certainly questionable design decisions in the language, and it is true that

the early engines were quite terrible, but many of the problems that occur as Java-

Script codebases scale can be solved with pretty standard computer science best practi-

ces. A lot of it comes down to code organization and encapsulation.

Unfortunately, until we finally get ES6 we have no standard module system, no stan-

dard packaging mechanisms, and a prototypal inheritance model that confuses a lot of

people and begets a million different class libraries.

While JavaScript’s prototypal inheritance allows instance-based inheritance, I gener-

ally suggest when working in a team that you simulate classical inheritance as much as

possible, while still utilizing the prototype chain. Let’s consider an example:

KEEP IT CLASSY 41

var log = console.log.bind(console);
var bob = {
 money: 100,
 toString: function() { return '$' + this.money }
};
var billy = Object.create(bob);

log('bob:' + bob, 'billy:' + billy); // bob:$100 billy:$100
bob.money = 150;
log('bob:' + bob, 'billy:' + billy); // bob:$150 billy:$150
billy.money = 50;
log('bob:' + bob, 'billy:' + billy); // bob:$150 billy:$50
delete billy.money;
log('bob:' + bob, 'billy:' + billy); // bob:$150 billy:$150

In this example, billy inherits from bob. What that means in practice is that billy.pro

totype = bob, and nonmatching property lookups on billy will delegate to bob. In

other words, to begin with billy’s $100 is bob’s $100; billy isn’t a copy of bob. Then,

when billy gets his own money, it essentially overrides the property that was being

inherited from bob. Deleting billy’s money doesn’t set it to undefined; instead, bob’s

money becomes billy’s again.

This can be rather confusing to newcomers. In fact, developers can go a long time

without ever knowing precisely how prototypes work. So, if you use a model that sim-

ulates classical inheritance, it increases the chances that people on your team will get

on board quickly and allows them to be productive without necessarily needing to

understand the details of the language.

Both the Closure library’s goog.inherits and Node.js’s util.inherits make it easy to

write class-like structures while still relying on the prototype for wiring:

function Bank(initialMoney) {
 EventEmitter.call(this);
 this.money = money;
}
util.inherits(Bank, EventEmitter);

Bank.prototype.withdraw = function (amount) {
 if (amount <= this.money) {
 this.money -= amount;
 this.emit('balance_changed', this.money); // inherited
 return true;
 } else {
 return false;
 }
}

This looks very similar to inheritance in other languages. Bank inherits from EventEmit

ter; the superclass’s constructor is called in the context of the new instance; util.inher

CHAPTER FOUR: TOO MUCH ROPE, OR JAVASCRIPT FOR TEAMS42

its wires up the prototype chain just like we saw with bob and billy earlier; and then

the property lookup for emit falls to the EventEmitter “class.”

A suggested exercise for the reader is to create instances of a class without using the

new keyword.

TIP
Lesson 3: Just because you can doesn’t mean you should.

TIP
Lesson 4: Utilize familiar paradigms and patterns.

Style Rules
The need for consistent style as codebases and teams grow is nothing unique to Java-

Script. However, where many languages are opinionated about coding style, JavaScript

is lenient and forgiving. This means it’s all the more important to define a set of rules

the team should stick to.

Good style is subjective and can be difficult to define, but there are many cases where

certain style choices are quantifiably better than others. In the cases where there isn’t

a quantifiable difference, there is still value in making an arbitrary choice one way or

the other.

TIP
Style guides provide a common vocabulary so people can concentrate on what
you’re saying instead of how you’re saying it.

A good style guide should set out rules for code layout, indentation, whitespace, capi-

talization, naming, and comments. It is also good to create usage guides that explain

best practices and provide guidance on how to use common APIs. Importantly, these

guides should explain why a rule exists; over time you will want to reevaluate the

rules and should avoid them becoming cargo cults.

Style guides should be enforced by a linter and if possible coupled with a formatter to

remove the mechanical steps of adhering to the guide. You don’t want to waste cycles

correcting style nits in code reviews.

The ultimate goal is to have all code look like it was written by the same person.

TIP
Lesson 5: Consistency is king.

STYLE RULES 43

Evolution of Code
When I was first working on Google Closure there was no simple utility for making

XMLHttpRequests; everything was rolled up in large, application-specific request

utilities.

So, in my naiveté XhrLite was born.

XhrLite became popular—no one wants to use a “heavy” implementation—but its

users kept finding features that were missing. Over time small patches were submitted,

and XhrLite accumulated support for form encoded data, JSON decoding, XSSI han-

dling, headers, and more—even fixes for obscure bugs in FF3.5 web workers.

Needless to say, the irony of “XhrLite” becoming a distinctly heavy behemoth was not

lost, and eventually it was renamed “XhrIo.” The API, however, remained bloated and

cumbersome.

TIP
Small changes—reasonable in isolation—evolve into a system that no one would
ever design if given a blank canvas.

Evolutionary complexity is almost a force of nature in software development, but it

has always seemed more pronounced with JavaScript. One of the strengths that hel-

ped spur JavaScript’s popularity is that you can get up and running quickly. Whether

you’re creating a simple web app or a Node.js server, a minimal dev environment and

a few lines of code yields something functional. This is great when you’re learning, or

prototyping, but can lead to fragile foundations for a growing team.

You start out with some simple HTML and CSS. Perhaps you add some event handlers

using jQuery. You add some XHRs, maybe you even start to use pushState. Before long

you have an actual single-page application, something you never intended at first. Per-

formance starts to suffer, there are weird race conditions, your code is littered with

setTimeouts, there are hard-to-track-down memory leaks…you start wondering if a

traditional web page would be better. You have the duck-billed platypus of

applications.

TIP
Lesson 6: Lay good foundations. Be mindful of evolutionary complexity.

Conclusion
JavaScript’s beauty is in its pervasiveness, its flexibility, and its accessibility. But beauty

is also contextual. What started as a “scripting language” is now used by hundred-

plus-person teams and forms the building blocks of billion-dollar products. In such sit-

CHAPTER FOUR: TOO MUCH ROPE, OR JAVASCRIPT FOR TEAMS44

uations you can’t write code in the same way you would hacking up a one-person

website. So…

1. Code for one another, and use tools to perform mechanical optimizations.

2. Keep it simple; compactness != succinctness.

3. Just because you can doesn’t mean you should.

4. Utilize familiar paradigms and patterns.

5. Consistency is king.

6. Lay good foundations. Be mindful of evolutionary complexity.

CONCLUSION 45

C H A P T E R F I V E

Hacking JavaScript
Constructors for
Model Harmony

Ben Vinegar

JavaScript MVC—or MVW (Model, View, “Whatever”)—frameworks come in many

flavors, shapes, and sizes. But by virtue of their namesake, they all provide developers

with a fundamental component: models, which “model” the data associated with the

application. In client-side web apps, they typically represent a database-backed object.

Last year at Disqus, we rewrote our embedded client-side application in Backbone, a

minimal MVC framework. Backbone is often criticized for having an unsophisticated

“view” layer, but one thing it does particularly well is managing models.

Defining a new model in Backbone looks like this:

var User = Backbone.Model.extend({
 defaults: {
 username: '',
 firstName: '',
 lastName: ''
 },

 idAttribute: 'username',

 fullName: function () {
 return this.get('firstName') + this.get('lastName');
 }
});

Here’s some sample code that initializes a new model, and demonstrates how that

model instance might be used in an application:

47

http://backbonejs.org/

var user = new User({
 username: 'john_doe',
 firstName: 'John',
 lastName: 'Doe'
});

user.fullName(); // John Doe

user.set('firstName', 'Bill');

user.save(); // PUTs changes to server endpoint

These are simple examples, but client-side models can be very powerful, and they are

typically—ahem—the backbone of any nontrivial MVC app.

Additionally, Backbone provides what are called “collection” classes, which help devel-

opers easily manipulate common sets of model instances. You can think of them as

superpowered arrays, loaded with helpful utility functions:

var UserCollection = Backbone.Collection.extend({
 model: User,
 url: '/users'
});

var users = new UserCollection();

users.fetch(); // Fetches user records via HTTP

var johndoe = users.get('john_doe'); // Find by primary idAttribute

Not all MVC frameworks implement a Collection class exactly like Backbone does. For

example, Ember.js defines a CollectionView class, which similarly maintains a set of

common models, but tied to a DOM representation. API differences aside, it’s clear that

developers commonly manipulate and render sets of objects, and frameworks provide

different facilities for doing so.

Doppelgangers
When you’re working with large or even medium-sized client applications, it’s com-

mon to have multiple model instances representing the same database-backed object.

This usually happens when you have multiple views of some data, such that a model

appears in two or more views.

Consider this example, which introduces two new collections of users: Followers, for

users that are following a given user (say, on a social network), and Following, for

users whom a given user happens to be following. A user who is both a follower and

being followed will appear in both collections, in which case we will have duplicate

instances of the same database-backed model:

CHAPTER FIVE: HACKING JAVASCRIPT CONSTRUCTORS FOR MODEL HARMONY48

www.allitebooks.com

http://www.allitebooks.org

var FollowingCollection = UserCollection.extend({
 url: '/following'
});

var FollowersCollection = UserCollection.extend({
 url: '/followers'
});

var following = new FollowingCollection();
var followers = new FollowersCollection();

following.fetch();
followers.fetch();

var user1 = following.get('johndoe');
var user2 = followers.get('johndoe');

user1 === user2; // false

Having multiple instances of the same model has two major downsides.

First, you are using additional memory to represent the same object. Depending on the

complexity of the model and the sizes of the attributes it holds, it’s not unreasonable

for a single instance to consume kilobytes of memory. If instances are duplicated doz-

ens or hundreds of times—a very possible scenario for long-lived single-page applica-

tions—they can quickly become a memory sink.

Secondly, if you or the user modifies the state of one of these models on the client,

other instances of that model will fall out of sync. This can happen through a number

of means, like if the user changes the state of the object via the UI, or an update cre-

ated by another user is sent to the client via a real-time service:

user1.set('firstName', 'Johnny');

user2.get('firstName'); // still John

In this simple example, where the same user appears in only two different collections,

it might seem trivial to update both instances manually with the new property. But it’s

easy to imagine how in a complex application the same user object might exist across

dozens of different collections—not just follower/following lists, but also notifications,

feed items, logs, and so on.

It would be terrific if, instead of having to track down every instance of a given model,

we could have each instance update itself intelligently. Or better yet, if we never had

duplicated instances to begin with.

DOPPELGANGERS 49

Miniature Models of Factories
A common solution for handling duplicate instances is to use a factory function when

you create a new model instance. If the factory detects that a model instance already

exists, it will just return the existing instance instead:

var userCache = {};

function UserFactory(attrs, options) {
 var username = attrs.username;

 return userCache[username] ?
 userCache[username] :
 new User(attrs, options);
}

var user1 = UserFactory({ username: 'johndoe' });
var user2 = UserFactory({ username: 'johndoe '});

user1 === user2; // true

In order to use this pattern effectively, you must always use this factory function when

creating new instances. This is a simple enough chore when managing your own code.

But difficulty arises when you try to enforce this pattern in codebases you aren’t

responsible for, like third-party libraries and plugins.

Consider, for example, the Collection.prototype._prepareModel function from Back-

bone’s source code. Backbone uses this function to “prepare” and ultimately create a

new model instance to add to a collection. It is invoked by a variety of means, such as

when you’re populating a collection with models returned from an HTTP resource:

// Prepare a hash of attributes (or other model) to be added to this
// collection.
Backbone.Collection.prototype._prepareModel = function(attrs, options) {
 if (attrs instanceof Model) {
 if (!attrs.collection) attrs.collection = this;
 return attrs;
 }
 options || (options = {});
 options.collection = this;
 var model = new this.model(attrs, options);
 if (!model._validate(attrs, options)) {
 this.trigger('invalid', this, attrs, options);
 return false;
 }
 return model;
};

Of particular importance is this line:

var model = new this.model(attrs, options);

CHAPTER FIVE: HACKING JAVASCRIPT CONSTRUCTORS FOR MODEL HARMONY50

This is what actually creates a new instance of the model associated with this

collection.

this.model is a reference to the constructor of the model class the collection wraps. It’s

specified when you define a new collection class, like we did earlier:

var UserCollection = Backbone.Collection.extend({
 model: User,
 url: '/users'
});

What’s pretty cool is that instead of passing the User class to the collection definition,

we can pass the UserFactory class (our factory function that returns unique model

instances):

var UserCollection = Backbone.Collection.extend({
 model: UserFactory,
 url: '/users'
});

UserFactory will then be assigned to this.model, and will be invoked by the new opera-

tor when the collection creates a new instance:

var model = new this.model(attrs, options); // this.model is UserFactory

But wait a minute. Now we’re invoking UserFactory via the new operator. We weren’t

doing that earlier; we were calling the function directly. Does this even work?

It turns out it does.

Constructor Identity Crisis
What exactly happens when you use the new operator on a function? A few things:

1. It creates a new object.

2. It sets that object’s prototype property to be the prototype property of the con-

structor function.

3. It invokes the constructor function, with this assigned to the newly created

object.

4. It returns the object, unless the constructor function returns a nonprimitive value.

In that case, the nonprimitive value is returned instead.

That last one is the neat part. If your constructor function returns a nonprimitive

value, that becomes the result of the new operation.

Since UserFactory returns a nonprimitive, that means that these two operations return

the same value:

CONSTRUCTOR IDENTITY CRISIS 51

var user1 = UserFactory({ username: 'johndoe' });
var user2 = new UserFactory({ username: 'johndoe '});

user1 === user2; // true

This property of the new operator is pretty handy. It means that you can essentially dis-

card the object created by new, and return what you want—in our case, a unique user

model instance.

Making It Scale
In the examples so far, UserFactory has been a single-purpose factory function; it only

guarantees uniqueness of User instances. While that’s super handy, there are probably

other models for which we’ll want to guarantee uniqueness. So, it would be nice to

have a general-purpose wrapper that can work for any model class.

In a moment we’ll look at a function called UniqueFactory. It’s actually a constructor

function that is invoked with the new operator, and takes as input a normal Backbone

model class. It returns a wrapped constructor function that generates unique instances

of that class.

For example, it can actually generate a UserFactory class:

var UserFactory = new UniqueFactory(User);

var user1 = UserFactory({ username: 'johndoe' });
var user2 = new UserFactory({ username: 'johndoe '});

user1 === user2; // true

The UniqueFactory implementation is shown here:

/**
 * UniqueFactory takes a class as input, and returns a wrapped version of
 * that class that guarantees uniqueness of any generated model instances.
 *
 * Example:
 * var UniqueUser = new UniqueFactory(User);
 */

function UniqueFactory (Model) {
 var self = this;

 // The underlying Backbone Model class
 this.Model = Model;

 // Tracked instances of this model class
 this.instances = {};

 // Constructor to return that will be used for creating new instances
 var WrappedConstructor = function (attrs, options) {

CHAPTER FIVE: HACKING JAVASCRIPT CONSTRUCTORS FOR MODEL HARMONY52

 return self.getInstance(attrs, options);
 };

 // For compatibility with Backbone collections, our wrapped
 // model prototype should point to the *actual* Model prototype
 WrappedConstructor.prototype = this.Model.prototype;

 return WrappedConstructor;
}

UniqueFactory.prototype.getInstance = function (attrs, options) {
 options = options || {};

 var id = attrs && attrs[this.Model.prototype.idAttribute];

 // If there's no ID, this model isn't being tracked, and
 // cannot be tracked; return a new instance
 if (!id)
 return new this.Model(attrs, options);

 // Attempt to restore a cached instance
 var instance = this.instances[id];
 if (!instance) {
 // If we haven't seen this instance before, start caching it
 instance = this.createInstance(id, attrs, options);
 } else {
 // Otherwise update the attributes of the cached instance
 instance.set(attrs);
 }
 return instance;
};

UniqueFactory.prototype.createInstance = function (id, attrs, options) {
 var instance = new this.Model(attrs, options);
 this.instances[id] = instance;

 return instance;
};

Let’s take a closer look at the UniqueFactory constructor, because it’s doing some tricky

stuff.

First recall that UniqueFactory is intended to be invoked with the new operator, which

creates a new object and assigns it to this (which is immediately aliased to self). The

constructor creates a new function, WrappedConstructor, whose signature matches that

of a Backbone.Model constructor function. But instead of invoking the actual construc-

tor, it calls the getInstance prototype method of the UniqueFactory instance we just

created:

var WrappedConstructor = function (attrs, options) {
 return self.getInstance(attrs, options);
};

MAKING IT SCALE 53

Then, on the last line of this function, UniqueFactory returns WrappedConstructor. Once

again, we’ve decided to ignore the object created by the new operator, and instead

return an entirely different object—a function, even.

This means that when we invoke UniqueFactory, the return value is actually our wrap-

ped constructor:

var UserFactory = new UniqueFactory(User); // WrappedConstructor

However, this time we actually used the object created by the new operator. We just

didn’t return it. And it still exists: in the closure created by the WrappedConstructor

function (self).

Phew. Did you catch all that?

This is kind of a funny implementation. It’s not necessarily ideal, but I presented it to

you to demonstrate how the new operator can be abused in an interesting—if some-

what confusing—way. Namely, a constructor function can both make use of the object

created by new and return an entirely new value, at the same time.

Beware of Memory Leaks

In the example factory implementations here, I’ve glossed over an important detail: they
maintain an ever-growing global cache of model instances. Since instances are never
removed from the cache even when they’re no longer needed, they continue occupying
memory forever (or at least, until the page refreshes).

For example, suppose a unique model instance is destroyed via Model.proto
type.destroy:

(function () {

 var user = UserFactory({ username: 'johndoe' });

 user.destroy(); // sends HTTP DELETE to API server

})();

Despite the user variable not existing outside the functional scope in which it is
declared, and despite the johndoe record being destroyed on the server, the instance
lives on inside our UserFactory instance cache.

This is particularly bad in long-lived single-page applications. A proper implementation
would “track” instance creation and dismissal, and remove the instance from the cache
when it is no longer required to be there.

Conclusion
In this chapter, we’ve identified the “uniqueness” problem that affects applications

where the same database-backed object appears in multiple collections. We explored a

CHAPTER FIVE: HACKING JAVASCRIPT CONSTRUCTORS FOR MODEL HARMONY54

powerful solution for this problem: functions that wrap a class constructor, and guar-

antee the uniqueness of any returned objects. Lastly, we introduced a utility, UniqueFac

tory, that generates model classes that similarly guarantee uniqueness.

What we’ve covered isn’t necessarily unique to JavaScript. Factory methods that

return unique instances are tried-and-true patterns that can be—and certainly have

been—implemented in any number of languages.

But one clever trick that JavaScript has up its sleeve is the new operator. Specifically,

the function on which new is called can ignore the newly created object (this) and

return what it pleases. This little quirk is deceptively powerful, because it allows you to

emulate object creation when object creation is expected—for instance, when you’re

working with external libraries like Backbone.

In my experience, JavaScript has never been accused of being a particularly flexible

language. It still bears the marks of being designed in 10 days. But for all its warts,

occasionally I discover new things about it that particularly please me. This small prop-

erty of the new operator is one of them. Hopefully, having read this chapter, you’ll feel

similarly.

CONCLUSION 55

C H A P T E R S I X

One World, One Language
Jenn Schiffer

There sure are a lot of languages.

—Jenn Schiffer

It was September 2003 when I began my undergraduate studies in computer science.

Having chosen a liberal arts school, I was required to select a number of general edu-

cation course requirements that lived outside the realm of my major. One of those

requirements was two foreign language courses. When I inquired about using Java to

fulfill that sequence, my request was immediately shut down. “You have to pick a real

foreign language, like Spanish or French,” my undergraduate advisor told me.

Perhaps I should have asked about JavaScript.

To be multilingual, or a polyglot, has always been presented as superior to being able

to speak one’s native language only. I have never understood why people believe this.

Living under one roof, having one job for an extended amount of time, and being in a

long-term monogamous relationship: these are seen as qualities of a stable life. Being

an expert in a single subject, as opposed to knowing a little bit about a lot, is champ-

ioned. So should be the case with programming.

JavaScript is a single, stable language that is powerful enough to build the World Wide

Web, make robots move, and convince publishers to print entire books about it. If we

were required to pick a single “best” programming language, JavaScript seems like a

no-brainer.

It is understandably controversial to say that a specific language is better than the rest

and that it should, therefore, become the official language of programming. Who am I

to decide which language every other programmer should learn and build with? In my

favor, one of the greatest aspects of web development in the 21st century is the

expression of opinions so strong they are worthy of becoming web standards.

57

An Imperative, Dynamic Proposal
Imagine you are an academic advisor at a liberal arts college and are tasked with defin-

ing the choices given to students for their foreign language requirements. A language

called “JavaScript” comes up in a proposal, and you need to study it and determine if

it is a viable option. Naturally, you just so happen to be a fluent JavaScript expert, yet

you are not sure it would be more useful than, say, Java.

Java is notoriously simple to learn at the college freshman level, regardless of the stu-

dent’s experience:

/**
* Hello World in Java
*/

class Example {
 public static void main(String[] args) {
 System.out.println("Hello World.");
 }
}

To run Java, though, the client must also be running the Java virtual machine

(J.V.M.). It would be silly to ask students to carry multiple machines around to all of

their classes, so a language that does not require a JVM would be a better option. You

might be thinking, “Maybe this is a weird joke I just don’t get?” Perhaps the author,

yours truly, is trying to make a joke, and you feel like there are much better ones she

could make. But this is no joke: JavaScript does not require a Java virtual machine.

