
www.allitebooks.com

http://www.allitebooks.org

Cinder Creative
Coding Cookbook

Create compelling animations and graphics with Kinect
and camera input, using one of the most powerful C++
frameworks available

Dawid Gorny

Rui Madeira

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Cinder Creative Coding Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2013

Production Reference: 1160513

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-870-3

www.packtpub.com

Cover Image by Dawid Górny (hello@dawidgorny.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Dawid Gorny

Rui Madeira

Reviewers
Vladimir Gusev

Dofl Y. H. Yun

Acquisition Editors
Joanne Fitzpatrick

James Jones

Lead Technical Editor
Dayan Hyames

Technical Editors
Soumya Kanti

Devdutt Kulkarni

Veena Pagare

Project Coordinator
Arshad Sopariwala

Proofreaders
Maria Gould

Paul Hindle

Indexer
Rekha Nair

Production Coordinators
Aditi Gajjar

Prachali Bhiwandkar

Cover Work
Aditi Gajjar

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Dawid Gorny is a creative coder and a creative technologist who is into computational
design, art, and interaction design.

He has worked as a professional web and Flash developer for several years, then took the
lead of the research and development department at a digital production house. He has
worked on concepts and technical solutions for a wide variety of interdisciplinary projects
involving mobile development, cameras, sensors, custom electronic circuits, motors,
augmented reality, and projection mapping. His installations engage people in malls,
airports, exhibition spaces, and other public venues.

He is the founder, organizer, and program director of the art+bits festival in Katowice—the
encounter of art and technology.

You can find a more about his projects and experiments at http://www.dawidgorny.com

Rui Madeira is a computational designer, educator, and founder of the interaction design
studio Estudio Ruim. He has been exploring and creating unique and engaging interactive
experiences for cultural, artistic, and commercial purposes. His works are born from the
intersection of several disciplines including illustration, animation, and interaction design.
By using programming languages as the main building blocks for his works, he builds
specific and adaptive systems that break apart from the limitations of traditional tools.
He has participated in several projects, both collaborative and solo, including interactive
performances and concerts, generative visuals for print and motion graphics, mobile
applications, interactive installations, and video mapping.

He has collaborated for several institutions including the London College of Fashion, Belém
Cultural Center, Pavillion of Knowledge, Portuguese Foundation of Communications, Moda
Lisboa, National Ballet of Portugal, and the Monstra Animation Festival

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Vladimir Gusev is a scientist turned generative graphics stage designer and producer.
Vladimir Gusev received his Ph.D. from the Russian Academy of Sciences, and continued
scientific research in the Ukraine (Kiev Polytechnic Institute) and the USA (Yale University).
His main interest was computer molecular simulations, which led him into industrial
bioinformatics and software development (molecular visualization and visual languages
and platforms). His latest interest lies in theatre multimedia environments, which resulted
in the production of works at the Budapest Summer Festival (Aida by G. Verdi), Anton
Chekhov Moscow Art Theatre, Petr Fomenko Theatre Workshop (Moscow), and Satyricon
(Moscow). He also co-founded the One Way Theater Company in New York City. Two
theatrical productions with Vladimir's engagements as a videographer were nominated
for the National Golden Mask Awards.

Some of the respectable institutions with which he collaborated are: The Institute of Physical
Chemistry, Kiev Polytechnic Institute, Yale University, TRI/Princeton, Curagen Corporation,
GraphLogic (Co-founder), Streambase, Ab Initio, Conde Nast, and One Way Theater Company.

He has also been a reviewer of several international journals on physical chemistry.

I would like to thank the creators of the wonderful Cinder framework.

www.allitebooks.com

http://www.allitebooks.org

Dofl Y.H. Yun is an interactive technologist with over 12 years of development experience,
and he has established himself as a visionary leader in interactive design in South Korea,
Hong Kong, the United Kingdom, and more recently in the USA. Much of his focus is on
technologies such as computer vision, 3D depth camera sensors, and multitouch applications.

Dofl received his MA degree in Interactive Media from the London College of Communication,
University of the Arts London with a thesis entitled: "Ensemble‑Interactive Musical
Instruments." His MA thesis won the Experimental/Art category at the Flashforward Film
Festival 2008 in San Francisco.

Since August 2009 he has been working for Firstborn, a digital agency in New York City.
His recent work focuses on exploring the intersection between physical space and
interaction design.

I want to especially mention the efforts of Cinder's original author and
current lead architect, Andrew Bell, and would like to thank my family for
their support and my friends from the CinderDome community.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Getting Started	 5

Introduction	 5
Creating a project for a basic application	 6
Creating a project for a screensaver application	 8
Creating a project for an iOS touch application	 9
Understanding the basic structure of an application	 10
Responding to mouse input	 13
Responding to key input	 15
Responding to touch input	 16
Accessing files dropped onto the application window	 20
Adjusting a scene after resizing the window	 22
Using resources on Windows	 24
Using resources on iOS and OS X	 26
Using assets	 28

Chapter 2: Preparing for Development	 31
Introduction	 31
Setting up a GUI for tweaking parameters	 31
Saving and loading configurations	 36
Making a snapshot of the current parameter state	 39
Using MayaCamUI	 41
Using 3D space guides	 43
Communicating with other software	 47
Preparing your application for iOS	 53

Chapter 3: Using Image Processing Techniques	 55
Introduction	 56
Transforming image contrast and brightness	 56
Integrating with OpenCV	 59

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Detecting edges	 62
Detecting faces	 65
Detecting features in an image	 67
Converting images to vector graphics	 70

Chapter 4: Using Multimedia Content	 77
Introduction	 77
Loading and displaying video	 77
Creating a simple video controller	 80
Saving window content as an image	 84
Saving window animations as video	 86
Saving window content as a vector graphics image	 90
Saving high resolution images with the tile renderer	 94
Sharing graphics between applications	 97

Chapter 5: Building Particle Systems	 101
Introduction	 101
Creating a particle system in 2D	 101
Applying repulsion and attraction forces	 109
Simulating particles flying in the wind	 111
Simulating flocking behavior	 112
Making our particles sound reactive	 117
Aligning particles to a processed image	 121
Aligning particles to the mesh surface	 124
Creating springs	 128

Chapter 6: Rendering and Texturing Particle Systems	 137
Introduction	 137
Texturing particles	 137
Adding a tail to our particles	 139
Creating a cloth simulation	 142
Texturing a cloth simulation	 147
Texturing a particle system using point sprites and shaders	 149
Connecting the dots	 154
Connecting particles with spline	 157

Chapter 7: Using 2D Graphics	 163
Drawing 2D geometric primitives	 163
Drawing arbitrary shapes with the mouse	 166
Implementing a scribbler algorithm	 169
Implementing 2D metaballs	 171
Animating text around curves	 174
Adding a blur effect	 180
Implementing a force-directed graph	 184

iii

Table of Contents

Chapter 8: Using 3D Graphics	 189
Introduction	 189
Drawing 3D geometric primitives	 189
Rotating, scaling, and translating	 193
Drawing to an offscreen canvas	 195
Drawing in 3D with the mouse	 198
Adding lights	 201
Picking in 3D	 205
Creating a height map from an image	 210
Creating a terrain with Perlin noise	 213
Saving mesh data	 217

Chapter 9: Adding Animation	 219
Animating with the timeline	 219
Creating animation sequences with the timeline	 221
Animating along a path	 224
Aligning camera motion to a path	 226
Animating text – text as a mask for a movie	 230
Animating text – scrolling text lines	 233
Creating a flow field with Perlin noise	 236
Creating an image gallery in 3D	 240
Creating a spherical flow field with Perlin noise	 245

Chapter 10: Interacting with the User	 249
Introduction	 249
Creating an interactive object that responds to the mouse	 250
Adding mouse events to our interactive object	 255
Creating a slider	 260
Creating a responsive text box	 264
Dragging, scaling, and rotating objects using multi-touch	 268

Chapter 11: Sensing and Tracking Input from the Camera	 277
Capturing from the camera	 277
Tracking an object based on color	 279
Tracking motion using optical flow	 284
Object tracking	 287
Reading QR code	 292
Building UI navigation and gesture recognition with Kinect	 296
Building an augmented reality with Kinect	 304

Chapter 12: Using Audio Input and Output	 311
Generating a sine oscillator	 311
Generating sound with frequency modulation	 314

iv

Table of Contents

Adding a delay effect	 317
Generating sound upon the collision of objects	 319
Visualizing FFT	 323
Making sound-reactive particles	 325

Appendix: Integrating with Bullet Physics
This chapter is available as a downloadable file at: http://www.packtpub.com/
sites/default/files/downloads/Integrating_with_Bullet_Physics.pdf

Index	 331

Preface
Cinder is one of the most exciting frameworks available for creative coding. It is developed
in C++ for increased performance and allows for the fast creation of visually complex and
interactive applications. The big advantage of Cinder is that it can target many platforms
such as Mac, Windows, and iOS with the exact same code.

Cinder Creative Coding Cookbook will show you how to develop interactive and visually
dynamic applications using simple-to-follow recipes.

You will learn how to use multimedia content, draw generative graphics in 2D and 3D, and
animate them in compelling ways.

Beginning with creating simple projects with Cinder, you will use multimedia, create
animations, and interact with the user.

From animation with particles to using video, audio, and images, the reader will gain a broad
knowledge of creating creative applications using Cinder.

With recipes that include drawing in 3D, image processing, and sensing and tracking in real-
time from camera input, this book will teach you how to develop interactive applications that
can be run on a desktop computer, mobile device, or be a part of an interactive installation.

This book will give you the necessary knowledge to start creating projects with Cinder that use
animations and advanced visuals.

What this book covers
Chapter 1, Getting Started, teaches you the fundamentals of creating applications using Cinder.

Chapter 2, Preparing for Development, introduces several simple recipes that can be very
useful during the development process.

Chapter 3, Using Image Processing Techniques, consists of examples of using image
processing techniques implemented in Cinder and using third-party libraries.

Preface

2

Chapter 4, Using Multimedia Content, teaches us how to load, manipulate, display, save, and
share videos, graphics, and mesh data.

Chapter 5, Building Particle Systems, explains how to create and animate particles using
popular and versatile physics algorithms.

Chapter 6, Rendering and Texturing Particle Systems, teaches us how to render and apply
textures to our particles in order to make them more appealing.

Chapter 7, Using 2D Graphics, is about how to work and draw with 2D graphics using the
OpenGL and built-in Cinder tools.

Chapter 8, Using 3D Graphics, goes through the basics of creating graphics in 3D using
OpenGL and some useful wrappers that Cinder includes in some advanced OpenGL features.

Chapter 9, Adding Animation, presents the techniques of animating 2D and 3D objects. We
will also introduce Cinder's features in this field such as Timeline and math functions.

Chapter 10, Interacting with the User, creates the graphical objects that react to the user
using both mouse and touch interaction. It also teaches us how to create simple graphical
interfaces that have their own events for greater flexibility, and integrate with the popular
physics library Bullet Physics.

Chapter 11, Sensing and Tracking Input from the Camera, explains how to receive and
process data from input devices such as a camera or a Microsoft Kinect sensor.

Chapter 12, Using Audio Input and Output, is about generating sound with the examples,
where sound is generated on object's collision in physics simulation. We will present examples
of visualizing sound with audio reactive animations.

Appendix, Integrating with Bullet Physics, will help us learn how to integrate Bullet Physics
library with Cinder.

This chapter is available as a downloadable file at: http://www.packtpub.com/sites/
default/files/downloads/Integrating_with_Bullet_Physics.pdf

What you need for this book
Mac OS X or Windows operating system. Mac users will need XCode, which is available free
from Apple and iOS SDK, if they wish to use iOS recipes. Windows users will need Visual C++
2010. Express Edition is available for free. Windows users will also need Windows Platform
SDK installed. While writing this book the latest release of Cinder was 0.8.4.

Preface

3

Who this book is for
This book is for C++ developers who want to start or already began using Cinder for building
creative applications. This book is easy to follow for developers who use other creative coding
frameworks and want to try Cinder.

The reader is expected to have basic knowledge of C++ programming language.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the use of
the include directive."

A block of code is set as follows:

gl::setMatricesWindow(getWindowWidth(), getWindowHeight());
gl::color(ColorA(0.f,0.f,0.f, 0.05f));
gl::drawSolidRect(getWindowBounds());
gl::color(ColorA(1.f,1.f,1.f, 1.f));
mParticleSystem.draw();

Any command-line input or output is written as follows:

$./fullbuild.sh

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "clicking the Next button
moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

Preface

4

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Getting Started

In this chapter we will cover:

ff Creating a project for a basic application

ff Creating a project for a screensaver application

ff Creating a project for an iOS touch application

ff Understanding the basic structure of an application

ff Responding to mouse input

ff Responding to key input

ff Responding to touch input

ff Accessing the files dropped onto the application window

ff Adjusting a scene after resizing the window

ff Using resources on Windows

ff Using resources on OSX and iOS

ff Using assets

Introduction
In this chapter we'll learn the fundamentals of creating applications using Cinder.

We'll start by creating different types of applications on the different platforms that Cinder
supports using a powerful tool called TinderBox.

We'll cover the basic structure of an application and see how to respond to user input events.

Finally, we will learn how to use resources on Windows and Mac.

Getting Started

6

Creating a project for a basic application
In this recipe, we'll learn how to create a project for a basic desktop application for Windows
and Mac OSX.

Getting ready
Projects can be created using a powerful tool called TinderBox. TinderBox comes bundled in
your Cinder download and contains templates for creating projects for different applications
for both Microsoft Visual C++ 2010 and OSX Xcode.

To find Tinderbox, go to your Cinder folder, inside which you will find a folder named tools
with, TinderBox application in it.

The first time you open TinderBox, you'll be asked to specify the folder where you installed
Cinder. You'll need to do this only the first time you open TinderBox. If you need to redefine
the location of Cinder installation, you can do so by selecting the File menu and then
Preferences on Windows or selecting the TinderBox menu and then Preferences on OS X.

How to do it…
We'll use TinderBox, a utility tool that comes bundled with Cinder that allows for the easy
creation of projects. Perform the following steps to create a project for a basic application:

1.	 Open TinderBox and choose your project's location. In the main TinderBox
window select BasicApp as Target and OpenGL as Template, as shown in the
following screenshot:

Chapter 1

7

2.	 Choose your project's location. The Naming Prefix and Project Name fields will
default to the project's name, as shown in the following screenshot:

3.	 Select the compilers you want to use for your project, either Microsoft Visual C++
2010 and/or OS X Xcode.

4.	 Click on the Create button and TinderBox will show you the folder where your new
project is located. TinderBox will remain open; you can close it now.

How it works...
TinderBox will create the selected projects for the chosen platforms (Visual C++ 2010 and
OS X Xcode) and create references to the compiled Cinder library. It will also create the
application's class as a subclass of ci::app::AppBasic. It will also create some sample
code with a basic example to help you get started.

There's more...
Your project name and naming prefix will be, by default, the name of the folder in which the
project is being created. You can edit this if you want, but always make sure both Project
Name and Naming Prefix fields do not have spaces as you might get errors.

The naming prefix will be used to name your application's class by adding the App suffix. For
example, if you set your Naming Prefix field as MyCinderTest, your application's class will
be MyCinderTestApp.

www.allitebooks.com

http://www.allitebooks.org

Getting Started

8

Creating a project for a screensaver
application

In this recipe, we will learn how to create a project for a desktop screensaver for both
Windows and Mac OS X.

Getting ready
To get ready with TinderBox, please refer to the Getting ready section of the previous
Creating a project for a basic application recipe.

How to do it…
We'll use TinderBox, a utility tool that comes bundled with Cinder that allows easy creation
of projects. Perform the following steps to create a project for a screensaver application:

1.	 Open TinderBox and choose your project's location. In the main TinderBox
window select Screensaver as Target and OpenGL as Template, as shown in
the following screenshot:

2.	 Select the compilers you want to create a project to, either Microsoft Visual C++
2010 and/or OS X Xcode.

3.	 Click on Create and TinderBox will direct you to the folder where your project
was created.

How it works...
TinderBox will create both a project for you and link it against the compiled
Cinder library. It will also create the application's class and make it a subclass of
ci::app::AppScreenSaver, which is the class with all the basic functionality for a
screensaver application. It will also create some sample code with a basic example to
help you get started.

Chapter 1

9

Creating a project for an iOS touch
application

In this recipe, we'll learn how to create a project for an application that runs on iOS devices
such as iPhone and iPad.

Getting ready
To get ready with TinderBox, please refer to the Getting ready section of the Creating
a project for a basic application recipe.

Please note that the iOS touch application will only work on iOS devices such as iPhones
and iPads, and that the projects created with TinderBox will be for OSX Xcode only.

How to do it…
We'll use TinderBox, a utility tool that comes bundled with Cinder that allows easy creation
of projects. Perform the following steps to create a project for an iOS touch application:

1.	 Open TinderBox and choose your project's location. In the main TinderBox
window select Cocoa Touch as Target and Simple as Template, as shown in
the following screenshot:

2.	 Select the compilers you want to create a project to, either Microsoft Visual C++
2010 and/or OS X Xcode.

3.	 Click on Create and TinderBox will direct you to the folder where your project
was created.

How it works...
TinderBox will create an OS X Xcode project and create the references to link against
the compiled Cinder library. It will also create the application's class as a subclass of
ci::app::AppCocoaTouch, which is the class with all the basic functionality for a
screensaver application. It will also create some sample code with a basic example to
help you get started.

This application is built on top of Apple's Cocoa Touch framework to create iOS applications.

Getting Started

10

Understanding the basic structure of an
application

Your application's class can have several methods that will be called at different points during
the execution of the program. The following table lists these methods:

Method Usage

prepareSettings This method is called once at the very beginning of the
application, before creating the renderer. Here, we may
define several parameters of the application before
the application gets initialized, such as the frame rate
or the size of the window. If none are specified, the
application will initialize with default values.

setup This method is called once at the beginning of the
application lifecycle. Here, you initialize all members
and prepare the application for running.

update This method is called in a loop during the application's
runtime before the draw method. It is used to animate
and update the states of the application's components.
Even though you may update them during the draw
method, it is recommended you keep the update and
drawing routines separate as a matter of organization.

draw This method is called in a loop during the application's
runtime after the update. All drawing code should be
placed here.

shutdown This method is called just before the application exits.
Use it to do any necessary cleanup such as freeing
memory and allocated resources or shutting down
hardware devices.

To execute our code, we must overwrite these methods with our own code.

Getting ready
It is not mandatory to override all of the preceding methods; you can use the ones that your
application requires specifically. For example, if you do not want to do any drawing, you may
omit the draw method.

In this recipe and for the sake of learning, we will implement all of them.

Chapter 1

11

Declare the following methods in your class declaration:

Void prepareSettings(Settings *settings);
Void setup();
Void update();
Void draw();
Void shutdown();

How to do it…
We will implement several methods that make up the basic structure of an application.
Perform the following steps to do so:

1.	 Implement the prepareSettings method. Here we can define, for example, the
size of the window, its title, and the frame rate:
void MyApp::prepareSettings(Settings *settings){
 settings->setSize(1024, 768);
 settings->setTitle("My Application Window");
 settings->setFrameRate(60);
}

2.	 Implement the setup method. Here we should initialize all members of the
application's class. For example, to initialize capturing from a webcam we would
declare the following members:
int mCamWidth;
int mCamHeight;
Capture mCapture;
And initialize them in the setup
void Myapp::setup(){
 mCamWidth = 640;
 mCamHeight = 480;
 mCapture = Capture(mCamWidth, mCamHeight);
}

3.	 Implement the update method. As an example, we will print the current frame count
to the console:
void MyApp::update(){
 console() < < geElapsedFrames() < < std::endl;
}

Getting Started

12

4.	 Implement the draw method with all the drawing commands. Here we clear the
background with black and draw a red circle:
void MyApp::draw(){
 gl::clear(Color::black());
 gl::color(Color(1.0f, 0.0f, 0.0f));
 gl::drawSolidCircle(Vec2f(300.0f, 300.0f), 100.0f);
}

5.	 Implement the shutdown method. This method should take code for doing cleanup,
for example, to shut down threads or save the state of your application.

6.	 Here's a sample code for saving some parameters in an XML format:

void MyApp::shutdown(){
 XmlTree doc = XmlTree::createDoc();
 XmlTree settings = xmlTree("Settings", "");
 //add some attributes to the settings node
 doc.push_back(settings);
 doc.write(writeFile("Settings.xml"));
}

How it works...
Our application's superclass implements the preceding methods as virtual empty methods.

When the application runs, these methods are called, calling our own code we implemented
or the parent class' empty method if we didn't.

In step 1 we defined several application parameters in the prepareSettings method. It
is not recommended to use the setup method to initialize these parameters, as it means
that the renderer has to be initialized with the default values and then readjusted during the
setup. The result is extra initialization time.

There's more...
There are other callbacks that respond to user input such as mouse and keyboard events,
resizing of the window, and dragging files onto the application window. These are described in
more detail in the Responding to mouse input, Responding to key input, Responding to touch
input, Accessing files dragged on the application window, and Adjusting a scene after resizing
the window recipes.

See also
To learn how to create a basic app with TinderBox, read the Creating a project for a basic
application recipe.

Chapter 1

13

Responding to mouse input
An application can respond to mouse interaction through several event handlers that are
called depending on the action being performed.

The existing handlers that respond to mouse interaction are listed in the following table:

Method Usage
mouseDown This is called when the user presses a mouse button
mouseUp This is called when the user releases a mouse button
mouseWheel This is called when the user rotates the mouse wheel
mouseMove This is called when the mouse is moved without any

button pressed
mouseDrag This is called when the mouse is moved with any

button pressed

It is not mandatory to implement all of the preceding methods; you can implement only the
ones required by your application.

Getting ready
Implement the necessary event handlers according to the mouse events you need to respond
to. For example, to create an application that responds to all available mouse events, you
must implement the following code inside your main class declaration:

void mouseDown(MouseEvent event);
void mouseUp(MouseEvent event);
void mouseWheel(MouseEvent event);
void mouseMove(MouseEvent event);
void mouseDrag(MouseEvent event);

The MouseEvent object passed as a parameter contains information about the mouse event.

How to do it…
We will learn how to work with the ci::app::MouseEvent class to respond to mouse
events. Perform the following steps to do so:

1.	 To get the position where the event has happened, in terms of screen coordinates,
we can type in the following line of code:
Vec2i mousePos = event.getPos();

Getting Started

14

Or we can get the separate x and y coordinates by calling the getX and getY methods:

int mouseX = event.getX();
int mouseY = event.getY();

2.	 The MouseEvent object also lets us know which mouse button triggered the event
by calling the isLeft, isMiddle, or isRight methods. They return a bool value
indicating if it was the left, middle, or right button, respectively.
bool leftButton = event.isLeft();
bool rightButton = event.isRight();
bool middleButton = event.isMiddle();

3.	 To know if the event was triggered by pressing a mouse button, we can call the
isLeftDown, isRightDown, and isMiddleDown methods that return true
depending on whether the left, right, or middle buttons of the mouse were pressed.
bool leftDown = event.isLeftDown();
bool rightDown = event.isRightDown();
bool middleDown = event.isMiddleDown();

4.	 The getWheelIncrement method returns a float value with the movement
increment of the mouse wheel.
float wheelIncrement = event.getWheelIncrement();

5.	 It is also possible to know if a special key was being pressed during the event. The
isShiftDown method returns true if the Shift key was pressed, the isAltDown
method returns true if the Alt key was pressed, isControlDown returns true if
the control key was pressed, and isMetaDown returns true if the Windows key was
pressed on Windows or the option key was pressed on OS X, isAccelDown returns
true if the Ctrl key was pressed on Windows or the command key was pressed on
OS X.

How it works
A Cinder application responds internally to the system's native mouse events. It then creates a
ci::app::MouseEvent object using the native information and calls the necessary mouse
event handlers of our application's class.

There's more...
It is also possible to access the native modifier mask by calling the getNativeModifiers
method. These are platform-specific values that Cinder uses internally and may be of use for
advanced uses.

Chapter 1

15

Responding to key input
A Cinder application can respond to key events through several callbacks.

The available callbacks that get called by keyboard interaction are listed in the following table:

Method Usage

keyDown This is called when the user first presses a key
and called repeatedly if a key is kept pressed.

keyUp This is called when a key is released.

Both these methods receive a ci::app::KeyEvent object as a parameter with information
about the event such as the key code being pressed or if any special key (such as Shift or
control) is being pressed.

It is not mandatory to implement all of the preceding key event handlers; you can implement
only the ones that your application requires.

Getting ready
Implement the necessary event handlers according to what key events you need to respond
to. For example, to create an application that responds to both key down and key up events,
you must declare the following methods:

void keyDown(KeyEvent event);
void keyUp(KeyEvent event);

The ci::app::KeyEvent parameter contains information about the key event.

How to do it…
We will learn how to work with the ci::app::KeyEvent class to learn how to understand
key events. Perform the following steps to do so:

1.	 To get the ASCII code of the character that triggered the key event, you can type in the
following line of code:
char character = event.getChar();

2.	 To respond to special keys that do not map to the ASCII character table, we must call
the getCode method that retrieves an int value that can be mapped to a character
table in the ci::app::KeyEvent class. To test, for example, if the key event was
triggered by the Esc key you can type in the following line of code:
bool escPressed = event.getCode() == KeyEvent::KEY_ESCAPE;

escPressed will be true if the escape key triggered the event, or false otherwise.

Getting Started

16

3.	 The ci::app::KeyEvent parameter also has information about modifier keys
that were pressed during the event. The isShiftDown method returns true if
the Shift key was pressed, isAltDown returns true if the Alt key was pressed,
isControlDown returns true if the control key was pressed, isMetaDown returns
true if the Windows key was pressed on Windows or the command key was pressed
on OS X, and isAccelDown returns true if the Ctrl key was pressed on Windows or
the command key was pressed on OS X.

How it works…
A Cinder application responds internally to the system's native key events. When receiving a
native key event, it creates a ci::app::KeyEvent object based on the native information
and calls the correspondent callback on our application's class.

There's more...
It is also possible to access the native key code by calling the getNativeKeyCode method.
This method returns an int value with the native, platform-specific code of the key. It can be
important for advanced uses.

Responding to touch input
A Cinder application can receive several touch events.

The available touch event handlers that get called by touch interaction are listed in the
following table:

Method Usage

touchesBegan This is called when new touches are detected
touchesMoved This is called when existing touches move
touchesEnded This is called when existing touches are removed

All of the preceding methods receive a ci::app::TouchEvent object as a parameter
with a std::vector of ci::app::TouchEvent::Touch objects with information
about each touch detected. Since many devices can detect and respond to several touches
simultaneously, it is possible and common for a touch event to contain several touches.

It is not mandatory to implement all of the preceding event handlers; you can use the ones
your application requires specifically.

Cinder applications can respond to touch events on any touch-enabled device running
Windows 7, OS X, or iOS.

Chapter 1

17

Getting ready
Implement the necessary touch event handlers according to the touch events you want
to respond to. For example, to respond to all available touch events (touches added,
touches moved, and touches removed), you would need to declare and implement the
following methods:

void touchesBegan(TouchEvent event);
void touchesMoved(TouchEvent event);
void touchesEnded(TouchEvent event);

How to do it…
We will learn how to work with the ci::app::TouchEvent class to understand touch
events. Perform the following steps to do so:

1.	 To access the list of touches, you can type in the following line of code:
const std::vector<TouchEvent::Touch>& touches = event.
getTouches();

Iterate through the container to access each individual element.

for(std::vector<TouchEvent::Touch>::const_iterator it = touches.
begin(); it != touches.end(); ++it){
 const TouchEvent::Touch& touch = *it;
 //do something with the touch object
}

2.	 You can get the position of a touch by calling the getPos method that returns a
Vec2f value with its position or using the getX and getY methods to receive the x
and y coordinates separately, for example:
for(std::vector<TouchEvent::Touch>::const_iterator it = touches.
begin(); it != touches.end(); ++it){
 const TouchEvent::Touch& touch = *it;
 vec2f pos = touch.getPos();
 float x = touch.getX();
 float y = touch.getY();
}

3.	 The getId method returns a uint32_t value with a unique ID for the touch object.
This ID is persistent throughout the lifecycle of the touch, which means you can use it
to keep track of a specific touch as you access it on the different touch events.

For example, to make an application where we draw lines using our fingers,
we can create std::map that associates each line, in the form of a
ci::PolyLine<Vec2f> object, with a uint32_t key with the unique ID of a touch.

www.allitebooks.com

http://www.allitebooks.org

Getting Started

18

We need to include the file with std::map and PolyLine to our project by adding
the following code snippet to the beginning of the source file:
#include "cinder/polyline.h"
#include <map>

4.	 We can now declare the container:
std::map< uint32_t, PolyLine<Vec2f> > mLines;

5.	 In the touchesBegan method we create a new line for each detected touch and
map it to the unique ID of each touch:
const std::vector<TouchEvent::Touch>& touches = event.
getTouches();
for(std::vector<TouchEvent::Touch>::const_iterator it = touches.
begin(); it != touches.end(); ++it){
 const TouchEvent::Touch& touch = *it;
 mLines[touch.getId()] = PolyLine<Vec2f>();
}

6.	 In the touchesMoved method, we add the position of each touch to its
corresponding line:
const std::vector<TouchEvent::Touch>& touches = event.
getTouches();
for(std::vector<TouchEvent::Touch>::const_iterator it = touches.
begin(); it != touches.end(); ++it){
 const TouchEvent::Touch& touch = *it;
 mLines[touch.getId()].push_back(touch.getPos());
}

7.	 In the touchesEnded method, we remove the line that corresponds to a touch
being removed:
const std::vector<TouchEvent::Touch>& touches = event.
getTouches();
for(std::vector<TouchEvent::Touch>::const_iterator it = touches.
begin(); it != touches.end(); ++it){
 const TouchEvent::Touch& touch = *it;
 mLines.erase(touch.getId());
}

8.	 Finally, the lines can be drawn. Here we clear the background with black and draw
the lines with in white. The following is the implementation of the draw method:

gl::clear(Color::black());
gl::color(Color::white());
for(std::map<uint32_t, PolyLine<Vec2f> >::iterator it = mLines.
begin(); it != mLines.end(); ++it){
 gl::draw(it->second);
}

Chapter 1

19

The following is a screenshot of our app running after drawing some lines:

How it works…
A Cinder application responds internally to the system calls for any touch event. It will then
create a ci::app::TouchEvent object with information about the event and call the
corresponding event handler in our application's class. The way to respond to touch events
becomes uniform across the Windows and Mac platforms.

The ci::app::TouchEvent class contains only one accessor method that returns a const
reference to a std::vector<TouchEvent::Touch> container. This container has one
ci::app::TouchEvent::Touch object for each detected touch and contains information
about the touch.

The ci::app::TouchEvent::Touch object contains information about the touch including
position and previous position, unique ID, the time stamp, and a pointer to the native event
object which maps to UITouch on Cocoa Touch and TOUCHPOINT on Windows 7.

Getting Started

20

There's more...
At any time, it is also possible to get a container with all active touches by
calling the getActiveTouches method. It returns a const reference to a
std::vector<TouchEvent::Touch> container. It offers flexibility when
working with touch applications as it can be accessed outside the touch
event methods.

For example, if you want to draw a solid red circle around each active touch,
you can add the following code snippet to your draw method:

const std::vector<TouchEvent::Touch>&activeTouches =
getActiveTouches();
gl::color(Color(1.0f, 0.0f, 0.0f));
for(std::vector<TouchEvent::Touch>::const_iterator it =
activeTouches.begin(); it != activeTouches.end(); ++it){
 const TouchEvent::Touch& touch = *it;
gl::drawSolidCircle(touch.getPos(), 10.0f);
}

Accessing files dropped onto the application
window

Cinder applications can respond to files dropped onto the application window through
the callback, fileDrop. This method takes a ci::app::FileDropEvent object as
a parameter with information about the event.

Getting ready
Your application must implement a fileDrop method which takes a
ci::app::FileDropEvent object as a parameter.

Add the following method to the application's class declaration:

void fileDrop(FileDropEvent event);

Chapter 1

21

How to do it…
We will learn how to work with the ci::app::FileDropEvent object to work with file drop
events. Perform the following steps to do so:

1.	 In the method implementation you can use the ci::app::FileDropEvent
parameter to access the list of files dropped onto the application by calling the
getFiles method. This method returns a conststd::vector container with
fs::path objects:
const vector<fs::path >& files = event.getFiles();

2.	 The position where the files were dropped onto the window can be accessed through
the following callback methods:

�� To get a ci::Vec2i object with the position of the files dropped, type in the
following line of code:
Vec2i dropPosition = event.getPos();

�� To get the x and y coordinates separately, you can use the getX and getY
methods, for example:

int pOS X = event.getX();
int posY = event.getY();

3.	 You can find the number of dropped files by using the getNumFiles method:
int numFiles = event.getNumFiles();

4.	 To access a specific file, if you already know its index, you can use the getFile
method and pass the index as a parameter.

For example, to access the file with an index of 2, you can use the following line
of code:

const fs::path& file = event.getFile(2);

How it works…
A Cinder application will respond to the system's native event for file drops. It will then create a
ci::app::FileDropEvent object with information about the event and call the fileDrop
callback in our application. This way Cinder creates a uniform way of responding to file drop
events across the Windows and OS X platforms.

Getting Started

22

There's more…
Cinder uses ci::fs::path objects to define paths. These are typedef instances
of boost::filesystem::path objects and allow for much greater flexibility when
working with paths. To learn more about the fs::path objects, please refer to the
boost::filesystem library reference, available at http://www.boost.org/doc/
libs/1_50_0/libs/filesystem/doc/index.htm.

Adjusting a scene after resizing the window
Cinder applications can respond to resizing the window by implementing the resize event.
This method takes a ci::app::ResizeEvent parameter with information about the event.

Getting ready
If your application doesn't have a resize method, implement one. In the application's class
declaration, add the following line of code:

void resize(ResizeEvent event);

In the method's implementation, you can use the ResizeEvent parameter to find
information about the window's new size and format.

How to do it…
We will learn how to work with the ci::app::ResizeEvent parameter to respond to
window resize events. Perform the following steps to do so:

1.	 To find the new size of the window, you can use the getSize method which returns
a ci::Vec2iwith object, the window's width as the x component, and the height as
the y component.
Vec2i windowSize = event.getSize();

The getWidth and getHeight methods both return int values with the window's
width and height respectively, for example:

int width = event.getWidth();
int height = event.getHeight();

2.	 The getAspectRatio method returns a float value with the aspect ratio of the
window, which is the ratio between its width and height:
float ratio = event.getAspectRatio();

Chapter 1

23

3.	 Any element on screen that needs adjusting must use the new window size to
recalculate its properties. For example, to have a rectangle that is drawn at the
center of the window with a 20 pixel margin on all sides, we must first declare a
ci::Rectf object in the class declaration:
Rect frect;

In the setup we set its properties so that it has a 20 pixel margin on all sides from
the window:

rect.x1 = 20.0f;
rect.y1 = 20.0f;
rect.x2 = getWindowWidth() – 20.0f;
rect.y2 = getWindowHeight() – 20.0f;

4.	 To draw the rectangle with a red color, add the following code snippet to the
draw method:
gl::color(Color(1.0f, 0.0f, 0.0f));
gl::drawSolidRect(rect);

5.	 In the resize method, we must recalculate the rectangle properties so that it
resizes itself to maintain the 20 pixel margin on all sides of the window:
rect.x1 = 20.0f;
rect.y1 = 20.0f;
rect.x2 = event.getWidth() – 20.0f;
rect.y2 = event.getHeight() – 20.0f;

6.	 Run the application and resize the window. The rectangle will maintain its relative
size and position according to the window size.

Getting Started

24

How it works…
A Cinder application responds internally to the system's window resize events. It will then
create the ci::app::ResizeEvent object and call the resize method on our application's
class. This way Cinder creates a uniform way of dealing with resize events across the Windows
and Mac platforms.

Using resources on Windows
It is common for Windows applications to use external files either to load images, play audio
or video, or to load or save settings on XML files.

Resources are external files to your application that are embedded in the application's
executable file. Resource files are hidden from the user to avoid alterations.

Getting ready
Resources should be stored in a folder named resources in your project folder. If this folder
does not exist, create it.

Resources on Windows must be referenced in a file called Resources.rc. This file should be
placed next to the Visual C++ solution in the vc10 folder. If this file does not exist, you must
create it as an empty file. If the resources.rs file is not included already in your project
solution, you must add it by right-clicking on the Resources filter and choosing Add and then
ExistingItem. Navigate to the file and select it. As a convention, this file should be kept in the
same folder as the project solution.

How to do it…
We will use Visual C++ 2010 to add resources to our applications on Windows. Perform the
following steps to do so:

1.	 Open the Visual C++ solution and open the resources.h file inside the Header
Files filter.

2.	 Add the #pragma once macro to your file to prevent it from being included more
than once in your project and include the CinderResources.h file.
#pragma once
#include "cinder/CinderResources.h"

Chapter 1

25

3.	 On Windows, each resource must have a unique ID number. As a convention, the
IDs are defined as sequential numbers starting from 128, but you can use other
IDs if it suits you better. Make sure to never use the same ID twice. You must also
define a type string. The type string is used to identify resources of the same type,
for example, the string IMAGE may be used when declaring image resources,
VIDEO for declaring video resources, and so on.

4.	 To simplify writing multiplatform code, Cinder has a macro for declaring resources
that can be used on both Windows and Mac.

For example, to declare the resource of an image file named image.png, we would
type in the following line of code:
#define RES_IMAGE CINDER_RESOURCE(../resources/, image.png, 128,
IMAGE)

The first parameter of the CINDER_RESOURCE macro is the relative path to the
folder where the resource file is, in this case the default resources folder.

The second parameter is the name of the file, and after that comes the unique ID of
this resource, and finally its type string.

5.	 Now we need to add our resources macro to the resources.rs file, as follows:
#include "..\include\Resources.h"
RES_IMAGE

6.	 This resource is now ready to be used in our application. To load this image into
ci::gl::Texture we simply include the Texture.h file in our application's
source code:
#include "cinder/gl/Texture.h"

7.	 We can now declare the texture:
gl::Texture mImage;

8.	 In the setup, we create the texture by loading the resource:
mImage = gl::Texture(loadImage(loadResource(RES_IMAGE));

9.	 The texture is now ready to be drawn on screen. To draw the image at position
(20, 20), we will type in the following line of code inside the draw method:
gl::draw(mImage, Vec2f(20.0f, 20.0f));

Getting Started

26

How it works...
The resources.rc file is used by a resource compiler to embed resources into the
executable file as binary data.

There's more...
Cinder allows writing code to use resources that is coherent across all supported platforms,
but the way resources are handled on Windows and OS X/iOS is slightly different. To learn
how to use resources on a Mac, please read the Using resources on iOS and OS X recipe.

Using resources on iOS and OS X
It is common for Windows applications to use external files either to load images, play audio
or video, or to load or save settings on XML files.

Resources are external files to your application that are included in the applications bundle.
Resource files are hidden from the user to avoid alterations.

Cinder allows writing code to use resources that is equal when writing Windows or Mac
applications, but the way resources are handled is slightly different. To learn how to use
resources on Windows, please read the Using resources on Windows recipe.

Getting ready
Resources should be stored in a folder named resources in your project folder. If this
folder does not exist, create it.

How to do it…
We will use Xcode to add resources to our application on iOS and OS X. Perform the following
steps to do so:

1.	 Place any resource file you wish to use in the resources folder.

2.	 Add these files to your project by right-clicking on the Resources filter in your Xcode
project and selecting Add and then ExistingFiles, navigate to the resources folder,
and select the resource files you wish to add.

3.	 To load a resource in your code, you use the loadResource method and pass the
name of the resource file. For example, to load an image named image.png, you
should first create the gl::Texture member in the class declaration:
gl::Texture mImage;

Chapter 1

27

4.	 In the setup method, we initialize the texture with the following resource:
mImage = loadImage(loadResource("image.png"));

5.	 The texture is now ready to be drawn in the window. To draw it at position (20, 20),
type in the following line of code inside the draw method:
gl::draw(mImage, Vec2f(20.0f, 20.0f));

How it works...
On iOS and OS X, applications are actually folders that contain all the necessary files to run
the application, such as the Unix executable file, the frameworks used, and the resources.
You can access the content of these folders by clicking on any Mac application and selecting
Show Package Contents.

When you add resources to the resources folder in your Xcode project, these files are copied
during the build stage to the resources folder of your application bundle.

There's more...
You can also load resources using the same loadResource method that is used in Windows
applications. This is very useful when writing cross-platform applications so that no changes
are necessary in your code.

You should create the resource macro in the Resources.h file, and add the unique
resource ID and its type string. For example, to load the image image.png, you can type
in the following code snippet:

#pragma once
#include "cinder/CinderResources.h"
#define RES_IMAGE CINDER_RESOURCE(../resources/, image.png, 128,
IMAGE)

And this is what the Resources.rc file should look like:

#include "..\include\Resources.h"

RES_IMAGE

Using the preceding example to load an image, the only difference is that we would load the
texture with the following line of code:

mImage = loadImage(loadResource(RES_IMAGE));

The resource unique ID and type string will be ignored in Mac applications, but adding them
allows creating code that is cross-platform.

www.allitebooks.com

http://www.allitebooks.org

Getting Started

28

Using assets
In this recipe, we will learn how we can load and use assets.

Getting ready
As an example for this recipe, we will load and display an asset image.

Place an image file inside the assets folder in your project directory and name it image.png.

Include the following files at the top of your source code:

#include "cinder/gl/Texture.h"
#include "cinder/ImageIO.h"

Also add the following useful using statements:

using namespace ci;
using namespace ci::app;
using namespace std;

How to do it…
As an example, we will learn how we can load and display an image asset. Perform the
following steps to do so:

1.	 Declare a ci::gl::Texture object:
gl::Texture image;

2.	 In the setup method let's load the image asset. We will use a try/catch block in if
it is not possible to load the asset.
 try{
 image = loadImage(loadAsset("image.png"));
 } catch(...){
 console() << "asset not found" << endl;
 }

3.	 In the draw method we will draw the texture. We will use an if statement to check if
the texture has been successfully initialized:
if(image){
 gl::draw(image, getWindowBounds());
 }

Chapter 1

29

How it works…
The first application uses an asset Cinder, which will try to find its default assets folder. It
will begin by searching the executable or application bundle folder, depending on the platform,
and continue searching its parent's folder up to five levels. This is done to accommodate for
different project setups.

There's more…
You can add an additional assets folder using the addAssetDirectory method, which
takes a ci::fs::path object as a parameter. Every time Cinder searches for an asset, it
will first look in its default asset folder and then in every folder the user may have added.

You can also create subfolders inside the assets folder, for example, if our image was
inside a subfolder named My Images, we would type in the following code snippet in the
setup method:

try{
 image = loadImage(loadAsset("My Images/image.png"));
}catch(...){
 console() << "asset not found" << endl;
 }

It is also possible to know the path where a specific folder lies. To do this, use the
getAssetPath method, which takes a ci::fs::path object as a parameter with
the name of the file.

2
Preparing for
Development

In this chapter, we will cover:

ff Setting up a GUI for tweaking parameters

ff Saving and loading configurations

ff Making a snapshot of the current parameter state

ff Using MayaCamUI

ff Using 3D space guides

ff Communicating with other software

ff Preparing your application for iOS

Introduction
In this chapter, we will introduce several simple recipes that can be very useful during the
development process.

Setting up a GUI for tweaking parameters
Graphical User Interface (GUI) is often required for controlling and tuning your Cinder
application. In many cases, you spend more time tweaking the application parameters to
achieve the desired result than writing the code. It is true especially when you are working
on some generative graphics.

Preparing for Development

32

Cinder provides a convenient and easy-to-use GUI via the InterfaceGl class.

Getting ready
To make the InterfaceGl class available in your Cinder application, all you have to do is
include one header file.

#include "cinder/params/Params.h"

How to do it…
Follow the steps given here to add a GUI to your Cinder application.

1.	 Let's start with preparing different types of variables within our main class, which
we will be manipulating using the GUI.
float mObjSize;
Quatf mObjOrientation;
Vec3f mLightDirection;
ColorA mColor;

2.	 Next, declare the InterfaceGl class member like this:
params::InterfaceGl mParams;

Chapter 2

33

3.	 Now we move to the setup method and initialize our GUI window passing
"Parameters" as the window caption and size to the InterfaceGl constructor:
mParams = params::InterfaceGl("Parameters", Vec2i(200,400));

4.	 And now we can add and configure controls for our variables:
mParams.addParam("Cube Size", &mObjSize, "min=0.1 max=20.5
step=0.5 keyIncr=z keyDecr=Z");
mParams.addParam("Cube Rotation", &mObjOrientation); // Quatf
type
mParams.addParam("Cube Color", &mColor, ""); // ColorA
mParams.addSeparator(); // add horizontal line separating controls
mParams.addParam("Light Direction", &mLightDirection, ""); //
Vec3f
mParams.addParam("String ", &mString, ""); // string

Take a look at the addParam method and its parameters. The first parameter is just
the field caption. The second parameter is a pointer to the variable where the value
is stored. There are a bunch of supported variable types, such as bool, float,
double, int, Vec3f, Quatf, Color, ColorA, and std::string.

The possible variables types and their interface representations are tabulated in the
following table:

Type Representation

std:string

Numerical: int,
float, double

bool

ci::Vec3f

Preparing for Development

34

Type Representation

ci::Quatf

ci::Color

ci::ColorA

Enumerated parameter

The third parameter defines the control options. In the following table, you can
find some commonly used options and their short explanations:

Name Explanation

min The minimum possible value of a numeric variable

max The maximum possible value of a numeric variable

step Defines the number of significant digits printed after
the period for floating point variables

key Keyboard shortcut for calling button callback

keyIncr Keyboard shortcut for incrementing the value

Chapter 2

35

Name Explanation

keyDecr Keyboard shortcut for decrementing the value

readonly Setting the value to true makes a variable read-only
in GUI

precision Defines the number of significant digits printed after the
period for floating point variables

You can find the complete documentation of the available options
on the AntTweakBar page at the following address: http://
anttweakbar.sourceforge.net/doc/tools:anttweakb
ar:varparamsyntax.

5.	 The last thing to do is invoke the InterfaceGl::draw() method. We will do this
at the end of the draw method in our main class by typing the following code line:

params::InterfaceGl::draw();

How it works...
In the setup method we will set up the GUI window and then add controls, setting up a name
in the first parameter of the addParam method. In a second parameter, we are pointing to the
variable we want to link the GUI element to. Whenever we change values through the GUI, the
linked variable will be updated.

There's more...
There are a few more options for InterfaceGl, if you need more control over built-in GUI
mechanism, please refer to the AntTweakBar documentation which you can find on the
project page mentioned in the See also section of this recipe.

Buttons
You can also add buttons to the InterfaceGl (CIT) panel with callbacks to some functions.
For example:

mParams.addButton("Start", std::bind(&MainApp::start, this));

Clicking on the Start button in the GUI fires the start method of the MainApp class.

Preparing for Development

36

Panel position
A convenient way to control the position of the GUI panel is through the usage of the
AntTweekBar facility. You have to include an additional header file:

#include "AntTweakBar.h"

And now you can change the position of the GUI panel with this code line:

TwDefine("Parameters position='100 200' ");

In this case, Parameters is the GUI panel name and the position option takes x and y
as values.

See also
There are some good looking GUI libraries available as CinderBlocks. Cinder has an
extensions system called blocks. The idea behind CinderBlocks is to provide easy-to-use
integration with many third-party libraries. You can find how to add examples of CinderBlocks
to your project in the Communicating with other software recipe.

SimpleGUI
An alternative GUI developed by Marcin Ignac as a CinderBlock can be found at
https://github.com/vorg/MowaLibs/tree/master/SimpleGUI.

ciUI
You can check out an alternative user interface developed by Reza Ali as a CinderBlock at
http://www.syedrezaali.com/blog/?p=2366.

AntTweakBar
InterfaceGl in Cinder is built on top of AntTweakBar; you can find its documentation at
http://www.antisphere.com/Wiki/tools:anttweakbar.

Saving and loading configurations
Many applications that you will develop operate on input parameters set by the user. For
example, it could be the color or position of some graphical elements or parameters used to
set up communication with other applications. Reading configurations from external files is
necessary for your applications. We will use a built-in Cinder support for reading and writing
XML files to implement the configuration persistence mechanism.

http://www.antisphere.com/Wiki/tools:anttweakbar
http://www.antisphere.com/Wiki/tools:anttweakbar

Chapter 2

37

Getting ready
Create two configurable variables in the main class: the IP address and the port of the host
we are communicating with.

string mHostIP;
int mHostPort;

How to do it...
Now we will implement the loadConfig and saveConfig methods and use them to load
the configuration on application startup and save the changes while closing.

1.	 Include the two following additional headers:
#include "cinder/Utilities.h"
#include "cinder/Xml.h"

2.	 We will prepare two methods for loading and saving the XML configuration file.
void MainApp::loadConfig()
{
 try {
 XmlTree doc(loadFile(getAppPath() / fs::path("config.xml"))
);
 XmlTree &generalNode = doc.getChild("general");

 mHostIP = generalNode.getChild("hostIP").getValue();
 mHostPort = generalNode.getChild("hostPort").getValue<int>();

 } catch(Exception e) {
 console() << "ERROR: loading/reading configuration file." <<
endl;
 }
}

void MainApp::saveConfig()
{
 std::string beginXmlStr("<?xml version=\"1.0\"
encoding=\"UTF-8\" ?>");
 XmlTree doc(beginXmlStr);

 XmlTree generalNode;
 generalNode.setTag("general");
 generalNode.push_back(XmlTree("hostIP", mHostIP));
 generalNode.push_back(XmlTree("hostPort", toString(mHostPort))
);

www.allitebooks.com

http://www.allitebooks.org

Preparing for Development

38

 doc.push_back(generalNode);

 doc.write(writeFile(getAppPath() / fs::path("config.xml")));
}

3.	 Now in the setup method, inside our main class, we will put:
// setup default values
mHostIP = "127.0.0.1";
mHostPort = 1234;

loadConfig();

4.	 After this we will implement the shutdown method as follows:
void MainApp::shutdown()
{
 saveConfig();
}

5.	 And don't forget to declare the shutdown method in the main class:
void shutdown();

How it works...
The first two methods, loadConfig and saveConfig, are essential. The loadConfig
method tries to open the config.xml file and find the general node. Inside the general
node should be the hostIP and hostPort nodes. The values of these nodes will be
assigned to corresponding variables in our application: mHostIP and mHostPort.

The shutdown method is automatically triggered by Cinder just before the application closes,
so our configuration values will be stored in the XML file when we quit the application. Finally,
our configuration XML file looks like this:

<?xml version="1.0" encoding="UTF-8" ?>
<general>
<hostIP>127.0.0.1</hostIP>
<hostPort>1234</hostPort>
</general>

You can see clearly that the nodes are referring to application variables.

Chapter 2

39

See also
You can write your own configuration loader and saver or use the existing CinderBlock.

Cinder-Config
Cinder-Config is a small CinderBlock for creating configuration files along with InterfaceGl.

https://github.com/dawidgorny/Cinder-Config

Making a snapshot of the current parameter
state

We will implement a simple but useful mechanism for saving and loading the parameters'
states. The code used in the examples will be based on the previous recipes.

Getting ready
Let's say we have a variable that we are changing frequently. In this case, it will be the color
of some element we are drawing and the main class will have the following member variable:

ColorA mColor;

How to do it...
We will use a built-in XML parser and the fileDrop event handler.

