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PREFACE

This book is aimed at all those who wish to discover how to analyze categor-
ical data without getting immersed in complicated mathematics and without
needing to wade through a large amount of prose. It is aimed at researchers
with their own data ready to be analyzed and at students who would like an
approachable alternative view of the subject. The few starred sections provide
background details for interested readers, but can be omitted by readers who
are more concerned with the “How” than the “Why.”

As the title suggests, each new topic is illustrated with an example. Since
the examples were as new to the writer as they will be to the reader, in many
cases I have suggested preliminary visualizations of the data or informal anal-
yses prior to the formal analysis. Any model provides, at best, a convenient
simplification of a mass of data into a few summary figures. For a proper
analysis of any set of data, it is essential to understand the background to the
data and to have available information on all the relevant variables. Exam-
ples in textbooks cannot be expected to provide detailed insights into the data
analyzed: those insights should be provided by the users of the book in the
context of their own sets of data.

In many cases (particularly in the later chapters), R code is given and
excerpts from the resulting output are presented. R was chosen simply
because it is free! The thrust of the book is about the methods of analy-
sis, rather than any particular programming language. Users of other lan-
guages (SAS, STATA, ...) would obtain equivalent output from their analyses;
it would simply be presented in a slightly different format. The author does

xi
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xii PREFACE

not claim to be an expert R programmer, so the example code can doubtless
be improved. However, it should work adequately as it stands.

In the context of log-linear models for cross-tabulations, two “specialties
of the house” have been included: the use of cobweb diagrams to get visual
information concerning significant interactions, and a procedure for detecting
outlier category combinations. The R code used for these is available and may
be freely adapted.

Graham J. G. Upton

Wivenhoe, Essex
March, 2016
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CHAPTER 1

INTRODUCTION

This chapter introduces basic statistical ideas and terminology in what the
author hopes is a suitably concise fashion. Many readers will be able to turn
to Chapter 2 without further ado!

1.1 WHAT ARE CATEGORICAL DATA?

Categorical data are the observed values of variables such as the color of a
book, a person’s religion, gender, political preference, social class, etc. In
short, any variable other than a continuous variable (such as length, weight,
time, distance, etc.).

If the categories have no obvious order (e.g., Red, Yellow, White, Blue)
then the variable is described as a nominal variable. If the categories have an
obvious order (e.g., Small, Medium, Large) then the variable is described as
an ordinal variable. In the latter case the categories may relate to an under-
lying continuous variable where the precise value is unrecorded, or where it
simplifies matters to replace the measurement by the relevant category. For
example, while an individual’s age may be known, it may suffice to record
it as belonging to one of the categories “Under 18,” “Between 18 and 65,”
“Over 65.”

If a variable has just two categories, then it is a binary variable and whether
or not the categories are ordered has no effect on the ensuing analysis.

Categorical Data Analysis by Example, First Edition. Graham J. G. Upton.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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2 INTRODUCTION

1.2 A TYPICAL DATA SET

The basic data with which we are concerned are counts, also called frequen-
cies. Such data occur naturally when we summarize the answers to questions
in a survey such as that in Table 1.1.

TABLE 1.1 Hypothetical sports preference survey

Sports preference questionnaire

(A) Are you:- Male □ Female □?
(B) Are you:- Aged 45 or under □ Aged over 45 □?
(C) Do you:- Prefer golf to tennis □ Prefer tennis to golf □?

The people answering this (fictitious) survey will be classified by each of
the three characteristics: gender, age, and sport preference. Suppose that the
400 replies were as given in Table 1.2 which shows that males prefer golf to
tennis (142 out of 194 is 73%) whereas females prefer tennis to golf (161 out
of 206 is 78%). However, there is a lot of other information available. For
example:

� There are more replies from females than males.
� There are more tennis lovers than golf lovers.
� Amongst males, the proportion preferring golf to tennis is greater

amongst those aged over 45 (78/102 is 76%) than those aged 45 or under
(64/92 is 70%).

This book is concerned with models that can reveal all of these subtleties
simultaneously.

TABLE 1.2 Results of sports preference survey

Category of response Frequency

Male, aged 45 or under, prefers golf to tennis 64
Male, aged 45 or under, prefers tennis to golf 28
Male, aged over 45, prefers golf to tennis 78
Male, aged over 45, prefers tennis to golf 24
Female, aged 45 or under, prefers golf to tennis 22
Female, aged 45 or under, prefers tennis to golf 86
Female, aged over 45, prefers golf to tennis 23
Female, aged over 45, prefers tennis to golf 75
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VISUALIZATION AND CROSS-TABULATION 3

1.3 VISUALIZATION AND CROSS-TABULATION

While Table 1.2 certainly summarizes the results, it does so in a clumsily
long-winded fashion. We need a more succinct alternative, which is provided
in Table 1.3.

TABLE 1.3 Presentation of survey results by gender

Male Female

Sport
45 and
under

Over
45 Total Sport

45 and
under

Over
45 Total

Tennis 28 24 52 Tennis 86 75 161
Golf 64 78 142 Golf 22 23 45

Total 92 102 194 Total 108 98 206

A table of this type is referred to as a contingency table—in this case it is
(in effect) a three-dimensional contingency table. The locations in the body
of the table are referred to as the cells of the table. Note that the table can be
presented in several different ways. One alternative is Table 1.4.

In this example, the problem is that the page of a book is two-dimensional,
whereas, with its three classifying variables, the data set is essentially three-
dimensional, as Figure 1.1 indicates. Each face of the diagram contains infor-
mation about the 2 × 2 category combinations for two variables for some par-
ticular category of the third variable.

With a small table and just three variables, a diagram is feasible, as Fig-
ure 1.1 illustrates. In general, however, there will be too many variables and
too many categories for this to be a useful approach.

TABLE 1.4 Presentation of survey results by sport preference

Prefers tennis Prefers golf

Gender
45 and
under

Over
45 Total Gender

45 and
under

Over
45 Total

Female 86 75 161 Female 22 23 45
Male 28 24 52 Male 64 78 142

Total 114 99 213 Total 86 101 187

****************************************************************************************************************************************************************************************************



4 INTRODUCTION

Aged 45 or under

Aged over 45

Male

Female

22

86

28

23

78

75

24

64

Prefers golf

Prefers tennis

Age

Gender

Sport

FIGURE 1.1 Illustration of results of sports preference survey.

1.4 SAMPLES, POPULATIONS, AND RANDOM VARIATION

Suppose we repeat the survey of sport preferences, interviewing a second
group of 100 individuals and obtaining the results summarized in Table 1.5.

As one would expect, the results are very similar to those from the
first survey, but they are not identical. All the principal characteristics
(for example, the preference of females for tennis and males for golf) are
again present, but there are slight variations because these are the replies
from a different set of people. Each person has individual reasons for
their reply and we cannot possibly expect to perfectly predict any indi-
vidual reply since there can be thousands of contributing factors influenc-
ing a person’s preference. Instead we attribute the differences to random
variation.

TABLE 1.5 The results of a second survey

Prefers tennis Prefers golf

Gender
45 and
under

Over
45 Total Gender

45 and
under

Over
45 Total

Female 81 76 157 Female 16 24 40
Male 26 34 60 Male 62 81 143

Total 107 110 217 Total 78 105 183
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PROPORTION, PROBABILITY, AND CONDITIONAL PROBABILITY 5

Of course, if one survey was of spectators leaving a grand slam tennis tour-
nament, whilst the second survey was of spectators at an open golf tourna-
ment, then the results would be very different! These would be samples from
very different populations. Both samples may give entirely fair results for
their own specialized populations, with the differences in the sample results
reflecting the differences in the populations.

Our purpose in this book is to find succinct models that adequately describe
the populations from which samples like these have been drawn. An effective
model will use relatively few parameters to describe a much larger group of
counts.

1.5 PROPORTION, PROBABILITY, AND CONDITIONAL
PROBABILITY

Between them, Tables 1.4 and 1.5 summarized the sporting preferences of
800 individuals. The information was collected one individual at a time,
so it would have been possible to keep track of the counts in the eight
categories as they accumulated. The results might have been as shown in
Table 1.6.

As the sample size increases, so the observed proportions, which are ini-
tially very variable, becomes less variable. Each proportion slowly converges
on its limiting value, the population probability. The difference between
columns three and five is that the former is converging on the probabil-
ity of randomly selecting a particular type of individual from the whole
population while the latter is converging on the conditional probability
of selecting the individual from the relevant subpopulation (males aged
over 40).

TABLE 1.6 The accumulating results from the two surveys

Sample
size

Number of
males over 40

who prefer
golf

Proportion of sample
that are males aged
over 40 and prefer

golf

Number
of

males

Proportion of
males aged over
40 who prefer

golf

10 3 0.300 6 0.500
20 5 0.250 11 0.455
50 8 0.160 25 0.320

100 22 0.220 51 0.431
200 41 0.205 98 0.418
400 78 0.195 194 0.402
800 159 0.199 397 0.401
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6 INTRODUCTION

1.6 PROBABILITY DISTRIBUTIONS

In this section, we very briefly introduce the distributions that are directly rel-
evant to the remainder of the book. A variable is described as being a discrete
variable if it can only take one of a finite set of values. The probability of any
particular value is given by the probability function, P.

By contrast, a continuous variable can take any value in one or more possi-
ble ranges. For a continuous random variable the probability of a value in the
interval (a, b) is given by integration of a function f (the so-called probability
density function) over that interval.

1.6.1 The Binomial Distribution

The binomial distribution is a discrete distribution that is relevant when a
variable has just two categories (e.g., Male and Female). If the probability
of a randomly chosen individual has probability p of being male, then the
probability that a random sample of n individuals contains r males is given
by

P(r) =
⎧⎪⎨⎪⎩
(

n
r

)
pr(1 − p)n−r r = 0, 1,… , n,

0 otherwise,
(1.1)

where (
n
r

)
= n!

r!(n − r)!
,

and

r! = r × (r − 1) × (r − 2) × · · · × 2 × 1.

A random variable having such a distribution has mean (the average value)
np and variance (the usual measure of variability) np(1 − p). When p is very
small and n is large—which is often the case in the context of contingency
tables—then the distribution will be closely approximated by a Poisson dis-
tribution (Section 1.6.3) with the same mean. When n is large, a normal dis-
tribution (Section 1.6.4) also provides a good approximation.

This distribution underlies the logistic regression models discussed in
Chapters 7–9.

****************************************************************************************************************************************************************************************************



PROBABILITY DISTRIBUTIONS 7

1.6.2 The Multinomial Distribution

This is the extension of the binomial to the case where there are more than
two categories. Suppose, for example, that a mail delivery company classifies
packages as being either Small, Medium, and Large, with the proportions
falling in these classes being p, q, and 1 − p − q, respectively. The probability
that a random sample of n packages includes r Small packages, s Medium
packages, and (n − r − s) Large packages is

n!
r!s!(n − r − s)!

prqs(1 − p − q)n−r−s where 0 ≤ r ≤ n; 0 ≤ s ≤ (n − r).

This distribution underlies the models discussed in Chapter 10.

1.6.3 The Poisson Distribution

Suppose that the probability of an individual having a particular characteris-
tic is p, independently, for each of a large number of individuals. In a random
sample of n individuals, the probability that exactly r will have the charac-
teristic, is given by Equation (1.1). However, if p (or 1 − p) is small and n is
large, then that binomial probability is well approximated by

P(r) =

{
𝜇r

r!
e−𝜇 r = 0, 1,… ,

0 otherwise,
(1.2)

where e is the exponential function (=2.71828...) and 𝜇 = np. A random vari-
able with distribution given by Equation (1.2) is said to have a Poisson distri-
bution with parameter (a value determining the shape of the distribution) 𝜇.
Such a random variable has both mean and variance equal to 𝜇.

This distribution underlies the log-linear models discussed in Chapters
11–16.

1.6.4 The Normal Distribution

The normal distribution (known by engineers as the Gaussian distribution) is
the most familiar example of a continuous distribution.

If X is a normal random variable with mean 𝜇 and variance 𝜎2, then X has
probability density function given by

f(x) = 1

𝜎

√
2𝜋

e−(x−𝜇)2∕2𝜎2
. (1.3)

****************************************************************************************************************************************************************************************************
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μ – 2σ μ + 2σ x

N(μ, σ2)

μ

FIGURE 1.2 A normal distribution, with mean 𝜇 and variance 𝜎2.

The density function is illustrated in Figure 1.2. In the case where 𝜇 =
0 and 𝜎2 = 1, the distribution is referred to as the standard normal dis-
tribution. Any tables of the normal distribution will be referring to this
distribution.

Figure 1.2 shows that most (actually, about 95%) of observations on a ran-
dom variable lie within about two standard deviations (actually 1.96𝜎) of the
mean, with only about three observations in a thousand having values that
differ by more than three standard deviations from the mean. The standard
deviation is the square root of the variance.

1.6.4.1 The Central Limit Theorem An informal statement of this the-
orem is

A random variable that can be expressed as the sum of a large number of “component”
variables which are independent of one another, but all have the same distribution, will
have an approximate normal distribution.

The theorem goes a long way to explaining why the normal distribution is
so frequently found, and why it can be used as an approximation to other
distributions.

1.6.5 The Chi-Squared (𝝌2) Distribution

A chi-squared distribution is a continuous distribution with a single param-
eter known as the degrees of freedom (often abbreviated as d.f.). Denoting
the value of this parameter by 𝜈, we write that a random variable has a 𝜒2

𝜈
-

distribution. The 𝜒2 distribution is related to the normal distribution since, if
Z has a standard normal distribution, then Z2 has a 𝜒2

1 -distribution.
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ν=2

ν=4

ν=8

18126

0.5

f(x)

x

FIGURE 1.3 Chi-squared distributions with 2, 4, and 8 degrees of freedom.

Figure 1.3 gives an idea of what the probability density functions of chi-
squared distributions look like. For small values of 𝜈 the distribution is notably
skewed (for 𝜈 > 2, the mode is at 𝜈 − 2). A chi-squared random variable has
mean 𝜈 and variance 2𝜈.

A very useful property of chi-squared random variables is their additivity:
if U and V are independent random variables having, respectively 𝜒2

u - and 𝜒2
v -

distributions, then their sum, U + V , has a 𝜒2
u+v distribution. This is known as

the additive property of 𝜒2 distributions.
Perhaps more importantly, if W has a 𝜒2

w-distribution then it will always
be possible to find w independent random variables (W1, W2,…, Ww) for
which W = W1 + W2 + · · · + Ww, with each of W1, W2,…, Ww having 𝜒2

1 -
distributions. We will make considerable use of this type of result in the anal-
ysis of contingency tables.

1.7 *THE LIKELIHOOD

Suppose that n observations, x1, x2,…, xn, are taken on the random variable,
X. The likelihood, L, is the product of the corresponding probability functions
(in the case of a discrete distribution) or probability density functions (in the
case of a continuous distribution):

L = P(x1) × P(x2) × · · · × P(xn) or L = f(x1) × f(x2) × · · · × f(xn) (1.4)

In either case the likelihood is proportional to the probability that a future set
of n observations have precisely the values observed in the current set. In most
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cases, while the form of the distribution of X may be known (e.g., binomial,
Poisson), the value of that distribution’s parameter (e.g., p, 𝜇) will not be
known. Since the observed values have indeed occurred, a logical choice for
any unknown parameter would be that value that maximizes the probability
of reoccurrence of x1, x2,…, xn; this is the principle of maximum likelihood.

Suppose that there are r distinct values (v1, v2,…, vr) amongst the n obser-
vations, with the value vi occurring on fi occasions (so

∑
fi = n). The distri-

bution that maximizes L is the discrete distribution that precisely describes
what has been observed:

P(X = x) =
{

fi∕n for x = vi, i = 1, 2,… , r,
0 otherwise.

(1.5)
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CHAPTER 2

ESTIMATION AND INFERENCE FOR
CATEGORICAL DATA

This chapter introduces measures of goodness-of-fit and methods for per-
forming tests of hypotheses concerning binomial probabilities. It introduces
mid-P and illustrates the difficulties attached to the construction of confidence
intervals for binomial probabilities.

2.1 GOODNESS OF FIT

Throughout this book we will be concerned with using models to explain
the observed variations in the frequencies of occurrence of various outcomes.
In this chapter, we are concerned with the frequencies of occurrence of the
categories of a single variable. We begin by introducing two general-purpose
goodness-of-fit tests.

2.1.1 Pearson’s X2 Goodness-of-Fit Statistic

Suppose that we have an observed frequency of 20. If the model in question
suggests an expected frequency of 20, then we will be delighted (and sur-
prised!). If the expected frequency is 21, then we would not be displeased, but
if the expected frequency was 30 then we might be distinctly disappointed.
Thus, denoting the observed frequency by f and that expected from the model
by e, we observe that the size of ( f − e) is relevant.

Categorical Data Analysis by Example, First Edition. Graham J. G. Upton.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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12 ESTIMATION AND INFERENCE FOR CATEGORICAL DATA

Now suppose the observed frequency is 220 and the estimate is 230. The
value of ( f − e) is the same as before, but the difference seems less important
because the size of the error is small relative to the size of the variable being
measured. This suggests that the proportional error ( f − e)∕e is also relevant.
Both ( f − e) and ( f − e)∕e are embodied in Pearson’s X2 statistic:

X2 =
∑

( f − e) ×
( f − e)

e
=
∑ ( f − e)2

e
, (2.1)

where the summation is over all categories of interest. The test statistic has an
approximate 𝜒2-distribution and, for this reason, the test is often familiarly
referred to as the chi-squared test. The test statistic was introduced by the
English statistician and biometrician Karl Pearson in 1900.

Example 2.1 Car colors

It is claimed that 25% of cars are red, 30% are white, and the remainder are
other colors. A survey of the cars in a randomly chosen car park finds the the
results summarized in Table 2.1.

TABLE 2.1 Colors of cars in a car park

Red White Others Total
39 42 119 200

With 200 cars in total, these counts are rather different from those claimed,
which would be 50, 60, and 90. To test whether they are significantly different,
we calculate

X2 = (39− 50)2

50
+ (42− 60)2

60
+ (119− 90)2

90
= 2.42+ 5.40+ 9.34= 17.16.

In this case a 𝜒2
2 -distribution is appropriate. The upper 0.1% point of this

distribution is 13.82; since 17.16 is much greater than this, we would conclude
that the claim concerning the percentages of car colors was incorrect.

2.1.2 *The Link Between X2 and the Poisson
and 𝝌

2-Distributions

Suppose that y1, y2,… , yn are n independent observations from Poisson distri-
butions, with means 𝜇1, 𝜇2,… ,𝜇n, respectively. Since a Poisson distribution
has its variance equal to its mean,

zi =
yi − 𝜇i√

𝜇i
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GOODNESS OF FIT 13

will be an observation from a distribution with mean zero and variance one.
If 𝜇i is large, then the normal approximation to a Poisson distribution is rel-
evant and zi will approximately be an observation from a standard normal
distribution. Since the square of a standard normal random variable has a 𝜒2

1 -
distribution, that will be the approximate distribution of z2

i . Since the sum of
independent chi-squared random variables is a chi-squared random variable
having degrees of freedom equal to the sum of the degrees of freedom of the
component variables, we find that∑

i

z2
i =

∑ (yi − 𝜇i)
2

𝜇i

has a chi-squared distribution with n degrees of freedom.
There is just one crucial difference between

∑
z2 and X2: in the former the

means are known, whereas for the latter the means are estimated from the
data. The estimation process imposes a linear constraint, since the total of
the e-values is equal to the total of the f -values. Any linear constraint reduces
the number of degrees of freedom by one. In Example 2.1, since there were
three categories, there were (3 − 1) = 2 degrees of freedom.

2.1.3 The Likelihood-Ratio Goodness-of-Fit Statistic, G2

Apparently very different to X2, but actually closely related, is the likelihood-
ratio statistic G2, given by

G2 = 2
∑

f ln
(

f

e

)
, (2.2)

where ln is the natural logarithm alternatively denoted as loge. This statistic
compares the maximized likelihood according to the model under test, with
the maximum possible likelihood for the given data (Section 1.7).

If the hypothesis under test is correct, then the values of G2 and X2 will
be very similar. Of the two tests, X2 is easier to understand, and the individ-
ual contributions in the sum provide pointers to the causes of any lack of fit.
However, G2 has the useful property that, when comparing nested models,
the more complex model cannot have the larger G2 value. For this reason the
values of both X2 and G2 are often reported.

Example 2.1 Car colors (continued)

Returning to the data given in Example 2.1, we now calculate

2
{

39 ln
(39

50

)
+ 42 ln

(42
60

)
+119 ln

(119
90

)}
= 2× (−9.69− 14.98+ 33.24)

= 17.13.
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14 ESTIMATION AND INFERENCE FOR CATEGORICAL DATA

As foreshadowed, the value of G2 is indeed very similar to that of X2(= 17.16)
and the conclusion of the test is the same.

2.1.4 *Why the G2 and X2 Statistics Usually Have Similar Values

This section is included to satisfy those with an inquiring mind! For any model
that provides a tolerable fit to the data, the values of the observed and expected
frequencies will be similar, so that f∕e will be reasonably close to 1. We can
employ a standard mathematical “trick” and write f = e + ( f − e), so that

f

e
= 1 +

f − e

e
,

and

G2 = 2
∑

f ln
(

f

e

)
= 2

∑
{e + ( f − e)} ln

(
1 +

f − e

e

)
.

For small 𝛿, the Maclaurin series expansion of ln(1 + 𝛿) is

𝛿 − 𝛿2

2
+ 𝛿3

3
− · · · .

If the model is a reasonable fit, then ( f − e)∕e will be small and so

G2 = 2
∑

{e + ( f − e)}

{
f − e

e
−

( f − e)2

2e2
+ · · ·

}
= 2

∑{(
( f − e) −

( f − e)2

2e
+ · · ·

)
+
(

( f − e)2

e
− · · ·

)}
.

But
∑

( f − e) = 0 since
∑

f =
∑

e, and so

G2 ≈ 0 −
∑ ( f − e)2

e
+ 2

∑ ( f − e)2

e
=
∑ ( f − e)2

e
= X2

.

2.2 HYPOTHESIS TESTS FOR A BINOMIAL PROPORTION
(LARGE SAMPLE)

If a categorical variable has several categories then it is natural to inquire
about the probability of occurrence for each category. If a particular category
occurs on r occasions in n trials, then the unbiased estimate of p, the proba-
bility of occurrence of that category, is given by p̂ = r∕n.

****************************************************************************************************************************************************************************************************
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We are interested in testing the hypothesis H0, that the population proba-
bility is p0 against the alternative H1, that H0 is false. With n observations,
under the null hypothesis, the expected number is np0 and the variance is
np0(1 − p0).

2.2.1 The Normal Score Test

If n is large, then a normal approximation should be reasonable so that we
can treat r as an observation from a normal distribution with mean np0 and
variance np0(1 − p0). The natural test is therefore based on the value of z
given by

z =
r − np0√

np0(1 − p0)
. (2.3)

The value of z is compared with the distribution function of a standard normal
distribution to determine the test outcome which depends on the alternative
hypothesis (one-sided or two-sided) and the chosen significance level.

2.2.2 *Link to Pearson’s X2 Goodness-of-Fit Test

Goodness-of-fit tests compare observed frequencies with those expected
according to the model under test. In the binomial context, there are two cat-
egories with observed frequencies r and n − r and expected frequencies np0
and n(1 − p0). The X2 goodness-of-fit statistic is therefore given by

X2 =
(r − np0)2

np0
+

{(n − r) − n(1 − p0)}2

n(1 − p0)
=

(r − np0)2

np0
+

(r − np0)2

n(1 − p0)

=
(r − np0)2

n

{
1
p0

+ 1
1 − p0

}
=

(r − np0)2

np0(1 − p0)

= z2
.

The normal score test and the X2-test are therefore equivalent and thus X2 has
an approximate 𝜒2

1 -distribution.

2.2.3 G2 for a Binomial Proportion

In this application of the likelihood-ratio test, G2 is given by:

G2 = 2r ln
(

r
np0

)
+ 2(n − r) ln

(
n − r

n(1 − p0)

)
. (2.4)

It has an approximate 𝜒2
1 -distribution.
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16 ESTIMATION AND INFERENCE FOR CATEGORICAL DATA

Example 2.2 Colors of sweet peas

A theory suggests that the probability of a sweet pea having red flowers is
0.25. In a random sample of 60 sweet peas, 12 have red flowers. Does this
result provides significant evidence that the theory is incorrect?

The theoretical proportion is p = 0.25. Hence n = 60, r = 12, n − r = 48,
np = 15, and n(1 − p) = 45. Thus

z = 15 − 12√
60 × 0.25 × 0.75

= 3√
11.25

= 0.8944,

X2 = 0.8,

G2 = 24 ln(12∕15) + 96 ln(48∕45) = 0.840.

The tail probability for z (0.186) is half that for X2 (0.371) because the latter
refers to two tails. The values of X2 and G2 are, as expected, very similar. All
the tests find the observed outcome to be consistent with theory.

2.3 HYPOTHESIS TESTS FOR A BINOMIAL PROPORTION
(SMALL SAMPLE)

The problem with any discrete random variable is that probability occurs in
chunks! In place of a smoothly increasing distribution function, we have a
step function, so that only rarely will there be a value of x for which P(X ≥ x)
is exactly some pre-specified value of 𝛼. This contrasts with the case of a
continuous variable, where it is almost always possible to find a precise value
of x that satisfies P(X > x) = 𝛼 for any specified 𝛼.

Another difficulty with any discrete variable is that, if P(X = x) > 0, then

P(X ≥ x) + P(X ≤ x) = 1 + P(X = x),

and the sum is therefore greater than 1. For this reason, Lancaster (1949)
suggested that, for a discrete variable, rather than using P(X ≥ x), one should
use

PMid(x) = 1
2

P(X = x) + P(X > x). (2.5)

This is called the mid-P value; there is a corresponding definition for the oppo-
site tail, so that the two mid-P values do sum to 1.

2.3.1 One-Tailed Hypothesis Test

Suppose that we are concerned with the unknown value of p, the probabil-
ity that an outcome is a “success.” We wish to compare the null hypothesis
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H0 : p = 1
4

with the alternative hypothesis H1 : p >
1
4
, using a sample of size 7

and a 5% tail probability.
Before we carry out the seven experiments, we need to establish our test

procedure. There are two reasons for this:

1. We need to be sure that a sample of this size can provide useful infor-
mation concerning the two hypotheses. If it cannot, then we need to use
a larger sample.

2. There are eight possible outcomes (from 0 successes to 7 successes).
By setting out our procedure before studying the actual results of the
experiments, we are guarding against biasing the conclusions to make
the outcome fit our preconceptions.

The binomial distribution with n = 7 and p = 0.25 is as follows:

x 0 1 2 3 4 5 6 7

P(X = x) 0.1335 0.3115 0.3115 0.1730 0.0577 0.0115 0.0013 0.0001
P(X ≥ x) 1.0000 0.8665 0.5551 0.2436 0.0706 0.0129 0.0013 0.0001
PMid(x) 0.9333 0.7108 0.3993 0.1571 0.0417 0.0071 0.0007 0.0000

We intended to perform a significance test at the 5% level, but this is impos-
sible! We can test at the 1.3% level (by rejecting if X ≥ 5) or at the 7.1% level,
(by rejecting if X ≥ 5), but not at exactly 5%. We need a rule to decide which
to use.

Here are two possible rules (for an upper-tail test):

1. Choose the smallest value of X for which the significance level does not
exceed the target level.

2. Choose the smallest value of X for which the mid-P value does not
exceed the target significance level.

Because the first rule guarantees that the significance level is never greater
than that required, on average it will be less. The second rule uses mid-P
defined by Equation (2.5). Because of that definition, whilst the significance
level used under this rule will sometimes be greater than the target level, on
average it will equal the target.

For the case tabulated, with the target of 5%, the conservative rule would
lead to rejection only if X ≥ 5 (significance level 1.3%), whereas, with the
mid-P rule, rejection would also occur if X = 4 (significance level 7.1%).
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18 ESTIMATION AND INFERENCE FOR CATEGORICAL DATA

2.3.2 Two-Tailed Hypothesis Tests

For discrete random variables, we regard a two-tailed significance test at the
𝛼% level as the union of two one-tailed significance tests, each at the 1

2
𝛼%

level.

Example 2.3 Two-tailed example

Suppose we have a sample of just six observations, with the hypotheses of
interest being H0 : p = 0.4 and H1 : p ≠ 0.4. We wish to perform a signifi-
cance test at a level close to 5%. According to the null hypothesis the complete
distribution is as follows:

x 0 1 2 3 4 5 6

P(X = x) 0.0467 0.1866 0.3110 0.2765 0.1382 0.0369 0.0041
P(X ≥ x) 1.0000 0.9533 0.7667 0.4557 0.1792 0.0410 0.0041
PMid(x) 0.9767 0.8600 0.6112 0.3174 0.1101 0.0225 0.0020

(upper tail)
P(X ≤ x) 0.0467 0.2333 0.5443 0.8208 0.9590 0.9959 1.0000
PMid(x) 0.0233 0.1400 0.3888 0.6826 0.8899 0.9775 0.9980

(lower tail)

Notice that the two mid-P values sum to 1 (as they must). We aim for 2.5%
in each tail. For the upper tail the appropriate value is x = 5 (since 0.0225 is
just less than 0.025). In the lower tail the appropriate x-value is 0 (since 0.0233
is also just less than 0.25). The test procedure is therefore to accept the null
hypothesis unless there are 0, 5, or 6 successes. The associated significance
level is 0.0467 + 0.0369 + 0.0041 = 8.77%. This is much greater than the
intended 5%, but, in other cases, the significance level achieved will be less
than 5%. On average it will balance out.

2.4 INTERVAL ESTIMATES FOR A BINOMIAL PROPORTION

If the outcome of a two-sided hypothesis test is that the sample proportion is
found to be consistent with the the population proportion being equal to p0,
then it follows that p0 is consistent with the sample proportion. Thus, a con-
fidence interval for a binomial proportion is provided by the range of values
of p0 for which this is the case. In a sense, hypothesis tests and confidence
intervals are therefore two sides of the same coin.
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Since a confidence interval provides the results for an infinite number of
hypothesis tests, it is more informative. However, as will be seen, the deter-
mination of a confidence interval is not as straightforward as determining the
outcome of a hypothesis test. The methods listed below are either those most
often used or those that appear (to the author at the time of writing) to be the
most accurate. There have been several other variants put forward in the past
20 years, as a result of the ability of modern computers to undertake extensive
calculations.

2.4.1 Laplace’s Method

A binomial distribution with parameters n and p has mean np and variance
np(1 − p). When p is unknown it is estimated by p̂ = r∕n, where r is the num-
ber of successes in the n trials. If p is not near 0 or 1, one might anticipate
that p(1 − p) would be closely approximated by p̂(1 − p̂). This reasoning led
the French mathematician Laplace to suggest the interval:

r
n
± z0

√
1
n

r
n

(
1 − r

n

)
, (2.6)

where z0 is the appropriate critical value from a standard normal distribution.
Unfortunately, using Equation (2.6), the actual size of the confidence inter-

val can be much smaller than its intended value. For the case n = 12, with the
true value of p being 0.5, Brown, Cai, and DasGupta (2001) report that the
average size of the “95%” interval is little bigger than 85%. The procedure
gets worse as the true value of p diverges from 0.5 (since the chance of r = 0
or r = n increases, and those values would lead to an interval of zero width).

A surprising feature (that results from the discreteness of the binomial dis-
tribution) is that an increase in sample size need not result in an improvement
in accuracy (see Brown et al. (2001) for details). Although commonly cited
in introductory texts, the method cannot be recommended.

2.4.2 Wilson’s Method

Suppose that zc is a critical value of the normal score test (Equation 2.3), in
the sense that any absolute values greater than zc would lead to rejection of
the null hypothesis. For example, for a two-sided 5% test, zc = 1.96. We are
interested in finding the values of p0 that lead to this value. This requires the
solution of the quadratic equation

z2
0 × np0(1 − p0) = (r − np0)2,
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which has solutions{(
2r + z2

0

)
± z0

√
z2

0 + 4r − 4r2∕n

}/
2
(
n + z2

0

)
. (2.7)

This interval was first discussed by Wilson (1927).

2.4.3 The Agresti–Coull Method

A closely related but simpler alternative suggested by Agresti and Coull
(1998) is

p̃ ± zo

√
1
n

p̃(1 − p̃), where p̃ =
(
2r + z2

0

)/
2
(
n + z2

0

)
. (2.8)

Since, at the 95% level, z2
0 = 3.84 ≈ 4, this 95% confidence interval effec-

tively works with a revised estimate of the population proportion that adds
two successes and two failures to those observed.

Example 2.4 Proportion smoking

In a random sample of 250 adults, 50 claim to have never smoked. The
estimate of the population proportion is therefore 0.2. We now determine
95% confidence intervals for this proportion using the methods of the last
sections.

The two-sided 95% critical value from a normal distribution is
1.96, so Laplace’s method gives the interval 0.2 ± 1.96

√
0.2 × 0.8∕250 =

(0.150, 0.250). For the Agresti–Coull method p̃ = 0.205 and the resulting
interval is (0.155, 0.255). Wilson’s method also focuses on p̃, giving (0.155,
0.254). All three estimates are reassuringly similar.

Suppose that in the same sample just five claimed to have smoked a cigar.
This time, to emphasize the problems and differences that can exist, we cal-
culate 99% confidence intervals. The results are as follows: Laplace (−0.003,
0.043), Agresti–Coull (−0.004, 0.061), Wilson (−0.007, 0.058). The differ-
ences in the upper bounds are quite marked and all three give impossibly
negative lower bounds.

2.4.4 Small Samples and Exact Calculations

2.4.4.1 Clopper–Pearson Method For small samples, Clopper and
Pearson (1934) suggested treating the two tails separately. Denoting the lower
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and upper bounds by pL and pU, for a (100 − 𝛼)% confidence interval, these
would be the values satisfying:

n∑
k=r

(
n
k

)
pk

L(1 − pL)n−k = 1
2
𝛼 and

r∑
k=0

(
n
k

)
pk

U(1 − pU)n−k = 1
2
𝛼.

The method is referred to as “exact” because it uses the binomial distribution
itself, rather than an approximation. As such it cannot lead to bounds that lie
outside the feasible region (0, 1).

However, just as Laplace’s method leads to overly narrow confidence inter-
vals, so the Clopper–Pearson approach leads to overly wide confidence inter-
vals, with the true width (the cover) of a Clopper–Pearson interval being
greater than its nominal value.