Neither does Haskell:

-- Hello World in Haskell
main = putStrLn "Hello World."

The problem with Haskell is that, unlike JavaScript, it requires installation of a com-

piler. It is also a functional programming language that, like Latin, is considered “dead”

and referenced only in historical texts. Yes, it is useful to learn Haskell in order to

understand the context of programming today, but not for making useful products. It

would be irresponsible to require students to learn something that would not help

them build client-side web applications.

Ruby happens to be quite useful in building web applications:

Hello World in Ruby
puts "Hello World."

One of the features of Ruby is flexibility in the form of having dozens of different ver-

sions, the most popular of which is called Rails. Rails itself has many versions—dia-

lects, if you will—which causes communication breakdowns between apps. Multiple

versions works for operating system releases, but not for web development. JavaScript

CHAPTER SIX: ONE WORLD, ONE LANGUAGE58

www.allitebooks.com

http://www.allitebooks.org

versions do not matter to the user or developer because it is not server-side, and

removing that headache makes it a better option for teaching.

Cascading Style Sheets (C.S.S.) is also not server-side and does not require a compiler

or virtual machine:

/* Hello World in C.S.S. */
#example { content:'Hello World.'}

But much like hardware does not work without software, C.S.S. does not work

without other languages. In the previous example, the browser looks for an element

on the page with the ID “example.” If the developer did not use another language to

create that element, the C.S.S. cannot do anything. The professor teaching the foreign

language course would have to teach another language in addition to C.S.S., and that

is asking a lot of the staff. JavaScript does not need other languages to work. It just

works.

How about HyperText Markup Language (H.T.M.L.)? It works on its own and does not

need a compiler installed:

<!-- Hello World in H.T.M.L. -->
<!DOCTYPE html>
<html ng-app>
 <head>
 <script src="angular.js"></script>
 </head>
 <body ng-controller="ExampleController">

 <script type="text/javascript">
 function ExampleController($scope) {
 $scope.printText = "Hello World";
 }
 </script>

 <h1></h1>

 </body>
</html>

Actually, H.T.M.L. does need another language to work, and it is JavaScript. Sure, in

the past, H.T.M.L. used to be all you needed to create a web page. In the current state

of the Semantic Web, though, the use of frontend JavaScript frameworks like Ember.js

is required to bind text to a document.

JavaScript does not need a JavaScript framework to run, because it is JavaScript

already:

// Hello World in JavaScript
alert('Hello World');

AN IMPERATIVE, DYNAMIC PROPOSAL 59

And there you have it. Simple, pure, vanilla, untouched, beautiful JavaScript. Short,

effective, and simple to teach. You can rightfully count JavaScript among the options

for teaching foreign languages to your college’s student body.

The Paradox of Choice
As hard as it is to choose the options of foreign language courses a student can take, it

is even harder for the student to decide among those options. One of the hardest prob-

lems in computer science is choosing the right tool to use, and the same certainly goes

for communication. It is an impossible question to ask: “German or JavaScript?” Why

can a student not learn both?

This may seem like an NP-complete problem. You cannot teach JavaScript in German,

because JavaScript syntax is in American English:

Benachrichtigung('Hello World');

Although semantically, factually, and tactfully correct, the preceding code is syntacti-

cally incorrect:

>> ReferenceError: Benachrichtigung is not defined

It turns out, though, that you can teach German in JavaScript:

alert('Hallo Welt');

If one can learn a language within JavaScript, then it is clear that JavaScript can be the

only foreign language course offered that will not prevent students from learning how

to communicate in foreign countries.

Globalcommunicationscript
College is the basis of learning for all web developers, as is evident with the current

education revolution within the software industry. As more programming jobs are cre-

ated, educators grow more responsible for fostering the growth of new developers. To

make this job easy, it only makes perfect sense to choose a language that everyone can

communicate and learn with. As we discovered in our foreign language course narra-

tive, that language is JavaScript.

Simple, pure, vanilla, untouched, beautiful JavaScript.

CHAPTER SIX: ONE WORLD, ONE LANGUAGE60

C H A P T E R S E V E N

Math Expression Parser
and Evaluator

Ariya Hidayat

Domain-specific languages (DSLs) are encountered in many aspects of a software engi-

neer’s life: configuration file formats, data transfer protocols, model schemas, applica-

tion extensions, interface definition languages, and many others. Because of the

nature of such languages, the language expression needs to be straightforward and

easy to understand.

In this chapter, we will explore the use of JavaScript to implement a simple language

that can be used to evaluate a mathematical expression. In a way, it is very similar to a

classic handheld programming calculator. Besides the typical math syntax, our Java-

Script code should handle operator precedence and understand predefined functions.

Given a math expression as a string, this is the series of processing applied to that

string:

• The string is split into a stream of tokens.

• The tokens are used to construct the syntax tree.

• The syntax tree is traversed to evaluate the expression.

Each step will be described in the following sections.

Lexical Analysis and Tokens
The first important thing to do to a string representing a math expression is lexical

analysis—that is, splitting the string into a stream of tokens. Quite expectedly, a

61

function that does this is often called a tokenizer. Alternatively, it is also known as a

lexer or a scanner.

We first need to define the types of the tokens. Since we’ll be dealing with simple

math expressions, all we really need are number, identifier, and operator. Before we

can identify a portion of a string as one of these tokens, we need some helper func-

tions (they are self-explained):

function isWhiteSpace(ch) {
 return (ch === 'u0009') || (ch === ' ') || (ch === 'u00A0');
}

function isLetter(ch) {
 return (ch >= 'a' && ch < = 'z') || (ch >= 'A' && ch < = 'Z');
}

function isDecimalDigit(ch) {
 return (ch >= '0') && (ch < = '9');
}

Another very useful auxiliary function is the following createToken, used mostly to

avoid repetitive code in the later stages. It basically creates an object for the given

token type and value:

function createToken(type, value) {
 return {
 type: type,
 value: value
 };
}

As we iterate through the characters in the math expression, we will need a way to

advance to the next character and another method to have a peek at the next charac-

ter without advancing our position:

function getNextChar() {
 var ch = 'x00',
 idx = index;
 if (idx < length) {
 ch = expression.charAt(idx);
 index += 1;
 }
 return ch;
}

function peekNextChar() {
 var idx = index;
 return ((idx < length) ? expression.charAt(idx) : 'x00');
}

CHAPTER SEVEN: MATH EXPRESSION PARSER AND EVALUATOR62

In our expression language, spaces do not matter: 40 + 2 is treated the same as 40+2.

Thus, we need a function that ignores whitespace and continues to move forward

until there is no whitespace anymore:

function skipSpaces() {
 var ch;

 while (index < length) {
 ch = peekNextChar();
 if (!isWhiteSpace(ch)) {
 break;
 }
 getNextChar();
 }
}

Suppose we want to support standard arithmetic operations, brackets, and simple

assignment. The operators we need to support are +, -, *, /, =, (, and). A method to

scan such an operator can be constructed as follows. Note that rather than checking

the character against all possible choices, we just use a simple trick utilizing the

String.indexOf method. By convention, if this scanOperator function is called but no

operator is detected, it returns undefined:

function scanOperator() {
 var ch = peekNextChar();
 if ('+-*/()='.indexOf(ch) >= 0) {
 return createToken('Operator', getNextChar());
 }
 return undefined;
}

Deciding whether a series of characters is an identifier or not is slightly more complex.

Let us assume we allow the first character to be a letter or an underscore. The second,

third, and subsequent characters can each be another letter or a decimal digit. We dis-

allow a decimal digit to start an identifier to avoid confusion with a number. Let’s

begin with two simple helper functions that do these checks:

function isIdentifierStart(ch) {
 return (ch === '_') || isLetter(ch);
}

function isIdentifierPart(ch) {
 return isIdentifierStart(ch) || isDecimalDigit(ch);
}

The identifier check can now be written as a simple loop like this:

function scanIdentifier() {
 var ch, id;

 ch = peekNextChar();

LEXICAL ANALYSIS AND TOKENS 63

 if (!isIdentifierStart(ch)) {
 return undefined;
 }

 id = getNextChar();
 while (true) {
 ch = peekNextChar();
 if (!isIdentifierPart(ch)) {
 break;
 }
 id += getNextChar();
 }

 return createToken('Identifier', id);
}

Since we want to process math expressions, it would be absurd not to be able to recog-

nize numbers. We want to support simple integers such as 42, floating points like

3.14159, and also numbers written in scientific notation like 6.62606957e-34. A skele-

ton for such a function is:

function scanNumber() {
 // return a token representing a number
 // or undefined if no number is recognized
}

And here is the breakdown of the function implementation.

First and foremost, we need to detect the presence of a number. It’s rather easy—we

just check whether the next character is a decimal digit or a decimal point (because .1

is a valid number):

ch = peekNextChar();
if (!isDecimalDigit(ch) && (ch !== '.')) {
 return undefined;
}

And if that is the case, we need to process each following character as long as it is a

decimal digit:

number = '';
if (ch !== '.') {
 number = getNextChar();
 while (true) {
 ch = peekNextChar();
 if (!isDecimalDigit(ch)) {
 break;
 }
 number += getNextChar();
 }
}

CHAPTER SEVEN: MATH EXPRESSION PARSER AND EVALUATOR64

Since we want to support floating-point numbers, potentially we will see a decimal

point coming (for example, for 3.14159, up to now only we’re processing the 3). If

that is the case, we need to loop again and process all the digits after the decimal point:

 if (ch === '.') {
 number += getNextChar();
 while (true) {
 ch = peekNextChar();
 if (!isDecimalDigit(ch)) {
 break;
 }
 number += getNextChar();
 }
 }

Supporting scientific notation with exponents means we may see an “e” after those

digits. For example, if we are supposed to scan 6.62606957e-34, the previous code will

get us only up to 6.62606957. We need to process the “e,” and more digits after the

exponent sign. Note that there can be a plus or a minus sign as well:

 if (ch === 'e' || ch === 'E') {
 number += getNextChar();
 ch = peekNextChar();
 if (ch === '+' || ch === '-' || isDecimalDigit(ch)) {
 number += getNextChar();
 while (true) {
 ch = peekNextChar();
 if (!isDecimalDigit(ch)) {
 break;
 }
 number += getNextChar();
 }
 } else {
 throw new SyntaxError('Unexpected character after exponent sign');
 }
 }

The exception is needed because we want to tackle invalid numbers such as 4e.2

(there cannot be a decimal point after the exponent sign) or even just 4e (there must

be some digits after the exponent sign).

If we want to consume a math expression and produce a list of tokens represented by

the expression, we need a function that recognizes and gets the next token. This is

easy, since we have three individual functions that can handle a number, an operator,

or an identifier:

function next() {
 var token;

 skipSpaces();
 if (index >= length) {

LEXICAL ANALYSIS AND TOKENS 65

 return undefined;
 }

 token = scanNumber();
 if (typeof token !== 'undefined') {
 return token;
 }

 token = scanOperator();
 if (typeof token !== 'undefined') {
 return token;
 }

 token = scanIdentifier();
 if (typeof token !== 'undefined') {
 return token;
 }

 throw new SyntaxError('Unknown token from character ' + peekNextChar());
}

Syntax Parser and Syntax Tree
The stream of tokens produced by the lexer does not give us enough information to

compute the math expression. Before we can evaluate the expression, an abstract syn-

tax tree (AST) corresponding to the expression needs to be constructed. This proce-

dure is commonly known as syntactic analysis, and it is usually carried out by a syntax

parser.

Consider the following expression:

x = -6 * 7

The associated syntax tree for this expression is depicted in the following diagram.

A popular technique to construct the syntax tree is recursive-descent parsing. In such a

parsing strategy, we go top down and match the possible parse tree from the highest

CHAPTER SEVEN: MATH EXPRESSION PARSER AND EVALUATOR66

level. For this particular problem, the simplified grammar of the math expression we

want to handle is written as the following (in Backus-Naur Form):

Expression ::= Assignment

Assignment ::= Identifier '=' Assignment | Additive

Additive ::= Multiplicative | Additive '+' Multiplicative |
 Additive '-' Multiplicative

Multiplicative ::= Unary | Multiplicative '*' Unary | Multiplicative '/' Unary

Unary ::= Primary | '-' Unary

Primary ::= Identifier | Number | '(' Assignment ')' | FunctionCall

FunctionCall ::= Identifier '(' ')' | Identifier '(' ArgumentList ')'

ArgumentList := Expression | Expression ',' ArgumentList

The following code walkthrough illustrates the process of matching the expression

from the topmost level (Expression). The lexer itself comes from the implementation

of the lexical analyzer shown earlier. The main entry point for the parsing looks like

this:

function parse(expression) {
 var expr;

 lexer.reset(expression);
 expr = parseExpression();

 return {
 'Expression': expr
 };
}

From this, we go to the main parseExpression function, which is surprisingly simple.

This is because our syntax implies only a variable assignment as an expression. For

other languages with more elaborate control flow (branching, loops, etc.) or some

form of DSL, assignment may not be the only form of expression:

function parseExpression() {
 return parseAssignment();
}

For the subsequent parseFoo variants, we need a function that can match an operator.

If the incoming operator is the same as the expected one, then it returns true:

function matchOp(token, op) {
 return (typeof token !== 'undefined') &&
 token.type === T.Operator &&

SYNTAX PARSER AND SYNTAX TREE 67

http://bit.ly/backus-naur

 token.value === op;
}

An example form of assignment is x = 42. However, we also want to tackle cases

where the expression is as plain as 42, or a nested assignment such as x = y = 42. See

if you can understand how the following implementation of parseAssignment handles

all the three cases (hint: recursion is a possibility):

function parseAssignment() {
 var token, expr;

 expr = parseAdditive();

 if (typeof expr !== 'undefined' && expr.Identifier) {
 token = lexer.peek();
 if (matchOp(token, '=')) {
 lexer.next();
 return {
 'Assignment': {
 name: expr,
 value: parseAssignment()
 }
 };
 }
 return expr;
 }

 return expr;
}

The function parseAdditive processes both addition and subtraction—that is, it creates

a binary operator node. There will be two child nodes, the left and right ones. They

represent the two subexpressions, further handled by parseMultiplicative, to be

added or subtracted:

function parseAdditive() {
 var expr, token;

 expr = parseMultiplicative();
 token = lexer.peek();
 while (matchOp(token, '+') || matchOp(token, '-')) {
 token = lexer.next();
 expr = {
 'Binary': {
 operator: token.value,
 left: expr,
 right: parseMultiplicative()
 }
 }
 token = lexer.peek();
 };

CHAPTER SEVEN: MATH EXPRESSION PARSER AND EVALUATOR68

 return expr;
}

The same logic follows for parseMultiplicative. It handles both multiplication and

division:

function parseMultiplicative() {
 var expr, token;

 expr = parseUnary();
 token = lexer.peek();
 while (matchOp(token, '*') || matchOp(token, '/')) {
 token = lexer.next();
 expr = {
 'Binary': {
 operator: token.value,
 left: expr,
 right: parseUnary()
 }
 };
 token = lexer.peek();
 }
 return expr;
}

Before we check the details of parseUnary, you may wonder why parseAdditive is

called first, and then parseMultiplicative. This is done in order to satisfy the operator

precedence requirement. Consider the expression 2 + 4 * 10, which actually evaluates

to 42 (multiply 4 by 10, then add 2) rather than 60 (add 2 to 4, then multiply by 10).

This is possible only if the topmost node in the syntax tree is the binary operator +,

which has two child nodes: the left one is just the number 2, and the right one is

actually another binary operator, *. The latter holds two numbers as the corresponding

child nodes, 4 and 10.

To handle a negation, like -42, we use the concept of unary operation. In the syntax

tree, this is represented by a unary operator node and it has only one child node

(hence the name). While negation is one form of unary operation, we also need to

take into account the unary positive operator, as in +42. Thanks to the function’s recur-

sive nature, expressions like ----42 or even -+-+42 can be handled without any prob-

lem as well. The code to handle the unary operation is as simple as the following:

function parseUnary() {
 var token, expr;

 token = lexer.peek();
 if (matchOp(token, '-') || matchOp(token, '+')) {
 token = lexer.next();
 expr = parseUnary();
 return {
 'Unary': {

SYNTAX PARSER AND SYNTAX TREE 69

 operator: token.value,
 expression: expr
 }
 };
 }

 return parsePrimary();
}

Now here comes one of the most important functions of all: parsePrimary. First of all,

let’s consider the four possible forms of primary node:

• An identifier (basically referring to a variable in this context)--for example, x

• A number—for example, 3.14159

• A function call—for example, sin(0)

• Another expression enclosed in brackets—for example, (4 + 5)

Fortunately, deciding whether the incoming tokens will form one of these possibilities

is rather easy, as we just need to examine the token type. There is only ambiguity

between an identifier and a function call, which can be solved if we peek at the next

token (i.e., whether it is an open bracket or not). Without further ado, here is the

code:

function parsePrimary() {
 var token, expr;

 token = lexer.peek();

 if (token.type === T.Identifier) {
 token = lexer.next();
 if (matchOp(lexer.peek(), '(')) {
 return parseFunctionCall(token.value);
 } else {
 return {
 'Identifier': token.value
 };
 }
 }

 if (token.type === T.Number) {
 token = lexer.next();
 return {
 'Number': token.value
 };
 }

 if (matchOp(token, '(')) {
 lexer.next();
 expr = parseAssignment();

CHAPTER SEVEN: MATH EXPRESSION PARSER AND EVALUATOR70

 token = lexer.next();
 if (!matchOp(token, ')')) {
 throw new SyntaxError('Expecting)');
 }
 return {
 'Expression': expr
 };
 }

 throw new SyntaxError('Parse error, can not process token ' + token.value);
}

Now the remaining part is parseFunctionCall. If we see an example of a function call

like sin(0), it basically consists of a function name, open bracket, function argument,

and close bracket. It is important to realize that there can be more than one argument

(foo(1, 2, 3)) or no argument at all (random()), depending on the function itself. For

simplicity, we split out the handling of the function argument to parseArgumentList.

Here are both functions for your pleasure:

function parseArgumentList() {
 var token, expr, args = [];

 while (true) {
 expr = parseExpression();
 if (typeof expr === 'undefined') {
 break;
 }
 args.push(expr);
 token = lexer.peek();
 if (!matchOp(token, ',')) {
 break;
 }
 lexer.next();
 }

 return args;
}

function parseFunctionCall(name) {
 var token, args = [];

 token = lexer.next();
 if (!matchOp(token, '(')) {
 throw new SyntaxError('Expecting (in a function call "' + name + '"');
 }

 token = lexer.peek();
 if (!matchOp(token, ')')) {
 args = parseArgumentList();
 }

 token = lexer.next();

SYNTAX PARSER AND SYNTAX TREE 71

 if (!matchOp(token, ')')) {
 throw new SyntaxError('Expecting) in a function call "' + name + '"');
 }

 return {
 'FunctionCall' : {
 'name': name,
 'args': args
 }
 };
}

Voilà! That’s all our parser code. When combined properly into a functional object, it is

just about 200 lines of code, supporting various math operations with proper prece-

dences, brackets, variables, and function calls.

Tree Walker and Expression Evaluator
Once a syntax tree is obtained, evaluating the expression associated with it is surpris-

ingly easy. It is simply a matter of walking the tree, from the topmost syntax node

through all children, and executing a specific instruction related to the type of each

syntax node. For example, a binary operator node means that we need to add (or sub-

tract, or multiply, or divide) the two values obtained from each child node. Looking at

the previous example:

x = -6 * 7

the generated syntax tree as a JavaScript object is:

{
 "Expression": {
 "Assignment": {
 "name": {
 "Identifier": "x"
 },
 "value": {
 "Binary": {
 "operator": "*",
 "left": {
 "Unary": {
 "operator": "-",
 "expression": {
 "Number": "6"
 }
 }
 },
 "right": {
 "Number": "7"
 }
 }
 }

CHAPTER SEVEN: MATH EXPRESSION PARSER AND EVALUATOR72

 }
 }
}

The code to interpret this JSON-formatted tree is quite straightforward. Let’s start from

the leaf, such as a number (we assume from here on that node points to the current

node we need to evaluate):

if (node.hasOwnProperty('Number')) {
 return parseFloat(node.Number);
}

For a unary operation node, we need to evaluate the child node first and then apply

the unary operation, either + or -:

if (node.hasOwnProperty('Unary')) {
 node = node.Unary;
 expr = exec(node.expression);
 switch (node.operator) {
 case '+':
 return expr;
 case '-':
 return -expr;
 default:
 throw new SyntaxError('Unknown operator ' + node.operator);
 }
}

A binary node is handled similarly—we just need to process both child nodes for the

left and right side of the operator:

if (node.hasOwnProperty('Binary')) {
 node = node.Binary;
 left = exec(node.left);
 right = exec(node.right);
 switch (node.operator) {
 case '+':
 return left + right;
 case '-':
 return left - right;
 case '*':
 return left * right;
 case '/':
 return left / right;
 default:
 throw new SyntaxError('Unknown operator ' + node.operator);
 }
}

Before we continue to tackle variable assignment, let’s take a step back and consider

the concept of evaluation context. For this purpose, we define the context as an object

that holds the variables, constants, and function definitions. When we evaluate an

TREE WALKER AND EXPRESSION EVALUATOR 73

expression, we also need to pass a context so that the evaluator knows where to fetch

the value of a variable, store a value to a variable, and invoke a certain function.

