
Shackelford

US $54.99

Shelve in
Linux/General

User level:
Beginning–Advanced

www.apress.com

SOURCE CODE ONLINE

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Beginning Amazon Web
Services with Node.js
Beginning Amazon Web Services with Node.js teaches anyone new to Node.js
development how to configure, deploy, and maintain scalable Node.js applications, from
small to large, in Amazon Web Services. Hosting a Node.js application in a production
environment usually means turning to PaaS hosting solutions, but this approach is often
fraught with problems. Deploying Node.js directly to AWS solves the problems you
encounter in those situations and enables you to cut out the middle man.

Noted expert Adam Shackelford gets you started with a basic RESTful web service
in Node.js, using the popular Express.js framework, which is pre-built and ready to run in
your local environment. The book then introduces you to the most powerful tools
in AWS, and you learn how to configure your project to take advantage of them. The
book also guides you through the steps of getting the various key components to work
together on AWS. Through code samples using the AWS JavaScript SDK and tutorials
in the AWS Console, you gain the knowledge to incorporate secure user authentication,
server auto-scaling, a load balancer, CDN, customized caching behavior, and outage
monitoring. Get started with Node.js and AWS using this book today.

In this book, you learn how to:

• Build Node.js apps on AWS that automatically power up to handle a massive
volume of traffic and then scale back down to a lighter configuration when
demand drops

• Use AWS OpsWorks to architect and configure a secure web application
built for hosting in the cloud

• Integrate AWS Cloudwatch, SES, and other AWS services into your code
• Use AWS Route 53 to configure your domain to use a load balancer, CDN,

and other performance-enhancing services with your application

RELATED

9 781484 206546

55499
ISBN 978-1-4842-0654-6

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Author�� xiii

About the Technical Reviewer��xv

Acknowledgments��xvii

Preface��xix

Chapter 1: Getting Started with Amazon Web Services■■ ��� 1

Chapter 2: Working with AWS OpsWorks ■■ �� 31

Chapter 3: OpsWorks Part II: Databases and Scaling■■ ��� 61

Chapter 4: CloudFront and DNS Management■■ �� 93

Chapter 5: Simple Storage Service and Content Delivery■■ ����������������������������������� 121

Chapter 6: Simple Email Service ■■ ��� 147

Chapter 7: Monitoring the Application■■ ��� 171

Chapter 8: Securing the Application■■ ��� 209

Index�� 233

1

Chapter 1

Getting Started with Amazon
Web Services

Welcome to Beginning Amazon Web Services with Node.js! Over the course of this book, you will learn how
to optimize your Node.js applications for deployment on Amazon Web Services (AWS). By using AWS to
host your application, you take advantage of a series of features that are commonly known as “the cloud.”
You will learn about some of the core features of AWS, understand how to design your application stack, and
integrate your application into the AWS environment. Though you could easily upload your code to a server
and call it a day, learning how to incorporate the various features of AWS into your project will allow you to
make full use of the benefits of the cloud. But what are these benefits?

Understanding the Cloud
First and foremost is scalability, or the ability to rapidly deploy additional resources to support your
application. Prior to the proliferation of cloud-hosting providers such as AWS, if demand for your application
outstripped your hardware resources, deploying additional servers was an expensive and laborious task and
often out of the capabilities of startups and small or medium-sized businesses. With your application hosted
on AWS, you can allocate resources on demand, launching new servers and keeping your application online.
According to the AWS white paper “Architecting for the Cloud: Best Practices,”1

Traditionally, applications have been built for fixed, rigid and pre-provisioned
infrastructure. Companies never had the need to provision and install servers on [a] daily
basis. As a result, most software architectures do not address the rapid deployment or
reduction of hardware. Since the provisioning time and upfront investment for acquiring
new resources was too high, software architects never invested time and resources in
optimizing for hardware utilization. It was acceptable if the hardware on which the
application is running was under-utilized. The notion of “elasticity” within an architecture
was overlooked because the idea of having new resources in minutes was not possible.

The ability to respond to demand for your application is known as elasticity. Being able to replace
one server with 100 is useless if it’s not a strategic action. When additional servers had to be manually
booted and configured for deployment in response to demand, the cost of doing so led many

1Amazon Web Services, “Architecting for the Cloud: Best Practices,” http://aws.amazon.com/es/
whitepapers/architecting-for-the-aws-cloud-best-practices/, May 21, 2010.

http://aws.amazon.com/es/whitepapers/architecting-for-the-aws-cloud-best-practices/
http://aws.amazon.com/es/whitepapers/architecting-for-the-aws-cloud-best-practices/

Chapter 1 ■ Getting Started with Amazon Web Services

2

businesses/institutions to instead over-allocate resources. Instead of spinning up additional servers
for a spike in traffic, the extra servers would just be left running at all times and required concomitant
maintenance. With the elasticity of AWS, spikes in traffic can be detected, and additional resources can
be automatically deployed. When the demand returns to normal, the application can be scaled down
automatically to a normal state. Use what you need, and pay for what you use—a simple concept that
revolutionizes web application development. This saves time, money, energy, and reduces the barrier to
entry for enterprise-level software.

As you can see, scalability and elasticity are great attributes to have in your application. These benefits
also mean thinking differently about your role as software developer and architect. Shifting from developing
in a fixed-hardware environment to a cloud-computing environment means that we are now cloud
architects, in addition to software developers. This constitutes a major change in the way developers must
think about web applications. For many of us, there will no longer be a system administrator or database
administrator maintaining the infrastructure. (They work at Amazon, IBM, Google, Rackspace, etc., now.)
Instead, virtual hardware management/cloud architecture is now in our domain. Not only do we think about
our application in terms of best coding practices and organization, we have to think about how to leverage
the vast resources available to us as developers. This means we have to become familiar with the features of
AWS and understand how to design, configure, and maintain a virtual-hosting environment.

As you learn how to be a cloud architect, you will learn about a lot of great features specific to AWS,
as well as the general philosophies of elasticity and scalability. The many features of AWS are organized
into a series of overlapping services. Many of them have redundant features, allowing for some creativity
in the decisions we make as we architect our system. All of these services run in virtualized-hardware
environments located in Amazon’s many data centers around the globe. We will explore some of these
services in the chapters that follow.

You will be familiarizing yourself with the fundamentals of Amazon Web Services. I have discussed
some of the general principles and advantages of using AWS. Later on, I will discuss some of the core
services in greater detail and the different ways we can interact with them. Before we dive in, it is important
to start on the same page.

The Approach in This Book
This book assumes that you are already at least a beginner Node.js developer, looking to expand your skill
set to include architecting and developing a Node.js application with scalability and elasticity in mind. You
should have a basic understanding of the main concepts in web-application development. You should know
what a RESTful web service is, know your way around Git or SVN, and have a code editor handy.

Designing and developing the application is a creative process. This means that a number of highly
subjective decisions have to be made. First and foremost, we will be using Amazon RDS (Relational
Database Service) to host a MySQL database on AWS. Many Node.js developers prefer MongoDB to MySQL.
That is perfectly fine! However, the sample application and subsequent instructions focus on MySQL, which
suits the needs of our application. If you want to use this book to deploy an app using MongoDB, you will
have to be capable of rewriting the database connections and queries accordingly. In either case, you will
need elementary knowledge of the database language in question. This is just one of many creative decisions
to be made along the way. You may disagree with some or require a different approach in your next project,
but you will end up being better equipped to make these decisions in your next project, and you will be
prepared to work with AWS services as a developer and architect.

To gain the benefits of cloud computing in our application, you will be learning about a variety of AWS
services that can be integrated into our application. This integration will be carried out through two means:
via configuration and customization of multiple services in the AWS Console and programmatically in our
application code base with the AWS SDK. In this case, we will be using the JavaScript AWS SDK, which is
intended for use in Node.js applications. However, there are SDKs for a variety of server-side languages, and
many of the lessons of the book could even be useful to developers using different languages. Integrating
AWS services into a PHP application with similar functionality would not be that different.

Chapter 1 ■ Getting Started with Amazon Web Services

3

Virtually every task you can carry out in the AWS Management Console (AWS Console) could also
be carried out programmatically, and vice versa. The AWS Console adds a lot of clarity to the process by
providing access to hints and documentation and by providing visual reference for the otherwise abstract
concepts. It can help a lot to use the console while you wrap your head around everything AWS can do. You
might ask, “How do I know when to use the console and when to use the SDK?” Learning curve aside, this is
a highly subjective topic. You may, in time, decide what rules are best for your workflow, but we can follow a
few ground rules.

Note■■  T here is also a third approach for interacting with AWS services: the AWS command-line interface
(CLI). We will not use the CLI until the final chapter.

First, routine tasks should definitely be carried out in the SDK. If your app needs to store a daily log
or report in an S3 bucket for storage, you probably want to accomplish that programmatically. Routine
tasks involving file transfers are especially good candidates for the SDK. In the case of our application,
images uploaded by the user will be stored in an S3 bucket for use in the application. When you learn how
to do this, I will illustrate clearly why using the AWS Console would be a bad idea. For now, know that the
SDK is a tremendous time-saving tool in this use case. The same goes for event-driven tasks, except where
CloudWatch can detect them (such as a server going offline). For example, if your app has to generate
e-mails when a user registers for your application, you want your code to trigger it instantly when it happens.
We will explore these types of events in greater detail in Chapters 6 and 7.

There are many one-time tasks, however, that we will carry out on the AWS Console, for clarity’s sake.
It will be a lot easier to diagnose errors or avoid them altogether with the AWS Console’s GUI than it would
be to debug code that you only need to run once. For instance, while we could programmatically create an
alarm to notify us when our app is slow to respond to requests, for clarity’s sake, we will do so in the AWS
Console instead. When you’re learning, you can find yourself causing comically absurd bugs with the AWS
SDK. Oops, I didn’t mean to create server instances on an infinite loop. If you were feeling ambitious after
finishing the lessons, you could probably script many of the AWS Console tasks in the book. I’ll call that
extra credit.

Before you are introduced to the AWS products we will be using, it is important to reiterate that there is
more than one way to achieve the same goal with AWS. The scope of this book is limited to a set of products
that work well together for achieving our goal of application scalability and elasticity with the feature set we
need and a reasonable budget. However, many AWS services have some redundancy. For example, we will
be using OpsWorks to manage our application stack, but it is not the only service for doing so. Many AWS
developers prefer to use Elastic Beanstalk over OpsWorks, for the simplicity it offers, among other reasons.
As time passes, AWS services have become more and more cohesive, so I hope learning how to use a handful
of products will put you on the path to learn more, and with greater ease.

The use of EC2 instances is common to many AWS products. EC2, or Elastic Compute Cloud, is the
brick and mortar of AWS. An instance is actually a virtual server running your choice of operating system and
hosted in one of Amazon’s many data centers. The instance is not fixed to a single piece of hardware; it is a
software process that runs on one machine; and if that machine were to crash or break, the process would
resume on another. In the worst-case scenario, the failure of hardware in an AWS data center will disrupt your
application, but the redundancy built into the cloud will prevent your data from being lost. If your application
is unresponsive, you can check the status of all AWS services at http://status.aws.amazon.com/.

http://status.aws.amazon.com/

Chapter 1 ■ Getting Started with Amazon Web Services

4

When you create and run an EC2 instance, you are renting computing resources in one or more AWS
data centers, which are organized by geographic region. The price of these resources is based on the power
and number of hours of use. EC2 uses a tiered pricing structure, whereby EC2 hardware specs (clock
speed, RAM, etc.) are named according to their relative size. When you create an instance, the resources
are allocated to your instance, and your billing begins. It doesn’t matter how much you actually use the
resources you’ve rented. You are charged for your price tier. You could spend a lot of money reserving the
largest instances available, but that would be a waste, just like the traditional deployment method described
earlier. Instead, we will use other AWS services to scale our EC2 instances up and down, according to our
needs, getting the most bang for the buck. Since we’re now also cloud architects as well as developers, we’re
going to do our best to be stingy. Pay for what you use; use what you pay for.

While you could manually create and configure EC2 instances by hand, using a management tool such
as OpsWorks streamlines the process significantly and can drastically reduce the risk of human error when
setting up a complex system. We will be using OpsWorks to manage our application layers, deployment, and
many other vital facets of the application. OpsWorks will be your main interface for configuring our project,
and the first thing you will need to master. In Chapter 2, you will be introduced to the core features of
OpsWorks and configure your application for deployment to EC2 instances. By the end of the chapter, your
application will be deployed via OpsWorks to an EC2 instance.

In Chapter 3, you will be adding a scalable MySQL database to your application with Amazon RDS.
You will also learn how to add additional server instances to your app and set up a load balancer to manage
traffic. In Chapters 4 and 5, you will learn how to set up a CDN in CloudFront, as well as how to work with file
transfers and caching. You will also learn about DNS configuration with Route 53. You will learn how to send
e-mail with SES (Simple Email Service) from your application, in Chapter 6, and in Chapter 7, you will learn
how to use CloudWatch to monitor your application. Finally, in Chapter 8, you will secure your application
for your users by restricting critical API endpoints to HTTPS connections.

Though the application we’re building is relatively simple, using cloud computing is not. In addition to
knowledge of Node.js, there are a number of tools and services you will require to complete this book.

Requirements
You will, of course, need all the tools for Node.js and MySQL development: an IDE, local MySQL database,
and Git or SVNclient (unless you prefer the command line). Additionally, you will need accounts with a
domain registrar, SSL certificate provider, and, of course, AWS.

AWS Account
The first thing you will need is your own AWS account. You can create one by going to
http://aws.amazon.com/ and clicking the Sign Up button. You will need to provide billing information to
complete the registration process. You should complete this process now; there is no charge for an account
with no services activated. As you proceed through the lessons and activate more services, you will start
to accrue some expenditure. Once you have registered, you can review your expenditure at any time here:
https://console.aws.amazon.com/billing/home (see Figure 1-1).

http://aws.amazon.com/
https://console.aws.amazon.com/billing/home

Chapter 1 ■ Getting Started with Amazon Web Services

5

In the preceding figure, you can see the main Billing and Cost Management dashboard (note that
the entire screen is visible in this figure, which will not always be the case). Your current monthly bill is
highlighted in a big, bold font, below which is a progress bar with a range of zero to your previous month’s
bill. This is to give you an informed projection of your monthly costs, though they will likely fluctuate, based
on changes in usage. Don’t let my bill scare you, though, there’s a lot more than the sample app running on
my account.

There is also a callout to enable Alerts & Notifications. You can configure AWS to alert you when certain
cost metrics have been reached. The utility of this is self-explanatory. If only the electric company offered
this feature!

To the right is a circle chart and breakdown of your bill by service. As you can see, EC2 is likely to be
your biggest expense, followed by RDS or whatever database service you use. You can expect your database
service bill to scale up with the volume of queries your application makes and, hence, with the size of your
user base.

You only pay for what you use, but if you go overboard with power, you will feel it in your bank account.
To complete the lessons in this book, you will undoubtedly incur a small cost. The exact cost will depend on
how quickly you complete the book and whether you leave your application running 24/7 or not. There are
a number of other reports and billing-related tools and options in here that are outside the scope of these
lessons. We will return to the AWS Console later in the chapter, to begin configuring the account for use as a
production environment.

Tip■■  T o save money, you can shut down many of your resources when you aren’t working on the lessons.

Figure 1-1.  The Billing and Cost Management dashboard

Chapter 1 ■ Getting Started with Amazon Web Services

6

Domain Registration
You will require your own domain to complete all of the lessons. It doesn’t really matter what it is, as long
as you have the ability to change the nameservers. If you don’t have a domain yet, you can register one at
any registrar, such as GoDaddy (www.godaddy.com). That’s not an endorsement of GoDaddy; registrars are
mostly all the same. Expect this to cost about $13 per year. You can also register your domain directly in the
AWS Route 53 dashboard now, which is handy if you want to keep all your moving parts in one place.

SSL Certificate
This topic will be covered in detail in Chapter 8, so you don’t need this now. However, expect that you will
have to provision a valid SSL certificate with a Certificate Authority. This will cost about $9 per year, at a
minimum.

Code Repository
Down the road, when you are setting up your app in AWS OpsWorks, you will discover that you need to
choose a means of deploying your application. You will be presented with a number of choices. The easiest
and arguably most secure means of doing this deployment is from a GitHub (https://github.com) account,
or another Git account-hosting service with comparable features. We specifically want one that supports
auto-deployment or can otherwise be accessed by AWS via SSH connection. After downloading the sample
project, you will want to add the project to your own repository, in which you can alter it as you see fit and
configure your own deployment process.

Download the Sample Project
You will not begin the coding lessons by duplicating lengthy, step-by-step code samples. Instead, you can
begin by downloading the sample project here: (www.apress.com/9781484206546). We will then review
the prepackaged code and make iterative changes throughout the lessons that follow. Before you do this,
make sure you have the latest version of Node.js installed (or at least version 0.10.26). Download a zip of the
sample project, or pull the branch to your machine, and open the directory in a code editor.

Local Environment
You should already have Node.js installed locally on your machine and be capable of running it in the
command-line interface. In the beginning, you will also need a local MySQL database. The easiest way to set
one up is with MAMP (www.mamp.info/en/) or XAMPP (www.apachefriends.org/index.html). I will just
assume that you can get this installed on your own without step-by-step instructions (hint: go to the web site
and click Download). Unlike PHP, you won’t need MAMP/XAMPP to run your app, but it’s the easiest way to
get a local MySQL database set up and accessible. You will also want to have MySQL Workbench
(www.mysql.com/products/workbench/) installed, but I will discuss this in further detail down the road.

The front end of our application is a RESTful JSON API, intended for consumption by a web or mobile
client. We will be interacting with the API throughout the lessons, but we won’t have a client yet. Because
we will be making both GET and POST HTTP requests to the API, you will need more than just a web browser
to properly test the application during development. Fortunately, there are many REST clients available on
all operating systems, making it easier to interface with an API such as ours. There is an excellent Google
Chrome extension called Advanced Rest Client, which should do the job nicely. You can find it at
https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo.

http://www.godaddy.com/
https://github.com/
http://www.apress.com/9781484206546
http://www.mamp.info/en/
http://www.apachefriends.org/index.html
http://www.mysql.com/products/workbench/
https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo

Chapter 1 ■ Getting Started with Amazon Web Services

7

ExpressJS
You will want to be familiar with ExpressJS, a popular (perhaps the most popular) web application
framework for Node.js. Using ExpressJS will do a lot of the heavy lifting of routing and parsing HTTP requests
and simplify the process of sending a response via templating engine, raw text/HTML, or JSON. Additionally,
ExpressJS accepts a few handy global configurations and allows you to create or install middleware. This
allows you to pass all HTTP requests made to your server through common functions, which makes it easy to
integrate such features as authentication, field validation, and error handling.

The sample project is optimized for Express 4, the latest major release. If you are more familiar with
Express 2 or Express 3, there are significant changes in this version. You should review
http://expressjs.com/guide/migrating-4.html to get up to speed.

Now let’s get you familiarized with the sample project. Some basic functionality for a simple RESTful
web service has already been created for you. Keep in mind that the goal of this book is not to teach you how
to code, nor is the functionality intended to be groundbreaking. By learning with a simple app, you will,
I hope, develop a vision of how to integrate AWS into your own work.

Sample Project
Though this is not technically a Node.js guide, we will use a sample project to contextualize the lessons
in this book. The sample project will provide a real-world app to develop, while we work with AWS. In the
beginning, we will be starting with a bare-bones application—it needs a lot of work before it’s ready for use
in the field. We’ll be doing some of that work throughout the book.

Overview
The sample project is the code base for a very simple photo-based social media app. The functionality is
minimal: users can register for an account and log in. They can create album objects, which consist of a
title and a collection of photo objects. Users can upload photos with captions to the albums, one at a time
(but we aren’t storing and serving the files yet). Users can see a list of all other users and get all albums for
specific users. Users interact with the app through a JSON-formatted RESTful API, and records are stored in
a MySQL database.

As we progress through the lessons, we will be adding more functionality to the app. It will use a proper
secure user-authentication scheme. Users will receive welcome e-mails when they register their account.
We will store image files in a CDN, for easy and fast storage. Application logs will be generated and stored in
AWS, and it will make use of a range of AWS services.

The use cases for an application such as this are many. Countless platforms, from social networks to
newsreader apps, possess similar functionality at their core. With a little work, you could add the notion
of friending or following, by creating a relationship among users, and the means for the user to create and
delete them. You could add tagging, geolocation data, and comments to the photos.

Our application output is in JSON, but web templates could easily be generated by the application
as well. Keep in mind that, although the app is simple at this point, it will become more complicated very
quickly. The purpose of the sample project is not to dazzle you with Node.js coding skills but to provide a
simple, clear code base that’s easy to follow and could be expanded into a more sophisticated application.

Note■■  M uch of the organization of the project was created using the express command, which
auto-generates your project. If you start your own project after the lessons, it will be easy to re-create
the project’s organization.

http://expressjs.com/guide/migrating-4.html

Chapter 1 ■ Getting Started with Amazon Web Services

8

Source Code Organization
Let’s start by opening the project in a code editor and taking a look at the contents. You should see the
following in the project directory:
 
/lib
/public
/routes
/setup
/views
server.js
package.json
 

Open package.json in your code editor. You will see some information and config options for the
project, in JSON format. You will see the dependencies property, which looks something like this:
 
"dependencies": {
 "express": "~4.8.6",
 "body-parser": "~1.6.6",
 "cookie-parser": "~1.3.2",
 "morgan": "~1.2.3",
 "serve-favicon": "~2.0.1",
 "debug": "~1.0.4",
 "jade": "~1.5.0",
 ... // additional dependencies truncated
 }
 

These are the other npm modules required to run the app. Many of them are automatically added to
the list of dependencies when you use the ExpressJS app generator command. You will have to install these
locally to run the app locally. Open your command-line interface (e.g., Terminal in OS X), and navigate to
this directory. Type the following on the command line:
 
npm install
 

This command will look for a package.json file in the same directory and attempt to install all the
modules in the dependencies attribute. You should see all the packages download and install over the
course of a few minutes.

Let’s run through a few of the other files and directories in the project. Overall, this project is structured
to follow the Model View Controller (MVC) design pattern. If you don’t know what this is, it’s simply a way
of organizing your code base into a logical separation between three types of classes. In MVC, the three
types are the model, or object definition and manipulation; the view, or output of the app; and the controller,
which contains all the logic determining what information is sent to/retrieved from the model, based on
input to the application. This is, of course, a simplification of the concept, but it should give you an idea of
how it all works as we walk through it.

First, we’ll explore the lib directory, which contains globals.js and /model. True to what was
described previously, the model directory contains all the class definitions for the various objects we’ll be
working with. Because the application output will primarily be JSON, or templates populated by that JSON,
the models themselves will be much more abstract than if you were working with PHP, for example, where
you might design a class that you use to instantiate objects with properties retrieved from a database.

The files in the model directory primarily receive commands to interact with the database from the
controllers and send abstract objects back to the controllers in response. As such, the properties of the
objects in the sample application are created on the fly. With an application of this nature, the life span of

Chapter 1 ■ Getting Started with Amazon Web Services

9

objects is so short that using a flexible data model often makes sense. If you wanted, you could create your
own classes, instantiate them, and populate them, instead of following the approach in the sample project.
You would not be wrong to do so, if it helps you to maintain your code base more efficiently.

The controllers for the MVC pattern are in the /routes directory. Each file corresponds to a directory
path in a user’s request (e.g., /photos/1 or /users/adam) and processes all requests to URLs within that path.
It will retrieve whatever data it needs from the corresponding model and send a response.

So where is the view? In cases where the response is JSON, the view is the JSON data itself. However, as
an ExpressJS4 app, the jade templating engine (http://jade-lang.com/) is natively supported. If you were
to develop web templates, those files would be located in the /views directory. When thinking about MVC,
in this case, the view is not always going to be accessible in a template file. The view is always going to be an
HTTP response, whether the content type is text/html or application/json.

Moving on, the public directory stores all the static assets, such as style sheets, images, and JavaScript
files used by the front-end templates. This directory was auto-generated by ExpressJS. In Chapter 4, you will
learn how to more efficiently serve these files to the users, with AWS CloudFront.

You have already learned about server.js. If you look in this file, you will see how the request routes
are mapped to files in the /routes directory. You will also see a bunch of middleware and ExpressJS
configuration in here. For now, these aren’t too important.

You should also be aware of /lib/globals.js. This file is simply a convenient place to store global
configurations and commonly used values for easy reference, without polluting the global namespace.
Developers have a variety of different ideas about how to approach this type of feature in their code, so this is
merely one approach of many.

The sample project also includes a file called /setup/photoalbums.sql. This is the database schema
that you can import to your local MySQL database. You will want to import it into a local database called
photoalbums, if you intend to test the sample app in your local environment. You will also need to import
this file into your Amazon RDS database at a later point.

Configuration and Startup
You can start the app in one of two ways:

Typing •	 node app.js on the command line

Typing •	 npm start on the command line

If the app compiled successfully, you should be able to view the welcome page at
http://localhost:8081 (assuming you used port 8081). If not, you should see an error on the
command-line interface. If so, most likely, one of your dependencies didn’t install correctly. If that’s
the case, try running npm install again.

Another possible error is that port 8081 is not available on your machine. When we deploy our app
to the cloud, we will be using port 80. If you have to change this, open /lib/globals and change the
applicationPort property to a different value, such as 8081. If your app is trying to open a port that is not
available, the error will look something like this:
 
events.js:72
 throw er; // Unhandled 'error' event
 ^
Error: listen EACCES
 at errnoException (net.js:904:11)
 at Server._listen2 (net.js:1023:19)
 at listen (net.js:1064:10)
 at Server.listen (net.js:1138:5)
 

http://jade-lang.com/

Chapter 1 ■ Getting Started with Amazon Web Services

10

If none of these suggestions resolves your issue, you will have to read the error in your command-line
interface and attempt to resolve it on your own. Just a reminder: Anytime you make changes in your code,
you will have to recompile your app. If you’re used to working in PHP or front-end JavaScript and refreshing
your browser to test a fix, it can take some time to get into the habit of recompiling your app routinely.

Working with the Sample App
Congratulations on getting the sample app to run properly. You shouldn’t need to do any further
configuration on your machine, aside from installing a few more npm packages. From here on out, the
sample project source code is yours! You should check it into a repository now, so you have a good snapshot
to return to if you get lost.

Throughout the rest of the lessons, we will be jumping back and forth between the source code, the
command-line interface, and the AWS Console in your browser. Let’s dive further into the sample code, to
get a better idea of how it works. First, let’s look at server.js. At the beginning of the file, you’ll see all the
included npm modules. Beginning at line 8, you will see all the source files we’ve added to the project:
 
var routes = require('./routes/index');
var users = require('./routes/users');
var photos = require('./routes/photos');
var albums = require('./routes/albums');
var globals = require('./lib/globals');
 

Farther down, around line 27, you’ll see where these are used:
 
app.use('/', routes);
app.use('/users', users);
app.use('/photos', photos);
app.use('/album', albums);
 

We will now explore the functionality in each of the different routes we have registered in the
application.

Home Route
The first line directs HTTP requests to the root path of our application to the file at /routes/index.js.
We can make a quick stop here, as this route is only used to show a welcome page, so you know the app is
running properly. At the top of the file you will see

var express = require('express');
var router = express.Router();

The way we are structuring our app, we need to include express and express.Router() in each
controller (route), in order to interact with HTTP requests sent to said controller. This means that each of
these router files will have variables named express and router instantiated at the top.

Note■■  I t’s entirely possible to organize your code in a way that your controllers don’t have to require
express, but we are following the ExpressJS template on this one.

Chapter 1 ■ Getting Started with Amazon Web Services

11

There is only one route registered in index.js:
 
/* GET home page. */
router.get('/', function(req, res) {
 res.render('index', { title: 'Photoalbums' });
});
 

As you can see, we aren’t doing anything with the request but sending a response. There is no reading
of parameters, no interaction with the model, etc. We simply respond with the index template from the
views folder, and the title ‘Photoalbums’. The rest of our app is responding with JSON, but for this landing
page, we’re using an HTML response generated with a jade template. I won’t cover this in much detail. The
important thing to know is that you can send all sorts of different response types with an ExpressJS response
object. More information is available here: http://expressjs.com/4x/api.html#response.

Requests to /users/ are routed to /routes/users.js, and so forth. All routes, or controller files, have to
be registered in server.js in order to be implemented in our application. All of the controllers are designed
the same way, so we’ll start with users as a good example of how everything works together. In server.js,
we look at the line
 
app.use('/users', users);
 
and know to follow the request to /routes/users.js to see what happens.

Users Route
For now, we only have skeleton functionality. The app has just enough features for basic interaction. As we
progress through the lessons, users will become more robust than they are currently. The out-of-the-box
functionality for users includes

Register account (•	 POST /users/register)

params: •	 username, email, password

Login to account (•	 POST /users/login)

params: •	 username, password

Logout of account (•	 POST /users/logout)

View all users (•	 GET /users/)

View all photo albums by user (•	 GET /users/user/:user)

params: •	 user

Once again, this sample code is only intended to get you started. With a little effort, you could add
as much functionality to user accounts as you want. You could add additional fields to the user database
table, such as a profile image, bio, or user web site. Then, you could add an update method, allowing
the user to first register an account and then submit an update to complete his/her profile. You could
require users to confirm their names after they register. You could allow them to reset their usernames or
passwords. With that in mind, let’s take a look at the code. At the top of the file, you’ll see a different set of
included files, as follows:
 
var express = require('express');
var router = express.Router();
var model = require('./../lib/model/model-users');
 

http://expressjs.com/4x/api.html#response

Chapter 1 ■ Getting Started with Amazon Web Services

12

Because we’re in the users controller, we know we will want to access the users model frequently.
We will go ahead and include the users model file here. In fact, you can expect every controller to include its
model at the top. However, some routes will require more than one model class to be included, especially as
the functionality becomes more robust. For the sake of consistency, we can name the default model variable
model, and any additional models modelPhoto or modelAlbum, etc. What if we only have to access another
model once? We will determine the variable scope for any additional models on a case-by-case basis.

Let’s take a look at a typical router method in the users controller.
 
/* GET users listing. */
router.get('/', function(req, res) {
 model.getAllUsers(function(err, obj){
 if(err){
 res.status(500).send({error: 'An unknown server error has occurred!'});
 } else {
 res.send(obj);
 }
 });
});
 

The preceding code is the typical way we will route and process HTTP requests in an ExpressJS
controller class. You can see from the first line that GET requests to the /users/ path will be processed here.
If there were any parameters to validate, we would do so at the beginning of the method. However, this is
simply a means of retrieving a list of all users; there is no user input. As the app user base grows, we might
want to allow users to pass parameters with this request, to support a paginated list of all users. For now, we
can keep it simple and ignore any user input.

We immediately retrieve the data from the model with model.getAllUsers(). There are no parameters
being passed to the model in this case. When we receive a message back from the model object, we check
whether it is an error object or data that we want to use.

In some cases, we will want to send the model object’s error back to the user. This would look
something like the following:
 
model.getAllUsers(function(err, obj){
 if(err){
 res.send(err);
 }
});
 

However, we are going to refrain from doing that most of the time. Some of the errors returned from the
model are probably going to be MySQL database query errors. It would not be a good security practice to
expose information about the database tables to the user, nor is MySQL error information likely to be very
useful to any of our end users. It would be more appropriate for the controller to check the error received
from the model and send a suitable message to the client making the request to our API. Next, let’s take a
look at the model to see what getAllUsers does.

As with the routes file, let’s start at the top.
 
var mysql = require('mysql');
var globals = require('./../globals');
var connection = mysql.createConnection(globals.database);
 

The mysql module is, of course, required in all model classes. We will use this module for connecting to
the database and executing all queries.

Chapter 1 ■ Getting Started with Amazon Web Services

13

Note■■   Full documentation for the mysql module is available at https://github.com/felixge/node-mysql.

As mentioned previously, globals is an object that stores common variables without polluting the
global namespace and is used here for convenience. The MySQL database connection is initialized as
connection, using the database configuration stored in globals. Let’s look at the first method, which we
already know about, getAllUsers().
 
function getAllUsers(callback){
 connection.query('SELECT username, userID FROM users', function(err, rows, fields){
 if(err){
 callback(err);
 } else {
 callback(null, rows);
 }
 });
}
 

This method is about as simple as a model-getter function can get. There are no parameters to validate,
no user input to escape, nor any other intermediary functions. We simply retrieve all users from the database
and return them to the callback function in routes/user. For a moment, let’s scroll to the very bottom of the
file and note exports assignments.
 
exports.getAllUsers = getAllUsers;
exports.getUser = getUser;
exports.createUser = createUser;
exports.loginUser = loginUser;
exports.logoutUser = logoutUser;
 

These lines are very important, as they are the means by which you make a method in this file public;
otherwise, all methods are private or inaccessible to other objects. If you build additional functionality with
this sample application, it’s easy to forget this step.

Review—The Order of Things
Returning to /routes/user for a moment, you should see now how a request is handled. Here’s a quick
recap of how a client would retrieve a list of users from our app:

	 1.	 server.js is listening for all HTTP requests at the designated port.

	 2.	 The client makes an HTTP GET request to /users/.

	 3.	 Server.js forwards the request to the controller at /routes/users.

	 4.	 The controller at /routes/users notes that the request is for “/” relative to “/
users” and passes the request to the corresponding listener method.

	 5.	 The GET “/” listener in the controller calls model.getAllUsers().

https://github.com/felixge/node-mysql

Chapter 1 ■ Getting Started with Amazon Web Services

14

	 6.	 The model method getAllUsers() queries the database, processes the results,
and returns the data set to the controller.

	 7.	 The controller populates the response object with data.

	 8.	 server.js sends an HTTP response with the data requested by the user.

Does that all make sense? If you’re already familiar with ExpressJS, it probably didn’t tell you anything
new. If you’re learning about this for the first time, don’t worry; we will be spending a lot of time with these
concepts in further lessons. And the best way to learn is to try writing your own routes and seeing what it
takes to make them function. Never underestimate the power of trial and error!

Example—Working with Parameters
Let’s return to /routes/users to look at another concept. So far, we’ve looked at handling a basic request
without any parameters or client input. When you have no variables involved, there is a very small likelihood
of failure. Once we start accepting specific requests from the client, the points of failure start to add up
quickly. We can look at the /users/login route as an example.
 
/* POST user login. */
router.post('/login', function(req, res) {
 if(req.param('username') && req.param('password')){
 var params = {
 username: req.param('username').toLowerCase(),
 password: req.param('password')
 };
 
 model.loginUser(params, function(err, obj){
 if(err){
 res.status(400).send({error: 'Invalid login'});
 } else {
 res.send(obj);
 }
 });
 } else {
 res.status(400).send({error: 'Invalid login'});
 }
});
 

This route accepts HTTP POST requests and expects that the client has sent both a username and
password. However, we cannot assume that both parameters were included. As such, we have to check that
the parameters exist before we try to use them. If the parameters have been included, we proceed. If not, an
invalid login error is sent in response to the request.

We can use the controller both to validate input and to format parameters to pass to the model.
In this case, before we send the user’s login credentials to the model, we also want to enforce one rule:
usernames should be case insensitive. The params object is instantiated with the request parameters, and
the username is converted to lowercase when params.username is set. We can then look at the model, to
see what happens next.
 

Chapter 1 ■ Getting Started with Amazon Web Services

15

function loginUser(params, callback){
 connection.query('SELECT username, password, userID FROM users WHERE username=' +
connection.escape(params.username), function(err, rows, fields) {
 if(err){
 callback(err);
 } else if(rows.length > 0){
 var response = {
 username: rows[0].username,
 userID: rows[0].userID
 }
 callback(null, response);
 } else {
 var error = new Error("Invalid login");
 callback(error);
 }
 });
}
 

For now, we’re selecting the user from the database, if the username is valid. In the future, we will be
decrypting the user’s password to authenticate the user. Currently, we are automatically returning a success
response, which includes the username and user ID of the authenticated user. The important lesson here
is that the controller is used to sanitize and validate client input before sending it to the model. It is a good
idea to separate concerns and encapsulate functionality in this way. The model will expect an object with
the necessary properties to be sent to its methods, and the controller is responsible for constructing that
object or rejecting malformed requests. If you follow this pattern, you will be able to safely reuse the public
methods in your model classes in different scenarios, and your app will be much easier to maintain and
debug in the long run.

Try It Out
It’s time to fire up the app and see it in action. If the app isn’t running, open your command-line interface,
navigate to the app directory, and type node server.js. Open your REST client, and enter the following
URL:
 
http://localhost:8081/users/register
 

If you’re running the app on a different port, remember to replace 8081. Set your HTTP method to POST.
Add POST parameters named username, password, and email. You can enter whatever values you want into
those parameters. Send the request!

You should receive the following success message:
 
{
 "message": "Registration successful!"
}
 

Next, you should be able to log in with the username you just registered. Remove the email parameter
and change the URL to

http://localhost:8081/users/login

Chapter 1 ■ Getting Started with Amazon Web Services

16

You should receive the following username and user ID in response:
 
{
 "username": "adam",
 "userID": 1
}
 

You can now make a GET request in the browser to http://localhost:8081/users/. You should see the
user you created in the response. You can create additional users, and they will appear in this response as
well. From here, you can use the user ID from the login response to create albums and photos for your user. I
will discuss these in more detail soon. For now, let’s make a quick GET request to the user detail API endpoint
at /users/user/:user, replacing :user with the username you just registered. You should see something
similar to the following response:
 
{
 "username":"adam",
 "userID":1,
 "albums":[]
}
 

For now, there’s not much new information here. But once you start creating albums for this user, you
will get information about them here. Let’s take a look at albums next.

Albums
Each user can have an unlimited number of albums. The album object is very simple, consisting of a title
and user ID. Any number of photos can also be associated with the album.

Albums have the following functionality:

Create a new album (•	 POST /albums/upload)

params: •	 userID, title

Gets an album by ID, including all photos included in it (•	 GET /albums/id/:albumID)

params: •	 albumID

Delete an album (•	 POST /albums/delete)

params: •	 albumID

Let’s open /routes/albums.js and take a closer look. The variables declared at the top should already
be familiar. In this case, you can see that the model variable is set to /lib/model/model-albums.js. The
first route will allow us to create an album. Using the user ID you received when you registered, point your
RESTful client to http://localhost:8081/albums/upload, set the method to POST, and add fields for the
user ID and title. You can put whatever name you want in the title. We’ll go with “Hello World” for now. You
should receive the following response:
 
{
"id":7,
"title":"Hello World"
}
 

Chapter 1 ■ Getting Started with Amazon Web Services

17

In /routes/albums.js, find the route:
 
/* POST create album. */
router.post('/upload', function(req, res) {
 if(req.param('title') && req.param('userID')){
 var params = {
 userID : req.param('userID'),
 title : req.param('title')
 }
 model.createAlbum(params, function(err, obj){
 if(err){
 res.status(400).send({error: 'Invalid album data'});
 } else {
 res.send(obj);
 }
 });
 } else {
 res.status(400).send({error: 'Invalid album data'});
 }
});
 

First, the required parameters are validated, and an object named params is constructed with the
parameters we passed to it. While you could pass the request parameters directly to the model, using an
intermediary variable is a good habit, largely for readability. Let’s go to the model file at /lib/model/model-
albums.js to see what happens in createAlbum().
 
function createAlbum(params, callback){
 var query = 'INSERT INTO albums SET ? ';
 connection.query(query, params, function(err, rows, fields){
 if(err){
 callback(err);
 } else {
 var response = {
 id : rows.insertId,
 title : params.title
 };
 callback(null, response);
 }
 });
}
 

All the parameters we passed here are inserted into a new row in the albums table. We then create a
response object with the auto-incremented ID and the title. Note that the ID is accessible as rows.insertId.
When creating a row in the MySQL database, the rows parameter is a single object. You’ll find slightly
different behavior for SELECT queries.

The next route allows you to get an album by ID.
 
/* GET album by ID */
router.get('/id/:albumID', function(req, res) {
 if(req.param('albumID')){
 var params = {
 albumID : req.param('albumID')
 }

Chapter 1 ■ Getting Started with Amazon Web Services

18

 model.getAlbumByID(params, function(err, obj){
 if(err){
 res.status(400).send({error: 'Invalid album ID'});
 } else {
 res.send(obj);
 }
 });
 } else {
 res.status(400).send({error: 'Invalid album ID'});
 }
});
 

This is pretty straightforward. If the album ID is included in the request, the controller will retrieve the
album from the model and send the album data as a response. You can use the album ID from the album
you just created. Now, head over to /lib/model/model-albums.js and find the getAlbumByID() method.
 
function getAlbumByID(params, callback){
 var query = 'SELECT * FROM albums WHERE albumID=' + connection.escape(params.albumID);
 connection.query(query, function(err, rows, fields){
 if(rows.length > 0){
 getPhotosForAlbum(rows[0], function(err, obj){
 if(err){
 callback(err);
 } else {
 callback(null, obj);
 }
 });
 } else {
 callback(null, []);
 }
 });
}
 

First, the album and all its fields are retrieved from the database. In all database queries, rows is an
object populated from the database query. In the case of a SELECT query, rows is always an array. If you
found what you were looking for, rows will have a length of 1 or more. In this case, we’re selecting a single
row by its unique identifier, albumID. But this time, we don’t stop here and return the data we found. Instead,
we call getPhotosForAlbum() and pass our results to it, then finally send the data back to the controller.
Scroll down to getPhotosForAlbum() to see what happens there.
 
function getPhotosForAlbum(album, callback){
 var modelPhotos = require('./model-photos');
 modelPhotos.getPhotosByAlbumID(album, function(err, obj){
 if(err){
 callback(err);
 } else {
 album.photos = obj;
 callback(null, album);
 }
 });
}
 

Chapter 1 ■ Getting Started with Amazon Web Services

19

If we’re sending a single album by ID, it seems reasonable for the end user to expect that we would
provide all of the data associated with that album. In this case, we need to get all the photos associated with
the album.

Note■■  W e know the client has the user’s information, because that’s how he/she retrieved the album ID.
In a more full-featured application, you might want to include some user information in this response as well.

First, we instantiate a reference to the photos model at /lib/model/model-photos.js. We give the
album a photos property, set to the array of photos (even if it’s empty) we retrieved from the photos model.
Navigate to /lib/model/model-photos.js and find getPhotosByAlbumID() to finish the route.
 
function getPhotosByAlbumID(params, callback){
 var query = 'SELECT * FROM photos WHERE published=1 AND albumID=' + connection.
escape(params.albumID);
 connection.query(query, function(err, rows, fields){
 if(err){
 callback(err);
 } else {
 if(rows.length > 0){
 callback(null, rows);
 } else {
 callback(null, []);
 }
 }
 });
}
 

This method simply retrieves all photos with the album ID we passed to it. Note that the photos must
have the value published set to 1. For both albums and photos, we will use published=1 to mean the object
is available for public consumption and published=0 to mean the object is hidden. This allows us to provide
delete functionality without actually destroying the data in our database. We can look at deletion next,
starting in /routes/album.js.
 
/* POST delete album. */
router.post('/delete', function(req, res) {
 if(req.param('albumID')){
 var params = {
 albumID : req.param('albumID')
 }
 model.deleteAlbum(params, function(err, obj){
 if(err){
 res.status(400).send({error: 'Album not found'});
 } else {
 res.send(obj);
 }
 });
 } else {
 res.status(400).send({error: 'Invalid album ID'});
 }
});
 

Chapter 1 ■ Getting Started with Amazon Web Services

20

By now, you’ve seen this pattern many times. So, we will advance to model.deleteAlbum()
immediately.
 
function deleteAlbum(params, callback){
 �var query = 'UPDATE albums SET published=0 WHERE albumID=' +
connection.escape(params.albumID);

 connection.query(query, function(err, rows, fields){
 if(err){
 callback(err);
 } else {
 callback(null, {message: 'Album deleted successfully'});
 }
 });
}
 

As you can see, we are not actually deleting the album. We are unpublishing it, which means it’s
invisible to all users. This is a good way to prevent permanent accidental deletion by users, and it reduces
the risk of malicious use of our application. If someone’s password was stolen or cracked and all his content
deleted, we could restore it without too much trouble. Note also that our callback does not return any data,
simply a message confirming that the deletion was successful. Our app is very simple, and there’s currently
no expectation as to what the user sees after he’s deleted something. This is OK for now, but in your own
app, you might consider what sort of response your users will expect. Lastly, we will review photos.

Photos
Photos are the objects for individual photo/image uploads. Currently, the photo objects used in the app do
not include actual files. A photo object is little more than an ID and a caption at this point. File uploads and
URL generation are features we will be tailoring specifically to AWS. We will be building this functionality in
later lessons.

Photos have the following functionality:

Create a new photo (•	 POST /photos/upload)

params: •	 albumID, caption, userID

Get a photo by ID (•	 GET /photos/id/:id)

params: •	 id

Delete a photo (•	 POST /photos/delete)

params: •	 id

You’ll notice that these methods are virtually identical to those of albums. Let’s review a few points
about photos, starting by uploading a “photo.” You should have an album ID and user ID from the previous
API queries you’ve made. (We’ll assume both are equal to 1.) Let’s go ahead and create a new photo object,
using those IDs as parameters. In your REST client, make a POST request to http://localhost:8081/
photos/upload with the following params:
 
userID: 1
albumID: 1
caption: "My First Photo"
 

Chapter 1 ■ Getting Started with Amazon Web Services

21

The response simply contains the ID of the photo you just created.
 
{
 "id": 5
}
 

Take a look at the method you just queried, in /routes/photos.
 
/* POST create photo. */
router.post('/upload', function(req, res) {
 if(req.param('albumID') && req.param('userID')){
 var params = {
 userID : req.param('userID'),
 albumID : req.param('albumID')
 }
 if(req.param('caption')){
 params.caption = req.param('caption');
 }
 
 model.createPhoto(params, function(err, obj){
 if(err){
 res.status(400).send({error: 'Invalid photo data'});
 } else {
 res.send(obj);
 }
 });
 } else {
 res.status(400).send({error: 'Invalid photo data'});
 }
});
 

One difference worth noting is that the caption parameter is optional. If the caption is present, we’re
including it in the parameter object that gets passed to model.createPhoto(). This shows the value of
constructing an intermediary object and not just passing request parameters directly to the model. If an
optional field is omitted from the request, we simply let the database apply the default value. Go ahead and
make another request to /photos/upload and remove the caption parameter. You should receive the same
response from the API.

Now let’s take a moment to check our album, to make sure our photos are there. Make a GET request
to http://localhost:8081/albums/id/1. Note that the photo without a caption has an empty string for a
caption. The response should look something like this:
 
{
 "albumID":1,
 "userID":1,
 "title":"Hello World",
 "photos":[
 {
 "photoID":4,
 "userID":1,
 "albumID":1,
 "caption":"My First Photo"
 },{

Chapter 1 ■ Getting Started with Amazon Web Services

22

 "photoID":5,
 "userID":1,
 "albumID":1,
 "caption":""
 }
]
}
 

Take another moment to browse through the rest of the code for the photos route and model. There
shouldn’t be any surprises.

Developing with the Sample App
You’ve seen by now that the sample app has only basic functionality. If you’re an experienced MySQL
developer, you will have noticed by now that there are no association tables, which constrains our ability
to make many-to-many relationships between objects. For the sake of providing simple examples, this
functionality has been omitted. Other more essential features—uploading files, authentication, etc.—are
incomplete. You will be fleshing out these features as you learn more about working with AWS. As you work
through the lessons with the sample app, keep in mind that our goal is to develop an app that utilizes AWS
services. There are plenty of other books that teach the finer points of RESTful web services, Node.js, and
MySQL. With that in mind, let’s begin!

The next step is going to be our first task in AWS. You should have already registered for an AWS
account while following the previous steps. The first thing we will do in the AWS Console is learn how to
use IAM (Identity and Access Management) to manage permissions and security within the application
infrastructure. IAM is Amazon’s solution to the problem of needing to manage a variety of permissions.
When managing permissions, we aren’t just talking about giving other users access to our AWS
infrastructure, but access among AWS services as well. For example, you may have an EC2 instance that you
want to be able to connect to your RDS database, but you don’t want it to have permission to access send
commands to OpsWorks.

It would be bad practice to be too generous with security credentials. Imagine for a moment that you
were administrating a news web site. You would want to provide different rights for different types of users.
Readers would only be allowed to read articles and post comments. Editors would be allowed to post and
edit articles and delete user comments. Administrators would be able to ban users, create new editors, and
perform site-level administrative tasks. You would not want to give all of your users admin privileges and
trust that they behave accordingly. Even just making your editors administrators, you could wake up one day
and find that your own admin powers have been taken away.

We will manage our AWS infrastructure with the same caution. Users in the AWS Console should only
have the rights that they require to do their job. Similarly, every server instance has a role to play and should
be limited to that role only. When you have a good grasp on IAM, you can deploy your application without
having to store passwords in configuration files waiting to be hacked.

Identity and Access Management
There are a lot of challenges to managing rights and credentials in an application of this type.

First, we only want a select group of users to have administrative access to our infrastructure. Only
certain team members should be able to reboot a server, for example. Perhaps a different set of users should
have administrative access to the mail server, and a different set of users should have access to the database
administration.

Chapter 1 ■ Getting Started with Amazon Web Services

23

Then there is the issue of managing security for each individual server. Organizing and restricting
access to the security keys for a series of servers is an art in itself. Typically, we would also have to include
database access credentials in the source code for our application. Not only would we have to worry about
restricting access to the source code where credentials are stored, we would also have to make certain that
development environment credentials didn’t accidentally get deployed to production, and vice versa.

On top of all of these concerns, we have the problem of staff turnover. Engineers and administrators
quit their jobs or are fired, and we have to review all of our security, to make sure they don’t have access to
anything sensitive. If someone with lots of security access quits unexpectedly, we are left scrambling to lock
down all of our credentials. Security breaches, though they may be brief, are guaranteed. Every time we have
to reset credentials, all the risks of misconfiguring something are reintroduced into the system. It should be
clear by now that even with an application as simple as ours, there are many points of failure and great risks
of human error in controlling internal security.

AWS solves these problems by unifying all user security, database and server security, and API access
into a single system called Identity and Access Management (IAM). For now, we’re going to assume that
there are no other AWS users whom we need to be concerned about. However, we do want to be certain that
the EC2 instances we create in OpsWorks will be able to interact with other AWS services properly.

The IAM Dashboard
Let’s log in to the AWS Console and navigate to IAM. When you log in successfully to AWS, you are presented
with a three-column list of AWS products. You’ll find IAM listed under the Deployment and Management
header in the second column. Click it, and you should see something like Figure 1-2 (some user interface
elements have been cropped out for clarity).