2.4.4.2 Agresti–Gottard Method Agresti and Gottard (2007) sug-
gested a variant of the Clopper–Pearson approach that gives intervals that
on average are superior in the sense that their average cover is closer to the
nominal 100(1 − 𝛼)% value. The variant makes use of mid-P (Equation 2.5):

n∑
k=(r+1)

(
n
k

)
pk

L(1 − pL)n−k + 1
2

(
n
r

)
pr

L(1 − pL)n−r = 1
2
𝛼, (2.9)

r−1∑
k=0

(
n
k

)
pk

U(1 − pU)n−k + 1
2

(
n
r

)
pr

U(1 − pU)n−r = 1
2
𝛼, (2.10)

with obvious adjustments if r = 0 or r = n. A review of the use of mid-P with
confidence intervals is provided by Berry and Armitage (1995).

Figure 2.1 shows the surprising effect of discreteness on the actual average
size of the “95%” mid-P confidence intervals constructed for the case n = 50.
On the x-axis is the true value of the population parameter, evaluated between
0.01 and 0.99, in steps of size 0.01. The values vary between 0.926 and 0.986
with mean 0.954. The corresponding plot for the Clopper–Pearson procedure
and, indeed, for any other alternative procedure will be similar. Similar results
hold for the large-sample methods: the best advice would be to treat any inter-
vals as providing little more than an indication of the precision of an estimate.

Example 2.4 Proportion smoking (continued)

Returning to the smoking example we can use the binom.midp function
which is part of the binomSamSize library in R to calculate confidence inter-
vals that use Equations (2.9) and (2.10). The results are (0.154, 0.253) as the
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FIGURE 2.1 The average width of a “95%” confidence interval for p varies with
the actual p-value. The results shown are using the recommended mid-P interval for
the case n = 50.

95% interval for the proportion who had never smoked and (0.005, 0.053) as
the 99% interval for those who had smoked a cigar. For the former, the results
are in good agreement with the large sample approximate methods. For the
cigar smokers, the method provides a reassuringly positive lower bound.

R code

library(binomSamSize);
binom.midp(50,250,0.95);
binom.midp(5,250,0.99)
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CHAPTER 3

THE 2 × 2 CONTINGENCY TABLE

The 2 × 2 contingency table consists of just four numbers arranged in two
rows with two columns to each row; a very simple arrangement. In part, it is
this very simplicity that has been the cause of so much discussion concerning
the correct method of analysis. Indeed, there may well be more papers written
concerning the analysis of two-by-two contingency tables than there are on
any other statistical topic!

3.1 INTRODUCTION

The data consist of “experimental units,”classified by the categories to which
they belong, for each of two dichotomous variables (variables having just two
categories). The experimental units may be tangible (e.g., people, universities,
countries, buildings) or intangible (e.g., ideas, opinions, outcomes). As an
example, suppose that people are cross-classified by gender (male or female)
and eye color (brown, not brown). A question of possible interest is whether
gender and eye color are independent of one another, or whether they are in

Categorical Data Analysis by Example, First Edition. Graham J. G. Upton.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

25

****************************************************************************************************************************************************************************************************



26 THE 2 × 2 CONTINGENCY TABLE

some way associated. For example, is the proportion of males having brown
eyes different to the proportion of females having brown eyes?

Here are some possible sampling schemes:

1. Take a random sample of individuals. In the time available, we col-
lect information on N individuals. Of these m happen to be male,
n = (N − m) happen to be female, r happen to have brown eyes, and
s = (N − r) do not have brown eyes. The full results are summarized in
the table:

Brown eyes Not brown eyes Total

Male a b m
Female c d n

r s N

2. Take a random sample of N individuals. It is found that m are male and
r have brown eyes. The full results are as previously.

3. Take a random sample of N individuals. It is found that m are male and
it is known that r will have a particular attribute (see Example 3.2 for
such a situation). The full results are as previously.

4. Take independent random samples of m males and n females. In all it is
found that r have brown eyes and s = (N − r) do not have brown eyes.
The full results are as previously.

5. Take independent random samples of r individuals who have brown eyes
and s individuals who do not have brown eyes. In all it is found that m
are male and n are female. The full results are as previously.

6. Continue taking observations until a males with brown eyes have been
sampled. The full results are then found to be as previously.

In each case the question of interest is the same and the same results have
been found. The only differences relate to which (if any) of the marginal totals
(m, n, r, s, N) have been fixed by the sampling scheme. Since the question of
interest is the same and the same results have been obtained, it might seem
perverse to consider applying different tests in different situations. Neverthe-
less, there has been much debate concerning the extent to which the analy-
sis should be affected by the method by which the data were obtained. This
has continued ever since the initial proposal of Fisher (1935), which we now
introduce.
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3.2 FISHER’S EXACT TEST (FOR INDEPENDENCE)

It is convenient to rewrite the table as follows

Brown eyes Not brown eyes Total

Male a m − a m
Female r − a n − r + a n

r s N

Written in this way it is apparent that this is effectively a single variable situ-
ation. As we change the value of a (we could as easily have focused on b, c,
or d) so the values of the remaining three cells in the body of the table change
accordingly. The range of possible values of a is restricted by the need for
each of a, (m − a), (r − a), and (n − r + a) to remain non-negative.

Writing A as the random variable corresponding to the observed value of
a, Fisher (1934) showed that

P(A = a) = m!n!r!s!
N!

× 1
a!b!c!d!

. (3.1)

The test is often referred to simply as the exact test—although, of course, it
is not the only test that is exact! For arguments in favor of its general appli-
cation, see Yates (1984), Cormack and Mantel (1991), and Upton (1992). For
an alternative view, see Rice (1988).

Despite its apparent simplicity, precisely how one uses Equation (3.1) is
not as straightforward as one might expect, though there is no doubt about
the values of the single-tail probabilities P(A ≥ a) and P(A ≤ a). The diffi-
culty arises with the two-tailed test of the null hypothesis of independence
(the most common situation), since it is not obvious how to incorporate prob-
abilities from the tail opposite to that which occurred. Here are some feasible
alternatives for the case where the observed value, a, lies in the upper tail of
the distribution of A:

1. Determine the sum of all the individual outcome probabilities that are
no larger than P(A = a). This approach, suggested by Irwin (1935), is
the usual method.

2. Use the smaller of 2P(A ≥ a) and 1.
3. Determine a∗, the largest value of A for which P(A ≤ a∗) ≤ P(A ≥ a).

Use the sum {P(A ≤ a∗) + P(A ≥ a)}. Depending on the shape of the
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distribution of A, this suggestion by Blaker (2000, 2001) may give a
different result to that of Irwin.

4. Use mid-P (Equation 2.5). This implies reducing the probability (cal-
culated using either Irwin’s method or Blaker’s method) by 1

2
P(A = a).

Example 3.1 Tail probabilities for a 2 × 2 table

Suppose m = 4, n = 14, r = 11, and s = 7, with N = 18. One of the following
tables must occur:

0 4
11 3

1 3
10 4

2 2
9 5

3 1
8 6

4 0
7 7

The corresponding probabilities are

49
4284

539
4284

1617
4284

1617
4284

462
4284

.

The corresponding two-tail probabilities calculated by the various methods
are summarized in Table 3.1 for each of the possible procedures.

TABLE 3.1 Two-tail probabilities for a 2 × 2 table, calculated using a variety
of rules

Value of a 0 1 2 3 4

Irwin: sum of small probabilities 0.0114 0.2451 1.0000 1.0000 0.1193
Capped double tail 0.0229 0.2745 1.0000 0.9767 0.2157
Blaker: sum of tails 0.0114 0.2451 1.0000 0.6225 0.1193
Mid-P with Irwin 0.0057 0.1822 0.8113 0.8113 0.0654
Mid-P with Blaker 0.0057 0.1822 0.8113 0.4338 0.0654

Although there is a striking difference between the Irwin and Blaker tail
probabilities for one outcome here, the reader can be comforted that this
is a reasonably uncommon occurrence and any difference between them is
unlikely to be as large as in the current case. The use of the doubled single
tail does not appear appropriate. The optimal combination may be provided
by using Blaker’s suggestion together with mid-P.

3.2.1 *Derivation of the Exact Test Formula

Denote the probability of a male having brown eyes by p. According to the
null hypothesis (independence of gender and eye color) the probability of a
female having brown eyes is also p.

****************************************************************************************************************************************************************************************************



TESTING INDEPENDENCE WITH LARGE CELL FREQUENCIES 29

The probability that a of m males have brown eyes is(
m
a

)
pa(1 − p)m−a

.

The corresponding probability for the females is(
n

r − a

)
pr−a(1 − p)(n−r+a)

.

So the (unconditional) probability of the observed outcome is(
m
a

)
pa(1 − p)m−a ×

(
n

r − a

)
pr−a(1 − p)(n−r+a) =

(
m
a

)(
n

r − a

)
pr(1 − p)s

.

However, we know that there is a total of r brown-eyed people, for which the
probability is

∑
a

(
m
a

)(
n

r − a

)
pr(1 − p)s = pr(1 − p)s

∑
a

(
m
a

)(
n

r − a

)
.

Comparing the coefficients of xr in (1 + x)m(1 + x)n and in (1 + x)m+n we find
that ∑

a

(
m
a

)(
n

r − a

)
=
(

m + n
r

)
.

Hence, the probability of the observed outcome conditional on the marginal
totals is(

m
a

)(
n

r − a

)
pr(1 − p)s

/
pr(1 − p)s

(
m + n

r

)
= m!n!r!s!

a!b!c!d!N!
.

3.3 TESTING INDEPENDENCE WITH LARGE CELL
FREQUENCIES

When it was introduced (and for decades afterward) use of the exact test was
confined to cases where the the cell frequencies were small. Since the valid-
ity of the test is unaffected by sample size, and since modern computer pro-
grams can handle cell frequencies of any size (either by direct evaluation or by
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simulation), the exact test is the one to use (probably using Blaker’s variant
and mid-P) if it is available.

However, for many years the tests in the next subsections were the only
ones feasible for large samples. These therefore appear prominently in older
texts. We consider them here because it is always convenient to have available
a test that can be calculated on the back of an envelope!

3.3.1 Using Pearson’s Goodness-of-Fit Test

Suppose that eye color and gender are independent. In our example, since
the observed proportion having brown eyes is r∕N, the expected number of
brown-eyed males is mr∕N, and the entire table of expected frequencies is as
follows:

Brown eyes Not brown eyes Total

Male mr∕N ms∕N m
Female nr∕N ns∕N n

Total r s N

Using Equation (2.1) we have

X2 =
(a − mr∕N)2

mr∕N
+ · · · +

(d − ns∕N)2

ns∕N
.

After a bit of algebra, this distinctly cumbersome expression reduces to some-
thing simple, namely:

X2 = N(ad − bc)2

mnrs
. (3.2)

For the 2 × 2 table the approximating reference distribution is a 𝜒2
1 -

distribution. If the observed value of X2 exceeds some pre-determined sig-
nificance point of this distribution then the null hypothesis of independence
would be rejected.

3.3.2 The Yates Correction

An equivalent test would compare

X =
√

N
mnrs

(ad − bc)
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with a standard normal distribution. For any given values of m, n, r, and s,
there are only a limited number of possible values for (ad − bc), since the
values of a, b, c, and d are integers. The true distribution of X is there-
fore a discrete distribution for which the standard normal is not more than
an approximation. Discreteness was, of course, equally true for X2, but it is
easier to see how to improve the continuous approximation when working
with X.

Suppose that a is greater than the expected value mr∕N. Then P(A ≥ a)
would be estimated by using a − 1

2
as the critical value of the approxi-

mating continuous variable. The 1
2

is the standard continuity correction.
To preserve the marginal totals, each of the observed counts in the table needs
to be adjusted by 1

2
(two counts upward, and two counts downward). Using

the revised values, algebra again rescues an unpromising situation and gives
as the continuity-corrected X2 value:

X2
c =

N(|ad − bc| − 1
2
N)2

mnrs
. (3.3)

This version of the Pearson test was introduced in Yates (1934) and is known
as the Yates-corrected chi-squared test. Although the Yates correction appears
in most introductory textbooks, the following argument suggests that it should
not be used:

� The continuity correction gives tail probabilities using X2
c that are very

close to those obtained using the exact test (Upton, 1982).
� However, hypothesis tests for discrete distributions should preferably use

mid-P.
� The mid-P adjustment involves half the probability of the observed value.

This adjustment works in the opposite direction to the continuity correc-
tion and effectively cancels it.

The implication is that, if using an approximate test, it is the uncorrected X2

given by Equation (3.2) that is appropriate and not the corrected test.

Example 3.2 Possible gender bias in the 2005 UK General Election

In the 2005 UK General Election, there were 646 seats contested by 3552
candidates of whom 737 were female. There were 127 females elected. Is
there evidence of a candidate’s gender affecting that candidate’s chance of
success?
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Arranged as a table, the results are:

Elected Not elected Total

Male 519 2298 2817
Female 127 608 735

Total 646 2906 3552

Note that, since the numbers of male and female candidates and the number
that can be successful as a result of the voting are known in advance of election
day, this is an example in which both sets of marginal totals are fixed. The
issue is whether there is any link between gender and success, or whether the
probability of success is unaffected by gender (which is the null hypothesis).

The value of X2 is 0.51, which is certainly not significantly large. We can
accept the hypothesis that there is no difference in the success rates of the
male and female candidates. Of course, there is a distinct bias visible in the
table since there are roughly four male candidates for each female candidate,
but we would need other data to decide whether that was a consequence of
discrimination.

3.4 THE 2 × 2 TABLE IN A MEDICAL CONTEXT

Consider the following 2 × 2 table:

Patient

Test has disease does not have disease Total

a b m
suggests patient

has disease
True positives

(TP)
False positives

(FP)
c d n

does not suggest
patient has
disease

False negatives
(FN)

True negatives
(TN)

Total r s N

Here we do not expect independence—quite the reverse! Ideally b and c
would both be zero and the test would be infallible. Sadly that is rarely true.
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What will be true (for any respectable test) is that, a∕m, the conditional prob-
ability of a patient having the disease given that that is what the test suggests,
will be greater than c∕n, the conditional probability of a patient having the
disease when the test says that that is not the case.

There are several conditional probabilities that will be of interest to the
clinician. Yerushalmy (1947) suggested concentrating attention on the fol-
lowing:

Sensitivity: The probability that a patient with the disease is
correctly diagnosed

= a∕r.

Specificity: The probability that a patient without the disease
is correctly diagnosed

= d∕s.

A test that suggested that every patient had the disease would have sensitivity
= 1, but specificity = 0. This led Youden (1950) to suggest combining the
two measures to give a single index of the test’s performance:

J = Sensitivity + Specificity − 1.

This is now referred to as Youden’s index. The index is a good measure of
the usefulness of a test, but it gives little information concerning the correct-
ness of the diagnosis. After the diagnosis, it is a second pair of conditional
probabilities that will be of interest to the patient. These are:

Positive predictive
value (PPV):

The probability that a patient diagnosed
as having the disease is correctly
diagnosed

= a∕m.

Negative predictive
value (NPV):

The probability that a patient diagnosed
as not having the disease is correctly
diagnosed

= d∕n.

However, the values of PPV and NPV will be affected by the overall preva-
lence (r∕N) of the disease. If every patient had the disease then PPV = 1 and
NPV = 0.

In the very different context of multiple hypothesis tests, Benjamini and
Hochberg (1995) described the expected number of null hypotheses that were
incorrectly rejected as the false discovery rate. In the current notation, with
the patient having the disease being equated to the null hypothesis being true,
the false discovery rate is the expected value of c∕n.
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Two further quantities of interest are:

Positive likelihood ratio: Sensitivity/(1−Specificity) =
a∕r

b∕s
= as∕br.

Negative likelihood ratio: (1−Sensitivity)/Specificity =
c∕r

d∕s
= cs∕dr.

Thus the positive likelihood ratio is the ratio between the probability of a pos-
itive test result given the presence of the disease and the probability of a posi-
tive test result given the absence of the disease; this should be very large. The
negative likelihood ratio is the ratio between the probability of a negative test
result given the presence of the disease and the probability of a negative test
result given the absence of the disease; this should be less than 1 and close to 0.

Example 3.3 Radiological diagnoses of cancer in Haarlem

Table 3.2 refers to patients screened for breast cancer in a Haarlem hospital
during the calendar years 1992 and 1993.

TABLE 3.2 The success of radiological diagnoses of cancer in Haarlem

Biopsy or follow-up result

Radiological diagnosis Carcinoma No carcinoma Total

Suspicious or malignant 138 65 203
Normal, benign, or probably benign 12 2799 2811

Total 150 2864 3014

Source: Duijm et al., 1997. Reproduced with permission of Elsevier.

The radiological diagnosis evidently works well giving sensitivity =
138/150 (92.0%), specificity = 2799/2864 (97.7%), positive predictive
value = 138/203 (68.0%), negative predictive value = 2799/2811 (99.6%),
positive likelihood ratio = 40.5, and negative likelihood ratio = 0.08.

3.5 MEASURING LACK OF INDEPENDENCE (COMPARING
PROPORTIONS)

The terms used in medical contexts provided specific information about the
efficiency (or otherwise) of a diagnostic procedure for a single group of N
individuals. We now consider the case of two distinct groups (of sizes m and
n), with the probabilities of obtaining a “success” being p1 and p2, respec-
tively. We are concerned with the relative sizes of these probabilities.
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3.5.1 Difference of Proportions

With a successes in m trials, the estimated probability of a success is p̂1 =
a∕m, with b∕n being the corresponding estimate for the second sample. The
difference between proportions is estimated by

p̂1 − p̂2 = a
m

− b
n
= an − bm

mn
= ad − bc

mn
.

The value a is an observation from a binomial distribution with parameters
m and p1. The distribution has mean mp1 and variance mp1(1 − p1). Thus p̂1 is
an observation from a distribution with mean p1 and variance p1(1 − p1)∕m.
It follows that p̂1 − p̂2 is an observation from a distribution with mean p1 −
p2 and variance p1(1 − p1)∕m + p2(1 − p2)∕n. If m and n are not small, and
neither p1 nor p2 is close to 0 or 1, then the normal approximation to the
binomial distribution can be used. With z0 denoting the appropriate critical
value from a standard normal distribution, an approximate confidence interval
is given by

(p̂1 − p̂2) ± z0

√
1
m

p̂1

(
1 − p̂1

)
+ 1

n
p̂2

(
1 − p̂2

)
. (3.4)

Example 3.4 Pot decoration in the Admiralty Islands

Table 3.3 presents information on the coloration of pots made by two com-
munities in the Admiralty Islands. One feature was the lips of the pots. Deco-
rated lips were found in 86 of 437 pots produced by the Hus community, and
in 169 of 439 pots produced by the Mbuke community. A question of inter-
est is whether there is a significant difference between the two communities
concerning the proportions of pots having decorated lips.

TABLE 3.3 Pot decoration in the Admiralty Islands

Community

Hus Mbuke

Decorated lip 86 169
Undecorated lip 351 270

Total 437 439

Source: Kennedy, 1981. Reproduced with permission of Taylor &
Francis Ltd (www.tandfonline.com).
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The two proportions are 86∕437 = 0.1968 and 169∕439 = 0.3850. The
two-sided 99% value from a standard normal distribution is 2.5758, so the
approximate 99% confidence interval for the difference in proportions is
0.1882 ± 0.0773; approximately (0.11, 0.27). Since this interval is well clear
of 0, we can conclude that there is a real difference in this characteristic of
the pots produced by the two groups of islanders.

3.5.2 Relative Risk

If the two proportions are very small, then their difference will also be small.
Yet that small difference may be important. For example, knowing that the
chance of survival with treatment A is 2%, whereas the chance of survival
with treatment B is 1%, would strongly encourage the use of treatment A, even
though the difference in the probabilities of survival is just 1%. A report of this
situation would state that treatment A was twice as successful as treatment B.

In a medical context, the ratio of the success probabilities, R = p1∕p2, is
called the relative risk. In the notation of the 2 × 2 table, R is estimated by:

R̂ =
a∕m

c∕n
= an

cm
. (3.5)

The distribution of R̂ is discrete and depends upon the values of p1 and p2.
However, a normal approximation can be used for the distribution of ln(R̂).
Following a review of many alternatives, Fagerland and Newcombe (2013)
found that Equation (3.6) (with z0 denoting the appropriate critical value of
the standard normal distribution) gave reliable results:

exp

(
ln(R̂) ± 2 sinh−1

{
1
2

z0

√
1
a
+ 1

c
− 1

m + 1
− 1

n + 1

})
. (3.6)

Notice that the relative risk for failures (1 − p1) ∕(1 − p2) is different to
that for successes.

Example 3.5 The opinion of cancer survivors concerning the effects of
stress

A study questioned cancer survivors about the factors that they believed had
led to their cancer. Amongst 165 male prostate cancer survivors, 37 (22.4%)
claimed that stress was a factor. Amongst 416 female breast cancer survivors,
165 (39.7%) stated that stress was a factor. The data are presented as a 2 × 2
table in Table 3.4.
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TABLE 3.4 The responses of cancer survivors who were asked whether they
believed that stress had been a factor causing their cancer

Stress a factor Stress not a factor Total

Male prostate cancer 37 128 165
Female breast cancer 165 251 416

Total 202 379 581

Source: Wold et al., 2005. Reproduced with permission of Springer.

If they were correct in their beliefs then (with respect to the particular can-
cers) the relative risk of stress-induced cancer for women as opposed to men
would be 165∕416

37∕165
= 1.77. Using Equation (3.6), with z0 = 1.96, the approxi-

mate 95% confidence interval is (1.30, 2.40). Since the interval comfortably
excludes 1 we can conclude that there is a distinct difference in the judge-
ments made by males and females in this context.

3.5.3 Odds-Ratio

The odds on an occurrence is defined as the probability of its happening
divided by the probability that it does not happen: p∕(1 − p). For a fair coin,
the probability of obtaining a head as opposed to a tail is 0.5; the odds are
therefore 0.5/0.5 = 1. Bewilderingly, in this case the odds are referred to as
“evens” (and the value of the odds, 1, is an odd number)!

An odds-ratio 𝜃 is the ratio of the odds under one set of conditions to the
odds under another set of conditions. It is given by:

𝜃 =
p1∕(1 − p1)

p2∕(1 − p2)
.

Yule (1900) termed it the cross-product ratio. By contrast with the difference
in proportions (which gives different values dependent on whether we con-
sider rows or columns) the odds-ratio is unaffected if rows and columns are
interchanged. As with the relative risk, the value of the odds-ratio depends
upon which category is defined as a success. If we swap categories, then the
value of the odds-ratio changes from 𝜃 to 1∕𝜃. This swap would not change
the absolute magnitude of ln(𝜃), however.

An odds-ratio of 1 corresponds to the probability of an event occurring
being the same for the two conditions under comparison. Thus, when the
row and column variables of a 2 × 2 table are independent, the odds-ratio
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is 1. Odds-ratios (or, rather, their logarithms) underlie the models discussed
in Chapters 11–16.

In the notation of the 2 × 2 table, the obvious sample estimate of 𝜃 is

a∕b

c∕d
= ad

bc
.

However there would be a problem if any of a, b, c, or d were equal to 0, since
then the estimate of the odds-ratio would be either 0 or ∞. A simple solution
is to add a small amount, 𝛿, to every cell frequency.

3.5.3.1 Gart’s Method Gart (1966) proposed using 𝛿 = 0.5 to give the
estimate:

𝜃G = (a + 0.5)(d + 0.5)
(b + 0.5)(c + 0.5)

. (3.7)

The distribution of 𝜃G is difficult to work with, but the distribution of ln(𝜃G)
is approximately normal with variance equal to the sum of the reciprocals of
the entries in the 2 × 2 table. This variance would be infinite if any of the
entries were zero, but the addition of 0.5 to each frequency again works well
(Agresti, 1999). With z0 denoting the appropriate critical value from a stan-
dard normal distribution, the confidence interval is

exp

(
ln(𝜃G) ± z0

√
1

a + 0.5
+ 1

b + 0.5
+ 1

c + 0.5
+ 1

d + 0.5

)
. (3.8)

Although 𝜃G has a number of desirable properties (Gart and Zweifel, 1967),
Fagerland and Newcombe (2013) demonstrated that the average width of
a “95% confidence interval” generated using this method was appreciably
greater than 95%. They suggested the modifications given in Section 3.5.3.2.

3.5.3.2 The Fagerland–Newcombe Method For this method we use
the estimate

𝜃F = (a + 0.6)(d + 0.6)
(b + 0.6)(c + 0.6)

(3.9)
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together with a slightly more complicated expression for the approximate con-
fidence interval:

exp

(
ln(𝜃F) ± 2 sinh−1

{
1
2

z0

√
1

a + 0.4
+ 1

b + 0.4
+ 1

c + 0.4
+ 1

d + 0.4

})
.

(3.10)

The interval obtained is still approximate, but, on average, will be slightly
shorter. In most applications the differences between the results will be
minimal.

Example 3.6 The usefulness of elastic compression stockings

A recent trial aimed to prevent post-thrombotic syndrome (PTS), which is a
chronic disorder that may develop in patients after deep venous thrombosis.
The trial compared the effectiveness of elastic compression stockings (ECS)
with placebo stockings (i.e., standard stockings with no special treatment). Of
409 patients with ECS, 44 suffered PTS in the next 2 years. Of 394 patients
with placebo stockings, 37 suffered PTS in the same period. The question of
interest was whether the ECS provided any benefit. The data are set out as a
2 × 2 table in Table 3.5.

TABLE 3.5 The effectiveness of elastic stockings for the
prevention of post-thrombotic syndrome (PTS)

PTS No PTS Total

ECS 44 365 409
Placebo 37 357 394

Total 81 722 803

Source: Cate-Hoek, 2014. Reproduced with permission of Elsevier.

Using Equation (3.7) we obtain 𝜃G = 1.16. For a 95% confidence interval
z0 = 1.96; so that, using Equation (3.8), we obtain the 95% confidence inter-
val as (0.73, 1.84). Using Equation (3.9), the estimated odds-ratio is again
1.16. However, using Equation (3.10), we get the slightly narrower interval
(0.74, 1.83). The difference in intervals is minimal because of the large sam-
ple sizes. Since both intervals easily include 1, we conclude that there is little
evidence that the ECS are of use for reducing PTS.
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CHAPTER 4

THE I × J CONTINGENCY TABLE

This chapter is concerned with cases where there are two classifying variables,
one with I categories and the other with J categories. The data consist of the
frequencies with which the I × J possible category combinations occur. In
this chapter both I and J will be greater than 2. We considered 2 × 2 tables in
Chapter 3 and will look at 2 × J tables in Chapter 7.

4.1 NOTATION

Consider a table with I rows, J columns, and IJ cells. Denote the classi-
fying variables as A and B, and denote the categories as A1, A2,… , AI and
B1, B2,… , BJ . Let the observed frequency in cell (i, j) be fij (i.e., there are fij
items that simultaneously belong to categories Ai and Bj). Using the suffix 0
to denote totals gives:∑

i

fij = f0j,
∑

j

fij = fi0,
∑

i

∑
j

fij = f00.

The table of frequencies is assumed to be a random sample from a population
for which the probability of an item being in cell (i, j) is pij, with∑

i

pij = p0j,
∑

j

pij = pi0,
∑

i

∑
j

pij = p00 = 1.

Categorical Data Analysis by Example, First Edition. Graham J. G. Upton.
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4.2 INDEPENDENCE IN THE I × J CONTINGENCY TABLE

4.2.1 Estimation and Degrees of Freedom

The probability of an item belonging to category i of variable A is pi0. Sim-
ilarly, the probability of an item belonging to category j of variable B is p0j.
Now, if two events are independent, then the probability that both occur is the
product of their probabilities. Therefore, under independence,

pij = pi0p0j. (4.1)

The obvious estimates of pi0 and p0j are p̂i0 = fi0∕f00 and p̂0j = f0j∕f00,
respectively. Using these probability estimates, under independence, the prob-
ability of the simultaneous occurrence of category i of variable A and category
j of variable B would be

fi0

f00
×

f0j

f00
=

fi0f0j

f 2
00

.

Since there are f00 observations in total it follows that, if we know that the
classifying variables are independent, and we know the row and column totals,
then our best guess of the frequency in cell (i, j) would be

eij =
fi0f0j

f 2
00

× f00 =
fi0f0j

f00
. (4.2)

Consider the row sum

ei0 = ei1 + ei2 + · · · + eiJ

and substitute using Equation (4.2). The result is

ei0 =
fi0f01

f00
+

fi0f02

f00
+ · · · +

fi0f0J

f00

=
fi0
f00

(f01 + f02 + · · · + f0J)

=
fi0
f00

× f00

= fi0.

This is true for any value of i. In the same way we find that e0j = f0j for any
value of j. Thus, for the independence model, the observed marginal totals are
exactly reproduced by the marginal totals of the expected frequencies. This is
an example of the general result discussed in Section 13.1.
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The IJ expected frequencies are therefore subject to the constraints that
they must sum to prescribed totals. There are I row constraints and J column
constraints, which makes it appear that there are (I + J) constraints in all.
However, we can “save” one constraint, since, once we know all the row totals,
we know the value of f00, and, once we know (J − 1) of the column totals,
we can deduce the value of the last column total. In general, for an I × J
table, there are therefore I + J − 1 constraints. With IJ cell frequencies and
I + J − 1 constraints there are therefore

IJ − (I + J − 1) = (I − 1)(J − 1)

degrees of freedom for the expected values under the model of independence.

4.2.2 Odds-Ratios and Independence

Consider any two rows (i and i′, say) and any two columns (j and j′, say).
There are four cells at the intersections of these rows and columns: (i, j),
(i, j′), (i′, j), and (i′, j′). The odds-ratio for the probabilities of these four
combinations is

pijpi′j′∕pij′pi′j.

Substitution using Equation (4.1) gives

{(pi0p0j)(pi′0p0j′)}∕{(pi′0p0j)(pi0p0j′)} = 1.

Thus, under independence, every odds-ratio is equal to 1.

4.2.3 Goodness of Fit and Lack of Fit of the Independence
Model

4.2.3.1 Tests of Goodness-of-Fit Substitution of the expected frequen-
cies given by Equation (4.2) into the general formula for Pearson’s X2 statistic
given by Equation (2.1) gives

X2 =
∑

i

∑
j

{(
fij −

fi0f0j

f00

)2 / fi0f0j

f00

}
= 1

f00

∑
i

∑
j

(
fijf00 − fi0f0j

)2

fi0f0j
.

(4.3)

In this case, since there are (I + J − 1) constraints and each constraint reduces
the number of degrees of freedom by one (see Section 2.1.2), the distribution
of X2 is approximately 𝜒2-squared with (I − 1)(J − 1) degrees of freedom.
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In the same way, for the likelihood-ratio goodness-of-fit statistic, we have:

G2 = 2
∑

i

∑
j

fij ln
(

fij

/ fi0f0j

f00

)
, (4.4)

with an approximate 𝜒2-squared distribution with (I − 1)(J − 1) degrees of
freedom. This formula can be usefully rewritten by expanding the logarithm
to give

G2 = 2
∑

i

∑
j

fij ln(fij) + 2
∑

i

∑
j

fij ln(f00) − 2
∑

i

∑
j

fij ln(fi0)

− 2
∑

i

∑
j

fij ln(f0j).

Simplifying the summations gives

G2 = 2
∑

i

∑
j

fij ln(fij)+ 2f00 ln(f00)− 2
∑

i

fi0 ln(fi0)− 2
∑

j

f0j ln(f0j). (4.5)

4.2.3.2 Residuals Regardless of whether or not a model appears to fit
the data, we should always compare every observed cell frequency with the
corresponding frequency estimated from the model. In this case that implies
comparing fij with eij = fi0f0j∕f00. The size of a residual, (fij − eij), is partly a
reflection of the number of observations: the difference between 5 and 15 is
the same as the difference between 1005 and 1015, but the latter is a trivial
proportionate error. More relevant is:

rij =
fij − eij√

eij

. (4.6)

Since Pearson’s goodness-of-fit statistic X2 is equal to
∑∑

r2
ij, rij is described

as a Pearson residual. If the value of eij had been independent of the data, then
rij would be (approximately) an observation from a standard normal distribu-
tion. However, to take account of the fact that eij is a function of the observed
data, a correction is required. The result is called a standardized residual and
is given by:

sij =
fij − eij√

eij

(
1 − fi0

f00

)(
1 − f0j

f00

) . (4.7)

If the variables are truly independent, then approximately 95% of the sij-
values will lie in the range (−2, 2). A value with magnitude greater than 3
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only rarely occurs by chance, while a value with magnitude greater than 4
occurs by chance on less than one occasion in a million.

Example 4.1 Political affiliation and newspaper choice

Table 4.1 examines the relationship between an individual’s choice of daily
newspaper and their political party affinity.

TABLE 4.1 Cross-tabulation of political party affinity and daily newspaper
readership in the United Kingdom in 2003–2004

Daily newspaper readership

Political party affinity Broadsheet Middle-market Tabloid Local paper Total

Conservative 25 47 12 10 94
Labour 41 17 60 24 142
Liberal Democrat 13 4 3 6 26
None 73 69 117 62 321

Total 152 137 192 102 583

Source: SN 5073, Survey of Public Attitudes towards Conduct in Public Life, 2003–2004.
Reproduced with permission of the UK Data Service.
Broadsheet papers include The Daily Telegraph, The Guardian, The Independent, and The
Times. Middle-market papers include the Daily Mail and Daily Express. Tabloids include The
Sun and Daily Mirror.

Under the hypothesis of independence, the expected number of Conserva-
tive broadsheet readers in this sample would be 94 × 152∕583 = 24.51, which
is very close to the 25 actually observed. However, the number of Conserva-
tive tabloid readers would be 94 × 192∕583 = 30.96 which is much greater
than the 12 observed. The goodness-of-fit statistics have values 68.7 (for X2)
and 67.3 (for G2). For both statistics the reference chi-squared distribution has
(4 − 1)(4 − 1) = 9 degrees of freedom. These observed values correspond to
tail probabilities of the order of 10−11 so there is no doubt that newspaper
readership and political affinity are not independent (though whether it is the
newspaper choice that shapes a reader’s political views or whether it is the
political views that govern newspaper choice is not something that we can
discover with these data).

Table 4.2 gives the full set of expected frequencies and also the standard-
ized residuals obtained using Equation (4.7). Standardized residuals greater
than 3 in magnitude (which would appear by chance on about 3 times in a
thousand) are shown in bold. It appears that the major cause of the lack of
independence is the fact that the number of Conservative supporters reading
middle-market newspapers is about twice that expected under independence.
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TABLE 4.2 Expected frequencies under independence and the corresponding
standardized residuals for the data of Table 4.1

Expected frequencies Standardized residuals

24.51 22.09 30.96 16.45 0.13 6.62 −4.54 −1.91
37.02 33.37 46.77 24.84 0.87 −3.73 2.72 −0.21

6.78 6.11 8.56 4.55 2.84 −1.00 −2.37 0.77
83.69 75.43 105.72 56.16 −2.03 −1.26 2.00 1.28

4.3 PARTITIONING

If U and V are independent random variables, with U having a 𝜒2
u -distribution

and V having a 𝜒2
v -distribution, then their sum U + V has a 𝜒2

(u+v)-distribution.