Keeping the context as a different object promotes the separation of logic: the inter-

preter knows nothing about the context, and the context does not really care how the

interpreter works.

In our evaluator, the simplest possible context is:

context = {
 Constants: {},
 Functions: {},
 Variables: {}
}

A slightly more useful context (that can be used as a default) is:

context = {

 Constants: {
 pi: 3.1415926535897932384,
 phi: 1.6180339887498948482
 },

 Functions: {
 abs: Math.abs,
 acos: Math.acos,
 asin: Math.asin,
 atan: Math.atan,
 ceil: Math.ceil,
 cos: Math.cos,
 exp: Math.exp,
 floor: Math.floor,
 ln: Math.ln,
 random: Math.random,
 sin: Math.sin,
 sqrt: Math.sqrt,
 tan: Math.tan
 },

 Variables: {}
}

We still do not have any variables (because the context is freshly created), but there

are two common constants ready to use. The difference between a constant and a vari-

able in this example is very simple and obvious: you cannot change a constant or cre-

ate a new one, but you can do both with a variable.

With the context and its variables and constants ready, now we can handle identifier

lookup (e.g., in an expression like x + 2):

CHAPTER SEVEN: MATH EXPRESSION PARSER AND EVALUATOR74

if (node.hasOwnProperty('Identifier')) {
 if (context.Constants.hasOwnProperty(node.Identifier)) {
 return context.Constants[node.Identifier];
 }
 if (context.Variables.hasOwnProperty(node.Identifier)) {
 return context.Variables[node.Identifier];
 }
 throw new SyntaxError('Unknown identifier');
}

Assignment (like x = 3) works the other way around, though we have to ensure that

we process only variable assignment and not constant override:

if (node.hasOwnProperty('Assignment')) {
 right = exec(node.Assignment.value);
 context.Variables[node.Assignment.name.Identifier] = right;
 return right;
}

Finally, the remaining function node is handled as follows. Basically, the function

arguments (if any) are prepared in an array and then passed to the actual function.

Note that in our default context, we simply wire a bunch of functions to the methods

of the built-in Math object:

if (node.hasOwnProperty('FunctionCall')) {
 expr = node.FunctionCall;
 if (context.Functions.hasOwnProperty(expr.name)) {
 args = [];
 for (i = 0; i < expr.args.length; i += 1) {
 args.push(exec(expr.args[i]));
 }
 return context.Functions[expr.name].apply(null, args);
 }
 throw new SyntaxError('Unknown function ' + expr.name);
}

What if we want to have a custom function, maybe because it is not supported by the

Math object? It can’t be easier: all we have to do is define the function for the context.

As an example, let’s implement sum, which adds all the numbers passed in the argu-

ment. Since we’re dealing with a function that may have a variable number of argu-

ments, we use a special arguments object instead of named parameters:

context.Functions.sum = function () {
 var i, total = 0;
 for (i = 0; i < arguments.length; i += 1) {
 total += arguments[i];
 }
 return total;
}

TREE WALKER AND EXPRESSION EVALUATOR 75

Final Words
The simple example presented here can be easily extended or modified for a wide

range of domain-specific languages. For a simpler language, the lexer can be imple-

mented as a collection of regular expressions. Alternatively, a simple state machine is

often suitable in many cases. On the other hand, a language with a complex grammar

may require a deeper recursive-descent parsing. In some cases, it is more convenient

to handle some of the recursive aspect by using a stack-based shift and reduce.

Some languages are known to have peculiar cases that complicate both the lexer and

the parser. For example, doing lexical analysis on JavaScript code is notoriously diffi-

cult because the symbol / is ambiguous: it can signify either a division operator or the

beginning of a regular expression. In addition to that, the famous automatic semicolon

insertion feature requires various parts of the parser to take that into account wher-

ever it is mandated by the language specification. It is instructive to learn how various

parsers handle these types of edge cases.

Happy parsing!

CHAPTER SEVEN: MATH EXPRESSION PARSER AND EVALUATOR76

C H A P T E R E I G H T

Evolution
Rebecca Murphey

In March 2009, Paul Irish published a blog post, “Markup-based Unobtrusive Compre-

hensive DOM-ready Execution,” describing a solution to a pesky problem familiar to

every newcomer to the world of client-side JavaScript at the time: executing only the

code that was required for a given page.

Back in 2009, it was common for client-side JavaScript developers to just put all of

their code—for all of their pages—inside one giant $(document).ready() callback; some

were a bit cleverer, and tested for the presence of an element with a certain ID in

order to determine the page they were on. A newcomer to such code struggled might-

ily to mentally parse hundreds of lines where function declarations, anonymous func-

tions, and long chains of jQuery methods intermingled.

The method proposed in this blog post was simple: put a class on the <body> element,

and then use a simple helper function to look up a corresponding initialization method

in an application object:

UTIL = {
 loadEvents : function () {
 var bodyId = document.body.id;

 $.each(document.body.className.split(/\s+/), function (i, className) {
 UTIL.fire(className);
 UTIL.fire(className,bodyId);
 });
 },

 fire : function (func, funcname, args) {
 var namespace = APP; // indicate your obj literal namespace here

 funcname = (funcname === undefined) ? 'init' : funcname;

77

http://bit.ly/dom-based_routing
http://bit.ly/dom-based_routing

 if (
 func !== '' &&
 namespace[func] &&
 typeof namespace[func][funcname] == 'function'
) {
 namespace[func][funcname](args);
 }
 }
};

$(document).ready(UTIL.loadEvents);

The code, written by a self-taught and largely unknown frontend developer with a

degree in technical communications, was mediocre. The idea, though, was transforma-

tive, especially for a community with lots of similarly self-taught developers: if we

could organize our code somehow, maybe writing ever-bigger JavaScript applications

didn’t have to be such a messy affair.

A few months after Paul wrote his post, I published “Using Objects to Organize Your

Code” and gave a talk on the same topic at the 2009 jQuery Conference. My post sug-

gested having one object per “feature” (a piece of functionality on a page), and encap-

sulating all of the functionality of that feature in methods on that object. For example,

a list of email messages might be one feature; a list of mailboxes might be another.

I know for a fact that I had only the most cursory understanding of .call()

and .apply() at the time, and though $.proxy didn’t exist yet, I’m not sure I’d have

fully understood it if it did. John Resig had posted his micro-templating snippet a year

before, and I’d read JavaScript: The Good Parts, yet the post contained no consideration

of client-side templating or being able to create instances of these feature objects.

“If I tried to think of the simplest JavaScript thing I could write a post about,” my

friend Alex Sexton said to me recently (in the nicest way possible, because he is Alex),

“I’d still never come up with something as simple as that.”

And yet this too seemed to have a transformative effect in the still largely self-taught

JavaScript community of the time. Not only could we break our code down per page;

we could also break it down per component, and those components could be clearly rep-

resented by distinct pieces of code.

We could even…not to get crazy here, but…we could put those pieces of code in sepa-

rate files, using a global object as a namespace, right? Granted, loading all of those sep-

arate files as <script> tags on our page during development would be a pain, and

every time we added a new file we’d have to update our list of <script> tags, but our

server-side code could probably help us out there. Really, though, it sure would be

nice if JavaScript had a module system for asynchronously loading these features,

wouldn’t it? Especially because we’d need to concatenate all of these files for

production.

CHAPTER EIGHT: EVOLUTION78

http://bit.ly/using_objects
http://bit.ly/using_objects
http://bit.ly/micro-templating
http://shop.oreilly.com/product/9780596517748.do

1 Sammy.js included a router years before Backbone, but its more opinionated approach meant that
it never gained widespread adoption.

2 Is it good that lots of projects are building their own frameworks on top of a 6.4 KB library? For
now I think yes; we are still learning what we need from frameworks, and we’re a long way from
a one-size-fits-all answer (or even a three-sizes-fit-most answer). I’m hopeful that this will change
over the next 12–18 months, especially considering everything that has transpired in the few years
covered by this chapter.

Backbone
Dojo changed everything for me; Backbone changed everything for everyone else.

While there are plenty of criticisms to be made of Backbone, to be sure, the 619 unmi-

nified lines that made up version 0.1.0 once again transformed the way that we

thought about JavaScript application development. It gave us easy-to-understand

building blocks without trying to provide answers to every problem under the sun—

perhaps Dojo’s major failing.

Backbone’s tiny file size ensured there would be few accusations of bloat; its utter sim-

plicity and the way it embraced jQuery paradigms made it an easy leap for moderately

skilled jQuery developers. Its unopinionated approach meant it was as easy to sprinkle

some Backbone onto an existing app as it was to start a new Backbone app from

scratch (and equally easy to get yourself into trouble if your own opinions turned out

to be bad). Its inclusion of a router,1 a mainstay of server-side frameworks like Rails

and Django—well, let’s just say it took Paul’s “Markup-based Unobtrusive Comprehen-

sive DOM-ready Execution” to a whole new level. It also, interestingly, provided a

gateway for traditionally server-side developers who had long been turned off by the

tangled mess of “get some elements and do something with them.”

Perhaps the happiest thing of all for me, though, was that Backbone made it normal

and easy to new up an instance of a View, largely throwing the misguided jQuery plug-

in paradigm out the window. Sure, you had to bring your own templating (and ren-

dering) solution to the Backbone.View party, but Underscore was there to help by

default; composition wasn’t as straightforward as in Dojo, but it wasn’t hard either.

Adding things like attach points and lifecycle methods and memory-safe teardown was

straightforward enough, too. For those ready to make the leap, Backbone became

something of a framework-building library. Indeed, on my current project, Backbone

serves as the scaffolding upon which we’ve built a much more elaborate client-side

application development framework, without having to labor over the basics.2

New Possibilities
Love it or otherwise—and my opinions are definitely mixed—the arrival of Backbone

left no doubt about two things: one, JavaScript’s days as a toy language were firmly

BACKBONE 79

https://dojotoolkit.org/
http://backbonejs.org/
http://underscorejs.org/

behind it; and two, it was time for JavaScript developers at all levels to understand and

embrace the client-side JavaScript app.

That impossible situation of arbitrary components interacting in arbitrary ways? That’s

actually been a core requirement of the two major projects I’ve worked on in the last

couple of years.

At Toura, we were creating configuration-driven, offline-capable PhoneGap apps. Cus-

tomers would use a content management system to design their application, and the

content management system would spit out a JSON config spelling out what was on

each page. A page might include a photo gallery, a caption area, a text area, the ability

to favorite things, or any number of other features. Every application ran the same

JavaScript code; that code would, at runtime, read the config file to figure out how to

set itself up, and what to show users as they moved through the application.

Our solution there was what I dubbed a “capability”; a page could have any number of

capabilities, and each capability dictated how a set of components would interact with

one another. The controller for a page was essentially generated dynamically based on

the capabilities that the config said the page should have; the code within a capability

handled passing messages from one component to another.

At Bazaarvoice, the situation is similar: our customers use a configuration tool to

decide how they want their application to behave and which features should be

enabled, and that configuration tool generates a JSON config. We use that config to

figure out exactly what to put in the built JavaScript for that customer—a big

improvement over the approach we took at Toura—and we also use that config to

wire up the relationship between components at runtime, using what we call “out-

lets.” A component’s configuration might look something like this:

"reviewSummary" : {
 "features" : {
 // an object describing the features that are enabled for the component
 },
 "outlets" : {
 "showreviews" : [{
 "component" : "reviewContentList",
 "event" : "scrolltocontent"
 }],
 "showquestions" : [{
 "component" : "questionContentList",
 "event" : "scrolltocontent"
 }],
 "filtercontent" : [{
 "component" : "reviewContentList",
 "event" : "filtercontent"
 }]
 }
}

CHAPTER EIGHT: EVOLUTION80

At runtime, we read the configuration for the component and wire up its relationship

with the other components; for this example, we initialize an Outlet so that when the

reviewSummary component triggers its showReviews method, we ensure the scrolltocon

tent method is triggered on the reviewContentList:

var Outlet = function (options) {
 this.targetComponent = options.targetComponent;
 this.originatingComponent = options.originatingComponent;
 this.target = options.target;
 this.key = options.key;

 var event = this.event = 'outlet:' + this.key;

 if (this.target.event) {
 this.originatingComponent.on(event, this._eventHandler());
 }
};

Outlet.prototype._eventHandler = function () {
 var targetComponent = this.targetComponent;

 if (!targetComponent) {
 return;
 }

 return function () {
 var args = [targetComponent.scopeEvent(target.event)].concat(
 [].slice.call(arguments)
);

 targetComponent.trigger.apply(targetComponent, args);

 return;
 };
};

This could be considered a variation on the dreaded direct communication between

components, but realistically, it’s more of a mini-controller that’s created on the fly at

runtime, brokering communication between components without either component

requiring direct knowledge of the other.

I’m not just mentioning this because it’s what I’ve been working on of late; I think it’s

the next thing we’ll hash out as a JavaScript community, once we get done with or

bored of fighting about which framework is The Best.

NEW POSSIBILITIES 81

Imagine a page where you use a calendar component written by Jenn, and an invita-

tion list component written by Adam, and a DSL with which you can dictate that

when an item in the invitation list triggers its accept event, the calendar’s schedule

method gets called with data about the invitation—and neither component needs

direct knowledge of the other. Web components, inspired directly by Dojo’s templated

widgets of yore, are a baby step in that direction. I hope we take more steps, and big-

ger ones, and soon.

CHAPTER EIGHT: EVOLUTION82

http://bit.ly/dwc-w3c-webcomp

C H A P T E R N I N E

Error Handling
Nicholas Zakas

If you’re like me, you probably don’t think much about how you’ll handle errors until

they start popping up on a regular basis. Programmers tend to write code as if there

will never be any errors, and then spend the rest of their time tracking down errors

they’ve caused. This inclination is totally natural. No one starts out on a project think-

ing about all the ways they will do something wrong. You start out believing you

know the right way to do it and then are unpleasantly surprised as errors start to pop

up.

But what if you changed the thought process? Instead of assuming that errors won’t

happen, assume that they will. How would that change your approach to writing

code? That’s precisely what this chapter is about: thinking about and planning for the

errors that will inevitably occur in your JavaScript.

Assume Your Code Will Fail
If an error is possible, someone will make it. The designer must assume that

all possible errors will occur and design so as to minimize the chance of the

error in the first place, or its effects once it gets made.

—Donald A. Norman, The Design of Everyday Things

The first step to good error handling is to accept that your code will fail at some point.

That may be because of improper use, or proper use that you didn’t plan for. Regard-

less, your code will fail at some point in time. Given that, what can you do to make

your code more robust? What are the things you can do, right now, to make your code

easier to deal with when it fails?

83

Throwing Errors
When I was younger, the most befuddling part of programming languages was the

ability to create errors. My first reaction to the throw operator in Java was, “Well, that’s

stupid, why would you ever want to cause an error?” Errors were the enemy to me,

something I sought to avoid, so the ability to cause an error seemed like a useless and

dangerous aspect of the language. I thought it was dumb to include the same operator

in JavaScript, a language that people just didn’t understand in the first place. Now,

with a great deal of experience under my belt, I’m a big fan of throwing my own

errors. When done properly, this can lead to easier debugging and code maintenance.

In programming, an error occurs when something unexpected happens. Maybe the

incorrect value was passed into a function, or a mathematical operation had an invalid

operand. Programming languages define a base set of rules that, when deviated from,

result in errors so that you can fix the code. Debugging would be nearly impossible if

errors weren’t thrown and reported back to you. If everything failed silently, it would

take you a long time to notice that there was an issue in the first place, let alone to

isolate and fix it. Errors are a developer’s friends, not enemies.

The problem with errors is that they tend to pop up in unexpected places and at unex-

pected times. To make matters worse, the default error messages are usually too terse

to really explain what’s gone wrong. JavaScript error messages are notoriously unin-

formative and cryptic (especially in old versions of Internet Explorer), which only

compounds the problem. Imagine if an error popped up with a message that said,

“This function failed because this happened.” Instantly, your debugging task would

become easier. This is the advantage of throwing your own errors.

It helps to think of errors as built-in failure cases. It’s always easier to plan for a failure

at a particular point in code than it is to anticipate failure everywhere. This is a very

common practice in product design, not just in code. Cars are built with crumple

zones, areas of the frame that are designed to collapse in a predictable way when

impacted. Knowing how the frame will react in a crash—which parts will fail—allows

the manufacturers to ensure passenger safety. Your code can be constructed in the

same way.

You can throw an error by using the throw operator and providing an object to throw.

Any type of object can be thrown, but an Error object is the most typical to use:

throw new Error("Something bad happened.")

When you throw an error in this way, and the error isn’t caught via a try-catch state-

ment, the browser will display the error text in its typical way. For Internet Explorer,

this means a little icon appears in the lower-left corner of the browser window, and a

dialog with the error text is displayed when that icon is double-clicked; Firefox will

show the error in the Web Console; Safari, Chrome, and Opera output the error into

CHAPTER NINE: ERROR HANDLING84

the Web Inspector. In other words, it’s treated the same way as an error that you

didn’t throw.

The difference is that you get to provide the exact text to be displayed by the browser.

Instead of just line and column numbers, you can include any information that you’ll

need to successfully debug the issue. I recommend that you always include the func-

tion name in the error message, as well as the reason why the function failed. Con-

sider the following function:

function addClass(element, className){
 element.className += " " + className;
}

This function’s purpose is to add a new CSS class to the given element (a very com-

mon method in JavaScript libraries). But what happens if element is null? You’ll get a

cryptic error message such as “object expected.” Then, you’ll need to look at the exe-

cution stack (if your browser supports it) to actually locate the source of the problem.

Debugging becomes much easier if you throw your own error:

function addClass(element, className){
 if (element !== null && typeof element.className === "string"){
 element.className += " " + className;
 } else {
 throw new Error("addClass(): First argument must be a DOM element.");
 }
}

Discussions about accurately detecting whether an object is a DOM element aside, this

method now provides better messaging when it fails due to an invalid element argu-

ment. Seeing such a verbose message in your error console immediately leads you to

the source of the problem. I like to think of throwing errors as leaving Post-it notes for

myself as to why something has failed.

As a bonus, JavaScript engines add a stack property to any Error object that is thrown.

The stack property is a string containing a formatted stack trace leading up to the error

being thrown. Here’s an example value for stack:

Error
 at foo (test.js:2:24)
 at test.js:2:7

While each JavaScript engine has a slightly different representation of stack informa-

tion in the stack property, the information available inside is roughly the same: the

type of error, the filename in which the error originated, line and column numbers,

and function names. This information is very useful should you decide to log your

JavaScript errors for later investigation.

ASSUME YOUR CODE WILL FAIL 85

When to Throw Errors
Understanding how to throw errors is just one part of the equation; understanding

when to throw errors is the other. Since JavaScript doesn’t have type or argument

checking, a lot of developers incorrectly assume that they should implement that for

every function. Doing so is impractical and can adversely affect the overall script’s per-

formance. The key is to identify parts of the code that are likely to fail in a particular

way and throw errors only there. In short, throw errors only where errors will already

occur.

If a function is only ever going to be called by known entities, error checking is proba-

bly not necessary (this is the case with private functions); if you cannot identify all the

places where a function will be called ahead of time, then you’ll likely need some

error checking and will be more likely to benefit from throwing your own errors. The

best place for throwing errors is in utility functions: those functions that are a general

part of the scripting environment and may be used in any number of places. This is

precisely the case with JavaScript libraries.

All JavaScript libraries should throw errors from their public interfaces for known

error conditions. YUI/jQuery/Dojo/etc. can’t possibly anticipate when and where

you’ll be calling their functions. It’s their job to tell you when you’re doing stupid

things. Why? Because you shouldn’t have to debug into their code to figure out what

went wrong. The call stack for an error should terminate in the library’s interface, no

deeper. There’s nothing worse than seeing an error that’s 12 functions deep into a

library; library developers have a responsibility to prevent this from happening.

This also goes for private JavaScript libraries. Many web applications have their own

proprietary JavaScript libraries, built either with or in lieu of the well-known public

options. The goal of libraries is to make developers’ lives easier, and they do so by pro-

viding an abstraction away from the dirty implementation details. Throwing errors

helps to keep those dirty implementation details hidden safely away from developers.

Types of Errors
ECMA-262 specifies seven error object types. These are used by the JavaScript engine

when various error conditions occur and can also be manually created:

Error

Base type for all errors. Never actually thrown by the engine.

EvalError

Thrown when an error occurs during execution of code via eval().

CHAPTER NINE: ERROR HANDLING86

RangeError

Thrown when a number is outside the bounds of its range—for example, trying to

create an array with –20 items (new Array(-20)). These occur rarely during normal

execution.

ReferenceError

Thrown when an object is expected but not available—for instance, trying to call a

method on a null reference.

SyntaxError

Thrown when the code passed into eval() has a syntax error.

TypeError

Thrown when a variable is of an unexpected type—for example, new 10 or "prop"

in true.

