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Preface
"Statistical thinking will one day be as necessary for efficient citizenship as the 
ability to read and write."

                                                                                                       - H. G. Wells

"I have a great subject [statistics] to write upon, but feel keenly my  
literary incapacity to make it easily intelligible without sacrificing  
accuracy and thoroughness."

                                                                                            - Sir Francis Galton

A web search for "data science Venn diagram" returns numerous interpretations 
of the skills required to be an effective data scientist (it appears that data science 
commentators love Venn diagrams). Author and data scientist Drew Conway 
produced the prototypical diagram back in 2010, putting data science at the 
intersection of hacking skills, substantive expertise (that is, subject domain 
understanding), and mathematics and statistics knowledge. Between hacking  
skills and substantive expertise—those practicing without strong mathematics  
and statistics knowledge—lies the "danger zone."

Five years on, as a growing number of developers seek to plug the data science skills' 
shortage, there's more need than ever for statistical and mathematical education 
to help developers out of this danger zone. So, when Packt Publishing invited me 
to write a book on data science suitable for Clojure programmers, I gladly agreed. 
In addition to appreciating the need for such a book, I saw it as an opportunity 
to consolidate much of what I had learned as CTO of my own Clojure-based data 
analytics company. The result is the book I wish I had been able to read before 
starting out.
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Clojure for Data Science aims to be much more than just a book of statistics for  
Clojure programmers. A large reason for the spread of data science into so many 
diverse areas is the enormous power of machine learning. Throughout the book, 
I'll show how to use pure Clojure functions and third-party libraries to construct 
machine learning models for the primary tasks of regression, classification, 
clustering, and recommendation.

Approaches that scale to very large datasets, so-called "big data," are of particular 
interest to data scientists, because they can reveal subtleties that are lost in smaller 
samples. This book shows how Clojure can be used to concisely express jobs to 
run on the Hadoop and Spark distributed computation frameworks, and how to 
incorporate machine learning through the use of both dedicated external libraries 
and general optimization techniques.

Above all, this book aims to foster an understanding not just on how to perform 
particular types of analysis, but why such techniques work. In addition to providing 
practical knowledge (almost every concept in this book is expressed as a runnable 
example), I aim to explain the theory that will allow you to take a principle and 
apply it to related problems. I hope that this approach will enable you to effectively 
apply statistical thinking in diverse situations well into the future, whether or not 
you decide to pursue a career in data science.

What this book covers
Chapter 1, Statistics, introduces Incanter, Clojure's primary statistical computing library 
used throughout the book. With reference to the data from the elections in the United 
Kingdom and Russia, we demonstrate the use of summary statistics and the value of 
statistical distributions while showing a variety of comparative visualizations.

Chapter 2, Inference, covers the difference between samples and populations, and  
statistics and parameters. We introduce hypothesis testing as a formal means  
of determining whether the differences are significant in the context of A / B  
testing website designs. We also cover sample bias, effect size, and solutions  
to the problem of multiple testing.

Chapter 3, Correlation, shows how we can discover linear relationships between 
variables and use the relationship to make predictions about some variables given 
others. We implement linear regression—a machine learning algorithm—to predict 
the weights of Olympic swimmers given their heights, using only core Clojure 
functions. We then make our model more sophisticated using matrices and more 
data to improve its accuracy.
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Chapter 4, Classification, describes how to implement several different types of 
machine learning algorithm (logistic regression, naive Bayes, C4.5, and random 
forests) to make predictions about the survival rates of passengers on the Titanic. We 
learn about another test for statistical significance that works for categories instead 
of continuous values, explain various issues you're likely to encounter while training 
machine learning models such as bias and overfitting, and demonstrate how to use 
the clj-ml machine learning library.

Chapter 5, Big Data, shows how Clojure can leverage the parallel capabilities 
in computers of all sizes using the reducers library, and how to scale up these 
techniques to clusters of machines on Hadoop with Tesser and Parkour. Using ZIP 
code level tax data from the IRS, we demonstrate how to perform statistical analysis 
and machine learning in a scalable way.

Chapter 6, Clustering, shows how to identify text documents that share similar subject 
matter using Hadoop and the Java machine learning library, Mahout. We describe a 
variety of techniques particular to text processing as well as more general concepts 
related to clustering. We also introduce some more advanced features of Parkour 
that can help get the best performance from your Hadoop jobs.

Chapter 7, Recommender Systems, covers a variety of different approaches to the 
challenge of recommendation. In addition to implementing a recommender with 
core Clojure functions, we tackle the ancillary challenge of dimensionality reduction 
by using principle component analysis and singular value decomposition, as well 
as probabilistic set compression using Bloom filters and the MinHash algorithm. 
Finally, we introduce the Sparkling and MLlib libraries for machine learning on 
the Spark distributed computation framework and use them to produce movie 
recommendations with alternating least squares.

Chapter 8, Network Analysis, shows a variety of ways of analyzing graph-structured 
data. We demonstrate the methods of traversal using the Loom library and then 
show how to use the Glittering and GraphX libraries with Spark to discover 
communities and influencers in social networks.

Chapter 9, Time Series, demonstrates how to fit curves to simple time series data. 
Using data on the monthly airline passenger counts, we show how to forecast future 
values for more complex series by training an autoregressive moving-average model. 
We do this by implementing a method of parameter optimization called maximum 
likelihood estimation with help from the Apache Commons Math library.

Chapter 10, Visualization, shows how the Clojure library Quil can be used to create 
custom visualizations for charts not provided by Incanter, and attractive graphics 
that can communicate findings clearly to your audience, whatever their background.
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What you need for this book
The code for each chapter has been made available as a project on GitHub at 
https://github.com/clojuredatascience. The example code can be downloaded 
as a zip file from there, or cloned with the Git command-line tool. All of the book's 
examples can be compiled and run with the Leiningen build tool as described in 
Chapter 1, Statistics.

This book assumes that you're already able to compile and run Clojure code using 
Leiningen (http://leiningen.org/). Refer to Leiningen's website if you're not yet 
set up to do this.

In addition, the code for many of the sample chapters makes use of external datasets. 
Where possible, these have been included together with the sample code. Where this 
has not been possible, instructions for downloading the data have been provided 
in the sample code's README file. Bash scripts have also been provided with the 
relevant sample code to automate this process. These can be run directly by Linux 
and OS X users, as described in the relevant chapter, provided the curl, wget, tar, 
gzip, and unzip utilities are installed. Windows users may have to install a Linux 
emulator such as Cygwin (https://www.cygwin.com/) to run the scripts.

Who this book is for
This book is intended for intermediate and advanced Clojure programmers who want 
to build their statistical knowledge, apply machine learning algorithms, or process 
large amounts of data with Hadoop and Spark. Many aspiring data scientists will 
benefit from learning all of these skills, and Clojure for Data Science is intended to be 
read in order from the beginning to the end. Readers who approach the book in this 
way will find that each chapter builds on concepts introduced in the prior chapters.

If you're not already comfortable reading Clojure code, you're likely to find this 
book particularly challenging. Fortunately, there are now many excellent resources 
for learning Clojure and I do not attempt to replicate their work here. At the time of 
writing, Clojure for the Brave and True (http://www.braveclojure.com/) is a fantastic 
free resource for learning the language. Consult http://clojure.org/getting_
started for links to many other books and online tutorials suitable for newcomers.

https://github.com/clojuredatascience
http://leiningen.org/
https://www.cygwin.com/
http://www.braveclojure.com/
http://clojure.org/getting_started
http://clojure.org/getting_started
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Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"Each example is a function in the cljds.ch1.examples namespace that can be run."

A block of code is set as follows:

(defmulti load-data identity)

(defmethod load-data :uk [_]
  (-> (io/resource "UK2010.xls")
      (str)
      (xls/read-xls)))

When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

    (q/fill (fill-fn x y))
    (q/rect x-pos y-pos x-scale y-scale))
    (q/save "heatmap.png"))]
    (q/sketch :setup setup :size size))

Any command-line input or output is written as follows:

lein run –e 1.1

New terms and important words are shown in bold. Words that you see on the 
screen, for example, in menus or dialog boxes, appear in the text like this: "Each 
time the New Sample button is pressed, a pair of new samples from an exponential 
distribution with population means taken from the sliders are generated."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.
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Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it  
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you 
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Statistics
"The people who cast the votes decide nothing. The people who count the votes 
decide everything."

                                                                                                     – Joseph Stalin

Over the course of the following ten chapters of Clojure for Data Science, we'll attempt 
to discover a broadly linear path through the field of data science. In fact, we'll find 
as we go that the path is not quite so linear, and the attentive reader ought to notice 
many recurring themes along the way.

Descriptive statistics concern themselves with summarizing sequences of numbers 
and they'll appear, to some extent, in every chapter in this book. In this chapter,  
we'll build foundations for what's to come by implementing functions to calculate 
the mean, median, variance, and standard deviation of numerical sequences 
in Clojure. While doing so, we'll attempt to take the fear out of interpreting 
mathematical formulae.

As soon as we have more than one number to analyze it becomes meaningful to ask 
how those numbers are distributed. You've probably already heard expressions such 
as "long tail" and the "80/20 rule". They concern the spread of numbers throughout 
a range. We demonstrate the value of distributions in this chapter and introduce the 
most useful of them all: the normal distribution.

The study of distributions is aided immensely by visualization, and for this we'll use 
the Clojure library Incanter. We'll show how Incanter can be used to load, transform, 
and visualize real data. We'll compare the results of two national elections—the 2010 
United Kingdom general election and the 2011 Russian presidential election—and 
see how even basic analysis can provide evidence of potentially fraudulent activity.
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Downloading the sample code
All of the book's sample code is available on Packt Publishing's website at 
http://www.packtpub.com/support or from GitHub at http://github.com/
clojuredatascience. Each chapter's sample code is available in its own repository.

The sample code for Chapter 1, Statistics can be downloaded from 
https://github.com/clojuredatascience/ch1-statistics.

Executable examples are provided regularly throughout all chapters, either to 
demonstrate the effect of code that has been just been explained, or to demonstrate 
statistical principles that have been introduced. All example function names begin 
with ex- and are numbered sequentially throughout each chapter. So, the first 
runnable example of Chapter 1, Statistics is named ex-1-1, the second is named  
ex-1-2, and so on.

Running the examples
Each example is a function in the cljds.ch1.examples namespace that can be run in 
two ways—either from the REPL or on the command line with Leiningen. If you'd 
like to run the examples in the REPL, you can execute:

lein repl

on the command line. By default, the REPL will open in the examples namespace. 
Alternatively, to run a specific numbered example, you can execute:

lein run –-example 1.1

or pass the single-letter equivalent:

lein run –e 1.1

We only assume basic command-line familiarity throughout this book. The ability to 
run Leiningen and shell scripts is all that's required.

If you become stuck at any point, refer to the book's wiki at 
http://wiki.clojuredatascience.com. The wiki will 
provide troubleshooting tips for known issues, including 
advice for running examples on a variety of platforms.

In fact, shell scripts are only used for fetching data from remote locations 
automatically. The book's wiki will also provide alternative instructions for  
those not wishing or unable to execute the shell scripts.

http://github.com/clojuredatascience
http://github.com/clojuredatascience
https://github.com/clojuredatascience/ch1-statistics
http://wiki.clojuredatascience.com
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Downloading the data
The dataset for this chapter has been made available by the Complex Systems 
Research Group at the Medical University of Vienna. The analysis we'll be 
performing closely mirrors their research to determine the signals of systematic 
election fraud in the national elections of countries around the world.

For more information about the research, and for links to download 
other datasets, visit the book's wiki or the research group's website 
at http://www.complex-systems.meduniwien.ac.at/
elections/election.html.

Throughout this book we'll be making use of numerous datasets. Where possible, 
we've included the data with the example code. Where this hasn't been possible—
either because of the size of the data or due to licensing constraints—we've included 
a script to download the data instead.

Chapter 1, Statistics is just such a chapter. If you've cloned the chapter's code and 
intend to follow the examples, download the data now by executing the following  
on the command line from within the project's directory:

script/download-data.sh

The script will download and decompress the sample data into the project's  
data directory.

If you have any difficulty running the download script or would 
like to follow manual instructions instead, visit the book's wiki at 
http://wiki.clojuredatascience.com for assistance.

We'll begin investigating the data in the next section.

Inspecting the data
Throughout this chapter, and for many other chapters in this book, we'll be using the 
Incanter library (http://incanter.org/) to load, manipulate, and display data.

Incanter is a modular suite of Clojure libraries that provides statistical computing 
and visualization capabilities. Modeled after the extremely popular R environment 
for data analysis, it brings together the power of Clojure, an interactive REPL, and a 
set of powerful abstractions for working with data.

http://www.complex-systems.meduniwien.ac.at/elections/election.html
http://www.complex-systems.meduniwien.ac.at/elections/election.html
http://wiki.clojuredatascience.com
http://incanter.org/
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Each module of Incanter focuses on a specific area of functionality. For example 
incanter-stats contains a suite of related functions for analyzing data and 
producing summary statistics, while incanter-charts provides a large number 
of visualization capabilities. incanter-core provides the most fundamental and 
generally useful functions for transforming data.

Each module can be included separately in your own code. For access to stats, charts, 
and Excel features, you could include the following in your project.clj:

  :dependencies [[incanter/incanter-core "1.5.5"]
                 [incanter/incanter-stats "1.5.5"]
                 [incanter/incanter-charts "1.5.5"]
                 [incanter/incanter-excel "1.5.5"]
                 ...]

If you don't mind including more libraries than you need, you can simply include 
the full Incanter distribution instead:

:dependencies [[incanter/incanter "1.5.5"]
               ...]

At Incanter's core is the concept of a dataset—a structure of rows and columns. If 
you have experience with relational databases, you can think of a dataset as a table. 
Each column in a dataset is named, and each row in the dataset has the same number 
of columns as every other. There are a several ways to load data into an Incanter 
dataset, and which we use will depend how our data is stored:

• If our data is a text file (a CSV or tab-delimited file), we can use the  
read-dataset function from incanter-io

• If our data is an Excel file (for example, an .xls or .xlsx file), we can use the 
read-xls function from incanter-excel

• For any other data source (an external database, website, and so on), as long 
as we can get our data into a Clojure data structure we can create a dataset 
with the dataset function in incanter-core

This chapter makes use of Excel data sources, so we'll be using read-xls. The 
function takes one required argument—the file to load—and an optional keyword 
argument specifying the sheet number or name. All of our examples have only one 
sheet, so we'll just provide the file argument as string:

(ns cljds.ch1.data
  (:require [clojure.java.io :as io]
            [incanter.core :as i]
            [incanter.excel :as xls]))
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In general, we will not reproduce the namespace declarations from the example 
code. This is both for brevity and because the required namespaces can usually 
be inferred by the symbol used to reference them. For example, throughout this 
book we will always refer to clojure.java.io as io, incanter.core as I, and 
incanter.excel as xls wherever they are used.

We'll be loading several data sources throughout this chapter, so we've created a 
multimethod called load-data in the cljds.ch1.data namespace:

(defmulti load-data identity)

(defmethod load-data :uk [_]
  (-> (io/resource "UK2010.xls")
      (str)
      (xls/read-xls)))

In the preceding code, we define the load-data multimethod that dispatches on  
the identity of the first argument. We also define the implementation that will be 
called if the first argument is :uk. Thus, a call to (load-data :uk) will return an 
Incanter dataset containing the UK data. Later in the chapter, we'll define additional 
load-data implementations for other datasets.

The first row of the UK2010.xls spreadsheet contains column names. Incanter's 
read-xls function will preserve these as the column names of the returned dataset. 
Let's begin our exploration of the data by inspecting them now—the col-names 
function in incanter.core returns the column names as a vector. In the following 
code (and throughout the book, where we use functions from the incanter.core 
namespace) we require it as i:

(defn ex-1-1 []
  (i/col-names (load-data :uk)))

As described in running the examples earlier, functions beginning with ex- can be 
run on the command line with Leiningen like this:

lein run –e 1.1
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The output of the preceding command should be the following Clojure vector:

["Press Association Reference" "Constituency Name" "Region" "Election 
Year" "Electorate" "Votes" "AC" "AD" "AGS" "APNI" "APP" "AWL" "AWP" 
"BB" "BCP" "Bean" "Best" "BGPV" "BIB" "BIC" "Blue" "BNP" "BP Elvis" 
"C28" "Cam Soc" "CG" "Ch M" "Ch P" "CIP" "CITY" "CNPG" "Comm" "Comm 
L" "Con" "Cor D" "CPA" "CSP" "CTDP" "CURE" "D Lab" "D Nat" "DDP" 
"DUP" "ED" "EIP" "EPA" "FAWG" "FDP" "FFR" "Grn" "GSOT" "Hum" "ICHC" 
"IEAC" "IFED" "ILEU" "Impact" "Ind1" "Ind2" "Ind3" "Ind4" "Ind5" "IPT" 
"ISGB" "ISQM" "IUK" "IVH" "IZB" "JAC" "Joy" "JP" "Lab" "Land" "LD" 
"Lib" "Libert" "LIND" "LLPB" "LTT" "MACI" "MCP" "MEDI" "MEP" "MIF" 
"MK" "MPEA" "MRLP" "MRP" "Nat Lib" "NCDV" "ND" "New" "NF" "NFP" "NICF" 
"Nobody" "NSPS" "PBP" "PC" "Pirate" "PNDP" "Poet" "PPBF" "PPE" "PPNV" 
"Reform" "Respect" "Rest" "RRG" "RTBP" "SACL" "Sci" "SDLP" "SEP" "SF" 
"SIG" "SJP" "SKGP" "SMA" "SMRA" "SNP" "Soc" "Soc Alt" "Soc Dem" "Soc 
Lab" "South" "Speaker" "SSP" "TF" "TOC" "Trust" "TUSC" "TUV" "UCUNF" 
"UKIP" "UPS" "UV" "VCCA" "Vote" "Wessex Reg" "WRP" "You" "Youth" 
"YRDPL"]

This is a very wide dataset. The first six columns in the data file are described as 
follows; subsequent columns break the number of votes down by party:

• Press Association Reference: This is a number identifying the constituency 
(voting district, represented by one MP)

• Constituency Name: This is the common name given to the voting district
• Region: This is the geographic region of the UK where the constituency  

is based
• Election Year: This is the year in which the election was held
• Electorate: This is the total number of people eligible to vote in  

the constituency
• Votes: This is the total number of votes cast

Whenever we're confronted with new data, it's important to take time to understand 
it. In the absence of detailed data definitions, one way we could do this is to begin by 
validating our assumptions about the data. For example, we expect that this dataset 
contains information about the 2010 election so let's review the contents of the 
Election Year column.
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Incanter provides the i/$ function (i, as before, signifying the incanter.core 
namespace) for selecting columns from a dataset. We'll encounter the function 
regularly throughout this chapter—it's Incanter's primary way of selecting columns 
from a variety of data representations and it provides several different arities. For 
now, we'll be providing just the name of the column we'd like to extract and the 
dataset from which to extract it:

(defn ex-1-2 []
  (i/$ "Election Year" (load-data :uk)))

;; (2010.0 2010.0 2010.0 2010.0 2010.0 ... 2010.0 2010.0 nil)

The years are returned as a single sequence of values. The output may be hard to 
interpret since the dataset contains so many rows. As we'd like to know which 
unique values the column contains, we can use the Clojure core function distinct. 
One of the advantages of using Incanter is that its useful data manipulation functions 
augment those that Clojure already provides as shown in the following example:

(defn ex-1-3 []
  (->> (load-data :uk)
       (i/$ "Election Year")
       (distinct)))

;; (2010 nil)

The 2010 year goes a long way to confirming our expectations that this data is  
from 2010. The nil value is unexpected, though, and may indicate a problem  
with our data.

We don't yet know how many nils exist in the dataset and determining this could 
help us decide what to do next. A simple way of counting values such as this it to  
use the core library function frequencies, which returns a map of values to counts:

(defn ex-1-4 [ ]
  (->> (load-data :uk)
       (i/$ "Election Year")
       (frequencies)))

;; {2010.0 650 nil 1}

In the preceding examples, we used Clojure's thread-last macro ->> to chain a 
several functions together for legibility.
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Along with Clojure's large core library of data manipulation 
functions, macros such as the one discussed earlier—including the 
thread-last macro ->>—are other great reasons for using Clojure to 
analyze data. Throughout this book, we'll see how Clojure can make 
even sophisticated analysis concise and comprehensible.

It wouldn't take us long to confirm that in 2010 the UK had 650 electoral districts, 
known as constituencies. Domain knowledge such as this is invaluable when  
sanity-checking new data. Thus, it's highly probable that the nil value is  
extraneous and can be removed. We'll see how to do this in the next section.

Data scrubbing
It is a commonly repeated statistic that at least 80 percent of a data scientist's work is 
data scrubbing. This is the process of detecting potentially corrupt or incorrect data 
and either correcting or filtering it out.

Data scrubbing is one of the most important (and time-consuming) 
aspects of working with data. It's a key step to ensuring that 
subsequent analysis is performed on data that is valid, accurate, 
and consistent.

The nil value at the end of the election year column may indicate dirty data that 
ought to be removed. We've already seen that filtering columns of data can be 
accomplished with Incanter's i/$ function. For filtering rows of data we can use 
Incanter's i/query-dataset function.