The implication is that, since the goodness-of-fit statistics X2 and G2 have
approximate 𝜒2-distributions, we can potentially identify the sources of any
lack of fit by partitioning a table into independent subtables. Thus, for a 2 × 3
table

f11 f12 f13 f10

f21 f22 f23 f20

f01 f02 f03 f00

≡
f11 f12 + f13 f10

f21 f22 + f23 f20

f01 f02 + f03 f00

+
f12 f13 f12 + f13

f22 f23 f22 + f23

f02 f03 f02 + f03

.

Between them, the two right-hand tables contain all the information pre-
sented in the left-hand table. Importantly, they contain no other information.
Both presentations are equally valid and should therefore lead to correspond-
ing conclusions. For the 2 × 3 table there are 1 × 2 = 2 degrees of freedom.
Each 2 × 2 table has a single degree of freedom: as usual 1 + 1 = 2.

For each of the three tables, the values of X2 and G2 will be probably very
similar. However, it is here that G2 has an advantage over X2, since the values
of G2 for the two 2 × 2 tables will always exactly equal that for the 2 × 3 table,
whereas that is not the case for the values of X2.

4.3.1 *Additivity of G2

Applying Equation (4.5) to the 2 × 3 table gives

2{f11 ln(f11) + f12 ln(f12) + f13 ln(f13) + f21 ln(f21) + f22 ln(f22) + f23 ln(f23)

+ f00 ln(f00) − f10 ln(f10) − f20 ln(f20) − f01 ln(f01) − f02 ln(f02) − f03 ln(f03)}.
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Applying Equation (4.5) to the first 2 × 2 table gives

2{f11 ln(f11) + (f12 + f13) ln(f12 + f13 + f21 ln(f21 + (f22 + f23) ln(f22 + f23)

+ f00 ln(f00) − f10 ln(f10) − f20 ln(f20) − f01 ln(f01) − (f02 + f03) ln(f02 + f03)},

and to the second 2 × 2 table gives

2{f12 ln(f12) + f13 ln(f13) + f22 ln(f22) + f23 ln(f23) + (f02 + f03) ln(f02 + f03)

− (f12 + f13) ln(f12 + f13) − (f22 + f23) ln(f22 + f23) − f02 ln(f02) − f03 ln(f03)}.

Thus the contribution of +(f22 + f23) ln(f22 + f23) to G2 for the first 2 × 2 table
is cancelled out by the contribution of −(f22 + f23) ln(f22 + f23) for the sec-
ond 2 × 2 table. It is this, and the corresponding cancellations for the other
introduced summations that result in precise equality of the G2-values for the
complete table and for its components.

Example 4.1 Political affiliation and newspaper choice (continued )

The lack of independence between political affiliation and newspaper reader-
ship in Table 4.1 was very apparent and easy to identify. The mean of a 𝜒2

distribution with d degrees of freedom is d, and its standard deviation is
√

d,
so our observed values of 68.7 for X2 and 67.3 for G2 were much greater than
would have been expected by chance. We might wonder just how much of that
lack of fit was due to the apparent Conservative preference for middle-market
newspaper. The answer is provided by splitting the original table into parts
(partitioning), with one part focusing on the (Conservative, middle-market
newspaper) combination.

The partitioned data appear in Table 4.3. A consequence of the partitioning
is the construction of omnibus categories marked “Other.” The totals for these
categories are shown emboldened. Notice that each of these totals appears not
only in the body of one subtable, but also in the margin of another subtable.
It is this feature that ensures that the component G2-values sum correctly to
the G2-value for the complete table.

The corresponding goodness-of-fit statistics are summarized in Table 4.4.
The first four rows of the table show the goodness-of-fit values for the inde-
pendence model applied separately to each subtable. Included in the table is
the ratio of G2 divided by the degrees of freedom. This ratio is a useful guide
since the value should be near 1 if the model is a good fit. For subtables B, C,
and D, the ratios are all between 3 and 5 (corresponding to tail probabilities
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TABLE 4.3 Partitioned version of Table 4.1 using four sub-tables. The
emboldened values did not appear in Table 4.1

A Newspaper B Newspaper

Middle- Broad-
Party market Other Total sheet Tabloid Local Total

Con. 47 47 94 25 12 10 47
Other 90 399 489 127 180 92 399

Total 137 446 583 52 192 102 446

C Newspaper D Newspaper

Middle- Broad-
Party market Other Total sheet Tabloid Local Total

Lab. 17 125 142 41 60 24 125
Lib. Dem. 4 22 26 13 3 6 22
None 69 252 32 73 117 62 252

Total 90 399 489 127 180 92 399

ranging between 1% and 4%) and indicating a modest lack of independence.
For subtable A, however, the ratio is nearly 40 (corresponding to a tail proba-
bility of the order of 10−10); this confirms that the preference of Conservative
supporters for middle-market newspapers is the dominant feature.

The final rows in Table 4.4 report the sum of the goodness-of-fit values of
the separate tables with that for the original table. The apparent difference of
0.0001 in the values for G2 is the result of summing the results rounded to
four decimal places; the true difference is zero. By contrast there is a marked
difference in the sum of the X2 values.

TABLE 4.4 Goodness-of-fit statistics for the independence
model applied to the four subtables of Table 4.1 given in Table 4.3

Subtable d.f. G2 G2∕d.f. X2

A 1 38.4617 38.5 43.7813
B 2 9.2774 4.6 9.4332
C 2 6.4753 3.3 6.1126
D 4 13.0603 3.3 12.2185

A+B+C+D 9 67.2747 71.5456

Table 4.1 9 67.2748 68.7099
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4.3.2 Rules for Partitioning

There is really only one rule:

Every cell in the original table must appear exactly once as a cell in a subtable.

A check on this is provided by the degrees of freedom of the subtables cor-
rectly summing to the degrees of freedom of the original table. Table 4.4
demonstrated this. A critical feature of the subtables is that any cell frequency
that appears in a subtable without appearing in the original table will also be
found as a marginal total for another subtable (see Table 4.3 for an example).

4.4 GRAPHICAL DISPLAYS

Diagrams are often useful aids for interpreting data. In this section two pos-
sibilities are presented.

Mosaic plots give the viewer an idea of the respective magnitudes of the
categories of the classifying variables, together with an idea of which specific
category combinations are unusually scarce or frequent.

Cobweb diagrams focus on identifying the unusually scarce or frequent
category combinations.

4.4.1 Mosaic Plots

The mosaic plot was introduced by Friendly (1994) in order to give a visual
impression of the relative sizes of the I × J frequencies. It also gives an indica-
tion of how the observed table differs from a table displaying independence.
The precise details depend on the statistical package being used. Using the
mosaicplot function in R, positive and negative residuals are distinguished
by the use of continuous or dotted borders to the mosaic boxes, with shading
indicating the magnitude of a residual.

Figure 4.1 shows the mosaic plot for the data of Table 4.1. It was produced
by the following R commands:

R code

Newspaper<-c("Broadsheet","Middle-market","Tabloid","Local
paper");

Party<-c("Conservative","Labour","Liberal Democrat",
"None");

Freq<-c(25,47,12,10,41,17,60,24,13,4,3,6,73,69,117,62);
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FIGURE 4.1 Mosaic diagram, using standardized residuals (Equation 4.7) for the
independence model applied to the data of Table 4.1.

t<-array(Freq,dim=c(4,4),dimnames=list(Newspaper,Party));
pdf("mosaic.pdf", colormodel="gray");
mosaicplot(t,main="",type="pearson",shade=TRUE,color=FALSE);
dev.off();

Friendly (2000) extended the mosaic approach to tables with more than
two variables.

4.4.2 Cobweb Diagrams

The cobweb diagram, which focuses on the interactions between pairs of
variables, was introduced by Upton (2000). In the diagram, lines indicate cat-
egory combinations having standardized residuals (Equation 4.7) with mag-
nitudes greater than 2. The thickness of the line is governed by the magnitude
of the residual, with black lines indicating unusually common combinations
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and gray lines indicating unusually scarce combinations. The R code for the
cobweb function is provided in the Appendix.

Example 4.1 Political affiliation and newspaper choice (continued )

Figure 4.2 illustrates the relationships between the variable categories. The
code used to apply the function in this instance is:

R code (continued )

df<-data.frame(expand.grid(Newspaper=Newspaper,Party=Party),
Freq,stringsAsFactors = TRUE);

scale<-1;
cobweb(df,scale,"paper.ps")

 Broadsheet 

 Middle-market  Tabloid 

 Local paper 

 Conservative 

Labor  Liberal Democrat 

 None 

Newspaper 

Party 

FIGURE 4.2 Cobweb diagram for the independence model applied to the data of
Table 4.1. The lines indicate the category combinations that have the largest standard-
ized residuals (Black = positive, Gray = negative).
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4.5 TESTING INDEPENDENCE WITH ORDINAL VARIABLES

Table 4.5 reports the result of a cross-classification of objects by their color
and type.

TABLE 4.5 Cross-classification of the colors and
types of 78 objects

Color

Red White Blue Green

Type A 2 4 5 9
Type B 3 5 7 9
Type C 7 5 4 3
Type D 8 4 2 1

We can test the null hypothesis that color and type are independent of one
another by using the X2 goodness-of-fit test (Section 4.2.3.1). In this case
X2 = 16.6. With (4 − 1)(4 − 1) = 9 degrees of freedom, we find that 16.6 is
not an exceptionally large value (a tail probability of about 5.6%): we con-
clude that the null hypothesis of independence can be accepted. This seems a
not unreasonable conclusion.

For Table 4.6, the null hypothesis is that quality and expense are indepen-
dent of one another. This seems implausible, since there is an obvious connec-
tion: better-quality objects are generally more expensive. However, the counts
are the same as for Table 4.5 which means that the value of X2 is again 16.6.
Our standard test of independence appears not to be working!

The explanation is that the X2 and G2 tests are omnibus tests: they are com-
paring a specific situation (independence) against all possible alternatives.
That is not appropriate here, since there is one specific alternative that is of
interest (namely, that quality and cost are positively correlated). The intrinsic
difference from the situation of Table 4.5 is that both quality and expense are
ordinal variables (since their categories are ordered).

TABLE 4.6 Cross-classification of the quality and
expense of 78 objects

Quality of manufacture

Very low Low High Very high

Very expensive 2 4 5 9
Expensive 3 5 7 9
Cheap 7 5 4 3
Very cheap 8 4 2 1
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FIGURE 4.3 A scatter diagram representation of the data in Table 4.6, with a line
suggesting the dependence between the two variables.

Suppose, now, that quality and expense were really continuous variables
with values that had been recorded (1, 2, 3, and 4, say) with limited accu-
racy. Thus a value recorded as “Very expensive” was measured as some value
between 3.5 and 4.5. The entire data set might have looked as shown in Fig-
ure 4.3, with two data points in the top left cell, one data point in the bottom
right, and so on (matching the counts in Table 4.6).

Using the data illustrated in the scatter diagram, a natural measure of the
relation between quality and expense would be the coefficient of correlation
r. We can apply this idea to the data summarized in Table 4.6. Denote the
classifying variables as X and Y and ascribe the value i to the ith category of
X and the value j to the jth category of Y. With the count in cell (i, j) being fij,
the squared correlation is then given by

r2 =

(
f00

∑
i

∑
j ijfij −

(∑
i ifi0

) (∑
j jf0j

))2

(
f00

∑
i i2fi0 −

(∑
i ifi0

)2
)(

f00
∑

j j2f0j −
(∑

j jf0j

)2
) . (4.8)

A test of the hypothesis that r = 0 (corresponding to independence between
the variables) against the alternative r ≠ 0 is then provided by

M2 = (f00 − 1)r2, (4.9)

which has an approximate 𝜒2
1 -distribution. The 1 degree of freedom here can

be thought of as being a specific 1 of the (I−1)(J−1) degrees of freedom for
the general goodness-of-fit test: effectively we are partitioning the latter into
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a component (M2) that encapsulates an underlying linear (or, at least, mono-
tonic) relation between the classifying variables, and the balance referring to
remaining deviations from independence.

For the data in Table 4.6, r2 = 0.19, giving M2 = 14.6 which corresponds
to a tail probability of about 0.0001. There is therefore very clear evidence of
a monotonic association between the variables with higher quality associated
with higher expense and lower quality with lower expense.
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CHAPTER 5

THE EXPONENTIAL FAMILY

This chapter gives a very brief introduction to the exponential family. The
existence of the family is important because it includes the most relevant dis-
tributions (binomial, multinomial, and Poisson) amongst its members and
because it is possible to devise standardized algorithms for fitting models
to data from any distribution in the family. In this chapter, only the briefest
sketch is given of these algorithms since the associated theory is not otherwise
relevant to the contents of the book. Readers uninterested in this background
theory should move hastily to the next chapter!

5.1 INTRODUCTION

The most familiar linear model is the linear regression model:

E(Y) = 𝛼 + 𝛽x.

Here a straight line describes the manner in which the expectation of the
response variable Y depends on the value of an explanatory variable x.
The parameters 𝛼 (the intercept) and 𝛽 (the slope) are unknown and require
estimation using the pairs of observations (x1, y1), (x2, y2),… , (xn, yn). In the
commonest case it is assumed that the observation pairs are independently
sampled, with each value of Y arising from a normal (Gaussian) distribution

Categorical Data Analysis by Example, First Edition. Graham J. G. Upton.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

55

****************************************************************************************************************************************************************************************************



56 THE EXPONENTIAL FAMILY

with variance 𝜎2. Typically, the values of x are themselves values from a
continuous variable. Thus Y might refer to the weight of a person and x to that
person’s height.

The extension to the case of several continuous explanatory variables is
referred to as multiple regression. For example:

E(Y) = 𝛼 + 𝛽1x1 + 𝛽2x2.

If the response variable has a normal distribution, but all the explanatory
variables are categorical (as for example when Y refers to the volume of a
tomato crop, x1 refers to the variety of tomato, and x2 to the type of fertilizer
used), then the resulting linear model is described as an analysis of variance
model (ANOVA). This type of situation is common with designed experiments.
If the explanatory variables include a mixture of continuous and categorical
variables then the resulting model may be described as an analysis of covari-
ance model (ANOCOVA).

While this book is concerned with models of these general types, there is
an important difference, since the response variable is not continuous but cat-
egorical. However, since the different distributions involved are all members
of the exponential family, the linear models used can all be analyzed using
the same algorithm (Nelder and Wedderburn, 1972).

5.2 THE EXPONENTIAL FAMILY

All distributions that are members of the family have probability density func-
tions (continuous case), or probability distributions (discrete case), that can
be written in the form

exp [a(y)b(𝜃) + c(𝜃) + d(y)] , (5.1)

where y is an observation on the random variable Y, 𝜃 is a parameter of the
distribution, a and d are functions of y that do not involve 𝜃, and b and c are
functions of 𝜃 that do not involve y. In the case where a(y) = y, the function
b(𝜃) is described as the natural parameter of the distribution; models will
focus on this function.

Example 5.1 The binomial distribution

This distribution has a single parameter (the probability of occurrence of some
event) denoted by p. We now write the distribution as

P(y) = exp
[

y ln
(

p

1 − p

)
+ n ln(1 − p) + ln

(
n
r

)]
. (5.2)
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Thus a(y) = y, b(p) = ln
(

p

1−p

)
, c(p) = n ln(1 − p), and d(y) = ln

(
n
r

)
. Since

a(y) is equal to y, the natural parameter is ln
(

p

1−p

)
, which is called the logit.

Example 5.2 The Poisson distribution

This distribution has a single parameter (the mean) denoted by 𝜇. We now
write the distribution as

P(y) = exp [y ln(𝜇) − 𝜇 − ln(y!)] . (5.3)

Thus a(y) = y, b(𝜇) = ln(𝜇), c(𝜇) = −𝜇, and d(y) = − ln(y!). Since a(y) = y,
ln(𝜇) is the natural parameter.

5.2.1 The Exponential Dispersion Family

This is a simple extension of the exponential family resulting from the intro-
duction of a second parameter 𝜙. This wider family has probability density
function (or probability distribution) with the form:

exp
[

yb(𝜃) + c(𝜃)
f(𝜙)

+ d(y;𝜙)

]
, (5.4)

where f is a function,and 𝜙 is called the dispersion parameter of the distri-
bution (Jorgensen, 1987). When the value of 𝜙 is known, then, with suitable
function definitions, the formulation becomes that of the exponential family
given by Equation (5.1).

Example 5.3 The normal distribution

Here the parameter of interest is 𝜇 with the dispersion parameter being 𝜎. The
probability density function can be written as

exp
[

1
𝜎2

(
y𝜇 − 1

2
𝜇

2
)
−
(

y2

2𝜎2
+ ln(𝜎

√
2𝜋)

)]
,

with b(𝜇) = 𝜇, c(𝜇) = − 1
2
𝜇2, and f(𝜎) = 𝜎2.

5.3 COMPONENTS OF A GENERAL LINEAR MODEL

There are three components:

1. A random variable Y having a distribution that is a member of the expo-
nential family.
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2. A linear predictor which is simply a linear combination of explanatory
variables (e.g., 𝛼 + 𝛽x).

3. A link function. This is a function of the parameter of interest (p for the
binomial distribution or 𝜇 for the Poisson and normal distributions). It
is the value of this function that is explained by the linear predictor. In a
case where the link function is the natural parameter of the distribution,
it is called the canonical link function.

Example 5.4 The Poisson distribution

Suppose that Y1, Y2,… , YI are Poisson random variables with means that are
linear functions of J explanatory X-variables. For a Poisson distribution with
mean 𝜇 the canonical link function is ln(𝜇), (see Example 5.1) so, with I sets
of observations, the model is

ln(𝜇i) =
J∑

j=1

𝛽jxji, i = 1, 2,… , I, (5.5)

where 𝛽1, 𝛽2,… , 𝛽J are parameters that must be estimated. Models of this type
are called log-linear models and are introduced in Chapter 11.

Example 5.5 The binomial distribution

Suppose that Y1, Y2,… , YI are binomial random variables with success prob-
abilities that are linear functions of J explanatory X-variables. For a binomial
distribution the canonical link function is the logit (see Example 5.2) so, with
I sets of observations, the model is

ln
(

pi

1 − pi

)
=

J∑
j=1

𝛽jxji, i = 1, 2,… , I, (5.6)

where 𝛽1, 𝛽2,… , 𝛽J are parameters that must be estimated. Models of this
type are called logistic regression models or, simply, logit models. They are
discussed in Chapters 7, 8, and 9.

5.4 ESTIMATION

Fortunately for the user, the precise details of the estimation process are not
required by the analyst armed with a computer! What follows is the barest
outline of the algorithm used.
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The joint likelihood of n y-values from distributions that are members of
the exponential family is

n∏
i=1

{exp[a(yi)b(𝜃i) + c(𝜃i) + d(yi)]},

so that the log-likelihood L is given by

L =
n∑

i=1

[a(yi)b(𝜃i) + c(𝜃i) + d(yi)].

For both the Poisson distribution and the binomial distribution, using Equa-
tion (5.5) or (5.6), b(𝜃i) =

∑J
j=1 𝛽jxji, so that the maximum likelihood esti-

mates of the 𝛽-parameters are the joint solutions of

𝜕L
𝜕𝛽1

= 0,
𝜕L
𝜕𝛽2

= 0,… ,
𝜕L
𝜕𝛽J

= 0.

Finding the maximum of a function (in this case the likelihood) is a standard
numerical problem. In the context of linear models the most common meth-
ods of solution are the Newton–Raphson and Fisher scoring methods. These
procedures are very similar to one another and both are iterative; here is an
outline for the case of a single parameter, 𝛽:

1. Begin with an educated guess, 𝛽(0), of the position of the maximum.
2. Fit a quadratic in the vicinity of 𝛽(0).
3. Determine the location of the maximum of this quadratic. Call this

value 𝛽(1).
4. Fit a quadratic in the vicinity of 𝛽(1).

5. Etc.

Whichever method is used, there will usually be speedy convergence to 𝛽, the
parameter value that maximizes L. When using a standard computer package,
the numerical calculations will usually be invisible to the analyst (except,
perhaps, for a report of the number of iterations required for convergence).
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CHAPTER 6

A MODEL TAXONOMY

Chapter 5 focused on the exponential family and introduced the general linear
model. Linear models of one sort or another underlie the remainder of this
book and it is easy to lose track of which type of model (and hence which
chapter of the book) is relevant for the analysis of a particular set of data. The
aim of this short chapter is to help with this fundamental problem; presenting
the material as a separate chapter will, it is hoped, make it easier to locate the
appropriate model type.

6.1 UNDERLYING QUESTIONS

6.1.1 Which Variables Are of Interest?

Sometimes there will be an easy answer to this question: “All of them!”. How-
ever, when the data form part of a large-scale survey, it can be difficult to
decide where to focus one’s efforts and which are the relevant variables. Since
the number and type of the variables have a bearing on which model, or which
book chapter, is relevant, it is a necessary first step.

6.1.2 What Categories Should Be Used?

For some variables the categories are obvious and well-defined. For exam-
ple, the variable Sex can be regarded as having just two categories. However,
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for most variables the situation is more difficult. Consider, for example, the
question “Do you regard yourself as belonging to any particular religion?”
The annual British Social Attitudes Survey provides for 18 possible answers
in addition to the usual “Refusal” and “Don’t know” replies. With several
thousand respondents for each year’s survey, there are nevertheless several
categories where the number of respondents is in single figures. Perhaps these
categories should be combined into a single “Other” category? That is a deci-
sion that will depend on the context and purpose of the data analysis.

Decisions concerning grouping categories also affect variables that are
inherently continuous (e.g., Age). If a survey of a human population records
age in years, then there will certainly be a need for grouping into age bands
(e.g., 25–34): a good choice should ensure that (if possible, and subject to the
purpose of the data collection) there are large numbers in each group, so that
the model parameters can be estimated with confidence.

6.1.3 What Is the Type of Each Variable?

In the context of categorical data there are two types of variable: nominal
(names such as Red, White, and Blue) and ordinal (such as Small, Medium,
and Large).

6.1.4 What Is the Nature of Each Variable?

Is a particular variable (A, say) included because we want to understand what
affects the choice of category for that variable, or is the variable (B, say)
included because it may influence the choice of category for A? Variable A
might be referred to as a dependent variable, or response variable; variable
B might be called an explanatory variable or factor.

Sometimes a variable may be a link in a chain: the category of B might
be influenced by a third variable C. In such a case variable B is both a factor
(affecting A) and a response (affected by B).

TABLE 6.1 A guide to the alternative model types for categorical response
variables

Number of
explanatory
variables

Number of
response
variables

Number of
response

categories
Relevant
distribution Type of model Chapters

1 1 2 Binomial Logistic regression 7, 9
> 1 1 2 Binomial Logistic regression 8, 9
Any 1 > 2 Multinomial Logistic regression 10
Any > 1 Any Poisson Log-linear 11–16
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6.2 IDENTIFYING THE TYPE OF MODEL

The choice of model type depends upon the nature of the variables involved
and the numbers of categories that each variable has. As Table 6.1 indicates,
if there is a single response variable, then some form of logistic regression
model will be appropriate. In cases where there is more than one response
variable, a log-linear model will be required.
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CHAPTER 7

THE 2 × J CONTINGENCY TABLE

This chapter is concerned with the case where an explanatory variable with J
categories may provide information about a two-category response variable.
For the opposite situation where an explanatory variable with two categories
provides information about a J-category response variable, see Chapter 10.

7.1 A PROBLEM WITH X2 (AND G2)

We begin with a reminder of the shortcomings (discussed in Section 4.5) of
the omnibus goodness-of-fit statistics X2 and G2 when used with variables
that have ordered categories. As an example, consider the following data:

B1 B2 B3 B4 B5

A1 40 15 26 36 21
A2 10 10 14 12 9

For these data the value of X2 is 4.23. The reference distribution is 𝜒2
4 , for

which the upper 5% point is 9.49. At the 5% significance level, the hypothesis
of independence between A and B would therefore not be rejected.

Categorical Data Analysis by Example, First Edition. Graham J. G. Upton.
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Now consider the following table:

B1 B2 B3 B4 B5

A1 15 26 21 36 40
A2 10 14 9 12 10

This is the same as the previous table, but the columns have been reordered.
Since the same numbers are involved, X2 is again equal to 4.23 and the con-
clusion is unaltered.

Suppose now that we are told that A refers to the rooting of cuttings, with A1
representing success and A2 representing failure, while B refers to the amounts
of hormone rooting powder (B1: 1 mg per cutting,…, B5: 5 mg per cutting).
It is natural to examine the success rates. There were 25 plants that received
1 mg of the powder. Of these, 15 were successes: a 60% rate. Here are the
results of the previous table now expressed in terms of success rates:

x: Amount of rooting powder (mg)

1 2 3 4 5

Sample size (n) 25 40 30 48 50
Success rate (p) 60% 65% 70% 75% 80%

This table conveys the same information as its predecessor, but now it is
immediately apparent that there is an association between the variables. The
Pearson test did not uncover the relation because it was unable to use the infor-
mation that the categories were ordered. Of course, the same would apply
to the likelihood-ratio statistic G2 or indeed, any other test procedure that
ignored the ordering of the categories.

7.2 USING THE LOGIT

In the previous example, for the reordered table the relation was particularly
clear. The model

p = 𝜇 + 𝛼x

would provide a perfect fit (with 𝜇 = 55% and 𝛼 = 5%). We could confidently
predict that 2.5 mg of powder would give a 67.5% success rate, and it seems
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plausible that 6 mg would give an 85% success rate. But, and this is a big
BUT, what would happen with 10 mg of powder? Our model would predict
(55 + 5 × 10 = 105)%!

Of course, extrapolation can always give foolish results, but we should be
using a model that would provide a feasible estimate of p for every value of
x. Rather than modeling the variation in p with its limited range of (0,1), we
need to model the variation in some function of p that takes the full (−∞,∞)
range. Since the situation is binomial, the answer is provided by the natural
parameter (see Chapter 5) of the binomial distribution, which is the logit. With
a single continuous explanatory variable X the equivalently simple model
would be

ln
(

p

1 − p

)
= 𝜇 + 𝛼x, (7.1)

with x being the observed value of X. Note that when p = 0, ln
(

p

1−p

)
= −∞,

and when p = 1, ln
(

p

1−p

)
= ∞. Any intermediate value for 𝜇 + 𝛼x can be

converted into a value for p by exponentiating both sides of the equation and
rearranging the terms to give

p = e𝜇+𝛼x∕(1 + e𝜇+𝛼x). (7.2)

Note that p = 0.5 corresponds to a zero value for the logit, with positive logit
values corresponding to p > 0.5 and negative values to p < 0.5. A model of
this type is described as a logistic regression model. The ratio p∕(1 − p) is the
odds (on one outcome as opposed to the other) and thus an alternative name
for the logit is the log-odds.

The relationship between p and the logit is illustrated in Figure 7.1. Note
that, for p in the range (0.2, 0.8), the values of its logit are nearly collinear.
As a consequence, if the relation between p and some variable x appears to
be approximately linear in this range, then the same will be true for the logit.
The curved nature of the logit is only apparent when a wider range of values
of p is considered.

7.2.1 Estimation of the Logit

Suppose that, in n trials we have r successes. The logit is the logarithm of
the ratio of the proportion of successes to that of failures. A natural estimate
of that ratio is therefore the logarithm of the number of successes divided
by the number of failures: ln(r∕(n − r)). However, if p is very small (but
greater than 0), then there will be a good chance that r = 0 which would mean
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FIGURE 7.1 The relation between probability, p, and the logit, ln[p∕(1 − p)].

ln(r∕(n − r)) = −∞. Similarly, if p is very large (but less than 1), then there
will be a good chance that r = n which would mean ln(r∕(n − r)) = ∞. In
either case the true value of ln[p∕(1 − p)] would be finite and infinitely dis-
tant from the estimate! The solution proposed by Haldane (1956) was to add a
small constant c to both observed frequencies. Since the choice c = 0.5 min-
imizes the bias of the estimator, Haldane’s suggestion was to use:

ln
( r + 0.5

n − r + 0.5

)
. (7.3)

A comparison of alternative estimators is provided by Gart and Zweifel
(1967).

7.2.2 The Null Model

We are interested in how the proportion of successes is affected by one or more
explanatory variables. Suppose, however, that the proportion is not affected.
Then the null model given by Equation (7.4) will be appropriate:

ln
(

p

1 − p

)
= 𝜇. (7.4)

The goodness of fit of the null model provides a yardstick for comparison in
assessing the performance of a more complex model. The degrees of freedom
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for this model will be one less than the number of observations (one, because
the model has one parameter (𝜇) to estimate).

7.3 INDIVIDUAL DATA AND GROUPED DATA

Each individual data item takes one of two values: “Success” (p = 1) and
“Failure” (p = 0). No intermediate values are possible. However, whatever
the model, the predicted p-value for an individual data item will be inter-
mediate between the extremes. No model of this type can provide a perfect
explanation. As the example will show, a scatter diagram is unlikely to be
helpful.

Example 7.1 Calcium intake and cardiovascular disease

The NHANES III cross-sectional study was conducted in the United States
by the National Center for Health Statistics between 1988 and 1994. Over the
following twelve years participants were monitored for survival or death. The
data reported here (which refer to 16,052 individuals aged 17 or over who had
no history of heart disease) were kindly made available by the authors of a
study examining the possible link between average daily calcium intake and
death due to cardiovascular disease (CVD).

The following R code creates Figure 7.3, which illustrates the data for a
sample of 100 survivors and a sample of 100 who died of CVD.

R code

# The data are held in a vector named outcome
w1<-which(outcome==1);
w0<-which(outcome==0);
set<-c(1:100);
plot(data[c(w0[set],w1[set]),75],

data[c(w0[set],w1[set]),40], lab=c(7,1,7),
xlab="Mean daily total calcium consumption (in mg),
x", ylab="Outcome (1 died of CVD; 0 other)")

With some imagination, the diagram hints that higher total calcium intake
is associated with a reduced probability of dying from CVD. However
(because of the stratified sampling) it does not show that only about 10%
of the individuals in the trial died of CVD.

What Figure 7.2 has demonstrated is that plotting individual data is not
going to be helpful. If there is sufficient data, then we can more easily see
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FIGURE 7.2 Scatter diagram showing the mean daily total calcium intake (in mg)
for 100 individuals who died of cardiovascular disease (CVD), and for 100 who
did not.

what is happening by grouping the data, and examining how the proportion
(or the logit) varies for different ranges of X.

In Table 7.1, the X-variable (the estimated mean total daily calcium intake)
has been subdivided into 10 categories. The category definitions were chosen
so that there were comparable numbers in each category, with the category
boundaries being rounded versions of the observed calcium percentiles (for
example, 10% of individuals had an estimated calcium intake of less than
259 mg, so 250 mg has been used as the boundary of the first category).

Figure 7.3 shows that the proportion of individuals dying of CVD and the
estimated total calcium intake do appear to be related. The two graphs (one
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FIGURE 7.3 Graphs of mean daily total calcium intake (in mg) against proportion
dying of CVD, and against logit(proportion dying of CVD).
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TABLE 7.1 Data from a long-term cohort study of the possible effect of
calcium on cardiovascular disease (CVD)

Estimated mean total daily calcium intake, mg

< 250 250− 400− 500− 600−

Mean intake, x 173 327 451 552 649

Sample size, n 1476 2163 1646 1494 1397
Dying of CVD, k 154 203 157 143 104

% dying of CVD 10.4 9.4 9.5 9.6 7.4

Estimated mean total daily calcium intake, mg

700− 800− 1000− 1250− ≥ 1500

Mean intake, x 748 895 1114 1366 2041

Sample size, n 1263 2034 1747 1097 1735
Dying of CVD, k 108 165 139 64 90

% dying of CVD 8.6 8.1 8.0 5.8 5.2

Source: The data were collected as part of the third National Health and Nutrition Examination
Survey (NHANES III) and were kindly made available by the authors: van Hemelrijck, M.,
Michaelsson K., Linseisen J., Rohrmann S. (2013), PLoS ONE 8(4): e61037. doi:10.1371/
journal.pone.0061037.

for p and one for the logit) look very similar because of the short range of the
values of p.

To apply the simple logistic regression model given by Equation (7.1) to
the grouped data of Table 7.1, the following R code was used:

R code

calc<-c(173,327,451,552,649,748,895,1114,1366,2041);
n<-c(1476,2163,1646,1494,1397,1263,2034,1747,1097,1735);
die<-c(154,203,157,143,104,108,165,139,64,90);
mat<-cbind(die,n);
summary(glm(mat~calc,family=binomial))

The results are summarized in Table 7.2, which reports that

ln
(

p

1 − p

)
= −2.209 − 0.0003669x,

with the estimates of both 𝜇 and 𝛼 being unquestionably different from zero.
The second part of the output gives the values of G2 (referred to as the
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TABLE 7.2 Output (using R) for the fit of the simple logistic
regression model, Equation (7.1), to the grouped data of Table 7.1

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.209e+00 5.194e-02 -42.538 < 2e-16 ***
Calcium -3.669e-04 5.916e-05 -6.202 5.57e-10 ***

Null deviance: 46.5448 on 9 degrees of freedom
Residual deviance: 5.3833 on 8 degrees of freedom

deviance) for the simple logistic regression model (G2 = 5.3833 with 8 d.f.)
and for the null model (the model that omits 𝛼x). The difference between the
two G2-values provides another indication of the importance of including 𝛼 in
the model, since 41.1615 (= 46.5448 − 5.3833) would be an extraordinarily
extreme value from a chi-squared distribution with 9 − 8 = 1 d.f.

However, grouping the data was a device used for graphical purposes. It is
the raw 0/1 data (partly illustrated in Figure 7.3) to which the model should
be applied. The following R commands

R code (continued)

model<-glm(outcome~calc,family=binomial);
summary(model)

result in the output summarized in Table 7.3. The estimates there are slightly
different to those for the grouped data: we now have 𝜇 = −2.10, and 𝛼 =
−0.00039. For a person with an average daily total calcium intake of x mg, the
probability of dying from CVD in a 12-year period (the original data referred
to such a period) would be estimated to be

e−2.1−0.00039x∕
(
1 + e−2.1−0.00039x

)
.

The fitted relation is illustrated in Figure 7.4.