On the left-hand side of the IAM dashboard, you will find the navigation for IAM (this is a standard
interface paradigm for the AWS Console). On the right side, you will see a list of all IAM resources you have
already created. There are a number of other tutorial and advisory UI elements on the page. Feel free to
explore these at your leisure, to familiarize yourself with the dashboard. As your first official task in AWS,
you’ll have to create a user in IAM.

Figure 1-2.  IAM dashboard

Chapter 1 ■ Getting Started with Amazon Web Services

24

IAM Users
User is an administrative account, which has a login (username/password) as well as other security
credentials, if needed. For now, let’s create a single user account to administrate our application. Select the
Users link in the navigation, and you should see an empty table view. Click the Create New Users button at
the top of the page. This will take you to the screen shown in Figure 1-3.

On this screen, you can create up to five new usernames, but we only need one. In the first input field,
type the username photoadmin. There is a check box that is automatically checked, indicating that an
access key will be generated for each user. If we were using this user to make AWS API queries in our app, we
would want an access key. However, our intention is that this user will have access to the necessary parts of
the AWS Console and nothing to do with the functionality of the app itself. We will, therefore, uncheck the
box before clicking Create.

The username should now appear in the users table. You will notice that our user is not a part of any
group, nor does the user have an access key. Clicking the user’s row will bring us to the detail view for the
user. You should see something similar to Figure 1-4.

Figure 1-3.  Create up to five IAM Users

Chapter 1 ■ Getting Started with Amazon Web Services

25

There’s a lot of information on this page. First, is the User ARN, or Amazon Resource Name. An ARN is
essentially a global identifier for all AWS resources of any kind. Anytime any resource, such as a user, an EC2
instance, a database instance, etc., is created, an ARN is automatically generated. You may find them useful
at a later point, but we don’t need to do anything with this ARN right now. You’ll notice bold text under both
the Groups and Permissions headers. Our user has no groups and no policies!

Policies are perhaps the most important concept in IAM. A policy is essentially a declaration of one
or more permissions for a user, group, role, or other resource. In short, they are the universal system for
configuring permissions for all entities in AWS. A policy can contain remarkably granular permissions, or a
sweeping “Allow” for all attributes within an AWS product. In contrast, you also can explicitly deny access
to services or resources. For our purposes, we want the user to have full permissions to manage all the AWS
products our application uses. This user is our superadmin.

IAM Groups
The temptation here will be to start adding new policies to this user. Wait! Are we certain that this is such a
good idea? Do we know for a fact that this is the only user who will ever possess all this power? In the long
run, there will probably be more than one superadmin on the project. Perhaps it would make more sense to
create a Group and manage our policies there instead.

Select Groups in the navigation, and you will be brought to a screen similar to the users table we
saw earlier. Click Create New Group. What should we call this group? We know that we want these
administrators to have access to all products used by our app. We’re giving enormous power to this group,
because right now, we are only creating a user for ourselves. Let’s call the group PhotoAdmins. Click Next
Step, and you will be brought to the Attach Policy view.

IAM Managed Policies
If you’ve used AWS before, you may notice that the IAM policy generation tools have changed. There are
now two types of IAM policies: managed policies and inline policies. A managed policy is one or more
permissions grouped in a policy curated by AWS. For instance, the AmazonEC2FullAccess policy includes
full access to EC2 services, as well as related services like Elastic Load Balancing and CloudWatch. Inline
policies are custom permissions that you can create when you have specific policy needs, which we will
discuss shortly.

Figure 1-4.  The user detail view

Chapter 1 ■ Getting Started with Amazon Web Services

26

When you create a group, you’re prompted to attach a managed policy. The Attach Policy view, shown
in Figure 1-5, will soon become a dear friend. The sole purpose of this tool is to make it easy to navigate the
complexity of selecting correct permissions for your users, groups, and roles (more on these later).

Figure 1-6.  Review Group

Figure 1-5.  Selecting a managed IAM policy in the Attach Policy view

While we could just choose one of the managed policies and call it a day, that wouldn’t be any fun
would it? Instead, let’s create the group and then manually add inline policies to it. Click Next Step to
proceed to the Review view, shown in Figure 1-6, where you will see your group name and policies again.
Click Create Group to finish.

You will be returned to the Group list view. Select the PhotoAdmins group and expand the Inline
Policies panel. Click the link to create a new inline policy. In the next view, you can choose from the
following options:

•	 Policy Generator: This option will launch a wizard, which allows you to add a series
of individual policy statements to the group. This is a handy way to configure a group
that requires access to some, but not all, services.

•	 Custom Policy: This is the path of greatest resistance. All policies are read and
written in JSON format. The custom policy selection allows you to input by hand
the JSON for your policy. If, for instance, you want to configure a policy to give
permissions to specific AWS resources, you can use the ARNs in your policy JSON
here. At some point, you can count on working directly with IAM policy statement
JSON. Amazon also provides a stand-alone JSON generator here:
http://awspolicygen.s3.amazonaws.com/policygen.html.

http://awspolicygen.s3.amazonaws.com/policygen.html

Chapter 1 ■ Getting Started with Amazon Web Services

27

Let’s go ahead and make sure our PhotoAdmins group has all the power it needs (and no more!) and
choose the Policy Generator option. Click Select.

IAM Permissions Editor
The next screen is the Permissions editor. Here, we will add each individual permission that our users will
need. We’re going to give them the power to complete the rest of the lessons, with the exception of returning
to IAM to create additional policies. See Figure 1-7.

Figure 1-7.  Generating individual IAM policy statements

Our first option in configuring permissions is Effect. While we could choose Deny to forbid access to
specific services, because our group currently has no permissions, this would be working backward. We will
leave Allow selected, as we will be allowing access to a specific service.

Select an AWS Service from the drop-down. To start, we want to select AWS OpsWorks. Next, we could
choose only specific Actions for which the group has permission. This drop-down is populated with all
possible actions that could be performed in this AWS Service. Each selection in the AWS Service drop-down
will repopulate the Actions list. There are hundreds, if not thousands, of Actions in total across AWS. For
now, select All Actions. If we wanted to grant permission only to a specific resource, we could enter its ARN
in the Amazon Resource Name (ARN) input. Let’s leave it as *, or all, for now. Click Add Statement. You
should immediately see your permissions statement appear on this screen, as shown in Figure 1-8.

Chapter 1 ■ Getting Started with Amazon Web Services

28

Figure 1-8.  Permissions statement listing

Let’s add the rest of the permissions we need. For each of the services below, create a statement that
allows all actions for the service.

Amazon CloudFront•	

Amazon CloudWatch•	

Amazon CloudWatch Logs•	

Amazon EC2•	

Amazon RDS•	

Amazon Route53•	

Amazon Route53 Domains•	

Amazon S3•	

Amazon SES•	

You should see all of these permissions appear on the page. Then click Next Step. You will see an auto-
generated policy name. You can leave this as it is unless you want a specific name for your own ease of use.
And behold! Your policy JSON appears in the Policy Document text area. Click Apply Policy, and your inline
policy will be added to the group, as shown in Figure 1-9.

Chapter 1 ■ Getting Started with Amazon Web Services

29

Figure 1-9.  IAM Group Inline Policies view

Next, we want to add our user to the group. Navigate to the Users tab and select photoadmin from the
table. Under the Groups heading, click Add User to Groups. Check the box next to our PhotoAdmins group
and click Add to Groups. You will see that the group now appears on the Users detail view. Soon the user will
be able to sign in and start working.

Scroll down a bit, and you’ll see that the user doesn’t have a password yet. Let’s give him a default
password. Click Manage Password at the bottom right. On the Manage Password page, let’s assign him a
custom password for now. Select the radio button next to Assign a custom password and, in the boxes, type
the word photo. Just below these fields is a check box to require the user to change his password when he
signs in. Obviously, photo is not a secure password. Let’s check the box and click Apply.

If you don’t trust your users to choose secure passwords on their own, you can navigate to the Password
Policy tab and select a number of rules to enforce when users set a password, such as minimum length or
requires one number.

Head back to the IAM dashboard. At the top of the page, you should see the text “IAM users sign-in
link.” This is the URL your users will employ to sign in to their account. Let’s test our progress.

Copy the URL to your clipboard and sign out of the AWS Console by clicking your name in the top-right
corner of the browser window and choosing Sign Out. Paste the URL back in your address bar, and you’ll see
a typical login screen. Enter the username photoalbum and the password photo. If you forced the user to
reset her password on login, you will be asked to do this now. Then proceed to the AWS Console. You should
still see all AWS services on the dashboard, but you will not be able to perform any actions that you’re now
restricted from taking.

Summary
You’ve now set up your local environment and walked through the sample project. You should now have
a clear idea of what the application is intended to do and be ready to take the next steps in developing the
app. You’ve taken your first steps in working with AWS, by creating users, groups, and policies in Identity and
Access Management, and learned about Amazon Resource Names, the global identifiers for AWS. You’re
now ready to start architecting your app. In the next chapter, you’ll learn about AWS OpsWorks and begin
setting up the application on AWS for the first time!

31

Chapter 2

Working with AWS OpsWorks

Having completed the first chapter, you should now have a good grasp on the application we’re building. You
should have also registered your AWS account and set up your administrative users in IAM. If you skipped
the introductory chapter, the tutorial on Identity and Access Management (IAM) is important. You will have
to be familiar with the main concepts of IAM to do almost anything with AWS.

Next, we will begin the process of deploying our basic application to AWS, using the OpsWorks
application deployment service. In this chapter, you will create an instance of your app in OpsWorks and
deploy it to the Web for the first time. We won’t be adding any functionality to the code base in this chapter.
Regardless, we’re taking the first step to actually hosting our application in the cloud!

Understanding OpsWorks
Interestingly, AWS OpsWorks was not built from the ground up by AWS. In 2012, Amazon acquired a
company called Peritor that provided a third-party enterprise-deployment service with similar functionality.
The technological underpinning of both products is called Chef (www.chef.io/), a framework for
configuring, automating, and streamlining server deployments programmatically. While there are preset
configurations for every EC2 instance that you launch, with Chef, you can easily make your own changes to
the environment with very little coding. One advantage of using Chef is that you don’t have to learn about
all the nuances of the AWS virtual server packages. Instead, Chef gives you an API for configuring common
server-side software, such as nginx, Apache, PHP, even Node.js. Later in the book, you will work directly with
Chef to see how easy it is.

OpsWorks is designed to make it easier to customize and manage your application environment,
providing a graphical user interface (as well as an API) for different types of resources in your application
stack. I will review these resources in greater detail shortly. Anyone who has tried to manually configure and
deploy an app the way OpsWorks does can tell you it’s a huge time-saver and drastically reduces the risk of
errors. And the average software developer who hasn’t dabbled in system administration will find that
he/she now possess superhuman abilities as a cloud architect.

The benefits of using OpsWorks should be self-evident as we continue through the lesson and discuss
specific features of the service. That being said, with ease of use there is always a price to be paid in
customization. In a February 2013 blog post (www.allthingsdistributed.com/2013/02/awt-opsworks.html)
about the launch of AWS OpsWorks, Amazon chief technology officer Werner Vogels provided the handy
diagram shown in Figure 2-1, as is the style of AWS.

http://www.chef.io/
http://www.allthingsdistributed.com/2013/02/awt-opsworks.html

Chapter 2 ■ Working with AWS OpsWorks

32

This diagram depicts a one-dimensional plane of Convenience vs. Control, showing OpsWorks’s relative
position to other application deployment options. As you can see, OpsWorks rests between the DIY method
of managing an application stack and the easier and less customizable Elastic Beanstalk. If this makes you
pause and re-evaluate whether OpsWorks is really the best idea for you, don’t worry. Some people regard
OpsWorks as the next-gen counterpart to Elastic Beanstalk. The longer you work with AWS, the more
you will see them roll out new features and better synergies between services. At times, the pace of these
improvements can be overwhelming: you will receive an announcement e-mail every few weeks from AWS
with a half-dozen new features that you may be able to use in your application. As such, don’t worry too
much about the chart. Two years is a very long time in the AWS world, and the important takeaway is that
with the services AWS provides, there is a broad spectrum of abstraction that creates a range of features and
limitations, depending on how the service was designed.

Furthermore, while we are deploying our application with OpsWorks, we are using many other AWS services
in our application. The end product will truly be a sum of its parts. By the end of the lessons, you will likely be able
to figure out how to swap out OpsWorks for Elastic Beanstalk or CloudFormation, with some effort. Figure 2-1
merely illustrates that when you are wearing your cloud architect hat, there is a cost-benefit analysis to be done.

In a moment, we will begin exploring the OpsWorks control panel. We will review a variety of its features
and, in doing so, learn about a variety of other AWS services that are fundamental to OpsWorks. We will also
get a glimpse of how the foundational technology Chef is still relevant to AWS users like us. As you allocate
resources in OpsWorks, you will begin incurring usage charges on your AWS account. Keep this in mind
when asking yourself whether you need ten m3.2xlarge EC2 instances to host the Photoalbums application.
But before we start allocating resources in OpsWorks, we should learn a little more about these resources.

Allocating Resources
When you allocate EC2 instances, RDS (Rational Database Service) database instances, and many other
resources, the most important decisions you make are what and where. The what is self-explanatory.
AWS has its own pricing tiers for these resources, which you can find in the official documentation. The
relationship between usage and pricing varies by service, and they are documented individually.

For example, EC2 instances are reserved based on power (memory, CPU clock speed, and physical
processor) × hourly rate × hours used. To review the specs of EC2 instance types, a breakdown is provided
here: http://aws.amazon.com/ec2/instance-types/. When determining an instance type, you would use
your judgment, comparing your technical needs to your financial resources, cross-referencing the instance
types with the pricing here: http://aws.amazon.com/ec2/pricing/. While traditional hosting (and, again,
some cloud-hosting platforms) will charge you a monthly rate for the resources you’ve reserved, the hourly
rate is what makes AWS so useful. Once again, pay for what you use. So that’s what the resources are; the
where is a separate issue, and a new concept if you’re moving from traditional hosting.

Figure 2-1.  The plane of Convenience vs. Control in AWS application deployment

http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/pricing/

Chapter 2 ■ Working with AWS OpsWorks

33

Caution■■  O nce you’ve provided your billing information, AWS will let you provision expensive resources
as you need. If you’re new to AWS, be careful about requesting excessive resources. A rate of $1.50 per hour
doesn’t sound like much, until you accidentally leave an instance online for three months.

Regions and Availability Zones
A lot of people think of the cloud as some nebulous, location-less global entity. Of course, there are still actual
servers and data centers—the data isn’t literally floating in the troposphere. AWS runs data centers all around
the globe, usually geographically proximate to major population centers. In most cases, there are several data
centers serving the same geographic areas, or regions. These regions have names like US East (N. Virginia), US
West (Oregon), and Asia Pacific (Tokyo). While the name of the region typically describes a continental area
such as Western Europe, the location in parentheses describes a more specific area in which the data centers
are located (see Figure 2-2). Keep in mind that AWS maintains additional supporting infrastructure in other
parts of a region, and not all services are available in all regions. You can find more detailed information at
http://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/.

Geography is important in architecting a web application. No matter how fast your code is, or how many
servers you’re running, your data still has to get to and from users via the Web. Along with the technology,
user expectations have evolved significantly since the dial-up days. Your best bet is to host your application
in the region(s) closest to your expected user base.

Note■■  I will discuss other ways to distribute your content globally with S3 and CloudFront in Chapters 4 and 5.

Figure 2-2.  AWS region data centers mapped (not pictured: GovCloud region)

http://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/

Chapter 2 ■ Working with AWS OpsWorks

34

As discussed earlier, many regions have more than one physical data center. If some sort of service
outage temporarily disables a data center, other data centers keep the region online. These data centers are
abstracted in AWS services as availability zones. Within each availability zone are the EC2 instances and
other resources we provision. You can think of an availability zone as a data center containing the hardware
on which AWS services run. This concept is illustrated in Figure 2-3.

Now that you’re familiar with the concept of regions and availability zones, you can begin to ponder
different scenarios. At heart, we are still working with physical servers in the real world. They can crash;
they can lose power; they can have a random part fail, etc. There are countless points of failure What if all
of your EC2 instances are in a single availability zone and that zone loses power? Your application is going
to go offline. In fact, it’s safe to assume that at some point, there will be an isolated outage in one of your
availability zones, so we’re going to plan for that.

One could write a whole book on contingency plans with cloud architecture. For the scope of this book,
we’re going to keep it simple. Our application will be hosted in a single region with instances in multiple
availability zones. We will use other AWS services to distribute our content more quickly in other regions.
If we wanted additional redundancy, we could clone our app to different regions as well. As long as our
databases are in sync across all regions, we should be free to duplicate our app at will. I’ll discuss these sorts
of optimizations throughout the book.

Figure 2-3.  Illustration of a region containing four distinct availability zones

Chapter 2 ■ Working with AWS OpsWorks

35

Additional IAM Roles
Before we head over to the OpsWorks dashboard, we are going to create a new role in Identity and Access
Management. In the first chapter, you created an administration-level user in the PhotoAdmins IAM Group
who should have the ability to perform any tasks in OpsWorks. I also discussed the security risks of storing
credentials in our code, in the event that a developer leaves the project or a machine with a local copy of the
app is stolen or goes missing.

To avoid these risks, we will instead use IAM roles to manage authentication with other services. We
actually need two new IAM roles: one for the EC2 instances hosting our application and one that allows the
entire application stack to act on our behalf. By creating a role for our instances, generally referred to as an
instance role, we can programmatically access other AWS services via the AWS API, without storing security
credentials in our source code. We will create this role first.

Instance Role
Return to the IAM dashboard, and click Roles in the left-hand navigation. Find the Create New Role button
toward the top of the page and click it. On the next screen, you will be prompted to enter a name for your
role, as in Figure 2-4.

We want a logical name for our role, so we’ll use aws-opsworks-photoalbums-ec2-role, the role for
EC2 instances in the Photoalbums app, which are initialized by AWS OpsWorks. You can use whatever
conventions make sense, but we’re using the format [service]-[app]-[role]. Click Next Step to proceed. Once
again, we have many options to choose from when creating our IAM policy for this role. For now, we will
create a basic role with no policies. As we proceed through the rest of the book, we will add more policies
to this role. You will first be prompted to select a Role Type. In the Service Roles option box, you will see
Amazon EC2 at the top of the list. Click the Select button to advance.

We will once again have the ability to select a policy (see Figure 2-5). We will attach a policy later, so
click Next Step to proceed to the Review view.

Figure 2-4.  Set Role Name

Chapter 2 ■ Working with AWS OpsWorks

36

In the next view, you have a chance to review your role before creating it. If everything looks good,
click Create Role. We now have a role that we can assign to the EC2 instances running our application.
However, we still need a role for the entire application stack itself.

Service Role
As an OpsWorks application, our stack will need permission to carry out routine tasks, such as rebooting
instances, reporting metrics to the AWS Console, etc. As a user, you have the power to click around the
OpsWorks dashboard and manually perform various tasks. We want to make sure the application we create
is able to perform these actions on its own. We will ensure this by creating a role for the entire application
stack. This role is referred to generally as a service role. Once this role is created, we can finally proceed to the
OpsWorks dashboard to create our application.

Return to the Roles tab in the IAM dashboard and again click Create New Role. Once again, we need
a name for our new role. Following our previous naming conventions, we’ll call this one aws-opsworks-
photoalbums-service-role. The naming convention again is [service]-[app]-[role]. Proceeding to the next
step will take you to the Select Role Type view, where AWS Service Roles is already opened and listed before
you. Scroll down this list to the end, where you will find AWS OpsWorks, and click Select. In the Attach Policy
view, there will be only one possible policy to select: AWSOpsWorksRole. This is the default managed policy
that AWS provides for OpsWorks service roles. Select the box and click Next Step. Review the policy one
more time, and finish the process by clicking Create Role.

You will be taken back to the Roles view, where you will see your new role has been created.
Select your new role to proceed to the Role detail view. Under the Permissions header, you will see the
AWSOpsWorksRole as the only policy (see Figure 2-6). Click on Show Policy, and a modal view will appear.

Figure 2-5.  Selecting no policies for the aws-opsworks-photoalbums-ec2-role

Chapter 2 ■ Working with AWS OpsWorks

37

In the modal view, you will have the opportunity to view the raw JSON of your policy document.
The JSON should look something like Listing 2-1, following:

Listing 2-1.  The OpsWorks Service Role Policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudwatch:GetMetricStatistics",
 "ec2:DescribeAccountAttributes",
 "ec2:DescribeAvailabilityZones",
 "ec2:DescribeInstances",
 "ec2:DescribeKeyPairs",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeSubnets",
 "ec2:DescribeVpcs",
 "elasticloadbalancing:DescribeInstanceHealth",
 "elasticloadbalancing:DescribeLoadBalancers",
 "iam:GetRolePolicy",
 "iam:ListInstanceProfiles",
 "iam:ListRoles",
 "iam:ListUsers",
 "iam:PassRole",
 "opsworks:*",
 "rds:*"
],
 "Resource": [
 "*"
]
 }
]
}
 

Figure 2-6.  Policies attached to the aws-opsworks-photoalbums-service-role

Chapter 2 ■ Working with AWS OpsWorks

38

You will notice a single JSON object in the Statement array, which has the properties Effect, Action,
and Resource. Effect should be self-explanatory: we are specifically enabling the permissions in this
statement. Next, Action is an array of AWS services and actions. These will probably make more sense later,
but you can get an idea of what they are by looking at them. You can see from the first action that with the
default OpsWorks role, we are only enabling the CloudWatch API permission for GetMetricStatistics,
but we are enabling a variety of read permissions for EC2 and Elastic Load Balancing, and all actions for
OpsWorks and RDS. As you will see shortly, these services can be initialized and configured directly in
OpsWorks, so it’s important that the stack have these permissions.

You will also notice a very important action here, entitled iam:PassRole. This permission will allow
your application to pass its role to the EC2 instances it manages, enabling them to carry out tasks on behalf
of the service role. This is very important, and you will soon find out why.

Last, the Resource array contains simply “*”, meaning all resources. For the sake of simplicity, we
are provisioning our IAM roles for use with all resources, even though they are named specifically for our
application. In the future, you could return to the policy documents for these roles and restrict them to
the resources for your application. You will learn that the ability to target specific resources in your policy
documents is a powerful feature.

Unfortunately, the default OpsWorks service role is not going to be powerful enough for our purposes.
As noted previously, we have only read permissions for EC2. However, we are going to want to be able
to create resources in OpsWorks, so we need to attach an additional policy. From the detail view for the
aws-opsworks-photoalbums-service-role, click on Attach Policy to add another managed policy. Select
AmazonEC2FullAccess from the policy list, and click Attach Policy. You will be returned to the role detail
view, and should see that there are now two managed policies attached to this role.

To follow best practices, Amazon recommends that root account access keys be revoked and multifactor
authentication be enabled for root accounts. Follow these guidelines at your discretion, but you should at
least learn how to manage your architecture via a user account rather than the root account. However, when
creating our first application stack in OpsWorks, we must have IAM Administrator Access, which we did not
give to our PhotoAdmins group in Chapter 1. As such, creating our application stack will be our last action
as the root user. While you may have root access to the AWS account for now, it’s best to get into the habit of
working as a user on any AWS account, i.e., your employer’s or client’s account.

You’ve done a lot of work in IAM so far and learned a lot about technologies that we haven’t yet begun
to work with directly. It might be a little confusing, as we’ve moved quickly with some very abstract concepts.
To recap, this is what you’ve accomplished with IAM and OpsWorks so far:

You are signed into AWS with your root account, which you used in IAM and will use •	
to create your first application stack next.

You have created a PhotoAdmins group and defined its policy, giving the group •	
permissions to administrate a large number of AWS services that we will use later.

You added a user to the PhotoAdmins group, which you can use in the future to log •	
in and work with your app in the AWS Console.

You have created an •	 instance role for the EC2 instances in your application stack.

You have created a •	 service role for your application stack itself.

Before we proceed to the OpsWorks dashboard, there is one other step we will make to learn about SSH
keys. Please note that this step is completely optional. You won’t need this lesson for the sample application,
but it might be handy to learn. Skip the following section if you don’t care about learning this right now.

Chapter 2 ■ Working with AWS OpsWorks

39

QUICK DETOUR: SSH KEYS

We learned earlier that one of the benefits of running Amazon Linux instances is the strict default
security settings. Out of the box, your instances can only be connected to via SSH—FTP, SFTP, and
other common methods of connecting are disabled. To enable them, you would have to open the correct
port in AWS and install the software on the command line, which is a separate tutorial in itself. To set
up these methods, you would first need the capability to connect to your instance via SSH. Fortunately,
Amazon makes it easy to generate keys for your instances.

Wouldn’t it be annoying if we had to store a separate SSH key for each instance in our application? Aside
from the risk of losing and confusing the keys, adding and removing instances to your stack would be
a more labor-intensive process. Amazon has made this easy, by allowing us to create an SSH key in the
AWS Console and set it as the default key for all instances in a stack. You could theoretically use one
master key for all stacks, but one key per stack seems to make a lot more sense. Let’s go ahead and
create our keys now. First, we must head over to the EC2 dashboard. You can do this by clicking the
orange box icon in the top-left corner, or by opening the Services menu next to it, and finding EC2 in the
Compute & Networking section, as shown in the following image. Sometimes it’s easier to go back to the
AWS Console if you aren’t sure in which category you will find the service you need.

There is a whole lot going on in the EC2 dashboard, more than I need review in detail right now. We
will be spending more time here later. In the left-hand navigation you should see a series of collapsible
sections, which are expanded by default. Under Network & Security, click Key Pairs, as seen in the
following image:

Chapter 2 ■ Working with AWS OpsWorks

40

Here you will see a list of all the SSH keys you have generated for your EC2 instances. The encryption
on these keys is 1024-bit SSH-2 RSA. There is a limit of 5,000 keys per region, but it seems unlikely
that most users would ever approach this cap. Aside from creating your key pairs in the console, you
can also generate them yourself and import them into AWS; however, this is outside of the scope of
the book.

Note■■  I f you delete a key pair, it will not affect the instances already using them. You will still be able to
connect to your instances if you have a copy of the private key. However, you will not be able to provision new
instances with a deleted key pair.

By now, some of the UI design choices in AWS should start to feel familiar. Similar to IAM, the
Create Key Pair button is at the top-left corner of the main content area. Rather than start a multistep
process, this just opens a modal window where you name your key pair. Let’s name it aws-opsworks-
photoalbums-key, following a similar naming convention to the IAM roles we created earlier.

When you click Create, the key will be generated, and a file named aws-opsworks-photoalbums-key.pem
should automatically download to your machine. The extension .pem is short for “Privacy Enhanced Mail,”
and this file is known as the private key.

A corresponding public key will be generated and stored by AWS, forming a key pair. A copy of the
public key will be saved to all instances provisioned with this key pair, and you will have to provide the
matching private key to make secure connections to your instances, either on the command line or in
the browser, using a Java plug-in provided by Amazon. We don’t have any instances yet, so we won’t
be using the private key to connect to anything at the moment. Keep the key in a safe place, preferably
backed up somewhere. (Hint: You could store a copy in a private S3 bucket, which we will be setting
up later.)

The OpsWorks Environment
When we set up our first app in OpsWorks, it’s important to understand what our tools are. Fortunately,
Amazon has provided a great illustration of the OpsWorks environment, as it pertains to a PHP application.
You can find it in Figure 2-7.

Chapter 2 ■ Working with AWS OpsWorks

41

As you can see, all of the components of our app that exist in AWS are grouped inside the OpsWorks
stack. Stacks are the collection of all components making up your application deployment. You’ve probably
heard of the term application stack before; I’ve been using it frequently. An OpsWorks stack is simply the
application stack in the context of AWS. Unlike in the traditional hosting environment, the stack in OpsWorks
organizes all the resources allocated to your application.

In Figure 2-7, you can see the PHP App Server Layer contained within the OpsWorks stack. Depending
on its complexity, we could have many layers to our app. For a basic web application such as ours, there will
only be a few layers: the application hosting servers (EC2 instances), the load balancer, and the database.

Figure 2-7.  The components of an OpsWorks stack

Chapter 2 ■ Working with AWS OpsWorks

42

You will notice also that the app is represented distinctly from the app server instances. This represents
the actual source code of our application, which the stack will be responsible for deploying. OpsWorks
retrieves the source code (via the Internet) from the code repository and deploys the source to our instances.
Based on the requirements defined at the stack, layer, and application source level, OpsWorks will make sure
that the instances are properly configured, dependencies are installed, and the app is uploaded and run on
your instances. I will be discussing the separation of concerns among these components shortly.

The OpsWorks Dashboard
We took some major detours, but it’s finally time to create your application in OpsWorks. In the AWS
Console, find OpsWorks in the list of services (middle column) and click it. You should now see the
OpsWorks dashboard unmistakably, thanks to the giant “Welcome to OpsWorks” heading. You will notice a
big blue button that reads Add First Stack.

Stacks
Imagine for a moment that we were hosting our application on a conventional shared hosting provider. You
log in to the admin console for your account, to manage your resources. You might have a handful of web
applications in one tab and then a handful of databases in another tab, or even all apps hosted in different
tables of the same database. With this sort of paradigm, administration can get messy very quickly. You are
at the mercy of yourself, your colleagues, and/or your predecessor, hoping that logical naming conventions
were followed. Even some cloud-hosting platforms are still like this, and it greatly increases the risk of
human error, in this author’s opinion.

With each stack consisting of an independent set of resources, this means that problems affecting one
application are limited to that application. If one of your apps crashes, is hacked, or runs out of resources
and becomes unresponsive, the other stacks will be unaffected. Because we will be creating instances in
multiple availability zones, the only external factor that will bring our app down is if a major AWS service
breaks down. Sounds like a good way to deploy an application, right?

In OpsWorks, you can create as many stacks as you want, and it will organize all your resources for the
project neatly into each stack. This is especially useful for creating development and staging environments,
as there is a clone button on each stack! You can also start and stop all of your services with one button and
run commands on all instances simultaneously. So simple and yet so powerful! Let’s get our photoalbums
stack online. Go ahead and click Add First Stack. There’s a lot happening on the next page, as shown in
Figure 2-8.

Chapter 2 ■ Working with AWS OpsWorks

43

The first field is easy, enter Photoalbums and go to the next field. Now we must choose a region. Is
it possible to discern the geography of your target audience? Amazon’s main data center is in northern
Virginia, so the region defaults to US East. Unless you have a reason to change this, we can leave it as is.

The next field asks you if you want to choose a VPC, or Virtual Private Cloud (http://aws.amazon.com/
vpc/). If you wanted to deploy your application to a private network, you would assign your app to a VPC
here. In our case, we’re building an app for public consumption on the Web, so we will not be selecting a
VPC. A VPC could contain both public and private subnets, but this might be a topic for a sequel!

Note■■  I f you want to use a VPC, you must create it before creating your OpsWorks application.

I have already talked about availability zones, so you know that each instance you create will run in a
specific availability zone. The Default Availability Zone is simply the preselected availability zone when you
assign new instances. This is a field purely intended for convenience. If you are managing a lot of instances
and know that you want them in a specific availability zone, selecting it here saves you the trouble of
changing the zone on a bunch of instances later. However, you can certainly change the availability zone of
your instances later. Let’s leave the default value here.

Figure 2-8.  Creating an application stack in OpsWorks

http://aws.amazon.com/vpc/
http://aws.amazon.com/vpc/

Chapter 2 ■ Working with AWS OpsWorks

44

Amazon Linux
You will see that the Default operating system drop-down gives you a few choices. Unless you’re building
an app that explicitly requires Ubuntu, you’re most likely going to want to select the latest build of Amazon
Linux. At the time of writing, the latest is Amazon Linux 2014.09.

Amazon Linux is a Linux build based on Red Hat Enterprise Linux and managed by Amazon. It is
designed specifically for deployment to EC2 instances, and one of the main features worth noting is that
Amazon Linux is tailored for maximum security in the AWS environment. By default, the only way to remote
access an Amazon Linux instance is via SSH. Additional methods can be opened via the AWS Console.
Compared to deploying a Linux build you downloaded off the Web, the security configuration of Amazon
Linux gives you the peace of mind of knowing it has been vetted for security flaws by the experts, without
being so restrictive that it impairs your software.

This brings up another point, which is that by utlizing the cloud, we are trying to avoid getting bogged
down in operating system configuration hell. We don’t want to deploy a customized version of Ubuntu;
we want to start an instance and know that it’s ready to run our software as fast as it can boot. If we can’t
trust the operating system running on our numerous servers, then we’re back where we started. Amazon
has written plenty more about their build of Linux, and you can find it all here: http://aws.amazon.com/
amazon-linux-ami/.

Amazon Machine Images
You’ll notice that besides Amazon Linux and Ubuntu, you have the option of using a custom AMI. This
option allows you to create an instance running specific software packages or, if you want, to lock your
instance to a specific version of an operating system. Amazon supports this feature, but seems reluctant. Its
recommendation is that you should use Amazon Linux and then use Chef to customize your install, if need
be. This is the best practice, but you have the option of doing whatever you want. If you use Chef instead of
a custom AMI, you get the benefit of your operating system having continuous support from Amazon while
allowing you customization options. Select Amazon Linux and continue.

Instance vs. EBS
Uh-oh! Another unfamiliar question. Should our Default root device type be Instance store or EBS backed?
What does it all mean? Based on the discussion of EC2 instances thus far, you should realize now that these
instances are ephemeral beings. When you stop an instance (whether by choice or not), all data stored on
the instance is lost. As such, it is not a good idea to depend on an EC2 instance for data persistence. Even if
EC2 instances provided permanent data persistence, would we want to use them? AWS is supposed to make
infrastructure easier to manage, and managing unique data stored across instances could get complicated.

Amazon’s solution to this provlem is called Elastic Block Storage. With EBS, you can provision a scalable
disk drive for persistent data storage. You can only attach an EBS instance to one EC2 instance at a time, but
you can take a snapshot of our EBS and use it to instantiate a new EBS.

Will this be useful in our application? Eventually, we will be accepting file uploads and storing them for
access by users via the Web. You know for certain that you need persistent disk storage and that we want to
run our app on multiple EC2 instances. Clearly, this is not the solution, because there is a risk of instances
being out of date. It’s good to know that this feature exists; it just doesn’t work for our use case.

We know that we will need some persistent data storage, and we know that EBS won’t work for multiple
instances. So, we can select Instance store for now, with the knowledge that we can only store temp data on
our EC2 instances. This means that file uploads, log files, etc., will have to be stored elsewhere, which we will
be discusing in more detail soon.

http://aws.amazon.com/amazon-linux-ami/
http://aws.amazon.com/amazon-linux-ami/

Chapter 2 ■ Working with AWS OpsWorks

45

Having selected Instance store as your Default root device type, you have to choose an IAM role. This
is the stack-level service role that we created earlier. Select aws-opsworks-photoalbums-service-role from
the drop-down. Next, we have the option of setting a Default SSH key. This is a convenient field to have if
you will frequently have to connect to your instances on the command line. It simplifies key management
by assuming that all EC2 instances in your stack should use the same key, which is a far better approach
than generating a new key pair for each instance. We will not be needing this for our application, so you can
choose not to select a Default SSH key. As a reminder, SSH keys were discussed in greater detail earlier in the
chapter. If you followed those steps and created a key pair, go ahead and choose it from the drop-down now.

Next, we must select a Default IAM instance profile. You will recall that we previously created two IAM
roles: one service role and one instance role. This is where we select our instance role, aws-opsworks-
photoalbums-ec2-role. You’ll notice that you have the option to create a new role on the fly while you’re in
this screen, which will cause OpsWorks to auto-generate one for you.

Speaking of naming conventions, the next option is perhaps confusingly titled Hostname theme.
The drop-down is full of options such as “Baked Goods,” “European Cities,” “Wild Cats,” etc. When you
create EC2 instances in OpsWorks, you don’t want them just to be named instance-1, instance-2, etc. The
Hostname theme options are simply thematic names to use for your instances, such as “Photoalbums -
london-1” or “Photoalbums - paris-2,” etc. You can choose whatever makes you happy, but note the first
option in the list, Layer Dependent. This will name the instances after the OpsWorks layer they are a part
of, a concept we will review shortly. I tend to prefer this option, as it means your instances will be named
“Photoalbums nodejs-app1,” “Photoalbums nodejs-app2,” etc. For the remainder of the lessons, we will be
using the Layer Dependent theme, but feel free to choose another option if you think it would be fun to have
servers named after cats.

Last is the Stack color, which has no technical significance whatsoever. This is a color scheme used for
the stack in the OpsWorks dashboard and is purely a matter of preference. Let’s select the red on the far right.

Stack Options—Summary
Now we’re finally ready to click Add Stack at the bottom right. The options we’ve selected appear in
Listing 2-2. Review your choices one more time and click the button.

Listing 2-2.  Summary of Stack Creation Options

Name: Photoalbums
Region: US East
VPC: No VPC
Default Availability Zone: us-east-1a
Default operating system: Amazon Linux 2014.09
Default root device type: Instance store
IAM role: aws-opsworks-photoalbums-service-role
Default SSH key: aws-opsworks-photoalbums-key (optional)
Default IAM instance profile: aws-opsworks-photoalbums-ec2-role
Hostname theme: Layer Dependent
Stack color: red
 

Chapter 2 ■ Working with AWS OpsWorks

46

Congratulations! You have created your first stack. We’re now in the stack detail view, which should list
the next four major steps in setting up our app:

Add your first layer.•	

Add your first instance.•	

Add your first app.•	

See your application online.•	

So, yes, we do still have a long way to go in this lesson. Remember that the goal for this chapter is to
simply see “Hello World” on the Web via an OpsWorks deployment. The next step in getting there is to learn
about layers.

Layers
Layers are the main software ingredients of your application, and the hardware that goes with it. Let’s break
that down a little bit. When you were setting up your local environment in the first chapter, you had to do two
main tasks: get your Node.js environment running and get your database running. These are the two layers
of our application. In OpsWorks, each layer will require resources allocated to it.

The first layer, our Node.js application, is useless without machines running the code—it’s just words on
a page! As such, our Node.js App layer will require EC2 instances assigned to it. The Layers view lets you tie
together these moving parts: the source code, the environment, and the instances running both.

The second layer, the database layer, is a little different. We will be hosting our database using Amazon
RDS, which we will set up in a later chapter. For now, it is sufficient to understand this way of looking at it.

Every stack must have at least one layer, of which there are two types: OpsWorks layers and service
layers. An OpsWorks layer is simply the blueprint for EC2 instances assigned to it. OpsWorks provides you
with a number of preset OpsWorks layer types, which are themselves categorized as either Load Balancer,
App Server, DB, or Other. For some OpsWorks layer subtypes (especially App Server), you may want several
instances based on the same blueprint. Other types, such as load balancers, are typically only used for a
single instance.

In addition to OpsWorks layers, AWS also offers a second type, which we referred to as service layers.
Service layers allow you to add other AWS services as layers in your OpsWorks stack. Currently, only one
service layer type is supported: RDS. I would expect more services to be rolled out in the future.

Creating an OpsWorks Layer
It’s time to create our first layer. Under the first heading on the Stack detail page, click Add a layer. Just like
when we created our stack, we’re presented with a number of options, as shown in Figure 2-9.

Chapter 2 ■ Working with AWS OpsWorks

47

You can see that the main layer types are distinguished by tabs at the top. We aren’t ready to add an
RDS (service) layer, so we’ll stay in the OpsWorks tab. Our first option is Layer type. This is where different
OpsWorks layer types are organized. Opening the drop-down should show you a list that looks something
like that shown in Figure 2-10.

Figure 2-10.  OpsWorks layer types

Figure 2-9.  Add Layer view

Chapter 2 ■ Working with AWS OpsWorks

48

Rails App Server, under the App Server heading, is selected by default. We will be selecting Node.js App
Server instead. Suddenly, a lot of our options disappeared. Well, that makes it easy! The next field is Node.js
version. This gives you the option of using deprecated versions of Node.js, in case you are deploying an app
that hasn’t been tested in a recent version of Node.js. We will stick with the latest, version 0.10.29 at the time
of this writing.

The last option is Elastic Load Balancer. We will be adding an ELB to our stack in the next chapter, so
we’ll skip this for the time being. Leave this field blank, and click the Add Layer button. It’s that easy! We’ve
got our first layer, and you should be directed to the Layers screen, as shown in Figure 2-11.

There is a single layer in our stack now, which is the app server layer. All EC2 instances running our
application will be a part of this layer. Take another look at Figure 2-7 if you need a refresher on how this
works.

Instances
As you can see, there are already a lot of new places to explore in the OpsWorks dashboard. Next, let’s go
ahead and add our first instance to the layer. Click the Add Instance button on the right-hand side of the
screen. The next view has some introductory text, as well as the interface in Figure 2-12.

Figure 2-11.  Layers view

Chapter 2 ■ Working with AWS OpsWorks

49

You will notice there are only a few settings to choose from. Most of the configuration is based on the
defaults we chose when we were creating our stack. The Hostname field, for example, is pre-populated with a
unique name based on the Hostname theme we chose earlier. You can leave this as nodejs-app1, unless you
have your own naming conventions in mind.

Probably the biggest decision (no pun intended) is size. You will see a long list of options here, with
sizes from the current generation as well as the previous generation and with various optimization options.
Periodically, Amazon releases new generations of instances with different specs and price points than
the previous generation. You can cross-reference this list here: http://aws.amazon.com/ec2/instance-
types/#Instance_Types. In order to keep this page from getting too bloated, the previous generation specs
are moved to a separate page here: http://aws.amazon.com/ec2/previous-generation/.

In the production environment, you’re going to have to consider a lot of factors when creating the first
instance(s) for your app server layer. I will discuss this more later. For now, it makes sense to choose the
smallest and cheapest option on the list, t1.micro, all the way down at the very bottom.

Next, we choose the availability zone for this instance. Once again, the default that we choose when
creating our stack is selected. You could change the availability zone, but let’s leave it as us-east-1a for now.
We will be creating instances in other zones later, so we want to keep at least one in the default zone. Go
ahead and click Advanced, so you can see the additional options.

First is Scaling Type. This is a topic we will delve into later, but for now we want our instance to be online
24/7, so we’ll leave that option selected. The other fields you will recognize from the stack creation process.
Let’s leave these default values alone, but it’s good to know that they’re here if you want to modify them at
the instance level. Click Add Instance and you will be brought to the Instances detail view, a screen you will
become quite familiar with (see Figure 2-13).

Figure 2-12.  Add an instance

http://aws.amazon.com/ec2/instance-types/#Instance_Types
http://aws.amazon.com/ec2/instance-types/#Instance_Types
http://aws.amazon.com/ec2/previous-generation/

Chapter 2 ■ Working with AWS OpsWorks

50

In this view, you can see the status of all instances in your layer. At the top, a circle chart shows the
number and percentage of instances in each state: online, launching, shutting down, stopped, or error. We
currently have one instance, which is stopped, so there isn’t much actionable information here. At the top
right, you will notice a button that reads Start All Instances, which does exactly what it says. You can also
start or stop instances individually, for example, if you wanted to manually scale up one of your instances.
Alternatively, if you wanted to manually scale many of your instances, you could stop them one at a time,
scale them, and reboot them, so your application does not experience any downtime. You can also add more
instances to your layer on this screen.

Underneath the black AWS navigation bar at the top, you will notice that OpsWorks attaches a gray
navigation bar. On the left side, you have Navigation for your current stack, and just next to it is a drop-down
to navigate to a different stack entirely or create a new one. Click the Navigation button, and you should see
a drop-down similar to that shown in Figure 2-14.

Figure 2-13.  Instances view

Chapter 2 ■ Working with AWS OpsWorks

51

You will see a number of views that we have already visited, as well as some which are unfamiliar. Select
Apps, where we will finally create our app in OpsWorks.

Apps
The introductory text at the top of the Apps view explains the concept as well as I could hope to:

An app represents code stored in a repository that you want to install on application server
instances. When you deploy the app, OpsWorks downloads the code from the repository to
the specified server instances.

When we create our app, we are configuring OpsWorks to take a copy of the sample app and deploy it to
every instance in the app server layer, and then start those instances. You should see a blue message box that
informs you that you have no apps but can Add an app. Click this, and we can begin getting this app created.

Figure 2-14.  OpsWorks stack navigation menu

Chapter 2 ■ Working with AWS OpsWorks

52

First is the Name field, where you can enter the name Photoalbums. The next field is Type, which
should default to Node.js, so we can leave that alone. The next section is titled Data Sources, where you
can choose what sort of database you want to use. You could select RDS, which you recall is a service layer.
You could choose OpsWorks, if you wanted to create a MySQL database layer in OpsWorks, or None, if you
were hosting a static application. We will choose RDS and create an RDS instance at a later point
(see Figure 2-15).

Application Source
We’ve come to an important decision point: how are we going to get our source code deployed to our
servers? This is an important decision, not for the functioning of your app, but for your development team’s
workflow. We will review each of these options. You can choose the method which suits you best, and in
future lessons, I will assume that you can manage the deployment on your own. Figure 2-16 shows a sample
configuration.

Figure 2-15.  Add an app to your OpsWorks stack

Figure 2-16.  Application Source configuration in OpsWorks app

Chapter 2 ■ Working with AWS OpsWorks

53

If you open the Repository type menu, you will see five types under three headings: Source Control,
Bundle, and Other. If you deploy from Source Control, you provide a URL and credentials, which will allow
OpsWorks to connect to your repository and download the source from the specified branch. If you choose
Bundle, OpsWorks will retrieve a zip from the specified location, unzip it, and run the app. The last option is
Other, which is for more advanced users. Instead of OpsWorks retrieving your code, you can use Chef recipes
to handle the deployment process.

If you’re familiar with GitHub, the easiest way to proceed is to deploy from your own GitHub
repository. If you use another Git repository service that allows you to connect via SSH, the process is
basically the same. I’ll describe the different methods below, of which you can choose the one that suits
you and continue on.

Deploying from Git

You will need to generate an SSH key, so that OpsWorks can connect to your repository. If you need help
doing this, there’s a handy guide here: https://help.github.com/articles/generating-ssh-keys/.

Note■■   When generating your SSH key, do not set a password. OpsWorks does not support SSH keys with
passwords, and you will be unable to use your key to deploy.

Once you’ve generated your key, we can fill out the fields. First is the Repository URL, which you
can find at the right-hand side of the screen in GitHub (see Figure 2-17). If you use Beanstalk or another
repository service, you’ll find the SSH clone URL in a similar sidebar.

Figure 2-17.  SSH clone URL in GitHub

https://help.github.com/articles/generating-ssh-keys/

Chapter 2 ■ Working with AWS OpsWorks

54

Copy the SSH clone URL to your clipboard and paste it into the Repository URL field in OpsWorks. Next,
we need the private key you generated. It should be named something such as “github_rsa” and be located
in ./ssh on your computer. Open the file in a plain-text editor. It should look something like the following:
 
-----BEGIN RSA PRIVATE KEY-----
Proc-Type: 4,ENCRYPTED
DEK-Info: AES-128-CBC,3048941ED91AFBCE12E396E516EC35D4
 
0gkTkCilHDYOgommrpNVlmZjtKxrD4smsFOVgvhweaNv0G8aTMQcjYb461TqwdsJ
{{A BUNCH OF RANDOM CHARACTERS}}
iLOdRv+4XFKhN3ZKyJ9VwV0yxrV6hSR0FOwFzGtXAD8OJctMcyAwGctJJmNQmRe2
-----END RSA PRIVATE KEY-----
 

Copy the file’s contents onto your clipboard and paste it into the Repository SSH key field. Last, you can
select a specific branch/revision to deploy. HEAD is used by default, so we’ll leave that alone. If, for instance,
you were creating a new stack to serve as your dev environment, you would enter your dev branch name here.

Deploying from Subversion

As with Git, you will provide credentials for OpsWorks to connect to your repository and download a
copy of the source. With Subversion, you must connect via HTTP, providing your account username and
password. As in the case of OpsWorks, you can specify a specific revision to deploy. However, note that you
must include the full path to your code in the Repository URL this time. If you want to deploy from a specific
branch, be sure to include the directory path in your Repository URL.

Deploying from HTTP Archive

If you aren’t using a code repository, or for some reason you don’t want to deploy a directory from the
repo to OpsWorks, there are a few other options. First, you can deploy from an archive hosted anywhere on
the Web. If you select HTTP Archive, you simply need the URL to a zip archive of your app. OpsWorks will
download your archive, extract it, and deploy it to your instances. You can optionally provide a username
and password, if your archive is password-protected. If your zip is publicly accessible on the Web, obviously
this means your source code can be accessed by anyone, which may not be the best idea.

Deploying from S3 Archive

Just like deploying an HTTP archive, you can also deploy from an archive hosted on Amazon S3 (Simple
Storage Service). To set this up, we have to make a detour, but it would be wise to consolidate resources and
use S3 over HTTP, if you can. When you select S3, you’ll see that you require three pieces of information: the
URL for your archive, an access key, and a secret. This means we have to create both an S3 bucket and an
IAM User to access the bucket. We’ll run through these steps quickly and spend more time with S3 later in
the book.

First, let’s create our IAM User with permission to access S3 buckets. We could first create a group and
then add the user, as we did before. However, the permissions are simple, and we can reuse this user if we
have to, so let’s keep it simple and just create a user. It would be best to make this detour in a new tab. Click
(or right-click or Control-click, depending on your operating system) the orange box at the top-left corner, to
return to the AWS home screen, and select IAM. Click Users in the left navigation, and then click Create New
Users at the top of the Users page. We’ll call this user photoalbums-s3. When you proceed to the next screen,
be sure to click Download Credentials, to save a copy of the user’s access key/secret. Then click Close.

Chapter 2 ■ Working with AWS OpsWorks

55

You should now see your user in the Users list. Click the name to proceed to the User detail view. You’ve
been here before! Next, we have to generate a policy for the user that will allow it to have full access to S3.
Under the Permissions header, click Attach User Policy. Once again, we’re in the Policy generator. Under
the Select Policy Template header, scroll down and select Amazon S3 Full Access. You will have the chance
to review your policy before generating it (see Figure 2-18).

Next, we have to create our S3 bucket. Head back to the AWS home screen and click S3. Click Create
Bucket at the top left. A modal pop-up will appear, prompting you to name the bucket. Enter photoalbums-
source-[your initials] as your bucket name and select US Standard for your region (see Figure 2-19).