We let Incanter know which rows we'd like it to filter by passing a Clojure map of 
column names and predicates. Only rows for which all predicates return true will  
be retained. For example, to select only the nil values from our dataset:

(-> (load-data :uk)
    (i/query-dataset {"Election Year" {:$eq nil}}))

If you know SQL, you'll notice this is very similar to a WHERE clause. In fact, Incanter 
also provides the i/$where function, an alias to i/query-dataset that reverses the 
order of the arguments.
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The query is a map of column names to predicates and each predicate is itself a map 
of operator to operand. Complex queries can be constructed by specifying multiple 
columns and multiple operators together. Query operators include:

• :$gt greater than
• :$lt less than
• :$gte greater than or equal to
• :$lte less than or equal to
• :$eq equal to
• :$ne not equal to
• :$in to test for membership of a collection
• :$nin to test for non-membership of a collection
• :$fn a predicate function that should return a true response for rows to keep

If none of the built-in operators suffice, the last operator provides the ability to pass a 
custom function instead.

We'll continue to use Clojure's thread-last macro to make the code intention a little 
clearer, and return the row as a map of keys and values using the i/to-map function:

(defn ex-1-5 []
  (->> (load-data :uk)
       (i/$where {"Election Year" {:$eq nil}})
       (i/to-map)))

;; {:ILEU nil, :TUSC nil, :Vote nil ... :IVH nil, :FFR nil}

Looking at the results carefully, it's apparent that all (but one) of the columns in 
this row are nil. In fact, a bit of further exploration confirms that the non-nil row 
is a summary total and ought to be removed from the data. We can remove the 
problematic row by updating the predicate map to use the :$ne operator, returning 
only rows where the election year is not equal to nil:

(->> (load-data :uk)
      (i/$where {"Election Year" {:$ne nil}}))

The preceding function is one we'll almost always want to make sure we call in 
advance of using the data. One way of doing this is to add another implementation 
of our load-data multimethod, which also includes this filtering step:

(defmethod load-data :uk-scrubbed [_]
  (->> (load-data :uk)
       (i/$where {"Election Year" {:$ne nil}})))
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Now with any code we write, can choose whether to refer to the :uk or  
:uk-scrubbed datasets.

By always loading the source file and performing our scrubbing on top, we're 
preserving an audit trail of the transformations we've applied. This makes it clear 
to us—and future readers of our code—what adjustments have been made to the 
source. It also means that, should we need to re-run our analysis with new source 
data, we may be able to just load the new file in place of the existing file.

Descriptive statistics
Descriptive statistics are numbers that are used to summarize and describe data.  
In the next chapter, we'll turn our attention to a more sophisticated analysis,  
the so-called inferential statistics, but for now we'll limit ourselves to simply 
describing what we can observe about the data contained in the file.

To demonstrate what we mean, let's look at the Electorate column of the data.  
This column lists the total number of registered voters in each constituency:

(defn ex-1-6 []
  (->> (load-data :uk-scrubbed)
       (i/$ "Electorate")
       (count)))

;; 650

We've filtered the nil field from the dataset; the preceding code should return a list 
of 650 numbers corresponding to the electorate in each of the UK constituencies.

Descriptive statistics, also called summary statistics, are ways of measuring 
attributes of sequences of numbers. They help characterize the sequence and can  
act as a guide for further analysis. Let's start by calculating the two most basic 
statistics that we can from a sequence of numbers—its mean and its variance.
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The mean
The most common way of measuring the average of a data set is with the mean. 
It's actually one of several ways of measuring the central tendency of the data. The 
mean, or more precisely, the arithmetic mean, is a straightforward calculation—
simply add up the values and divide by the count—but in spite of this it has a 
somewhat intimidating mathematical notation:

1

1 n

i
i

x x
n =

= ∑

where x  is pronounced x-bar, the mathematical symbol often used to denote  
the mean.

To programmers coming to data science from fields outside mathematics or the 
sciences, this notation can be quite confusing and alienating. Others may be entirely 
comfortable with this notation, and they can safely skip the next section.

Interpreting mathematical notation
Although mathematical notation may appear obscure and upsetting, there are really 
only a handful of symbols that will occur frequently in the formulae in this book.

Σ is pronounced sigma and means sum. When you see it in mathematical notation it 
means that a sequence is being added up. The symbols above and below the sigma 
indicate the range over which we'll be summing. They're rather like a C-style for 
loop and in the earlier formula indicate we'll be summing from i=1 up to i=n. By 
convention n is the length of the sequence, and sequences in mathematical notation 
are one-indexed, not zero-indexed, so summing from 1 to n means that we're 
summing over the entire length of the sequence.

The expression immediately following the sigma is the sequence to be summed. In 
our preceding formula for the mean, xi immediately follows the sigma. Since i will 
represent each index from 1 up to n, xi represents each element in the sequence of xs.
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Finally, 
1
n  appears just before the sigma, indicating that the entire expression  

should be multiplied by 1 divided by n (also called the reciprocal of n). This  
can be simplified to just dividing by n.

Name Mathematical symbol Clojure equivalent
n (count xs)

Sigma notation

1

n

i
i
x

=
∑

(reduce + xs)

Pi notation

1

n

i
i
x

=
∏

(reduce * xs)

Putting this all together, we get "add up the elements in the sequence from the first to 
the last and divide by the count". In Clojure, this can be written as:

(defn mean [xs]
  (/ (reduce + xs)
     (count xs)))

Where xs stands for "the sequence of xs". We can use our new mean function to 
calculate the mean of the UK electorate:

(defn ex-1-7 []
  (->> (load-data :uk-scrubbed)
       (i/$ "Electorate")
       (mean)))

;; 70149.94

In fact, Incanter already includes a function, mean, to calculate the mean of a 
sequence very efficiently in the incanter.stats namespace. In this chapter  
(and throughout the book), the incanter.stats namespace will be required  
as s wherever it's used.



Chapter 1

[ 13 ]

The median
The median is another common descriptive statistic for measuring the central 
tendency of a sequence. If you ordered all the data from lowest to highest, the 
median is the middle value. If there is an even number of data points in the 
sequence, the median is usually defined as the mean of the middle two values.

The median is often represented in formulae by x� , pronounced x-tilde. It's one 
of the deficiencies of mathematical notation that there's no particularly standard 
way of expressing the formula for the median value, but nonetheless it's fairly 
straightforward in Clojure:

(defn median [xs]
  (let [n   (count xs)
        mid (int (/ n 2))]
    (if (odd? n)
      (nth (sort xs) mid)
      (->> (sort xs)
           (drop (dec mid))
           (take 2)
           (mean)))))

The median of the UK electorate is:

(defn ex-1-8 []
  (->> (load-data :uk-scrubbed)
       (i/$ "Electorate")
       (median)))

;; 70813.5

Incanter also has a function for calculating the median value as s/median.

Variance
The mean and the median are two alternative ways of describing the middle value 
of a sequence, but on their own they tell you very little about the values contained 
within it. For example, if we know the mean of a sequence of ninety-nine values is 
50, we can still say very little about what values the sequence contains.

It may contain all the integers from one to ninety-nine, or forty-nine zeros and  
fifty ninety-nines. Maybe it contains negative one ninety-eight times and a single 
five-thousand and forty-eight. Or perhaps all the values are exactly fifty.
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The variance of a sequence is its "spread" about the mean, and each of the preceding 
examples would have a different variance. In mathematical notation, the variance is 
expressed as:

( )22

1

1 n

i
i

s x x
n =

= −∑

where s2 is the mathematical symbol often used to denote the variance.

This equation bears a number of similarities to the equation for the mean calculated 
previously. Instead of summing a single value, xi, we are summing a function 
of ( )2

ix x− . Recall that the symbol x  represents the mean value, so the function 
calculates the squared deviation of xi from the mean of all the xs.

We can turn the expression ( )2
ix x−  into a function, square-deviation, that we 

map over the sequence of xs. We can also make use of the mean function we've 
already created to sum the values in the sequence and divide by the count.

(defn variance [xs]
  (let [x-bar (mean xs)
        n     (count xs)
        square-deviation (fn [x]
                           (i/sq (- x x-bar)))]
    (mean (map square-deviation xs))))

We're using Incanter's i/sq function to calculate the square of our expression.

Since we've squared the deviation before taking the mean, the units of variance are 
also squared, so the units of the variance of the UK electorate are "people squared". 
This is somewhat unnatural to reason about. We can make the units more natural by 
taking the square root of the variance so the units are "people" again, and the result is 
called the standard deviation:

(defn standard-deviation [xs]
  (i/sqrt (variance xs)))

(defn ex-1-9 []
  (->> (load-data :uk-scrubbed)
       (i/$ "Electorate")
       (standard-deviation)))

;; 7672.77
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Incanter's implements functions to calculate the variance and standard deviation as 
s/variance and s/sd respectively.

Quantiles
The median is one way to calculate the middle value from a list, and the variance 
provides a way to measure the spread of the data about this midpoint. If the entire 
spread of data were represented on a scale of zero to one, the median would be the 
value at 0.5.

For example, consider the following sequence of numbers:

[10 11 15 21 22.5 28 30]

There are seven numbers in the sequence, so the median is the fourth, or 21. This 
is also referred to as the 0.5 quantile. We can get a richer picture of a sequence of 
numbers by looking at the 0, 0.25, 0.5, 0.7, and 1.0 quantiles. Taken together, these 
numbers will not only show the median, but will also summarize the range of the 
data and how the numbers are distributed within it. They're sometimes referred  
to as the five-number summary.

One way to calculate the five-number summary for the UK electorate data is shown 
as follows:

(defn quantile [q xs]
  (let [n (dec (count xs))
        i (-> (* n q)
              (+ 1/2)
              (int))]
    (nth (sort xs) i)))

(defn ex-1-10 []
  (let [xs (->> (load-data :uk-scrubbed)
                (i/$ "Electorate"))
        f (fn [q]
            (quantile q xs))]
    (map f [0 1/4 1/2 3/4 1])))

;; (21780.0 66219.0 70991.0 75115.0 109922.0)

Quantiles can also be calculated in Incanter directly with the s/quantile function.  
A sequence of desired quantiles is passed as the keyword argument :probs.
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Incanter's quantile function uses a variant of the algorithm shown 
earlier called the phi-quantile, which performs linear interpolation 
between consecutive numbers in certain cases. There are many alternative 
ways of calculating quantiles—consult https://en.wikipedia.org/
wiki/Quantile for a discussion of the differences.

Where quantiles split the range into four equal ranges as earlier, they are called 
quartiles. The difference between the lower and upper quartile is referred to as the 
interquartile range, also often abbreviated to just IQR. Like the variance about the 
mean, the IQR gives a measure of the spread of the data about the median.

Binning data
To develop an intuition for what these various calculations of variance are 
measuring, we can employ a technique called binning. Where data is continuous, 
using frequencies (as we did with the election data to count the nils) is not practical 
since no two values may be the same. However, it's possible to get a broad sense of 
the structure of the data by grouping the data into discrete intervals.

The process of binning is to divide the range of values into a number of consecutive, 
equally-sized, smaller bins. Each value in the original series falls into exactly one 
bin. By counting the number of points falling into each bin, we can get a sense of the 
spread of the data:

The preceding illustration shows fifteen values of x split into five equally-sized bins. 
By counting the number of points falling into each bin we can clearly see that most 
points fall in the middle bin, with fewer points falling into the bins towards the 
edges. We can achieve the same in Clojure with the following bin function:

(defn bin [n-bins xs]
  (let [min-x    (apply min xs)
        max-x    (apply max xs)
        range-x  (- max-x min-x)
        bin-fn   (fn [x]
                   (-> x
                       (- min-x)

https://en.wikipedia.org/wiki/Quantile
https://en.wikipedia.org/wiki/Quantile
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                       (/ range-x)
                       (* n-bins)
                       (int)
                       (min (dec n-bins))))]
    (map bin-fn xs)))

For example, we can bin range 0-14 into 5 bins like so:

(bin 5 (range 15))

;; (0 0 0 1 1 1 2 2 2 3 3 3 4 4 4)

Once we've binned the values we can then use the frequencies function once again 
to count the number of points in each bin. In the following code, we use the function 
to split the UK electorate data into five bins:

(defn ex-1-11 []
  (->> (load-data :uk-scrubbed)
       (i/$ "Electorate")
       (bin 10)
       (frequencies)))

;; {1 26, 2 450, 3 171, 4 1, 0 2}

The count of points in the extremal bins (0 and 4) is much lower than the bins in the 
middle—the counts seem to rise up towards the median and then down again. In the 
next section, we'll visualize the shape of these counts.

Histograms
A histogram is one way to visualize the distribution of a single sequence of values. 
Histograms simply take a continuous distribution, bin it, and plot the frequencies 
of points falling into each bin as a bar. The height of each bar in the histogram 
represents how many points in the data are contained in that bin.

We've already seen how to bin data ourselves, but incanter.charts contains a 
histogram function that will bin the data and visualize it as a histogram in two 
steps. We require incanter.charts as c in this chapter (and throughout the book).

(defn ex-1-12 []
  (-> (load-data :uk-scrubbed)
      (i/$ "Electorate")
      (c/histogram)
      (i/view)))
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The preceding code generates the following chart:

We can configure the number of bins data is segmented into by passing the keyword 
argument :nbins as the second parameter to the histogram function:

(defn ex-1-13 []
  (-> (uk-electorate)
      (c/histogram :nbins 200)
      (i/view)))
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The preceding graph shows a single, high peak but expresses the shape of the data 
quite crudely. The following graph shows fine detail, but the volume of the bars 
obscures the shape of the distribution, particularly in the tails:

Choosing the number of bins to represent your data is a fine balance—too few bins 
and the shape of the data will only be crudely represented, too many and noisy 
features may obscure the underlying structure.

(defn ex-1-14 []
  (-> (i/$ "Electorate" (load-data :uk-scrubbed))
      (c/histogram :x-label "UK electorate"
                   :nbins 20)
      (i/view)))

www.allitebooks.com

http://www.allitebooks.org
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The following shows a histogram of 20 bars instead:

This final chart containing 20 bins seems to be the best representation for this data  
so far.

Along with the mean and the median, the mode is another way of measuring the 
average value of a sequence—it's defined as the most frequently occurring value 
in the sequence. The mode is strictly only defined for sequences with at least one 
duplicated value; for many distributions, this is not the case and the mode is 
undefined. Nonetheless, the peak of the histogram is often referred to as the mode, 
since it corresponds to the most popular bin.

We can clearly see that the distribution is quite symmetrical about the mode, with 
values falling sharply either side along shallow tails. This is data following an 
approximately normal distribution.



Chapter 1

[ 21 ]

The normal distribution
A histogram will tell you approximately how data is distributed throughout its 
range, and provide a visual means of classifying your data into one of a handful of 
common distributions. Many distributions occur frequently in data analysis, but 
none so much as the normal distribution, also called the Gaussian distribution.

The distribution is named the normal distribution because of 
how often it occurs in nature. Galileo noticed that the errors in his 
astronomical measurements followed a distribution where small 
deviations from the mean occurred more frequently than large 
deviations. It was the great mathematician Gauss' contribution to 
describing the mathematical shape of these errors that led to the 
distribution also being called the Gaussian distribution in his honor.

A distribution is like a compression algorithm: it allows a potentially large amount 
of data to be summarized very efficiently. The normal distribution requires just two 
parameters from which the rest of the data can be approximated—the mean and the 
standard deviation.

The central limit theorem
The reason for the normal distribution's ubiquity is partly explained by the central 
limit theorem. Values generated from diverse distributions will tend to converge to 
the normal distribution under certain circumstances, as we will show next.

A common distribution in programming is the uniform distribution. This is the 
distribution of numbers generated by Clojure's rand function: for a fair random 
number generator, all numbers have an equal chance of being generated. We can 
visualize this on a histogram by generating a random number between zero and  
one many times over and plotting the results.

(defn ex-1-15 []
  (let [xs (->> (repeatedly rand)
                (take 10000))]
    (-> (c/histogram xs
                     :x-label "Uniform distribution"
                     :nbins 20)
        (i/view))))
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The preceding code will generate the following histogram:

Each bar of the histogram is approximately the same height, corresponding to the 
equal probability of generating a number that falls into each bin. The bars aren't 
exactly the same height since the uniform distribution describes the theoretical 
output that our random sampling can't mirror precisely. Over the next several 
chapters, we'll learn ways to precisely quantify the difference between theory and 
practice to determine whether the differences are large enough to be concerned with. 
In this case, they are not.

If instead we generate a histogram of the means of sequences of numbers, we'll end 
up with a distribution that looks rather different.

(defn ex-1-16 []
  (let [xs (->> (repeatedly rand)
                (partition 10)
                (map mean)
                (take 10000))]
    (-> (c/histogram xs
                     :x-label "Distribution of means"
                     :nbins 20)
        (i/view))))
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The preceding code will provide an output similar to the following histogram:

Although it's not impossible for the mean to be close to zero or one, it's exceedingly 
improbable and grows less probable as both the number of averaged numbers and 
the number of sampled averages grow. In fact, the output is exceedingly close to the 
normal distribution.

This outcome—where the average effect of many small random fluctuations leads to 
the normal distribution—is called the central limit theorem, sometimes abbreviated 
to CLT, and goes a long way towards explaining why the normal distribution occurs 
so frequently in natural phenomena.

The central limit theorem wasn't named until the 20th century, although the effect 
had been documented as early as 1733 by the French mathematician Abraham de 
Moivre, who used the normal distribution to approximate the number of heads 
resulting from tosses of a fair coin. The outcome of coin tosses is best modeled with 
the binomial distribution, which we will introduce in Chapter 4, Classification. While 
the central limit theorem provides a way to generate samples from an approximate 
normal distribution, Incanter's distributions namespace provides functions for 
generating samples efficiently from a variety of distributions, including the normal:

(defn ex-1-17 []
  (let [distribution (d/normal-distribution)
        xs (->> (repeatedly #(d/draw distribution))
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                (take 10000))]
    (-> (c/histogram xs
                     :x-label "Normal distribution"
                     :nbins 20)
        (i/view))))

The preceding code generates the following histogram:

The d/draw function will return one sample from the supplied distribution.  
The default mean and standard deviation from d/normal-distribution  
are zero and one respectively.

Poincaré's baker
There's a story that, while almost certainly apocryphal, allows us to look in more 
detail at the way in which the central limit theorem allows us to reason about how 
distributions are formed. It concerns the celebrated nineteenth century French 
polymath Henri Poincaré who, so the story goes, weighed his bread every day  
for a year.
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Baking was a regulated profession, and Poincaré discovered that, while the weights 
of the bread followed a normal distribution, the peak was at 950g rather than the 
advertised 1kg. He reported his baker to the authorities and so the baker was fined.

The next year, Poincaré continued to weigh his bread from the same baker. He found 
the mean value was now 1kg, but that the distribution was no longer symmetrical 
around the mean. The distribution was skewed to the right, consistent with the baker 
giving Poincaré only the heaviest of his loaves. Poincaré reported his baker to the 
authorities once more and his baker was fined a second time.

Whether the story is true or not needn't concern us here; it's provided simply 
to illustrate a key point—the distribution of a sequence of numbers can tell us 
something important about the process that generated it.

Generating distributions
To develop our intuition about the normal distribution and variance, let's model an 
honest and dishonest baker using Incanter's distribution functions. We can model the 
honest baker as a normal distribution with a mean of 1,000, corresponding to a fair 
loaf of 1kg. We'll assume a variance in the baking process that results in a standard 
deviation of 30g.

(defn honest-baker [mean sd]
  (let [distribution (d/normal-distribution mean sd)]
    (repeatedly #(d/draw distribution))))

(defn ex-1-18 []
  (-> (take 10000 (honest-baker 1000 30))
      (c/histogram :x-label "Honest baker"
                   :nbins 25)
      (i/view)))
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The preceding code will provide an output similar to the following histogram:

Now, let's model a baker who sells only the heaviest of his loaves. We partition the 
sequence into groups of thirteen (a "baker's dozen") and pick the maximum value:

(defn dishonest-baker [mean sd]
  (let [distribution (d/normal-distribution mean sd)]
    (->> (repeatedly #(d/draw distribution))
         (partition 13)
         (map (partial apply max)))))

(defn ex-1-19 []
  (-> (take 10000 (dishonest-baker 950 30))
      (c/histogram :x-label "Dishonest baker"
                   :nbins 25)
      (i/view)))
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The preceding code will produce a histogram similar to the following:

It should be apparent that this histogram does not look quite like the others  
we have seen. The mean value is still 1kg, but the spread of values around the  
mean is no longer symmetrical. We say that this histogram indicates a skewed 
normal distribution.
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Skewness
Skewness is the name for the asymmetry of a distribution about its mode. Negative 
skew, or left skew, indicates that the area under the graph is larger on the left side 
of the mode. Positive skew, or right skew, indicates that the area under the graph is 
larger on the right side of the mode.

Incanter has a built-in function for measuring skewness in the stats namespace:

(defn ex-1-20 []
  (let [weights (take 10000 (dishonest-baker 950 30))]
    {:mean (mean weights)
     :median (median weights)
     :skewness (s/skewness weights)}))

The preceding example shows that the skewness of the dishonest baker's output is 
about 0.4, quantifying the skew evident in the histogram.

Quantile-quantile plots
We encountered quantiles as a means of describing the distribution of data earlier 
in the chapter. Recall that the quantile function accepts a number between zero 
and one and returns the value of the sequence at that point. 0.5 corresponds to the 
median value.

Plotting the quantiles of your data against the quantiles of the normal distribution 
allows us to see how our measured data compares against the theoretical 
distribution. Plots such as this are called Q-Q plots and they provide a quick and 
intuitive way of determining normality. For data corresponding closely to the normal 
distribution, the Q-Q Plot is a straight line. Deviations from a straight line indicate 
the manner in which the data deviates from the idealized normal distribution.