1.	 We have to include the following additional headers:
#include "cinder/params/Params.h"
#include "cinder/ImageIo.h"
#include "cinder/Utilities.h"
#include "cinder/Xml.h"

2.	 First, we implement two methods for loading and saving parameters:
void MainApp::loadParameters(std::string filename)
{
 try {
 XmlTree doc(loadFile(fs::path(filename)));
 XmlTree &generalNode = doc.getChild("general");

 mColor.r = generalNode.getChild("ColorR").
getValue<float>();

Preparing for Development

40

 mColor.g = generalNode.getChild("ColorG").
getValue<float>();
 mColor.b = generalNode.getChild("ColorB").
getValue<float>();

 } catch(XmlTree::Exception e) {
 console() << "ERROR: loading/reading configuration file." <<
e.what() << std::endl;
 }
}

void MainApp::saveParameters(std::string filename)
{
 std::string beginXmlStr("<?xml version=\"1.0\"
encoding=\"UTF-8\" ?>");
 XmlTree doc(beginXmlStr);

 XmlTree generalNode;
 generalNode.setTag("general");
 generalNode.push_back(XmlTree("ColorR", toString(mColor.r)));
 generalNode.push_back(XmlTree("ColorG", toString(mColor.g)));
 generalNode.push_back(XmlTree("ColorB", toString(mColor.b)));

 doc.push_back(generalNode);

 doc.write(writeFile(getAppPath() / fs::path("..") /
fs::path(filename)));
}

3.	 Now we declare a class member. It will be the flag to trigger snapshot creation:
bool mMakeSnapshot;

4.	 Assign a value to it value inside the setup method:
mMakeSnapshot = false;

5.	 At the end of the draw method we put the following code, just before the
params::InterfaceGl::draw(); line:
if(mMakeSnapshot) {
 mMakeSnapshot = false;

 double timestamp = getElapsedSeconds();
 std::string timestampStr = toString(timestamp);

 writeImage(getAppPath() / fs::path("..") / fs::path("snapshot_"
+ timestampStr + ".png"), copyWindowSurface());
 saveParameters("snapshot_" + timestampStr + ".xml");
}

Chapter 2

41

6.	 We want to make a button in our InterfaceGl window:

mParams.addButton("Make snapshot", std::bind(
&MainApp::makeSnapshotClick, this));

As you can see we don't have the makeSnapshotClick method yet. It is simple
to implement:

void MainApp::makeSnapshotClick()
{
 mMakeSnapshot = true;
}

7.	 The last step will be adding the following method for drag-and-drop support:

void MainApp::fileDrop(FileDropEvent event)
{
 std::string filepath = event.getFile(event.getNumFiles() - 1
).generic_string();
 loadParameters(filepath);
}

How it works...
We have two methods for loading and storing the mColor values in an XML file. These
methods are loadParameters and saveParameters.

The code we put inside the draw method needs some explanation. We are waiting for
the mMakeSnapshot method to be set to true and then we are creating a timestamp
to avoid overwriting previous snapshots.The next two lines store the chosen values by
invoking the saveParameters method and save a current window view as a PNG file
using the writeImage function. Please notice that we have put that code before invoking
InterfaceGl::draw, so we save the window view without the GUI.

A nice thing we have here is the drag-and-drop feature for loading snapshot files. It's
implemented in the fileDrop method; Cinder invokes this method every time files are
dropped to your application window. First, we get a path to the dropped file; in the case of
multiple files, we are taking only one. Then we invoke the loadParameters method with
the dropped file path as an argument.

Using MayaCamUI
We are going to add to your 3D scene a navigation facility known to us since we modelled
a 3D software. Using MayaCamUI, you can do this with just a few lines of code.

Preparing for Development

42

Getting ready
We need to have some 3D objects in our scene. You can use some primitives provided by
Cinder, for example:

gl::drawColorCube(Vec3f::zero(), Vec3f(4.f, 4.f, 4.f));

A color cube is a cube with a different color on each face, so it is easy to determine
the orientation.

How to do it...
Perform the following steps to create camera navigation:

1.	 We need the MayaCam.h header file:
#include "cinder/MayaCamUI.h"

2.	 We also need some member declarations in the main class:
CameraPersp mCam;
MayaCamUI mMayaCam;

3.	 Inside the setup method, we are going to set up the camera's initial state:
mCam.setPerspective(45.0f, getWindowAspectRatio(), 0.1, 10000);
mMayaCam.setCurrentCam(mCam);

Chapter 2

43

4.	 Now we have to implement three methods:
void MainApp::resize(ResizeEvent event)
{
 mCam = mMayaCam.getCamera();
 mCam.setAspectRatio(getWindowAspectRatio());
 mMayaCam.setCurrentCam(mCam);
}

void MainApp::mouseDown(MouseEvent event)
{
 mMayaCam.mouseDown(event.getPos());
}

void MainApp::mouseDrag(MouseEvent event)
{
 mMayaCam.mouseDrag(event.getPos(), event.isLeftDown(), event.
isMiddleDown(), event.isRightDown());
}

5.	 Apply camera matrices before your 3D drawing stuff inside the draw method:

gl::setMatrices(mMayaCam.getCamera());

How it works...
Inside the setup method, we set the initial camera settings. While the window is
resizing, we have to update the aspect ratio of our camera, so we put the code for this
in the resize method. This method is automatically invoked by Cinder each time the
window of our application is resized. We catch mouse events inside the mouseDown
and mouseDrag methods. You can click and drag your mouse for tumbling, right-click
for zooming, and use the middle button for panning. Now you have interaction similar
to a common 3D modeling software in your own application.

Using 3D space guides
We will try to use built-in Cinder methods to visualize some basic information about the scene
we are working on. It should make working with 3D space more comfortable.

Getting ready
We will need the MayaCamUI navigation that we have implemented in the previous recipe.

Preparing for Development

44

How to do it...
We will draw some objects that will help to visualize and find the orientation of a 3D scene.

1.	 We will add another camera besides MayaCamUI. Let's start by adding member
declarations to the main class:
CameraPersp mSceneCam;
int mCurrentCamera;

2.	 Then we will set the initial values inside the setup method:
mCurrentCamera = 0;

mSceneCam.setEyePoint(Vec3f(0.f, 5.f, 10.f));
mSceneCam.setViewDirection(Vec3f(0.f, 0.f, -1.f));
mSceneCam.setPerspective(45.0f, getWindowAspectRatio(), 0.1, 20);

3.	 We have to update the aspect ratio of mSceneCamera inside the resize method:
mSceneCam.setAspectRatio(getWindowAspectRatio());

4.	 Now we will implement the keyDown method that will switch between two cameras
by pressing the 1 or 2 keys on the keyboard:
void MainApp::keyDown(KeyEvent event)
{
 if(event.getChar() == '1') {
 mCurrentCamera = 0;
 } else if(event.getChar() == '2') {
 mCurrentCamera = 1;
 }
}

5.	 Another method we are going to use is drawGrid, which looks like this:
void MainApp::drawGrid(float size, float step)
{
 gl::color(Color(0.7f, 0.7f, 0.7f));

 //draw grid
 for(float i=-size;i<=size;i+=step) {
 gl::drawLine(Vec3f(i, 0.f, -size), Vec3f(i, 0.f, size));
 gl::drawLine(Vec3f(-size, 0.f, i), Vec3f(size, 0.f, i));
 }

 // draw bold center lines
 glLineWidth(2.f);
 gl::color(Color::white());

Chapter 2

45

 gl::drawLine(Vec3f(0.f, 0.f, -size), Vec3f(0.f, 0.f, size));
 gl::drawLine(Vec3f(-size, 0.f, 0.f), Vec3f(size, 0.f, 0.f));

 glLineWidth(1.f);
}

6.	 After that, we can implement our main drawing routine, so here is the whole
draw method:

void MainApp::draw()
{
 gl::enable(GL_CULL_FACE);
 gl::enableDepthRead();
 gl::enableDepthWrite();
 gl::clear(Color(0.1f, 0.1f, 0.1f));

 if(mCurrentCamera == 0) {
 gl::setMatrices(mMayaCam.getCamera());

 // draw grid
 drawGrid(100.0f, 10.0f);

 // draw coordinate guide
 gl::pushMatrices();
 gl::translate(0.f, 0.4f, 0.f);
 gl::drawCoordinateFrame(5.0f, 1.5f, 0.3f);
 gl::popMatrices();

 // draw scene camera frustum
 gl::color(Color::white());
 gl::drawFrustum(mSceneCam);

 // draw vector guide
 gl::color(Color(1.f,0.f,0.f));
 gl::drawVector(Vec3f(-3.f, 7.f, -6.f),
 Vec3f(3.f, 10.f, -9.f), 1.5f, 0.3);

 } else {
 gl::setMatrices(mSceneCam);
 }

 // draw some 3D object
 gl::rotate(30);
 gl::drawColorCube(Vec3f(0.f, 5.f, -5.f),
 Vec3f(2.f, 2.f, 2.f));
}

Preparing for Development

46

How it works...
We have two cameras; mSceneCam is for final rendering and mMayaCam is for the preview of
objects in our scene. You can switch between them by pressing the 1 or 2 keys. The default
camera is MayaCam.

In the previous screenshot, you can see the whole scene set up with the elements, such as
the origin of the coordinate system, the construction grid that lets you keep orientation in 3D
space easily, and the mSceneCam frustum and vector visualization between two points in 3D
space. You can navigate through this space using MayaCamUI.

If you press the 2 key, you will switch to the view of mSceneCam, so you will see only your 3D
objects without guides as shown in the following screenshot:

Chapter 2

47

Communicating with other software
We will implement an example communication between two Cinder applications written in
Cinder to illustrate how we can send and receive signals. Each of these two applications can
be replaced by a non-Cinder application very easily.

We are going to use the Open Sound Control (OSC) messaging format, which is dedicated for
communication between wide ranges of multimedia devices over the network. OSC uses UDP
protocol, providing flexibility and performance. Each message consists of URL-like addresses
and arguments of integer, float, or string type. The popularity of OSC makes it a great tool for
connecting different environments or applications developed with different technologies over
the network or even on the local machine.

Getting ready
While downloading the Cinder package we are also downloading four primary blocks. One of
them is the osc block located in the blocks directory. First, we will add a new group to our
XCode project root and name it Blocks, and after that we will drag the osc folder inside the
Blocks group. Be sure the Create groups for any added folders options and MainApp in the
Add to targets section are checked.

www.allitebooks.com

http://www.allitebooks.org

Preparing for Development

48

We only need to include an src from the osc folders, so we will delete references to the lib
and samples folders from our project tree. The final project structure should look like the
following screenshot:

Now we have to add a path to the OSC library file as another linker flag's position in your
project's build settings:

$(CINDER_PATH)/blocks/osc/lib/macosx/osc.a

CINDER_PATH should be set as a user-defined setting in the build
settings of your project and it should be the path to Cinder root
directory.

How to do it...
First we will cover instructions for the sender, and then for the listener.

Sender
We will implement an application that sends OSC messages.

1.	 We have to include an additional header file:
#include "OSCSender.h"

Chapter 2

49

2.	 After that we can use the osc::Sender class, so let's declare the needed properties
in the main class:
osc::Sender mOSCSender;
std::string mDestinationHost;
int mDestinationPort;

Vec2f mObjPosition;

3.	 Now we have to set up our sender inside the setup method:
mDestinationHost = "localhost";
mDestinationPort = 3000;
mOSCSender.setup(mDestinationHost, mDestinationPort);

4.	 Set the default value for mObjectPosition to be the center of the window:
mObjPosition = Vec2f(getWindowWidth()*0.5f,
 getWindowHeight()*0.5f);

5.	 We can now implement the mouseDrag method, which includes two major
operations—updating the object position according to the mouse position and
sending the position information via OSC.
void MainApp::mouseDrag(MouseEvent event)
{
 mObjPosition.x = event.getX();
 mObjPosition.y = event.getY();

 osc::Message msg;
 msg.setAddress("/obj/position");
 msg.addFloatArg(mObjPosition.x);
 msg.addFloatArg(mObjPosition.y);
 msg.setRemoteEndpoint(mDestinationHost, mDestinationPort);
 mOSCSender.sendMessage(msg);
}

6.	 The last thing we need to do is to draw a method just to visualize the position
of the object:
void MainApp::draw()
{
 gl::clear(Color(0.1f, 0.1f, 0.1f));
 gl::color(Color::white());
 gl::drawStrokedCircle(mObjPosition, 50.f);
}

Preparing for Development

50

Listener
We will implement an application that receives OSC messages.

1.	 We have to include an additional header file:
#include "OSCListener.h"

2.	 After that we can use the osc::Listener class, so let's declare the required
properties in the main class:
osc::Listener mOSCListener;
Vec2f mObjPosition;

3.	 Now we have to set up our listener object inside the setup method, passing the port
number for listening as a parameter:
mOSCListener.setup(3000);

4.	 And the default value for mObjectPosition to be the center of the window:
mObjPosition = Vec2f(getWindowWidth()*0.5f,
 getWindowHeight()*0.5f);

5.	 Inside the update method, we will be listening for the incoming OSC messages:
void MainApp::update()
{
 while (mOSCListener.hasWaitingMessages()) {
 osc::Message msg;
 mOSCListener.getNextMessage(&msg);

 if(msg.getAddress() == "/obj/position" &&
 msg.getNumArgs() == 2 &&
 msg.getArgType(0) == osc::TYPE_FLOAT &&
 msg.getArgType(1) == osc::TYPE_FLOAT)
 {
 mObjPosition.x = msg.getArgAsFloat(0);
 mObjPosition.y = msg.getArgAsFloat(1);
 }
 }
}

6.	 Our draw method will be almost the same as the sender version, but instead of
stroked circle we will draw a filled circle:

void MainApp::draw()
{
 gl::clear(Color(0.1f, 0.1f, 0.1f));
 gl::color(Color::white());
 gl::drawSolidCircle(mObjPosition, 50.f);
}

Chapter 2

51

How it works...
We have implemented the sender application that sends the position of the mouse via OSC
protocol. Those messages, with the address /obj/position, can be received by any non-
Cinder OSC application implemented in many other frameworks and programming languages.
The first argument in the message is the x axis position of the mouse and the second
argument is the y axis position. Both are of the float type.

In our case, the application that receives messages is another Cinder application that draws
a filled circle at exactly the same position where you point it in the sender application window.

Preparing for Development

52

There's more...
That was just a short example of the possibilities that OSC offers. This simple communication
method can be applied even in very complex projects. OSC works great when several devices
are working as independent units. But at some point, data coming from them is processed;
for example, frames coming from the camera can be processed by the computer vision
software and results sent over the network to another machine projecting the visualization.
Implementation on top of the UDP protocol gives not only performance, because of the fact
that transmitting data is faster than using TCP, but also implementation is much simpler
without a connection handshake.

Broadcast
You can send OSC messages to all the hosts on your network by setting a broadcast address
as a destination host: 255.255.255.255. For example, in case of subnets, you can use
192.168.1.255 .

If you have problems with compilation under Mac OS X 10.7 because of
a linker error, try to set Inline Methods Hidden to No in your project's
build settings.

See also
You can find more information about OSC implementations by checking out the following links.

OSC in Flash
To support receiving and sending OSC messages in your ActionScript 3.0 code you can use
the following library: http://bubblebird.at/tuioflash/

OSC in Processing
To support OSC protocol in your Processing sketch you can use following library:
http://www.sojamo.de/libraries/oscP5/

OSC in openFrameworks
To support receiving and sending OSC messages in your openFrameworks project, you can
use the ofxOsc add-on: http://ofxaddons.com/repos/112

OpenSoundControl Protocol
You can find more information about OSC protocol and related tools at its official site:
http://opensoundcontrol.org/.

Chapter 2

53

Preparing your application for iOS
The big benefit of using Cinder is the resulting multiplatform code. In most cases, your
application can be compiled on Windows, Mac OS X, and iOS without significant modifications.

Getting ready
If you want to run your applications on iOS devices, you will need to register as an Apple
Developer and purchase the iOS Developer Program.

How to do it...
After registering yourself as an Apple Developer or purchasing the iOS Developer Program, you
can create an initial XCode project for iOS using Tinderbox.

1.	 After running Tinderbox you have to set Target to Cocoa Touch.

Preparing for Development

54

2.	 It will generate a project structure for you, supporting iOS events that are specific for
multitouch screens.

We can use events for multiple touches and for easy access to accelerometer data.
The main difference between touch and mouse events is that there can be more than
one active touch points while there is only one mouse cursor. Because of that, each
touch session has an ID that can be read from TouchEvent object.

Method Describe

touchesBegan(TouchEvent event) Beginning of a multitouch sequence

touchesMoved(TouchEvent event) Drags during a multitouch sequence

touchesEnded(TouchEvent event) The end of a multitouch sequence

getActiveTouches() Returns all active touches

accelerated(AccelEvent event) Vector 3D of the acceleration direction

See also
I recommend you take a look at the sample projects included in the Cinder package:
MultiTouchBasic and iPhoneAccelerometer.

Apple Developer Center
You can find more information about the iOS Developer Program here:
https://developer.apple.com/

3
Using Image

Processing Techniques

In this chapter we will cover:

ff Transforming image contrast and brightness

ff Integrating with OpenCV

ff Detecting edges

ff Detecting faces

ff Detecting features in image

ff Converting images to vector graphics

Using Image Processing Techniques

56

Introduction
In this chapter, we will show examples of using image processing techniques implemented
in Cinder and using third-party libraries. In most of the examples, we will use the following
famous test image widely used to illustrate computer vision algorithms and techniques:

You can download Lenna's image from Wikipedia (http://en.wikipedia.org/wiki/
File:Lenna.png).

Transforming image contrast and brightness
In this recipe we will cover basic image color transformations using the Surface class for
pixel manipulation.

Getting ready
To change the values of contrast and brightness we will use InterfaceGl covered in
Chapter 2, Preparing for Development in the Setting up GUI for parameters tweaking recipe.
We will need a sample image to proceed with; save it in your assets folder as image.png.

Chapter 3

57

How to do it...
We will create an application with simple GUI for contrast and brightness manipulation on the
sample image. Perform the following steps to do so:

1.	 Include necessary headers:
#include "cinder/gl/gl.h"
#include "cinder/gl/Texture.h"
#include "cinder/Surface.h"
#include "cinder/ImageIo.h"

2.	 Add properties to the main class:
float mContrast,mContrastOld;
float mBrightness,mBrightnessOld;
Surface32f mImage, mImageOutput;

3.	 In the setup method an image is loaded for processing and the Surface object is
prepared to store processed image:
mImage = loadImage(loadAsset("image.png"));
mImageOutput = Surface32f(mImage.getWidth(),
 mImage.getHeight(), false);

4.	 Set window size to default values:
setWindowSize(1025, 512);
mContrast = 0.f;
mContrastOld = -1.f;
mBrightness = 0.f;
mBrightnessOld = -1.f;

5.	 Add parameter controls to the InterfaceGl window:
mParams.addParam("Contrast", &mContrast,
"min=-0.5 max=1.0 step=0.01");
mParams.addParam("Brightness", &mBrightness,
 "min=-0.5 max=0.5 step=0.01");

6.	 Implement the update method as follows:
if(mContrastOld != mContrast || mBrightnessOld != mBrightness) {
float c = 1.f + mContrast;
 Surface32f::IterpixelIter = mImage.getIter();
 Surface32f::IterpixelOutIter = mImageOutput.getIter();

 while(pixelIter.line()) {
 pixelOutIter.line();
 while(pixelIter.pixel()) {

www.allitebooks.com

http://www.allitebooks.org

Using Image Processing Techniques

58

 pixelOutIter.pixel();

 // contrast transformation
 pixelOutIter.r() = (pixelIter.r() - 0.5f) * c + 0.5f;
 pixelOutIter.g() = (pixelIter.g() - 0.5f) * c + 0.5f;
 pixelOutIter.b() = (pixelIter.b() - 0.5f) * c + 0.5f;

 // brightness transformation
 pixelOutIter.r() += mBrightness;
 pixelOutIter.g() += mBrightness;
 pixelOutIter.b() += mBrightness;

 }
 }

mContrastOld = mContrast;
mBrightnessOld = mBrightness;
}

7.	 Lastly, we will draw the original and processed images by adding the following lines
of code inside the draw method:

gl::draw(mImage);
gl::draw(mImageOutput, Vec2f(512.f+1.f, 0.f));

How it works...
The most important part is inside the update method. In step 6 we checked if the
parameters for contrast and brightness had been changed. If they have, we iterate through
all the pixels of the original image and store recalculated color values in mImageOutput.
While modifying the brightness is just increasing or decreasing each color component,
calculating contrast is a little more complicated. For each color component we are using
the multiplying formula, color = (color - 0.5) * contrast + 0.5, where contrast is a number
between 0.5 and 2. In the GUI we are setting a value between -0.5 and 1.0, which is more
natural range; it is then recalculated at the beginning of step 6. While processing the image
we have to change color value of all pixels, so later in step 6, you can see that we iterate
through later columns of each row of the pixels using two while loops. To move to the next
row we invoked the line method on the Surface iterator and then the pixel method
to move to the next pixel of the current row. This method is much faster than using, for
example, the getPixel and setPixel methods.

Chapter 3

59

Our application is rendering the original image on the left-hand side and the processed image
on the right-hand side, so you can compare the results of color adjustment.

Integrating with OpenCV
OpenCV is a very powerful open-source library for computer vision. The library is written in C++
so it can be easily integrated in your Cinder application. There is a very useful OpenCV Cinder
block provided within Cinder package available at the GitHub repository (https://github.
com/cinder/Cinder-OpenCV).

Getting ready
Make sure you have Xcode up and running with a Cinder project opened.

Using Image Processing Techniques

60

How to do it…
We will add OpenCV Cinder block to your project, which also illustrates the usual way of
adding any other Cinder block to your project. Perform the following steps to do so:

1.	 Add a new group to our Xcode project root and name it Blocks. Next, drag the
opencv folder inside the Blocks group. Be sure to select the Create groups for
any added folders radio button, as shown in the following screenshot:

2.	 You will need only the include folder inside the opencv folder in your project
structure, so delete any reference to others. The final project structure should
look like the following screenshot:

3.	 Add the paths to the OpenCV library files in the Other Linker Flags section of
your project's build settings, for example:
$(CINDER_PATH)/blocks/opencv/lib/macosx/libopencv_imgproc.a
$(CINDER_PATH)/blocks/opencv/lib/macosx/libopencv_core.a
$(CINDER_PATH)/blocks/opencv/lib/macosx/libopencv_objdetect.a

Chapter 3

61

These paths are shown in the following screenshot:

4.	 Add the paths to the OpenCV Cinder block headers you are going to use in the
User Header Search Paths section of your project's build settings:
$(CINDER_PATH)/blocks/opencv/include

This path is shown in the following screenshot:

5.	 Include OpenCV Cinder block header file:

#include "CinderOpenCV.h"

How it works…
OpenCV Cinder block provides the toOcv and fromOcv functions for data exchange between
Cinder and OpenCV. After setting up your project you can use them, as shown in the following
short example:

Surface mImage, mImageOutput;
mImage = loadImage(loadAsset("image.png"));
cv::Mat ocvImage(toOcv(mImage));
cv::cvtColor(ocvImage, ocvImage, CV_BGR2GRAY);
mImageOutput = Surface(fromOcv(ocvImage));

Using Image Processing Techniques

62

You can use the toOcv and fromOcv functions to convert between Cinder and OpenCV types,
storing image data such as Surface or Channel handled through the ImageSourceRef
type; there are also other types, as shown in the following table:

Cinder types OpenCV types

ImageSourceRef Mat

Color Scalar

Vec2f Point2f

Vec2i Point

Area Rect

In this example we are linking against the following three files from the OpenCV package:

ff libopencv_imgproc.a: This image processing module includes image
manipulation functions, filters, feature detection, and more

ff libopencv_core.a: This module provides core functionality and data structures

ff libopencv_objdetect.a: This module has object detection tools such as
cascade classifiers

You can find the documentation on all OpenCV modules at http://docs.opencv.org/
index.html.

There's more…
There are some features that are not available in precompiled OpenCV libraries packaged
in OpenCV Cinder block, but you can always compile your own OpenCV libraries and still use
exchange functions from OpenCV Cinder block in your project.

Detecting edges
In this recipe, we will demonstrate how to use edge detection function, which is one of
the image processing functions implemented directly in Cinder.

Getting ready
Make sure you have Xcode up and running with an empty Cinder project opened.
We will need a sample image to proceed, so save it in your assets folder as image.png.

Chapter 3

63

How to do it…
We will process the sample image with the edge detection function. Perform the following
steps to do so:

1.	 Include necessary headers:
#include "cinder/gl/Texture.h"
#include "cinder/Surface.h"
#include "cinder/ImageIo.h"

#include "cinder/ip/EdgeDetect.h"
#include "cinder/ip/Grayscale.h"

2.	 Add two properties to your main class:
Surface8u mImageOutput;

3.	 Load the source image and set up Surface for processed images inside the setup
method:
mImage = loadImage(loadAsset("image.png"));
mImageOutput = Surface8u(mImage.getWidth(), mImage.getHeight(),
false);

4.	 Use image processing functions:
ip::grayscale(mImage, &mImage);
ip::edgeDetectSobel(mImage, &mImageOutput);

5.	 Inside the draw method add the following two lines of code for drawing images:

gl::draw(mImage);
gl::draw(mImageOutput, Vec2f(512.f+1.f, 0.f));

How it works…
As you can see, detecting edges in Cinder is pretty easy because of implementation of basic
image processing functions directly in Cinder, so you don't have to include any third-party
libraries. In this case we are using the grayscale function to convert the original image
color space to grayscale. It is a commonly used feature in image processing because many
algorithms work more efficiently on grayscale images or are even designed to work only with
grayscale source images. The edge detection is implemented with the edgeDetectSobel
function and uses the Sobel algorithm. In this case, the first parameter is the source original
grayscale image and the second parameter, is the output Surface object in which the
result will be stored.

Using Image Processing Techniques

64

Inside the draw method we are drawing both images, as shown in the following screenshot:

There's more…
You may find the image processing functions implemented in Cinder insufficient, so you can
also include to your project, third-party library such as OpenCV. We explained how we can use
Cinder and OpenCV together in the preceding recipe, Integrating with OpenCV.

Other useful functions in the context of edge detection are Canny and findContours. The
following is the example of how we can use them:

vector<vector<cv::Point> > contours;
cv::Mat inputMat(toOcv(frame));
// blur
cv::cvtColor(inputMat, inputMat, CV_BGR2GRAY);
cv::Mat blurMat;
cv::medianBlur(inputMat, blurMat, 11);

// threshold
cv::Mat thresholdMat;
cv::threshold(blurMat, thresholdMat, 50, 255, CV_8U);

// erode
cv::Mat erodeMat;
cv::erode(thresholdMat, erodeMat, 11);

// Detect edges
cv::Mat cannyMat;
int thresh = 100;
cv::Canny(erodeMat, cannyMat, thresh, thresh*2, 3);

// Find contours
cv::findContours(cannyMat, contours, CV_RETR_TREE, CV_CHAIN_APPROX_
SIMPLE);

After executing the preceding code, the points, which form the contours are stored in the
contours variable.

Chapter 3

65

Detecting faces
In this recipe, we will examine how our application can be used to recognize human faces.
Thanks to the OpenCV library, it is really easy.

Getting ready
We will be using the OpenCV library, so please refer to the Integrating with OpenCV recipe for
information on how to set up your project. We will need a sample image to proceed, so save
it in your assets folder as image.png. Put the Haar cascade classifier file for frontal face
recognition inside the assets directory. The cascade file can be found inside the downloaded
OpenCV package or in the online public repository, located at https://github.com/
Itseez/opencv/blob/master/data/haarcascades/haarcascade_frontalface_
alt.xml.

How to do it…
We will create an application that demonstrates the usage of cascade classifier from OpenCV
with Cinder. Perform the following steps to do so:

1.	 Include necessary headers:
#include "cinder/gl/Texture.h"
#include "cinder/Surface.h"
#include "cinder/ImageIo.h"

2.	 Add the following members to your main class:
Surface8u mImage;
cv::CascadeClassifier mFaceCC;
std::vector<Rectf> mFaces;

3.	 Add the following code snippet to the setup method:
mImage = loadImage(loadAsset("image.png"));
mFaceCC.load(getAssetPath("haarcascade_frontalface_alt.xml"
).string());

4.	 Also add the following code snippet at the end of the setup method:
cv::Mat cvImage(toOcv(mImage, CV_8UC1));
std::vector<cv::Rect> faces;
mFaceCC.detectMultiScale(cvImage, faces);
std::vector<cv::Rect>::const_iterator faceIter;
for(faceIter = faces.begin(); faceIter != faces.end(); ++faceIter
) {
 Rectf faceRect(fromOcv(*faceIter));
 mFaces.push_back(faceRect);
}

Using Image Processing Techniques

66

5.	 At the end of the draw method add the following code snippet:

gl::color(Color::white());
gl::draw(mImage);
gl::color(ColorA(1.f, 0.f, 0.f, 0.45f));
std::vector<Rectf>::const_iterator faceIter;
for(faceIter = mFaces.begin(); faceIter != mFaces.end();
++faceIter) {
 gl::drawStrokedRect(*faceIter);
}

How it works…
In step 3 we loaded an image file for processing and an XML classifier file, which has description
of the object features to be recognized. In step 4 we performed an image detection by invoking
the detectMultiScale function on the mFaceCC object, where we pointed to cvImage as
an input and stored the result in a vector structure, cvImage is converted from mImage as an
8-bit, single channel image (CV_8UC1). What we did next was iterating through all the detected
faces and storing Rectf variable, which describes a bounding box around the detected face.
Finally, in step 5 we drew our original image and all the recognized faces as stroked rectangles.

We are using cascade classifier implemented in OpenCV, which can be trained to detect
a specific object in the image. More on training and using cascade classifier for object
detection can be found in the OpenCV documentation, located at http://docs.opencv.
org/modules/objdetect/doc/cascade_classification.html.

Chapter 3

67

There's more…
You can use a video stream from your camera and process each frame to track faces of
people in real time. Please refer to the Capturing from the camera recipe in Chapter 11,
Sensing and Tracking Input from the Camera.

Detecting features in an image
In this recipe we will use one of the methods of finding characteristic features in the image.
We will use the SURF algorithm implemented by the OpenCV library.

Getting ready
We will be using the OpenCV library, so please refer to the Integrating with OpenCV recipe for
information on how to set up your project. We will need a sample image to proceed, so save it
in your assets folder as image.png, then save a copy of the sample image as image2.png
and perform some transformation on it, for example rotation.

How to do it…
We will create an application that visualizes matched features between two images. Perform
the following steps to do so:

1.	 Add the paths to the OpenCV library files in the Other Linker Flags section of your
project's build settings, for example:
$(CINDER_PATH)/blocks/opencv/lib/macosx/libopencv_imgproc.a
$(CINDER_PATH)/blocks/opencv/lib/macosx/libopencv_core.a
$(CINDER_PATH)/blocks/opencv/lib/macosx/libopencv_objdetect.a
$(CINDER_PATH)/blocks/opencv/lib/macosx/libopencv_features2d.a
$(CINDER_PATH)/blocks/opencv/lib/macosx/libopencv_flann.a

2.	 Include necessary headers:
#include "cinder/gl/Texture.h"
#include "cinder/Surface.h"
#include "cinder/ImageIo.h"

3.	 In your main class declaration add the method and properties:
int matchImages(Surface8u img1, Surface8u img2);

Surface8u mImage, mImage2;
gl::Texture mMatchesImage;

Using Image Processing Techniques

68

4.	 Inside the setup method load the images and invoke the matching method:
mImage = loadImage(loadAsset("image.png"));
mImage2 = loadImage(loadAsset("image2.png"));

int numberOfmatches = matchImages(mImage, mImage2);

5.	 Now you have to implement previously declared matchImages method:
int MainApp::matchImages(Surface8u img1, Surface8u img2)
{
 cv::Mat image1(toOcv(img1));
 cv::cvtColor(image1, image1, CV_BGR2GRAY);

 cv::Mat image2(toOcv(img2));
 cv::cvtColor(image2, image2, CV_BGR2GRAY);

 // Detect the keypoints using SURF Detector
 std::vector<cv::KeyPoint> keypoints1, keypoints2;

 cv::SurfFeatureDetector detector;
 detector.detect(image1, keypoints1);
 detector.detect(image2, keypoints2);

 // Calculate descriptors (feature vectors)
 cv::SurfDescriptorExtractor extractor;
 cv::Mat descriptors1, descriptors2;

 extractor.compute(image1, keypoints1, descriptors1);
 extractor.compute(image2, keypoints2, descriptors2);

 // Matching
 cv::FlannBasedMatcher matcher;
 std::vector<cv::DMatch> matches;
 matcher.match(descriptors1, descriptors2, matches);

 double max_dist = 0;
 double min_dist = 100;

 for(int i = 0; i< descriptors1.rows; i++)
 {
 double dist = matches[i].distance;
 if(dist<min_dist) min_dist = dist;
 if(dist>max_dist) max_dist = dist;
 }

 std::vector<cv::DMatch> good_matches;

 for(int i = 0; i< descriptors1.rows; i++)
 {

Chapter 3

69

 if(matches[i].distance<2*min_dist)
 good_matches.push_back(matches[i]);
 }

 // Draw matches
 cv::Matimg_matches;
 cv::drawMatches(image1, keypoints1, image2, keypoints2,
 good_matches, img_matches, cv::Scalar::all(-1),
 cv::Scalar::all(-1),
 std::vector<char>(), cv::DrawMatchesFlags::NOT_DRAW_SINGLE_
 POINTS);

 mMatchesImage = gl::Texture(fromOcv(img_matches));

 return good_matches.size();
 }

6.	 The last thing is to visualize the matches, so put the following line of code inside the
draw method:

gl::draw(mMatchesImage);

How it works…
Let's discuss the code under step 5. First we are converting image1 and image2 to an
OpenCV Mat structure. Then we are converting both images to grayscale. Now we can start
processing images with SURF, so we are detecting keypoints – the characteristic points of
the image calculated by this algorithm. We can use calculated keypoints from these two
images and match them using FLANN, or more precisely the FlannBasedMatcher class.
After filtering out the proper matches and storing them in the good_matches vector we can
visualize them, as follows:

Using Image Processing Techniques

70

Please notice that second image is rotated, however the algorithm can still find and link the
corresponding keypoints.

There's more…
Detecting characteristic features in the images is crucial for matching pictures and is part of
more advanced algorithms used in augmented reality applications.

If images match
It is possible to determine if one of the images is a copy of another or is it rotated. You can
use a number of matches returned by the matchImages method.

Other possibilities
SURF is rather a slow algorithm for real-time matching so you can try the FAST algorithm for
your project if you need to process frames from the camera at real time. The FAST algorithm
is also included in the OpenCV library.

See also
ff The comparison of the OpenCV's feature detection algorithms can be found at

http://computer-vision-talks.com/2011/01/comparison-of-the-
opencvs-feature-detection-algorithms-2/

Converting images to vector graphics
In this recipe, we will try to convert simple, hand-drawn sketches to vector graphics using
image processing functions from the OpenCV library and Cairo library for vector drawing
and exporting.

Getting started
We will be using the OpenCV library, so please refer to the Integrating with OpenCV recipe
earlier in this chapter for information on how to set up your project. You may want to prepare
your own drawing to be processed. In this example we are using a photo of some simple
geometric shapes sketched on paper.

Chapter 3

71

How to do it…
We will create an application to illustrate the conversion to vector shapes. Perform the
following steps to do so:

1.	 Include necessary headers:
#include "cinder/gl/Texture.h"
#include "cinder/Surface.h"
#include "cinder/ImageIo.h"
#include "cinder/cairo/Cairo.h"

2.	 Add the following declarations to your main class:
void renderDrawing(cairo::Context&ctx);

Surface mImage, mIPImage;
std::vector<std::vector<cv::Point> >mContours, mContoursApprox;
double mApproxEps;
int mCannyThresh;

3.	 Load your drawing and set default values inside the setup method:
mImage = loadImage(loadAsset("drawing.jpg"));

mApproxEps = 1.0;
mCannyThresh = 200;

Using Image Processing Techniques

72

4.	 At the end of the setup method add the following code snippet:
cv::Mat inputMat(toOcv(mImage));

cv::Mat bgr, gray, outputFrame;
cv::cvtColor(inputMat, bgr, CV_BGRA2BGR);
double sp = 50.0;
double sr = 55.0;
cv::pyrMeanShiftFiltering(bgr.clone(), bgr, sp, sr);

cv::cvtColor(bgr, gray, CV_BGR2GRAY);
cv::cvtColor(bgr, outputFrame, CV_BGR2BGRA);
mIPImage = Surface(fromOcv(outputFrame));
cv::medianBlur(gray, gray, 7);

// Detect edges using
cv::MatcannyMat;
cv::Canny(gray, cannyMat, mCannyThresh, mCannyThresh*2.f, 3);
mIPImage = Surface(fromOcv(cannyMat));

// Find contours
cv::findContours(cannyMat, mContours, CV_RETR_LIST, CV_CHAIN_
APPROX_SIMPLE);

// prepare outline
for(int i = 0; i<mContours.size(); i++)
{
std::vector<cv::Point> approxCurve;
cv::approxPolyDP(mContours[i], approxCurve, mApproxEps, true);
mContoursApprox.push_back(approxCurve);
}

5.	 Add implementation for the renderDrawing method:
void MainApp::renderDrawing(cairo::Context&ctx)
{
 ctx.setSource(ColorA(0, 0, 0, 1));
 ctx.paint();

 ctx.setSource(ColorA(1, 1, 1, 1));
 for(int i = 0; i<mContoursApprox.size(); i++)
 {
 ctx.newSubPath();
 ctx.moveTo(mContoursApprox[i][0].x, mContoursApprox[i][0].y);
 for(int j = 1; j <mContoursApprox[i].size(); j++)
 {

Chapter 3

73

ctx.lineTo(mContoursApprox[i][j].x, mContoursApprox[i][j].y);
 }
ctx.closePath();
ctx.fill();

ctx.setSource(Color(1, 0, 0));
for(int j = 1; j <mContoursApprox[i].size(); j++)
 {
ctx.circle(mContoursApprox[i][j].x, mContoursApprox[i][j].y, 2.f);
 }
ctx.fill();
 }
}

6.	 Implement your draw method as follows:
 gl::clear(Color(0.1f, 0.1f, 0.1f));

 gl::color(Color::white());

 gl::pushMatrices();
 gl::scale(Vec3f(0.5f,0.5f,0.5f));
 gl::draw(mImage);
 gl::draw(mIPImage, Vec2i(0, mImage.getHeight()+1));
 gl::popMatrices();

 gl::pushMatrices();
 gl::translate(Vec2f(mImage.getWidth()*0.5f+1.f, 0.f));
 gl::color(Color::white());

 cairo::SurfaceImage vecSurface(mImage.getWidth(), mImage.
 getHeight());
 cairo::Context ctx(vecSurface);
 renderDrawing(ctx);
 gl::draw(vecSurface.getSurface());

 gl::popMatrices();

7.	 Inside the keyDown method insert the following code snippet:

if(event.getChar() == 's') {
cairo::Context ctx(cairo::SurfaceSvg(getAppPath() /
fs::path("..") / "output.svg",mImage.getWidth(), mImage.
getHeight()));
renderDrawing(ctx);
}

Using Image Processing Techniques

74

How it works…
The key part is implemented in step 4 where we are detecting edges in the image and then
finding contours. We are drawing vector representation of processed shapes in step 5, inside
the renderDrawing method. For drawing vector graphics we are using the Cairo library,
which is also able to save results into a file in several vector formats. As you can see in the
following screenshot, there is an original image in the upper-left corner and just under it is
the preview of the detected contours. The vector version of our simple hand-drawn image is
on the right-hand side:

Each shape is a filled path with black color. Paths consist of points calculated in step 4.
The following is the visualization with highlighted points:

You can save a vector graphic as a file by pressing the S key. The file will be saved in the same
folder as application executable under the name output.svg. SVG is only one of
the following available exporting options:

Method Usage

SurfaceSvg Preparing context for SVG file rendering
SurfacePdf Preparing context for PDF file rendering
SurfacePs Preparing context for PostScript file rendering
SurfaceEps Preparing context for Illustrator EPS file rendering

Chapter 3

75

The exported graphics look as follows:

See also
ff Cairo: http://cairographics.org/

4
Using Multimedia

Content
In this chapter we will learn about:

ff Loading and displaying video

ff Creating a simple video controller

ff Saving window content as an image

ff Saving window animation as video

ff Saving window content as a vector graphics image

ff Saving high resolution images with tile renderer

ff Sharing graphics between applications

Introduction
Most interesting applications use multimedia content in some form or another. In this chapter
we will start by learning how to load, manipulate, and display video. We will then move on
to saving our graphics into images, image sequences, or video, and then we will move to
recording sound visualization.

Lastly, we will learn how to share graphics between applications and how to save mesh data.

Loading and displaying video
In this recipe, we will learn how to load a video from a file and display it on screen using
Quicktime and OpenGL. We'll learn how to load a file as a resource or from a file selected
by the user using a file open dialog.

Using Multimedia Content

78

Getting ready
You need to have QuickTime installed and also a video file in a format compatible
with QuickTime.

To load the video as a resource it is necessary to copy it to the resources folder in your
project. To learn more on resources, please read the recipes Using resources on Windows
and Using resources on OSX and iOS from Chapter 1, Getting Started.

How to do it…
We will use Cinder's QuickTime wrappers to load and display video.

1.	 Include the headers containing the Quicktime and OpenGL functionality by adding
the following at the beginning of the source file:
#include "cinder/qtime/QuickTime.h"
#include "cinder/gl/gl.h"
#include "cinder/gl/Texture.h"

2.	 Declare a ci::qtime::MovieGl member in you application's class declaration.
This example will only need the setup, update, and draw methods, so make sure
at least these are declared:
using namespace ci;
using namespace ci::app;

class MyApp : public AppBasic {
public:
 void setup();
 void update();
 void draw();

qtime::MovieGl mMovie;
gl::Texture mMovieTexture;
};

3.	 To load the video as a resource use the ci::app::loadResource method with
the file name as parameter and pass the resulting ci::app::DataSourceRef
when constructing the movie object. It is also good practice to place the loading
resource inside a trycatch segment in order to catch any resource loading errors.
Place the following code inside your setup method:
try{
mMovie = qtime::MovieGl(loadResource("movie.mov"));
 } catch(Exception e){
console() <<e.what()<<std::endl;
 }

Chapter 4

79

4.	 You can also load the video by using a file open dialog and passing the file path as an
argument when constructing the mMovie object. Your setup would instead have the
following code:
try{
fs::path path = getOpenFilePath();
mMovie = qtime::MovieGl(path);
 } catch(Exception e){
console() <<e.what()<<std::endl;
 }

5.	 To play the video, call the play method on the movie object. You can test the
successful instantiation of mMovie by placing it inside an if statement just like an
ordinary pointer:
If(mMovie){
mMovie.play();
}

6.	 In the update method we copy the texture of the current movie frame into our
mMovieTexture to draw it later:
void MyApp::update(){
if(mMovie){
mMovieTexture = mMovie.getTexture();
}

7.	 To draw the movie we simply need to draw our texture on screen using the method
gl::draw. We need to check if the texture is valid because mMovie may take a
while to load. We'll also create ci::Rectf with the texture size and center it on
screen to keep the drawn video centered without stretching:

gl::clear(Color(0, 0, 0));
if(mMovieTexture){
Rect frect = Rectf(mMovieTexture.getBounds()).getCenteredFit(
getWindowBounds(), true);
gl::draw(mMovieTexture, rect);
}

How it works…
The ci::qtime::MovieGl class allows playback and control of movies by wrapping around
the QuickTime framework. Movie frames are copied into OpenGl textures for easy drawing.
To access the texture of the current frame of the movie use the method ci::qtime::M
ovieGl::getTexture() which returns a ci::gl::Texture object. Textures used by
ci::qtime::MovieGl are always bound to the GL_TEXTURE_RECTANGLE_ARB target.

Using Multimedia Content

80

There's more
If you wish to do iterations over the pixels of a movie consider using the class
ci::qtime::MovieSurface. This class allows playback of movies by wrapping around the
QuickTime framework, but converts movie frames into ci::Surface objects. To access the
current frame's surface, use the method ci::qtime::MovieSurface::getSurface()
which returns a ci::Surface object.

Creating a simple video controller
In this recipe we'll learn how to create a simple video controller using the built-in GUI
functionalities of Cinder.

We'll control movie playback, if the movie loops or not, the speed rate, volume, and
the position.

Getting ready
You must have Apple's QuickTime installed and a movie file in a format compatible with
QuickTime.

To learn how to load and display a movie please refer to the previous recipe Loading and
displaying Video.

How to do it…
We will create a simple interface using Cinder params classes to control a video.

1.	 Include the necessary files to work with Cinder params (QuickTime and OpenGl)
by adding the following at the top of the source file:
#include "cinder/gl/gl.h"
#include "cinder/gl/Texture.h"
#include "cinder/qtime/QuickTime.h"
#include "cinder/params/Params.h"
#include "cinder/Utilities.h"

2.	 Add the using statements before the application's class declaration to simplify
calling Cinder commands as shown in the following code lines:
using namespace ci;
using namespace ci::app;
using namespace ci::gl;

Chapter 4

81

3.	 Declare a ci::qtime::MovieGl, ci::gl::Texture, and a
ci::params::InterfaceGl object to play, render, and control the video
respectively. Add the following to your class declaration:
Texture mMovieTexture;
qtime::MovieGl mMovie;
params::InterfaceGl mParams;

4.	 Select a video file by opening an open file dialog and use that path to initialize our
mMovie. The following code should go in the setup method:
try{
fs::path path = getOpenFilePath();
mMovie = qtime::MovieGl(path);
}catch(…){
 console() << "could not open video file" <<std::endl;
}

5.	 We'll also need some variables to store the values which we'll manipulate. Each
controllable parameter of the video will have two variables to represent the current
and the previous value of that parameter. Now declare the following variables:
float mMoviePosition, mPrevMoviePosition;
float mMovieRate, mPrevMovieRate;
float mMovieVolume, mPrevMovieVolume;
bool mMoviePlay, mPrevMoviePlay;
bool mMovieLoop, mPrevMovieLoop;

6.	 Set the default values in the setup method:
mMoviePosition = 0.0f;
mPrevMoviePosition = mMoviePosition;
mMovieRate = 1.0f;
mPrevMovieRate = mMovieRate;
mMoviePlay = false;
mPrevMoviePlay = mMoviePlay;
mMovieLoop = false;
mPrevMovieLoop = mMovieLoop;
mMovieVolume = 1.0f;
mPrevMovieVolume = mMovieVolume;

7.	 Now let's initialize mParams and add a control for each of the previously defined
variables and set the max, min, and step values when necessary. The following
code must go in the setup method:
mParams = params::InterfaceGl("Movie Controller", Vec2i(200, 300
));
if(mMovie){

Using Multimedia Content

82

string max = ci::toString(mMovie.getDuration());
mParams.addParam("Position", &mMoviePosition, "min=0.0 max=" +
max + " step=0.5");

mParams.addParam("Rate", &mMovieRate, "step=0.01");

mParams.addParam("Play/Pause", &mMoviePlay);

mParams.addParam("Loop", &mMovieLoop);

mParams.addParam("Volume", &mMovieVolume, "min=0.0 max=1.0
step=0.01");
}

8.	 In the update method we'll check if the movie was valid and compare each of
the parameters to their previous state to see if they changed. If it did, we'll update
mMovie and set the parameter to the new value. The following code lines go in the
update method:
if(mMovie){

if(mMoviePosition != mPrevMoviePosition){
mPrevMoviePosition = mMoviePosition;
mMovie.seekToTime(mMoviePosition);
 } else {
mMoviePosition = mMovie.getCurrentTime();
mPrevMoviePosition = mMoviePosition;
 }
if(mMovieRate != mPrevMovieRate){
mPrevMovieRate = mMovieRate;
mMovie.setRate(mMovieRate);
 }
if(mMoviePlay != mPrevMoviePlay){
mPrevMoviePlay = mMoviePlay;
if(mMoviePlay){
mMovie.play();
 } else {
mMovie.stop();
 }
 }
if(mMovieLoop != mPrevMovieLoop){
mPrevMovieLoop = mMovieLoop;
mMovie.setLoop(mMovieLoop);
 }
if(mMovieVolume != mPrevMovieVolume){
mPrevMovieVolume = mMovieVolume;

Chapter 4

83

mMovie.setVolume(mMovieVolume);
 }
 }

9.	 In the update method it is also necessary to get a handle to the movie texture and
copy it to our previously declared mMovieTexture. In the update method we write:
if(mMovie){
mMovieTexture = mMovie.getTexture();
}

10.	 All that is left is to draw our content. In the draw method we'll clear the background
with black. We'll check the validity of mMovieTexture and draw it in a rectangle that
fits on the window. We also call the draw command of mParams to draw the controls
on top of the video:
gl::clear(Color(0, 0, 0));

if(mMovieTexture){
Rectf rect = Rectf(mMovieTexture.getBounds()).getCenteredFit(
getWindowBounds(), true);
gl::draw(mMovieTexture, rect);
 }

mParams.draw();

11.	 Draw it and you'll see the application's window with a black background along with
the controls. Change the various parameters in the parameters menu and you'll see
it affecting the video:

Using Multimedia Content

84

How it works…
We created a ci::params::InterfaceGl object and added a control for each of the
parameters we wanted to manipulate.

We created a variable for each of the parameters we want to manipulate and a variable to
store their previous value. In the update we checked to see if these values differ, which will
only happen when the user has changed their value using the mParams menu.

When the parameter changes we change the mMovie parameter with the value the user
has set.

Some parameters must be kept in a specific range. The movie position is set in seconds
from 0 to the maximum duration of the video in seconds. The volume must be a value
between 0 and 1, 0 meaning no audio and 1 being the maximum volume.

Saving window content as an image
In this example we will show you how to save window content to the graphic file and how to
implement this functionality in your Cinder application. This could be useful to save output
of a graphics algorithm.

How to do it…
We will add a window content saving function to your application:

1.	 Add necessary headers:
#include "cinder/ImageIo.h"
#include "cinder/Utilities.h"

2.	 Add property to your application's main class:
bool mMakeScreenshot;

3.	 Set a default value inside the setup method:
mMakeScreenshot = false;

4.	 Implement the keyDown method as follows:
void MainApp::keyDown(KeyEvent event)
 {
 if(event.getChar() == 's') {
 mMakeScreenshot = true;
 }
 }

Chapter 4

85

5.	 Add the following code at the end of the draw method:

if(mMakeScreenshot) {
mMakeScreenshot = false;
writeImage(getDocumentsDirectory() / fs::path("MainApp_
screenshot.png"), copyWindowSurface());
}

How it works…
Every time you set mMakeScreenshot to true the screenshot of your application will be
selected and saved. In this case the application waits for the S key to be pressed and then
sets the flag mMakeScreenshot to true. The current application window screenshot will
be saved inside your documents directory under the name MainApp_screenshot.png.

There's more...
This is just the basic example of common usage of the writeImage function. There are
many other practical applications.

Saving window animation as image sequences
Let's say you want to record a sequence of images Perform the following steps to do so:

1.	 Modify the previous code snippet shown in step 5 for saving the window content
as follows:
if(mMakeScreenshot || mRecordFrames) {
mMakeScreenshot = false;
writeImage(getDocumentsDirectory() / fs::path("MainApp_
screenshot_" + toString(mFramesCounter) + ".png"),
copyWindowSurface());
mFramesCounter++;
}

2.	 You have to define mRecordFrames and mFrameCounter as properties of your
main application class:
bool mRecordFrames;
int mFramesCounter;

3.	 Set initial values inside the setup method:

mRecordFrames = false;
mFramesCounter = 1;

Using Multimedia Content

86

Recording sound visualization
We assume that you are using TrackRef from the audio namespace to play your sound
Perform the following steps:

1.	 Implement the previous steps for saving window animations as image sequences.

2.	 Type the following lines of code at the beginning of the update method:

if(mRecordFrames) {
mTrack->setTime(mFramesCounter / 30.f);
}

We are calculating the desired audio track position based on the number of frames that
passed. We are doing that to synchronize animation with the music track. In this case we
want to produce 30 fps animation so we are dividing mFramesCounter by 30.

Saving window animations as video
In this recipe,we'll start by drawing a simple animation and learning how to export it to video.
We will create a video where pressing any key will start or stop the recording.

Getting ready
You must have Apple's QuickTime installed. Make sure you know where you want your video
to be saved, as you'll have to specify its location at the beginning.