Figure 2-18.  S3 Full Access Permissions policy

Figure 2-19.  Creating an S3 bucket

Chapter 2 ■ Working with AWS OpsWorks

56

With the name and region selected, click Create. You will be returned to the main view for S3, and your
bucket will appear on the left side. Click it, and you’ll see the contents of your bucket, which is currently
empty. Click Upload in the top-left corner of this view. Create an archive of your source code and drag it into
the upload dialog. You don’t need to set any of the other options here; just click Start Upload.

You will again be returned to the list of files, and the upload progress will appear on the right side of the
screen. When it’s finished, click your .zip in the list of files. In the top-right corner, you will see a segmented
control, with “None” currently selected. Click Properties, and the properties of your archive will appear on
the right side, as in Figure 2-20. Find the Link and copy the full URL to your clipboard.

Head back over to OpsWorks and paste that URL into the Repository URL field. The Access key ID and
Secret access key are the credentials for the IAM user you created. If you downloaded the credentials, open
them up and copy them into these fields. If you were able to follow all of these steps, you should be set up to
deploy from S3. To deploy updates to your code, you will have to overwrite the zip in your S3 bucket every
time or upload a new zip and change the path in your App settings. As you can see, this is less than ideal.
Some repository services also allow you to deploy to S3 from their servers, so it would be possible to deploy a
zip from your repo to S3 as well. Regardless, this method is more labor-intensive than generating an SSH key
and deploying directly from Git.

Creating your App
After you’ve configured your Application Source, you will see the following sections: Environmental
Variables, Add Domains, and SSL Settings. You will be learning about these in subsequent lessons. If
everything else looks good, go ahead and click Add App at the bottom right. You should be returned to the
Apps view, shown in Figure 2-21, in which you can see that your app has been created.

Figure 2-20.  S3 object properties

Chapter 2 ■ Working with AWS OpsWorks

57

Deploying Your App
Well, there’s not much left to do besides deploy your app! Before we can do this, we have to start one of our
instances. Click Navigation at the top left and select Instances to return to the Instances view. At the top
right, click Start All Instances. You will see the Status field next to your instance change to requested, then
pending, booting, running_setup, and, finally, online. The whole process should take a few minutes.

Now that we have an instance online, we can deploy. Under Navigation, select Apps to return to the
Apps view. You’ll see the deploy button in the Actions column on the right side of the Photoalbums row.
Click it, and you should now find yourself in the Deploy App view, as shown in Figure 2-22.

Figure 2-21.  The Apps view

Figure 2-22.  Deploy App view

Chapter 2 ■ Working with AWS OpsWorks

58

You’ll see that there are other commands besides Deploy available in this view. You can un-deploy your
app, roll back to a previous version, start, stop, or restart the app. For now, we will use the Deploy command.
The Comment field below is for your own internal notes about the deployment.

The Instances header below this informs you that the deployment will occur on one of one instances.
You can only deploy to an instance that has been started. This is because a stopped instance, for all intents
and purposes, does not exist. You don’t pay for the resources, so none is provisioned in an AWS data center.
You cannot interact with a stopped instance beyond starting it. If you click Advanced, you can see a list of
instances to which you are deploying.

If, for some reason, you wanted to deploy to only specific instances, you could select/deselect them
here. One such scenario would be that one of your instances is in error (crashing), and you have a fix to
deploy to resolve the issue. You deploy to the instances that are currently online, while you’re trying to
bring the problematic instance back online. Once it’s online, you run the deployment again, but only on the
instance that just recovered from an error. You may never encounter this use case, but it’s nice to know that
OpsWorks can handle it!

Click Deploy and you will be brought to the Deployment view, shown in Figure 2-23.

While the deployment is running, you will see a few activity indicators spinning. When it finishes, the
Status at the top will change to successful, and a green check mark will appear next to your instance. You’ll
notice a few interesting features here. Under the SSH column, you can choose to connect via SSH directly to
any of your running instances. You may never need to do this, but it’s good to have it. In the Log column, you
can click Show to see the deployment logs for your instance.

These logs may be a bit overwhelming at first; they are the output of all the Chef recipes that are
executed to deploy your app. They should mostly look like this:
 
[2014-10-26T18:48:44+00:00] INFO: Chef-client pid: 3167
 

Figure 2-23.  Deployment view

Chapter 2 ■ Working with AWS OpsWorks

59

If you see any log types besides INFO and WARN, you may want to investigate further. If you’re feeling
adventurous, you can sort of follow the logs to get an understanding of what’s happening under the hood.
A few of the major events in broad strokes follow:

The •	 opsworks_custom_cookbooks::load and ::execute commands are run.

A list of additional cookbooks based on the configuration and language of your app •	
are executed.

Your code is copied via SSH and validated.•	

Your code is deployed to •	 /srv/www/photoalbums, and the Node.js environment is
configured.

Your •	 package.json file is detected, and node_modules is installed.

Your app is started (or restarted).•	

This is a simplification, but it should give you an idea of what happens behind the scenes to make your
code run in the cloud. Now it’s time for the moment of truth. Open the OpsWorks Navigation menu and
choose Instances. In the Public IP column, you should see the IP address of your single instance. Click it,
and you should see our welcome screen, shown in Figure 2-24.

Figure 2-24.  Welcome to Photoalbums!

Can you believe it? We finally got our app up and running in the cloud! Because we haven’t configured a
load balancer or added a domain, we’re just looking at the app on a single instance. This is not our intended
use of OpsWorks—we do not want our users to directly access an EC2 instance. We will be remedying this soon.

Summary
Congratulations, you have an application residing on the Web, in the cloud! Sadly, it’s still basically useless
until we have configured our database at the very least. You’ve covered a lot in this chapter, from exploring
the major concepts of AWS architecture to creating our application stack from the ground up and deploying
our code. In the next chapter, we will use Amazon RDS to host our database, and our application will
become usable for the first time. By learning how to use OpsWorks, you have also learned a lot about the
paradigms and vernacular of AWS in general and a lot about Identity and Access Management and EC2 in
particular. This was a big step on the way to architecting and developing for the cloud.

61

Chapter 3

OpsWorks Part II:
Databases and Scaling

Now that we have a functioning application stack, we can start to really build out the functionality. First and
foremost, we must connect the application to a database, so we can start storing and retrieving content.
Second, we will add a load balancer to our stack. Last, we will set up some auto-scaling behavior for our
application, so that the app can scale up to meet increases in demand automatically, possessing elasticity.

You will recall from the previous chapter that an OpsWorks stack contains one or more layers within
it. In Chapter 2, we created a single layer: the App Server. We will be adding the additional layers in this
chapter, which will round out the major tasks in setting up OpsWorks. We will create the database layer
by provisioning and attaching a high-availability, managed MySQL database. We will also attach a load
balancer to our stack, distributing web traffic among multiple EC2 instances. While we will return to
the OpsWorks dashboard many times, we will be working with other AWS services to construct the core
components of our application.

Relational Database Service (RDS)
RDS is one of the AWS database service offerings and our choice for this project. RDS supports MySQL, is
cost-effective, and can be integrated into OpsWorks as a service layer. Similar to those of EC2, RDS instances
can be scaled, cloned, and monitored for performance issues.

The keen observer will wonder why we can’t just make a new OpsWorks layer and run MySQL on some
EC2 instances. Wasn’t there a MySQL layer type in OpsWorks? Yes, there was, and you could make this fairly
easily. However, there is a lot more to RDS than raw computing power. RDS has some great features that we
will explore a little more in this chapter.

If you create an EC2 instance in a MySQL layer in OpsWorks, you are merely installing the necessary
software to run a MySQL database on that instance. It will still be up to you to perform all the administrative
tasks—most important, backing up your data. It will also be up to you to install software updates as needed.
If MySQL crashes, or the instance is in error, you will have to manually recover.

None of this sounds appealing, does it? Fortunately, there is RDS to automate all of these tasks for you!
If we had to do this much maintenance, we wouldn’t be making the most of the cloud or taking advantage
of the benefits I’ve been talking about for the past two chapters. When you use an RDS instance instead,
you don’t have to worry about all of this maintenance. Most important to your application performance is
the error recovery. When you create an RDS database, you are provisioning resources in the same way you
would with EC2 instances. Your database is hosted in a particular availability zone within a specific region.
If the database layer goes down and you’re trying to recover manually, it could cause significant downtime
for your entire app. Not only does RDS minimize this downtime, it allows you to keep a backup instance
ready to go to work if your main instance is down, in a feature called Multi-AZ deployment.

Chapter 3 ■ OpsWorks Part II: Databases and Scaling

62

Multi-AZ Deployment
When your app is dependent on a single RDS database instance, this naturally creates a point of failure in
your application: if that availability zone (or instance) experiences an outage, it can cause a global outage
for your stack. To mitigate this problem, you can use Multi-AZ deployment. When you enable Multi-AZ
deployment, RDS automatically provisions a standby database in another availability zone (see Figure 3-1)
and replicates the data to the standby instances through a synchronous process. Every time a write or
commit operation is executed on your database, before the transaction is complete, the operation is carried
out on your standby database also. The downside is that this causes a slight increase in latency compared to
a single availability-zone deployment. If your application required thousands of database writes per second,
this minor difference in latency could become noticeable. Keep in mind that this could constitute a tangible
performance cost in your application. Multi-AZ deployments are also more expensive, as you’re essentially
doubling the resources you would be using otherwise.

Figure 3-1.  Multi-AZ deployments

Chapter 3 ■ OpsWorks Part II: Databases and Scaling

63

Clearly there is a cost-benefit analysis to be done with Multi-AZ deployment. On the one hand, you
don’t have to worry about responding to an outage by manually booting up a backup copy of your database.
Any engineer who’s had to sign on to work at 11 p.m. on a Friday night knows the value of this. Having a
completely up-to-date backup copy ready to run your application and available in minutes is a technological
wonder for which the general population has no appreciation. On the other hand, we will lose a little bit
of write speed with Multi-AZ, and it’s more expensive. If Multi-AZ is not worth the cost, AWS is committed
to 99.95% monthly uptime for RDS instances. If you choose to use a single instance, you will risk your
application experiencing an outage.

However, in an application such as ours, we may not even notice the difference in latency. Our
database schema is simple, and the queries are simple. Users are unlikely to perform a large number of write
operations per user at a time, so in our case, this doesn’t seem like a major concern. The truth is that while
the benefits of Multi-AZ may be universal, the performance cost of Multi-AZ deployment is contingent on
both the nature of the application and the projected user base size and behavior.

Read Replicas
As was just discussed, we’re expecting our database operations to be read-heavy. If the sheer volume
of read operations on our database (in MySQL terms, any SELECT query) is bottlenecking our database,
it’s going to have a ripple effect on the entire application. Fortunately, there is a way to offload some of
this work to another database instance, a read replica. You can create an RDS instance of this type
(up to five), designating a master database and selecting a region and availability for your read replica.
As you may infer from the term replica, these instances should have the same resources as the
original database.

In Figure 3-2 you can see how read replicas work. Database reads can be routed to the read replicas,
which read from the master instance at a lower query volume. Any write operations bypass the read
replicas and go to the master instance in the original availability zone of the application stack. Using a
read replica can offload a significant amount of work from the master database instance to the replica(s).
If the master database only has to handle a small number of reads and all of the writes, there could be a
significant benefit.

Chapter 3 ■ OpsWorks Part II: Databases and Scaling

64

As you may have surmised from Figure 3-2, RDS does in fact support read replica creation in other
regions, with a feature called Cross-Region Read Replicas. There is a benefit here in disaster-recovery
scenarios. If for some reason an entire AWS region was experiencing an outage, you would have to quickly
redeploy your entire stack in another region. To do this, you would clone your stack to a different region and
promote one of your preexisting read replicas to be the new master database. It would otherwise be possible
to recover from a regional outage, but this feature simply makes it easier.

Cross-Region Read Replicas are also useful in a non-disaster scenario, if you simply want to move your
stack to a different region. Suppose our app was a flop in the United States but became huge in Germany.
There would be a case to be made for moving the stack to a geographic region closer to our user base.

Since OpsWorks is designed to let you deploy your stack in a single region and use other services to
improve your performance in other regions, we will not get much use out of Cross-Region Read Replicas,
unless we were to plan for a regional disaster. You will soon be learning about other services that will help us
to improve performance, but it’s good to know about this feature regardless.

Figure 3-2.  Cross-Region Read Replica behavior. The green lines represent write operations, and the black
lines represent read operations

Chapter 3 ■ OpsWorks Part II: Databases and Scaling

65

PRICING

With these extra features, you may be immediately suspicious of RDS’s affordability. Indeed, it is a bit
less straightforward than EC2 pricing, as you can see here: http://aws.amazon.com/rds/pricing/.
The main difference is this: in addition to paying for the processor and memory, a.k.a. computing power
of your instances, you also pay for both data storage and data transfer. Data storage refers to the raw
volume of data stored in your instance, and data transfer is the input/output from our database to the
app layer. Similar to other services, it’s an on-demand, pay-as-you-go model, but there’s a lot of room
for deviation here.

Provisioned IOPS Storage
Though we’ve chosen our instance size, we have given Amazon no information about how many input/output
operations we want to perform, and I/O speed and capacity are key metrics in measuring database
performance. If our traffic surged from five users to five thousand users in the course of an hour, making
about one database query per second, we would be relying on AWS to automatically provide additional
I/O capacity on the fly.

It makes sense if you think about what happens when you query the database. When there is a sudden
rush of requests exceeding the database I/O capacity, they are placed in a queue, while RDS attempts to
keep up with the traffic. In the meantime, RDS attempts to scale up the I/O resources for your instance,
which happens entirely behind the scenes in an AWS data center (a.k.a. in the cloud). But it will most likely
take more than a split second to allocate additional capacity, and every second that requests remain in
queue is an extra second that users have to wait for the data they requested. When traffic dies down, the
resources are de-allocated, and you are charged for what you used.

This doesn’t seem like the best idea in production, if we have performance expectations to manage.
Fortunately, you can reserve I/O resources with Provisioned IOPS Storage (input/output operations per
second). When you use Provisioned IOPS Storage, you reserve IOPS resources by storage volume and I/O
operations per second. Though this is more expensive than pay as you go (if you don’t use the resources you
provisioned), reserving the resources ahead of time guarantees consistent speed and performance during
periods of high traffic.

Let’s imagine the same scenario as before, only with Provisioned IOPS Storage in use. This time, you
have reserved 10,000 IOPS and 10GB of storage. Again, your traffic surges from five to five thousand users,
making one database query each per second. In this case, we already have resources available to handle
double the I/O as our traffic requires. Of course, if our traffic doubled, we would again be in trouble, but we
can prepare for this eventuality as well.

DB Security Groups
Before we create our database, we must create a DB security group. If our database were in a Virtual Private
Cloud, public access would be restricted. Because we’re not using VPC, we want to restrict database access
to the EC2 instances in our application stack. Because we will also want to work locally, we will allow access
to the database from our IP address as well. While you will recognize the concepts from the work we’ve done
in Identity and Access Management, we will actually provision our security group in RDS.

Begin by returning to your Sign-in URL and logging in as the photoadmin IAM user you created in
Chapter 1. From the AWS Console home (or the menu), select RDS. You should see a view similar to that in
Figure 3-3, which shows the two left-most columns of the RDS dashboard. As usual, there is a right-hand
column with additional links and resources that are not shown here.

http://aws.amazon.com/rds/pricing/

Chapter 3 ■ OpsWorks Part II: Databases and Scaling

66

In the left-hand column, click Security Groups. On the right side, you will see a large blue button that
reads Create DB Security Group. The first view is simple. You provide a name and description for your
security group (see Figure 3-4).

Figure 3-3.  The RDS dashboard

Chapter 3 ■ OpsWorks Part II: Databases and Scaling

67

You can name the group photoalbums-rds-group. The description can be anything that will be useful
to you down the road. Then, click Yes, Create. You will be returned to the RDS Security Groups view, and
you should see your group appear in the table, as in Figure 3-5.

Figure 3-4.  Create DB Security Group view in the RDS dashboard

Figure 3-5.  Your RDS security groups

You will notice the red text in the Status column that reads “No Authorizations.” This means that
although this security group has been created and can be assigned to RDS instances, the group does not
currently provide access to any instances. This is a handy warning that your work here is incomplete.

Select the table row for your security group, and you will be able to create a new connection type to
authorize in your security group. The two types are CIDR/IP and EC2 Security Group. We will be creating
one of each.

When you authorize a CIDR/IP, you are white listing a specific IP address to connect to your database.
This is ideal for development, as we can white list our own IP address to connect to the RDS instance.
By default, you will see your current IP address in the field. If you’re using a proxy/firewall, you’ll have to
disable it, or if you’re on a company network, work with the network admin. If you’re not proxied or behind
a firewall, leave the CIDR/IP address as is, and click Authorize. Otherwise, determine the correct IP and
change the value accordingly. Keep in mind that if you have a dynamic IP, you will have to repeat this
process every time your IP address refreshes.

Chapter 3 ■ OpsWorks Part II: Databases and Scaling

68

You’ll see an activity indicator next to your security group, and a new table will appear with the
authorized connections for your security group (see Figure 3-6). Next, we’ll create a new connection of the
EC2 Security Group type. Just like RDS, EC2 has its own security groups. In fact, all the instances in our
App Server layer are part of their own security group.

Figure 3-6.  DB Security Group, authorizing connections

Select EC2 Security Group from the Connection Type drop-down. You will notice that you have
the option of choosing another AWS account besides your own. At the time of this writing, Amazon was
rolling out cross-account connectivity, thus allowing EC2 instances on another AWS account to connect
to your database. Leave this account selected and in the EC2 Security Group drop-down, choose
AWS-OpsWorks-nodejs-AppServer and click Authorize. You should now see a second row in the table
of connections for your security group.

Creating an RDS Database
You now have an RDS Security Group that will permit connections from your local machine, your App
Server layer in OpsWorks, and nowhere else! Without further ado, let’s go ahead and create our database
layer. From the RDS home screen, you will see a large blue button inviting you to Launch a DB Instance.
Clicking the button will take you to the multistep instance setup. Step 1, as shown in Figure 3-7, is choosing
the database engine, which includes four options at the time of this writing: MySQL, PostgreSQL, Oracle,
and SQL Server. This is a no-brainer, as I’ve already discussed using MySQL for our app. Click Select
and continue.

Chapter 3 ■ OpsWorks Part II: Databases and Scaling

69

Figure 3-7.  RDS database engine selection

Step 2 is interesting, as it’s one of the rare scenarios in which AWS will make an explicit
recommendation on how to configure a production vs. development environment. As you can see in
Figure 3-8, Step 2’s title is “Production?” In our case, the answer is yes!

Figure 3-8.  Choosing to use an RDS instance in a production environment

Chapter 3 ■ OpsWorks Part II: Databases and Scaling

70

As you can see, Amazon strongly recommends using the Multi-AZ Deployment and Provisioned IOPS
Storage features in a production environment. We will heed their advice, choosing Yes and clicking Next.
In Step 3, we will configure our database details (see Figure 3-9).

Figure 3-9.  RDS database details

Instance Specifications
The License Model field can be left as general-public-license, and you can leave the DB Engine Version alone
as well. If you ever needed a specific version of MySQL, you could select it here. Next, you choose the size of
your instance in the DB Instance Class field. For our purposes, db.t1.micro should work. Let’s keep Multi-AZ
Deployment and Provisioned IOPS (SSD). You could choose magnetic storage now to save money and switch
to Provisioned IOPS later, but converting will take an indeterminate amount of time. In this scenario, the
AWS Console will display a message informing you that the Multi-AZ backup instance will work while your
changes are being applied. I have learned the hard way that this is not always the case.

If you’ve heeded my advice and selected Provisioned IOPS, you have to choose how much storage and
how many IOPS you wish to allocate. When you select Provisioned IOPS as your storage type, 100GB of
storage and 1000 Provisioned IOPS are selected. Amazon recommends a ratio of IOPS to storage of somewhere
between 3:1 and 10:1. We can leave this setting alone for now. Over time, we will establish an operating history
for our app and scale these resources up or down based on our analysis of the metrics we collect.

Note■■   In real-world applications, it’s a bit silly to use all these RDS features with the smallest instance AWS
offers. We’re just selecting db.t1.micro for cost-effective practice.

Chapter 3 ■ OpsWorks Part II: Databases and Scaling

71

Settings
If you’ve ever set up a database before, these settings will be familiar. You will set a unique identifier,
username, and password for your database. In the DB Instance Identifier enter photoalbums. For the sake of
argument, we’ll name our Master Username, admin. You can actually set whatever username and password
you want, so long as you remember it! After you’ve set your credentials, click Next.

Advanced Settings
Step 4 takes us to the advanced settings, which you can see in Figure 3-10. In Network Security, you will not
be able to choose a VPC or Availability Zone. Select photoalbums-rds-group as your DB Security Group.
In Database Options, you can name your database photoalbums. Likewise, Database Port, Parameter
Group, and Option Group do not have to be changed.

Figure 3-10.  RDS advanced settings

The next subsection is titled Backup, from where you can select the automated backup schedule for your
instance. RDS will take daily backups (snapshots) of your instance automatically, and you can specify a window
during which these backups are taken and the length of time to keep the backups. First, you select a Backup
Retention Period, which defaults to 7 days. This is the number of days which Amazon will keep backups, from
0 to 35. If you choose 35, you will be able to restore your instance to any of the daily snapshots taken for the

Chapter 3 ■ OpsWorks Part II: Databases and Scaling

72

past 35 days. It is convenient to have these backups in case of disaster. However, if you need more long-term
backups, you will have to generate them manually (or programmatically with the AWS API).

You can also select a Backup Window for your database. You may want the backups created at a specific
time, such as before or after an expected surge of traffic. If you have no preference, they will default to late
at night, when traffic is anticipated to decrease. No Preference works just fine, and you can likewise leave
the Maintenance settings set to their default values. Click Launch DB Instance, which will take you to an
intermediary screen. Click through to return to the RDS dashboard, where you will see that your database
first has a status of creating, then modifying, then backing up, and, finally, available.

Database Import
While our RDS instance is being created, let’s get ready to import our local database schema to our RDS
instance. In Chapter 1, you saw that there was a MySQL database packaged with the sample project, at
/setup/photoalbums.sql. We’re going to use MySQL Workbench to connect to our RDS instance and
import this file into the database. If you prefer another interface for connecting to MySQL databases, that’s
fine. We’re using MySQL Workbench simply because it’s easy.

Just to jog your memory, we created an RDS security group, which grants access only to our designated
EC2 instances and your personal IP address. (If you’re working in multiple locations, you’ll have to add
more IPs to the security group.) We created an RDS instance in that security group, and we’re about to make
sure we can connect to the instance, at which point we’ll know everything is working as planned. Open up
MySQL Workbench, or whatever MySQL client you’re using. In the top-left corner, you should see a
+ button, which you will click to create a new connection. You should see a window like the one in
Figure 3-11. Name the connection Photoalbums RDS. The connection method can stay as TCP/IP. We will
have to refer back to RDS to fill out the rest of the fields.

Figure 3-11.  Setting up a new connection in MySQL Workbench

Chapter 3 ■ OpsWorks Part II: Databases and Scaling

73

Your hostname is going to be generated by RDS when the instance has been created successfully.
Let’s head back to the console and find that. In the RDS dashboard, you should see your instance in the
table view, with a status of available in green. Click the row to reveal details about the instance, as shown
in Figure 3-12.

Figure 3-12.  RDS instance details

Right at the top, you should see Endpoint. This is the URL at which you can connect to your instance,
on port 3306. Only connections from your IP will be accepted. Copy this URL and paste it into the Hostname
field in MySQL Workbench (remember to leave off :3306 when you paste). Input the username and
password you chose earlier and click OK.

MySQL Workbench will automatically open a connection to the database. We’re now ready to run
the SQL export script from the sample project. Under the File menu, select Run SQL Script and navigate
to the .sql file. A window will appear with the contents of the SQL script, giving you the option to change
the Default Schema Name or Default Character Set. In the Default Schema Name drop-down, choose
photoalbums. Leave the character set blank and click Run. The window should change its subtitle to
Output, and the output should look something like this:
 
Preparing...
Importing photoalbums.sql...
Finished executing script
Operation completed successfully
 

Click the Close button, and find the photoalbums database under the SCHEMAS heading in the left-
hand navigation. Control-click (or right-click, on a PC) photoalbums, and select Refresh All. In a moment,
you should be able to expand Tables under photoalbums and see the tables you worked with locally already:
albums, photos, and users (see Figure 3-13). We got that running rather quickly, didn’t we? Now if only our
app could connect to it as well!

Chapter 3 ■ OpsWorks Part II: Databases and Scaling

74

OpsWorks RDS Layer
You will recall that I discussed RDS layers earlier in Chapter 2. Now that we have an RDS instance, we’re
going to register it with the application. In the AWS Console, return to the OpsWorks dashboard. Select your
stack and, from the Navigate menu, choose Layers.

You should only see one layer in the list: Node.js App Server. Below that, click the +Layer button.
We’re back to the Add Layer view, and this time, we have to click the RDS tab to create an RDS layer.
The setup is somewhat different than that you saw for the App Server layer, as shown in Figure 3-14.

Figure 3-13.  The tables created on your RDS instance

Figure 3-14.  Adding the RDS layer

Chapter 3 ■ OpsWorks Part II: Databases and Scaling

75

The photoalbums instance was auto-detected, because it’s in the same region. All you have to do is type in
your username and password and click Register with Stack. You will be returned to the Layers view, and you
will now see the RDS layer below the App Server layer, as shown in Figure 3-15. But it says no app is connected!

Figure 3-15.  Layers in our stack, with RDS layer added

For our app to be connected to the RDS layer, we have to set the database as the Data Source for
the App Server. First, click Connect app, which will simply take you to the list of apps in your stack. In the
Actions column for Photoalbums, click edit, which will allow you to edit a few of the settings for the app.

The second heading is titled Data Sources. You will notice that currently the Data source type is set to
None. Click the radio button next to RDS; choose photoalbums (mysql) as your Database instance; and
enter photoalbums as your Database name. It should look exactly like Figure 3-16. Don’t leave this screen
just yet; there’s one more thing we have to do here.

Figure 3-16.  RDS selected as data source for the app

Environments and Environment Variables
As stated previously, one of our goals is to move our database credentials out of our source code. In
Chapter 1, I discussed how storing these credentials in a source file could pose a security risk if a member of
the team left or had his/her computer stolen. There’s also another reason to consider, which is swapping out
databases in our stack. You have seen by now how easy it is to create an RDS instance from scratch. In the
future, you will be able to create new database instances from existing ones, and this will give you the ability
to run a backup database in your stack in the event of a critical failure. It will also make it significantly easier
to clone your entire stack and maintain separate stacks for production and development, a practice that is
strongly recommended. By following these next steps, you will be able to maintain code that works under all
of these scenarios, without having to deploy code changes or manage credentials.

Chapter 3 ■ OpsWorks Part II: Databases and Scaling

76

Thus far, I’ve largely talked about two environments: local and production. The reality is that your
workflow is likely to include writing and testing code in your local environment, then deploying and testing
on a development stack, and, lastly, deploying to production. This involves three sets of credentials to
manage! If we were to keep different credentials in different branches of our repository, it would be a pain to
manage and highly prone to developer error. Instead, we’re going to use Environment Variables to tell our
application where it’s running.

If you’re well-versed in Node.js already, you know that there’s a global object called process.env
that stores some information about the user environment in Node.js. You can find information about
this here: http://nodejs.org/api/process.html#process_process_env. None of the properties in the
documentation may seem that useful. Fortunately, we can add to them!

While editing the app, scroll down to the Environment Variables header, as shown in Figure 3-17, and
you will see that you can add your own key-value properties here.

Figure 3-17.  App Environment Variables

Add a variable called ENVIRONMENT, and give it a value of production. If/when you create a dev stack,
you’ll change that value. Go ahead and click Save, at the bottom right. We’ve now set our app’s data source
and environment variable ENVIRONMENT.

What is the connection between this Environment Variable and process.env? This is one of the
subtle ways that the underlying technology of Chef works behind the scenes to make things easier and is
only available as of Chef 11.10. When your app is deployed to the instances in the App Server layer, the
Environment Variables you have set (up to 20) are included in the deployment script for your instances.
Because our app is Node.js, the Environment Variables are added to process.env during the deployment
process. If we were instead running a PHP app, the Environment Variables would be accessible via
getenv($variableName). Regardless, this interface in the App settings gives us an easy way to set
environmental variables dynamically across all instances without getting into server configuration and
without disrupting the elasticity of our application.

Next, after much delay, we have to return to our source code. Currently, the source is hard-coded to the
local database. As described previously, we will have to support three different environments. First, open
your code editor to /lib/globals.js. Find the database property, which has the credentials for localhost.
Instead of returning a static object, we want to change database to a function (and hey, because it’s
JavaScript, it’s not that hard!). Because there’s nothing else in this file yet, you will want to replace the entire
file with Listing 3-1, but keep your local credentials handy, as we will not be discarding them entirely.

Listing 3-1.  /lib/globals.js

module.exports = {
 applicationPort : 80,
 database : function(){
 if(process.env.ENVIRONMENT){
 var opsworks = require('./../opsworks');
 var opsWorksDB = opsworks.db;
 var rdsConnection = {
 host : opsWorksDB.host,
 port : opsWorksDB.port,

http://nodejs.org/api/process.html#process_process_env

Chapter 3 ■ OpsWorks Part II: Databases and Scaling

77

 database : opsWorksDB.database,
 user : opsWorksDB.username,
 password : opsWorksDB.password
 };
 return rdsConnection;
 } else {
 var local = require('./../config/local');
 var localConnection = local.db;
 return localConnection;
 }
 }
}
 

OK, there’s a lot happening here, so let’s break it down. First, instead of returning the static object,
we’re checking to see if process.env.ENVIRONMENT exists. If it does, we don’t care what it is, and we will try
to load database credentials from OpsWorks, hence the line var opsworks = require('./../opsworks');.

You’ll notice that we have no such file in our project. The Configure stack command, which runs during
deployment, dynamically compiles an opsworks.js file in the root directory of our project. When we connected
the RDS layer to the Photoalbums app, it automatically started storing credentials for the database in that file.
This means that even if we change the database instance that’s used by the layer, we can update the credentials by
running the Configure command on our stack, which we will return to in a moment. In the opsworks.js file, the
database credentials are stored in a public variable named db. In fact, the whole file looks something like Listing 3-2.

Listing 3-2.  Sample opsworks.js file

exports.db = {"adapter":"mysql",
 "database":"ops_db",
 "password":"AsdFGh3k",
 "port":3306,
 "reconnect":true,
 "username":"opsuser",
 "data_source_provider":"rds",
 "host":"opsinstance.ccdvt3hwog1a.us-east-1.rds.amazonaws.com"
 }
 
exports.memcached = {"port":11211,
 "host":null}
 

In the ideal world, the syntax of the db variable would match the syntax we need in the mysql Node.js
module. Sadly, the two are slightly different. For this reason, we instantiate a variable named rdsConnection
and re-map the values to it. Then, the rdsConnection variable is returned.

In the event that process.env.ENVIRONMENT is not set, we want to preserve our local database
credentials. In your project, create a directory named config and an empty file named local.js. Using your
local database credentials, paste the following into it:
 
module.exports = {
 db : {
 host : 'localhost',
 port : 8889,
 database : 'photoalbums',
 user : 'root',
 password : 'root'j
 }
} 

Chapter 3 ■ OpsWorks Part II: Databases and Scaling

78

I hope that made sense. We moved our local credentials to a separate file, which we will read from in
globals.js only if process.env.ENVIRONMENT is not found. Now, because we changed globals.database
into globals.database(), we will have to fix that in a few places. In server.js, navigate to the bottom of the
file and make the change in this line:
 
var connection = mysql.createConnection(globals.database());
 

Save the change, and then we will have to change the declaration at the top of all three model files:
model-users, model-photos, and model-albums. In all three files, change line 3 to this:
 
var connection = mysql.createConnection(globals.database());
 

To emphasize the point, all we’re doing is adding a “()” after database.
Now we’ll put one last finishing touch on our credentials management. We will make our code

repository ignore our local credentials, so they don’t get pushed to the repo, shared with other developers,
or deployed to the App Server. If you’re using Git, open the file .gitignore and add the following line:
 
/config/local.js
 

Save this change. If you’re using SVN, you want to ignore the file just the same. Commit all these
changes to your repository and return to OpsWorks. After you saved your last changes there, you should have
been returned to the detail view for the app. You should see at the top right a blue button that reads Deploy
App. Click the button, to proceed to the Deploy App view. The only thing you need to change here is to add a
comment that’s of some use to you (see Figure 3-18).

Figure 3-18.  The Deploy App view

Chapter 3 ■ OpsWorks Part II: Databases and Scaling

79

Click Deploy at the bottom right and wait for the deployment to complete. If after a few minutes it fails,
click Show in the Log column and see if you can spot the error. If you get a green check mark next to your
hostname, then you should have an app that’s now connected to your database. Click on nodejs-app1 and
scroll down to Network Security, locating the Public IP for your instance. Click it, and you should be back at
your Hello World screen. Now add /users/ to the URL.

If you see a pair of empty brackets, congratulations! You requested all users and received all zero of
them. This means that your App Server was able to connect to the RDS instance, query the database, and
return the results. If you saw an error message instead, then, sadly, something has gone wrong. Check for
typos, and if you find none, try retracing your steps.

Stack Commands: Backup Scenario
I briefly discussed the concept of stack commands, which are an OpsWorks tool for running commands on
all the instances in your stack. These commands essentially abstract the underlying technology of Chef and
give us control over all of our instances in a way that would be more difficult if we had to manage instances
individually. We’ll use a scenario with our database to explore this in more depth.

RDS Snapshot
Suppose that your database is in an error state and you can’t get it back online. Time is passing, and your
users cannot access your application. Your Multi-AZ backup isn’t working as expected, and every query from
the App Server to the RDS layer returns an error. You and your team agree that the best course of action is to
deploy a backup database to get your application back online. In a traditional stack, the administrative tasks
involved in getting this done could be a nightmare, resulting in significant downtime for your application.
Fortunately, we can save a lot of time and energy by using OpsWorks.

The first thing we have to do is grab a snapshot of your database, which we will use to spawn the new
instance. If there’s nothing wrong with the actual data in your instance, we can take a snapshot right now;
otherwise, you would be better off using an automatic snapshot generated by RDS. Navigate to the RDS
dashboard and select the DB Instances tab. Select your instance from the table and click the Instance
Actions button to reveal the Actions menu, then select Take DB Snapshot.

You will be prompted to name your snapshot. Automated snapshots have the rds: prefix in front
of them. Name your snapshot something such as photoalbums-snapshot-[YYYYMMDD] and click
Yes, Take Snapshot (see Figure 3-19).

Figure 3-19.  Taking an RDS DB snapshot

Chapter 3 ■ OpsWorks Part II: Databases and Scaling

80

You will be taken to the Snapshots view, where your snapshot will have a status of creating. You may
also see some of the automated backups in this view. You’ll have to wait a few moments for the snapshot to
complete before we continue on with the lesson.

When the snapshot has completed, we will create a new instance. Select the snapshot from the list and
click Restore Snapshot at the top. You will be taken to a view titled Restore DB Instance, though you will
recognize the interface from when you created your RDS instance initially. Because we’re just running a drill,
you can use another db.t1.micro instance and disable Multi-AZ Deployment. You can name the instance
photoalbums-failover and click Launch DB Instance (see Figure 3-20).

Figure 3-20.  Restoring a DB instance from a snapshot

Once again, we’ll have to wait a few moments for the instance to be created. When the status changes to
available, we can begin the process of deploying it to our stack.

Creating a New RDS Layer
Return to OpsWorks, and access the Photoalbums stack. Open the Navigation menu and select Layers. Click
the RDS photoalbums layer to view the details for the layer. Before we add our backup database to the stack,
we will de-register this layer. At the top right, click the Deregister button. You will be prompted to confirm
that you want to de-register the layer. After you click the red Deregister button, you will be taken to the
Resources view, which is empty at this point.

Under the Resources header, there is a submenu that filters your resources by type: Volumes, Elastic IPs, and
RDS. Click RDS, and you’ll see an empty table of RDS instances in your Resources. At the top right, click Register
RDS DB Instances. This may seem contrary to the way we created our layer before, but we’re just being guided by
OpsWorks through the same process via a different workflow. Previously, we created an RDS layer and then added
an RDS resource. This time, we’re adding an RDS resource and then generating a layer automatically.

Chapter 3 ■ OpsWorks Part II: Databases and Scaling

81

You will see both of your RDS instances in a table. Select photoalbums-failover and input your
database credentials in the Connection Details panel below the table, as in Figure 3-21. These should be
the same as the credentials of the original database, because this instance is created from a snapshot of that
instance. Then, click Register with Stack.

Figure 3-21.  Adding an RDS resource to the stack

Connect New Database Layer to App
Open the Navigation menu again, and select Layers. You should see that a new RDS layer has been added
to your stack, this time entitled RDS: photoalbums-failover. You’ll notice that, once again, you have an RDS
layer that is not connected to any apps. Click Connect to App, which will again take you to the Apps table. In
the row next to Photoalbums, click edit.

Once again, you must set the Data Source for your app. Change the Data Source type from None to RDS.
When you do that, you should see photoalbums-failover(mysql) appear in a drop-down, and an empty field for
the database name. Type photoalbums into the Database name field and click Save at the bottom-right corner.

Run Stack Command
We’ve created a new RDS instance from a snapshot of our database, a new OpsWorks layer with it, and
connected it to our app. You will recall that the credentials for the RDS layer were copied to our EC2 instances
during the Configure phase of deployment. In order to update our credentials, we will have to run the
Configure command again on our instances and then deploy to push the new credentials to the instances.

Open the Navigation menu, and select Stack. You will be returned to the detail view for the stack. At
the top right, you will see a button titled Run Command, which you will click. In the Run Command view,
you can select from a list of commands, add a comment to your command, and choose on which instances
to run the command. Select Configure from the Command drop-down, as shown in Figure 3-22. In the
Comment field, type a message to yourself, such as “configured RDS failover instance credentials.” At the
bottom-right corner of the view, click Configure, to run the command.

Chapter 3 ■ OpsWorks Part II: Databases and Scaling

82

You will be brought to a view with the header Running command configure, where you can see an activity
indicator next to your EC2 instance while the command is being executed. Once the command is complete, the
opsworks.js file in the root of your app source code will have been updated with the new credentials. Next, run
the deploy command to deploy this code change to your instances and restart your application.

You can imagine just how useful this workflow can be. We were able to move the app to a backup
database in a few minutes, without having to alter any code. Of course, doing this also means that your app
is running for several minutes with a database that you’re about to swap out, so it’s ideally not a procedure
you’ll ever need to use if your database contains time-sensitive information.

Another way to look at this feature is that it offers you two ways to perform database maintenance. If you
have to increase your database storage, convert the storage type, or make some other major configuration
change, you can expect some interruption to your application. On the one hand, you could make your
changes to the existing database (always taking a snapshot first), and let AWS use the Multi-AZ feature to
automatically use the failover database while the maintenance is under way.

Alternatively, you could take a snapshot and create a new database from the snapshot with the
configuration changes you want. Then, you would have to add the database instance to your OpsWorks stack
and then run the Configure and deploy commands.

Now that this tutorial is complete, let’s revert to the original database. In OpsWorks, navigate to
Layers and click the title of your RDS layer. At the top right, click Deregister and confirm that to detach
your database from the stack. Again from the Layers screen, click +Layer. Select the RDS tab and choose
photoalbums from the list of RDS instances below. Re-enter the database credentials and click Register
with Stack. When you return to the Layers screen, click Connect app again, then click edit next to the App
Server. Scroll down to Data Sources and change the Data Source type to RDS. Select your original database
instance and database name. Click Save.

Figure 3-22.  Running the Configure command

Chapter 3 ■ OpsWorks Part II: Databases and Scaling

83

From the Navigation menu, choose Stack, and at the top right, click Run Command. Change the
command to Configure and click the button at the bottom right. Finally, navigate to Apps and click deploy,
next to Photoalbums. Then click Deploy at the bottom right and let the deployment run. Now we’re
connected back to the original database, and you can delete the failover, if you want.

Elastic Load Balancing (ELB)
At this point, we have our app running on a single EC2 instance. We know that while our instance can be
scaled to a larger size, this alone may not be enough to handle the incoming traffic to our application.
Further, changing the size of an EC2 instance can cause a service disruption, which we’d prefer to avoid.

If you’ve worked with Node.js extensively, you know that many server-side errors can crash your
application, which requires it to be restarted. While OpsWorks will automatically restart your app, it would
be a shame for a single error to bring your entire app offline, even for a few seconds.

The solution to both of these problems is to run our app on more than one instance. This can be
accomplished with a load balancer, or Elastic Load Balancing (ELB), in AWS terms. With ELB, traffic can
be automatically redirected amongst multiple EC2 instances and across multiple availability zones. If
an instance crashes, or is in what is referred to as an unhealthy state, ELB will stop routing traffic to that
instance until it is healthy again. The convenience of this being automatic cannot be overstated. If an
instance becomes unhealthy, you don’t have to worry about manually removing it from your stack, for fear of
traffic being routed to a server in an error state.

In Figure 3-23, you can see how a load balancer will work in our application stack. Traffic will be
routed to the ELB, which then directs it to the individual instances and forwards the response back to
the requester.

Figure 3-23.  An ELB routing traffic to three EC2 instances

Chapter 3 ■ OpsWorks Part II: Databases and Scaling

84

Note■■  ELB can also be used to regulate internal traffic between two layers of an application, not just
between the Web and an App Server.

Additionally, using an ELB gives us another useful means of assessing the health of our application.
I will be discussing monitoring at a later point, but for the moment, we can do a conceptual analysis of the
problem of server health in the cloud. If you have ten servers in your application stack, it would be a quite
a task to monitor the health of all instances at all times. If one instance went offline, would it be cause for
major concern, immediately? What if you were running the app on a hundred servers? As you can see, with
more moving parts, there is also a lot more information to analyze. Instead of monitoring each instance
individually, we can monitor various metrics of the ELB instead.

Creating a Load Balancer
ELB does not have its own control panel in AWS. Instead, they are managed in a subsection of EC2. Return
to the AWS Console and navigate to EC2. In the left navigation, under the Network & Security header, click
Load Balancers. Then, at the top of the screen, click Create Load Balancer. The Create Load Balancer
wizard will open in a modal window, as shown in Figure 3-24.

Figure 3-24.  Create Load Balancer wizard

Define Load Balancer
On the first screen of the wizard, you can name your load balancer photoalbums-elb. The Create LB Inside
drop-down can be left as EC2-Classic. You would only change this field if you were creating your ELB in a
Virtual Private Cloud. Next, you have to open ports via which traffic can be handled by your load balancer.
By default, port 80 is opened with the HTTP protocol selected. If you recall, this is also the port on which
your application is listening. You can leave and go ahead and click Continue to proceed.

Chapter 3 ■ OpsWorks Part II: Databases and Scaling

85

Configure Health Check
Earlier, you first heard the terms healthy and unhealthy to describe instances. These are not empirical terms,
and in fact, it is up to us to define them. In the next step, we determine the conditions in which an EC2
instance can be considered healthy and when it can be considered unhealthy. The ELB will perform routine
health checks against each instance to which it is assigned.

We will define the parameters for these health checks, which will include a relative path that the ELB
will request from each instance. You can see the health check parameters in Figure 3-25.

Figure 3-25.  Configuring an ELB health check

First, we configure the URL request, or ping. The Ping Protocol should be HTTP, and the Ping Port
should be 80, the same as our app listens to. Finally, the Ping Path is the path along which the request is sent
on each instance. Change this to /, which will request the Hello World page of our app. The default value of
/index.html would return a 404 error from our app.

The Advanced Details are the more subjective parameters of the health check. First, we have the
Response Timeout. Each time the EC2 instances are pinged, the load balancer will measure the time it takes
to receive a response from the instance. If the instance is slow to respond or completely unresponsive, it will
have failed a single health check. The default response timeout is five seconds. For our Hello World page, it
seems reasonable to expect it to take fewer than five seconds to generate. In truth, we could probably reduce
it further, but five is safe.

Next, we have to determine the frequency with which the health checks are performed, or the Health
Check Interval. The default is 30 seconds, which means that while the instance is online, the health check
will execute every 30 seconds.

Chapter 3 ■ OpsWorks Part II: Databases and Scaling

86

A healthy instance may occasionally fail a single health check. It may respond slowly, due to any
number of factors. We don’t necessarily want to remove an instance from the pool because of a single slow
response. Instead, we want to set an Unhealthy Threshold, at which point the instance is actually considered
to be in the unhealthy state. By default, this threshold is 2, and the Healthy Threshold is 10. The reason these
thresholds are so disparate is to err on the side of caution. Once an instance has become unhealthy, we don’t
want to prematurely consider it healthy. If the load balancer thought the instance was healthy too early,
there would be a risk of more users receiving erroneous responses, or no responses at all.

In the end, the rules for our health checks are such:

It takes up to 70 seconds to determine that an instance is unhealthy.•	

Five-second response timeout, every 30 seconds, two times•	

It takes up to 350 seconds to determine that an instance is healthy again.•	

Five-second response timeout, every 30 seconds, ten times•	

Of course, these are just the default values. You could instead run the health check every ten seconds,
if you wanted to respond more aggressively to slow performance by one of your instances. You could
also decide that an instance is safe to bring back into the pool after five successful checks instead of ten.
Determining your policy here is its own science, informed by the nature of your application, the architecture
of your application stack, and the operating history of your application, meaning that evaluating your stack’s
performance over time can help you make better decisions.

Click Continue to proceed to the next screen, where you will add instances to your load balancer.

Add EC2 Instances
For now, we are only adding the single EC2 instance we created earlier. Select the instance, and make sure
that Enable Cross-Zone Load Balancing is enabled. If this is enabled, your load balancer can route traffic
to instances in multiple availability zones. We have already discussed the advantages of allocating resources
across availability zones, so we definitely will want to balance traffic across EC2 instances in different
availability zones. Click Continue and proceed to the Add Tags step.

Add Tags
By now, you’ve probably realized that you can very quickly accrue a large number of resources in AWS, some
of which are named automatically by AWS and others following your own naming conventions. It can be
difficult to track all the moving parts. One way that AWS helps alleviate this problem is through the use of
tags. Tags are simply key-value pairs that you can create for many resources in AWS.

Note■■  T he complete list of taggable resources is available at http://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/Using_Tags.html#tag-restrictions.

Each resource, be it an EC2 or RDS instance, etc., can have up to ten tags. This can help you organize
your resources and can make it easier to keep your billing organized. For instance, if you host the
infrastructure for multiple clients on your AWS account, you could tag your assets by client name or client
project, to generate billing summaries for each.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html#tag-restrictions
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html#tag-restrictions

Chapter 3 ■ OpsWorks Part II: Databases and Scaling

87

Perhaps you were running a production and development stack, and you wanted to determine the cost
of spawning additional development environments for longer-term development cycles. You could tag your
production resources with “Environment” = “Production” and your dev resources with “Environment” =
“Development,” to project the cost of additional development environments.

These are just a couple examples. While AWS billing management is outside the scope of this book, it’s
better to explain what Tags are than to ignore them entirely. Let’s add two tags to our ELB, for the sake of
getting familiar with them. In the first tag field, type in Environment as the key and Production as the value,
as in Figure 3-26. Then click Create Tag and add the key Stack with the value Photoalbums. Click Continue
to proceed to the Review step.

Figure 3-26.  Add ELB tags

Review
Amazon conveniently allows us to review all our choices before creating the load balancer (see Figure 3-27).
Take a moment to review everything, and make sure it looks correct. If you made a mistake, there’s an Edit
button, which can take you back to each individual step to fix the problem. When you’ve finished reviewing,
click Create. In a few seconds, you will see a confirmation that your load balancer was created, and when
you dismiss it, you will see your load balancer alone in a table.

Chapter 3 ■ OpsWorks Part II: Databases and Scaling

88

When you select your load balancer, a tabbed detail view appears below the list, as shown in Figure 3-27.
The Description tab gives you an overview of your load balancer. Front and center, you’ll see a Status
field, which quickly tells you how many of your instances are in service. It should read “1 of 1 instances in
service.” If your instance becomes unhealthy, this will change from 1 to 0, the point being that in service is a
euphemism for healthy. You can also revisit any of the customizations you made to your load balancer. You
can add/edit the tags, open/close ports, and change the configuration of the health check.

You can also manage the instances attached to your load balancer in the Instances tab. However, we
will not be doing this here. If we are going to use a load balancer in our OpsWorks stack, we don’t want to
manually add/remove instances to the load balancer in the EC2 dashboard. Instead, we want to handle load
balancing the same way we did the database: by adding an ELB layer in OpsWorks.

OpsWorks ELB Layer
Return to OpsWorks and open the Photoalbums stack. Using the Navigation menu, head to the Layers view
and select the Node.js App Server layer. In the layer subnavigation, select Network. Right at the top, you
should see an Elastic Load Balancing header, under which you will see that no ELB has been added. Click
Add an ELB to attach your ELB to the App Server layer.

The page will refresh, and the Elastic Load Balancer field will now show a drop-down from which
you can select photoalbums-elb. When you do this, a warning will appear, informing you that OpsWorks
configuration will now supersede changes made in the EC2 dashboard. This means that if you went back
to EC2 and added more instances, the changes would be ignored, because OpsWorks commands will take
precedence. Click Save to commit your changes, which will again reload the page.

Open the Navigation menu and return to the Layers view. You will see that an ELB layer has been auto-
generated and now appears as shown in Figure 3-28.

Figure 3-27.  Load balancer details

Chapter 3 ■ OpsWorks Part II: Databases and Scaling

89

Click the ELB layer (ELB: photoalbums-elb) and you will see the detail view for the layer (see Figure 3-29).
First, you will see a public URL next to the DNS Name. If you click this, you’ll be brought to the Hello World
page of our application! You will also see a warning regarding all of your instances being in one availability
zone. As discussed previously, it is best practice to duplicate resources in other availability zones. In this
case, it’s a moot point, because we only have one instance in the App Server layer right now.

Figure 3-28.  ELB, App Server, and RDS layers

Figure 3-29.  ELB layer view in OpsWorks

At the bottom of the page, you will see a table of all the instances registered with your load balancer,
organized by availability zone, and with status indicators to the right of each instance. Because we only have
one instance in one availability zone (in this case, us-east-1a), there isn’t much information here. But once
we’ve added more instances and availability zones, this section will give you a bird’s-eye view of the status of
your App Server and a starting point to assess performance problems.

Chapter 3 ■ OpsWorks Part II: Databases and Scaling

90

Note■■   In the last few minutes, we’ve seen EC2 instances described as healthy, in service, and InService.
These are all variations of the same meaning.