Chapter 1

[ 29 ]

Let's plot Q-Q plots for both our honest and dishonest bakers side-by-side.  
Incanter's c/qq-plot function accepts the list of data points and generates  
a scatter chart of the sample quantiles plotted against the quantiles from the 
theoretical normal distribution:

(defn ex-1-21 []
  (->> (honest-baker 1000 30)
       (take 10000)
       (c/qq-plot)
       (i/view))
  (->> (dishonest-baker 950 30)
       (take 10000)
       (c/qq-plot)
       (i/view)))

The preceding code will produce the following plots:
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The Q-Q plot for the honest baker is shown earlier. The dishonest baker's plot is next:

The fact that the line is curved indicates that the data is positively skewed; a curve in 
the other direction would indicate negative skew. In fact, Q-Q plots make it easier to 
discern a wide variety of deviations from the standard normal distribution, as shown 
in the following diagram:
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Q-Q plots compare the distribution of the honest and dishonest baker against  
the theoretical normal distribution. In the next section, we'll compare several 
alternative ways of visually comparing two (or more) measured sequences  
of values with each other.

Comparative visualizations
Q-Q plots provide a great way to compare a measured, empirical distribution to 
a theoretical normal distribution. If we'd like to compare two or more empirical 
distributions with each other, we can't use Incanter's Q-Q plot charts. We have a 
variety of other options, though, as shown in the next two sections.

Box plots
Box plots, or box and whisker plots, are a way to visualize the descriptive statistics 
of median and variance visually. We can generate them using the following code:

(defn ex-1-22 []
  (-> (c/box-plot (->> (honest-baker 1000 30)
                       (take 10000))
                  :legend true
                  :y-label "Loaf weight (g)"
                  :series-label "Honest baker")
      (c/add-box-plot (->> (dishonest-baker 950 30)
                           (take 10000))
                      :series-label "Dishonest baker")
      (i/view)))
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This creates the following plot:

The boxes in the center of the plot represent the interquartile range. The median 
is the line across the middle of the box, and the mean is the large black dot. For the 
honest baker, the median passes through the centre of the circle, indicating the mean 
and median are about the same. For the dishonest baker, the mean is offset from the 
median, indicating a skew.

The whiskers indicate the range of the data and outliers are represented by hollow 
circles. In just one chart, we're more clearly able to see the difference between the two 
distributions than we were on either the histograms or the Q-Q plots independently.

Cumulative distribution functions
Cumulative distribution functions, also known as CDFs, describe the probability that 
a value drawn from a distribution will have a value less than x. Like all probability 
distributions, they value between 0 and 1, with 0 representing impossibility and 1 
representing certainty. For example, imagine that I'm about to throw a six-sided die. 
What's the probability that I'll roll less than a six?
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For a fair die, the probability I'll row a five or lower is 
5
6 . Conversely, the probability 

I'll roll a one is only 1
6

. Three or lower corresponds to even odds—a probability of  
50 percent.

The CDF of die rolls follows the same pattern as all CDFs—for numbers at the lower 
end of the range, the CDF is close to zero, corresponding to a low probability of 
selecting numbers in this range or below. At the high end of the range, the CDF is 
close to one, since most values drawn from the sequence will be lower.

The CDF and quantiles are closely related to each other—the 
CDF is the inverse of the quantile function. If the 0.5 quantile 
corresponds to a value of 1,000, then the CDF for 1,000 is 0.5.

Just as Incanter's s/quantile function allows us to sample values from a distribution 
at specific points, the s/cdf-empirical function allows us to input a value from the 
sequence and return a value between zero and one. It is a higher-order function—one 
that will accept the value (in this case, a sequence of values) and return a function. The 
returned function can then be called as often as necessary with different input values, 
returning the CDF for each of them.

Higher-order functions are functions that accept or return functions.

Let's plot the CDF of both the honest and dishonest bakers side by side. We can 
use Incanter's c/xy-plot for visualizing the CDF by plotting the source data—the 
samples from our honest and dishonest bakers—against the probabilities calculated 
against the empirical CDF. The c/xy-plot function expects the x values and the y 
values to be supplied as two separate sequences of values.

To plot both distributions on the same chart, we need to be able to provide multiple 
series to our xy-plot. Incanter offers functions for many of its charts to add additional 
series. In the case of an xy-plot, we can use the function c/add-lines, which accepts 
the chart as the first argument, and the x series and the y series of data as the next two 
arguments respectively. You can also pass an optional series label. We do this in the 
following code so we can tell the two series apart on the finished chart:

(defn ex-1-23 []
  (let [sample-honest    (->> (honest-baker 1000 30)
                              (take 1000))
        sample-dishonest (->> (dishonest-baker 950 30)
                              (take 1000))
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        ecdf-honest    (s/cdf-empirical sample-honest)
        ecdf-dishonest (s/cdf-empirical sample-dishonest)]
    (-> (c/xy-plot sample-honest (map ecdf-honest sample-honest)
                   :x-label "Loaf Weight"
                   :y-label "Probability"
                   :legend true
                   :series-label "Honest baker")
        (c/add-lines sample-dishonest
                     (map ecdf-dishonest sample-dishonest)
                     :series-label "Dishonest baker")
        (i/view))))

The preceding code generates the following chart:

Although it looks very different, this chart shows essentially the same information 
as the box and whisker plot. We can see that the two lines cross at approximately the 
median of 0.5, corresponding to 1,000g. The dishonest line is truncated at the lower 
tail and longer on the upper tail, corresponding to a skewed distribution.
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The importance of visualizations
Simple visualizations like those earlier are succinct ways of conveying a large 
quantity of information. They complement the summary statistics we calculated 
earlier in the chapter, and it's important that we use them. Statistics such as the mean 
and standard deviation necessarily conceal a lot of information as they reduce a 
sequence down to just a single number.

The statistician Francis Anscombe devised a collection of four scatter plots, known as 
Anscombe's Quartet, that have nearly identical statistical properties (including the 
mean, variance, and standard deviation). In spite of this, it's visually apparent that 
the distribution of xs and ys are all very different:
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Datasets don't have to be contrived to reveal valuable insights when graphed. Take 
for example this histogram of the marks earned by candidates in Poland's national 
Matura exam in 2013:

We might expect the abilities of students to be normally distributed and indeed—
with the exception of a sharp spike around 30 percent —it is. What we can clearly see 
is the very human effect of examiners nudging student's grades over the pass mark.

In fact, the distributions for sequences drawn from large samples can be so reliable 
that any deviation from them can be evidence of illegal activity. Benford's law, also 
called the first-digit law, is a curious feature of random numbers generated over a 
large range. One occurs as the leading digit about 30 percent of the time, while larger 
digits occur less and less frequently. For example, nine occurs as the leading digit 
less than 5 percent of the time.

Benford's law is named after physicist Frank Benford who stated it in 
1938 and showed its consistency across a wide variety of data sources. 
It had been previously observed by Simon Newcomb over 50 years 
earlier, who noticed that the pages of his books of logarithm tables 
were more battered for numbers beginning with the digit one.
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Benford showed that the law applied to data as diverse as electricity bills, street 
addresses, stock prices, population numbers, death rates, and lengths of rivers. The 
law is so consistent for data sets covering large ranges of values that deviation from 
it has been accepted as evidence in trials for financial fraud.

Visualizing electorate data
Let's return to the election data and compare the electorate sequence we created 
earlier against the theoretical normal distribution CDF. We can use Incanter's s/cdf-
normal function to generate a normal CDF from a sequence of values. The default 
mean is 0 and standard deviation is 1, so we'll need to provide the measured mean 
and standard deviation from the electorate data. These values for our electorate data 
are 70,150 and 7,679, respectively.

We generated an empirical CDF earlier in the chapter. The following example simply 
generates each of the two CDFs and plots them on a single c/xy-plot:

(defn ex-1-24 []
  (let [electorate (->> (load-data :uk-scrubbed)
                        (i/$ "Electorate"))
        ecdf   (s/cdf-empirical electorate)
        fitted (s/cdf-normal electorate
                             :mean (s/mean electorate)
                             :sd   (s/sd electorate))]
    (-> (c/xy-plot electorate fitted
                   :x-label "Electorate"
                   :y-label "Probability"
                   :series-label "Fitted"
                   :legend true)
        (c/add-lines electorate (map ecdf electorate)
                     :series-label "Empirical")
        (i/view))))
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The preceding example generates the following plot:

You can see from the proximity of the two lines to each other how closely this data 
resembles normality, although a slight skew is evident. The skew is in the opposite 
direction to the dishonest baker CDF we plotted previously, so our electorate data is 
slightly skewed to the left.

As we're comparing our distribution against the theoretical normal distribution,  
let's use a Q-Q plot, which will do this by default:

(defn ex-1-25 []
  (->> (load-data :uk-scrubbed)
       (i/$ "Electorate")
       (c/qq-plot)
       (i/view)))
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The following Q-Q plot does an even better job of highlighting the left skew evident 
in the data:

As we expected, the curve bows in the opposite direction to the dishonest baker 
Q-Q plot earlier in the chapter. This indicates that there is a greater number of 
constituencies that are smaller than we would expect if the data were more  
closely normally distributed.

Adding columns
So far this chapter, we've reduced the size of our dataset by filtering both rows and 
columns. Often we'll want to add rows to a dataset instead, and Incanter supports 
this in several ways.

Firstly, we can choose whether to replace an existing column within the dataset or 
append an additional column to the dataset. Secondly, we can choose whether to 
supply the new column values to replace the existing column values directly, or 
whether to calculate the new values by applying a function to each row of the data.
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The following chart lists our options and the corresponding Incanter function to use:

Replace data Append data
By providing a sequence i/replace-column i/add-column

By applying a function i/transform-column i/add-derived-column

When transforming or deriving a column based on a function, we pass the name of 
the new column to create, a function to apply for each row, and also a sequence of 
existing column names. The values contained in each of these existing columns will 
comprise the arguments to our function.

Let's show how to use the i/add-derived-column function with reference to a real 
example. The 2010 UK general election resulted in a hung parliament with no single 
party commanding an overall majority. A coalition between the Conservative and 
Liberal Democrat parties was formed. In the next section we'll find out how many 
people voted for either party, and what percentage of the total vote this was.

Adding derived columns
To find out what percentage of the electorate voted for either the Conservative or 
Liberal Democrat parties, we'll want to calculate the sum of votes for either party. 
Since we're creating a new field of data based on a function of the existing data,  
we'll want to use the i/add-derived-column function.

(defn ex-1-26 []
  (->> (load-data :uk-scrubbed)
       (i/add-derived-column :victors [:Con :LD] +)))

If we run this now, however, an exception will be generated:

ClassCastException java.lang.String cannot be cast to java.lang.Number  
clojure.lang.Numbers.add (Numbers.java:126)

Unfortunately Clojure is complaining that we're trying to add a java.lang.String. 
Clearly either (or both) the Con or the LD columns contain string values, but which? 
We can use frequencies again to see the extent of the problem:

(->> (load-data :uk-scrubbed)
     ($ "Con")
     (map type)
     (frequencies))

;; {java.lang.Double 631, java.lang.String 19}

(->> (load-data :uk-scrubbed)
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     ($ "LD")
     (map type)
     (frequencies))

;; {java.lang.Double 631, java.lang.String 19}

Let's use the i/$where function we encountered earlier in the chapter to inspect just 
these rows:

(defn ex-1-27 []
  (->> (load-data :uk-scrubbed)
       (i/$where #(not-any? number? [(% "Con") (% "LD")]))
       (i/$ [:Region :Electorate :Con :LD])))

;; |           Region | Electorate | Con | LD |
;; |------------------+------------+-----+----|
;; | Northern Ireland |    60204.0 |     |    |
;; | Northern Ireland |    73338.0 |     |    |
;; | Northern Ireland |    63054.0 |     |    |
;; ...

This bit of exploration should be enough to convince us that the reason for these 
fields being blank is that candidates were not put forward in the corresponding 
constituencies. Should they be filtered out or assumed to be zero? This is an 
interesting question. Let's filter them out, since it wasn't even possible for voters 
to choose a Liberal Democrat or Conservative candidate in these constituencies. If 
instead we assumed a zero, we would artificially lower the mean number of people 
who—given the choice—voted for either of these parties.

Now that we know how to filter the problematic rows, let's add the derived  
columns for the victor and the victor's share of the vote, along with election  
turnout. We filter the rows to show only those where both a Conservative  
and Liberal Democrat candidate were put forward:

(defmethod load-data :uk-victors [_]
  (->> (load-data :uk-scrubbed)
       (i/$where {:Con {:$fn number?} :LD {:$fn number?}})
       (i/add-derived-column :victors [:Con :LD] +)
       (i/add-derived-column :victors-share [:victors :Votes] /)
       (i/add-derived-column :turnout [:Votes :Electorate] /)))
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As a result, we now have three additional columns in our dataset: :victors, 
:victors-share, and :turnout. Let's plot the victor's share of the vote as  
a Q-Q plot to see how it compares against the theoretical normal distribution:

(defn ex-1-28 []
  (->> (load-data :uk-victors)
       (i/$ :victors-share)
       (c/qq-plot)
       (i/view)))

The preceding code generates the following plot:

Referring back to the diagram of various Q-Q plot shapes earlier in the chapter 
reveals that the victor's share of the vote has "light tails" compared to the normal 
distribution. This means that more of the data is closer to the mean than we might 
expect from truly normally distributed data.
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Comparative visualizations of electorate 
data
Let's look now at a dataset from another general election, this time from Russia  
in 2011. Russia is a much larger country, and its election data is much larger too. 
We'll be loading two large Excel files into the memory, which may exceed your 
default JVM heap size.

To expand the amount of memory available to Incanter, we can adjust the JVM 
settings in the project's profile.clj. The a vector of configuration flags for the  
JVM can be provided with the key :jvm-opts. Here we're using Java's Xmx flag  
to increase the heap size to 1GB. This should be more than enough.

  :jvm-opts ["-Xmx1G"]

Russia's data is available in two data files. Fortunately the columns are the same in 
each, so they can be concatenated together end-to-end. Incanter's function i/conj-
rows exists for precisely this purpose:

(defmethod load-data :ru [_]
  (i/conj-rows (-> (io/resource "Russia2011_1of2.xls")
                   (str)
                   (xls/read-xls))
               (-> (io/resource "Russia2011_2of2.xls")
                   (str)
                   (xls/read-xls))))

In the preceding code, we define a third implementation of the load-data 
multimethod to load and combine both Russia files.

In addition to conj-rows, Incanter-core also defines conj-columns 
that will merge the columns of datasets provided they have the same 
number of rows.

Let's see what the Russia data column names are:

(defn ex-1-29 []
  (-> (load-data :ru)
      (i/col-names)))

;; ["Code for district"
;; "Number of the polling district (unique to state, not overall)"
;; "Name of district" "Number of voters included in voters list"
;; "The number of ballots received by the precinct election
;; commission" ...]
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The column names in the Russia dataset are very descriptive, but perhaps longer 
than we want to type out. Also, it would be convenient if columns that represent  
the same attributes as we've already seen in the UK election data (the victor's  
share and turnout for example) were labeled the same in both datasets. Let's  
rename them accordingly.

Along with a dataset, the i/rename-cols function expects to receive a map whose 
keys are the current column names with values corresponding to the desired new 
column name. If we combine this with the i/add-derived-column data we have 
already seen, we arrive at the following:

(defmethod load-data :ru-victors [_]
  (->> (load-data :ru)
       (i/rename-cols
        {"Number of voters included in voters list" :electorate
         "Number of valid ballots" :valid-ballots
         "United Russia" :victors})
       (i/add-derived-column :victors-share
                             [:victors :valid-ballots] i/safe-div)
       (i/add-derived-column :turnout
                             [:valid-ballots :electorate] /)))

The i/safe-div function is identical to / but will protect against division by zero. 
Rather than raising an exception, it returns the value Infinity, which will be 
ignored by Incanter's statistical and charting functions.

Visualizing the Russian election data
We previously saw that a histogram of the UK election turnout was approximately 
normal (albeit with light tails). Now that we've loaded and transformed the Russian 
election data, let's see how it compares:

(defn ex-1-30 []
  (-> (i/$ :turnout (load-data :ru-victors))
      (c/histogram :x-label "Russia turnout"
                   :nbins 20)
      (i/view)))
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The preceding example generates the following histogram:

This histogram doesn't look at all like the classic bell-shaped curves we've seen so 
far. There's a pronounced positive skew, and the voter turnout actually increases 
from 80 percent towards 100 percent—the opposite of what we would expect from 
normally-distributed data.

Given the expectations set by the UK data and by the central limit theorem, this is a 
curious result. Let's visualize the data with a Q-Q plot instead:

(defn ex-1-31 []
  (->> (load-data :ru-victors)
       (i/$ :turnout)
       (c/qq-plot)
       (i/view)))
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This returns the following plot:

This Q-Q plot is neither a straight line nor a particularly S-shaped curve. In fact, the 
Q-Q plot suggests a light tail at the top end of the distribution and a heavy tail at the 
bottom. This is almost the opposite of what we see on the histogram, which clearly 
indicates an extremely heavy right tail.

In fact, it's precisely because the tail is so heavy that the Q-Q plot is misleading: the 
density of points between 0.5 and 1.0 on the histogram suggests that the peak should 
be around 0.7 with a right tail continuing beyond 1.0. It's clearly illogical that we 
would have a percentage exceeding 100 percent but the Q-Q plot doesn't account 
for this (it doesn't know we're plotting percentages), so the sudden absence of data 
beyond 1.0 is interpreted as a clipped right tail.

Given the central limit theorem, and what we've observed with the UK election data, 
the tendency towards 100 percent voter turnout is curious. Let's compare the UK and 
Russia datasets side-by-side.
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Comparative visualizations
Let's suppose we'd like to compare the distributions of electorate data between the 
UK and Russia. We've already seen in this chapter how to make use of CDFs and  
box plots, so let's investigate an alternative that's similar to a histogram.

We could try and plot both datasets on a histogram but this would be a bad idea.  
We wouldn't be able to interpret the results for two reasons:

• The sizes of the voting districts, and therefore the means of the distributions, 
are very different

• The number of voting districts overall is so different, so the histograms bars 
will have different heights

An alternative to the histogram that addresses both of these issues is the probability 
mass function (PMF).

Probability mass functions
The probability mass function, or PMF, has a lot in common with a histogram. 
Instead of plotting the counts of values falling into bins, though, it instead plots 
the probability that a number drawn from a distribution will be exactly equal to a 
given value. As the function assigns a probability to every value that can possibly be 
returned by the distribution, and because probabilities are measured on a scale from 
zero to one, (with one corresponding to certainty), the area under the probability 
mass function is equal to one.

Thus, the PMF ensures that the area under our plots will be comparable between 
datasets. However, we still have the issue that the sizes of the voting districts—and 
therefore the means of the distributions—can't be compared. This can be addressed 
by a separate technique—normalization.

Normalizing the data isn't related to the normal distribution. It's the 
name given to the general task of bringing one or more sequences 
of values into alignment. Depending on the context, it could mean 
simply adjusting the values so they fall within the same range, or 
more sophisticated procedures to ensure that the distributions of 
data are the same. In general, the goal of normalization is to facilitate 
the comparison of two or more series of data.
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There are innumerable ways to normalize data, but one of the most basic is to ensure 
that each series is in the range zero to one. None of our values decrease below zero, 
so we can accomplish this normalization by simply dividing by the largest value:

(defn as-pmf [bins]
  (let [histogram (frequencies bins)
        total     (reduce + (vals histogram))]
    (->> histogram
         (map (fn [[k v]]
                [k (/ v total)]))
         (into {}))))

With the preceding function in place, we can normalize both the UK and Russia data 
and plot it side by side on the same axes:

(defn ex-1-32 []
  (let [n-bins 40
        uk (->> (load-data :uk-victors)
                (i/$ :turnout)
                (bin n-bins)
                (as-pmf))
        ru (->> (load-data :ru-victors)
                (i/$ :turnout)
                (bin n-bins)
                (as-pmf))]
    (-> (c/xy-plot (keys uk) (vals uk)
                   :series-label "UK"
                   :legend true
                   :x-label "Turnout Bins"
                   :y-label "Probability")
        (c/add-lines (keys ru) (vals ru)
                     :series-label "Russia")
        (i/view))))
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The preceding example generates the following chart:

After normalization, the two distributions can be compared more readily. It's clearly 
apparent how—in spite of having a lower mean turnout than the UK—the Russia 
election had a massive uplift towards 100-percent turnout. Insofar as it represents the 
combined effect of many independent choices, we would expect election results to 
conform to the central limit theorem and be approximately normally distributed. In 
fact, election results from around the world generally conform to this expectation.

Although not quite as high as the modal peak in the center of the distribution—
corresponding to approximately 50 percent turnout—the Russian election data 
presents a very anomalous result. Researcher Peter Klimek and his colleagues at 
the Medical University of Vienna have gone as far as to suggest that this is a clear 
signature of ballot-rigging.



Statistics

[ 50 ]

Scatter plots
We've observed the curious results for the turnout at the Russian election and 
identified that it has a different signature from the UK election. Next, let's see how 
the proportion of votes for the winning candidate is related to the turnout. After 
all, if the unexpectedly high turnout really is a sign of foul play by the incumbent 
government, we'd anticipate that they'll be voting for themselves rather than anyone 
else. Thus we'd expect most, if not all, of these additional votes to be for the ultimate 
election winners.

Chapter 3, Correlation, will cover the statistics behind correlating two variables 
in much more detail, but for now it would be interesting simply to visualize the 
relationship between turnout and the proportion of votes for the winning party.