URIError

Thrown when an incorrectly formatted URI string is passed into encodeURI, enco

deURIComponent, decodeURI, or decodeURIComponent.

You can create and throw each of these error types at any time in JavaScript by invok-

ing the constructor of the same name, such as:

throw new TypeError("Unexpected type.");

throw new ReferenceError("Bad reference.");

throw new RangeError("That's out of range.");

The error types thrown most frequently by developers are Error, RangeError, Referen

ceError, and TypeError. The other error types are very specific to use cases inside of the

JavaScript engine, so it doesn’t make sense to use them in your code (even though

there’s nothing stopping you).

All error types inherit from Error, so checking the type with instanceof Error doesn’t

give you any useful information. By checking for the more specific error types, you get

more robust error handling:

var error = new TypeError("Not my type.");

console.log(error instanceof Error); // true
console.log(error instanceof TypeError); // true

Of course, if you only ever throw errors using the built-in JavaScript error types, it

becomes difficult to distinguish between errors thrown by the engine and errors you

threw intentionally. That’s where custom errors come in.

ASSUME YOUR CODE WILL FAIL 87

Custom Errors
In large applications, it’s useful to create your own error type. Using a custom error

type allows you to easily tell the difference between an error that was thrown inten-

tionally and an unexpected error that the browser throws. You can create a custom

error type easily by inheriting from Error and following a simple pattern:

function MyError(message){
 this.message = message;
}

MyError.prototype = Object.create(Error.prototype);

There are two important parts of this code: 1) the message property, which is necessary

for browsers to know the actual error string, and 2) setting the prototype to an

instance of Error, which identifies the object as an error to the JavaScript engine. Now,

you can throw an instance of CustomError and have the browser respond as if it were a

native error:

throw new MyError("Something really bad happened!");

If you want to throw a lot of different types of error but still want to distinguish

between the errors you throw and the native errors, then you can use your custom

error as a base for other custom error types, such as:

function MyError(message)
 this.message = message;
}

MyError.prototype = Object.create(Error.prototype);

function MissingArgumentError(message) {
 this.message = message;
}

MissingArgumentError.prototype = Object.create(MyError.prototype);

function NotFunnyError(message) {
 this.message = message;
}

NotFunnyError.prototype = Object.create(MyError.prototype);

In this example, MissingArgumentError and NotFunnyError both inherit from MyError

(which, in turn, inherits from Error). Due to this inheritance, you can easily separate

out error handling using an if statement:

if (error instanceof MyError) {
 // handle MissingArgumentError and NotFunnyError
} else {

CHAPTER NINE: ERROR HANDLING88

 // handle native error types
}

Distinguishing between the errors you threw and the errors thrown by the JavaScript

engine is important, because you frequently want to treat them differently. As dis-

cussed earlier, throwing your own error indicates that this condition is a known possi-

bility (unlike native errors, which are frequently unexpected).

Handling Errors
Errors should be easy to detect, they should have minimal consequences, and,

if possible, their effects should be reversible.

—Donald A. Norman, The Design of Everyday Things

ECMA-262 defines a try-catch-finally construct similar to those found in other lan-

guages. The basic idea is to place code that might throw an error in the try clause and

code to handle that error in the catch clause. The optional finally clause runs in

either case. The basic syntax is:

try {
 // some code that might throw an error
} catch(error) {
 // handle an error that was thrown
} finally {
 // optionally run code regardless of error
}

When an error occurs inside of the try clause, execution stops and is resumed inside of

the catch clause. The thrown error is passed into the catch clause as an additional vari-

able. This happens regardless of the error type, and it’s up to you to look at the error

object to determine what type of error occurred and how to respond appropriately. For

example:

try {
 functionThatMightThrowError();
} catch(error) {
 if (error instanceof MyError) {
 // handle custom error
 } else {
 // handle native error
 }
}

It’s also possible to omit the catch clause completely and just use a finally clause, such

as:

try {
 functionThatMightThrowError();
} finally {

HANDLING ERRORS 89

 // do whatever you want
}

In this case, an error will cause execution to stop inside of the try clause and go imme-

diately into the finally clause. If an error doesn’t occur, then all of the statements

inside of the try clause are executed, and then the statements in the finally clause are

executed. In either case, you are saying that there is no special functionality when an

error occurs.

Realistically, you typically want a catch clause along with try, but you may also want

finally. The finally clause runs no matter what, and that is true even if the try or

catch clauses contain a return statement. Consider the following two functions:

function doSomething() {
 try {
 functionThatMightThrowError();
 return "success";
 } catch(error) {
 return "failure";
 } finally {
 return "finally";
 }
}

function doSomethingElse() {
 try {
 functionThatMightThrowError();
 return "success";
 } catch(error) {
 return "failure";
 }

 return "finally";
}

var result1 = doSomething();
var result2 = doSomethingElse();

The functions doSomething and doSomethingElse contain the same code, except that the

former uses a finally clause and the latter does not. The difference in the behavior of

the two functions is striking. The value of result1 is always "finally", regardless of

whether an error occurs. That’s because the return statement is skipped over in the try

and catch clauses in favor of the one in the finally clause. The value of result2, on

the other hand, will never be "finally". That’s because in the case of no error, the

return statement in the try clause is used, while the return statement in the catch

clause is used when an error happens. Those are the only two options in the function,

and so the last return statement outside of the try-catch is not reachable. The value of

result2 will be "success" if there is no error and "failure" if there is an error.

CHAPTER NINE: ERROR HANDLING90

There are some downsides to using try-catch-finally. First, you must know ahead of

time whether or not some piece of code could potentially throw an error. While this

may be easy to determine in some cases, it may not be so easy in other cases. Using

try-catch-finally effectively, therefore, requires some upfront planning. Second,

there is a performance hit for wrapping code in a try-catch-finally even when an

error doesn’t occur. As with many performance tips in JavaScript, however, this

becomes important only if you find code that is running millions of times in a row—

for code that is run a nominal number of times, the difference in execution time will

not be apparent.

Global Error Handling in Browsers
In a web browser, all uncaught errors bubble up to a top-level event handler called

window.onerror. This event handler receives four arguments: the error message, the

URL that raised the error, a line number, and a column number. As an added feature,

returning true from window.onerror tells the browser that the error was handled and

there’s no need to show it to the user. For example:

window.onerror = function(message, url, line, col) {
 logError(message, url, line, col);
 return true;
};

In this example, the error message is being logged and true is returned to indicate that

the error has been handled properly.

In late 2013, the HTML5 specification was changed to specify a fifth argument to win

dow.onerror, which is the actual error object. Prior to that point, there was no access to

the error object inside of window.onerror. At the time of writing only Chrome and Fire-

fox have implemented this change, but it should be making its way into other brows-

ers. With the error object being passed in, you are now free to look at the additional

information attached to it:

window.onerror = function(message, url, line, col, error) {
 logError(message, url, line, col, error.stack);
 return true;
};

This example also extracts the stack information from the error that was thrown.

The window.onerror event handler should be used in web applications to ensure that

you always know when any JavaScript error occurs. Since it’s unlikely that you’ll be

aware of all possible combinations that could cause a JavaScript error in your applica-

tion, using this event handler gives you a safe way to monitor errors without being

overly intrusive to developers.

HANDLING ERRORS 91

Global Error Handling in Node.js

Node.js has a similar mechanism for catching errors globally. The process object fires

an event called uncaughtException whenever a JavaScript error occurs that is not han-

dled in some other way. You can listen for the event and receive the JavaScript error

object using code such as:

process.on("uncaughtException", function(err) {
 log(err);
});

If an error is handled by this event handler, then the Node.js process will not automat-

ically exit (any uncaught exceptions will cause such an exit). Some suggest that you

should always call process.exit inside of this event handler; however, whether or not

you choose to do so depends largely on your application and how easy it is to recover

from such an error without affecting the overall state of the application. You should

use your best judgment in determining the correct course of action when an uncaught

error occurs, whether that be to log the error, exit the process, restart the process, or

something completely different.

Node.js also has a feature called domains that allows you to set up an error handler for

uncaught exceptions that occur during the execution of specific code. To do so, use

code such as:

var d = require("domain").create();
d.on("error", function(err){
 log(err);
});

d.run(function(){
 /* some code that might throw an error */
});

The basic idea of this example is that you can place some code that might cause an

error within the call to run on a domain. Then, any errors that occur within that code

will cause the error event to fire on that domain. You can listen for the error event

and respond appropriately to the error.

Domains are a fairly new concept in Node.js and so may change considerably in the

future. Best practices around domain usage are still being developed and discussed, so

make sure you take the time to explore whether domains fit your error handling strat-

egy before committing to their use.

CHAPTER NINE: ERROR HANDLING92

Summary
Errors and error handling aren’t topics that developers love to talk about, but ulti-

mately the job comes down to finding and eliminating sources of error. The first step

in the process is always to assume that your code will fail and plan to deal with that

failure. Figure out how you will know when a particular type of error has occurred

and what you should do to resolve it (if anything).

Throwing your own errors can be a powerful tool in this regard. When you throw an

error, you can specify the exact information that you need to track down its source.

Creating a custom error type as a base allows you to easily tell the difference between

a JavaScript error thrown by the engine and one thrown by you (or your teammates).

You can then use constructs like try-catch-finally to monitor for errors.

In larger applications, you should also listen for uncaught exceptions. Both browsers

and Node.js allow you to listen for these exceptions in one location, allowing you to

log or otherwise handle the errors as they occur.

Remember, most errors are not appropriate to be shown to your users, so be sure to

have user-friendly error messages (or no error messages at all, if you can recover

easily).

SUMMARY 93

C H A P T E R T E N

The Node.js Event Loop
Jonathan Barronville

If you’re using Node.js, chances are that you started tinkering with it after getting tired

of hearing everyone rave about this platform for building fast servers using JavaScript.

You went on the Node.js website and read this: “Node.js uses an event-driven, non-

blocking I/O model that makes it lightweight and efficient, perfect for data-intensive

real-time applications that run across distributed devices.”

Now, if you have experience building event-driven servers, this will already make

enough sense to you. (And this chapter is probably not for you!) However, if you’re

like me, when you read this you probably decided to quit programming, because

here’s a platform for developers and I’m a developer, but I’m too stupid to understand

why I should care!

Okay, maybe that was a little bit of an exaggeration. You didn’t quit programming, and

you’re not stupid for not understanding why you should care about Node.js.

My goal is that, by the end of this chapter, you will be proud to tell the world you

understand how the Node.js event loop works and start receiving your much-deserved

LinkedIn endorsements for “Node.js event loop.”

Event-Driven Programming
At a high level, event-driven programming is when a system expresses its interest in a

particular set of events, provides a way to be alerted when said events happen, and

responds to them using callbacks.

What do these terms mean, though? An event is some change in a system’s state. The

term callback can mean different things depending on the type of system, but in the

95

case of JavaScript, it simply means a closure whose function will be invoked once a

particular event happens.

Under the hood, Node.js uses a native library called libuv for listening to events and

invoking the necessary callbacks. To do this, libraries and frameworks like libuv have

an event loop, which is essentially a loop for handling events that usually runs forever.

To make some of this a little bit more concrete, here’s a snippet of the underlying C++

code (lines 3761–3773 in /src/node.cc) that handles starting and managing Node.js’s

event loop (as of commit 0df5e1c049 of Node.js):

bool more;
do {
 more = uv_run(env->event_loop(), UV_RUN_ONCE);
 if (more == false) {
 EmitBeforeExit(env);

 // Emit `beforeExit` if the loop became alive either after emitting
 // event, or after running some callbacks.
 more = uv_loop_alive(env->event_loop());
 if (uv_run(env->event_loop(), UV_RUN_NOWAIT) != 0)
 more = true;
 }
} while (more == true);

Let’s quickly break down the two parts of this code you should care about right now.

First:

do {...} while(...);

This says to execute everything in the do block and continue to do so until the condi-

tion in while(...) evaluates to false. And second:

more = uv_run(env->event_loop(), UV_RUN_ONCE);

uv_run(...) can be considered to be the most important function in libuv, because it’s

actually what starts and runs the event loop. Without going too deep into the technical

aspects of libuv from a C++ standpoint, all you need to know for now is that this invo-

cation of uv_run returns 0 (which is a “falsy” value in C++) when there are no more

things to do, which would make more be false. If it returns a “truthy” value, more will

be true.

Whoa, a couple of paragraphs into the chapter and I’ve already thrown C++ code at

you! Well, as it turns out, when we talk about Node.js’s event loop, what we’re really

talking about is a libuv loop, so I think it helps to show a little bit of the low-level

implementation. The rest of this chapter will be more high-level, I promise!

CHAPTER TEN: THE NODE.JS EVENT LOOP96

Asynchronous, Nonblocking I/O
All modern operating systems have event notification systems built in. These event

notification systems tend to work differently across platforms. This is one of the main

issues libuv solves. It provides cross-platform high-level abstractions to handle events,

while handling all of the crazy not-so-fun platform differences under the hood.

Often, you’ll hear the words asynchronous and nonblocking being used in discussions

about Node.js and its scalability—but what do they mean, exactly?

Let’s say you’re writing a TCP server. You create a simple loop that accepts and pro-

cesses new connections on every iteration. You then realize you have a problem: every

time your server is handling a connection, it blocks until data is available to be read

from the connection. This is bad, because you can’t process any other connections!

One way to fix this problem is to instead use an operating system hook to request that

the operating system let you know when data is available. This is asynchronous because

when data is available, you’ll be notified by the event notification system, and it’s non-

blocking because your loop will never be blocked from processing other connections.

Although we won’t touch on this, keep in mind that another common model for

building servers is using operating system threads, which usually means creating a thread

for every client/connection. Using operating system threads is not only difficult to

scale, but actually pretty hard to understand and do right.

One of the things I find really cool about asynchronous, nonblocking I/O is how the

model is easy to explain when compared to many real-life examples. The best example

of this, in my opinion, is ordering food at a restaurant. You go to your favorite fast

food restaurant and you get in line. Once it’s your turn, your server takes your order.

Your order goes through and your server gives you a number, so that they can call you

back when your burger is ready. This is an extremely efficient model because the

server can quickly process many orders, whereas the other option would’ve been for

the server to take your order, wait for it to be prepared while other customers wait in

line, and finally move to the next person in line once your burger is ready.

Node.js programs work similarly to the restaurant ordering example. Let’s look at an

example:

'use strict'

var http = require('http')

function serverRequestHandler (serverRequest, serverResponse) {
 serverResponse.writeHead(200, {'content-type': 'text/plain'})
 endServerResponse(serverResponse)
}

function endServerResponse(serverResponse) {

ASYNCHRONOUS, NONBLOCKING I/O 97

 serverResponse.end('Hello, world!\n')
}

var httpServer = http.createServer(serverRequestHandler)

httpServer.listen(3620, '127.0.0.1')

console.log('Server running at http://127.0.0.1:3620.')

Let’s break this example down. First, we import the http model:

var http = require('http')

Next up are the serverRequestHandler and endServerResponse functions:

function serverRequestHandler (serverRequest, serverResponse) {
 serverResponse.writeHead(200, {'content-type': 'text/plain'})
 endServerResponse(serverResponse)
}

function endServerResponse(serverResponse) {
 serverResponse.end('Hello, world!\n')
}

serverRequestHandler is the callback for handling requests to our server. When called,

it will be passed a “request” object and a “response” object. The request object contains

all the necessary data about the current request and provides facilities for accessing

that data. The response object provides facilities for constructing and sending respon-

ses. One interesting thing to note here is that serverRequestHandler calls endServerRes

ponse. This is interesting because when serverRequestHandler is called, it won’t be run-

ning in the same environment it was defined in. endServerResponse shouldn’t be avail-

able, but because of closures in JavaScript, all of the state available to serverRequestHan

dler where it was defined will continue to be available to it no matter where it is

called.

Next, we create a new server and pass in the handler to use for requests. When we

express handler will be cached, and every time a request is sent to our server it will be

pushed onto the queue of callbacks to call:

var httpServer = http.createServer(serverRequestHandler)

Finally, we express our interest to begin accepting connections on the port 3620 and

hostname 127.0.0.1:

httpServer.listen(3620, '127.0.0.1')

This is the most important piece of the code. By expressing this interest, the system

will start watching for requests, triggering the appropriate events when necessary and

invoking the necessary callbacks.

CHAPTER TEN: THE NODE.JS EVENT LOOP98

Concurrency
Node.js is single-threaded. Before I talk about what that means, let’s talk about con-

currency. It seems a lot of folks get the wrong idea about concurrency, assuming that

it’s exactly the same thing as parallelism. The terms are actually related, but they’re

not the same.

Concurrency is when a set of tasks can start, run, and complete in overlapping time

periods. The tasks may never run at the same time, but they could. Parallelism, on the

other hand, is when a set of tasks are running at the same time.

When I say that Node.js is single-threaded, what I mean is that the Node.js event loop is

managing at most one thread at any point in time, which of course means a single call

stack. By that same logic, an important thing to note is that the event loop can only

ever do one thing at once.

So while you’re able to write highly concurrent servers with Node.js, your servers can

process only one request at a time. This is a difficult but important distinction to

understand when thinking about Node.js concurrency.

Let’s use the earlier HTTP server example to understand what I mean by concurrency

here. When a request comes to our server, the “request” event is triggered with the

request data, which causes our request handler to be pushed onto the task queue.

Once the call stack is free and the event loop is free of things to process, our request

handler will be invoked. The server is able to handle many requests concurrently,

because every request is processed quickly and independently without blocking.

Adding Tasks to the Event Loop
So let’s say you want to give the event loop a little bit of work to do. Is there a way to

do that efficiently? Yes!

process.nextTick to the rescue! process.nextTick enables you to provide the Node.js

event loop a callback to invoke immediately in the next iteration, or tick, of the event

loop:

function runCPUIntensiveTask(data) {
 if (data === null) {
 return
 }
 // Do some CPU-intensive work ...
 process.nextTick(function () {
 runCPUIntensiveTask(newData)
 })
}

CONCURRENCY 99

In this example, runCPUIntensiveTask is a function that does something CPU-intensive

recursively. However, rather than simply calling the function recursively, which would

essentially block the event loop, the recursion is handled in the event loop instead.

This allows the event loop to do whatever it has to do, invoke runCPUIntensiveTask, do

anything else it has to do, and repeat the process, without ever being blocked.

Those are the basics. Understanding the Node.js event loop is key to being effective

with Node.js, so I hope I was able to clarify the confusing parts for you!

CHAPTER TEN: THE NODE.JS EVENT LOOP100

C H A P T E R E L E V E N

JavaScript Is…
Sara Chipps

Science is what we understand well enough to explain to a computer. Art is

everything else we do.

—Donald Knuth

I understand there are people in this world who do not like JavaScript. I’ve gotten into

enough late-night battles about CoffeeScript to have heard all the vitriol. I’ve been

generally unmovable about this. I think curly braces are elegant, I think semicolons

are enchanting, and I think duck typing is adorable. I thought writing this chapter

would be a good opportunity to share my favorite things about JavaScript.

JavaScript Is Dynamic
JavaScript takes advantage of virtual machines for just-in-time (JIT) compilation (see

V8, Node.js, and Spider Monkey for some examples). JavaScript makes excellent use

of closures by having variables that exist both on the global level and the functional

level.

Consider this function:

function CheckForPrefix(name){
 var prefix = "Dr.";

 if (name.indexOf(prefix) == -1)
 return function AddPrefix(){
 return prefix + name;
 }
}

101

JavaScript’s closures give us the ability to reference variables defined in the containing

function. In this instance it enables us to keep the separation of concerns while not

repeating ourselves at the same time.

JavaScript has an eval function that allows us to concatenate values and evaluate

them at runtime. eval makes things slower, as it adds a compilation step, so it’s to be

used sparingly; however, it does allow us to create macros, which are another dynamic

language feature.

JavaScript Can Be Static
I feel like JavaScript gives us great luxury with dynamic types, but let’s not get ahead

of ourselves. Recently I have been pushing a lot of C++ because of a project, and just

today I was complaining about types. The person I was talking to said, “I love statically

typed languages because you don’t have to write tests.” Joking about tests aside, static

languages offer a lot of safety around compile time. Many people have written static

wrappers around JavaScript. Type checking with JavaScript is an abstraction—if you

were to write it into your program, it would look something like this:

switch(typeof input) {
 case('number'):
 if(Math.Floor(foo) == foo)
 console.log("This variable is an integer");
 else
 console.log("This variable is a floating point");
 break;
 case('string'):
 console.log("This variable is a string");
 break;
 case('object'):
 if(foo instanceof Array)
 console.log("This variable is an array");
}

There is a page that lives on the CoffeeScript Wiki that has a list of languages and

libraries that compile to JavaScript. At the time I’m writing there are 16 languages and

libraries listed in the statically typed section, including Dart, as Google continues a

static language => JavaScript path. Libraries like asm.js use a compiler that runs before

the JIT to make sure that the library doesn’t interfere with web performance.

JavaScript Is Functional
When I meet developers who say they specialize in Scala, or Haskell, or even F#, my

reaction is always “Wow, that is legit.” Functional languages have a reputation for

attracting brilliant developers who solve difficult problems, like managing millions of

stock market trades and making sure all the tweets get to the other side.