So far, we’ve accessed our application via the static IP address of the EC2 instance in our App Server
layer. That was only a temporary step in the evolution of our application, as we will never want users to have
control over which instance they connect to when using our application. Next, we will add an instance to our
stack and interact with both instances via the load balancer.

Adding a New Instance
Open the Navigation menu, and click Instances to return to the Instances view. Click the +Instance button
at the bottom left to open the instance creation dialog. You can either create a new instance or add an
existing one to this layer. The latter case does not allow you to add any instance in your AWS account. Rather,
you can only add existing instances that already belong to an OpsWorks layer. If you wanted, you could share
computing resources between multiple layers and host two or more layers on a shared instance. Because our
stack will only have one App Server layer, we won’t be exploring this option, but it’s good to know it’s there.

Change the new instance size to t1.micro (or any small size) and choose a different availability zone
than that you chose for the first instance (see Figure 3-30). Then click Add Instance.

Figure 3-30.  Adding a new instance to a layer

Chapter 3 ■ OpsWorks Part II: Databases and Scaling

91

You will now see your new instance in the table of instances, as in Figure 3-31. It will not start automatically,
nor will it have an IP address assigned, as Public IPs are only reserved when an instance is online.

Now that there’s more than one instance in the app, this view is starting to become more useful. You can
see that the circle at the top left is actually a circle graph depicting the percentage of your instances in one of
five possible states. You also have a quick link to the public IP of your active instances, as well as to your ELB.
You can start or delete stopped instances and stop or connect via SSH to online instances.

If you recall the lessons about RDS, you may think that you have to run the Configure command before
you deploy source code to your new instance. This is not the case. Because you have run the Configure
command on your stack after you connected your RDS instance, the credentials that will be deployed to your
new instance are up to date. All you have to do is click start.

Note■■   Occasionally, AWS will not allow new instances to be allocated in a particular availability zone.
If us-east-1b is at capacity, and you encounter this error, simply choose us-east-1c or us-east-1d instead.

Your instance will automatically run through a number of statuses in this view, starting with requested
and finishing with online. Click photoalbums-elb to navigate back to your load balancer layer. The warning
about your instances being in a single availability zone should have disappeared, and you should now see a
second column at the bottom listing your instances in us-east-1b. Click the URL next to DNS Name, and you
will see the Hello World page open in a new window. You’re now connecting directly to your load balancer,
which is routing requests to your two instances in separate availability zones!

Now that we’ve gotten this far, let’s go ahead and kick the tires a little bit. You should be able to register a
new user by submitting a POST request to the register path at your load balancer URL. Open your REST client,
and paste in the ELB DNS Name, adding /users/register. Add username, password, and e-mail POST
parameters and send the request. You should receive the following response:
 
{"message":"Registration successful!"}
 

Figure 3-31.  App Server Instances overview

Chapter 3 ■ OpsWorks Part II: Databases and Scaling

92

It seems that your user was successfully registered, and the record was created on the RDS instance. If
you recall some details about the sample app in Chapter 1, you will remember there is an API for listing
registered users in the application. In your REST client, change to a GET request and remove “register”
from the URL, or just open that URL in your browser. You should receive a JSON list of your registered
users, like so:
 
[{"username":"admin","userID":1}]

Summary
I’ve covered a lot of ground in this chapter. You learned about some important features of Amazon RDS,
created an instance, and created an OpsWorks layer from that instance. We then configured OpsWorks to
package the RDS credentials on our App Server instances and reworked the source code to access these
credentials, instead of using hard-coded credentials stored in our repository. We also ran through a few
scenarios in which we could use the features of RDS and OpsWorks to gracefully handle database failures or
to rapidly deploy a backup database.

You also learned about Elastic Load Balancing, Amazon’s load-balancing service. We created our first
load balancer and configured health checks to identify unhealthy EC2 instances and regulate traffic to
healthy instances. We used this load balancer to generate an ELB layer in OpsWorks and added instances
in multiple availability zones to the ELB. Last, we tested our progress by registering a user at the ELB’s
public URL.

In some ways, this is the most difficult chapter, as we have finally created a truly cloud-based
application, without dependencies on one single resource. Of course, although we are running our app on
two instances, this does not mean it has substantial fault tolerance, nor is it ready for public use. In the next
few chapters, you will learn how to give this infrastructure elasticity, responding to heavy traffic by scaling
our resources to meet demand. You will also learn more about the various metrics and points of failure
in our application stack, and you will learn to use other AWS services to provide caching and accelerated
content distribution, to reduce the workload for our App Server and RDS layers.

93

Chapter 4

CloudFront and DNS Management

We’ve already used a lot of AWS services to get this far: EC2, RDS, ELB, IAM, and OpsWorks. In this chapter,
we’re going to add two more services to our repertoire: CloudFront and Route 53. In these lessons, we will
implement Amazon’s global content caching tools and get our app published at a top-level web domain.
By the end of the chapter, the app will almost be ready for prime time.

In the previous chapters, I’ve discussed the difference that geographic proximity can make in an app’s
performance if we’re measuring in milliseconds. To optimize our app for a global audience, we could
theoretically run a copy of our entire application stack in every AWS region. However, this would be quite
expensive and would fragment our resources. If we don’t have an unlimited budget, the more we divide our
resources by region, the fewer resources we have in each. Our app would lose both some of its elasticity and
scalability in this scenario.

Fortunately, we can use CloudFront to accelerate our content distribution around the world. The
CloudFront service stores copies of our web content at data centers around the globe, referred to as edge
locations. When a URL is requested from CloudFront, the user’s request is directed to the edge location
nearest to the request’s geographic origin. This does not mean that CloudFront can serve only static content.
Requests to CloudFront can pass through to our app and receive uncached content as well, in cases where
that’s necessary, such as when a user logs in and receives an authentication token.

As you may have noticed with the public IPs assigned to EC2 instances, IPs and URLs in AWS are
dynamic, which could pose a challenge if we want our application stack to be live at a domain of our
choosing. You don’t want to point your domain to the IP address of one of your instances, nor do you want to
route requests directly to the ELB instance. Instead, we’ll use the service called Route 53, the DNS manager
for AWS.

With Route 53, you can create a hosted zone corresponding to your domain and map various
subdomains to different AWS services. You will receive AWS nameservers at which you can point your
domain and then configure your DNS records in Route 53.

We will be using these services in conjunction to make our app available worldwide at our chosen
domain. Route 53 will direct requests for our domain to CloudFront, which will be serving our app content
at the closest possible edge location to our user. In Figure 4-1, you can see how these services work together
with our application stack.

Chapter 4 ■ CloudFront and DNS Management

94

To complete this chapter, you must have registered a domain or be prepared to do so during the lessons.
For the purpose of completing the lesson, we will be referring to cloudyeyes.net as the domain—an
arbitrary domain that I’ve registered.

CloudFront
There are many different ways to implement caching into a web application, and CloudFront is merely one
of them. Using CloudFront will allow us to cache and serve static assets separately from the application’s
EC2 instances, in addition to cached response data from the application. The result is a caching mechanism
that can drastically reduce the impact of traffic to your application.

In this chapter, we will be setting up CloudFront as a pass-through for requests to our App Server layer.
To do so, we have to define the rules by which URL requests to CloudFront are processed and routed to our
application stack. In Chapter 5, we will set up an S3 bucket to store all of our images and other static assets.
We will then use CloudFront to serve these assets, effectively creating an enterprise-level content delivery
network (CDN) in just a few steps.

CloudFront allows you to utilize the functionality of a CDN1 in your application, completely
independent of your application layer. While a CDN is often used just for images and other assets, we will
use CloudFront to deliver the entirety of our application to users, with caching rules we define.

Note■■   In CloudFront terminology, the end user making HTTP requests is known as the viewer.

Creating the Distribution
CloudFront rules are organized into what’s called a distribution. First, we will create a distribution for our
application, then we will define rules based on various URL patterns. Log back in to the AWS Console and
select CloudFront under the Storage and Content Delivery header on the main dashboard. As usual, the create
button is at the top-left corner of the main content area (see Figure 4-2). Click Create Distribution to begin
creating your distribution.

Figure 4-1.  The request route, from Route 53 to EC2 instances in the application stack

1For a useful discussion of CDN and performance, see www.webperformancetoday.com/2013/06/12/11-faqs-
content-delivery-networks-cdn-web-performance/.

http://www.webperformancetoday.com/2013/06/12/11-faqs-content-delivery-networks-cdn-web-performance/
http://www.webperformancetoday.com/2013/06/12/11-faqs-content-delivery-networks-cdn-web-performance/

Chapter 4 ■ CloudFront and DNS Management

95

AWS presents distribution creation as a two-step process. In actuality, these steps are completely unbalanced.
You first choose a delivery method, then go through a lengthy configuration process in the second step.

When you choose a delivery method for your distribution, you select either web or RTMP. RTMP is an
Adobe streaming media protocol, which you would use for audio or video streaming. Everything else falls
under web distribution, so you can click Get Started under the Web Distribution header to proceed.

Configuring the Distribution
Next, you will configure the distribution, as well as define the default origin and cache behavior. The only
way to get through this process is to just go through the settings one by one. If you get lost or make a mistake,
you can always edit the configuration later.

Origin Settings
You will begin the configuration by defining the Origin Settings, wherein we configure the origin for our
distribution (see Figure 4-3). In CloudFront terms, an origin is simply a source (origin) of the content being
served by CloudFront. A CloudFront distribution can serve content from more than one origin, a feature we
will use to our advantage.

Figure 4-2.  The top of the CloudFront dashboard, with the Create Distribution button

Figure 4-3.  Origin Settings in a CloudFront web distribution

When you click into the Origin Domain Name field, a drop-down will appear, listing all of the S3 buckets
and HTTP servers on your AWS account. In our case, the only valid HTTP server is our Elastic Load Balancer,
but it is possible for advanced users to employ CloudFront with a web site hosted on a single EC2 instance,
for example. Select our load balancer, photoalbums-elb-[id]. us-east-1.elb.amazonaws.com, from the
drop-down. The Origin ID, which is simply a string identifier displayed in CloudFront, will auto-generate
something like ELB-photoalbums-elb-[id]. Leave this as is, unless you want to name it something clever.

Chapter 4 ■ CloudFront and DNS Management

96

Set the Origin Protocol Policy to Match Viewer, which means CloudFront will accept HTTPS connections
if the viewer attempts them. We’re not using HTTPS currently, but we will later, and we don’t want CloudFront
to interfere with the setup. Alternatively, if you only wanted to allow HTTP connections, you could control
this at the CloudFront level here. Last, you can change the ports from the default of HTTP:80 and HTTPS:443.
You’ll recall that our application is listening on port 80, so we definitely don’t want to change this value.

Default Cache Behavior Settings
When you create a distribution, you define caching rules based on URL path patterns, which I will discuss
in greater detail. These rules are referred to as behaviors. When we define behaviors, we also establish an
order in which requests are compared against our behavior rules. As such, a request is compared against
each behavior in order, until it has been matched with a behavior. If a request does not match any behaviors
we have declared, then CloudFront requires a default behavior to apply to the request. As such, we will
define the default behavior (see Figure 4-4) when we create our CloudFront distribution, and any additional
behaviors can be defined after the fact.

Figure 4-4.  Distribution Default Cache Behavior Settings

Chapter 4 ■ CloudFront and DNS Management

97

The primary differentiator between behaviors is the path pattern, the URL path syntax that matches the
request made by the viewer. For each path pattern you identify, you can configure a unique set of caching
rules. You can find a listing of some path pattern examples in Table 4-1.

Table 4-1.  A Few Examples of Valid Path Patterns

Path Pattern Explanation

/users/login Rules for /users/login only

/users/* Rules for all other requests inside the /users/ directory

*.jpg Rules for all .jpg files

Default(*) Default rules

You will notice that the first path pattern in Table 4-1 is the most specific, and the last pattern is the
most general. This is intentional, as we will be implementing cache behaviors in this same way. Patterns are
checked in descending order, starting at the top of the list. As such, the default of * must be the last rule.

This also means that the default path pattern is not negotiable. If, for example, your default were some
value such as /users/*, it would be possible for a request to not match any path patterns you’ve defined.
CloudFront would then not know how to fulfill the request and thus would be unable to generate a response
for the user. Therefore, you will see that you can’t change the Path Pattern, so we’ll proceed to the Viewer
Protocol Policy. At the behavior level, you can determine whether the viewer can access content via HTTP
and HTTPS or HTTPS only, or by redirecting HTTP requests to HTTPS. For now, we can leave the default
setting, HTTP and HTTPS.

Next, we choose the HTTP methods we want to allow, with the Allowed HTTP Methods setting. There
may be behaviors, or entire applications, which you want to be read-only. In these cases, you would only
allow GET, HEAD or GET, HEAD, OPTIONS. In our case, we have to decide whether we would prefer to allow
all methods and then restrict them in read-only routes or default to read-only and enable POST in specific
routes. Let’s go with the latter approach, as there are very few end points that are not read-only. We will
therefore select GET, HEAD.

The next field is Cached HTTP Methods. You may notice that no matter what HTTP methods you
allowed in the previous field, you cannot choose to cache PUT, POST, PATCH, or DELETE. This should make
some sense to you. If, for example, an HTTP POST request with a user’s login information generated an
authentication token for that specific user, we would not want the response to be cached by CloudFront. If
it were, there would be a risk of returning cached, and wrong, information to the next user. In any case, this
field updates based on your previous choice, so we can’t change the value there now.

Next, you must decide whether to enable Forward Headers as the request is received by CloudFront.
If you choose None, your caching will improve significantly—CloudFront will ignore the headers when
determining whether to serve a cached copy of the response or request a new copy from the app server.

If for some reason you needed to parse the HTTP request headers in your application, you could either
choose All or Whitelist. When you choose Whitelist, you can manually select the individual request headers
that are relevant to your application, which I will detail in the next section, but you can skip it if you
aren’t interested.

Chapter 4 ■ CloudFront and DNS Management

98

SCENARIO: WHITE-LISTING HEADERS

For the sake of argument, let’s pretend that we wanted to capture the web page that linked visitors
to our application. We can usually find this information in the Referrer HTTP header. If we were not
forwarding headers from CloudFront, we couldn’t access this information, so we will want to white-list
just that one specific header.

Choose Whitelist from the Forward Headers drop-down, and an interface similar to the figure below
will appear inline, with a scrolling list of request headers. You’ll notice that above the list of headers is a
text box in which you can enter a custom header in addition to selecting from the presets, in case you
wanted to make up your own request headers for use in an application (see the following illustration).

Scroll down the list of headers to find Referrer, and click Add >>. When you finish creating this
CloudFront distribution, the Referrer header will be dynamic in all requests that are run through
CloudFront, whereas the other headers will be static.

While scrolling through this list, you may notice a few headers that are unfamiliar:

•	 CloudFront-Forwarded-Proto

•	 CloudFront-Is-Mobile-Viewer

•	 CloudFront-Is-Desktop-Viewer

•	 CloudFront-Is-Tablet-Viewer

•	 CloudFront-Viewer-Country

These are headers that CloudFront adds to your request, based on its own internal logic. For instance,
three of the preceding headers help you determine whether the viewer is on a mobile, tablet, or
desktop device. AWS maintains its own internal list of devices and checks the User-Agent HTTP
header, comparing it against their list of devices and generating these headers accordingly. If you were
considering using your own device list to identify mobile users, CloudFront does this work for you! You
can find more documentation on these headers in the AWS blog here: http://aws.amazon.com/blogs/
aws/enhanced-cloudfront-customization/.

http://aws.amazon.com/blogs/aws/enhanced-cloudfront-customization/
http://aws.amazon.com/blogs/aws/enhanced-cloudfront-customization/

Chapter 4 ■ CloudFront and DNS Management

99

Now back to the main lesson…
We will choose None to forward no HTTP headers to our application. The next two fields, Object

Caching and Minimum TTL, are also coupled. We have to decide here whether we’re going to manage the
expiration of our cached response programmatically or whether we want to do so in CloudFront. In the
former case, we would choose Use Origin Cache Headers, and we would have to manually only set our
headers with ExpressJS. If you wanted a response to be cached for 60 seconds, you would add the following
line before sending a response back to the user:
 
res.set('Cache-Control', 'public, max-age=60'); // cache for up to 60 seconds
 

However, you can also use CloudFront to set this header, by choosing Customize for your Object
Caching and then setting your Minimum TTL to 60. The default max-age in CloudFront is 24 hours, for
reference. We will choose the latter route and set our custom TTL to 60 seconds.

Next, we have some additional properties that we can forward from CloudFront to our app server. First
is Forward Cookies. Once again, our options are None (for better caching), Whitelist, and All. We will choose
None for now, as we aren’t currently using cookies in our application.

Forward Query Strings is a simple Yes/No choice. We can choose No, because this is our default
behavior; however, we are guaranteed to require query strings in other behaviors we define. It is important
that any request that parses query strings have a corresponding CloudFront behavior that forwards them.

SCENARIO: FORWARDING QUERY STRINGS

Imagine that we are not forwarding query strings, and the /user route accepts a GET parameter
named id and returns information about the user based on this parameter. The first user logs into
our application and sends a request for /user?id=1. She receives the information she asked for, and
CloudFront creates a cached object for /user. Then a second user logs in and sends a request for
/user?id=2. CloudFront ignores the query string and looks for a cached object for /user. It finds the
response that was cached for /user?id=1 and sends it in response to the second user’s request.

See what happened? If the query string affects the output, and we aren’t forwarding them, then
/user?id=1 and /user?id=2 are cached as the same object, and the wrong responses get sent to
our users. The second user got the wrong data, because we didn’t forward query strings when we
should have!

Because we haven’t set up user authentication yet, we do not have to preserve cookies. Set Forward
Cookies to None for the time being. In the future, we will have to allow cookies for some behaviors.
Smooth Streaming can likewise be set to No. This is an HTTP protocol created by Microsoft that
optimizes streaming media for the client’s bandwidth in real time. Not much use for this in our
application, is there?

Last in this section is the option to Restrict Viewer Access using signed URLs. You can also set this to No.
You can enable this feature in order to serve private content via CloudFront. If you were to do this, you
would have to manage the signed URLs on your own, which is a significant undertaking in its own right.

Chapter 4 ■ CloudFront and DNS Management

100

Distribution Settings
Now that you’ve configured the default behavior for your distribution, it’s time to configure the distribution
itself (see Figure 4-5). First, we must select a Price Class, which, as usual, affects both the price and
performance of the service.

Price Class

Unlike EC2 or RDS, we do not select an instance with built-in computing power. Instead, the pricing is
based on both volume of data transferred and regions activated. For each region in which we’ve enabled
CloudFront, we pay for the rate of data transfer in (from CloudFront to the distribution origin) and out of the
distribution (to the Internet), as well as number of HTTP and HTTPS requests per region.

Confusing the matter further, the price for data transfer out (to the Internet) per region decreases as
the data volume increases. The price tiers are enterprise-scale, so the first price tier includes up to 10TB per
month. For the pricing per number of requests, the rate is per 10,000. You can find a complete breakdown of
the current rates at: http://aws.amazon.com/cloudfront/pricing/.

To summarize the pricing with a brief example, if you only enabled CloudFront for the United States
and Europe, your pricing formula would be as follows:

US Data In + Europe Data In + US Data Out + Europe Data Out
+ (US HTTP Requests/10,000) + (US HTTPS Requests/10,000)
+ (Europe HTTP Requests/10,000) + (Europe HTTPS Requests/10,000)

Despite the complexity of the pricing, your CloudFront bill is likely to be an order of magnitude less
than your EC2 or RDS bill. If you only expect users in the United States and Europe, you could limit your
CloudFront distribution to those regions. You can also limit distribution to the United States, Europe, and
Asia. But we will go ahead and select Use All Edge Locations.

Alternate Domain Names

In this field, you can enter up to 100 CNAMEs from which your CloudFront distribution can be accessed.
This is the first place you will use the domain you’re using for your application. You will enter it here,
including the www but not http://.

SSL Certificate

If we had an SSL certificate, we would configure it here. We will skip this part for now, leaving Default
CloudFront Certificate selected.

Figure 4-5.  CloudFront Distribution Settings

http://aws.amazon.com/cloudfront/pricing/

Chapter 4 ■ CloudFront and DNS Management

101

Default Root Object

You can use this field to specify the path to an index file when a viewer enters only the domain into the
browser. In our case, you will recall that we have set up this same function in ExpressJS. Our Hello World
page is served when users request the “/” path. If, for example, we were using CloudFront to serve a plain
HTML file, we would set index.html as the default root object. As such, we don’t have to use this feature.

The next several fields pertain to generating logs for CloudFront. We will be exploring logs further in
a later lesson. We will leave Logging set to Off for now. There’s also a Comment field, which is purely for
internal use. You can leave a note for yourself/your team here if need be. Last, Distribution State is the
on/off switch for the entire distribution. Leave the value set to Enabled and review your choices, to make
sure everything is configured correctly.

Distribution Settings—Summary
Origin Settings
Origin Domain Name photoalbums-elb-[id].us-east-1.elb.amazonaws.com
Origin ID ELB-photoalbums-elb-[id]
Origin Protocol Policy Match Viewer
HTTP Port 80
HTTPS Port 443
 
Default Cache Behavior Settings
Viewer Protocol Policy HTTP & HTTPS
Allowed HTTP Methods GET, HEAD
Forward Headers None
Object Caching Use Origin Cache Headers
Forward Cookies None
Forward Query String No
Smooth Streaming No
Restrict Viewer Access No
 
Distribution Settings
Price Class Use All Edge Locations
Alternate Domain Names www.[yourdomain].com
SSL Certificate Default CloudFront Certificate
Default Root Object (blank)
Logging Off
Comment (blank)
Distribution State Enabled
 

Finally, click Create Distribution. You will be returned to the CloudFront Distributions view, and
your distribution will appear in the table with a status of In Progress. It will take several minutes for your
distribution to be created. However, you can still access the distribution while it’s being created.

Chapter 4 ■ CloudFront and DNS Management

102

Figure 4-7.  Distribution origins

Figure 4-6.  Distribution detail view

You’ll notice that the organization of CloudFront is a little different from the other services we’ve used.
In the left-hand column, you will see that the secondary navigation is primarily for accessing metrics and
reports. This conflicts a bit with the paradigm established in the OpsWorks, IAM, and EC2 dashboards,
where the left-hand navigation allowed you to drill down to subsections of the service.

In CloudFront, the distribution subsections are accessed in a tabbed view in the main content area.
You begin in the General tab (Figure 4-7), where you see the distribution settings you just created. Note
the Distribution Status, which can tell you whether your most recent changes to the distribution have
propagated (deployed), or are still taking effect (in progress). The Origins tab lists all the origins for this
distribution. The Behaviors tab allows you to define behaviors for viewer requests, based on the URL path of
the request. Error Pages allow you to present viewers with custom error pages and HTTP status codes. The
Restrictions tab allows you to create geographic restrictions on accessing your content, and you can use the
Invalidations tab to clear the CloudFront cache manually.

Distribution Detail View
Click the distribution’s ID to proceed to the Distribution detail view. It should look like Figure 4-6.

Chapter 4 ■ CloudFront and DNS Management

103

Origins
Click the Origins tab, shown in Figure 4-7. In the Origins table, you’ll recognize that you created a single
origin when you created this distribution. Your only origin right now is the Photoalbums load balancer. This
means that requests to the CloudFront instance can only be forwarded to the load balancer, and no other
source. In the future, we will be adding a second origin here. While an origin can be included in multiple
distributions, you will have to create a record for the origin in each distribution.

Note■■   You may be realizing now that there is a lot of potential here. You could create multiple
OpsWorks stacks, each with its own load balancer, and serve content from multiple application stacks under a
single domain!

Behaviors
The next tab, shown in Figure 4-8, shows the Behaviors for this distribution. When you created your
distribution, you also created the default behavior. Each distribution must always have at least one behavior.
You’ll notice that if you select the default behavior, you can edit it, but you cannot delete it.

Figure 4-8.  Behaviors

If you recall the settings we chose for the default behavior, you will remember that the POST HTTP
method is not allowed. However, we do need POST for user registration, login/logout, and for photo and
album creation. As such, we will identify and create additional behaviors on a case-by-case basis. We’re
immediately confronted with a choice: should we create a behavior for every individual route that allows
POST? Or should we make group behaviors that are more permissive and less specific? Let’s start with
/users/. Let’s revisit the routes we’ve defined in the /users/* path.
 
GET /users/
POST /users/login
POST /users/logout
POST /users/register
GET /users/user/:user
 

We know that we must allow POST for /users/login, /users/register, and /users/logout. It seems, then,
that we could consider logically grouping these together in a single behavior with the path pattern of /users/*.
But there are other rules to consider when we design our behaviors. Do we have to accept query strings with any
of these paths? There are only two GET routes in /users/, and neither of them accepts GET parameters. And what
about cookies? We haven’t built our authentication yet, but it seems safe to say that we could need them.

Chapter 4 ■ CloudFront and DNS Management

104

It looks like the routes here have enough in common to justify creating a behavior. Click the Create
Behavior button at the top left. You will see a Create Behavior view that should look familiar. We saw this
view nested in the larger Create Distribution view.

In the Path Pattern field, input /users/*, to catch all requests inside the /users/ path. Just so we’re
clear, this does not just include URLs such as /users/login; it will intercept requests of any file type. If your
viewer requests /users/profile.jpg or /users/profile.txt, it will be processed by this behavior all the
same, unless an earlier behavior in the list catches it first.

Change the Allowed HTTP Methods to GET, HEAD, OPTIONS, PUT, POST, PATCH, DELETE. Then,
change Forward Cookies to All. You can leave the rest of the settings at their default values. Make sure
everything looks like the selections in Figure 4-9, then click Create.

Figure 4-9.  Create behavior for /users/*

Chapter 4 ■ CloudFront and DNS Management

105

Next, we will go through the same process with the /albums/ routes. Albums functionality is pretty
limited and includes the following:
 
GET /albums/id/:albumID
POST /albums/upload
POST /albums/delete
 

Seems pretty similar to /users/. Once again, there is no need to forward query strings, but we will want
to forward cookies for later. Click Create Behavior again, and in the Path Pattern field, enter /albums/*.
Change the Allowed HTTP Methods to GET, HEAD, OPTIONS, PUT, POST, PATCH, DELETE. Then, change
Forward Cookies to All. You can leave the rest of the settings at their default values. Make sure everything
looks correct and click Create.

The /photos/ route is likewise pretty similar to /users/. The routes defined in /photos/ are as follows:
 
GET /photos/id/:photoID
POST / photos /upload
POST / photos /delete
 

Let’s create this behavior with the same rules as well. Once again, click Create Behavior and, in the
Path Pattern field, enter /photos/*. Change the Allowed HTTP Methods to GET, HEAD, OPTIONS, PUT,
POST, PATCH, DELETE. Then, change Forward Cookies to All. You can leave the rest of the settings at their
default values. Make sure everything looks correct and click Create.

If you look at the Behaviors table now, you’ll notice that you can conveniently see the Origin, Viewer
Protocol Policy, and Forwarded Query Strings values in the table, simply to make it easier to manage
your behaviors.

Take another look at the Behaviors table, shown in Figure 4-10. You will see that even though the default
behavior was created first, the rest of the behaviors appear above it in the table, in the order that they were
created. This is because when CloudFront receives an HTTP request, the request will be checked against
each behavior in descending order from the top of the list. The Precedence field, numbered upward from
1, indicates the order in which the behaviors are compared. The Default behavior, being the most general,
should be the last behavior against which a request is compared. Currently, there is no overlap between
our other behaviors, so their ordering doesn’t matter too much. If there were, you would want the more
specific paths at the top, with a higher precedence, and the more general ones at the bottom. The behavior
precedence can be altered by selecting behaviors, clicking Move Up or Move Down, and Save.

Figure 4-10.  Updated Behaviors table

Chapter 4 ■ CloudFront and DNS Management

106

Behavior with Query Strings
Let’s go ahead and add a behavior that allows query strings. But first, we have to actually create the route
in our application. Before we add the behavior, we will finally return to the code editor and add some new
functionality to the Photoalbums app. We haven’t spent much time talking about larger goals for the sample
application, as it is admittedly a bare-bones app. But we can try to add minor features that would be useful
for this app and for web app development in general.

One common use of query strings (or GET parameters) is for searching or filtering content by one or
more parameters. It would be useful to add a basic search function to photos, so users can search photos
globally for matching text in the caption field. Open /routes/photos.js and find the space between the
/id/:id route and /upload route. Paste the code from Listing 4-1 here.

Listing 4-1.  The /photos/search Route

/* GET photo search */
router.get('/search', function(req, res) {
 if(req.param('query')){
 var params = {
 query : req.param('query')
 }
 model.getPhotosSearch(params, function(err, obj){
 if(err){
 res.status(400).send({error: 'Invalid photo search'});
 } else {
 res.send(obj);
 }
 });
 } else {
 res.status(400).send({error: 'No search term found'});
 }
});
 

As you can see, this route simply accepts a string in the query parameter and passes it to
model.getPhotosSearch. If the query is missing, an error is returned instead. The structure of the controller
logic is similar to that of the other routes we’ve created. We don’t directly pass the GET parameters into the
model. Instead, we construct a params object on which we could perform any additional operations we
needed. For example, if we wanted to filter profanity from the search queries, we could easily plug in that
functionality with this pattern.

Next, we have to add the getPhotosSearch function to the model. Navigate to /lib/models/model-
photos.js. Beneath the getPhotosByAlbumID function, paste the code from Listing 4-2.

Listing 4-2.  getPhotosSearch Function in model-photos.js

function getPhotosSearch(params, callback){
 var query = 'SELECT photoID, caption, albumID, userID FROM photos WHERE caption LIKE "%' +
 params.query + '%"';
 connection.query(query, function(err, rows, fields){
 if(err){
 callback(err);
 } else {

Chapter 4 ■ CloudFront and DNS Management

107

 if(rows.length > 0){
 callback(null, rows);
 } else {
 callback(null, []);
 }
 }
 });
}
 

This function also follows the same pattern as the other model functions we’ve created. We select
several photo fields and use the SQL operator LIKE to filter the photos by the value of caption. We run the
query and return the results to the controller. We have to be sure to make this function public, by adding the
following line to the bottom of the file:
 
exports.getPhotosSearch = getPhotosSearch;

Deploy Code Changes
We’re ready to push our code changes to our application stack. You could also test locally first, if you still
have the local database running. Commit your changes to your code repository. In the AWS Console,
navigate back to OpsWorks. Click the Photoalbums stack. Open the Navigation menu and click Apps. Click
the deploy button to return to the Deploy App view. In the Comment field, add a note to the effect of “added
photo search method,” then click Deploy.

Add New Behavior
Navigate back to CloudFront and click your distribution. Open the Behaviors tab and click Create
Distribution again. This time, we’re creating a behavior for a specific path, so we’ll enter it directly into
the Path Pattern: /photos/search. This time, we’ll leave Allowed HTTP Methods set to the default of
GET, HEAD. Likewise, Forward Cookies can be set to None, as this is a public method that requires no
authentication. Set Forward Query Strings to Yes and click Create.

When you’re returned to the Behaviors table, you’ll see that the new behavior is the fourth in the list,
with a precedence of 4. This won’t work, as requests will get caught by the /photos/* behavior before they
will reach this one. Select the new behavior and click Move Up, then click Save. Your behaviors table should
now look like Figure 4-11.

Figure 4-11.  Behaviors table with new behavior

Chapter 4 ■ CloudFront and DNS Management

108

With our code deployed and our behavior in place, we should be ready to test. The first time we tested
our code hosted on AWS, we accessed the EC2 instance directly. The next test, we ran our requests at the
load balancer’s URL. This time, we’ve added another intermediary layer between our instances and the user,
and we’re going to use the CloudFront URL instead.

Return to the General tab and locate the Domain Name. It should be formatted like [unique-
identifier].cloudfront.net. Open this URL in your browser, and you should see the Hello World page.
Now, let’s create a few photos to make sure our behaviors are working correctly. Before we can upload a
photo, we need both a userID and an albumID. If you created a user before, you can get his/her ID at
/user/:username (but most likely the userID will be 1). If you haven’t, then open your REST client and make
a POST request to /users/register with the following parameters: username, email, and password.

When you have your userID, create an album by making a POST to /albums/upload with parameters for
userID and title. You should receive the albumID in the response to your request. Next, we can create the
photo objects (yes, there are still no file uploads attached to them). Make a POST request to /photos/upload
with your userID, albumID, and the caption “Hello World.” If you get an ID in response, your photo was
created successfully (of course, you could also tell that from the status code 200). In order to test search, we
will want to have a few photos. Make another request with the caption “Hello Chicago,” and then a third with
the caption “Goodbye New York.”

By now we have three photos, which is enough to test a few searches. In your REST client or browser, make
a request to the path /photos/search?query=Hello. You should see two photo entries: “Hello World” and “Hello
Chicago.” Change your request to /photos/search?query=Hello%20World, and you should only see one entry.

Caching
Now it’s time to see CloudFront’s caching in action. Make another POST request to /photos/upload, this
time with the caption “Hello London.” Then, make another GET request to /photos/search?query=Hello.
The response should be lightning fast, but if you look closely at the JSON, you will not see your most recent
photo, “Hello London.” This is because after the first request, CloudFront is now storing a cached object for
the address /photos/search?query=Hello. It will continue to send the same response to all requests for this
URL, until the object expires. But when does it expire?

Each object stored in the cache is linked to a behavior, and its expiration is determined by the value of
several fields in the corresponding behavior, shown in Figure 4-12.

Figure 4-12.  Important CloudFront behavior fields when determining object caching

Chapter 4 ■ CloudFront and DNS Management

109

There are two basic factors to determining how long an object stays in the cache: Minimum TTL and the
HTTP request headers. As you can see in Figure 4-12, the behavior for /photos/search employs Use Origin
Cache Headers to determine the caching of the object. With this setting, we must control the caching of our
responses programmatically. If we change the setting to Customize, we can specify the number of seconds
that an object will stay in the cache, in which case CloudFront will override any Cache-Control:max-age
headers sent by our application. However, CloudFront has a default expiration of 24 hours and will not cache
an object for a shorter amount of time without some effort on our part.

FORWARDED QUERY STRINGS

It’s important to note how the other settings can impact the caching as well. Because we are forwarding
query strings, this means that they are factored into the way objects are stored in CloudFront. This
means that /photos/search?query=hello and /photos/search?query=goodbye are stored as distinct
objects in the cache. If they weren’t, both searches could yield the same result.

One easy way to test this is to force your results to refresh by adding a unique query string to the
request. For instance, /photos/search?query=hello&time=4815162332 is different from /photos/
search?query=hello&time=4211138 and will force CloudFront to retrieve a new response for the origin.

You should see in your search request the header shown in the following code:
 
Request Header
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
Accept-Encoding: gzip,deflate,sdch
Accept-Language: en-US,en;q=0.8
Cache-Control: max-age=0
Connection: keep-alive
Host: d23xpp2aiwzqtf.cloudfront.net
If-None-Match: W/"fe-4203691681"
 
Response Header
Connection: keep-alive
Date: Mon, 24 Nov 2014 23:51:35 GMT
ETag: W/"180-2935506378"
X-Powered-By: Express
Age: 1196 X-Cache: Hit from cloudfront
Via: 1.1 f519cbbbbf1657343dde8ed4d32a9966.cloudfront.net (CloudFront)
X-Amz-Cf-Id: l1UWAownAiSOIHoV0XGuw5dHo3Rt_9P0Cx5eqCL-Dqus4BijxF-oWg== 

As you can see, the Cache-Control header in the request is set to max-age=0, but this header is
conspicuously absent from the response. While you might think this means that CloudFront has to refresh
the object, in practice, this is not the case. As stated previously, the default Minimum TTL of 0 actually
means 24 hours, and without the origin overriding this directive, the Minimum TTL takes precedence. In
our current scenario, the browser will only cache the response for 0 seconds, but CloudFront will retain the
object in its cache for 24 hours.

With our /photos/search behavior, we face the age-old question of how long to cache our response. On
the one hand, caching our results will reduce the workload for our application stack, as the requests can be
processed completely by CloudFront without ever burdening the application layer or database. On the other
hand, user or client expectations for an enterprise app often mean we must provide near-instantaneous
results. Our code change is only going to take a few minutes to make and deploy; however, first, we have to
remove our cached objects from CloudFront.

Chapter 4 ■ CloudFront and DNS Management

110

Invalidations
Unfortunately, we can’t simply deploy our code and test it again. There are already objects in CloudFront’s
cache for the URLs in question, so CloudFront will continue to serve a response with the old response
headers. This brings us to another feature of CloudFront distributions: invalidations.

An invalidation is essentially a command to remove an object from CloudFront edge caches. You can’t
simply clear your cache in-browser, as the invalidation has to be sent to CloudFront caches globally. Because
CloudFront caches your content in data centers around the globe, it will take a few moments to undo that.

At first glance, you might think, “Why can’t I just programmatically invalidate my caches on the fly when
content is updated but otherwise use maximum caching on my responses?” In theory, the concept makes
sense: store cached copies of all your responses in CloudFront and generate new ones only when the content
of the responses has changed. While it sounds nice, unfortunately, CloudFront invalidations are far from
instantaneous. Although you could invalidate your caches programmatically using the AWS SDK (indeed,
everything we do in the console can be done programmatically), you’ll see in a moment that there is a
significant delay between when you create an invalidation and when the operation is completed.

In CloudFront, open your distribution again and click the Invalidations tab. You will see an empty table
of your invalidations. Click the Create Invalidation button at the top, which will open a modal text area,
shown in Figure 4-13. Add the two paths you wish to invalidate, separated by a line break, as follows:
 
/albums/id/1
/photos/search?query=Hello
 

Figure 4-13.  Creating a CloudFront invalidation

Chapter 4 ■ CloudFront and DNS Management

111

Go ahead and click the Invalidate button. You will see your invalidation appear in the table, with a
status of InProgress. It will take a few minutes for the change to take effect, at which point the status will
change to Completed. You’ll also notice that each invalidation has a unique ID and a timestamp. Now we
can make our code changes, and we’ll be ready to test as soon as the code is deployed. Note that we only
invalidated the cache before pushing our fix to save some time, because no one else is using the app. In a
production setting, you should deploy your changes before invalidating the cache.

Controlling Caching
Let’s make two changes, reflecting two different scenarios. First, we want photo search results to be instant.
Let’s instruct CloudFront to never cache the results. Of course, this is going to be a problem down the road
with a large user base, but at least we will know how to do it. Second, we will use the Expires request header
to make a request route expire at a specific interval.

In our first scenario, we are going to configure our request headers such that neither the browser nor
CloudFront will ever attempt to cache the response. In your code editor, navigate to /routes/photos.js.
Locate the handler for the /search rout, and paste the following line at the beginning of the function:
 
res.header('Cache-Control', 'no-cache, no-store');
 

This should be straightforward, as we’re simply passing a key-value pair to the response header using
ExpressJS syntax. It belongs at the beginning of the function, so as to avoid copy-pasting. To recap, the
function should look like Listing 4-3.

Listing 4-3.  /photos/search with Cache-Control Header

router.get('/search', function(req, res) {
 res.header('Cache-Control', 'no-cache, no-store');
 if(req.param('query')){
 var params = {
 query : req.param('query')
 }
 model.getPhotosSearch(params, function(err, obj){
 if(err){
 res.status(400).send({error: 'Invalid photo search'});
 } else {
 res.send(obj);
 }
 });
 } else {
 res.status(400).send({error: 'No search term found'});
 }
});
 

Chapter 4 ■ CloudFront and DNS Management

112

Next, we’ll add our second use case. Let’s say that the response when requesting an album by ID can be
cached by CloudFront for ten seconds. This will keep the response up to date without taxing the servers as
much as disabling the cache entirely. Open /routes/albums.js and find the handler for the /id/:id route.
At the top of the function, add the following two rows:.
 
res.header("Cache-Control", "public, max-age=10");
res.header("Expires", new Date(Date.now() + 10).toUTCString());
 

Your handler should look like Listing 4-4.

Listing 4-4.  /albums/id/:albumID with Cache-Control Header

router.get('/id/:albumID', function(req, res) {
 res.header("Cache-Control", "public, max-age=10");
 res.header("Expires", new Date(Date.now() + 10000).toUTCString());
 if(req.param('albumID')){
 var params = {
 albumID : req.param('albumID')
 }
 model.getAlbumByID(params, function(err, obj){
 if(err){
 res.status(400).send({error: 'Invalid album ID'});
 } else {
 res.send(obj);
 }
 });
 } else {
 res.status(400).send({error: 'Invalid album ID'});
 }
});
 

The response takes the current date and adds ten seconds (in milliseconds) to it, then sets the header.
One thing to note is that this ten seconds will not be exact, as it will still take time to retrieve the data from
the model before sending the response. If you want it to be as close to perfect as possible, set the header in
the callback for model.getAlbumByID instead.

You might be wondering why the header is set at the top instead, then. There are other possible
responses, such as the 400 error sent when the album ID is missing from the URL, or when no album is
found for the provided ID, the latter of which could be caused by some sort of database error. It is possible
for CloudFront to cache the error response the user would see, resulting in this error being shown to other
users, perhaps incorrectly. In this scenario, CloudFront could backfire by prolonging errors on the client side
unnecessarily. As such, it’s best to make all responses include the Expires header. You could set the header
each time a response is sent from this route, but it would just make the listing look messier. After all, what
good is a code sample if it’s too cluttered?

Anyway, go ahead and commit your changes to your code repository. In the AWS Console, navigate
back to OpsWorks. Click the Photoalbums stack. Open the Navigation menu, and click Apps. Click the
deploy button to return to the Deploy App view. In the Comment field, add a note to the effect of “added
Cache-Control headers,” then click Deploy. Give OpsWorks a few minutes to push your code.

Testing CloudFront Caching
Once deployment is complete, let’s test the albums route first. Make a GET request to /albums/id/1 in your
browser (making sure to clear your local cache) or REST client. Take a look at the response headers. They
should look similar to Listing 4-5.

Chapter 4 ■ CloudFront and DNS Management

113

Listing 4-5.  New and Improved, Ten-Second Cache Response Headers

Response Header
Cache-Control:public, max-age=10
Connection:keep-alive
Content-Length:631
Content-Type:application/json; charset=utf-8
Date:Wed, 26 Nov 2014 01:29:02 GMT
ETag:W/"277-3646801943"
Expires:Wed, 26 Nov 2014 01:29:02 GMT
Via:1.1 a2c541774483a4b9c153c3cb7c7a7753.cloudfront.net (CloudFront)
X-Amz-Cf-Id:pcxqj03svkFItzzQ3KWi4OK5jJf4eGXs91PCQLjv2liWf9f7iP-KaQ==
X-Cache:Miss from cloudfront
X-Powered-By:Express
 

The important parts of the response header are bolded. First, you can see that the Cache-Control
header we added appears verbatim. The Expires header should appear roughly ten seconds after the current
time, accommodating for differences in time zones. You’ll also see a header we didn’t add, X-Cache. The first
time, this might read “Miss from cloudfront.” Make a couple more requests in rapid succession, and you’ll
see “Hit from cloudfront.” This header informs you whether CloudFront provided a cached response (a hit)
or had to retrieve a new response from the origin (a miss).

However, your browser or REST client may also be conforming to the caching headers, caching the
X-Cache header, thus you might not see the expected result. If this is the case, you’ll have to test using cURL.
Open your command-line interface (Terminal), and type the following command:
 
curl –I http://[cloudfront-id].cloudfront.net/albums/id/1
 

If you get a response header with a miss from CloudFront, run the command a few more times. You
should receive a hit on the second or third request.

You will also notice the X-Amz-Cf-Id header. You may have deduced that this is a CloudFront ID for the
request. If you enable logging in CloudFront, this is the unique ID for each request received by CloudFront. If
you ever have to seek support from AWS in debugging CloudFront issues, it may ask you for the X-Amz-Cf-Id
requests with which you are experiencing issues.

Next, let’s test our no-caching solution for photo searching. To demonstrate this, we will do a search,
upload another photo, and then run the search again. First, search for photos with the words “New York,” by
making a request to /photos/search?query=New%20York. You should see something similar to Listing 4-6.

Listing 4-6.  No-Cache Response Headers and Body

Response Header
Cache-Control:no-cache, no-store
Connection:keep-alive
Content-Length:67
Content-Type:application/json; charset=utf-8
Date:Wed, 26 Nov 2014 04:23:44 GMT
ETag:W/"43-3955827999"
Via:1.1 b05dafe95c8baade280459c121e622be.cloudfront.net (CloudFront)
X-Amz-Cf-Id:zhNlH4MXzU9G7Mrb5tVgBq8qtMLlW3XONjZsmEZOmQ5MhXmCqdJxAg==
X-Cache:Miss from cloudfront
X-Powered-By:Express
 
Response Body
[{"photoID":3,"caption":"Goodbye New York","albumID":1,"userID":1}]
 

Chapter 4 ■ CloudFront and DNS Management

114

Once again, the important headers are bolded. You can see our Cache-Control header at the top. Our
first search got a Miss from cloudfront in the X-Cache header. This makes sense, as this should be the first
search we’ve run since we invalidated the object in our cache. Now let’s create another photo and search
again to make sure we get the results we expect.

Make a new POST to /photos/upload with the same album and user IDs as before and the caption
“Hello New York.” When you get a 200 response back, run the search query again. Your response should look
like Listing 4-7, with the new photo showing up almost instantly in the next search.

Listing 4-7.  Search Results Showing Up Instantly in the Next Request

Response Header
Cache-Control:no-cache, no-store
Connection:keep-alive
Content-Length:132
Content-Type:application/json; charset=utf-8
Date:Wed, 26 Nov 2014 04:35:58 GMT
ETag:W/"84-3303063004"
Via:1.1 2b0986af7f8d32d3d4b4cf9330702abf.cloudfront.net (CloudFront)
X-Amz-Cf-Id:KTpgTxO9XBebAzuS0MSP1f2EkrcRGfqijMFz3Fc6xGqI93TPXsnldw==
X-Cache:RefreshHit from cloudfront
X-Powered-By:Express
 
Response Body
[
 {
 "photoID":3,
 "caption":"Goodbye New York",
 "albumID":1,
 "userID":1
 },
 {
 "photoID":10,
 "caption":"Hello New York",
 "albumID":1,"userID":1
 }
]
 

This time, the value of the X-Cache header is RefreshHit from cloudfront. This means that CloudFront
recognized that it needed to refresh the request, and it did so. This is exactly what we wanted to happen!

The difference between these two scenarios may be confusing, owing to the browser’s behavior, as both
CloudFront and the browser respond to the same HTTP response headers. With the /albums/id/1 request,
both CloudFront and the browser were responding to the header instructions to cache the response, so more
often than not, the browser would cache the entire response, including the response headers. You can
validate this by keeping an eye on the X-Amz-Cf-Id header and watching for it to change.

In the case of the /photos/search response, the browser obeys the Cache-Control: no-cache, no-store
header, so a new request is always made to CloudFront, which in turn response to the header by always
forwarding the request to the origin.

While there are a number of other possible scenarios, we have covered the two primary caching policies
you will generate programmatically from your origin. In case you find yourself having to accommodate some
unusual scenario beyond what was demonstrated here, AWS provides a table of all possible use cases for
origin response headers at http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/
Expiration.html.

http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/Expiration.html
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/Expiration.html

Chapter 4 ■ CloudFront and DNS Management

115

Cache Statistics
We’ve run some tests to see when CloudFront is serving our content and when the origin is. Fortunately,
it’s easy to get a statistical breakdown of how our objects are behaving. In the left-hand navigation, under
the Reports & Analysis header, you will see a number of reports that paint a picture of CloudFront’s
performance. First, click Cache Statistics, which will present you with a series of graphs. At the top, you’ll
see a series of fields that you can use to filter all of the graphs on the page. Choose a Start Date and End Date
that includes the range of dates you’ve been working on in this chapter. Change the Web Distribution to
your distribution, and click Update.

The first graph, Total Requests, is self-explanatory. The second graph, Percentage of Viewer Requests
by Result Type, is shown in Figure 4-14. Here you can see your requests broken down by Hits, Misses, and
Errors. Interestingly, RefreshHits are not shown in the chart. Still, the percentage of requests that are Hits is a
good metric to watch. This tells you essentially when CloudFront is saving your application from doing work,
because every hit is a request that was handled by CloudFront. As you can see in Figure 4-14, the number of
hits drastically decreased when the new caching rules were applied.

Figure 4-14.  Percentage of Viewer Requests by Result Type

Feel free to review the other graphs at your own pace. We will return to the CloudFront reports later,
when discussing ways to monitor the health of our application stack. Next, click Popular Objects in the
CloudFront navigation. Once again, you will see a view with filtering tools at the top. Choose a date range
that corresponds with the days you’ve worked on this chapter and click Update. You should see a table
similar to that in Figure 4-15.

Chapter 4 ■ CloudFront and DNS Management

116

This is a handy breakdown, as you can identify where exactly users are getting hits and misses and how
much output the application is generating that could potentially be generated by CloudFront instead.

You can also see which requests are received the most, if you’re looking for a starting point to either
optimize your code or improve the effectiveness of CloudFront. Equally important, you can see which
objects are responding with 4XX or 5XX errors, which is invaluable diagnostic information.

The next section, Usage Reports, is also full of useful metrics for measuring your application’s traffic.
Feel free to explore it as well, but there’s nothing critical to this lesson. I will be discussing Monitoring and
Alarming in Chapter 7, so you don’t need to review it now.

GEO-RESTRICTIONS

Another feature that may be helpful at the enterprise level is geo-restriction, or blocking traffic
to/from specific parts of the world. While you may have had to perform this blocking at the software
level previously, or relied on network administrators to do so, with CloudFront, you can use this feature
quite easily.

Let’s pretend that we only want our application to be available in the United States. Return to the
CloudFront dashboard and select your distribution again. Click the Restrictions tab, which will take you
to a table of restrictions. The user interface here is a little funny. The only actual restriction in the table
is Geo-Restriction. Click the Edit button above the table. You will be confronted with a single setting:
Enable Geo-Restriction. Hmmm….Let’s choose Yes.

There are two means of enabling geo-restriction: White listing and blacklisting. In short, you can either
choose which countries to allow (white list), or choose which countries to disallow (blacklist). Because
we only want to allow one country, it would be more logical to Whitelist the United States than to
blacklist every other country. Select US -- United States and click Add >> (see following illustration),
then click Yes, Edit.