It could be anything that is drawn using OpenGl but for this example, we'll create a yellow
circle at the center of the window with a changing radius. The radius is calculated by the
absolute value of the sine of the elapsed seconds since the application launched. We
multiply this value by 200 to scale it up. Now add the following to the draw method:

gl::clear(Color(0, 0, 0));
float radius = fabsf(sinf(getElapsedSeconds())) * 200.0f;
Vec2f center = getWindowCenter();
gl::color(Color(1.0f, 1.0f, 0.0f));
gl::drawSolidCircle(center, radius);

How to do it…
We will use the ci::qtime::MovieWriter class to create a video of our rendering.

1.	 Include the OpenGl and QuickTime files at the beginning of the source file by
adding the following:
#include "cinder/gl/gl.h"
#include "cinder/qtime/MovieWriter.h"

Chapter 4

87

2.	 Now let's declare a ci::qtime::MovieWriter object and a method to initialize it.
Add the following to your class declaration:
qtime::MovieWriter mMovieWriter;
void initMovieWriter();

3.	 In the implementation of initMovieWriter we start by asking the user to specify a
path using a save file dialog and use it to initialize the movie writer. The movie writer
also needs to know the window's width and height. Here's the implementation of
initMovieWriter.
void MyApp::initMovieWriter(){
fs::path path = getSaveFilePath();
if(path.empty() == false){
mMovieWriter = qtime::MovieWriter(path, getWindowWidth(),
getWindowHeight());
 }
}

4.	 Lets declare a key event handler by declaring the keyUp method.
void keyUp(KeyEvent event);

5.	 In its implementation we will see if there is already a movie being recorded
by checking the validity of mMovieWriter. If it is a valid object then we must
save the current movie by destroying the object. We can do so by calling the
ci::qtime::MovieWriter default constructor; this will create a null instance.
If mMovieWriter is not a valid object then we initialize a new movie writer by
calling the method initMovieWriter().
void MovieWriterApp::keyUp(KeyEvent event){
if(mMovieWriter){
mMovieWriter = qtime::MovieWriter();
 } else {
initMovieWriter();
 }
}

6.	 The last two steps are to check if mMovieWriter is valid and to add a frame by
calling the method addFrame with the window's surface. This method has to be
called in the draw method, after our drawing routines have been made. Here's
the final draw method, including the circle drawing code.
void MyApp::draw()
{
 gl::clear(Color(0, 0, 0));

float radius = fabsf(sinf(getElapsedSeconds())) * 200.0f;

Using Multimedia Content

88

 Vec2f center = getWindowCenter();
gl::color(Color(1.0f, 1.0f, 0.0f));
gl::drawSolidCircle(center, radius);

if(mMovieWriter){
mMovieWriter.addFrame(copyWindowSurface());
 }
}

7.	 Build and run the application. Pressing any key will start or end a video recording.
Each time a new recording begins, the user will be presented with a save file dialog
to set where the movie will be saved.

How it works…
The ci::qtime::MovieWriter object allows for easy movie writing using Apple's
QuickTime. Recordings begin by initializing a ci::qtime::MovieWriter object and are
saved when the object is destroyed. By calling the addFrame method, new frames are added.

There's more...
You can also define the format of the video by creating a
ci::qtime::MovieWriter::Format object and passing it as an optional parameter in the
movie writer's constructor. If no format is specified, the movie writer will use the default PNG
codec and 30 frames per second.

Chapter 4

89

For example, to create a movie writer with the H264 codec with 50 percent quality and 24
frames per second, you could write the following code:

qtime::MovieWriter::Format format;
format.setCodec(qtime::MovieWriter::CODEC_H264);
format.setQuality(0.5f);
format.setDefaultDuration(1.0f / 24.0f);
qtime::MovieWriter mMovieWriter = ci::Qtime::MovieWriter("mymovie.
mov", getWindowWidth(), getWindowHeight(), format);

You can optionally open a Settings window and allow the user to define the video settings
by calling the static method qtime::MovieWriter::getUserCompressionSettings.
This method will populate a qtime::MovieWriter::Format object and return true if
successful or false if the user canceled the change in the setting.

To use this method for defining the settings and creating a movie writer, you can write the
following code:

qtime::MovieWriter::Format format;
qtime::MovieWriter mMovieWriter;
boolformatDefined = qtime::MovieWriter::getUserCompressionSettings(
&format);
if(formatDefined){
mMovieWriter = qtime::MovieWriter("mymovie.mov", getWindowWidth(),
getWindowHeight(), format);
}

It is also possible to enable multipass encoding. For the current version of Cinder it is only
available using the H264 codec. Multipass encoding will increase the movie's quality but at
the cost of a greater performance decrease. For this reason it is disabled by default.

To write a movie with multipass encoding enabled we can write the following:

qtime::MovieWriter::Format format;
format.setCodec(qtime::MovieWriter::CODEC_H264);
format.enableMultiPass(true);
qtime::MovieWritermMovieWriter = ci::Qtime::MovieWriter("mymovie.
mov", getWindowWidth(), getWindowHeight(), format);

There are plenty of settings and formats that can be set using the
ci::qtime::MovieWriter::Format class and the best way to know the full list of options
is to check the documentation for the class at http://libcinder.org/docs/v0.8.4/
guide__qtime___movie_writer.html.

Using Multimedia Content

90

Saving window content as a vector graphics
image

In this recipe we'll learn how to draw 2D graphics on screen and save it to an image in a
vector graphics format using the cairo renderer.

Vector graphics can be extremely useful when creating visuals for printing as they can be
scaled without losing quality.

Cinder has an integration for the cairo graphics library; a powerful and full-featured 2D renderer,
capable of outputting to a variety of formats including popular vector graphics formats.

To learn more about the cairo library, please go to its official web page:
http://www.cairographics.org

In this example we'll create an application that draws a new circle whenever the user
presses the mouse. When any key is pressed, the application will open a save file dialog
and save the content in a format defined by the file's extension.

Getting ready
To draw graphics created with the cairo renderer we must define our renderer to
be Renderer2d.

At the end of the source file of our application class there's a macro to initialize the
application where the second parameter defines the renderer. If your application is
called MyApp, you must change the macro to be the following:

CINDER_APP_BASIC(MyApp, Renderer2d)

The cairo renderer allows exporting of PDF, SVG, EPS, and PostScript formats. When specifying
the file to save, make sure you write one of the supported extensions: pdf, svg, eps, or ps.

Include the following files at the top of your source file:

#include "cinder/Rand.h"
#include "cinder/cairo/Cairo.h"

How to do it…
We will use Cinder's cairo wrappers to create images in vector formats from our rendering.

1.	 To create a new circle every time the user presses the mouse we must first create
a Circle class. This class will contain position, radius, and color parameters. Its
constructor will take ci::Vec2f to define its position and will generate a random
radius and color.

Chapter 4

91

Write the following code before the application's class declaration:
class Circle{
public:
 Circle(const Vec2f&pos){
this->pos = pos;
radius = randFloat(20.0f, 50.0f);
color = ColorA(randFloat(1.0f), randFloat(1.0f), randFloat(
1.0f), 0.5f);
 }

 Vec2f pos;
float radius;
ColorA color;
};

2.	 We should now declare std::vector of circles where we'll store the created circles.
Add the following code to your class declaration:
std::vector< Circle >mCircles;

3.	 Let's create a method which will draw the circles that will take cairo::Context as
their parameter:
void renderScene(cairo::Context &context);

4.	 In the method definition, iterate over mCircles and draw each one in the context:
void MyApp::renderScene(cairo::Context &context){
for(std::vector< Circle >::iterator it = mCircles.begin(); it !=
mCircles.end(); ++it){
context.circle(it->pos, it->radius);
context.setSource(it->color);
context.fill();
 }
}

5.	 At this point we only need to add a circle whenever the user presses the mouse.
To do this, we must implement the mouseDown event handler by declaring it in
the class declaration.
void mouseDown(MouseEvent event);

6.	 In its implementation we add a Circle class to mCircles using the mouse position.
void MyApp::mouseDown(MouseEvent event){
 Circle circle(event.getPos());
mCircles.push_back(circle);
}

Using Multimedia Content

92

7.	 We can now draw the circles on the window by creating cairo::Context bound to
the window's surface. This will let us visualize what we're drawing. Here's the draw
method implementation:
void CairoSaveApp::draw()
{
cairo::Context context(cairo::createWindowSurface());
renderScene(context);
}

8.	 To save the scene to an image file we must create a context bound to a surface that
represents a file in a vector graphics format. Let's do this whenever the user releases
a key by declaring the keyUp event handler.
void keyUp(KeyEvent event);

9.	 In the keyUp implementation we create ci::fs::path and populate it by calling a
save file dialog. We'll also create an empty ci::cairo::SurfaceBase which is the
base for all the surfaces that the cairo renderer can draw to.
fs::path filePath = getSaveFilePath();
cairo::SurfaceBase surface;

10.	 We'll now compare the extension of the path with the supported formats and
initialize the surface accordingly. It can be initialized as ci::cairo::SurfacePdf,
ci::cairo::SurfaceSvg, ci::cairo::SurfaceEps, or as
ci::cairo::SurfacePs.
if(filePath.extension() == ".pdf"){
surface = cairo::SurfacePdf(filePath, getWindowWidth(),
getWindowHeight());
 } else if(filePath.extension() == ".svg"){
surface = cairo::SurfaceSvg(filePath, getWindowWidth(),
getWindowHeight());
 } else if(filePath.extension() == ".eps"){
surface = cairo::SurfaceEps(filePath, getWindowWidth(),
getWindowHeight());
 } else if(filePath.extension() == ".ps"){
surface = cairo::SurfacePs(filePath, getWindowWidth(),
getWindowHeight());
 }

11.	 Now we can create ci::cairo::Context and render our scene to it by calling the
renderScene method and passing the context as a parameter. The circles will be
rendered to the context and a file will be created in the specified format. Here's the
final keyUp method implementation:
void CairoSaveApp::keyUp(KeyEvent event){
fs::path filePath = getSaveFilePath();
cairo::SurfaceBase surface;

Chapter 4

93

if(filePath.extension() == ".pdf"){
surface = cairo::SurfacePdf(filePath, getWindowWidth(),
getWindowHeight());
 } else if(filePath.extension() == ".svg"){
surface = cairo::SurfaceSvg(filePath, getWindowWidth(),
getWindowHeight());
 } else if(filePath.extension() == ".eps"){
surface = cairo::SurfaceEps(filePath, getWindowWidth(),
getWindowHeight());
 } else if(filePath.extension() == ".ps"){
surface = cairo::SurfacePs(filePath, getWindowWidth(),
getWindowHeight());
 }
cairo::Context context(surface);
renderScene(context);
}

How it works…
Cinder wraps and integrates the cairo 2D vector renderer. It allows use of Cinder's types to
draw and interact with cairo.

The complete drawing is made by calling the drawing methods of a ci::cairo::Context
object. The context in turn, must be created by passing a surface object extending
ci::cairo::SurfaceBase. All drawings will be made in the surface and rasterized
according to the type of the surface.

Using Multimedia Content

94

The following surfaces allow saving images in a vector graphics format:

Surface type Format
ci::cairo::SurfacePdf PDF
ci::cairo::SurfaceSvg SVG
ci::cairo::SurfaceEps EPS
ci::cairo::SurfacePs PostsSript

There's more...
It is also possible to draw using other renderers. Though the renderers aren't able to create
vector images, they can be useful in other situations.

Here are the other available surfaces:

Surface Type Format
ci::cairo::SurfaceImage Anti-aliased pixel-based rasterizer
ci::cairo::SurfaceQuartz Apple's Quartz
ci::cairo::SurfaceCgBitmapContext Apple's CoreGraphics
ci::cairo::SurfaceGdi Windows GDI

Saving high resolution images with the tile
renderer

In this recipe we'll learn how to export a high-resolution image of the content being drawn
on screen using the ci::gl::TileRender class. This can be very useful when creating
graphics for print.

We'll start by creating a simple scene and drawing it on screen. Next, we'll code our example
so that whenever the user presses any key, a save file dialog will appear and a high-resolution
image will be saved to the specified path.

Getting ready
The TileRender class can create high resolution images from anything being drawn on
screen using OpenGl calls.

To save an image with TileRender we must first draw some content on screen. It can be
anything but for this example let's create a nice simple pattern with circles to fill the screen.

Chapter 4

95

In the implementation of your draw method write the following code:

void MyApp::draw()
{
 gl::clear(Color(0, 0, 0));
gl::color(Color::white());
for(float i=0; i<getWindowWidth(); i+=10.0f){
for(float j=0; j<getWindowHeight(); j += 10.0f){
float radius = j * 0.01f;
gl::drawSolidCircle(Vec2f(i, j), radius);
 }
 }
}

Remember that this could be anything that is drawn on screen using OpenGl.

How to do it...
We will use the ci::gl::TileRender class to generate high-resolution images of our
OpenGL rendering.

1.	 Include the necessary headers by adding the following at the top of the source file:
#include "cinder/gl/TileRender.h"
#include "cinder/ImageIo.h"

2.	 Since we'll save a high-resolution image whenever the user presses any key, let's
implement the keyUp event handler by declaring it in the class declaration.
void keyUp(KeyEvent event);

Using Multimedia Content

96

3.	 In the keyUp implementation we start by creating a ci::gl::TileRender object
and then set the width and height of the image we are going to create. We are going
to set it to be four times the size of the application window. It can be of any size you
want, just take in to account that if you don't respect the window's aspect ratio, the
image will become stretched.
gl::TileRender tileRender(getWindowWidth() * 4, getWindowHeight()
* 4);

4.	 We must define our scene's Modelview and Projection matrices to
match our window. If we are using only 2D graphics we can call the method
setMatricesWindow, as follows:
tileRender.setMatricesWindow(getWindowWidth(), getWindowHeight()
);

To define the scene's Modelview and Projection matrices to match
the window while drawing 3D content, it is necessary to call the method
setMatricesWindowPersp:

tileRender.setMatricesWindowPersp(getWindowWidth(),
getWindowHeight());

5.	 Next we'll draw our scene each time a new tile is created by using the method
nextTile. When all the tiles have been created the method will return false.
We can create all the tiles by redrawing our scene in a while loop while asking if
there is a next tile, as follows:
while(tileRender.nextTile()){
draw();
 }

6.	 Now that the scene is fully rendered in TileRender, we must save it. Let's ask the
user to indicate where to save by opening a save file dialog. It is mandatory to specify
an extension for the image file as it will be used internally to define the image format.
fs::path filePath = getSaveFilePath();

7.	 We check if filePath is not empty and write the tile render surface as an image
using the writeImage method.
if(filePath.empty() == false){
writeImage(filePath, tileRender.getSurface());
}

8.	 After saving the image it is necessary to redefine the window's Modelview and
Projection matrices. If drawing in 2D you can set the matrices to their default
values by using the method setMatricesWindow with the window's dimensions,
as follows:

gl::setMatricesWindow(getWindowWidth(), getWindowHeight());

Chapter 4

97

How it works…
The ci::gl::TileRender class makes it possible to generate high-resolution versions of
our rendering by scaling individual portions of our drawing to the entire size of the window and
storing them as ci::Surface. After the entire scene has been stored in individual portions it
is stitched together as tiles to form a single high-resolution ci::Surface, which can then be
saved as an image.

Sharing graphics between applications
In this recipe we will show you the way of sharing graphic in real time between applications
under Mac OS X. To do that, we will use Syphon and its implementation for Cinder. Syphon is an
open source tool that allows an application to share graphics as still frames or real-time updated
frame sequence. You can read more about Syphon here: http://syphon.v002.info/

Getting ready
To test if the graphic shared by our application is available, we are going to use Syphon
Recorder, which you can find here: http://syphon.v002.info/recorder/

How to do it…
1.	 Checkout Syphon CinderBlock from the syphon-implementations repository

http://code.google.com/p/syphon-implementations/.

2.	 Create a new group inside your project tree and name it Blocks.

3.	 Drag-and-drop Syphon CinderBlock into your newly created Blocks group.

http://code.google.com/p/syphon-implementations/
http://code.google.com/p/syphon-implementations/

Using Multimedia Content

98

4.	 Make sure Syphon.framework is added to the Copy Files section of Build Phases in
the target settings.

5.	 Add necessary header files:
#include "cinderSyphon.h"

6.	 Add property to your main application class:
syphonServer mScreenSyphon;

7.	 At the end of setup method, add the following code:
mScreenSyphon.setName("Cinder Screen");
gl::clear(Color::white());

8.	 Inside the draw method add the following code:

gl::enableAlphaBlending();

gl::color(ColorA(1.f, 1.f, 1.f, 0.05f));
gl::drawSolidRect(getWindowBounds());

gl::color(ColorA::black());
Vec2f pos = Vec2f(cos(getElapsedSeconds()),
sin(getElapsedSeconds())) * 100.f;
gl::drawSolidCircle(getWindowCenter() + pos, 10.f);

mScreenSyphon.publishScreen();

How it works…
Application draws a simple rotating animation and shares the whole window area via Syphon
library. Our application window looks like the following screenshot:

Chapter 4

99

To test if the graphic can be received by other applications, we will use Syphon Recorder.
Run Syphon Recorder and find our Cinder application in the drop-down menu under the
name: Cinder Screen – MainApp. We set up the first part of this name at the step 6 of this
recipe in the How to do it... section while the second part is an executable file name. Now,
the preview from our Cinder application should be available and it would looks like
the following screenshot:

There's more...
The Syphon library is very useful, simple to use, and is available for other applications
and libraries.

Receiving graphics from other applications
You can receive textures from other applications as well. To do this, you have to use the
syphonClient class as shown in the following steps:

1.	 Add a property to your application main class:
syphonClient mClientSyphon;

2.	 Initialize mClientSyphon inside the CIT method:
mClientSyphon.setApplicationName("MainApp Server");
mClientSyphon.setServerName("");
mClientSyphon.bind();

3.	 At the end of the draw method add the following line which draws graphics that the
other application is sharing:

mClientSyphon.draw(Vec2f::zero());

5
Building Particle

Systems

In this chapter we will cover:

ff Creating a particle system in 2D
ff Applying repulsion and attraction forces
ff Simulating particles flying in the wind
ff Simulating flocking behavior
ff Making our particles sound reactive
ff Aligning particles to processed images
ff Aligning particles to mesh surfaces
ff Creating springs

Introduction
Particle systems are a computational technique of using a large number of small graphic objects
to perform different types of simulations such as explosions, wind, fire, water, and flocking.

In this chapter, we are going to learn how to create and animate particles using popular and
versatile physics algorithms.

Creating a particle system in 2D
In this recipe, we are going to learn how we can build a basic particle system in two
dimensions using the Verlet algorithm.

Building Particle Systems

102

Getting ready

We will need to create two classes, a Particle class representing a single particle, and a
ParticleSystem class to manage our particles.

Using your IDE of choice, create the following files:

ff Particle.h

ff Particle.cpp

ff ParticleSystem.h

ff ParticleSystem.cpp

How to do it…
We will learn how we can create a basic particle system. Perform the following steps to do so:

1.	 First, let's declare our Particle class in the Particle.h file and include the
necessary Cinder files:
#pragma once

#include "cinder/gl/gl.h"
#include "cinder/Vector.h"

class Particle{
};

2.	 Let's add, to the class declaration, the necessary member variables – ci::Vec2f to
store the position, previous position, and applied forces; and float to store particle
radius, mass, and drag.
ci::Vec2f position, prevPosition;
ci::Vec2f forces;
float radius;
float mass;
float drag;

3.	 The last thing needed to finalize the Particle declaration is to add a constructor
that takes the particle's initial position, radius, mass, and drag, and methods to
update and draw the particle.

The following is the final Particle class declaration:

class Particle{
public:

Chapter 5

103

Particle(const ci::Vec2f& position, float radius,
float mass, float drag);

void update();
void draw();

ci::Vec2f position, prevPosition;
ci::Vec2f forces;
float radius;
float mass;
float drag;
};

4.	 Let's move on to the Particle.cpp file and implement the Particle class.

The first necessary step is to include the Particle.h file, as follows:

#include "Particle.h"

5.	 We initialize the member variables to the values passed in the constructor. We also
initialize forces to zero and prevPosition to the initial position.
Particle::Particle(const ci::Vec2f& position, float radius, float
mass, float drag){
 this->position = position;
 this->radius = radius;
 this->mass = mass;
 this->drag = drag;
 prevPosition = position;
 forces = ci::Vec2f::zero();
}

6.	 In the update method, we need to create a temporary ci::Vec2f variable to store
the particle's position before it is updated.
ci::Vec2f temp = position;

7.	 We calculate the velocity of the particle by finding the difference between current
and previous positions and multiplying it by drag. We store this value in ci::Vec2f
temporarily for clarity.
ci::Vec2f vel = (position – prevPosition) * drag;

8.	 To update the particle's position, we add the previously calculated velocity and add
forces divided by mass.
position += vel + forces / mass;

Building Particle Systems

104

9.	 The final steps in the update method are to copy the previously stored position to
prevPosition and reset forces to a zero vector.

The following is the complete update method implementation:

void Particle::update(){
 ci::Vec2f temp = position;
 ci::Vec2f vel = (position - prevPosition) * drag;
 position += vel + forces / mass;
 prevPosition = temp;
 forces = ci::Vec2f::zero();
}

10.	 In the draw implementation, we simply draw a circle at the particle's position using
its radius.
void Particle::draw(){
 ci::gl::drawSolidCircle(position, radius);
}

11.	 Now with the Particle class complete, we need to begin working on the
ParticleSystem class. Move to the ParticleSystem.h file, include the
necessary files, and create the ParticleSystem class declaration.
#pragma once

#include "Particle.h"
#include <vector>

classParticleSystem{
public:

};

12.	 Let's add a destructor and methods to update and draw our particles. We'll also need
to create methods to add and destroy particles and finally a std::vector variable
to store the particles in this system. The following is the final class declaration:
Class ParticleSystem{
public:
 ~ParticleSystem();

 void update();
 void draw();

 void addParticle(Particle *particle);
 void destroyParticle(Particle *particle);

Chapter 5

105

 std::vector<Particle*> particles;

};

13.	 Moving to the ParticleSystem.cpp file, let's begin working on the implementation.
The first thing we need to do is include the file with the class declaration.
#include "ParticleSystem.h"

14.	 Now let's implement the methods one by one. In the destructor, we iterate through all
the particles and delete them.
ParticleSystem::~ParticleSystem(){
 for(std::vector<Particle*>::iterator it = particles.begin(); it
 != particles.end(); ++it){
 delete *it;
 }
 particles.clear();
}

15.	 The update method will be used to iterate all the particles and call update on each
of them.
void ParticleSystem::update(){
 for(std::vector<Particle*>::iterator it = particles.begin(); it
 != particles.end(); ++it){
 (*it)->update();
 }
}

16.	 The draw method will iterate all the particles and call draw on each of them.
void ParticleSystem::draw(){
 for(std::vector<Particle*>::iterator it = particles.begin(); it
 != particles.end(); ++it){
 (*it)->draw();
 }
}

17.	 The addParticle method will insert the particle on the particles container.
void ParticleSystem::addParticle(Particle *particle){
 particles.push_back(particle);
}

18.	 Finally, destroyParticle will delete the particle and remove it from the
particles' list.

Building Particle Systems

106

We'll find the particles' iterator and use it to delete and later remove the object
from the container.

void ParticleSystem::destroyParticle(Particle *particle){
 std::vector<Particle*>::iterator it = std::find(particles.
 begin(), particles.end(), particle);
 delete *it;
 particles.erase(it);
}

19.	 With our classes ready, let's go to our application's class and create some particles.

In our application's class, we need to include the ParticleSystem header file and
the necessary header to use random numbers at the top of the source file:

#include "ParticleSystem.h"
#include "cinder/Rand.h"

20.	 Declare a ParticleSystem object on our class declaration.
ParticleSystem mParticleSystem;

21.	 In the setup method we can create 100 particles with random positions on our
window and random radius. We'll define the mass to be the same as the radius as
a way to have a relation between size and mass. drag will be set to 9.5.

Add the following code snippet inside the setup method:

int numParticle = 100;
 for(int i=0; i<numParticle; i++){
 float x = ci::randFloat(0.0f, getWindowWidth());
 float y = ci::randFloat(0.0f, getWindowHeight());
 float radius = ci::randFloat(5.0f, 15.0f);
 float mass = radius;radius;
 float drag = 0.95f;
 Particle *particle = new Particle
 (Vec2f(x, y), radius, mass, drag);
 mParticleSystem.addParticle(particle);
}

22.	 In the update method, we need to update the particles by calling the update
method on mParticleSystem.
void MyApp::update(){
 mParticleSystem.update();
}

Chapter 5

107

23.	 In the draw method we need to clear the screen, set up the window's matrices,
and call the draw method on mParticleSystem.
void ParticlesApp::draw()
{
 gl::clear(Color(0, 0, 0));
 gl::setMatricesWindow(getWindowWidth(), getWindowHeight());
 mParticleSystem.draw();
}

24.	 Build and run the application and you will see 100 random circles on screen,
as shown in the following screenshot:

In the next recipes we will learn how to animate the particles in organic and appealing ways.

How it works...
The method described previously uses a popular and versatile Verlet integrator. One of
its main characteristics is an implicit approximation of velocity. This is accomplished by
calculating, on each update of the simulation, the distance traveled since the last update
of the simulation. This allows for greater stability as velocity is implicit to position and there
is less chance these will ever get out of sync.

The drag member variable represents resistance to movement and should be a number
between 0.0 and 1.0. A value of 0.0 represents such a great resistance that the particle will
not be able to move. A value of 1.0 represents absence of resistance and will make the particle
move indefinitely. We applied drag in step 7, where we multiplied drag by the velocity:

ci::Vec2f vel = (position – prevPosition) * drag;

Building Particle Systems

108

There's more...
To create a particle system in 3D it is necessary to use a 3D vector instead of a 2D one.

Since Cinder's vector 2D and 3D vector classes have a very similar class structure, we
simply need to change position, prevPosition, and forces to be ci::Vec3f objects.

The constructor will also need to take a ci::Vec3f object as an argument instead.

The following is the class declaration with these changes:

class Particle{
public:

 Particle(const ci::Vec3f& position,
 float radius, float mass, float drag);

 void update();
 void draw();

 ci::Vec3f position, prevPosition;
 ci::Vec3f forces;
 float radius;
 float mass;
 float drag;
};

The draw method should also be changed to allow for 3D drawing; we could, for example,
draw a sphere instead of a circle:

void Particle::draw(){
 ci::gl::drawSphere(position, radius);
}

See also
ff For more information on the implementation of the Verlet algorithm, please refer

to the paper by Thomas Jakobsen, located at http://www.pagines.ma1.upc.
edu/~susin/contingut/AdvancedCharacterPhysics.pdf

ff For more information on the Verlet integration, please read the wiki at http://
en.wikipedia.org/wiki/Verlet_integration

Chapter 5

109

Applying repulsion and attraction forces
In this recipe, we will show how you can apply repulsion and attraction forces to the particle
system that we have implemented in the previous recipe.

Getting ready
In this recipe, we are going to use the code from the Creating particle system in 2D recipe.

How to do it…
We will illustrate how you can apply forces to the particle system. Perform the following steps:

1.	 Add properties to your application's main class.
Vec2f attrPosition;
float attrFactor, repulsionFactor, repulsionRadius;

2.	 Set the default value inside the setup method.
attrPosition = getWindowCenter();
attrFactor = 0.05f;
repulsionRadius = 100.f;
repulsionFactor = -5.f;

3.	 Implement the mouseMove and mouseDown methods, as follows:
void MainApp::mouseMove(MouseEvent event)
{
 attrPosition.x = event.getPos().x;
 attrPosition.y = event.getPos().y;
}

void MainApp::mouseDown(MouseEvent event)
{
for(std::vector<Particle*>::iterator it = mParticleSystem.
particles.begin(); it != mParticleSystem.particles.end(); ++it) {
 Vec2f repulsionForce = (*it)->position - event.getPos();
 repulsionForce = repulsionForce.normalized() *
 math<float>::max(0.f, repulsionRadius - repulsionForce.
 length());
 (*it)->forces += repulsionForce;
 }
}

Building Particle Systems

110

4.	 At the beginning of the update method, add the following code snippet:

for(std::vector<Particle*>::iterator it = mParticleSystem.
particles.begin(); it != mParticleSystem.particles.end(); ++it) {
 Vec2f attrForce = attrPosition - (*it)->position;
 attrForce *= attrFactor;
 (*it)->forces += attrForce;
}

How it works…
In this example we added interaction to the particles engine introduced in the first recipe.
The attraction force is pointing to your mouse cursor position but the repulsion vector points
in the opposite direction. These forces were calculated and applied to each particle in steps
3 and 4, and then we made the particles follow your mouse cursor, but when you click on the
left mouse button, they are suddenly moves away from the mouse cursor. This effect can be
achieved with basic vector operations. Cinder lets you perform vector calculations pretty
much the same way you usually do on scalars.

The repulsion force is calculated in step 3. We are using the normalized vector beginning at
the mouse cursor position and the end of the particle position, multiplied by the repulsion
factor, calculated on the basis of the distance between the particle and the mouse cursor
position. Using the repulsionRadius value, we can limit the range of the repulsion.

We are calculating the attraction force in step 4 taking the vector beginning at the particle
position and the end at the mouse cursor position. We are multiplying this vector by the
attrFactor value, which controls the strength of the attraction.

Chapter 5

111

Simulating particles flying in the wind
In this recipe, we will explain how you can apply Brownian motion to your particles. Particles
are going to behave like snowflakes or leaves flying in the wind.

Getting ready
In this recipe we are going to use the code base from the Creating a particle system in
2D recipe.

How to do it…
We will add movement to particles calculated from the Perlin noise and sine function.
Perform the following steps to do so:

1.	 Add the necessary headers.
#include "cinder/Perlin.h"

2.	 Add properties to your application's main class.
float mFrequency;
Perlin mPerlin;

3.	 Set the default value inside the setup method.
mFrequency = 0.01f;
mPerlin = Perlin();

4.	 Change the number of the particles, their radius, and mass.
int numParticle = 300;
float radius = 1.f;
float mass = Rand::randFloat(1.f, 5.f);

5.	 At the beginning of the update method, add the following code snippet:

Vec2f oscilationVec;
oscilationVec.x = sin(getElapsedSeconds()*0.6f)*0.2f;
oscilationVec.y = sin(getElapsedSeconds()*0.2f)*0.1f;
std::vector<Particle*>::iterator it;
for(it = mParticleSystem.particles.begin(); it != mParticleSystem.
particles.end(); ++it) {
 Vec2f windForce = mPerlin.dfBm((*it)->position * mFrequency);
 (*it)->forces += windForce * 0.1f;
 (*it)->forces += oscilationVec;
}

Building Particle Systems

112

How it works…
The main movement calculations and forces are applied in step 5. As you can see we are
using the Perlin noise algorithm implemented as a part of Cinder. It provides a method to
retrieve Brownian motion vectors for each particle. We also add oscilationVec that makes
particles swing from left-to-right and backwards, adding more realistic behavior.

See also
ff Perlin noise original source: http://mrl.nyu.edu/~perlin/doc/oscar.

html#noise

ff Brownian motion: http://en.wikipedia.org/wiki/Brownian_motion

Simulating flocking behavior
Flocking is a term applied to the behavior of birds and other flying animals that are organized
into a swarm or flock.

From our point of view, it is especially interesting that flocking behavior can be simulated by
applying only three rules to each particle (Boid). These rules are as follows:

ff Separation: Avoid neighbors that are too near

ff Alignment: Steer towards the average velocity of neighbors

ff Cohesion: Steer towards the average position of neighbors

Getting ready
In this recipe, we are going to use the code from the Creating a particle system in 2D recipe.

Chapter 5

113

How to do it…
We will implement the rules for flocking behavior. Perform the following steps to do so:

1.	 Change the number of the particles, their radius, and mass.
int numParticle = 50;
float radius = 5.f;
float mass = 1.f;

2.	 Add a definition for new methods and properties to the Particle class inside the
Particle.h header file.
void flock(std::vector<Particle*>& particles);
ci::Vec2f steer(ci::Vec2f target, bool slowdown);
void borders(float width, float height);
ci::Vec2f separate(std::vector<Particle*>& particles);
ci::Vec2f align(std::vector<Particle*>& particles);
ci::Vec2f cohesion(std::vector<Particle*>& particles);

float maxspeed;
float maxforce;
ci::Vec2f vel;

3.	 Set the default values for maxspeed and maxforce at the end of the Particle
constructor inside the Particle.cpp source file.
this->maxspeed = 3.f;
this->maxforce = 0.05f;

4.	 Implement the new methods of the Particle class inside the Particle.cpp
source file.
void Particle::flock(std::vector<Particle*>& particles) {
 ci::Vec2f acc;
 acc += separate(particles) * 1.5f;
 acc += align(particles) * 1.0f;
 acc += cohesion(particles) * 1.0f;
 vel += acc;
 vel.limit(maxspeed);
}

ci::Vec2f Particle::steer(ci::Vec2f target, bool slowdown) {
ci::Vec2f steer;
ci::Vec2f desired = target - position;
float d = desired.length();
if (d >0) {
 desired.normalize();

Building Particle Systems

114

 if ((slowdown) && (d <100.0)) desired *= (maxspeed*(d/100.0));
 else desired *= maxspeed;
 steer = desired - vel;
 steer.limit(maxforce);
 }
else {
 steer = ci::Vec2f::zero();
 }
 return steer;
}

void Particle::borders(float width, float height) {
 if (position.x< -radius) position.x = width+radius;
 if (position.y< -radius) position.y = height+radius;
 if (position.x>width+radius) position.x = -radius;
 if (position.y>height+radius) position.y = -radius;
}

5.	 Add a method for the separation rule.
ci::Vec2f Particle::separate(std::vector<Particle*>& particles) {
ci::Vec2f resultVec = ci::Vec2f::zero();
float targetSeparation = 30.f;
int count = 0;
for(std::vector<Particle*>::iterator it = particles.begin(); it
!= particles.end(); ++it) {
 ci::Vec2f diffVec = position - (*it)->position;
 if(diffVec.length() >0&&diffVec.length() <targetSeparation) {
 resultVec += diffVec.normalized() / diffVec.length();
 count++;
 }
 }

if (count >0) {
 resultVec /= (float)count;
 }

if (resultVec.length() >0) {
 resultVec.normalize();
 resultVec *= maxspeed;
 resultVec -= vel;
 resultVec.limit(maxforce);
 }

return resultVec;
}

Chapter 5

115

6.	 Add a method for the alignment rule.
ci::Vec2f Particle::align(std::vector<Particle*>& particles) {
ci::Vec2f resultVec = ci::Vec2f::zero();
float neighborDist = 50.f;
int count = 0;
for(std::vector<Particle*>::iterator it = particles.begin(); it
!= particles.end(); ++it) {
ci::Vec2f diffVec = position - (*it)->position;
if(diffVec.length() >0 && diffVec.length() <neighborDist) {
resultVec += (*it)->vel;
count++;
 }
 }

if (count >0) {
 resultVec /= (float)count;
}

 if (resultVec.length() >0) {
 resultVec.normalize();
 resultVec *= maxspeed;
 resultVec -= vel;
 resultVec.limit(maxforce);
 }

 return resultVec;
}

7.	 Add a method for the cohesion rule.
ci::Vec2f Particle::cohesion(std::vector<Particle*>& particles) {
ci::Vec2f resultVec = ci::Vec2f::zero();
float neighborDist = 50.f;
int count = 0;
for(std::vector<Particle*>::iterator it = particles.begin(); it
!= particles.end(); ++it) {
 float d = position.distance((*it)->position);
 if(d >0 && d <neighborDist) {
 resultVec += (*it)->position;
 count++;
 }
 }

if (count >0) {
 resultVec /= (float)count;

Building Particle Systems

116

 return steer(resultVec, false);
 }

 return resultVec;
}

8.	 Change the update method to read as follows
void Particle::update(){
 ci::Vec2f temp = position;
 position += vel + forces / mass;
 prevPosition = temp;
 forces = ci::Vec2f::zero();
}

9.	 Change the drawing method of Particle, as follows:
void Particle::draw(){
 ci::gl::color(1.f, 1.f, 1.f);
 ci::gl::drawSolidCircle(position, radius);
 ci::gl::color(1.f, 0.f, 0.f);
 ci::gl::drawLine(position,
 position+(position - prevPosition).normalized()*(radius+5.f));
}

10.	 Change the update method of ParticleSystem inside the ParticleSystem.
cpp source file, as follows:

void ParticleSystem::update(){
 for(std::vector<Particle*>::iterator it = particles.begin(); it
 != particles.end(); ++it){
 (*it)->flock(particles);
 (*it)->update();
 (*it)->borders(640.f, 480.f);
 }
}

How it works…
Three rules for flocking—separation, alignment, and cohesion—were implemented starting
from step 4 and they were applied to each particle in step 10. In this step, we also prevented
Boids from going out of the window boundaries by resetting their positions.

Chapter 5

117

See also
ff Flocking: http://en.wikipedia.org/wiki/Flocking_(behavior)

Making our particles sound reactive
In this recipe we will pick on the previous particle system and add animations based on fast
Fourier transform (FFT) analysis from an audio file.

The FFT analysis will return a list of values representing the amplitudes of several frequency
windows. We will match each particle to a frequency window and use its value to animate the
repulsion that each particle applies to all other particles.

This example uses Cinder's FFT processor, which is only available on Mac OS X.

Getting ready
We will be using the same particle system developed in the previous recipe, Creating a
particle system in 2D. Create the Particle and ParticleSystem classes described
in that recipe, and include the ParticleSystem.h file at the top of the application's
source file.

Building Particle Systems

118

How to do it…
Using values from the FFT analysis we will animate our particles. Perform the following
steps to do so:

1.	 Declare a ParticleSystem object on your application's class and a variable to
store the number of particles we will create.
ParticleSystem mParticleSystem;
int mNumParticles;

2.	 In the setup method we'll create 256 random particles. The number of particles
will match the number of values we will receive from the audio analysis.

The particles will begin at a random position on the window and have a random
size and mass. drag will be 0.9.
mNumParticles = 256;
for(int i=0; i<mNumParticles; i++){
 float x = ci::randFloat(0.0f, getWindowWidth());
 float y = ci::randFloat(0.0f, getWindowHeight());
 float radius = ci::randFloat(5.0f, 15.0f);
 float mass = radius;
 float drag = 0.9f;
 Particle *particle = new Particle
 (Vec2f(x, y), radius, mass, drag);
mParticleSystem.addParticle(particle);
}

3.	 In the update method, we have to call the update method on the particle system.
void MyApp::update(){
mParticleSystem.update();
}

4.	 In the draw method, we have to clear the background, calculate the window's
matrices, and call the draw method on the particle system.
void MyApp::draw()
{
 gl::clear(Color(0, 0, 0));
gl::setMatricesWindow(getWindowWidth(), getWindowHeight());
mParticleSystem.draw();
}

Chapter 5

119

5.	 Now let's load and play an audio file. We start by including the necessary files to load,
play, and perform the FFT analysis. Add the following code snippet at the top of the
source file:
#include "cinder/audio/Io.h"
#include "cinder/audio/FftProcessor.h"
#include "cinder/audio/PcmBuffer.h"
#include "cinder/audio/Output.h"

6.	 Now declare ci::audio::TrackRef, which is a reference to an audio track.
Audio::TrackRef mAudio;

7.	 In the setup method we will open a file dialog to allow the user to select which audio
file to play.

If the retrieved path is not empty, we will use it to load and add a new audio track.

fs::path audioPath = getOpenFilePath();
if(audioPath.empty() == false){
 mAudio = audio::Output::addTrack(audio::load(audioPath.
 string()));
}

8.	 We'll check if mAudio was successfully loaded and played. We will also enable the
PCM buffer and looping.
if(mAudio){
 mAudio->enablePcmBuffering(true);
 mAudio->setLooping(true);
 mAudio->play();
}

9.	 Now that we have an audio file playing, we need to start animating the particles.
First we need to apply an elastic force towards the center of the window. We do so by
iterating the over all particles and adding a force, which is one-tenth of the difference
between the particle's position and the window's center position.

Add the following code snippet to the update method:

Vec2f center = getWindowCenter();
for(vector<Particle*>::iterator it = mParticleSystem.particles.
begin(); it != mParticleSystem.particles.end(); ++it){
 Particle *particle = *it;
 Vec2f force =
 (center - particle->position) * 0.1f;
particle->forces += force;
 }

Building Particle Systems

120

10.	 Now we have to calculate the FFT analysis. This will be done once after every frame in
the update.

Declare a local variable std::shared_ptr<float>, where the result of the FFT will
be stored.

We will get a reference to the PCM buffer of mAudio and perform an FFT analysis on
its left channel. It is a good practice to perform a test to check the validity of mAudio
and its buffer.

std::shared_ptr<float>fft;
if(mAudio){
 audio::PcmBuffer32fRef pcmBuffer = mAudio->getPcmBuffer();
if(pcmBuffer){
 fft = audio::calculateFft(pcmBuffer->getChannelData(
 audio::CHANNEL_FRONT_LEFT), mNumParticles);
 }
 }

11.	 We will use the values from the FFT analysis to scale the repulsion each particle
is applying.

Add the following code snippet to the update method:

if(fft){
float *values = fft.get();
for(int i=0; i<mParticleSystem.particles.size()-1; i++){
for(int j=i+1; j<mParticleSystem.particles.size(); j++){
 Particle *particleA =
 mParticleSystem.particles[i];
 Particle *particleB =
 mParticleSystem.particles[j];
 Vec2f delta = particleA->position -
 particleB->position;
 float distanceSquared = delta.lengthSquared();
 particleA->forces += (delta / distanceSquared) * particleB-
 >mass * values[j] * 0.5f;
 particleB->forces -= (delta / distanceSquared) * particleA-
 >mass * values[i] * 0.5f;

12.	 Build and run the application; you will be prompted to select an audio file. Select
it and it will begin playing. The particles will move and push each other around
according to the audio's frequencies.

Chapter 5

121

How it works…
We created a particle for each one of the values the FFT analysis returns and made each
particle repulse every other particle according to its correspondent frequency window
amplitude. As the music evolves, the animation will react accordingly.

See also
ff To learn more about fast Fourier transform please visit http://en.wikipedia.

org/wiki/Fast_Fourier_transform

Aligning particles to a processed image
In this recipe, we will show how you can use techniques you were introduced to in the previous
recipes to make particles align to the edge detected in the image.

Getting ready
In this recipe, we are going to use the particles' implementation from the Creating a particle
system in 2D recipe; the image processing example from the Detecting edges recipe in Chapter
3, Using Image Processing Techniques; as well as simulating repulsion covered in the Applying
repulsion and attraction forces recipe.

Building Particle Systems

122

How to do it…
We will create particles aligning to the detected edges in the image. Perform the following
steps to do so:

1.	 Add an anchor property to the Particle class in the Particle.h file.
ci::Vec2f anchor;

2.	 Set the anchor value at the end of the Particle class constructor in the
Particle.cpp source file.
anchor = position;

3.	 Add a new property to your application's main class.
float maxAlignSpeed;

4.	 At the end of the setup method, after image processing, add new particles,
as follows:
mMouseDown = false;
repulsionFactor = -1.f;
maxAlignSpeed = 10.f;

mImage = loadImage(loadAsset("image.png"));
mImageOutput = Surface8u(mImage.getWidth(), mImage.getHeight(),
false);

ip::grayscale(mImage, &mImage);
ip::edgeDetectSobel(mImage, &mImageOutput);

Surface8u::Iter pixelIter = mImageOutput.
getIter(Area(1,1,mImageOutput.getWidth()-1,mImageOutput.
getHeight()-1));

while(pixelIter.line()) {
 while(pixelIter.pixel()) {
 if(pixelIter.getPos().x < mImageOutput.getWidth()
 && pixelIter.getPos().y <
 mImageOutput.getHeight()
 && pixelIter.r() > 99) {
 float radius = 1.5f;
 float mass = Rand::randFloat(10.f, 20.f);
 float drag = 0.9f;
 Particle *particle = new Particle(
 pixelIter.getPos(), radius, mass, drag);
 mParticleSystem.addParticle(particle);
 }
 }
}

Chapter 5

123

5.	 Implement the update method for your main class, as follows:
void MainApp::update() {
 for(std::vector<Particle*>::iterator it = mParticleSystem.
 particles.begin(); it != mParticleSystem.particles.end(); ++it)
{

 if(mMouseDown) {
 Vec2f repulsionForce = (*it)->position - getMousePos();
 repulsionForce = repulsionForce.normalized() *
 math<float>::max(0.f, 100.f - repulsionForce.length());
 (*it)->forces += repulsionForce;
 }

 Vec2f alignForce = (*it)->anchor - (*it)->position;
 alignForce.limit(maxAlignSpeed);
 (*it)->forces += alignForce;
 }

 mParticleSystem.update();
}

6.	 Change the draw method for Particle inside the Particle.cpp source file to
read as follows

void Particle::draw(){
 glBegin(GL_POINTS);
 glVertex2f(position);
 glEnd();
}

How it works…
The first major step was to allocate particles at some characteristic points of the image. To
do so, we detected the edges, which was covered in the Detecting edges recipe in Chapter 3,
Using Image Processing Techniques. In step 4 you can see that we iterated through each pixel
of each processed image and placed particles only at detected features.

Building Particle Systems

124

You can find another important calculation in step 5, where we tried to move back the
particles to their original positions stored in the anchor property. To disorder particles,
we used the same repulsion code that we used in the Applying repulsion and attraction
forces recipe.

See also
ff To learn more about fast Fourier transform, please visit http://en.wikipedia.

org/wiki/Fast_Fourier_transform

Aligning particles to the mesh surface
In this recipe, we are going to use a 3D version of the particles' code base from the Creating a
particle system in 2D recipe. To navigate in 3D space, we will use MayaCamUI covered in the
Using MayaCamUI recipe in Chapter 2, Preparing for Development.

Getting ready
To simulate repulsion, we are using the code from the Applying repulsion and attraction forces
recipe with slight modifications for three-dimensional space. For this example, we are using
the ducky.mesh mesh file that you can find in the resources directory of the Picking3D
sample inside the Cinder package. Please copy this file to the assets folder in your project.

Chapter 5

125

How to do it…
We will create particles aligned to the mesh. Perform the following steps to do so:

1.	 Add an anchor property to the Particle class in the Particle.h file.
ci::Vec3f anchor;

2.	 Set the anchor value at the end of the Particle class constructor in the
Particle.cpp source file.
anchor = position;

3.	 Add the necessary headers in your main class.
#include "cinder/TriMesh.h"

4.	 Add the new properties to your application's main class.
ParticleSystem mParticleSystem;

float repulsionFactor;
float maxAlignSpeed;

CameraPersp mCam;
MayaCamUI mMayaCam;

TriMesh mMesh;
Vec3f mRepPosition;

5.	 Set the default values inside the setup method.
repulsionFactor = -1.f;
maxAlignSpeed = 10.f;
mRepPosition = Vec3f::zero();

mMesh.read(loadAsset("ducky.msh"));

mCam.setPerspective(45.0f, getWindowAspectRatio(), 0.1, 10000);
mCam.setEyePoint(Vec3f(7.f,7.f,7.f));
mCam.setCenterOfInterestPoint(Vec3f::zero());
mMayaCam.setCurrentCam(mCam);

6.	 At the end of the setup method, add the following code snippet:
for(vector<Vec3f>::iterator it = mMesh.getVertices().begin(); it
!= mMesh.getVertices().end(); ++it) {
 float mass = Rand::randFloat(2.f, 15.f);
 float drag = 0.95f;
 Particle *particle = new Particle
 ((*it), 0.f, mass, drag);
 mParticleSystem.addParticle(particle);
}

Building Particle Systems

126

7.	 Add methods for camera navigation.
void MainApp::resize(ResizeEvent event){
 mCam = mMayaCam.getCamera();
 mCam.setAspectRatio(getWindowAspectRatio());
 mMayaCam.setCurrentCam(mCam);
}

void MainApp::mouseDown(MouseEvent event){
 mMayaCam.mouseDown(event.getPos());
}

void MainApp::mouseDrag(MouseEvent event){
 mMayaCam.mouseDrag(event.getPos(), event.isLeftDown(),
 event.isMiddleDown(), event.isRightDown());
}

8.	 Implement the update and draw methods for your main application class.
void MainApp::update() {

mRepPosition.x = cos(getElapsedSeconds()) * 3.f;
mRepPosition.y = sin(getElapsedSeconds()*2.f) * 3.f;
mRepPosition.z = cos(getElapsedSeconds()*1.5f) * 3.f;

for(std::vector<Particle*>::iterator it = mParticleSystem.
particles.begin(); it != mParticleSystem.particles.end(); ++it) {

 Vec3f repulsionForce = (*it)->position - mRepPosition;
 repulsionForce = repulsionForce.normalized() *
 math<float>::max(0.f, 3.f - repulsionForce.length());
 (*it)->forces += repulsionForce;

 Vec3f alignForce = (*it)->anchor - (*it)->position;
 alignForce.limit(maxAlignSpeed);
 (*it)->forces += alignForce;
 }

 mParticleSystem.update();
}

void MainApp::draw()
{
 gl::enableDepthRead();
 gl::enableDepthWrite();
 gl::clear(Color::black());

Chapter 5

127

 gl::setViewport(getWindowBounds());
 gl::setMatrices(mMayaCam.getCamera());

 gl::color(Color(1.f,0.f,0.f));
 gl::drawSphere(mRepPosition, 0.25f);

 gl::color(Color::white());
 mParticleSystem.draw();
}

9.	 Replace the draw method for Particle inside the Particle.cpp source file to
read as follows

void Particle::draw(){
 glBegin(GL_POINTS);
 glVertex2f(position);
 glEnd();
}

How it works…
Firstly, we created particles in place of vertices of the mesh that you can see in step 6.

Building Particle Systems

128

You can find another important calculation in step 8 where we tried to move particles back to
their original positions stored in the anchor property. To displace the particles, we used the
same repulsion code that we used in the Applying repulsion and attraction forces recipe but
with slight modifications for three-dimensional space. Basically, it is about using Vec3f types
instead of Vec2f.

Creating springs
In this recipe, we will learn how we can create springs.

Springs are objects that connect two particles and force them to be at a defined rest distance.

In this example, we will create random particles, and whenever the user presses a mouse
button, two random particles will be connected by a new spring with a random rest distance.

Getting ready
We will be using the same particle system developed in the previous recipe, Creating a
particle system in 2D. Create the Particle and ParticleSystem classes described in
that recipe and include the ParticleSystem.h file at the top of the application source file.

We will be creating a Spring class, so it is necessary to create the following files:

ff Spring.h

ff Spring.cpp

Chapter 5

129

How to do it…
We will create springs that constrain the movement of particles. Perform the following steps to
do so:

1.	 In the Spring.h file, we will declare a Spring class. The first thing we need to do is
to add the #pragma once macro and include the necessary files.
#pragma once
#include "Particle.h"
#include "cinder/gl/gl.h"

2.	 Next, declare the Spring class.
class Spring{

};

3.	 We will add member variables, two Particle pointers to reference the particles that
will be connected by this spring, and the rest and strengthfloat variables.
class Spring{
public:
 Particle *particleA;
 Particle *particleB;
 float strength, rest;
};

4.	 Now we will declare the constructor that will take pointers to two Particle objects,
and the rest and strength values.

We will also declare the update and draw methods.

The following is the final Spring class declaration:

class Spring{
public:

 Spring(Particle *particleA, Particle *particleB,
 float rest, float strength);

 void update();
 void draw();

 Particle *particleA;
 Particle *particleB;
 float strength, rest;

};

Building Particle Systems

130

5.	 Let's implement the Spring class in the Spring.cpp file.

In the constructor, we will set the values of the member values to the ones passed in
the arguments.