CHAPTER ELEVEN: JAVASCRIPT IS…102

http://bit.ly/coffeescript_wiki

JavaScript is just as legit, though, since it incorporates first-class functions, and that

makes it functional. I love them because they’re like, “Surprise, function!”—you think

they’re variables, but they’re not.

I personally like this new take on a switch function as a cool implementation of a first-

class function (monetary conversions are from the time of writing):

function getLocalTotal(country, price) {
 var currency = {
 'dollar': function(price) {
 return price;
 },
 'pound': function(price) {
 return price * 0.61 // Else
 },
 'peso': function(price) {
 return price * 13.27
 },
 'kroner': function(price) {
 return price * 5.48 }
 };

 if (currency[country.currancy])
 return currency[country.currency](price);
 else
 return currency.dollar(price);
}

JavaScript Does Everything
When I was first introduced to JavaScript, it was a functional language that animated

your website. There were no libraries like jQuery; there was no in-browser debugging;

there were no web servers or desktop applications. When I asked people to share the

coolest thing they had seen powered by JavaScript, my mind was blown. The answers

were everything from a box that analyzes liquid you put in it to a WebGL version of

the game Quake, quadcopters that double as web servers, a library that lets you query

your genome, and, last but not least, the inclusive, innovative and ever-expanding

Node.js community. JavaScript helped me find hardware, which is my latest passion

since JavaScript. I look forward to seeing where it takes us next.

JAVASCRIPT DOES EVERYTHING 103

C H A P T E R T W E L V E

Coding Beyond Logic
Daryl Koopersmith

0. The Basement
“Check it out!” I sat in a beat-up beige armchair in the basement of a college apart-

ment building, staring at a jumble of charts, icons, and code. Two physicists-in-training

beamed down at me. One of them said, “It’s pretty simple. You know what it does,

don’t you?”

I paused, eyebrows raised, scanning the lines back and forth. The code read like a

chalkboard full of high school algebra.

“No,” I shrugged. “You wrote a few loops and built a graph, but I have absolutely no

idea what this code actually does.”

As they explained the graph, I couldn’t stop thinking. Where were the well-named

variables? Where were the comments? Who taught them to code?

1. Quine’s Paradox
William Van Orman Quine was a logician who explored the limits of self-reference

(along with many other philosophical and logical concepts) throughout the 20th cen-

tury. In his essay “The Ways of Paradox,” he explores how indirect self-reference can

be applied to the liar’s paradox (“The following statement is false. The preceding state-

ment is true.”). Aside from reading like a convoluted interview question, Quine’s para-

dox unintentionally laid the foundation for a programming puzzle that has persisted

for decades:

“Yields a falsehood when appended to its own quotation” yields a falsehood

when appended to its own quotation.

105

This sentence specifies a string of nine words and says of this string that if you

put it down twice, with quotation marks around the first of the two occur-

rences, the result is false. But that result is the very sentence that is doing the

telling. The sentence is true if and only if it is false.

The paradox, in turn, was the subject of a conversation between the Tortoise and

Achilles in Gödel, Escher, Bach: an Eternal Golden Braid, written by Douglas Hofstadter in

1979. Within the conversation, the Tortoise coins the verb quine:

Tortoise: It’s very earnest stuff, in my opinion. In fact this operation of preced-

ing some phrase by its quotation is so overwhelmingly important that I think

I’ll give it a name.

Achilles: You will? What name will you dignify that silly operation by?

Tortoise: I believe I’ll call it “to quine a phrase”, to quine a phrase.

Hofstader went on to win a Pulitzer, and sometime in the decade between 1988 and

1998 the conversation inspired the definition of quine (the noun), which was added to

the Jargon File, a comprehensive guide to programmer’s slang:

quine: /kwi:n/, n. A program that generates a copy of its own source text as

its complete output. Devising the shortest possible quine in some given pro-

gramming language is a common hackish amusement.

In time, programmer Gary P. Thompson II stumbled upon this definition and The

Quine Page was born: a website boasting a collection of quines in over 50 languages

(and beveled badges that touted “Lynx enhanced” and “vi powered” to boot). Thomp-

son credits the entry in the Jargon File as his inspiration, and in a delightfully circular

turn, the entry in the Jargon File now links to The Quine Page as “amusing.”

A quine is the ouroboros of programs: its stated purpose is to replicate itself as output.

But as a form, quines are an artistic puzzle, an outlet for unabashed creative expres-

sion. A quine is focused purely on the code itself. It lives to be dissected.

Here is a quine inspired by Geoffrey A. Swift’s entry from The Quine Page. It initially

reads as a bit of a jumble, so we’ll step through it together:

var a = []; a[0] = 'var a = []; ';
a[1] = 'a[';
a[2] = '] = ';
a[3] = '\'';
a[4] = '\\';
a[5] = ';';
a[6] = '';
a[7] = 'for(var i = 0; i < a.length; i++) console.log((i == 0 ? a[0] : a[6])\
+ a[1] + i + a[2] + a[3] + ((i == 3 || i == 4) ? a[4] : a[6]) + a[i] + a[3] \
+ a[5] + (i == 7 ? a[7] : a[6]))'; for(var i = 0; i < a.length; i++) \
console.log((i == 0 ? a[0] : a[6]) + a[1] + i + a[2] + a[3] + \

CHAPTER TWELVE: CODING BEYOND LOGIC106

http://bit.ly/quine_page
http://bit.ly/quine_page

((i == 3 || i == 4) ? a[4] : a[6]) + a[i] + a[3] + a[5] + (i == 7 ? a[7] : \
a[6]))

This is a pure quine: a JavaScript program that rebuilds itself using simple constructs.

First, we declare an array whose indices are mapped to the strings necessary to output

the program. Then, we iterate over a loop to actually produce the output.

Consider the body of the loop when i equals 1:

console.log((i == 0 ? a[0] : a[6]) + a[1] + i + a[2] + a[3] +
 ((i == 3 || i == 4) ? a[4] : a[6]) + a[i] + a[3] + a[5] +
 (i == 7 ? a[7] : a[6]))

Note that the failure case of each ternary conditional is a[6], which maps to the empty

string. Since the ternaries evaluate to the empty string when i equals 1, we can

remove them:

console.log(a[1] + i + a[2] + a[3] + a[i] + a[3] + a[5])

Substituting in strings yields:

console.log('a[' + i + '] = '+ '\'' + a[i] + '\'' + ';')

which evaluates to the second line:

a[1] = 'a[';

The three conditionals inside the loop allow us to print the initial array declaration,

escape slashed values, and print the for loop, respectively.

All JavaScript quines aren’t that complicated, though. JavaScript lets us cheat a little.

Consider this quine by James Halliday:

(function f() { console.log('(' + f.toString() + ')()') })()

Much simpler. The crux of the line lies in f.toString. Calling toString on a function

returns the source of that function as a string (and maintains identical spacing). To

produce a function that outputs its source when called, we would write:

function f() { console.log(f.toString()) }

However, running this as a program would produce no output because the function

still needs to be invoked. We wrap the function in parentheses to indicate to the inter-

preter that the function should be treated as an expression, and invoke it with the fol-

lowing set of parentheses:

(function f() { console.log(f.toString()) })()

However, this still outputs the source of the function without the added parentheses.

To make this program a quine, we have to account for the parentheses when printing

the output as well:

(function f() { console.log('(' + f.toString() + ')()') })()

1. QUINE’S PARADOX 107

This example also reveals self-reference as a form of recursion. We can transform the

quine into an infinite loop with the slightest change. Transform console.log into eval,

and suddenly it runs forever:

(function f() { eval('(' + f.toString() + ')()') })()

Not all implementations of the quine are so accessible. This dense quine by Ben Alman

originally fit into a tweet (followed by “#quine,” of course):

!function $(){console.log('!'+$+'()')}()

Ben’s quine is conceptually identical to the quine we just analyzed, but compacted and

obscured as much as possible. The parentheses wrapping the function are traded for a

leading ! operator—both ensure the function is interpreted as an expression. We then

rename the function to $ simply to throw a little spice into the mix—something that

feels like it should be an operator, but really isn’t. Inside the console.log statement, we

reuse the ! operator (this is a quine, after all) and concatenate it with the $ method

and trailing invocation parentheses. The toString method is nowhere to be found:

concatenating a string with a function implicitly calls the function’s toString method.

While the techniques behind the previous two quines were identical, each program’s

tone is considerably different. The first quine is utilitarian and accessible. The second is

sparse and coy. But when it comes to the art of the quine, these programs are just the

tip of the iceberg when compared to the work of Yusuke Endoh.

Yusuke Endoh is a self-described “Quine programmer,” and a contributor to the Ruby

programming language. His best-known quine is the Quine Relay, a Ruby program

that circles through 50 programming languages before arriving back at its Ruby ori-

gins. Another program is a quine with a twist—the Radiation Hardened Quine will

regenerate the original program even when a single character is removed from the

source at random. He has written a quine with an embedded rotating globe (the

“Qlobe”) and another in Piet, a language in which programs take on the appearance of

abstract art.

Endoh’s work pushes the boundaries of the quine as a form, subverting it into a vessel

for creative expression. His quines are maximalist, each one a mysteriously self-

supporting house of cards. The rigidity of the form aids the reading, because the intent

and structure of a quine are limited and nonnegotiable. The program is designed to

replicate itself. Code goes in, code comes out. As in a scientific experiment, establish-

ing these constant controls facilitates a deeper, more focused analysis of the variables

that remain. In the case of quines, this allows us to focus on the author’s intent, and

how the quine fulfills its purpose.

While quines themselves aren’t particularly useful in everyday programming (unless,

of course, you’re Yusuke Endoh), they are an elegant illustration of programming

within constraints. Despite the quine’s simple requirements, satisfying the demands of

CHAPTER TWELVE: CODING BEYOND LOGIC108

the form often forces the programmer to shirk best practices, contorting the code until

it can spit itself out again.

Sometimes, optimizing for constraints will violate some tenet of conventional wisdom.

You might balk at first (and you certainly might feel dirty writing the code), but it

might be the most effective way to solve the problem at hand. Every program makes

trade-offs.

A classic example is unrolling a loop:

for (var i = 0; i < 100; i++) {
 doSomething(i)
}

In an ideal environment, the cost of each iteration of the loop (increasing i and

inspecting whether i is less than 100) would be negligible compared to the cost of exe-

cuting the doSomething. This should be optimal. But if, for some reason, iterating over a

loop is expensive, then you need to come up with alternatives:

for (var i = 0; i < 100; i += 4) {
 doSomething(i)
 doSomething(i + 1)
 doSomething(i + 2)
 doSomething(i + 3)
}

This is not nearly as graceful as the previous loop: we’ve squashed four iterations of

the previous loop together to form a single unrolled iteration. But if this loop were

considerably more performant than the former (in our hypothetical scenario), we

would opt for the unrolled code.

Thankfully, this type of problem can often be transparently solved without your

knowledge: if unrolled loops are more efficient, when a compiler or interpreter

encounters the first loop, it will be unrolled behind the scenes.

In JavaScript, a more practical example is looping over an array:

function loop(items) {
 for (var i = 0; i < items.length; i++) {
 doSomething(i)
 }
}

For a time, the Web was filled with articles with titles like “You’ll Never Believe How

This Web Developer Loops Over Arrays” that advocated for storing the array length in

a variable first:

function loop(items) {
 for (var i = 0, len = items.length; i < len; i++) {
 doSomething(i)

1. QUINE’S PARADOX 109

 }
}

For a little while, this change was a micro-optimization in most browsers. But now

performance swings the other way: browser engines recognize the patterns in the first

example, and optimize accordingly.

Now imagine JavaScript arrays didn’t have a length property. Imagine a count method

instead that iterated over the entire array every time it was called (don’t imagine too

hard—this is how it works in PHP):

function loop(items) {
 for (var i = 0, len = items.count(); i < len; i++) {
 doSomething(i)
 }
}

In this case, storing the length of the array in a variable is significantly more efficient.

It’s worth the lower readability.

If we consider the broader picture, though, in almost every case this micro-

optimization was unnecessary and only complicated the code. Our community

preached patterns without understanding or explaining the thought processes behind

them.

2. The Conjecture
Shinichi Mochizuki is both the world’s only “inter-universal geometer” and the only

person who currently understands what that means. To the rest of us, Mochizuki is a

mathematician. For almost two decades, Mochizuki worked to solve the abc conjec-

ture, a proposition that, if proven, would establish unknown fundamental properties

of prime numbers. In August 2012, he released a 512-page solution to the conjecture.

Three years later his solution remains unverified, and not for lack of trying. This might

be partially due to the fact that Mochizuki invented an entirely new branch of mathe-

matics, “inter-universal geometry,” to write the proof—which, in turn, is built atop

concepts from a complex, little-known branch of mathematics called anabelian geome-

try. And if you were hoping for any inroads into the thousands of pages of mathemati-

cal literature, you’re out of luck. Mochizuki practically refuses to lecture on the topic,

with only a handful of seminars offered at his home university in Japan.

It’s no wonder the proof is yet to be deciphered. To put this in perspective, this is akin

to an engineer requesting to merge a single commit that rewrites the Linux kernel in a

new programming language that he invented solely for that commit with no explana-

tion or comment. Even if appears to run perfectly, it’s not getting merged.

CHAPTER TWELVE: CODING BEYOND LOGIC110

http://bit.ly/abc_conjecture
http://bit.ly/abc_conjecture

To Mochizuki, the abc conjecture has been proven. To the rest of the world, it remains

unsolved. When asked about Mochizuki’s proof, math professor Cathy O’Neil said,

“You don’t get to say you’ve proved something if you haven’t explained it. A proof is a

social construct. If the community doesn’t understand it, you haven’t done your job.”

While JavaScript doesn’t have the same burden of proof as mathematics (and we’re

lucky that’s the case), software operates in much the same fashion. As an author, you

must identify your audience: the maintainers, the contributors, the readers. If they

don’t understand your code, how effective can it be in the long run?

Software is a social construct. A pull request requires understanding and approval

from project maintainers before it can be merged. Documentation is only useful if it’s

comprehensible. An API must be explained before it can be used.

Even if you’re the only author of the code, the same needs apply—they’re just easier

to ignore. While you have more insight into your own thought process than anyone

else, memory degrades over time. It’s not about when the code is written, but the

weeks, months, and years that follow. When you inevitably decide to refactor in six

months, you’ll be glad you added that documentation.

We create social conventions to govern our code: common design patterns, style

guides, and shared philosophies. The desire for understanding drives the unrelenting

march toward the consistent and thorough, fuels the fires of style guides, and ensures

that every name endures just enough bikeshedding and pedantry to emerge slightly

more sensible.

But in a codebase where each line of code perfectly adheres to a guide, it’s still appa-

rent when code is written by multiple authors. The giveaways are the snippets the

guide doesn’t specify—whether it’s the whitespace between operators or when meth-

ods should return early. Everyone has a calling card. It’s the broadest strokes that are

the most telling: we each think about problems differently. Certain patterns are our

crutches. Maybe it’s using factories, or a preferred method of inheritance. Maybe it’s

taking a more functional approach.

The code is just the surface—a reflection of its contributors, of their ideas and culture.

The thought processes behind those contributions are easily lost, archived in code

reviews and meeting notes, cobwebbed in the corners of institutional memory. In

1994, mathematician William Thurston published “On Proof and Progress in Mathe-

matics”, a survey of the culture of mathematics in the form of a scholarly paper. Thur-

ston observed how formalism drowned out institutional thought processes as pub-

lished work spread:

There is another effect caused by the big differences between how we think

about mathematics and how we write it. A group of mathematicians interact-

ing with each other can keep a collection of mathematical ideas alive for a

2. THE CONJECTURE 111

http://bit.ly/thurston_paper
http://bit.ly/thurston_paper

period of years, even though the recorded version of their mathematical work

differs from their actual thinking, having much greater emphasis on language,

symbols, logic and formalism. But as new batches of mathematicians learn

about the subject they tend to interpret what they read and hear more liter-

ally, so that the more easily recorded and communicated formalism and

machinery tend to gradually take over from other modes of thinking.

So it is in JavaScript. Shared knowledge is the bedrock of programming. Every pro-

gram is built atop an ever-growing mountain of abstractions. The most accessible pro-

grams are those that leverage and extend our collective knowledge, utilizing familiar

patterns. They’re aware of the audience.

As engineers, our goal is to minimize the distance between the thought process and

the final result. Why was this solution selected? Where are the pitfalls? Institutional

memory is an inevitable byproduct of writing code. It’s impossible to perfectly express

our thinking, but it’s important to try.

3. Peer Review
It may seem that Mochizuki could fill the role of a human Quine’s paradox. His work

is largely self-referential, and his it’s-proven-because-I-say-so attitude is directly in

conflict with a community that prides itself on correctness, formality, and peer review.

And if he cannot convince the world of his proof, he risks his work becoming as orna-

mental as a quine. But time passes on, and there’s hope for him yet.

In December 2014, Mochizuki posted a progress report on his website (which is truly

glorious and worth visiting in its own right, with a very serious Mochizuki gazing into

the distance, surrounded by bubbles and animated GIFs of clip art textbooks, phi

glyphs, and lightbulbs). In the report he repeatedly praises his three collaborators,

criticizes every other practicing mathematician, and liberally uses italics.

After claiming that “the verification of [the proof] is, for all practical purposes, com-

plete” and underscoring “the quite essential importance of reading through the papers

carefully,” Mochizuki dismisses every other mathematician as “a complete novice with

respect to the mathematics” surrounding the proof, and “simply not qualified to issue

a definitive (i.e., mathematically meaningful) judgment.”

He’s a little prickly. With three assenting reviewers, his work will likely be verified. But

even once his work is verified, Mochizuki risks the same problem. If no one under-

stands his work, the theory is purely decorative—an elaborate exercise in self-

reference. Despite his repeated admonishments and sardonic tone, it appears Mochi-

zuki understands this, and has settled on a strategy that will ensure his work becomes

a part of the mathematical canon:

CHAPTER TWELVE: CODING BEYOND LOGIC112

http://bit.ly/mochizuki_site

In light of the present state of affairs, the only reasonable course of action lies

in taking a long-term approach to promoting the dissemination of [the proof]

by cultivating a collection of researchers, one by one.

Now he’s being reasonable.

The arbiter of successful code is not the author, but the reader and the passage of time.

What matters are the people who interact with your code, including you.

Over the past two decades, JavaScript has exploded into a sprawling ecosystem of pro-

grammers, browsers, libraries, servers, frameworks, and standards bodies. It’s through

that chaos—through sharing and building off of one another’s ideas—that JavaScript

has flourished. As Paul Ford wrote,

Making a new language is hard. Making a popular language is much harder

still and requires the smile of fortune. And changing the way a popular lan-

guage works appears to be one of the most difficult things humans can do,

requiring years of coordination to make the standards align. Languages are

large, complex, dynamic expressions of human culture.

Through our collective work we’ve overcome pedantry and dead ends and comments

that begin with “Actually…” to create an ecosystem where our language and our

thought processes can evolve. But we only grow when we listen to one another.

Which brings me back to the basement. I smile when I remember how my physicist

friends thought I could instantly know what they were trying to accomplish just from

seeing a graph and a handful of variables.

What I initially experienced was the disconnect between the program as a logical con-

struct and the program as an expression of culture. My eyes parsed loops, variables,

and methods, but I failed to understand the purpose and context of the code. The

expectation that I could understand the intent behind code simply because I knew

how to program was flattering, but impossible.

And who taught them to code? As it turns out, it was mathematicians and scientists.

Over time, I came to realize that just because their program didn’t conform to my

expectation of what a program should look like didn’t mean it was wrong or ineffec-

tive. It just meant that I was not the intended reader, and in my arrogance I judged

them for it. Maybe I shouldn’t have been so hasty. The fact that they shared their work

and I understood their explanation was success enough.

Even quines aren’t meant to sit in isolation. The quine is not only an exercise for the

author, but an exercise for the reader as well. Quines are meant to be shared. That is

the true purpose of The Quine Page—as Thompson writes, “These programs are

written for educational purposes, to further one’s computer science skills. It seems

rather paradoxical to create such a program and not share your unique solution.”

3. PEER REVIEW 113

http://bit.ly/ford_what_is_code

As engineers, we continually reinforce the notion that a program is a logical construct,

but a program is also a means of communication, and no means of communication

can perfectly convey intent. There’s more to code than just logic. Programming is lossy,

and therein lies its beauty.

CHAPTER TWELVE: CODING BEYOND LOGIC114

C H A P T E R T H I R T E E N

JavaScript Is Cutieful
Graeme Roberts

All This Loose Beauty
JavaScript is beautiful, and I can say that with certainty, for beauty is in the eye of the

beholder, and in the hands of that beholder is a language soft as plasticine that will

mold and change at will and not protest against maltreatment, and will trust the code

it’s given as though it were the word of God.

Beauty, I suppose, is a rather personal thing. Some detest the rain, and others cry in it

and feel the force of life itself in drops as it hammers on their skin.

And so, in JavaScript.

Some fear and remonstrate against a single use of anything not sanctioned by ancestral

coders in whom they’ve learned to place their trust. As though experimentation,

thought, invention, play, discovery, and learning were some capital offense.

Some of the authors in this book have quite deftly shown the beauty in the structure

and the safety of those parts of the language we’ve accepted as permissible.