Figure 4-15.  Popular objects in CloudFront distribution

Chapter 4 ■ CloudFront and DNS Management

117

You will be returned to the Restrictions tab in the distribution view, where you will see that Geo-Restriction
has a status of Enabled and Type set to Whitelist. Once again, your distribution will have a status of
InProgress while the changes take effect.

Note■■   If you want to test geo-restrictions, you could instead blacklist your current country and attempt to
access your app via the CloudFront URL.

Now that I’ve covered the basic features and use case of CloudFront, it’s time to move on to the final
service we have to configure before your application is hosted at a domain name. Return to the AWS Console
and select Route 53.

Route 53
How do we point our domain to the application? If you’ve worked with DNS before, you may have noticed
several locations at which we could point our domain: the public IP for one of our instances, the URL of our
load balancer, or the URL of our CloudFront instance. There would be a few limitations with any of these
approaches.

First and foremost, we want to adhere to the principles set out in Chapter 1: scalability and elasticity.
Obviously, the IP addresses of our EC2 instances are unreliable, and if we add new instances but our domain
is pointing to only a single instance, we cannot scale properly. A DNS change can take up to 72 hours to
propagate. Right now, we can make any number of changes to our configuration and see the results in
seconds or minutes. We want to preserve this ability regardless of what goes wrong. If we have to launch
a clone of our application stack for any reason, the load balancer address will change. We can’t say with
certainty that our CloudFront URL is never going to change either. It just might, and we want to be prepared!

For best results, we will use Route 53 to configure our DNS. We will configure our domain to point to
AWS nameservers, and then we can add our CNAMES, A records, MX records, etc., in Route 53. We can use
the www and app subdomains for different purposes, or we could make www and dev subdomains point to the
respective production and development application stacks. In this lesson, we’re simply going to learn about
the service and set up our application stack at www.[your-domain].com. Let’s begin!

We’re going to assume that you already have reserved a domain that you want to use, and you know
how to use the web portal for your domain registrar. If you don’t have a domain yet, you can actually register
one in Route 53 by clicking Registered Domains in the left-hand navigation and following the steps from
there. Our focus, however, will be working with existing domains.

Chapter 4 ■ CloudFront and DNS Management

118

From the Route 53 dashboard, you will see your Resources right at the top: 0 hosted zones, 0 health
checks, and 0 domains. The set of records for a domain is collected under the entity known as a hosted zone.
This is distinct from domains, which are simply the domains that you have registered from Route 53.

Click Hosted Zones at the top left and click Create Hosted Zone at the top. Instead of taking you
to a new view or presenting a modal pop-up, this time, the creation tool will appear in a container on the
right-hand side of the screen (see, each AWS service has a subtly unique interface). In the Domain Name
field, enter your domain name without the http:// or www. Enter a Comment labeling the hosted zone and
leave the Type field set to Public Hosted Zone (see Figure 4-16). Click Create at the bottom of the view.

Your hosted zone will appear in the table shortly (you may have to click the refresh button at the top
right). Select it and click Go To Record Sets.

Figure 4-16.  Create Hosted Zone in Route 53

Figure 4-17.  Record sets

The Record Sets view, shown in Figure 4-17, is a two-panel layout with your hosted zone records on
the left and the detail/editing view on the right. Once you’ve created a hosted zone, AWS will automatically
generate four AWS nameserver addresses as the value of a record with the type NS (nameserver). Go back
to your domain registrar and change the nameservers for your domain to these addresses, in order. As you
may know, it can take up to 72 hours for DNS changes to propagate. You’ll also see an SOA, start of authority,
record. You most likely won’t have to touch it, but it’s a necessary part of domain registration.

Chapter 4 ■ CloudFront and DNS Management

119

We’ll assume that you’re ready to press onward while your domain change is propagating. The next task
is to route requests from your domain to CloudFront. To do this, we’ll create an A record and point it to our
www subdomain.

At the top of the screen, click Create Record Set. You’ll see that the panel on the right side of the screen
will update with the interface elements you need in order to create a record set. In the Name field, you enter
the subdomain for which you want to create a record. Enter www into the field. The Type field should be set
to A – IPv4 address, so only change the value of the field if that’s not the case.

The next field, entitled Alias, has a number of secondary options attached to it. The term “alias” is
shorthand for “alias for an AWS resource.” You’re really selecting whether you want to link directly to an AWS
resource you’ve created or if you want to manually configure it. If you select No, then you can set the TTL
and enter an IP address directly into the Value field. Select Yes, and you will see the interface changes. Now
you’re prompted to enter the target name for an Alias Target. If you click into the field, a drop-down will
appear listing all of your eligible AWS resources, as in Figure 4-18. You should see both your load balancer
and your CloudFront distribution.

Figure 4-18.  Selecting your record set alias target

Select your CloudFront distribution from the drop-down and you’ll see a little yellow warning
icon appear next to the field. This icon is to remind you to set your alternate domain in the CloudFront
distribution. Fortunately, we did this earlier, so we don’t need to worry about it.

Next, is the Routing Policy for our subdomain. We’re going to leave it set to Simple, but it’s good to know
what you can do with this policy. By taking advantage of the routing policy, you can create multiple records for the
same subdomain that work in unison to route users to the best possible AWS resource. While tutorials on these
are outside the scope of the lesson, I will discuss a couple of situations in which routing policies could be useful.

Imagine a scenario in which, instead of using CloudFront, you wanted to set up an entire application stack
in each AWS region. First, you would clone your application stack and configure the different stacks for different
regions. Then, you would head over to Route 53 and create a www record set with Routing Policy: Geolocation.
You would select Default, and create your record set. You could then create a www record for each continent,

Chapter 4 ■ CloudFront and DNS Management

120

giving you eight www records in total. You would then point each respective stack to the nearest load balancer to
that continent (there would be some duplicates, as Antarctica, for one, does not have any AWS data centers).

Under another scenario, imagine you simply wanted to have a backup application stack ready to
handle requests when the main stack is not performing well. First, you would clone your application stack
in OpsWorks. Then, you would create two record sets with Routing Policy: Failover. One record set would
be Failover Record Type: Primary, and the other would be Failover Record Type: Secondary. Of course,
you would need some metrics to determine the point at which requests are routed to the backup stack. You
would create a health check on your subdomain and determine the parameters by which healthiness is
determined. Then, when your application stack is performing slowly or suffers an outage, Route 53 would
automatically route traffic to the backup stack.

These are just a couple examples, but you can see the utility of using Route 53 for your DNS records. Go
ahead and click Create to finish constructing your record set with a Simple routing policy. Your record set
should appear immediately, with the type listed as A (ALIAS), as shown in Figure 4-19. Once you’ve given your
DNS change time to propagate, you should finally be able to access your Hello World page at your domain!

Figure 4-19.  ALIAS record created

Summary
In this chapter, we reached the major milestone of making our application accessible at a World Wide Web
domain. It wasn’t easy, but we’ve made tremendous progress thus far in launching a web application. By
using CloudFront, we’ve optimized our application performance with caching and accelerated content
delivery. However, there are a couple of major pieces missing.

For starters, we have a photo-sharing app that doesn’t accept any photo uploads! We will be adding this
functionality in the next chapter, but it was important that we set up CloudFront first, as we will be writing
our code with CloudFront in mind.

It’s also important to remember the basic principles we’re trying to adhere to: scalability and elasticity.
While we have some incredible resources at our disposal, we haven’t truly achieved either of these yet. You’ll
be tackling issues of application health and monitoring in a later lesson, but it’s important to remember that
the end of the road is not a matter of getting our application online. Keeping our application online no matter
what is the real objective.

121

Chapter 5

Simple Storage Service and
Content Delivery

Now that our application is live on the Web, it’s time to build out some core functionality: image uploads.
One would think that we could have done this from the beginning, but that is not the case. While we have
used many AWS services with little coding, this functionality is one exception. We are building our photo
upload and viewing functionality based on our AWS architecture. To do this, we will make our first attempt
to directly interact with AWS services programmatically, using the AWS SDK.

We will be doing some work in the console, then quickly add the SDK to our application package and
start coding. We will have to create an S3 (Simple Storage Service)1 bucket, the AWS service designed to
provide file storage for static assets. We’ll also have to configure the S3 bucket and corresponding
IAM policy.

If our application were to take off, we would expect thousands or millions of file uploads and
downloads. If we were to store these files on our EC2 instances, it would create a large number of problems.
First, the sheer volume of disk space consumed by our media would require us to scale up our instance
storage capacity. In fact, each instance would need a copy of every image, so there would be a massive waste
of resources from this redundancy. Second, it could cause a significant bottleneck if our instances were
responsible for sending users the images, purely in the memory used by retrieving and sending all of
the content.

Third, this would create a major synchronization problem. All of the data stored on EC2 instances is
ephemeral, with persistent data stored in our RDS database. If a user uploaded a photo to one instance, it
would create a situation in which the image would have to be copied to all other running instances. In short,
it’s a bad idea to use instances for file uploads.

In this chapter, we will brush aside these problems by using S3 to store our static content. Because S3
provides high availability and redundancy with unlimited file storage, we can keep all our static content in
one place. We will revise our application so that it uploads images to an S3 bucket. With the AWS SDK, we
will be able to programmatically upload files, set their permissions, and access them from a public URL.
Then, we will use CloudFront to distribute the images to our users.

1Also see the S3 documentation at http://aws.amazon.com/documentation/s3/.

http://aws.amazon.com/documentation/s3/

Chapter 5 ■ Simple Storage Service and Content Delivery

122

Using S3 in the Application
Using S3 for static content storage will save us a lot of the headaches described previously, as well as
significantly reduce the overall weight of our application. Further, if we ever have to replace our instances,
stack, or database, we can rely on S3 staying in service independent of our application stack. While S3
buckets are created in specific regions, they are redundant within the region, minimizing the risk of
problems from an availability zone outage.

Of course, with the S3 bucket being created in a particular region, there is the potential for images to be
stored geographically far from our users. This is where CloudFront can help us, by storing copies of our files
in edge locations. In order to maximize the effectiveness of CloudFront, we will use versioning in our file
naming and give our images long life spans in CloudFront. These two services will work in unison to serve as
what’s commonly known as a content delivery network, or CDN.

Take note of Figure 5-1. This is an update to a diagram of our system that we saw earlier. This time,
it’s been updated to reflect the new role the S3 bucket will play. While many of the requests received by
CloudFront will be routed to the load balancer, requests for media will bypass the application stack entirely
and go to the S3 bucket instead. Likewise, the EC2 instances in our application stack will be able to connect
directly to the S3 bucket to transfer files to it.

Figure 5-1.  Our system, updated for this lesson

Creating an S3 Bucket
To begin, we will create an S3 bucket in the AWS Console. Log in and navigate to S3. If you haven’t been here
before, it’s somewhat similar to the Route 53 interface: list of buckets on the left, detail view on the right.
Click the Create Bucket button at the top-left corner. A modal view will appear, prompting you to name your
bucket and choose a region. Name your bucket something such as photoalbums-cdn.

Note■■   S3 identifiers are unique, so you won’t be able to name your bucket exactly the same as in the
preceding text. Try something similar that also reflects your preferences.

From the Region drop-down, choose US Standard (the region names do not conform to the us-east,
us-west convention we’re used to), as in Figure 5-2.

Chapter 5 ■ Simple Storage Service and Content Delivery

123

You now have the option of either creating the bucket now or setting up logging for the bucket. For a
production app, you may find that the logging is useful, so let’s enable it now. Click Set Up Logging ➤. In
the next view, choose your bucket as the target bucket for storing your logs (see Figure 5-3). Leave the other
fields as they are and click Create.

Figure 5-2.  Selecting a bucket name and region

Figure 5-3.  Setting up logging for your bucket

The S3 bucket itself is simple to interact with. Each bucket contains its own directory structure. You can
create as many directories as you want and nest them as deeply as you want. In terms of file management,
there are some limitations to interacting with an S3 bucket in the console. You cannot move a file from one
directory to another; you have to download it and re-upload it in the new directory. You cannot delete a
directory or bucket without first deleting its contents. Instead, AWS recommends that you determine the life
cycle of your files when you are designing the system to begin with. For instance, if you want to delete log
files after 30 days, it’s best to determine that now and configure the bucket’s behavior accordingly. But this is
a whole topic unto itself.

Chapter 5 ■ Simple Storage Service and Content Delivery

124

Now that we have created our bucket, we need a place to store the photos that users upload. Let’s simply
store these files in a /uploads directory. Click your bucket to access the bucket detail view. Just as before, you
will see a list on the left (a list of directories and files this time) and properties/other details on the right.

In the top-left corner, click the Create Folder button. An untitled folder will appear in the list, with its
name ready to be edited, just like in Finder for Mac or Windows Explorer for Windows. Go ahead and enter
the name uploads. You should now see two directories in your bucket: logs and uploads (see Figure 5-4).

Figure 5-4.  Bucket contents list

Enabling S3 Access in IAM
By now, it should not be surprising that we need to head over to Identity and Access Management to
configure our application to upload assets to our S3 bucket. In the first chapter, there was an optional lesson
wherein you may have created an IAM user with permission to read/write from an S3 bucket. We need
similar functionality again, although there is more than one possible approach here.

Storing Credentials
The main issue is not whether we can give our instances access to the S3 bucket with the AWS SDK, but how
we manage the credentials when we do so. According to Amazon, there is a hierarchy of best practices when
it comes to using credentials in your code. In the JavaScript SDK documentation (http://docs.aws.amazon.
com/AWSJavaScriptSDK/guide/node-configuring.html), Amazon provides their recommendations in
order as follows:

	 1.	 Loaded from IAM roles for Amazon EC2 (if running on EC2),

	 2.	 Loaded from the shared credentials file (~/.aws/credentials),

	 3.	 Loaded from environment variables,

	 4.	 Loaded from a JSON file on disk,

	 5.	 Hardcoded in your application

The first three recommendations are specific to the AWS environment, whereas the latter two are more
common, platform-agnostic techniques. While we want to follow Amazon’s recommendation, there is a
catch that it will impair our ability to develop in the local environment. This is a pitfall that’s not unique to
Amazon but occurs with a number of platforms as a service (PaaS) providers.

The first recommendation, “Loaded from IAM roles for Amazon EC2,” is not going to be difficult to
implement. Being both the top recommendation and the easiest, we will be pursuing this strategy shortly.
However, we want to preserve as much functionality in our local development environment as possible.
There is no way to simulate an IAM EC2 role in your local environment, so we will have to take a different
approach to enable local development. We can, however, create an IAM user and employ its credentials with
the AWS SDK in the local environment. To do so, we will also be supporting the fourth recommendation.

http://docs.aws.amazon.com/AWSJavaScriptSDK/guide/node-configuring.html
http://docs.aws.amazon.com/AWSJavaScriptSDK/guide/node-configuring.html

Chapter 5 ■ Simple Storage Service and Content Delivery

125

Implementing IAM Roles
Let’s implement the IAM role approach first. To begin, let’s return to OpsWorks to jog your memory. Navigate
to your application stack and click Stack Settings (see Figure 5-5).

Figure 5-5.  Access application stack settings via the Stack Settings button at the top right

Figure 5-6.  Stack Settings

In the Stack Settings view, you will see many of the configuration decisions we made at the beginning
(see Figure 5-6). You will find a setting called Default IAM instance profile, which should be set to a long
identifier ending with aws-opsworks-photoalbums-ec2-role. When we set this value earlier, we created
the IAM role that is deployed to every EC2 instance in our application stack. So much of the work is
already done!

Navigate to IAM and select Roles from the left-hand navigation. In the list of roles, select aws-
opsworks-photoalbums-ec2-role. Under the Permissions header, you will see that we have not created
any policies for this role yet. We simply have not needed any. We now have to give this role read/write
permissions for S3 buckets. For the sake of lesson clarity, we’ll be enabling global access to S3, but in the
future, we may want to restrict access to specific S3 buckets. As you can see, we are again faced with highly
subjective decisions to make about our practices and organization methods. It’s more of an art than a
science.

Click Attach Policy to head to the policy selection view. Scroll down in the policy table until you find
AmazonS3FullAccess and select it, as in Figure 5-7.

Chapter 5 ■ Simple Storage Service and Content Delivery

126

Click Apply Policy at the bottom right. You’ll return to the user detail view, in which you’ll see your
policy listed (see Figure 5-8).

Figure 5-7.  Policy Template—S3 Full Access

Figure 5-8.  EC2 Service Role Permissions

And that’s it! Now when we use the AWS SDK, it will automatically detect the permissions for the EC2
service role and use those credentials. You can see why Amazon recommends this approach: at no point are
credentials exposed to anyone, and the risk of human error is negligible.

Note■■  A t a later point, we may want our application to have more than just S3 permissions. We will simply
return to this IAM role and attach additional policies to expand the permissions.

Using IAM User Credentials
For our secondary approach, we will create credentials that we can use for local development but that we
will not check in to our repository or deploy to production.

Looking back to an earlier IAM lesson, I discussed that you always have a choice between creating an
IAM user and configuring its permissions or creating group permissions and adding a user to the group.
Once again, we can choose either approach. At this point, I’ve covered how to create IAM users, groups, and
roles, so there’s little need to rehash each one. If you want to create an IAM group, give it the proper policies
and create a user within that group. Feel free to do so and exercise what you’ve learned already. In the
interest of being succinct, we will simply create an IAM user and apply the policy to the user itself.

Chapter 5 ■ Simple Storage Service and Content Delivery

127

Select Users in the left navigation of IAM and click Create New Users. When prompted for a name,
enter photoalbums-stack. Make sure the box to generate an access key is checked and click Create. On the
next screen, click Download Credentials. When the file downloads, keep it secret; keep it safe. Then, click
Close to return to the users list.

Click your user to proceed to the user detail view. We have a user and its credentials, now we just have
to give it the necessary permissions. We will be following the exact same steps we took when we created a
policy for the IAM role. Under the Permissions header, click Attach Policy. We’re back at the managed
policy selection view. Scroll down until you find AmazonS3FullAccess. Select the box next to it and click the
Attach Policy button. You’ll return to the user defail view, where you’ll see your policy has been added.

We have completed both IAM methods, which we will soon put to use in our code. Before we do so, we
have to make a brief stopover in OpsWorks.

Adding OpsWorks Environment Variables
In Chapter 3, we moved our database credentials out of our source code and into a file generated by
OpsWorks by connecting our application layer to a database layer. Unfortunately, we can’t do the same thing
with an S3 bucket. You may recall, however, that we used OpsWorks Environment Variables in our code to
determine where we should look for those database credentials. We’ll be using a similar approach to connect
to our S3 bucket. We don’t have to store our IAM credentials in Environment Variables, but we should do so
for the S3 bucket name. The reason for this is simple: it will make it easy to change the S3 bucket in our app,
and it will make it easier to create a new application stack. If we have to create a dev stack, or a copy for any
reason, we can also create a new S3 bucket and swap out the name in OpsWorks easily.

Navigate to OpsWorks in the AWS Console and select your application stack. Using the Navigation
menu, select Apps. When you see the apps list view, click edit next to the Photoalbums app (see Figure 5-9).

Figure 5-9.  Return to OpsWorks Apps list view

In the Apps editing view, scroll down to the Environment Variables header (see Figure 5-10). You should
see the variable you’ve already created, titled “ENVIRONMENT.” Add a variable with the key S3BUCKET and
a value equal to the name of the S3 bucket you created earlier. Then click Save at the bottom right.

Chapter 5 ■ Simple Storage Service and Content Delivery

128

When we redeploy our app, the environment variables will be accessible. But we have one more task
before we start coding, which is to change the default server configuration of our instances.

Developing with the AWS SDK
Until now, our AWS lessons have relied entirely on the AWS Console. This does not mean you have to use
it, but it is simply easier to learn and easier to teach. In fact, most of what we’ve done so far could also be
achieved programmatically using the AWS SDK. In some cases, it’s significantly faster to work in the AWS
Console. In other cases, and particularly with tasks that you want to be automated, it will make a lot more
sense to use the SDK and script the behavior you want.

The AWS SDK is available in a variety of languages and platforms, including JavaScript, which will be
our choice. You can find the complete list of AWS SDK tools here: http://aws.amazon.com/tools/. Getting
set up with the AWS SDK is easy.

Updating Dependencies
We will have to add the AWS SDK to our app, as well as the multer middleware package. For those who have
used ExpressJS before, ExpressJS version 4 is a little different. Several of the middleware dependencies have
been removed, and we’ll have to add them to our package individually, based on the functionality we need
to support. We will be using multer for accepting file uploads and writing them to a temporary directory.

In your code editor, open package.json in the root directory. At the beginning of your list of
dependencies, you will add the AWS SDK node module and multer, so your dependencies JSON should look
like Listing 5-1.

Listing 5-1.  package.json Dependencies

"dependencies": {
 "aws-sdk": "2.0.*",
 "multer": "^0.1.3",
 "express": "~4.8.6",
 "body-parser": "~1.6.6",
 "cookie-parser": "~1.3.2",
 "mysql": "2.0.*",
 "morgan": "~1.2.3",
 "serve-favicon": "~2.0.1",
 "debug": "~1.0.4",
 "jade": "~1.5.0"
 }
 

Figure 5-10.  New Environment Variables

http://aws.amazon.com/tools/

Chapter 5 ■ Simple Storage Service and Content Delivery

129

Next, we have to reinstall our application locally, to install the new packages. In your command-line
interface, navigate to the project directory and type the following:
 
npm install
 

The aws-sdk and multer node modules and their respective dependencies should begin downloading,
which will print to the console something such as Listing 5-2.

Listing 5-2.  AWS SDK Installing

npm http GET https://registry.npmjs.org/aws-sdk
npm http 200 https://registry.npmjs.org/aws-sdk
npm http GET https://registry.npmjs.org/aws-sdk/-/aws-sdk-2.0.29.tgz
npm http 200 https://registry.npmjs.org/aws-sdk/-/aws-sdk-2.0.29.tgz
npm http GET https://registry.npmjs.org/xml2js/0.2.6
npm http GET https://registry.npmjs.org/xmlbuilder/0.4.2
npm http 200 https://registry.npmjs.org/xml2js/0.2.6
npm http GET https://registry.npmjs.org/xml2js/-/xml2js-0.2.6.tgz
npm http 200 https://registry.npmjs.org/xmlbuilder/0.4.2
npm http GET https://registry.npmjs.org/xmlbuilder/-/xmlbuilder-0.4.2.tgz
npm http 200 https://registry.npmjs.org/xml2js/-/xml2js-0.2.6.tgz
npm http 200 https://registry.npmjs.org/xmlbuilder/-/xmlbuilder-0.4.2.tgz
npm http GET https://registry.npmjs.org/sax/0.4.2
npm http 200 https://registry.npmjs.org/sax/0.4.2
npm http GET https://registry.npmjs.org/sax/-/sax-0.4.2.tgz
npm http 200 https://registry.npmjs.org/sax/-/sax-0.4.2.tgz
aws-sdk@2.0.29 node_modules/aws-sdk
├── xmlbuilder@0.4.2
└── xml2js@0.2.6 (sax@0.4.2)
 

Once the installation completes, you can start using the aws-sdk module in your code. It will also be
installed on your EC2 instances automatically the next time you deploy your code. Let’s start writing our
upload code!

First, we must configure the express app instance to use multer. Open /server.js and add the following
line among your variable declarations at the top, as follows:
 
var multer = require('multer');
 

The “header” (not really, but in spirit) should now look something like Listing 5-3.

Listing 5-3.  The server.js “Header”

var express = require('express');
var path = require('path');
var favicon = require('serve-favicon');
var logger = require('morgan');
var cookieParser = require('cookie-parser');
var bodyParser = require('body-parser');
var multer = require('multer');
var debug = require('debug')('photoalbums');
var routes = require('./routes/index');
var users = require('./routes/users');

Chapter 5 ■ Simple Storage Service and Content Delivery

130

var photos = require('./routes/photos');
var albums = require('./routes/albums');
var globals = require('./lib/globals');
var mysql = require('mysql');
var app = express();
 

Next, we will tell the express instance to use multer as middleware and pass in the destination for
file uploads as a parameter. A little farther down in the code, you will see a series of app.use() statements,
configuring express. After app.use(bodyParser{...}), add the following:
 
app.use(multer({dest: './tmp/'}));
 

Your app.use() block should now be as in Listing 5-4.

Listing 5-4.  server.js Express App Configuration

app.use(logger('dev'));
app.use(bodyParser.json());
app.use(bodyParser.urlencoded({ extended: false }));
app.use(multer({dest: './tmp/'}));
app.use(cookieParser());
app.use(express.static(path.join(__dirname, 'public')));
 

Save your changes to the file, as we’re done here. Next, we want to set up our app to use the OpsWorks
Environment Variables we created. We’ll use a similar approach to how we access database credentials.
If the code is running in the production environment, we’ll use the environment variables. If not, we will
default to a local copy of credentials.

Accessing Environment Variables
In the case of the local credentials, this means that the credentials would still be exposed to developers.
But because both the IAM credentials and the bucket name are stored in Environment Variables, you could
easily create a separate bucket and IAM user for local development, restricting that user’s access to a single
dev bucket. You could try this as an exercise on your own, if you’re interested in practicing this level of
security.

Open /lib/globals.js. We will add a function almost identical to database(), called awsVariables().
As you can imagine, we will again check for the ENVIRONMENT variable, and if it’s there, use the new variables
we created. If it’s not defined, we’ll load a local configuration instead. You want your globals file to look like
Listing 5-5.

Listing 5-5.  Complete /lib/globals.js

module.exports = {
 applicationPort : 80,
 database : function(){
 if(process.env.ENVIRONMENT){
 var opsworks = require('./../opsworks');
 var opsWorksDB = opsworks.db;
 var rdsConnection = {
 host : opsWorksDB.host,
 port : opsWorksDB.port,

Chapter 5 ■ Simple Storage Service and Content Delivery

131

 database : opsWorksDB.database,
 user : opsWorksDB.username,
 password : opsWorksDB.password
 };
 return rdsConnection;
 } else {
 var local = require('./../config/local');
 var localConnection = local.db;
 return localConnection;
 }
 },
 awsVariables : function(){
 if(process.env.ENVIRONMENT){
 var variables = {
 bucket : process.env.S3BUCKET
 }
 return variables;
 } else {
 var local = require('./../config/local');
 return local.awsVariables;
 }
 }
}
 

Next, we have to update our local config file. Open /config/local.js, in which you will add an
awsVariables object. The properties of this object should be mapped to those in /lib/globals.js, so your
code should look like Listing 5-6, using the key/secret we generated for our IAM user. While it’s up to you to
decide how to manage these credentials, remember that you don’t need to commit them to the repository if
you don’t want to, or you could commit the file with blank strings for the key and secret values.

Listing 5-6.  Local Config File

module.exports = {
 db : {
 host : 'localhost',
 port : 3306,
 database : 'photoalbums',
 user : 'root',
 password : 'root'
 },
 awsVariables : {
 bucket : 'photoalbums-cdn',
 key : 'AKIAINJDCDGH3TBMN7AA',
 secret : '8RJHMIGriShsKjgs;8W3B8gIRXC/v0QXDhcVH2RwMAw'
 }
}

Chapter 5 ■ Simple Storage Service and Content Delivery

132

Handling File Uploads
Now we’ve done all of the configuration and can start writing our upload code. Fortunately, we don’t have to
make any changes to the model, though we do have to alter the database schema. We will be making all of
our changes in /routes/photos.js.

The major tasks remaining in this file are significant. When the user makes a POST to /photos/upload,
we want the following actions to be taken:

	 1.	 User input is validated (user ID, album ID, and image are required).

	 2.	 Image is written to /tmp folder.

	 3.	 Image is uploaded from /tmp folder to S3 bucket.

	 4.	 Image is deleted from /tmp folder.

	 5.	 Final image URL is generated.

	 6.	 Entry is created in database, including URL.

	 7.	 User receives success message.

Along the way, there are a number of things that could go wrong, which we want to plan for: the user
could include invalid input; there could be a problem reading/writing the image on the EC2 instance; or
there could be a failure to upload to S3 or write to the database. The bad news is that proper error handling
in complex Node.js apps can look a bit messy to read. The good news is that we can accomplish all of these
steps with relatively little code.

First, we will have to enable access to globals to the router, as well as the fs module. Though the file
system module is built into Node.js, you must declare it to access it directly. The top of the router will now
look like the following:
 
var express = require('express');
var router = express.Router();
var model = require('./../lib/model/model-photos');
var globals = require('./../lib/globals');
var fs = require('fs');
 

Next, the route for /upload requires a complete rewrite. Replace it with Listing 5-7.

Listing 5-7.  New POST/upload Route

router.post('/upload', function(req, res) {
 if(req.param('albumID') && req.param('userID') && req.files.photo){
 var params = {
 userID : req.param('userID'),
 albumID : req.param('albumID')
 }
 if(req.param('caption')){
 params.caption = req.param('caption');
 }
 fs.exists(req.files.photo.path, function(exists) {
 if(exists) {
 params.filePath = req.files.photo.path;
 var timestamp = Date.now();

Chapter 5 ■ Simple Storage Service and Content Delivery

133

 params.newFilename = params.userID + '/' + params.filePath.replace('tmp/', timestamp);
 uploadPhoto(params, function(err, fileObject){
 if(err){
 res.status(400).send({error: 'Invalid photo data'});
 } else {
 params.url = fileObject.url;
 delete params.filePath;
 delete params.newFilename;
 model.createPhoto(params, function(err, obj){
 if(err){
 res.status(400).send({error: 'Invalid photo data'});
 } else {
 res.send(obj);
 }
 });
 }
 });
 } else {
 res.status(400).send({error: 'Invalid photo data'});
 }
 });
 } else {
 res.status(400).send({error: 'Invalid photo data'});
 }
});
 

There’s a lot happening here, so let’s take it down step-by-step. First, the form data is validated. In
addition to albumID and userID being required, we are now requiring a file with the imaginative name photo
to be submitted. Most of the code is wrapped in this condition, and if it fails, an HTTP 400 error is sent in
response to the request.

As we often do, we next construct a params object based on the request parameters. The required
albumID and userID are included, and if a caption is found, it is also included. Captions are optional, and
we never access them directly in this route. Because we’re using multer, when a file is included in the POST,
it is automatically written to the /tmp folder (which we specified in server.js). The copy stored in the /tmp
folder does not retain its original name but is instead assigned a random identifier, to alleviate concerns
of duplicate file names. It’s not inconceivable that two users uploading photos from the same smartphone
could have identical image names. Any files included in requests are automatically assigned a path property,
pointing to their location on the server. This saves us quite a bit of trouble!

Next, we begin using the fs module. First, we use fs.exists() to check that the file is indeed located at
the path we expect, accessible via req.files.photo.path. If it cannot be found here, an error is sent to the
user and our route is stopped. If the file is found, then we add the file’s path to our params objects. We also
create a params property called newFilename, which will be the final file name when the file is uploaded to
S3. Because our app is running on several instances simultaneously, even with the random file name, there
is still a chance of file names conflicting. To alleviate this, we prepend a timestamp to the file name, making
the names even more unique. Additionally, we are also including a directory with the user’s ID in the path.
The chances of a file name collision with these techniques are astronomically small.

Now that our params object is ready, we send it to the uploadPhoto() method, which we’ve yet to
review. If that is successful, our image will be written to S3, and our params object will be assigned a url
property. Finally, we delete the params properties we no longer need and send the finished object to the
model.createPhoto() function. If that operation is successful, we return an HTTP 200 status to the user with
a photo ID.

Chapter 5 ■ Simple Storage Service and Content Delivery

134

In /routes/photos.js, scroll down to the end of the routes, but before the module.exports
declaration at the bottom. We will add private functions here, for use only in this file. First, we will add the
uploadPhoto() function, shown in Listing 5-8.

Listing 5-8.  uploadPhoto() Function

function uploadPhoto(params, callback){
 fs.readFile(params.filePath, function (err, imgData) {
 if(err){
 callback(err);
 } else {
 var contentType = 'image/jpeg';
 var uploadPath = 'uploads/' + params.newFilename;
 var uploadData = {
 Bucket: globals.awsVariables().bucket,
 Key: uploadPath,
 Body: imgData,
 ACL:'public-read',
 ContentType: contentType
 }
 putS3Object(uploadData, function(err, data){
 if(err){
 callback(err);
 } else {
 fs.unlink(params.filePath, function (err) {
 if (err){
 callback(err);
 } else {
 callback(null, {url: uploadPath});
 }
 });
 }
 });
 }
 });
}
 

First and foremost, this function reads the file from the /tmp directory. Then an upload path is set, using
the file name from the params object. An object named uploadData is constructed, using the key-values
required by the AWS SDK. We construct this object in preparation for uploading the image to S3, at which
point it will be referred to as an object.

The Bucket key uses the bucket declared in our globals, which were ultimately set in an OpsWorks
Environment Variable. The Key is simply the path in the S3 bucket. The Body contains the image data we
retrieved with fs.readFile(). ACL stands for Access Control List and represents the permissions for the
object when it’s created on S3. Last is the ContentType, which is hard-coded to 'image/jpeg'.

As an additional exercise, you could set the ContentType dynamically, by reading it with fs and passing
it to this function in the params object.

Next, we pass the uploadData object to putS3Object(). When the upload is complete, the image is
removed from the /tmp directory using fs.unlink(). Last, the S3 object path is returned in the callback.
You’ll recall that this relative path is what is passed to model.createPhoto(), from where it is being written
to the database.

Chapter 5 ■ Simple Storage Service and Content Delivery

135

We’ll add the last function, putS3Object(), below uploadPhoto(). This function (see Listing 5-9) simply
handles the upload to S3, using the AWS SDK. Add the following function to /routes/photos.js:

Listing 5-9.  putS3Object() Function

function putS3Object(uploadData, callback){
 var aws = require('aws-sdk');
 if(globals.awsVariables().key){
 aws.config.update({ accessKeyId: globals.awsVariables().key, secretAccessKey: globals.
awsVariables().secret });
 }
 var s3 = new aws.S3();
 s3.putObject(uploadData, function(err, data) {
 if(err){
 callback(err);
 } else {
 callback(null, data);
 }
 });
}
 

Let’s break it down line by line. First, the aws-sdk is loaded. Then, we check whether globals.
awsVariables().key is defined. You’ll recall that it’s only defined locally, for the use case wherein we use
IAM user credentials. If you never want to use this approach, you could eliminate this if statement entirely.
But if you’re using an IAM user for S3 permissions, then the key and secret must be passed to aws.config.
update(). If we’re instead relying on the IAM role of the instance, then the AWS SDK obtains the credentials
automatically, and we never have to call aws.config.update().

Then, we simply call s3.putObject(). As mentioned previously, an S3 bucket’s contents are referred
to ambiguously as objects, regardless of type. We already constructed the necessary parameters prior to this
function, so it’s short and simple.

Just to be clear on how this all works, let’s take a quick look at model.createPhoto(). Open /lib/
model/model-photos.js. Near the top of the file, you should see the code in Listing 5-10.

Listing 5-10.  Model createPhoto() Function

function createPhoto(params, callback){
 var query = 'INSERT INTO photos SET ? ';
 connection.query(query, params, function(err, rows, fields){
 if(err){
 callback(err);
 } else {
 var response = {
 id : rows.insertId
 };
 callback(null, response);
 }
 });
}
 

We have not made any changes to this function. Because it sets values based on the contents of the
params object parameter, any changes to the controller and database will automatically be reflected here.
You can see that the value returned is simply the ID of the photo.

Chapter 5 ■ Simple Storage Service and Content Delivery

136

However, if you look at the other methods in the model, you’ll see that we are selecting specific fields
for output to the user. We will have to make a few changes to our other SQL statements. After all, it would be
ridiculous to have a photo album web app that didn’t actually show any photos. It could probably raise
$50 million in VC funding anyway.

First, find function getPhotoByID(). Add url to the query variable, so the function now appears as in
Listing 5-11.

Listing 5-11.  Model getPhotoByID() Function

function getPhotoByID(params, callback){
 var query = 'SELECT photoID, caption, url, albumID, userID FROM photos WHERE published=1
AND photoID=' + connection.escape(params.photoID);
 connection.query(query, function(err, rows, fields){
 if(err){
 callback(err);
 } else {
 if(rows.length > 0){
 callback(null, rows);
 } else {
 callback(null, []);
 }
 }
 });
}
 

Likewise, we want to include the URL when photos are selected by album ID. Once again, update the
SQL query only (see Listing 5-12).

Listing 5-12.  Model getPhotosByAlbumID() Function

function getPhotosByAlbumID(params, callback){
 var query = 'SELECT photoID, caption, url, albumID, userID FROM photos WHERE published=1
AND albumID=' + connection.escape(params.albumID);
 connection.query(query, function(err, rows, fields){
 if(err){
 callback(err);
 } else {
 if(rows.length > 0){
 callback(null, rows);
 } else {
 callback(null, []);
 }
 }
 });
}
 

Last, we want to include the URL for photos retrieved via search (see Listing 5-13).

Chapter 5 ■ Simple Storage Service and Content Delivery

137

Figure 5-11.  RDS instance tables

Listing 5-13.  Model getPhotosSearch() Function

function getPhotosSearch(params, callback){
 var query = 'SELECT photoID, caption, url, albumID, userID FROM photos WHERE caption LIKE
"%' + params.query + '%"';
 connection.query(query, function(err, rows, fields){
 if(err){
 callback(err);
 } else {
 if(rows.length > 0){
 callback(null, rows);
 } else {
 callback(null, []);
 }
 }
 });
}
 

And we’re now done coding! Commit your changes to your repository. Return to OpsWorks and deploy
your app. You can do that without directions by now. The deployment process has a lot of work to do this
time. It’s adding your OpsWorks Environment Variables to each instance, updating the IAM role, and
running your Chef JSON. When your code is retrieved from your repository, OpsWorks will find the new
dependencies listed in your package.json file and automatically install them along with the rest of your app.
In the meantime, we have a few more tasks to finish before this lesson is complete.

Updating the Database Schema
You’ve probably noticed that our database schema no longer reflects the values we need. We’ll have to make
a quick change to the photos table. In your MySQL client (ideally MySQL Workbench), connect to your RDS
instance. Expand the photoalbums database in the left-hand navigation and expand Tables to reveal photos
(see Figure 5-11).

Chapter 5 ■ Simple Storage Service and Content Delivery

138

Control-click on the table, and select Alter Table from the tool tip menu. You should see the table
schema appear in the center column. Add a url column of type Varchar(250), as in Figure 5-12. If you prefer
to execute the raw SQL query, here it is:
 
` ALTER TABLE photoalbums.photos ADD url VARCHAR(250) NOT NULL;`
 

Figure 5-12.  The photos table schema

If you are keeping your local environment up to date, be sure to make the same change to your local
database.

Integrating with CloudFront
In Chapter 4, we created a CloudFront instance with which to serve our application. In doing so, we
registered the load balancer of our application stack as an origin for requests to the CloudFront instance.
Next, we will do the same thing with the S3 bucket. The S3 bucket will be a second origin for the CloudFront
instance and automatically store copies of our assets in the CloudFront edge locations.

Creating CloudFront S3 Origin
Using the Services menu, navigate to CloudFront in the AWS Console. Select your distribution from the
Distributions list on the CloudFront landing page. Click the Origins tab and Create Origin. You will once
again be in the Create Origin view, from which you will select your S3 bucket as the Origin Domain Name.
A drop-down appears when you begin editing the field. When you select your bucket, an Origin ID will be
auto-generated. You can leave this as is.

Currently, we’re not planning to make the photos in our application private. However, we very well
could want to make user content private (or at least restricted) at a later date. As a first step in supporting this
functionality, we have to restrict direct access to the bucket. When we set the Restrict Bucket Access value to Yes,
the S3 URLs will no longer be public, and users will only be able to access the content at CloudFront URLs.

Chapter 5 ■ Simple Storage Service and Content Delivery

139

Because we’re restricting bucket access, we will have to create a CloudFront Access Identity with
permissions to access the S3 buckets. While this may sound like something you manage in IAM, these
identities are entirely managed within CloudFront. Select Create a New Identity to generate a new
CloudFront origin access identity. In the Comment field, you can enter a string to identify the identity you’re
creating, something like access-identity-photoalbums-cloudfront.

Next, you will be asked if you want to Grant Read Permissions on Bucket. This is a convenient method
to update the policy on your S3 bucket, so you don’t have to do this manually. Select Yes, Update Bucket
Policy. If everything looks like Figure 5-13, click Create to proceed.

Figure 5-13.  Creating a CloudFront Origin for the S3 bucket

CloudFront S3 Behavior
Now that we have created a CloudFront origin for our S3 bucket, we have to create the behavior that will
route requests to that origin. Select the Behaviors tab. You should recognize this view from when we were
experimenting with caching behavior in Chapter 4. You’ll notice that so far, all of our behaviors have the
same origin: the load balancer from our application stack. But as discussed before, it would be a waste of
resources to make our application serve the image uploads to users. This time, we will create a behavior that
originates in the S3 bucket, completely removing the application stack from the equation.

Click Create Behavior at the top-left corner. Once again, you have to input a path pattern for the
behavior. In the Path Pattern field, enter /uploads/* to catch all requests to the uploads folder. In the Origins
field, expand the drop-down and choose the origin you just created, which corresponds to the S3 bucket.

Leave the other fields alone until we reach Object Caching. Because we will not be sending custom
origin headers from our application stack, we want CloudFront to control the TTL for these assets. Select
Customize and in the Minimum TTL field, enter 43200 (seconds), for 12 hours. Assets retrieved from our S3
bucket will be refreshed in CloudFront after a minimum of 12 hours, which you can certainly change to any
other value if you have a preference.

Going through the rest of the options, we will not forward query strings or cookies or change any other
value. Review your choices to be sure they match Figure 5-14 and click Create.

Chapter 5 ■ Simple Storage Service and Content Delivery

140

You’ll notice that the new behavior appears at the bottom of the behaviors list, except for Default(*),
which is always at the bottom. There’s no need to move this behavior to the top of the list, as there is no
conflict with our existing behaviors. Once again, it will take a few moments for the changes in CloudFront to
propagate. You can keep an eye on the Status field in the distributions list, waiting for yours to change from
In Progress to Deployed.

Now it’s time for the moment of truth! Find a jpeg image file that you want to use to create a photo.
We’re assuming you’ve created a user and album already in production. If you haven’t, make those requests
now, and you should have a userID of 1 and albumID of 1. Now make a POST request to www.[your domain].
com/photos/upload. Include the following parameters in your form data:
 
albumID: 1
userID: 1
caption: 'my first real photo'
 

The file key should be photo, and be sure to set the Content-Type to application/x-www-form-
urlencoded. If the request is successful, you will still receive the photo ID in response.
 
{"id":21}
 

Figure 5-14.  Create CloudFront behavior for /uploads/*

Chapter 5 ■ Simple Storage Service and Content Delivery

141

Your response headers should look like Listing 5-14. You’ll notice that the X-Cache header shows a miss
from CloudFront. The response should never be a hit from CloudFront, or you would without a doubt be
seeing the wrong data.

Listing 5-14.  Photo Upload Response Headers

Content-Type: application/json; charset=utf-8
Content-Length: 9
Connection: keep-alive
Date: Mon, 15 Dec 2014 21:02:57 GMT
X-Powered-By: Express
X-Cache: Miss from cloudfront
Via: 1.1 eadedd3fe9e82c51cc035044b3a5f3fa.cloudfront.net (CloudFront)
X-Amz-Cf-Id: yRWUsgyOTSh4xw5NcKfX-ne2-N7EU9yUIQYot9J82xcF1elqiRgBnw==
 

Next, let’s validate that the data we uploaded to the application was stored correctly and is now
accessible. Open your browser to www.[your domain].com/photos/id/21 (replacing 21 with the ID you
received). You should see JSON similar to the following:
 
[
 {
 "photoID":21,
 "caption":"my first real photo",
 "url":"uploads/1/141867737733318085bdee7f0a1577a57200e59c65306.jpg",
 "albumID":1,
 "userID":1
 }
]
 

There’s a URL for the image! Next, as long as the CloudFront behavior changes are complete, you should
be able to access the image at your domain. Copy the URL, add it to your domain, and try to view it in your
browser. You should see your image!

Finishing Touches
Congratulations! You now have a CDN in your application! This is a major breakthrough moment for the
application. This would be a good time to go back and apply a couple of the lessons you’ve learned to
improve functionality. A few small changes could go a long way in improving our application.

The URLs in our web app API are all relative. While this may be fine, many developers would prefer
an absolute URL in this scenario. We should be able to support both. The current setup is also a problem
for local development, as we are still uploading files to S3, even when we’re running the app on the local
database. So, while there is a web-accessible version of uploads/1/141867737733318085bdee7f0a1577a5720
0e59c65306.jpg, the image cannot be found at http://localhost:8081/uploads/1/141867737733318085b
dee7f0a1577a57200e59c65306.jpg. So, our first task is to switch our images to absolute URLs and make the
URLs correct, even in the local environment.

We can also improve how CloudFront caches our images. By default, the cached URLs in the /uploads/*
path will be cached in CloudFront for 24 hours. However, we know for certain that these images are not
going to change at all. We aren’t supporting any image retouching or cropping, and even if we were, we
would use versioned file naming. Right now, 24 hours is no big deal. But if we were serving thousands or
millions of users, why not reap the benefits of CloudFront? Thus the other finishing touch will be to simply
store the images in CloudFront for significantly longer than 24 hours.

Chapter 5 ■ Simple Storage Service and Content Delivery

142

Absolute URLs
The first task, though it’s the harder one, is still pretty easy. If you thought we could use Environment
Variables to store the domain, you are correct! Not only will this allow us to access our S3 images when
developing locally, it will also make it easy to clone our stack for dev, change domains, etc.

First, return to OpsWorks and select your stack. Navigate to the Apps view in the stack and click edit in
the column next to your app. Scroll down to the Environment Variables header and add the value http://
www.[your domain].com for the key DOMAIN (see Figure 5-15). Then, click Save at the bottom of the page.

Figure 5-15.  Adding another Environment Variable to OpsWorks

Now that that’s set, we can make our code changes, then start a new deployment. Return to your code
editor, and we’ll make the changes one by one. The first thing we have to do is add the new variable to our
globals. Open /libs/globals, in which we will add the domain variable. The awsVariables() function
should look like Listing 5-15.

Listing 5-15.  Adding Another Environment Variable to the Code Base

awsVariables : function(){
 if(process.env.ENVIRONMENT){
 var variables = {
 bucket : process.env.S3BUCKET,
 domain : process.env.DOMAIN
 }
 return variables;
 } else {
 var local = require('./../config/local');
 return local.awsVariables;
 }
}
 

We’re also going to go a step further with globals. While we only have to convert relative URLs to
absolute URLs for photos right now, it’s conceivable that we may need this functionality elsewhere as
well. Let’s add a function called absoluteURL() to the globals, so that we can easily reuse our code. After
awsVariables :function(){}, add a comma, followed by the code in Listing 5-16.

Listing 5-16.  absoluteURL() Helper Function

absoluteURL : function(path){
 if(this.awsVariables().domain){
 return this.awsVariables().domain + '/' + path;
 }
 return path;
}
 

Chapter 5 ■ Simple Storage Service and Content Delivery

143

This function is simple, but it may save us a lot of copy-paste in the future. It accepts a relative path as
a parameter and prepends the domain and a forward slash to it, if the domain is defined. If not, it will fail
silently without a crash.

We will also need the domain variable in our local file. Head over to /config/local.js and add your
domain to the awsVariables object there.

Currently, we are not doing any post-query operation on the data in the database. We simply retrieve
the objects and properties we need and send them back to the respective controller. Unfortunately, that
party has come to an end. We’re not going to write the domain to the database, but, instead, we’ll add it to
the response before the database data is returned from the model. Further, it’s conceivable that this would
be the first of many post-query operations we perform on data retrieved from the database. As such, we can
add a private function to the model, from which we can organize our modifications to the data.

Open /lib/model/model-photos.js and scroll to the bottom. After the deletePhotoByID() method,
add the code from Listing 5-17.

Listing 5-17.  formatPhotoData() Helper Function

function formatPhotoData(rows){
 for(var i = 0; i < rows.length; i++){
 var photo = rows[i];
 if(photo.url){
 photo.url = globals.absoluteURL(photo.url);
 }
 }
 return rows;
}
 

This function is simple, iterating through photos retrieved from the database and calling our
absoluteURL() helper function on those photos that have a url property. If we need to do any other post-
query operations on all photos, we can add them to this loop later.

Next, we have to make sure each method that retrieves photos uses this function, which means we
have to make a change in three places. Scroll up to function getPhotoByID() and find the line that reads as
follows:
 
callback(null, rows);
 

Replace this with the following:
 
callback(null, formatPhotoData(rows));
 

The function should now look as follows:
 
function getPhotoByID(params, callback){
 var query = 'SELECT photoID, caption, url, albumID, userID FROM photos WHERE published=1
AND photoID=' + connection.escape(params.photoID);
 connection.query(query, function(err, rows, fields){
 if(err){
 callback(err);
 } else {

Chapter 5 ■ Simple Storage Service and Content Delivery

144

 if(rows.length > 0){
 callback(null, formatPhotoData(rows));
 } else {
 callback(null, []);
 }
 }
 });
}
 

Last, we must make the same change to getPhotosByAlbumID() and getPhotosSearch(). Make these
changes, then commit your code to the repository. Head back to OpsWorks and deploy your application.
Wait a few minutes for the deployment to complete, and when it does, refresh the /photos/id/21 path in
your browser. You should now see the absolute path to your image, like so:
 
[
 {
 "photoID":27,
 "caption":"test",
 "url":"http://www.cloudyeyes.net/uploads/1/1418498633152f1fe581691cc3aa20577958626077976
.jpg",
 "albumID":1,
 "userID":1
 }
]

Enhanced Image Caching
For your final task of this chapter, you’ll increase the TTL for the /uploads/* path in CloudFront. Return
to CloudFront in the AWS Console and select your distribution from the distributions list. Then, click the
Origins tab. Select the /uploads/* path pattern, as in Figure 5-16, and click Edit.

Figure 5-16.  Edit CloudFront behavior

Chapter 5 ■ Simple Storage Service and Content Delivery

145

Locate the Object Caching field and change the value from Use Origin Cache Headers to Customize.
There’s no gain in using the origin cache headers. Because requests to /uploads/* never even make it to
our application stack, we cannot programmatically control the caching behavior as we did with some of the
other paths. By switching to Customize, we can input a minimum TTL, or essentially life span, of the cached
objects in CloudFront edge locations. After selecting Customize, put the number 604800 in the Minimum
TTL field. This will store cached objects for one week (in seconds). We could just as easily set it to two weeks,
or a year! One week seems ample for now, though. Finally, click Yes, Edit, and your changes will begin to
take effect. You can check on this by watching the Distribution Status, which will now be set to InProgress.
Remember: It takes several minutes for changes in CloudFront to propagate.