TABLE 7.3 Output (using R) for the fit of the simple logistic
regression model to the 16,052 observations summarized in Table 7.1

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.103e+00 5.178e-02 -40.606 < 2e-16 ***
Calcium -3.935e-04 5.917e-05 -6.651 2.91e-11 ***

Null deviance: 9157.3 on 16051 degrees of freedom
Residual deviance: 9108.1 on 16050 degrees of freedom
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FIGURE 7.4 The probabilities derived from the fitted simple logistic regression
model superimposed on the scatter diagram of mean daily total calcium intake (in
mg) against proportion dying of CVD.

All the results have shown that the proportion dying of CVD is lower for
those with a high mean daily calcium intake. A naive interpretation would be
that one can avoid CVD by increasing the calcium intake. However, there are
several reasons why this may be untrue: foremost amongst these is the pos-
sibility that high levels of calcium may lead to death by other causes (before
CVD can take effect).

7.4 PRECISION, CONFIDENCE INTERVALS, AND
PREDICTION INTERVALS

Parameter estimation is useful, but quite how useful will depend on the pre-
cision of that estimate. Fortunately, whichever computer program is used, it
is sure to provide appropriate information. With large samples, the parameter
estimates are approximately normally distributed, so that for a parameter 𝛼,
with estimated value 𝛼 and estimated standard error se(𝛼) (the square root of
the estimated variance of 𝛼) the ratio z, given by

𝛼∕se(𝛼)

has an approximate standard normal distribution. It follows that an approxi-
mate 95% confidence interval is provided by

𝛼 ± 1.96se(𝛼). (7.5)
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This interval may be referred to as a Wald confidence interval after the Hun-
garian statistician Abraham Wald (1902–1950).

The Wald interval is useful as a quick approximation, but a more accu-
rate interval is provided by studying how the likelihood changes as the value
suggested for the parameter is varied. For a single parameter, a reduction in
the likelihood greater than 1.962 = 3.84 would be significant at the 5% level,
since the reference distribution would be a chi-squared distribution with one
degree of freedom. Most computer programs will do the hard work and report
these likelihood-based intervals.

Example 7.1 Calcium and cardiovascular disease (continued)

Continuing with the analysis given in Table 7.3, we can obtain the Wald and
likelihood-based 95% confidence intervals for 𝛼 using these R commands:

R code (continued)

confint.default(model); # Wald intervals
confint(model); # Likelihood based intervals

Table 7.4 gives results both for the full set of 16,052 observations, and for a
random sample of 180 observations. The table shows that, for very large sam-
ples, the Wald interval is a good representation of the more precise likelihood-
based interval. However, for smaller numbers of observations, the Wald inter-
val may mislead the analyst: in this example the Wald interval for the sample
of 180 observations spans zero and therefore incorrectly implies that 𝛼 does
not differ significantly from zero at the 5% level.

7.4.1 Prediction Intervals

The estimated value of a logit is calculated as a linear combination of the esti-
mated parameters in the model. Each of these estimates has its own variance
and, in general, the estimates will be correlated (i.e., there will be non-zero
covariances). It follows that it would be difficult to estimate the variance of

TABLE 7.4 Wald, and likelihood-based, 95% confidence intervals for the
apparent effect of calcium intake on the probability of death

All 16,052 observations
Random sample of 180

observations

Wald interval (−0.00051, −0.00028) (−0.00377, 0.00009)
Likelihood-based interval (−0.00051, −0.00028) (−0.00407, −0.00022)
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an estimated logit by hand. Fortunately, we don’t need to, since the computer
finds the hard work easy. Assume that, for a given value of the explanatory
variable, the computer reports the estimated logit, l̂ and its standard error,
se(̂l). An approximate 95% prediction interval for the logit is therefore

l̂ ± 1.96se(̂l),

so that an approximate 95% prediction interval for the success probability p
is given by

⎛⎜⎜⎜⎝
exp

{̂
l − 1.96se(̂l)

}
1 + exp

{̂
l − 1.96se(̂l)

} ,
exp

{̂
l + 1.96se(̂l)

}
1 + exp

{̂
l + 1.96se(̂l)

}⎞⎟⎟⎟⎠ . (7.6)

Example 7.1 Calcium and cardiovascular disease (continued)

Figure 7.5 shows the result of using the bounds given by Equation (7.6) to
the simple logistic model given by Equation (7.1) applied to the CVD data.
Notice the way that the bounds widen away from the center of the data.
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FIGURE 7.5 The approximate 95% prediction interval for the simple logistic
regression model, Equation (7.1), relating CVD to calcium intake.
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7.5 LOGISTIC REGRESSION WITH A CATEGORICAL
EXPLANATORY VARIABLE

Often an explanatory variable is categorical rather than continuous. Common
examples are gender and ethnicity. Since the response variable might behave
in a different fashion for each gender, or each ethnic group, the model will
need separate parameters for every category. For an explanatory variable with
J categories, a simple solution would be

ln
(

p

1 − p

)
= 𝜇j, j = 1, 2,… , J. (7.7)

However, this is by no means the only way of writing the model. One alter-
native is

ln
(

p

1 − p

)
= 𝜇 + 𝛼j, j = 2,… , J. (7.8)

Here, the first of the categories is a reference category with which each of
the other categories is compared. Thus, if 𝛼j does not differ significantly from
zero, then this implies that categories 1 and j do not differ significantly. This
is one choice of model often selected by computer programs, while another
is to use the last of the J categories as the reference category:

ln
(

p

1 − p

)
= 𝜇 + 𝛼j, j = 1,… , J − 1. (7.9)

A third alternative compares the effect of each category with that of an “aver-
age category”:

ln
(

p

1 − p

)
= 𝜇 + 𝛼j j = 1,… , J,

J∑
j=1

𝛼j = 0. (7.10)

Whichever of the three forms of model is used, if the explanatory variable is
irrelevant, then all 𝛼-parameters will be zero.

Example 7.2 Gender and cardiovascular disease

For the NHANES III data analyzed previously, information was collected on
many potential explanatory variables. Table 7.5 reports the incidence of CVD
deaths separately for males and females. The logits in the table have been
calculated using Equation (7.3).
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TABLE 7.5 The incidence of CVD deaths for males and
females during the 12-year follow-up period of the
NHANES III study

Males Females

Deaths from CVD 670 657
Other 6735 7990

Logit −2.31 −2.50

In order to save storage space most studies use codes in their data summary.
An example is the use of “1” for “Male” and “2” for “Female”. In this case,
therefore, 2 is not twice 1; it is simply an alternative to 1. The computer pro-
gram needs to know that that is so. The following R code gives the necessary
commands.

R code

# A vector named Gender exists
Gender<-as.factor(Gender);
summary(glm(outcome~Gender,family=binomial))

The resulting output is shown in Table 7.6. The first part of the output
refers to Gender2 which is the second gender category (Female). Since the
first category is not mentioned, it is the reference category and the output
is using the form of model given by Equation (7.8). For j = 1, the equation
becomes

ln
(

p

1 − p

)
= 𝜇,

TABLE 7.6 Output (using R) for the fit of the simple logistic regression model
with gender as the single explanatory variable

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.30780 0.04051 -56.969 < 2e-16 ***
Gender2 -0.19047 0.05734 -3.322 0.000895 ***

Null deviance: 9157.3 on 16051 degrees of freedom
Residual deviance: 9146.3 on 16050 degrees of freedom
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so that the intercept 𝜇 corresponds to the logit for the first category. In this
case, therefore, the estimated logit for males is −2.30780 and that for females
is

−2.30780 − 0.19047 = −2.49827.

These are the values reported to two decimal places (which is quite enough!)
in Table 7.5. That the difference is highly significant is indicated by the tail
probability (0.000895).

The second part of the table contrasts the goodness-of-fit of the null model
given by Equation (7.4), with that of the model given by Equation (7.8). There
is a reported difference of 9157.3 − 9146.3 = 11.0 for a change of one degree
of freedom (more accurately, the difference is 11.033). The probability that a
𝜒2

1 -distribution takes the value 11.033, or a more extreme value, is 0.000895,
as reported in the first part of the table.

Note that, since J = 2, the result is a 2 × 2 table for which the methods of
Chapter 3 are also appropriate.

7.5.1 Parameter Estimates with Categorical Variables (J > 2)

For a categorical variable with J categories, computer programs will econom-
ically report just (J − 1) parameter estimates. The estimates reported will
depend upon the formulation. An example is provided by Table 7.7 which
refers to a variable having categories (Red, White, Blue).

TABLE 7.7 The reported parameter estimates for a
three-category variable using alternative formulations
of the same model

Equation (7.8) Equation (7.9) Equation (7.10)

Red −3 Red −1
White 0 White −3 White −1
Blue 3

In the first formulation, the first category Red is the reference category. The
zero value for White implies equal estimates for Red and White, with Blue
being three greater.

For the second formulation, the last category Blue is the reference category.
The estimates for Red and White are reported as being three less than that for
Blue.

The third formulation uses the average category as reference. To interpret
the estimates for the final formulation (7.10) we need to determine the missing
value; in this formulation the estimates sum to zero, so the missing value is
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two. Thus the value for Blue is again three greater than each of the other two
estimates. The need for care in interpretation is very evident.

Example 7.3 Cardiovascular disease and ethnicity

In the NHANES III study ethnicity was recorded using four categories
(1: Non-Hispanic white; 2: Non-Hispanic black; 3: Mexican American;
4: Other). The proportions dying of cardiovascular disease vary noticeably
according to ethnicity, as Table 7.8 shows.

TABLE 7.8 The numbers dying of cardiovascular disease, subdivided by
ethnicity

1: Non-Hispanic 2: Non-Hispanic 3: Mexican 4: Other
white black American

Dying of CVD 764 318 219 26
Other 5542 4306 4259 618

Percentage dying of CVD 12.1 6.9 4.9 4.0

Once again, when we fit the model (in the form of Equation 7.8) the esti-
mates (see Table 7.9) correspond to the observed logits. Thus ln(764∕5542) =
−1.9814, ln(318∕4306) = (−1.98154 − 0.06217) = −2.60571, and so on.
The differences between group 1 and each of ethnic groups 2 to 4 are highly
significant.

TABLE 7.9 Output (using R) for the fit of the simple logistic
regression model with ethnicity as the single explanatory variable

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.98154 0.03859 -51.346 < 2e-16 ***
Ethnic2 -0.62417 0.06976 -8.948 < 2e-16 ***
Ethnic3 -0.98617 0.07931 -12.435 < 2e-16 ***
Ethnic4 -1.18685 0.20384 -5.823 5.79e-09 ***

Null deviance: 9157.3 on 16051 degrees of freedom
Residual deviance: 8939.5 on 16048 degrees of freedom

7.5.2 The Dummy Variable Representation of a Categorical
Variable

The model represented by any of Equations (7.7)–(7.10) has J unknown
parameters, though this may not be immediately apparent. An alternative is to
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use so-called dummy variables. A dummy variable takes the value 1 if some
condition is true, and otherwise takes the value 0. An alternative description
is indicator variable.

We will define the dummy variable Dj as follows:

Dj =
{

1 if an individual belongs to category j,
0 otherwise.

(7.11)

Using these dummy variables Equation (7.7) can be written as

ln
(

p

1 − p

)
= 𝛼1D1 + 𝛼2D2 + · · · + 𝛼JDJ , (7.12)

while Equation (7.8) can be written as

ln
(

p

1 − p

)
= 𝜇 + 𝛼2D2 + · · · + 𝛼JDJ , (7.13)

with equivalent forms for Equations (7.9) and (7.10).
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CHAPTER 8

LOGISTIC REGRESSION WITH
SEVERAL EXPLANATORY VARIABLES

Logistic regression is not confined to a single explanatory variable, nor is it
necessary for the explanatory variables to be all of the same type.

8.1 DEGREES OF FREEDOM WHEN THERE ARE NO
INTERACTIONS

All computer programs will report the number of degrees of freedom for a
given model. That number is given by

d.f. = Number of observations − Number of parameters.

The number of parameters is easily determined. For example, for a model
with two continuous variables and two categorical variables:

Overall mean 1
Each continuous variable 1
Categorical variable (I categories) I − 1
Categorical variable (J categories) J − 1

Categorical Data Analysis by Example, First Edition. Graham J. G. Upton.
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With two categorical explanatory variables (with I and J categories) and with
two continuous explanatory variables (X and Y), a simple model would be:

ln
(

p

1 − p

)
= 𝜇 + 𝛼i + 𝛽j + 𝛾x + 𝛿y, i = 2,… , I, j = 2,… , J. (8.1)

In this case, with n observations there would be

n − 1 − (I − 1) − (J − 1) − 1 − 1 = n − I − J − 1

degrees of freedom.

Example 8.1 A four-variable model for the CVD data

We now bring together all the explanatory variables previously considered
into a single model:

ln
( pij

1 − pij

)
= 𝜇 + Genderi + Ethnicityj + 𝛾Age + 𝛿Calcium,

i = 1,… , I, j = 1,… , J.

An appropriate R command is

R code (continued)

# The vectors Age, Calcium, Gender, Ethnic exist
summary(glm(outcome~Age+Calcium+Gender+Ethnic,

family=binomial))

By default R takes Gender1 = 0 and Ethnicity1 = 0; the resulting output is
given in Table 8.1.

In this case there are 1 + (2 − 1) + (4 − 1) + 1 + 1 = 7 parameters; with
16,052 observations that leaves 16,045 degrees of freedom.

The interpretation of the estimated values of the ethnicity parameters is
that there is no significant difference between Mexican American (the third
ethnicity category) and Non-Hispanic white (the reference category for eth-
nicity). The major ethnicity difference is the much greater value (correspond-
ing to an increased probability of CVD death) for Non-Hispanic blacks (the
second ethnicity category) as opposed to Non-Hispanic whites. Age is again
the dominant effect, but there continues to be a small, but significant, effect
due to calcium intake.
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TABLE 8.1 Output (using R) for the fit of the logistic regression
model that includes the four-category ethnicity variable

Estimate Std. Error z value Pr(>|z|)
(Intercept) -7.604e+00 1.944e-01 -39.122 < 2e-16 ***
Age 9.308e-02 2.416e-03 38.523 < 2e-16 ***
Calcium -1.977e-04 6.852e-05 -2.885 0.00392 **
Gender2 -2.673e-01 6.569e-02 -4.069 4.72e-05 ***
Ethnic2 3.363e-01 8.397e-02 4.005 6.21e-05 ***
Ethnic3 4.784e-02 9.131e-02 0.524 0.60034
Ethnic4 -4.606e-01 2.234e-01 -2.062 0.03923 *

Null deviance: 9157.3 on 16051 degrees of freedom
Residual deviance: 6355.5 on 16045 degrees of freedom

8.2 GETTING A FEEL FOR THE DATA

When there are several variables, it is usually worth constructing figures
and tables that demonstrate how the probability of a “success” varies across
different combinations of the explanatory variables. Simple diagrams are
often revealing. Table 8.2 gives an indication of the sorts of issues that
may become apparent as a result. The whole process might be described as
“getting a feel for the data.”

TABLE 8.2 Problems that may be revealed by a detailed inspection of the
data using tables and plots

Problem Solution

Non-linearity Add polynomial terms, or transform the explanatory variable
(e.g., take logarithms or reciprocals)

Trend Trend across two variables implies their interaction may be
required

Outliers Determine cause; perhaps add extra dummy variable
Data inconsistencies Check for mistyping and programming errors

Example 8.2 CVD, calcium intake, and gender

It might be that the apparent effect of gender on the CVD death rates (or,
alternatively, the apparent effect of calcium on the CVD deaths) was due to
some difference in the calcium intake of the two genders. To investigate this
idea, we can work with the grouped data and examine the CVD death rates
separately for males and females. Figure 8.1 shows the result; it indicates
that there is a gender effect that is approximately constant across the range of
calcium consumption.

****************************************************************************************************************************************************************************************************



84 LOGISTIC REGRESSION WITH SEVERAL EXPLANATORY VARIABLES

500 1000 1500 2000

–3
.0

–2
.8

–2
.6

–2
.4

–2
.2

–2
.0

–1
.8

Mean daily total calcium consumption (in mg), x

lo
gi

t(
P

ro
po

rt
io

n 
dy

in
g 

of
 C

V
D

)
Female

Male

FIGURE 8.1 Scatter diagram showing the dependence of the logit(dying of CVD)
on mean daily total calcium intake and gender.

Example 8.3 CVD, calcium intake, and age

Any consideration of the probability of CVD death should take account of
an individual’s age. Disregarding age might well lead us to mistaken conclu-
sions concerning the relevance of other variables. For example, if calcium
intake was much higher amongst the young than the old (perhaps because
older people eat less) then high calcium intake could appear to be associated
with low CVD incidence for no reason other than variations in appetite! With
the large amount of data that are available in this study, we can examine the
variation due to calcium intake separately for different age brackets. Table 8.3

TABLE 8.3 Variations in percentages dying from CVD: data subdivided by
age and calcium intake

Estimated mean total daily calcium intake, mg

< 250 250− 400− 500− 600− 700− 800− 1000− ≥ 1250
Age
range

< 50 1 1 1 1 1 2 2 1 1
50− 9 7 6 7 6 3 2 5 3
60− 15 17 9 9 14 13 10 10 8
65− 18 21 24 23 23 22 18 21 14
75− 47 45 42 50 35 41 47 43 42

Overall 10 9 10 10 7 9 8 8 5
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shows the result. Controlling for age (by looking across the rows of the
table), there does appear to be a slight reduction in the proportions dying
from CVD as the calcium intake increases, though, since the decrease is not
a steady one, this may suggest the need to add a calcium-age interaction to
the model.

8.3 MODELS WITH TWO-VARIABLE INTERACTIONS

All the models so far considered have been purely additive. Often, however,
the combined effect of two variables is different to the sum of their separate
effects. For example, one cannot hear an empty balloon being pricked by a
pin, nor an empty balloon being filled with air, but a filled balloon pricked
by a pin may well go bang! We can capture this idea mathematically by
including terms that involve the product of the explanatory variables. With
two continuous explanatory variables (X and Y), the model with interaction
is

ln
(

p

1 − p

)
= 𝜇 + 𝛼x + 𝛽y + 𝜃xy. (8.2)

This model simplifies to the additive model if 𝜃 = 0.
If one explanatory variable (X) is categorical (with I categories) then the

model becomes

ln
(

p

1 − p

)
= 𝜇 + 𝛼i + 𝛽y + 𝜃iy, i = 2,… , I. (8.3)

Thus, for the first category of X the right-hand side of the equation is 𝜇 +
𝛽y, while, for the second category, the intercept (quantifying the underlying
effect of that category of X) changes to 𝜇 + 𝛼2 and the slope (quantifying the
dependence on the continuous variable Y) changes to 𝛽 + 𝜃2.

Example 8.4 Including the gender-age interaction in modeling the
incidence of CVD

Previous analyses have demonstrated that the probability of death from CVD
varies with age and gender. Incorporating an age-gender interaction allows for
an investigation of whether age affects the two genders in a subtly different
fashion so far as death from CVD is concerned.
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An appropriate R command to investigate the fit of the interaction model
given by Equation 8.3 is:

R code (continued)

summary(glm(outcome~Age*Gender,family=binomial))

The resulting output is given in Table 8.4.

TABLE 8.4 Output (using R) for the fit of the logistic regression
model that includes the gender-age interaction

Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.576133 0.476056 -11.713 < 2e-16 ***
Age 0.065537 0.006935 9.450 < 2e-16 ***
Gender -1.445531 0.320068 -4.516 6.29e-06 ***
Age:Gender 0.017587 0.004594 3.828 0.000129 ***

Null deviance: 9157.3 on 16051 degrees of freedom
Residual deviance: 6378.4 on 16048 degrees of freedom

The table shows that there is indeed a significant interaction with

ln
(

p

1 − p

)
= −5.58 + 0.0655x

for males, and

ln
(

p

1 − p

)
= (−5.58 − 1.45) + (0.0655 + 0.0176)x = −7.02 + 0.0831x

for females.
The second diagram in Figure 8.2 illustrates these relations, with the first

diagram showing the fitted curves that arise when the interaction term is
omitted. The purely additive model shows a consistently higher probability
for males across the entire age range. Introducing the interaction term allows
for response curves with different shapes: it is now apparent that amongst
younger respondents the probability of death from CVD is higher for males,
whereas for older respondents it is females that are most at risk from the
disease.

****************************************************************************************************************************************************************************************************



MODELS WITH TWO-VARIABLE INTERACTIONS 87

20 40 60 80

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Additive model

Age

E
st

im
at

ed
 p

ro
ba

bi
lit

y 
of

 d
ea

th
 fr

om
 C

V
D

20 40 60 80
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7

Model with interaction

Age

E
st

im
at

ed
 p

ro
ba

bi
lit

y 
of

 d
ea

th
 fr

om
 C

V
D

FIGURE 8.2 The estimated probabilities of dying from CVD for males (solid line)
and females (dashed line) for the purely additive model, using age and gender, and
for the model including the age-gender interaction.

8.3.1 Link to the Testing of Independence Between Two
Variables

If both explanatory variables are categorical (with X having I categories and
Y having J categories) then the model including an interaction is

ln
(
pij∕(1 − pij)

)
= 𝜇 + 𝛼i + 𝛽j + 𝜃ij, i = 2,… , I, j = 2,… , J, (8.4)

where pij is the probability of a success for an observation belonging to cat-
egory i of X and category j of Y. In this equation there are (I − 1) parame-
ters associated with the main effect of X and (J − 1) parameters associated
with the main effect of Y, so that there are (I − 1)(J − 1) parameters associ-
ated with the XY interaction. With no interaction between X and Y, the model
would simplify to

ln(pij∕(1 − pij)) = 𝜇 + 𝛼i + 𝛽j, i = 2,… , I, j = 2,… , J. (8.5)

This simplified model, which states that the effects of X and Y are inde-
pendent, has (I − 1)(J − 1) fewer parameters than its predecessor. A test
of whether the interaction is required (i.e., a test of the hypothesis that
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the two variables are independent) is provided by comparing the fits
of the two models. The difference in the goodness-of-fit values will be
linked to the (I − 1)(J − 1) omitted parameters and will therefore have
(I − 1)(J − 1) degrees of freedom. This is why the chi-squared tests of inde-
pendence in Chapter 4 were associated with that number of degrees of
freedom.
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CHAPTER 9

MODEL SELECTION AND
DIAGNOSTICS

This chapter is concerned with modeling data and examining the fit in the con-
text of logistic regression. However, the general principles are not confined
to this type of model; they apply equally well to multiple regression models
with continuous random variables, and to the log-linear models discussed in
subsequent chapters.

9.1 INTRODUCTION

In science we encounter many laws that are equations linking measurable
properties. For example, Boyle’s law states that the pressure exerted by a gas
is inversely related to the volume it occupies, while Avogadro’s law states that,
under constant conditions, the volume of a gas is proportional to the amount
of substance present. Any apparent deviations from these laws can be ascribed
to measurement inaccuracy. In these cases there is no doubt concerning which
variables are relevant, nor about the form of the model. However, in the social
sciences (and elsewhere in science, to be fair) these certainties do not exist;
we are often not sure which variables are relevant, nor how they are related.
In this chapter, these issues are addressed in the context of logistic regression,
though the approaches used have more general relevance.

Categorical Data Analysis by Example, First Edition. Graham J. G. Upton.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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9.1.1 Ockham’s Razor

William of Ockham was a Franciscan friar believed to have been born in
Ockham (Surrey, England) in about 1287. He is now best remembered for
his proposition that, when there are alternative explanations of some phe-
nomenon, it is the simpler explanation that should be preferred; this is the
principle now called Ockham’s razor or the principle of parsimony.

In the modeling context this implies that, if two models provide equally
good explanations of the data, then the model with the fewer unknown
parameters is the preferred model (providing it makes good sense to the
investigator).

Example 9.1 Birth months of mathematicians

The MacTutor website provides biographies of famous mathematicians. It
also provides, for every day of the year, the numbers of persons in their
archive who were born on that day. The data are summarized in Table 9.1,
together with the numbers for biographies containing the words “statistician”
or “probabilist.” Evidently there are more famous mathematicians born in
some months than in others (your author was born in January, but declines to
comment further). Our interest is in the possibility that the words “statistician”
or “probabilist” are disproportionately more likely to appear in the biogra-
phies of mathematicians born in certain months (the data suggest February
and September) than others (e.g., July). The null hypothesis is that the pro-
portion is constant across the months. Using the Pearson X2 goodness-of-fit
statistic (Equation 2.1) gives X2 = 17.88 with 11 degrees of freedom. Since
the tail probability is greater than 10%, this is not an unusually large value
and the null hypothesis is therefore accepted.

TABLE 9.1 Monthly counts of birthdays of mathematicians with biographies
on the MacTutor website, together with numbers of biographies that include
one or more of the words “statistician” or “probabilist”

Month Jan Feb Mar Apr May Jun

All biographies 201 195 192 194 187 191
Statistician/probabilist 5 9 3 5 1 4

Month Jul Aug Sep Oct Nov Dec

All biographies 160 166 190 167 150 170
Statistician/probabilist 0 7 8 3 6 3

Source: http://www-history.mcs.st-and.ac.uk/Miscellaneous/b_d_stats.html
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The constant-proportion model has the benefit of simplicity, but it is not
a perfect explanation of the data. A perfect description is available, but it is
not simple. This description, which uses 11 extra parameters (using up the
11 degrees of freedom), states that the proportion for January is 5/201 and
the proportion for February is 9/195, etc. In the present context, since the
constant-proportion model is both a simpler model and is easier to understand
(and more believable), it seems preferable.

As a codicil we note that, in this case, since the expected numbers in the
statistician/probabilist category are very small, the 𝜒2 approximation is a little
suspect. An application of the exact test (introduced earlier in the context of
a 2 × 2 table) suggests a tail probability of 5.1%.

9.2 NOTATION FOR INTERACTIONS AND FOR MODELS

With two continuous explanatory variables the model that included their inter-
action was given by Equation (8.2) as

ln
(

p

1 − p

)
= 𝜇 + 𝛼x + 𝛽y + 𝜃xy.

With three explanatory variables (X, Y , and Z) we might need to include two
more two-variable interactions and also the three-variable interaction (which
would imply that each two-variable interaction varied with the value of third
variable). This model would have 23 unknown parameters. Similarly, with
four continuous explanatory variables, there could be 24 unknown parameters.

With categorical variables having more than two categories the number of
unknowns would be greater still. For example, with three categorical variables
having 2, 3, and 4 categories, there could be as many as 24 unknowns in the
model. Rather than using long equations, we will use the compact notation
illustrated in Table 9.2.

In each case the shorthand description consists of a list of the most complex
interactions, with the understanding that if a complex interaction is included
in the model, then so must all the simpler interactions that form part of its
“construction.” Thus XYZ implies that the XY , XZ, and YZ interactions are
included, while XY similarly implies that the main effects of X and Y must be
included. These hierarchical constraints are a consequence of Birch’s result
(Section 13.1).

A corollary is that some models will not be considered. One such is

ln
(

p

1 − p

)
= 𝜇 + 𝛼x + 𝛾z + 𝜃xy.
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TABLE 9.2 Shorthand notation used for models of varying complexity

Model Shorthand

Models with two explanatory variables

ln
(

p
1−p

)
= 𝜇 + 𝛼x X

ln
(

p
1−p

)
= 𝜇 + 𝛼x + 𝛽y X∕Y

ln
(

p
1−p

)
= 𝜇 + 𝛼x + 𝛽y + 𝜃xy XY

Models with three explanatory variables

ln
(

p
1−p

)
= 𝜇 + 𝛼x + 𝛽y + 𝛾z X∕Y∕Z

ln
(

p
1−p

)
= 𝜇 + 𝛼x + 𝛽y + 𝛾z + 𝜃xy XY∕Z

ln
(

p
1−p

)
= 𝜇 + 𝛼x + 𝛽y + 𝛾z + 𝜃xy + 𝜙xz XY∕XZ

ln
(

p
1−p

)
= 𝜇 + 𝛼x + 𝛽y + 𝛾z + 𝜃xy + 𝜙xz + 𝜌yz XY∕XZ∕YZ

ln
(

p
1−p

)
= 𝜇 + 𝛼x + 𝛽y + 𝛾z + 𝜃xy + 𝜙xz + 𝜌yz + 𝜏xyz XYZ

Because this model includes the interaction term 𝜃xy, it should also include
the main effect term 𝛽y. The underlying argument is that, if the combination of
particular values of X and Y matters, then that implies that both the particular
values of X matter and the particular values of Y matter. If the particular values
of Y matter, then 𝛽y should be included in the model. A helpful side-effect
is that it can greatly reduce the number of different models that need to be
considered.

9.3 STEPWISE METHODS FOR MODEL SELECTION USING G2

Table 9.2 presented many of the possible models for the case of three explana-
tory variables, but there are others. The complete tree of models is illustrated
in Figure 9.1. In the tree, any pair of models connected by a line differ by
just one parameter or set of parameters (depending on whether continuous or
categorical variables are involved).

The number of possible models rises rapidly as the number of variables
grows, so that the selection of a best (in some sense) model is a major
challenge when there are many explanatory variables. However, Figure 9.1
suggests a way for proceeding that is based on the comparison of nested
models.
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0

X Y Z

X/Y X/Z Y/Z

XY XZ YZ X/Y/Z

XY/Z XZ/Y X/YZ

XY/XZ XY/YZ XZ/YZ

XY/XZ/YZ

XYZ

FIGURE 9.1 The tree of possible models involving three explanatory variables, X,
Y , and Z.

Suppose that M1 is a model with d1 degrees of freedom and lack-of-fit
measured by G2

1. Similarly, let M2 be a model with d2 degrees of freedom and
lack-of-fit given by G2

2. If M2 includes all the parameters that were in model
M1, together with those in the set S, then G2

2 cannot be greater than G2
1, since

the addition of extra explanatory terms cannot result in a worsening of the
fit. It follows that G2

1 − G2
2, the reduction in the lack of fit, must be a direct

consequence of including the parameters in the set S. The significance of that
reduction can be assessed by comparison with a chi-squared distribution with
d1 − d2 degrees of freedom. Some examples of pairs of models differing by a
single set of parameters are given in Table 9.3.

There are three related approaches to model selection based on model pairs:
forward selection, backward elimination, and complete stepwise.

TABLE 9.3 Pairs of models differing by a single group of parameters in a
case where X has I categories, Y has J categories, and Z is a continuous variable

Simpler model More complex model Difference Change in d.f.

Y Y∕Z Z 1
Y∕Z X∕Y∕Z X I − 1
X∕Y∕Z XY∕Z XY (I − 1)(J − 1)
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9.3.1 Forward Selection

Forward selection consists of adding successive sets of parameters to the cur-
rent model. As an example, suppose that the current model is X∕Z. Figure 9.1
indicates that there are two potential next models: XZ and X∕Y∕Z. With for-
ward selection we select whichever is the more successful. Suppose that this is
X∕Y∕Z. At the next step, as the figure shows, there are three candidate mod-
els: XY∕Z, XZ∕Y, and X∕YZ. Again we choose whichever is the best. This
process continues until the change in G2 appears not to be significant.

Example 9.2 The UK 1975 referendum

In 1975, British voters were invited to vote for, or against, Britain’s entry
into the Common Market. There were three official leaflets distributed to vot-
ers before the referendum, so one variable considered here (denoted by R) is
whether or not a voters read at least one of those leaflets. A second variable
D concerns when a voter arrived at a decision: its three categories are “A long
time ago,” “Sometime this year,” and “Only a little before the referendum.”
The third variable (undoubtedly important) was P, the political affiliation of
the voter (Conservative, Labour, Liberal). A selection from the raw data is
given in Table 9.4.

TABLE 9.4 A selection from data referring to the 1975 UK referendum

Respondent Vote Read leaflet (R) Made decision (D) Party supported (P)

1 For At least one Sometime this year Conservative
2 Against At least one Sometime this year Labour
⋮ ⋮ ⋮ ⋮ ⋮
1453 Against At least one Only a little before Labour
1454 Against At least one Sometime this year Labour

Source: SN 830, British Election Study: EEC Referendum Survey, 1975. Reproduced with
permission of the UK Data Service.

Figure 9.2 shows the route that would be taken if forward selection was
taken to its limit. A total of 13 models would be examined while the fit of 6
models would not be tested. In practice, forward selection would finish after
fitting the nine models listed in Table 9.5 (from which the decision process
can be inferred). For example, having reached the model P∕D, the decision to
add the PD interaction results from observing that the reduction in G2 from
1492.0 to 1470.7, which adds four extra parameters, is a reduction that would
occur by chance with a tail probability of about 0.0003.

The final model selected is the model PD∕R, since the possible additions
to this model do not make significant improvements.
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PDR
G2=1454 d.f.=1436

PD/PR/DR
G2=1458 d.f.=1440

P/D/R
G2=1486 d.f.=1448

PD/PR
G2=1459 d.f.=1442

PD/R
G2=1465 d.f.=1444

PD
G2=1471 d.f.=1445

PD/DR
G2=1463 d.f.=1442

P/DR

DR

PR/DR

D/RP/R
G2=1503 d.f.=1450

P/D
G2=1492 d.f.=1449

P
G2=1509 d.f.=1451

D
G2=1653 d.f.=1451

1
G2=1662 d.f.=1453

R
G2=1658 d.f.=1452

PR/D

PR

FIGURE 9.2 Forward selection for the referendum data. Models examined are indi-
cated, with the entire preferred path shown in bold. Key: P, political affiliation; D,
time of decision; R, read official leaflet.

TABLE 9.5 Forward selection through the referendum data (selected models
in bold)

Model G2 d.f. Change in Tail
Change in model G2 d.f. probability

1 1662.2 1453
P 1509.0 1451 P 153.2 2 0
P∕D 1492.0 1449 D 17.0 2 0.0002
P∕R 1503.3 1450 R 5.7 1 0.017
PD 1470.7 1445 PD interaction 21.3 4 0.0003
P∕D∕R 1486.0 1448 R 6.0 1 0.014
PD∕R 1464.9 1444 R 5.8 1 0.016
PD∕PR 1459.2 1442 PR interaction 5.7 2 0.057
PD∕DR 1463.5 1442 DR interaction 1.4 2 0.497

Key: P, political affiliation; D, time of decision; R, read official leaflet.
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TABLE 9.6 Observed proportions (in italics) voting in favor of entry to the
Common Market, together with the estimated proportions using the model
PD∕R and, in brackets, the model P∕D∕R. Estimates are for those who read at
least one leaflet

Party When decided on voting in favor
A long time ago Sometime this year Only a little before

Conservative 0.87 0.87 (0.84) 0.91 0.93 (0.91) 0.76 0.79 (0.89)
Labour 0.43 0.45 (0.48) 0.60 0.60 (0.63) 0.70 0.66 (0.59)
Liberal 0.69 0.66 (0.69) 0.88 0.85 (0.80) 0.80 0.77 (0.77)

In Table 9.5 the smaller tail probabilities are associated with the PD interac-
tion, which therefore needs examination. Table 9.6 shows, for those who read
at least one leaflet, the observed proportions voting in favor for each combina-
tion of these two variables together with the estimated proportions according
to the models PD∕R and P∕D∕R. Comparing the observed and estimated pro-
portions, it can be seen that for most category combinations the P∕D∕R model
gives good results. However, amongst Labour supporters who made a deci-
sion just before voting, the proportion voting in favor (70%) was much higher
than predicted by the P∕D∕R model.