The final visualization we'll introduce this chapter is the scatter plot. Scatter plots 
are very useful for visualizing correlations between two variables: where a linear 
correlation exists, it will be evident as a diagonal tendency in the scatter plot. 
Incanter contains the c/scatter-plot function for this kind of chart with  
arguments the same as for the c/xy-plot function.

(defn ex-1-33 []
  (let [data (load-data :uk-victors)]
    (-> (c/scatter-plot (i/$ :turnout data)
                        (i/$ :victors-share data)
                        :x-label "Turnout"
                        :y-label "Victor's Share")
        (i/view))))
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The preceding code generates the following chart:

Although the points are arranged broadly in a fuzzy ellipse, a diagonal tendency 
towards the top right of the scatter plot is clearly apparent. This indicates an 
interesting result—turnout is correlated with the proportion of votes for the ultimate 
election winners. We might have expected the reverse: voter complacency leading to 
a lower turnout where there was a clear victor in the running.

As mentioned earlier, the UK election of 2010 was far from ordinary, 
resulting in a hung parliament and a coalition government. In fact, 
the "winners" in this case represent two parties who had, up until 
election day, been opponents. A vote for either counts as a vote for 
the winners.
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Next, we'll create the same scatter plot for the Russia election:

(defn ex-1-34 []
  (let [data (load-data :ru-victors)]
    (-> (c/scatter-plot (i/$ :turnout data)
                        (i/$ :victors-share data)
                        :x-label "Turnout"
                        :y-label "Victor's Share")
        (i/view))))

This generates the following plot:

Although a diagonal tendency in the Russia data is clearly evident from the outline 
of the points, the sheer volume of data obscures the internal structure. In the last 
section of this chapter, we'll show a simple technique for extracting structure from a 
chart such as the earlier one using opacity.
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Scatter transparency
In situations such as the preceding one where a scatter plot is overwhelmed by the 
volume of points, transparency can help to visualize the structure of the data. Since 
translucent points that overlap will be more opaque, and areas with fewer points 
will be more transparent, a scatter plot with semi-transparent points can show the 
density of the data much better than solid points can.

We can set the alpha transparency of points plotted on an Incanter chart with the  
c/set-alpha function. It accepts two arguments: the chart and a number between 
zero and one. One signifies fully opaque and zero fully transparent.

(defn ex-1-35 []
  (let [data (-> (load-data :ru-victors)
                 (s/sample :size 10000))]
    (-> (c/scatter-plot (i/$ :turnout data)
                        (i/$ :victors-share data)
                        :x-label "Turnout"
                        :y-label "Victor Share")
        (c/set-alpha 0.05)
        (i/view))))

The preceding example generates the following chart:
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The preceding scatter plot shows the general tendency of the victor's share and the 
turnout to vary together. We can see a correlation between the two values, and a 
"hot spot" in the top right corner of the chart corresponding to close to 100-percent 
turnout and 100-percent votes for the winning party. This in particular is the sign 
that the researchers at the Medial University of Vienna have highlighted as being 
the signature of electoral fraud. It's evident in the results of other disputed elections 
around the world, such as those of the 2011 Ugandan presidential election, too.

The district-level results for many other elections around the world are 
available at http://www.complex-systems.meduniwien.ac.at/
elections/election.html. Visit the site for links to the research 
paper and to download other datasets on which to practice what you've 
learned in this chapter about scrubbing and transforming real data.

We'll cover correlation in more detail in Chapter 3, Correlation, when we'll learn how 
to quantify the strength of the relationship between two values and build a predictive 
model based on it. We'll also revisit this data in Chapter 10, Visualization when we 
implement a custom two-dimensional histogram to visualize the relationship between 
turnout and the winner's proportion of the vote even more clearly.

Summary
In this first chapter, we've learned about summary statistics and the value of 
distributions. We've seen how even a simple analysis can provide evidence of 
potentially fraudulent activity.

In particular, we've encountered the central limit theorem and seen why it goes such 
a long way towards explaining the ubiquity of the normal distribution throughout 
data science. An appropriate distribution can represent the essence of a large 
sequence of numbers in just a few statistics and we've implemented several of them 
using pure Clojure functions in this chapter. We've also introduced the Incanter 
library and used it to load, transform, and visually compare several datasets. We 
haven't been able to do much more than note a curious difference between two 
distributions, however.

In the next chapter, we'll extend what we've learned about descriptive statistics to 
cover inferential statistics. These will allow us to quantify a measured difference 
between two or more distributions and decide whether a difference is statistically 
significant. We'll also learn about hypothesis testing—a framework for conducting 
robust experiments that allow us to draw conclusions from data.

http://www.complex-systems.meduniwien.ac.at/elections/election.html
http://www.complex-systems.meduniwien.ac.at/elections/election.html
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Inference
"I can see nothing," said I, handing it back to my friend.

"On the contrary, Watson, you can see everything. You fail, however, to reason 
from what you see. You are too timid in drawing your inferences."

                       – Sir Arthur Conan Doyle, The Adventure of the Blue Carbuncle

In the previous chapter, we introduced a variety of numerical and visual approaches 
to understand the normal distribution. We discussed descriptive statistics, such as 
the mean and standard deviation, and how they can be used to summarize large 
amounts of data succinctly.

A dataset is usually a sample of some larger population. Sometimes, this population 
is too large to be measured in its entirety. Sometimes, it is intrinsically unmeasurable, 
either because it is infinite in size or it otherwise cannot be accessed directly. In either 
case, we are forced to generalize from the data that we have.

In this chapter, we consider statistical inference: how we can go beyond simply 
describing the samples of data and instead describe the population from which  
they were sampled. We'll look in detail at how confident we can be about the 
inferences we make from the samples of data. We'll cover hypothesis testing: a 
robust approach to data analysis that puts the science in data science. We'll also 
implement an interactive web page with ClojureScript to simulate the relationship 
between samples and the population from which they are taken.

To help illustrate the principles, we'll invent a fictional company, AcmeContent,  
that has recently hired us as a data scientist.
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Introducing AcmeContent
To help illustrate the concepts in this chapter, let's imagine that we've recently been 
appointed for the data scientist role at AcmeContent. The company runs a website 
that lets visitors share video clips that they've enjoyed online.

One of the metrics AcmeContent tracks through its web analytics is dwell time. This 
is a measure of how long a visitor stays on the site. Clearly, visitors who spend a long 
time on the site are enjoying themselves and AcmeContent wants its visitors to stay as 
long as possible. If the mean dwell time increases, our CEO will be very happy.

Dwell time is the length of time between the time a visitor first arrives 
at a website and the time they make their last request to your site.
A bounce is a visitor who makes only one request—their dwell time  
is zero.

As the company's new data scientist, it falls to us to analyze the dwell time reported 
by the website's analytics and measure the success of AcmeContent's site.

Download the sample code
The code for this chapter is available at https://github.com/
clojuredatascience/ch2-inference or from the Packt Publishing's website.

The example data has been generated specifically for this chapter. It's small enough 
that it has been included with the book's sample code inside the data directory. 
Consult the book's wiki at http://wiki.clojuredatascience.com for links to 
further read about dwell time analysis.

Load and inspect the data
In the previous chapter, we used Incanter to load Excel spreadsheets with the 
incanter.excel/load-xls function. In this chapter, we will load a dataset from a 
tab-separated text file. For this, we'll make use of incanter.io/read-dataset that 
expects to receive either a URL object or a file path represented as a string.

The file has been helpfully reformatted by AcmeContent's web team to contain 
just two columns—the date of the request and the dwell time in seconds. There are 
column headings in the first row, so we pass :header true to read-dataset:

(defn load-data [file]
  (-> (io/resource file)

https://github.com/clojuredatascience/ch2-inference
https://github.com/clojuredatascience/ch2-inference
http://wiki.clojuredatascience.com
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      (iio/read-dataset :header true :delim \tab)))

(defn ex-2-1 []
  (-> (load-data "dwell-times.tsv")
      (i/view)))

If you run this code (either in the REPL or on the command line with lein run –e 
2.1), you should see an output similar to the following:

Let's see what the dwell times look like as a histogram.

Visualizing the dwell times
We can plot a histogram of dwell times by simply extracting the :dwell-time 
column with i/$:

(defn ex-2-2 []
  (-> (i/$ :dwell-time (load-data "dwell-times.tsv"))
      (c/histogram :x-label "Dwell time (s)"
                   :nbins 50)
      (i/view)))
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The earlier code generates the following histogram:

This is clearly not a normally distributed data, nor even a very skewed normal 
distribution. There is no tail to the left of the peak (a visitor clearly can't be on our 
site for less than zero seconds). While the data tails off steeply to the right at first, 
it extends much further along the x axis than we would expect from normally 
distributed data.

When confronted with distributions like this, where values are mostly small but 
occasionally extreme, it can be useful to plot the y axis as a log scale. Log scales are 
used to represent events that cover a very large range. Chart axes are ordinarily 
linear and they partition a range into equally sized steps like the "number line" we 
learned at school. Log scales partition the range into steps that get larger and larger 
as they go further away from the origin.

Some systems of measurement for natural phenomena that cover a very large 
range are represented on a log scale. For example, the Richter magnitude scale 
for earthquakes is a base-10 logarithmic scale, which means that an earthquake 
measuring 5 on the Richter scale is 10 times the magnitude of an earthquake 
measuring 4. The decibel scale is also a logarithmic scale with a different base—a 
sound wave of 30 decibels has 10 times the magnitude of a sound wave of 20 
decibels. In each case, the principle is the same—the use of a log scale allows a very 
large range of values to be compressed into a much smaller range.
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Plotting our y axis on log-axis is simple with Incanter with c/set-axis:

(defn ex-2-3 []
  (-> (i/$ :dwell-time (load-data "dwell-times.tsv"))
      (c/histogram :x-label "Dwell time (s)"
                   :nbins 20)
      (c/set-axis :y (c/log-axis :label "Log Frequency"))
      (i/view)))

By default Incanter will use a base-10 log scale, meaning that each tick on the axis 
represents a range that is 10 times the previous step. A chart like this—where 
only one axis is shown on a log scale—is called log-linear. Unsurprisingly, a chart 
showing two log axes is called a log-log chart.

Plotting dwell times on a log-linear plot shows hidden consistency in the data—there 
is a linear relationship between the dwell time and the logarithm of the frequency. The 
clarity of the relationship breaks down to the right of the plot where there are fewer 
than 10 visitors but, aside from this, the relationship is remarkably consistent.

A straight line on a log-linear plot is a clear indicator of an exponential distribution.

www.allitebooks.com

http://www.allitebooks.org
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The exponential distribution
The exponential distribution occurs frequently when considering situations where 
there are many small positive quantities and much fewer larger quantities. Given 
what we have learned about the Richter scale, it won't be a surprise to learn that the 
magnitude of earthquakes follows an exponential distribution.

The distribution also frequently occurs in waiting times—the time until the next 
earthquake of any magnitude roughly follows an exponential distribution as well. 
The distribution is often used to model failure rates, which is essentially the waiting 
time until a machine breaks down. Our exponential distribution models a process 
similar to failure—the waiting time until a visitor gets bored and leaves our site.

The exponential distribution has a number of interesting properties. One relates to 
the mean and standard deviation:

(defn ex-2-4 []
  (let [dwell-times (->> (load-data "dwell-times.tsv")
                         (i/$ :dwell-time))]
    (println "Mean:  " (s/mean dwell-times))
    (println "Median:" (s/median dwell-times))
    (println "SD:    " (s/sd dwell-times))))

Mean:   93.2014074074074
Median: 64.0
SD:     93.96972402519796

The mean and standard deviations are very similar. In fact, for an ideal exponential 
distribution, they are exactly the same. This property holds true for all the 
exponential distributions—as the mean increases, so does the standard deviation.

For exponential distributions, the mean and standard 
deviations are equal.

A second property of the exponential distribution is that it is memoryless. This is a 
counterintuitive property best illustrated by an example. We expect that as a visitor 
continues to browse our site, the probability of them getting bored and leaving 
increases. Since the mean dwell time is 93 seconds, it might appear that beyond  
93 seconds, they are less and less likely to continue browsing.

The memoryless property of exponential distributions tells us that the probability of 
a visitor staying on our site for another 93 seconds is exactly the same whether they 
have already been browsing the site for 93 seconds, 5 minutes, an hour, or they have 
just arrived.
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For a memoryless distribution, the probability of continuing 
for an additional x minutes is not affected by how much time 
has already elapsed.

The memoryless property of exponential distributions goes some way towards 
explaining why it is so difficult to predict when an earthquake will occur next.  
We must rely on other evidence (such as a disturbance in geomagnetism) rather  
than the elapsed time.

Since the median dwell time is 64 seconds, about half of our visitors are staying on 
the site for only around a minute. A mean of 93 seconds shows that some visitors 
are staying much longer than that. These statistics have been calculated on all the 
visitors over the last 6 months. It might be interesting to see how these statistics vary 
per day. Let's calculate this now.

The distribution of daily means
The file provided by the web team includes the timestamp of the visit. In order to 
aggregate by day, it's necessary to remove the time portion from the date. While we 
could do this with string manipulation, a more flexible approach would be to use 
a date and time library such as clj-time (https://github.com/clj-time/clj-
time) to parse the string. This will allow us to not only remove the time, but also 
perform arbitrarily complex filters (such as filtering to particular days of the week or 
the first or last day of the month, for example).

The clj-time.predicates namespace contains a variety of useful predicates and 
the clj-time.format namespace contains parsing functions that will attempt to 
convert the string to a date-time object using predefined standard formats. If our 
timestamp wasn't already in a standard format, we could use the same namespace 
to build a custom formatter. Consult the clj-time documentation for more 
information and many usage examples:

(defn with-parsed-date [data]
  (i/transform-col data :date (comp tc/to-local-date f/parse)))

(defn filter-weekdays [data]
  (i/$where {:date {:$fn p/weekday?}} data))

(defn mean-dwell-times-by-date [data]
  (i/$rollup :mean :dwell-time :date data))

(defn daily-mean-dwell-times [data]
  (->> (with-parsed-date data)
       (filter-weekdays)
       (mean-dwell-times-by-date)))

https://github.com/clj-time/clj-time
https://github.com/clj-time/clj-time
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Combining the previous functions allows us to calculate the mean, median, and 
standard deviation for the daily mean dwell times:

(defn ex-2-5 []
  (let [means (->> (load-data "dwell-times.tsv")
                   (daily-mean-dwell-times)
                   (i/$ :dwell-time))]
    (println "Mean:   " (s/mean means))
    (println "Median: " (s/median means))
    (println "SD:     " (s/sd means))))

;; Mean:    90.210428650562
;; Median:  90.13661202185791
;; SD:      3.722342905320035

The mean value of our daily means is 90.2 seconds. This is close to the mean value 
we calculated previously on the whole dataset, including weekends. The standard 
deviation is much lower though, just 3.7 seconds. In other words, the distribution of 
daily means has a much lower standard deviation than the entire dataset. Let's plot 
the daily mean dwell times on a chart:

(defn ex-2-6 []
  (let [means (->> (load-data "dwell-times.tsv")
                   (daily-mean-dwell-times)
                   (i/$ :dwell-time))]
    (-> (c/histogram means
                     :x-label "Daily mean dwell time (s)"
                     :nbins 20)
        (i/view))))
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This code generates the following histogram:

The distribution of sample means is distributed symmetrically around the overall 
grand mean value of 90 seconds with a standard deviation of 3.7 seconds. Unlike the 
distribution from which these means were sampled—the exponential distribution—
the distribution of sample means is normally distributed.

The central limit theorem
We encountered the central limit theorem in the previous chapter when we took 
samples from a uniform distribution and averaged them. In fact, the central limit 
theorem works for any distribution of values, provided the distribution has a finite 
standard deviation.

The central limit theorem states that the distribution of 
sample means will be normally distributed irrespective of 
the distribution from which they were calculated.

It doesn't matter that the underlying distribution is exponential—the central limit 
theorem shows that the mean of random samples taken from any distribution 
will closely approximate a normal distribution. Let's plot a normal curve over our 
histogram to see how closely it matches.



Inference

[ 64 ]

To plot a normal curve over our histogram, we have to plot our histogram as a 
density histogram. This plots the proportion of all the points that have been put in 
each bucket rather than the frequency. We can then overlay the normal probability 
density with the same mean and standard deviation:

(defn ex-2-7 []
  (let [means (->> (load-data "dwell-times.tsv")
                   (daily-mean-dwell-times)
                   (i/$ :dwell-time))
        mean (s/mean means)
        sd   (s/sd means)
        pdf  (fn [x]
               (s/pdf-normal x :mean mean :sd sd))]
    (-> (c/histogram means
                     :x-label "Daily mean dwell time (s)"
                     :nbins 20
                     :density true)
        (c/add-function pdf 80 100)
        (i/view))))

This code generates the following chart:
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The normal curve plotted over the histogram has a standard deviation of 
approximately 3.7 seconds. In other words, this quantifies the variation of each daily 
mean being relative to the grand mean of 90 seconds. We can think of each day's 
mean as a sample from the overall population with the earlier curve representing 
the distribution of the sample means. Because 3.7 seconds is the amount that the 
sample's mean differs from the grand mean, it's referred to as the standard error.

Standard error
While the standard deviation measures the amount of variation there is within a 
sample, the standard error measures the amount of variation there is between the 
means of samples taken from the same population.

The standard error is the standard deviation of the distribution 
of the sample means.

We have calculated the standard error of dwell time empirically by looking at the 
previous 6 months of data. But there is an equation that allows us to calculate it  
from only a single sample:

xSE
n

σ
=

Here, σx is the standard deviation and n is the sample size. This is unlike the 
descriptive statistics that we studied in the previous chapter. While they described 
a single sample, the standard error attempts to describe a property of samples 
in general—the amount of variation in the sample means that variations can be 
expected for samples of a given size:

(defn standard-deviation [xs]
  (Math/sqrt (variance xs)))

(defn standard-error [xs]
  (/ (standard-deviation xs)
     (Math/sqrt (count xs))))

The standard error of the mean is thus related to two factors:

• The size of the sample
• The population standard deviation
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The size of the sample has the largest impact on the standard error. Since we take the 
square root of the sample size, we have to increase the size of the sample by four to 
halve the size of the standard error.

It may seem curious that the proportion of the population sampled has no effect on 
the size of the standard error. This is just as well, since some populations could be 
infinite in size.

Samples and populations
The words "sample" and "population" mean something very particular to 
statisticians. A population is the entire collection of entities that a researcher wishes 
to understand or draw conclusions about. For example, in the second half of the 19th 
century, Gregor Johann Mendel, the originator of genetics, recorded observations 
about pea plants. Although he was studying specific plants in a laboratory, his 
objective was to understand the underlying mechanisms behind heredity in all 
possible pea plants.

Statisticians refer to the group of entities from which a sample is drawn 
as the population, whether or not the objects being studied are people.

Since populations may be large—or in the case of Mendel's pea plants, infinite—we 
must study representative samples and draw inferences about the population from 
them. To distinguish the measurable attributes of our samples from the inaccessible 
attributes of the population, we use the word statistics to refer to the sample attributes 
and parameters to refer to the population attributes.

Statistics are the attributes we can measure from our samples. 
Parameters are the attributes of the population we are trying to infer.

In fact, statistics and parameters are distinguished through the use of different 
symbols in mathematical formulae:

Measure Sample statistic Population parameter
Number of items n N
Mean x µx

Standard deviation Sx σx

Standard error
xS
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Here, x  is pronounced as "x-bar," µx is pronounced as "mu x," and σx is pronounced 
as "sigma x."

If you refer back to the equation for the standard error, you'll notice that it is 
calculated from the population standard deviation σx, not the sample standard 
deviation Sx. This presents us with a paradox—we can't calculate the sample 
statistic using population parameters when the population parameters are precisely 
the values we are trying to infer. In practice, though, the sample and population 
standard deviations are assumed to be the same above a sample size of about 30.

Let's calculate the standard error from a particular day's means. For example, let's 
take a particular day, say May 1:

(defn ex-2-8 []
  (let [may-1 (f/parse-local-date "2015-05-01")]
    (->> (load-data "dwell-times.tsv")
         (with-parsed-date)
         (filtered-times {:date {:$eq may-1}})
         (standard-error))))

;; 3.627

Although we have only taken a sample from one day, the standard error we calculate 
is very close to the standard deviation of all the sample means—3.6 compared to 
3.7s. It's as if, like a cell containing DNA, each sample encodes information about the 
entire population within it.

Confidence intervals
Since the standard error of our sample measures how closely we expect our sample 
mean to match the population mean, we could also consider the inverse—the 
standard error measures how closely we expect the population mean to match our 
measured sample mean. In other words, based on our standard error, we can infer 
that the population mean lies within some expected range of the sample mean with a 
certain degree of confidence.
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Taken together, the "degree of confidence" and the "expected range" define a 
confidence interval. While stating confidence intervals, it is fairly standard to state 
the 95 percent interval—we are 95 percent sure that the population parameter lies 
within the interval. Of course, there remains a 5 percent possibility that it does not.

Whatever the standard error, 95 percent of the population mean will lie between 
-1.96 and 1.96 standard deviations of the sample mean. 1.96 is therefore the critical 
z-value for a 95 percent confidence interval.

The name z-value comes from the fact that the normal 
distribution is also called the z-distribution.