Others have, with expertise and confidence and thorough knowledge of their craft,

demonstrated elegance and let us see the power and succinctness that these oft lam-

basted features can grant a learned user.

The Absurdity of Dalí
The work of Dalí is often absurd, disturbing, strange, enchanting, comical, and surpris-

ing—and it is beautiful.

I want to explore a part of JavaScript that captures that same kind of beauty for me.

115

Dalí’s JavaScript
Array.apply(null, { length: 10 }).map(eval.call, Number)
// → [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Before reading on, just look at that for a little while. Really drink it in. Just look at

what is going on there, until soft clocks inside your head melt all down your repl.

Is This Beauty Just Ugly?
I can see why detractors might say that this is quite the opposite of beauty. They may

know that in other languages they would be treated to something friendly like

range(10).

But try to let that feeling pass. Or, better yet, let’s pretend we really do have such a

thing as Math.range(10), and let that free us to appreciate the details of the true beauty

here.

An Unfortunate Necessity

Array.apply(null, { length: 10 }) and Array.apply(null, Array(10)) are two ver-

sions of an unfortunate, and slightly offensive, necessity in order to generate an array

of 10 undefineds rather than an array of length 10 without defined contents.

The Beauty Is in the Madness
So now we’ve got ourselves a tasty array like this:

[undefined, undefined, undefined, undefined, undefined, undefined, undefined,
 undefined, undefined, undefined]

Nothing rousing about that. “I’m not roused,” I pretend to imagine that I hear you

think.

But, my dear, the beauty that I promised is to be found within the madness of

map(eval.call, Number).

The use of eval is not actually relevant. I chose it because it’s short (and because typ-

ing eval makes me feel mischievous). Any function will do; function(){}.call works

just as well. It’s the call we want!

Let’s Have a Wee Look at map
You probably already know all this. Sorry.

Array.prototype.map expects a callback function as an argument, which it will call in

turn for each value in the array. To callback it passes arguments value, index, and the

full array. In the end, it returns a new array with the result of callback in place, or

each item.

CHAPTER THIRTEEN: JAVASCRIPT IS CUTIEFUL116

There’s a beautiful JS goldmine in passing native constructors to [].map:

["10", "20", "lol"].map(Number)
// → [10, 20, NaN]

Adorable, right? I love this with [].filter too; it’s just some real cute-as-a-box-of-

buttons JavaScript:

["10", "20", "lol"].map(Number).filter(Boolean)
// → [10, 20]

Hello, thisArg

[].map also takes a second argument, and that’s a calling context, or thisArg. This is

the object that will serve as this when callback is running on the values:

["lol", "wow", "ok"].map(function(string) {
 return this[string];
}, {
 lol: "yeah!",
 wow: "alright!",
 ok: "cool!"
});
// → ["yeah!", "alright!", "cool!"]

So it’s essentially like [].map(fn.bind(obj)).

Okay! So That’s a Bunch of Stuff I Already Knew About [].map—
Now What?

Well, let’s have another look at Dalí’s map:

Array(null, { length: 10 }).map(eval.call, Number)

Rad. We’re covered up to about character 38 now. So what else is going on here?

calling All Cars

So, Function.prototype.call takes a thisArg. It’s thanks to it that we are able to

indulge in such pleasures as the ever-merciful var args = [].slice.call(arguments).

Supplemental arguments will be passed to the function being called.

Number

Number takes one argument, and it tries earnestly to coax that argument into becoming

a number:

Number(" 47 ")
// → 47
Number(true)
// 1

THE ABSURDITY OF DALÍ 117

Now I Know Everything
One last look at this:

Array(null, { length: 10 }).map(eval.call, Number)

For each undefined in our array, Function.prototype.call is being called with a this

context of Number, like:

Function.prototype.call.bind(Number, undefined, index, array);

which is like:

Number.call(undefined, index, array)

which equates to Number with a this context of undefined (which has no effect because

Number doesn’t utilize this) being passed the arguments index and array:

Number(index, array)

Number ignores the array and returns the number, delivering us a new array consisting

of the indexes of the old array.

Wild
Now, this is clearly completely insane.

Like, really mental.

But it does make a quite flamboyant display of what I think is one of the most gor-

geous and powerful mechanisms in sweet JavaScript: the ability to call any function

you find lying about, in the context of any object you choose. And I really think that

that is beautiful JavaScript.

But I’m one of the ones outside crying in the rain.

CHAPTER THIRTEEN: JAVASCRIPT IS CUTIEFUL118

C H A P T E R F O U R T E E N

Functional JavaScript
Anton Kovalyov

Is JavaScript a functional programming language? This question has long been a topic

of great debate within our community. Given that JavaScript’s author was recruited to

do “Scheme in the browser,” one could argue that JavaScript was designed to be used

as a functional language. On the other hand, JavaScript’s syntax closely resembles

Java-like object-oriented programming, so perhaps it should be utilized in a similar

manner. Then there might be some other arguments and counterarguments, and the

next thing you know the day is over and you didn’t do anything useful.

This chapter is not about functional programming for its own sake, nor is it about

altering JavaScript to make it resemble a pure functional language. Instead, this chap-

ter is about taking a pragmatic approach to functional programming in JavaScript, a

method by which programmers use elements of functional programming to simplify

their code and make it more robust.

Functional Programming
Programming languages come in several varieties. Languages like Go and C are called

procedural: their main programming unit is the procedure. Languages like Java and

SmallTalk are object oriented: their main programming unit is the object. Both these

approaches are imperative, which means they rely on commands that act upon the

machine state. An imperative program executes a sequence of commands that change

the program’s internal state over and over again.

Functional programming languages, on the other hand, are oriented around expres-

sions. Expressions—or rather, pure expressions—don’t have a state, as they merely

compute a value. They don’t change the state of something outside their scope, and

they don’t rely on data that can change outside their scope. As a result, you should be

119

able to substitute a pure expression with its value without changing the behavior of a

program. Consider an example:

function add(a, b) {
 return a + b
}

add(add(2, 3), add(4, 1)) // 10

To illustrate the process of substituting expressions, let’s evaluate this example. We

start with an expression that calls our add function three times:

add(add(2, 3), add(4, 1))

Since add doesn’t depend on anything outside its scope, we can replace all calls to it

with its contents. Let’s replace the first argument that is not a primitive value—

add(2, 3):

add(2 + 3 , add(4, 1))

Then we replace the second argument:

add(2 + 3, 4 + 1)

Finally, we replace the last remaining call to our function and calculate the result:

(2 + 3) + (4 + 1) // 10

This property that allows you to substitute expressions with their values is called refer-

ential transparency. It is one of the essential elements of functional programming.

Another important element of functional programming is functions as first-class citizens.

Michael Fogus gave a great explanation of functions as first-class citizens in his book,

Functional JavaScript. His definition is one of the best I’ve seen:

The term “first-class” means that something is just a value. A first-class func-

tion is one that can go anywhere that any other value can go—there are few

to no restrictions. A number in JavaScript is surely a first-class thing, and

therefore a first-class function has a similar nature:

• A number can be stored in a variable and so can a function:

var fortytwo = function() { return 42 };

• A number can be stored in an array slot and so can a function:

var fortytwos = [42, function() { return 42 }];

• A number can be stored in an object field and so can a function:

var fortytwos = {number: 42, fun: function() { return 42 }};

• A number can be created as needed and so can a function:

42 + (function() { return 42 })(); // => 84

CHAPTER FOURTEEN: FUNCTIONAL JAVASCRIPT120

http://shop.oreilly.com/product/0636920028857.do

• A number can be passed to a function and so can a function:

function weirdAdd(n, f) { return n + f() }

weirdAdd(42, function() { return 42 }); // => 84

• A number can be returned from a function and so can a function:

return 42;

return function() { return 42 };

Having functions as first-class citizens enables another important element of functional

programming: higher-order functions. A higher-order function is a function that operates

on other functions. In other words, higher-order functions can take other functions as

their arguments, return new functions, or do both. One of the most basic examples is a

higher-order map function:

map([1, 2, 3], function (n) { return n + 1 }) // [2, 3, 4]

This function takes two arguments: a collection of values and another function. Its

result is a new list with the provided function applied to each element from the list.

Note how this map function uses all three elements of functional programming

described previously. It doesn’t change anything outside of its scope, nor does it use

anything from the outside besides the values of its arguments. It also treats functions

as first-class citizens by accepting a function as its second argument. And since it uses

that argument to compute the value, one can definitely call it a higher-order function.

Other elements of functional programming include recursion, pattern matching, and

infinite data structures, although I will not elaborate on these elements in this chapter.

Functional JavaScript
So, is JavaScript a truly functional programming language? The short answer is no.

Without support for tail-call optimization, pattern matching, immutable data struc-

tures, and other fundamental elements of functional programming, JavaScript is not

what is traditionally considered a truly functional language. One can certainly try to

treat JavaScript as such, but in my opinion, such efforts are not only futile but also

dangerous. To paraphrase Larry Paulson, author of the Standard ML for the Working Pro-

grammer, a programmer whose style is “almost” functional had better not be lulled into

a false sense of referential transparency. This is especially important in a language like

JavaScript, where one can modify and overwrite almost everything under the sun.

Consider JSON.stringify, a built-in function that takes an object as a parameter and

returns its JSON representation:

JSON.stringify({ foo: "bar" }) // -> "{"foo":"bar"}"

FUNCTIONAL JAVASCRIPT 121

One might think that this function is pure, that no matter how many times we call it

or in what context we call it, it always returns the same result for the same arguments.

But what if somewhere else, most probably in code you don’t control, someone over-

writes the Object.prototype.toJSON method?

JSON.stringify({ foo: "bar" })
// -> "{"foo":"bar"}"

Object.prototype.toJSON = function () {
 return "reality ain't always the truth"
}

JSON.stringify({ foo: "bar" })
// -> ""reality ain't always the truth""

As you can see, by slightly modifying a built-in Object, we managed to change the

behavior of a function that looks pretty pure and functional from the outside. Func-

tions that read mutable references and properties aren’t pure, and in JavaScript, most

nontrivial functions do exactly that.

My point is that functional programming, especially when used with JavaScript, is

about reducing the complexity of your programs and not about adhering to one partic-

ular ideology. Functional JavaScript is not about eliminating all the mutations; it’s

about reducing occurrences of such mutations and making them very explicit. Con-

sider the following function, merge, which merges together two arrays by pairing their

corresponding members:

function merge(a, b) {
 b.forEach(function (v, i) { a[i] = [a[i], b[i]] })
}

This particular implementation does the job just fine, but it also requires intimate

knowledge of the function’s behavior: does it modify the first argument, or the

second?

var a = [1, 2, 3]
var b = ["one", "two", "three"]

merge(a, b)
a // -> [[1, "one"], [2, "two"],..]

Imagine that you’re unfamiliar with this function. You skim the code to review a

patch, or maybe just to familiarize yourself with a new codebase. Without reading the

function’s source, you have no information regarding whether it merges the first argu-

ment into the second, or vice versa. It’s also possible that the function is not destruc-

tive and someone simply forgot to use its value.

Alternatively, you can rewrite the same function in a nondestructive way. This makes

the state change explicit to everyone who is going to use that function:

CHAPTER FOURTEEN: FUNCTIONAL JAVASCRIPT122

function merge(a, b) {
 return a.map(function (v, i) { return [v, b[i]] })
}

Since this new implementation doesn’t modify any of its arguments, all mutations will

have to be explicit:

var a = [1, 2, 3]
var b = ["one", "two", "three"]

merge(a, b) // -> [[1, "one"], [2, "two"],..]

// a and b still have their original values.
// Any change to the value of a will have to
// be explicit through an assignment:
a = merge(a, b)

To further illustrate the difference between the two approaches, let’s run that function

three times without assigning its value:

var a = [1, 2]
var b = ["one", "two"]

merge(a, b)
// -> [[1, "one"], [2, "two"]]; a and b are the same
merge(a, b)
// -> [[1, "one"], [2, "two"]]; a and b are the same
merge(a, b)
// -> [[1, "one"], [2, "two"]]; a and b are the same

As you can see, the return value never changes. It doesn’t matter how many times you

run this function; the same input will always lead to the same output. Now let’s go

back to our original implementation and perform the same test:

var a = [1, 2]
var b = ["one", "two"]

merge(a, b)
// -> undefined; a is now [[1, "one"], [2, "two"]]
merge(a, b)
// -> undefined; a is now [[[1,"one"], "one"], [[2, "two"],"two"]]
merge(a, b)
// -> undefined; a is even worse now; the universe imploded

Even better is that this version of merge allows us to use it as a value itself. We can

return the result of its computation or pass it around without creating temporary vari-

ables, just like we would do with any other variable holding a primitive value:

function prettyTable(table) {
 return table.map(function (row) {
 return row.join(" ")
 }).join("\n")
}

FUNCTIONAL JAVASCRIPT 123

console.log(prettyTable(merge([1, 2, 3], ["one", "two", "three"])))
// prints:
// 1 "one"
// 2 "two"
// 3 "three"

This type of function, known as a zip function, is quite popular in the functional pro-

gramming world. It becomes useful when you have multiple data sources that are

coordinated through matching array indexes. JavaScript libraries such as Underscore

and LoDash provide implementations of zip and other useful helper functions so you

don’t have to reinvent the wheel within your projects.

Let’s look at another example where explicit code reads better than implicit. JavaScript

—at least, its newer revisions—allows you to create constants in addition to variables.

Constants can be created with a const keyword. While everyone else (including yours

truly) primarily uses this keyword to declare module-level constants, my friend Nick

Fitzgerald uses consts virtually everywhere to make clear which variables are expected

to be mutated and which are not:

function invertSourceMaps(code, mappings) {
 const generator = new SourceMapGenerator(...)

 return DevToolsUtils.yieldingEach(mappings, function (m) {
 // ...
 })
}

With this approach, you can be sure that a generator is always an instance of SourceMap

Generator, regardless of where it is being used. It doesn’t give us immutable data struc-

tures, but it does make it impossible to point this variable to a new object. This means

there’s one less thing to keep track of while reading the code.

Here’s a bigger example of a functional approach to programming: a few weeks ago, I

wrote a static site generator in JavaScript for the JSHint website and my personal blog.

The main module that actually reads all the templates, generates a new site, and writes

it back to disk consists of only three small functions. The first function, read, takes a

path as an argument and returns an object that contains the whole directory tree plus

the contents of the source files. The second function, build, does all the heavy work: it

compiles all the templates and Markdown files into HTML, compresses static files, and

so on. The third function, write, takes the site structure and saves it to disk.

There’s absolutely no shared state between those three functions. Each has a set of

arguments it accepts and some data it returns. An executable script I use from my

command line does precisely the following:

CHAPTER FOURTEEN: FUNCTIONAL JAVASCRIPT124

http://jshint.com/

#!/usr/bin/env node

var oddweb = require("./index.js")
var args = process.argv.slice(2)

oddweb.write(oddweb.build(oddweb.read(args[1]))

I also get plug-ins for free. If I need a plug-in that deletes all files with names ending

with .draft, all I do is write a function that gets a site tree as an argument and returns a

new site tree. I then plug in that function somewhere between read and write, and I’m

golden.

Another benefit of using a functional programming style is simpler unit tests. A pure

function takes in some data, computes it, and returns the result. This means that all

that’s needed in order to test that function is input data and an expected return value.

As a simple example, here’s a unit test for our function merge:

function testMerge() {
 var data = [
 { // Both lists have the same size
 a: [1, 2, 3],
 b: ["a", "b", "c"],
 ret: [[1, "a"], [2, "b"], [3, "c"]]
 },

 { // Second list is larger
 a: [1, 2],
 b: ["a", "b", "c"],
 ret: [[1, "a"], [2, "b"]]
 },

 { // Etc.
 ...
 }
]

 data.forEach(function (test) {
 isEqual(merge(test.a, test.b), test.ret)
 })
}

This test is almost fully declarative. You can clearly see what input data is used and

what is expected to be returned by the merge function. In addition, writing code in a

functional way means you have less testing to do. Our original implementation of

merge was modifying its arguments, so that a proper test would have had to cover cases

where one of the arguments was frozen using Object.freeze.

All functions involved in the preceding example—forEach, isEqual, and merge—were

designed to work with only simple, built-in data types. This approach, where you build

your programs around composable functions that work with simple data types, is

FUNCTIONAL JAVASCRIPT 125

called data-driven programming. It allows you to write programs that are clear and ele-

gant and have a lot of flexibility for expansion.

Objects
Does this mean you shouldn’t use objects, constructors, and prototype inheritance? Of

course not! If something makes your code easier to understand and maintain, it’d be

silly not to use it. However, JavaScript developers often start making overcomplicated

object hierarchies without even considering whether there are simpler ways to solve

the problem.

Consider the following object that represents a robot. This robot can walk and talk, but

otherwise it’s pretty useless:

function Robot(name) {
 this.name = name
}

Robot.prototype = {
 talk: function (what) { /* ... */ },
 walk: function (where) { /* ... */ }
}

What would you do if you wanted two more robots: a guard robot to shoot things and

a housekeeping robot to clean things? Most people would immediately create child

objects GuardRobot and HousekeeperRobot that inherit methods and properties from the

parent Robot object and add their own methods. But what if you then decided you

wanted a robot that can both clean and shoot things? This is where hierarchy gets

complicated and software fragile.

Consider the alternative approach, where you extend instances with functions that

define their behavior and not their type. You don’t have a GuardRobot and a Housekee

perRobot anymore; instead, you have an instance of a Robot that can clean things,

shoot things, or do both. The implementation will probably look something like this:

function extend(robot, skills) {
 skills.forEach(function (skill) {
 robot[skill.name] = skill.fn.bind(null, rb)
 })

 return robot
}

To use it, all you have to do is to implement the behavior you need and attach it to the

instance in question:

function shoot(robot) { /* ... */ }
function clean(robot) { /* ... */ }

CHAPTER FOURTEEN: FUNCTIONAL JAVASCRIPT126

var rdo = new Robot("R. Daniel Olivaw")
extend(rdo, { shoot: shoot, clean: clean })

rdo.talk("Hi!") // OK
rdo.walk("Mozilla SF") // OK
rdo.shoot() // OK
rdo.clean() // OK

NOTE
My friend Irakli Gozalishvili, after reading this chapter, left a comment saying that
his approach would be different. What if objects were used only to store data?

function talk(robot) { /* ... */ }
function shoot(robot) { /* ... */ }
function clean(robot) { /* ... */ }

var rdo = { name: "R. Daniel Olivaw" }

talk(rdo, "Hi!") // OK
walk(rdo, "Mozilla SF") // OK
shoot(rdo) // OK
clean(rdo) // OK

With his approach you don’t even need to extend anything: all you need to do is
pass the correct object.

At the beginning of this chapter, I warned JavaScript programmers against being lulled

into the false sense of referential transparency that can result from using a pure func-

tional programming language. In the example we just looked at, the function extend

takes an object as its first argument, modifies it, and returns the modified object. The

problem here is that JavaScript has a very limited set of immutable types. Strings are

immutable. So are numbers. But objects—such as an instance of Robot—are mutable.

This means that extend is not a pure function, since it mutates the object that was

passed into it. You can call extend without assigning its return value to anything, and

rdo will still be modified.

Now What?
The major evolution that is still going on for me is towards a more functional

programming style, which involves unlearning a lot of old habits, and backing

away from some OOP directions.

—John Carmack

JavaScript is a multiparadigm language supporting object-oriented, imperative, and

functional programming styles. It provides a framework in which you can mix and

match different styles and, as a result, write elegant programs. Some programmers,

however, forget about all the different paradigms and stick only with their favorite

NOW WHAT? 127

one. Sometimes this rigidity is due to fear of leaving a comfort zone; sometimes it’s

caused by relying too heavily on the wisdom of elders. Whatever the reason, these

people often limit their options by confining themselves to a small space where it’s

their way or the highway.

Finding the right balance between different programming styles is hard. It requires

many hours of experimentation and a healthy number of mistakes. But the struggle is

worth it. Your code will be easier to reason about. It will be more flexible. You’ll ulti-

mately find yourself spending less time debugging, and more time creating something

new and exciting.

So don’t be afraid to experiment with different language features and paradigms.

They’re here for you to use, and they aren’t going anywhere. Just remember: there’s

no single true paradigm, and it’s never too late to throw out your old habits and learn

something new.

CHAPTER FOURTEEN: FUNCTIONAL JAVASCRIPT128

1 As this book entered production, Google showed over 45,000 hits for the quoted term “JavaScript
inheritance.”

2 “Classical Inheritance in JavaScript—Douglas Crockford”, “Understanding JavaScript Inheritance—
Alex Sexton”, “Inheritance and the prototype chain—JavaScript|MDN”, and “John Resig—Simple
JavaScript Inheritance”.

C H A P T E R F I F T E E N

Progress
Rick Waldron

This is a risky chapter to write—it’s possible that some of the code it contains will be

wrong by the time this book goes to print. In June 2015 the sixth edition of the

ECMAScript standard is scheduled to be published, which means that by the time

you’re reading it, this chapter is either a goldmine or a dud. While being rational cer-

tainly has its merits, being adventurous and perhaps a little irrational is also valuable,

so here we go.