Comparisons of estimates with and without a particular term being
included in the model are always a good way of seeing the importance of
the term.

9.3.2 Backward Elimination

This is the same idea as forward selection, but in reverse. From a relatively
complex model, that provides an acceptable fit to the data (as measured by
G2), we attempt a simplification by eliminating a set of parameters. At each
step, we choose to eliminate whichever set of parameters appears to be of
least significance. Successive eliminations occur until it is not possible to find
a simpler model that provides an adequate explanation of the data.

Example 9.2 The UK 1975 referendum (continued)

Figure 9.3 shows that, in this particular case, the optimal path is the same
in each direction. The same final model would be chosen (though only after
all 13 models had been tested). In other data sets, with a greater number of
explanatory variables, the paths can be very different with different final mod-
els being selected. The values of G2 and the tail probabilities associated with
the changes in G2 are shown in Table 9.7.
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PDR
G2=1454 d.f.=1436

PD/PR/DR
G2=1458 d.f.=1440

PD/PR
G2=1459 d.f.=1442

PD/DR
G2=1463 d.f.=1442

PR/DR
G2=1481 d.f.=1444

PD/R
G2=1465 d.f.=1444

P/DRPR/D
G2=1481 d.f.=1446
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G2=1486 d.f.=1448
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G2=1653 d.f.=1451

R

1
G2=1662 d.f.=1453

FIGURE 9.3 Backward elimination for the referendum data. Models examined are
indicated, with the entire preferred path shown in bold. Key: P, political affiliation;
D, time of decision; R, read official leaflet.

TABLE 9.7 Backward elimination with the referendum data (selected models
in bold)

Model G2 d.f. Change in Tail
Change in model G2 d.f. probability

PDR 1454.3 1436
PD∕PR∕DR 1457.6 1440 PDR interaction 3.3 4 0.51
PD∕PR 1459.2 1442 DR interaction 1.6 2 0.45
PD∕DR 1463.5 1442 PR interaction 5.9 2 0.052
PR∕DR 1480.5 1444 PD interaction 22.9 4 0.0001
PD∕R 1464.9 1444 PR interaction 5.7 2 0.058
PR∕D 1481.0 1448 PD interaction 21.8 4 0.0002
PD 1470.7 1445 R 5.8 1 0.016
P∕D∕R 1486.0 1448 PD interaction 21.1 4 0.0003

Key: P, political affiliation; D, time of decision; R, read official leaflet.
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9.3.3 Complete Stepwise

With complete stepwise, both forward selection and backward elimination
are considered at each step. The process halts when the current model cannot
be significantly improved by any addition, and cannot be simplified without a
significant worsening of the fit. Complete stepwise will usually consider more
models than the unidirectional stepwise procedures, but (with more than two
variables) it will not consider every model. Comparison of Figures 9.2 and
9.3 shows that, for the referendum data, four models were not considered by
either approach.

9.4 AIC AND RELATED MEASURES

In the referendum examples, the decision concerning further simplification,
or further addition, to the current model was made by comparing the G2 val-
ues of nested models. Often, however, the criterion used is the minimization
or maximization of some measure of fit. For categorical data, this is usually
a measure related to the Akaike Information Criterion (AIC), which is now
considered.

For any data set the best-fitting model will always be the model at the top
of the model tree, since this is the model containing every possible inter-
action between the explanatory variables. However, it will rarely be possi-
ble to explain in practical terms what such a complex model means. Indeed,
such a model may be straining its sinews to explain random variations: in
that case it would be best described as an over-parameterized model since it
will contain more parameters than are really needed. What is required is a
much simpler model that provides a useful working description of the data
and reliable inferences concerning future observations. An example was the
constant-proportion model used in Example 9.1.

A useful measure is therefore one that balances model complexity and
goodness-of-fit. The most common measure is the AIC introduced by Akaike
(1973, 1974). From a set of candidate models, AIC tries to select the model
that provides the most adequate description of a reality that is likely to have
been influenced by a myriad of unmeasured variables. The criterion has a gen-
eral modeling application, but, for categorical data, it suffices to calculate

AIC = −2 ln(L) + 2k, (9.1)

where k is the number of parameters in the model and L is the maximized
value of the likelihood using the model. A model with a smaller AIC value is
preferred to one with a larger value.
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The performance of AIC is improved by including a finite-sample approx-
imation due to Sugiura (1978). The revised measure is denoted as AICc and
is given by

AICc = −2 ln(L) + 2k
(

1 + k + 1
n − k − 1

)
. (9.2)

At present, it seems that the stepwise routines in computer packages use AIC.
Since the difference between AIC and AICc will generally be small, the pack-
ages are unlikely to mislead the user, but it will always be worthwhile cal-
culating the AICc values. Example 9.4 provides a case where the difference
matters.

Very similar in spirit to AIC is the Bayesian Information Criterion (BIC)
introduced by Schwarz (1978) and given by

BIC = −2 ln(L) + k ln(n). (9.3)

As with AIC, small values of BIC are preferable to large ones. Since ln(n)
will be greater than 2, the optimal model chosen using BIC will never be
more complicated than that chosen using AIC.

AIC and BIC have subtly different motivations: AIC seeks to select that
model, from those available, that most closely resembles the true model
(which will be governed by a myriad of unmeasured considerations and will
not be amongst those considered), whereas BIC assumes that the correct
model is amongst those on offer and seeks to identify that optimal model. In
reality, since none of the models that we consider will ever provide a perfect
description (except, perhaps, if we are studying some scientific relationship),
AICc should be the measure used.

Example 9.3 The UK 1975 referendum (continued)

The four models with the lowest values of AICc for the UK referendum data
are given in Table 9.8.

The model selected using G2 was PD∕R with the model PD∕PR being
rejected because the tail probability associated with the PR interaction was
in excess of 5%. However, these AICc values suggest that the PR interaction
should be seriously considered for retention.

TABLE 9.8 The values of AICc for the four best models for
the referendum data

PD∕PR 1483.4 PD∕R 1485.1
PD∕PR∕DR 1485.9 PD∕DR 1487.7

Key: P, political affiliation; D, time of decision; R, read official leaflet.
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9.5 THE PROBLEM CAUSED BY RARE
COMBINATIONS OF EVENTS

When there are many explanatory variables, each with at least two categories,
some category combinations will only rarely occur. Each occurrence will cor-
respond to either a success or a failure. For any rare combination, viewed on its
own, the estimate of the probability of a success would be unreliable, because
it would be based on only a small number of observations.

The iterative estimation procedure (see Section 5.4) combines information
from every category combination in the process of arriving at parameter esti-
mates. When there are rare category combinations, the likelihood function
(Section 1.7) may look more like Table Mountain than Mount Everest, with
the result that the location of its maximum is difficult to determine. The phe-
nomenon was discussed by Hauck and Donner (1977).

This situation is usually easy to detect, provided one carefully examines
the computer output, since then the uncertainty in the parameter estimates
will be manifest and the associated tail probabilities will be large. Some com-
puter programs may alert the user to the problem by reporting that there are
probabilities near 0 or 1, or that there are problems with convergence of the
iterative fitting process to the maximum.

Example 9.4 Fatal road accidents

The UK Department for Transport collects information on road accidents.
The resulting data are freely available from the UK Data Service. The data
for 2012 (set SN7431) show that, on Class A roads, under conditions that
were not foggy, there were 9116 accidents classified as serious, of which 829
resulted in fatalities. Six variables that may be relevant to whether a serious
accident results in a fatality are C (carriageway: dual, single), J (accident near
junction: no, yes), L (speed limit: 30, 40, 50, 60+), P (precipitation: no, yes),
S (surface: dry, wet, snow, ice), and W (high winds: no, yes). We will treat
speed limit as a continuous variable.

With six possible explanatory variables, a reasonable starting model is
the model containing all 15 two-variable interactions. This model has 9082
degrees of freedom with AICc = 5265.66. Stepwise selection, using min-
imization of AIC as the criterion, terminates with the removal of 10 of
these interactions to give the “final” model as CJ∕JW∕JS∕LS∕PS, for which
AICc = 5248.76. Table 9.9 provides an extract from the summary for this
model.

In the extract in Table 9.9, P:S2 is contrasting the combined effect (on the
probability of a fatality) of the driving conditions “precipitation and a wet
road,” with the alternative being “precipitation and a dry road.” Note the huge
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TABLE 9.9 Extract from the output (using R) for the fit of the
CJ∕JW∕JS∕LS∕PS model to road accident data. Variables in
the table are P (precipitation: no, yes), and S (road surface: dry,
wet, snow, ice)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

P:S2 1.544e+01 1.461e+03 0.011 0.9916
P:S3 -1.228e+01 1.583e+03 -0.008 0.9938
P:S4 1.670e+01 1.461e+03 0.011 0.9909

TABLE 9.10 Numbers of accidents and occurrence of fatalities under selected
conditions

No precipitation Precipitation

Road surface conditions Dry Wet Snow Ice Dry Wet Snow Ice

Number of accidents 6251 1384 5 126 7 1306 23 14
Number of fatalities 548 153 1 13 0 110 1 3

Percent fatal 9 11 20 10 0 8 4 21

Source: SN 7431, Road Accident Data, 2012. Reproduced with permission of the UK Data
Service.

standard errors and the tail probabilities close to 1. Although “precipitation
and a dry road” can occur at the start of a rainstorm, a serious accident under
these conditions is not a common occurrence (as shown by the figures given
in Table 9.10). The large standard errors suggest that this is not the end of the
analysis (which is continued in Section 9.5.1).

9.5.1 Tackling the Problem

If some category combinations are very rare, then this may be a consequence
of an entire category being rare. If that is so, then it may be advisable either
to remove that category (by selecting for analysis only the data belonging
to other categories) or to combine that category with some similar category.
Thus, in the previous example, since there were only 28 cases where the acci-
dent occurred on snowy roads, it might be sensible to combine “Snow” and
“Ice” in a single category.

Alternatively, without making any adjustments to the selected data, or to
the category definitions, it may be worth proceeding by removing the impre-
cisely estimated interaction and examining the fit of the simplified model
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(since there may be other effects or interactions that are affected by the same
lack of data). A stepwise procedure could then be reapplied.

Remember that a stepwise procedure stops when it cannot find a single
group of parameters that will result in a reduction in AIC (or AICc). Situations
occur not infrequently where removing more than one group of parameters
will result in an improvement. The road accident data will illustrate this. The
fact that this can occur is a reminder that it is the data analyst that is in charge
of the data analysis—not the computer program!

Example 9.4 Fatal road accidents (continued)

The analysis of the accident data started with Model 1 (see Table 9.11), the
model with all fifteen two-variable interactions. Stepwise selection ended at
Model 2. However, Table 9.9 suggested that the PS interaction parameters
were not significantly different from one another (and hence not significantly
different from zero). Removing those interactions leads to Model 3, which, of
course, has a higher value for AIC than its predecessor (since stepwise stopped

TABLE 9.11 The fit of alternative models to UK road accident data

Description d.f. G2 Change in Tail AICc
G2 d.f. prob.

1 All 15 2-variable interactions 9082 5197.3 5265.561
Stepwise removal of ten interactions using AIC

2 CJ∕JW∕JS∕LS∕PS 9096 5208.7 11.38 14 0.656 5248.764

Removal of PS interaction because of small sample sizes (see Tables 9.9 and 9.10)
3 CJ∕JW∕JS∕LS∕P 9099 5218.0 9.37 3 0.025 5252.104

Stepwise removal of LS interaction using AIC
4 CJ∕JW∕JS∕L∕P 9102 5220.7 2.71 3 0.439 5248.789

Removal of JS interaction because of lower AICc
5 CJ∕JW∕S∕L∕P 9105 5226.7 6.00 3 0.111 5248.772

Stepwise removal of S using AIC
6 CJ∕JW∕L∕P 9108 5229.3 2.51 3 0.473 5245.272

7 CJ∕JW∕L 9109 5232.9 3.64 1 0.056 5246.908
8 C∕JW∕L 9110 5236.8 3.94 1 0.047 5248.849
9 JW∕L 9111 5236.8 0.00 1 0.950 5246.850

Source: SN 7431, Road Accident Data, 2012. Reproduced with permission of the UK Data
Service. Key: C, carriageway type; J, junction proximity; W , windy; S, road surface; P, pre-
cipitation condition; L, speed limit.
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at Model 2). Re-applying the stepwise algorithm removes the LS interaction
(to give Model 4), and, if AICc had been used, then the JS interaction would
also be removed. This would result in the selection of Model 5. Using the
stepwise algorithm once again results in a further simplification (to Model
6). Note that the values for AICc and AIC for Model 6 are less than those
for Model 2. The initial stepwise algorithm was “held up,” first by PS and
subsequently by JS.

9.6 SIMPLICITY VERSUS ACCURACY

Ockham’s razor stated that with two equally good explanations of the data,
one should prefer the simpler. Measures such as AICc provide information
concerning the appropriateness of a model, while the comparison of nested
models using G2 (as in Table 9.5) provides information about the relevance
of particular effects and interactions. For data sets with many variables there
will rarely be a clear-cut “best” model.

Important questions to ask are why the data were collected and why the
data are being analyzed. If the data were collected to test some theory, then
the data collector will have had in mind a specific model to be tested and the
questions concerning model selection will scarcely exist. If what is wanted is
a simple summary of past events then the simplest model may be appropriate,
whereas if there is an interest in predicting the future, then a rather more
complex model might be appropriate. In every case the decision should be
made by a person rather than a machine.

Example 9.4 Fatal road accidents (continued)

After three applications of stepwise procedures, Model 6 (see Table 9.11) was
selected. As it happens this is indeed the model with the smallest values of
AIC and AICc. However, there are reasonable arguments for further simplifi-
cation through Models 7 and 8 to Model 9. The successive changes in G2 have
magnitudes 3.64, 3.94, and 0.004. Each is to be compared with a chi-squared
distribution with one degree of freedom. Since the upper 5% point of this dis-
tribution is 3.84, the first simplification just fails to be significant at that level,
while the marginal significance of the second simplification is easily offset
by the negligible effect (in terms of fit) of removing C. Of course, the elimi-
nation of C is anything but negligible when it comes to simplification of the
description, since removal of a variable (note that road surface condition and
precipitation were removed earlier) greatly helps with the model description.

To an extent, the proof of the pudding is in the eating: we need to examine
the actual fit of competing models, in order to visually judge their success.
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TABLE 9.12 The fit of alternative models to UK road accident data with
serious injuries. Combinations shown are those with relatively large numbers
of observations (at least 200 accidents when not windy, or at least 20 accidents
when windy)

C J L n Obsd % CJ∕JW∕L∕P JW∕L

Not windy; dry

Dual Junction 30 MPH 274 4.0 4.9 4.1
Single No junction 30 MPH 939 6.7 6.3 5.9
Single Junction 30 MPH 2528 3.8 4.0 4.1
Dual Junction 40 MPH 205 6.8 7.2 6.0
Single No junction 40 MPH 288 9.4 9.2 8.7
Single Junction 40 MPH 311 7.4 5.9 6.0
Dual No junction 60 MPH 426 16.9 16.9 17.9
Single No junction 60 MPH 1160 17.3 18.9 17.9
Single Junction 60 MPH 591 13.7 12.6 12.9

Not windy; not dry

Single Junction 30 MPH 357 2.5 7.3 4.1
Single No junction 60 MPH 1210 17.6 15.9 17.9

Windy; dry

Single Junction 30 MPH 20 0 8.8 8.4

Windy; not dry

Single Junction 30 MPH 33 12.1 7.3 8.4
Single No junction 60 MPH 32 15.6 13.8 12.9

Table 9.12 compares the observed percentages with those estimated by
Model 6 (the AICc selection) and Model 9 (which uses information on just
three of the six original explanatory variables).

Most days are not especially windy, so most accidents happen on “not
windy” days. The table gives information for category combinations involv-
ing at least 200 serious accidents under not-windy conditions, but relaxes
this for windy days. For the 14 situations given in the table, Model 6
(CJ∕JW∕L∕P) provides the closer estimate for 6 situations and Model 9
(JW∕L) for 8 situations. Neither model is outstandingly effective, though both
capture the essence of the fluctuations.

The bottom line is that fatalities are a function of speed: there is a higher
proportion of fatalities on roads with a higher speed limit, and in situations
away from junctions (which may cause traffic to slow).
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9.7 DFBETAS

This chapter has been concerned with model selection and the difficulties
of balancing the advantages of a well-fitting complex model with those of a
simpler model that fits less well. Whichever model is used, we need to be
convinced that it is a reasonable fit for all the data and not just for a subset of
the data. Comparing observed counts or proportions with those fitted by the
model, as in Table 9.12, is an essential part of model checking, but it is not
the end of that checking.

When estimating the parameters of a general linear model, there are several
statistics that are regularly calculated as checks on the presence of outlying or
unduly influential observations. In the present context the most useful appears
to be the curiously named DFBETAS. The name was introduced by Belsley,
Kuh, and Welsch (1980) in the context of a model in which all the parameters
were 𝛽s. For example

y = 𝛽0 + 𝛽1x.

With n observations we obtain estimates 𝛽0 and 𝛽1. Now suppose we exclude
observation i and recalculate the parameter estimates, getting the new esti-
mates 𝛽0(i) and 𝛽1(i). These will usually be different to the original estimates.
This “difference in a 𝛽 value” was shortened to DFBETA.

To judge the importance of DFBETA, we work with the standardized val-
ues of the parameters (i.e., the parameter estimates divided by their standard
errors). It is this standardization that accounts for the final S in DFBETAS.
Belsley et al. (1980) suggested that a DFBETAS value having a magnitude
greater than 2∕

√
n indicated an influential observation.

Example 9.5 Conditions affecting the growth of a bacterium in
orange juice

Table 9.13 presents the results of a series of laboratory experiments intended
to identify the conditions (temperature (T), acidity (A), nisin concentration
in IU/mL (N), and ◦Brix (B)) under which the bacterium Alicyclobacillus
acidoterrestris grows in orange juice. Each experiment was conducted twice,
with the same outcomes being observed on each occasion. There were 54
experiments in all.

With just 54 observations and four quantitative explanatory variables, a
suitable starting model (see Table 9.14) might be the model with all two-
variable interactions. However, using R, this elicits a warning message con-
cerning near zero probabilities (see Section 9.5). Backward elimination using
AIC stops at the model T∕AB∕NB. There is again a warning message and
neither interaction appears significantly different from zero. Removing either
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TABLE 9.13 Growth (1) or no growth (0) of Alicyclobacillus acidoterrestris
CRA 7152 in orange juice under varying experimental conditions

◦C pH Ni ◦Brix Outcomes ◦C pH Ni ◦Brix Outcomes

28.5 3.7 17.5 13 0, 0 45.5 3.7 17.5 13 1, 1
28.5 5.1 17.5 13 1, 1 45.5 5.1 17.5 13 1, 1
28.5 3.7 52.5 13 0, 0 45.5 3.7 52.5 13 1, 1
28.5 5.1 52.5 13 0, 0 45.5 5.1 52.5 13 1, 1
28.5 3.7 17.5 17 0, 0 45.5 3.7 17.5 17 1, 1
28.5 5.1 17.5 17 1, 1 45.5 5.1 17.5 17 1, 1
28.5 3.7 52.5 17 0, 0 45.5 3.7 52.5 17 0, 0
28.5 5.1 52.5 17 0, 0 45.5 5.1 52.5 17 1, 1
20 4.4 35 15 0, 0 54 4.4 35 15 0, 0
37 3 35 15 0, 0 37 5.8 35 15 1, 1
37 4.4 0 15 1, 1 37 4.4 70 15 0, 0
37 4.4 35 11 1, 1 37 4.4 35 19 0, 0
37 4.4 35 15 1, 1 37 4.4 35 15 1, 1
37 4.4 35 15 1, 1

Source: Peña, https://sites.google.com/a/unitru.edu.pe/sciagropecu/publicacion/scagropv1n1/
scagrop01_47-61. CC BY-NC 3.0, http://creativecommons.org/licenses/bync/3.0/deed.es_ES

interaction leads to a model with the same fitted values (a side effect of the
earlier warnings) and an increased AIC value. A reduction in AIC is obtained
by removing the remaining interaction: the resulting model, T∕A∕N∕B, is the
model with the smallest values for both AIC and AICc. This data set there-
fore provides another example of the need to investigate models other than
that suggested by an automated stepwise procedure.

In this case the suggested critical value for DFBETAS (2∕
√

n) is 0.27;
examination of the values of DFBETAS reveals one particularly influential
pair of observations (see Figure 9.4) relating to the parameter measuring
the effect of temperature. The reason that these particular observations are
selected is because the outcome (no bacterium growth) is a sharp contrast

TABLE 9.14 The fit of alternative models to the orange juice data

Description d.f. G2 Change in Tail AICc Warning
G2 d.f. prob.

TA∕TN∕TB∕AN∕AB∕NB 43 29.95 58.24 Yes
T∕AB∕NB 47 32.72 2.77 4 0.60 49.16 Yes
T∕A∕NB or T∕AB∕N 48 35.48 2.76 1 0.10 49.27 No
T∕A∕N∕B 49 36.32 0.84 1 0.36 47.57 No
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FIGURE 9.4 The values of DFBETAS for the coefficient of T for the orange juice
data. The extreme value for DFBETAS corresponds to the pair of observations taken
at 55◦C.

to the results at the next highest temperature (seven observations of growth
in eight trials). The experimental conditions deliberately included extreme
values and there is no reason to suppose that this signifies any experiment
error.

When there are categorical variables, there are likely to be several obser-
vations with the same values for the DFBETAS; if their common value is
large then they are collectively influential. In such a case a dummy variable
(Section 15.5) may lead to model simplification.
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CHAPTER 10

MULTINOMIAL LOGISTIC
REGRESSION

This chapter extends the ideas of Chapters 7–9, where the response vari-
able had just two categories, to the case where several categories are pos-
sible. The underlying distribution is therefore now multinomial (see Section
1.6.2). Models for this situation were described as discrete choice models by
McFadden (1974).

10.1 A SINGLE CONTINUOUS EXPLANATORY VARIABLE

In the previous chapters, the response was the logarithm of the ratio of the
probabilities of the two categories of a binary variable. Now, with several
categories, there are many possible probability ratios that could be examined.

With a response variable having J categories, computer programs usually
choose one category (normally either category 1 or category J) as the single
reference category. A typical multinomial logistic regression model with a
single continuous explanatory variable (x) is

ln(pj∕p1) = 𝜇j + 𝛼jx, j = 2, 3,… , J, (10.1)

where pj is the probability of occurrence of the jth category of the response
variable. This model consists of (J − 1) simultaneous equations with 2(J − 1)

Categorical Data Analysis by Example, First Edition. Graham J. G. Upton.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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parameters to be estimated. Notice that the equations are simultaneous, not
separate; computer programs will estimate all the parameters simultaneously.

Define Ej by

Ej = pj∕p1 = exp(𝜇j + 𝛼jx), for j = 2, 3,… , J, (10.2)

with E1 = 1. Thus

pj = Ejp1, j = 1,… , J. (10.3)

Since p1 + p2 + · · · + pJ = 1,(
J∑

j=1

Ej

)
p1 = 1,

and hence

pj = Ej

/ J∑
j=1

Ej. (10.4)

Example 10.1 The dependence of political allegiance on age

In early February 2007, members of a YouGov panel were interviewed and
asked, amongst other questions, to state their age and political allegiance.
There were 2890 respondents, with 1287 expressing no particular allegiance
and 141 expressing allegiance to minor parties. Table 10.1 reports the results
of the respondents who expressed allegiance to one of the principal political
parties.

TABLE 10.1 Variations in percentages of voters stating an allegiance to a
particular political party, subdivided by age

Political allegiance Age range
< 25 25–34 35–44 45–54 55–64 ≥ 65

Labour 45 51 54 47 45 38
Conservative 42 39 37 41 44 55
Liberal Democrat 13 10 9 12 11 8

Source: SN 6322, Gender and the Vote in Britain, 2007 Reproduced with permission of the UK
Data Service.
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The table suggests that there is no uniform age-related trend, though it is the
case that the final four age categories show a steadily increasing proportion
of Conservative supporters.

Whilst Equation (10.1) will not provide a good description for the entire
age range, the table suggests that it might do a reasonable job of describing
the allegiances of those aged 35 and above. Note that the original data are
recorded as age in years; the grouping in the table is only to examine for
underlying trends. Model fitting uses the ungrouped data. The model given
by Equation (10.1) is fitted using the following R commands:

R code

# age and support are vectors
w<-which((age>34));
summary(multinom(support[w]˜age[w]))

An extract from the resulting output is shown in Table 10.2.

TABLE 10.2 Extract from the output (using R) for the fit of Equation (10.1)
to the party allegiance data of those aged 35 and above. The values shown are
the estimates of the 𝜶-parameters and their standard errors

Coefficients:
(Intercept) Age

Conservative -1.333971 0.023344509
Liberal Democrat -1.806401 0.005382087
Std. Errors:

(Intercept) Age
Conservative 0.3355707 0.005907915
Liberal Democrat 0.5333409 0.009524643

If a respondent’s age was unrelated to that person’s political affiliation, then
the estimates of the 𝛼-parameters would not differ significantly from zero.
To examine their significance we divide each estimate by the correspond-
ing standard error. The first row ‘Conservative’ refers to the logit comparing
Conservative allegiance with Labour allegiance. The ratio of the estimate to
its standard error (0.0233…∕0.0059…) is 3.95, which is much larger than
the standard 5% point (1.96). Since the estimate is positive, this indicates that
allegiance to the Conservative party (as opposed to the Labour party) signifi-
cantly increases with age. The corresponding ratio for the Liberal Democrats
is also positive, but, at 0.57, it is not significant.

To get a clearer picture, we choose two specific ages (40 and 60) and use the
results from Table 10.2 and Equation (10.4) to obtain the specific estimated
allegiance percentages for those ages. The calculations are summarized in
Table 10.3.
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TABLE 10.3 Calculations of estimated party-allegiance percentages for
respondents aged 40 and 60, using Equations (10.2)-(10.4) and the parameter
estimates reported in Table 10.2

Age (x) ELab ECon ELib
∑

Ej pLab pCon pLib

40 1 0.67 0.20 1.87 0.53 0.36 0.11
60 1 1.07 0.23 2.30 0.44 0.47 0.10

Note that, although 𝛼Lib is positive (= 0.0053…), indicating an improved
performance relative to the Labour party, this does not correspond to a rise in
Liberal Democrat support. This is due to the much steeper rise in support for
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FIGURE 10.1 The fit of the model describing the dependence of political alle-
giance on age.

****************************************************************************************************************************************************************************************************



NOMINAL CATEGORICAL EXPLANATORY VARIABLES 113

the Conservative party. The estimates, which were derived from simultaneous
equations, must also be interpreted on a simultaneous basis.

In Figure 10.1, the fitted lines appear to be straight. In reality each is a
small section from the center of a logit curve (see Figure 7.1).

10.2 NOMINAL CATEGORICAL EXPLANATORY VARIABLES

Recall that a variable is described as being categorical if the ‘values’ that it
takes are neither continuous (e.g., height) nor discrete (e.g., number of per-
sons in a household). If the categories have no special order (e.g., types of
fruit) then the variable is a nominal categorical variable, whereas if the cat-
egories are ordered (e.g., “in favor,” “neutral,” “against”) then the variable is
an ordinal categorical variable.

Unless there are many category combinations, data involving only categor-
ical variables can be easily summarized using a contingency table. To under-
stand the effects (if any) of the explanatory variables on the response variable,
it may be helpful to report the data as proportions for the categories of the
response variable.

Example 10.2 The dependence of political allegiance on gender and
social class

The data analyzed in the previous example were collected with the aim of
investigating the relevance of gender on political affiliation. Since it is well
known that social class is an important determinant of an individual’s politics,
we now include that as a second categorical explanatory variable. The data
are reported in Table 10.4.

TABLE 10.4 Percentages supporting the three principal political parties, with
subdivisions by gender and social class

Social classes A, B, and C1 Social classes C2, D, and E
Male Female Male Female

Sample size 446 471 333 250

Labour 42.2 41.6 55.0 51.2
Conservative 47.5 47.3 33.3 41.6
Liberal

Democrat
10.3 11.0 11.7 7.2

Source: SN 6322, Gender and the Vote in Britain, 2007. Reproduced with permission of the
UK Data Service.
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No explanatory variable
G2 = 2860.1, AICc = 2864.1

Gender
G2 = 2857.7, AICc = 2865.7

Gender/Class
G2 = 2838.8, AICc = 2850.9

Gender*Class
G2 = 2834.3, AICc = 2850.4

Class
G2 = 2840.5, AICc = 2848.5

2 d.f. ΔG2= 2.4 2 d.f. ΔG2= 19.6

2 d.f. ΔG2= 18.9 2 d.f. ΔG2= 1.7

2 d.f. ΔG2= 4.5

FIGURE 10.2 The tree of models describing the dependence of political allegiance
on gender and/or class.

The table shows little difference between the political affiliations of males
and females in the upper social classes (A, B, and C1), but in the lower social
classes, where there is a strong preference for the Labour party, this preference
is a little greater for males than females. This is, in part, a consequence of an
apparent relative dislike for the Liberal Democrat party amongst females from
the lower social classes. In summary, therefore, before we undertake a formal
analysis, we can conclude that political affiliation is certainly related to class,
and that there may be a gender×class interaction.

Figure 10.2 reports the goodness of fit of the five possible models, and
also the differences in fit for nested pairs of models. Since the response vari-
able has 3 categories and each explanatory variable has 2 categories, there
are (3 − 1) ∗ (2 − 1) = 2 d.f. for the difference between every adjacent pair of
models.

The model with the lowest value for AICc (see Section 9.4) is the model
that takes account only of class. There is no significance attached to the intro-
duction of gender either as the first explanatory variable (ΔG2 = 2.4; 2 d.f.) or
to the model that includes class (ΔG2 = 1.7; 2 d.f.). However, as the reduc-
tion in AICc suggested, the improvement in fit (ΔG2 = 19.6; 2 d.f.) due to
including class in the model is highly significant (p ≈ 2 × 10−7).

While the change in G2 resulting from the inclusion of the gender-class
interaction is not significant (ΔG2 = 4.5; 2 d.f.; p = 0.20), the model that
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includes the interaction does have the second lowest value for AICc, imply-
ing that it was certainly worth investigating whether the interaction was
required.

10.3 MODELS FOR AN ORDINAL RESPONSE VARIABLE

When the categories of the response variable are ordered, there are many pos-
sible comparisons that take account of that ordering and many different types
of model have been proposed. A useful survey is provided by Liu and Agresti
(2005) while entire books (e.g., Clogg and Shihadeh, 1994; Agresti, A., 2010)
have been devoted to the topic. This section therefore provides no more than
an introduction.

10.3.1 Cumulative Logits

Suppose that there are J ordered categories with the probability of an individ-
ual belonging to category j being pj. For convenience, assume that the “low-
est” category is category 1, and the “highest” is category J. The categories
are ordered, but not necessarily numerical: category 1 might be “strongly in
favor” and category J might be “strongly against” (or vice versa). Define Pj
to be the cumulative probability of an individual belonging to category j or
lower, so that

Pj = p1 + · · · + pj, j = 1, 2,… , J − 1. (10.5)

The cumulative logit Lj is defined by

Lj = ln
( Pj

1 − Pj

)
= ln

(
j∑

k=1

pk

/ J∑
k=j+1

pk

)
, j = 1, 2,… , J − 1. (10.6)

For example, if the observed counts are

10, 30, 20,

then the observed values for the cumulative logits are

L1 = ln
( 10

30 + 20

)
= ln(0.2) = −1.61,

L2 = ln
(10 + 30

20

)
= ln(2) = 0.69.
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The simplest model, in which the response variable is unaffected by
explanatory variables, is

Lj = 𝜇j, j = 1, 2,… , J − 1. (10.7)

Our discrete response variable has ordered categories. Although these cate-
gories may be described using words (e.g., “strongly agree”), it is not diffi-
cult to imagine that there is an (unmeasured) underlying variable (a so-called
latent variable) that measures agreement on a continuous scale. The {𝜇j},
which are often referred to as cutpoint parameters, correspond to those val-
ues of the latent continuous variable where the observed response variable
changes from one category to the next. Note that 𝜇1 ≤ 𝜇2 ≤,… ,≤ 𝜇J .

10.3.2 Proportional Odds Models

These models may involve any number of explanatory variables, but, for sim-
plicity, we limit discussion to cases involving a single explanatory variable, X.

When X is continuous the proportional odds model is:

Lj(x) = 𝜇j + 𝛽x, j = 1, 2,… , J − 1. (10.8)

With this model, the difference between cumulative logits for two different
values of X (x1 and x2, say) is linearly dependent on the difference between
the values of X, and is the same for all j:

ln

(∑j
k=1(pk|X = x1)

/∑J
k=j+1(pk|X = x1)∑j

k=1(pk|X = x2)
/∑J

k=j+1(pk|X = x2)

)
= Lj(x1) − Lj(x2)

= (𝜇j + 𝛽x1) − (𝜇j + 𝛽x2)

= 𝛽(x1 − x2).

The argument of this logarithm is a cumulative odds-ratio. The fact that
the magnitude of the logarithm is proportional to the difference between the
values of X explains the description as a proportional odds model (McCullagh,
1980).

Table 10.5 shows examples of the cell probabilities resulting from Equa-
tion (10.8) with three categories, 𝛽 = 1, 𝜇1 = 0.2, and 𝜇2 = 2. Figure 10.3
illustrates the same situation for values of x between −5 and 5.

If instead X is categorical with I categories, then a simple model is

Lj(xi) = 𝜇j + 𝛽i, i = 1, 2,… , I; j = 1, 2,… , J − 1. (10.9)
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TABLE 10.5 Category probabilities resulting from the cumulative-logit
model given by Equation (10.8) for the case 𝜷 = 1

x −1 0 1

𝜇1 = 0.2 −2.609 = ln(0.0736) ln(0.2) −0.609 = ln(0.544)
𝜇2 = 2 −0.307 = ln(0.736) ln(2) 1.693 = ln(5.44)

(p1, p2, p3) (0.07, 0.35, 0.58) (0.17, 0.50, 0.34) (0.35, 0.49, 0.16)
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FIGURE 10.3 The dependence of the cell probabilities on the value of x, using
the cumulative logit model given by Equation (10.8) with three categories, 𝛽 = 1,
𝜇1 = 0.2, and 𝜇2 = 2.