The number 1.96 is so commonly used that it's a number worth remembering, but 
we can also calculate the critical value using the s/quantile-normal function. Our 
confidence-interval function that follows expects a value for p between zero and 
one. This will be 0.95 for our 95 percent confidence interval. We need to subtract it 
from one and divide it by two to calculate the site of each of the two tails (2.5 percent 
for the 95 percent confidence interval):

(defn confidence-interval [p xs]
  (let [x-bar  (s/mean xs)
        se     (standard-error xs)
        z-crit (s/quantile-normal (- 1 (/ (- 1 p) 2)))]
    [(- x-bar (* se z-crit))
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     (+ x-bar (* se z-crit))]))

(defn ex-2-9 []
  (let [may-1 (f/parse-local-date "2015-05-01")]
    (->> (load-data "dwell-times.tsv")
         (with-parsed-date)
         (filtered-times {:date {:$eq may-1}})
         (confidence-interval 0.95))))

;; [83.53415272762004 97.75306531749274]

The result tells us that we can be 95 percent confident that the population mean 
lies between 83.53 and 97.75 seconds. Indeed, the population mean we calculated 
previously lies well within this range.

Sample comparisons
After a viral marketing campaign, the web team at AcmeContent take a sample of 
dwell times for us to analyze from a single day. They'd like to know whether their 
latest campaign has brought more engaged visitors to the site. Confidence intervals 
provide us with an intuitive way to compare the two samples.

We load the dwell times from the campaign as we did earlier and summarize them 
in the same way:

(defn ex-2-10 []
  (let [times (->> (load-data "campaign-sample.tsv")
                   (i/$ :dwell-time))]
    (println "n:      " (count times))
    (println "Mean:   " (s/mean times))
    (println "Median: " (s/median times))
    (println "SD:     " (s/sd times))
    (println "SE:     " (standard-error times))))

;; n:       300
;; Mean:    130.22
;; Median:  84.0
;; SD:      136.13370714388046
;; SE:      7.846572839994115
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The mean seems to be much larger than the means we have been looking at 
previously—130s compared to 90s. It could be that there is some significant 
difference here, although the standard error is over twice the size of our previous one 
day sample, owing to a smaller sample size and larger standard deviation. We can 
calculate the 95 percent confidence interval for the population mean based on this 
data using the same confidence-interval function like before:

(defn ex-2-11 []
  (->> (load-data "campaign-sample.tsv")
       (i/$ :dwell-time)
       (confidence-interval 0.95)))

;; [114.84099983154137 145.59900016845864]

The 95 percent confidence interval for the population mean is 114.8s to 145.6s. This 
doesn't overlap with the 90s population mean we calculated previously at all. There 
appears to be a large underlying population difference that is unlikely to have 
occurred just through a sampling error alone. Our task now is to find out why.

Bias
A sample should be representative of the population from which it is drawn. In other 
words, it should avoid bias that would result in certain kinds of population members 
being systematically excluded (or included) over others.

A famous example of sample bias is the 1936 Literary Digest poll for the US 
Presidential Election. It was one of the largest and most expensive polls ever 
conducted with 2.4 million people being surveyed by mail. The results were 
decisive—Republican governor of Kansas Alfred Landon would defeat Franklin D. 
Roosevelt, taking 57 percent of the vote. In the event, Roosevelt won the election 
with 62 percent of the vote.

The primary cause of the magazine's huge sampling error was sample selection 
bias. In their attempt to gather as many voter addresses as possible, the Literary 
Digest scoured telephone directories, magazine subscription lists, and club 
membership lists. In an era when telephones were more of a luxury item, this 
process was guaranteed to be biased in favor of upper- and middle-class voters 
and was not representative of the electorate as a whole. A secondary cause of bias 
was nonresponse bias—less than a quarter of those who were approached actually 
responded to the survey. This is a kind of selection bias that favors only those 
respondents who actually wish to participate.
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A common way to avoid sample selection bias is to ensure that the sampling is 
randomized in some way. Introducing chance into the process makes it less likely 
that experimental factors will unfairly influence the quality of the sample. The 
Literary Digest poll was focused on getting the largest sample possible, but an 
unbiased small sample is much more useful than a badly chosen large sample.

If we open up the campaign-sample.tsv file, we'll discover that our sample has 
come exclusively from June 6, 2015. This was a weekend, a fact we can easily confirm 
with clj-time:

(p/weekend? (t/date-time 2015 6 6))
;; true

Our summary statistics so far have all been based on the data we filtered just to 
include weekdays. This is a bias in our sample, and if the weekend visitor behavior 
turns out to be different from the weekday behavior—a very likely scenario—then 
we would say that the samples represent two different populations.

Visualizing different populations
Let's remove the filter for weekdays and plot the daily mean dwell time for both 
week days and weekends:

(defn ex-2-12 []
  (let [means (->> (load-data "dwell-times.tsv")
                   (with-parsed-date)
                   (mean-dwell-times-by-date)
                   (i/$ :dwell-time))]
    (-> (c/histogram means
                     :x-label "Daily mean dwell time unfiltered (s)"
                     :nbins 20)
        (i/view))))
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The code generates the following histogram:

The distribution is no longer a normal distribution. In fact, the distribution is 
bimodal—there are two peaks. The second smaller peak, which corresponds to the 
newly added weekend data, is lower both because there are not as many weekend 
days as weekdays and because the distribution has a larger standard error.

In general, distributions with more than one peak are referred to 
as multimodal. They can be an indicator that two or more normal 
distributions have been combined, and therefore, that two or 
more populations may have been combined. A classic example of 
bimodality is the distribution of people's heights, since the modal 
height for men is larger than that for women.

The weekend data has different characteristics than the weekday data. We should 
make sure that we're comparing like with like. Let's filter our original dataset just  
to weekends:

(defn ex-2-13 []
  (let [weekend-times (->> (load-data "dwell-times.tsv")
                           (with-parsed-date)
                           (i/$where {:date {:$fn p/weekend?}})
                           (i/$ :dwell-time))]
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    (println "n:      " (count weekend-times))
    (println "Mean:   " (s/mean weekend-times))
    (println "Median: " (s/median weekend-times))
    (println "SD:     " (s/sd weekend-times))
    (println "SE:     " (standard-error weekend-times))))

;; n:       5860
;; Mean:    117.78686006825939
;; Median:  81.0
;; SD:      120.65234077179436
;; SE:      1.5759770362547665

The grand mean value at weekends (based on 6 months of data) is 117.8s, which falls 
within the 95 percent confidence interval of the marketing sample. In other words, 
although 130s is a high mean dwell time, even for a weekend, the difference is not so 
big that it couldn't simply be attributed to chance variation within the sample.

The approach we have just taken to establish a genuine difference in populations 
(between the visitors to our site on weekends compared to the visitors during the 
week) is not the way statistical testing would conventionally proceed. A more usual 
approach is to begin with a theory, and then to test that theory against the data. The 
statistical method defines a rigorous approach for this called hypothesis testing.

Hypothesis testing
Hypothesis testing is a formal process for statisticians and data scientists. The 
standard approach to hypothesis testing is to define an area of research, decide 
which variables are necessary to measure what is being studied, and then to set out 
two competing hypotheses. In order to avoid only looking at the data that confirms 
our biases, researchers will state their hypothesis clearly ahead of time. Statistics can 
then be used to confirm or refute this hypothesis, based on the data.

In order to help retain our visitors, designers go to work on a variation of our home 
page that uses all the latest techniques to keep the attention of our audience. We'd 
like to be sure that our effort isn't in vain, so we will look for an increase in dwell 
time on the new site.

Therefore, our research question is "does the new site cause the visitor's dwell 
time to increase"? We decide that this should be tested with reference to the mean 
dwell time. Now, we need to set out our two hypotheses. By convention, the data is 
assumed not to contain what the researcher is looking for. The conservative opinion 
is that the data would not show anything unusual. This is called the null hypothesis 
and is normally denoted H0.
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Hypothesis testing assumes that the null hypothesis is true until the 
weight of the evidence makes this proposition unlikely. This "back 
to front" way of looking for proof is driven partly by the simple 
psychological fact that when people go looking for something, they 
tend to find it.

The researcher then forms an alternate hypothesis, denoted by H1. This could simply 
be that the population mean is different from the baseline. Or, it could be that the 
population mean is greater or lesser than the baseline, or even greater or lesser by 
some specified value. We'd like to test whether the new site increases dwell time, so 
these will be our null and alternate hypotheses:

• H0: The dwell time for the new site is no different than the dwell time of the 
existing site

• H1: The dwell time is greater for the new site compared to the existing site

Our conservative assumption is that the new site has no effect on the dwell time of 
users. The null hypothesis doesn't have to be nil hypothesis (that there is no effect), but 
in this case, we have no reasonable justification to assume otherwise. If the sample data 
does not support the null hypothesis (if the data differs from its prediction by a margin 
too large to be by chance alone), then we will reject the null hypothesis and propose 
the alternative hypothesis as the best alternative explanation.

Having set out the null and alternative hypotheses, we must set a significance level 
at which we are looking for an effect.

Significance
Significance testing was originally developed independent of hypothesis testing, 
but the two approaches are now very often used in concert together. The purpose 
of significance testing is to set the threshold beyond which we determine that the 
observed data no longer supports the null hypothesis.

There are therefore two risks:

• We may accept a difference as significant when in fact, it arose by chance
• We may attribute a difference to chance when, in fact, it indicates a true 

population difference
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These two possibilities are respectively referred to as Type I and Type II errors:

H0 false H0 true
Reject H0 True negative Type I error
Accept H0 Type II error True positive

The more we reduce our risk of making Type I errors, the more we increase our risk 
of making Type II errors. In other words, the more confident we wish to be to not 
claim a real difference when there is none, the bigger the difference we'll demand 
between our samples to claim statistical significance. This increases the probability 
that we'll disregard a genuine difference when we encounter it.

Two significance thresholds are commonly used by statisticians. These are the  
5 percent and 1 percent levels. A difference at 5 percent is commonly called significant 
and at 1 percent is called highly significant. The choice of threshold is often referred 
to in formulae by the Greek letter alpha, α. Since finding no effect might be regarded 
as a failure (either of the experiment or of the new site), we might be tempted to 
adjust α until we find an effect. Because of this, the textbook approach to significance 
testing requires us to set a significance level before we look at our data. A level of  
5 percent is often chosen, so let's go with it.

Testing a new site design
The web team at AcmeContent have been hard at work, developing a new site to 
encourage visitors to stick around for an extended period of time. They've used all 
the latest techniques and, as a result, we're pretty confident that the site will show a 
marked improvement in dwell time.

Rather than launching it to all users at once, AcmeContent would like to test the site 
on a small sample of visitors first. We've educated them about sample bias, and as 
a result, the web team diverts a random 5 percent of the site traffic to the new site 
for one day. The result is provided to us as a single text file containing all the day's 
traffic. Each row shows the dwell time for a visitor who is given a value of either 
"0" if they used the original site design, or "1" if they saw the new (and hopefully 
improved) site.

Performing a z-test
While testing with the confidence intervals previously, we had a single population 
mean to compare to.
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With z-testing, we have the option of comparing two samples. The people who saw 
the new site were randomized, and the data for both groups was collected on the 
same day to rule out other time-dependent factors.

Since we have two samples, we also have two standard errors. The z-test is 
performed against the pooled standard error, which is simply the square root of the 
sum of the variances divided by the sample sizes. This is the same as the result we 
would get if we took the standard error of the samples combined:

2 2
a b

ab
a bn n

σ σσ = +

Here, 2
aσ  is the variance of sample a and 2

bσ  is the variance of sample b. na and nb are 
the sample sizes of a and b, respectively. The pooled standard error can be calculated 
in Clojure like this:

(defn pooled-standard-error [a b]
  (i/sqrt (+ (/ (i/sq (standard-deviation a)) (count a))
             (/ (i/sq (standard-deviation b)) (count b)))))

To determine if the difference we're seeing is unexpectedly large, we can take the 
ratio of the observed difference between the means over the pooled standard error. 
This quantity is given the variable name z:

ab

a bz
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Using our pooled-standard-error function, the z-statistic can be calculated like this:

(defn z-stat [a b]
  (-> (- (mean a)
         (mean b))
      (/ (pooled-standard-error a b))))

The ratio z captures how much the means differ relative to the amount we would 
expect given the standard error. The z-statistic therefore tells us how many standard 
errors apart the means are. Since the standard error has a normal probability 
distribution, we can associate this difference with a probability by looking up the 
z-statistic in the normal CDF:

(defn z-test [a b]
  (s/cdf-normal (z-stat a b)))
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The following example uses the z-test to compare the performance of the two sites. 
We do this by grouping the rows by site, returning a map that indexes the site to 
the collection of rows for the site. We call map-vals with (partial map :dwell-
time) to convert the collection of rows into a collection of dwell times. map-vals is a 
function defined in Medley (https://github.com/weavejester/medley), a library 
of lightweight utility functions:

(defn ex-2-14 []
    (let [data (->> (load-data "new-site.tsv")
                    (:rows)
                    (group-by :site)
                    (map-vals (partial map :dwell-time)))
          a (get data 0)
          b (get data 1)]
      (println "a n:" (count a))
      (println "b n:" (count b))
      (println "z-stat: " (z-stat a b))
      (println "p-value:" (z-test a b))))

;; a n: 284
;; b n: 16
;; z-stat:  -1.6467438180091214
;; p-value: 0.049805356789022426

Setting a significance level of 5 percent is much like setting a confidence interval of 
95 percent. In essence, we're looking to see if the observed difference falls outside the 
95 percent confidence interval. If it does, we can claim to have found a result that's 
significant at the 5 percent level.

The p-value is the probability of making a Type I error by wrongly 
rejecting the null hypothesis if it is, in fact, true. The smaller the 
p-value, the more certainty we have that the null hypothesis is 
false, and that we have found a genuine effect.

This code returns a value of 0.0498, equating to 4.98 percent. As it is just less than our 
significance threshold of 5 percent, we can claim to have found something significant.

Let's remind ourselves of the null and alternative hypotheses:

• H0: The dwell time for the new site is no different from the dwell time of the 
existing site

• H1: The dwell time is greater for the new site compared to the existing site

Our alternate hypothesis is that the dwell time is greater for the new site.

https://github.com/weavejester/medley
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We are ready to claim statistical significance, and that the dwell time is greater for 
the new site compared to the existing site, but we have a problem—with a smaller 
sample, there is an increased uncertainty that the sample standard deviation matches 
the population standard deviation. Our new site sample has only 16 visitors, as 
shown in the output of the previous example. Samples as small as this invalidate the 
assumption that the standard error is normally distributed.

Fortunately, there is a statistical test and an associated distribution which models the 
increased uncertainty of standard errors for smaller sample sizes.

Student's t-distribution
The t-distribution was popularized by William Sealy Gossett, a chemist working for 
the Guinness Brewery in Ireland, who incorporated it into his analysis of Stout.

William Gosset published the test in Biometrika in 1908, but 
was forced to use a pen name by his employer, who regarded 
the fact that they were using statistics as a trade secret. The pen 
name he chose was "Student".

While the normal distribution is completely described by two parameters—the 
mean and standard deviation, the t-distribution is described by only one parameter 
called the degrees of freedom. The larger the degrees of freedom, the closer the 
t-distribution resembles the normal distribution with a mean of zero and a standard 
deviation of one. As the degrees of freedom decreases, the distribution becomes 
wider with tails that are fatter than the normal distribution.
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The earlier chart shows how the t-distribution varies with respect to the normal 
distribution for different degrees of freedom. Fatter tails for smaller sample sizes 
correspond to an increased chance of observing larger deviations from the mean.

Degrees of freedom
The degrees of freedom, often abbreviated to df, is closely related to the sample size. 
It is a useful statistic and an intuitive property of the series that can be demonstrated 
simply by example.

If you were told that the mean of two values is 10 and that one of the values is 8, you 
would not need any additional information to be able to infer that the other value is 
12. In other words, for a sample size of two and a given mean, one of the values is 
constrained if the other is known.

If instead you're told that the mean of three values is 10 and the first value is also 10, 
you would not be able to deduce what the remaining two values are. Since there are 
an infinite number of sets of three numbers beginning with 10 whose mean is 10, the 
second value must also be specified before you can infer the value of the third.

For any set of three numbers, the constraint is simple: you can freely pick the first 
two numbers, but the final number is constrained. The degrees of freedom can thus 
be generalized in the following way: for any single sample, the degrees of freedom is 
one less than the sample size.

When comparing two samples of data, the degrees of freedom is two less than the 
sum of the sample sizes, which is the same as the sum of their individual degrees  
of freedom.

The t-statistic
While using the t-distribution, we look up the t-statistic. Like the z-statistic, this 
value quantifies how unlikely a particular observed deviation is. For a dual sample 
t-test, the t-statistic is calculated in the following way:
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S
−

=



Inference

[ 80 ]

Here, abS  is the pooled standard error. We could calculate the pooled standard error 
in the same way as we did earlier:

2 2
a b

ab
a bn n

σ σσ = +

However, the equation assumes knowledge of the population parameters σa and σb, 
which can only be approximated from large samples. The t-test is designed for small 
samples and does not require us to make assumptions about population variance.

As a result, for the t-test, we write the pooled standard error as the square root of the 
sum of the standard errors:

2 2
a babS S S= +

In practice, the earlier two equations for the pooled standard error yield identical 
results, given the same input sequences. The difference in notation just serves to 
illustrate that with the t-test, we depend only on sample statistics as input. The 
pooled standard error abS  can be calculated in the following way:

(defn pooled-standard-error [a b]
  (i/sqrt (+ (i/sq (standard-error a))
             (i/sq (standard-error b)))))

Although they are represented differently in mathematical notation, in practice, the 
calculation of t-statistic is identical to z-statistic:

(def t-stat z-stat)

(defn ex-2-15 []
    (let [data (->> (load-data "new-site.tsv")
                    (:rows)
                    (group-by :site)
                    (map-vals (partial map :dwell-time)))
          a (get data 0)
          b (get data 1)]
      (t-stat a b)))

;; -1.647
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The difference between the two statistics is conceptual rather than algorithmic—the 
z-statistic is only applicable when the samples follow a normal distribution.

Performing the t-test
The difference in the way t-test works stems from the probability distribution from 
which our p-value is calculated. Having calculated our t-statistic, we need to look up 
the value in the t-distribution parameterized by the degrees of freedom of our data:

(defn t-test [a b]
  (let [df (+ (count a) (count b) -2)]
    (- 1 (s/cdf-t (i/abs (t-stat a b)) :df df))))

The degrees of freedom are two less than the sizes of the samples combined, which is 
298 for our samples.

Recall that we are performing a hypothesis test. So, let's state our null and  
alternate hypotheses:

• H0: This sample is drawn from a population with a supplied mean
• H1: This sample is drawn from a population with a greater mean

Let's run the example:

(defn ex-2-16 []
  (let [data (->> (load-data "new-site.tsv")
                  (:rows)
                  (group-by :site)
                  (map-vals (partial map :dwell-time)))
        a (get data 0)
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        b (get data 1)]
    (t-test a b)))

;; 0.0503

This returns a p-value of over 0.05. Since this is greater than the α of 5% we set for 
our hypothesis test, we are not able to reject the null hypothesis. Our test for the 
difference between the means has not discovered a significant difference using the 
t-test. Our barely significant result of the z-test was therefore partly due to it having 
such a small sample.

Two-tailed tests
There has been an implicit assumption in our alternate hypothesis that the new site 
would perform better than the previous site. The process of hypothesis testing goes 
to great lengths to ensure that we don't encode hidden assumptions while looking 
for statistical significance.

Tests where we look only for a significant increase or decrease in quantity are called 
one-tailed tests and are generally frowned upon, except in the case where a change 
in the opposite direction would be impossible. The name comes from the fact that a 
one-tailed test allocates all of the α to a single tail of the distribution. By not testing 
in the other direction, the test has more power to reject the null hypothesis in a 
particular direction and, in essence, lowers the threshold by which we would judge a 
result as significant.

Statistical power is the probability of correctly accepting the 
alternative hypothesis. This can be thought of as the ability of the 
test to detect an effect, where there is an effect to be detected.

While higher statistical power sounds desirable, it comes at the cost of there being 
a greater probability of making a Type I error. A more correct approach would be 
to entertain the possibility that the new site could realistically be worse than the 
existing site. This allocates our α equally to both tails of the distribution and ensures 
a significant outcome that is not biased by a prior assumption of improvement.
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In fact, Incanter already provides functions to perform two-sample t-tests with the 
s/t-test function. We provide a sample of data as the first argument and a sample 
to compare against with the :y keyword argument. Incanter will assume that we 
want to perform a two-tailed test, unless we pass the :alternative keyword with a 
value of :greater or :lower, in which case a one-tailed test will be performed.

(defn ex-2-17 []
  (let [data (->> (load-data "new-site.tsv")
                  (:rows)
                  (group-by :site)
                  (map-vals (partial map :dwell-time)))
        a (get data 0)
        b (get data 1)]
    (clojure.pprint/print (s/t-test a :y b))))

;; {:p-value 0.12756432502462456,
;;  :df 17.7613823496861,
;;  :n2 16,
;;  :x-mean 87.95070422535211,
;;  :y-mean 122.0,
;;  :x-var 10463.941024237305,
;;  :conf-int [-78.9894629402365 10.890871390940724],
;;  :y-var 6669.866666666667,
;;  :t-stat -1.5985205593851322,
;;  :n1 284}
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Incanter's t-test returns a lot of information, including the p-value. The p-value is 
around twice what we calculated for the one-tailed test. In fact, the only reason 
it's not exactly double is because Incanter implements a slight variant of the t-test 
called Welch's t-test, which is slightly more robust when two samples have different 
standard deviations. Since we know that, for exponential distributions, the mean and 
the variance are intimately related, the test is slightly more rigorous to apply and 
returns an even lower significance.