Spring::Spring(Particle *particleA, Particle *particleB, float
rest, float strength){
 this->particleA = particleA;
 this->particleB = particleB;
 this->rest = rest;
 this->strength = strength;
}

6.	 In the update method of the Spring class, we will calculate the difference between
the particles' distance and the spring's rest distance, and adjust them accordingly.
void Spring::update(){
 ci::Vec2f delta = particleA->position - particleB->position;
 float length = delta.length();
 float invMassA = 1.0f / particleA->mass;
 float invMassB = 1.0f / particleB->mass;
 float normDist = (length - rest) / (length * (invMassA +
 invMassB)) * strength;
 particleA->position -= delta * normDist * invMassA;
 particleB->position += delta * normDist * invMassB;
}

7.	 In the draw method of the Spring class, we will simply draw a line connecting
both particles.
void Spring::draw(){
 ci::gl::drawLine
 (particleA->position, particleB->position);
}

8.	 Now we will have to make some changes in the ParticleSystem class to allow the
addition of springs.

In the ParticleSystem file, include the Spring.h file.

#include "Spring.h"

9.	 Declare the std::vector<Spring*> member in the class declaration.
std::vector<Spring*> springs;

10.	 Declare the addSpring and destroySpring methods to add and destroy springs
to the system.

Chapter 5

131

The following is the final ParticleSystem class declaration:

classParticleSystem{
public:

 ~ParticleSystem();

 void update();
 void draw();

 void addParticle(Particle *particle);
 void destroyParticle(Particle *particle);
 void addSpring(Spring *spring);
 void destroySpring(Spring *spring);

 std::vector<Particle*> particles;
 std::vector<Spring*> springs;

};

11.	 Let's implement the addSpring method. In the ParticleSystem.cpp file, add the
following code snippet:
void ParticleSystem::addSpring(Spring *spring){
 springs.push_back(spring);
}

12.	 In the implementation of destroySpring, we will find the correspondent iterator for
the argument Spring and remove it from springs. We will also delete the object.

Add the following code snippet in the ParticleSystem.cpp file:

void ParticleSystem::destroySpring(Spring *spring){
 std::vector<Spring*>::iterator it = std::find(springs.begin(),
 springs.end(), spring);
 delete *it;
 springs.erase(it);
}

13.	 It is necessary to alter the update method to update all springs.

The following code snippet shows what the final update should look like:

void ParticleSystem::update(){
 for(std::vector<Particle*>::iterator it = particles.begin(); it
 != particles.end(); ++it){
 (*it)->update();
 }
 for(std::vector<Spring*>::iterator it =

Building Particle Systems

132

 springs.begin(); it != springs.end(); ++it){
 (*it)->update();
 }
}

14.	 In the draw method, we will also need to iterate over all springs and call the draw
method on them.

The final implementation of the ParticleSystem::draw method should be
as follows:

void ParticleSystem::draw(){
 for(std::vector<Particle*>::iterator it = particles.begin();
 it != particles.end(); ++it){
 (*it)->draw();
 }
 for(std::vector<Spring*>::iterator it =
 springs.begin(); it != springs.end(); ++it){
 (*it)->draw();
 }
}

15.	 We have finished creating the Spring class and making all necessary changes to the
ParticleSystem class.

Let's go to our application's class and include the ParticleSystem.h file:

#include "ParticleSystem.h"

16.	 Declare a ParticleSystem object.
ParticleSystem mParticleSystem;

17.	 Create some random particles by adding the following code snippet to the
setup method:
for(int i=0; i<100; i++){
 float x = randFloat(getWindowWidth());
 float y = randFloat(getWindowHeight());
 float radius = randFloat(5.0f, 15.0f);
 float mass = radius;
 float drag = 0.9f;
 Particle *particle =
 new Particle(Vec2f(x, y), radius, mass, drag);
 mParticleSystem.addParticle(particle);
 }

Chapter 5

133

18.	 In the update method, we will need to call the update method on
ParticleSystem.
void MyApp::update(){
 mParticleSystem.update();
}

19.	 In the draw method, clear the background, define the window's matrices, and call the
draw method on mParticleSystem.
void MyApp::draw(){
 gl::clear(Color(0, 0, 0));
 gl::setMatricesWindow(getWindowWidth(), getWindowHeight());
 mParticleSystem.draw();
}

20.	 Since we want to create springs whenever the user presses the mouse, we will need
to declare the mouseDown method.

Add the following code snippet to your application's class declaration:

 void mouseDown(MouseEvent event);

21.	 In the mouseDown implementation we will connect two random particles.

Start by declaring a Particle pointer and defining it as a random particle in the
particle system.

Particle *particleA = mParticleSystem.particles[randInt(
mParticleSystem.particles.size())];

22.	 Now declare a second Particle pointer and make it equal to the first one. In the
while loop, we will set its value to a random particle in mParticleSystem until
both particles are different. This will avoid the case where both pointers point to the
same particle.
Particle *particleB = particleA;
while(particleB == particleA){
 particleB = mParticleSystem.particles[randInt(mParticleSystem.
 particles.size())];
 }

23.	 Now we'll create a Spring object that will connect both particles, define a
random rest distance, and set strength to 1.0. Add the created spring to
mParticleSystem.

Building Particle Systems

134

The following is the final mouseDown implementation:

void SpringsApp::mouseDown(MouseEvent event)
{
 Particle *particleA = mParticleSystem.particles[
 randInt(mParticleSystem.particles.size())];
 Particle *particleB = particleA;
 while(particleB == particleA){
 particleB = mParticleSystem.particles[randInt(mParticleSystem.
 particles.size())];
 }
 float rest = randFloat(100.0f, 200.0f);
 float strength = 1.0f;
 Spring *spring = new Spring
 (particleA, particleB, rest, strength);
 mParticleSystem.addSpring(spring);

}

24.	 Build and run the application. Every time a mouse button is pressed, two particles
will become connected with a white line and their distance will remain unchangeable.

How it works…
A Spring object will calculate the difference between two particles and correct their
positions, so that the distance between the two particles will be equal to the springs'
rest value.

By using their masses, we will also take into account each particle's mass, so that the
correction will take into account the particles' weight.

Chapter 5

135

There's more…
The same principle can also be applied to particle systems in 3D.

If you are using a 3D particle, as explained in the There's more… section of the Creating a
particle system in 2D recipe, the Spring class simply needs to change its calculations to use
ci::Vec3f instead of ci::Vec2f.

The update method of the Spring class would need to look like the following code snippet:

void Spring::update(){
 ci::Vec3f delta = particleA->position - particleB->position;
 float length = delta.length();
 float invMassA = 1.0f / particleA->mass;
 float invMassB = 1.0f / particleB->mass;
 float normDist = (length - rest) / (length * (invMassA +
 invMassB)) * strength;
 particleA->position -= delta * normDist * invMassA;
 particleB->position += delta * normDist * invMassB;
}

6
Rendering and

Texturing Particle
Systems

In this chapter we will learn about:

ff Texturing particles

ff Adding a tail to our particles

ff Creating a cloth simulation

ff Texturing a cloth simulation

ff Texturing the particle system using point sprites and shaders

ff Connecting particles

Introduction
Continuing from Chapter 5, Building Particle Systems, we will learn how to render and apply
textures to our particles in order to make them more appealing.

Texturing particles
In this recipe we will render particles introduced in the previous chapter using texture loaded
from the PNG file.

Rendering and Texturing Particle Systems

138

Getting started
This recipe code base is an example of the recipe Simulating particles flying on the wind from
Chapter 5, Building Particle Systems. We also need a texture for a single particle. You can
prepare one easily with probably any graphical program. For this example, we are going to use
a PNG file with transparency stored inside the assets folder with a name, particle.png. In
this case it is just a radial gradient with transparency.

How to do it…
We will render particles using the previously created texture.

1.	 Include the necessary header files:
#include "cinder/gl/Texture.h"
#include "cinder/ImageIo.h"

2.	 Add a member to the application main class:
gl::Texture particleTexture;

3.	 Inside the setup method load particleTexture:
particleTexture=gl::Texture(loadImage(loadAsset("particle.png")));

4.	 We also have to change the particle size for this example:
float radius = Rand::randFloat(2.f, 10.f);

5.	 At the end of the draw method we will draw our particles as follows:
gl::enableAlphaBlending();
particleTexture.enableAndBind();
gl::color(ColorA::white());
mParticleSystem.draw();

6.	 Replace the draw method inside the Particle.cpp source file with the
following code:

void Particle::draw(){
ci::gl::drawSolidRect(ci::Rectf(position.x-radius, position.y-
radius,
position.x+radius, position.y+radius));
}

Chapter 6

139

How it works…
In step 5, we saw two important lines. One enables alpha blending and the other binds our
texture stored in the particleTexture property. If you look at step 6, you can see we drew
each particle as a rectangle and each rectangle had texture applied. It is a simple way of
texturing particles and not very performance effective, but in this case, it works quite well. It
is possible to change the color of drawing particles by changing the color just before invoking
the draw method on ParticleSystem.

See also
Look into the recipe Texturing the particle system using Point sprites and shaders

Adding a tail to our particles
In this recipe, we will show you how to add a tail to the particle animation.

Getting started
In this recipe we are going to use the code base from the recipe Applying repulsion and
attraction forces from Chapter 5, Building Particle Systems.

Rendering and Texturing Particle Systems

140

How to do it…
We will add a tail to the particles using different techniques.

Drawing history
Simply replace the draw method with the following code:

void MainApp::draw()
{
gl::enableAlphaBlending();
gl::setViewport(getWindowBounds());
gl::setMatricesWindow(getWindowWidth(), getWindowHeight());

gl::color(ColorA(0.f,0.f,0.f, 0.05f));
gl::drawSolidRect(getWindowBounds());
gl::color(ColorA(1.f,1.f,1.f, 1.f));
mParticleSystem.draw();
}

Tail as a line
We will add a tail constructed from several lines.

1.	 Add new properties to the Particle class inside the Particle.h header file:
std::vector<ci::Vec2f> positionHistory;
int tailLength;

2.	 At the end of the Particle constructor, inside the Particle.cpp source file, set
the default value to the tailLength property:
tailLength = 10;

3.	 At the end of the update method of the Particle class add the following code:
position History.push_back(position);
if(positionHistory.size() >tailLength) {
positionHistory.erase(positionHistory.begin());
}

4.	 Replace your Particle::draw method with the following code:

void Particle::draw(){
 glBegin(GL_LINE_STRIP);
 for(int i=0; i<positionHistory.size(); i++){
float alpha = (float)i/(float)positionHistory.size();

Chapter 6

141

ci::gl::color(ci::ColorA(1.f,1.f,1.f, alpha));
ci::gl::vertex(positionHistory[i]);
 }
 glEnd();

ci::gl::color(ci::ColorA(1.f,1.f,1.f, 1.f));
ci::gl::drawSolidCircle(position, radius);
}

How it works…
Now, we will explain how each technique works.

Drawing history
The idea behind this method is very simple, instead of clearing the drawing area, we are
continuously drawing semi-transparent rectangles that cover old drawing states more and
more. This very simple method can give you interesting effects with particles. You can also
manipulate the opacity of each rectangle by changing the alpha channel of the rectangle
color, which becomes a color of the background.

Rendering and Texturing Particle Systems

142

Tail as a line
To draw a tail with lines, we have to store several particle positions and draw a line through
these locations with variable opacity. The rule for opacity is just to draw older locations with
less opacity. You can see the drawing code and alpha channel calculation in step 4

Creating a cloth simulation
In this recipe we will learn how to simulate cloth by creating a grid of particles connected
by springs.

Getting Ready
In this recipe, we will be using the particle system described in the recipe Creating a particle
system in 2D from Chapter 5, Building Particle Systems.

We will also be using the Springs class created in the recipe Creating springs from Chapter
5, Building Particle Systems.

So, you will need to add the following files to your project:

ff Particle.h

ff ParticleSystem.h

ff Spring.h

ff Spring.cpp

Chapter 6

143

How to do it…
We will create a grid of particles connected with springs to create a cloth simulation.

1.	 Include the particle system file in your project by adding the following code on top of
your source file:
#include "ParticleSystem.h"

2.	 Add the using statements before the application class declaration as shown in the
following code:
using namespace ci;
using namespace ci::app;
using namespace std;

3.	 Create an instance of a ParticleSystem object and member variables to store the
top corners of the grid. We will also create variables to store the number of rows and
lines that make up our grid. Add the following code in your application class:
ParticleSystem mParticleSystem;
 Vec2f mLeftCorner,
mRightCorner;
 intmNumRows, mNumLines;

4.	 Before we start creating our particle grid, let's update and draw our particle system in
our application's update and draw methods.
Void MyApp::update(){
 mParticleSystem.update();
}

void MyApp::draw(){
 gl::clear(Color(0, 0, 0));
 mParticleSystem.draw();
}

5.	 In the setup method, let's initialize the grid corner positions and number of rows and
lines. Add the following code at the top of the setup method:
mLeftCorner = Vec2f(50.0f, 50.0f);
mRightCorner = Vec2f(getWindowWidth() - 50.0f, 50.0f);
mNumRows = 20;
mNumLines = 15;

6.	 Calculate the distance between each particle on the grid.
float gap = (mRightCorner.x - mLeftCorner.x) / (mNumRows-1);

Rendering and Texturing Particle Systems

144

7.	 Let's create a grid of evenly spaced particles and add them to ParticleSystem.
We'll do this by creating a nested loop where each loop index will be used to calculate
the particle's position. Add the following code in the setup method:
for(int i=0; i<mNumRows; i++){
for(int j=0; j<mNumLines; j++){
float x = mLeftCorner.x + (gap * i);
float y = mLeftCorner.y + (gap * j);
Particle *particle = new Particle(Vec2f(x, y), 5.0f, 5.0f,
0.95f);
mParticleSystem.addParticle(particle);
 }
 }

8.	 Now that the particles are created, we need to connect them with springs. Let's
start by connecting each particle to the one directly below it. In a nested loop, we
will calculate the index of the particle in ParticleSystem and the one below
it. We then create a Spring class connecting both particles using their current
distance as rest and a strength value of 1.0. Add the following to the bottom
of the setup method:
for(int i=0; i<mNumRows; i++){
for(int j=0; j<mNumLines-1; j++){
int indexA = i * mNumLines + j;
int indexB = i * mNumLines + j + 1;
 Particle *partA = mParticleSystem.particles[indexA];
 Particle *partB = mParticleSystem.particles[indexB];
float rest = partA->position.distance(partB->position);
 Spring *spring = new Spring(partA, partB, rest, 1.0f
);
mParticleSystem.addSpring(spring);
 }
 }

9.	 We now have a static grid made out of particles and springs. Let's add some gravity
by applying a constant vertical force to each particle. Add the following code at the
bottom of the update method:
Vec2f gravity(0.0f, 1.0f);
for(vector<Particle*>::iterator it = mParticleSystem.particles.
begin(); it != mParticleSystem.particles.end(); ++it){
 (*it)->forces += gravity;
 }

Chapter 6

145

10.	 To prevent the grid from falling down, we need to make the particles at the top edges
static in their initial positions, defined by mLeftCorner and mRightCorner. Add
the following code to the update method:
int topLeftIndex = 0;
int topRightIndex = (mNumRows-1) * mNumLines;
mParticleSystem.particles[topLeftIndex]->position = mLeftCorner;
mParticleSystem.particles[topRightIndex]->position =
mRightCorner;

11.	 Build and run the application; you'll see a grid of particles falling down with gravity,
locked by its top corners.

12.	 Let's add some interactivity by allowing the user to drag particles with the mouse.
Declare a Particle pointer to store the particle being dragged.
Particle *mDragParticle;

13.	 In the setup method initialize the particle to NULL.
mDragParticle = NULL;

Rendering and Texturing Particle Systems

146

14.	 Declare the mouseUp and mouseDown methods in the application's class declaration.
void mouseDown(MouseEvent event);
void mouseUp(MouseEvent event);

15.	 In the implementation of the mouseDown event, we iterate the overall particles and, if
a particle is under the cursor, we set mDragParticle to point to it.
void MyApp::mouseDown(MouseEvent event){
for(vector<Particle*>::iterator it = mParticleSystem.particles.
begin(); it != mParticleSystem.particles.end(); ++it){
 Particle *part = *it;
 float dist = part->position.distance(event.getPos());
if(dist< part->radius){
mDragParticle = part;
return;
 }
 }
}

16.	 In the mouseUp event we simply set mDragParticle to NULL.
void MyApp::mouseUp(MouseEvent event){
mDragParticle = NULL;
}

17.	 We need to check if mDragParticle is a valid pointer and set the particle's position
to the mouse cursor. Add the following code to the update method:
if(mDragParticle != NULL){
mDragParticle->position = getMousePos();
 }

18.	 Build and run the application. Press and drag the mouse over any particle and drag it
around to see how the cloth simulation reacts.

How it works…
The cloth simulation is achieved by creating a two dimensional grid of particles and
connecting them with springs. Each particle will be connected with a spring to the ones next to
it and to the ones above and below it.

Chapter 6

147

There's more…
The density of the grid can be changed to accommodate the user's needs. Using a grid with
more particles will generate a more precise simulation but will be slower.

Change mNumLines and mNumRows to change the number of particles that make up the grid.

Texturing a cloth simulation
In this recipe, we will learn how to apply a texture to the cloth simulation we created in the
Creating a cloth simulation recipe of the current chapter.

Getting ready
We will be using the cloth simulation developed in the recipe Creating a cloth Simulation as
the base for this recipe.

You will also need an image to use as texture; place it inside your assets folder. In this recipe
we will name our image texture.jpg.

How to do it…
We will calculate the correspondent texture coordinate to each particle in the cloth simulation
and apply a texture.

1.	 Include the necessary files to work with the texture and read images.
#include "cinder/gl/Texture.h"
#include "cinder/ImageIo.h"

2.	 Declare a ci::gl::Texture object in your application's class declaration.
gl::Texture mTexture;

3.	 In the setup method load the image.
mTexture = loadImage(loadAsset("image.jpg"));

4.	 We will remake the draw method. So we'll erase everything in it which was changed
in the Creating a cloth simulation recipe and apply the clear method. Your draw
method should be like the following:
void MyApp::draw(){
 gl::clear(Color(0, 0, 0));
}

Rendering and Texturing Particle Systems

148

5.	 After the clear method call, enable the VERTEX and TEXTURE COORD arrays and
bind the texture. Add the following to the draw method:
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
mTexture.enableAndBind();

6.	 We will now iterate over all particles and springs that make up the cloth simulation
grid and draw a textured triangle strip between each row and the row next to
it. Start by creating a for loop with mNumRows-1 iterations and create two
std::vector<Vec2f> containers to store vertex and texture coordinates.
for(int i=0; i<mNumRows-1; i++){
 vector<Vec2f>vertexCoords, textureCoords;

}

7.	 Inside the loop we will create a nested loop that will iterate over all lines in the cloth
grid. In this loop we will calculate the index of the particles whose vertices will be
drawn, calculate their correspondent texture coordinates, and add them with the
positions of textureCoords and vertexCoords. Type the following code into the
loop that we created in the previous step:
or(int j=0; j<mNumLines; j++){
 int indexTopLeft = i * mNumLines + j;
 int indexTopRight = (i+1) * mNumLines + j;
 Particle *left = mParticleSystem.particles[indexTopLeft];
 Particle *right = mParticleSystem.particles[indexTopRight];
 float texX = ((float)i / (float)(mNumRows-1)) * mTexture.
getRight();
 float texY = ((float)j / (float)(mNumLines-1)) * mTexture.
getBottom();
 textureCoords.push_back(Vec2f(texX, texY));
 vertexCoords.push_back(left->position);
 texX = ((float)(i+1) / (float)(mNumRows-1)) * mTexture.
getRight();
 textureCoords.push_back(Vec2f(texX, texY));
 vertexCoords.push_back(right->position);
}

Now that the vertex and texture coordinates are calculated and placed inside
vertexCoords and textureCoords we will draw them. Here is the complete
nested loop:

for(int i=0; i<mNumRows-1; i++){
 vector<Vec2f> vertexCoords, textureCoords;
 for(int j=0; j<mNumLines; j++){

Chapter 6

149

 int indexTopLeft = i * mNumLines + j;
 int indexTopRight = (i+1) * mNumLines + j;
 Particle *left = mParticleSystem.particles[indexTopLeft];
 Particle *right = mParticleSystem.particles[indexTopRight];
 float texX = ((float)i / (float)(mNumRows-1)) * mTexture.
getRight();
 float texY = ((float)j / (float)(mNumLines-1)) * mTexture.
getBottom();
 textureCoords.push_back(Vec2f(texX, texY));
 vertexCoords.push_back(left->position);
 texX = ((float)(i+1) / (float)(mNumRows-1)) * mTexture.
getRight();
 textureCoords.push_back(Vec2f(texX, texY));
 vertexCoords.push_back(right->position);
 }
 glVertexPointer 2, GL_FLOAT, 0, &vertexCoords[0]);
 glTexCoordPointer(2, GL_FLOAT, 0, &textureCoords[0]);
 glDrawArrays(GL_TRIANGLE_STRIP, 0, vertexCoords.size());
}

8.	 Finally we need to unbind mTexture by adding the following:
mTexture.unbind();

How it works…
We calculated the correspondent texture coordinate according to the particle's position on the
grid. We then drew our texture as triangular strips formed by the particles on a row with the
particles on the row next to it.

Texturing a particle system using point
sprites and shaders

In this recipe, we will learn how to apply a texture to all our particles using OpenGL point
sprites and a GLSL Shader.

This method is optimized and allows for a large number of particles to be drawn at fast
frame rates.

Rendering and Texturing Particle Systems

150

Getting ready
We will be using the particle system developed in the recipe Creating a particle system in
2D from Chapter 5, Building Particle Systems. So we will need to add the following files to
your project:

ff Particle.h

ff ParticleSystem.h

We will also be loading an image to use as texture. The image's size must be a power of two,
such as 256 x 256 or 512 x 512. Place the image inside the assets folder and name it
particle.png.

How to do it...
We will create a GLSL shader and then enable OpenGL point sprites to draw textured particles.

1.	 Let's begin by creating the GLSL Shader. Create the following files:

�� shader.frag

�� shader.vert

Add them to the assets folder.

2.	 Open the file shader.frag in your IDE of choice and declare a uniform
sampler2D:
uniform sampler2D tex;

3.	 In the main function we use the texture to define the fragment color. Add the
following code:
void main (void) {
 gl_FragColor = texture2D(tex, gl_TexCoord[0].st) * gl_Color;
}

4.	 Open the shader.vert file and create float attribute to store the particle's
radiuses. In the main method we define the position, color, and point size attributes.
Add the following code:
attribute float particleRadius;
void main(void)
{
 gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
 gl_PointSize = particleRadius;
 gl_FrontColor = gl_Color;
}

Chapter 6

151

5.	 Our shader is done! Let's go to our application source file and include the necessary
files. Add the following code to your application source file:
#include "cinder/gl/Texture.h"
#include "cinder/ImageIo.h"
#include "cinder/Rand.h"
#include "cinder/gl/GlslProg.h"
#include "ParticleSystem.h"

6.	 Declare the member variables to create a particle system and arrays to store
the particle's positions and radiuses. Also declare a variable to store the number
of particles.
ParticleSystem mParticleSystem;
int mNumParticles;
Vec2f *mPositions;
float *mRadiuses;

7.	 In the setup method, let's initialize mNumParticles to 1000 and allocate the
arrays. We will also create the random particles.
mNumParticles = 1000;
mPositions = new Vec2f[mNumParticles];
mRadiuses = new float[mNumParticles];

for(int i=0; i<mNumParticles; i++){
 float x = randFloat(0.0f, getWindowWidth());
 float y = randFloat(0.0f, getWindowHeight());
 float radius = randFloat(5.0f, 50.0f);
 Particle *particle = new Particle(Vec2f(x, y), radius, 1.0f,
0.9f);
 mParticleSystem.addParticle(particle);
}
mParticleSystem.addParticle(particle);

8.	 In the update method, we will update mParticleSystem and the mPositions
and mRadiuses arrays. Add the following code to the update method:
mParticleSystem.update();
for(int i=0; i<mNumParticles; i++){
 mPositions[i] = mParticleSystem.particles[i]->position;
 mRadiuses[i] = mParticleSystem.particles[i]->radius;
}

9.	 Declare the shaders and the particle's texture.
gl::Texture mTexture;
gl::GlslProg mShader;

Rendering and Texturing Particle Systems

152

10.	 Load the shaders and texture by adding the following code in the setup method:
mTexture = loadImage(loadAsset("particle.png"));
mShader = gl::GlslProg(loadAsset("shader.vert"), loadAsset(
"shader.frag"));

11.	 In the draw method, we will start by clearing the background with black, set the
window's matrices, enable the additive blend, and bind the shader.
gl::clear(Color(0, 0, 0));
gl::setMatricesWindow(getWindowWidth(), getWindowHeight());
gl::enableAdditiveBlending();
mShader.bind();

12.	 Get the location for the particleRadius attribute in the Vertex shader. Enable
vertex attribute arrays and set the pointer to mRadiuses.
GLint particleRadiusLocation = mShader.getAttribLocation(
"particleRadius");
glEnableVertexAttribArray(particleRadiusLocation);
glVertexAttribPointer(particleRadiusLocation, 1, GL_FLOAT, false,
0, mRadiuses);

13.	 Enable point sprites and enable our shader to write to point sizes.
glEnable(GL_POINT_SPRITE);
glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE);
glEnable(GL_VERTEX_PROGRAM_POINT_SIZE);	

14.	 Enable vertex arrays and set the vertex pointer to mPositions.
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(2, GL_FLOAT, 0, mPositions);

15.	 Now enable and bind the texture, draw the vertex array as points, and unbind
the texture.
mTexture.enableAndBind();
glDrawArrays(GL_POINTS, 0, mNumParticles);
mTexture.unbind();

16.	 All we need to do now is disable the vertex arrays, disable the vertex attribute arrays,
and unbind the shader.
glDisableClientState(GL_VERTEX_ARRAY);
glDisableVertexAttribArrayARB(particleRadiusLocation);
mShader.unbind();

Chapter 6

153

17.	 Build and run the application and you will see 1000 random particles with the
applied texture.

How it works…
Point sprites is a nice feature of OpenGL that allows for the application of an entire texture
to a single point. It is extremely useful when drawing particle systems and is quite optimized,
since it reduces the amount of information sent to the graphics card and performs most of the
calculations on the GPU.

In the recipe we also created a GLSL shader, a high-level programming language, that allows
more control over the programming pipeline, to define individual point sizes for each particle.

In the update method we updated the Positions and Radiuses arrays, so that if the
particles are animated the arrays will represent the correct values.

There's more…
Point sprites allow us to texturize points in 3D space. To draw the particle system in 3D do
the following:

1.	 Use the Particle class described in the There's more… section of the recipe
Creating a Particle system in 2D from Chapter 5, Building Particle Systems.

2.	 Declare and initialize mPositions as a ci::Vec3f array.

Rendering and Texturing Particle Systems

154

3.	 In the draw method, indicate that the vertex pointer contains 3D information by
applying the following change:
glVertexPointer(2, GL_FLOAT, 0, mPositions);

Change the previous code line to:

glVertexPointer(3, GL_FLOAT, 0, mPositions);

4.	 The vertex shader needs to adjust the point size according to the depth of the
particle. The shader.vert file would need to read the following code:

attribute float particleRadius;

void main(void)
{
 vec4eyeCoord = gl_ModelViewMatrix * gl_Vertex;
 gl_Position = gl_ProjectionMatrix * eyeCoord;
 float distance = sqrt(eyeCoord.x*eyeCoord.x +
eyeCoord.y*eyeCoord.y + eyeCoord.z*eyeCoord.z);
 float attenuation = 3000.0 / distance;
 gl_PointSize = particleRadius * attenuation;
 gl_FrontColor = gl_Color;
}

Connecting the dots
In this recipe we will show how to connect particles with lines and introduce another way of
drawing particles.

Getting started
This recipe's code base is an example from the recipe Simulating particles flying on the wind
(from Chapter 5, Building Particle Systems), so please refer to this recipe.

How to do it…
We will connect particles rendered as circles with lines.

1.	 Change the number of particles to create inside the setup method:
int numParticle = 100;

Chapter 6

155

2.	 We will calculate radius and mass of each particle as follows:
float radius = Rand::randFloat(2.f, 5.f);
float mass = radius*2.f;

3.	 Replace the draw method inside the Particle.cpp source file with the following:
void Particle::draw(){
 ci::gl::drawSolidCircle(position, radius);
 ci::gl::drawStrokedCircle(position, radius+2.f);
}

4.	 Replace the draw method inside the ParticleSystem.cpp source file as follows:
void ParticleSystem::draw(){
 gl::enableAlphaBlending();
 std::vector<Particle*>::iterator it;
 for(it = particles.begin(); it != particles.end(); ++it){
 std::vector<Particle*>::iterator it2;
 for(it2=particles.begin(); it2!= particles.end(); ++it2){
 float distance = (*it)->position.distance(
 (*it2)->position));
 float per = 1.f - (distance / 100.f);
 ci::gl::color(ci::ColorA(1.f,1.f,1.f, per*0.8f));
 ci::Vec2f conVec = (*it2)->position-(*it)->position;
 conVec.normalize();
 ci::gl::drawLine(
 (*it)->position+conVec * ((*it)->radius+2.f),
 (*it2)->position-conVec * ((*it2)->radius+2.f));
 }
 }
 ci::gl::color(ci::ColorA(1.f,1.f,1.f, 0.8f));
 std::vector<Particle*>::iterator it3;
 for(it3 = particles.begin(); it3!= particles.end(); ++it3){
 (*it3)->draw();
 }
}

Rendering and Texturing Particle Systems

156

How it works…
The most interesting part of this example is mentioned in step 4. We are iterating through
all the points, actually through all possible pairs of the points, to connect it with a line and
apply the right opacity. The opacity of the line connecting two particles is calculated from
the distance between these two particles; the longer distance makes the connection line
more transparent.

Have a look at how the particles are been drawn in step 3. They are solid circles with a slightly
bigger outer circle. The nice detail is the connection line that we are drawing between particles
that stick to the edge of the outer circle, but don't cross it. We have done it in step 4, where we
calculated the normalized vector of the vectors connecting two particles, then used them to
move the attachment point towards that vector, multiplied by the outer circle radius.

Chapter 6

157

Connecting particles with spline
In this recipe we are going to learn how to connect particles with splines in 3D.

Getting started
In this recipe we are going to use the particle's code base from the recipe Creating a particle
system, from Chapter 5, Building Particle Systems. We are going to use the 3D version.

How to do it…
We will create splines connecting particles.

1.	 Include the necessary header file inside ParticleSystem.h:
#include "cinder/BSpline.h"

2.	 Add a new property to the ParticleSystem class:
ci::BSpline3f spline;

3.	 Implement the computeBSpline method for the ParticleSystem class:
void ParticleSystem::computeBspline(){
 std::vector<ci::Vec3f> splinePoints;
 std::vector<Particle*>::iterator it;
 for(it = particles.begin(); it != particles.end(); ++it){
 ++it;
 splinePoints.push_back(ci::Vec3f((*it)->position));
 }
 spline = ci::BSpline3f(splinePoints, 3, false, false);
}

4.	 At the end of the ParticleSystem update method, invoke the following code:
computeBSpline();

5.	 Replace the draw method of ParticleSystem with the following:
void ParticleSystem::draw(){
 ci::gl::color(ci::Color::black());
 if(spline.isUniform()) {
 glBegin(GL_LINES);
 float step = 0.001f;
 for(float t = step; t <1.0f; t += step) {
 ci::gl::vertex(spline.getPosition(t-step));
 ci::gl::vertex(spline.getPosition(t));
 }

Rendering and Texturing Particle Systems

158

 glEnd();
 }
 ci::gl::color(ci::Color(0.0f,0.0f,1.0f));
 std::vector<Particle*>::iterator it;
 for(it = particles.begin(); it != particles.end(); ++it){
 (*it)->draw();
 }
}

6.	 Add headers to your main Cinder application class files:
#include "cinder/app/AppBasic.h"
#include "cinder/gl/Texture.h"
#include "cinder/Rand.h"
#include "cinder/Surface.h"
#include "cinder/MayaCamUI.h"
#include "cinder/BSpline.h"

#include "ParticleSystem.h"

7.	 Add members for your main class:
ParticleSystem mParticleSystem;

float repulsionFactor;
float maxAlignSpeed;

CameraPersp mCam;
MayaCamUI mMayaCam;

Vec3f mRepPosition;

BSpline3f spline;

8.	 Implement the setup method as follows:
void MainApp::setup()
{
repulsionFactor = -1.0f;
maxAlignSpeed = 10.f;
mRepPosition = Vec3f::zero();

mCam.setPerspective(45.0f, getWindowAspectRatio(), 0.1, 10000);
mCam.setEyePoint(Vec3f(7.f,7.f,7.f));
mCam.setCenterOfInterestPoint(Vec3f::zero());

Chapter 6

159

mMayaCam.setCurrentCam(mCam);
vector<Vec3f> splinePoints;
float step = 0.5f;
float width = 20.f;
for (float t = 0.f; t < width; t += step) {
 float mass = Rand::randFloat(20.f, 25.f);
 float drag = 0.95f;
 splinePoints.push_back(Vec3f(math<float>::cos(t),
 math<float>::sin(t),
 t - width*0.5f));
 Particle *particle;
 particle = new Particle(
 Vec3f(math<float>::cos(t)+Rand::randFloat(-0.8f,0.8f),
 math<float>::sin(t)+Rand::randFloat(-0.8f,0.8f),
 t - width*0.5f),
 1.f, mass, drag);
 mParticleSystem.addParticle(particle);
}
spline = BSpline3f(splinePoints, 3, false, false);
}

9.	 Add members for camera navigation:
void MainApp::resize(ResizeEvent event){
 mCam = mMayaCam.getCamera();
 mCam.setAspectRatio(getWindowAspectRatio());
 mMayaCam.setCurrentCam(mCam);
}

void MainApp::mouseDown(MouseEvent event){
 mMayaCam.mouseDown(event.getPos());
}

void MainApp::mouseDrag(MouseEvent event){
 mMayaCam.mouseDrag(event.getPos(), event.isLeftDown(), event.
isMiddleDown(), event.isRightDown());
}

Rendering and Texturing Particle Systems

160

10.	 Implement the update method as follows:
void MainApp::update() {
 float pos=math<float>::abs(sin(getElapsedSeconds()*0.5f));
 mRepPosition = spline.getPosition(pos);
 std::vector<Particle*>::iterator it;
 it = mParticleSystem.particles.begin();
 for(; it != mParticleSystem.particles.end(); ++it) {
 Vec3f repulsionForce = (*it)->position - mRepPosition;
 repulsionForce = repulsionForce.normalized() *
 math<float>::max(0.f, 3.f-repulsionForce.length());
 (*it)->forces += repulsionForce;
 Vec3f alignForce = (*it)->anchor - (*it)->position;
 alignForce.limit(maxAlignSpeed);
 (*it)->forces += alignForce;
 }
 mParticleSystem.update();
}

11.	 Implement the draw method as follows:
void MainApp::draw() {
 gl::enableDepthRead();
 gl::enableDepthWrite();
 gl::clear(Color::white());
 gl::setViewport(getWindowBounds());
 gl::setMatrices(mMayaCam.getCamera());
 gl::color(Color(1.f,0.f,0.f));
 gl::drawSphere(mRepPosition, 0.25f);
 mParticleSystem.draw();
}

Chapter 6

161

How it works…
B-spline lets us draw a very smooth curved line through some given points, in our case,
particle positions. We can still apply some attraction and repulsion forces so that the line
behaves quite like a spring. In Cinder, you can use B-splines in 2D and 3D space and calculate
them with the BSpline class.

See also
More details about B-spline are available at http://en.wikipedia.org/wiki/B-spline.

7
Using 2D Graphics

In this chapter, we will learn how to work and draw with 2D graphics and built-in Cinder tools.

The recipes in this chapter will cover the following:

ff Drawing 2D geometric primitives

ff Drawing arbitrary shapes with the mouse

ff Implementing a scribbler algorithm

ff Implementing 2D metaballs

ff Animating text around curves

ff Adding a blur effect

ff Implementing a force-directed graph

Drawing 2D geometric primitives
In this recipe, we will learn how to draw the following 2D geometric shapes, as filled and
stroked shapes:

ff Circle

ff Ellipse

ff Line

ff Rectangle

Using 2D Graphics

164

Getting ready
Include the necessary header to draw in OpenGL using Cinder commands.

Add the following line of code at the top of your source file:

#include "cinder/gl/gl.h"

How to do it…
We will create several geometric primitives using Cinder's methods for drawing in 2D. Perform
the following steps to do so:

1.	 Let's begin by declaring member variables to keep information about the shapes we
will be drawing.

Create two ci::Vec2f objects to store the beginning and end of a line, a
ci::Rectf object to draw a rectangle, a ci::Vec2f object to define the center of
the circle, and a float object to define its radius. Finally, we will create aci::Vec2f
to define the ellipse's radius and two float objects to define its width and height.

Let's also declare two ci::Color objects to define the stroke and fill colors.

Vec2f mLineBegin,mLineEnd;
Rect fmRect;
Vec2f mCircleCenter;
float mCircleRadius;
Vec2f mEllipseCenter;
float mElipseWidth, mEllipseHeight;
Color mFillColor, mStrokeColor;

2.	 In the setup method, let's initialize the preceding members:
mLineBegin = Vec2f(10, 10);
mLineEnd = Vec2f(400, 400);

mCircleCenter = Vec2f(500, 200);
mCircleRadius = 100.0f;

mEllipseCenter = Vec2f(200, 300);
mEllipseWidth = 200.0f;
ellipseHeight = 100.0f;

mRect = Rectf(Vec2f(40, 20), Vec2f(300, 100));

mFillColor = Color(1.0f, 1.0f, 1.0f);
mStrokeColor = Color(1.0f, 0.0f, 0.0f);

Chapter 7

165

3.	 In the draw method, let's start by drawing filled shapes.

Let's clear the background and set mFillColor to be the drawing color.

gl::clear(Color(0, 0, 0));
gl::color(mFillColor);

4.	 Draw the filled shapes by calling the ci::gl::drawSolidRect,
ci::gl::drawSolidCircle, and ci::gl::drawSolidEllipse methods.

Add the following code snippet inside the draw method:

gl::drawSolidRect(mRect);
gl::drawSolidCircle(mCircleCenter, mCircleRadius);
gl::drawSolidEllipse(mEllipseCenter, mEllipseWidth, ellipseHeight
);

5.	 To draw our shapes as stroked graphics, let's first set mStrokeColor as the
drawing color.
gl::color(mStrokeColor);

6.	 Let's draw our shapes again, this time using only strokes by
calling the ci::gl::drawLine, ci::gl::drawStrokeRect,
ci::gl::drawStrokeCircle, and ci::gl::drawStrokedEllipse methods.

Add the following code snippet inside the draw method:

gl::drawLine(mLineBegin, mLineEnd);
gl::drawStrokedRect(mRect);
gl::drawStrokedCircle(mCircleCenter, mCircleRadius);
gl::drawStrokedEllipse(mEllipseCenter, mEllipseWidth,
ellipseHeight);

This results in the following:

Using 2D Graphics

166

How it works…
Cinder's drawing methods use OpenGL calls internally to provide fast and easy
drawing routines.

The ci::gl::color method sets the drawing color so that all shapes will be drawn
with that color until another is set by calling ci::gl::color again.

There's more…
You can also set the stroke width by calling the glLineWidth method and passing
a float value as a parameter.

For example, to set the stroke to be 5 pixels wide you should write the following:

glLineWidth(5.0f);

Drawing arbitrary shapes with the mouse
In this recipe, we will learn how to draw arbitrary shapes using the mouse.

We will begin a new contour every time the user presses the mouse button, and draw
when the user drags the mouse.

The shape will be drawn using fill and stroke.

Getting ready
Include the necessary files to draw and create a ci::Shape2d object.

Add the following code snippet at the top of your source file:

#include "cinder/gl/gl.h"
#include "cinder/shape2d.h"

How to do it…
We will create a ci::Shape2d object and create vertices using mouse coordinates.
Perform the following steps to do so:

1.	 Declare a ci::Shape2d object to define our shape and two ci::Color
objects to define the fill and stroke colors.
Shape2d mShape;
Color fillColor, strokeColor;

Chapter 7

167

2.	 Initialize the colors in the setup method.

We'll be using black for stroke and yellow for fill.

mFillColor = Color(1.0f, 1.0f, 0.0f);
mStrokeColor = Color(0.0f, 0.0f, 0.0f);

3.	 Since the drawing will be made with the mouse, it is necessary to use the
mouseDown and mouseDrag events.

Declare the necessary callback methods.

void mouseDown(MouseEvent event);
void mouseDrag(MouseEvent event);

4.	 In the implementation of mouseDown we will create a new contour by calling the
moveTo method.

The following code snippet shows what the method should look like:

void MyApp::mouseDown(MouseEvent event){
 mShape.moveTo(event.getpos());
}

5.	 In the mouseDrag method we will add a line to our shape by calling the
lineTo method.

Its implementation should look like the following code snippet:

void MyApp::mouseDrag(MouseEvent event){
 mShape.lineTo(event.getPos());
}

6.	 In the draw method, we will first need to clear the background, then set mFillColor
as the drawing color, and draw mShape.
gl::clear(Color::white());
gl::color(mFillColor);
gl::drawSolid(mShape);

7.	 All there is left to do is to set mStrokeColor as the drawing color and draw mShape
as a stroked shape.
gl::color(mStrokeColor);
gl::draw(mShape);

Using 2D Graphics

168

8.	 Build and run the application. Press the mouse button to begin drawing a new
contour, and drag to draw.

How it works…
ci:Shape2d is a class that defines an arbitrary shape in two dimensions allowing
multiple contours.

The ci::Shape2d::moveTo method creates a new contour starting at the coordinate
passed as a parameter. Then, the ci::Shape2d::lineTo method creates a straight
line from the last position to the coordinate which is passed as a parameter.

The shape is internally tessellated into triangles when drawing a solid graphic.

There's more…
It is also possible to add curves when constructing a shape using ci::Shape2d.

Method Explanation

quadTo (constVec2f& p1,
constVec2f& p2)

Adds a quadratic curve from the last position to
p2, using p1 as a control point

curveTo (constVec2f& p1,
constVec2f& p2, constVec2f&
p3)

Adds a curve from the last position to p3, using
p1 and p2 as control points

arcTo (constVec2f& p,
constVec2f& t, float radius)

Adds an arc from the last position to p1 using
t as the tangent point and radius as the arc's
radius

Chapter 7

169

Implementing a scribbler algorithm
In this recipe, we are going to implement a scribbler algorithm, which is very simple to
implement using Cinder but gives an interesting effect while drawing. You can read more
about the concept of connecting neighbor points at http://www.zefrank.com/
scribbler/about.html. You can find an example of scribbler at http://www.zefrank.
com/scribbler/ or http://mrdoob.com/projects/harmony/.

How to do it…
We will implement an application illustrating scribbler. Perform the following steps to do so:

1.	 Include the necessary headers:
#include<vector>

2.	 Add properties to your main application class:
vector <Vec2f> mPath;
float mMaxDist;
ColorA mColor;
bool mDrawPath;

3.	 Implement the setup method, as follows:
void MainApp::setup()
{
 mDrawPath = false;
 mMaxDist = 50.f;
 mColor = ColorA(0.3f,0.3f,0.3f, 0.05f);
 setWindowSize(800, 600);

 gl::enableAlphaBlending();
 gl::clear(Color::white());
}

4.	 Since the drawing will be made with the mouse, it is necessary to use the
mouseDown and mouseUp events. Implement these methods, as follows:
void MainApp::mouseDown(MouseEvent event)
{
 mDrawPath = true;
}

void MainApp::mouseUp(MouseEvent event)
{
 mDrawPath = false;
}

Using 2D Graphics

170

5.	 Finally, the implementation of drawing methods looks like the following code snippet:

void MainApp::draw(){
 if(mDrawPath) {
 drawPoint(getMousePos());
 }
}

void MainApp::drawPoint(Vec2f point) {
 mPath.push_back(point);

 gl::color(mColor);
 vector<Vec2f>::iterator it;
 for(it = mPath.begin(); it != mPath.end(); ++it) {
 if((*it).distance(point) <mMaxDist) {
 gl::drawLine(point, (*it));
 }
 }
}

How it works…
While the left mouse button is down, we are adding a new point to our container and drawing
lines connecting it with other points near it. The distance between the newly-added point and
the points in its neighborhood we are looking for to draw a connection line has to be less than
the value of the mMaxDist property. Please notice that we are clearing the drawing area only
once, at the program startup at the end of the setup method, so we don't have to redraw all
the connections to each frame, which would be very slow.

Chapter 7

171

Implementing 2D metaballs
In this recipe, we will learn how we can implement organic looking objects called metaballs.

Getting ready
In this recipe, we are going to use the code base from the Applying repulsion and attraction
forces recipe in Chapter 5, Building Particle Systems.

How to do it…
We will implement the metaballs' rendering using a shader program. Perform the following
steps to do so:

1.	 Create a file inside the assets folder with a name, passThru_vert.glsl, and put
the following code snippet inside it:
void main()
{
 gl_Position = ftransform();
 gl_TexCoord[0] = gl_MultiTexCoord0;
 gl_FrontColor = gl_Color;
}

2.	 Create a file inside the assets folder with a name, mb_frag.glsl, and put the
following code snippet inside it:
#version 120

uniform vec2 size;
uniform int num;
uniform vec2 positions[100];
uniform float radius[100];

void main(void)
{

 // Get coordinates
 vec 2 texCoord = gl_TexCoord[0].st;

 vec4 color = vec4(1.0,1.0,1.0, 0.0);
 float a = 0.0;

 int i;
 for(i = 0; i<num; i++) {

Using 2D Graphics

172

 color.a += (radius[i] / sqrt(((texCoord.x*size.x)-
 positions[i].x)*((texCoord.x*size.x)-positions[i].x) +
 ((texCoord.y*size.y)-
 positions[i].y)*((texCoord.y*size.y)-positions[i].y))
);
 }

 // Set color
 gl_FragColor = color;
}

3.	 Add the necessary header files.
#include "cinder/Utilities.h"
#include "cinder/gl/GlslProg.h"

4.	 Add a property to your application's main class, which is the GlslProg object for
our GLSL shader program.
gl::GlslProg mMetaballsShader;

5.	 In the setup method, change the values of repulsionFactor and numParticle.
repulsionFactor = -40.f;
int numParticle = 10;

6.	 At the end of the setup method, load our GLSL shader program, as follows:
mMetaballsShader = gl::GlslProg(loadAsset("passThru_vert.glsl"),
loadAsset("mb_frag.glsl"));

7.	 The last major change is in the draw method, which looks like the following
code snippet:

void MainApp::draw()
{
 gl::enableAlphaBlending();
 gl::clear(Color::black());

 int particleNum = mParticleSystem.particles.size();

 mMetaballsShader.bind();
 mMetaballsShader.uniform("size", Vec2f(getWindowSize()));
 mMetaballsShader.uniform("num", particleNum);

 for (int i = 0; i<particleNum; i++) {
 mMetaballsShader.uniform("positions[" + toString(i) +
 "]", mParticleSystem.particles[i]->position);
 mMetaballsShader.uniform("radius[" + toString(i) +

Chapter 7

173

 "]", mParticleSystem.particles[i]->radius);
 }

 gl::color(Color::white());
 gl::drawSolidRect(getWindowBounds());
 mMetaballsShader.unbind();
}

How it works…
The most important part of this recipe is the fragment shader program mentioned in step
2. The shader generates texture with rendered metaballs based on the positions and radius
passed to the shader from our particle system. In step 7, you can find out how to pass
information to the shader program. We are using setMatricesWindow and setViewport
to set OpenGL for drawing.

See also
ff A Wikipedia article on metaballs: http://en.wikipedia.org/wiki/

Metaballs

Using 2D Graphics

174

Animating text around curves
In this recipe, we will learn how we can animate text around a user-defined curve.

We will create the Letter and Word classes to manage the animation, a ci::Path2d
object to define the curve, and a ci::Timer object to define the duration of the animation.

Getting ready
Create and add the following files to your project:

ff Word.h

ff Word.cpp

ff Letter.h

ff Letter.cpp

How to do it…
We will create a word and animate its letters along a ci::Path2d object. Perform the
following steps to do so:

1.	 In the Letter.h file, include the necessary to use the text, ci::Vec2f, and
ci::gl::Texture files.

Also add the #pragma once macro

#pragma once

#include "cinder/vector.h"
#include "cinder/text.h"
#include "cinder/gl/Texture.h"

2.	 Declare the Letter class with the following members and methods:
class Letter{
public:
 Letter(ci::Font font, conststd::string& letter);

 void draw();
 void setPos(const ci::Vec2f& newPos);

 ci::Vec2f pos;
 float rotation;

Chapter 7

175

 ci::gl::Texture texture;
 float width;
};

3.	 Move to the Letter.cpp file to implement the class.

In the constructor, create a ci::TextBox object, set its parameters, and render it to
texture. Also, set the width as the texture's width plus a padding value of 10:
Letter::Letter(ci::Font font, conststd::string& letter){
 ci::TextBoxtextBox;
 textBox = ci::TextBox().font(font).size(ci::Vec2i(
 ci::TextBox::GROW, ci::TextBox::GROW)).text(letter
).premultiplied();
 texture = textBox.render();
 width = texture.getWidth() + 10.0f;
}

4.	 In the draw method, we will draw the texture and use OpenGL transformations to
translate the texture to its position, and rotate according to the rotation:
void Letter::draw(){
 glPushMatrix();
 glTranslatef(pos.x, pos.y, 0.0f);
 glRotatef(ci::toDegrees(rotation), 0.0f, 0.0f, 1.0f);
 glTranslatef(0.0f, -texture.getHeight(), 0.0f);
 ci::gl::draw(texture);
 glPopMatrix();
}

5.	 In the setPos method implementation, we will update the position and calculate its
rotation so that the letter is perpendicular to its movement. We do this by calculating
the arc tangent of its velocity:
void Letter::setPos(const ci::Vec2f&newPos){
 ci::Vec2f vel = newPos - pos;
 rotation = atan2(vel.y, vel.x);
 pos = newPos;
}

6.	 The Letter class is ready! Now move to the Word.h file, add the #pragma once
macro, and include the Letter.h file:
#pragma once
#include "Letter.h"

Using 2D Graphics

176

7.	 Declare the Word class with the following members and methods:
class Word{
public:
 Word(ci::Font font, conststd::string& text);

 ~Word();

 void update(const ci::Path2d& curve, float curveLength, float
 progress);
 void draw();

 std::vector< Letter* > letters;
 float length;
};

8.	 Move to the Word.cpp file and include the Word.h file:
#include "Word.h"

9.	 In the constructor, we will iterate over each character of text and add a new Letter
object.We will also calculate the total length of the text by calculating the sum of
widths of all the letters:
Word::Word(ci::Font font, conststd::string& text){
 length = 0.0f;
 for(int i=0; i<text.size(); i++){
 std::string letterText(1, text[i]);
 Letter *letter = new Letter(font, letterText);
 letters.push_back(letter);
 length += letter->width;
 }
}

In the destructor, we will delete all the Letter objects to clean up memory used by
the class:

Word::~Word(){
 for(std::vector<Letter*>::iterator it = letters.begin(); it !=
 letters.end(); ++it){
 delete *it;
 }
}

Chapter 7

177

10.	 In the update method, we will pass a reference to the ci::Path2d object, the total
length of the path, and the progress of the animation as a normalized value from 0.0
to 1.0.