Summary
Another chapter down, with some big changes to our application. And yet we had to write very little code
to add some powerful tools to our software. I hope you’re getting used to the idea of using the AWS Console
to make sweeping changes to our infrastructure. It can be a little nerve-wracking to wield such power so
casually. With that in mind, we’ve only barely scratched the surface of what you can do with the AWS SDK.
In the next few chapters, we will continue to use the SDK to add more features.

147

Chapter 6

Simple Email Service

While our application has come a long way, there are still a few more features we have to build before it’s
ready for prime time. The most obvious, of course, is the lack of security on user accounts. You don’t even
have to log in to upload to someone else’s album. Security truly is an illusion in this case. Not to worry,
though, I’ll cover this topic in the grand finale in Chapter 8.

In truth, there are quite a few pieces our application is missing before it’s truly production-ready.
If this were strictly a programming book, we would still have to go through tutorials on building an admin
portal, a flagging system for inappropriate content, and social-networking features. Unfortunately, there
isn’t time to build a complete enterprise application in these lessons. Our focus remains building a scalable
and elastic application on AWS, and the cost of that is focusing on features that are integrated into AWS
services, as opposed to features that you can learn from older and wiser developers in another Node.js
programming book.

That being said, there are still a few features we can build with the synergy between AWS and some
good old-fashioned programming. Because our app is interacted with entirely as a web service, it feels a little
flat, doesn’t it? I’ve uploaded so many travel photos, and all I get in response is JSON this, JSON that. The
way to my heart is my inbox, and it’s time to let our app send some mail!

Introducing Simple Email Service
Regardless of content, any web application with user-generated content can benefit from a notification
system of some kind, be it e-mail or mobile push notifications. Amazon offers a few different services
to support notifications, but we will be focusing on Amazon Simple Email Service (SES). Amazon SES is
designed to allow you to programmatically generate e-mail notifications of any type and volume. From
mass-marketing campaigns to password reset e-mails, you can use Amazon SES to send both static and
dynamic content at any volume.

If you’ve built a server-side application in any language before, there’s a good chance you have had
to generate an e-mail before. If you used PHP, you’ve probably spent some time carefully formatting
parameters for the mail() function. Tedious as it is, this sort of approach works just fine on a small scale. But
imagine if your application has thousands or millions of users. Suddenly, there is a resource-management
concern from simply generating e-mail.

Amazon provides a solution to this problem by allowing you to separate the workload of sending mail
from your application stack. Instead, we will use the AWS SDK to send a command to Amazon SES, which
will send the mail on our behalf. This will provide significant resource savings, and our application stack will
remain unburdened by the task of being a mail server. We’re also spared from the hassle of configuring our
own mail server. And we won’t have to watch the e-mails we worked so hard to generate go straight to the
spam folder.

Chapter 6 ■ Simple Email Service

148

Much to our relief, Amazon SES has a free tier. At the time of this writing, you can send 62,000 e-mails
per month for free. After that, you pay $.10 per thousand e-mails. In addition to the fee for sending mail,
your mail is included in the data transfer out from the EC2 rate table, and you also pay $.12 per GB of
attachments. In all, it’s quite reasonable, and it’s likely that your SES costs will be an order of magnitude
lower than your RDS or EC2 bill.

Exploring the SES Dashboard
We’re going to add a few e-mails to our application, which we will be generating programmatically in
our code. Before we do this, there are a few tasks we have to carry out in the AWS Console. Let’s begin by
configuring SES. In the AWS Console, locate SES in the Application Services column on the right side of the
page and click it. We’ll begin the process here, in the SES dashboard. As you can see on your screen (and in
Figure 6-1), there is a lot happening in this dashboard.

Figure 6-1.  SES dashboard

Chapter 6 ■ Simple Email Service

149

As in many other AWS dashboards, the left column of the view is the secondary navigation. In the main
content area, you are immediately greeted by a warning that your account has “sandbox” access. By default,
all AWS accounts are created in sandbox mode, restricting the ability of AWS customers to send mass e-mails
to the public. This is merely an anti-spam precaution, as it’s easy to request production access. I’ll discuss
this in more detail later, but for now, be aware that you cannot send e-mails to anyone and everyone at the
moment.

Immediately below the warning, you can see a quick snapshot of Your Amazon SES Sending Limits.
You’ll notice that the Sending Quota is currently 200 e-mails per 24-hour period. This quota is in effect until
you request production access to SES. To be clear, this means 200 recipients. If you send 20 e-mails with
10 recipients each, you will meet your quota.

Below Your Amazon SES Sending Limits, you will see a header titled Your Amazon SES Metrics. In this
section, you can view the results of messages sent by SES, viewable in actual numbers or rate (percentage).
If you’ve ever worked with e-mail marketing software before, you will recognize the terminology: deliveries,
bounces, complaints, rejects. If you are only using SES to send notifications to subscribed and registered
users, these metrics may not be valuable to you. But if you ever plan to terrorize your users with e-mail
marketing, these can be useful metrics.

SES Verification
While we’re in sandbox mode, there are significant restrictions as to whom we can e-mail. Any addresses we
use as senders or recipients must be verified. In Figure 6-2, notice Verified Senders in the left navigation.

There are two levels at which you can verify SES addresses: the individual e-mail address level and the
domain level. For verified e-mail addresses, you verify each individual e-mail address manually. You can
then send e-mail to and from the verified address. If you verify at the domain level, then you can send e-mail
from any address at the domain. For instance, you might want to validate the domain to send e-mails from
support@yourdomain.com in one case and donotreploy@yourdomain.com in another case. Verified domains
only allow you to send e-mail from the domain in question. You could not, for example, verify gmail.com
and be allowed to send e-mail to the millions of Gmail users.

For development purposes, it would be ideal to send e-mails from our application’s web domain to the
registered user. While we’re in development, registered users must also have verified e-mail addresses in
SES. Later, we will request production access to SES, enabling us to send e-mails to all users. But we don’t
have to do that to finish development and testing.

Figure 6-2.  SES Verified Senders

http://support@yourdomain.com/
http://donotreploy@yourdomain.com/
http://gmail.com/

Chapter 6 ■ Simple Email Service

150

E-mail Address Verification
Let’s begin by verifying an e-mail address—your own personal e-mail. Under the Verified Senders header
shown in Figure 6-2, click Email Addresses. You will see a table of verified addresses, of which there are now
zero. Click Verify a New Email Address at the top of the page. A modal window, as shown in Figure 6-3, will
appear above the page. Enter your e-mail address and click Verify This Email Address.

After a few moments, the modal window will inform you that the verification e-mail has been sent.
When you close out of the modal and return to the main view, your address will appear in the table with a
status of pending verification (see Figure 6-4).

Check your inbox for an e-mail with the subject Amazon SES Address Verification Request in region
[your current region]. You’ll see a lengthy verification URL, which you should click to confirm the address. If
you don’t click the link within 24 hours, it will expire, and the verification status of your e-mail address will
change to failure. The link will take you to an AWS page congratulating you on verifying your e-mail address.
A celebration is in order!

When you refresh the e-mail addresses list, the status of your address should now be verified. Let’s run
a quick test. Select your address and click Send a Test Email. A modal window will appear, allowing you to
populate the To, Subject, and Body fields for an e-mail (see Figure 6-5). You can click More options to add
additional e-mail headers such as Bcc:. Make yourself the recipient as well: fill out a message and click Send
Test Email.

Figure 6-3.  Verifying an e-mail address

Figure 6-4.  SES verified e-mail addresses

Chapter 6 ■ Simple Email Service

151

In a few moments, you should receive the e-mail. Now let’s try to send an e-mail to someone else. Select
your e-mail from the list and click Send a Test Email again. This time, in the To: field, put a different address
belonging to a friend or another of your own addresses, then click Send Test Email again. This time, you’ll
encounter an error, as shown in Figure 6-6, because the recipient must also be a verified e-mail address.

Figure 6-5.  SES Send Test Email

Figure 6-6.  SES Send Test Email again

Chapter 6 ■ Simple Email Service

152

It’s as simple as that. For development purposes, however, we must be able to send mail more than just
to and from ourselves. Let’s go ahead and get our domain verified, so we can start sending mail from the
application.

Domain Verification
Select Domains under the Verified Senders header in the left navigation. Click the Verify a New Domain
button at the top. Once again, a modal window will appear, prompting for your domain name. Enter the
domain name and click the check box next to Generate DKIM Settings (see Figure 6-7), then click Verify
This Domain.

Figure 6-7.  Verifying a domain

Chapter 6 ■ Simple Email Service

153

In a moment, a new modal view will appear, shown in Figure 6-8.

These DNS records must be created at your host, in order to complete domain verification. Additionally,
the DKIM records should ideally be created. DKIM, or DomainKeys Identified Mail,1 is essentially a
cryptographic method for verifying that mail claiming to be sent from a domain is in fact originating from
said domain. By enabling DKIM at the domain level, we reduce the risk of our application messages ending
up in the spam folder.

If you were managing your DNS elsewhere, you would have to create TXT and CNAME records, as
shown in the modal view. However, you’ll notice a Use Route 53 button at the bottom right. Because we’re
using Route 53 to manage our DNS, we can have the configuration done for us automatically. Click this
button to proceed.

Figure 6-8.  Verify domain DNS records

1For more on the exciting world of DKIM, check out the official site at www.dkim.org.

http://www.dkim.org/

Chapter 6 ■ Simple Email Service

154

Instead of being redirected to Route 53, another modal view will appear, ready to carry out some
Route 53 tasks. You will see tables for the domain verification and DKIM record sets and have check boxes
above each table with which to toggle the creation of those records (see Figure 6-9).

Click Create Record Sets to create them automatically. In a few moments, you’ll be returned to the
Verified Sender: Domain table, shown in Figure 6-10, which will list your domain, with a status of pending
verification.

As a sanity check, let’s validate that the records were created properly. Open the AWS services menu
and navigate to Route 53. Select Hosted Zones and choose your domain name from the table that appears.
At the top, click Go To Record Sets to view the DNS records associated with your domain. Sure enough, you
should see three CNAME records and one TXT record, with names and values corresponding to what we
generated in SES (see Figure 6-11). As this is effectively a DNS change, it may take up to 72 hours for your
domain to be verified. Anecdotally, it takes much less time than that using Route 53. In any case, our domain
will not be immediately verified.

Figure 6-9.  Creating DNS records in Route 53

Figure 6-10.  Verified domains

Chapter 6 ■ Simple Email Service

155

Managing SES Permissions with IAM
In the meantime, we can finish getting set up in AWS. By now, you’ve probably concluded that we will be
generating SES mail from the EC2 instances in our application stack, using the AWS SDK. Last time we
used the AWS SDK to control another service, we had to manage permissions in IAM in order to allow our
instances to run the commands. We’ll be going through the same process again here.

Navigate to the IAM dashboard. Select Roles from the navigation and you will see the list of IAM roles
we’ve created. Locate aws-opsworks-photoalbums-ec2-role in the list and click it. Under the Permissions
header, you should see the policy we created in the previous chapter giving this role permission to upload to
S3 buckets. The name of the policy describes its utility. Rather than modify the existing policy, we’ll add an
inline policy for our new permissions. Click Create Role Policy to begin the policy generation process again.
With the Policy Generator header selected, click Select. In the Edit Permissions view, select Amazon SES
from the AWS Service dropdown, and All Actions(*) from the Actions dropdown (see Figure 6-12).

Figure 6-11.  Route 53 record sets for SES

Chapter 6 ■ Simple Email Service

156

Click Add Statement and then Next Step, which will show you the raw JSON for your policy along with
an auto-generated name. The policy should look something like Listing 6-1. You may also want to change
the name in the Policy Name field to something like AmazonSESFullAccess-aws-opsworks-photoalbums-
ec2-role. Click Apply Policy at the bottom right.

Listing 6-1.  SES Full-Access IAM Policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
"Sid": "Stmt1424445811000",
 "Effect": "Allow",
 "Action": [
 "ses:*"
],
 "Resource": "*"
 }
]
}
 

Figure 6-12.  Amazon SES full permissions policy

Chapter 6 ■ Simple Email Service

157

When you return to the detail view for the role, the permissions/policies should look something like
those in Figure 6-13.

We also want to be able to use the SES functionality in the local development environment. This means
that we also have to give the same permissions to the photoalbums-s3 user whose credential we use locally.
Select Users from the IAM navigation, and select the photoalbums-stack user (or whichever user you’re
using for local development). Scroll down in the user detail view until you see the Permissions header. Click
the link to create an inline policy for this user.

Once again, you will scroll down a list of policy templates until you find Amazon SES Full Access. You
will allow all permissions for the service, click Add Statement, and then click Next Step. You can once again
review the policy you’ve selected. The Policy Document should appear just like the one we saw previously in
Listing 6-1.

Figure 6-13.  EC2 Instance role policies

Chapter 6 ■ Simple Email Service

158

Click Apply Policy to return to the user detail view. This user should now have two policies: one
managed policy for S3 access and one inline policy for SES permissions (see Figure 6-14).

Using SES with the AWS SDK
Now we’re all set to start integrating SES into our application! For the time being, let’s add some pretty
standard functionality. When a new user registers, we’ll send her a registration confirmation e-mail. We
won’t force her to activate the account in the e-mail; it will simply be a welcome message.

Before we get into the thick of it, we once again have to determine how to make our addresses dynamic,
that is, avoid hard-coding them into the application. After all, we want our code to work as well in a dev
environment as it does in the production environment. The e-mail address from which registration e-mails
are sent should be something like donotreply@yourdomain.com. It’s probably a reasonable decision to
always assume that the sender should be “donotreply.” We also have the domain stored in an OpsWorks
Environment Variable—in the wrong format. There are a few approaches we could take here.

	 1.	 Store specific e-mail addresses, such as contact@yourdomain.com in OpsWorks
Environment Variables, and access them programmatically.

	 2.	 Use the existing DOMAIN environment variable and programmatically trim
http://www off the beginning, to make it usable in constructing e-mail addresses
dynamically.

	 3.	 Make a new environment variable for the mail domain and use that.

All three of these approaches (and probably a few others I didn’t think of) are perfectly valid. To
keep things simple, we’re going to use the second approach, which will save us the trouble of making new
environment variables. At this point, however, you should feel confident about your ability to use any of the
preceding approaches to construct an e-mail address dynamically in this context.

Figure 6-14.  IAM user policies

Chapter 6 ■ Simple Email Service

159

Globals
Open /lib/globals.js in your code editor and scroll to the end. After the absoluteURL() function, paste
the following:
 
rootDomain : function(){
return this.awsVariables().domain.replace('http://www.','');
}
 

This simple function will convert http://www.yourdomain.com to simply yourdomain.com. We call
it rootDomain and not just mailDomain, because we could potentially need the root domain at some later
point. In the interest of clarity, your globals file should now be as in the following Listing 6-2:

Listing 6-2.  Updated Globals

module.exports = {
 applicationPort : 80,
 database : function(){
 if(process.env.ENVIRONMENT){
 var opsworks = require('./../opsworks');
 var opsWorksDB = opsworks.db;
 var rdsConnection = {
 host : opsWorksDB.host,
 port : opsWorksDB.port,
 database : opsWorksDB.database,
 user : opsWorksDB.username,
 password : opsWorksDB.password
 };
 return rdsConnection;
 } else {
 var local = require('./../config/local');
 var localConnection = local.db;
 return localConnection;
 }
 },
 awsVariables : function(){
 if(process.env.ENVIRONMENT){
 var variables = {
 bucket : process.env.S3BUCKET,
 domain : process.env.DOMAIN
 }
 return variables;
 } else {
 var local = require('./../config/local');
 return local.awsVariables;
 }
 },

Chapter 6 ■ Simple Email Service

160

 absoluteURL : function(path){
 if(this.awsVariables().domain){
 return this.awsVariables().domain + '/' + path;
 }
 return path;
 },
 rootDomain : function(){
 return this.awsVariables().domain.replace('http://www.','');
 }
}

Mail.js
While we could put most of the rest of our code in the users route, it might make more organizational sense
to have a separate class for handling all of our SES transactions. After all, we may want to generate e-mails
for other purposes elsewhere in our application. It seems safe to say that e-mail communication deserves its
own proxy class.

Create a new file called mail.js in the /lib directory. You could, of course, name it something such
as ses.js, if you prefer. First, we must include the dependencies for this file. We’ll require access to our
globals.js, as well as the AWS SDK. At the top of the file, paste the following lines:
 
var aws = require('aws-sdk');
var globals = require('./globals');
 

For now, we’re only adding registration e-mails. However, we should structure this file with the
assumption that we will be adding other mail functionality in the future. As such, we will be writing two
functions: one to construct the content for the registration e-mail and another to send the SES mail.

First, add the sendEmail() function to mail.js (see Listing 6-3). This function will simply send the SES
mail with the parameters passed to it. It will remain a private function.

Listing 6-3.  sendEmail Function

function sendEmail(params, callback){
 if(globals.awsVariables().key){
 �aws.config.update({ accessKeyId: globals.awsVariables().key, secretAccessKey:

globals.awsVariables().secret });
 }
 var ses = new aws.SES({region:'us-east-1'});
 var recipient = params.username + '<' + unescape(params.email) + '>';
 var sesParams = {
 Source: params.messageSource,
 Destination: {
 ToAddresses: [recipient],
 BccAddresses: params.bccAddress
 },
 Message: {
 Subject: {
 Data: params.subject,
 Charset: 'UTF-8'
 },

Chapter 6 ■ Simple Email Service

161

 Body: {
 Text: {
 Data: params.messageText,
 Charset: 'UTF-8'
 },
 Html: {
 Data: params.messageHTML,
 Charset: 'UTF-8'
 }
 }
 },
 ReplyToAddresses: [emailSender()]
 }
 ses.sendEmail(sesParams, function(err, data){
 callback(err, data);
 });
}
 

You’ll notice a similar pattern to our S3 upload functionality. If an IAM key is found, meaning we’re
in the local environment, then call aws.config.update() to use our local credentials. Then, we initialize
an instance of SES from the SDK. To use SES, you must set the region as well. In our case, it’s 'us-east-1'.
The rest of the function is populating SES parameters with the values sent in the params object. Last, ses.
sendEmail() sends the e-mail.

Next, we will create the sendRegistrationConfirmation() function. This function will construct
the parameters passed to sendEmail. To add other e-mails to our application, we will merely replicate the
sendRegistrationConfirmation functionality. Add the code in Listing 6-4 to mail.js.

Listing 6-4.  sendRegistrationConfirmation Function

function sendRegistrationConfirmation(params, callback){
 var emailParams = {
 username : params.username,
 email : params.email
 };
 emailParams.messageSource = emailSender();
 emailParams.bccAddress = [];
 emailParams.subject = 'Registration Confirmation';
 emailParams.messageText = '�You have successfully registered for Photoalbums.

Your username is ' + emailParams.username + '.';
 emailParams.messageHTML = '�You have successfully registered for Photoalbums.

Your username is ' + emailParams.username + '.';
 sendEmail(emailParams, callback);
}
 

As you can see, we generate our e-mail subject and message in both plain text and HTML. You’ll notice
that the messageSource is set to emailSender(). Because we will conceivably be sending multiple system
e-mails to users, a reusable function is a good way to minimize code duplication. The emailSender()
function should be added to mail.js as well.
 
function emailSender(){
 return 'donotreply@' + globals.rootDomain();
}
 

Chapter 6 ■ Simple Email Service

162

With the preceding code, we use the root domain originating in the OpsWorks environment variable to
construct an e-mail address for the sender.

Last, we have to make sendRegistrationConfirmation() a public method. At the end of the file, add
the following line:
 
exports.sendRegistrationConfirmation = sendRegistrationConfirmation;

User Registration Route
Next, we integrate this new functionality into our application. For now, we’re only adding mail functionality
to the users route. Open /routes/users.js. At the top of the file, include mail in the file:
 
var mail = require('./../lib/mail');
 

Locate the /register route, to which you will be adding the mail.sendRegistrationConfirmation()
function. We don’t want to send the registration e-mail until we have successfully created the user account
in the database. The route should appear as follows (Listing 6-5):

Listing 6-5.  New User Registration Code

router.post('/register', function(req, res) {
 if(req.param('username') && req.param('password') && req.param('email')){
 var email = unescape(req.param('email'));
 var emailMatch = email.match(/\S+@\S+\.\S+/);
 if (emailMatch !== null) {
 var params = {
 username: req.param('username').toLowerCase(),
 password: req.param('password'),
 email: req.param('email').toLowerCase()
 };
 
 model.createUser(params, function(err, obj){
 if(err){
 res.status(400).send({error: 'Unable to register'});
 } else {
 �mail.sendRegistrationConfirmation({username: req.param('username'),

email: req.param('email')}, function(errMail, objMail){
 if(errMail){
 res.status(400).send(errMail);
 } else {
 res.send(obj);
 }
 });
 }
 });
 } else {
 res.status(400).send({error: 'Invalid email'});
 }
 } else {
 res.status(400).send({error: 'Missing required field'});
 }
});
 

Chapter 6 ■ Simple Email Service

163

Note■■  I n the production environment, you might want to check for duplicate e-mail addresses during
registration.

Deployment and Testing
Those are all the code changes we need! Commit your code to your repository; navigate over to OpsWorks;
and select your application stack. Select Apps from the drop-down. When you see your application in the
list, click deploy. Give your application a few minutes to deploy.

When your deployment is complete, we can test the new functionality. Register a new user by making
a POST request to http://www.[yourdomain].com/users/register. Make sure to include the following
parameters: username, email, and password. Use whatever username and password you like, and be sure to
use an SES-verified e-mail as the e-mail. Send the request, and you should see the following response:
 
{ message: "Registration successful!" }
 

Well that’s a good sign. Go ahead and check your e-mail. You should have a message that looks
something like that in Figure 6-15.

Let’s head back over to SES to look at our metrics. In the AWS menu, choose SES. In the dashboard,
you should now see the results of your test, as shown in Figure 6-16. As you can see, you’ve sent 1 of 200,
and your e-mails have a 100% delivery rate.

Figure 6-15.  E-mail sent by SES

Chapter 6 ■ Simple Email Service

164

And that’s all there is to it! You’ve integrated SES into your application and should be able to extrapolate
on this lesson to generate e-mail from your application in other use cases. But before we conclude this
chapter, we will run through a quick lesson on organizing AWS resources.

AWS Resource Groups
By the sixth chapter, you’re already utilizing a number of services in your application. As your infrastructure
grows, it can be difficult to keep track. There are a few ways we can organize our resources to make them
easier to find. We will quickly revisit some of our AWS services and tag them with our application name and
create a resource group from these tags.

Figure 6-16.  SES sending limits and metrics

Chapter 6 ■ Simple Email Service

165

As I discussed in Chapter 3, tags have no technical use; they exist purely for our own convenience.
While they can help us organize our resources, they can be especially useful for analyzing your AWS billing, a
subject that is beyond the scope of this book.

We can give the resources for Photoalbums a common set of tags for organizational purposes. Then,
we’ll create a resource group based on these common tags, which will make it easier to consolidate the
moving parts of our system.

Tagging Resources
Let’s begin by tagging our database. From the AWS Console, navigate to RDS. Click Instances in the left-
hand navigation, which will reveal your instance in the right-hand view. At the bottom of the view, click
the Tags button. The view will reload as the detail page for your instance. At the bottom, you’ll see a table
underneath the Tags header, as in Figure 6-17.

The only tag currently assigned to the RDS instance is workload-type: production. Let’s add a tag to
indicate that this database is a part of the Photoalbums project. Click Add/Edit Tags. In the Tag DB Instance
view (see Figure 6-18), click Add another Tag. Enter project as the Key, and photoalbums as the Value.
Click Save Tags.

This one was easy enough. Unfortunately, we cannot tag the instances in our application stack as we
would like by default (but we could with a Chef script). For now, let’s manually tag our EC2 instances. Head
over to the EC2 dashboard. Click Tags in the left-hand navigation, which will display a list of EC2 tags (see
Figure 6-19). You’ll notice that some tags were auto-generated for your instances.

Figure 6-18.  Adding tags to the database

Figure 6-17.  RDS instance tags

Chapter 6 ■ Simple Email Service

166

Click Manage Tags at the top of the page. You’ll now see a view in which you can multi-select instances
and add new tags. Select your instance(s) and add the project: photoalbums tag to your instance, then click
Add Tag. Your instances have now been tagged.

Remember: Your load balancer is in here too! Select Load Balancers from the left-hand menu. Select
your load balancer and click the Tags tab. As you can see in Figure 6-20, it already has some tags (we created
them in Chapter 3)! Wouldn’t it be lovely if the same tag were automatically applied to all the resources
we’ve created in OpsWorks? We can dream….

Unfortunately, we have to add our own tag. Click Add/Edit Tags, and when the modal appears, add the
same tag key/value pair as before, by clicking Create Tag, entering the tag, and clicking Save.

This is quite the trip down memory lane. What other resources can we tag? The S3 bucket should be the
last one so far. Head over to S3; select your bucket; and, in the right-hand view, expand the Tags section. Add
your tag, as shown in Figure 6-21, and click Save.

Figure 6-19.  EC2 tags

Figure 6-20.  ELB tags

Chapter 6 ■ Simple Email Service

167

Figure 6-21.  S3 tags

Creating and Viewing Resource Groups
Next, let’s create a resource group with our new tag. You’ll notice a menu in the navigation bar titled AWS,
which we’ve never used. Expand the menu, as in Figure 6-22, and click Create a Resource Group.

In the Create a resource group view, we can configure our resource group. In this view, we will filter
our resources by tag. First, name the resource group Photoalbums Resources. To start, we will add two tags
to our resource group. In the Tags drop-down, select projects, then, in the accompanying text field, select
photoalbums.

In the Regions field, you can select which geographic regions are included in this group. All of our
resources are in US East, so you can select only US East. Leave the Resource types field blank to include all
resource types (see Figure 6-23). When you’re finished, click Save.

Figure 6-22.  AWS menu

Chapter 6 ■ Simple Email Service

168

Now we have a new way of quickly accessing our resources. The Resource Group view, accessible at any
time from the primary navigation in AWS, links you quickly to all of the resources in your project
(see Figure 6-24).

In truth, you may never have to use this. We’ve gotten into the habit of navigating from service to
service fairly quickly, which has its benefits. But now you know you can tag resources and, indeed, that
AWS is automatically tagging some resources for you. You can use these tags to get a detailed view of your
connected resources, and you can also use these tags for managing your billing.

If you wanted to maintain multiple app environments/application stacks, you could add another tag
value for photoalbums dev, and you could create a tag that all stacks have in common, effectively creating
different resource views across all AWS services.

Figure 6-24.  Viewing the Resource Group

Figure 6-23.  Editing a resource group

Chapter 6 ■ Simple Email Service

169

Summary
Our application can now send e-mails to our users! It was a quick lesson, which should open a lot of doors.
We also took a quick detour to organize our growing number of AWS resources, which can be quite helpful
when you’re building a complicated system in AWS. In the next chapter, we will finally make our application
scale and respond to demand, as we originally set out to do.

171

Chapter 7

Monitoring the Application

We’ve talked a lot about the main principles by which we’ve been designing our system—scalability and
elasticity—and in the process, you’ve learned about the concepts. Thus far, we have barely been able to put
these principles into practice. While you have seen that you can rapidly increase your resource allocation
with a variety of AWS services, we have not done so intelligently yet. Sure, you could always run your
application on the largest servers possible, but that misses the point. Elasticity, once again, means being
able to scale our infrastructure in response to demand or other events, which we will collectively refer to as
incidents. In this chapter, you will learn how to apply this principle by first identifying incidents and then
responding to them.

How do we know we need to scale? The first and most important obstacle in responding to incidents
is assessing the health of our infrastructure. While we don’t have to know specifically how many users are
logged in currently, we do need to be able to assess specific metrics that have some consequence for our
application. For example, if we want to know if the size of our EC2 instances is sufficient, we have to measure
things such as CPU utilization and memory in order to determine the status of the current instances. If our
application is running on a single instance, and its CPU utilization is 100%, there are going to be serious
performance issues, and we can call this an incident.

Once we have detected an incident, we have to formulate a response. In the preceding scenario, the
most obvious response would be to add another instance to our application stack. In this chapter, we will
plan for this and other eventualities and automate the response to the incident. You will learn how to use
load-based and time-based EC2 instances to deploy extra resources in response to, and in anticipation of,
high demand. There are, of course, some incidents that will require manual intervention to fix or whose
resolution is outside the scope of a beginner book. In these cases, we will set up notifications when a critical
incident has occurred.

CloudWatch
Amazon has consolidated all of their monitoring metrics under an umbrella service called CloudWatch
(http://aws.amazon.com/cloudwatch/). Any metric you can view in any other AWS service can also be
collected and tracked in CloudWatch. Typically, the metrics will be easier to view in detail in CloudWatch.
It’s important to note that AWS metrics are only available for two weeks.

Let’s begin by taking a look at the metrics in OpsWorks and comparing them to CloudWatch. Log in to
the AWS Console and navigate to OpsWorks. Select the Photoalbums stack. Then open the Navigation drop-
down and click Monitoring. By default, you will see the monitoring view for the layers of your application
that have EC2 instances assigned (see Figure 7-1). In this view, the RDS and ELB layers do not appear.

http://aws.amazon.com/cloudwatch/

Chapter 7 ■ Monitoring the Application

172

The four categories of layer metrics are displayed, each with its own graph: CPU System, Memory Used,
Load, and Processes. By default, the metrics are loaded for the last 24 hours. You can quickly see whether
there are any major incidents wherein the CPU system (utilization), memory use, or load were maxed or if
there is a spike in active processes. Each of the first three graph headers is actually a drop-down that can be
used to select another metric from that category. Figure 7-2 shows the Memory Used drop-down.

Figure 7-1.  The OpsWorks Monitoring view

Figure 7-2.  An OpsWorks Monitoring metric drop-down

You can also change the date range from 24 hours to another range. These seem like pretty useful
metrics, but there is no way to view them in greater detail. You might think that clicking one of the graphs
will expand it, but it will take you elsewhere: to the Monitoring view for the instances in the layer. Take
note of the Memory Used metric, as we will be viewing this in CloudWatch. Now let’s go to the CloudWatch
dashboard to view this metrics there.

Open the Services drop-down, and select CloudWatch. At the top of the console, you’ll see a heading
titled “Metric Summary” (see Figure 7-3). Under this header, click the Browse Metrics button.

Chapter 7 ■ Monitoring the Application

173

In the Metrics view, you can see all the metrics for your AWS account, broken down by service and then
by category within that service (see Figure 7-4). The number of metrics you see here will depend on what
resources have already been created on your account.

Figure 7-3.  CloudWatch Metric Summary

Figure 7-4.  CloudWatch Metrics by Category

Let’s take a look at the metrics for our application. Imagine that we want to see how much memory has
been used by our application layer. Under the OpsWorks Metrics header, click Layer Metrics. You should
see a list of metrics alphabetized by name and their corresponding LayerId, as shown in Figure 7-5. Since we
only have one OpsWorks layer with EC2 instances assigned to it, each metric appears once and corresponds
to the Node.js application layer.

Chapter 7 ■ Monitoring the Application

174

Scroll down to the metric named memory_used. Click the check box next to it. Underneath the metric
list, a graph will magically appear, displaying the metric at 5-minute intervals over the past 12 hours
(see Figure 7-6).

Figure 7-5.  OpsWorks Layer Metrics

Figure 7-6.  OpsWorks Layer Metrics in CloudWatch

This is the same metric we were just looking at in OpsWorks, only with greater detail. By default, the
span and interval of the data points is different, but we can easily change the graph to 24 hours and 1-minute
averages to match the graph in OpsWorks. Click 5 Minutes to expand the interval drop-down and change
to 1 Minute. Using the Time Range filter to the right of the graph (not shown in the figure), change the From
field to 24. Then click Update Graph. You should now see the same data set as you saw in OpsWorks. You
can also mouse over the line in the graph to view more details about each point.

Another useful feature in CloudWatch is that you can view multiple metrics. In our case, the amount of
memory used is a more valuable metric when compared to the total available memory. In the metrics list,
select the memory_total metric. Your memory_used plot should turn orange, and the memory_total metric
will appear in blue. This doesn’t look right, does it? If your memory_used line is above the memory_total
line, you must flip your axes. Mouse over one of the lines and find the Y-Axis property. Then, click switch
to change the axes. Now you should have a view of both metrics, showing you how much of your available
memory has been used in the past 24 hours (see Figure 7-7).

Chapter 7 ■ Monitoring the Application

175

As you can see in Figure 7-7, I have 600MB in total available memory, and my usage in the past 24 hours
has hovered between 400MB and 500MB for the most part. Keep in mind that this isn’t just the memory
usage of the Node.js application; it includes all software, including the operating system, running on the
instances. The next question is what to do with this information.

CloudWatch Alarms
When your metrics cross certain thresholds, you can configure a CloudWatch alarm to send a notification
to you or your team. You can create up to 5,000 alarms on your account, using any of the metrics that are
accessible in CloudWatch, and at the time of this writing, these alarms cost $.10 per month per alarm. The
main purpose of creating these alarms is to quantify an incident that is occurring in your application stack,
leading to either a manual or automated response.

Creating useful alarms may not be as easy as it sounds. It is entirely possible to create alarms that you
would expect to go off if there was a problem with your application and then completely miss an incident
occurring. For example, let’s say you were creating alarms to monitor the output of your application over
HTTP (more on this later). You might create an alarm that fires when an HTTP response code of 500
is returned to a user, but instead, your application just hangs, and the request times out, due to some
unforeseen error in the code. Your application would be unresponsive, and you would never know it!

When you create an alarm, you choose a metric and a comparison operator (greater than, less than,
greater than or equal to, etc.). You cannot create an alarm directly comparing two metrics. For example, you
could not create an alarm that goes off when memory_used >= memory_total. You would have to configure
the alarm to go off when memory_used >= 600,000. Unfortunately, this alarm would not be that useful,
unless you intended to keep your instances at a particular scale.

At first glance, you might think, couldn’t the alarm go off when we use all 600MB? Then, couldn’t we add
new instances and turn them back off when the alarm stops going off? When you add another instance to your
layer, there will also be significant memory overhead associated with that instance, so this may not be the
most practical alarm to use. As long as you have more instances (and thus more memory) online, the memory
footprint may inaccurately keep the alarm state active, when in actuality the incident is no longer occurring.

Figure 7-7.  Memory used vs. memory total

Chapter 7 ■ Monitoring the Application

176

An alarm has three possible states: OK, ALARM, and INSUFFICIENT_DATA. The OK state occurs when
the condition for the alarm is false. If your alarm is designed to sound when memory_used == 600,000
(which as we know, is not that useful), it will be in the OK state until this condition is met, at which point it
will switch to ALARM. The INSUFFICIENT_DATA state means that there is not enough data to determine
whether the alarm is in the OK or ALARM state. You may see this alarm when it is first created and has not
collected enough data or if, for some reason, the metric data is not currently available. If you see this state for
an extended period of time, it means there is something wrong with your alarm, and you should investigate
why it is not working as expected.

Alarm Periods
Of course, both AWS infrastructure and your application are prone to hiccups, just like any other technology.
You don’t necessarily want all of your alarms going off if your application is slow for a couple seconds, or if a
single user experiences a delay. To account for this, you must define both the intervals at which your alarm
state is checked and the number of consecutive periods that constitute an alarm state.

Suppose we were to set an alarm based on the CPU utilization of our application layer. We want to be
notified if the CPU utilization is greater than 50%. This is a fairly important metric—if our CPU utilization is
too high, it means our instances are overworked and our application is going to become unresponsive. We,
therefore, should set the interval, or period, of the alarm to one minute, a fairly regular health check. That
being said, we don’t necessarily want the alarm to go off if there’s an isolated spike in the CPU utilization.

The CPU utilization is one good indicator that your application is experiencing an incident of excessive
demand, so it would make sense to respond to it by adding more instances to the application stack. However,
we know by now that EC2 instances don’t start instantaneously. If your alarm were going off one minute,
then ceased the next, then went off again, you might have your extra instances stuck constantly booting
and shutting down. This would constitute a tremendous waste of resources, and it would be irritating to
constantly get false alarms. Therefore, let’s say that three consecutive alarm periods constitute an incident,
so we would configure our alarm to fire if our CPU utilization is greater than 50% for three minutes.

Simple Notification Service (SNS)
Before we begin creating CloudWatch alarms, we have to take a quick detour to the Simple Notification
Service. This service allows you to tie CloudWatch alarms to a variety of notification methods, including
HTTP, e-mail, mobile push notifications, and SMS. Like many other services, this one warrants a book
in its own right. We will only be using SNS for its most simple utility: e-mailing a group of users when a
CloudWatch alarm goes off.

From the AWS Services menu, select Simple Notification Service. You’ll notice a few key terms here,
primarily topics and subscriptions. Just as with other AWS services, a topic has a unique ARN (Amazon
Resource Name—the global ID in the AWS ecosystem) and is in itself a resource—the target of a notification
event. We will create a topic for all alarms pertaining to the Photoalbums infrastructure. Then, we will create
subscriptions for each administrator who should be e-mailed when a notification is generated under this
topic. While a subscription could also be a URL, SMS recipient, or other end point, in our simple case, you
can think of a subscription as a user’s e-mail address.

Let’s begin by creating a topic for Photoalbums administrators. In the center of the SNS dashboard, you
should see a button labeled “Create New Topic” (see Figure 7-8).

Chapter 7 ■ Monitoring the Application

177

Figure 7-8.  SNS dashboard

A modal pop-up will appear, prompting you for a Topic Name and optional Display Name. In both
fields, enter PhotoalbumsAlarms, as this topic will solely be triggered by CloudWatch alarms for our
application stack (see Figure 7-9). Click Create Topic.

Figure 7-9.  Create SNS topic

You will be directed immediately to the topic detail view, where you can view basic information about
the topic, as well as the subscriptions to the topic. At this point, we only have to create a single subscription
to this topic: an e-mail to you, the only administrator for the application. Go ahead and click the Create
Subscription button. Another modal will appear. Expand the Topic drop-down and select Email. Enter your
e-mail address in the Endpoint field and click Subscribe.

The window will display a message notifying you that the e-mail address must be confirmed. Click
Close to return to the topic detail view. You should receive an e-mail with the subject AWS Notification—
Subscription Confirmation. In the e-mail body, there should be a link to the subscription confirmation URL.
Clicking it should direct you to a page similar to that shown in Figure 7-10.

Chapter 7 ■ Monitoring the Application

178

If you return to the topic detail view and click Refresh, you will see that a subscription ID (an ARN) has
been generated for your e-mail, just as you saw on the subscription confirmation page. Now you’re ready to
use this SNS topic! We can go ahead and run a simple test by manually publishing to this topic. At the top
of the topic detail view, you’ll see a Publish button. Click this and another modal will appear. Fill out a
Subject and Message with some test content, as in Figure 7-11, and click the Publish Message button. Then,
check your e-mail again. You should see a message with your subject from “PhotoalbumsAlarms”
<no-reply@sns.amazonaws.com>.

Figure 7-10.  An SNS subscription confirmed

Figure 7-11.  Publishing an SNS topic

http://no-reply@sns.amazonaws.com/

Chapter 7 ■ Monitoring the Application

179

Creating a CloudWatch Alarm
Now that we’ve created an SNS topic for our alarms, we are ready to create our first CloudWatch alarm.
Unfortunately for the reader, each CloudWatch metric is its own topic of discussion and requires some
exposition on the subject. This time, let’s use a metric for our CloudFront to create an alarm. If you recall,
all requests over the Web to our application will be passing through our CloudFront distribution. It might be
useful to know, for example, if a lot of requests are being made.

Using the Services menu, return to the CloudWatch dashboard. This time, take a look at the left-hand
navigation. Under the Metrics header, you will see a list of all services for which you have CloudWatch
metrics. Click CloudFront, which will populate the main view with metrics for the CloudFront distribution
(see Figure 7-12).

Figure 7-12.  ELB metrics in CloudWatch

Some of these metrics could be pretty useful. The first two in the list, 4xxErrorRate and 5xxErrorRate,
are especially interesting. These metrics track the percentage of HTTP requests that are responded to with
400–500 error codes. The 4xxErrorRate is commonly associated with 404, or Resource Not Found, errors.
A small number of 404 responses is to be expected, due to user error—people entering the wrong URL or
an issue on the client side whereby requests are not formatted correctly. But if 4xx errors became a large
percentage of the responses we’re sending, then there’s a problem worth investigating. While there isn’t a
magic number, we could agree that 25% of requests resulting in 4XX errors would constitute an incident.

Similarly, 5XX errors constitute internal server errors. A user may be able to induce a 404 with a
badly constructed request, but a user should never be able to induce a 500 error in our application.
We should tolerate a much lower threshold of 500 error codes than we do of 400s. If we were going to create
a CloudWatch alarm for this metric, we might trip the alarm on a rate greater than 0%.

Note■■   TotalErrorRate is the percentage rate of requests that receive any non-200 HTTP response and
constitutes the combined percentage of the previous two metrics.

Chapter 7 ■ Monitoring the Application

180

The Requests metric counts the raw number of requests made to your CloudFront distribution. You
could theoretically use this to identify a distributed denial of service attack,1 or to track surges in traffic.

On the latter point, this is not the best way to detect a surge of non-malicious traffic. You would be
better off looking at something such as CPU and memory of your instances to identify a surge in traffic.
First, not all requests are created equal. One thousand users uploading photos should not be interpreted
as equivalent to one thousand users requesting images—the impact on the system is completely different.
Further, many requests that reach CloudFront, such as requests for images, will not reach the application
stack—and therefore affect performance—at all.

Let’s start by creating a simple alarm that will go off under the conditions I discussed a moment
ago—when the 4XX error rate is greater than 25%. Select the 4xxErrorRate row for your distribution. The
graph view will appear below, and there may or may not be points on the graph, depending on how you’ve
been using your application. At the bottom-right corner, you should see a button that reads “Create Alarm”
(see Figure 7-13). Click that to begin the process.

Figure 7-13.  Graph view tools and Create Alarm button (cropped to show time-range interface)

Defining an Alarm
You should now find yourself in the second step of the alarm creation process, having already selected the
metric for your alarm. There are three headers in this view: Alarm Threshold, Alarm Preview, and Actions
(refer to Figure 7-14 to see the completed view). Under Alarm Threshold, we name and define the alarm.
In the Name field, enter Photoalbums CloudFront HTTP400 > 25%. The name of the alarm is going to
appear in your e-mail notifications, so you want it to be descriptive. The Description field allows you to enter
a more long-form description of the alarm, so you can enter something such as Average percentage of
requests to Photoalbums CloudFront distribution has exceeded 25%. If you wanted, you could even take
the description further.

1For a study of types of DDoS attacks and countermeasures, see “A Survey of Defense Mechanisms Against Distributed
Denial of Service (DDoS) Flooding Attacks,” http://d-scholarship.pitt.edu/19225/1/FinalVersion.pdf.

http://d-scholarship.pitt.edu/19225/1/FinalVersion.pdf

Chapter 7 ■ Monitoring the Application

181

Below the description, you’ll find the actual parameters for the alarm. The Whenever field is already set
to the metric you’ve selected. In the is: row, set your comparison operator to >, and in the neighboring field,
enter 25.

Looking at the right-hand column, the Alarm Preview gives you the current state of your alarm, if it were
enabled now. As you can see from the graph, the alarm will go off when the red line is crossed. Currently,
there are no requests being made, so there isn’t even a blue line on my graph. This would cause the alarm
to be in a state of INSUFFICIENT_DATA. You’ll notice at the bottom of this column that there are fields
for Period and Statistic. Set the period to 5 Minutes, which will be the frequency with which the metric is
evaluated against the alarm threshold. The statistic is the value we measure. In this case, Average is fine.
In some cases, you may want to measure the Maximum or Minimum of a metric instead.

Back on the left side, the Actions header indicates CloudWatch’s automated response to the alarm
going off. You’ll see that your choices are to add a Notification or AutoScaling Action. Autoscaling Actions
are not a viable option with our setup. With a more micromanaged application stack, you could configure
additional EC2 instances to automatically boot up or shut down in response to an alarm. Because we
are using OpsWorks to manage our instances, we will be configuring our auto-scaling there. With this
CloudWatch alarm, all we will do is generate a notification. Click +Notification to create your first
notification. Configure the notification to set Whenever this alarm: to State is ALARM, and Send notification
to: PhotoalbumsAlarms. Figure 7-14 shows the completed view.

Figure 7-14.  Defining an alarm

Chapter 7 ■ Monitoring the Application

182

Alarm State
Now you will receive a notification when the alarm is in the ALARM state. You can also create a notification
to go off when the alarm is in the OK state. Click +Notification again and set the field Whenever this alarm:
to State is OK. Then, click Create Alarm.

You should see a success message at the top of the page, indicating that your alarm has been created.
If you look at the left-hand navigation, you will see that the Alarms header actually gives you a summary
of your current alarm states (see Figure 7-15). Because you just created your alarm, it has the state
INSUFFICIENT_DATA. In a few moments, it should change to OK.

Figure 7-15.  CloudWatch alarm states

Figure 7-16.  CloudFront Popular Objects

In a moment, we’re going to find a problem with this alarm, because we never know what kind of bots,
scripts, or random traffic is going to run across your domain. Nonetheless, it will serve as a good reminder of
the tools at our disposal. If you want to trigger the alarm, all you have to do is make a few requests to paths
that do not exist, such as http://www.[yourdomain].com/helloworld. In a few minutes, you should receive
an e-mail indicating that the alarm is in the ALARM state.

If you wait a while longer, the alarm will probably go off pretty soon. So what do we do with this
information? One of the challenges with having such an elaborate infrastructure is getting familiarized with
the various points of failure.

This alarm in particular is based on a CloudFront metric, so the first thing we should do is check
CloudFront and see what the problem is. Go ahead and navigate to the CloudFront dashboard. In the
CloudFront navigation, click Popular Objects. You may recall that this provides a report on popular URL
requests made to your CloudFront distribution (see Figure 7-16).

Chapter 7 ■ Monitoring the Application

183

As you can see in Figure 7-16, the most popular object in my distribution is the /robots.txt file,
which is missing. Search engines! They’re looking for a robots.txt file on this domain and getting a 404 in
response. You will run into the same problem, which you can fix by adding a static path to a robots.txt file
in your Express application. The point is that you know how to create an alarm, investigate the problem, and
can determine a response.

Note■■   Similar metrics are available at the Elastic Load Balancing level. Instead of counting 400s and 500s
from CloudFront, you could monitor the load balancer in your application stack for the same responses.

Using OpsWorks with CloudWatch
If you recall, there are three types of instances when you’re adding them to your OpsWorks application
layer: 24/7, load-based, and time-based. Currently, we have one 24/7 instance running. Next, let’s add some
load-based instances to our application. In doing this, we will design our application to handle increased
demand efficiently. Later in this section, we also will look at time-based instances.

Fluctuations in traffic are normal for a web application, and we don’t want to manually respond to
the ebb and flow of traffic. We would prefer to use our resources elastically, so they automatically scale in
response to demand. But this strategy just leads to more questions.

Suppose your application stack can normally handle 500 users running on a t1.micro EC2 instance.
You routinely expect the traffic to increase to 1,000 users, so you want the resources available for when that
happens (these are completely made-up numbers). More often than not, however, you probably have a
budget for infrastructure, so you have to manage your resources efficiently. We can’t just throw 100 servers at
the problem.

Within these constraints, we will configure OpsWorks to automatically detect an incident in the
application layer instances and continue adding new servers until the incident has been resolved, at which
point our extra instances will automatically shut down.

NOTES ON DETERMINING SCALING BEHAVIOR

In a moment, we’re going to start using metrics and scheduling to scale our infrastructure. In a perfect
world, you could come away from this lesson with exact numbers to plug in. Unfortunately, it’s a bit
more abstract than that. You will have to use your own methods to determine the best strategy. You can
test your application performance with a certain number of users, check the metrics, and extrapolate
the resources you’ll need from there, although this method is likely to be inaccurate. For example, if
normal application use by five users brings your instance to 5% CPU utilization and twenty users brings
it to 10% CPU utilization, you could test in this way to predict a curve.

Nothing beats real-world operating history in informing your decisions. Some prefer to soft launch or
run a closed beta with their applications. Others deploy excess resources at launch and carefully scale
back to a more conservative deployment. All of this is an art of its own. In my experience, two different
applications can experience slowdown at entirely different metrics. We will also be looking at
time-based scaling, which is based on the unique traffic patterns for your application. So, I cannot tell
you exactly when to trigger a scaling action but, rather, can show you the tools you will be using. We’re
going to use a few instances in this scenario, which represent what you could actually do with large
numbers of powerful instances.

Chapter 7 ■ Monitoring the Application

184

Load-Based Instances
Let’s face it, one t1.micro instance is not going to be enough! We need to add a few instances to scale up in
response to demand. Head over to OpsWorks and select your application stack. Open the Navigation
drop-down and under the Instances header, you will see a link to Load-based instances (see Figure 7-17).
Click that, which will bring you to the blank-slate view of load-based instances.

Figure 7-17.  Load-based instances in the Navigation menu

Figure 7-18.  Adding a new instance to the application layer

In the middle of the screen, you should see the following message: No load-based instances. Add a
load-based instance.

Click Add a load-based instance. You’ll recognize the view that appears from when we added our
first instance in Chapter 2. The default Hostname should be fine. To be thrifty, change the Size to t1.micro.
You should select a different Availability Zone, such as us-east-1b (see Figure 7-18). If you recall, it is best
practice to spread your instances across different availability zones, in case of an outage at AWS. This means
we should be spreading 24/7 instances across availability zones, but we’ll make do for now.

Chapter 7 ■ Monitoring the Application

185

So far though, there’s no difference from creating a 24/7 instance. Next, click Advanced to review
additional settings before we create the instance. The advanced settings should look similar to those in
Figure 7-19. Because we created the instance from the Load-based Instances view, the load-based scaling
type was preselected. We don’t have to change any of these values, but if you create load-based instances
from the general instances view, you would have to make sure to change the scaling type in the advanced
view. Go ahead and click Add Instance to proceed.

OpsWorks Auto-scaling Rules
When you return to the instances view, you should see the following message in a yellow warning box:
Load-based auto scaling is disabled—edit.

You’re seeing this warning because, while we have created a load-based instance, we have not enabled
load-based scaling, nor defined the rules by which the instances are brought online. Click the Edit button to
do that now.