One-sample t-test
Independent samples of t-tests are the most common sort of statistical analysis, which 
provide a very flexible and generic way of comparing whether two samples represent 
the same or different population. However, in cases where the population mean is 
already known, there is an even simpler test represented by s/simple-t-test.

We pass a sample and a population mean to test against with the :mu keyword. So, 
if we simply want to see whether our new site is significantly different from the 
previous population mean dwell time of 90s, we can run a test like this:

(defn ex-2-18 []
  (let [data (->> (load-data "new-site.tsv")
                  (:rows)
                  (group-by :site)
                  (map-vals (partial map :dwell-time)))
        b (get data 1)]
    (clojure.pprint/pprint (s/t-test b :mu 90))))

;; {:p-value 0.13789520958229406,
;;  :df 15,
;;  :n2 nil,
;;  :x-mean 122.0,
;;  :y-mean nil,
;;  :x-var 6669.866666666667,
;;  :conf-int [78.48152745280898 165.51847254719104],
;;  :y-var nil,
;;  :t-stat 1.5672973291495713,
;;  :n1 16}

The simple-t-test function returns not only the p-value for the test, but also the 
confidence interval for the population mean. It is wide, running from 78.5s to 165.5s, 
certainly overlapping with the 90s of our test. This explains why we were not able to 
reject the null hypothesis.
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Resampling
To develop an intuition as to how the t-test can confirm and calculate these statistics 
from so little data, we can apply an approach called resampling. Resampling is 
based on the premise that each sample is just one of an infinite number of possible 
samples from a population. We can gain an insight into the nature of what these 
other samples could have been, and therefore have a better understanding of the 
underlying population, by taking many new samples from our existing sample.

There are actually several resampling techniques, and we'll discuss one of the 
simplest—bootstrapping. In bootstrapping, we generate a new sample by repeatedly 
taking a random value from the original sample with replacement until we generate 
a sample that is of the same size as the original. Because these values are replaced 
between each random selection, the same source value can appear multiple times in 
the new sample. It is as if we were drawing a random card from a deck of playing 
cards repeatedly, but replacing the card after each draw. Occasionally, we will pick a 
card that we have previously selected.

We can bootstrap our sample easily in Incanter to generate many resamples with 
the bootstrap function. The bootstrap function takes two arguments—the original 
sample and a summary statistic to be calculated on the bootstrapped samples as well 
as the number of optional arguments—:size (the number of bootstrapped samples 
to be calculated on, each sample being the size of the original sample), :smooth 
(whether to smooth the output of discrete statistics such as the median), :smooth-sd, 
and :replacement, which defaults to true:

(defn ex-2-19 []
  (let [data (->> (load-data "new-site.tsv")
                  (i/$where {:site {:$eq 1}})
                  (i/$ :dwell-time ))]
    (-> (s/bootstrap data s/mean :size 10000)
        (c/histogram :nbins 20
                     :x-label "Bootstrapped mean dwell times (s)")
        (i/view))))
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Let's visualize the output in a histogram:

The histogram shows how the values of the mean value have changed with repeated 
(re) samples of the new site dwell times. Although the input was just a single sample 
of 16 visitors, the bootstrapped samples have simulated the standard error of our 
original sample very clearly and visualized the confidence interval (78s to 165s) 
calculated earlier by our single sample t-test.

Through bootstrapping, we simulated by taking multiple samples, even though 
we only had one sample as our input. It's a generally useful technique to estimate 
parameters that we cannot or do not know to calculate analytically.

Testing multiple designs
It's been disappointing to discover that there is no statistical significance behind the 
increased dwell time of users on the new site design. Better that we discovered this 
on a small sample of users before we rolled it out to the world though.

Not to be discouraged, AcmeContent's web team works overtime and devises a suite 
of alternative site designs. Taking the best elements from the other designs, they 
devise 19 variations to be tested. Together with our original site, which will act as a 
control, there are 20 different sites to direct visitors to.
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Calculating sample means
The web team deploys the 19 new site designs alongside the original site. As 
mentioned earlier, each receives a random 5 percent of the visitors. We let the  
test run for 24 hours.

The next day, we receive a file that shows the dwell times for visitors to each of the 
site designs. Each has been labeled with a number, with site 0 corresponding to the 
original unaltered design, and numbers 1 to 19 representing the other designs:

(defn ex-2-20 []
  (->> (i/transform-col (load-data "multiple-sites.tsv")
                        :dwell-time float)
       (i/$rollup :mean :dwell-time :site)
       (i/$order :dwell-time :desc)
       (i/view)))

This code generates the following table:

We would like to test out each of the site designs to see if any generate a statistically 
significant result. To do so, we could compare the sites with each other as follows:

(defn ex-2-21 []
  (let [data (->> (load-data "multiple-sites.tsv")
                  (:rows)
                  (group-by :site)
                  (map-vals (partial map :dwell-time)))
        alpha 0.05]
    (doseq [[site-a times-a] data
            [site-b times-b] data
            :when (> site-a site-b)
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            :let [p-val (-> (s/t-test times-a :y times-b)
                            (:p-value))]]
      (when (< p-val alpha)
        (println site-b "and" site-a
                 "are significantly different:"
                 (format "%.3f" p-val))))))

However, this would be a bad idea. We are very likely to see a statistical difference 
between the pages that performed particularly well against the pages that performed 
particularly poorly, even if these differences were by chance. If you run the earlier 
example, you'll see that many of the pages are statistically different from each other.

Alternatively, we could compare each site against our current baseline—the mean 
dwell time of 90 seconds currently measured for our site:

(defn ex-2-22 []
  (let [data (->> (load-data "multiple-sites.tsv")
                  (:rows)
                  (group-by :site)
                  (map-vals (partial map :dwell-time)))
        baseline (get data 0)
        alpha 0.05]
    (doseq [[site-a times-a] data
            :let [p-val (-> (s/t-test times-a :y baseline)
                            (:p-value))]]
      (when (< p-val alpha)
        (println site-a
                 "is significantly different from baseline:"
                 (format "%.3f" p-val))))))

This test determines two sites as being significantly different from the baseline:

;; 6 is significantly different from baseline: 0.007
;; 10 is significantly different from baseline: 0.006

The small p-values (smaller than 1 percent) indicate that there is a very statistically 
significant difference. This looks very promising, but we have an issue. We have 
performed a t-test on 20 samples of data with an α of 0.05. The definition of α  
is that it is the probability of wrongly rejecting the null hypothesis. By running a 
t-test 20 times, it actually becomes probable that we would wrongly reject the null 
hypothesis for at least one of the pages.

By comparing multiple pages at once like this, we invalidate the results of the t-test. 
There exist a variety of alternative techniques to address the problem of making 
multiple comparisons in statistical tests, which we'll introduce in a later section.
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Multiple comparisons
The fact that with repeated trials, we increase the probability of discovering a 
significant effect is called the multiple comparisons problem. In general, the solution 
to the problem is to demand more significant effects when comparing many samples. 
There is no straightforward solution to this issue though; even with an α of 0.01, we 
will make a Type I error on an average of 1 percent of the time.

To develop our intuition about how multiple comparisons and statistical  
significance relate to each other, let's build an interactive web page to simulate  
the effect of taking multiple samples. It's one of the advantages of using a powerful 
and general-purpose programming language like Clojure for data analysis that we 
can run our data processing code in a diverse array of environments.

The code we've written and run so far for this chapter has been compiled for the Java 
Virtual Machine. But since 2013, there has been an alternative target environment for 
our compiled code: the web browser. ClojureScript extends the reach of Clojure even 
further to any computer that has a JavaScript-enabled web browser.

Introducing the simulation
To help visualize the problems associated with multiple significance testing, 
we'll use ClojureScript to build an interactive simulation, looking for statistically 
significant differences between the samples drawn at random from two exponential 
distributions. To see how other factors relate to our hypothesis testing, our 
simulation will allow us to change the underlying population mean for each of the 
two distributions, as well as set the sample size and desired confidence level.

If you have downloaded the sample code for this chapter, you will see, in the 
resources directory, an index.html file. If you open this code in a web browser, you 
should see a message prompting you to compile the JavaScript. We can do this with 
the Leiningen plugin called cljsbuild.

Compile the simulation
cljsbuild is a Leiningen plugin that compiles ClojureScript to JavaScript. To use 
it, we simply have to let the compiler know where we would like to output the 
JavaScript file. While Clojure code outputs to a .jar file (short for Java Archive), 
ClojureScript outputs to a single .js file. We specify the name of the output file and 
the compiler settings to use with the :cljsbuilds section of project.clj.



Inference

[ 90 ]

The plugin is accessible on the command line as lein cljsbuild. In the root of the 
project directory, run the following command:

lein cljsbuild once

This command will compile a JavaScript file for us. An alternative command is  
as follows:

lein cljsbuild auto

The preceding will compile the code, but will remain active, monitoring changes to 
the source files. If any of these files are updated, the output will be recompiled.

Open the file resources/index.html in a web browser now to see the effect of  
the JavaScript.

The browser simulation
An HTML page has been supplied in the resources directory of the sample project. 
Open the page in any modern browser and you should see something similar to the 
following image:
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The left of the page shows a dual histogram with the distribution of two samples, 
both taken from an exponential distribution. The means of the populations from 
which the samples are generated are controlled by the sliders at the top right corner 
of the web page in the box marked as Parameters. Underneath the histogram is 
a plot showing the two probability densities for the population means based on 
the samples. These are calculated using the t-distribution, parameterized by the 
degrees of freedom of the sample. Below these sliders, in a box marked as Settings, 
are another pair of sliders that set the sample size and confidence intervals for the 
test. Adjusting the confidence intervals will crop the tails of the t-distributions; at 
the 95 percent confidence interval, only the central 95 percent of the probability 
distributions are displayed. Finally, in a box marked as Statistics, are the sliders 
that show the mean of both the samples. These cannot be changed; their values 
are measured from the samples. A button marked as New Sample can be used to 
generate two new random samples. Observe how the sample means fluctuate with 
each new pair of samples being generated. Keep generating samples and you'll 
occasionally observe significant differences between sample means, even when the 
underlying population means are identical.

While we explore the effects of changing the sample size and the confidence for 
different population means, let's look at how the simulation was constructed with 
the libraries jStat, Reagent, and B1.

jStat
As ClojureScript compiles to JavaScript, we can't make use of the libraries that have 
Java dependencies. Incanter is heavily reliant on several underlying Java libraries, so 
we have to find an alternative to Incanter for our browser-based statistical analysis.

While building ClojureScript applications, we can't make use 
of the libraries that depend on Java libraries, as they won't be 
available in the JavaScript engine which executes our code.

jStat (https://github.com/jstat/jstat) is a JavaScript statistical library. 
It provides functions to generate sequences according to specific distributions, 
including the exponential and t-distributions.

To use it, we have to make sure it's available on our webpage. We can do this either 
by linking it to a remote content distribution network (CDN) or by hosting the 
file ourselves. The advantage of linking it to a CDN is that visitors, who previously 
downloaded jStat for another website, can make use of their cached version. 
However, since our simulation is for local use, we've included the file so that the 
page works even when our browser is offline.

https://github.com/jstat/jstat
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The jstat.min.js file has been downloaded in the resources/js/vendor 
directory. The file is loaded in the main body of index.html with a standard  
HTML tag.

To make use of jStat's distribution generating functions, we have to interact with 
the JavaScript library from ClojureScript. As with the Java interop, Clojure provides 
pragmatic syntax to interact with the libraries written in the host language.

jStat provides a variety of distributions documented at https://jstat.github.
io/distributions.html. To generate samples from an exponential distribution, 
we'd like to call the jStat.exponential.sample(lambda) function. The JavaScript 
interop for it is very straightforward; we prefix the expression with js/ to ensure 
that we access JavaScript's namespace and move the position of the brackets:

(defn randexp [lambda]
  (js/jStat.exponential.sample lambda))

Once we have the ability to generate samples from an exponential distribution, 
creating a lazy sequence of samples will be as simple as calling the function repeatedly:

(defn exponential-distribution [lambda]
  (repeatedly #(randexp lambda)))

ClojureScript exposes almost all of Clojure, including lazy sequences. Refer to the 
book's wiki at http://wiki.clojuredatascience.com for links to resources on  
the JavaScript interop.

B1
Now that we can generate samples of data in ClojureScript, we'd like to be able to 
plot them on a histogram. We need a pure Clojure alternative to Incanter that will 
draw histograms in a web-accessible format; the B1 library (https://github.com/
henrygarner/b1) provides just this functionality. The name is derived from the fact 
that it is adapted and simplified from the ClojureScript library C2, which in turn is a 
simplification of the popular JavaScript data visualization framework D3.

We'll be using B1's simple utility functions in b1.charts to build histograms out  
of our data in ClojureScript. B1 does not mandate a particular display format; we 
could use it to draw on a canvas element or even to build diagrams directly out of 
the HTML elements. However, B1 does contain functions to convert charts to SVG  
in b1.svg and these can be displayed in all modern web browsers.

https://jstat.github.io/distributions.html
https://jstat.github.io/distributions.html
http://wiki.clojuredatascience.com
https://github.com/henrygarner/b1
https://github.com/henrygarner/b1
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Scalable Vector Graphics
SVG stands for Scalable Vector Graphics and defines a set of tags that represent 
drawing instructions. The advantage of SVG is that results can be rendered at any 
size without the blurring associated with raster (pixel-based) graphics that are scaled 
up. An additional benefit is that modern browsers know how to render SVG drawing 
instructions to produce images directly in the web page and can style and animate 
the images with CSS.

Although a detailed discussion of SVG and CSS is beyond the scope of this book, 
B1 does provide syntax that is very much like Incanter's to build simple charts and 
graphs using SVG. Given a sequence of values, we call the c/histogram function to 
convert it into an internal representation of the data structure. We can add additional 
histograms with the c/add-histogram function and call svg/as-svg to render the 
chart to an SVG representation:

(defn sample-histograms [sample-a sample-b]
  (-> (c/histogram sample-a :x-axis [0 200] :bins 20)
      (c/add-histogram sample-b)
      (svg/as-svg :width 550 :height 400)))

Unlike Incanter, when we choose to render our histogram, we must also specify the 
desired width and height of the chart.

Plotting probability densities
In addition to using jStat to generate samples from the exponential distribution, we'll 
also use it to calculate the probability density for the t-distribution. We can construct 
a simple function to wrap the jStat.studentt.pdf(t, df) function, providing the 
correct t-statistic and degrees of freedom to parameterize the distribution:

(defn pdf-t [t & {:keys [df]}]
  (js/jStat.studentt.pdf t df))

An advantage of using ClojureScript is that we have already written the code to 
calculate the t-statistic from a sample. The code, which worked in Clojure, can be 
compiled to ClojureScript with no changes whatsoever:

(defn t-statistic [test {:keys [mean n sd]}]
  (/ (- mean test)
     (/ sd (Math/sqrt n))))

To render the probability density, we can use B1's c/function-area-plot. This will 
generate an area plot from the line described by a function. The provided function 
simply needs to accept an x and return the corresponding y.
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A slight complication is that the value of y we return will be different for different 
samples. This is because t-pdf will be highest at the sample mean (corresponding 
to a t-statistic of zero). Because of this, we'll need to generate a different function 
for each sample to be passed to function-area-plot. This is accomplished by the 
probability-density function, as follows:

(defn probability-density [sample alpha]
  (let [mu (mean sample)
        sd (standard-deviation sample)
        n  (count sample)]
    (fn [x]
      (let [df     (dec (count sample))
            t-crit (threshold-t 2 df alpha)
            t-stat (t-statistic x {:mean mu
                                   :sd sd
                                   :n n})]
        (if (< (Math/abs t-stat) t-crit)
          (pdf-t t-stat :df df)
          0)))))

Here, we're defining a higher-order function called probability-density that 
accepts a single value, sample. We calculate some simple summary statistics and 
then return an anonymous function that calculates the probability density for a  
given value in the distribution.

This anonymous function is what will be passed to function-area-plot. It accepts 
an x and calculates a t-statistic for the given sample from it. The y value returned is 
the probability of the t-distribution associated with the t-statistic:

(defn sample-means [sample-a sample-b alpha]
  (-> (c/function-area-plot (probability-density sample-a alpha)
                            :x-axis [0 200])
      (c/add-function (probability-density sample-b alpha))
      (svg/as-svg :width 550 :height 250)))

As with histograms, generating multiple plots is as straightforward as calling  
add-function with the chart, and the new function we'd like to add.
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State and Reagent
State in ClojureScript is managed in the same way as Clojure applications—through 
the use of atoms, refs, or agents. Atoms provide uncoordinated, synchronous access 
to a single identity and are an excellent choice for storing the application state. Using 
an atom ensures that the application always sees a single, consistent view of the data.

Reagent is a ClojureScript library that provides a mechanism to update the content of 
a web page in response to changing the value of an atom. Markup and state are bound 
together, so that markup is regenerated whenever the application state is updated.

Reagent also provides syntax to render HTML in an idiomatic way using Clojure 
data structures. This means that both the content and the interactivity of the page  
can be handled in one language.

Updating state
With data held in a Reagent atom, updating the state is achieved by calling the 
swap! function with two arguments—the atom we wish to update and a function to 
transform the state of the atom. The provided function needs to accept the current state 
of the atom and return the new state. The exclamation mark indicates that the function 
has side effects and, in this case, the side effects are desirable; in addition to updating 
the atom, Reagent will ensure that relevant sections of our HTML page are updated.

The exponential distribution has a single parameter—the rate symbolized by  
lambda, λ. The rate of an exponential distribution is the reciprocal of the mean,  
so we calculate (/ 1 mean-a) to pass it as the argument to the exponential 
distribution function:

(defn update-sample [{:keys [mean-a mean-b sample-size]
                      :as state}]
  (let [sample-a (->> (float (/ 1 mean-a))
                      (exponential-distribution)
                      (take sample-size))
        sample-b (->> (float (/ 1 mean-b))
                      (exponential-distribution)
                      (take sample-size))]
    (-> state
        (assoc :sample-a sample-a)
        (assoc :sample-b sample-b)
        (assoc :sample-mean-a (int (mean sample-a)))
        (assoc :sample-mean-b (int (mean sample-b))))))

(defn update-sample! [state]
  (swap! state update-sample))
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In the preceding code, we have defined an update-sample function that accepts a 
map containing :sample-size, :mean-a, and :mean-b, and returns a new map with 
the associated new samples and sample means.

The update-sample function is pure in the sense that it doesn't have side effects, 
which makes it easier to test. The update-sample! function wraps it with a call to 
swap!. Reagent ensures that any code that depends on the value contained in this 
atom will be executed when the value in the atom changes. This causes our interface 
to be re-rendered in response to the new samples.

Binding the interface
To bind the interface to the state, Reagent defines a render-component function. 
This links a particular function (in this case, our layout-interface function)  
with a particular HTML node (the element with the ID root on our page):

(defn layout-interface []
  (let [sample-a (get @state :sample-a)
        sample-b (get @state :sample-b)
        alpha (/ (get @state :alpha) 100)]
    [:div
     [:div.row
      [:div.large-12.columns
       [:h1 "Parameters & Statistics"]]]
     [:div.row
      [:div.large-5.large-push-7.columns
       [controllers state]]
      [:div.large-7.large-pull-5.columns {:role :content}
       [sample-histograms sample-a sample-b]
       [sample-means sample-a sample-b alpha]]]]))

(defn run []
  (r/render-component
   [layout-interface]
   (.getElementById js/document "root")))
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Our layout-interface function contains an HTML markup expressed as nested 
Clojure data structures. Amongst the calls to :div and :h1, elements are calls to our 
two sample-histograms and sample-means functions. They will be substituted with 
their return values—the SVG representations of the histograms and the probability 
densities of the means.

For the sake of brevity, we have omitted the implementation of the controllers 
function, which handles the rendering of the sliders and the New Sample button. 
Consult the cljds.ch2.app namespace in the sample code to see how this is 
implemented.

Simulating multiple tests
Each time the New Sample button is pressed, a pair of new samples from an 
exponential distribution with population means taken from the sliders are generated. 
The samples are plotted on a histogram and, underneath, a probability density 
function is drawn showing the standard error for the sample. As the confidence 
intervals are changed, observe how the acceptable deviation of the standard error 
changes as well.

Each time the button is pressed, we could think of it as a significance test with 
an alpha set to the complement of the confidence interval. In other words, if the 
probability distributions for the sample means overlap at the 95 percent confidence 
interval, we cannot reject the null hypothesis at the 5 percent significance level.
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Observe how, even when the population means are identical, occasional large 
deviations in the means will occur. Where samples differ by more than our 
standard error, we can accept the alternate hypothesis. With a confidence level of 
95 percent, we will discover a significant result around one in 20 trials, even when 
the population means of the distributions are identical. When this happens, we are 
making a Type 1 error in mistaking a sampling error for a real population difference.

Despite the identical population parameters, large sample differences are 
occasionally observed.