We will calculate the position of each individual letter along the curve taking into
account the length of Word and the current progress:

void Word::update(const ci::Path2d& curve, float curveLength,
float progress){
 float maxProgress = 1.0f - (length / curveLength);
 float currentProgress = progress * maxProgress;
 float progressOffset = 0.0f;
 for(int i=0; i<letters.size(); i++){
 ci::Vec2f pos = curve.getPosition
 (currentProgress + progressOffset);
 letters[i]->setPos(pos);
 progressOffset += (letters[i]->width / curveLength);
 }
}

11.	 In the draw method, we will iterate over all letters and call the draw method of
each letter:
void Word::draw(){
 for(std::vector< Letter* >::iterator it = letters.begin(); it
 != letters.end(); ++it){
 (*it)->draw();
 }
}

12.	 With the Word and Letter classes ready, it's time to move to our application's
class source file. Start by including the necessary source files and adding the helpful
using statements:
#include "cinder/Timer.h"
#include "Word.h"

using namespace ci;
using namespace ci::app;
using namespace std;

Using 2D Graphics

178

13.	 Declare the following members:
Word * mWord;
Path2d mCurve;
float mPathLength;
Timer mTimer;
double mSeconds;

14.	 In the setup method, we will start by creating std::string and ci::Font and
use them to initialize mWord. We will also initialize mSeconds with the seconds we
want our animation to last for:
string text = "Some Text";
Font font = Font("Arial", 46);
mWord = new Word(font, text);
mSeconds = 5.0;

15.	 We now need to create the curve by creating the keypoints and connecting them by
calling curveTo:
Vec2f curveBegin(0.0f, getWindowCenter().y);
Vec2f curveCenter = getWindowCenter();
Vec2f curveEnd(getWindowWidth(), getWindowCenter().y);

mCurve.moveTo(curveBegin);
mCurve.curveTo(Vec2f(curveBegin.x, curveBegin.y + 200.0f),
Vec2f(curveCenter.x, curveCenter.y + 200.0f), curveCenter);
mCurve.curveTo(Vec2f(curveCenter.x, curveCenter.y - 200.0f),
Vec2f(curveEnd.x, curveEnd.y - 200.0f), curveEnd);

16.	 Let's calculate the length of the path by summing the distance between each point
and the one next to it. Add the following code snippet inside the setup method:
mPathLength = 0.0f;
for(int i=0; i<mCurve.getNumPoints()-1; i++){
 mPathLength += mCurve.getPoint(i).distance(mCurve.getPoint(
 i+1));
 }

17.	 We need to check if mTimer is running and calculate the progress by calculating the
ratio between the elapsed seconds and mSeconds. Add the following code snippet
inside the update method:
if(mTimer.isStopped() == false){
 float progress;
 if(mTimer.getSeconds() >mSeconds){
 mTimer.stop();

Chapter 7

179

 progress = 1.0f;
 } else {
 progress = (float)(mTimer.getSeconds() / mSeconds);
 }
mWord->update(mCurve, mPathLength, progress);
 }

18.	 In the draw method, we will need to clear the background, enable alpha blending,
draw mWord, and draw the path:
gl::clear(Color(0, 0, 0));
gl::enableAlphaBlending();
mWord->draw();
gl::draw(mCurve);

19.	 Finally, we need to start the timer whenever the user presses any key.

Declare the keyUp event handler:

void keyUp(KeyEvent event);

20.	 And the following is the implementation of the the keyUp event handler:
void CurveTextApp::keyUp(KeyEvent event){
mTimer.start();
}

21.	 Build and run the application. Press any key to begin the animation.

Using 2D Graphics

180

Adding a blur effect
In this recipe, we will learn how we can apply a blur effect while drawing a texture.

Getting ready
In this recipe, we are going to use a Gaussian blur shader provided by Geeks3D at
http://www.geeks3d.com/20100909/shader-library-gaussian-blur-post-
processing-filter-in-glsl/.

How to do it…
We will implement a sample Cinder application to illustrate the mechanism. Perform the
following steps:

1.	 Create a file inside the assets folder with the name passThru_vert.glsl and
put the following code snippet inside it:
void main()
{
 gl_Position = ftransform();
 gl_TexCoord[0] = gl_MultiTexCoord0;
 gl_FrontColor = gl_Color;
}

2.	 Create a file inside the assets folder with the name gaussian_v_frag.glsland
and put the following code snippet inside it:
#version 120

uniform sampler2D sceneTex; // 0

uniform float rt_w; // render target width
uniform float rt_h; // render target height
uniform float vx_offset;

float offset[3] = float[](0.0, 1.3846153846, 3.2307692308);
float weight[3] = float[](0.2270270270, 0.3162162162,
0.0702702703);

void main()
{
 vec3 tc = vec3(1.0, 0.0, 0.0);
 if (gl_TexCoord[0].x<(vx_offset-0.01)){

Chapter 7

181

vec2 uv = gl_TexCoord[0].xy;
tc = texture2D(sceneTex, uv).rgb * weight[0];
for (int i=1; i<3; i++) {
tc += texture2D(sceneTex, uv + vec2(0.0, offset[i])/rt_h).rgb *
weight[i];
 tc += texture2D(sceneTex, uv - vec2(0.0, offset[i])/rt_h).rgb *
 weight[i];
 }
 }
else if (gl_TexCoord[0].x>=(vx_offset+0.01)){
 tc = texture2D(sceneTex, gl_TexCoord[0].xy).rgb;
 }
gl_FragColor = vec4(tc, 1.0);
}

Create a file inside the assets folder with the name gaussian_h_frag.glsl and put the
following code snippet inside it:

#version 120

uniform sampler2D sceneTex; // 0

uniform float rt_w; // render target width
uniform float rt_h; // render target height
uniform float vx_offset;

float offset[3] = float[](0.0, 1.3846153846, 3.2307692308);
float weight[3] = float[](0.2270270270, 0.3162162162,
0.0702702703);

void main()
{
vec3 tc = vec3(1.0, 0.0, 0.0);
if (gl_TexCoord[0].x<(vx_offset-0.01)){
vec2 uv = gl_TexCoord[0].xy;
tc = texture2D(sceneTex, uv).rgb * weight[0];
for (int i=1; i<3; i++)
 {
 tc += texture2D(sceneTex, uv + vec2(offset[i])/rt_w, 0.0).rgb
 * weight[i];
 tc += texture2D(sceneTex, uv - vec2(offset[i])/rt_w, 0.0).rgb
 * weight[i];
 }

Using 2D Graphics

182

 }
else if (gl_TexCoord[0].x>=(vx_offset+0.01))
 {
 tc = texture2D(sceneTex, gl_TexCoord[0].xy).rgb;
 }
gl_FragColor = vec4(tc, 1.0);
}

3.	 Add the necessary headers:
#include "cinder/Utilities.h"
#include "cinder/gl/GlslProg.h"
#include "cinder/gl/Texture.h"
#include "cinder/ImageIo.h"
#include "cinder/gl/Fbo.h"

4.	 Add the properties to your application's main class:
gl::GlslProg mGaussianVShader, mGaussianHShader;
gl::Texture mImage, mImageBlur;
gl::Fbo mFboBlur1, mFboBlur2;
float offset, level;
params::InterfaceGl mParams;

5.	 Implement the setup method, as follows:
void MainApp::setup(){
 setWindowSize(512, 512);

 level = 0.5f;
 offset = 0.6f;

 mGaussianVShader = gl::GlslProg(loadAsset("passThru_vert.
 glsl"), loadAsset("gaussian_v_frag.glsl"));
 mGaussianHShader = gl::GlslProg(loadAsset("passThru_vert.
 glsl"), loadAsset("gaussian_h_frag.glsl"));
 mImage = gl::Texture(loadImage(loadAsset("image.png")));

 mFboBlur1 = gl::Fbo
 (mImage.getWidth(), mImage.getHeight());
 mFboBlur2 = gl::Fbo
 (mImage.getWidth(), mImage.getHeight());

// Setup the parameters
 mParams = params::InterfaceGl
 ("Parameters", Vec2i(200, 100));
 mParams.addParam

Chapter 7

183

 ("level", &level, "min=0 max=1 step=0.01");
 mParams.addParam
 ("offset", &offset, "min=0 max=1 step=0.01");
}

6.	 At the beginning of the draw method calculate the blur intensity:
float rt_w = mImage.getWidth()*3.f-mImage.getWidth()*2.f*level;
float rt_h = mImage.getHeight()*3.f-mImage.getHeight()*2.f*level;

7.	 In the draw function render an image to mFboBlur1 with a first step shader applied:
mFboBlur1.bindFramebuffer();
gl::setViewport(mFboBlur1.getBounds());
mImage.bind(0);
mGaussianVShader.bind();
mGaussianVShader.uniform("sceneTex", 0);
mGaussianVShader.uniform("rt_w", rt_w);
mGaussianVShader.uniform("rt_h", rt_h);
mGaussianVShader.uniform("vx_offset", offset);
gl::drawSolidRect(mFboBlur1.getBounds());
mGaussianVShader.unbind();
mFboBlur1.unbindFramebuffer();

8.	 In the draw function render a texture from mFboBlur1 with a second step
shader applied:
mFboBlur2.bindFramebuffer();
mFboBlur1.bindTexture(0);
mGaussianHShader.bind();
mGaussianHShader.uniform("sceneTex", 0);
mGaussianHShader.uniform("rt_w", rt_w);
mGaussianHShader.uniform("rt_h", rt_h);
mGaussianHShader.uniform("vx_offset", offset);
gl::drawSolidRect(mFboBlur2.getBounds());
mGaussianHShader.unbind();
mFboBlur2.unbindFramebuffer();

9.	 Set mImageBlur to the result texture from mFboBlur2:
mImageBlur = mFboBlur2.getTexture();

10.	 At the end of the draw method draw a texture with the result and GUI:

gl::clear(Color::black());
gl::setMatricesWindow(getWindowSize());
gl::setViewport(getWindowBounds());
gl::draw(mImageBlur);
params::InterfaceGl::draw();

Using 2D Graphics

184

How it works…
Since a Gaussian blur shader needs to be applied twice—for the vertical and horizontal
processing—we have to use frame buffer object (FBO), a mechanism of drawing to the texture
in the memory of graphic card. In step 8, we are drawing the original image from the mImage
object and applying shader program stored in the gaussian_v_frag.glsl file loaded into
mGaussianVShaderobject. At this point, everything is drawn into mFboBlur1. The next
step is to use a texture from mFboBlur2 and apply a shader to the second pass which you
can find in step 9. The final processed texture is stored in mImageBlur in step 10. In step 7
we are calculating blur intensity.

Implementing a force-directed graph
A force-directed graph is a way of drawing an aesthetic graph using simple physics such as
repealing and springs. We are going to make our graph interactive so that users can drag
nodes around and see how graph reorganizes itself.

Getting ready
In this recipe we are going to use the code base from the Creating a particle system in 2D
recipe in Chapter 5, Building Particle Systems. To get some details of how to draw nodes
and connections between them, please refer to the Connecting particles recipe in Chapter 6,
Rendering and Texturing Particle Systems.

Chapter 7

185

How to do it…
We will create an interactive force-directed graph. Perform the following steps to do so:

1.	 Add properties to your main application class.
vector< pair<Particle*, Particle*> > mLinks;
float mLinkLength;
Particle* mHandle;
bool mIsHandle;

2.	 In the setup method set default values and create a graph.
void MainApp::setup(){
 mLinkLength = 40.f;
 mIsHandle = false;

 float drag = 0.95f;

 Particle *particle = newParticle(getWindowCenter(), 10.f, 10.f,
 drag);
 mParticleSystem.addParticle(particle);

 Vec2f r = Vec2f::one()*mLinkLength;
 for (int i = 1; i<= 3; i++) {
 r.rotate(M_PI * (i/3.f));
 Particle *particle1 = newParticle(particle->position+r, 7.f,
 7.f, drag);
 mParticleSystem.addParticle(particle1);
 mLinks.push_back(make_pair(mParticleSystem.particles[0],
 particle1));

 Vec2f r2 = (particle1->position-particle->position);
 r2.normalize();
 r2 *= mLinkLength;
 for (int ii = 1; ii <= 3; ii++) {
 r2.rotate(M_PI * (ii/3.f));
 Particle *particle2 = newParticle(particle1->position+r2,
 5.f, 5.f, drag);
 mParticleSystem.addParticle(particle2);
 mLinks.push_back(make_pair(particle1, particle2));

 Vec2f r3 = (particle2->position-particle1->position);
 r3.normalize();
 r3 *= mLinkLength;
 for (int iii = 1; iii <= 3; iii++) {

Using 2D Graphics

186

r3.rotate(M_PI * (iii/3.f));
Particle *particle3 = newParticle(particle2->position+r3, 3.f,
3.f, drag);
mParticleSystem.addParticle(particle3);
mLinks.push_back(make_pair(particle2, particle3));
 }
 }
 }
}

3.	 Implement interaction with the mouse.
void MainApp::mouseDown(MouseEvent event){
 mIsHandle = false;

 float maxDist = 20.f;
 float minDist = maxDist;
 for(std::vector<Particle*>::iterator it = mParticleSystem.
 particles.begin(); it != mParticleSystem.particles.end(); ++it)
 {
 float dist = (*it)->position.distance(event.getPos());
 if(dist<maxDist&&dist<minDist) {
 mHandle = (*it);
 mIsHandle = true;
 minDist = dist;
 }
 }
}

void MainApp::mouseUp(MouseEvent event){
mIsHandle = false;
}

4.	 Inside the update method, calculate all forces affecting particles.
void MainApp::update() {
 for(std::vector<Particle*>::iterator it1 = mParticleSystem.
 particles.begin(); it1 != mParticleSystem.particles.end(); ++it1
)
 {
 for(std::vector<Particle*>::iterator it2 = mParticleSystem.
 particles.begin(); it2 != mParticleSystem.particles.end();
++it2){
 Vec2f conVec = (*it2)->position - (*it1)->position;
 if(conVec.length() <0.1f)continue;

Chapter 7

187

 float distance = conVec.length();
 conVec.normalize();
 float force = (mLinkLength*2.0f - distance)* -0.1f;
 force = math<float>::min(0.f, force);

 (*it1)->forces += conVec * force*0.5f;
 (*it2)->forces += -conVec * force*0.5f;
 }
 }

for(vector<pair<Particle*, Particle*> > ::iterator it = mLinks.
begin(); it != mLinks.end(); ++it){
 Vec2f conVec = it->second->position - it->first->position;
 float distance = conVec.length();
 float diff = (distance-mLinkLength)/distance;
 it->first->forces += conVec * 0.5f*diff;
 it->second->forces -= conVec * 0.5f*diff;
 }

 if(mIsHandle) {
 mHandle->position = getMousePos();
 mHandle->forces = Vec2f::zero();
 }

 mParticleSystem.update();
}

5.	 In the draw method implement drawing particles and links between them.
void MainApp::draw()
{
 gl::enableAlphaBlending();
 gl::clear(Color::white());
 gl::setViewport(getWindowBounds());
 gl::setMatricesWindow(getWindowWidth(), getWindowHeight());

 gl::color(ColorA(0.f,0.f,0.f, 0.8f));
 for(vector<pair<Particle*, Particle*> > ::iterator it = mLinks.
 begin(); it != mLinks.end(); ++it)
 {
 Vec2f conVec = it->second->position - it->first->position;
 conVec.normalize();
 gl::drawLine(it->first->position + conVec * (it->first-
 >radius+2.f),

Using 2D Graphics

188

 it->second->position - conVec * (it->second->radius+2.f));
 }

 gl::color(ci::ColorA(0.f,0.f,0.f, 0.8f));
 mParticleSystem.draw();
}

6.	 Inside the Particle.cpp source file, drawing of each particle should be
implemented, as follows:

void Particle::draw(){
 ci::gl::drawSolidCircle(position, radius);
 ci::gl::drawStrokedCircle(position, radius+2.f);
}

How it works…
In step 2, in the setup method, we are creating our particles for each level of the graph
and adding links between them. In the update method in step 4, we are calculating forces
affecting all particles, which is repelling each particle from each other, and forces coming
from the springs connecting the nodes. While repelling spreading particles, springs try to keep
them at a fixed distance defined in mLinkLength.

See also
ff The Wikipedia article on Force-directed graph drawing: http://en.wikipedia.

org/wiki/Force-based_algorithms_(graph_drawing)

8
Using 3D Graphics

In this chapter, we will learn how to work and draw with 3D graphics. The recipes in this
chapter will cover the following:

ff Drawing 3D geometric primitives

ff Rotating, scaling, and translating

ff Drawing to an offscreen canvas

ff Drawing in 3D with the mouse

ff Adding lights

ff Picking in 3D

ff Creating a height map from an image

ff Creating a terrain with Perlin noise

ff Saving mesh data

Introduction
In this chapter, we will learn the basics of creating graphics in 3D. We will use OpenGL and
some useful wrappers that Cinder includes on some advanced OpenGL features.

Drawing 3D geometric primitives
In this recipe, we will learn how to draw the following 3D geometric shapes:

ff Cube

ff Sphere

ff Line

Using 3D Graphics

190

ff Torus

ff Cylinder

Getting ready
Include the necessary header to draw in OpenGL using Cinder commands and statements.
Add the following code to the top of your source file:

#include "cinder/gl/gl.h"
#include "cinder/Camera.h"

using namespace ci;

How to do it…
We will create several geometric primitives using Cinder's methods for drawing in 3D.

1.	 Declare the member variables with information of our primitives:
Vec3f mCubePos, mCubeSize;
Vec3f mSphereCenter;
float mSphereRadius;
Vec3f mLineBegin, mLineEnd;
Vec3f mTorusPos;
float mTorusOuterRadius, mTorusInnerRadius;
Vec3f mCylinderPos;
float mCylinderBaseRadius, mCylinderTopRadius, mCylinderHeight;

2.	 Initialize the member variables with the position and sizes of the geometry. Add the
following code in the setup method:
mCubePos = Vec3f(100.0f, 300.0f, 100.0f);
mCubeSize = Vec3f(100.0f, 100.0f, 100.0f);

mSphereCenter = Vec3f(500, 250, 0.0f);
mSphereRadius = 100.0f;

mLineBegin = Vec3f(200, 0, 200);
mLineEnd = Vec3f(500, 500, -200);

mTorusPos = Vec3f(300.0f, 100.0f, 0.0f);
mTorusOuterRadius = 100.0f;
mTorusInnerRadius = 20.0f;

mCylinderPos = Vec3f(500.0f, 0.0f, -200.0f);
mCylinderBaseRadius = 50.0f;

Chapter 8

191

mCylinderTopRadius = 80.0f;
mCylinderHeight = 100.0f;

3.	 Before we draw the shapes, let's also create a camera to rotate around our shapes to
give us a better sense of perspective. Declare a ci::CameraPersp object:
CameraPerspmCamera;

4.	 Initialize it in the setup method:
mCamera = CameraPersp(getWindowWidth(), getWindowHeight(), 60.0f
);

5.	 In the update method, we will make the camera rotate around our scene. Add the
following code in the update method:
Vec2f windowCenter = getWindowCenter();
floatcameraAngle = getElapsedSeconds();
floatcameraDist = 450.0f;
float x = sinf(cameraAngle) * cameraDist + windowCenter.x;
float z = cosf(cameraAngle) * cameraDist;
mCamera.setEyePoint(Vec3f(x, windowCenter.y, z));
mCamera.lookAt(Vec3f(windowCenter.x, windowCenter.y, 0.0f));

6.	 In the draw method, we will clear the background with black and use mCamera to
define the window's matrices. We will also enable OpenGL to read and write to the
depth buffers. Add the following code in the draw method:
 gl::clear(Color::black());
 gl::setMatrices(mCamera);
 gl::enableDepthRead();
 gl::enableDepthWrite();

7.	 Cinder allows you to draw filled and stroked cubes, so let's draw a cube with a white
fill and black stroke:
gl::color(Color::white());
gl::drawCube(mCubePos, mCubeSize);
gl::color(Color::black());
gl::drawStrokedCube(mCubePos, mCubeSize);

8.	 Let's define the drawing color again as white, and draw a sphere with
mSphereCenter and mSphereRadius as the sphere's position and radius, and the
number of segments as 30.
gl::color(Color::white());
gl::drawSphere(mSphereCenter, mSphereRadius, 30);

9.	 Draw a line that begins at mLineBegin and ends at mLineEnd:
gl::drawLine(mLineBegin, mLineEnd);

Using 3D Graphics

192

10.	 Cinder draws a Torus at the coordinates of the origin [0,0]. So, we will
have to translate it to the desired position at mTorusPos. We will be using
mTorusOuterRadius and mTorusInnerRadius to define the shape's
inner and outer sizes:
gl::pushMatrices();
gl::translate(mTorusPos);
gl::drawTorus(mTorusOutterRadius, mTorusInnerRadius);
gl::popMatrices();

11.	 Finally, Cinder will draw a cylinder at the origin [0,0], so we will have to
translate it to the position defined in mCylinderPosition. We will also
be using mCylinderBaseRadius and mCylinderTopRadius, to set the
cylinder's bottom and top sizes and mCylinderHeight, to set its height:

gl::pushMatrices();
gl::translate(mCylinderPos);
gl::drawCylinder(mCylinderBaseRadius, mCylinderTopRadius,
mCylinderHeight);
gl::popMatrices();

How it works…
Cinder's drawing methods use OpenGL calls internally to provide fast and easy
drawing routines.

The method ci::gl::color sets the drawing color so that all shapes will be drawn
with that color until another color is set by calling ci::gl::color again.

See also
To learn more about OpenGL transformations such as translation, scale, and rotation, please
read the recipe Rotating, scaling, and translating.

Chapter 8

193

Rotating, scaling, and translating
In this recipe, we will learn how to transform our graphics using OpenGL transformations.

We will draw a unit cube at [0,0,0] coordinates and then we will translate it to the center of
the window, apply rotation, and scale it to a more visible size.

Getting ready
Include the necessary files to draw with OpenGL and add the helpful using statements. Add
the following code to the top of the source file:

#include "cinder/gl/gl.h"
using namespace ci;
using namespace ci::app;
using namespace std;

How to do it…
We will apply rotation, translation, and scaling to alter the way our cube is rendered. We will
use Cinder's wrappers for OpenGL.

1.	 Let's declare variables to store our values for the translation, rotation, and scale
transformations:
 Vec3f mTranslation;
 Vec3f mScale;
 Vec3f mRotation;

2.	 To define the translation amount, let's translate half the window's width on the x
axis and half the window's height on the y axis. This will bring anything we draw at
[0,0,0] to the center of the window. Add the following code in the setup method:
mTranslation.x = getWindowWidth() / 2;
mTranslation.y = getWindowHeight() / 2;
mTranslation.z = 0.0f;

3.	 Let's set the scale factor to be 100 on the x axis, 200 on the y axis, and 100 on the
z axis. Anything we draw will be 100 times bigger on the x and z axes and 200 times
bigger on the y axis. Add the following code in the setup method:
mScale.x = 100.0f;
mScale.y = 200.0f;
mScale.z = 100.0f;

Using 3D Graphics

194

4.	 In the update method, we will animate the rotation values by incrementing the
rotation on the x and y axes.
mRotation.x += 1.0f;
mRotation.y += 1.0f;

5.	 In the draw method, let's begin by clearing the background with black, setting the
windows matrices to allow for drawing in 3D, and enabling OpenGL to read and write
the depth buffer:
gl::clear(Color(0, 0, 0));
gl::setMatricesWindowPersp(getWindowWidth(), getWindowHeight());
gl::enableDepthRead();
gl::enableDepthWrite();

6.	 Let's add a new matrix to the stack and translate, scale, and rotate using the
previously defined variables:
gl::pushMatrices();
gl::translate(mTranslation);
gl::scale(mScale);
gl::rotate(mRotation);

7.	 Draw a unit quad at the origin [0,0,0] with a white fill and black stroke:
gl::color(Color::white());
gl::drawCube(Vec3f(), Vec3f(1.0f, 1.0f, 1.0f));
gl::color(Color::black());
gl::drawStrokedCube(Vec3f(), Vec3f(1.0f, 1.0f, 1.0f));

8.	 Finally, remove the previously added matrix:

gl::popMatrices();

Chapter 8

195

How it works…
The calls to ci::gl::enableDepthRead and ci::gl::enableDepthWrite
respectively, enable reading and writing to the depth buffer. The depth buffer is where the
depth information is stored.

When reading and writing to the depth buffer is enabled, OpenGL will sort objects so that
closer objects are drawn in front of farther objects. When reading and writing to the depth
buffer, the disabled objects will be drawn in the order they where created.

The methods ci::gl::translate, ci::gl::rotate, and ci::gl::scale are wrappers
of OpenGL commands for translating, rotating, and scaling, which allow you to pass Cinder
types as parameters.

Transformations in OpenGL are applied by multiplying vertex coordinates with transformation
matrices. When we call the method ci::gl::pushMatrices, we add a copy of the current
transformation matrix to the matrix stack. Calls to ci::gl::translate, ci::gl::rotate,
or ci::gl::scale will apply the correspondent transformations to the last matrix in the
stack, which will be applied to whatever geometry is created after calling the transformation
methods. A call to ci::gl::popMatrix will remove the last transformation matrix in the
stack so that transformations added to the last matrix will no longer affect our geometry.

Drawing to an offscreen canvas
In this recipe, we will learn how to draw in an offscreen canvas using the OpenGL Frame
Buffer Object (FBO).

We will draw in an FBO and draw it onscreen as well as texture a rotating cube.

Getting ready
Include the necessary files to work with OpenGL and the FBOs as well as the useful include
directives.

Add the following code to the top of the source file:

#include "cinder/gl/gl.h"
#include "cinder/gl/Fbo.h"

using namespace ci;

Using 3D Graphics

196

How to do it…
We will use a ci::gl::Fbo object, a wrapper to an OpenGL FBO, to draw in an
offscreen destination.

1.	 Declare a ci::gl::Fbo object as well as a ci::Vec3f object to define the
cube's rotation:
gl::FbomFbo;
Vec3f mCubeRotation;

2.	 Initialize mFbo with a size of 256 x 256 pixels by adding the following code in
the setup method:
mFbo = gl::Fbo(256, 256);

3.	 Animate mCubeRotation in the update method:
mCubeRotation.x += 1.0f;
mCubeRotation.y += 1.0f;

4.	 Declare a method where we will draw to the FBO:
void drawToFbo();

5.	 In the implementation of drawToFbo, we will begin by creating a
ci::gl::SaveFramebufferBinding object and then bind mFbo.
gl::SaveFramebufferBinding fboBindingSave;
mFbo.bindFramebuffer();

6.	 Now we will clear the background with a dark gray color and set the matrices
using the FBO's width and height.
gl::clear(Color(0.3f, 0.3f, 0.3f));
gl::setMatricesWindowPersp(mFbo.getWidth(), mFbo.getHeight());

7.	 Now we will draw a rotating color cube at the center of the FBO with size 100
and using mCubeRotation to rotate the cube.
gl::pushMatrices();
Vec3f cubeTranslate(mFbo.getWidth() / 2, mFbo.getHeight() / 2,
0.0f);
gl::translate(cubeTranslate);
gl::rotate(mCubeRotation);
gl::drawColorCube(Vec3f(), Vec3f(100, 100, 100));
gl::popMatrices();

8.	 Let's move to the implementation of the draw method. Start by calling the method
drawToFbo, clearing the background with black, setting the window's matrices,
and enable reading and writing to the depth buffer. Add the following code in the
draw method:

Chapter 8

197

drawToFbo();
gl::clear(Color(0, 0, 0));
gl::setMatricesWindowPersp(getWindowWidth(), getWindowHeight());
gl::enableDepthRead();
gl::enableDepthWrite();

Lets draw our Fbo at the top left corner of the window using mFbo texture:

gl::draw(mFbo.getTexture(), Rectf(0.0f, 0.0f, 100.0f, 100.0f)
);

9.	 Enable and bind the texture of mFbo:
mFbo.getTexture().enableAndBind();

10.	 Draw a rotating cube at the center of the window using mCubeRotation to define
its rotation:
gl::pushMatrices();
Vec3f center(getWindowWidth() / 2, getWindowHeight() / 2, 0.0f);
gl::translate(center);
gl::rotate(mCubeRotation);
gl::drawCube(Vec3f(), Vec3f(200.0f, 200.0f, 200.0f));
gl::popMatrices();

11.	 To finalize, unbind the texture of mFbo:

mFbo.unbindTexture();

Using 3D Graphics

198

How it works…
The class ci::gl::Fbo wraps an OpenGL FBO.

Frame Buffer Objects are OpenGL objects that contain a collection of buffers that can be
used as rendering destinations. The OpenGL context provides a default frame buffer where
rendering occurs. Frame Buffer Objects allow rendering to alternative, offscreen locations.

The FBO has a color texture where the graphics are stored, and it can be bound and drawn
like a regular OpenGL texture.

On step 5, we created a ci::gl::SaveFramebufferBinding object, which is a helper
class that restores the previous FBO state. When using OpenGL ES, this object will restore and
bind the previously bound FBO (usually the screen FBO) when it is destroyed.

See also
See the recipe Rotating, scaling, and translating to learn more about OpenGL transformations.

Drawing in 3D with the mouse
In this recipe, we will draw with the mouse on a 3D space. We will draw lines when
dragging the mouse or rotate the scene in 3D when dragging and pressing the Shift
key simultaneously.

Getting ready
Include the necessary files to draw using OpenGL, as well as the files needed to use Cinder's
perspective, Maya camera, and poly lines.

#include "cinder/gl/gl.h"
#include "cinder/Camera.h"
#include "cinder/MayaCamUI.h"
#include "cinder/PolyLine.h"

Also, add the following using statements:

using namespace ci;
using namespace ci::app;
using namespace std;

Chapter 8

199

How to do it…
We will use the ci::CameraPersp and ci::Ray classes to convert the mouse coordinates
to our rotated 3D scene.

1.	 Declare a ci::MayaCamUI object and a std::vector object of
ci::PolyLine<ci::Vec3f> to store the drawn lines:
MayaCamUI mCamera;
vector<PolyLine<Vec3f> > mLines;

2.	 In the setup method, we will create ci::CameraPersp and set it up so that the
point of interest is the center of the window. We will also set the camera as the
current camera of mCamera:
CameraPersp cameraPersp(getWindowWidth(),
getWindowHeight(), 60.0f);
Vec3f center(getWindowWidth() / 2, getWindowHeight() / 2,
0.0f);
cameraPersp.setCenterOfInterestPoint(center);
mCamera.setCurrentCam(cameraPersp);

3.	 In the draw method, let's clear the background with black and use our camera to set
the window's matrices.
 gl::clear(Color(0, 0, 0));
gl::setMatrices(mCamera.getCamera());

4.	 Now let's iterate mLines and draw each ci::PolyLine. Add the following code to
the draw method:
for(vector<PolyLine<Vec3f> > ::iterator it = mLines.begin(); it
!= mLines.end(); ++it){
gl::draw(*it);
 }

5.	 With our scene set up and the lines being drawn, we need to create the 3D
perspective! Let's start by declaring a method to convert coordinates from the screen
position to world position. Add the following method declaration:
 Vec3f screenToWorld(const Vec2f&point) const;

6.	 In the screenToWorld implementation, we need to generate a ray from point
using the cameras perspective. Add the following code in screenToWorld:
float u = point.x / (float)getWindowWidth();
float v = point.y / (float)getWindowHeight();

const CameraPersp& cameraPersp = mCamera.getCamera();

Ray ray = cameraPersp.generateRay(u, 1.0f - v, cameraPersp.
getAspectRatio());

Using 3D Graphics

200

7.	 Now we need to calculate where the ray will intersect with a perpendicular plane
at the camera's center of interest and then return the intersection point. Add the
following code in the screenToWorld implementation:
float result = 0.0f;
Vec3f planePos = cameraPersp.getCenterOfInterestPoint();
Vec3f normal = cameraPersp.getViewDirection();

ray.calcPlaneIntersection(planePos, normal, &result);

Vec3f intersection= ray.calcPosition(result);
return intersection;

8.	 Let's use the previously defined method to draw with the mouse. Declare the
mouseDown and mouseDrag event handlers:
void mouseDown(MouseEvent event);
void mouseDrag(MouseEvent event);

9.	 In the implementation of mouseDown, we will check if the Shift key is being pressed.
If it is, we will call the mouseDown method of mCamera, otherwise, we will add
ci::PolyLine<ci::Vec3f> to mLines, calculate the world position of the mouse
cursor using screenToWorld, and add it:
void MyApp::mouseDown(MouseEvent event){
 if(event.isShiftDown()){
 mCamera.mouseDown(event.getPos());
 }
else {
 mLines.push_back(PolyLine<Vec3f>());
 Vec3f point = screenToWorld(event.getPos());
 mLines.back().push_back(point);
 }
}

10.	 In the implementation of mouseDrag, we will check if the Shift key is being pressed.
If it is, we will call the mouseDrag method to mCamera, otherwise, we will calculate
the world position of the mouse cursor and add it to last line in mLines.
void Pick3dApp::mouseDrag(MouseEvent event){
 if(event.isShiftDown()){
 mCamera.mouseDrag(event.getPos(), event.isLeftDown(), event.
 isMiddleDown(), event.isRightDown());
 } else {
 Vec3f point = screenToWorld(event.getPos());
 mLines.back().push_back(point);
 }
}

Chapter 8

201

11.	 Build and run the application. Press and drag the mouse to draw a line. Press the
Shift key and press and drag the mouse to rotate the scene.

How it works…
We use ci::MayaCamUI to easily rotate our scene.

The ci::Ray class is a representation of a ray, containing an origin, direction, and an
infinite length. It provides useful methods to calculate intersections between rays and
triangles or planes.

To calculate the world position of the mouse cursor we calculated a ray going from the
camera's eye position in the camera's view direction.

We then calculated the intersection of the ray with the plane at the center of the scene,
perpendicular to the camera.

The calculated position is then added to a ci::PolyLine<ci::Vec3f> object to draw
the lines.

See also
ff To learn more on how to use ci::MayaCamUI, please refer to the recipe Using

MayaCamUI from Chapter 2, Preparing for Development.

ff To learn how to draw in 2D, please read the recipe Drawing arbitrary shapes with
the mouse from Chapter 7, Using 2D Graphics.

Adding lights
In this chapter, we will learn how to illuminate a 3D scene using OpenGL lights.

Getting ready
Include the necessary files to use OpenGL lights, materials, and draw. Add the following code
to the top of the source file:

#include "cinder/gl/gl.h"
#include "cinder/gl/Light.h"
#include "cinder/gl/Material.h"

Also add the following using statements:

using namespace ci;
using namespace ci::app;
using namespace std;

Using 3D Graphics

202

How to do it…
We will use the default OpenGL light rendering methods to illuminate our scene. We will use
the ci::gl::Material and ci::gl::Light classes, which are wrappers around the
OpenGL functionality.

1.	 Declare ci::gl::Material to define the material properties of the objects being
drawn and ci::Vec3f to define the lights position.
gl::Material mMaterial;
Vec3f mLightPos;

2.	 Let's set the materials Ambient, Diffuse, Specular, Emission, and Shininess
properties by adding the following code in the setup method:
mMaterial.setAmbient(Color::black());
mMaterial.setDiffuse(Color(1.0f, 0.0f, 0.0f));
mMaterial.setSpecular(Color::white());
mMaterial.setEmission(Color::black());
mMaterial.setShininess(128.0f);

3.	 In the update method, we will use the mouse to define the light position. Add the
following code in the update method:
mLightPos.x = getMousePos().x;
mLightPos.y = getMousePos().y;
mLightPos.z = 200.0f;

4.	 In the draw method, we will begin by clearing the background, setting the window's
matrices, and enabling reading and writing to the depth buffer.
gl::clear(Color::black());
gl::setMatricesWindowPersp(getWindowWidth(), getWindowHeight());
gl::enableDepthWrite();
gl::enableDepthRead();

5.	 Let's create an OpenGL light using a ci::gl::Light object. We will define it as a
POINT light and set its ID to 0. We will also set its position to mLightPos and define
its attenuation.
gl::Light light(gl::Light::POINT, 0);
light.setPosition(mLightPos);
light.setAttenuation(1.0f, 0.0f, 0.0f);

6.	 Let's enable OpenGL lighting, the previously created light, and apply the material.
glEnable(GL_LIGHTING);
light.enable();
mMaterial.apply();

Chapter 8

203

7.	 Let's draw a rotating Torus at the center of the window and use the elapsed seconds
to rotate it. Add the following code to the draw method:
gl::pushMatrices();
gl::translate(getWindowCenter());
float seconds = (float)getElapsedSeconds() * 100.0f;
glRotatef(seconds, 1.0f, 0.0f, 0.0f);
glRotatef(seconds, 0.0f, 1.0f, 0.0f);
gl::drawTorus(100.0f, 40.0f, 30, 30);
gl::popMatrices();

8.	 Finally, disable the light:
light.disable();

9.	 Build and run the application; you will see a red rotating torus. Move the mouse to
change the lights position.

How it works…
We are using the ci::gl::Material and ci::gl::Light objects, which are helper
classes to define the properties of lights and materials.

Using 3D Graphics

204

The material properties defined in the setup method, work in the following ways:

Material Property Function

Ambient How an object can reflect light that comes in all
directions.

Diffuse How an object reflects light that comes from a
specific direction or position.

Specular The light that an object will reflect as a result of
diffuse lighting.

Emission Light emitted by the object.

Shininess The angle that the object will reflect specular
light. Has to be a value between 1 and 128.

The material ambient, diffuse, and specular colors will multiply with the ambient, diffuse,
and specular colors coming from the light source, which are all white by default.

It is possible to define three different types of lights. In the previous example, we defined
our light source to be of type ci::gl::Light::POINT.

Here are the available types of light and their properties:

Light Type Properties

ci::gl::Light::POINT Point light is the light coming from a specific
position in space and illuminating in all
directions.

ci::gl::Light::DIRECTION Directional light simulates light coming from
a position so far away that all light rays are
parallel and arrive in the same direction.

ci::gl::Light::SPOTLIGHT Spotlight is the light coming from a specific
position in space and a specific direction.

We also defined the attenuation values. Lights in OpenGL allow for defining the values for
the constant attenuation, linear attenuation, and quadratic attenuation. These define how
the light becomes dimmer as the distance from the light source increases.

To illuminate geometry, it is necessary to calculate the normal for each vertex. All shapes
created using Cinder's commands have their normal calculated for us, so we don't have to
worry about that.

Chapter 8

205

There's more…
It is also possible to define the ambient, diffuse, and specular colors coming from the
light source. The values defined in these colors will multiply with the correspondent colors
of the material.

Here are the ci::gl::Light methods that allow you to define the light colors:

Method Light

setAmbient(const Color& color) Color of the ambient light.
setDiffuse(const Color& color) Color of the diffuse light.
setSpecular(const Color& color) Color of the specular light.

It is possible to create more than one light source. The amount of lights is dependent on the
implementation of the graphics card, but it is always at least 8.

To create more light sources, simply create more ci::gl::Light objects and make sure
each gets a unique ID.

See also
Please read the recipe Calculating vertex normals to learn how to calculate the vertex normals
for user created geometry.

Picking in 3D
In this recipe, we will calculate the intersection of the mouse cursor with a 3D model.

Getting ready
Include the necessary files to draw using OpenGL, use textures and load images, load 3D
models, define OpenGL lights and materials, and use Cinder's Maya camera.

#include "cinder/gl/gl.h"
#include "cinder/gl/Texture.h"
#include "cinder/gl/Light.h"
#include "cinder/gl/Material.h"
#include "cinder/TriMesh.h"
#include "cinder/ImageIo.h"
#include "cinder/MayaCamUI.h"

Using 3D Graphics

206

Also, add the following using statements:

using namespace ci;
using namespace ci::app;
using namespace std;

We will use a 3D model, so place a file and its texture in the assets folder. For this example,
we will be using a mesh file named ducky.msh and a texture named ducky.png.

How to do it…
1.	 We will use the ci::CameraPersp and ci::Ray classes to convert the mouse

coordinates to our rotated 3D scene and calculate the intersection with a 3D model.

2.	 Declare the members to define the 3D model and its intersection with the mouse,
as well as a ci::MayaCamUI object for easy navigation, and a ci::gl::Material
for lighting:
TriMesh mMesh;
gl::Texture mTexture;
MayaCamUI mCam;
bool mIntersects;
Vec3f mNormal, mHitPos;
AxisAlignedBox3f mMeshBounds;
gl::Material mMaterial;

3.	 Declare a method where we will calculate the intersection between a ci::Ray class
and the triangles that make up mMesh.
void calcIntersectionWithMeshTriangles(const ci::Ray& ray);

4.	 In the setup method, lets load the model and texture and calculate its bounding box:
mMesh.read(loadAsset("ducky.msh"));
mTexture = loadImage(loadAsset("ducky.png"));
mMeshBounds = mMesh.calcBoundingBox();

5.	 Let's define the camera and make it look as if it's at the center of the model. Add the
following code in the setup method:
CameraPersp cam;
Vec3f modelCenter = mMeshBounds.getCenter();
cam.setEyePoint(modelCenter + Vec3f(0.0f, 0.0f, 20.0f));
cam.setCenterOfInterestPoint(modelCenter);
mCam.setCurrentCam(cam);

Chapter 8

207

6.	 Finally, set up the material for the model's lighting.
mMaterial.setAmbient(Color::black());
mMaterial.setDiffuse(Color::white());
mMaterial.setEmission(Color::black());

7.	 Declare the handlers for the mouseDown and mouseDrag events.
void mouseDown(MouseEvent event);
void mouseDrag(MouseEvent event);

8.	 Implement these methods by calling the necessary methods of mCam:
void MyApp::mouseDown(MouseEvent event){
 mCam.mouseDown(event.getPos());
}

void MyApp::mouseDrag(MouseEvent event){
 mCam.mouseDrag(event.getPos(), event.isLeftDown(), event.
 isMiddleDown(), event.isRightDown());
}

9.	 Let's implement the update method and calculate the intersection between
the mouse cursor and our model. Let's begin by getting the mouse position
and then calculate ci::Ray emitting from our camera:
Vec2f mousePos = getMousePos();
float u = mousePos.x / (float)getWindowWidth();
float v = mousePos.y / (float)getWindowHeight();
CameraPersp cameraPersp = mCam.getCamera();
Ray ray = cameraPersp.generateRay(u, 1.0f - v, cameraPersp.
getAspectRatio());

10.	 Let's perform a fast test and check if the ray intersects with the model's
bounding box. If the result is true, we will call the
calcIntersectionWithMeshTriangles method.
 if(mMeshBounds.intersects(ray) == false){
 mIntersects = false;
 } else {
 calcIntersectionWithMeshTriangles(ray);
 }

11.	 Let's implement the calcIntersectionWithMeshTriangles method.
We will iterate over all the triangles of our model and calculate the nearest
intersection and store its index.
float distance = 0.0f;
float resultDistance = 999999999.9f;
int resultIndex = -1;

Using 3D Graphics

208

int numTriangles = mMesh.getNumTriangles();
for(int i=0; i<numTriangles; i++){
 Vec3f v1, v2, v3;
 mMesh.getTriangleVertices(i, &v1, &v2, &v3);
 if(ray.calcTriangleIntersection(v1, v2, v3, &distance)
){
 if(distance <resultDistance){
 resultDistance = distance;
 resultIndex = i;
 }
 }
 }

12.	 Let's check if there was any intersection and calculate its position and normal. If no
intersection was found, we will simply set mIntersects to false.
if(resultIndex> -1){
 mHitPos = ray.calcPosition(resultDistance);
 mIntersects = true;
 Vec3f v1, v2, v3;
 mMesh.getTriangleVertices(resultIndex, &v1, &v2, &v3);
 mNormal = (v2 - v1).cross(v3 - v1);
 mNormal.normalize();
 } else {
 mIntersects = false;
 }

13.	 With the intersection calculated, let's draw the model, intersection point, and normal.
Start by clearing the background with black, setting the window's matrices using our
camera, and enabling reading and writing to the depth buffer. Add the following code
in the draw method:
gl::clear(Color(0, 0, 0));
gl::setMatrices(mCam.getCamera());
gl::enableDepthRead();
gl::enableDepthWrite();

14.	 Now let's create a light and set its position as the camera's eye position. We'll also
enable the light and apply the material.
gl::Light light(gl::Light::POINT, 0);
light.setPosition(mCam.getCamera().getEyePoint());
light.setAttenuation(1.0f, 0.0f, 0.0f);
glEnable(GL_LIGHTING);
light.enable();
mMaterial.apply();

Chapter 8

209

15.	 Now enable and bind the models texture, draw the model, and disable both texture
and lighting.
mTexture.enableAndBind();
gl::draw(mMesh);
mTexture.unbind();
glDisable(GL_LIGHTING);

16.	 Finally, we will check if mIntersects is true and draw a sphere at the intersection
point and the normal vector.

if(mIntersects){
 gl::color(Color::white());
 gl::drawSphere(mHitPos, 0.2f);
 gl::drawVector(mHitPos, mHitPos + (mNormal * 2.0f));
 }

How it works…
To calculate the intersection of the mouse with the model in 3D, we generated a ray from the
mouse position towards the view direction of the camera.

For performance reasons, we first calculate if the ray intersects with the model's bounding box.
In case there is an intersection with the model, we further calculate the intersection between
the ray and each triangle that makes up the model. For every intersection found, we check its
distance and calculate the intersection point and the normal of only the nearest intersection.

Using 3D Graphics

210

Creating a height map from an image
In this recipe, we will learn how to create a point cloud based on an image selected by the
user. We will create a grid of points where each point will correspond to a pixel. The x and
y coordinates of each point will be equal to the pixel's position on the image, and the z
coordinate will be calculated based on its color.

Getting ready
Include the necessary files to work with OpenGL, image surfaces, VBO meshes, and
loading images.

Add the following code to the top of the source file:

#include "cinder/gl/gl.h"
#include "cinder/Surface.h"
#include "cinder/gl/Vbo.h"
#include "cinder/MayaCamUI.h"
#include "cinder/ImageIo.h"

Also, add the following using statements:

using namespace ci;
using namespace ci::app;
using namespace std;

How to do it…
We will learn how to read pixel values from an image and create a point cloud.

1.	 Declare ci::Surface32f to store the image pixels, ci::gl::VboMesh that we will
use as the point cloud, and ci::MayaCamUI for easy rotation of our scene.
Surface32f mImage;
gl::VboMesh mPointCloud;gl::VboMesh mPointCloud;
MayaCamUI mCam;

2.	 In the setup method, we will first open a file load dialog and then let the user select
the image to use and check if it returns a valid path.
fs::path imagePath = getOpenFilePath("",
ImageIo::getLoadExtensions());
if(imagePath.empty() == false){

Chapter 8

211

3.	 Next, let's load the image and initialize mPointCloud. We will set the
ci::gl::VboMesh::Layout to have dynamic positions and colors so that
we will be able to change them later.
mImage = loadImage(imagePath);
int numPixels = mImage.getWidth() * mImage.getHeight();
gl::VboMesh::Layout layout;
layout.setDynamicColorsRGB();
layout.setDynamicPositions();
mPointCloud = gl::VboMesh(numPixels, 0, layout, GL_POINTS);

4.	 Next, we'll iterate over the image's pixels and update the vertices in mPointCloud.
Surface32f::IterpixelIt = mImage.getIter();
gl::VboMesh::VertexItervertexIt(mPointCloud);
while(pixelIt.line()){
 while(pixelIt.pixel()){
 Color color(pixelIt.r(), pixelIt.g(),
pixelIt.b());
 float height = color.get(CM_RGB).length();
 float x = pixelIt.x();
 float y = mImage.getHeight() - pixelIt.y();
 float z = height * 100.0f;
 vertexIt.setPosition(x,y, z);
 vertexIt.setColorRGB(color);
 ++vertexIt;
 }
 }

5.	 Now we will set up the camera so that it will rotate around the center of the point
cloud and close the if statement we began on the second step.
 Vec3f center((float)mImage.getWidth()/2.0f, (float)
mImage.getHeight()/2.0f, 50.0f);
 CameraPersp camera(getWindowWidth(), getWindowHeight(), 60.0f
);
 camera.setEyePoint(Vec3f(center.x, center.y, (float)mImage.
 getHeight()));
 camera.setCenterOfInterestPoint(center);
 mCam.setCurrentCam(camera);
 }

6.	 Let's declare and implement the necessary mouse event handlers to use mCam.
void mouseDown(MouseEvent event);	
void mouseDrag(MouseEvent event);

Using 3D Graphics

212

7.	 And implement them:
void MyApp::mouseDown(MouseEvent event){
 mCam.mouseDown(event.getPos());
}

void MyApp::mouseDrag(MouseEvent event){
 mCam.mouseDrag(event.getPos(), event.isLeft(), event.
 isMiddle(), event.isRight());
}

8.	 In the draw method, we will begin by clearing the background, setting the window's
matrices defined by mCam, and enable reading and writing the depth buffer.
gl::clear(Color(0, 0, 0));
gl::setMatrices(mCam.getCamera());
gl::enableDepthRead();
gl::enableDepthWrite();

9.	 Finally, we will check if mPointCloud is a valid object and draw it.
if(mPointCloud){
 gl::draw(mPointCloud);
 }

10.	 Build and run the application. You will be prompted with a dialog box to select an
image file. Select it and you will see a point cloud representation of the image.
Drag the mouse cursor to rotate the scene.

Chapter 8

213

How it works…
We started by loading an image into ci::Surface32f. This surface stores pixels as float
numbers in the range from 0 to 1.

We created a grid of points where the x and y coordinates represented the pixel's position on
the image and the z coordinate was the length of the color's vector.

The point cloud is represented by a ci::gl::VboMesh, which is a mesh of vertices,
normal, colors, and indexes with an underlying Vertex Buffer Object. It allows for optimized
drawing of geometry.

Creating a terrain with Perlin noise
In this recipe, we will learn how to construct a surface in 3D using Perlin noise to create
organic deformations that resemble a piece of terrain.

Getting ready
Include the necessary files to draw using OpenGL, Perlin noise, a Maya camera for navigation,
and Cinder's math utilities. Add the following code to the top of the source file:

#include "cinder/gl/gl.h"
#include "cinder/Perlin.h"
#include "cinder/MayaCamUI.h"
#include "cinder/CinderMath.h"

Also, add the following using statements:

using namespace ci;
using namespace ci::app;
using namespace std;

How to do it…
We will create a grid of 3D points and use Perlin noise to calculate a smooth surface.

1.	 Declare struct to store the vertices of the terrain by adding the following code
before the applications class declaration:
struct Vertice{
 Vec3f position;
 Color color;
};

Using 3D Graphics

214

2.	 Add the following members to the applications class declaration:
vector< vector<Vertice> > mTerrain;
int mNumRows, mNumLines;
MayaCamUI mCam;
Perlin mPerlin;

3.	 In the setup method, define the number of rows and lines that will make up the
terrain's grid. Also, define the gap distance between each point.
mNumRows = 50;
mNumLines = 50;
float gap = 5.0f;

4.	 Add the vertices to mTerrain by creating a grid of points laid on the x and z axis. We
will use the values generated by ci::Perlin to calculate each points height. We will
also use the height of the points to define their color:
 mTerrain.resize(mNumRows);
 for(int i=0; i<mNumRows; i++){
 mTerrain[i].resize(mNumLines);
 for(int j=0; j<mNumLines; j++){
 float x = (float)i * gap;
 float z = (float)j * gap;
 float y = mPerlin.noise(x*0.01f, z*0.01) * 100.0f;
 mTerrain[i][j].position = Vec3f(x, y, z);
 float colorVal = lmap(y, -100.0f, 100.0f, 0.0f, 1.0f
);
 mTerrain[i][j].color = Color(colorVal, colorVal,
colorVal);
 }
 }

5.	 Now let's define our camera so that it points to the center of the terrain.
float width = mNumRows * gap;
float height = mNumLines * gap;
Vec3f center(width/2.0f, height/2.0f, 0.0f);
Vec3f eye(center.x, center.y, 300.0f);
CameraPersp camera(getWindowWidth(), getWindowHeight(), 60.0f);
camera.setEyePoint(eye);
camera.setCenterOfInterestPoint(center);
mCam.setCurrentCam(camera);

Chapter 8

215

6.	 Declare the mouse event handlers to use mCam.
Void mouseDown(MouseEvent event);
void mouseDrag(MouseEvent event);
 }

7.	 Now let's implement the mouse handlers.
void MyApp::mouseDown(MouseEvent event){
 mCam.mouseDown(event.getPos());
}
void MyApp::mouseDrag(MouseEvent event){
 mCam.mouseDrag(event.getPos(), event.isLeft(), event.
 isMiddle(), event.isRight());
}

8.	 In the draw method, let's start by clearing the background, setting the matrices using
mCam, and enabling reading and writing of the depth buffer.
gl::clear(Color(0, 0, 0));
gl::setMatrices(mCam.getCamera());
gl::enableDepthRead();
gl::enableDepthWrite();

9.	 Now enable OpenGL to use the VERTEX and COLOR arrays:
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_COLOR_ARRAY);

10.	 We will use a nested for loop to iterate over the terrain and draw each strip of terrain
as GL_TRIANGLE_STRIP.

for(int i=0; i<mNumRows-1; i++){
 vector<Vec3f> vertices;
 vector<ColorA> colors;
 for(int j=0; j<mNumLines; j++){

 vertices.push_back(mTerrain[i][j].position);
 vertices.push_back(mTerrain[i+1][j].position);
 colors.push_back(mTerrain[i][j].color);
 colors.push_back(mTerrain[i+1][j].color);

 }

Using 3D Graphics

216

 glColor3f(1.0f, 1.0f, 1.0f);
 glVertexPointer(3, GL_FLOAT, 0, &vertices[0]);
 glColorPointer(4, GL_FLOAT, 0, &colors[0]);
 glDrawArrays(GL_TRIANGLE_STRIP, 0, vertices.size());
 }

How it works…
Perlin noise is a coherent random number generator capable of creating organic textures
and transitions.