Table 10.6 provides an example of data that provide a perfect fit to this
model. The frequencies for x1 are those given previously. Although the pattern
of the frequencies for x2 appears entirely unrelated to those for x1, this is not
the case, since the cumulative logits for x2 are

ln
( 48

18 + 22

)
= ln (1.2) and ln

(48 + 18
22

)
= ln (3).

TABLE 10.6 A 2 × 3 table exactly satisfying the
cumulative-logit model given by Equation (10.9)

j 1 2 3

x1 10 30 20
x2 48 18 22
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Comparison with the corresponding values for x1 shows that the data satisfy
𝜇1 = 0,𝜇2 = 1, 𝛽1 = 0.2, and 𝛽2 = 2.

Example 10.3 Working hours in Great Britain in 2015

The Labour Force Survey is a quarterly sample survey of approximately
56,000 households living at private addresses in Great Britain. Table 10.7
summarizes the hours of work (excluding overtime) reported by those sur-
veyed in the second quarter of 2015.

The distributions of the hours of work vary markedly across the four rows
with females working on average fewer hours than their male counterparts. No
doubt they are fulfilling family commitments; a respondent’s age and family
condition would be extra explanatory variables that would need to be included
to gain a proper understanding of the data.

In this case the two explanatory variables are marriage (x) and sex (y), each
at two levels. Using cornered constraints (see Section 11.2), Equation (10.9)
can be rewritten as

Lj(x, y) = 𝜇j + 𝛽x + 𝛾y + 𝛿xy, j = 1, 2,… , J − 1; x = 0, 1; y = 0, 1.

(10.10)

In this formulation 𝛽 measures the marriage effect, 𝛾 measures the sex effect,
and 𝛿 measures the interaction effect.

Specialized computer routines are available to fit cumulative logit models.
The R code follows

TABLE 10.7 The hours of work (excluding overtime) reported by Great
Britain’s Labour Force Survey in the second quarter of 2015

Married? Sex Hours of work
≤ 19 20–29 30–34 35–39 40 ≥ 41 Total

Yes Male 313 368 513 2479 1374 853 5900
Female 880 941 558 1281 361 199 4220

No Male 215 145 190 772 421 223 1966
Female 429 380 273 783 228 112 2205

Source: SN 7725, Quarterly Labour Force Survey, April–June, 2015. Reproduced with
permission of the UK Data Service. Married includes co-habiting or living with a civil
partner.
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R code

library(VGAM);
hrs<-read.table("hours.dat",header=TRUE);
model<-vglm(cbind(h0to19, h20to29, h30to34,

h35to39, h40, h41up) ~sex*married,
family=cumulative(parallel=TRUE),data=hrs);
summary(model)

An extract from the resulting output is shown in Table 10.8.
The first thing to notice in the output is that the Pearson residuals (Equation

4.6) refer to the cumulative logits rather than the cell frequencies because
it is their values that are being modeled. The model is using five cutpoint
parameters and three parameters that measure the effects of the explanatory
variables. There are 20 cumulative logits and 8 parameters, so there are 12
degrees of freedom.

The next thing to notice is that, with cornered constraints, since R is
reporting a value for sexM:marriedY the reference categories are the last
ones encountered: “Female” and “Not married.” We can check this by calcu-
lating the observed value of the cumulative logits for the unmarried females.

TABLE 10.8 Extract from the output (using R) for the fit of Equation (10.10)
to the working hours data of Table 10.7

Pearson Residuals:
L(P[Y<=1]) L(P[Y<=2]) L(P[Y<=3]) L(P[Y<=4]) L(P[Y<=5])
1 -0.54743 -4.71350 -0.6828772 2.12617 1.43532
2 -3.03868 3.91519 1.3320121 -1.60072 -3.09223
3 5.68272 -1.43623 -0.0014623 -2.02470 0.36156
4 1.48378 0.91776 -1.2294938 -0.54176 -0.77294

Coefficients:
Estimate Std. Error z value

(Intercept):1 -1.494242 0.042229 -35.38419
... ... ... ...

(Intercept):5 3.010607 0.047757 63.03953
sexM -0.958641 0.056337 -17.01604
marriedY 0.228857 0.046937 4.87584
sexM:marriedY -0.559319 0.066593 -8.39909

Residual deviance: 110.1943 on 12 degrees of freedom
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Thus

ln
( 429

2205 − 429

)
= −1.42, and ln

(2205 − 112
112

)
= 2.93,

are reassuringly close to the model estimates (to 2 d.p.) of −1.49 and 3.01.
Different routines and different programming languages may use alternative
constraints. It is always wise to check that the output makes sense.

Since several of the residuals have magnitudes greater than three, and
the chance of a chi-squared distribution with twelve degrees of freedom
taking a value greater than 110 (the residual deviance reported in the out-
put) is negligible, it is clear that the model does not provide a statistically
acceptable fit.

To better understand the lack of fit of the model, the following R
code expresses the fitted values obtained using the model as percentages
of the values observed. The results are shown in Table 10.9. The model
certainly underestimates the proportion of unmarried men working small
numbers of hours, but, for the bulk of the data, it appears to perform
adequately.

R code (continued)

round(100*fitted.values(model)*rowSums(hours)/hours,0)

Another way of assessing the goodness of fit of a model is to compare
how well it does against alternative models. Figure 10.4 summarizes the fit of
alternative proportional odds models for these data. Although the interaction
between the two explanatory variables is certainly not negligible (change in
G2 = 68.8, 1 d.f.), it is obvious that the most important effect in Table 10.7
is the difference in the working hours of males and females (change in G2 >

1800, 1 d.f.).

TABLE 10.9 The fitted values obtained using Equation (10.10) expressed as
percentages of the values observed

Married? Sex Hours of work
≤ 19 20–29 30–34 35–39 40 ≥ 41

Yes Male 110 122 92 95 101 105
Female 106 87 106 107 98 80

No Male 72 133 101 105 93 100
Female 94 102 111 100 98 92

Bold type indicates errors of more than 10%.
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No explanatory variable
G2 = 2050.3, 15 d.f.

Sex
G2 = 182.3, 14 d.f.

Sex/Marital status
G2 = 180.0, 13 d.f.

Sex*Marital status
G2 = 110.2, 12.d.f

Marital status
G2 = 2012.8, 14 d.f.

1 d.f. ΔG2= 1864.0 1 d.f. ΔG2= 37.5

1 d.f. ΔG2= 2.3 1 d.f. ΔG2= 1832.8

1 d.f. ΔG2= 68.8

FIGURE 10.4 The tree of models describing the dependence of working hours on
sex and marital condition using proportional odds models.

For an approach providing a formal assessment of the fit of a proportional
odds model, see Brant (1990).

10.3.3 Adjacent-Category Logit Models

Instead of comparing each category with (for example) category 1, in these
models each category is compared with its predecessor. Since

ln(pj+1∕pj) = ln(pj+1∕p1) − ln(pj∕p1),

any adjacent-category logit model is really no more than a re-parameterization
of a multinomial logistic regression model.

Example 10.3 Working hours in Great Britain in 2015 (continued)

Continuing with the previous example it is again possible to take advantage
of routines developed by others:

R code (continued)

model<-vglm(cbind(h0to19, h20to29, h30to34, h35to39,
h40, h41up)~sex*married,
family=acat(parallel=TRUE),data=hours)
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The model has as many parameters as the previous proportional odds
model, but the fit is slightly worse (G2 = 120.8 as opposed to 110.1).

10.3.4 Continuation-Ratio Logit Models

Cumulative logits involved all J categories of the ordinal response vari-
able. Adjacent-category models used just two categories. By contrast,
continuation-ratio logit models use variable numbers of categories, dependent
on the value of j. These models address the question of whether an observation
belongs to category j, or to a more extreme category. There are two possible
sets of logits, depending on whether “extreme” means above or below. For
the “above” case we have

LA
j = ln

(pj+1 + · · · + pJ

pj

)
, j = 1, 2,… , J − 1,

giving successive continuation-ratio logits as

ln
(

p2 + p3 + · · · + pJ

p1

)
, ln

(
p3 + p4 + · · · + pJ

p2

)
,… , ln

(
pJ

pJ−1

)
.

For the “below” case we have:

LB
j = ln

(p1 + · · · + pj

pj+1

)
, j = 1, 2,… , J − 1,

giving successive continuation-ratio logits as

ln
(

p1

p2

)
, ln

(
p1 + p2

p3

)
,… , ln

(
p1 + p2 + · · · + pJ−1

pJ

)
.

With a single categorical explanatory variable, X with I categories, a typical
model would be

LA
j (xi) = 𝜇j + 𝛽i, i = 1, 2,… , I; j = 1, 2,… , J − 1. (10.11)

Example 10.4 Optimism across Europe

The European Quality of Life Survey is carried out every 4 years across more
than 30 European countries. Table 10.10 shows the extent to which the respon-
dents in 2011 agreed or disagreed with the statement “I am optimistic about
the future.” The table suggests that the Finns were generally optimistic about
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TABLE 10.10 The extent, in 2011, to which respondents agreed or disagreed
with the statement “I am optimistic about the future”

Strongly Neither agree Strongly
Country agree Agree nor disagree Disagree disagree Total

Finland 255 506 160 90 8 1019
France 236 656 494 622 260 2268
Spain 246 611 310 296 46 1509
UK 244 921 527 444 94 2230

Source: European Quality of Life Time Series, 2007 and 2011: Open Access, a part of SN 7348
the European Quality of Life integrated data file. Reproduced with permission of the UK Data
Service.

the future, whereas the French were much more pessimistic. It is certainly
clear that, in 2011, the degree of optimism about the future varied consider-
ably between countries.

The following code fits the model given by Equation (10.11) with results
summarized (in part) in Table 10.11.

R code (continued)

#SA is the vector c(255,236,246,244) etc
model<-vglm(cbind(SA,A,N,D,SD)~country,

family=cratio(parallel=TRUE),data=Opt)

Examining the output, we see that Finland is the reference country (since
it is not mentioned). As a check, the observed value of LA

1 for Finland is
ln((1019 − 255)∕255) = 1.10 reassuringly close to the estimate for𝜇1 of 1.08.

TABLE 10.11 Extract from the output (using R) for the fit of Equation
(10.11) to the optimism data of Table 10.10

Coefficients:
Estimate Std. Error z value

(Intercept):1 1.08033 0.053188 20.312
(Intercept):2 -0.59901 0.053085 -11.284
(Intercept):3 -0.67456 0.060040 -11.235
(Intercept):4 -2.25539 0.076638 -29.429
countryFrance 1.27716 0.058111 21.978
countrySpain 0.64220 0.061163 10.500
countryUK 0.78911 0.057464 13.732

Residual deviance: 38.47334 on 9 degrees of freedom
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The individuals from the other countries were (as anticipated) significantly
more pessimistic; markedly so in the case of the French respondents.

Although the model cannot be described as a good fit, since P(𝜒2
9 >

38.47 ≈ 0.00001), it is a very much better fit than the equivalent model using
LB (G2 = 155.4), or the adjacent-category model (G2 = 62.7), or the propor-
tional odds model (G2 = 87.8).
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CHAPTER 11

LOG-LINEAR MODELS FOR
I × J TABLES

Chapters 7–9 focused on the situation where there is a single response variable
with two categories. The case where the single response variable has more
than two categories was discussed in Chapter 10. This chapter introduces log-
linear models, which are particularly appropriate when there is more than one
response variable. A log-linear model can also be used with a single response
variable, though in this case precisely the same results will be obtainable using
a simpler looking logistic model.

11.1 THE SATURATED MODEL

The term saturated model refers to any model that includes as many parame-
ters as there are “observations” in need of explanation. For an I × J table the
observations are the IJ cell frequencies.

The saturated model for an I × J table, with variables denoted by A (cate-
gories i = 1, 2,… , I) and B (categories j = 1, 2,… , J) is

vij = ln(Npij) = 𝜇 + 𝜆
A
i + 𝜆

B
j + 𝜆

AB
ij , (11.1)

where pij is the probability of one of the N observations belonging to cell (i, j).
Constraints are required to reduce the number of independent parameters

to a maximum equal to the observed number of cell frequencies (in this case

Categorical Data Analysis by Example, First Edition. Graham J. G. Upton.
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to IJ). Any constraints could be used, but there are two sets of constraints
typically found in the literature and used in computer routines. These are dis-
cussed in Subsections 11.1.1 and 11.1.2 which contain rather a lot of (fortu-
nately simple!) equations.

After application of either set of constraints the numbers of parameters (for
an I × J table) will be as follows:

Parameter Function Number

𝜇 Measure of typical cell frequency 1
𝜆A

i Measures the relative probability of category i of
variable A

(I − 1)

𝜆B
j Measures the relative probability of category j of

variable B
(J − 1)

𝜆AB
ij Measures the relative probability of cell (i, j)

compared to the value that would have occurred if
variables A and B had been independent of one
another

(I − 1)(J − 1)

Total IJ

11.1.1 Cornered Constraints

Cornered constraints are often the default choice for computer programs
(because they simplify the programmer’s task). Here each subsequent cat-
egory of a variable is compared with the first (or last) category encountered
(the effect of which is set to zero). Equations (7.8) and (7.9) were examples of
cornered constraints used in the context of logistic regression. In the present
context, for an I × J table, with the first category chosen as the reference cat-
egory, the constraints are as follows:

𝜆
A
1 = 0, 𝜆

B
1 = 0, 𝜆

AB
i1 = 0 for i = 2,… , I, 𝜆

AB
1j = 0 for j = 2,… , J.

(11.2)

Applying these constraints gives:

v11 = 𝜇, (11.3)

vi1 = 𝜇 + 𝜆
A
i , i ≠ 1, (11.4)

v1j = 𝜇 + 𝜆
B
j , j ≠ 1, (11.5)

vij = 𝜇 + 𝜆
A
i + 𝜆

B
j + 𝜆

AB
ij , i ≠ 1, j ≠ 1. (11.6)
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Substitution of Equation (11.3) into Equations (11.4) and (11.5) gives

𝜆
A
i = vi1 − 𝜇 = vi1 − v11 = ln(pi1∕p11), (11.7)

𝜆
B
j = v1j − 𝜇 = v1j − v11 = ln(p1j∕p11). (11.8)

Finally, substitution of Equations (11.3), (11.7), and (11.8) into Equa-
tion (11.6) gives

𝜆
AB
ij = vij − v11 − (vi1 − v11) − (v1j − v11)

= vij − v1j − vi1 + v11 = ln(pijp11∕pi1p1j). (11.9)

We see that the “main-effect” parameters 𝜆A
i and 𝜆B

j are logarithms of odds.
Furthermore, since

pijp11∕pi1p1j =
p11∕pij

pi1∕pij
,

the two-variable interaction parameter 𝜆AB
ij is the logarithm of an odds-ratio.

Odds and odds-ratios were introduced in Section 3.5.3.
In a similar way it can be shown that the 𝜆-parameters for 3-variable inter-

actions can be interpreted as the logarithms of ratios of odds-ratios (and like-
wise for more complex interactions).

Example 11.1 Belief in the existence of God

The 1970 British Cohort Study (BCS70) follows the lives of people born in a
single week of 1970. In 2012, the panel members were asked about the extent
to which they believed in God. Since there were six possible replies to the
question, a multinomial logistic regression model would be appropriate. For
present purposes, however, the data are summarized in Table 11.1 using just
two categories.

TABLE 11.1 Replies given by members of the
1970 British Cohort Study when interviewed
in 2012 concerning their belief in God

Non-believers Believers

Male 2718 1321
Female 2181 2359

Source: SN 7473, 1970 British Cohort Study: Forty-
Two-Year Follow-Up, 2012. Reproduced with permis-
sion of the UK Data Service.
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Using R, to obtain the parameter estimates for the saturated model the fol-
lowing commands can be used:

R code

god<-data.frame(expand.grid(A=c("Male","Female"),
B=c("No","Yes")),counts=c(2718,1321,2181,2359));

glm(counts~A*B,data=god,family="poisson")$coef

Since the default for R’s glm command is the use of cornered constraints, the
output is that in Table 11.2.

TABLE 11.2 Output (using R) showing the parameter estimates
for the data in Table 11.1 using cornered constraints

(Intercept) AFemale BYes AFemale:BYes
7.9076516 -0.7215073 -0.2201128 0.7999616

Using cornered constraints, the first category combination (Males not
believing) has been taken as the reference category. This is apparent because
the output refers to the remaining variable categories and not to males nor
to those not believing. The “Males not believing” category is therefore being
used as the baseline for comparisons and is described as “(Intercept)” in the
output. Since the saturated model is an exact fit to the data, it follows that the
number of male non-believers is

exp(𝜇) = exp(7.9076516) = 2718.

The count for female non-believers requires the inclusion of the second cate-
gory of the gender parameter:

exp
(
𝜇 + 𝜆

A
2

)
= exp(7.9076516 − 0.7215073) = 1321.

Similarly, the count for male believers requires the inclusion of the second
category of the gender parameter:

exp
(
𝜇 + 𝜆

B
2

)
= exp(7.9076516 − 0.2201128) = 2181.

Finally, the count for female believers requires the addition of all the param-
eter types:

exp
(
𝜇 + 𝜆

A
2 + 𝜆

B
2 + 𝜆

AB
22

)
= exp(7.9076516 − 0.7215073 − 0.2201128

+ 0.7999616) = 2359.
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11.1.2 Centered Constraints

At a time when no computer was available, centered constraints were used
because they simplified the calculations in the analysis of balanced experi-
mental designs.

Centered constraints pay equal attention to all categories of a variable and
all cells in the table and may therefore be preferred to cornered constraints if
the latter appear to pay undue attention to a category of no special interest.
Equation (7.10) provided an example of centered constraints in the context of
logistic regression. For an I × J table the constraints are as follows:

I∑
i=1

𝜆
A
i = 0,

J∑
j=1

𝜆
B
j = 0,

I∑
i=1

𝜆
AB
ij = 0 for all j,

J∑
j=1

𝜆
AB
ij = 0 for all i.

(11.10)

The nature of the parameters 𝜇, 𝜆A
i , and 𝜆B

j is revealed by summation:

v00 =
∑

i

∑
j

vij = IJ𝜇, (11.11)

v0j =
∑

i

vij = I𝜇 + I𝜆B
j , (11.12)

vi0 =
∑

j

vij = J𝜇 + J𝜆A
i . (11.13)

From Equation (11.11)

𝜇 = v00∕IJ. (11.14)

Substitution of Equation (11.14) into Equations (11.12) and (11.13) gives

𝜆
A
i = vi0∕J − v00∕IJ, (11.15)

𝜆
B
j = v0j∕I − v00∕IJ. (11.16)

Finally, substitution of these results gives

𝜆
AB
ij = vij − v00∕IJ − (vi0∕J − v00∕IJ) − (v0j∕I − v00∕IJ),

which simplifies to

𝜆
AB
ij = vij − vi0∕J − v0j∕I + v00∕IJ. (11.17)

Although the algebra somewhat obscures matters, with centered con-
straints 𝜇 is the logarithm of the product of the total number of observations
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and the geometric mean of the cell probabilities; it therefore corresponds to
an “average” cell frequency.

The parameter 𝜆A
i compares the probability of an individual being in cat-

egory i of variable A with the probability for an “average” category of A. A
positive value for 𝜆A

i implies that category i is relatively common, whereas a
negative value corresponds to a relatively uncommon category.

A positive value for 𝜆AB
ij indicates a cell with a frequency greater than would

be expected if A and B had been independent.

Example 11.1 Belief in the existence of God (continued )

Using R’s glm command with centered constraints requires the following:

R code (continued )

contrasts(god$A)<-contr.sum(2);
contrasts(god$B)<-contr.sum(2);
glm(counts~A*B,data=god,contrasts=TRUE,
family="poisson")$coef

The resulting output is given in Table 11.3.

TABLE 11.3 Output (using R) showing the parameter
estimates for the data in Table 11.1 using centered constraints

(Intercept) A1 B1 A1:B1
7.63683194 0.16076324 -0.08993399 0.19999040

Using the parameter estimates given in Table 11.3, we get:

exp(v11) = exp(7.63683194 + 0.16076324

+ (−0.08993399) + 0.19999040) = 2718,

exp(v12) = exp(7.63683194 + 0.16076324

− (−0.08993399) − 0.19999040) = 2181,

exp(v21) = exp(7.63683194 − 0.16076324

+ (−0.08993399) − 0.19999040) = 1321,

exp(v22) = exp(7.63683194 − 0.16076324

− (−0.08993399) + 0.19999040) = 2359.

Because this is the saturated model, the cell frequencies given by the esti-
mated parameters are exactly equal to those observed.
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Note that, while it makes sense to use the parameter estimates with the
accuracy given (eight decimal places) for calculations, it would be sensible to
use no more than three decimal places in any report. The accuracy of estimated
values will be provided by their associated standard errors (not shown here).

Using R, an alternative approach employs the loglm command (for which
centered constraints are the default). The commands are as follows:

R code (continued )

library(MASS);
Table<-table(God,Sex);
coef(loglm(~God*Sex,data=Table))

The resulting output, shown in Table 11.4, is not as concise as that in
Table 11.3, but is possibly easier to understand, The results are, of course,
the same as before.

TABLE 11.4 The output resulting from
R commands using the loglm command
to obtain parameter estimates for the
data in Table 11.1

$‘(Intercept)‘
[1] 7.636832
$God No Yes

0.1607632 -0.1607632
$Sex Male Female

-0.08993399 0.08993399
$God.Sex Sex
God Male Female
No 0.1999904 -0.1999904
Yes -0.1999904 0.1999904

11.2 THE INDEPENDENCE MODEL FOR AN I × J TABLE

Since independence implies that there are no interactions, the indepen-
dence model is the saturated model without the (I − 1)(J − 1) interaction
parameters:

vij = ln(Npij) = 𝜇 + 𝜆
A
i + 𝜆

B
j , (11.18)

with i = 1, 2,… , I, j = 1, 2,… , J, and with either cornered constraints (e.g.,
𝜆A

1 = 0,𝜆B
1 = 0) or centered constraints (

∑
i 𝜆

A
i = 0,

∑
j 𝜆

B
j = 0). Since there
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are (I − 1)(J − 1) parameters omitted from the saturated model, there are
(I − 1)(J − 1) degrees of freedom available to test the goodness of fit of this
model. For a related justification of the number of degrees of freedom, see
Section 4.2.1.

Example 11.2 Murder weapons in states of the United States

The data in Table 11.5 summarize the methods used by murderers in the six
states of the United States that experienced the largest numbers of reported
murders in 2013.

Figure 11.1 is a cobweb diagram (see Section 4.4.2) that suggests that there
are distinct departures from independence. The most significant departure
appears to be that murderers in the state of New York use relatively fewer
firearms, but more knives.

Using R to test the independence model results in the output shown in
Table 11.6. By default R uses cornered constraints with the first category com-
bination being the reference combination (labelled “(Intercept)”). In this
case this combination is murders in California using firearms. So we find that
(allowing for round-off)

exp(7.0919) = 1202.2.

Similarly, for murders in Texas using firearms

exp(7.0919 − 0.4319) = 780.6,

and, for murders in Texas using knives

exp(7.0919 − 0.4319 − 1.6872) = 144.4.

TABLE 11.5 Murder weapons according to the FBI crime report: details for
the six states with the largest numbers of reported murders in 2013

Knives or Other Hands, fists,
State Firearms cutting instruments weapons feet, etc. Total

California 1224 238 191 92 1745
Texas 760 164 129 80 1133
New York 362 136 113 37 648
Michigan 440 43 106 36 625
Pennsylvania 440 52 74 28 594
Georgia 411 40 74 9 534

Total 3637 673 687 282 5279

Source: https://www.fbi.gov/about-us/cjis/ucr/crime-in-the-u.s/2013/crime-in-the-u.s.-2013/
tables/table-20/table 20 murder by state types of weapons 2013.xls

****************************************************************************************************************************************************************************************************

https://www.fbi.gov/about-us/cjis/ucr/crime-in-the-u.s/2013/crime-in-the-u.s.-2013/tables/table-20/table 20 murder by state types of weapons 2013.xls


THE INDEPENDENCE MODEL FOR AN I × J TABLE 133
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FIGURE 11.1 A cobweb diagram for the murder data of Table 11.5.

TABLE 11.6 A very abbreviated extract from the output (using
R with cornered constraints) for the fit of the independence model
to the murder data of Table 11.5. The full output includes
parameter estimates for every state and every murder method

Call: glm(formula = Freq State + Weapon,
family = "poisson", data = df)

Coefficients:
(Intercept) StateTexas

7.0919 -0.4319
WeaponKnives WeaponOther weapons

-1.6872 -1.6666
Degrees of Freedom: 15
Residual Deviance: 149.4
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Since Table 11.5 has 6 rows and 4 columns there are, as stated in the out-
put, 5 × 3 = 15 degrees of freedom (d.f.). The value of G2 is 149.4 which,
when compared with a chi-squared distribution with 15 d.f., reveals that the
table displays (as Figure 11.1 suggested) highly significant departures from
independence.

The expected frequencies given here are also easily calculated from the
marginal totals using Equation (4.2). For example, for murders in Texas using
knives:

1133 × 673∕5279 = 144.4.
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This chapter introduces the five types of model that are possible with three
variables. It begins by extending the notation of Chapter 4:

� Denote the variables by A (having I categories), B (having J categories),
and C (having K categories).

� Let pijk denote the probability of an observation belonging to cell (i, j, k)
(i.e., to category i of variable A, category j of B, and category k of C).

� Let vijk = ln(Npijk), where N is the total number of observations.
� Denote totals, as before, using zero subscripts. For example:

pij0 =
∑

k

pijk, pi00 =
∑

j

∑
k

pijk, p000 =
∑

i

∑
j

∑
k

pijk.

With three variables, A, B, and C, there are just nine models of interest. The
relations between these models are illustrated in Figure 12.1. The restriction
to these nine models is a consequence of the hierarchy constraint that is dis-
cussed in Chapter 13. There are five types of models corresponding to the five
“levels” indicated in the figure. The model types are listed in Table 12.1.

At one extreme there is the mutual independence model, A∕B∕C, while at
the other extreme there is the saturated model, which has as many parameters
as there are cells in the contingency table (i.e., IJK) and therefore provides a

Categorical Data Analysis by Example, First Edition. Graham J. G. Upton.
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ABC

AB/AC/BC

A/B/C

AC/B

AC/BC

A/BC

AB/AC

AB/C

AB/BC

FIGURE 12.1 Model tree showing the connections between the nine models of
possible interest in a three-way classification involving variables A, B, and C.

TABLE 12.1 Model types of possible interest with three variables, A, B, C

ABC The interaction between any two variables is affected by the third
variable.

This is the saturated model.

AB∕AC∕BC There are interactions between every pair of variables, but each
interaction is unaffected by the category of the third variable.

AB∕AC There are interactions between A and B and between A and C.
Neither interaction is affected by the category of the third variable.
Conditional independence between B and C, controlling for A.

AB∕C There is an interaction between A and B that is unaffected by C.
C is independent of A and B.

A∕B∕C All pairs of variables independent of one another.
The mutual independence model.

perfect fit to the data. The magnitudes of the parameter estimates in the satu-
rated model often provide a good idea of which are the important interactions.

12.1 MUTUAL INDEPENDENCE: A∕B∕C

The mutual independence model will rarely apply, since the intention of col-
lecting the data will have been to discover which variables are related and also
the strength of those relations. However, the mutual independence model pro-
vides a useful basis for evaluating the benefits of more complex models.

The model states that each cell probability is the product of the correspond-
ing (marginal) category probabilities:

pijk = pi00p0j0p00k. (12.1)
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An example of a 2 × 2 × 2 table displaying mutual independence is:

C1 C2
B1 B2 B1 B2 Total

A1 1 2 3 6 12
A2 1 2 3 6 12

Total 2 4 6 12 24

In this example p100 = 1
2
, p010 = 1

3
, and p001 = 1

4
, so that, for example,

p111 = 1
2
× 1

3
× 1

4
= 1

24
.

With 24 observations in this fictitious example, the cell count for cell (1,1,1)
is 24 × 1

24
= 1, with similar calculations for the other cells.

As a log-linear model the mutual independence model would be written as

vijk = ln(Npijk) = 𝜇 + 𝜆
A
i + 𝜆

B
j + 𝜆

C
k , (12.2)

with appropriate constraints.

12.2 THE MODEL AB∕C

An example of data for which this model would be a perfect fit is:

C1 C2
B1 B2 B1 B2

A1 1 2 3 6
A2 3 4 9 12

Considering only observations belonging to category C1, the odds on A1
as opposed to A2 are 1 to 3 for an individual belonging to category B1, but
2 to 4 (equal to 1 to 2) for an individual belonging to category B2. A conve-
nient yardstick is the odds-ratio (see Section 3.5.3) which is equal to 1 for
independence, but here is equal to

1∕3

2∕4
= 2

3
,

indicating that A and B are not independent.
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Turning to category C2, the odds on A1 as opposed to A2 are 3 to 9 for an
individual belonging to category B1, and 6 to 12 for an individual belonging
to category B2. The odds-ratio is therefore

3∕9

6∕12
= 2

3
.

The odds-ratio associated with the categories of A and B is therefore the same
for every category of C. This implies that the two-variable AB interaction is
unaffected by C (in other words there is no ABC interaction).

To examine whether there is a relation between A and C alone, we rearrange
the cells of the table:

B1 B2
C1 C2 C1 C2

A1 1 3 2 6
A2 3 9 4 12

This time the odds-ratio in each subtable is equal to 1, implying that A and C
are conditionally independent given B. The same holds true for B and C, so,
for this table, a perfect fit is provided by the log-linear model

vijk = ln(Npijk) = 𝜇 + 𝜆
A
i + 𝜆

B
j + 𝜆

C
k + 𝜆

AB
ij , (12.3)

with appropriate constraints.
The lack of dependence of the category of C on those for A and B (and vice

versa) is emphasized by rewriting the table as follows:

A1B1 A1B2 A2B1 A2B2 Total

C1 1 2 3 4 10
C2 3 6 9 12 30

Total 4 8 12 16 40

In effect, this is a 2 × 4 table that displays independence between the variable
C and the compound variable (AB). The marginal totals are included so that
it is easy to see that, for example, the first entry 1 is equal to 4 × 10∕40.

With this presentation, it is apparent that the cell probabilities are given
by:

pijk = pij0p00k. (12.4)
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12.3 CONDITIONAL INDEPENDENCE AND INDEPENDENCE

In the previous example (repeated below for convenience), the value of 𝜃 (the
odds-ratio) was the same for both subtables and the combined table:

B1 B2
C1 C2 C1 C2

A1 1 3 2 6
A2 3 9 4 12

𝜃 = 1 𝜃 = 1

Ignoring B
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒

C1 C2

A1 3 9
A2 7 21

𝜃 = 1

Since 𝜃 = 1 corresponds to independence, we can assert that each subtable
displayed conditional independence between A and C while the combined
table displayed independence between A and C. However, it is important
to realize that conditional independence between two variables in subtables
does not imply independence in the corresponding combined table. Here is
an example:

B1 B2
C1 C2 C1 C2

A1 40 10 1 4
A2 20 5 20 80

𝜃 = 1 𝜃 = 1

Ignoring B
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒

C1 C2

A1 41 14
A2 40 85

𝜃 ≈ 6.2

The underlying reason for the huge difference between the odds-ratios for
the subtable and that for the combined table is because of the impact of vari-
able B on the other variables: there are very large AB and BC interactions.
The importance of including all potentially influential variables in an analy-
sis is a topic that we revisit in Section 12.6.

It is also the case that apparent independence in a combined table can be
misleading when subtables are considered. Here is an example:

C1 C2

A1 3 9
A2 7 21

𝜃 = 1

Subdividing B
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒

B1 B2
C1 C2 C1 C2

A1 1 8 2 1
A2 6 1 1 20

𝜃 = 1∕48 𝜃 = 40

In this case, when B is ignored, it appears that A and C are independent. The
reality is that there are strong AC interactions that vary enormously according
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to the category of B. This dependence of AC on B implies that there is a large
ABC interaction (i.e., 𝜆ABC

ijk ≠ 0).

12.4 THE MODEL AB∕AC

An example of data for which this model would be a perfect fit is:

C1 C2
B1 B2 B1 B2

A1 1 2 3 6
A2 2 5 4 10

Here the odds-ratios for the C1 and C2 subtables are

1∕2

2∕5
= 5

4
and

3∕6

4∕10
= 5

4
.

Since the odds-ratios are equal to one another, there is no ABC interaction
(the AB interaction is not affected by C). Since the common value of the odds-
ratios is not 1, A and B are not independent.

Since there is no ABC interaction, the odds-ratio between B and C will be
the same for both subtables of A, and the odds-ratio between A and C will be
the same for both subtables of B. These odds-ratios are, respectively, 1 and
2∕3, indicating that while B and C are conditionally independent given A, A
and C are not independent.

Because there is no BC interaction, the compound variables AB and
AC are independent. We can see this by representing the data using two
subtables:

A1B1 A1B2 Total

A1C1 1 2 3
A1C2 3 6 9

Total 4 8 12

A2B1 A2B2 Total

A2C1 2 5 7
A2C2 4 10 14

Total 6 15 21

In effect, the original 23 table separates into two disconnected 22 tables for
the two categories of A. Within each subtable B and C are independent. For
this model the cell probabilities are given by:

pijk = pij0pi0k∕pi00. (12.5)
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As a log-linear model the model is

vijk = ln(Npijk) = 𝜇 + 𝜆
A
i + 𝜆

B
j + 𝜆

C
k + 𝜆

AB
ij + 𝜆

AC
ik , (12.6)

with appropriate constraints.

12.5 THE MODELS AB∕AC∕BC AND ABC

These models do not have simple expressions for pijk in terms of totals of
other cell probabilities. In log-linear terminology they are simple extensions
of the AB∕AC model. The AB∕AC∕BC model is

vijk = ln(Npijk) = 𝜇 + 𝜆
A
i + 𝜆

B
j + 𝜆

C
k + 𝜆

AB
ij + 𝜆

AC
ik + 𝜆

BC
jk , (12.7)

and the ABC model is

vijk = ln(Npijk) = 𝜇 + 𝜆
A
i + 𝜆

B
j + 𝜆

C
k + 𝜆

AB
ij + 𝜆

AC
ik + 𝜆

BC
jk + 𝜆

ABC
ijk . (12.8)

Both models are subject to the usual constraints.
The model AB∕AC∕BC states that there are pairwise dependencies between

the variables, with each dependency being unaffected by the third variable.
Notice that if the interaction between A and B had been affected by C, then
that would imply that there was a non-zero 𝜆ABC

ijk term in the model. In turn, if

there is a non-zero 𝜆
ABC
ijk term then that implies that the interaction between A

and C is affected by B and the interaction between B and C is affected by A.
The model ABC is dominated by the three-variable interaction, 𝜆ABC

ijk since

a non-zero 𝜆
ABC
ijk implies that the interaction between any two of the variables

is affected by the third variable.