To be clear: I really love JavaScript—as a general-purpose programming language, it is

a truly unique and beautiful creation. When I say beautiful, I don’t necessarily mean it

in the classical sense: sometimes a beast can also be beautiful—that beast just needs

someone to love it and dress it in nice clothes for the ball.

JavaScript has an easy-to-use mechanism for inheritance.

—No one

If I had a nickel for every mention of “JavaScript inheritance” on the Internet-

according-to-Google, at the time of this writing I would have over $2,000.1 The top

results2 all disagree with each other, but in interesting and not-incorrect ways. The

problem is that JavaScript’s built-in mechanism for defining a class of object and its

behavior is the same mechanism used for defining any encapsulated operation: a func-

tion. Additionally, veterans of other programming languages like C++, C#, Java,

Python, Ruby, and so on tend to get hung up on JavaScript’s lack of inheritance as

129

http://www.crockford.com/javascript/inheritance.html
http://alexsexton.com/blog/2013/04/understanding-javascript-inheritance/
http://alexsexton.com/blog/2013/04/understanding-javascript-inheritance/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Inheritance_and_the_prototype_chain
http://ejohn.org/blog/simple-javascript-inheritance/
http://ejohn.org/blog/simple-javascript-inheritance/
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://bit.ly/cpp_class_decl
http://bit.ly/c_sharp_classes
http://bit.ly/java_class
http://bit.ly/python_classes
http://bit.ly/ruby_class

they understand it in those languages. JavaScript’s prototypal inheritance model is

often the target of unfair name calling, and the truth is, while beautiful and powerful,

it’s a bit confusing to learn and more so to master. As an added kick in the pants, Jav-

aScript’s built-in classes weren’t designed with subclassing in mind.

Thwarted at every turn!

Early in the history of jQuery, John Resig attempted to make it a subclass of the built-

in Array class. He ultimately moved on after discovering that not only is length prop-

erty assignment “magic” lost for Array subclasses, but older versions of Internet

Explorer would always report a value of 0, regardless of the length of items in the

instance of the Array subclass. This was before the fifth edition of ECMAScript had

been published, so the Array built-in hadn’t grown the familiar API that it sports

today—which also meant that in addition to length property issues, John had to

design and implement his own API for interacting with array-like collections. These

obstacles led to the current jQuery design: a class that implements collection-centric

iterative operation methods and produces instances that are array-like. In this chapter,

I’m going to show you what this means in terms of code, by implementing a class

whose instances are an array-like list of elements with a few simple but useful meth-

ods, and then evolve the code by refactoring it several times using modern, then

future, language features. The “test suite” will assert the basic functionality of the

library—none of the refactorings will violate their expectations. The full code can be

found at http://bit.ly/jquery_test_suite.

This is approximately what the output will look like:

// file:criteria.js
(Result) The Elements class prototype
(Result) Zero length instance
(Result) Elements from Elements
(Result) One match will have a length of 1 (no context)
(Result) One match will have a length of 1
(Result) Two matches will have a length of 2
(Result) Add a class
(Result) Set and get an attribute
(Result) Set and get a css style property
(Result) Set and get some html
(Result) Filtering produces a new instance
(Result) Filter with a dummy predicate
(Result) Filter with a predicate
(Result) Invocation forEach item in the list
(Result) Find the indexOf an element
(Result) Push an element onto the list
(Result) Push returns the instance, not the length
(Result) Slicing produces a new instance
(Result) Slice a list of elements
(Result) Sort a list of elements by nodeName

CHAPTER FIFTEEN: PROGRESS130

http://bit.ly/js_subclasses
http://jquery.com
http://ejohn.org
http://bit.ly/jquery_as_subclass
http://bit.ly/subclass_js_array
http://bit.ly/jquery_test_suite

NOTE

(Result) will be either Pass or Fail.

Engineers often dismiss testing and the value it provides to their code, but I believe

that in order to write truly beautiful code in any language, you must prove that code

through tests. A good way to think about writing tests is as an agreement, where the

agreement is that the code being written behaves a certain way and produces a certain

result and will do so for all time (or until the requirements change). Tests will there-

fore help guide the process of refactoring the code several times over by forcing us to

uphold our side of the agreement.

The following library code is the first iteration of the Elements class. This implementa-

tion does not attempt to subclass the built-in Array class.

NOTE

Every call to context.querySelectorAll(selector) will be wrapped in a try-
catch to suppress exceptions thrown by invalid selectors.

// file:elements-r1.js
function Elements(selector, context) {
 var elems, elem, k;

 selector = selector || "";

 this.context = context || document;

 if (Array.isArray(selector) || selector instanceof Elements) {
 elems = selector;
 } else {
 try {
 elems = this.context.querySelectorAll(selector);
 } catch (e) {
 elems = [];
 }
 }

 if (!elems) {
 // elems is either:
 // - undefined because the selector was invalid
 // resulting in a thrown exception
 // - null because the querySelectorAll returns
 // null instead of an empty object when no
 // matching elements are found.
 elems = []
 }

 if (elems.length) {
 k = -1;

PROGRESS 131

 while (elem = elems[++k]) {
 this[k] = elem;
 }
 }

 this.length = elems.length;
}

Elements.prototype = {
 constructor: Elements,
 addClass: function(value) {
 this.forEach(function(elem) {
 elem.classList.add(value);
 });

 return this;
 },
 attr: function(key, value) {
 if (typeof value !== "undefined") {
 this.forEach(function(elem) {
 elem.setAttribute(key, value);
 });

 return this;
 } else {
 return this[0] && this[0].getAttribute(key);
 }
 },
 css: function(key, value) {
 if (typeof value !== "undefined") {
 this.forEach(function(elem) {
 elem.style[key] = value;
 });

 return this;
 } else {
 return this[0] && this[0].style[key];
 }
 },
 html: function(html) {
 if (typeof html !== "undefined") {
 this.forEach(function(elem) {
 elem.innerHTML = html;
 });
 return this;
 } else {
 return this[0] && this[0].innerHTML;
 }
 },
 filter: function() {
 return new Elements([].filter.apply(this, arguments));
 },
 forEach: function() {

CHAPTER FIFTEEN: PROGRESS132

 [].forEach.apply(this, arguments);
 return this;
 },
 indexOf: function() {
 return [].indexOf.apply(this, arguments);
 },
 push: function() {
 [].push.apply(this, arguments);
 return this;
 },
 slice: function() {
 return new Elements([].slice.apply(this, arguments));
 },
 sort: function() {
 return [].sort.apply(this, arguments);
 }
};

While certainly correct, this code is a technical debt nightmare. The six array alloca-

tions could be replaced with a shared reference to Array.prototype, but this would

require wrapping the entire declaration and prototype definition inside an immedi-

ately invoked function expression to avoid leaking that binding into the global object.

It’s also safe to assume that the explicit reboxing of Array instances into Elements

instances will have performance penalties. Despite these drawbacks, the first imple-

mentation is functional and has revealed that length property assignment semantics,

as they are defined for a built-in Array instance, are not a requirement for this object.

With that understanding, the example can be naively refactored as a rudimentary

Array subclass:

// file:elements-r2.js
function Elements(selector, context) {
 Array.call(this);

 var elems;

 this.context = context || document;

 if (Array.isArray(selector) || selector instanceof Elements) {
 elems = selector;
 } else {
 try {
 elems = this.context.querySelectorAll(selector || "");
 } catch (e) {
 elems = [];
 }
 }

 if (!elems) {
 // elems is either:
 // - undefined because the selector was invalid
 // resulting in a thrown exception

PROGRESS 133

 // - null because the querySelectorAll returns
 // null instead of an empty object when no
 // matching elements are found.
 elems = []
 }

 this.push.apply(this, elems);
}

Elements.prototype = Object.create(Array.prototype);
Elements.prototype.constructor = Elements;

Elements.prototype.addClass = function(value) {
 this.forEach(function(elem) {
 elem.classList.add(value);
 });

 return this;
};
Elements.prototype.attr = function(key, value) {
 if (typeof value !== "undefined") {
 this.forEach(function(elem) {
 elem.setAttribute(key, value);
 });

 return this;
 } else {
 return this[0] && this[0].getAttribute(key);
 }
};
Elements.prototype.css = function(key, value) {
 if (typeof value !== "undefined") {
 this.forEach(function(elem) {
 elem.style[key] = value;
 });

 return this;
 } else {
 return this[0] && this[0].style[key];
 }
};
Elements.prototype.html = function(html) {
 if (typeof html !== "undefined") {
 this.forEach(function(elem) {
 elem.innerHTML = html;
 });
 return this;
 } else {
 return this[0] && this[0].innerHTML;
 }
};
Elements.prototype.filter = function() {
 return new Elements([].filter.apply(this, arguments));

CHAPTER FIFTEEN: PROGRESS134

};
Elements.prototype.slice = function() {
 return new Elements([].slice.apply(this, arguments));
};
Elements.prototype.push = function() {
 [].push.apply(this, arguments);
 return this;
};

A number of changes have occurred, and the design no longer specifies an explicit def-

inition of forEach, indexOf, and sort: these are now inherited directly from the built-in

Array.prototype. This refactored version is still functionally correct and will pass all of

the assertions defined for the Elements class. Unfortunately, refactoring the design so

that it is an Array subclass has cost the library any sense of cohesion: assigning Ele

ments.prototype the value of Object.create(Array.prototype) means that the design

must trade readability of Elements.prototype = {...}; for the forced one-property-

assignment-at-a-time form for all of the subclass’s own prototype methods. This fur-

ther exposes a pathological problem: the source doesn’t visually express the intent,

which is to define a class of thing and its behavior.

A reasonably large portion of readers may cringe at the word class, but it’s important to

remember that class is not about any specific language’s implementation of object-

oriented programming paradigms. Remember where the terms “object” and “class”

came from, with regard to computer programming languages:

A central new concept in Simula 67 is the “object”. An object is a self-

contained program (block instance), having its own local data and actions

defined by a “class declaration”. The class declaration defines a program (data

and action) pattern, and objects conforming to that pattern are said to “belong

to the same class.”

—Ole-Johanv Dahl, Bjorn Myhrhaug, and Kristen Nygaard,

“SIMULA 67 Common Base Language”

With this definition in mind, the piece of code I’m designing is undoubtedly a “class.”

That it is a function declaration with prototype definition is nothing more than an

implementation detail. Once this is accepted, the library may embrace the changes it

will undergo in the final refactoring. Before we can move to the third and final revi-

sion, it’s valuable to revisit patterns that have emerged and gained the most traction.

The constructor function and prototype definition pattern has, unfortunately, proven

itself to be less than intuitive, and for almost a decade JavaScript programmers have

been pursuing a mechanism that will allow them to write program code that includes

some form of class-like semantics. This has led to the proliferation of API-bound

library code that attempts to paper over the lack of syntactic forms, where simplicity is

PROGRESS 135

http://bit.ly/simula_67

3 See, for example, http://api.prototypejs.org/language/Class/, http://ejohn.org/blog/simple-javascript-
inheritance/, http://dean.edwards.name/weblog/2006/03/base/, and http://dojotoolkit.org/documentation/tuto
rials/1.7/declare/.

4 See http://coffeescript.org/#classes.

in the eye of the author.3 In more recent years, languages that transpile to JavaScript

have been created to allow for even simpler syntactic forms to fill in the role of the

missing mechanism.4 What follows is a collection of various class-like APIs and syntac-

tic class declaration forms, all of which define a List class and a People class: the latter

is a subclass of the former whose push method will reject nonstring entries. These crite-

ria represent a common, not-quite-trivial programming task that will serve to illus-

trate, by example, the approaches taken and the patterns that have emerged.

So, for the following specified criteria:

• Define a List class.

• Define a People subclass of List.

• Define a push method that will reject nonstring entries.

these are the assertions that we’ll write tests for:

(Result) An object named List exists, its type is "function"
(Result) An object named People exists, its type is "function"
(Result) Initialization arguments length equals List object length
(Result) Initialization arguments length equals People object length for
 strings only
(Result) Any value may be pushed into a List object.
(Result) String values may be pushed into People object.

A simplified version of these assertions might look like this:

var l = new List(1, "foo", []);
console.log(l.length === 3);
console.log(l.push(42) === 4);

var p = new People("Alice", "Bob", "Carol");
console.log(p.length === 3);
console.log(p.push(42) === 3);
console.log(p.push("Dennis") === 4);

This should be run after each of the following examples (in some cases, after they’ve

been transpiled).

CHAPTER FIFTEEN: PROGRESS136

http://api.prototypejs.org/language/Class/
http://ejohn.org/blog/simple-javascript-inheritance/
http://ejohn.org/blog/simple-javascript-inheritance/
http://dean.edwards.name/weblog/2006/03/base/
http://dojotoolkit.org/documentation/tutorials/1.7/declare/
http://dojotoolkit.org/documentation/tutorials/1.7/declare/
http://coffeescript.org/#classes

JavaScript:

function List() {
 this.push.apply(this, arguments);
}

List.prototype.push = function() {
 return [].push.apply(this, arguments);
};

function People() {
 List.call(this);
 this.push.apply(this, arguments);
}

People.prototype.push = function() {
 return List.prototype.push.apply(
 this, [].filter.call(arguments, function(peep) {
 return typeof peep === "string";
 })
);
};

Prototype.js:

var List = Class.create({
 initialize: function() {
 this.push.apply(this, arguments);
 },
 push: function() {
 return [].push.apply(this, arguments);
 }
});

var People = Class.create(List, {
 push: function($super) {
 return $super.apply(
 this, [].slice.call(arguments, 1).filter(function(peep) {
 return typeof peep === "string";
 })
);
 }
});

Simple JavaScript Inheritance:

var List = Class.extend({
 init: function() {
 this.push.apply(this, arguments);
 },
 push: function() {
 return [].push.apply(this, arguments);
 }
});

PROGRESS 137

var People = List.extend({
 init: function() {
 this._super.apply(this, arguments);
 },
 push: function() {
 return this._super.apply(
 this, [].filter.call(arguments, function(peep) {
 return typeof peep === "string";
 })
);
 }
});

Dojo:

// Thanks to Brian Arnold @brianarn for this one.
// Note that this approach is deprecated and is shown
// here only as a means to illustrate a point.
var List = dojo.declare(null, {
 constructor: function() {
 this.push.apply(this, arguments);
 },
 push: function() {
 return [].push.apply(this, arguments);
 }
});

var People = dojo.declare(List, {
 push: function() {
 return this.inherited(
 arguments, [].filter.call(arguments, function(peep) {
 return typeof peep === "string";
 })
);
 }
});

Ext.js:

Ext.define("List", {
 constructor: function () {
 this.push.apply(this, arguments);
 },
 push: function() {
 return [].push.apply(this, arguments);
 }
});

Ext.define("People", {
 extend: "List",
 push: function() {
 return this.callParent(
 [].filter.call(arguments, function(peep) {

CHAPTER FIFTEEN: PROGRESS138

 return typeof peep === "string";
 })
);
 }
});

CoffeeScript:

class List
 constructor: (args...) ->
 this.push args...

 push: (args...) ->
 [].push args...

class People extends List
 push: (args...) ->
 super (args.filter (peep) -> typeof peep is "string")...

…which transpiles to…

var List, People, _ref,
 __slice = [].slice,
 __hasProp = {}.hasOwnProperty,
 __extends = function(child, parent) {
 for (var key in parent) {
 if (__hasProp.call(parent, key)) child[key] = parent[key];
 }
 function ctor() {
 this.constructor = child;
 }
 ctor.prototype = parent.prototype;
 child.prototype = new ctor();
 child.__super__ = parent.prototype;
 return child;
 };

List = (function() {
 function List() {
 var args;
 args = 1 <= arguments.length ? __slice.call(arguments, 0) : [];
 this.push.apply(this, args);
 }

 List.prototype.push = function() {
 var args, _ref;
 args = 1 <= arguments.length ? __slice.call(arguments, 0) : [];
 return (_ref = []).push.apply(_ref, args);
 };

 return List;

})();

PROGRESS 139

People = (function(_super) {
 __extends(People, _super);

 function People() {
 _ref = People.__super__.constructor.apply(this, arguments);
 return _ref;
 }

 People.prototype.push = function() {
 var args;
 args = 1 <= arguments.length ? __slice.call(arguments, 0) : [];
 return People.__super__.push.apply(this, args.filter(function(peep) {
 return typeof peep === "string";
 }));
 };

 return People;

})(List);

TypeScript:

class List {
 constructor(...args) {
 this.push.apply(this, args);
 }
 push(...args) {
 return [].push.apply(this, args);
 }
}

class People extends List {
 push(...args) {
 return super.push.apply(
 this, args.filter(peep => typeof peep === "string")
);
 }
}

…which transpiles to…

var __extends = this.__extends || function (d, b) {
 for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p];
 function __() { this.constructor = d; }
 __.prototype = b.prototype;
 d.prototype = new __();
};
var List = (function () {
 function List() {
 var args = [];
 for (var _i = 0; _i < (arguments.length - 0); _i++) {
 args[_i] = arguments[_i + 0];
 }

CHAPTER FIFTEEN: PROGRESS140

 this.push.apply(this, args);
 }
 List.prototype.push = function () {
 var args = [];
 for (var _i = 0; _i < (arguments.length - 0); _i++) {
 args[_i] = arguments[_i + 0];
 }
 return [].push.apply(this, args);
 };
 return List;
})();

var People = (function (_super) {
 __extends(People, _super);
 function People() {
 _super.apply(this, arguments);
 }
 People.prototype.push = function () {
 var args = [];
 for (var _i = 0; _i < (arguments.length - 0); _i++) {
 args[_i] = arguments[_i + 0];
 }
 return _super.prototype.push.apply(
 this, args.filter(function (peep) {
 return typeof peep === "string";
 })
);
 };
 return People;
})(List);

Nearly all of these examples have one particular thing in common: a class definition

or some other declaration mechanism that actually uses the word “class.” The compile-

to-JavaScript examples provide a syntactic form, while the already-JavaScript exam-

ples offer API-based implementations. In Dojo’s case, the authors have chosen to name

the API declare, but the documentation for dojo.declare, and the AMD replacement

that supersedes it, describes defining a “Class.” The only outlier here is the example

written JavaScript itself—but don’t be fooled, the language has held the word class as

a FutureReservedWord since ECMAScript 1.0 and has used [[Class]] as an internal spec-

ification mechanism for just as long.

The “super” mechanisms are completely different in each of the API-based examples,

but in all cases the user is expected to know that $super, _super, inherited, and call

Parent are designed to allow calling code to reach the superclass’s method of the same

name as the method from which the call originates. Arguably, if these were all consis-

tently named, this semantic relationship would be more intuitive (as it is in other lan-

guages with similar mechanisms).

PROGRESS 141

I applaud the authors of those projects for their impactful creativity and ingenuity;

however, the repetition and boilerplate shown in the API examples, compounded by

the dramatic output of the transpiled examples, should lead a critical mind to the con-

clusion that a class mechanism is desired, and that for it to be powerful enough to

meet the most common needs it must exist at the language level.

The following example is what the JavaScript example will become, in the very near

future:

class List extends Array {
 constructor(...args) {
 this.push(...args);
 }
}

class People extends List {
 push(...args) {
 return super.push(
 ...args.filter(peep => typeof peep === "string")
);
 }
}

Subjectively, that’s much nicer to look at than all of the API-based examples and visu-

ally on par with compile-to-JavaScript examples. Aesthetics aside, this program is

technically superior to all of the preceding examples. The most obvious change is that

function is no longer used to declare a class, having been replaced with a new declara-

tive form, appropriately named class. Instead of four statement boundaries, as in the

present-day JavaScript example (List, List.prototype, People, People.prototype),

there are now two encapsulated class definitions: List and People. List no longer pro-

vides an explicit declaration of its push method because it’s now inheriting the method

(and correct length semantics) from Array—which can now be safely subclassed. The

extends clause is obviously not limited to built-ins, as we see that the People class is

itself a subclass of List, which is a subclass of Array. Inside of the People class, there is

now a call to a qualified super.push, which is a call to the push method of this class’s

super class (in this case, the call goes up the prototype two steps to Array.proto

type.push). A lot of the ceremonial boilerplate, in most cases irrelevant to what the

program is expressing, has been removed. This is most evident in the lack of any

occurrences of the word “function,” having been replaced by the semantically mean-

ingful “class” and removed in favor of method shorthand notation. Clumsy arguments

objects and verbose parameter handling have been completely replaced by elegantly

simple rest parameters and spread arguments.