We used the values created by the ci::Perlin object to calculate the height of the vertices
that make up the terrain and create smooth transitions between vertices.

There's more…
We can also animate our terrain by adding an increasing offset to the coordinates used to
calculate the Perlin noise. Declare the following member variables in your class declaration:

float offsetX, offsetZ;

In the setup method, initialize them.

offsetX = 0.0f;
offsetZ = 0.0f;

Chapter 8

217

In the update method animate each offset value by adding 0.01.

offsetX += 0.01f;
offsetZ += 0.01f;

Also in the update method, we will iterate over all the vertices of mTerrain. For each vertex
we will use its x and z coordinates to calculate the Y coordinate with mPerlin noise, but
we will offset the coordinates.

 for(int i=0; i<mNumRows; i++){
 for(int j=0; j<mNumLines; j++){
 Vertice& vertice = mTerrain[i][j];
 float x = vertice.position.x;
 float z = vertice.position.z;
 float y = mPerlin.noise(x*0.01f + offsetX, z*0.01f + offsetZ) *
 100.0f;
 vertice.position.y = y;
 }
 }

Saving mesh data
Provided that you are using a TriMesh class to store 3D geometry, we will show you how to
save it in a file.

Getting ready
We are assuming that you are using a 3D model stored in TriMesh object. Sample
application loading 3D geometry can be found in Cinder samples directory in the folder:
OBJLoaderDemo.

How to do it…
We will implement saving a 3D mesh data.

1.	 Include necessary headers:
#include "cinder/ObjLoader.h"
#include "cinder/Utilities.h"

2.	 Implement your keyDown method as follows:

if(event.getChar() == 's') {
 fs::path path = getSaveFilePath(getDocumentsDirectory() /
 fs::path("mesh.trimesh"));

Using 3D Graphics

218

 if(! path.empty()) {
 mMesh.write(writeFile(path));
 }
}
 else if(event.getChar() == 'o') {
 fs::path path = getSaveFilePath(getDocumentsDirectory() /
 fs::path("mesh.obj"));
 if(! path.empty()) {
 ObjLoader::write(writeFile(path), mMesh);
 }
}

How it works…
In Cinder we are using a TriMesh class to store 3D geometry. Using TriMesh we can store
and manipulate geometry loaded from 3D model files or add each vertices with code.

Every time you hit the S key on the keyboard, a saving dialog pops up to ask you where to
save binary data of the TriMesh object. When you press the O key, the OBJ format file will
be saved into your documents folder. If you don't have to exchange data with other software,
binary data saving and loading is usually faster.

9
Adding Animation

In this chapter, we will learn the techniques of animating 2D and 3D objects. We will introduce
Cinder's features in this field, such as timeline and math functions.

The recipes in this chapter will cover the following:

ff Animating with the timeline

ff Creating animation sequences with the timeline

ff Animating along a path

ff Aligning camera motion to a path

ff Animating text – text as a mask for a movie

ff Animating text – scrolling text lines

ff Creating a flow field with Perlin noise

ff Creating an image gallery in 3D

ff Creating a spherical flow field with Perlin noise

Animating with the timeline
In this recipe, we will learn how we can animate values using Cinder's new feature; the timeline.

We animate the background color and a circle's position and radius whenever the user
presses the mouse button.

Adding Animation

220

Getting ready
Include the necessary files to use the timeline, generate random numbers, and draw using
OpenGL. Add the following code snippet at the top of the source file:

#include "cinder/gl/gl.h"
#include "cinder/Timeline.h"
#include "cinder/Rand.h"

Also, add the following useful using statements:

using namespace ci;
using namespace ci::app;
using namespace std;

How to do it…
We will create several parameters that will be animated with the timeline. Perform the
following steps to do so:

1.	 Declare the following members to be animated:
Anim<Color> mBackgroundColor;
Anim<Vec2f> mCenter;
Anim<float> mRadius;

2.	 Initialize the parameters in the setup method.
mBackgroundColor = Color(CM_HSV, randFloat(), 1.0f, 1.0f);
mCenter = getWindowCenter();
mRadius = randFloat(20.0f, 100.0f);

3.	 In the draw method, we need to clear the background using the color defined in
mBackgroundColor and draw a circle at mCenter with mRadius as the radius.
gl::clear(mBackgroundColor.value());
gl::drawSolidCircle(mCenter.value(), mRadius.value());

4.	 To animate the values whenever the user presses the mouse button, we need to
declare the mouseDown event handler.
void mouseDown(MouseEvent event);

5.	 Let's implement the mouseDown event handler and add the animations to the main
timeline. We will animate mBackgroundColor to a new random color, set mCenter
to the mouse cursor's position, and set mRadius to a new random value.

Color backgroundColor(CM_HSV, randFloat(), 1.0f, 1.0f);
timeline().apply(&mBackgroundColor, backgroundColor, 2.0f,
EaseInCubic());

Chapter 9

221

timeline().apply(&mCenter, (Vec2f)event.getPos(), 1.0f,
EaseInCirc());
timeline().apply(&mRadius, randFloat(20.0f, 100.0f), 1.0f,
EaseInQuad());

How it works…
The timeline is a new feature of Cinder introduced in version 0.8.4. It permits the user to
animate parameters by adding them to the timeline once, and everything gets updated
behind the scenes.

Animations must be objects of the template class ci::Anim. This class can be created
using any template type that supports the + operator.

The main ci::Timeline object can be accessed by calling the
ci::app::App::timeline() method. There is always a main timeline and the user
can also create other ci::Timeline objects.

The fourth parameter in the ci::Timeline::apply method is a functor object that
represents a Tween method. Cinder has several Tweens available that can be passed as
a parameter to define the type of animation.

There's more…
The ci::Timeline::apply method used in the preceding example uses the initial value of
the ci::Anim object, but it is also possible to create an animation where both the begining
and end values are passed.

For example, if we wanted to animate mRadius from a starting value of 10.0 to the end value
of 100.0 seconds, we would call the following method:

timeline().apply(&mRadius, 10.0f, 100.0f 1.0f, EaseInQuad());

See also
ff To see all the available easing functions, please refer to the Cinder documentation,

located at http://libcinder.org/docs/v0.8.4/_easing_8h.html.

Creating animation sequences with the
timeline

In this recipe, we will learn how to use the powerful timeline features of Cinder to create
sequences of animations. We will draw a circle and animate the radius and color in a
sequenced manner.

Adding Animation

222

Getting ready
Include the necessary files to use the timeline, draw in OpenGL, and generate random numbers.

#include "cinder/gl/gl.h"
#include "cinder/Timeline.h"
#include "cinder/Rand.h"

Also, add the following useful using statements:

using namespace ci;
using namespace ci::app;
using namespace std;

How to do it…
We will animate several parameters sequentially using the timeline. Perform the following
steps to do so:

1.	 Declare the following members to define the circle's position, radius, and color:
Anim<float> mRadius;
Anim<Color> mColor;
Vec2f mPos;

2.	 In the setup method, initialize the members. Set the position to be at the center of
the window, the radius as 30, and a random color using the HSV color mode.
mPos = (Vec2f)getWindowCenter();
mRadius = 30.0f;
mColor = Color(CM_HSV, randFloat(), 1.0f, 1.0f);

3.	 In the draw method, we will clear the background with black and draw the circle
using the previously defined members.
gl::clear(Color::black());
gl::color(mColor.value());
gl::drawSolidCircle(mPos, mRadius.value());

4.	 Declare the mouseDown event handler.
 void mouseDown(MouseEvent event);

5.	 In the implementation of mouseDown, we will apply the animations to the
main timeline.

We will first animate mRadius from 30 to 200 and append another animation to
mRadius from 200 to 30.

Chapter 9

223

Add the following code snippet to the mouseDown method:

timeline().apply(&mRadius, 30.0f, 200.0f, 2.0f, EaseInOutCubic()
);
timeline().appendTo(&mRadius, 200.0f, 30.0f, 1.0f,
EaseInOutCubic());

6.	 Let's create a random color using the HSV color mode and use it as the target color to
animate mColor and then append this animation to mRadius.

Add the following code snippet inside the mouseDown method:

 Color targetColor = Color(CM_HSV, randFloat(), 1.0f, 1.0f);
timeline().apply(&mColor, targetColor, 1.0f, EaseInQuad()
).appendTo(&mRadius);

How it works…
Appending animations is a powerful and easy way to create complex animation sequences.

In step 5 we append an animation to mRadius using the following line of code:

timeline().appendTo(&mRadius, 200.0f, 30.0f, 1.0f, EaseInOutCubic()
);

This means this animation will only occur after the previous mRadius animation has finished.

In step 6 we append the mColor animation to mRadius using the following line of code:

timeline().apply(&mColor, targetColor, 1.0f, EaseInQuad()).appendTo(
&mRadius);

This means the mColor animation will only occur when the previous mRadius animation
has finished.

There's more…
When appending two different animations, it is possible to offset the start time by defining the
offset seconds as a second parameter.

So, for example, change the line in step 6 to read the following:

timeline().apply(&mColor, targetColor, 1.0f, EaseInQuad()).appendTo(
&mRadius, -0.5f);

This would mean that the mColor animation would begin 0.5 seconds before mRadius
has finished.

Adding Animation

224

Animating along a path
In this recipe, we will learn how to draw a smooth B-spline in the 3D space and animate the
position of an object along the calculated B-spline.

Getting ready
To navigate in the 3D space, we will use MayaCamUI covered in the Using MayaCamUI recipe
in Chapter 2, Preparing for Development.

How to do it…
We will create an example animation of an object moving along the spline. Perform the
following steps to do so:

1.	 Include necessary header files.
#include "cinder/Rand.h"
#include "cinder/MayaCamUI.h"
#include "cinder/BSpline.h"

2.	 Begin with the declaration of member variables to keep the B-spline and current
object's position.
Vec3f mObjPosition;
BSpline3f spline;

3.	 Inside the setup method prepare a random spline:
mObjPosition = Vec3f::zero();

vector<Vec3f> splinePoints;
float step = 0.5f;
float width = 20.f;
for (float t = 0.f; t < width; t += step) {
 Vec3f pos = Vec3f(
 cos(t)*randFloat(0.f,2.f),
 sin(t)*0.3f,
 t - width*0.5f);
 splinePoints.push_back(pos);
}
spline = BSpline3f(splinePoints, 3, false, false);

Chapter 9

225

4.	 Inside the update method, retrieve the position of the object moving along the spline.
float dist = math<float>::abs(sin(getElapsedSeconds()*0.2f));
mObjPosition = spline.getPosition(dist);

5.	 The code snippet drawing our scene will look like the following:

gl::enableDepthRead();
gl::enableDepthWrite();
gl::enableAlphaBlending();
gl::clear(Color::white());
gl::setViewport(getWindowBounds());
gl::setMatrices(mMayaCam.getCamera());

// draw dashed line
gl::color(ColorA(0.f, 0.f, 0.f, 0.8f));
float step = 0.005f;
glBegin(GL_LINES);
for (float t = 0.f; t <= 1.f; t += step) {
 gl::vertex(spline.getPosition(t));
}
glEnd();

// draw object
gl::color(Color(1.f,0.f,0.f));
gl::drawSphere(mObjPosition, 0.25f);

How it works…
First, have a look at step 3 where we are calculating a B-spline through points with
coordinates based on the sine and cosine functions and some random points on the
x axis. The path is stored in the spline class member.

Then we can easily retrieve the position in 3D space at any distance of our path. We are
doing this in step 4; using the getPosition method on the spline member. The distance
on the path is been passed as a float value in the range of 0.0 to 1.0 where 0.0 means the
beginning of the path and 1.0 means the end.

Adding Animation

226

Finally, in step 5 we are drawing an animation as a red sphere traveling along our path,
represented as a black dashed line, as shown in the following screenshot:

See also
ff The Aligning camera motion to path recipe

ff The Animating text around curves recipe in Chapter 7, Using 2D Graphics

Aligning camera motion to a path
In this recipe we will learn how we can animate the camera position on our path, calculated as
a B-spline.

Getting ready
In this example, we will use MayaCamUI, so please refer to the Using MayaCamUI recipe in
Chapter 2, Preparing for Development.

How to do it…
We will create an application illustrating the mechanism. Perform the following steps to do so:

1.	 Include necessary header files.
#include "cinder/Rand.h"
#include "cinder/MayaCamUI.h"
#include "cinder/BSpline.h"

Chapter 9

227

2.	 Begin with the declaration of member variables.
MayaCamUI mMayaCam;
BSpline3f spline;
CameraPersp mMovingCam;
Vec3f mCamPosition;
vector<Rectf> mBoxes;

3.	 Set up the initial values of members.
setWindowSize(640*2, 480);
mCamPosition = Vec3f::zero();

CameraPersp mSceneCam;
mSceneCam.setPerspective(45.0f, 640.f/480.f, 0.1, 10000);
mSceneCam.setEyePoint(Vec3f(7.f,7.f,7.f));
mSceneCam.setCenterOfInterestPoint(Vec3f::zero());
mMayaCam.setCurrentCam(mSceneCam);

mMovingCam.setPerspective(45.0f, 640.f/480.f, 0.1, 100.f);
mMovingCam.setCenterOfInterestPoint(Vec3f::zero());

vector<Vec3f> splinePoints;
float step = 0.5f;
float width = 20.f;
for (float t = 0.f; t < width; t += step) {
 Vec3f pos = Vec3f(cos(t)*randFloat(0.8f,1.2f),
 0.5f+sin(t*0.5f)*0.5f,
 t - width*0.5f);
 splinePoints.push_back(pos);
}
spline = BSpline3f(splinePoints, 3, false, false);

for(int i = 0; i<100; i++) {
 Vec2f pos = Vec2f(randFloat(-10.f,10.f),
 randFloat(-10.f,10.f));
 float size = randFloat(0.1f,0.5f);
 mBoxes.push_back(Rectf(pos, pos+Vec2f(size,size*3.f)));
}

4.	 Inside the update method update the camera properties.
float step = 0.001f;
float pos = abs(sin(getElapsedSeconds()*0.05f));
pos = min(0.99f, pos);
mCamPosition = spline.getPosition(pos);

mMovingCam.setEyePoint(mCamPosition);
mMovingCam.lookAt(spline.getPosition(pos+step));

Adding Animation

228

5.	 The whole draw method now looks like the following code snippet:
gl::enableDepthRead();
gl::enableDepthWrite();
gl::enableAlphaBlending();
gl::clear(Color::white());
gl::setViewport(getWindowBounds());
gl::setMatricesWindow(getWindowSize());

gl::color(ColorA(0.f,0.f,0.f, 1.f));
gl::drawLine(Vec2f(640.f,0.f), Vec2f(640.f,480.f));

gl::pushMatrices();
gl::setViewport(Area(0,0, 640,480));
gl::setMatrices(mMayaCam.getCamera());

drawScene();

// draw dashed line
gl::color(ColorA(0.f, 0.f, 0.f, 0.8f));
float step = 0.005f;
glBegin(GL_LINES);
for (float t = 0.f; t <= 1.f; t += step) {
 gl::vertex(spline.getPosition(t));
}
glEnd();

// draw object
gl::color(Color(0.f,0.f,1.f));
gl::drawFrustum(mMovingCam);

gl::popMatrices();

// -------------

gl::pushMatrices();
gl::setViewport(Area(640,0, 640*2,480));
gl::setMatrices(mMovingCam);
drawScene();
gl::popMatrices();

6.	 Now we have to implement the drawScene method, which actually draws our
3D scene.
GLfloat light0_position[] = { 1000.f, 500.f, -500.f, 0.1f };
GLfloat light1_position[] = { -1000.f, 100.f, 500.f, 0.1f };

Chapter 9

229

GLfloat light1_color[] = { 1.f, 1.f, 1.f };

glLightfv(GL_LIGHT0, GL_POSITION, light0_position);
glLightfv(GL_LIGHT1, GL_POSITION, light1_position);
glLightfv(GL_LIGHT1, GL_DIFFUSE, light1_color);

glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glEnable(GL_LIGHT1);

ci::ColorA diffuseColor(0.9f, 0.2f, 0.f);
gl::color(diffuseColor);
glMaterialfv(GL_FRONT, GL_DIFFUSE, diffuseColor);

vector<Rectf>::iterator it;
for(it = mBoxes.begin(); it != mBoxes.end(); ++it) {
 gl::pushMatrices();
 gl::translate(0.f, it->getHeight()*0.5f, 0.f);
 Vec2f center = it->getCenter();
 gl::drawCube(Vec3f(center.x, 0.f, center.y),
 Vec3f(it->getWidth(),
 it->getHeight(), it->getWidth()));
 gl::popMatrices();
}

glDisable(GL_LIGHTING);
glDisable(GL_LIGHT0);
glDisable(GL_LIGHT1);

// draw grid
drawGrid(50.0f, 2.0f);

7.	 The last thing we need is the drawGrid method, the implementation of which can be
found in the Using 3D space guides recipe in Chapter 2, Preparing for Development.

How it works…
In this example we are using a B-spline as a path that our camera is moving along. Please
refer to the Animating along a path recipe to see the basic implementation of an object
animating on a path. As you can see in step 4 we are setting the camera position by invoking
the setEyePosition method on the mMovingCam member, and we have to set the camera
view direction. To do that we are taking the position of the next point on the path and passing
it to the lookAt method.

Adding Animation

230

We are drawing a split screen, where on the left-hand side is a preview of our scene, and on
the right-hand side we can see what is in a frustum of the camera moving along the path.

See also
ff The Animating along a path recipe

ff The Using 3D space guides recipe in Chapter 2, Preparing for Development

ff The Using MayaCamUI recipe in Chapter 2, Preparing for Development

Animating text – text as a mask for a movie
In this recipe, we will learn how we can use text as a mask for a movie using a simple
shader program.

Getting ready
In this example, we are using one of the amazing videos provided by NASA taken by an ISS
crew that you can find at http://eol.jsc.nasa.gov/. Please download oneand save it
as video.mov inside the assets folder.

How to do it…
We will create a sample Cinder application to illustrate the mechanism. Perform the following
steps to do so:

1.	 Include the necessary header files.
#include "cinder/gl/Texture.h"
#include "cinder/Text.h"

Chapter 9

231

#include "cinder/Font.h"
#include "cinder/qtime/QuickTime.h"
#include "cinder/gl/GlslProg.h"

2.	 Declare the member variables.
qtime::MovieGl mMovie;
gl::Texture mFrameTexture, mTextTexture;
gl::GlslProg mMaskingShader;

3.	 Implement the setup method, as follows:
setWindowSize(854, 480);

TextLayout layout;
layout.clear(ColorA(0.f,0.f,0.f, 0.f));
layout.setFont(Font("Arial Black", 96));
layout.setColor(Color(1, 1, 1));
layout.addLine("SPACE");
Surface8u rendered = layout.render(true);

gl::Texture::Format format;
format.setTargetRect();
mTextTexture = gl::Texture(rendered, format);

try {
 mMovie = qtime::MovieGl(getAssetPath("video.mov"));
 mMovie.setLoop();
 mMovie.play();
} catch(...) {
 console() <<"Unable to load the movie."<<endl;
 mMovie.reset();
}

mMaskingShader = gl::GlslProg(loadAsset("passThru_vert.glsl"),
loadAsset("masking_frag.glsl"));

4.	 Inside the update method we have to update our mFrameTexture where we are
keeping the current movie frame.
if(mMovie) mFrameTexture = mMovie.getTexture();

5.	 The draw method will look like the following code snippet:
gl::enableAlphaBlending();
gl::clear(Color::gray(0.05f));
gl::setViewport(getWindowBounds());
gl::setMatricesWindow(getWindowSize());

Adding Animation

232

gl::color(ColorA::white());
if(mFrameTexture) {
 Vec2f maskOffset = (mFrameTexture.getSize()
 - mTextTexture.getSize()) * 0.5f;
 mFrameTexture.bind(0);
 mTextTexture.bind(1);
 mMaskingShader.bind();
 mMaskingShader.uniform("sourceTexture", 0);
 mMaskingShader.uniform("maskTexture", 1);
 mMaskingShader.uniform("maskOffset", maskOffset);
 gl::pushMatrices();
 gl::translate(getWindowCenter()-mTextTexture.getSize()*0.5f);
 gl::drawSolidRect(mTextTexture.getBounds(), true);
 gl::popMatrices();
 mMaskingShader.unbind();
}

6.	 As you can see in the setup method we are loading a shader to do the masking.
We have to pass through vertex shader inside the assets folder in a file named
passThru_vert.glsl. You can find this in the Implementing 2D metaballs recipe
in Chapter 7, Using 2D Graphics.

7.	 Finally, the fragment shader program code will look like the following code snippet,
and should also be inside the assets folder under the name masking_frag.glsl.

#extension GL_ARB_texture_rectangle : require

uniform sampler2DRect sourceTexture;
uniform sampler2DRect maskTexture;
uniform vec2 maskOffset;

void main()
{
 vec2 texCoord = gl_TexCoord[0].st;

 vec4 sourceColor = texture2DRect(sourceTexture,
texCoord+maskOffset);
 vec4 maskColor = texture2DRect(maskTexture, texCoord);

 vec4 color = sourceColor * maskColor;

 gl_FragColor = color;
}

Chapter 9

233

How it works…
Inside the setup method in step 3 we are rendering our text as Surface and then converting
it to gl::Texture that we will use later as a masking texture. It is important here to
set a rectangle format for masking texture while we are using it as a mask for a movie,
because qtime::MovieGl is creating a texture with a frame that is rectangular. To do
that we are defining the gl::Texture::Format object named format and invoking the
setTargetRect method on it. While creating gl::Texture we have to pass format to the
constructor as a second parameter.

To draw a movie frame we are using our masking shader program applied on the rectangle in
step 5. We have to pass three parameters, which are the movie frame as sourceTexture,
mask texture with text as maskTexture, and the position of the mask as maskOffset.

In step 7 you can see the fragment shader code, which simply multiplies the colors of the
corresponding pixels from sourceTexture and maskTexture. Please notice that we are
using sampler2DRect and texture2DRect to handle rectangular textures.

Animating text – scrolling text lines
In this recipe we will learn how we can create text scrolling line-by-line.

How to do it…
We will now create an animation with scrolling text. Perform the following steps to do so:

1.	 Include the necessary header files.
#include "cinder/gl/Texture.h"
#include "cinder/Text.h"
#include "cinder/Font.h"
#include "cinder/Utilities.h"

Adding Animation

234

2.	 Add the member values.
vector<gl::Texture> mTextTextures;
Vec2f mTextSize;

3.	 Inside the setup method we need to generate textures for each line of text.
setWindowSize(854, 480);
string font("Times New Roman");

mTextSize = Vec2f::zero();
į

for(int i = 0; i<5; i++) {
 TextLayout layout;
 layout.clear(ColorA(0.f,0.f,0.f, 0.f));
 layout.setFont(Font(font, 48));
 layout.setColor(Color(1, 1, 1));
 layout.addLine("Animating text " + toString(i));
 Surface8u rendered = layout.render(true);
 gl::TexturetextTexture = gl::Texture(rendered);
 textTexture.setMagFilter(GL_NICEST);
 textTexture.setMinFilter(GL_NICEST);
 mTextTextures.push_back(textTexture);
 mTextSize.x = math<float>::max(mTextSize.x,
 textTexture.getWidth());
 mTextSize.y = math<float>::max(mTextSize.y,
 textTexture.getHeight());
}

4.	 The draw method for this example looks as follows:

gl::enableAlphaBlending();
gl::clear(Color::black());
gl::setViewport(getWindowBounds());
gl::setMatricesWindowPersp(getWindowSize());

gl::color(ColorA::white());

float time = getElapsedSeconds()*0.5f;
float timeFloor = math<float>::floor(time);
inttexIdx = 1 + ((int)timeFloor % (mTextTextures.size()-1));
float step = time - timeFloor;

gl::pushMatrices();
gl::translate(getWindowCenter() - mTextSize*0.5f);

float radius = 30.f;

Chapter 9

235

gl::color(ColorA(1.f,1.f,1.f, 1.f-step));
gl::pushMatrices();
gl::rotate(Vec3f(90.f*step,0.f,0.f));
gl::translate(0.f,0.f,radius);
gl::draw(mTextTextures[texIdx-1], Vec2f(0.f,
-mTextTextures[texIdx-1].getHeight()*0.5f));
gl::popMatrices();

gl::color(ColorA(1.f,1.f,1.f, step));
gl::pushMatrices();
gl::rotate(Vec3f(-90.f + 90.f*step,0.f,0.f));
gl::translate(0.f,0.f,radius);
gl::draw(mTextTextures[texIdx], Vec2f(0.f, -mTextTextures[texIdx].
getHeight()*0.5f));
gl::popMatrices();

gl::popMatrices();

How it works…
What we are doing first inside the setup method in step 3 is generating a texture with
rendered text for each line and pushing it to the vector structure mTextTextures.

In step 4 you can find the code for drawing current and previous text to build a continuous
looped animation.

Adding Animation

236

Creating a flow field with Perlin noise
In this recipe we will learn how we can animate objects using a flow field. Our flow field will be
a two-dimensional grid of velocity vectors that will influence how objects move.

We will also animate the flow field using vectors calculated with Perlin noise.

Getting ready
Include the necessary files to work with OpenGL graphics, Perlin noise, random numbers, and
Cinder's math utilities.

#include "cinder/gl/gl.h"
#include "cinder/Perlin.h"
#include "cinder/Rand.h"
#include "cinder/CinderMath.h"

Also, add the following useful using statements:

using namespace ci;
using namespace ci::app;
using namespace std;

How to do it…
We will create an animation using the flow field. Perform the following steps to do so:

1.	 We will begin by creating a Follower class to define the objects that will be
influenced by the flow field.

Declare the following class before the main application class:

class Follower{
public:
 Follower(const Vec2f& pos){
 this->pos = pos;
 }
 void update(const Vec2f& newVel){
 vel += (newVel - vel) * 0.2f;
 pos += vel;
 if(pos.x < 0.0f){
 pos.x = (float)getWindowWidth();
 vel = Vec2f();
 }
 if(pos.x > (float)getWindowWidth()){

Chapter 9

237

 pos.x = 0.0f;
 vel = Vec2f();
 }
 if(pos.y < 0.0f){
 pos.y = (float)getWindowHeight();
 vel = Vec2f();
 }
 if(pos.y > (float)getWindowHeight()){
 pos.y = 0.0f;
 vel = Vec2f();
 }
 }
 void draw(){
 gl::drawSolidCircle(pos, 5.0f);
 gl::drawLine(pos, pos + (vel * 20.0f));
 }
 Vec2f pos, vel;
};

2.	 Let's create the flow field. Declare a two-dimensional std::vector to define the
flow field, and variables to define the gap between vectors and the number of rows
and columns.
vector< vector< Vec2f> > mFlowField;
Vec2f mGap;
float mCounter;
int mRows, mColumns;

3.	 In the setup method we will define the number of rows and columns, and calculate
the gap between each vector.
mRows = 40;
mColumns = 40;
mGap.x = (float)getWindowWidth() / (mRows-1);
mGap.y = (float)getWindowHeight() / (mColumns-1);

4.	 Based on the number of rows and columns we can initialize mFlowField.
mFlowField.resize(mRows);
for(int i=0; i<mRows; i++){
 mFlowField[i].resize(mColumns);

5.	 Let's animate the flow field using Perlin noise. To do so declare the following members:
 Perlin mPerlin;
float mCounter;

Adding Animation

238

6.	 In the setup method initialize mCounter to zero.
 mCounter = 0.0f;
}

7.	 In the update method we will increment mCounter and iterate mFlowField using a
nested for loop, and use mPerlin to animate the vectors.
for(int i=0; i<mRows; i++){
 for(int j=0; j<mColumns; j++){
 float angle= mPerlin.noise(((float)i)*0.01f + mCounter,
 ((float)j)*0.01f) * M_PI * 2.0f;
 mFlowField[i][j].x = cosf(angle);
 mFlowField[i][j].y = sinf(angle);
 }
}

8.	 Now iterate over mFlowField and draw a line indicating the direction of the vectors.

Add the following code snippet inside the draw method:

for(int i=0 i<mRows; i++){
 for(int j=0; j<mColumns; j++){
 float x = (float)i*mGap.x;
 float y = (float)j*mGap.y;
 Vec2f begin(x, y);
 Vec2f end = begin + (mFlowField[i][j] * 10.0f);
 gl::drawLine(begin, end);
 }
}

9.	 Let's add some Followers. Declare the following member:
vector<shared_ptr<Follower>> mFollowers;

10.	 In the setup method we will initialize some followers and add them at random
positions in the window.
int numFollowers = 50;
for(int i=0; i<numFollowers; i++){
 Vec2f pos(randFloat(getWindowWidth()),
 randFloat(getWindowHeight()));
 mFollowers.push_back(
 shared_ptr<Follower>(new Follower(pos)));
}

11.	 In the update we will iterate mFollowers and calculate the corresponding vector in
mFlowField based on its position.

Chapter 9

239

We will then update the Follower class using that vector.

for(vector<shared_ptr<Follower> >::iterator it =
 mFollowers.begin(); it != mFollowers.end(); ++it){
 shared_ptr<Follower> follower = *it;
 int indexX= ci::math<int>::clamp(follower->pos.x / mGap.x,0,
 mRows-1);
 int indexY= ci::math<int>::clamp(follower->pos.y / mGap.y,0,
 mColumns-1);
 Vec2f flow = mFlowField[indexX][indexY];
 follower->update(flow);
}

12.	 Finally, we just need to draw each Follower class.

Add the following code snippet inside the draw method:
for(vector< shared_ptr<Follower> >::iterator it =
 mFollowers.begin(); it != mFollowers.end(); ++it){
 (*it)->draw();
}

The following is the result:

Adding Animation

240

How it works…
The Follower class represents an agent that will follow the flow field. In the
Follower::update method a new velocity vector is passed as a parameter. The
follower object will interpolate its velocity into the passed value and use it to animate. The
Follower::update method is also responsible for keeping each agent inside the window by
warping its position whenever it is outside the window.

In step 11 we calculated the vector in the flow field that will influence the Follower object
using it's position.

Creating an image gallery in 3D
In this recipe we will learn how we can create an image gallery in 3D. The images will be
loaded from a folder selected by the user and displayed in a three-dimensional circular
fashion. Using the keyboard, the user will be able to change the selected image.

Getting ready
When starting the application you will be asked to select a folder with images, so make sure
you have one.

Also, in your code include the necessary files to use OpenGL drawing calls, textures, the
timeline, and loading images.

#include "cinder/gl/gl.h"
#include "cinder/gl/Texture.h"
#include "cinder/Timeline.h"
#include "cinder/ImageIo.h"

Also, add the following useful using statements:

using namespace ci;
using namespace ci::app;
using namespace std;

How to do it…
We will display and animate images in 3D space. Perform the following steps to do so:

1.	 We will start by creating an Image class. Add the following code snippet before the
main application class:
class Image{
public:

Chapter 9

241

Image(gl::Texture texture, constRectf& maxRect){
 this->texture = texture;
 distance = 0.0f;
 angle = 0.0f;
 Vec2f size = Vec2f(texture.getWidth(), texture.getHeight());
 rect = Rectf(-size * 0.5f, size*0.5f).getCenteredFit(
 maxRect, true);
}
void draw(){
 gl::pushMatrices();
 glRotatef(angle, 0.0f, 1.0f, 0.0f);
 gl::translate(0.0f, 0.0f, distance);
 gl::draw(texture, rect);
 gl::popMatrices();
}
gl::Texture texture;
float distance;
float angle;
Rectfrect;
}

2.	 In the main application's class we will declare the following members:
vector<shared_ptr<Image>> mImages;
int mSelectedImageIndex;
Anim<float> mRotationOffset;

3.	 In the setup method we will ask the user to select a folder and then try to create a
texture from each file in the folder. If a texture is successfully created, we will use it to
create an Image object and add it to mImages.
fs::path imageFolder = getFolderPath("");
if(imageFolder.empty() == false){
 for(fs::directory_iterator it(imageFolder); it !=
 fs::directory_iterator(); ++it){
 const fs::path& file = it->path();
 gl::Texture texture;
 try {
 texture = loadImage(file);
 } catch (...) { }
 if(texture){
 Rectf maxRect(RectfmaxRect(Vec2f(-50.0f, -50.0f),
 Vec2f(50.0f,50.0f));
 mImages.push_back(shared_ptr<Image>(
 new Image(texture, maxRect)));

Adding Animation

242

 }
 }
}

4.	 We need to iterate over mImages and define the angle and distance that each image
will have from the center.
float angle = 0.0f;
float angleAdd = 360.0f / mImages.size();
float radius = 300.0f;
for(int i=0; i<mImages.size(); i++){
 mImages[i]->angle = angle;
 mImages[i]->distance = radius;
 angle += angleAdd;
}

5.	 Now we can initialize the remaining members.
mSelectedImageIndex = 0;
mRotationOffset = 0.0f;

6.	 In the draw method, we will start by clearing the window, setting the window's
matrices to support 3D, and enabling reading and writing in the depth buffer:
gl::clear(Color(0, 0, 0));
gl::setMatricesWindowPersp(getWindowWidth(), getWindowHeight());
gl::enableDepthRead();
gl::enableDepthWrite();

7.	 Next we will draw the images. Since all our images have been displayed around the
origin, we must translate them to the center of the window. We will also rotate them
around the y axis using the value in mRotationOffset. Everything will go in an
if statement that will check if mImages contains any image, in case no image was
generated during the setup.

8.	 Add the following code snippet inside the draw method:
if(mImages.size()){
 Vec2f center = (Vec2f)getWindowCenter();
 gl::pushMatrices();
 gl::translate(center.x, center.y, 0.0f);
 glRotatef(mRotationOffset, 0.0f, 1.0f, 0.0f);
 for(vector<shared_ptr<Image> >::iterator it=mImages.begin();
 it != mImages.end(); ++it){
 (*it)->draw();
 }
 gl::popMatrices();
}

Chapter 9

243

9.	 Since the user will be able to switch images using the keyboard, we must declare the
keyUp event handler.
void keyUp(KeyEvent event);

10.	 In the implementation of keyUp we will move the images on to the left or right-hand
side depending on whether the left or right key was released.

If the selected image was changed, we animate mRotationOffset to the
correspondent value, so that the correct image is now facing the user.

Add the following code snippet inside the keyUp method:

bool imageChanged = false;
if(event.getCode() == KeyEvent::KEY_LEFT){
 mSelectedImageIndex--;
 if(mSelectedImageIndex< 0){
 mSelectedImageIndex = mImages.size()-1;
 mRotationOffset.value() += 360.0f;
 }
 imageChanged = true;
} else if(event.getCode() == KeyEvent::KEY_RIGHT){
 mSelectedImageIndex++;
 if(mSelectedImageIndex>mImages.size()-1){
 mSelectedImageIndex = 0;
 mRotationOffset.value() -= 360.0f;
 }
 imageChanged = true;
}
if(imageChanged){
 timeline().apply(&mRotationOffset,
 mImages[mSelectedImageIndex]->angle, 1.0f,
 EaseOutElastic());
}

Adding Animation

244

11.	 Build and run the application. You will be prompted to select a folder containing
images that will then be displayed in a circular fashion. Press the left or right key on
the keyboard to change the selected image.

How it works…
The draw method of the Image class rotates the coordinate system around the y axis and
then translates the image drawing on the z axis. This will extrude the image from the center
facing outwards on the given angle. It is an easy and convenient way of achieving the desired
effect without dealing with coordinate transformations.

The Image::rect member is used to draw the texture and is calculated to fit inside the
rectangle passed in the constructor.

When selecting the image to be displayed in front, the value of mRotationOffset will be the
opposite of the image's angle, making it the image being drawn in front of the view.

In the keyUp event we check whether the left or right key was pressed and animate
mRotationOffset to the desired value. We also take into account if the angle wraps
around, as to avoid glitches in the animation.

Chapter 9

245

Creating a spherical flow field with Perlin
noise

In this recipe we will learn how to use Perlin noise with a spherical flow field and animate
objects in an organic way around a sphere.

We will animate our objects using spherical coordinates and then transform them into
Cartesian coordinates in order to draw them.

Getting ready
Add the necessary files to use Perlin noise and draw with OpenGL:

#include "cinder/gl/gl.h"
#include "cinder/Perlin.h"
#include "cinder/Rand.h"

Add the following useful using statements:

using namespace ci;
using namespace ci::app;
using namespace std;

How to do it…
We will create the Follower objects that move organically in a spherical flow field. Perform
the following steps to do so:

1.	 We will start by creating a Follower class representing an object that will follow the
spherical flow field.

Add the following code snippet before the application's class declaration:

class Follower{
public:
Follower(){
 theta = 0.0f;
 phi = 0.0f;
}
void moveTo(const Vec3f& target){
 prevPos = pos;
 pos += (target - pos) * 0.1f;
}
void draw(){
 gl::drawSphere(pos, 10.0f, 20);

Adding Animation

246

 Vec3f vel = pos - prevPos;
 gl::drawLine(pos, pos + (vel * 5.0f));
}
Vec3f pos, prevPos;
float phi, theta;
};

2.	 We will be using spherical to Cartesian coordinates, so declare the following
method in the application's class:
Vec3f sphericalToCartesians(sphericalToCartesians(float radius,
float theta, float phi);

3.	 The implementation of this method is as follows:
float x = radius * sinf(theta) * cosf(phi);
float y = radius * sinf(theta) * sinf(phi);
float z = radius * cosf(theta);
return Vec3f(x, y, z);

4.	 Declare the following members in the application's class:
vector<shared_ptr< Follower > > mFollowers;
float mRadius;
float mCounter;
Perlin mPerlin;

5.	 In the setup method we will begin by initializing mRadius and mCounter:
mRadius = 200.0f;
mCounter = 0.0f;

6.	 Now let's create 100 followers and add them to mFollowers. We will also
attribute random values to the phi and theta variables of the Follower
objects and set their initial positions:
int numFollowers = 100;
for(int i=0; i<numFollowers; i++){
 shared_ptr<Follower> follower(new Follower());
 follower->theta = randFloat(M_PI * 2.0f);
 follower->phi = randFloat(M_PI * 2.0f);
 follower->pos = sphericalToCartesian(mRadius,
 follower->theta, follower->phi);
 mFollowers.push_back(follower);
}

7.	 In the update method we will animate our objects. Let's start by
incrementing mCounter.
mCounter += 0.01f;

Chapter 9

247

8.	 Now we will iterate over all the objects in mFollowers and use Perlin noise, based
on the follower's position, to calculate how much it should move on spherical
coordinates. We will then calculate the correspondent Cartesian coordinates and
move the object.

Add the following code snippet inside the update method:

float resolution = 0.01f;
for(int i=0; i<mFollowers.size(); i++){
 shared_ptr<Follower> follower = mFollowers[i];
 Vec3f pos = follower->pos;
 float thetaAdd = mPerlin.noise(pos.x * resolution,
 pos.y * resolution, mCounter) * 0.1f;
 float phiAdd = mPerlin.noise(pos.y * resolution,
 pos.z * resolution, mCounter) * 0.1f;
 follower->theta += thetaAdd;
 follower->phi += phiAdd;
 Vec3f targetPos = sphericalToCartesian(mRadius,
 follower->theta, follower->phi);
 follower->moveTo(targetPos);
}

9.	 Let's move to the draw method and begin by clearing the background, setting the
windows matrices, and enabling reading and writing in the depth buffer.
gl::clear(Color(0, 0, 0));
gl::setMatricesWindowPersp(getWindowWidth(), getWindowHeight());
gl::enableDepthRead();
gl::enableDepthWrite();

10.	 Since the followers are moving around the origin, we will draw them translated to
the origin using a dark gray color. We will also draw a white sphere to get a better
understanding of the movement.

gl::pushMatrices();
Vec2f center = getWindowCenter();
gl::translate(center);
gl::color(Color(0.2f, 0.2f, 0.2f));
for(vector<shared_ptr<Follower> >::iterator it =
 mFollowers.begin(); it != mFollowers.end(); ++it){
 (*it)->draw();
}
gl::color(Color::white());
gl::drawSphere(Vec3f(), mRadius, 100);
gl::popMatrices();

Adding Animation

248

How it works...
We use Perlin noise to calculate the change in the theta and phi members of the Follower
objects. We use these, together with mRadius, to calculate the position of the objects using
the standard spherical to Cartesian coordinate transformation. Since Perlin noise gives
coherent values based on coordinates by using the current position of the Follower objects,
we get the equivalent of a flow field. The mCounter variable is used to animate the flow field
in the third dimension.

See also
ff To learn more about the Cartesian coordinate system, please refer to

http://en.wikipedia.org/wiki/Cartesian_coordinate_system

ff To learn more about the spherical coordinate system, please refer to
http://en.wikipedia.org/wiki/Spherical_coordinate_system

ff To learn more about spherical to Cartesian coordinate transformations, please
refer to http://en.wikipedia.org/wiki/List_of_common_coordinate_
transformations#From_spherical_coordinate

10
Interacting with

the User

In this chapter we will learn how to receive and respond to input from the user. The following
recipes will be covered in the chapter:

ff Creating an interactive object that responds to the mouse

ff Adding mouse events to our interactive object

ff Creating a slider

ff Creating a responsive text box

ff Dragging, scaling, and rotating objects using multi-touch

Introduction
In this chapter we will create graphical objects that react to the user using both mouse and
touch interaction. We will learn how to create simple graphical interfaces that have their own
events for greater flexibility.

Interacting with the User

250

Creating an interactive object that responds
to the mouse

In this recipe, we will create an InteractiveObject class for making graphical objects that
interact with the mouse cursor and executes the following actions:

Action Description

Pressed The user pressed the mouse button while over the object.

Pressed outside The user pressed the mouse button while outside the object.

Released The mouse button is released after being pressed over the
object and is still over the object.

Released outside The mouse button is released outside the object.

Rolled over The cursor moves over the object.

Rolled out The cursor moves out of the object.

Dragged The cursor is dragged while being over the object and after
having pressed the object.

For each of the previous actions, a virtual method will be called, and it would change the color
of the object been drawn.

This object can be used as a base class to create interactive objects with more interesting
graphics, such as textures.

Getting ready
Create and add the following files to your project:

ff InteractiveObject.h

ff InteractiveObject.cpp

In the source file with your application class, include the InteractiveObject.h file and
add the following using statements:

#include "InteractiveObject.h"
using namespace ci;
using namespace ci::app;
using namespace std;

Chapter 10

251

How to do it…
We will create an InteractiveObject class and make it responsive to mouse events.

1.	 Move to the file InteractiveObject.h and add the #pragma once directive and
include the following files:
#pragma once

#include "cinder/Rect.h"
#include "cinder/Color.h"
#include "cinder/app/MouseEvent.h"
#include "cinder/gl/gl.h"
#include "cinder/app/App.h"

2.	 Declare the class InteractiveObject:
class InteractiveObject{
public:
InteractiveObject(const ci::Rectf& rect);
virtual ~InteractiveObject();
virtual void draw();
virtual void pressed();
virtual void pressedOutside();
virtual void released();
virtual void releasedOutside();
virtual void rolledOver();
virtual void rolledOut();
virtual void dragged();
void mouseDown(ci::app::MouseEvent& event);
void mouseUp(ci::app::MouseEvent& event);
void mouseDrag(ci::app::MouseEvent& event);
void mouseMove(ci::app::MouseEvent& event);

ci::Rectf rect;
ci::Color pressedColor, idleColor, overColor, strokeColor;

protected:
bool mPressed, mOver;
};

3.	 Move on to the InteractiveObject.cpp file, and let's begin by including the
InteractiveObject.h file and adding the following using statements:
#include "InteractiveObject.h"

using namespace ci;
using namespace ci::app;
using namespace std;

Interacting with the User

252

4.	 Let's begin by implementing constructor and destructor.
InteractiveObject::InteractiveObject(const Rectf& rect){
 this->rect = rect;
 pressedColor = Color(1.0f, 0.0f, 0.0f);
 idleColor = Color(0.7f, 0.7f, 0.7f);
 overColor = Color(1.0f, 1.0f, 1.0f);
 strokeColor = Color(0.0f, 0.0f, 0.0f);
 mPressed = false;
 mOver = false;
}

InteractiveObject::~InteractiveObject(){
}

5.	 In the InteractiveObject::draw method we will draw the rectangle using the
appropriate colors:
void InteractiveObject::draw(){
 if(mPressed){
 gl::color(pressedColor);
 } else if(mOver){
 gl::color(overColor);
 } else {
 gl::color(idleColor);
 }
 gl::drawSolidRect(rect);
 gl::color(strokeColor);
 gl::drawStrokedRect(rect);
}

6.	 In the pressed, released, rolledOver, rolledOut, and dragged methods we
will simply output to the console on which the action just happened:
void InteractiveObject::pressed(){
 console() << "pressed" << endl;
}

void InteractiveObject::pressedOutside(){
 console() << "pressed outside" << endl;
}

void InteractiveObject::released(){
 console() << "released" << endl;
}

void InteractiveObject::releasedOutside(){

Chapter 10

253

 console() << "released outside" << endl;
}

void InteractiveObject::rolledOver(){
 console() << "rolled over" << endl;
}

void InteractiveObject::rolledOut(){
 console() << "rolled out" << endl;
}

void InteractiveObject::dragged(){
 console() << "dragged" << endl;
}

7.	 In the mouse event handlers we will check if the cursor is inside the object and
update the mPressed and mOver variables accordingly. Every time the action is
detected, we will also call the correspondent method.
void InteractiveObject::mouseDown(MouseEvent& event){
 if(rect.contains(event.getPos())){
 mPressed = true;
 mOver = false;
 pressed();
 }else{
 pressedOutside();
 }
}

void InteractiveObject::mouseUp(MouseEvent& event){
 if(rect.contains(event.getPos())){
 if(mPressed){
 mPressed = false;
 mOver = true;
 released();
 }
 } else {
 mPressed = false;
 mOver = false;
 releasedOutside();
 }
}

void InteractiveObject::mouseDrag(MouseEvent& event){
 if(mPressed && rect.contains(event.getPos())){

Interacting with the User

254

 mPressed = true;
 mOver = false;
 dragged();
 }
}

void InteractiveObject::mouseMove(MouseEvent& event){
 if(rect.contains(event.getPos())){
 if(mOver == false){
 mPressed = false;
 mOver = true;
 rolledOver();
 }
 } else {
 if(mOver){
 mPressed = false;
 mOver = false;
 rolledOut();
 }
 }

8.	 With our InteractiveObject class ready, let's move to our application's class
source file. Let's begin by declaring an InteractiveObject object.
shared_ptr<InteractiveObject> mObject;

9.	 In the setup method we will initialize mObject.
Rectf rect(100.0f, 100.0f, 300.0f, 300.0f);
mObject = shared_ptr<InteractiveObject>(new InteractiveObject(
rect));

10.	 We will need to declare the mouse event handlers.
void mouseDown(MouseEvent event);	
void mouseUp(MouseEvent event);
void mouseDrag(MouseEvent event);
void mouseMove(MouseEvent event);

11.	 In the implementation of the previous methods we will simply call the corresponding
method of mObject.
void MyApp::mouseDown(MouseEvent event){
 mObject->mouseDown(event);
}

void MyApp::mouseUp(MouseEvent event){

Chapter 10

255

 mObject->mouseUp(event);
}

void MyApp::mouseDrag(MouseEvent event){
 mObject->mouseDrag(event);
}

void MyApp::mouseMove(MouseEvent event){
 mObject->mouseMove(event);
}

12.	 In the implementation of the draw method, we will clear the background with black
and call the draw method of mObject.
gl::clear(Color(0, 0, 0));
mObject->draw();

13.	 Now build and run the application. Use the mouse to interact with the object.
Whenever you press, release, or roll over or out of the object, a message will be sent
to the console indicating the behavior.

How it works…
The InteractiveObject class is to be used as a base class for interactive objects. The
methods pressed, released, rolledOver, rolledOut, and dragged are specifically
designed to be overridden.

The mouse handlers of InteractiveObject call the previous methods whenever an action
is detected. By overriding the methods, it is possible to implement specific behavior.

The virtual destructor is declared so that extending classes can have their own destructor.

Adding mouse events to our interactive
object

In this recipe, we will continue with the previous recipe, Creating an interactive object that
responds to the mouse and add the mouse events to our InteractiveObject class so that
other objects can register and receive notifications whenever a mouse event occurs.

Getting ready
Grab the code from the recipe Creating an interactive object that responds to the mouse and
add it to your project, as we will continue on from what was made earlier.

Interacting with the User

256

How to do it…
We will make our InteractiveObject class and send its own events whenever it interacts
with the cursor.

1.	 Let's create a class to use as an argument when sending events. Add the following
code in the file InteractiveObject.h right before the InteractiveObject
class declaration:
class InteractiveObject;
class InteractiveObjectEvent: public ci::app::Event{
public:
enum EventType{ Pressed, PressedOutside, Released,
 ReleasedOutside, RolledOut, RolledOver, Dragged };
InteractiveObjectEvent(InteractiveObject *sender,
 EventType type){
 this->sender = sender;
 this->type = type;
}

InteractiveObject *sender;
EventType type;
};

2.	 In the InteractiveObject class, we will need to declare a member to manage the
registered objects using the ci::CallbakcMgr class. Declare the following code as
a protected member:
ci::CallbackMgr< void(InteractiveObjectEvent) > mEvents;

3.	 Now we will need to add a method so that other objects can register to receive
events. Since the method will use a template, we will declare and implement it in the
InteraciveObject.h file. Add the following member method:
template< class T >
ci::CallbackId addListener(T* listener,
 void (T::*callback)(InteractiveObjectEvent)){
 return mEvents.registerCb(std::bind1st(
 std::mem_fun(callback), listener));
}

4.	 Let's also create a method so that objects can unregister from receiving further
events. Declare the following method:
void removeListener(ci::CallbackId callId);

Chapter 10

257

5.	 Let's implement the removeListener method. Add the following code in the
InteractiveObject.cpp file:
void InteractiveObject::removeListener(CallbackId callbackId){
 mEvents.unregisterCb(callbackId);
}

6.	 Modify the methods mouseDown, mouseUp, mouseDrag, and mouseMove so that
mEvents gets called whenever an event occurs. The implementation of these
methods should be as follows:
void InteractiveObject::mouseDown(MouseEvent& event){
 if(rect.contains(event.getPos())){
 mPressed = true;
 mOver = false;
 pressed();
 mEvents.call(InteractiveObjectEvent(this,
 InteractiveObjectEvent::Pressed));
 } else {
 pressedOutside();
 mEvents.call(InteractiveObjectEvent(this,
 InteractiveObjectEvent::PressedOutside));
 }
}

void InteractiveObject::mouseUp(MouseEvent& event){
 if(rect.contains(event.getPos())){
 if(mPressed){
 mPressed = false;
 mOver = true;
 released();
 mEvents.call(InteractiveObjectEvent(this,
 InteractiveObjectEvent::Released));
 }
 } else {
 mPressed = false;
 mOver = false;
 releasedOutside();
 mEvents.call(InteractiveObjectEvent(this,
 InteractiveObjectEvent::ReleasedOutside));
 }
}

void InteractiveObject::mouseDrag(MouseEvent& event){
 if(mPressed && rect.contains(event.getPos())){
 mPressed = true;

Interacting with the User

258

 mOver = false;

 dragged();
 mEvents.call(InteractiveObjectEvent(this,
 InteractiveObjectEvent::Dragged));
 }
}

void InteractiveObject::mouseMove(MouseEvent& event){
 if(rect.contains(event.getPos())){
 if(mOver == false){
 mPressed = false;
 mOver = true;
 rolledOver();
 mEvents.call(InteractiveObjectEvent(this,
 InteractiveObjectEvent::RolledOver));
 }
 } else {
 if(mOver){
 mPressed = false;
 mOver = false;
 rolledOut();
 mEvents.call(InteractiveObjectEvent(this,
 InteractiveObjectEvent::RolledOut));
 }
 }
}

7.	 With our InteractiveObject class ready, we need to register our application class
to receive its events. In your application class declaration add the following method:
void receivedEvent(InteractiveObjectEvent event);

8.	 Let's implement the receivedEvent method. We will check what type of event has
been received and print a message to the console.
void MyApp::receivedEvent(InteractiveObjectEvent event){
string text;
switch(event.type){
case InteractiveObjectEvent::Pressed:
text = "Pressed event";
break;
case InteractiveObjectEvent::PressedOutside:
text = "Pressed outside event";
break;
case InteractiveObjectEvent::Released:
text = "Released event";

Chapter 10

259

break;
case InteractiveObjectEvent::ReleasedOutside:
text = "Released outside event";
break;
case InteractiveObjectEvent::RolledOver:
text = "RolledOver event";
break;
case InteractiveObjectEvent::RolledOut:
text = "RolledOut event";
break;
case InteractiveObjectEvent::Dragged:
text = "Dragged event";
break;
default:
text = "Unknown event";
 }
console() << "Received " + text << endl;
}

9.	 All that is left is to register for the events. In the setup method add the following
code after mObject has been initialized:
mObject->addListener(this, &InteractiveObjectApp::receivedEvent
);

10.	 Now build and run the application and use the mouse to interact with the rectangle
on the window. Whenever a mouse event occurs on mObject, our method,
receivedEvent, will be called.