First thing’s first: toggle the Load-based auto scaling enabled switch to Yes. Next, let’s define some
auto-scaling rules. Remember, these values are essentially arbitrary as far as your application is concerned,
and you would be wise to determine your own scaling thresholds based on testing and operating history. For
now, we’ll devise a simple rule set, as shown in Figure 7-20, and I’ll discuss the behavior thereafter.

Figure 7-19.  Load-based instance advanced configuration

Figure 7-20.  Load-based auto-scaling rules

Chapter 7 ■ Monitoring the Application

186

When you use OpsWorks auto-scaling, you work with a simplified interface that uses the underlying
CloudWatch metrics we were working with earlier. There are, however, a few differences between using
OpsWorks and using CloudWatch for scaling. When you set auto-scaling rules in OpsWorks, you define rules
for scaling up and scaling down separately, in one distinct rule set each. When scaling up or down, you set
the number of instances to add/remove per-scaling action. Instead of creating an alarm and auto-scaling
action for each metric, your scaling actions are based on evaluation of up to three metrics at each interval:
Average CPU (%), Average memory (%), or Average load. You do not have to use all three in your scaling
rules. If you do use all three metrics, the scaling action will occur when any of the metrics cross the threshold
you define.

With CloudWatch alarms, we set a period for the metrics and the number of consecutive periods before
we triggered an alarm. In OpsWorks, we set a single time frame for scaling, which we will call the threshold
exceed time, for the sake of clarity. This is the amount of time that one or more of your thresholds has to
be exceeded for the scaling rule to be applied. The threshold exceed time triggers the scaling action and
is followed by an interval during which the metrics are ignored. We will refer to this interval as the ignore
metric interval. The reasoning for this interval is that it provides a grace period for new instances to reduce
the workload of existing instances in the stack. Let’s break down the behavior we can expect, based on the
values shown in Figure 7-20.

Auto-scaling Scenario 1
Consider the following scenario:

	 1.	 A single 24/7 instance is online.

	 2.	 Average CPU utilization reaches 51% and remains there for five minutes.

	 3.	 Threshold exceed time for Up rule is met.

	 4.	 A single load-based instance is started.

	 5.	 Metrics are ignored for five minutes.

	 6.	 Metrics are checked again. Average CPU utilization is now reduced to 23%.

	 7.	 Ten minutes pass.

	 8.	 Average CPU utilization is still below 30%.

	 9.	 Threshold exceed time for Down rule is met.

	 10.	 Load-based instance is stopped.

Load-based Instance Runtime: 15 minutes
With the auto-scaling rules we’ve defined and the instances we’ve created, there is still a finite amount

of resources that can be deployed to our application stack, which helps us keep costs under control, but our
capacity is limited. Consider another scenario using the exact same configuration.

Auto-scaling Scenario 2
Consider the following scenario:

	 1.	 A single 24/7 instance is online.

	 2.	 Average CPU utilization reaches 75% and remains there for five minutes.

	 3.	 Threshold exceed time for Up rule is met.

Chapter 7 ■ Monitoring the Application

187

	 4.	 A single load-based instance is started.

	 5.	 Metrics are ignored for five minutes.

	 6.	 Metric checks are resumed. Average CPU utilization is at 63% and remains there
for five minutes.

	 7.	 No additional load-based instances are available.

	 8.	 Average CPU utilization remains at 63% for an additional five minutes.

	 9.	 No additional load-based instances are available.

	 10.	 And so on and so on...

Load-based Instance Runtime: Indefinite
As you can see, even though we have both 24/7 and load-based resources, we are not set up to handle

the demand for our application. In this scenario, our load-based instance may as well be a 24/7 instance,
if it’s always online to meet our baseline traffic requirements. Additionally, our lack of resources will
probably begin to impact the performance of the application.

There are a few possible solutions to this problem. The simplest solution is to add additional 24/7
instances. If we believe this is a temporary surge in demand, it would be more cost-effective to add an
additional load-based instance. Let’s go ahead and do that, then review the behavior in another scenario.

Remember to click Save to create your scaling rules. The scaling rules should no longer be editable.
Then, click the + Instance button below the table. Once again, choose a t1.micro instance size. Choose a
different Availability Zone, such as us-east-1c (see Figure 7-21). Click Add Instance to create your second
load-based instance.

Figure 7-21.  Adding a second load-based instance

Chapter 7 ■ Monitoring the Application

188

You’ll see a summary below the scaling rules that reads as follows: 0 of 2 instances are running – Show >>.
Using our current scaling rules, let’s revisit how our instances will scale differently with a second

load-based instance available.

Auto-scaling Scenario 3
Consider a third scenario:

	 1.	 A single 24/7 instance is online.

	 2.	 Average CPU utilization reaches 75% and remains there for five minutes.

	 3.	 Threshold exceed time for Up rule is met.

	 4.	 A single load-based instance is started.

	 5.	 Metrics are ignored for five minutes.

	 6.	 Metric checks are resumed. Average CPU utilization is at 63% and remains there
for five minutes.

	 7.	 Threshold exceed time for Up rule is met.

	 8.	 A second load-based instance is started.

	 9.	 Metrics are ignored for five minutes.

	 10.	 Metric checks are resumed. Average CPU utilization is at 25% and remains there
for ten minutes.

	 11.	 Threshold exceed time for Down rule is met.

	 12.	 The second load-based instance is stopped.

	 13.	 Metrics are ignored for ten minutes.

	 14.	 Metric checks are resumed. Average CPU utilization is at 23% and remains there
for ten minutes.

	 15.	 Threshold exceed time for Down rule is met.

	 16.	 The first load-based instance is stopped.

	 17.	 A single 24/7 instance is online.

Load-based Instance Runtime: 60 minutes
Because we’ve defined our auto-scaling rules to add a single instance when we scale up and remove

a single instance when we scale down, we are able to scale as needed, making our use of resources quite
efficient. In this scenario, our load-based instances ran for 60 minutes: 45 minutes for the first, and 15 minutes
for the second. You’ll notice that the difference between our scale up and scale down time allowed us to
err on the side of caution. While we only wait 5 minutes after scaling up before recording metrics to scale
again, we wait 10 minutes before we start recording metrics to scale down and require the threshold to be
met for 10 minutes before stopping an instance.

Suppose we added 100 more instances and kept using the same scaling rules. If demand was surging,
our application stack would automatically bring a new instance online every 10 minutes, while our instances
surpassed the scale-up threshold, and instances would be taken offline every 15–20 minutes. In the face of
extreme demand, this might not be rapid enough of a response. You could reduce the threshold exceed time
for scaling up to 1 minute and reduce the ignore metric interval to 1 minute.

Chapter 7 ■ Monitoring the Application

189

Auto-scaling Scenario 4
Lastly, consider this scenario:

	 1.	 A single 24/7 instance is online.

	 2.	 Average CPU utilization reaches 75% and remains there for one minute.

	 3.	 Threshold exceed time for Up rule is met.

	 4.	 A single load-based instance is started.

	 5.	 Metrics are ignored for one minute.

	 6.	 Metric checks are resumed. Average CPU utilization is at 63% and remains there
for one minute.

	 7.	 Threshold exceed time for Up rule is met.

	 8.	 A second load-based instance is started.

	 9.	 And so on...

With a more aggressive scale-up rule, an instance can be brought online every two minutes. You could
leave the scale-down rule as it is, so once an instance is online, we wait for a while to make sure the incident
is over before reducing resources.

Time-Based Instances
There is one last type of instance you can create in OpsWorks: the time-based instance. If you know that
most of the time your application will have higher traffic at certain times, you can create instances that
automatically start and stop for the high traffic window. By the same token, if you know of times when there
is usually very little traffic, you can use time-based instances where you might otherwise use a 24/7 instance.

Using all three instance types in conjunction is the most efficient way to run your application and is a
much easier strategy to implement in OpsWorks than manually. You use 24/7 instances for your baseline
resources, time-based instances for your higher traffic times, and load-based instances to respond to any
increases in demand in the meantime. If you experience a surge in traffic when your time-based instances
are scheduled to be offline, your load-based instances will still be available to respond.

Let’s go ahead and start adding time-based instances to the application. Using the Navigation menu in
OpsWorks, select Time-based Instances under the Instances header. You’ll see a message just like that we
saw in the load-based instances view: No time-based instances. Add a time-based instance.

Click Add a time-based instance to create a single time-based instance. Just as before, select a t1.micro
instance in any availability zone you like. When you click Advanced, you will see that the Scaling Type is set
to Time-based (see Figure 7-22). Click Add Instance to proceed to the Schedule Creation view.

Chapter 7 ■ Monitoring the Application

190

In the Schedule Creation view, you can manually set the schedule for each time-based instance in your
application layer. The interface is fairly straightforward: you select one-hour time blocks (UTC), during
which your instance will be online.

Go ahead and click the box between 12 and 13, as in Figure 7-23. You’ll see a brief activity indicator as
your change is saved.

Your instance will now run from 12–1 p.m. UTC on a daily basis. Let’s say you also want it to run on
Friday evenings from 6–8 p.m. UTC. Click the Fri tab to select the schedule for Fridays only. You’ll see that
your daily hours are automatically selected, and you simply select the additional hours you want to run on
Friday. Select the 18–19 and 19–20 blocks to add Friday evening to your selection (see Figure 7-24).

Figure 7-22.  Adding a time-based instance

Figure 7-23.  Time-based instance scheduling

Chapter 7 ■ Monitoring the Application

191

Using Alarms with OpsWorks
You should be able to let your application scale up and down automatically, but you may want to be
informed when this happens. You especially want to be informed when all of your instances are online. As
I’ve discussed, if all of your load-based instances are online, this does not guarantee that the current incident
has been resolved. We want an alarm to go off, notifying us when we’re at or near capacity. From there, you
can monitor the situation and manually add new instances.

Unfortunately, there is currently no CloudWatch metric that tracks your current OpsWorks instances
count. There are, however, two very useful metrics at the ELB level: Healthy Hosts and Unhealthy Hosts.
These metrics tell us the number of instances connected to the load balancer that are in the healthy state as
well as the unhealthy state. You’ll recall that we defined healthy and unhealthy quite a while ago!

We can use these metrics creatively to notify us of problems. For instance, an alarm that went off when
Healthy Hosts == maximum number of instances would be sounded whenever all our instances are online.
Another alarm could go off when Unhealthy Hosts > 1. This way, we’ll be alerted when either all of our
instances are online or when one of our instances is in an error state.

This approach may not work in every situation. For example, if you have 100 instances running, you
may not have to respond to a single instance being unhealthy. Additionally, you will want to take into
account the number of time-based instances you’re using, as this will affect the number of healthy hosts that
should raise the alarm.

ELB Monitoring
To create your ELB alarm, you don’t have to go through the CloudWatch dashboard, you can also do so from
the ELB view itself. ELB instances are accessible via the EC2 dashboard. Select EC2 from the Services menu.
In the left-hand navigation, select Load Balancers under the Network & Security header.

If you only have one load balancer, it will be selected automatically. If not, select it now. Then, navigate
to the Monitoring tab. In this tab, you can see many of your CloudWatch metrics plotted on graphs, as
shown in Figure 7-25.

Figure 7-24.  Time-based instance scheduling—single-day view

Chapter 7 ■ Monitoring the Application

192

You’ll notice a Create Alarm button on the right-hand side. As you may have guessed, this lets you
create a CloudWatch alarm for the selected load balancer.

When you click the button, you’ll see a modal view that is simply a pared-down version of the interface
in CloudWatch. Send a notification to your SNS topic. In the Whenever fields, select Average and Healthy
Hosts. Is should be >= 3, which is the sum of your 24/7 instances and your load-based instances. For at least
could be set to 1 consecutive periods of 1 Minute (see Figure 7-26).

Figure 7-26.  Create ELB alarm

Figure 7-25.  ELB Monitoring view

When you create your alarm in this view, you can name your alarm but not set a description. The auto-
generated name may not be clear enough for an e-mail notification. If you like, change the Name of alarm to
something such as Photoalbums - All instances online. If everything looks correct, click Create Alarm.

Once again, this is an imperfect method. This alarm will go off when you have one load-based, one
time-based, and one 24/7 instance online. After you’ve created the alarm, a modal window will confirm
the action was successful (see Figure 7-27). In this modal, there is a link to the alarm in the CloudWatch
dashboard, from which you can access the full view of the alarm details.

Chapter 7 ■ Monitoring the Application

193

Figure 7-27.  ELB alarm confirmation

Next, let’s create the alarm for unhealthy hosts. Note that if your application crashes due to an exception
in the code, it will automatically restart. A single unhealthy instance may not warrant a response. Click the
Create Alarm button again, and send the notification to the same SNS topic. This time, the alarm should
go off whenever the average of Unhealthy Hosts is >= 1. To make the alarm less sensitive, you could set it to
trigger when two consecutive periods of one minute elapse. As you can see in the graph on the right, you
should have zero unhealthy hosts right now. Name your alarm something such as Photoalbums - 1 or more
unhealthy hosts, as in Figure 7-28, and click Create Alarm again.

If you look through the other ELB metrics, you’ll see that they’re mostly compelling. You may want to
set up additional notifications to keep an eye on the health of your application. For example, the Average
Latency metric tracks how long it takes for instances to return a response to a request. You could set up
alarms for this metric to monitor slowdowns in your application performance.

Note■■  R emember that when you create alarms inline without the full CloudWatch UI, you will not receive a
notification when the alarm returns to the OK state.

Figure 7-28.  Creating a second ELB alarm

Chapter 7 ■ Monitoring the Application

194

Auto-scaling Summary
You’ve seen how easy it is to add instances to your application manually, and now you can automatically
scale your application based on demand or schedule. We’ve created a handful of alarms that will help you to
monitor your application and respond to incidents. The alarms at the ELB level demonstrated just a couple
of the many ways you can use alarms creatively.

Feel free to create a few more alarms to help you with monitoring. When you are creating alarms, the
challenge lies in maintaining a good signal-to-noise ratio. You don’t want a bunch of alarms going off that
will be ignored—it’s best to trigger an alarm only when you must be on alert for issues in your application.

RDS Alarms
If you recall the RDS lesson in Chapter 3, you know that we have a lot of redundancy and fail-safes built into
our RDS database. We are using Provisioned IOPS to reserve increased I/O capacity for our instance, and
Multi-AZ deployment to reroute requests to a backup instance when necessary. We are also taking routine
automated snapshots of our database for backup purposes.

With all these tools, the RDS instance should maintain itself for the most part. Nonetheless, we don’t
want to be caught off guard by any problems. We can easily increase the disk space of the database or create
a new instance from a snapshot with a greater capacity. We can easily swap out database credentials in
OpsWorks, so if we need to roll out a backup database in a hurry, we have already learned how to do so.
In short, we have a means of responding to major crises.

Let’s go ahead and create some alarms to inform us of any incidents with our RDS instance. These
incidents may not require a major response, but they should elicit further investigation.

Navigate to the RDS dashboard, where your instance should be auto-selected. Click Show Monitoring
at the top. As with ELB, the embedded monitoring view gives you access to CloudWatch metrics for the
selected instance (see Figure 7-29), only this time, the Create Alarm button is farther down the page.

Figure 7-29.  RDS monitoring

Chapter 7 ■ Monitoring the Application

195

You’ll see a number of useful metrics here, mostly in raw numbers instead of percentages. This means
that if you scale your database, you may have to adjust alarms accordingly, as in the case of the metrics we
looked at in the beginning of the chapter.

Depending on how long it’s taken you to get this far into the book, you probably already have some
operating history for your database. Take a look at the CPU utilization in Figure 7-30, which you can access
by clicking the miniature CPU Utilization graph.

As you can see, for an overwhelming majority of the time, my CPU utilization stays below 40%. There
is a single incident for which it suddenly spiked to 100%. While the incident was resolved automatically by
AWS, we should be notified of its occurrence in the future. Click the Create Alarm button.

For this alarm, we’ll want to be informed of CPU utilization > 60% for a single one-minute period
(see Figure 7-31). Once again, we’re walking the line between alarms that are too sensitive to be useful and
alarms that are too permissive to detect an incident. Sixty percent of CPU utilization is well outside the
normal range, and we will be informed immediately. Click Create Alarm to finish your alarm and return
to RDS.

Figure 7-30.  RDS instance CPU utilization

Chapter 7 ■ Monitoring the Application

196

There are a number of other metrics that you may want to create alarms for here. For instance, if the
Read IOPS or Write IOPS metrics were to deviate from their normal patterns, it would constitute an incident.
We don’t have to run through each metric individually so much as understand that we have to analyze the
metrics for patterns and create alarms when the patterns are deviated from drastically.

CloudWatch Logs
After getting comfortable with local development in Node.js, you’ve probably become accustomed to having
logs printing directly into a terminal window. With our OpsWorks application stack, we, unfortunately, lose
that ability. Instead, we must utilize another feature called CloudWatch Logs.

CloudWatch Logs allow you to group, store, and monitor your system logs in the AWS Console. While
they are not enabled by default, it will only take a few steps to get them up and running. First, we will install
and configure CloudWatch logs to store some of the system-level logs that are generated by OpsWorks. Once
this is complete, we will set up some application-level logging in CloudWatch. Last, we will set up an alarm
based on these logs.

EC2 Instance Roles
Before we dive into this further, the instances in our application stack are going to require full permissions
for CloudWatch Logs. As you know, we’ll have to make another stop to Identity and Access Management.
Select IAM from the Services menu. Click Roles in the left-hand navigation and select aws-opsworks-
photoalbums-ec2-role from the list. Once again, this is the role assigned to each instance in your
application stack. In the role detail view, you should see the policies you’ve created to allow the instances to
access S3 and SES (see Figure 7-32). Click Attach Policy to create another policy for CloudWatch Logs.

Figure 7-31.  RDS CPU utilization alarm

Chapter 7 ■ Monitoring the Application

197

Figure 7-32.  Instance Role Policies

Select the CloudWatchLogsFullAccess managed policy and click Attach Policy. If you view the policy
document, it will look something like Listing 7-1.

Listing 7-1.  CloudWatch Logs Full-Access Policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "logs:*"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}
 

Your role has been updated, but the changes won’t take effect on your instances until they are restarted.
Now let’s head back to OpsWorks and set up the logging!

Chapter 7 ■ Monitoring the Application

198

Using Chef in OpsWorks
We’ve made a few allusions to the power of Chef, the core technology behind OpsWorks. Now we’re finally
going to put it to use! Don’t worry, we aren’t going to write any recipes, we’re just going to put them to work
for us.

To write our system logs to CloudWatch Logs, we must install a Chef cookbook to each instance in our
application stack. Within each cookbook are one or more configuration scripts, referred to as a Chef recipe.
If we had to manually install the scripts on each instance, we would be facing an enormous task. Especially
now that we use time- and load-based instances, manually installing scripts on each instance would be
highly inconvenient, time-consuming, and difficult to maintain.

When you start a new instance in your OpsWorks layer, there are a number of phases in the process and
commands that are automatically executed during each phase. In fact, the installation of the server-side
packages and AWS software is managed in Chef. After the AWS recipes are run for each phase, there is an
opportunity to run custom recipes.

Writing our own recipes is an entirely separate topic. Fortunately, Amazon has been gracious enough
to provide us with a sample cookbook for sending OpsWorks logs to CloudWatch. We will implement the
sample cookbook in our stack and execute specific recipes in the cookbook during the Setup phase on our
instances.

Installing Cookbooks and Recipes
To install the cookbook, we must make changes at the stack level in OpsWorks. By default, custom cookbooks
are disabled, so when instances are created, there is no opportunity to add our own customization.

Navigate to OpsWorks and select Stack from the Navigation menu. Then, click Stack Settings at the
top-right corner. Halfway down the page, you’ll see a header that reads Configuration Management. The
first thing we have to do is change the global configuration to allow custom Chef cookbooks to be installed.
Toggle the Use custom Chef cookbooks to the Yes position. Immediately, you are prompted to choose the
location of your cookbooks. While you are free to add as many recipes as you want, they should all be
bundled into a single cookbook, stored either in a repository or zip.

The custom cookbook we will use is available at a public URL here: https://s3.amazonaws.com/
aws-cloudwatch/downloads/CloudWatchLogs-Cookbooks.zip. Select Http Archive as your Repository type
(see Figure 7-33). Even though it’s stored in S3, because it’s a public file, you can access it over HTTP, like any
other zip on the Web.

Figure 7-33.  Enabling custom cookbooks in OpsWorks

https://s3.amazonaws.com/aws-cloudwatch/downloads/CloudWatchLogs-Cookbooks.zip
https://s3.amazonaws.com/aws-cloudwatch/downloads/CloudWatchLogs-Cookbooks.zip

Chapter 7 ■ Monitoring the Application

199

Figure 7-35.  Custom chef recipes

Click Save at the bottom-right corner. Next, we have to configure our instances to run certain recipes at
specific points in their startup process. We do not do this at the instance level! Instead, we must head over
to Layers, where the configuration is done for all instances attached to the Node.js application layer. In the
Layers view, you will notice a link to edit recipes under Node.js App Server, as shown in Figure 7-34. Click
this to view and edit the recipes for the application layer.

Figure 7-34.  Layers view revisited

At the top of the recipes view, you’ll see the Built-in Chef Recipes that are automatically installed in your
instances. Each recipe is listed in the format cookbook::recipe and displayed in the phase during which it is
executed. These are not editable, as they are controlled by AWS. Under the Custom Chef Recipes header, you
can add custom recipes to be executed after the built-in recipes for each phase. We must add two recipes to
the setup phase. In the text box to the right of Setup, input the following:
 
logs::config, logs::install
 

Then click the + button to the right. Your view should look similar to Figure 7-35. Once you’ve
confirmed this, click Save at the bottom right.

Chapter 7 ■ Monitoring the Application

200

Because the recipes are run during the setup phase, we have to trigger this on our running instances.
Setup will be automatically run on any instances that are started in the future. If you only have one instance
running right now, we can easily run the Setup command on it. Navigate to the Instances view and click the
name of your running instance. In the top right, click Run Command. Under the Settings header, choose
Setup from the Command drop-down (see Figure 7-36). Then click Setup at the bottom right.

Figure 7-36.  Run Setup command

It will take a moment for your instance to complete the Setup command. The recipes that we’re running
will automatically upload the logs stored at /var/log/aws/opsworks/opsworks-agent.log to CloudWatch
Logs when the instance is set up.

CHANGING THE RECIPE

If you’re feeling adventurous, you could try and upload a different system log to CloudWatch, instead
of the logs selected by default. There is no master list of logs available on your instances. You could
try connecting to your instances with SSH and poking around for logs that are interesting to you, then
alter the recipe to choose a different log file to upload and deploy the cookbook from your S3 bucket or
repository.

CloudWatch Logs
In a minute, your logs will appear in CloudWatch. Let’s go check it out. Go to the CloudWatch dashboard
and select Logs from the left-hand navigation. You should soon see a single log group titled “Photoalbums,”
as you can see in Figure 7-37.

Figure 7-37.  CloudWatch log groups

Chapter 7 ■ Monitoring the Application

201

Figure 7-38.  Changing CloudWatch log retention

CloudWatch Logs have their own hierarchy. A single log statement is referred to as an event. Log events
are stored in a series of streams, which are organized into groups at the top level. At the group level, you can
control your log retention policy, setting the time period after which log events should expire. In most cases,
you are probably not going to want to keep the entire log history for your stack. If you click Never Expire in
the log group view, you can change your retention to a period from one day to ten years.

For the time being, let’s reduce our log retention to three days. Click Never Expire, and the Edit
Retention modal view will appear. Select 3 days from the drop-down. You’ll see a message, shown in
Figure 7-38, confirming that old data will be erased. Click OK to confirm.

Another interesting feature is called Metric Filters. You can create Metric Filters to automatically scan
your logs for specific terms or patterns and use them to create a custom CloudWatch metric. Once your logs
are generating quantifiable metrics, you can create a CloudWatch alarm to notify you when the metric has
passed a certain threshold.

This is a powerful, if underappreciated, feature. We can automatically scan our logs for specific types of
errors and trigger an alarm when the error is detected. This feature could be very useful for application-level
logging: we can be notified when an error occurs and quickly respond to it.

Before we set up application-level logging, click the Photoalbums log group. Within the group, you
should see a log stream for each EC2 instance in your application layer: nodejs-app1, nodejs-app2, etc. You
will only see the instances which have run the Setup command after you enabled the custom recipes. If you
have load-based and time-based instances in your stack, they will automatically create log streams when
they are started.

Storing system-level logs in instance-specific log streams makes sense. If there are problems starting an
instance, you would want to review logs specific to that instance. The same cannot be said for application
logs. When your application is running on multiple instances, your load balancer will determine which
instance handles requests from your users. If one of these users encounters an error, you can’t be certain
on which instance the error occurred. The simplest solution is to create a separate log stream for our
application-level logging, which will consolidate all log events generated in our application.

Application Log Stream
While we could fairly easily create timestamped log streams, we will just keep one master log stream for this
example. We will use the three-day log retention policy to keep our logs from becoming bloated with too
much historical data.

While you’re in the Log Streams view, click the Create Log Stream button at the top. A modal window
will appear, asking you to name your log stream. Enter the name application, as in Figure 7-39, and click
Create Log Stream.

Chapter 7 ■ Monitoring the Application

202

You’ll notice that while the other log stream(s) have a timestamp in the Last Ingestion Time column,
there is not one for our new log stream. In order to populate our log stream with data, we will use the AWS
SDK to post events programmatically. In the following examples, we will be manually constructing the
strings that we send to the logs. That being said, this is merely one example of the functionality. It is entirely
possible to integrate CloudWatch Logs with other logging libraries, such as log4js, logger, winston, etc. In the
interest of minimizing dependency on third-party modules, and in keeping the focus on AWS tools, we’re
taking the simpler path. However, using an existing logging library will simplify the process of formatting
and standardizing your log data. If and when you’ve chosen a logging library, I highly recommend that you
integrate it with CloudWatch Logs based on the following example.

Custom CloudWatch Logging Class (cwlogs)

First, let’s create a new class to abstract our use of the AWS SDK. In the /lib directory, create a new file
called cwlogs.js. At the top of the file, we have to add the AWS SDK. We’ll also store a single object, which
we will use to store log events. See Listing 7-2.

Listing 7-2.  /lib/cwlogs.js

var aws= require('aws-sdk');
var cloudwatchlogs = new aws.CloudWatchLogs({region:'us-east-1'});
 
var logParams = {
 logGroupName: 'Photoalbums',
 logStreamName: 'application',
 logEvents: []
};
 

The logParams object is hard-coded to the “Photoalbums” log group as well as the “application” log
stream. You could easily make these dynamic and post to multiple different log streams or even log groups,
if you wanted to keep elaborate and well-organized logs. For example, you could keep one log stream for
normal application activity and another for critical errors.

Next, we’ll add a public method for creating a log event from a simple string. The function simply
creates an object with properties message and timestamp and adds them to the logParams.logEvents array.
Add the code in Listing 7-3 to /lib/cwlogs.js.

Figure 7-39.  Creating an application log stream

Chapter 7 ■ Monitoring the Application

203

Listing 7-3.  logEvent Function

// store event in logs to be sent to CloudWatch Logs
function logEvent(message){
 var eventTimestamp = Math.floor(new Date());
 var newEvent = {
 message: message,
 timestamp: eventTimestamp
 }
 
 logParams.logEvents.push(newEvent);
}
 

It would be a waste of resources to upload every single log message to CloudWatch at the moment of
creation. Instead, we will aggregate the logs as the application is running and upload the logs periodically.
How often you upload the logs is entirely up to you. Because we are separating logging events and uploading
them, we have a separate publish method for putting the logs. Add Listing 7-4 to the file.

Listing 7-4.  putLogs Function

function putLogs(){
 if(logParams.logEvents.length > 0){
 getSequenceToken(function(err, token){
 if(token){
 logParams.sequenceToken = token;
 }
 cloudwatchlogs.putLogEvents(logParams, function(err, data) {
 if (err){
 } else {
 logParams.sequenceToken = data.nextSequenceToken;
 logParams.logEvents = [];
 }
 });
 });
 }
}
 

When you use the AWS API, existing log streams have a sequence token. In order to post a log event to
the stream, you must first retrieve the next sequence token for that stream. This process is carried out in a
private function that we will review shortly. If the token exists, cloudwatchlogs.putLogEvents() uploads
the logs to the stream using the logParams object. If this is successful, the logParams.logEvents array is
emptied, and the log events in memory are destroyed. If no log events have been uploaded to the stream
yet, there will not be a sequence token for that stream, and you don’t have to include one when you use
putLogEvents.

In order to get the next sequence token, we have to use the method describeLogStreams to retrieve
all the log streams for a particular log group. Listing 7-5 shows this in action, in the getNextSequenceToken
function. Add this function, and the exports declarations, to make logEvent and putlogs public.

Chapter 7 ■ Monitoring the Application

204

Listing 7-5.  getNextSequenceToken Function

function getSequenceToken(callback) {
 cloudwatchlogs.describeLogStreams({logGroupName:logParams.logGroupName}, function(err,
data){
 if (err){
 callback(err);
 } else {
 for(var i = 0; i < data.logStreams.length; i++){
 var logStream = data.logStreams[i];
 if(logStream.logStreamName == logParams.logStreamName){
 callback(null, logStream.uploadSequenceToken);
 break;
 }
 }
 }
 });
}
 
exports.logEvent = logEvent;
exports.putLogs = putLogs;

Integrating cwlogs

Now it’s time to start adding some basic logging to the code base! We’ll just run through a simple example.
Suppose that you want to log the workflow for a specific route in your web service, printing a few values to
the console. Open /routes/users.js, where we will add some logging to the GET /users/user/:user route.
First, include the cwlogs class at the top of your file, as follows:
 
var cwlogs = require('./../lib/cwlogs');
 

Locate the router.get(/user/:user) function, where we will add a couple of log statements. Replace
the function with Listing 7-6.

Listing 7-6.  getUser with Logging Enabled

router.get('/user/:user', function(req, res) {
 var params= {
 username: req.param('user')
 }
 var eventMessage = 'GET /users/user/' + params.username;
 cwlogs.logEvent(eventMessage);
 model.getUser(params, function(err, obj){
 if(err){
 res.status(500).send({error: 'An unknown server error has occurred!'});
 } else {
 var eventMessage = 'getUser ' + params.username + ' ' + JSON.stringify(obj);
 cwlogs.logEvent(eventMessage);
 res.send(obj);
 }
 });
 cwlogs.putLogs();
});
 

Chapter 7 ■ Monitoring the Application

205

We’re only logging a couple of things here: the method and path of the request and the object retrieved
from model.getUser(). Because you can pass any string to cwlogs, it’s flexible enough for you to decide
what works. At the end of the route, cwlogs.putLogs() uploads the logs to CloudWatch. There should be
only two entries, but you could easily add more, including a few in the users model.

Time to fire it up! Commit these changes to your repository, then head back to OpsWorks and select
your stack. Choose Deployments from the Navigation menu and click Deploy an App at the top-right
corner. Add some deployment notes, if you wish, and click Deploy at the bottom-right corner. Once your
deployment has finished, go ahead and make a GET request to /users/user/[your username].

You should get the same JSON response you were getting before, but this time, some data was added
to your CloudWatch Logs. Return to CloudWatch and select Logs from the navigation. When you click the
Photoalbums log group, you should see that the application log stream now has a value in the Last Ingestion
Time column. That’s a good sign! Click application to view the log stream. You should see something like
Figure 7-40.

Figure 7-40.  Viewing the CloudWatch Log Stream

Hooray! Have application logs ever been so exciting?

Exception Handling
Let’s take this to the next logical step, which is to upload exceptions to CloudWatch Logs. Once we do this,
we can create a metric filter and generate an alarm, informing us that an exception has occurred in the
application.

Instead of trying to break the app, let’s just force an error to occur. Add the following code to
/routes/users.js:
 
router.get('/error', function(req, res) {
 throw new Error("[ERROR] This is an intentional error");
});
 

This is purely for testing purposes, and you should remove it as soon as we’re done. Next, we will add
cwlogs to the Express middleware. Open /server.js and, once again, include cwlogs at the top.
 
var cwlogs = require('./lib/cwlogs');
 

Then, locate the middleware function that looks like the following:
 
app.use(function(err, req, res, next) {
});
 

For any error that makes it to this function, we will send the error message to CloudWatch. Change the
function to be like Listing 7-7.

Chapter 7 ■ Monitoring the Application

206

Listing 7-7.  server.js error-handling Middleware

app.use(function(err, req, res, next) {
 cwlogs.logEvent(err.message);
 cwlogs.putLogs();
 res.status(err.status || 500);
 res.send({
 message: err.message,
 error: {}
 });
}); 

Note■■   You may have development and production versions of this middleware. You can use the OpsWorks
environment variable to override the Express app environment variable if you want to use this feature.

Go ahead and commit and deploy this change. Now, let’s create a metric filter to detect the error. Return
to CloudWatch Logs and click 0 filters next to the Photoalbums log group. You should see very little on this
page aside from a button to Add Metric Filter. Click this.

In the Define Logs Metric Filter view, you can create a text pattern to match your metric filter. We’ll create
a simple one, which counts any log event with the text “[ERROR].” In the Filter Pattern field, enter the text
“[ERROR]” (including the double quotes), as in Figure 7-41. If you are trying to create a filter that catches
existing log data, there’s a handy tool on the page for testing your filter patterns. Click Assign Metric to proceed.

Figure 7-41.  Create metric filter

Chapter 7 ■ Monitoring the Application

207

Figure 7-43.  Photoalbums filters

In the next view, you can name your filter as well as the metric which it filters. The filter name is useful
for managing metric filters if you have a lot of them, whereas the metric name is the name of the value
actually being counted in CloudWatch. You can leave the Filter Name as is, but be sure to set the Metric
Name to something such as UncaughtErrors, as in Figure 7-42. Then, click Create Filter.

Figure 7-42.  Filter and metric names

You will see only your new filter in the Filters view, along with a success message (see Figure 7-43).
From here, you can edit or delete the filter or, more important, create an alarm based on the metric.

Click Create Alarm to create a new CloudWatch alarm for this metric. The idea for this alarm is
that anytime an exception is thrown, the alarm will go off. As such, we want the alarm to go off whenever
UncaughtErrors >= 1. Name the alarm Photoalbums - Uncaught Error Occurred and make the alarm
send a notification to the PhotoalbumsAlarm list, as shown in Figure 7-44.

Chapter 7 ■ Monitoring the Application

208

Figure 7-44.  Metric filter alarm

Click Create Alarm, then make a GET to /users/error. If you check the log stream, you should see the
error, and you should also receive an e-mail notification that an error has occurred. While you won’t receive
an e-mail copy of the error, you know exactly where to look to see what the error printed!

Summary
From here, there are a lot of different ways you can go. You could change the error logging to record the error
stack (hint: err.stack instead of err.message), or you can rework cwlogs to use your favorite logging library.
You could also create multiple log streams for different types of information, depending on how organized
you want to be.

At the beginning of this chapter, you had very little insight into how to monitor, maintain, and scale
our application stack. By the end, you have servers auto-scaling according to our rules, alarms monitoring a
variety of points of failure, and multi-instance application logs saving in CloudWatch. One of the challenges
in presenting this chapter has been staying on the rails with the core lessons when there are so many
possibilities!

In the next and final chapter, I will be focusing on security and, finally, adding authentication to the
application. You probably noticed that anyone can just walk right in and start uploading content. Like the
other lessons, our security measures will be a combination of coding and putting AWS services to work.

209

Chapter 8

Securing the Application

In the final chapter, we will be implementing a number of security measures in our application. There are,
in fact, a number of disparate tasks we will carry out under the “security” blanket. First, we will provision an
SSL certificate for our domain, then we can restrict sensitive interactions between the user and application
to HTTPS. We can subsequently implement secure login for our application’s users and store passwords in
encrypted fields in the database.

While this may seem like a lot of tasks to carry out, there is some good news. So far, we’ve been diligent
about security. Let’s quickly review some of the security measures we’ve already taken.

Access credentials are stored only in OpsWorks, and not in the source code.•	

The various roles and users in our application only have permission to use the •	
services they need, although you could take this a step further and restrict IAM
permissions to specific ARN IDs (a suggestion alluded to earlier).

Our database only accepts connections from the OpsWorks instances and our local •	
IP address.

We’ve already been pretty diligent about best practices, and it really wasn’t that difficult. Now we
just have to ensure that users can connect to our application securely and make sure their credentials are
properly encrypted.

Using HTTPS
You may have noticed the tiny padlock icon in the corner of your browser, next to the address bar
(see Figure 8-1), and wondered what it meant. This padlock has become a universal sign that your connection
to the host occurs over HTTPS instead of the unencrypted HTTP.

Figure 8-1.  The padlock in the address bar indicates an HTTPS connection

Chapter 8 ■ Securing the Application

210

You can even click the padlock to see more details about the SSL certificate used to verify the
connection to the host. We will be adding this layer of security to our application, allowing users to connect
over HTTPS and signing the connection with a trusted certificate.

When we use the HTTPS protocol for communication with our application, we are using a method
of encrypted transport that is verified by trusted third parties known as certificate authorities. Encrypting
communication with HTTPS is a science unto itself.

We are going to use HTTPS to encrypt traffic between the user (client) and CloudFront and between
CloudFront and the load balancer. This means that data is safely encrypted between the client and the
load balancer. The application will begin using session cookies, connecting the user’s session to a specific
instance through the load balancer. We will also restrict HTTP requests to the instances, so that they are only
accepted from the ELB. Because the user can only create a session by connecting through the load balancer,
the odds of a user’s session being hijacked are at best theoretical.

SECURITY IS A SHARED RESPONSIBILITY

Occasionally, a vulnerability will be discovered in the SSL protocol, and AWS quickly deploys the
required patches and notifies its customers via e-mail. So, you can rest assured that as vulnerabilities
are discovered, AWS will take immediate action to neutralize the threat.

As an AWS customer, your responsibility lies largely in adhering to its recommended best practices for
security. We have done so thus far, by restricting IAM roles and users only to the permissions they need,
and by minimizing the risk of access keys and credentials being exposed.

Put another way, AWS is responsible for security of the cloud, and you’re responsible for security
in the cloud. Of course, SSL is one of many moving parts that AWS maintains on your behalf.
For more information, you should review the AWS Shared Security Model at
http://aws.amazon.com/compliance/shared-responsibility-model/.

It’s worth noting that communication between the EC2 instances and the load balancer is not gaining an
extra layer of encryption. Adding this extra layer of encryption is known as back-end authentication, and it is
beyond the scope of a book for beginners. The lessons in this book will give you a secure application, but if you
have specific security compliance standards to adhere to, you should review those protocols thoroughly.

From the time we’ve spent in the AWS Console, it should be clear that HTTPS is a supported transport
method for a variety of AWS services. However, we’ve put this feature to the side until the very end, so we
can implement the protocol across the board. Because we are serving content from our own domain, we
must upload a valid SSL certificate for that domain to AWS. Remember that requests to our application first
pass through CloudFront and our ELB and are altered by these services. Supporting SSL will require that we
reconfigure both services.

Of course, storing and validating SSL certificates falls under the jurisdiction of Identity and Access
Management. Don’t bother looking for an SSL certificate tab in IAM, however, as there isn’t one! Once we
have a valid certificate, we will have to use the AWS command-line interface (CLI) to upload it to IAM.

SSL Certificate Generation
First and foremost, we have to generate and sign an SSL certificate for our domain. This is a multistep
process, during some of which you will be on your own. I’ve done my best to keep the lessons in the AWS
Console, where it’s easy to see what’s being done, and to avoid reliance on third-party tools. Unfortunately,
to complete this section, we must use a number of command-line tools. Let us now go on a journey of
installing software.

http://aws.amazon.com/compliance/shared-responsibility-model/

Chapter 8 ■ Securing the Application

211

During the process, you will have to obtain a signed certificate from a Certificate Authority. You will
have to walk through the steps required by the Certificate Authority, and I can provide a general description
of the steps you’ll have to take. We’ll assume that you have the ability to verify the domain you’re using for
your application, as this will be required in some capacity when you get your certificate signed. For the
next few steps, you’ll have to use both a web browser and command-line interface. Open Terminal or its
equivalent to begin.

Installing OpenSSL
The first step is to install OpenSSL on your machine. OpenSSL is an open-source cryptographic tool that we
will use for generating a private key and certificate signing request (CSR). Your machine may already have
it installed. Find out by typing openssl on the command line. If this opens an OpenSSL prompt instead of
throwing an error, you’re ready to begin.

If you don’t have OpenSSL installed, you can download it for Mac/Linux here: www.openssl.org/source.
On Windows, you can download a binary here: www.openssl.org/related/binaries.html.

Note■■  I f you have trouble installing OpenSSL, try the wiki:
http://wiki.openssl.org/index.php/Compilation_and_Installation.

Creating a Key and CSR
Once you’ve completed the installation, you must generate a private key and corresponding certificate
signing request, or CSR. In the command-line interface, input the following command:
 
openssl req -new -newkey rsa:2048 -nodes -keyout photoalbums.key -out photoalbums.csr
 

Instead of photoalbums.key and photoalbums.csr, you can use a file name that pertains to the domain
we’re obtaining a certificate for. In the CLI, you’re going to be prompted to fill out a number of questions.
You’ll fill each one out and press Return to continue.
 
Country Name (2 letter code) [AU]:
State or Province Name (full name) [Some-State]:
Locality Name (e.g., city) []:
Organization Name (e.g., company) [Internet Widgits Pty Ltd]:
Organizational Unit Name (e.g., section) []:
Common Name (e.g., server FQDN or YOUR name) []:
Email Address []:
 

Most of those fields are self-explanatory. Go ahead and input your country, state/province, locality, and
organization info. In the Common Name field, input your domain name without the www. And definitely use
your e-mail address.

After you’ve completed these, you’ll be prompted to enter optional fields. You should press Return for
each of these, without entering any information.
 
Please enter the following 'extra' attributes to be sent with your certificate request
A challenge password []:
An optional company name []:
 

You should now have a .key and .csr in the directory in which you’re working. Next, we have to request
a certificate from a Certificate Authority.

http://www.openssl.org/source
http://www.openssl.org/related/binaries.html
http://wiki.openssl.org/index.php/Compilation_and_Installation

Chapter 8 ■ Securing the Application

212

Request Certificate
We have to submit our key and certificate signing request to a Certificate Authority. Which provider you use
is entirely up to you. Amazon makes no recommendations, instead directing users to a partial list here:
www.dmoz.org/Computers/Security/Public_Key_Infrastructure/PKIX/Tools_and_Services/Third_
Party_Certificate_Authorities/.

It’s often easier to use a vendor that sells certificates signed by a Certificate Authority. Depending on the
company you used to register your domain, it may also offer certificate services. Alternatively, NameCheap
is a reputable vendor, and you can get a certificate signed by Comodo through them for about $9/year. Using
NameCheap takes about ten minutes. If you just want a valid certificate for development, this may be the
path of least resistance.

At the SSL certificate vendor, you will first select a certificate package/price. Once you’ve paid for it, you
begin the process of requesting the certificate and validating the domain. You will be asked to provide a CSR.
To do this, you’ll have to open the .csr in a plain-text editor. The contents should look something like the
following:
 
-----BEGIN CERTIFICATE REQUEST-----
FYvKlArPvGZYWNmCMeNDjwa3pxtHWVu6CeXsXUsU4Axwaqtc60VMofEoQCqfwCi+
CDLLoSnwMQIDAQABoAAwDQYJKoZIhvcNAQEFBQADggEBAAzFDJs+FNdUgvNmdsBO
5qeETlUtIHyw9rDLSwF/wvMWS/86uSyuq3wR7GiDPIYSjs5dIWqmAleyroKRaMZd
FzAVBgNVBAMTDmNsb3VkeWV5ZXMubmV0MRwwGgYJKoZIhvcNAQkBFg1hZGFtQGNy
5qeETlUtIHyw9rDLSwF/wvMWS/86uSyuq3wR7GiDPIYSjs5dIWqmAleyroKRaMZd
PyrafU/eidGboCv83NYMSUUyJ0xDVCbIe4EoJUnpOmzu7e07vZDbB5cZDCaJWpuo
l5tf9361gLcJrKxwiHuPffipf9vv4q0M1jwdNgKtUNGSq11FdiYqlfXR87iSTMEI
nNuScyAUWgX3yXjeGhCszUIfNMbGEHL3oOKsWvpYP/Kj+ESr5DDrNujHol9n3CQz
CDLLoSnwMQIDAQABoAAwDQYJKoZIhvcNAQEFBQADggEBAAzFDJs+FNdUgvNmdsBO
5qeETlUtIHyw9rDLSwF/wvMWS/86uSyuq3wR7GiDPIYSjs5dIWqmAleyroKRaMZd
PyrafU/eidGboCv83NYMSUUyJ0xDVCbIe4EoJUnpOmzu7e07vZDbB5cZDCaJWpuo
l5tf9361gLcJrKxwiHuPffipf9vv4q0M1jwdNgKtUNGSq11FdiYqlfXR87iSTMEI
5qeETlUtIHyw9rDLSwF/wvMWS/86uSyuq3wR7GiDPIYSjs5dIWqmAleyroKRaMZd
PyrafU/eidGboCv83NYMSUUyJ0xDVCbIe4EoJUnpOmzu7e07vZDbB5cZDCaJWpuo
l5tf9361gLcJrKxwiHuPffipf9vv4q0M1jwdNgKtUNGSq11FdiYqlfXR87iSTMEI
SevmFhb6EkqLe1sEeDODqKj/FcDZYYjISNEe6ftwPGdBEivRXJpHIH/11wQRQuSw
7ws=
-----END CERTIFICATE REQUEST-----
 

Select the entire contents of the file and copy-paste into the field where prompted. You may also be
asked to select a Webserver Type. If you have the option, choose Apache+OpenSSL. If the certificate is
valid, the domain name will be automatically extracted from the Common Name you entered when you
generated the CSR. The Certificate Authority will then attempt to validate the domain. To do so, it may send
an e-mail with a verification code to the e-mail address registered as the admin of the domain. For reference,
you can find this by typing whois yourdomain.com on the command line and finding the Admin Email in
the response. You may also be able to select an e-mail address at the domain for which you’re requesting a
certificate. In any case, expect a verification process to occur, most likely over e-mail.

When your certificate request is approved, you will receive from the Certificate Authority a few files
with the extension .crt. They should be named logically and otherwise labeled for you. One of these
files is the Root CA certificate; another is your SSL certificate, which should be named something such as
yourdomain_com.crt. In addition to these, you will have one or more intermediate CA certificates.

http://www.dmoz.org/Computers/Security/Public_Key_Infrastructure/PKIX/Tools_and_Services/Third_Party_Certificate_Authorities/
http://www.dmoz.org/Computers/Security/Public_Key_Infrastructure/PKIX/Tools_and_Services/Third_Party_Certificate_Authorities/

Chapter 8 ■ Securing the Application

213

Before we can use these with AWS services, we have to address a compatibility problem. AWS only
accepts certificates in the X.509 PEM format. We can use OpenSSL to convert our certificates to PEM.
Execute the following command in the CLI and press Return:
 
openssl rsa -in photoalbums.key -text > aws-private.pem
 

This is the private key, generated on your machine, which will be uploaded to AWS. Next, let’s convert
the public key, which was provided by the Certificate Authority. Input the following command, replacing
yourdomain_com with the actual file name of your certificate:
 
openssl x509 -inform PEM -in yourdomain_com.crt > aws-public.pem
 

Now you have your public and private key. The last file that we need is the certificate chain. Without
getting too much into the details (on which I am not an authority), there are two types of certificate
authorities: root and intermediate. Each certificate is issued to an authority by a trusted authority, forming a
trust chain from our domain, through the intermediate CAs, to the root Certificate Authority. The certificate
chain is generated by stitching together certificates from intermediate certificate authorities in order,
reflecting this trust chain. We have to create the certificate chain in X.509 PEM format, just like the public
and private keys.

When you received your certificates, they should have been accompanied by an ordered listing, similar
to the following, but with naming conventions dependent on the Certificate Authority you used:

Root CA Certificate—•	 AddTrustExternalCARoot.crt

Intermediate CA Certificate—•	 CANameAddTrustCA.crt

Intermediate CA Certificate—•	 CANameDomainValidationSecureServerCA.crt

Your PositiveSSL Certificate—•	 yourdomain_com.crt

When we create the certificate chain, we will be taking note of the order of the intermediate CA
Certificates and reversing them. On the command line, input the following:
 
(openssl x509 -inform PEM -in CANameDomainValidationSecureServerCA.crt; openssl x509 -inform
PEM -in CANameAddTrustCA.crt) >> aws-certchain.pem
 

To be clear, the second intermediate CA certificate is first, and the first one is second. They are being
combined into a single .pem file named aws-certchain.pem. If you open the file, it will look something like
the following (only much longer):
 
-----BEGIN CERTIFICATE-----
MIIGCDCCA/CgAwIBAgIQKy5u6tl1NmwUim7bo3yMBzANBgkqhkiG9w0BAQwFADCB
hTELMAkGA1UEBhMCR0IxGzAZBgNVBAgTEkdyZWF0ZXIgTWFuY2hlc3RlcjEQMA4G
A1UEBxMHU2FsZm9yZDEaMBgGA1UEChMRQ09NT0RPIENBIExpbWl0ZWQxKzApBgNV
bS9DT01PRE9SU0FDZXJ0aWZpY2F0aW9uQXV0aG9yaXR5LmNybDBxBggrBgEFBQcB
0fxQ8ANAe4hZ7Q7drNJ3gjTcBpUC2JD5Leo31Rpg0Gcg19hCC0Wvgmje3WYkN5Ap
lBlGGSW4gNfL1IYoakRwJiNiqZ+Gb7+6kHDSVneFeO/qJakXzlByjAA6quPbYzSf
+AZxAeKCINT+b72x
-----END CERTIFICATE-----

Chapter 8 ■ Securing the Application

214

-----BEGIN CERTIFICATE-----
MIIFdDCCBFygAwIBAgIQJ2buVutJ846r13Ci/ITeIjANBgkqhkiG9w0BAQwFADBv
MQswCQYDVQQGEwJTRTEUMBIGA1UEChMLQWRkVHJ1c3QgQUIxJjAkBgNVBAsTHUFk
ZFRydXN0IEV4dGVybmFsIFRUUCBOZXR3b3JrMSIwIAYDVQQDExlBZGRUcnVzdCBF
VQQDEyJDT01PRE8gUlNBIENlcnRpZmljYXRpb24gQXV0aG9yaXR5MIICIjANBgkq
hkiG9w0BAQEFAAOCAg8AMIICCgKCAgEAkehUktIKVrGsDSTdxc9EZ3SZKzejfSNw
B5a6SE2Q8pTIqXOi6wZ7I53eovNNVZ96YUWYGGjHXkBrI/V5eu+MtWuLt29G9Hvx
PUsE2JOAWVrgQSQdso8VYFhH2+9uRv0V9dlfmrPb2LjkQLPNlzmuhbsdjrzch5vR
pu/xO28QOG8=
-----END CERTIFICATE-----
 

Now we’re ready to use the certificates!