With new syntactic forms and language-level mechanisms, we can revisit the Elements

class from earlier in the chapter and apply the same changes to that code—while abid-

ing by the regression tests—for truly dramatic improvements to the code:

CHAPTER FIFTEEN: PROGRESS142

// file:elements-r3.js
class Elements extends Array {
 constructor(selector = "", context = document) {
 super();

 let elems;

 this.context = context;

 if (Array.isArray(selector) ||
 selector instanceof Elements) {
 elems = selector;
 } else {
 try {
 elems = this.context.querySelectorAll(selector);
 } catch (e) {
 // Thrown Exceptions caused by invalid selectors
 // are a nuisance.
 }
 }

 if (!elems) {
 // elems is either:
 // - undefined because the selector was invalid
 // resulting in a thrown exception
 // - null because the querySelectorAll returns
 // null instead of an empty object when no
 // matching elements are found.
 elems = []
 }

 this.push(...elems);
 }
 addClass(value) {
 return this.forEach(elem => elem.classList.add(value));
 }
 attr(key, value) {
 if (typeof value !== "undefined") {
 return this.forEach(elem => elem.setAttribute(key, value));
 } else {
 return this[0] && this[0].getAttribute(key);
 }
 }
 css(key, value) {
 if (typeof value !== "undefined") {
 return this.forEach(elem => elem.style[key] = value);
 } else {
 return this[0] && this[0].style[key];
 }
 }
 html(html) {
 if (typeof html !== "undefined") {
 return this.forEach(elem => elem.innerHTML = html);

PROGRESS 143

 } else {
 return this[0] && this[0].innerHTML;
 }
 }
 filter(callback) {
 return new Elements(super.filter(callback, this));
 }
 slice(...args) {
 return new Elements(super.slice(...args));
 }
 forEach(callback) {
 super.forEach(callback, this);
 return this;
 }
 push(...elems) {
 super.push(...elems);
 return this;
 }
}

A lot has changed, but it’s very important to remember that despite these changes, this

code produces the same class as the previous version (it’s not identical, but for our

purposes it meets the requirements) version and will pass the test suite written for the

implementation prior to this refactoring.

To more accurately express the intention of this code, the function declaration and

explicit prototype definition have been replaced by a single class declaration. Where

the previous examples required two or three different syntactic forms (function decla-

ration statements, assignment expressions coupled to make expression statements,

etc.), the refactored form provides a distinct boundary (the class body) that encapsu-

lates the constructor and all of the class’s prototype object method definitions—which

use the elegantly succinct concise method syntax. Of course, by using the class form,

the declaration can now take advantage of true subclassing via the extends clause.

Potential “falsy-positive” footguns created by logical OR operations to determine the

default values of the selector and context parameters have been mitigated, and these

are now more clearly expressed in the form of default parameter assignments. The

entirely unobvious use of the Array constructor as a pseudo-super call mechanism has

been replaced by the unmistakably obvious super call in the constructor. All of the

anonymous function expressions have been replaced by arrow functions, eliminating

the clutter incurred by function() { return ...; }.

The most important aspect to consider is the overall removal of “distraction.” This revi-

sion from the future takes the focus away from the esoteric inheritance, method bor-

rowing incantations, and repetitious boilerplate, to bring the semantics of the program

itself into view—and does so in a completely compatible way, as evidenced by the

passing of our regression tests.

CHAPTER FIFTEEN: PROGRESS144

As we’ve seen throughout this chapter, JavaScript is a powerful language that has

always been flexible and expressive enough to empower its users to define the evolu-

tion of the language well ahead of its time. Through this real-world inspiration, the

language itself has been able to progress in ways that directly correspond to the works

of its practitioners.

PROGRESS 145

Index

A
abc conjecture, 110-112

abstract syntax tree (AST), 66

abstraction, 28

advice mixins, 10

Alman, Ben, 108

anabelian geometry, 110

array class, inheritance and, 130-144

art, programming as, 34-38

asynchronous, nonblocking I/O, 97

audience, identifying, 111

augmentation (extend function), 6

B
Backbone

about, 79

Collection.prototype._prepareModel

function, 50

defining new model in, 47

new possibilities created by, 79-82

Bacon, Francis, 34

Bazaarvoice, 80

Beatty, Frances F. L., 29

beauty, JavaScript, 115-118

binary pattern matches, 21-25

Bootstrap, 35

browsers, error handling in, 91

"bunnies"

defined, 28

"rabbits" vs., 27-38

C
caching

memory leaks and, 54

mixins and, 9

callback, 95

Carmack, John, 127

Carroll, Lewis, 27

Cascading Style Sheets (CSS), 59

choice, paradox of, 60

Chrome browser, 9

error handling with, 91

147

error messages with, 84

class

code for defining, 135-144

origin of term, 135

classical inheritance, 1

mixins vs., 11

simulating when programming with

teams, 41-43

Closure Library, 42

closures, 101

coding beyond logic, 105-114

and abc conjecture, 110-112

peer review, 112-114

Quines paradox, 105-110

CoffeeScript Wiki, 102

Collection class, 48

Collection.prototype._prepareModel

function, 50

common language

and paradox of choice, 60

JavaScript as, 57-60

communication, program as means of,

114

concurrency, 99

consistency, for team coding, 43

constants, 124

constructor function, 51

context, defined, 73

copy, rabbit drawing as, 27

creativity

drawing "rabbits" vs. "bunnies", 27-38

in individual programming

approaches, 32

Croll, Angus, 35

D
Dahl, Ole-Johan, 135

Dalí, Salvador, 115

data-driven programming, 125

debugging, 21, 40

(see also error handling, errors)

dependencies, 20

differential inheritance, 2

Dojo, 79, 141

domain-specific languages (DSLs)

binary pattern matches with, 21-25

compiling down to JavaScript, 21-25

for math expression parser and eval-

uator, 61

mixing languages, 19

speed of, 18

domains (Node.js feature), 92

dynamic language, 101

E
education, standardized models and, 33

elements class, 131-135

Endoh, Yusuke, 108

Erlang, 22

error handling, 89-93

global, in browsers, 91

global, in Node.js, 92

error messages, 84

errors, 83-93

custom, 88

handling, 89-93

inevitability of, 83

throwing, 84

types of, 86

when to throw, 86

eval, 102

and interface, 14

as tool, 13

common uses, 16

debugging generated code, 21

history, 14

minimizing cost of, 15

with template compiler, 16-18

evaluation context, 73

event loop, Node.js, 95-100

adding tasks to, 99

asynchronous, nonblocking I/O, 97

INDEX148

concurrency, 99

defined, 96

event-driven programming, 95

event notification systems, 97

event, defined, 95

event-driven programming, 95

evolution of code, teams and, 44

evolution, JavaScript, 77-82

evolutionary complexity, 44

exceptions (see error handling) (see

errors)

experimentation, 29-32

expression (personal), programming as,

34-38

expression evaluator, 72-75

expressions, in functional programming

languages, 119

expressive language, JavaScript as, 29-32

extend function, 6

F
factory function, 50

Firefox, error handling with, 84, 91

first-class functions, 120

Fitzgerald, Nick, 124

Flight (Twitter framework), 10

Fogus, Michael, 120

Ford, Paul, 113

formalism, 111

Fuchs, Thomas, 1

Function constructor, 15

functional JavaScript, 119-128

and functional programming,

119-121, 121-126

and objects, 126

Functional JavaScript (Fogus), 120

functional mixins, 7, 9

functional programming, 119

(see also functional Javascript)

FutureReservedWord, 141

G
generated code, debugging, 21

global scope, local scope vs., 14

Gmail, 39

Gödel, Escher, Bach: an Eternal Golden

Braid (Hofstadter), 106

goog.inherits, 42

Google, 39, 102

Google Closure, 44

H
Halliday, James, 107

Haskell, 58

higher-order functions, 121

Hofstadter, Douglas, 106

HyperText Markup Language (HTML), 59

I
If Hemingway Wrote JavaScript (Croll),

35

imperative program, 119

inheritance

and JavaScript evolution, 129-145

classical (see classical inheritance)

instance-based inheritance, 41

inter-universal geometry, 110

Internet Explorer, error messages in, 84

interpreters

defined, 14

for domain-specific languages, 25

Irish, Paul, 77

J
Jargon File, 106

Java virtual machine (JVM), 58

Java, JavaScript vs., 58

JavaScript

advantageous qualities of, 101-103

as common language, 57-60

INDEX 149

as dynamic language, 101

as expressive language, 29-32

as functional language, 102, 121-126

as static language, 102

beauty of, 115-118

functional programming in, 119-128

Googles approach to, 39

"rabbits" vs. "bunnies" in, 29

reasons for popularity of, vii

versatility of, 103

JavaScript MVC, 47

Johnson, Ray, 29

jQuery, 25, 79, 130

JSON data, 16

just-in-time (JIT) compilation, 101

K
Knuth, Donald, 101

L
language(s)

and paradox of choice, 60

creating, 113

JavaScript as common, 57-60

mixing, 19

weak, 19

lexer (tokenizer), 61

lexical analysis, 61-65

liars paradox, 105

libuv (Node.js native library), 96

Lisp, 14

local scope, 14

logic, coding beyond, 105-114

and abc conjecture, 110-112

peer review, 112-114

Quines paradox, 105-110

M
Maccaw, Alex, 36

"Markup-based Unobtrusive Compre-

hensive DOM-ready Execution"

(Irish), 77

math expression parser and evaluator,

61-76

lexical analysis and tokens, 61-65

syntax parser and syntax tree, 66-72

tree walker and expression evaluator,

72-75

memory leaks, 54

Miller, Charles, 11

mixins, 3-12

and advice, 10

and caching, 9

and extend function, 6

and options argument, 8

classic, 5

classical inheritance vs., 11

functional, 7

JavaScript definition, 4

traditional definition, 4

use case schematic, 4

Mochizuki, Shinichi, 110, 112

models

and constructor function, 51

and factory function, 50

and new operator, 51

and UniqueFactory function, 52-54

and uniqueness problem, 48-55

hacking JavaScript constructors to

harmonize, 47-55

scaling to work with any class, 52-54

MVC (Model-View-Controller), 47

Myhrhaug, Bjorn, 135

N
new operator, 51

Node.js

adding tasks to event loop, 99

asynchronous, nonblocking I/O, 97

concurrency, 99

INDEX150

event loop, 95-100

event-driven programming, 95

global error handling in, 92

util.inherits, 42

nonblocking I/O, 97

Norman, Donald A., 83, 89

Nygaard, Kristen, 135

O
object-oriented languages, 119

objects

origin of term, 135

with functional JavaScript, 126

"On Proof and Progress in Mathematics"

(Thurston), 111

ONeil, Cathy, 111

Opera, error messages in, 84

operating system threads, 97

P
paradox of choice, 60

parallelism, 99

Paulson, Larry, 121

peer review, 112-114

personal expression, programming as,

34-38

PhoneGap, 80

Picasso, Pablo, 36

play, programming as, 29

precompilation, 16

procedural languages, 119

programming as expressive gesture,

34-38

prototypal inheritance, 2, 41

prototypes, 2

pseudoarguments, 37

Q
quine (noun), 106-110, 113

Quine Page, The, 106, 113

Quine Relay, 108

Quine, William Van Orman, 105

Quines paradox, 105-110

R
"rabbits"

as educational model, 33

"bunnies" vs., 27-38

defined, 27

Radiation Hardened Quine, 108

Rails, 58

Ratchet, 35

recursive-descent parsing, 66

referential transparency, 120

Resig, John, 78, 130

Robinson, Kim Stanley, 39

robots, 126

Ruby, 58, 108

S
Safari, error messages in, 84

Sammy.js, 79

scanner (tokenizer), 61

Schiffer, Jenn, 57

Sexton, Alex, 78

simplicity, importance of, 40

"SIMULA 67 Common Base Language"

(Dahl, Myhrhaug & Nygaard), 135

single-threaded event loop, 99

social construct, software as, 111

software as social construct, 111

stack property, 85

static language, JavaScript as, 102

style, when programming with teams, 43

Swift, Geoffrey A., 106

switch function, 103

symbol, bunny as, 28

syntactic analysis, 66

syntax parser, 66-72

syntax tree, 66-72

INDEX 151

T
Taivalsaari, Antero, 2

teams, 39-45

and evolution of code, 44

classical inheritance simulation for,

41-43

clear coding with, 40

consistent style for, 43

team members as audience for code,

39

templates

compiler for, 16-18

dependencies and scopes, 20

precompilation, 16

testing, 131

Thompson, Gary P., II, 106, 113

threads, operating system, 97

throwing errors, 84

Thurston, William, 111

tokenizer (lexer), 61

tokens, 61-65

Toura, 80

tree walker, 72-75

try-catch-finally construct, 89

Twitter, 36

U
UniqueFactory function, 52-54

uniqueness problem, 48-55

UserFactory function, 50

"Using Objects to Organize Your Code"

(Murphey), 78

util.inherits, 42

V
variation in individual programming

approaches, 32

virtual machines, 101

W
"Ways of Paradox, The" (Quine), 105

weak languages, 19

web browsers, error handling, 91

Web Inspector, error messages, 85

X
XhrLite, 44

Z
zip function, 124

INDEX152

About the Authors
Anton Kovalyov (@valueof) was born and raised in Tashkent, Uzbekistan. Back in

the day, he was mostly writing Python and (re-)compiling Gentoo. In 2008, he moved

to the United States where he joined Disqus. Around the same time, he discovered

JavaScript and the two have been inseparable ever since. While at Disqus, Anton

authored JSHint, a JavaScript linting tool, and coauthored Third-Party JavaScript (Man-

ning). After Disqus, Anton moved to Mozilla, where he worked on the Firefox Devel-

oper Tools team. Today, Anton works at Medium and lives in Oakland, California.

Jonathan Barronville (@jonathanmarvens) is a 21-year-old Haitian hacker. He

enjoys learning new things and then force-teaching them to you. Although most of his

experience is in web development, Jonathan enjoys low-level systems hacking, data-

base theory, and distributed systems problems.

Sara Chipps (@sarajchipps) is a JavaScript developer based in New York City. She has

been working on software and in the open source community since 2001. She’s been

obsessed with hardware and a fan of Nodebots.com since 2012.

Sara is the CEO of Jewelbots.com, a company dedicated to drastically changing the

number of girls entering STEM (science, technology, engineering, and mathematics)

fields using hardware.

In 2010, Sara cofounded Girl Develop It, a nonprofit focused on helping more women

become software developers. Girl Develop It is in 45 cities, and has taught over 17,000

women how to build software.

Angus Croll (@angustweets) is obsessed with JavaScript and literature in equal meas-

ure. He works as a frontend engineer at Twitter and is the author of If Hemingway Wrote

JavaScript (No Starch Press).

Marijn Haverbeke (@marijnjh) is the author of Eloquent JavaScript (No Starch Press)

and creator of CodeMirror and Tern. He’s an independent open source critter and

JavaScript code cowboy.

Ariya Hidayat (@ariyahidayat), currently working for Shape Security, is a passionate

engineer interested in bleeding-edge technologies. He is known as the author of Phan-

tomJS and Esprima. These days, his focus is mostly on software craftsmanship around

web technologies.

Daryl Koopersmith (@koop) is an engineer at Medium, where he leads the web cli-

ent guild. Previously at Automattic, he was a core committer to the WordPress open

source project. Some days, he pretends to be a barista.

153

https://twitter.com/valueof
https://twitter.com/jonathanmarvens
https://twitter.com/sarajchipps
http://Nodebots.com
http://Jewelbots.com
https://twitter.com/angustweets
https://twitter.com/marijnjh
https://twitter.com/ariyahidayat
https://twitter.com/koop

Rebecca Murphey (@rmurphey) is a staff software engineer at Bazaarvoice. She has

played a key role in the software design and development of high-traffic client-side

web applications, and is known for her expertise in best practices for organizing, test-

ing, refactoring, and maintaining JavaScript application code. Rebecca developed the

JS Assessment project, an open source tool used by individuals, companies, and code

schools to evaluate a developer’s JavaScript skills. She was instrumental in getting

promises introduced to jQuery 1.5 and has contributed to several open source projects.

She authored the online book jQuery Fundamentals, contributed to the jQuery Cookbook

(O’Reilly), and served as a technical reviewer for Garann Means’s Node for Front-End

Developers (O’Reilly) and David Herman’s Effective JavaScript (Addison-Wesley Professio-

nal). She lives in Austin with her partner and their son.

Daniel Pupius (@dpup) is the head of engineering at Medium. Previously at Google,

he worked on Google+ and Gmail, and cofounded the Closure library.

He cut his teeth fighting version 4 browsers and was involved in the early DHTML

community, before AJAX was a thing. In other lives Dan has raced snowboards, jum-

ped out of planes, and lived in the jungle.

Graeme Roberts (@cheedear), “chee”; recently made redundant by lonely planet;

cyrano de bergerac of svg icons; five foot ten and a half; drinks tom collins; essentially

useless; made of fire and tears.

Jenn Schiffer (@jennschiffer) is an engineer and artist who focuses on open web

technology, open source development, and getting yelled at on Twitter. She is the crea-

tor of make8bitart.com, among other code/art projects, and writes tech satire on a

number of media. You can find everything she has ruined ever online at http://jennmo

ney.biz.

Jacob Thornton (@fat), creator of bootstrap, bower, ratchet, and a handful of other

open source technologies. Twitter, Medium, Obvious, chill tech enterprises. 6’ 3”.

Aries. Grows parsley. Emotional. Worst engineer at the company, but third coolest.

Ben Vinegar (@bentlegen) is a software engineer based in San Francisco, and the

coauthor of Third-Party JavaScript (Manning). He was formerly lead frontend engineer

at Disqus.

Rick Waldron (@rwaldron) is an open web engineer at Bocoup, Ecma/TC39 repre-

sentative for the jQuery Foundation, and creator of Johnny-Five, a JavaScript robotics

programming framework.

Nicholas Zakas (@slicknet) is a frontend engineer, author, and speaker. He currently

works at Box making the web application awesome. Prior to that, he worked at Yahoo!

for almost five years, where he was frontend tech lead for the Yahoo! home page and a

contributor to the YUI library. He is the author of Maintainable JavaScript (O’Reilly),

154

https://twitter.com/rmurphey
http://shop.oreilly.com/product/9780596159788.do
http://shop.oreilly.com/product/0636920023258.do
http://shop.oreilly.com/product/0636920023258.do
https://twitter.com/dpup
https://twitter.com/cheedear
https://twitter.com/jennschiffer?lang=en
http://make8bitart.com/
http://jennmoney.biz
http://jennmoney.biz
https://twitter.com/fat
https://twitter.com/bentlegen
https://twitter.com/rwaldron
https://twitter.com/slicknet
http://shop.oreilly.com/product/0636920025245.do

Professional JavaScript for Web Developers (Wrox), High Performance JavaScript (O’Reilly),

and Professional Ajax (Wrox). Nicholas is a strong advocate for development best practi-

ces including progressive enhancement, accessibility, performance, scalability, and

maintainability. He blogs regularly at NCZOnline.

Colophon
The cover fonts are URW Typewriter and Guardian Sans. The text font is Adobe Meri-

dien; the heading fonts are Akzidenz-Grotesk and Adobe Minion Pro; and the code

font is Dalton Maag’s Ubuntu Mono.

155

http://shop.oreilly.com/product/9780596802806.do
http://www.nczonline.net

	Copyright
	Table of Contents
	Preface
	About This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Beautiful Mixins
	Classical Inheritance
	Prototypes
	Mixins
	The Basics
	The Use Case
	Classic Mixins
	The extend Function
	Functional Mixins
	Adding Options
	Adding Caching
	Advice

	Wrapup

	eval and Domain-Specific Languages
	What About “eval Is Evil”?
	History and Interface
	Performance
	Common Uses
	A Template Compiler
	Speed
	Mixing Languages
	Dependencies and Scopes
	Debugging Generated Code
	Binary Pattern Matches
	Closing Thoughts

	How to Draw a Bunny
	What Is a Rabbit?
	What Is a Bunny?
	What Does This Have to Do with JavaScript?
	With So Much Variation, Which Way Is Correct?
	How Does This Affect the Classroom?
	Is This Art? And Why Does That Matter?
	What Does This Look Like?
	What Did I Just Read?

	Too Much Rope, or JavaScript for Teams
	Know Your Audience
	Stupid Good
	Keep It Classy
	Style Rules
	Evolution of Code
	Conclusion

	Hacking JavaScript Constructors for Model Harmony
	Doppelgangers
	Miniature Models of Factories
	Constructor Identity Crisis
	Making It Scale
	Conclusion

	One World, One Language
	An Imperative, Dynamic Proposal
	The Paradox of Choice
	Globalcommunicationscript

	Math Expression Parser and Evaluator
	Lexical Analysis and Tokens
	Syntax Parser and Syntax Tree
	Tree Walker and Expression Evaluator
	Final Words

	Evolution
	Backbone
	New Possibilities

	Error Handling
	Assume Your Code Will Fail
	Throwing Errors
	When to Throw Errors
	Types of Errors
	Custom Errors

	Handling Errors
	Global Error Handling in Browsers
	Global Error Handling in Node.js

	Summary

	The Node.js Event Loop
	Event-Driven Programming
	Asynchronous, Nonblocking I/O
	Concurrency
	Adding Tasks to the Event Loop

	JavaScript Is…
	JavaScript Is Dynamic
	JavaScript Can Be Static
	JavaScript Is Functional
	JavaScript Does Everything

	Coding Beyond Logic
	0. The Basement
	1. Quine’s Paradox
	2. The Conjecture
	3. Peer Review

	JavaScript Is Cutieful
	All This Loose Beauty
	The Absurdity of Dalí
	Dalí’s JavaScript
	Is This Beauty Just Ugly?
	An Unfortunate Necessity
	The Beauty Is in the Madness
	Let’s Have a Wee Look at map
	Hello, thisArg
	Okay! So That’s a Bunch of Stuff I Already Knew About [].map—Now What?
	calling All Cars
	Number
	Now I Know Everything
	Wild

	Functional JavaScript
	Functional Programming
	Functional JavaScript
	Objects
	Now What?

	Progress
	Index