How it works…
We are using the template class ci::CallbakMgr to manage our event listeners. This
class takes a template with the signature of the methods that can be registered. In our
previous code, we declared mEvents to be of type ci::CallbakcMgr<void(Inte
ractiveObjectEvent)>; it means that only methods that return void and receive
InteractiveObejctEvent as a parameter can be registered.

The template method registerEvent will take an object pointer and method pointer. These
are bound to std::function using std::bind1st and added to mEvents. The method
will return ci::CallbackId with the identification of the listener. The ci::CallbackId
can be used to unregister listeners.

Interacting with the User

260

There's more…
The InteractiveObject class is very useful for creating user interfaces. If we want to
create a Button class using three textures (for displaying when pressed, over, and idle),
we can do so as follows:

1.	 Include the InteractiveObject.h and cinder/gl/texture.h files:
#include "InteractiveObject.h"
#include "cinder/gl/Texture.h"

2.	 Declare the following class:
class Button: public InteractiveObject{
public:
Button(const ci::Rectf& rect, ci::gl::Texture idleTex,
 ci::gl::Texture overTex, ci::gl::Texture pressTex)
:InteractiveObject(rect)
{
 mIdleTex = idleTex;
 mOverTex = overTex;
 mPressTex = pressTex;
}

virtual void draw(){
 if(mPressed){
 ci::gl::draw(mPressTex, rect);
 } else if(mOver){
 ci::gl::draw(mOverTex, rect);
 } else {
 ci::gl::draw(mPressTex, rect);
 }
}

protected:
ci::gl::Texture mIdleTex, mOverTex, mPressTex;
};

Creating a slider
In this recipe we will learn how to create a slider UI element by extending the
InteractiveObject class mentioned in the Creating an interactive object that
responds to the mouse recipe of this chapter.

Chapter 10

261

Getting ready
Please refer to the Creating an interactive object that responds to the mouse recipe to find the
InteractiveObject class headers and source code.

How to do it…
We will create a Slider class and show you how to use it.

1.	 Add a new header file named Slider.h to your project:
#pragma once

#include "cinder/gl/gl.h"
#include "cinder/Color.h"

#include "InteractiveObject.h"

using namespace std;
using namespace ci;
using namespace ci::app;

class Slider : publicInteractiveObject {
public:
Slider() : InteractiveObject(Rectf(0,0, 100,10)) {
 mValue = 0.f;
}
Vec2f getPosition() { return rect.getUpperLeft(); }
void setPosition(Vec2f position) { rect.offset(position); }
void setPosition(float x, float y) { setPosition(Vec2f(x,y)); }
float getWidth() { return getSize().x; }
float getHeight() { return getSize().y; }
Vec2f getSize() { return rect.getSize(); }
void setSize(Vec2f size) {
 rect.x2 = rect.x1+size.x; rect.y2 = rect.y1+size.y;
}
void setSize(float width, float height) {
 setSize(Vec2f(width,height));
}

Interacting with the User

262

virtual float getValue() { return mValue; }
virtual void setValue(float value) {
 mValue = ci::math<float>::clamp(value);
}

virtual void pressed() {
 InteractiveObject::pressed();
 dragged();
}

virtual void dragged() {
 InteractiveObject::dragged();
 Vec2i mousePos = AppNative::get()->getMousePos();
 setValue((mousePos.x - rect.x1) / rect.getWidth());
}

virtual void draw() {
 gl::color(Color::gray(0.7f));
 gl::drawSolidRect(rect);
 gl::color(Color::black());
 Rectf fillRect = Rectf(rect);
 fillRect.x2 = fillRect.x1 + fillRect.getWidth() * mValue;
 gl::drawSolidRect(fillRect);
}

protected:
float mValue;
};

2.	 Inside the source file of your main application class, include the previously created
header file:
#include "Slider.h"

3.	 Add the new properties to your main class:
shared_ptr<Slider> mSlider1;
shared_ptr<Slider> mSlider2;
shared_ptr<Slider> mSlider3;

Chapter 10

263

4.	 Inside the setup method do the initialization of the slider objects:
mSlider1 = shared_ptr<Slider>(new Slider());
mSlider1->setPosition(70.f, 20.f);
mSlider1->setSize(200.f, 10.f);
mSlider1->setValue(0.75f);

mSlider2 = shared_ptr<Slider>(new Slider());
mSlider2->setPosition(70.f, 35.f);
mSlider2->setValue(0.25f);

mSlider3 = shared_ptr<Slider>(new Slider());
mSlider3->setPosition(70.f, 50.f);
mSlider3->setValue(0.5f);

5.	 Add the following code for drawing sliders inside your draw method:

gl::enableAlphaBlending();
gl::clear(Color::white());
gl::setViewport(getWindowBounds());
gl::setMatricesWindow(getWindowSize());

mSlider1->draw();
gl::drawStringRight("Value 1:", mSlider1->getPosition()+Vec2f(-
5.f, 3.f), Color::black());
gl::drawString(toString(mSlider1->getValue()), mSlider1-
>getPosition()+Vec2f(mSlider1->getWidth()+5.f, 3.f),
Color::black());

mSlider2->draw();
gl::drawStringRight("Value 2:", mSlider2->getPosition()+Vec2f(-
5.f, 3.f), Color::black());
gl::drawString(toString(mSlider2->getValue()), mSlider2-
>getPosition()+Vec2f(mSlider2->getWidth()+5.f, 3.f),
Color::black());

mSlider3->draw();
gl::drawStringRight("Value 3:", mSlider3->getPosition()+Vec2f(-
5.f, 3.f), Color::black());
gl::drawString(toString(mSlider3->getValue()), mSlider3-
>getPosition()+Vec2f(mSlider3->getWidth()+5.f, 3.f),
Color::black());

Interacting with the User

264

How it works…
We created the Slider class by inheriting and overriding the InteractiveObject methods
and properties. In step 1, we extended it with methods for controlling the position and
dimensions of the slider object. The methods getValue and setValue can be used to
retrieve or set the actual state of slider, which can vary from 0 to 1.

In step 4, you can find the initialization of example sliders by setting the initial position, size,
and value just after creating the Slider object. We are drawing example sliders along with
captions and information about current state.

See also
ff The recipe Creating interactive object that responds to the mouse.

ff The recipe Dragging scaling, and rotating objects using multi-touch.

Creating a responsive text box
In this recipe we will learn how to create a text box that responds to the user's keystrokes.
It will be active when pressed over by the mouse and inactive when the mouse is released
outside the box.

Getting ready
Grab the following files from the recipe Creating an interactive object that responds to the
mouse and add them to your project:

ff InteractiveObject.h

ff InteractiveObject.cpp

Create and add the following files to your project:

ff InteractiveTextBox.h

ff InteractiveTextBox.cpp

How to do it…
We will create an InteractiveTextBox class that inherits from InteractiveObject and
adds text functionality.

Chapter 10

265

1.	 Go to the file InteractiveTextBox.h and add the #pragma once macro and
include the necessary files.
#pragma once

#include "InteractiveObject.h"
#include "cinder/Text.h"
#include "cinder/gl/Texture.h"
#include "cinder/app/KeyEvent.h"
#include "cinder/app/AppBasic.h"

2.	 Now declare the InteractiveTextBox class, making it a subclass of
InteractiveObject with the following members and methods:
class InteractiveTextBox: public InteractiveObject{
public:
 InteractiveTextBox(const ci::Rectf& rect);

 virtual void draw();
 virtual void pressed();
 virtual void releasedOutside();

 void keyDown(ci::app::KeyEvent& event);
 protected:
 ci::TextBox mTextBox;
 std::string mText;
 bool mActive;
 bool mFirstText;
};

3.	 Now go to InteractiveTextBox.cpp and include the InteractiveTextBox.h
file and add the following using statements:
#include "InteractiveTextBox.h"

using namespace std;
using namespace ci;
using namespace ci::app;

4.	 Now let's implement the constructor by initializing the parent class and setting up the
internal ci::TextBox.
InteractiveTextBox::InteractiveTextBox(const Rectf& rect):
InteractiveObject(rect)
{
 mActive = false;

Interacting with the User

266

 mText = "Write some text";
 mTextBox.setText(mText);
 mTextBox.setFont(Font("Arial", 24));
 mTextBox.setPremultiplied(true);
 mTextBox.setSize(Vec2i(rect.getWidth(), rect.getHeight()));
 mTextBox.setBackgroundColor(Color::white());
 mTextBox.setColor(Color::black());
 mFirstText = true;
}

5.	 In the InteractiveTextBox::draw method we will set the background color
of mTextBox depending if it is active or not. We will also render mTextBox into
ci::gl::Texture and draw it.
void InteractiveTextBox::draw(){
 if(mActive){
 mTextBox.setBackgroundColor(Color(0.7f, 0.7f, 1.0f));
 } else {
 mTextBox.setBackgroundColor(Color::white());
 }
 gl::color(Color::white());
 gl::Texture texture = mTextBox.render();
 gl::draw(texture, rect);
}

6.	 Now let's implement the overridden methods pressed and releasedOutside to
define the value of mActive.
void InteractiveTextBox::pressed(){
 mActive = true;
}

void InteractiveTextBox::releasedOutside(){
 mActive = false;
}

7.	 Finally, we need to implement the keyPressed method.

If mActive is false this method will simply return. Otherwise, we will remove the last
letter of mText if the key released was the Backspace key, or, add the corresponding
letter if any other key was pressed.

void InteractiveTextBox::keyDown(KeyEvent& event){
 if(mActive == false) return;
 if(mFirstText){
 mText = "";
 mFirstText = false;

Chapter 10

267

 }
 if(event.getCode() == KeyEvent::KEY_BACKSPACE){
 if(mText.size() > 0){
 mText = mText.substr(0, mText.size()-1);
 }
 } else {
 const char character = event.getChar();
 mText += string(&character, 1);
 }
 mTextBox.setText(mText);
}

8.	 Now move to your application class source file and include the following file and the
using statements:
#include "InteractiveTextBox.h"

using namespace ci;
using namespace ci::app;
using namespace std;

9.	 In your application class declare the following member:
shared_ptr<InteractiveTextBox> mTextBox;

10.	 Let's initialize mTextBox in the setup method:
Rectf rect(100.0f, 100.0f, 300.0f, 200.0f);
mTextBox = shared_ptr<InteractiveTextBox>(new InteractiveTextBox(
rect));

11.	 In the draw method we will clear the background with black, enable
AlphaBlending, and draw our mTextBox:
 gl::enableAlphaBlending();
 gl::clear(Color(0, 0, 0));
 mTextBox->draw();

12.	 We now need to declare the following mouse event handlers:
void mouseDown(MouseEvent event);
void mouseUp(MouseEvent event);
void mouseDrag(MouseEvent event);
void mouseMove(MouseEvent event);

13.	 And implement them by calling the respective mouse event handler of mTextBox:
void MyApp::mouseDown(MouseEvent event){
 mTextBox->mouseDown(event);
}

void MyApp::mouseUp(MouseEvent event){

Interacting with the User

268

 mTextBox->mouseUp(event);
}

void MyApp::mouseDrag(MouseEvent event){
 mTextBox->mouseDrag(event);
}

void MyApp::mouseMove(MouseEvent event){
 mTextBox->mouseMove(event);
}

14.	 Now we just need to do the same with the key released event handler. Start by
declaring it:
void keyDown(KeyEvent event);

15.	 And in it's implementation we will call the keyUp method of mTextBox.
void InteractiveObjectApp::keyDown(KeyEvent event){
 mTextBox->keyDown(event);
}

16.	 Now build and run the application. You will see a white textbox with the phrase Write
some text. Press the text box and write some text. Click outside the text box to set the
textbox as inactive.

How it works…
Internally, our InteractiveTextBox uses a ci::TextBox object. This class manages the
text inside a box with a specified width and height. We take advantage of that and update the
text according to the keys that the user presses.

Dragging, scaling, and rotating objects using
multi-touch

In this recipe, we will learn how to create objects responsible to multi-touch gestures, such as
dragging, scaling, or rotating by extending the InteractiveObject class mentioned in the
Creating an interactive object that responds to the mouse recipe of this chapter. We are going
to build an iOS application that uses iOS device multi-touch capabilities.

Chapter 10

269

Getting ready
Please refer to the Creating an interactive object that responds to the mouse recipe to find
the InteractiveObject class headers and source code and Creating a project for an iOS
touch application recipe from Chapter 1.

Interacting with the User

270

How to do it…
We will create an iPhone application with sample objects that can be dragged, scaled,
or rotated.

1.	 Add a new header file named TouchInteractiveObject.h to your project:
#pragma once

#include "cinder/app/AppNative.h"
#include "cinder/gl/gl.h"
#include "cinder/Color.h"

#include "InteractiveObject.h"

using namespace std;
using namespace ci;
using namespace ci::app;

class TouchInteractiveObject : public InteractiveObject {
public:
TouchInteractiveObject(const Vec2f& position,
 const Vec2f& size);
bool touchesBegan(TouchEvent event);
bool touchesMoved(TouchEvent event);
bool touchesEnded(TouchEvent event);
Vec2f getPosition() { return position; }
void setPosition(Vec2f position) { this->position = position; }
void setPosition(float x, float y) { setPosition(Vec2f(x,y)); }
float getWidth() { return getSize().x; }
float getHeight() { return getSize().y; }
Vec2f getSize() { return rect.getSize(); }
void setSize(Vec2f size) {
 size.x = max(30.f,size.x);
 size.y = max(30.f,size.y);
 rect = Rectf(getPosition()-size*0.5f,getPosition()+size*0.5f);
}
void setSize(float width, float height) {
 setSize(Vec2f(width,height));
}
float getRotation() { return rotation; }
void setRotation(float rotation) {
 this->rotation = rotation;
}

Chapter 10

271

virtual void draw();

protected:
Vec2f position;
float rotation;
bool scaling;

unsigned int dragTouchId;
unsigned int scaleTouchId;
};

2.	 Add a new source file named TouchInteractiveObject.cpp to your project and
include the previously created header file by adding the following code line:
#include "TouchInteractiveObject.h"

3.	 Implement the constructor of TouchInteractiveObject:
TouchInteractiveObject::TouchInteractiveObject(
 const Vec2f& position, const Vec2f& size)
 : InteractiveObject(Rectf())
{
 scaling = false;
 rotation = 0.f;
 setPosition(position);
 setSize(size);
 AppNative::get()->registerTouchesBegan(this,
 &TouchInteractiveObject::touchesBegan);
 AppNative::get()->registerTouchesMoved(this,
 &TouchInteractiveObject::touchesMoved);
 AppNative::get()->registerTouchesEnded(this,
 &TouchInteractiveObject::touchesEnded);
}

4.	 Implement the handlers for touch events:
bool TouchInteractiveObject::touchesBegan(TouchEvent event)

{
 Vec2f bVec1 = getSize()*0.5f;
 Vec2f bVec2 = Vec2f(getWidth()*0.5f, -getHeight()*0.5f);
 bVec1.rotate((rotation) * (M_PI/180.f));
 bVec2.rotate((rotation) * (M_PI/180.f));
 Vec2f bVec;
 bVec.x = math<float>::max(abs(bVec1.x), abs(bVec2.x));
 bVec.y = math<float>::max(abs(bVec1.y), abs(bVec2.y));
 Area activeArea = Area(position-bVec, position+bVec);
 for (vector<TouchEvent::Touch>::const_iterator it

Interacting with the User

272

 = event.getTouches().begin();
 it != event.getTouches().end(); ++it) {
 if(activeArea.contains(it->getPos())) {
 if(mPressed) {
 scaling = true;
 scaleTouchId = it->getId();
 } else {
 mPressed = true;
 dragTouchId = it->getId();
 }
 }
 }
 return false;
}

bool TouchInteractiveObject::touchesMoved(TouchEvent event)
{
 if(!mPressed) return false;
 const TouchEvent::Touch* dragTouch;
 const TouchEvent::Touch* scaleTouch;
 for (vector<TouchEvent::Touch>::const_iterator it
 = event.getTouches().begin();
 it != event.getTouches().end(); ++it) {
 if (scaling && scaleTouchId == it->getId()) {
 scaleTouch = &(*it);
 }
 if(dragTouchId == it->getId()) {
 dragTouch = &(*it);
 }
 }
 if(scaling) {
 Vec2f prevPos = (dragTouch->getPrevPos()
 + scaleTouch->getPrevPos()) * 0.5f;
 Vec2f curPos = (dragTouch->getPos()
 + scaleTouch->getPos())*0.5f;
 setPosition(getPosition() + curPos - prevPos);
 Vec2f prevVec = dragTouch->getPrevPos()
 - scaleTouch->getPrevPos();
 Vec2f curVec = dragTouch->getPos() - scaleTouch->getPos();

 float scaleFactor = (curVec.length() - prevVec.length())
 / prevVec.length();
 float sizeFactor = prevVec.length() / getSize().length();
 setSize(getSize() + getSize() * sizeFactor * scaleFactor);

Chapter 10

273

 float angleDif = atan2(curVec.x, curVec.y)
 - atan2(prevVec.x, prevVec.y);
 rotation += -angleDif * (180.f/M_PI);
 } else {
 setPosition(getPosition() + dragTouch->getPos()
 - dragTouch->getPrevPos());
 }
 return false;
}

bool TouchInteractiveObject::touchesEnded(TouchEvent event)
{
 if(!mPressed) return false;
 for (vector<TouchEvent::Touch>::const_iterator it
 = event.getTouches().begin();
 it != event.getTouches().end(); ++it) {
 if(dragTouchId == it->getId()) {
 mPressed = false;
 scaling = false;
 }
 if(scaleTouchId == it->getId()) {
 scaling = false;
 }
 }
 return false;
}

5.	 Now, implement the basic draw method for TouchInteractiveObjects:
void TouchInteractiveObject::draw() {
 Rectf locRect = Rectf(Vec2f::zero(), getSize());
 gl::pushMatrices();
 gl::translate(getPosition());
 gl::rotate(getRotation());
 gl::pushMatrices();
 gl::translate(-getSize()*0.5f);
 gl::color(Color::gray(mPressed ? 0.6f : 0.9f));
 gl::drawSolidRect(locRect);
 gl::color(Color::black());
 gl::drawStrokedRect(locRect);
 gl::popMatrices();
 gl::popMatrices();
}

Interacting with the User

274

6.	 Here is the class, which inherits all the features of TouchInteractiveObject, but
overrides the draw method and, in this case, we want our interactive object to be a
circle. Add the following class definition to your main source file:
class Circle : publicTouchInteractiveObject {
public:
 Circle(const Vec2f& position, const Vec2f& size)
 : TouchInteractiv eObject(position, size) {}

 virtual void draw() {
 gl::color(Color::gray(mPressed ? 0.6f : 0.9f));
 gl::drawSolidEllipse(getPosition(),
 getSize().x*0.5f, getSize().y*0.5f);
 gl::color(Color::black());
 gl::drawStrokedEllipse(getPosition(),
 getSize().x*0.5f, getSize().y*0.5f);
 }
};

7.	 Now take a look at your main application class file. Include the necessary
header files:
#include "cinder/app/AppNative.h"
#include "cinder/Camera.h"
#include "cinder/Rand.h"

#include "TouchInteractiveObject.h"

8.	 Add the typedef declaration:
typedef shared_ptr<TouchInteractiveObject> tio_ptr;

9.	 Add members to your application class to handle the objects:
tio_ptr mObj1;
tio_ptr mCircle;

10.	 Inside the setup method initialize the objects:
mObj1 = tio_ptr(new TouchInteractiveObject(getRandPos(),
Vec2f(100.f,100.f)));
mCircle = tio_ptr(new Circle(getRandPos(), Vec2f(100.f,100.f)));

11.	 The draw method is simple and looks as follows:
gl::setMatricesWindow(getWindowSize());
gl::clear(Color::white());
mObj1->draw();
mCircle->draw();

Chapter 10

275

12.	 As you can see in the setup method we are using the function getRandPos, which
returns a random position in screen boundaries with some margin:

Vec2f MainApp::getRandPos()
{
 return Vec2f(randFloat(30.f, getWindowWidth()-30.f),
 randFloat(30.f, getWindowHeight()-30.f));
}

How it works…
We created the TouchInteractiveObject class by inheriting and overriding the
InteractiveObject methods and properties. We also extended it with methods for
controlling position and dimensions.

In step 3, we are initializing properties and registering callbacks for touch events. The next
step is to implement these callbacks. On the touchesBegan event, we are checking if the
object is touched by any of the new touches, but all the calculations of movements and
gestures happen during touchesMoved event.

In step 6, you can see how simple it is to change the appearance and keep all the interactive
capabilities of TouchInteractiveObject by overriding the draw method.

There is more…
You can notice an issue that you are dragging multiple objects while they are overlapping. To
solve that problem, we will add a simple object activation manager.

1.	 Add a new class definition to your Cinder application:
class ObjectsManager {
public:
 ObjectsManager() { }

 void addObject(tio_ptr obj) {
 objects.push_front(obj);
 }

 void update() {
 bool rel = false;
 deque<tio_ptr>::const_iterator it;
 for(it = objects.begin(); it != objects.end(); ++it) {
 if(rel)
 (*it)->release();
 else if((*it)->isActive())
 rel = true;

Interacting with the User

276

 }
 }

protected:
 deque<tio_ptr> objects;
};

2.	 Add a new member to your application's main class:
shared_ptr<ObjectsManager> mObjMgr;

3.	 At the end of the setup method initialize mObjMgr, which is the object's manager,
and add the previously initialized interactive objects:
mObjMgr = shared_ptr<ObjectsManager>(new ObjectsManager());
mObjMgr->addObject(mObj1);
mObjMgr->addObject(mCircle);

4.	 Add the update method to your main class as follows:
void MainApp::update()
{
 mObjMgr->update();
}

5.	 Add two new methods to the TouchInteractiveObject class:
bool isActive() { return mPressed; }
void release() { mPressed = false; }

11
Sensing and Tracking

Input from the Camera

In this chapter, we will learn how to receive and process data from input devices
such as a camera or a Microsoft Kinect sensor.

The following recipes will be covered:

ff Capturing from the camera

ff Tracking an object based on color

ff Tracking motion using optical flow

ff Object tracking

ff Reading QR code

ff Building UI navigation and gesture recognition with Kinect

ff Building an augmented reality with Kinect

Capturing from the camera
In this recipe we will learn how to capture and display frames from a camera.

Getting ready
Include the necessary files to capture images from a camera and draw them to
OpenGL textures:

Sensing and Tracking Input from the Camera

278

#include "cinder/gl/gl.h"
#include "cinder/gl/Texture.h"
#include "cinder/Capture.h"

Also add the following using statements:

using namespace ci;
using namespace ci::app;
using namespace std;

How to do it…
We will now capture and draw frames from the camera.

1.	 Declare the following members in your application class:
 Capture mCamera;
 gl::Texture mTexture;

2.	 In the setup method we will initialize mCamera:
 try{
 mCamera = Capture(640, 480);
 mCamera.start();
 } catch(...){
 console() << "Could not initialize the capture" << endl;

3.	 In the update method, we will check if mCamera was successfully initialized. Also if
there is any new frame available, copy the camera's image into mTexture:
 if(mCamera){
 if(mCamera.checkNewFrame()){
 mTexture = gl::Texture(mCamera.getSurface());
 }
 }

4.	 In the draw method, we will simply clear the background, check if mTexture has
been initialized, and draw it's image on the screen:

 gl::clear(Color(0, 0, 0));
 if(mTexture){
 gl::draw(mTexture, getWindowBounds());
 }

Chapter 11

279

How it works…
The ci::Capture is a class that wraps around Quicktime on Apple computers, AVFoundation
on iOS platforms, and Directshow on Windows. Under the hood it uses these lower level
frameworks to access and capture frames from a webcam.

Whenever a new frame is found, it's pixels are copied into the ci::Surface method. In the
previous code we check on every update method if there is a new frame by calling
the ci::Capture::checkNewFrame method, and update our texture with its surface.

There's more…
It is also possible to get a list of available capture devices and choose which one you wish to
start with.

To ask for a list of devices and print their information, we could write the following code:

vector<Capture::DeviceRef> devices = Capture::getDevices();
for(vector<Capture::DeviceRef>::iterator it = devices.begin();
 it != devices.end(); ++it){
 Capture::DeviceRef device = *it;
 console() << "Found device:"
 << device->getName()
 << " with ID:" << device->getUniqueId() << endl;
}

To initialize mCapture using a specific device, you simply pass ci::Capture::DeviceRef
as a third parameter in the constructor.

For example, if you wanted to initialize mCapture with the first device, you should write the
following code:

vector<Capture::DeviceRef> devices = Capture::getDevices();
mCapture = Capture(640, 480 devices[0]);

Tracking an object based on color
In this recipe we will show how to track objects with a specified color using the OpenCV library.

Sensing and Tracking Input from the Camera

280

Getting ready
In this recipe we will use OpenCV, so please refer to the Integrating with OpenCV recipe
from Chapter 3, Using Image Processing Techniques. We will also need InterfaceGl which
is covered in the Setting up a GUI for parameter tweaking recipe from Chapter 2, Preparing
for Development.

How to do it…
We will create an application that tracks an object with a selected color.

1.	 Include the necessary header files:
#include "cinder/gl/gl.h"
#include "cinder/gl/Texture.h"
#include "cinder/Surface.h"
#include "cinder/ImageIo.h"
#include "cinder/Capture.h"
#include "cinder/params/Params.h"
#include "CinderOpenCV.h"

2.	 Add members to store the original and processed frame:
Surface8u mImage;

3.	 Add members to store the tracked object's coordinates:
vector<cv::Point2f> mCenters;
vector<float> mRadius;

4.	 Add members to store the parameters that will be passed to the tracking algorithms:
double mApproxEps;
int mCannyThresh;

ColorA mPickedColor;
cv::Scalar mColorMin;
cv::Scalar mColorMax;

5.	 Add members to handle the capturing device and frame texture:
Capture mCapture;
gl::Texture mCaptureTex;

6.	 In the setup method we will set the window dimensions and initialize capturing device:
setWindowSize(640, 480);

Chapter 11

281

try {
 mCapture = Capture(640, 480);
 mCapture.start();
}
catch(...) {
 console() <<"Failed to initialize capture"<<std::endl;
}

7.	 In the setup method we have to initialize variables and setup the GUI for a preview
of the tracked color value:
mApproxEps = 1.0;
mCannyThresh = 200;

mPickedColor = Color8u(255, 0, 0);
setTrackingHSV();

// Setup the parameters
mParams = params::InterfaceGl("Parameters", Vec2i(200, 150));
mParams.addParam("Picked Color", &mPickedColor, "readonly=1");

8.	 In the update method, check if there is any new frame to process and convert it to
cv::Mat, which is necessary for further OpenCV operations:
if(mCapture&&mCapture.checkNewFrame()) {
 mImage = mCapture.getSurface();
 mCaptureTex = gl::Texture(mImage);

 cv::Mat inputMat(toOcv(mImage));
 cv::resize(inputMat, inputMat, cv::Size(320, 240));

 cv::Mat inputHSVMat, frameTresh;
 cv::cvtColor(inputMat, inputHSVMat, CV_BGR2HSV);

9.	 Process the captured frame:
 cv::inRange(inputHSVMat, mColorMin, mColorMax, frameTresh);

 cv::medianBlur(frameTresh, frameTresh, 7);

 cv::Mat cannyMat;
 cv::Canny(frameTresh, cannyMat, mCannyThresh, mCannyThresh*2.f,
 3);

Sensing and Tracking Input from the Camera

282

 vector< std::vector<cv::Point> > contours;
 cv::findContours(cannyMat, contours, CV_RETR_LIST,
 CV_CHAIN_APPROX_SIMPLE);
 mCenters = vector<cv::Point2f>(contours.size());
 mRadius = vector<float>(contours.size());
 for(int i = 0; i < contours.size(); i++) {
 std::vector<cv::Point> approxCurve;
 cv::approxPolyDP(contours[i], approxCurve,
 mApproxEps, true);
 cv::minEnclosingCircle(approxCurve, mCenters[i],
 mRadius[i]);
 }

10.	 Close the if statement's body.
}

11.	 Implement the method setTrackingHSV, which sets color's values for tracking:
void MainApp::setTrackingHSV()
{
void MainApp::setTrackingHSV() {
 Color8u col = Color(mPickedColor);
 Vec3f colorHSV = col.get(CM_HSV);
 colorHSV.x *= 179;
 colorHSV.y *= 255;
 colorHSV.z *= 255;
 mColorMin = cv::Scalar(colorHSV.x-5, colorHSV.y -50,
 colorHSV.z-50);
 mColorMax = cv::Scalar(colorHSV.x+5, 255, 255);
}

12.	 Implement the mouseDown event handler:
void MainApp::mouseDown(MouseEvent event) {
 if(mImage&&mImage.getBounds().contains(event.getPos())) {
 mPickedColor = mImage.getPixel(event.getPos());
 setTrackingHSV();
 }
}

13.	 Implement the draw method as follows:

void MainApp::draw()
{
 gl::clear(Color(0.1f, 0.1f, 0.1f));
 gl::color(Color::white());
 if(mCaptureTex) {
 gl::draw(mCaptureTex);
 gl::color(Color::white());

Chapter 11

283

 for(int i = 0; i <mCenters.size(); i++)
 {
 Vec2f center = fromOcv(mCenters[i])*2.f;
 gl::begin(GL_POINTS);
 gl::vertex(center);
 gl::end();
 gl::drawStrokedCircle(center, mRadius[i]*2.f);
 }
 }
 params::InterfaceGl::draw();
}

How it works…
By preparing the captured frame for processing we are converting it into a hue, saturation,
and value (HSV) color space description method, which will be very useful in this case. Those
are the properties describing the color in the HSV color space in a more intuitive way for color
tracking. We can set a fixed hue value for detection, while saturation and value can vary with
in a specified range. This can eliminate a noise caused by constantly changing light in the
camera view. Take a look at the first step of the frame image processing; we are using the
cv::inRange function to get a mask of pixels that fits our tracking color range. The range
of the tracking colors is calculated from the color value picked by clicking inside the window,
which is implemented inside the mouseDown handler and the setTrackingHSV method.

As you can see inside setTrackingHSV, we are calculating mColorMin and mColorMax
by simply widening the range. You may have to adjust these calculations depending on your
camera noise and lighting conditions.

See also
ff HSV on Wikipedia: http://en.wikipedia.org/wiki/HSL_and_HSV

ff The OpenCV documentation: http://opencv.willowgarage.com/
documentation/cpp/

Sensing and Tracking Input from the Camera

284

Tracking motion using optical flow
In this recipe we will learn how to track motion in the images produced from a webcam using
OpenCV using the popular Lucas Kanade optical flow algorithm.

Getting ready
We will need to use OpenCV in this recipe, so please refer to the Integrating with OpenCV
recipe from Chapter 3, Using Image Processing Techniques and add OpenCV and it's
CinderBlock to your project. Include the following files to your source file:

#include "cinder/Capture.h"
#include "cinder/gl/Texture.h"
#include "CinderOpenCV.h"

Add the following using statements:

using namespace ci;
using namespace ci::app;
using namespace std;

How to do it…
We will read frames from the camera and track motion.

1.	 Declare the ci::gl::Texture and ci::Capture objects to display and
capture from a camera. Also, declare a cv::Mat object as the previous frame, two
std::vector<cv::Point2f> objects to store the current and previous features,
and a std::vector<uint8_t> object to store the status of each feature:
 gl::Texture mTexture;
 Capture mCamera;
 cv::Mat mPreviousFrame;
 vector< cv::Point2f > mPreviousFeatures, mFeatures;
 vector< uint8_t > mFeatureStatuses;

2.	 In the setup method we will initialize mCamera:
try{
 mCamera = Capture(640, 480);
 mCamera.start();
 } catch(...){
 console() << "unable to initialize device" << endl;
 }

Chapter 11

285

3.	 In the update method we need to check if mCamera has been correctly initialized
and whether it has a new frame available:
 if(mCamera){
 if(mCamera.checkNewFrame()){

4.	 After those if statements we will get a reference to ci::Surface of mCamera and
then copy it to our mTexture for drawing:
 Surface surface = mCamera.getSurface();
 mTexture = gl::Texture(surface);

5.	 Now let's create a cv::Mat with the current camera frame. We will also check if
mPreviousFrame contains any initialized data, calculate the good features to track,
and calculate their motion from the previous camera frame to the current frame:
 cv::Mat frame(toOcv(Channel(surface)));
 if(mPreviousFrame.data != NULL){
 cv::goodFeaturesToTrack(frame, mFeatures, 300,
0.005f, 3.0f);
 vector<float> errors;
 mPreviousFeatures = mFeatures;
 cv::calcOpticalFlowPyrLK(mPreviousFrame, frame,
mPreviousFeatures, mFeatures, mFeatureStatuses, errors);
 }

6.	 Now we just need to copy the frame to mPreviousFrame and close the initial if
statements:
 mPreviousFrame = frame;
 }
 }

7.	 In the draw method we will begin by clearing the background with black and drawing
mTexture:
 gl::clear(Color(0, 0, 0));
 if(mTexture){
 gl::color(Color::white());
 gl::draw(mTexture, getWindowBounds());
 }

8.	 Next, we will draw red lines on the features we have tracked, using
mFeatureStatus to draw the features that have been matched:
 glColor4f(1.0f, 0.0f, 0.0f, 1.0f);
 for(int i=0; i<mFeatures.size(); i++){
 if((bool)mFeatureStatuses[i] == false) continue;
 gl::drawSolidCircle(fromOcv(mFeatures[i]), 5.0f);
 }

Sensing and Tracking Input from the Camera

286

9.	 Finally, we will draw a line between the previous features and the current ones, also
using mFeatureStatus to draw one of the features that has been matched:

 for(int i=0; i<mFeatures.size(); i++){
 if((bool)mFeatureStatuses[i] == false) continue;
 Vec2f pt1 = fromOcv(mFeatures[i]);
 Vec2f pt2 = fromOcv(mPreviousFeatures[i]);
 gl::drawLine(pt1, pt2);
 }

In the following image, the red dots represent good features to track:

How it works…
The optical flow algorithm will make an estimation of how much the tracked point has moved
from one frame to the other.

Chapter 11

287

There's more…
In this recipe we are using the cv::goodFeaturesToTrack object to calculate which
features are optimal for tracking, but it is also possible to manually choose which points we
wish to track. All we have to do is populate mFeatures manually with whatever points we
wish to track and pass it to the cv::calcOpticalFlowPyrLK. object

Object tracking
In this recipe, we will learn how to track specific planar objects in our webcam using OpenCV
and it's corresponding CinderBlock.

Getting ready
You will need an image depiction of the physical object you wish to track in the camera. For
this recipe place that image in the assets folder and name it object.jpg.

We will use the OpenCV CinderBlock in this recipe, so please refer to the Integrating with
OpenCV recipe from Chapter 3, Using Image Processing Techniques and add OpenCV and it's
CinderBlock to your project.

If you are using a Mac, you will need to compile the OpenCV static libraries yourself,
because the OpenCV CinderBlock is missing some needed libraries on OSX (it will work
fine on Windows). You can download the correct version from the following link: http://
sourceforge.net/projects/opencvlibrary/files/opencv-unix/2.3/.

You will need to compile the static libraries yourself using the provided CMake files. Once
your libraries are correctly added to your project, include the following files:

#include "cinder/Capture.h"
#include "cinder/gl/Texture.h"
#include "cinder/ImageIo.h"

Add the following using statements:

using namespace ci;
using namespace ci::app;
using namespace std;

Sensing and Tracking Input from the Camera

288

How to do it…
We will track an object in the camera frames based on an image depicting the object

1.	 Let's begin by creating a struct method to store the necessary objects for feature
tracking and matching. Add the following code before your application class
declaration:
struct DetectionInfo{
 vector<cv::Point2f> goodPoints;
 vector<cv::KeyPoint> keyPoints;
 cv::Mat image, descriptor;
 gl::Texture texture;
};

2.	 In your class declaration add the following member objects:
DetectionInfo mObjectInfo, mCameraInfo;
 cv::Mat mHomography;
 cv::SurfFeatureDetector mFeatureDetector;
 cv::SurfDescriptorExtractor mDescriptorExtractor;
 cv::FlannBasedMatcher mMatcher;
 vector<cv::Point2f> mCorners;

3.	 In the setup method let's start by initializing the camera:
 try{
 mCamera = Capture(640, 480);
 mCamera.start();
 } catch(...){
 console() << "could not initialize capture" << endl;
 }

4.	 Lets resize mCorners, load our object image, and calculate its image, keyPoints,
texture, and descriptor:
mCorners.resize(4);
 Surface objectSurface = loadImage(loadAsset("object.jpg")
);
 mObjectInfo.texture = gl::Texture(objectSurface);
 mObjectInfo.image = toOcv(Channel(objectSurface));
 mFeatureDetector.detect(mObjectInfo.image, mObjectInfo.
keyPoints);
 mDescriptorExtractor.compute(mObjectInfo.image, mObjectInfo.
keyPoints, mObjectInfo.descriptor);

Chapter 11

289

5.	 In the update method, we will check if mCamera has been initialized and whether we
have a new frame to process:
 if(mCamera){
 if(mCamera.checkNewFrame()){

6.	 Now let's get the surface of mCamera and initialize texture and image objects of
mCameraInfo. We will create a ci::Channel object from cameraSurface that
converts color surfaces to gray channel surfaces:
Surface cameraSurface = mCamera.getSurface();
mCameraInfo.texture = gl::Texture(cameraSurface);
mCameraInfo.image = toOcv(Channel(cameraSurface));

7.	 Let's calculate features and descriptor values of mCameraInfo:
mFeatureDetector.detect(mCameraInfo.image, mCameraInfo.
keyPoints);
mDescriptorExtractor.compute(mCameraInfo.image, mCameraInfo.
keyPoints, mCameraInfo.descriptor);

8.	 Now let's use mMatcher to calculate the matches between mObjectInfo and
mCameraInfo:
 vector<cv::DMatch> matches;
 mMatcher.match(mObjectInfo.descriptor, mCameraInfo.
descriptor, matches);

9.	 To perform a test to check for false matches, we will calculate the minimum distance
between matches:
double minDist = 640.0;
for(int i=0; i<mObjectInfo.descriptor.rows; i++){
 double dist = matches[i].distance;
 if(dist < minDist){
 minDist = dist;
 }
 }

10.	 Now we will add all the points whose distance is less than minDist*3.0 to
mObjectInfo.goodPoints.clear();

mCameraInfo.goodPoints.clear();
for(vector<cv::DMatch>::iterator it = matches.begin();
 it != matches.end(); ++it){
 if(it->distance < minDist*3.0){
 mObjectInfo.goodPoints.push_back(
 mObjectInfo.keyPoints[it->queryIdx].pt);
 mCameraInfo.goodPoints.push_back(
 mCameraInfo.keyPoints[it->trainIdx].pt);
 }

Sensing and Tracking Input from the Camera

290

11.	}With all our points calculated and matched, we need to calculate the homography
between the points of mObjectInfo and mCameraInfo:
mHomography = cv::findHomography(mObjectInfo.goodPoints,
mCameraInfo.goodPoints, CV_RANSAC);

12.	 Let's create vector<cv::Point2f> with the corners of our object and perform a
perspective transform to calculate the corners of our object in the camera image:

Don't forget to close the brackets we opened earlier.

 vector<cv::Point2f> objCorners(4);
 objCorners[0] = cvPoint(0.0f, 0.0f);
 objCorners[1] = cvPoint(mObjectInfo.image.cols, 0.0f);
 objCorners[2] = cvPoint(mObjectInfo.image.cols,
 mObjectInfo.image.rows);
 objCorners[3] = cvPoint(0.0f, mObjectInfo.image.rows);
 mCorners = vector< cv::Point2f >(4);
 cv::perspectiveTransform(objCorners, mCorners,
 mHomography);
 }
}

13.	 Let's move to the draw method and begin by clearing the background and drawing
the camera and object textures:
 gl::clear(Color(0, 0, 0));

 gl::color(Color::white());
 if(mCameraInfo.texture){
 gl::draw(mCameraInfo.texture, getWindowBounds());
 }

 if(mObjectInfo.texture){
 gl::draw(mObjectInfo.texture);
 }

14.	 Now let's iterate over goodPoints values in both mObjectInfo and mCameraInfo
and draw them:
for(int i=0; i<mObjectInfo.goodPoints.size(); i++){
 gl::drawStrokedCircle(fromOcv(mObjectInfo.goodPoints[i]),
 5.0f);
 gl::drawStrokedCircle(fromOcv(mCameraInfo.goodPoints[i]),

Chapter 11

291

 5.0f);
 gl::drawLine(fromOcv(mObjectInfo.goodPoints[i]),
 fromOcv(mCameraInfo.goodPoints[i]));
}

15.	 Now let's iterate over mCorners and draw the corners of the found object:
gl::color(Color(1.0f, 0.0f, 0.0f));
 gl::begin(GL_LINE_LOOP);
 for(vector<cv::Point2f>::iterator it = mCorners.begin(); it
!= mCorners.end(); ++it){
 gl::vertex(it->x, it->y);
 }
 gl::end();

16.	 Build and run the application. Grab the physical object you depicted in the object.
jpg image and put it in front of the image. The program will try to track that object in
the camera image and draw it's corners in the image.

How it works…
We are using a Speeded Up Robust Features (SURF) feature detector and descriptor to
identify features. In the step 4, we are calculating the features and descriptor. We use a
cv::SurfFeatureDetect object or that calculates good features to track on our object.
The cv::SurfDescriptorExtractor object then uses these features to create a
description of our object. In the step 7, we do the same for the camera image.

In the step 8, we then use a Fast Library for Approximate Nearest Neighbor (FLANN) called
cv::FlannBasedMatcher. This matcher takes the description from both the camera frame
and our object, and calculates matches between them.

In steps 9 and 10, we use the minimum distance between matches to eliminate the possible
false matches. The result is passed into mObjectInfo.goodPoints and mCameraInfo.
goodPoints.

In the step 11, we calculate the homography between image and camera. A homography is a
projection transformation from one space to another using projective geometry. We use it in
the step 12 to apply a perspective transformation to mCorners to identify the object corners
in the camera image.

There's more…
To learn more about what SURF is and how it works, please refer to the following web page:
http://en.wikipedia.org/wiki/SURF.

Sensing and Tracking Input from the Camera

292

To learn more about FLANN, please refer to the web page http://en.wikipedia.org/
wiki/Nearest_neighbor_search.

To learn more about homography please refer to the following web page:

http://en.wikipedia.org/wiki/Homography.

Reading QR code
In this example we will use the ZXing library for QR code reading.

Getting ready
Please download the Cinder ZXing block from GitHub and unpack it to the blocks folder:
https://github.com/dawidgorny/Cinder-ZXing

How to do it…
We will now create a QR code reader:

1.	 Add a header search path to the build settings of your project:
$(CINDER_PATH)/blocks/zxing/include

2.	 Add a path from the precompiled ZXing library to the build settings of your
project: $(CINDER_PATH)/blocks/zxing/lib/macosx/libzxing.a. For
a debug configuration, use $(CINDER_PATH)/blocks/zxing/lib/macosx/
libzxing_d.a.

3.	 Add Cinder ZXing block files to your project structure as follows:

Chapter 11

293

4.	 Add the libiconv.dylib library to the Link Binary With Libraries list:

5.	 Add the necessary header files:
#include "cinder/gl/Texture.h"
#include "cinder/Surface.h"
#include "cinder/Capture.h"

#include <zxing/qrcode/QRCodeReader.h>
#include <zxing/common/GlobalHistogramBinarizer.h>
#include <zxing/Exception.h>
#include <zxing/DecodeHints.h>

#include "CinderZXing.h"

6.	 Add the following members to your main application class:
Capture mCapture;
Surface8u mCaptureImg;
gl::Texture mCaptureTex;
bool mDetected;
string mData;

7.	 Inside the setup method, set window dimensions and initialize capturing from
camera:
setWindowSize(640, 480);

mDetected = false;

try {

Sensing and Tracking Input from the Camera

294

 mCapture = Capture(640, 480);
 mCapture.start();
}
catch(...) {
 console() <<"Failed to initialize capture"<< std::endl;
}

8.	 Implement the update function as follows:
if(mCapture && mCapture.checkNewFrame()) {
 mCaptureImg = mCapture.getSurface();
 mCaptureTex = gl::Texture(mCaptureImg);

 mDetected = false;

try {
 zxing::Ref<zxing::SurfaceBitmapSource> source(new zxing::S
urfaceBitmapSource(mCaptureImg));

 zxing::Ref<zxing::Binarizer> binarizer(NULL);
 binarizer = new zxing::GlobalHistogramBinarizer(source);

 zxing::Ref<zxing::BinaryBitmap> image(new zxing::BinaryBit
map(binarizer));
 zxing::qrcode::QRCodeReader reader;
 zxing::DecodeHints hints(zxing::DecodeHints::BARCODEFORM
AT_QR_CODE_HINT);

 zxing::Ref<zxing::Result> result(reader.decode(image,
hints));

 console() <<"READ("<< result->count() <<") : "<< result-
>getText()->getText() << endl;

if(result->count()) {
 mDetected = true;
 mData = result->getText()->getText();
 }

 } catch (zxing::Exception& e) {
 cerr <<"Error: "<< e.what() << endl;
 }

}

Chapter 11

295

9.	 Implement the draw function as follows:

gl::clear(Color(0.1f, 0.1f, 0.1f));

gl::color(Color::white());

if(mCaptureTex) {
 gl::draw(mCaptureTex);

}

if(mDetected) {
 Vec2f pos = Vec2f(getWindowWidth()*0.5f, getWindowHeight()-
100.f);
 gl::drawStringCentered(mData, pos);
}

How it works…
We are using regular ZXing library methods. The SurfaceBitmapSource class delivered by
the Cinder ZXing block provides integration with Cinder Surface type objects. While the QR
code is detected and read, the mDetected flag is set to true and the read data is stored in
the mData member.

Sensing and Tracking Input from the Camera

296

Building UI navigation and gesture
recognition with Kinect

In this recipe we will create interactive GUI controlled with a Kinect sensor.

Since the Kinect for Windows SDK is available only for Windows, this
recipe is written for Windows users only.

Getting ready
In this example we are using the InteractiveObject class that we covered in the Creating
an interactive object that responds to the mouse recipe from Chapter 10, Interacting with
the User.

Download and install the Kinect for Windows SDK from http://www.microsoft.com/en-
us/kinectforwindows/.

Download the KinectSDK CinderBlock from GitHub at https://github.com/
BanTheRewind/Cinder-KinectSdk, and unpack it to the blocks directory.

Chapter 11

297

How to do it…
We will now create a Cinder application controlled with hand gestures.