The AWS Command-Line Interface (CLI)
As mentioned previously, there is no SSL view in the IAM dashboard. Instead, we have to use the AWS
command-line interface to upload our certificates to AWS. To do this, we must install and configure the AWS
CLI tool on your machine. Instructions for installing AWS CLI on your operating system are available here:
http://docs.aws.amazon.com/cli/latest/userguide/installing.html.

Follow the steps provided by Amazon, and you should have no problems. You now have the capability
to execute any of the commands we’ve carried out in the console, with a command-line interface. Before we
begin using it, we have to be sure we have permissions configured properly.

Configuring Permissions
We can use our photoadmin IAM user and generate an access key for use with the command-line interface.
Navigate to IAM in the AWS Console and select Users from the left-hand navigation.

In Chapter 1, we made the photoadmin user a member of the PhotoAdmins group. The user does not
have any unique policies but, rather, inherits permissions from the IAM group. We want to use this user to
upload the SSL certificate to IAM, but giving the entire group full IAM access seems a bit extreme. We can
temporarily grant this user additional permissions at the User level.

Select photoadmin from the users list. In the user detail view, click Attach Policy. Once again, you will
be selecting a managed policy. Scroll down (or filter the list by typing iam in the Policy Type filter field) until
you find IAMFullAccess and click the checkbox (see Figure 8-2).

Figure 8-2.  IAM Full Access policy

http://docs.aws.amazon.com/cli/latest/userguide/installing.html

Chapter 8 ■ Securing the Application

215

Click Attach Policy to attach it and return to the user detail view. When you return to the user detail
view, you will see that our user now has policies at both the User and Group levels, as in Figure 8-3. While
you cannot edit the group policy from here, you can easily edit or remove the user policy.

Figure 8-3.  IAM user and group policies

If you’re curious, you can click Show Policy to review the policy statement. It should look something
like the following code.
 
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:*",
 "Resource": "*"
 }
]
}
 

Now that the user has the correct policy, we must generate an access key. Under the Security Credentials
header, click Manage Access Keys. A modal window will appear with a Create Access Key button. Click
it, and the modal will update, prompting you to download a copy of the credentials. This will be your only
chance to do so (see Figure 8-4). Click Download Credentials to store a local copy.

Chapter 8 ■ Securing the Application

216

Next, we have to configure the CLI to use the credentials we just created. On the command line, type
aws configure. You will be prompted with something such as the following:
 
AWS Access Key ID [****************4ZAA]:
 

Paste the access key from the credentials you just saved and press Return. You will then be prompted
for your secret.
 
AWS Secret Access Key [****************FpdG]:
 

You will input your default AWS region. Enter us-east-1 and press Return.
 
Default region name [us-east-1]:
 

Last, you will be prompted to set a default output format. Leave this blank and press Return.
 
Default output format [None]:

Uploading the SSL Certificates
All of this configuration has been leading up to the execution of a single command. In one line, we will
upload the certificates and make them accessible in CloudFront. It’s important that the certificate path is
set to CloudFront, as at this stage, all requests to our application go through CloudFront. It is the gatekeeper
of our application. Make sure your .pem files are in the same directory as you’re working, and enter the
following command:
 
aws iam upload-server-certificate --certificate-body file://aws-public.pem --private-key
file://aws-private.pem --certificate-chain file://aws-certchain.pem --server-certificate-
name yourdomain_com --path /cloudfront/www.yourdomain.com/
 

There are some nuances to this. It’s important that your –path parameter is set to
/cloudfront/www.yourdomain.com/, using your domain, and including the trailing slash at the end.
The –server-certificate-name value (shown as yourdomain_com in the command) should simply be your
domain. The file:// paths are relative, but if you have to use an absolute path, use file:///.

Figure 8-4.  Download IAM credentials

Chapter 8 ■ Securing the Application

217

When you press Return, you will either get an error or a JSON response like the following:
 
{
 "ServerCertificateMetadata": {
 "ServerCertificateId": "ASCAJLNQBYPFYEYN5BQNU",
 "ServerCertificateName": "yourdomain_com",
 "Expiration": "2016-01-05T00:03:54Z",
 "Path": "/cloudfront/www.yourdomain.com/",
 �"Arn": "arn:aws:iam::061246224738:server-certificate/cloudfront/

www.yourdomain.com/yourdomain_com",
 "UploadDate": "2015-01-05T01:04:36.593Z"
 }
}

Enabling HTTPS in CloudFront
Congratulations are in order—that was not a simple task. Now that we have a valid SSL certificate, we have
to go through our infrastructure and enable it. The first place we must do this is in CloudFront. You’re done
with the command line. Navigate to CloudFront in the AWS Console and select your distribution. In the
General tab, click Edit.

We will have to enable a custom SSL certificate at the distribution level. Next to the SSL Certificate
header, you’ll see that the Default CloudFront Certificate is selected. Switch to Custom SSL Certificate and
select yours from the drop-down (see Figure 8-5).

Figure 8-5.  CloudFront custom SSL certificate

When you select a custom SSL certificate, you have to determine whether you will support all clients
or only those that support Server Name Indication. To support all clients, you will have to request access,
and you will pay substantially more than for SNI-enabled clients only. Unless your application has specific
reasons for supporting all clients, it’s unlikely you would need to incur this extra expense. This topic is a bit
outside the scope of this book, so go with the latter option, unless you have a specific reason for supporting
All Clients.

Click Yes, Edit at the bottom right. As we know, it takes several minutes for changes to CloudFront
distribution settings to propagate. You can keep an eye on your distribution’s status field, waiting for it to
change from InProgress to Deployed. When that’s complete, visit your Hello World page in the browser,
making sure to add https:// before the URL. You should now see that comforting little padlock icon (refer
to Figure 8-1) next to the address!

Chapter 8 ■ Securing the Application

218

While it is now possible to connect to our domain via HTTPS, it is optional at this point. You can
see this in action by entering your URL in the address bar of your browser with just http instead of https.
The padlock will disappear! For the time being, this may be OK for some parts of our application. However,
there are some paths for which we will require a secure session, if the user is to interact with our application.
If you think back to the lessons on CloudFront, you’ll remember that our distribution is not forwarding
cookies to the load balancer.

In your distribution, select the Behaviors tab. You will see, as in Figure 8-6, that the Viewer Protocol Policy
for all behaviors is set to HTTP and HTTPS.

Figure 8-6.  CloudFront behaviors—Viewer Protocol Policy

We’re going to have to support some additional behaviors for requests that require an HTTPS
connection and session cookie. These are the routes that we need to restrict:

•	 /users/login

•	 /users/register

•	 /users/logout

•	 /albums/upload

•	 /albums/delete

•	 /photos/upload

•	 /photos/delete

It would be nice if we didn’t have to create seven new behaviors. See any patterns? I think we can
accomplish our goals with the following five paths:

•	 /users/login

•	 /users/register

•	 /users/logout

•	 /*/upload

•	 /*/delete

Create all five behaviors with the same rules. The Origin should be the ELB, and Viewer Protocol Policy
should be set to HTTPS Only. Allowed HTTP Methods should be GET, HEAD, OPTIONS, PUT, POST,
PATCH, DELETE. Forward Headers and Forward Cookies should be set to All (see Figure 8-7).

Chapter 8 ■ Securing the Application

219

Repeat this process for all of the routes. When you’ve finished, remember that the order of origins is
important. Rearrange them so that the session-based behaviors are at the top, as in Figure 8-8.

Figure 8-7.  Origin behavior settings

Figure 8-8.  Beahviors ordered

Chapter 8 ■ Securing the Application

220

As usual, the changes we’ve made in CloudFront will take a few minutes to propagate. In the meantime,
we must change an even more obscure setting in CloudFront. When we added our ELB as an origin for this
CloudFront distribution, we allowed CloudFront to communicate with the ELB over HTTP only. This means
that HTTPS requests to CloudFront will become HTTP requests to the ELB. We want to be certain that traffic
from our CloudFront edge locations around the world to the US East data center is encrypted, so this traffic
should be over HTTPS.

Select the Origins tab, where you will see this issue in the Origin Protocol Policy column (see Figure 8-9).

Figure 8-9.  CloudFront Origins

Select your ELB and click Edit. In the Origin Settings view, change Origin Protocol Policy from HTTP
Only to Match Viewer, then click Yes, Edit. From now on, HTTP requests to CloudFront will be forwarded to
the ELB over HTTP, and HTTPS requests will likewise be forwarded via HTTPS. These changes will also take
a few minutes to propagate.

Enabling HTTPS in ELB
Remember that CloudFront Edge Locations are scattered around the globe, and data has to travel from
CloudFront to the ELB in a different region. In order to properly secure our traffic, we must make sure that
HTTPS requests that reach CloudFront can be securely forwarded to the ELB. This means that our SSL
certificate must also be installed on the ELB, and it needs to be configured to accept requests over HTTPS.

As you just saw, HTTPS requests are listened for on port 443. CloudFront is now forwarding the requests
to the ELB on this port. When CloudFront attempts to reach the origin (the ELB) on port 443, it finds a closed
port. CloudFront believes it cannot reach the origin at all.

Listening for HTTPS Connections
We have to open the port on our ELB if the request is going to go through. In AWS parlance, our ELB has to
have a listener added to port 443. By default, the ELB is configured to listen on port 80 for unencrypted HTTP
requests only.

Navigate to EC2 and select Load Balancers from the left-hand navigation. With your ELB instance
selected, open the Listeners tab. You’ll see that only port 80 is open. Click Edit to add HTTPS to your ELB’s
listeners. A modal window will appear in which you can configure your listeners.

Add a Load Balancer Protocol for HTTPS (Secure HTTP) using Load Balancer Port 443. The
Instance Protocol should be HTTP and the Instance Port should be 80. In the SSL Certificate column,
click Change. Select Choose an existing certificate and choose your certificate. Figure 8-10 shows the
completed settings.

Chapter 8 ■ Securing the Application

221

Click Save to return to the previous view. Click Save, and you will see confirmation that the port has
been opened, as in Figure 8-11.

Figure 8-10.  Adding an HTTPS ELB listener

Figure 8-11.  Confirmation that HTTPS listener was created

Figure 8-12.  ELB Port Configuration

Enabling Cookie Stickiness
There’s one more setting that we have to change on the ELB. We know that our application is going to start
using session-based cookies. But with our application running on several instances, there’s no guarantee
that once a user logs in, he or she will be directed to the same instance twice. This will effectively prevent
sessions from being usable at all. Fortunately, there’s an ELB feature called Stickiness that allows us to bind a
user’s session to a specific instance and forward the relevant cookie. This means that once a user has started
a session on an instance, all future requests in that session will be tied to that instance.

Return to the Description tab for your load balancer and locate the Port Configuration settings
(see Figure 8-12).

Chapter 8 ■ Securing the Application

222

Click Edit, next to the configuration for port 443. In the modal view that appears, select Enable
Application Generated Cookie Stickiness. In the Cookie Name field, enter connect.sid (see Figure 8-13)
and click Save.

Figure 8-13.  Enabling cookie stickiness

Modifying the Security Group
To finish our configuration, we have one additional security measure to take. We know that HTTPS
connections are negotiated between the client and CloudFront and between CloudFront and the load
balancer. It is still possible to connect directly to the instances, because they are not in a VPC. While it
seems improbable that a malicious user could figure out the public IP of one of our instances, we can
still take the extra measure of preventing them from connecting to our instances directly, by altering our
security group.

In EC2, select the Security Groups link in the left-hand navigation. You will see a list of auto-generated
security groups for OpsWorks. These are the security rules applied to instances created in their respective
OpsWorks layers. To change these settings, you can either assign a custom security group to your stack or
alter the auto-generated security group. Though it takes additional effort, we will create our own custom
security group.

In the list of security groups, locate AWS-OpsWorks-nodejsApp. Open the Actions menu above and
click Copy to new. Name your security group Photoalbums-nodejs-App and give it a useful Description,
such as Security Group for Photoalbums App, restricting HTTP and HTTPS connections. You don’t
need to select a VPC.

Next, you must change the security rules for Inbound HTTP and HTTPS connections. Locate the
HTTP row and change the Source to Custom IP. In the IP field, enter amazon-elb/amazon-elb-sg. Locate
HTTPS and make the same change. When you’re finished (see Figure 8-14), click Create.

Chapter 8 ■ Securing the Application

223

Next, we must make our application stack use this new security group. Navigate to OpsWorks and select
your application stack. We can’t leave our application layer without any security groups, so first, we have to
add the custom security group, then remove the default one. Select Layers from the Navigation menu and
click Security next to the application layer. Click the Edit button at the top right. Select your custom security
group from the drop-down (see Figure 8-15) and click Save.

Figure 8-14.  New security group

Figure 8-15.  Custom security group

Chapter 8 ■ Securing the Application

224

Head over to Stack from the Navigation menu. Go to Stack Settings and click Edit. At the bottom, you’ll
see a toggle for OpsWorks security groups. When you set this to No, as in Figure 8-16, and click Save, your
instances will no longer use the auto-generated security groups.

Figure 8-16.  Use OpsWorks security groups

And that’s it! If you try to connect to your instances by their public IP addresses, the request will fail. You
can connect directly to your load balancer, but the individual instances are closed off from web traffic. From
here on out, we only have code changes to make.

Application Security
It’s time to build authentication into our application. As you proceed through the following steps, please
consider these security techniques as suggestions. You may already have your own authentication strategy
in mind. By all means, go with your experience. While we will be implementing one of many encryption
modules, you should be able to easily swap this one for another. Likewise, you can implement more
restrictive or less restrictive security in your application, depending on your needs. The goal here is to
demonstrate one technique and then follow the steps to bring our application in line with the changes we
made in AWS.

We have two security patterns that we need to implement in our application. First, we must start storing
passwords, and they absolutely must be encrypted in our database. Every now and then you hear about a
database being leaked with a bunch of passwords stored as plain text for anyone to steal. We don’t want to
make the news in that way.

Second, we don’t want any user to be able to create and delete albums or photos for anyone else.
Right now we’re allowing anyone to create and delete content on behalf of any other user, as long as they
pass the proper user ID as a parameter. This is obviously a terrible idea. We will instead begin using secure
sessions and store the user ID in session cookies. Without a valid user ID session, attempts to delete
content will be ignored.

Adding Session and Encryption Modules
We’re going to have to add two additional modules to our application: easycrypto and express-session.
Easycrypto is one of many libraries for encrypting and decrypting password strings. If you prefer a
different library, feel free to use it. Express-session is session middleware built specifically for ExpressJS
applications—so, just like it sounds.

In your package.json, add the following to the dependencies object:
 
"easycrypto": "0.1.1",
"express-session": "^1.7.6",
 

Chapter 8 ■ Securing the Application

225

Make sure you don’t have any trailing commas, as your dependencies should look something like
the following:
 
{
 ...
 "debug": "~1.0.4",
 "easycrypto": "0.1.1",
 "express-session": "^1.7.6",
 "jade": "~1.5.0"
 }
 

On the command line, navigate to your working directory and type the command: npm install.
Your dependencies should install automatically, as they have previously.

Adding Password Encryption
Next, we’ll add our password encryption/decryption. This code will take place entirely within /lib/model/
model-user.js. Open that file and add a variable named encryptionKey to the top. Set the value to any
random string you like.
 
var encryptionKey = '80smoviereferencegoeshere';
 

At the bottom of the file, we will add two private methods for generating a hashed password and for
decrypting a hashed password. Add the code in Listing 8-1.

Listing 8-1.  Encrypt/Decrypt Hash Password

function generatePasswordHash(password){
 var easycrypto = require('easycrypto').getInstance();
 var encrypted = easycrypto.encrypt(password, encryptionKey);
 return encrypted;
}
 
function decryptPasswordHash(passwordHash) {
 var easycrypto = require('easycrypto').getInstance();
 var decryptedPass = easycrypto.decrypt(passwordHash, encryptionKey);
 return decryptedPass;
}
 

When a user registers, he/she will pass a password parameter to our router. We want to take this
password, hash it, and store it in the database. When a user logs in later, we will compare the password
he/she provides to the password stored in the database. The first thing we have to change in our existing
functionality is the password that gets saved to the database. Instead of saving the password parameter
directly, we will first invoke generatePasswordHash() on the input. Replace the createUser function
with Listing 8-2.

Chapter 8 ■ Securing the Application

226

Listing 8-2.  createUser

function createUser(params, callback){
 var newUser = {
 username: params.username,
 password: generatePasswordHash(params.password),
 email: params.email
 }
 var query = 'INSERT INTO users SET ? ';
 connection.query(query, newUser, function(err, rows, fields) {
 if (err) {
 if(err.errno == 1062){
 var error = new Error("This username has already been taken.");
 callback(error);
 } else {
 callback(err);
 }
 } else {
 callback(null, {message:'Registration successful!'});
 }
 });
 
}
 

Now, replace loginUser() with Listing 8-3. After you enable this, your users with plain-text passwords
will no longer be able to log in.

Listing 8-3.  loginUser

function loginUser(params, callback){
 connection.query('SELECT username, password, userID FROM users WHERE username=' +
connection.escape(params.username), function(err, rows, fields) {
 if(err){
 callback(err);
 } else if(rows.length > 0){
 var decryptedPass = decryptPasswordHash(rows[0].password);
 if(decryptedPass == params.password){
 var response = {
 username: rows[0].username,
 userID: rows[0].userID
 }
 callback(null, response);
 } else {
 var error = new Error("Invalid login");
 callback(error);
 }
 } else {
 var error = new Error("Invalid login");
 callback(error);
 }
 });
}

Chapter 8 ■ Securing the Application

227

Using Secure Sessions
This is going to be a little more involved, but it really depends on the goals of your application. If there
are entire sections of your app that you want to restrict to authenticated users, it can be a little simpler to
implement. In our case, all routes have a mixture of restricted and unrestricted API end points. As such, we
will manually secure our application at the individual route level.

We will first configure our application to use the express-session middleware. In server.js, add the
express-session middleware immediately after including express.
 
var express = require('express');
var expressSession = require('express-session');
var path = require('path');
 

Then, ahead of the other app.use statements, add the following:
 
app.use(expressSession({secret: 'ssshhhhh'}));
 

Go ahead and replace the value of the secret with your own secret key—ssshhhhh is definitely not the
best choice. There are a lot more settings you can modify for express-session, but we’re going to leave them
as is. This is all it takes to enable sessions; now, we have to get and set values in the sessions. First, we must
set a value identifying users in their session cookies when they log in. For simplicity’s sake, we’ll use the user
ID, though you might consider something such as e-mail or multiple values. Open /routes/users.js and
locate the /login route. In the callback for model.loginUser(), set the session’s userID as in Listing 8-4.

Listing 8-4.  /users/login

router.post('/login', function(req, res) {
 if(req.param('username') && req.param('password')){
 var params = {
 username: req.param('username').toLowerCase(),
 password: req.param('password')
 };
 
 model.loginUser(params, function(err, obj){
 if(err){
 res.status(400).send({error: 'Invalid login'});
 } else {
 req.session.userID = obj.userID;
 res.send(obj);
 }
 });
 } else {
 res.status(400).send({error: 'Invalid login'});
 }
});
 

Chapter 8 ■ Securing the Application

228

Likewise, the /logout route can be simplified. All it has to do is destroy the current session (see Listing 8-5).

Listing 8-5.  /users/logout

router.post('/logout', function(req, res) {
 if(req.session){
 req.session.destroy();
 }
 res.send({message: 'User logged out successfully'});
});
 

Now let’s make our critical routes require session cookies instead of POST parameters. Open /routes/
photos.js. Locate the /upload route. We will be enclosing all of our functionality in a conditional checking
for req.session and req.session.userID. Additionally, we will send req.session.userID to the model,
instead of req.param('userID'). Replace your code with that in Listing 8-6.

Listing 8-6.  /photos/upload

router.post('/upload', function(req, res) {
 if(req.session && req.session.userID){
 if(req.param('albumID') && req.files.photo){
 var params = {
 userID : req.session.userID,
 albumID : req.param('albumID')
 }
 if(req.param('caption')){
 params.caption = req.param('caption');
 }
 
 fs.exists(req.files.photo.path, function(exists) {
 if(exists) {
 params.filePath = req.files.photo.path;
 var timestamp = Date.now();
 params.newFilename = params.userID + '/' + params.filePath.replace('tmp/', timestamp);
 uploadPhoto(params, function(err, fileObject){
 if(err){
 res.status(400).send({error: 'Invalid photo data'});
 }
 params.url = fileObject.url;
 delete params.filePath;
 delete params.newFilename;
 model.createPhoto(params, function(err, obj){
 if(err){
 res.status(400).send({error: 'Invalid photo data'});
 } else {
 res.send(obj);
 }
 });
 });

Chapter 8 ■ Securing the Application

229

 } else {
 res.status(400).send({error: 'Invalid photo data'});
 }
 });
 } else {
 res.status(400).send({error: 'Invalid photo data'});
 }
 } else {
 res.status(401).send({error: 'You must be logged in to upload photos'});
 }
});
 

We also need to wrap /photos/delete in a session check. Replace it with the code in Listing 8-7.

Listing 8-7.  /photos/delete

router.post('/delete', function(req, res) {
 if(req.session && req.session.userID){
 if(req.param('id')){
 var params = {
 photoID : req.param('id') ,
 userID : req.session.userID
 }
 model.deletePhoto(params, function(err, obj){
 if(err){
 res.status(400).send({error: 'Photo not found'});
 } else {
 res.send(obj);
 }
 });
 } else {
 res.status(400).send({error: 'Invalid photo ID'});
 }
 } else {
 res.status(401).send({error: 'Unauthorized to create album'});
 }
});
 

We also need to make this change in /routes/albums.js. Open the file and overwrite /upload and
/delete with the new functions (see Listing 8-8).

Listing 8-8.  /albums routes

router.post('/upload', function(req, res) {
 if(req.session && req.session.userID){
 
 if(req.param('title')){
 var params = {

Chapter 8 ■ Securing the Application

230

 userID : req.session.userID,
 title : req.param('title')
 }
 model.createAlbum(params, function(err, obj){
 if(err){
 res.status(400).send({error: 'Invalid album data'});
 } else {
 res.send(obj);
 }
 });
 } else {
 res.status(400).send({error: 'Invalid album data'});
 }
 } else {
 res.status(401).send({error: 'Unauthorized to create album'});
 }
});
 
router.post('/delete', function(req, res) {
 if(req.session && req.session.userID){
 if(req.param('albumID')){
 var params = {
 albumID : req.param('albumID') ,
 userID : req.session.userID
 }
 model.deleteAlbum(params, function(err, obj){
 if(err){
 res.status(400).send({error: 'Album not found'});
 } else {
 res.send(obj);
 }
 });
 } else {
 res.status(400).send({error: 'Invalid album ID'});
 }
 } else {
 res.status(401).send({error: 'Unauthorized to create album'});
 }
});
 

We must also make some changes to our models. Previously, any user could delete anyone’s albums or
photos. Chaos would ensue! We have to make sure that users are only deleting content they own.

In /lib/models/model-photos.js, replace the deletePhotobyID() method with the Listing 8-9.

Chapter 8 ■ Securing the Application

231

Listing 8-9.  Photos deletePhotoByID Method

function deletePhotoByID(params, callback){
 var query = 'UPDATE photos SET published=0 WHERE photoID=' + connection.escape
(params.photoID) + ' AND userID=' + params.userID;
 connection.query(query, function(err, rows, fields){
 if(rows.length > 0){
 callback(null, rows);
 } else {
 if(rows.changedRows > 0){
 callback(null, {message: 'Photo deleted successfully'});
 } else {
 var deleteError = new Error('Unable to delete photo');
 callback(deleteError);
 }
 }
 });
}
 

You’ll notice that the SQL query changed to restrict users to updating their own content. Additionally,
there’s a new error manually constructed and returned to the callback. If an UPDATE query does not change
any rows, the rows object in the handler will have a property changedRows that equals 0. While this isn’t
an error in itself, our application should treat it as one. It means the user tried to delete a photo that either
doesn’t exist or doesn’t belong to him/her.

We need to apply the same logic to albums as well. Open /lib/models/model-albums.js and replace
the deleteAlbum() method with Listing 8-10.

Listing 8-10.  Albums deleteAlbum Method

function deleteAlbum(params, callback){
 var query = 'UPDATE albums SET published=0 WHERE albumID=' + connection.escape
(params.albumID) + ' AND userID=' + params.userID;
 connection.query(query, function(err, rows, fields){
 if(err){
 callback(err);
 } else {
 if(rows.changedRows > 0){
 callback(null, {message: 'Album deleted successfully'});
 } else {
 var deleteError = new Error('Unable to delete album');
 callback(deleteError);
 }
 }
 });
}
 

That’s all the code changes we have to make. Commit the changes to your code repository. Deploy to
your OpsWorks instances and wait for the process to complete. When it’s done, you can start testing. Your
previous users will now be invalid. The application will attempt to decrypt them, resulting in a mismatch.
The easiest way to test is to register a new user, log in, and then create an album. You should be able to
successfully achieve these actions by making HTTPS POST requests to the domain, or to the load balancer
itself. Attempts to log in to the domain over HTTP will be declined.

Chapter 8 ■ Securing the Application

232

Conclusion
This wraps up the final lesson! We moved pretty quickly through a variety of tasks. If you look back at where
we were in Chapter 1, you may be impressed with yourself.

In creating these lessons, there was a constant debate over where to draw the line, especially with
the source code. Right now, we have an application that has a lot of major hallmarks of an enterprise
application. It’s secure, redundant, scalable, and uses powerful caching and notifications. But building a
truly commercially viable web application is no simple task, and ours still has a lot of shortcomings. Just
looking at users, we’re missing things such as password resets, user search, and so forth. The goal wasn’t so
much to teach you how to write an application as much as to teach you to write an application for AWS.
The hope is that from here, you feel confident in your ability to extrapolate on these ideas in this or any other
software you write.

Another major challenge is keeping current with AWS (much less Express!). Amazon routinely unveils
new features. They occasionally acquire a startup and six months later unveil their technology rolled into
the AWS platform. Staying on top of new features in AWS requires constant vigilance, but it’s also exciting.
In fact, some features changed while this book was being written, requiring some revision.

You’ve seen the power of the tools we have and how quickly we built something that wouldn’t have
been possible for the average developer ten years ago. Indeed, the role of web developer has changed
dramatically in a short time, and AWS has played no small part in these changes. If this book gives you,
the reader, the confidence to grow with these changes, then you’ve picked up the most important lesson
in the book.

233

A, B�       �
absoluteURL() function, 159
Amazon Linux, 44
Amazon Machine Images (AMIs), 44
Amazon SES. See Simple Email Service (SES)
Application log stream

creation, 201–202
cwlogs

cwlogs.js file, 202
getNextSequenceToken

function, 203–204
integration, 204–205
logEvent function, 203
logParams object, 202
putLogs function, 203

Application security
password encryption, 225
secure sessions

albums deleteAlbum Method, 231
/albums routes, 229
express-session middleware, 227
/photos/delete, 229
photos deletePhotoByID

method, 231
/photos/upload, 228
/users/login, 227
/users/logout, 228

session and encryption
modules addition, 224

Apps
application source configuration, 52
creation, 56
deploying

Deploy App view, 57
GitHub, 53
HTTP archive, 54
S3 archive, 54
subversion, 54

OpsWorks stack, 52

AWC CLI
HTTPS

in CloudFront, 217
in ELB (see ELB)

IAM, 214
aws.config.update(), 161
AWS OpsWorks

convenience vs. control, 32
IAM roles

instance role, 35
service role, 36

regions and availability zones, 33
resource allocation, 32
SSH key, 39

AWS Shared Security Model, 210
awsVariables() function, 142

C�       �
Certificate authorities (CA), 210
Certificate signing request (CSR), 211
Chef, 31
Cloud computing

AWS Console, 3
AWS SDK, 2–3
EC2, 3
Elastic Beanstalk, 3
elasticity, 1
IAM

Create New Group, 25
Create New User, 24
dashboard, 23
Permissions editor, 27
Policy Generator, 25
rights and credentials, 22

MySQL database, 2
requirements

Billing and Cost Management dashboard, 5
code editor, 6
code repository, 6

Index

■ index

234

domain registration, 6
ExpressJS, 7
MAMP/XAMPP, 6
RESTful JSON API, 6
SSL certificate, 6

sample app
configuration and startup, 9
createAlbum(), 17
development, 22
getAlbumByID() method, 18
getAllUsers(), 12
getPhotosByAlbumID(), 19
getPhotosForAlbum(), 18
JSON, 7
model.createPhoto(), 21
model.deleteAlbum(), 20
MVC, 8
node server.js, 15
params.username, 14
photo-based social media app, 7
/routes/albums.js, 16
/routes/index.js, 10
/routes/user, 13
rows.insertId, 17
server.js, 10
user-authentication scheme, 7
/users/login route, 14

scalability, 1
virtualized-hardware environments, 2

CloudFront
application stack, 93–94
caching

behavior fields, 108–109
Cache-Control header, 111–112
Hello London, 108
invalidations, 110–111
statistics, 115–116
X-Cache header, 112–114

code changes, 107
custom SSL certificate, 217
distribution

behavior settings, 96, 107–108
cached HTTP methods, 97
CDN, 94
creation, 94–95
default root object, 101
detail view, 102–103, 105
domain names, 100
forward cookies, 99
Forward Headers, 97–99
forward query strings, 99
object caching, 99
origin settings, 95–96
path pattern, 97

price tiers, 100
SSL certificate, 100

edge locations, 93
origin behavior settings, 219
Origin Protocol Policy, 220
origins ordered, 219
paths, 218
query strings, 106–107
restricted routes, 218
Viewer Protocol Policy, 218

CloudWatch
alarms

ALARM state, 182
CloudFront distribution, 179
configuration, 175
definition, 180–181
ELB metrics, 179
error codes, 179
graph view, 180
HTTP response, 175
INSUFFICIENT_DATA state, 182
OK state, 182
periods, 176
popular objects, 182
requests metrics, 180
SNS (see Simple Notification

Service (SNS))
category, 173
Layer Metrics, 173–174
logging

chef cookbook, 198
chef recipes, 199
EC2 instance roles, 196–197
exception handling (see Exception

handling)
Layers view, 199
log stream (see Application log stream)
Photoalbums group log, 200–201
retention, 201
Run Command, 200
system-level logs, 201

memory use vs. total, 174–175
Metric Summary, 173
OpsWorks (see OpsWorks)
OpsWorks monitoring view, 172

Command-line interface (CLI). See AWC CLI
contact@yourdomain.com, 158
Content delivery network (CDN), 94, 122
Creating key and CSR, 211

D�       �
Default availability zone, 43
Default operating system, 44
DNS records, 153–154

Cloud computing (cont.)

■ Index

235

DomainKeys Identified Mail (DKIM), 153
Domain Name System (DNS) management.

See Route 53 management
Domain verification, 152
donotreply@yourdomain.com, 158

E, F�       �
Elastic Block Storage (EBS), 44
Elastic Compute Cloud (EC2), 3
Elastic load balancer/balancing (ELB), 48

App Server Instances, 90–91
cookie stickiness, 221
Create Load Balancer wizard, 84

definition, 84
details, 87–88
EC2 instances, 86
health check

configuration, 85–86
tags, 86–87

GET request, 92
listening, 220
Node.js App Server layer, 88
photoalbums-elb, 88–90
POST request, 91
routing traffic, 83
security group modification, 222

E-mail address verification, 150
emailSender() function, 161
Exception handling

cwlogs, 205
filter and metric names, 207
metric filter creation, 206
PhotoalbumsAlarm list, 207–208
Photoalbums filters, 207
server.js, 206

G�       �
GetMetricStatistics, 38
getPhotosByAlbumID function, 106
GitHub repository, 53
Globals, 159

H�       �
Healthy threshold, 86
HTTP archive, 54
HTTPS

AWC CLI (see AWC CLI, HTTPS)
AWS Console, 210
back-end authentication, 210
certificate authorities, 210

CloudFront and load
balancer, 210

encrypt traffic, between user (client) and
CloudFront, 210

padlock, 209
http://www.yourdomain.com, 159

I, J, K�       �
Identity and Access

Management (IAM), 65
application stack settings, 125
Create New Group, 25
Create New User, 24
credentials, 215
credentials management, 124
dashboard, 23
Default IAM instance profile, 125
EC2 service role permissions, 126
Full Access policy, 214
instance role, 35
left navigation, 127
Permissions editor, 27
photoadmin, 214
Policy Generator, 25
policy management, 127
policy statement, 215
Policy Template—S3 Full

Access, 126
read/write permissions, 125
rights and credentials, 22
service role

Action array, 38
Attach Policy, 38
aws-opsworks-photoalbums-

service-role, 36
Effect, 38
OpsWorks service role policy, 37
Resource array, 38
Statement array, 38

SES permissions
EC2 instance role policies, 157
full permissions policy, 156
photoalbums-stack, 157
user policies, 158

user and group policies, 215
Input/output operations per second

(IOPS) storage, 65
Instance store, 44

L�       �
License model, 70

■ index

236

M, N�       �
mailDomain, 159
mail() function, 147
Mail.js, 160
mail.sendRegistrationConfirmation()

function, 162
Model View Controller (MVC), 8

O�       �
OpsWorks

auto-scaling rules, 185
auto-scaling summary, alarms, 194
ELB alarm

confirmation, 193
creation, 192
healthy hosts, 192
Monitoring tab, 191–192
unhealthy hosts, 193

fluctuations, 183
load-based instances, 184–185
RDS alarms

CPU utilization, 195–196
monitoring, 194
Read/Write IOPS metrics, 196
tools, 194

scaling behavior, 183
stack, 41
time-based instances, 189–191
24/7 instance, 183

OpsWorks dashboard
apps (see Apps)
layers, 46

creation of, 46
instances, 48

stacks, 42
Amazon Linux, 44
AMI, 44
creation options, 45
instance vs. EBS, 44

P, Q�       �
Peritor, 31
Photoalbums, 43, 52, 59
Photoalbums Resources, 167
Ping Protocol, 85

R�       �
Rational Database Service (RDS), 32, 52
Relational database service (RDS)

Add Layer view, 74–75
Cross-Region Read Replicas, 63–65

database creation
advanced settings, 71–72
database details, 70
engine selection, 68–69
instance specifications, 70
production vs. development environment, 69

data sources, 75
DB security group

authorization, 67–68
creation, 66–67
dashboard, 65–66
IAM, 65
photoalbums-rds-group, 67

environment variables
Deploy App view, 78
gitignore file, 78
globals.database(), 78
key-value properties, 76
local credentials, 76–77
local environment, 76
local.js file, 77
opsworks.js file, 77
process.env, 76
production environment, 76
stack command configuration, 77

importing
connection method, 72
instance details, 73
MySQL Workbench, 72–73
photoalbums, 73
table creation, 73–74

Multi-AZ deployment, 62–63
performance issues, 61
provisioned IOPS storage, 65
stack commands

layer connection, 81
layer creation, 80–81
Run Command, 81–82
snapshot, 79–80

Repository type, 53
rootDomain, 159
Route 53 management

alias target, 119–120
application stack, 93–94
edge locations, 93
hosted zones, 118
record sets, 118
registered domains, 117
routing policy, 119

S�       �
sendEmail() function, 160
sendRegistrationConfirmation() function, 161–162
ses.sendEmail(), 161

■ Index

237

Simple Email Service (SES)
AWS resource groups

creating and viewing resource groups, 167
tagging resources, 165

AWS SDK
deployment and testing, 163
globals, 159
mail.js, 160
registration route, 162

domain verification, 152
DKIM settings, 152
DNS records, 153–154
pending verification, 154

e-mail address verification, 150
pending verification, 150
send test email, 151

IAM
EC2 instance role policies, 157
full permissions policy, 156
photoalbums-stack, 157
user policies, 158

record sets, 155
SES dashboard, 148
verified senders, 149

Simple Notification Service (SNS)
AWS Services, 176
dashboard, 176–177
e-mail address, 177
PhotoalbumsAlarms, 177
Publish Message button, 178
subscriptions, 177–178

Simple storage service (S3) bucket
absoluteURL() function, 142
access, IAM (see Identity and Access

Management (IAM))
AWS SDK

albumID and userID, 133
ContentType, 134
database schema, 132, 137–138
dependencies, 128–130
getPhotoByID() function, 136
getPhotosByAlbumID() function, 136
getPhotosSearch() function, 137
/lib/globals.js, 130–131
local config file, 131
model.createPhoto() function, 135
newFilename property, 133
POST /upload Route, 132–133
putS3Object() function, 135
set up, 128
uploadData function, 134
uploadPhoto() function, 134

awsVariables() function, 142
caching behavior, 144–145

CDN, 122
CloudFront

behavior creation, 140
Create Origin, 138–139
Path Pattern field, 139
photo upload response

headers, 141
contents list, 124
file management, 123
formatPhotoData() helper function, 143
logging setup, 123
name and region selection, 122–123
OpsWorks environment variables, 142

application stack, 127
apps list view, 127
header, 127–128

our system, 122
photoalbums-cdn, 122
risk minimization, 122

SSL certificate generation
certificate request

certificate chain, 213
certificate package/price

selection, 212
domain validation, 212
intermediate CA certificate, 213
NameCheap, 212
PositiveSSL Certificate, 213
root CA certificate, 213
X.509 PEM format, 213

OpenSSL installation, 211
Stickiness, 221
support@yourdomain.com, 149

T�       �
Tagging resources

add/edit tags, 165
EC2 tags, 166
ELB tags, 166
RDS instance tags, 165
S3 tags, 167

U�       �
Unhealthy threshold, 86

V, W, X�       �
Virtual Private Cloud (VPC), 43

Y, Z�       �
yourdomain.com, 159

Beginning Amazon
Web Services with

Node.js

Adam Shackelford

Beginning Amazon Web Services with Node.js

Copyright © 2015 by Adam Shackelford

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0654-6

ISBN-13 (electronic): 978-1-4842-0653-9

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image, we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the author nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Louise Corrigan
Technical Reviewer: Jose Dieguez Castro
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan,

Jim DeWolf, Jonathan Gennick, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke,
Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Christine Ricketts
Copy Editor: Michael G. Laraque
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California
LLC and the sole member (owner) is Springer Science+Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers
at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

For the Roarks.

vii

Contents

About the Author�� xiii

About the Technical Reviewer��xv

Acknowledgments��xvii

Preface��xix

Chapter 1: Getting Started with Amazon Web Services■■ ��� 1

Understanding the Cloud��� 1

The Approach in This Book�� 2

Requirements�� 4

AWS Account �� 4

Domain Registration�� 6

SSL Certificate��� 6

Code Repository�� 6

Download the Sample Project��� 6

Local Environment��� 6

ExpressJS�� 7

Sample Project�� 7

Overview�� 7

Source Code Organization��� 8

Configuration and Startup��� 9

Working with the Sample App��� 10

Albums��� 16

Photos�� 20

Developing with the Sample App��� 22

■ Contents

viii

Identity and Access Management �� 22

The IAM Dashboard��� 23

IAM Users�� 24

IAM Groups�� 25

IAM Managed Policies��� 25

IAM Permissions Editor�� 27

Summary��� 29

Chapter 2: Working with AWS OpsWorks ■■ �� 31

Understanding OpsWorks�� 31

Allocating Resources��� 32

Regions and Availability Zones�� 33

Additional IAM Roles��� 35

Instance Role��� 35

Service Role��� 36

The OpsWorks Environment�� 40

The OpsWorks Dashboard��� 42

Stacks�� 42

Layers�� 46

Apps��� 51

Deploying Your App�� 57

Summary �� 59

Chapter 3: OpsWorks Part II: Databases and Scaling■■ ��� 61

Relational Database Service (RDS)�� 61

Multi-AZ Deployment��� 62

Read Replicas�� 63

Provisioned IOPS Storage�� 65

DB Security Groups�� 65

Creating an RDS Database�� 68

■ Contents

ix

Database Import�� 72

OpsWorks RDS Layer��� 74

Environments and Environment Variables��� 75

Stack Commands: Backup Scenario�� 79

Elastic Load Balancing (ELB)��� 83

Creating a Load Balancer�� 84

OpsWorks ELB Layer�� 88

Adding a New Instance�� 90

Summary��� 92

Chapter 4: CloudFront and DNS Management■■ �� 93

CloudFront��� 94

Creating the Distribution�� 94

Configuring the Distribution��� 95

Distribution Detail View��� 102

Behavior with Query Strings�� 106

Deploy Code Changes�� 107

Add New Behavior��� 107

Caching�� 108

Route 53�� 117

Summary��� 120

Chapter 5: Simple Storage Service and Content Delivery■■ ����������������������������������� 121

Using S3 in the Application��� 122

Creating an S3 Bucket��� 122

Enabling S3 Access in IAM�� 124

Storing Credentials�� 124

Implementing IAM Roles�� 125

Using IAM User Credentials��� 126

■ Contents

x

Adding OpsWorks Environment Variables��� 127

Developing with the AWS SDK��� 128

Updating Dependencies��� 128

Accessing Environment Variables�� 130

Handling File Uploads�� 132

Updating the Database Schema�� 137

Integrating with CloudFront��� 138

Creating CloudFront S3 Origin �� 138

CloudFront S3 Behavior �� 139

Finishing Touches�� 141

Absolute URLs�� 142

Enhanced Image Caching�� 144

Summary��� 145

Chapter 6: Simple Email Service ■■ ��� 147

Introducing Simple Email Service��� 147

Exploring the SES Dashboard�� 148

SES Verification��� 149

Managing SES Permissions with IAM��� 155

Using SES with the AWS SDK�� 158

Globals��� 159

Mail.js�� 160

User Registration Route��� 162

Deployment and Testing�� 163

AWS Resource Groups��� 164

Tagging Resources�� 165

Creating and Viewing Resource Groups�� 167

Summary��� 169

■ Contents

xi

Chapter 7: Monitoring the Application■■ ��� 171

CloudWatch��� 171

CloudWatch Alarms��� 175

Alarm Periods�� 176

Simple Notification Service (SNS)��� 176

Creating a CloudWatch Alarm�� 179

Defining an Alarm�� 180

Alarm State�� 182

Using OpsWorks with CloudWatch�� 183

Load-Based Instances��� 184

OpsWorks Auto-scaling Rules�� 185

Time-Based Instances��� 189

RDS Alarms�� 194

CloudWatch Logs��� 196

EC2 Instance Roles�� 196

Using Chef in OpsWorks�� 198

CloudWatch Logs��� 200

Summary��� 208

Chapter 8: Securing the Application■■ ��� 209

Using HTTPS�� 209

SSL Certificate Generation�� 210

Installing OpenSSL�� 211

Creating a Key and CSR��� 211

Request Certificate�� 212

The AWS Command-Line Interface (CLI)�� 214

Configuring Permissions�� 214

Uploading the SSL Certificates�� 216

Enabling HTTPS in CloudFront��� 217

Enabling HTTPS in ELB�� 220

■ Contents

xii

Application Security�� 224

Adding Session and Encryption Modules�� 224

Adding Password Encryption��� 225

Using Secure Sessions�� 227

Conclusion��� 232

Index�� 233

xiii

About the Author

Adam Shackelford is an AWS certified solutions architect who has been
architecting and developing web and mobile applications for the past ten
years. He is currently the chief technology officer and lead developer at
Caravan Interactive, a technology company that he cofounded in Brooklyn
in 2009. Prior to his tenure at Caravan, Adam worked for several agencies
in New York City, developing web sites and web applications. He currently
resides in the Hudson Valley area of New York.

xv

About the Technical Reviewer

Jose Dieguez Castro is a senior system administrator currently employed
as a freelance consultant. He has worked on a wide range of projects—
from small to large infrastructures, from private to public sectors. When
asked about his specialty, he replies, “Get the job done.” Jose thinks of
himself as a developer as well, who cares too much about software libre.
Photography, sports, music, and reading are his ways of freeing his mind
from work. He can be reached at jose@jdcastro.eu.

xvii

Acknowledgments

This is the hardest part of the book to write, because there are so many people who played such a big role in
helping me complete this book. First, I’d like to thank Frank McDermott and Nicole Duquette for challenging
me every day to do my best work.

I’d like to thank Joseph Silver, my longtime mentor and friend, who helped me start my career. Thanks
to my family, friends, and colleagues whose support was indispensable, including Brendan Enright, Becky
Laughner, Junior Tidal, John Salvato, and Lushi Li.

And, of course, I’d like to thank the excellent editorial team at Apress, especially Chris Nelson and
Christine Ricketts.

xix

Preface

As I began to write this book, I found myself uncertain as to what type of book it would turn out to be. Is it a
programming book? Is it a software architecture book? Or is it a guide to managing a scalable infrastructure?
In the end, it turned out to be all three of these things, in some part.

The role of developer is changing as we move our computing power to the cloud. Prior to working with
services such as AWS, I was a developer, rather than a systems administrator, and this meant there was a
steep learning curve as I architected and built my first applications in the cloud.

Without question, I have benefited from the wisdom and openness of the larger developer community.
But there are so many disparate themes and problems to solve on this topic that I felt I could make a
contribution by untangling its many threads and organizing them into a coherent lesson plan. With this
book, I hope to help other developers find their footing, as they gear up for their own projects in the cloud.

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Preface
	Chapter 1: Getting Started with Amazon Web Services
	Understanding the Cloud
	The Approach in This Book
	Requirements
	AWS Account
	Domain Registration
	SSL Certificate
	Code Repository
	Download the Sample Project
	Local Environment
	ExpressJS

	Sample Project
	Overview
	Source Code Organization
	Configuration and Startup
	Working with the Sample App
	Home Route
	Users Route
	Review—The Order of Things
	Example—Working with Parameters
	Try It Out

	Albums
	Photos
	Developing with the Sample App

	Identity and Access Management
	The IAM Dashboard
	IAM Users
	IAM Groups
	IAM Managed Policies
	IAM Permissions Editor

	Summary

	Chapter 2: Working with AWS OpsWorks
	Understanding OpsWorks
	Allocating Resources
	Regions and Availability Zones
	Additional IAM Roles
	Instance Role
	Service Role

	The OpsWorks Environment
	The OpsWorks Dashboard
	Stacks
	Amazon Linux
	Amazon Machine Images
	Instance vs. EBS
	Stack Options—Summary

	Layers
	Creating an OpsWorks Layer
	Instances

	Apps
	Application Source
	Deploying from Git
	Deploying from Subversion
	Deploying from HTTP Archive
	Deploying from S3 Archive

	Creating your App

	Deploying Your App

	Summary

	Chapter 3: OpsWorks Part II: Databases and Scaling
	Relational Database Service (RDS)
	Multi-AZ Deployment
	Read Replicas
	Provisioned IOPS Storage
	DB Security Groups
	Creating an RDS Database
	Instance Specifications
	Settings
	Advanced Settings

	Database Import
	OpsWorks RDS Layer
	Environments and Environment Variables
	Stack Commands: Backup Scenario
	RDS Snapshot
	Creating a New RDS Layer
	Connect New Database Layer to App
	Run Stack Command

	Elastic Load Balancing (ELB)
	Creating a Load Balancer
	Define Load Balancer
	Configure Health Check
	Add EC2 Instances
	Add Tags
	Review

	OpsWorks ELB Layer
	Adding a New Instance

	Summary

	Chapter 4: CloudFront and DNS Management
	CloudFront
	Creating the Distribution
	Configuring the Distribution
	Origin Settings
	Default Cache Behavior Settings
	Distribution Settings
	Price Class
	Alternate Domain Names
	SSL Certificate
	Default Root Object

	Distribution Settings—Summary

	Distribution Detail View
	Origins
	Behaviors

	Behavior with Query Strings
	Deploy Code Changes
	Add New Behavior
	Caching
	Invalidations
	Controlling Caching
	Testing CloudFront Caching
	Cache Statistics

	Route 53
	Summary

	Chapter 5: Simple Storage Service and Content Delivery
	Using S3 in the Application
	Creating an S3 Bucket

	Enabling S3 Access in IAM
	Storing Credentials
	Implementing IAM Roles
	Using IAM User Credentials

	Adding OpsWorks Environment Variables
	Developing with the AWS SDK
	Updating Dependencies
	Accessing Environment Variables
	Handling File Uploads
	Updating the Database Schema

	Integrating with CloudFront
	Creating CloudFront S3 Origin
	CloudFront S3 Behavior

	Finishing Touches
	Absolute URLs
	Enhanced Image Caching

	Summary

	Chapter 6: Simple Email Service
	Introducing Simple Email Service
	Exploring the SES Dashboard
	SES Verification
	E-mail Address Verification
	Domain Verification

	Managing SES Permissions with IAM
	Using SES with the AWS SDK
	Globals
	Mail.js
	User Registration Route
	Deployment and Testing

	AWS Resource Groups
	Tagging Resources
	Creating and Viewing Resource Groups

	Summary

	Chapter 7: Monitoring the Application
	CloudWatch
	CloudWatch Alarms
	Alarm Periods
	Simple Notification Service (SNS)
	Creating a CloudWatch Alarm
	Defining an Alarm
	Alarm State

	Using OpsWorks with CloudWatch
	Load-Based Instances
	OpsWorks Auto-scaling Rules
	Auto-scaling Scenario 1
	Auto-scaling Scenario 2
	Auto-scaling Scenario 3
	Auto-scaling Scenario 4

	Time-Based Instances
	Using Alarms with OpsWorks
	ELB Monitoring
	Auto-scaling Summary

	RDS Alarms

	CloudWatch Logs
	EC2 Instance Roles
	Using Chef in OpsWorks
	Installing Cookbooks and Recipes

	CloudWatch Logs
	Application Log Stream
	Custom CloudWatch Logging Class (cwlogs)
	Integrating cwlogs

	Exception Handling

	Summary

	Chapter 8: Securing the Application
	Using HTTPS
	SSL Certificate Generation
	Installing OpenSSL
	Creating a Key and CSR
	Request Certificate

	The AWS Command-Line Interface (CLI)
	Configuring Permissions
	Uploading the SSL Certificates
	Enabling HTTPS in CloudFront
	Enabling HTTPS in ELB
	Listening for HTTPS Connections
	Enabling Cookie Stickiness
	Modifying the Security Group

	Application Security
	Adding Session and Encryption Modules
	Adding Password Encryption
	Using Secure Sessions

	Conclusion

	Index