12.6 SIMPSON’S PARADOX

In Section 12.3, we showed that when two subtables displaying conditional
independence were combined, then the combined table need not display
independence. We also showed that a combined table showing apparent inde-
pendence, could result from subtables that showed marked departures from
independence. Both situations have their counterparts in linear regression,
as Figure 12.2 demonstrates. In the diagrams, independence is represented
by a line parallel to the x-axis, where y is constant (so is unaffected by the
value of x).
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(i) (ii)

FIGURE 12.2 Graphical analogies of problems caused by ignoring a third variable.
(a) Apparent dependence with conditional independence. (b) Apparent independence
with strong dependence in the sub-populations.

When an influential third variable is mistakenly omitted, the results can be
very misleading, as the following (fortunately hypothetical!) example demon-
strates. In this scenario a doctor has to make the decision as to whether a crit-
ically ill patient should be given an injection or a pill, with the outcome being
either recovery or death. Here are the historical figures for a patient with this
type of illness:

Recovery Death

Injection 15 10
Pill 10 15

𝜃 = 2.25

Historically there have been 50 patients with 25 having received each treat-
ment. The recovery rate is better for injections (15∕25 = 60% than for the pill
(10∕25 = 40%), so, in the absence of other information, the decision would
be to inject the next unfortunate patient.

Fortunately, in this case the third variable is difficult to overlook since it is
the sex of the patient. Here are the separate results for males and females:

Males Females
Recovery Death Recovery Death

Injection 14 5 1 5
Pill 5 1 5 14

𝜃 = 0.56 𝜃 = 0.56

We now see that survival rates vary greatly between the sexes: (14 + 5)∕25 =
76% for males, but only (1 + 5)∕25 = 24% for females. This means that there
is a very influential sex-outcome interaction.
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FIGURE 12.3 A graphical analogue of Simpson’s paradox: positive slopes in sub-
populations become a negative slope when the data are (incorrectly) treated as a single
population.

When we look at the treatment results for males, we find that the sur-
vival rate for those given the pill (5∕6 ≈ 83%) is greater than for those given
the injection (14∕19 ≈ 74%) implying that, for males, a pill is the preferred
treatment.

When we look at the treatment results for females, we find that the survival
rate for those given the pill (5∕19 ≈ 26%) is greater than for those given the
injection (1∕6 ≈ 17%) implying that, for females, a pill is again the preferred
treatment.

Thus, if we were to ignore the sex of the patient, we would choose to inject
the patient, whereas taking account of the sex of the patient, we would use
the pill, regardless of the actual sex of the patient.

This extraordinary result is termed Simpson’s paradox as a result of an
influential paper (Simpson, 1951). The graphical analogue is shown in Fig-
ure 12.3. Simpson’s paradox is a form of ecological fallacy. The fallacy results
from assuming that the conclusions from one level of aggregation apply to all
levels of aggregation.

12.7 CONNECTION BETWEEN LOG-LINEAR MODELS AND
LOGISTIC REGRESSION

Situations in which there is a single response variable have been the subject
of the logistic models of earlier chapters. However, they could alternatively
be handled using log-linear models. These models would be equally effec-
tive, and they would lead to the same goodness-of-fit statistics, parameter
estimates, and fitted values (but they would be more cumbersome).
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As an example, suppose that A and B are two explanatory variables, with
C being the sole response variable. Suppose that A has I categories, B has J
categories, and C has K categories. Now consider the three-variable saturated
model given by Equation (12.8) and repeated here with pijk replaced by qijk to
avoid notational confusion:

ln(Nqijk) = 𝜇 + 𝜆
A
i + 𝜆

B
j + 𝜆

C
k + 𝜆

AB
ij + 𝜆

AC
ik + 𝜆

BC
jk + 𝜆

ABC
ijk , (12.9)

with each set of parameters being subject to cornered or centered constraints.
Now suppose that K = 2 so that

ln(Nqij1) = 𝜇 + 𝜆
A
i + 𝜆

B
j + 𝜆

C
1 + 𝜆

AB
ij + 𝜆

AC
i1 + 𝜆

BC
j1 + 𝜆

ABC
ij1 ,

and ln(Nqij2) = 𝜇 + 𝜆
A
i + 𝜆

B
j + 𝜆

C
2 + 𝜆

AB
ij + 𝜆

AC
i2 + 𝜆

BC
j2 + 𝜆

ABC
ij2 .

Subtraction of one case from the other gives

ln(qij1∕qij2) = {𝜆C
1 − 𝜆

C
2 } + {𝜆AC

i1 − 𝜆
AC
i2 } + {𝜆BC

j1 − 𝜆
BC
j2 } + {𝜆ABC

ij1 − 𝜆
ABC
ij2 },

since terms not involving C cancel out.
The left-hand side is a log-odds, since, with K = 2, qij2 = 1 − qij1. On the

right-hand side there is a term not involving i or j, a term involving only i, a
term involving only j, and a term involving both i and j. Such a model was
given earlier by Equation (8.4) and is repeated here for convenience:

ln(pij∕(1 − pij)) = 𝜇 + 𝛼i + 𝛽j + 𝜃ij, i = 2,… , I, j = 2,… , J,

In this model 𝜇 is a measure of the typical cell frequency, 𝛼i and 𝛽j measure
the effects of the specific categories i and j, and 𝜃ij is the effect on the response
variable of the (i, j) category combination.

In a similar fashion it can be shown that every log-linear model involving
a single response variable can be expressed as a logistic regression model. Of
course, the reverse is also true.

Example 12.1 The dependence of political allegiance on gender and
social class

In Example 10.2, we used logistic regression models to examine the rela-
tion between a single response variable (party preference in the United King-
dom, C) and two background factors: gender, A and social class, B. The data
previously given as percentages in Table 10.4 are now reported as counts in
Table 12.2.
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TABLE 12.2 Numbers supporting the three principal political parties, with
subdivisions by gender and social class

Social classes A, B, Social classes C2, D,
and C1 and E

Male Female Male Female

Labour 188 196 183 128
Conservative 212 223 111 104
Liberal Democrat 46 52 39 18

Source: SN 6322, Gender and the Vote in Britain, 2007. Reproduced with permission of the
UK Data Service.

We now use log-linear models (all containing the all-factor gender × class
interaction) to re-examine the data. The results are shown in Figure 12.4,
which should be compared with the earlier Figure 10.4.

The values of G2 are very different, because now we are modeling 12 sum-
mary counts instead of the 1500 individual values. The AIC values here are
therefore also quite different to the previous AICc values. However, the actual
values of either G2 or AIC are not relevant. What matters is the differences in

No explanatory variable (AB/C)
G2 = 25.8, AIC = 114.9

Gender (AB/AC)
G2 = 23.4, AIC = 116.5

Gender/Class (AB/AC/BC)
G2 = 4.5, AIC = 101.7

Gender*Class (ABC)
G2 = 0, AIC = 101.1

Class (AB/BC)
G2 = 6.2, AIC = 99.3

2 d.f. ΔG2= 2.4 2 d.f. ΔG2 = 19.6

2 d.f. ΔG2= 18.9 2 d.f. ΔG2= 1.7

2 d.f. ΔG2= 4.5

FIGURE 12.4 The fit of log-linear models describing the dependence of political
allegiance on gender and/or class.
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the G2 values. These are identical to those obtained previously. In the same
way, AIC again identifies the best fitting model as being (in the current nota-
tion) AB∕BC.

REFERENCE
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Stat. Soc. B, 13, 238–241.
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CHAPTER 13

IMPLICATIONS AND USES OF BIRCH’S
RESULT

Log-linear models were popularized in the early 1970s in a series of papers by
Goodman (1970, 1971a, 1971b). This was before the introduction of the uni-
fying concept of a single algorithm (Nelder and Wedderburn, 1972) to handle
all linear models involving data from members of the exponential family of
distributions (see Chapter 5). Prior to the use of the general linear model, an
iterative procedure was used to fit log-linear models. The procedure, which
had been introduced in a somewhat different context by Deming and Stephan
(1940), has been rediscovered by several subsequent workers. The procedure
is closely related to the result presented in Section 13.1.

13.1 BIRCH’S RESULT

Birch (1963) demonstrated that there was a connection between observed
marginal totals, the maximum likelihood estimates of model parameters, and
the marginal totals of the set of fitted frequencies based on those estimates.
Expressed in our current notation the result is effectively this:

For each 𝜆-parameter included in a log-linear model, the corresponding observed
marginal total is exactly equaled by the corresponding marginal total of the fitted fre-
quencies.

Categorical Data Analysis by Example, First Edition. Graham J. G. Upton.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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The iterative scaling procedure guarantees that this required equality of
marginal totals is achieved.

13.2 ITERATIVE SCALING

Birch’s result requires that relevant marginal totals should match. Iterative
scaling provides a means of achieving these matches. The simple steps are as
follows:

1. Begin with a working table of the same size (e.g., I × J × K) as that
observed, but with every cell frequency equal to 1.

2. For a 𝜆-parameter in the model, determine the corresponding marginal
totals in both the observed table and the working table.

3. Scale the working table so that its marginal totals match those observed.
4. Repeat, cycling through the relevant 𝜆-parameters until all totals match

either exactly, or to a desired precision.

Fienberg (1970) proved that the procedure is sure to converge. In prac-
tice, convergence rarely takes many iterations. In cases where there is a
simple expression that connects the fitted frequencies to appropriate totals
of the observed frequencies (such as for the independence model, where
eij = fi0f0j∕f00) convergence occurs after just one iteration. These models are
called direct models.

For models that are not direct models, the convergence is not only assured,
but fast. Since the method requires only multiplication, with no awkward
matrix manipulations, using iterative scaling was an attractive method for fit-
ting log-linear models when computer power was limited.

A rather curious consequence of the procedure is that the fitted frequen-
cies are obtained without having calculated parameter estimates. If parameter
estimates are required then the general linear model should be used. If using
R, this implies using the glm command, rather than the loglm command.

Example 13.1 Suppose that we wish to fit the independence model to the
following 2 × 2 table:

B1 B2 Row marginal total: fi0
A1 f11 = 10 f12 = 20 f10 = 30
A2 f21 = 30 f22 = 40 f20 = 70

Column marginal total: f0j f01 = 40 f02 = 60 Grand total: f00 = 100
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Since the independence model is

vij = 𝜇 + 𝜆
A
i + 𝜆

B
j , i = 1, 2; j = 1, 2,

the 𝜆-parameters of interest are the {𝜆A
i } and the {𝜆B

j } and the corresponding
marginal totals are respectively the {fi0} and the {f0j}. Denoting fitted fre-
quencies by {eij}, with the usual notation for totals, the independence model
implies that

ei0 = fi0 for all i (because 𝜆A
i is in the model),

and e0j = f0j for all j (because 𝜆B
j is in the model).

It does not matter in what order totals are matched; the same end results will
be obtained. We will arbitrarily start with the {𝜆A

i }, so that we are interested
in the row marginal totals.

B1 B2 Marginal total

A1 1 1 2 needs to be 30, so × by 15 → 15 15
A2 1 1 2 needs to be 70, so × by 35 → 35 35

Next we consider the {𝜆B
j }:

B1 B2

A1 15 15
A2 35 35

Marginal total: 50 50
Should be: 40 60

Therefore × by: 40∕50 60∕50
↓ ↓

12 18
28 42

In this case one iteration has been sufficient, since both sets of scaled mar-
gins match those observed. The independence model is the simplest example
of a direct model.

13.3 THE HIERARCHY CONSTRAINT

Consider a cross-classification involving three variables, A, B, and C. Suppose
that we find that the independence model A∕B∕C does not fit the data well,
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whereas the model AB∕C is an acceptable fit. In the previous notation, the
model AB∕C is

vijk = ln(Npijk) = 𝜇 + 𝜆
A
i + 𝜆

B
j + 𝜆

C
k + 𝜆

AB
ij .

We might feel that it would be worth testing the fit to the simpler model

vijk = ln(Npijk) = 𝜇 + 𝜆
C
k + 𝜆

AB
ij ,

even though we previously argued that if there was an important AB inter-
action, then this implied that the categories of A and B mattered. We now
demonstrate that Birch’s result implies that, if a model contains 𝜆AB

ij , then the

model “must” include 𝜆A
i and 𝜆B

j . This is easy to demonstrate as follows:

𝜆ij in the model ⟹ eij0 = fij0

Summing over j ⟹ ei00 = fi00

But ei00 = fi00 ⟹ 𝜆
A
i is in the model.

The general result (the hierarchy constraint) is:

If a multi-variable interaction I appears in a model, then all the interactions involving
subsets of I must also appear in the model.

Thus, for example, if 𝜆ABC
ijk appears in the model, then so must 𝜆AB

ij , 𝜆AC
ik , and

𝜆
BC
jk (and 𝜆A

i , 𝜆B
j , 𝜆C

k , and 𝜇). Thus log-linear models are completely specified
by listing their most complex interactions or effects.

13.4 INCLUSION OF THE ALL-FACTOR INTERACTION

Consider a general situation involving the cross-tabulation of m response
variables (R1, R2,… , Rm) and n background factor variables (F1, F2,… , Fn).
Suppose we were to attempt to fit the model of independence across all
(m + n) variables. There would be three possible contributions to any lack
of fit:

The response variables are not independent of one another Not uninteresting
The response variables are dependent on the background

variables
Of prime interest

The background factors are not independent of one another Irrelevant
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Suppose we interview a sample of people concerning their preferences
from a range of breakfast cereals. The fact that 60% of the females were over
50, whereas only 47% of males fell in the same age bracket, provides no infor-
mation concerning breakfast cereals. It is a fact of the sampling process and
should in no way contribute to any lack of fit for whatever model is being
proposed.

We want to ensure that there is an exact match between the observed and
fitted numbers of females aged over 50 and likewise for the other age-sex com-
binations. The match is achieved by using Birch’s result: we simply insist that
the age-sex interaction is included in every model considered. This ensures
that the relevant observed marginal totals are exactly reproduced and any lack
of fit involves the response variables.

Returning to the general case, the simplest log-linear model of interest will
therefore be the model

R1∕R2∕ · · · ∕Rm∕F1F2 · · ·Fn,

which states that the response variables are all mutually independent of one
another and of the background factors. Every model subsequently considered
will include the all-factor interaction F1F2 · · ·Fn.

13.5 MOSTELLERIZING

This term was introduced by Upton (1978) as an alternative to “standardiz-
ing”which was the term used by Mosteller (1968) in his careful description
of the use of iterative scaling in the context of the adjustment of a sample or
survey to match known population figures.

The process is equally effective with tables of any dimension. It has been
used in market research (Upton, 1987), where it is known as raking or rim-
weighting. In the context of traffic flow it is variously known as the Cross-
Fratar procedure (Fratar, 1954) or the Furness method (Furness, 1965).

Underlying this application of the iterative scaling algorithm is the assump-
tion that any biases are limited to misrepresentation of the frequencies of the
categories of the classifying variables, with category combinations being oth-
erwise fairly represented. In terms of model parameters, the assumptions are
that the “main effect”𝜆-parameters for single variables may be incorrect, but
those for interactions are correctly measured. This means that the interac-
tion parameters for the saturated model applied to the original data will have
identical values to those of the interaction parameters for the saturated model
applied to the Mostellerized data.
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TABLE 13.1 Political preferences and genders of respondents as recorded by
two researchers

Experienced researcher Novice

Party A Party B Total Party A Party B Total
Male 20 90 110 Male 30 70 100
Female 60 30 90 Female 220 80 300

Total 80 120 200 Total 250 150 400

Example 13.2 In this fictitious example, we suppose that two researchers are
asked to sample the population to find out whether the political opinions of
males differ from those of females. The researchers are told to choose random
members of the population and to ask the question “If you had to choose Party
A or Party B to form the next government, which would you choose?”. One
of the researchers is an experienced member of the survey team, but the other
is a novice, a young man for whom this is his first task. Table 13.1 records the
results of the two researchers.

It is immediately apparent that the novice has not been sampling at random!
If we are hoping to deduce the proportion of the population that consists of
female supporters of Party A, then, on their own, the novice’s results are use-
less (and those of the experienced researcher are a little suspect). However, if
we know that 55% of the population prefer Party A, and we know that 51%
of the population are female, then iterative scaling can recover the desired

TABLE 13.2 The first two complete iterations to recover information from
the novice’s sample

First iteration

Raw data Row scaled Column scaled

A B Total A B Total A B Total
Male 30 70 100 14.7 34.3 49 15.5 32.2 47.7
Female 220 80 300 → 37.4 13.6 51 → 39.5 12.8 52.3

Total 250 150 400 52.1 47.9 100 55 45 100

Second iteration

Row scaled Column scaled

A B Total A B Total
15.9 33.1 49 16.1 32.7 48.8

→ 38.5 12.5 51 → 38.9 12.3 51.2

54.4 45.6 100 55 45 100
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estimates. Table 13.2 shows the first two complete iterations when scaling
the novice’s data. The speed of convergence is apparent. It appears that about
39% of the population are female supporters of Party A.
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CHAPTER 14

MODEL SELECTION FOR LOG-LINEAR
MODELS

The techniques outlined in Chapter 9 continue to apply, with stepwise meth-
ods providing an invaluable aid when there are many variables.

The amount of data available is again relevant as the examples will demon-
strate. If there is a huge amount of data then any unsaturated model may
have a “significantly” poor fit. On the other hand, when data are scarce, a
cross-classification involving several variables may lead to a large number of
zero cell frequencies and a difficulty in finding models that do not fit the data
acceptably!

With any data analysis it is useful to begin by “looking at the data.” In the
context of log-linear models, this suggests examining the magnitudes of the
possible interactions using a cobweb diagram to provide a pictorial guide to
the magnitudes of two-variable interactions and studying the magnitudes of
the parameters in the saturated model to gain an idea of which other interac-
tions may be relevant.

14.1 THREE VARIABLES

When there are just three variables, model selection is straightforward, since
there are at most nine models to consider (see Figure 12.1). When two of the
variables are background factors, the number reduces to five, as illustrated in
Figure 12.4.

Categorical Data Analysis by Example, First Edition. Graham J. G. Upton.
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Example 14.1 Belief in the existence of God and an afterlife

Table 11.1 presented data from a cohort of individuals born in the United
Kingdom during a single week in 1970. Re-interviewed in 2012, the propor-
tion of females who claimed to believe in God was found to be significantly
greater than the proportion of males who believed in God. We now re-examine
the data using four categories rather than two, and including information on
the respondents’ belief in an afterlife. These more detailed data are given in
Table 14.1.

There are some very strong interactions present. While these may not be
immediately apparent from the table of numbers (too many numbers!), they
are certainly apparent in the cobweb diagram shown in Figure 14.1. The
strongest positive associations link belief in God with belief in an afterlife
(and the corresponding disbeliefs).

To get a full picture we now fit some log-linear models, starting with an
examination of the parameter estimates for the saturated model:

R code

df<-as.data.frame(table(God,After,Sex));
summary(glm(Freq~Sex*God*After,data=df,family=poisson))

An extract from the results is given in Table 14.2 which shows the most
significant differences within each group of interaction parameters. For sim-
plicity of exposition we will denote the variables by A for belief in an afterlife,
B for belief in God, and C for sex. There appears to be no AC interaction, but

TABLE 14.1 Replies given by members of the 1970 British Cohort Study
when interviewed in 2012 concerning their belief in God and in afterlife

Males Females

Yes Yes? No? No Yes Yes? No? No

There is a God 233 72 18 23 471 144 42 24
There may be a God 112 420 365 56 328 824 447 46
Do not know if there is a God 25 154 622 165 53 229 479 72
There is not a God 27 70 342 747 66 123 254 248

Source: SN 7473, 1970 British Cohort Study: Forty-Two-Year Follow-Up, 2012. Reproduced
with permission of the UK Data Service.
In the table the question marks indicate uncertainty: thus Yes? implies that the respondent
thought there might be an afterlife, while No? indicates that the respondent thought that there
might not be an afterlife. By contrast, those answering Yes or No were certain.
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Maybe no

Maybe yes

Yes

Yes

No

No

Male

Do not know

Maybe

Afterlife

God

Sex

FIGURE 14.1 A cobweb diagram showing the relative importance of the various
two-variable interactions for the data of Table 14.1.

extremely strong AB and BC interactions, suggesting that the model AB∕BC
could be appropriate. For this model, which has 12 degrees of freedom, the
value of G2 is 87.2, which suggests a very significant lack of fit. However, the
next best model, AB∕AC, which has the same number of degrees of freedom,

TABLE 14.2 The most significant parameter estimates (using cornered
constraints) for each group of interaction parameters in the saturated model
fitted to the data of Table 14.1. The variables are Belief in God (A), Belief in the
afterlife (B), and Sex (C)

Interaction Est. S. E. z
Tail
Prob. Parameter

SexFemale:GodYes -0.19 0.24 -0.8 0.43 AC
SexFemale:AfterNo -2.00 0.24 -8.3 † BC
GodYes:AfterNo -5.63 0.29 -19.2 † AB
SexFemale:GodYes:AfterNo 1.34 0.39 3.5 0.0005 ABC

†, probability less than 2 × 10−16.
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has G2 = 318.1. The model that states that a person’s sex has no bearing on
their belief in either God or the afterlife (model AB∕C) has an extra 3 degrees
of freedom, but G2 = 736.1.

So what is the “best” model? The saturated model is of course the only
model that perfectly describes the data. However, we can reasonably assume
that a different cohort of individuals would not have resulted in precisely the
figures given in Table 14.1. Indeed, no set of data can be expected to match
any of the unsaturated models in this book. The entire modeling exercise is
no more than a procedure for understanding which relationships are strong
and which are weak, or barely exist. Although a tail probability of 0.0005
(the value shown in Table 14.2) is very small, it is very much greater than the
probabilities associated with the AB and BC interactions. These tiny proba-
bilities are partly a consequence of the large sample size. If we toss a coin
for which P(Head) = 0.5001 a million times, then we can expect to obtain a
significant rebuttal of the hypothesis that P(Head) = 0.5, but will we care? To
see whether we care in the present context, Table 14.3 gives the last row of
Table 14.1 together with the (rounded) fitted frequencies for competing mod-
els. Agresti (2007) suggested that a useful informal measure of fit is provided
by the dissimilarity index D, where

D = 50 ×
∑|e − f |∕∑ f , (14.1)

and where f denotes an observed frequency, e denotes the corresponding value
given by a model, and the summation is over all cells in the table. The value
of D can be interpreted as the percentage of the observations that would need
to move to a different cell of the table in order to achieve a perfect fit. The
values of D are given as the final column of the table.

We might feel that the AB∕BC model gives an acceptable fit, whereas AB∕C
clearly does not. Thus the BC interaction cannot be ignored: the implication

TABLE 14.3 Observed and fitted frequencies concerning belief in the afterlife
for respondents who claimed not to believe in God, together with the values of
D for the fits to the entire table

Males Females

Yes Yes? No? No Yes Yes? No? No D

Observed 27 70 342 747 66 123 254 248

ABC 27 70 342 747 66 123 254 248 0
AB∕AC∕BC 35 83 341 727 58 110 255 268 2.1
AB∕BC 28 68 312 714 65 125 284 281 4.1
AB∕C 44 91 282 470 49 102 314 525 13.7
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is that males differ very significantly from females in the extent to which they
are likely to believe in God.

14.2 MORE THAN THREE VARIABLES

As the number of variables increases, so the number of possible models rises
rapidly. Precisely how many models are possible in a given situation will
depend on the separate numbers of response variables and background fac-
tors. The number is restricted by the need to include the all-factor interaction
in every model. This restriction occurs automatically with logistic models
and ensures that any lack of fit represents the model’s inability to describe
the relations between the response variables and the factors (and between the
response variables themselves).

Example 14.2 The hands of blues guitarists

This example is concerned with the possibility that early twentieth-century
African-American blues guitarists developed distinctive regional styles as a
result of the way in which they plucked the strings. A fascinating study by
Andrew Cohen, published in the Winter 1996 edition of American Music,
identified four variables of interest:

A Date of birth Before 1906 (primarily “songsters”), or After
1905 (primarily “bluesmen”)

B Region West (mainly TX), Central (mainly MS), and East
(mainly GA)

C Thumb style Cohen used three classes: Alternate (between
thumb and finger), Utility (thumb used only
when required), and Dead

D Hand posture The relative positions of thumb and forefinger.
Cohen used three classes: Extended, Stacked,
and Lutiform

Cohen collated information on 93 guitarists. A cross-tabulation for the four
variables above (with categories in the order shown) is given in Table 14.4.

With 54 cells and 93 observations it is no surprise that 21 of the cell fre-
quencies are zero. Based on the birthdays it would appear that playing of
the blues originated in the east and moved west in later years. However date
and region are the factors in this data set, so the simplest model of interest
is AB∕C∕D.
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TABLE 14.4 The thumb styles and hand positions of 94 blues guitarists in the
southern states of the United States

Before 1906 West Central East

Alt. Util. Dead Alt. Util. Dead Alt. Util. Dead

Extended 1 0 2 5 5 4 4 0 3
Stacked 0 0 2 2 2 5 1 1 1
Lutiform 0 0 1 0 1 2 0 0 0

After 1905

Extended 14 4 2 2 4 0 0 1 0
Stacked 0 3 1 0 4 5 0 1 2
Lutiform 1 0 0 0 3 3 0 0 1

Source: Cohen, 1996. Reproduced with permission of University of Illinois Press.

We begin, as usual, with a cobweb diagram (Figure 14.2) which suggests
that the strongest association concerns those using the alternate thumb style
who are disproportionately likely to be using the extended hand position. This
happens particularly in the western region and in the later years. This finding
reflects the fact that by far the largest frequency corresponds to that particular
combination.

Region

Hand Date of Birth

ThumbWest Dead

Utility

Alternate

Early

Lutiform

Stacked

Extended

East

Central

FIGURE 14.2 A cobweb diagram showing the relative importance of the various
two-variable interactions for the data of Table 14.4.
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On this occasion, because of the combination of small cell frequencies and
large numbers of cells, the saturated model is not very informative. Instead
we use the stepwise procedures discussed in Section 9.3.

R code

# Thumb, Region, Hand, DateOfBirth, Freq are vectors
df<-data.frame(expand.grid(Thumb=Thumb,Region=Region,

Hand=Hand, DateOfBirth=DateOfBirth),Freq,
stringsAsFactors=TRUE);

step(glm(Freq~Thumb*Region*Hand*DateOfBirth,
data=df,family=poisson))

The automated stepwise procedure uses AIC as its criterion and terminates
at the model ACD∕ABD. However, the stepwise procedure only looks one step
ahead in the model tree. In Section 9.3, we saw that it is sometimes possible
to find a model with a smaller AIC value by considering models two steps (or
more) through the model tree. The current data set provides another example
where this is possible.

An extract from the model tree is shown in Figure 14.3. The automated pro-
cedure stopped at ABC∕ACD because its AIC value (168.2) was less than that
for the two possible simplifications ABC∕AD∕CD (169.1) and AB∕BC∕ACD
(175.8). The difference in the G2-values for ABC∕ACD and ABC∕AD∕CD is
27.47 − 18.59 = 8.88. This is associated with 28 − 24 = 4 degrees of free-
dom. The probability of a 𝜒2

4 -variable exceeding 8.88 by chance is about 7%,
suggesting that, despite its larger AIC value, ABC∕AD∕CD should be given
serious consideration as a model providing a simpler explanation of the data.
Before considering that model, however, it makes sense to investigate whether
any further simplification is feasible. As Figure 14.3 shows, further simpli-
fication is indeed possible, since removing the AD interaction (to give the
model ABC∕CD) releases 2 degrees of freedom, while G2 increases by just
1.71 and, as a consequence, the AIC value falls to a new low (166.8).

The possible simplifications of the model ABC∕CD result in unacceptably
large increases in both G2 and AIC, so this is the final model. To understand
why a set of parameters are required it can be helpful to compare the expected
frequencies resulting from the original model and from the rejected simplifi-
cation. In this case, since the models ABC∕CD and AB∕AC∕BC∕CD do not
differ with respect to variable D, the differences can be conveniently summed
over D; the results are shown in Table 14.5. The ABC interaction is evidently
required to deal with the manner in which the combination of an alternate
thumb style and an extended hand position varied with region across the time
periods.
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ABC/ACD
G2 = 18.59 d.f. = 24

AIC = 168.2

ABCD
G2=0 d.f.=0
AIC=197.6

ABC/AD/CD
G2=27.47 d.f.=28

AIC=169.1

ABC/AD
G2=50 d.f.=32
AIC=183.6

ABC/D
G2=50.79 d.f.=34

AIC=180.4

AB/C/D
G2=82.59 d.f.=44

AIC=192.2

AB/AC/BC/CD
G2=44.78 d.f.=34

AIC=174.4

AB/BC/ACD
G2=34.19 d.f.=28

AIC=175.8

ABC/CD
G2=29.18 d.f.=30

AIC=166.8

FIGURE 14.3 Extract from the tree of models applied to the data of Table 14.4.
The variables are A, Date of birth; B, Region; C, Thumb style; D, Hand posture.

Finally, to understand the CD interaction we can compare the expected
frequencies for the models ABC∕D and ABC∕CD, summing over variables A
and B. The results are shown in Table 14.6. Once again it is the preference for
an extended hand position with alternate thumb use that stands out from the
data.

Comparison of the fitted frequencies for a pair of nested models is always
useful when attempting to understand the relationships in a set of data.

TABLE 14.5 The expected frequencies (summed over D) for the model
AB∕AC∕BC∕CD subtracted from those for the model ABC∕CD

West Central East

Alt. Util. Dead Alt. Util. Dead Alt. Util. Dead

Before 1906 −2.6 −0.6 3.1 1.0 0.8 −1.9 1.3 −0.2 −1.1
After 1905 2.6 0.6 −3.1 −1.0 −0.8 1.9 −1.3 0.2 1.1
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TABLE 14.6 The expected frequencies (summed over D)
for the model ABC∕D subtracted from those for the model
ABC∕CD

Alternate Utility Dead

Extended 9.5 −1.9 −7.6
Stacked −6.7 1.6 5.0
Lutile −2.9 0.3 2.6

REFERENCE
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CHAPTER 15

INCOMPLETE TABLES, DUMMY
VARIABLES, AND OUTLIERS

15.1 INCOMPLETE TABLES

In a cross-tabulation involving many cells, but with only a limited amount
of data, there is a good chance that some cell frequencies will be zero. Such
zeroes are called random zeroes because they are a consequence of the (hope-
fully) random sampling that occurred. Sometimes, however, there are so-
called structural zeroes where a cell has a zero count by design. The resulting
table is called an incomplete table.

Example 15.1 Health concerns of teenagers

Table 15.1 presents data on the health concerns of teenagers. The zeroes in
this incomplete table can be anticipated, since male teenagers will not have
menstrual problems.

15.1.1 Degrees of Freedom

When there are structural zeroes present, the number of degrees of freedom
is usually the number that would have applied if there had been no structural
zeroes, reduced by the number of structural zeroes.

Categorical Data Analysis by Example, First Edition. Graham J. G. Upton.
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TABLE 15.1 The health concerns of teenagers

Personal health concerns

Sex, Menstrual How healthy
Sex Age reproduction problems I am Nothing

Male 12–15 4 0 42 57
16–17 2 0 7 20

Female 12–15 9 4 19 71
16–17 7 8 10 31

Source: Brunswick, A. F. (1971) Adolescent health, sex, and fertility. Amer. J. Pub. Health, 61,
711–720.

Example 15.1 Health concerns of teenagers (continued)

In this case, the obvious question is whether, leaving the implausible male
menstrual concerns cells on one side, the health concerns (A) are otherwise
independent of sex (B) and age (C). The simplest model of interest (since B
and C are background factors) is A∕BC, which, for a complete 2 × 2 × 4 table
would have 9 degrees of freedom. In this case, therefore, with two impossible
cells, it has 9 − 2 = 7 degrees of freedom.

The exception to the rule that the degrees of freedom are reduced by the
number of structural zeroes occurs when there are so many structural zeroes,
that a structurally zero marginal total is formed. In such a case, for each rel-
evant structural zero marginal total, one degree of freedom is recovered. A
marginal total is relevant if it would be exactly fitted as a consequence of
Birch’s result (Section 13.1).

Example 15.2 Eyesight quality in England

Table 15.2 presents a pathological example of a zero marginal total. Fit-
ting the independence model to the 3 × 3 table as it stands, there will be

TABLE 15.2 Cross-tabulation of questions concerning respondents’ eyesight

Whether certified partially sighted or blind

Self-reported eyesight Yes, partially sighted Yes, blind No Total

Good 0 0 0 0
Fair 17 0 592 609
Poor 20 3 133 156

Source: SN 7649, Health Survey for England, 2013. Reproduced with permission of the UK
Data Service.
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(3 − 1)(3 − 1) − 3 (for the structural zeroes) +1 (for the structural marginal
total) = 2 degrees of freedom. Of course, any rational analysis would com-
mence by discarding the first row, to leave a 2 × 3 table, thus confirming that
there are (2 − 1)(3 − 1) = 2 degrees of freedom.

15.2 QUASI-INDEPENDENCE

In cases where there are no structural zeroes, the simplest model that might
describe a data set is usually the independence model. When there are struc-
tural zeroes, it might be the case that independence would still describe the
relationship between the variables, if the structural zeroes were ignored. This
is the quasi-independence model.

Table 15.3 shows an artificial data set that provides a perfect fit to the two-
variable quasi-independence model: in each complete column the cells are
in the ratio 4 to 2 to 1. Notice that, because of the structural zero, it is no
longer the case that the expected frequencies under independence are a simple
function of the row, column, and overall totals.

TABLE 15.3 An artificial table displaying a perfect fit to the
quasi-independence model. The top left cell is a structural zero

B1 B2 B3 B4 B5 Total

A1 0 100 20 60 40 220
A2 10 50 10 30 20 120
A3 5 25 5 15 10 60

Total 15 175 35 105 70 400

15.3 DUMMY VARIABLES

Whenever there are subsets of the cells in a cross-tabulation that are of spe-
cial interest, or that can be expected to behave in a different way from the
remaining cells, it can be useful to invoke one or more dummy variables. We
will find applications of dummy variables both in this chapter and the next.
We begin with the trivial example of an incomplete table.