1.	 Include the necessary header files:
#include "cinder/Rand.h"
#include "cinder/gl/Texture.h"
#include "cinder/Utilities.h"

#include "Kinect.h"
#include "InteractiveObject.h";

2.	 Add the Kinect SDK using the following statement:
using namespace KinectSdk;

3.	 Implement the class for a waving hand gesture recognition as follows:
class WaveHandGesture {
public:
 enum GestureCheckResult { Fail, Pausing, Suceed };

private:
 GestureCheckResult checkStateLeft(const Skeleton & skeleton) {
 // hand above elbow
 if (skeleton.at(JointName::NUI_SKELETON_POSITION_HAND_RIGHT).y
> skeleton.at(JointName::NUI_SKELETON_POSITION_ELBOW_RIGHT).y)
 {
 // hand right of elbow
 if (skeleton.at(JointName::NUI_SKELETON_POSITION_HAND_
RIGHT).x > skeleton.at(JointName::NUI_SKELETON_POSITION_ELBOW_
RIGHT).x)
 {
 return Suceed;
 }
 return Pausing;
 }
 return Fail;
 }
 GestureCheckResult checkStateRight(const Skeleton & skeleton)
{
 // hand above elbow
 if (skeleton.at(JointName::NUI_SKELETON_POSITION_HAND_RIGHT).y
> skeleton.at(JointName::NUI_SKELETON_POSITION_ELBOW_RIGHT).y)
 {
 // hand left of elbow

Sensing and Tracking Input from the Camera

298

 if (skeleton.at(JointName::NUI_SKELETON_POSITION_HAND_
RIGHT).x < skeleton.at(JointName::NUI_SKELETON_POSITION_ELBOW_
RIGHT).x)
 {
 return Suceed;
 }
 return Pausing;
 }
 return Fail;
 }

 int currentPhase;

public:
 WaveHandGesture() {
 currentPhase = 0;
 }

 GestureCheckResult check(const Skeleton & skeleton)
 {
 GestureCheckResult res;
 switch(currentPhase) {
 case0: // start on left
 case2:
 res = checkStateLeft(skeleton);
 if(res == Suceed) { currentPhase++; }
 elseif(res == Fail) { currentPhase = 0; return Fail; }
 return Pausing;
 break;
 case1: // to the right
 case3:
 res = checkStateRight(skeleton);
 if(res == Suceed) { currentPhase++; }
 elseif(res == Fail) { currentPhase = 0; return Fail; }
 return Pausing;
 break;
 case4: // to the left
 res = checkStateLeft(skeleton);
 if(res == Suceed) { currentPhase = 0; return Suceed; }
 elseif(res == Fail) { currentPhase = 0; return Fail; }
 return Pausing;
 break;
 }

Chapter 11

299

 return Fail;
 }
};

4.	 Implement NuiInteractiveObject extending the InteractiveObject class:
class NuiInteractiveObject: public InteractiveObject {
public:
 NuiInteractiveObject(const Rectf & rect) :
InteractiveObject(rect) {
 mHilight = 0.0f;
 }

 void update(bool activated, const Vec2f & cursorPos) {
 if(activated && rect.contains(cursorPos)) {
 mHilight += 0.08f;
 } else {
 mHilight -= 0.005f;
 }
 mHilight = math<float>::clamp(mHilight);
 }

 virtualvoid draw() {
 gl::color(0.f, 0.f, 1.f, 0.3f+0.7f*mHilight);
 gl::drawSolidRect(rect);
 }

 float mHilight;
};

5.	 Implement the NuiController class that manages the active objects:
class NuiController {
public:
 NuiController() {}

 void registerObject(NuiInteractiveObject *object) {
 objects.push_back(object);
 }

 void unregisterObject(NuiInteractiveObject *object) {
 vector<NuiInteractiveObject*>::iterator it = find(objects.
begin(), objects.end(), object);
 objects.erase(it);
 }

Sensing and Tracking Input from the Camera

300

 void clear() { objects.clear(); }

 void update(bool activated, const Vec2f & cursorPos) {
 vector<NuiInteractiveObject*>::iterator it;
 for(it = objects.begin(); it != objects.end(); ++it) {
 (*it)->update(activated, cursorPos);
 }
 }

 void draw() {
 vector<NuiInteractiveObject*>::iterator it;
 for(it = objects.begin(); it != objects.end(); ++it) {
 (*it)->draw();
 }
 }

 vector<NuiInteractiveObject*> objects;
};

6.	 Add the members to you main application class for handling Kinect devices and data:
KinectSdk::KinectRef mKinect;
vector<KinectSdk::Skeleton> mSkeletons;
gl::Texture mVideoTexture;

7.	 Add members to store the calculated cursor position:
Rectf mPIZ;
Vec2f mCursorPos;

8.	 Add the members that we will use for gesture recognition and user activation:
vector<WaveHandGesture*> mGestureControllers;
bool mUserActivated;
int mActiveUser;

9.	 Add a member to handle NuiController:
NuiController* mNuiController;

10.	 Set window settings by implementing prepareSettings:
void MainApp::prepareSettings(Settings* settings)
{
 settings->setWindowSize(800, 600);
}

Chapter 11

301

11.	 In the setup method, set the default values for members:
mPIZ = Rectf(0.f,0.f, 0.85f,0.5f);
mCursorPos = Vec2f::zero();

mUserActivated = false;
mActiveUser = 0;

12.	 In the setup method initialize Kinect and gesture recognition for 10 users:
mKinect = Kinect::create();
mKinect->enableDepth(false);
mKinect->enableVideo(false);
mKinect->start();

for(int i = 0; i <10; i++) {
 mGestureControllers.push_back(new WaveHandGesture());
}

13.	 In the setup method, initialize the user interface consisting of objects of type
NuiInterativeObject:
mNuiController = new NuiController();

float cols = 10.f;
float rows = 10.f;

Rectf rect = Rectf(0.f,0.f, getWindowWidth()/cols - 1.f,
getWindowHeight()/rows - 1.f);

or(int ir = 0; ir < rows; ir++) {
 for(int ic = 0; ic < cols; ic++) {
 Vec2f offset = (rect.getSize()+Vec2f::one())
 * Vec2f(ic,ir);
 Rectf r = Rectf(offset, offset+rect.getSize());
 mNuiController->registerObject(
 new NuiInteractiveObject®);
 }
}

14.	 In the update method, we are checking if the Kinect device is capturing, getting
tracked skeletons, and iterating:
if (mKinect->isCapturing()) {
 if (mKinect->checkNewSkeletons()) {
 mSkeletons = mKinect->getSkeletons();
 }
 uint32_t i = 0;
 vector<Skeleton>::const_iterator skeletonIt;
 for (skeletonIt = mSkeletons.cbegin();
 skeletonIt != mSkeletons.cend(); ++skeletonIt, i++) {

Sensing and Tracking Input from the Camera

302

15.	 Inside the loop, we are checking if the skeleton is complete and deactivating the
cursor controls if it is not complete:
 if(mUserActivated && i == mActiveUser
 && skeletonIt->size() !=
 JointName::NUI_SKELETON_POSITION_COUNT) {
 mUserActivated = false;
 }

16.	 Inside the loop check if the skeleton is valid. Notice we are only processing 10
skeletons. You can modify this number, but remember to provide sufficient number of
gesture controllers in mGestureControllers:
if (skeletonIt->size() == JointName::NUI_SKELETON_POSITION_COUNT
&& i <10) {

17.	 Inside the loop and the if statement, check for the completed activation gesture.
While the skeleton is activated, we are calculating person interaction zone:
if(!mUserActivated || (mUserActivated && i != mActiveUser)) {
 WaveHandGesture::GestureCheckResult res;
 res = mGestureControllers[i]->check(*skeletonIt);

 if(res == WaveHandGesture::Suceed && (!mUserActivated || i
 != mActiveUser)) {
 mActiveUser = i;

 float armLen = 0;
 Vec3f handRight = skeletonIt->at(JointName::NUI_SKELETON_
POSITION_HAND_RIGHT);
 Vec3f elbowRight = skeletonIt->at(JointName::NUI_SKELETON_
POSITION_ELBOW_RIGHT);
 Vec3f shoulderRight = skeletonIt->at(JointName::NUI_
SKELETON_POSITION_SHOULDER_RIGHT);

 armLen += handRight.distance(elbowRight);
 armLen += elbowRight.distance(shoulderRight);

 mPIZ.x2 = armLen;
 mPIZ.y2 = mPIZ.getWidth() / getWindowAspectRatio();

 mUserActivated = true;
 }
}

Chapter 11

303

18.	 Inside the loop and the if statement, we are calculating cursor positions for active
users:
if(mUserActivated && i == mActiveUser) {
 Vec3f handPos = skeletonIt->at(JointName::NUI_SKELETON_
POSITION_HAND_RIGHT);

 Rectf piz = Rectf(mPIZ);
 piz.offset(skeletonIt->at(JointName::NUI_SKELETON_POSITION_
SPINE).xy());

 mCursorPos = handPos.xy() - piz.getUpperLeft();
 mCursorPos /= piz.getSize();
 mCursorPos.y = (1.f - mCursorPos.y);
 mCursorPos *= getWindowSize();
}

19.	 Close the opened if statements and the for loop:
 }
 }
}

20.	 At the end of the update method, update the NuiController object:
mNuiController->update(mUserActivated, mCursorPos);

21.	 Implement the draw method as follows:

void MainApp::draw()
{
 // Clear window
 gl::setViewport(getWindowBounds());
 gl::clear(Color::white());
 gl::setMatricesWindow(getWindowSize());
 gl::enableAlphaBlending();

 mNuiController->draw();

 if(mUserActivated) {
 gl::color(1.f,0.f,0.5f, 1.f);
 glLineWidth(10.f);
 gl::drawStrokedCircle(mCursorPos, 25.f);
 }
}

Sensing and Tracking Input from the Camera

304

How it works…
The application is tracking users using Kinect SDK. Skeleton data of the active user are used
to calculate the cursor position by following the guidelines provided by Microsoft with Kinect
SDK documentation. Activation is invoked by a hand waving gesture.

This is an example of UI responsive to cursor controlled by a user's hand. Elements of the grid
light up under the cursor and fade out on roll-out.

Building an augmented reality with Kinect
In this recipe we will learn how to combine both Kinect's depth and image frames to create
augmented reality application.

Since Kinect for Windows SDK is available only for Windows, this recipe
is written for Windows users only.

Getting ready
Download and install Kinect for Windows SDK from http://www.microsoft.com/en-us/
kinectforwindows/.

Download KinectSDK CinderBlock from GitHub at https://github.com/BanTheRewind/
Cinder-KinectSdk, and unpack it to the blocks directory.

In this example, we are using assets from one of the sample programs delivered with the
Cinder package. Please copy the ducky.mshducky.png, phong_vert.glsl, and phong_
frag.glsl files from cinder_0.8.4_mac/samples/Picking3D/resources/ into your
assets folder.

How to do it…
We will now create an augmented reality application using a sample 3D model.

1.	 Include the necessary header files:
#include "cinder/app/AppNative.h"
#include "cinder/gl/Texture.h"
#include "cinder/gl/GlslProg.h"
#include "cinder/TriMesh.h"
#include "cinder/ImageIo.h"
#include "cinder/MayaCamUI.h"
#include "cinder/params/Params.h"

Chapter 11

305

#include "cinder/Utilities.h"

#include "Kinect.h"

2.	 Add the using statement of the Kinect SDK:
using namespace KinectSdk;

3.	 Add the members to you main application class for handling Kinect device and data:
KinectSdk::KinectRef mKinect;
vector<KinectSdk::Skeleton> mSkeletons;
gl::Texture mVideoTexture;

4.	 Add members to store 3D camera scene properties:
CameraPersp mCam;
Vec3f mCamEyePoint;
float mCamFov;

5.	 Add members to store calibration settings:
Vec3f mPositionScale;
float mActivationDist;

6.	 Add members that will store geometry, texture, and shader program for 3D object:
gl::GlslProg mShader;
gl::Texture mTexture;
TriMesh mMesh;

7.	 Inside the setup method, set the window dimensions and initial values:
setWindowSize(800, 600);

mCamEyePoint = Vec3f(0.f,0.f,1.f);
mCamFov = 33.f;

mPositionScale = Vec3f(1.f,1.f,-1.f);
mActivationDist = 0.6f;

8.	 Inside the setup method load geometry, texture, and shader program for 3D object:
mMesh.read(loadFile(getAssetPath("ducky.msh")));

gl::Texture::Format format;
format.enableMipmapping(true);
ImageSourceRef img = loadImage(getAssetPath("ducky.png"));
if(img) mTexture = gl::Texture(img, format);

mShader = gl::GlslProg(loadFile(getAssetPath("phong_vert.glsl")),
loadFile(getAssetPath("phong_frag.glsl")));

Sensing and Tracking Input from the Camera

306

9.	 Inside the setup method, initialize the Kinect device and start capturing:
mKinect = Kinect::create();
mKinect->enableDepth(false);
mKinect->start();

10.	 At the end of the setup method, create GUI for parameter tweaking:
mParams = params::InterfaceGl("parameters", Vec2i(200, 500));
mParams.addParam("Eye Point", &mCamEyePoint);
mParams.addParam("Camera FOV", &mCamFov);
mParams.addParam("Position Scale", &mPositionScale);
mParams.addParam("Activation Distance", &mActivationDist);

11.	 Implement the update method as follows:
void MainApp::update()
{
 mCam.setPerspective(mCamFov, getWindowAspectRatio(), 0.1, 10000
);
 mCam.setEyePoint(mCamEyePoint);
 mCam.setViewDirection(Vec3f(0.f,0.f, -1.f*mCamEyePoint.z));

 if (mKinect->isCapturing()) {
 if (mKinect->checkNewVideoFrame()) {
 mVideoTexture = gl::Texture(mKinect->getVideo());
 }
 if (mKinect->checkNewSkeletons()) {
 mSkeletons = mKinect->getSkeletons();
 }
 }
}

12.	 Implement the drawObject method that will draw our 3D model with the texture
and shading applied:
void MainApp::drawObject()
{

 mTexture.bind();
 mShader.bind();
 mShader.uniform("tex0", 0);

 gl::color(Color::white());
 gl::pushModelView();
 gl::scale(0.05f,0.05f,0.05f);
 gl::rotate(Vec3f(0.f,-30.f,0.f));
 gl::draw(mMesh);

Chapter 11

307

 gl::popModelView();

 mShader.unbind();
 mTexture.unbind();
}

13.	 Implement the draw method as follows:
void MainApp::draw()
{
 gl::setViewport(getWindowBounds());
 gl::clear(Colorf(0.1f, 0.1f, 0.1f));
 gl::setMatricesWindow(getWindowSize());

 if (mKinect->isCapturing() && mVideoTexture) {
 gl::color(ColorAf::white());
 gl::draw(mVideoTexture, getWindowBounds());
 draw3DScene();
 }

 params::InterfaceGl::draw();
}

14.	 The last thing that is missing is the draw3DScene method invoked inside the draw
method. Implement the draw3DScene method as follows:
gl::enableDepthRead();
gl::enableDepthWrite();

Vec3f mLightDirection = Vec3f(0, 0, -1);
ColorA mColor = ColorA(0.25f, 0.5f, 1.0f, 1.0f);

gl::pushMatrices();
gl::setMatrices(mCam);

vector<KinectSdk::Skeleton>::const_iterator skelIt;
for (skelIt = mSkeletons.cbegin(); skelIt != mSkeletons.cend();
++skelIt) {

if (skelIt->size() == JointName::NUI_SKELETON_POSITION_COUNT) {
 KinectSdk::Skeleton skel = *skelIt;

 Vec3f pos, dV;
float armLen = 0;
 Vec3f handRight = skeletonIt->at(JointName::NUI_SKELETON_
POSITION_HAND_RIGHT);

Sensing and Tracking Input from the Camera

308

 Vec3f elbowRight = skeletonIt->at(JointName::NUI_SKELETON_
POSITION_ELBOW_RIGHT);
 Vec3f shoulderRight = skeletonIt->at(JointName::NUI_
SKELETON_POSITION_SHOULDER_RIGHT);

 armLen += handRight.distance(elbowRight);
 armLen += elbowRight.distance(shoulderRight);

 pos = skel[JointName::NUI_SKELETON_POSITION_HAND_RIGHT];
 dV = pos - skel[JointName::NUI_SKELETON_POSITION_SHOULDER_
RIGHT];
if(dV.z < -armLen*mActivationDist) {
 gl::pushMatrices();
 gl::translate(pos*mPositionScale);
 drawObject();
 gl::popMatrices();
 }
 }
}

gl::popMatrices();

gl::enableDepthRead(false);
gl::enableDepthWrite(false);

15.	 Implement the shutdown method to stop capturing from Kinect on program
termination:
void MainApp::shutdown()
{
 mKinect->stop();
}

How it works…
The application is tracking users using the Kinect SDK. Skeleton data of the users are used to
calculate the coordinates of the 3D duck model taken from one of the Cinder sample programs.
The 3D model is rendered right above the right hand of the user when the user's hand is in front
of the user. The activation distance is calculated using the mActivationDist member value.

Chapter 11

309

To properly overlay 3D scene onto a video frame, you have to set the camera FOV according to
the Kinect video camera. To do this, we are using the Camera FOV property.

12
Using Audio Input

and Output

In this chapter, we will learn how to generate sounds using examples of ways to generate
sounds driven by physics simulation. We will also present examples of visualizing sound
with audio reactive animations.

The following recipes will cover:

ff Generating a sine oscillator

ff Generating sound with frequency modulation

ff Adding a delay effect

ff Generating sound upon the collision of objects

ff Visualizing FFT

ff Making sound-reactive particles

Generating a sine oscillator
In this recipe, we will learn how to generatively create a sine wave oscillator by manipulating
the sound card's PCM (Pulse-code Modulation) audio buffer. The frequency of the sine wave
will be defined by the mouse's y coordinate.

We will also draw the sine wave for a visual representation.

Using Audio Input and Output

312

Getting ready
Include the following files:

#include "cinder/audio/Output.h"
#include "cinder/audio/Callback.h"
#include "cinder/Rand.h"
#include "cinder/CinderMath.h"

And add the following useful using statements:

using namespace ci;
using namespace ci::app;
using namespace std;

How to do it…
We will create a sine wave oscillator using the following steps:

1.	 Declare the following member variables and the callback method:
void audioCallback(uint64_t inSampleOffset, uint32_t
ioSampleCount, audio::Buffer32f *buffer);
float mFrequency;
float mPhase, mPhaseAdd;
vector<float> mOutput;

2.	 In the setup module we will initialize the variables and create the audio callback
using the following code:
mFrequency = 0.0f;
mPhase = 0.0f;
mPhaseAdd = 0.0f;
audio::Output::play(audio::createCallback(this,
&SineApp::audioCallback));

3.	 In the update module we will update mFrequency based on the mouse's y position.
The mouse's position will be mapped and clamped to a frequency value between 0
and 5000:
float maxFrequency = 5000.0f;
float targetFrequency = (getMousePos().y / (float)
getWindowHeight()) * maxFrequency;
mFrequency = math<float>::clamp(targetFrequency, 0.0f,
maxFrequency);

Chapter 12

313

Let's implement the audio callback. We'll begin by resizing mOutput if necessary.
Then we will calculate and interpolate mPhaseAdd, and then loop through all the
values in the audio buffer and calculate their values based on the sine of mPhase
and add mPhaseAdd to mPhase:

if(mOutput.size() != ioSampleCount){
 mOutput.resize(ioSampleCount);
}
int numChannels = buffer->mNumberChannels;
mPhaseAdd += ((mFrequency / 44100.0f) - mPhaseAdd) * 0.1f;
for(int i=0; i<ioSampleCount; i++){
 mPhase += mPhaseAdd;
 float output = math<float>::sin(mPhase * 2.0f * M_PI);
 for(int j=0; j<numChannels; j++){
 buffer->mData[i*numChannels + j] = output;
 }
 mOutput[i] = output;
}

4.	 Finally, we need to draw the sine wave. In the draw method, we will clear the
background with black and draw a scaled up sine wave with a line strip using the
values stored in mOutput:
gl::clear(Color(0, 0, 0));
if(mOutput.size() > 0){
 Vec2f scale;
 scale.x = (float)getWindowWidth() / (float)mOutput.size();
 scale.y = 100.0f;
 float centerY= getWindowHeight() / 2.0f;
 gl::begin(GL_LINE_STRIP);
 for(int i=0; i<mOutput.size(); i++){
 float x = (float)i * scale.x;
 float y = mOutput[i] * scale.y + centerY;
 gl::vertex(x, y);
 }
 gl::end();
}

Using Audio Input and Output

314

5.	 Build and run the application. Move the mouse vertically to change the frequency. A
line representing the generated sine wave is shown in the following screenshot:

How it works…
We are manipulating the PCM buffer. PCM is a method to represent audio through values'
samples at regular intervals. By accessing the PCM buffer, we can directly manipulate the
audio signal that will be output by the sound card.

Every time the audioCallback method is called, we receive a sample of the PCM buffer,
where we calculate the values to generate a continuous sine wave.

In the update module, we calculate the frequency by mapping the mouse's y position.

In the following line in the audioCallback implementation, we calculate how much
mPhase has to increase based on a sample rate of 44100 to generate a wave with a
frequency of mFrequency:

mPhaseAdd += ((mFrequency / 44100.0f) - mPhaseAdd) * 0.1f;

Generating sound with frequency
modulation

In this recipe, we will learn how to modulate a sine wave oscillator using another low
frequency sine wave.

Chapter 12

315

We will be basing this recipe on the previous recipe, where the y position of the mouse
controlled the frequency of the sine wave; in this recipe, we will use the x position of the
mouse to control the modulation frequency.

Getting ready
We will be using the code from the previous recipe, Generating a sine oscillator.

How to do it…
We will multiply the sine wave created in the previous recipe with another low frequency
sine wave.

1.	 Add the following member variables:
float mModFrequency;
float mModPhase, mModPhaseAdd;

2.	 Add the following in the setup module to initialize the variables created previously:
mModFrequency = 0.0f;
mModPhase = 0.0f;
mModPhaseAdd = 0.0f;

3.	 In the update module, add the following code to calculate the modulation frequency
based on the x position of the mouse cursor:
float maxModFrequency= 30.0f;
float targetModFrequency= (getMousePos().x / (float)
getWindowWidth()) * maxModFrequency;
mModFrequency = math<float>::clamp(targetModFrequency, 0.0f,
maxModFrequency);

4.	 We will need to calculate another sine wave using mModFrequency, mModPhase,
and mModPhaseAdd, and use it to modulate our first sine wave.

The following is the implementation of audioCallback:

if(mOutput.size() != ioSampleCount){
 mOutput.resize(ioSampleCount);
}
mPhaseAdd += ((mFrequency / 44100.0f) - mPhaseAdd) * 0.1f;
mModPhaseAdd += ((mModFrequency / 44100.0f) - mModPhaseAdd)
 * 0.1f;
int numChannels= buffer->mNumberChannels;
for(int i=0; i<ioSampleCount; i++){
 mPhase += mPhaseAdd;
 mModPhase += mModPhaseAdd;

Using Audio Input and Output

316

 float output = math<float>::sin(mPhase * 2.0f * M_PI)
 * math<float>::sin(mModPhase * 2.0f * M_PI);
 for(int j=0; j<numChannels; j++){
 buffer->mData[i*numChannels + j] = output;
 }
 mOutput[i] = output;
}

5.	 Build and run the application. Move the mouse cursor over the y axis to determine
the frequency, and over the x axis to determine the modulation frequency.

We can see how the sine wave created changes in the previous recipe, in the amplitude as it
is multiplied by another low frequency sine wave.

How it works…
We calculate a second sine wave with a low frequency oscillation (LFO) and use it to
modulate the first sine wave. To modulate the waves, we multiply them by each other.

Chapter 12

317

Adding a delay effect
In this recipe, we will learn how to add a delay effect to the frequency modulation
audio generated in the previous recipe.

Getting ready
We will use the source code from the previous recipe, Generating sound with
frequency modulation.

How to do it…
We will store our audio values and play them after an interval to achieve a delay
effect using the following steps:

1.	 Add the following member variables:
int mDelay;
float mMix, mFeedback;
vector<float> mDelayLine;
int mDelayIndex;
int mDelaySize;

Let's initialize the variables created above and initialize our delay line with zeros.

Then add the following in the setup method:

mDelay = 200;
mMix = 0.2f;
mFeedback = 0.3f;
mDelaySize = mDelay * 44.1f;
for(int i=0; i<mDelaySize; i++){
 mDelayLine.push_back(0.0f);
}

2.	 In the implementation of our audioCallback method, we will read back
from the buffer the values that were generated in the frequency modulation
and calculate the delay.

The final value is again passed into the buffer for output.

Using Audio Input and Output

318

Add the following code in the audioCallback method:

for(int i=0; i<ioSampleCount; i++){
 float output = buffer->mData[i*numChannels];
 int readIndex= mDelayIndex - mDelaySize + 1;
 if(readIndex< 0) readIndex += mDelaySize;
 float delay = mDelayLine[readIndex * numChannels];
 mDelayLine[mDelayIndex] = output + delay * mFeedback;
 if(++mDelayIndex == mDelaySize){
 mDelayIndex = 0;
 }
 output = math<float>::clamp(output+mMix*delay,-1.0f,1.0f);
 mOutput[i] = output;
 for(int j=0; j<numChannels; j++){
 buffer->mData[i*numChannels + j] = output;
 }
}

3.	 Build and run the application. By moving the mouse in the x axis, you control
the oscillator frequency, and by moving the mouse in the y axis, you control the
modulation frequency. The output will contain a delay effect as shown in the
following screenshot:

Chapter 12

319

How it works...
A delay is an audio effect where an input is stored and then played back after a determined
amount of time. We achieve this by creating a buffer the size of mDelay multiplied by the
frequency rate. Each time audioCallback gets called, we read from the delay line and
update the delay line with the current output value. We then add the delay value to the
output and advance mDelayIndex.

Generating sound upon the collision of
objects

In this recipe, we will learn how to apply simple physics to object particles and generate
sound upon the collision of two objects.

Getting ready
In this example, we are using code described in the recipe Generating a sine oscillator in this
chapter, so please refer to that recipe.

How to do it…
We will create a Cinder application to illustrate the mechanism:

1.	 Include the following necessary header files:
#include "cinder/audio/Output.h"
#include "cinder/audio/Callback.h"
#include "cinder/Rand.h"
#include "cinder/CinderMath.h"
#include "ParticleSystem.h"

2.	 Add members to the application's main class for particle simulation:
ParticleSystem mParticleSystem;
Vec2fattrPosition;
float attrFactor;
float attrRadius;

3.	 Add members to the application's main class to make the particles interactive:
bool dragging;
Particle *dragParticle;

4.	 Add members for the generation of sound:
void audioCallback(uint64_t inSampleOffset, uint32_t
ioSampleCount,audio::Buffer32f *buffer);
float mSndFrequency;

Using Audio Input and Output

320

float mPhase, mPhaseAdd;
vector<float> mOutput;

5.	 Initialize the particle system inside the setup method:
mRunning= true;
dragging = false;
attrPosition = getWindowCenter();
attrRadius = 75.f;
attrFactor = 0.02f;
int numParticle= 10;
for(int i=0; i<numParticle; i++){
 float x = Rand::randFloat(0.0f, getWindowWidth());
 float y = Rand::randFloat(0.0f, getWindowHeight());
 float radius = Rand::randFloat(2.f, 40.f);
 Rand::randomize();
 float mass = radius;
 float drag = 0.95f;
 Particle *particle = new Particle(Vec2f(x, y), radius,
 mass, drag);
 mParticleSystem.addParticle(particle);
}

6.	 Initialize the members to generate sound and register an audio callback inside the
setup method:
mSndFrequency = 0.0f;
mPhase = 0.0f;
mPhaseAdd = 0.0f;
audio::Output::play(audio::createCallback(this,
&MainApp::audioCallback));

7.	 Implement the resize method to update the attractor position whenever an
application window will be resized:
void MainApp::resize(ResizeEvent event)
{
 attrPosition = getWindowCenter();
}

8.	 Implement the mouse events handlers for mouse interaction with particles:
void MainApp::mouseDown(MouseEvent event)

{
 dragging = false;
 std::vector<Particle*>::iterator it;
 for(it = mParticleSystem.particles.begin();
 it != mParticleSystem.particles.end(); ++it) {

Chapter 12

321

 if((*it)->position.distance(event.getPos())
 < (*it)->radius) {
 dragging = true;
 dragParticle = (*it);
 }
 }
}

void MainApp::mouseUp(MouseEvent event) {
 dragging = false;
}

9.	 Inside the update method, add the following code for sound frequency calculation:
float maxFrequency = 15000.0f;
float targetFrequency = (getMousePos().y / (float)
getWindowHeight()) * maxFrequency;
targetFrequency = mSndFrequency - 10000.f;
mSndFrequency = math<float>::clamp(targetFrequency, 0.0f,
maxFrequency);

10.	 Inside the update method, add the following code for particle movement calculation.
At this point, we are detecting collisions and calculating the sound frequency:
std::vector<Particle*>::iterator it;
for(it = mParticleSystem.particles.begin();
 it != mParticleSystem.particles.end(); ++it) {
 std::vector<Particle*>::iterator it2;
 for(it2 = mParticleSystem.particles.begin();
 it2 != mParticleSystem.particles.end(); ++it2) {
 float d = (*it)->position.distance((*it2)->position);
 float d2 = (*it)->radius + (*it2)->radius;
 if(d >0.f&& d <= d2) {
 (*it)->forces += -1.1f * ((*it2)->position
 - (*it)->position);
 (*it2)->forces += -1.1f * ((*it)->position
 - (*it2)->position);
 mSndFrequency = 2000.f;
 mSndFrequency+= 10000.f
 * (1.f - ((*it)->radius / 40.f));
 mSndFrequency+= 10000.f
 * (1.f - ((*it2)->radius / 40.f));
 }
 }
 Vec2f attrForce = attrPosition - (*it)->position;
 attrForce *= attrFactor;
 (*it)->forces += attrForce;

Using Audio Input and Output

322

}
mSndFrequency = math<float>::clamp(mSndFrequency,
 0.0f, maxFrequency);maxFrequency);

11.	 Update position of dragging particle, if any, and update particle system:
if(dragging) {
 dragParticle->forces = Vec2f::zero();
 dragParticle->position = getMousePos();
}

mParticleSystem.update();

12.	 Draw particles by implementing the draw method as follows:
gl::clear(Color::white());
gl::setViewport(getWindowBounds());
gl::setMatricesWindow(getWindowWidth(), getWindowHeight());
gl::color(Color::black());
mParticleSystem.draw();

13.	 Implement audio callback handler as covered in the recipe Generating a
sine oscillator.

How it works…
We are generating random particles with applied physics and collision detection. While
collision is detected, a frequency of a sine wave is calculated based on the particles' radii.

Inside the update method, we are iterating through the particles and checking the distance
between each of them to detect collision, if it occurs. A generated frequency is calculated from
the radii of the colliding particles—the bigger the radius, the lower the frequency of the sound.

Chapter 12

323

Visualizing FFT
In this recipe, we will show an example of FFT (Fast Fourier Transform) data visualization on a
circular layout with some smooth animation.

Getting ready
Save you favorite music piece in assets folder with the name music.mp3.

How to do it…
We will create visualization based on an example FFT analysis using the following steps:

1.	 Include the following necessary header files:
#include "cinder/gl/gl.h"
#include "cinder/audio/Io.h"
#include "cinder/audio/Output.h"
#include "cinder/audio/FftProcessor.h"
#include "cinder/audio/PcmBuffer.h"

2.	 Add the following members to your main application class:
void drawFft();
audio::TrackRef mTrack;
audio::PcmBuffer32fRef mPcmBuffer;
uint16_t bandCount;
float levels[32];
float levelsPts[32];

3.	 Inside the setup method, initialize the members and load the sound file from the
assets folder. We are decomposing the signal into 32 frequencies using FFT:
bandCount = 32;
std::fill(boost::begin(levels), boost::end(levels), 0.f);
std::fill(boost::begin(levelsPts), boost::end(levelsPts), 0.f);
mTrack = audio::Output::addTrack(audio::load(
getAssetPath("music.mp3").c_str()));
mTrack->enablePcmBuffering(true);

4.	 Implement the update method as follows:
mPcmBuffer = mTrack->getPcmBuffer();
for(int i = 0; i< (bandCount); i++) {
 levels[i] = max(0.f, levels[i] - 1.f);
 levelsPts[i] = max(0.f, levelsPts[i] - 0.95f);
}

Using Audio Input and Output

324

5.	 Implement the draw method as follows:
gl::enableAlphaBlending();
gl::clear(Color(1.0f, 1.0f, 1.0f));
gl::color(Color::black());
gl::pushMatrices();
gl::translate(getWindowCenter());
gl::rotate(getElapsedSeconds() * 10.f);
drawFft();
gl::popMatrices();

6.	 Implement the drawFft method as follows:

float centerMargin= 25.0f;
if(!mPcmBuffer) return;
std::shared_ptr<float> fftRef = audio::calculateFft(
 mPcmBuffer->getChannelData(audio::CHANNEL_FRONT_LEFT),
 bandCount);
if(!fftRef) {
return;
}
float *fftBuffer = fftRef.get();
gl::color(Color::black());
gl::drawSolidCircle(Vec2f::zero(), 5.f);
glLineWidth(3.f);
float avgLvl= 0.f;
for(int i= 0; i<bandCount; i++) {
 Vec2f p = Vec2f(0.f, 500.f);
 p.rotate(2.f * M_PI * (i/(float)bandCount));
 float lvl = fftBuffer[i] / bandCount * p.length();
 lvl = min(lvl, p.length());
 levels[i] = max(levels[i], lvl);
 levelsPts[i] = max(levelsPts[i], levels[i]);
 p.limit(1.f + centerMargin + levels[i]);
 gl::drawLine(p.limited(centerMargin), p);
 glPointSize(2.f);
 glBegin(GL_POINTS);
 gl::vertex(p+p.normalized()*levelsPts[i]);
 glEnd();
 glPointSize(1.f);
 avgLvl += lvl;
}
avgLvl /= (float)bandCount; glLineWidth(1.f);
gl::color(ColorA(0.f,0.f,0.f, 0.1f));
gl::drawSolidCircle(Vec2f::zero(), 5.f+avgLvl);

Chapter 12

325

How it works…
We can divide visualization into bands, and the grey circle with alpha in the center. Bands are
straight representations of data calculated by the audio::calculateFft function, and
animated with some smoothing by going back towards the center. The grey circle shown in the
following screenshot represents the average level of all the bands.

FFT is an algorithm to compute DFT (Discrete Fourier Transform), which decomposes the
signal into list of different frequencies.

Making sound-reactive particles
In this recipe, we will show an example of audio visualization based on audio-reactive particles.

Getting ready
Save your favorite music piece in assets folder with the name music.mp3.

Please refer to Chapter 6, Adding a Tail to Our Particles, for instructions on how to draw
particles with a tile.

Using Audio Input and Output

326

How to do it…
We will create a sample audio-reactive visualization using the following steps:

1.	 Add the following necessary header files:
#include "cinder/Rand.h"
#include "cinder/MayaCamUI.h"
#include "cinder/audio/Io.h"
#include "cinder/audio/Output.h"
#include "cinder/audio/FftProcessor.h"
#include "cinder/audio/PcmBuffer.h"
#include "ParticleSystem.h"

2.	 Add the following members for audio playback and analysis:
audio::TrackRef mTrack;
audio::PcmBuffer32fRef mPcmBuffer;
float beatForce;
float beatSensitivity;
float avgLvlOld;
float randAngle;

3.	 Add the following members for particle simulation:
ParticleSystem mParticleSystem;
Vec3f attrPosition;
float attrFactor;
CameraPersp mCam;

4.	 Inside the setup method, initialize the simulation of the members and particles:
beatForce = 150.f;
beatSensitivity = 0.03f;
avgLvlOld = 0.f;
randAngle = 15.f;
attrPosition = Vec3f::zero();
attrFactor = 0.05f;
int numParticle = 450;
for(int i=0; i<numParticle; i++){
 float x = Rand::randFloat(0.0f, getWindowWidth());
 float y = Rand::randFloat(0.0f, getWindowHeight());
 float z = Rand::randFloat(0.0f, getWindowHeight());
 float radius = Rand::randFloat(2.f, 5.f);
 float mass = radius;
 if(i>300) {
 radius = 1.f;
 mass = 1.0f;

Chapter 12

327

 }
 float drag = 0.95f;
 Particle *particle = new Particle(Vec3f(x, y, z), radius,
 mass, drag);
 mParticleSystem.addParticle(particle);
}

5.	 Inside the setup method, initialize camera and audio playback:
mCam.setPerspective(45.0f, 640.f/480.f, 0.1, 10000);
mCam.setEyePoint(Vec3f(0.f,0.f,500.f));
mCam.setCenterOfInterestPoint(Vec3f::zero());
mTrack = audio::Output::addTrack(audio::load(
getAssetPath("music.mp3").c_str()));
mTrack->enablePcmBuffering(true);

6.	 Implement the resize method for updating camera properties in regards
to resizing windows:
void MainApp::resize(ResizeEvent event)
{
mCam.setPerspective(45.0f, getWindowAspectRatio(), 0.1, 10000);
}

7.	 Inside the update method, implement a simple beat detection. We are decomposing
the signal into 32 frequencies using FFT:
float beatValue = 0.f;
mPcmBuffer = mTrack->getPcmBuffer();
if(mPcmBuffer) {
 int bandCount= 32;
 std::shared_ptr<float> fftRef = audio::calculateFft(
 mPcmBuffer->getChannelData(audio::CHANNEL_FRONT_LEFT),
 bandCount);
 if(fftRef) {
 float * fftBuffer = fftRef.get();
 float avgLvl= 0.f;
 for(int i= 0; i<bandCount; i++) {
 avgLvl += fftBuffer[i] / (float)bandCount;
 }
 avgLvl /= (float)bandCount;
 if(avgLvl>avgLvlOld+beatSensitivity) {
 beatValue = avgLvl - beatSensitivity;
 }
 avgLvlOld = avgLvl;
 }
}

Using Audio Input and Output

328

8.	 Also, inside the update method, calculate the particle simulation:
std::vector<Particle*>::iterator it;
for(it = mParticleSystem.particles.begin(); it !=
mParticleSystem.particles.end(); ++it) {
 Vec3f attrForce = attrPosition - (*it)->position;
attrForce *= attrFactor;
if(attrPosition.distance((*it)->position) <100.f) {
 attrForce = (*it)->position - attrPosition;
 attrForce *= 0.02f;
 }
 (*it)->forces += attrForce;
 Vec3f bearForceVec = (*it)->position - attrPosition;
 bearForceVec.normalize();
 bearForceVec.rotate(randVec3f(), randAngle);
 bearForceVec *= beatValue*randFloat(beatForce*0.5f,
beatForce);
 (*it)->forces += bearForceVec;
 std::vector<Particle*>::iterator it2;
 for(it2 = mParticleSystem.particles.begin(); it2 !=
 mParticleSystem.particles.end(); ++it2) {
 (*it)->forces += ((*it)->position - (*it2)->position) *
 0.5f * 0.0001f;
 }
}
mParticleSystem.update();

9.	 Implement the draw method as follows:

gl::enableAlphaBlending();
gl::clear(ColorA::white());
gl::setViewport(getWindowBounds());
gl::setModelView(mCam);
float r = getElapsedSeconds()*10.f;
gl::rotate(Vec3f::one()*r);
mParticleSystem.draw();

How it works…
A particle is drawn as a black dot, or more precisely a sphere and a line as a tail. Due to
specific frequency difference, forces repelling particles from the center of the attractor are
applied, with a random vector added to these forces.

Chapter 12

329

There's more…
You might want to customize the visualization for a specific music piece.

Adding GUI to tweak parameters
We will add GUI that affects particles' behavior using the following steps:

1.	 Add the following necessary header file:
#include "cinder/params/Params.h"

2.	 Add the following member to your application's main class:
params::InterfaceGl mParams;

3.	 At the end of the setup method, initialize GUI using the following code:
mParams = params::InterfaceGl("Parameters", Vec2i(200, 100));
mParams.addParam("beatForce", &beatForce, "step=0.01");
mParams.addParam("beatSensitivity", &beatSensitivity, "step=0.01"
);
mParams.addParam("randAngle", &randAngle, "step=0.01");

4.	 At the and of the draw method, add the following code:
params::InterfaceGl::draw();

Index
Symbols
2D

particle system, creating 101-108
2D geometric primitives

drawing 163-165
working 166

2D graphics
2D metaballs, implementing 171
about 163
arbitrary shapes, drawing 166
blur effect, adding 180
force-directed graph, implementing 184
geometric primitives, drawing 163
scribbler algorithm, implementing 169
text around curves, animating 174

2D metaballs
about 171
implementing 171, 172
wikipedia 173
working 173

3D
image gallery, creating 240-244

3D drawing
mouse, using 198-201

3D geometric primitives
about 189
drawing 190-192
working 192

3D graphics
about 189
drawing, with mouse 198
geometric primitives, drawing 189
height map, creating from image 210
lights, adding 201
mesh data, saving 217

mouse intersection 205
offscreen canvas, drawing 195
rotating 193
scaling 193
terrain creating, Perlin noise used 213
transforming, OpenGL transformations

used 193-195
translating 193

3D space guides
about 43
using 44-46

A
accelerated(AccelEvent event) method 54
addAssetDirectory method 29
addParticle method 105
addSpring method 131
anchor property 125
animation sequences

creating, with timeline 221-223
Apple Developer Center 54
application basic structure

about 10-12
implementing 11
working 12

application window
dropped files, accessing 20, 21

arbitrary shapes
drawing, with mouse 166-168

assets
about 28
using 28, 29
working 29

attraction forces
applying 109, 110

332

audioCallback method 314, 317
augmented reality

building, Kinect used 304-309

B
basic application project

creating 6, 7
blur effect

adding 180-183
working 184

bool type 33
brightness

transforming 56, 58
Brownian motion

applying, particle system 111, 112
B-spline 161
buttons 35

C
Cairo 75
calcIntersectionWithMeshTriangles

method 207
camera

frames, capturing 277-279
frames, displaying 277-279

camera motion
aligning, to path 226, 228-230

ci::app::FileDropEvent object 20, 21
ci::app::KeyEvent class 15
ci::app::MouseEvent class 13
ci::app::ResizeEvent object 24
ci::app::ResizeEvent parameter 22
ci::app::TouchEvent class 17
ci::ColorA type 34
ci::Color type 34
ci::fs::path object 29
ci::gl::color method 166
ci::gl::Light::DIRECTION light 204
ci::gl::Light::POINT light 204
ci::gl::Light::SPOTLIGHT 204
Cinder 5
Cinder-Config 39
CINDER_PATH 48
ci::Quatf type 34
ci::Shape2d::moveTo method 168
ci::Timeline::apply method 221

ci::Vec3f type type 33
cloth simulation

creating 142-146
texturing 147-151
working 146

collision sounds
generating 319-322

color based object, tracking
frames, displaying 279-283

command key 16
configuration

Cinder-Config 39
loading 36-38
saving 36-38

current parameter state
snapshot, making 39-41
working 41

D
delay effect

about 317
adding 317-319

destroySpring methods 130
detectMultiScale function 66
DFT 325
Discrete Fourier Transform. See DFT
dots

connecting 154, 156
draw3DScene method 307
drawing method 116
draw method 10, 23, 50, 73, 108, 215
drawObject method 306

E
edgeDetectSobel function 63
edges

detecting 62, 63
working 63, 64

example communication
about 47, 48
broadcast 52
lsiener 50
OpenSoundControl Protocol 52
OSC in Flash 52
OSC in openFrameworks 52
OSC in Processing 52

333

sender 48
working 51, 52

F
faces

detecting 65-67
Fast Fourier Transform. See FFT
Fast Library for Approximate Nearest

Neighbor. See FLANN
FFT

about 117, 323
visualizing 323, 325

fileDrop method 20
FLANN 291
FlannBasedMatcher class 69
flocking 117
flocking behavior

alignment rule 112
cohesion rule 112
separation rule 112
simulating 112-116

flow field
creating, with Perlin noise 236

force-directed graph
about 184
implementing 185- 187
working 188

Frame Buffer Object (FBO) 184, 195
fromOcv functions 62

G
getActiveTouches() method 54
getAspectRatio method 22
getAssetPath method 29
getFile method 21
getId method 17
getNativeKeyCode method 16
getNativeModifiers method 14
getPosition method 225
getPos method 17
getSize method 22
getWheelIncrement method 14
getY methods 17
GitHub repository 59
Graphical User Interface (GUI) 31

H
height map

creating, from image 210-213
high resolution images

saving, with tile renderer 94-96
working 97

HSV 283
hue, saturation, and value. See HSV

I
image

height map, creating from 210-213
image contrast

transforming 56, 58
image gallery

creating, in 3D 240-244
image processing techniques 56
images

converting, to vector graphics 70-74
features, detecting 67-70
matching case 70
possibilities 70

interactive object
mouse events, adding 255-260

InteractiveObject class, for graphical
object creation

creating 250-255
InterfaceGl::draw() method 35
iOS

resources, using in 26, 27
iOS application

Apple Developer Center 54
preparing 53, 54

iOS touch application project
creating 9

isShiftDown method 14

K
key 34
keyDecr 35
keyDown method 15, 73
keyIncr 34
key input

responding to 15
responding to, steps 15

334

keyPressed method 266
keyUp method 15
Kinect

used, for augmented reality building 304-309
used, for gesture recognition 296-304
used, for UI navigation building 296-304

L
LFO 316
libopencv_core.a module 62
libopencv_imgproc.a module 62
libopencv_objdetect.a module 62
lights

adding 201-204
ambient property 204
diffuse property 204
emission property 204
shininess property 204
specular property 204
types 204, 205

listener 50
loadResource method 27
low frequency oscillation. See LFO

M
makeSnapshotClick method 41
matchImages method 68
max 34
MayaCamUI

about 41, 42
setup method, working 43
using 43

mesh data
saving 217, 218

mesh surface
particles, aligning to 124-128

min 34
motion tracking

optical flow, using 284-286
mouse

used, for 3D drawing 198-201
used, for arbitrary shape creating 166-168

mouse cursor interaction
calculating 205-209

mouseDown event 146

mouseDown implementation 133
mouseDown method 13, 109, 133
mouseDrag method 13, 49, 167
MouseEvent object 14
mouse events

adding, to interactive object 255-260
mouse input

responding to 13, 14
working 14

mouseMove method 13, 109
mouseUp event 146
mouseUp method 13
mouseWheel method 13
multi-touch

used, for object dragging 268-276
used, for object rotation 268-276
used, for object scaling 268-276

N
Numerical: int, float, double type 33

O
object tracking

about 287
steps 288-291

offscreen canvas
drawing 195-198

O key 218
OpenCV

interacting with 59-62
Open Sound Control. See OSC
optical flow

used, for motion tracking 284-286
OSC 47
OSC protocol 52
OS X

resources, using in 26, 27

P
panel position 36
parameters tweaking

AntTweakBar 36
buttons 35
ciUI 36

335

GUI, setting up 31-35
panel position 36
SimpleGUI 36

particles
aligning, to mesh surface 124-128
aligning, to processed image 121-124
connecting, with spline 157-161
FFT analysis, adding 117-121
tail, adding to 139, 141
texturing 137-139

particle system
about 101
Brownian motion, applying 111, 112
creating, in 2D 101-108
texturing, point sprites used 149-153
texturing, shaders used 149-153

ParticleSystem::draw method 132
path

animating along 224-226
camera motion, aligning 226-230

PCM
about 311

Perlin noise
about 213
used, for flow field creation 236-240
used, for spherical flow field

creating 245-248
used, for terrain creating 213-217

Perlin noise original source 112
precision 35
prepareSettings method 10-12
project

for basic application, creating 6, 7
for iOS touch application, creating 9
for screensaver application, creating 8

Pulse-code Modulation. See PCM

Q
QR code

reading 292-295

R
readonly 35
receivedEvent method 258
renderDrawing method 74

repulsion forces
applying 109, 110

repulsionRadius value 110
resize method 24, 320
resources

using, on iOS 26, 27
using, on OS X 26, 27
using, on Windows 24, 25

responsive text box
about 264
creating 264-268
working 268

S
saveParameters method 41
scene

adjusting, after window resize 22, 24
screensaver application project

creating 8
scribbler algorithm

about 169
implementing 169, 170

sender 48
setAmbient(const Color& color) method 205
setDiffuse(const Color& color) method 205
setPos method 175
setSpecular(const Color& color) method 205
setup method 10, 43, 68, 72, 109, 188, 216,

276
Shift key 200
shutdown method 10, 12, 38, 308
simple video controller

about 80
creating 80-84

sine oscillator
about 311
generating 312, 313
working 314

sine wave oscillator
modulating, with low frequency 314, 316

S key 74, 218
slider

about 260
creating 261-264

336

sound-reactive particles
about 325
creating 325-328
GUI, adding for parameter tweaking 329
working 328

Speeded Up Robust Features. See SURF
spherical flow field

creating, with Perlin noise 245-248
spline

used, for particles connecting 157-161
springs

about 128
creating 128-133
working 134, 135

step 34
st::string type 33
SURF 291
SurfaceEps method 74
SurfacePdf method 74
SurfacePs method 74
SurfaceSvg method 74

T
tail

adding, from several lines 140
adding, to particle animation 139-141
drawing history 141
drawing, with lines 142

terrain
creating, with Perlin noise 213-217

text
animating around a user-defined

curve 174-179
using, as mask for movie 230-233

text scrolling line by line
creating 233-235

tile renderer
using, for high resolution images 94

timeline
animating 219-221
animation sequences, creating 221-223

TinderBox 5
touchesBegan event 275
touchesBegan method 16, 18
touchesBegan(TouchEvent event)

method 54
touchesEnded method 16, 18
touchesEnded(TouchEvent event)

method 54
touchesMoved method 16, 18
touchesMoved(TouchEvent event)

method 54
touch input

responding to 16
responding to, steps 17-20

TouchInteractiveObject class 275

U
update method 10, 11, 106, 160
user interaction 249

V
video

about 77
displaying 77- 80
loading 78-80

W
window animation

saving, as vector graphics image 90-94
saving, as video 86-89

window content
saving, as image 84, 85
saving, as image sequences 85
sound visualization, recording 86

Windows
resources, using 24, 25

Thank you for buying

Cinder Creative Coding Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

OpenCV 2 Computer Vision
Application Programming
Cookbook
ISBN: 978-1-84951-324-1 Paperback: 304 pages

Over 50 recipes to master this library of programming
functions for real-time computer vision

1.	 Teaches you how to program computer vision
applications in C++ using the different features of
the OpenCV library

2.	 Demonstrates the important structures and
functions of OpenCV in detail with complete
working examples

3.	 Describes fundamental concepts in computer
vision and image processing

Mastering OpenCV with
Practical Computer Vision
Projects
ISBN: 978-1-84951-782-9 Paperback: 340 pages

Step-by-step tutorials to solve common real-world
computer vision problems for desktop or mobile, from
augmented reality and number plate recognition to face
recognition and 3D head tracking

1.	 Allows anyone with basic OpenCV experience
to rapidly obtain skills in many computer vision
topics, for research or commercial use

2.	 Each chapter is a separate project covering a
computer vision problem, written by a professional
with proven experience on that topic

3.	 All projects include a step-by-step tutorial and full
source-code, using the C++ interface of OpenCV

Please check www.PacktPub.com for information on our titles

Processing 2: Creative
Programming Cookbook
ISBN: 978-1-84951-794-2 Paperback: 306 pages

Over 90 highly-effective recipes to unleash your
creativity with interactive art, graphics, computer vision,
3D and more

1.	 Explore the Processing language with a broad
range of practical recipes for computational art
and graphics

2.	 Wide coverage of topics including interactive art,
computer vision, visualization, drawing in 3D, and
much more with Processing

3.	 Create interactive art installations and learn to
export your artwork for print, screen, Internet, and
mobile devices

Mastering openFrameworks:
Creative Coding Demystified
ISBN: 978-1-84951-804-8 Paperback: 340 pages

Boost your creativity and develop highly-interactive
projects for art, 3D, graphics, computer vision and
more, with this comprehensive tutorial.

1.	 A step-by-step practical tutorial that explains
openFrameworks through easy to understand
examples

2.	 Makes use of next generation technologies and
techniques in your projects involving OpenCV,
Microsoft Kinect, and so on

3.	 Sample codes and detailed insights into the
projects, all using object oriented programming

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Getting Started
	Introduction
	Creating a project for a basic application
	Creating a project for a screensaver application
	Creating a project for an iOS touch application
	Understanding the basic structure of an application
	Responding to mouse input
	Responding to key input
	Responding to touch input
	Accessing files dropped onto the application window
	Adjusting a scene after resizing the window
	Using resources on Windows
	Using resources on iOS and OS X
	Using assets

	Preparing for Development
	Introduction
	Setting up a GUI for tweaking parameters
	Saving and loading configurations
	Making a snapshot of the current parameter state
	Using MayaCamUI
	Using 3D space guides
	Communicating with other software
	Preparing your application for iOS

	Using Image
Processing Techniques
	Introduction
	Transforming image contrast and brightness
	Integrating with OpenCV
	Detecting edges
	Detecting faces
	Detecting features in an image
	Converting images to vector graphics

	Using Multimedia Content
	Introduction
	Loading and displaying video
	Creating a simple video controller
	Saving window content as an image
	Saving window animations as video
	Saving window content as a vector graphics image
	Saving high resolution images with the tile renderer
	Sharing graphics between applications

	Building Particle Systems
	Introduction
	Creating a particle system in 2D
	Applying repulsion and attraction forces
	Simulating particles flying in the wind
	Simulating flocking behavior
	Making our particles sound reactive
	Aligning particles to a processed image
	Aligning particles to the mesh surface
	Creating springs

	Rendering and Texturing Particle Systems
	Introduction
	Texturing particles
	Adding a tail to our particles
	Creating a cloth simulation
	Texturing a cloth simulation
	Texturing a particle system using point sprites and shaders
	Connecting the dots
	Connecting particles with spline

	Using 2D Graphics
	Drawing 2D geometric primitives
	Drawing arbitrary shapes with the mouse
	Implementing a scribbler algorithm
	Implementing 2D metaballs
	Animating text around curves
	Adding a blur effect
	Implementing a force-directed graph

	Using 3D Graphics
	Introduction
	Drawing 3D geometric primitives
	Rotating, scaling, and translating
	Drawing to an offscreen canvas
	Drawing in 3D with the mouse
	Adding lights
	Picking in 3D
	Creating a height map from an image
	Creating a terrain with Perlin noise
	Saving mesh data

	Adding Animation
	Animating with the timeline
	Creating animation sequences with the timeline
	Animating along a path
	Aligning camera motion to a path
	Animating text – text as a mask for a movie
	Animating text – scrolling text lines
	Creating a flow field with Perlin noise
	Creating an image gallery in 3D
	Creating a spherical flow field with Perlin noise

	Interacting with
the User
	Introduction
	Creating an interactive object that responds to the mouse
	Adding mouse events to our interactive object
	Creating a slider
	Creating a responsive text box
	Dragging, scaling, and rotating objects using multi-touch

	Sensing and Tracking Input from the Camera
	Capturing from the camera
	Tracking an object based on color
	Tracking motion using optical flow
	Object tracking
	Reading QR code
	Building UI navigation and gesture recognition with Kinect
	Building an augmented reality with Kinect

	Using Audio Input
and Output
	Generating a sine oscillator
	Generating sound with frequency modulation
	Adding a delay effect
	Generating sound upon the collision of objects
	Visualizing FFT
	Making sound-reactive particles

	Index