The Bonferroni correction
We therefore require an alternative approach while conducting multiple tests that 
will account for an increased probability of discovering a significant effect through 
repeated trials. The Bonferroni correction is a very simple adjustment that ensures  
we are unlikely to make Type I errors. It does this by adjusting the alpha for our tests.
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The adjustment is a simple one—the Bonferroni correction simply divides our 
desired alpha by the number of tests we are performing. For example, if we had k 
site designs to test and an experimental alpha of 0.05, the Bonferroni correction is 
expressed as:

0.05
k

α =

This is a safe way to mitigate the increased probability of making a Type I error in 
multiple testing. The following example is identical to ex-2-22, except the alpha 
value has been divided by the number of groups:

(defn ex-2-23 []
  (let [data (->> (load-data "multiple-sites.tsv")
                  (:rows)
                  (group-by :site)
                  (map-vals (partial map :dwell-time)))
        alpha (/ 0.05 (count data))]
    (doseq [[site-a times-a] data
            [site-b times-b] data
            :when (> site-a site-b)
            :let [p-val (-> (s/t-test times-a :y times-b)
                            (:p-value))]]
      (when (< p-val alpha)
        (println site-b "and" site-a
                 "are significantly different:"
                 (format "%.3f" p-val))))))

If you run the preceding example, you'll see that none of the pages count as 
statistically significant any longer using the Bonferroni correction.

Significance testing is a balancing act—the lower our chances of making a Type  
I error, the greater our risk of making a Type II error. The Bonferroni correction is 
very conservative and it's possible that we're missing a genuine difference due to 
being so cautious.

In the final part of this chapter, we'll investigate an alternative approach to 
significance testing that strikes a balance between making Type I and Type II  
errors while allowing us to test all the 20 pages simultaneously.
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Analysis of variance
Analysis of variance, often shortened to ANOVA, is a series of statistical methods 
used to measure the statistical significance of the difference between groups. It was 
developed by Ronald Fisher, an extremely gifted statistician, who also popularized 
significance testing through his work on biological testing.

Our tests, using the z-statistic and t-statistic, have focused on sample means as the 
primary mechanism to draw a distinction between the two samples. In each case, 
we looked for a difference in the means divided by the level of difference we could 
reasonably expect and quantified by the standard error.

The mean isn't the only statistic that might indicate a difference between samples. In 
fact, it is also possible to use the sample variance as an indicator of statistical difference.
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To illustrate how this might work, consider the preceding diagram. Each of the three 
groups on the left could represent samples of dwell times for a specific page with 
its own mean and standard deviation. If the dwell times for all the three groups are 
combined into one, the variance is larger than the average variance for the groups 
taken individually.

The statistical significance of an ANOVA test is derived from the ratio of two 
variances—the variance between the groups of interest and the variance within the 
groups of interest. If there is a significant difference between the groups that is not 
reflected within the groups, then those groupings help explain some of the variance 
between the groups. Conversely, if the variance within the groups is identical to  
the variance between the groups, the groups are not statistically different from  
one another.

The F-distribution
The F-distribution is parameterized by two degrees of freedom—those of the sample 
size and those of the number of groups.

The first degree of freedom is the count of groups less one and the second degree 
of freedom is the size of the sample less the number of groups. If k represents the 
number of groups, and n represents the sample size:

1 1df k= −

2df n k= −
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We can visualize different F-distributions with an Incanter function plot:

The lines of the preceding diagram show various F-distributions for a sample of  
100 points split into 5, 10, and 50 groups.

The F-statistic
The test statistic that represents the ratio of the variance within and between the 
groups is called the F-statistic. The closer F-statistic is to one, the more alike the  
two variances are. The F-statistic is calculated very simply as follows:

2

2
b

w
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=

Here, 2
bS  is the variance between the groups and 2

wS  is the variance within the groups.

As the ratio F gets larger, the larger the variance between the groups is compared to 
the variance within the groups. This implies that the grouping is doing a good job in 
explaining the variance observed in the sample as a whole. Where this ratio exceeds 
a critical threshold, we can say that the difference is statistically significant.
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The F-test is always a one-tailed test, because any variance 
among the groups tends to make F large. It is impossible for 
F to decrease below zero.

The variance within for an F-test is calculated as the mean squared deviation from the 
mean. We calculate this as the sum of squared deviations from the mean divided by 
the first degree of freedom. For example, if there are k groups, each with a mean  
of kx , we could calculate the variance within like this:

Here, SSW represents the sum of squares within and xjk represents the value of the jth 
element in group k.

The preceding formula for calculating the SSW looks intimidating. But, in fact, 
Incanter defines a useful s/sum-of-square-devs-from-mean function that makes 
calculating the sum of squares within as trivial as:

(defn ssw [groups]
  (->> (map s/sum-of-square-devs-from-mean groups)
       (reduce +)))

The variance between for an F-test has a similar formula:

Here, SST is the total sum of squares and SSW is the value we just calculated. The total 
sum of the squares is the sum of squared differences from the "grand" mean that can 
be calculated like this:

( )2

1

n

i
i

SST x x
=

= −∑
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Thus, SST is simply the overall sum of the squares without any grouping. We can 
calculate both the SST and SSW in Clojure, like this:

(defn sst [groups]
  (->> (apply concat groups)
       (s/sum-of-square-devs-from-mean)))

(defn ssb [groups]
  (- (sst groups)
     (ssw groups)))

The F-statistic is calculated as the ratio of the variance between and the variance 
within the groups. Combining both our ssb and ssw functions defined previously 
and the two degrees of freedom, we can calculate the F-statistic in Clojure as follows.

Thus, we can calculate the F-statistic from our groups and our two degrees of 
freedom as follows:

(defn f-stat [groups df1 df2]
  (let [msb (/ (ssb groups) df1)
        msw (/ (ssw groups) df2)]
    (/ msbmsw)))

Now that we can calculate the F-statistic from our groups, we're ready to use it in  
an F-test.

The F-test
As with all of the hypothesis tests we have looked at in this chapter, once we have 
a statistic and a distribution, we simply need to pick a value of α and see if our data 
has exceeded the critical value for the test.

Incanter provides an s/f-test function, but this only measures the variance 
between and within the two groups. To run an F-test on our 20 different groups, we 
will need to implement our own F-test function. Fortunately, we've already done the 
hard work in the previous sections by calculating an appropriate F-statistic. We can 
perform the F-test by looking up the F-statistic in an F-distribution parameterized 
with the correct degrees of freedom. In the following code, we will write an f-test 
function, which uses this to perform the test on an arbitrary number of groups:

(defn f-test [groups]
  (let [n (count (apply concat groups))
        m (count groups)
        df1 (- m 1)
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        df2 (- n m)
        f-stat (f-stat groups df1 df2)]
    (s/cdf-f f-stat :df1 df1 :df2 df2 :lower-tail? false)))

In the last line of the preceding function, we convert the value of the F-statistic  
into a p-value using Incanter's s/cdf-f function parameterized by the correct 
degrees of freedom. This p-value is a measure of the whole model, how well the 
different pages explain the variance of the dwell times overall. All that remains for 
us to do is to choose a significance level and run the test. Let's stick with a 5 percent 
significance level:

(defn ex-2-24 []
  (let [grouped (->> (load-data "multiple-sites.tsv")
                     (:rows)
                     (group-by :site)
                     (vals)
                     (map (partial map :dwell-time)))]
    (f-test grouped)))

;; 0.014

The test returns a p-value of 0.014, which is a significant result. The different pages 
indeed have different variances that cannot simply be explained away by random 
sampling error alone.
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We could use a box plot to visualize the distributions of each site together in one 
chart to compare them side by side:

(defn ex-2-25 []
  (let [grouped (->> (load-data "multiple-sites.tsv")
                     (:rows)
                     (group-by :site)
                     (sort-by first)
                     (map second)
                     (map (partial map :dwell-time)))
        box-plot (c/box-plot (first grouped)
                             :x-label "Site number"
                             :y-label "Dwell time (s)")
        add-box (fn [chart dwell-times]
                  (c/add-box-plot chart dwell-times))]
    (-> (reduce add-box box-plot (rest grouped))
        (i/view))))

In the preceding code, we reduce over the groups, calling c/add-box-plot for each 
group. The groups are sorted by their site ID before plotting, so our original page 0  
is to the extreme left of the chart.
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It might appear that site ID 10 has the longest dwell times, since its interquartile 
range extends furthest up the chart. However, if you look closely, you'll see its  
mean value is lower than site 6, having a mean dwell time of over 144 seconds:

(defn ex-2-26 []
  (let [data (load-data "multiple-sites.tsv")
        site-0 (->> (i/$where {:site {:$eq 0}} data)
                    (i/$ :dwell-time))
        site-10 (->> (i/$where {:site {:$eq 10}} data)
                     (i/$ :dwell-time))]
    (s/t-test site-10 :y site-0)))

;; 0.0069

Now that we have confirmed a statistically significant effect using the F-test, we're 
justified in claiming that site ID 6 is statistically different from the baseline:

(defn ex-2-27 []
  (let [data (load-data "multiple-sites.tsv")
        site-0 (->> (i/$where {:site {:$eq 0}} data)
                    (i/$ :dwell-time))
        site-6 (->> (i/$where {:site {:$eq 6}} data)
                    (i/$ :dwell-time))]
    (s/t-test site-6 :y site-0)))

;; 0.007

Finally, we have evidence to suggest that page ID 6 is a genuine improvement over 
the current site. As a result of our analysis, the AcmeContent CEO authorizes the 
launch of a new look website. The web team is delighted!

Effect size
In this chapter, we focused on statistical significance—the methods employed by 
statisticians to ensure a difference is discovered, which cannot be easily explained 
as chance variation. We must always remember that finding a significant effect isn't 
the same as finding a large effect. With very large samples, even a tiny difference 
in sample means will count as significant. To get a better sense of whether our 
discovery is both significant and important, we should state the effect size as well.



Inference

[ 108 ]

Cohen's d
Cohen's d is an adjustment that can be applied to see whether the difference we have 
observed is not just statistically significant, but actually large. Like the Bonferroni 
correction, the adjustment is a straightforward one:

ab

a bd
S
−

=

Here, Sab is the pooled standard deviation (not the pooled standard error) of the 
samples. It can be calculated in a way similar to the pooled standard error:

(defn pooled-standard-deviation [a b]
  (i/sqrt (+ (i/sq (standard-deviation a))
             (i/sq (standard-deviation b)))))

Thus, we can calculate Cohen's d for our page 6, as follows:

(defn ex-2-28 []
  (let [data (load-data "multiple-sites.tsv")
        a (->> (i/$where {:site {:$eq 0}} data)
               (i/$ :dwell-time))
        b (->> (i/$where {:site {:$eq 6}} data)
               (i/$ :dwell-time))]
    (/ (- (s/mean b)
          (s/mean a))
       (pooled-standard-deviation a b))))

;; 0.389

In contrast with the p-values, there is no absolute threshold for Cohen's d. Whether an 
effect can be considered large is partly dependent on the context, but it does provide a 
useful, normalized measure of the effect size. Values above 0.5 are typically considered 
large, so 0.38 is a moderate effect. It certainly represents a meaningful increase in the 
dwell time on our site and is certainly worth the effort of a site upgrade.
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Summary
In this chapter, we've learned about the difference between descriptive and 
inferential statistics. Once again, we've seen the importance of normal distribution 
and the central limit theorem, and learned how to quantify population differences 
with z-tests, t-tests, and F-tests.

We've learned about how the techniques of inferential statistics analyze the samples 
themselves to make claims about the population that was sampled. We've seen a 
variety of techniques—confidence intervals, bootstrapping, and significance tests—
that can yield insight into the underlying population parameters. By simulating 
repeated tests with ClojureScript, we've also gained an insight into the difficulty of 
significance testing with multiple comparisons and seen how the F-test attempts to 
address the issue and strike a balance between Type I and Type II errors.

In the next chapter, we'll apply the lessons we've learned on variance and F-testing to 
single samples. We'll introduce the technique of regression analysis and use it to find 
correlations among variables within a sample of Olympic athletes.
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Correlation
"The more I learn about people, the better I like my dog."

                                                                                                     – Mark Twain

In previous chapters, we've considered how to describe samples in terms of 
summary statistics and how population parameters can be inferred from them. Such 
analysis tells us something about a population in general and a sample in particular, 
but it doesn't allow us to make very precise statements about individual elements. 
This is because so much information has been lost by reducing the data to just two 
statistics: the mean and standard deviation.

We often want to go further and establish a relationship between two or more 
variables or to predict one variable given another. This takes us into the study of 
correlation and regression. Correlation concerns the strength and direction of the 
relationship between two or more variables. Regression determines the nature of  
this relationship and enables us to make predictions from it.

Linear regression is our first machine learning algorithm. Given a sample of data, 
our model will learn a linear equation that allows it to make predictions about new, 
unseen data. To do this, we'll return to Incanter and study the relationship between 
height and weight for Olympic athletes. We'll introduce the concept of matrices and 
show how Incanter can be used to manipulate them.

About the data
This chapter will make use of data on athletes in the London 2012 Olympic Games, 
courtesy of Guardian News and Media Ltd. The data was originally sourced from 
the Guardian's excellent data blog at http://www.theguardian.com/data.

http://www.theguardian.com/data
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Download the example code for this chapter from the publisher's 
website or from https://github.com/clojuredatascience/
ch3-correlation.

Consult the Readme file in this chapter's sample code or the book's wiki at  
http://wiki.clojuredatascience.com for more information on the data.

Inspecting the data
The first task when confronted with a new dataset is to study it to ensure that we 
understand what it contains.

The all-london-2012-athletes.xlsx file is small enough that it's been provided 
with the sample code for this chapter. We can inspect the data with Incanter, as we 
did in Chapter 1, Statistics using the incanter.excel/read-xls and incanter.
core/view functions:

(ns cljds.ch3.examples
  (:require [incanter.charts :as c]
            [incanter.core :as i]
            [incanter.excel :as xls]
            [incanter.stats :as s]))

(defn athlete-data []
  (-> (io/resource "all-london-2012-athletes.xlsx")
      (str)
      (xls/read-xls)))

(defn ex-3-1 []
  (i/view (athlete-data)))

https://github.com/clojuredatascience/ch3-correlation
https://github.com/clojuredatascience/ch3-correlation
http://wiki.clojuredatascience.com
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If you run this code (either in the REPL or on the command line with lein run –e 
3.1), you should see the following output:

We're fortunate that the data is clearly labeled in the columns and contains the 
following information:

• Name of the athlete
• Country for which they are competing
• Age in years
• Height in centimeters
• Weight in kilograms
• Sex as the string "M" or "F"
• Date of birth as a string
• Place of birth as a string (with country)
• Gold medals won
• Silver medals won
• Bronze medals won
• Total gold, silver, and bronze medals won
• Sport in which they competed
• Event as a comma-separated list

Even though the data is clearly labeled, gaps are evident in the data for height, 
weight, and place of birth. We'll have to be careful to make sure these don't  
trip us up.
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Visualizing the data
First, we'll consider the spread of the heights of the London 2012 athletes. Let's plot 
our height values as a histogram to see how the data is distributed, remembering to 
filter the nil values first:

(defn ex-3-2 []
  (-> (remove nil? (i/$ "Height, cm" (athlete-data)))
      (c/histogram :nbins 20
                   :x-label "Height, cm"
                   :y-label "Frequency")
      (i/view)))

This code generates the following histogram:

The data is approximately normally distributed, as we have come to expect. The 
mean height of our athletes is around 177 cm. Let's take a look at the distribution  
of weights of swimmers from the 2012 Olympics:

(defn ex-3-3 []
  (-> (remove nil? (i/$ "Weight" (athlete-data)))
      (c/histogram :nbins 20
                   :x-label "Weight"
                   :y-label "Frequency")
      (i/view)))
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This code generates the following histogram:

This data shows a pronounced skew. The tail is much longer to the right of the peak 
than to the left, so we say the skew is positive. We can quantify the skewness of the 
data with Incanter's incanter.stats/skewness function:

(defn ex-3-4 []
  (->> (swimmer-data)
       (i/$ "Weight")
       (remove nil?) 
       (s/skewness)))
;; 0.238

Fortunately, this skew can be effectively mitigated by taking the logarithm of the 
weight using Incanter's incanter.core/log function:

(defn ex-3-5 []
  (-> (remove nil? (i/$ "Weight" (athlete-data)))
      (i/log)
      (c/histogram :nbins 20
                   :x-label "log(Weight)"
                   :y-label "Frequency")
      (i/view)))
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This code results in the following histogram:

This is much closer to the normal distribution. This suggests that weight is 
distributed according to a log-normal distribution.

The log-normal distribution
The log-normal distribution is simply the distribution of a set of values whose 
logarithm is normally distributed. The base of the logarithm can be any positive 
number except for one. Like the normal distribution, the log-normal distribution  
is important in the description of many naturally occurring phenomena.

A logarithm represents the power to which a fixed number (the base) must be  
raised to produce a given number. By plotting the logarithms as a histogram,  
we've shown that these powers are approximately normally distributed. Logarithms 
are usually taken to base 10 or base e: the transcendental number that's equal to 
approximately 2.718. Incanter's log function and its inverse exp both use base e. 
loge is also called the natural logarithm or ln, because of the properties that make it 
particularly suitable in calculus.
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The log-normal distribution tends to occur in processes of growth where the growth 
rate is independent of size. This is known as Gibrat's law and was formally defined in 
1931 by Robert Gibrat, who noticed that it applied to the growth of firms. Since the 
growth rate is a proportion of the size, larger firms tend to grow more quickly than 
smaller firms.

The normal distribution occurs in situations where many small 
variations have an additive effect, whereas the log-normal 
distribution occurs in situations where many small variations 
have a multiplicative effect.

Gibrat's law has since been found to be applicable to lots of situations, including 
the sizes of cities and, according to Wolfram MathWorld, the numbers of words in 
sentences by George Bernard Shaw.

For the rest of this chapter, we'll be using the natural logarithm of the weight data  
so that our data is approximately normally distributed. We'll choose a population  
of athletes with roughly similar body types, say Olympic swimmers.

Visualizing correlation
One of the quickest and simplest ways of determining if two variables are correlated 
is to view them on a scatter plot. We'll filter our data to select only swimmers and 
then plot the heights against the weights:

(defn swimmer-data []
  (->> (athlete-data)
       (i/$where {"Height, cm" {:$ne nil} "Weight" {:$ne nil}
                  "Sport" {:$eq "Swimming"}})))
(defn ex-3-6 []
  (let [data (swimmer-data)
        heights (i/$ "Height, cm" data)
        weights (i/log (i/$ "Weight" data))]
    (-> (c/scatter-plot heights weights
                        :x-label "Height, cm"
                        :y-label "Weight")
        (i/view))))
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This code yields the following plot:

The output clearly shows a relationship between the two variables. The chart has 
the characteristically skewed elliptical shape of two correlated, normally distributed 
variables centered on the means. The following diagram compares the scatter plot 
against probability distributions of the height and log weight:



Chapter 3

[ 119 ]

Points close to the tail of one distribution also tend to be close to the same tail of 
the other distribution, and vice versa. Thus, there is a relationship between the two 
distributions that we'll show how to quantify over the next several sections. If we 
look closely at the previous scatter plot though, we'll see that the points are packed 
into columns and rows due to the measurements being rounded (to centimeters and 
kilograms for height and weight, respectively). Where this occurs, it is sometimes 
preferable to jitter the data to make the strength of the relationship clearer. Without 
jittering, it could be that what appears to be one point is actually many points that 
share exactly the same pair of values. Introducing some random noise makes this 
possibility less likely.

Jittering
Since each value is rounded to the nearest centimeter, a value captured as 180 could 
actually have been anywhere between 179.5 cm and 180.5 cm. To unwind this effect, 
we can add random noise in the -0.5 to 0.5 range to each of the height data points.

The weight data point was captured to the nearest kilogram, so a value of 80 could 
actually have been anywhere between 79.5 kg and 80.5 kg. We can add random noise 
in the same range to unwind this effect (though clearly, this must be done before we 
take the logarithm):

(defn jitter [limit]
  (fn [x]
    (let [amount (- (rand (* 2 limit)) limit)]
      (+ x amount))))

(defn ex-3-7 []
  (let [data (swimmer-data)
        heights (->> (i/$ "Height, cm" data)
                     (map (jitter 0.5)))
        weights (->> (i/$ "Weight" data)
                     (map (jitter 0.5))
                     (i/log))]
    (-> (c/scatter-plot heights weights
                        :x-label "Height, cm"
                        :y-label "Weight")
        (i/view))))

www.allitebooks.com

http://www.allitebooks.org
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The jittered graph appears as follows:

As with introducing transparency to the scatter plot in Chapter 1, Statistics, jittering is 
a mechanism to ensure that we don't let incidental factors—such as data volume or 
rounding artifacts—obscure our ability to see patterns in the data.

Covariance
One way of quantifying the strength of the relationship between two variables is 
their covariance. This measures the tendency of two variables to change together.

If we have two series, X and Y, their deviations from the mean are:

i idx x x= −

i idy y y= −
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Where xi is the value of X at index i, yi is the value of Y at index i, x  is the mean of X, 
and y  is the mean of Y. If X and Y tend to vary together, their deviations from the 
mean tend to have the same sign: negative if they're less than the mean, positive if 
they're greater. If we multiply them together, the product is positive when they have 
the same sign and negative when they have different signs. Adding up the products 
gives a measure of the tendency of the two variables to deviate from the mean in the 
same direction for each given sample.

Covariance is defined as the mean of these products:

( )
n

i i
i=1

1cov X,Y = dx dy
n∑

Covariance can be calculated in Clojure using the following code:

(defn covariance [xs ys]
  (let [x-bar (s/mean xs)
        y-bar (s/mean xs)
        dx (map (fn [x] (- x x-bar)) xs)
        dy (map (fn [y] (- y y-bar)) ys)]
    (s/mean (map * dx dy))))

Alternatively, we could use the incanter.stats/covariance function. The 
covariance of height and log-weight for our Olympic swimmers is 1.354, but  
this is a hard number to interpret. The units are the product of the units of the inputs.