Example 15.1 Health concerns of teenagers (continued)

There were two individual cells in the cross-classification that we regarded
as impossible. Nevertheless, it is not completely inconceivable that a very
ignorant (or mischievous) young male might claim to have menstrual prob-
lems. We can address this possibility by introducing a dummy variable D
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TABLE 15.4 The data of Table 15.1 presented as an incomplete 22 × 4 × 3
table

D1 D2 D3

4 × 42 57 × 0 × × × × × ×
2 × 7 20 × × × × × 0 × ×
9 4 19 71 × × × × × × × ×
7 8 10 31 × × × × × × × ×

Total = 291 Total = 0 Total = 0

having three categories: D1, realistic cells; D2, 12–15-year-old male claim-
ing to worry about menstrual problems; D3, 16–17-year-old male claiming to
worry about menstrual problems.

Since categories D2 and D3 identify single cells, their marginal frequen-
cies will be equal to the individual cell counts and, as a consequence of
Birch’s result (Section 13.1), their frequencies (in this case, both zeroes) will
be exactly reproduced. The original 22 × 4 table becomes the highly incom-
plete 22 × 4 × 3 table, given as Table 15.4.

Notice that the two degrees of freedom “lost” to the structural zeroes of
the original table are now, in effect, allocated to the dummy variable. A more
succinct representation of the distribution of the categories of the dummy
variable is provided by Table 15.5.

TABLE 15.5 The categories of the dummy
variable D for the data of Table 15.1

1 2 1 1
1 3 1 1
1 1 1 1
1 1 1 1

15.4 DETECTION OF OUTLIERS

In the context of cross-classified data, an outlier is a category combination
that does not match the pattern suggested by other category combinations.
An example is provided by Table 15.6 which is a table that displays perfect
independence, with the exception of the top-left category combination, where
the observed count of 2000 is 100 times greater than that suggested by the
counts in the remainder of the table. The following model provides a perfect
fit to the data:

vij = 𝜇 + 𝜆
A
i + 𝜆

B
j + 𝛿ij𝜆

D, (15.1)
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TABLE 15.6 An artificial table in which the top-left cell is an obvious outlier

B1 B2 B3 B4 B5 Total

A1 2000 100 20 60 40 2220
A2 10 50 10 30 20 120
A3 5 25 5 15 10 60

Total 2015 175 35 105 70 2400

where

𝛿11 = 1 and 𝛿ij = 0 otherwise.

A significance test of whether cell (1,1) is an outlier is provided by testing
whether 𝜆D differs significantly from zero. If 𝜆D = 0, then, in the present situ-
ation, the model simplifies to the independence model. Suppose that the value
of the G2 statistic for this model is G2

0, while the value for the model including
the dummy variable is G2

1. Then the difference G2
0 − G2

1 is associated with the
1 degree of freedom that results from the addition of the single 𝜆D-parameter.

Now consider a general case, involving any model, and any number of
variables. Let the model of interest be denoted by M0, with goodness-of-fit
G2

0. Let M1(C) be the same model augmented by a dummy parameter that
identifies the specific cell C as an outlier. Suppose this model has goodness-
of-fit G2

1(C). As usual, the two goodness-of-fit values have asymptotic chi-
square distributions, so the difference G2

0 − G2
1(C) would be compared with a

𝜒2
1 -distribution.
However, the comparison with a 𝜒2

1 -distribution is only valid if cell C has
been identified prior to studying the data. Usually we will not know in advance
whether there is an outlier. With a cross-classification comprising N cells, a
natural procedure would be to examine each cell in turn in case it might be
an outlier. The prime candidate would then be the cell for which the differ-
ence G2

0 − G2
1(C) was greatest. Since we are giving ourselves N chances of

finding a large value, the value we find should be compared not with a 𝜒2
1 -

distribution but with the distribution of the largest of N observations from a
𝜒2

1 -distribution.
Note that, if there is an outlier cell, then its removal may result in a much

simpler explanation of the relationships between the remaining variables.

Example 15.3 Visiting habits of Aberdeen mothers-to-be

Table 15.7 reports information on the extent to which 87 child-bearing women
from working-class families in Aberdeen visited friends and an antenatal
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TABLE 15.7 Visits to the antenatal clinic, and to friends, by working-class
mothers in Aberdeen

First child Not first child

Antenatal clinic Visits to friends Walked Used bus Walked Used bus

Regular use Daily 5 13 14 2
At least once a week 6 6 6 6
Less than once a week 0 4 2 5

Little use Daily 1 0 16 0
At least once a week 6 2 13 10
Less than once a week 2 0 3 5

Source: McKinlay, 1973. Reproduced with permission of Oxford University Press.
Note that some respondents gave information about visits to more than one set of friends.

clinic. There are two factors: whether or not the child will be a first child
(A), and whether the friends are visited by walking or by bus (B). The two
response variables are whether or not the mother regularly attends an antena-
tal clinic (C), and the regularity with which the mother visits her friends (D).

Figure 15.1 presents the cobweb diagram for these data. It appears that
there are appreciable AB, AC, BC, BD, and CD interactions. Stepwise

WalkedFirst

Daily

At least weekly

Less often

Regular

A_Child

D_Friends

B_Method

C_Clinic

FIGURE 15.1 Cobweb diagram for the Aberdeen mothers.
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methods (see Chapter 9) confirm this impression with the selected model
being AB∕AC∕BC∕BD∕CD. This model has 11 degrees of freedom with
G2 = 29.30 corresponding to a tail probability of about 0.2%. The following
R code stores the G2-value in gsq0.

R code

C<-c("Regular","Little");
D<-c("Daily","Weekly","Less");
A<-c("First","Not first");
B<-c("Walk","Bus");
Freq<-c(5,13,14,2,6,6, etc,2,13,10,2,0,3,5);
df<-data.frame(expand.grid(B=B,A=A,D=D,C=C),

Freq,stringsAsFactors = TRUE);
gsq0<-glm(Freq~A*B+A*C+B*C+B*D+C*D,

data=df,family="poisson")$deviance;

A convenient method of assessing whether a cell is an outlier is to examine
the change in G2 that results from repeating the analysis with the chosen cell
given zero weight. The following R code achieves this for each cell in turn,
with the maximum change being stored in maxgdiff.

R code (continued)

n=length(Freq);
gdiff=0*c(1:n);
for(i in 1:n){

wt<-c(rep(1,times=n));
wt[i]<-0;
gdiff[i]<-gsq0-glm(Freq~A*B+A*C+B*C+B*D+C*D,

data=df,weights=wt,family="poisson")$deviance;
}

maxgdiff<-max(gdiff)
maxgdiff;

The maximum change in G2 is found to be 14.4, with the source being
the count of 13 in the first row of the data. To assess whether this maximum
change is unusually large, we use simulation. The following R code gener-
ates 99,999 samples of 24 observations from a 𝜒2

1 -distribution. The code then
determines the largest value in each set, counts the number of these largest
values that are at least as great as the value observed, and presents the result
as a tail probability. Because we are using simulations, we will get different
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results with each run of the code, but the variation in the results will be com-
paratively trivial and more certainty can always be achieved by increasing the
number of samples generated.

R code (continued)

ncompare<-99999;
m<-0*c(1:ncompare);
count<-0
for (j in 1:ncompare){

m[j]<-max(rchisq(n,1));
}

prob<-(length(which(m>=maxgdiff))+1)/(ncompare+1);
prob

In this case the tail probability is found to be about 0.0035, which would
certainly be regarded as significant. This significance raises the question as
to why this category combination is in some way different to the remaining
category combinations. These 13 ladies are having their first child, are consci-
entious users of the antenatal clinic, and are also making daily visits to friends
by bus. One possible explanation is that these ladies are still at work. If true,
then there is an unmeasured relevant fifth variable, namely employment.

Whenever there is an outlier cell, it is likely to make the associations
between the variables appear more complicated than they really are. In this
case, use of stepwise selection with a zero weight for the offending cell results
in the selection of the much simpler model AB∕AC∕BD∕X with X denoting
the outlier-exclusion dummy variable, and with the AB interaction only being
included because A and B are the background factors (see Section 13.4).

The fits of the models selected, and the differences between the selected
models are summarized in Table 15.8 using both the AICc statistic (see Sec-
tion 9.8), and the changes in G2 with the corresponding change in degrees of
freedom. The simplified model (with the outlier cell) is clearly superior to the
model originally selected: it fits the data better and uses fewer parameters.

TABLE 15.8 Selected models for the data of Table 15.7

Change in

Model AICc d.f. G2 model d.f. G2

AB/AC/BC/BD/CD 161.2 11 29.29
AB/AC/BC/BD/CD/X 142.4 10 14.90 Outlier removal 1 14.39
AB/AC/BD/X 122.0 13 19.97 Model simplification 3 5.07
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The parameter estimates for the model AB∕AC∕BD∕X reveal that less use
(than would be expected under independence) is made of the clinic by those
mothers who have already had a child, while visits to friends by bus are
made much less often than would have been predicted by the independence
model. These are commonsense conclusions, but the picture would have been
clouded if the outlier cell had been retained.
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CHAPTER 16

PANEL DATA AND REPEATED
MEASURES

Data sets of particular interest occur when every classifying variable has the
same categories as every other variable. Such data may be referred to as
repeated measures data. An example of interest to social scientists is a com-
parison of the social classes occupied by successive generations of the same
family.

Often the data arise when a sample of individuals are interviewed at two or
more time points: the individuals concerned are referred to as a panel and the
data are referred to as panel data. Thus market researchers may be interested
in the brand loyalty of shoppers, while political scientists will be interested
in the political allegiance of voters at successive elections.

It is the case that the social classes of sons are predominantly the same
as those of their fathers. Similarly, a person’s preferred breakfast cereal in
January of one year is likely to be the same as that a year later, and a person is
likely to continue supporting the same political party. As a result, successive
inquiries about class, eating habits, political allegiance, or whatever, will very
often result in the same response. When the responses are cross-tabulated, the
result will be a table with large numbers on the leading diagonal and relatively
small numbers elsewhere. This is a situation greatly different from that of

Categorical Data Analysis by Example, First Edition. Graham J. G. Upton.
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independence and requires special models to capture the interdependence of
the classifying variables. Some of these models are introduced in this chapter.

16.1 THE MOVER-STAYER MODEL

This simple model, suggested by Blumen, Kogan, and McCarthy (1955), pro-
poses that there are two types of individuals: movers, whose category at the
second time point is independent of their category at the first time-point, and
stayers who stay in the same category for ever.

Since the off-diagonal cells are populated only by movers, moving inde-
pendently of their previous preferences, the frequencies in these cells will
follow a quasi-independence model. Studying their fitted values allows one
to deduce the contributions to the on-diagonal cells from movers and, hence,
by subtraction, the numbers of stayers.

Table 16.1 gives an example of a data set that perfectly fits the mover-stayer
model. The numbers of stayers can be deduced from the figures given in the
complete table in the following way. Consider any pair of rows (or columns)
and note that, because of independence, the ratio of the observed frequencies
for any pair of cells in the same column (or row) will be the same, unless one of
the pair is an on-diagonal cell. For example, the ratios of the cell frequencies
in rows three and four must all be equal:

10
20

= 20
40

=
m3

80
= 60

m4
,

where m3 and m4 are the numbers of movers on the third and fourth diagonal
cells. To preserve the 1 to 2 ratios across the rows, the values of m3 and m4
must be 40 and 120, respectively. By subtraction the numbers of stayers are
confirmed as (250 − 40) = 210, and (240 − 120) = 120.

The mover-stayer model often appears to fit well, but should always be
treated with caution, since it may lead to a negative estimate of the number
of stayers, and may lead to very different estimates of the numbers of stayers
dependent on which pair of time points are compared.

TABLE 16.1 A table displaying a perfect fit to a mover-stayer model

Complete table Movers Stayers

120 10 20 30 5 10 20 30 115
10 140 40 60 10 20 40 60 120
10 20 250 60 10 20 40 60 210
20 40 80 240 20 40 80 120 120
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TABLE 16.2 Cross-tabulation of the reported political allegiances of voters in
England for the UK General Elections of 2010 and 2015

2015 vote

2010 vote Con. Lab. Lib. Dem. Green UKIP

Conservative Party 4375 245 143 52 839
Labour Party 287 3068 114 131 252
Liberal Democratic Party 544 1113 957 355 355
Green Party 26 48 18 74 9
United Kingdom Independence Party 84 49 10 11 342

Source: Reproduced with permission of the British Election Study.

Example 16.1 Voters in England and the UK 2010 and 2015 General
Elections

Table 16.2 summarizes data from the British Election Study concerning the
reported political affiliations in England in the General Elections of 2010 and
2015.

Since the cells on the leading diagonal will be reproduced by the model, all
that is required is to fit the quasi-independence model to the remaining cells.
This is easily achieved by assigning zero weights to the on-diagonal cells.
The required R code is:

R code

observed<-c(0,245,143,52,839,287,0,114,131,252,544,1113,
0,355,355,26,48,18,0,9,84,49,10,11,0);

w<-c(0,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,0);
vote<-data.frame(expand.grid(

e2015=c("Con","Lab","LD","Green","UKIP"),
e2010=c("Con","Lab","LD","Green","UKIP")),
counts=observed);

model<-glm(counts~e2015+e2010,data=vote, weights=w,
family="poisson")

Unsurprisingly the model is a poor fit (G2 = 985.8; d.f. = 4 × 4 − 5 = 11).
To see why, we compare the observed and fitted frequencies using:

R code (continued )

round(observed-model$fitted*weights,0)
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TABLE 16.3 Residuals for the mover-stayer model fitted to the data of
Table 16.2

2015 vote

2010 vote Con. Lab. Lib. Dem. Green UKIP

Conservative Party 0 −282 −8 −110 401
Labour Party 22 0 10 19 −50
Liberal Democratic Party −58 287 0 101 −330
Green Party 0 13 8 0 −20
United Kingdom Independence Party 36 −17 −9 −9 0

The results are summarized in Table 16.3. The model underestimates the
number of transfers of Liberal Democrat supporters to the Conservatives and
the Greens and also the transfers of Conservative supporters to UKIP. Note
that the on-diagonal residuals are automatically zero.

16.2 THE LOYALTY MODEL

A simple alternative to the mover-stayer model is the loyalty model, given by

vij = 𝜇 + 𝜆
A
i + 𝜆

B
j + 𝛿D𝜆

D, (16.1)

with 𝛿D = 1 if i = j, and 𝛿D = 0, otherwise.
This is the independence model once again, but with the on-diagonal cells

treated as a special case. The anticipation is that 𝜆D will be positive (corre-
sponding to on-diagonal cells having larger frequencies than would have been
expected under independence).

Example 16.2 Occupational classes of two generations in the United
Kingdom

Table 16.4 shows data on the occupations of males in the United Kingdom
who were aged between 50 and 59 in the autumn of 2015, cross-tabulated
against the occupations of their family’s main wage-earner when the respon-
dent was aged 14 (i.e., around 1975). There are major changes between the
generations: the number of skilled workers has dropped considerably, and
there is a marked rise in the number of professionals.

The loyalty model allows for changes in the proportions belonging to the
various categories, but also takes account of the inflated on-diagonal counts
where successive generations follow similar occupations. The occupation
numbering is that of the survey, but the revised ordering, and the presentation
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TABLE 16.4 Occupational classes of males aged 50–59 compared to the
occupational classes of the main wage-earner when the respondent was aged 14

Occupation of main wage earner when male
respondent was 14 years old

Occupational class
of male respondent 1 2 3 5 4 6 7 Total

1 Managers 127 170 52 29 141 78 61 658
2 Professionals 172 440 93 56 336 136 113 1346
3 Administrators 13 43 19 8 54 16 22 175
5 Service workers 18 44 9 19 50 42 28 210
4 Skilled workers 66 101 40 47 304 138 93 789
6 Machinists 36 57 14 33 150 110 89 489
7 Elementary workers 31 37 10 17 104 75 53 327

Total 463 892 237 209 1139 595 459 3994

Source: SN 7842, Quarterly Labour Force Survey, July–September, 2015. Reproduced with
permission of the UK Data Service.
The category numbers are those of the study which should be consulted for a full description
of the occupational categories.

as three groups, resulted from a consideration of the residuals (given later in
Table 16.5) of fitting the loyalty model.

The following R code fits the model:

R code

obs<-c(127, 170, 52, 29, 141, 78, etc, 75, 53);
occupy<-data.frame(expand.grid(now=factor(1:7),

then=factor(1:7)),counts=obs);
occupy[,"loyalty"]=c(rep(c(1,rep(0,each=7)),times=6),1);
model2<-glm(counts~now+then+loyalty,data=occupy,

family="poisson");

To understand the limitations of the fit of the loyalty model, we can exam-
ine the residuals using the following R command:

R code (continued )

round(observed-model2$fitted,0)

The residuals, which are summarized in Table 16.5, show a distinctive pat-
tern that is frequently encountered when the categories are ordered: transitions
between categories at one end of the ordered categories to categories at the
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TABLE 16.5 Residuals for the loyalty model applied to the data of Table 16.4

Occupation of main wage earner when male
respondent was 14 years old

Occupational class
of male respondent 1 2 3 5 4 6 7

1 Managers 5 47 13 −5 −31 −15 −13
2 Professionals 36 29 17 −10 4 −45 −30
3 Administrators −6 9 0 −1 7 −10 2
5 Service workers −5 3 −4 −1 −7 11 3
4 Skilled workers −10 −32 −2 10 −16 37 13
6 Machinists −15 −32 −14 8 25 −7 35
7 Elementary workers −4 −24 −9 0 19 29 −10

opposite end are comparatively rare. Managers in one generation beget man-
agers in the next generation, but relatively few elementary workers. As the
saying goes “like father, like son.”

16.3 SYMMETRY

In the context of panel data, with pij denoting the probability of a transition
from category i to category j, the model of symmetry states that, for all i
and j,

pij = pji. (16.2)

With fij denoting the observed number of transitions from category i to cat-
egory j, the corresponding expected frequency under the symmetry model
will be

eij =
1
2

(fij + fji).

For an I × I table, the value of a goodness-of-fit statistic would be compared
with a 𝜒2-distribution with I(I − 1)∕2 degrees of freedom. The model might
be appropriate for a system in equilibrium, but would not be useful for an
evolving society.

16.4 QUASI-SYMMETRY

The symmetry requirement that pij = pji implies that vij = vji for all i and j,
where, as previously, vij = ln(pij). Writing

vij = 𝜇 + 𝜆
A
i + 𝜆

B
j + 𝜆

AB
ij ,
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this in turn implies that

𝜆
A
i = 𝜆

B
i for all i, and 𝜆

AB
ij = 𝜆

AB
ji for all i and j.

Thus there are two distinct sets of restrictions being placed on the transi-
tion probabilities by the symmetry model: one is concerned with matching
the attractiveness of a category at the two time points, and the other matches
the structure of changes between categories so that changes in one direction
are equal (in a sense) to changes in the opposite direction. Suppose we retain
the second set of constraints, but relax the first, allowing categories to change
in their popularity between the two periods concerned. This defines the model
of quasi-symmetry:

vij = 𝜇 + 𝜆
A
i + 𝜆

B
j + 𝜆

AB
ij with 𝜆

AB
ij = 𝜆

AB
ji for all i and j. (16.3)

The model, which was introduced by Caussinus (1965), has the usual center or
corner constraints on the various parameters and has (I − 1)(I − 2)∕2 degrees
of freedom.

The constraints imposed by the model imply that

eij + eji = fij + fji, (16.4)

where eij is the expected frequency corresponding to fij. This equality between
sums of expected and observed frequencies prompted Bishop, Fienberg, and
Holland (1975) to suggest constructing an I × I × 2 table in which one layer
is the original I × I table, and the other is its transpose. In this way, the
marginal totals of the artificial third variable C will be precisely the quan-
tities fij + fji that appear in Equation (16.4). The required equality with the
sum of the expected frequencies is then achieved, because of Birch’s result
(Section 13.1), by fitting the model AB∕AC∕BC. Note that, because of the
duplication of the original table, each sum appears twice and the goodness-
of-fit value will therefore need to be halved.

Example 16.2 Occupational classes of two generations in the United
Kingdom (continued )

The following R code fits the symmetry and quasi-symmetry models and
presents the values of G2 for each:

R code (continued )

trans<-t(matrix(obs,7,7));
expect<-0.5*(obs+trans);
symgsq<-2*sum(obs*log(obs/expect));
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double<-c(obs,trans);
occ2<-data.frame(expand.grid(now=factor(rep(1:7)),

then=factor(rep(1:7)),dummy=factor(1:2)),
counts=double);

qs<-glm(counts~now*then+now*dummy+then*dummy,data=occ2,
family="poisson");

qsgsq<-0.5*as.numeric(qs[10]);
symgsq;
qsgsq

Unsurprisingly, the symmetry model is useless (G2 = 321.6, 21 d.f.). By
contrast, the quasi-symmetry model (G2 = 21.1, 15 d.f.) provides a very
acceptable fit to the data. It is instructive to examine the estimated values
of the interaction parameters for this model. Using the first category as the
reference category, the estimates are shown in Table 16.6.

TABLE 16.6 The estimates for the 𝝀
AB
ij

parameters for

the quasi-symmetry model applied to the data of
Table 16.4. The first occupation category has been used
as the reference category

2 3 5 4 6 7

2 0.6 0.4 0.4 0.2 0.4 0.2
3 1.0 0.7 0.5 0.4 0.2
5 1.5 1.2 1.0 1.3
4 1.4 1.1 1.6
6 1.5 1.4
7 1.6

There is a clear pattern: in each row or column the on-diagonal entry is large
compared to the other entries in that row or column, and, on the whole, the
values get smaller as they get more distant from the main diagonal. These are
typical findings when the categories of the classifying variable are ordered;
they suggest that a model that takes account of the “distance” between cate-
gories may be relevant.

16.5 THE LOYALTY-DISTANCE MODEL

This model was used by Upton and Sarlvik (1981) in the context of change in
political allegiance in a system governed by a single left–right political axis.
The model, which can be used with any variable having ordered categories,
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combines the positive on-diagonal (repeated-choice) 𝜆D dummy parameter
with one or more negative “distance-effect” dummy parameters. The latter
reduce the probabilities of large changes between the categories selected at
successive time points.

Example 16.2 Occupational classes of two generations in the United
Kingdom (continued )

The occupations in Tables 16.4 and 16.5 were presented using three groups
that were suggested by the pattern of signs of the residuals shown in
Table 16.5. For convenience, the three groups will be labelled as U (occu-
pations 1 and 2), V (occupations 3 and 5), and W (occupations 4, 6, and 7).
We will represent a shift from Group U to group V (or vice versa) using the
dummy variable E, and a shift from group V to group W (or vice versa) using
the dummy variable F. A shift between groups U and W will require both
dummy variables.

With 𝛿D defined as for the loyalty model, the loyalty-distance model is

vij = 𝜇 + 𝜆
A
i + 𝜆

B
i + 𝛿D𝜆

D + 𝛿E𝜆
E + 𝛿F𝜆

F, (16.5)

with the usual centered or cornered constraints on the main-effect parameters.
The parameters 𝜆E and 𝜆F correspond to the two distance dummy variables.
Labelling the categories of each dummy variable by 0 (variable absent) and 1
(variable present), their application will be as set out in Table 16.7.

TABLE 16.7 The categories of the two dummy variables used
to identify the occupation transitions affected by distance
effects in a three-group loyalty-distance model applied to the
data of Table 16.4

Variable E Variable F

0 0 1 1 1 1 1 0 0 0 0 1 1 1
0 0 1 1 1 1 1 0 0 0 0 1 1 1
1 1 0 0 0 0 0 0 0 0 0 1 1 1
1 1 0 0 0 0 0 0 0 0 0 1 1 1
1 1 0 0 0 0 0 1 1 1 1 0 0 0
1 1 0 0 0 0 0 1 1 1 1 0 0 0
1 1 0 0 0 0 0 1 1 1 1 0 0 0

Transitions Transitions
between U and (V or W) between (U or V) and W
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TABLE 16.8 Comparison of the fits of alternative models for the occupation
class data of Table 16.4

Change in
Model AICc d.f. G2 d.f. G2

Independence 707.9 36 397.1
Loyalty 529.6 35 204.4 1 192.7
Loyalty-distance (3 groups) 414.0 33 80.2 2 124.2
Loyalty-distance (6 groups) 400.3 29 45.4 4 34.8

Symmetry 743.7 21 321.6
Quasi-symmetry 479.6 15 21.1 6 300.5

Some example transitions are as follows:

Within group 1, e.g., class 2 to class 1 v21 = 𝜇 + 𝜆A
2 + 𝜆B

1

Between groups 1 and 2, e.g., class 1 to class 3 v13 = 𝜇 + 𝜆A
1 + 𝜆B

3 + 𝜆D

Between groups 1 and 3, e.g., class 1 to class 4 v14 = 𝜇 + 𝜆A
1 + 𝜆B

4 + 𝜆D + 𝜆E

Between groups 2 and 3, e.g., class 7 to class 5 v75 = 𝜇 + 𝜆A
7 + 𝜆B

5 + 𝜆E

Table 16.8 shows the goodness of fit of the models considered in this
chapter. Each model is a highly significant improvement on its predecessor.
Included in the table is the model that includes separate distance parameters,
one for each pair of successive occupation classes. For this model there is a
tail probability of about 2.5% suggesting a model that provides a reasonable
fit that is by no means perfect.
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R CODE FOR COBWEB FUNCTION

Readers are welcome to adapt the following code as they please. The argu-
ments of the function are: df (the data frame containing the cross-tabulation),
scale (a number, usually 1, that controls the width of the cobweb lines), and
outfile (the file containing the resulting cobweb diagram).

cobweb<-function(df,scale,outfile){
charwidth<-5.5;
nvar<-dim(df)[2]-1;
ncat<-matrix(NA,nvar,1);

Numbers of categories per variable, and required array sizes
for (i in 1:nvar){

ncat[i,1]<-dim(table(df[i]))
}
allcat<-sum(ncat[,1]);
maxcat<-max(ncat);
x<-matrix(NA,nvar,maxcat);
y<-matrix(NA,nvar,maxcat)
z<-matrix(NA,maxcat,maxcat);
namecat<-matrix(NA,allcat,1);
ang<-matrix(NA,allcat,1);

Categorical Data Analysis by Example, First Edition. Graham J. G. Upton.
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Lengths of variable names
varname<-names(df)[1:nvar];
lengthvar<-nchar(varname);

Lengths of variable category names
lname<-c(1:sum(ncat));
nnames<-1;
for (i in 1:nvar){

lname[nnames:(nnames+ncat[i]-1)]<-nchar(levels(df[,i]));
nnames<-nnames+ncat[i];

}
Preamble for Postscript file

heading=";%!
%%BoundingBox: 100 350 500 750
/smallfont
/Times-Roman findfont 12 scalefont def
/largeitfont
/Times-Italic findfont 16 scalefont def
smallfont setfont";

write(heading,outfile)
gap<-10.0;
rad<-150.0;
xnode<-9;
ynode<–2;
mthresh<-1;
noderad<-10;
width<-0.02;
pid<-pi/180.0;

Range available per variable
degs<-360.0/nvar-10.0;
d1<-0.5*gap;
yc<-550;
xc<-300;
arg<-pid*360/nvar;

Color segments
for (i in 1:nvar){

d2<-d1+degs;
locate<-paste( ’smallfont setfont 0.95 setgray ’, xc,yc);
circle<-paste(xc,yc,rad,d1,d2,’ arc closepath fill’);
write(c(locate,circle),outfile,append=TRUE);
d1<-d2+gap;

}
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Establish node locations
k<-0;
for (i in 1:nvar){

if only two categories both nodes are at centre point
if(ncat[i]==2){

k<-k+1;
ang[k] <-arg*(i-0.5);
x[i,1]<- round((rad*cos(ang[k])+xc),2);
y[i,1]<- round((rad*sin(ang[k])+yc),2);
x[i,2]<-x[i,1];

y[i,2]<-y[i,1]; k<-k+1;
ang[k]<-arg*(i-0.5);

}

With more than two categories
if(ncat[i]>2){

start<-0.5*gap+(i-1)*(degs+gap);
degbit<-degs/ncat[i];
halfdeg<-0.5*degbit;
for (j in 1:ncat[i]){

k<-k+1;
ang[k]<-(start+halfdeg+(j-1)*degbit)*pid;
x[i,j]<-round(xc+rad*cos(ang[k]),2);
y[i,j]<-round(yc+rad*sin(ang[k]),2);

}}}

udf<-matrix(unlist(df),dim(df)); print(udf); last<-nvar+1;

Squared standardized residuals
for(i in 1:(nvar-1)){

for(j in (i+1):nvar){
z<-chisq.test(xtabs(as.numeric(udf[,last])
∼udf[,i]+udf[,j],df))$stdres
zsq<-z*z
for(k in 1:ncat[i]){

for (l in 1:ncat[j]){
w<-0;
if(zsq[k,l]>4){

w<-abs(trunc(z[k,l]))*scale;
if(z[k,l]<0){

write(’0.85 setgray ,outfile,append=TRUE)
}
if(z[k,l]>0){

write(’0 setgray newpath ’,outfile,
append=TRUE)
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}
write(paste(w,’ setlinewidth ’,x[i,k],y[i,k],

’ moveto ’,x[j,l],y[j,l],’ lineto stroke ’,
’ newpath ’),outfile,append=TRUE)

}}}}}
k<-0;
for (i in 1:nvar){

if(ncat[i,1]==2){
k<-k+1;
namecat[k]<-row.names(table(df[,i]))[1];
k<-k+1;
namecat[k]<-row.names(table(df[,i]))[1];

}
if(ncat[i,1]>2){

for (j in 1:ncat[i,1]){
k<-k+1;
namecat[k]<-row.names(table(df[,i]))[j];

}}}

write node names
k<-0;
for(i in 1:nvar){

for(j in 1:ncat[i]){
k<-k+1;
write(paste(’1 setlinewidth 1 setgray ’,
x[i,j],y[i,j],noderad,’ 0 360 arc fill 0 setgray ’),

outfile,append=TRUE);
xx<-x[i,j];
if(xx<xc){

xx<-xx-lname[k]*charwidth;
};

yy<-y[i,j]+ynode;
write(paste(xx,yy,’ moveto (’,namecat[k],’) show ’,

’ newpath ’), outfile,append=TRUE) };
write(paste(’largeitfont setfont ’),outfile,append=TRUE);

Write variable names
for (i in 1:nvar){

ang<-arg*(i-0.5);
xx<-round((1.15*rad*cos(ang)+xc),2);
yy<-round((1.15*rad*sin(ang)+yc),2);
if(xx>=xc){

xx<-xx-lengthvar[i]*5.5
};
if((ang>0.5*pi)&(ang<1.5*pi)){
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xx<-xx-55.0
}
script=paste(xx,’ ’,yy,’ moveto (’,varname[i],’) show ’,
’ newpath’);
write(script,outfile,append=TRUE);

}
write(paste(’smallfont setfont ’),outfile,append=TRUE);
}

close=’showpage’; write(close,outfile,append=TRUE);
}
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Distribution (Continued)
Poisson, 7, 57
standard normal, 8

Dummy variable, 80

Ecological fallacy, 143
Exact test, 27
Exponential family, 56
Exponenttial dispersion family, 57

Factor, 62
Fagerland-Newcombe method, 38
False discovery rate, 33
False negatives, 32
False positives, 32
Fisher’s exact test, 27
Forward selection, 94
Frequency, 2

Gart’s method, 38
Gaussian distribution, 7
Goodness-of-fit statistic

likelihood-ratio G2, 13
Pearson’s X2, 11, 30

Hierarchy constraint, 149
Hypothesis test, 15, 16

one-tailed, 16
two-tailed, 18

Incomplete table, 165
Independence

conditional, 138–140
Indicator variable, 80
Influential observation, 105
Interaction, 85
Interval estimates

binomial proportion
Agresti-Couli method, 20
Agresti-Gottard method, 21
Clopper-Pearson method, 20
Laplace’s method, 19
Wilson’s method, 19

Iterative scaling, 148

Laplace’s method, 19
Latent variable, 116
Likelihood, 9

Linear predictor, 58
Link function, 58

canonical, 58
Log-linear model, 125
Log-odds, 67
Logistic regression model, 67
Logit, 57, 67

cumulative, 115
Loyalty model, 178
Loyalty-distance model, 182

Marginal total, 26
Maximum likelihood, 10
Mean, 6
Mid-P, 16
Model

adjacent-category, 121
continuation-ratio, 122
direct, 148
discrete choice, 109
log-linear, 125
loyalty, 178
loyalty-distance, 182
mover-stayer, 176
mutual independence, 136
null, 68
proportional odds, 116
quasi-independence, 167
saturated, 125, 135

Mosaic plot, 49
Mostellerising, 151
Mover-stayer model, 176
Multinomial distribution, 7
Mutual independence model, 136

Natural parameter, 56
Negative likelihood ratio, 34
Negative predictive value, 33
Nominal variable, 62
Normal distribution, 7
Normal score test, 15
Null model, 68

Ockham’s razor, 90
Odds, 37, 67, 127
Odds-ratio, 37, 43, 127

cumulative, 116
Omnibus test, 52
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Ordinal variable, 62
Outlier cell, 168
Over-parameterised model, 98

Panel data, 175
Parameter, 7
Partitioning, 46
Pearson residual, 44
Pearson’s goodness-of-fit test, 11,

30
Poisson distribution, 7
Population, 5
Positive likelihood ratio, 34
Positive predictive value, 33
Prediction interval, 74
Principle of parsimony, 90
Probability, 5

conditional, 5, 33
transition, 180

Probability density function, 6
Probability function, 6
Proportional odds model, 116

Quasi-independence, 167
Quasi-symmetry, 180

Raking, 151
Random variation, 4
Random zero, 165
Regression

linear, 55
multinomial logistic, 109
multiple, 56

Relative risk, 36
Repeated measures, 175
Residual

Pearson, 44
standardised, 44

Rim-weighting, 151

Sample, 5
Saturated model, 125
Sensitivity, 33
Simpson’s paradox, 141
Specificity, 33
Standard deviation, 8
Standard error, 73
Stepwise methods, 92
Structural zero, 165
Symmetry, 180

Table
incomplete, 165

Transition probability, 180
True negatives, 32
True positives, 32

Variable
binary, 2
categorical, 113
compound, 138
continuous, 1, 6
dependent, 62
dichotomous, 25
discrete, 6
dummy, 80
explanatory, 55, 62
indicator, 80
latent, 116
nominal, 1, 62, 113
ordinal, 1, 62, 113
response, 55, 62

Variance, 6

Wald confidence interval, 74
Wilson’s method, 19

Yates correction, 30
Youden’s index, 33
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