Because of this, covariance is rarely reported as a summary statistic on its own.  
A solution to make the number more comprehensible is to divide the deviations  
by the product of the standard deviations. This transforms the units to standard 
scores and constrains the output to a number between -1 and +1. The result is  
called Pearson's correlation.

Pearson's correlation
Pearson's correlation is often given the variable name r and is calculated in the 
following way, where dxi and dyi are calculated as before:

1

1 n
i i

i x y

dx dyr
n σ σ=

= ∑
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Since the standard deviations are constant values for the variables X and Y the 
equation can be simplified to the following, where σx and σy are the standard 
deviations of X and Y respectively:

( )
x y

cov X,Y
r

σ σ
=

This is sometimes referred to as Pearson's product-moment correlation coefficient or 
simply just the correlation coefficient and is usually denoted by the letter r.

We have previously written functions to calculate the standard deviation. Combining 
with our function to calculate covariance yields the following implementation of 
Pearson's correlation:

(defn correlation [x y]
  (/ (covariance x y)
     (* (standard-deviation x)
        (standard-deviation y))))

Alternately, we can make use of the incanter.stats/correlation function.

Because standard scores are dimensionless, so is r. If r is -1.0 or 1.0, the variables are 
perfectly negatively or perfectly positively correlated.

If r is zero though, it doesn't necessarily follow that the variables are uncorrelated. 
Pearson's correlation only measures linear relationships. There could still be some 
nonlinear relationship between variables that isn't captured by r, as demonstrated  
by the following plots:
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Note that the correlation of the central example is undefined because the standard 
deviation of y is zero. Since our equation for r would involve dividing the covariance  
by zero, the result is meaningless. In this case, there can't be any correlation between 
the variables; the value for y is always the mean. A simple inspection of standard 
deviations would confirm this.

The correlation coefficient can be calculated for the height and log-weight data for 
our swimmers:

(defn ex-3-8 []
  (let [data (swimmer-data)
        heights (i/$ "Height, cm" data)
        weights (i/log (i/$ "Weight" data))]
    (correlation heights weights)))

This yields the answer 0.867, which quantifies the strong, positive correlation we 
already observed on the scatter plot.

Sample r and population rho
Like the mean or standard deviation, the correlation coefficient is a statistic. It 
describes a sample; in this case, a sample of paired values: height and weight. 
While our known sample correlation coefficient is given the letter r, the unknown 
population correlation coefficient is given the Greek letter rho: ρ .

As we discovered in the last chapter, we should not assume that what we measured 
in our sample applies to the population as a whole. In this case, our population 
might be all swimmers from all recent Olympic Games. It would not be appropriate 
to generalize, for example, to other Olympic sports such as weightlifting or to 
noncompetitive swimmers.

Even within an appropriate population—such as swimmers from the recent Olympic 
Games—our sample is just one of many potential samples of different correlation 
coefficients. How far we can trust our r as an estimate of ρ  will depend on two factors:

• The size of the sample
• The magnitude of r

Clearly, for a fair sample, the larger it is the more we can trust it to be a 
representative of the population as a whole. It may not be intuitively obvious to  
you that the magnitude of r also affects how confident we can be of it representing 
ρ . The reason is that large coefficients are less likely to have arisen by chance or by 
random sampling error.
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Hypothesis testing
In the previous chapter, we introduced hypothesis testing as a means to quantify the 
probability that a given hypothesis (such as that the two samples were from a single 
population) is true. We will use the same process to quantify the probability that a 
correlation exists in the wider population based on our sample.

First, we must formulate two hypotheses, a null hypothesis and an alternate hypothesis:

0 : 0H ρ =

1 : 0H ρ =/

H0 is the hypothesis that the population correlation is zero. In other words,  
our conservative view is that the measured correlation is purely due to chance 
sampling error.

H1 is the alternative possibility that the population correlation is not zero. Notice that 
we don't specify the direction of the correlation, only that there is one. This means 
we are performing a two-tailed test.

The standard error of the sample r is given by:

2

2

1 pSEr
n p
−

=
−

This formula is only accurate when ρ  is close to zero (recall that the magnitude of 
r influences our confidence), but fortunately, this is exactly what we're assuming 
under our null hypothesis.

Once again, we can make use of the t-distribution and calculate our t-statistic:

21
dft r
r

=
−
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The term df is the degree of freedom of our data. For correlation testing, the degree of 
freedom is n - 2 where n is the size of the sample. Putting this value into the formula, 
we obtain:

( )22

8570.867
1 1 0.867
dft r
r

= =
− −

This gives us a t-value of 102.21. To convert this into a p value, we need to refer to 
the t-distribution. Incanter provides the cumulative distribution function (CDF) 
for the t-distribution with the incanter.stats/cdf-t function. The value of the 
CDF corresponds to the p-value for a one-tailed test. We multiply the value by two 
because we're performing a two-tailed test:

(defn t-statistic [x y]
  (let [r (correlation x y)
        r-square (* r r)
        df (- (count x) 2)]
    (/ (* r df)
       (i/sqrt (- 1 r-square)))))

(defn ex-3-9 []
  (let [data (swimmer-data)
        heights (i/$ "Height, cm" data)
        weights (i/log (i/$ "Weight" data))
        t-value (t-statistic heights weights)
        df (- (count heights) 2)
        p  (* 2 (s/cdf-t t-value :df df :lower-tail? false))]
    (println "t-value" t-value)
    (println "p value " p)))

The p-value is so small as to be essentially zero, meaning that the chances of the  
null hypothesis being true is essentially non-existent. We are forced to accept the 
alternate hypothesis.

Confidence intervals
Having established that there certainly is a correlation in the wider population, we 
might want to quantify the range of values we expect ρ  to lie within by calculating 
a confidence interval. As in the previous chapter with the mean, the confidence 
interval of r expresses the probability (expressed as a percentage) that the population 
parameter ρ  lies between two specific values.
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However, a complication arises when trying to calculate the standard error of the 
correlation coefficient that didn't exist for the mean. Because the absolute value of r 
cannot exceed 1, the distribution of possible samples of r is skewed as r approaches 
the limit of its range.

The previous graph shows the negatively skewed distribution of r samples for  
a ρ  of 0.6.

Fortunately, a transformation called the Fisher z-transformation will stabilize the 
variance of r throughout its range. This is analogous to how our weight data became 
normally distributed when we took the logarithm.

The equation for the z-transformation is:

1 1ln
2 1r

rz
r

+ =  − 

The standard error of z is:

1
3zSE

n
=

−

Thus, the process to calculate confidence intervals is to convert r to z using the 
z-transformation, compute a confidence interval in terms of SEz, and then convert  
the confidence interval back to r.
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To calculate a confidence interval in terms of SEz, we can take the number of 
standard deviations away from the mean that gives us the desired confidence. 1.96 
is a common number to use, because it is the number of standard deviations away 
from the mean that contains 95 percent of the area. In other words, 1.96 standard 
errors from the mean of the sample r contains the true population correlation ρ with 
95 percent certainty.

We can verify this using Incanter's incanter.stats/quantile-normal function. 
This will return the standard score associated with a given cumulative probability, 
assuming a one-tailed test.

However, as shown in the previous diagram, we'd like to subtract the same 
amount— 2.5 percent—from each tail, so that the 95 percent confidence interval is 
centered on zero. A simple translation is to halve the difference to 100 percent while 
performing a two-tailed test. So, a desired confidence of 95 percent means we look 
up the critical value of 97.5 percent:

(defn critical-value [confidence ntails]
  (let [lookup (- 1 (/ (- 1 confidence) ntails))]
    (s/quantile-normal lookup)))

(critical-value 0.95 2)
=> 1.96

So, our 95 percent confidence interval in z-space for ρ  is given by:

( )critical-valuerange rz z SEz= ±
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Substituting our formulae for zr and SEz gives:

( )1 1 1ln 1.96
2 1 3range

rz
r n

+ = ± − − 

For r = 0.867 and n = 859, this gives a lower and upper bound of 1.137 and 
1.722, respectively. To convert these from z-scores back to r-values, we use the 
following equation, the inverse of the z-transformation:

2

2

1
1

z

z

er
e

−
=

+

The transformations and confidence interval can be calculated with the following code:

(defn z->r [z]
  (/ (- (i/exp (* 2 z)) 1)
     (+ (i/exp (* 2 z)) 1)))

(defn r-confidence-interval [crit x y]
  (let [r   (correlation x y)
        n   (count x)
        zr  (* 0.5 (i/log (/ (+ 1 r)
                             (- 1 r))))
        sez (/ 1 (i/sqrt (- n 3)))]
    [(z->r (- zr (* crit sez)))
     (z->r (+ zr (* crit sez)))]))

(defn ex-3-10 []
  (let [data (swimmer-data)
        heights  (i/$ "Height, cm" data)
        weights  (i/log (i/$ "Weight" data))
        interval (r-confidence-interval 1.96 heights weights)]
    (println "Confidence Interval (95%): " interval)))

This gives a 95 percent confidence interval for ρ  being between 0.850 and 0.883. 
We can be very confident that there is a strong positive correlation between the 
height and weight in the wider population of Olympic-class swimmers.
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Regression
While it may be useful to know that two variables are correlated, we can't use this 
information alone to predict the weights of Olympic swimmers given their height or 
vice versa. In establishing a correlation, we have measured the strength and sign of a 
relationship, but not the slope. Knowing the expected rate of change for one variable 
given a unit change in the other is required in order to make predictions.

What we'd like to determine is an equation that relates the specific value of one 
variable, called the independent variable, to the expected value of the other, the 
dependent variable. For example, if our linear equation predicts the weight given 
the height, then the height is our independent variable and the weight is our 
dependent variable.

The lines described by these equations are called regression lines. 
The term was introduced by the 19th century British polymath Sir 
Francis Galton. He and his student Karl Pearson (who defined 
the correlation coefficient) developed a variety of methods to 
study linear relationships in the 19th century and these collectively 
became known as regression techniques.

Remember that correlation does not imply causation and there is no implied 
causation by the terms dependent and independent—they're just the names for 
mathematical inputs and outputs. A classic example is the highly positive correlation 
between the number of fire engines sent to a fire and the damage done by the fire. 
Clearly, sending fire engines to a fire does not itself cause damage. No one would 
recommend reducing the number of engines sent to a fire as a way of reducing 
damage. In situations like these, we should look for an additional variable, which 
is causally connected with the other variables, and explains the correlation between 
them. In the previous example, this might be the size of fire. Such hidden causes are 
called confounding variables, because they confound our ability to determine the 
relationship between their dependent variables.
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Linear equations
Two variables, which we can signify as x and y, may be related to each other exactly 
or inexactly. The simplest relationship between an independent variable labeled x 
and a dependent variable labeled y is a straight line expressed in the formula:

y a bx= +

Here, the values of the parameters a and b determine respectively the precise height 
and steepness of the line. The parameter a is referred to as the intercept or constant 
and b as the gradient or slope. For example, in the mapping between Celsius and 
Fahrenheit temperature scales, a = 32 and b = 1.8. Substituting these values of a  
and b into our equation yields:

32 1.8y x= +

To calculate 10 degrees Celsius in Fahrenheit, we substitute 10 for x:

( )32 1.8 10 50y = + =

Thus, our equation tells us that 10 degrees Celsius is 50 degrees Fahrenheit, which is 
indeed the case. Using Incanter, we can easily write a function that maps Celsius to 
Fahrenheit and plot it as a graph using incanter.charts/function-plot:

(defn celsius->fahrenheit [x]
  (+ 32 (* 1.8 x)))

(defn ex-3-11 []
  (-> (c/function-plot celsius->fahrenheit -10 40
                       :x-label "Celsius"
                       :y-label "Fahrenheit")
      (i/view)))



Chapter 3

[ 131 ]

This code yields the following line graph:

Notice how the red line crosses zero on the Celsius scale at 32 on the Fahrenheit 
scale. The intercept a is the value of y, where x is zero.

The slope of the line is determined by b; it is close to 2 for this equation. See how the 
range of the Fahrenheit scale is almost double the range of the Celsius scale. In other 
words, the line sweeps almost twice as fast vertically as it does horizontally.

Residuals
Unfortunately few relationships we will study are as tidy as the mapping between 
Celsius and Fahrenheit. The straight-line equation rarely allows us to specify y 
exactly in terms of x. There will ordinarily be an error, thus:
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Here, ε is an error term standing for the difference between the value calculated 
by the parameters a and b for a given value of x and the actual value of y. If our 
predicted value of y is ŷ  (pronounced "y-hat"), then the error is the difference 
between the two:

ˆy yε = −

This error is referred to as the residual. The residual might be due to random  
factors like measurement error or non-random factors that are unknown. For 
example, if we are trying to predict weight as a function of height, unknown  
factors might include diet, level of fitness, and body type (or simply the effect  
of rounding to the nearest kilogram).

If we select parameters for a and b that are not ideal, then the residual for each x will 
be larger than it needs to be. Therefore, it follows that the parameters we'd like to 
find are the ones that minimize the residuals across all values of x and y.

Ordinary least squares
In order to optimize the parameters of our linear model, we'd like to devise a cost 
function, also called a loss function, that quantifies how closely our predictions fit the 
data. We cannot simply sum up the residuals, positive and negative, because even 
large residuals will cancel each other out if their signs are in opposite directions.

We could square the values before calculating the sum so that positive and  
negative residuals both count towards the cost. This also has the effect of penalizing 
large errors more than smaller errors, but not so much that the largest residual 
always dominates.

Expressed as an optimization problem, we seek to identify the coefficients that 
minimize the sum of the residual squares. This is called Ordinary Least Squares 
(OLS), and the formula to calculate the slope of the regression line using OLS is:

( )( )
( )

1
2

1

n
i ii
n

ii

x x y y
b

x x
=

=

− −
=

−
∑
∑



Chapter 3

[ 133 ]

Although this looks more complicated than the previous equations, it's really just the 
sum of squared residuals divided by the sum of squared differences from the mean. 
This shares a number of terms from the equations we have already looked at and can 
be simplified to:

( )
( )

cov X,Y
b

var X
=

The intercept is the term that allows a line of this slope to pass through the mean of 
both X and Y:

a y bx= −

These values of a and b are the coefficients of our least squares estimates.

Slope and intercept
We've already written the covariance, variance, and mean functions we need 
to calculate the slope and intercept for the swimming height and weight data. 
Therefore, the slope and intercept calculations are trivial:

(defn slope [x y]
  (/ (covariance x y)
     (variance x)))

(defn intercept [x y]
  (- (s/mean y)
     (* (s/mean x)
        (slope x y))))

(defn ex-3-12 []
  (let [data (swimmer-data)
        heights (i/$ "Height, cm" data)
        weights (i/log (i/$ "Weight" data))
        a (intercept heights weights)
        b (slope heights weights)]
    (println "Intercept: " a)
    (println "Slope: " b)))

The output gives a slope of approximately 0.0143 and an intercept of  
approximately 1.6910.
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Interpretation
The intercept value is the value of the dependent variable (log weight) when the 
independent variable (height) is zero. To find out what this value equates to in 
kilograms, we can use the incanter.core/exp function, which performs the inverse 
of the incanter.core/log function. Our model seems to suggest that the best guess 
for the weight of an Olympic swimmer of zero height is 5.42 kg. This is meaningless, 
and it is unwise to extrapolate beyond the bounds of your training data.

The slope value shows how much y changes for each unit change in x. Our model 
suggests that each additional centimeter of height adds on an average of 1.014 kg 
to the weight of our Olympic swimmers. Since our model is based on all Olympic 
swimmers, this is the average effect of a unit increase in height without taking into 
account any other factor, such as age, gender, or body type.

Visualization
We can visualize the output of our linear equation with incanter.charts/
function-plot and a simple function of x that calculates ŷ  based on the  
coefficients a and b.

(defn regression-line [a b]
  (fn [x] 
    (+ a (* b x))))

(defn ex-3-13 []
  (let [data (swimmer-data)
        heights (->> (i/$ "Height, cm" data)
                     (map (jitter 0.5)))
        weights (i/log (i/$ "Weight" data))
        a (intercept heights weights)
        b (slope heights weights)]
    (-> (c/scatter-plot heights weights
                        :x-label "Height, cm"
                        :y-label "log(Weight)")
        (c/add-function (regression-line a b) 150 210)
        (i/view))))

The regression-line function returns a function of x that calculates a bx+ .
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We can also use the regression-line function to calculate each residual, showing 
how far our estimate ŷ  deviates from each measured y.

(defn residuals [a b x y]
  (let [estimate (regression-line a b)
        residual (fn [x y]
                   (- y (estimate x)))]
    (map residual x y)))

(defn ex-3-14 []
  (let [data (swimmer-data)
        heights (->> (i/$ "Height, cm" data)
                     (map (jitter 0.5)))
        weights (i/log (i/$ "Weight" data))
        a (intercept heights weights)
        b (slope heights weights)]
    (-> (c/scatter-plot heights (residuals a b heights weights)
                        :x-label "Height, cm"
                        :y-label "Residuals")
        (c/add-function (constantly 0) 150 210)
        (i/view))))
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A residual plot is a graph that shows the residuals on the y-axis and the independent 
variable on the x-axis. If the points in the residual plot are randomly dispersed 
around the horizontal axis, a linear model is a good fit for the data:

With the exception of some outliers on the left side of the chart, the residual 
plot appears to indicate that a linear model is a good fit for the data. Plotting the 
residuals is important to verify that the linear model is appropriate. There are 
certain assumptions that a linear model makes about your data that will, if violated, 
invalidate models you build.

Assumptions
Obviously, the primary assumption of linear regression is that there is a linear 
relationship between the dependent and independent variable. In addition, the 
residuals must not be correlated with each other or with the independent variable. 
In other words, we expect the errors to have a zero mean and constant variance 
versus the dependent and independent variable. A residual plot allows us to quickly 
determine if this is the case.
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The left side of our residual plot has greater residuals than the right side. This 
corresponds to greater variance of weight amongst shorter athletes. The variables 
are said to be heteroscedastic when the variance of one variable changes with 
respect to another. This is a concern in regression analysis, because it invalidates the 
assumption that modeling errors are uncorrelated and normally distributed and that 
their variances do not vary with the effects being modeled.

The heteroscedasticity of our residuals are fairly small and should not influence the 
quality of our model very much. If the variance on the left side of the graph were more 
pronounced, it would cause the least squares estimate of variance to be incorrect, 
which in turn would affect inferences we make based on the standard error.

Goodness-of-fit and R-square
Although we can see from the residual plot that a linear model is a good fit for our 
data, it would be desirable to quantify just how good it is. Also called the coefficient 
of determination, R2 varies between zero and one and indicates the explanatory 
power of the linear regression model. It calculates the proportion of variation in the 
dependent variable explained, or accounted for, by the independent variable.

Generally, the closer R2 is to 1, the better the regression line fits the points and the more 
the variation in Y is explained by X. R2 can be calculated using the following formula:

( )
( )

2 var
R 1

var Y
ε

= −

Here, var(ε) is the variance of the residuals and var(Y) is the variance in Y. To 
understand what this means, let's suppose you're trying to guess someone's weight. 
If you don't know anything else about them, your best strategy would be to guess the 
mean of the weights within the population in general. This way, the mean squared 
error of your guess compared to their true weight would be var(Y) or the variance of 
the weights in the population.

But if I told you their height, you would guess a bx+  as per the regression model. In 
this case, your mean squared error would be var(ε) or the variance of the residuals of 
the model.

The term var(ε)/ var(Y) is the ratio of mean squared error with and without the 
explanatory variable, which is the fraction of variability left unexplained by the 
model. The complement R2 is the fraction of variability explained by the model.
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As with r, a low R2 does not mean that the two variables are 
uncorrelated. It might simply be that their relationship is not linear.

The R2 value describes how well the line fits the data. The line of best fit is the line 
that minimizes the value of R2. As the coefficients increase or decrease away from 
their optimum values, R2 will always increase.

The left graph shows the variance for a model that always guesses the mean of y and 
the right one shows smaller squares associated with the residuals left unexplained by 
the model f. In purely geometric terms, you can see the how the model has explained 
most of the variance in y. The following code calculates R2 by dividing the variance 
of the residuals with the variance of the y values:

(defn r-squared [a b x y]
  (let [r-var (variance (residuals a b x y))
        y-var (variance y)]
    (- 1 (/ r-var y-var))))

(defn ex-3-15 []
  (let [data (swimmer-data)
        heights (i/$ "Height, cm" data)
        weights (i/log (i/$ "Weight" data))
        a (intercept heights weights)
        b (slope heights weights)]
    (r-squared a b heights weights)))

This gives a value of 0.753. In other words, over 75 percent of the variance of the 
weight of 2012 Olympic swimmers can be explained by the height.
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In the case of a simple regression model (with a single independent variable), 
the relationship between the coefficient of determination R2 and the correlation 
coefficient r is a straightforward one:

2 2R r=

A correlation coefficient of 0.5 might suggest that half the variability in Y is explained 
by X, but actually, R2 would be 0.52 or 0.25.

Multiple linear regression
We've seen so far in this chapter how to build a regression line with one independent 
variable. However, it is often desirable to build a model with several independent 
variables. This is called multiple linear regression.

Each independent variable is going to need its own coefficient. Rather than working 
our way through the alphabet to represent each one, let's designate a new variable β, 
pronounced "beta", to hold all of our coefficients:

1 1 2 2y x xβ β= +

This model is equivalent to our bivariate linear regression model, where 1 aβ =   
and 2 bβ =  so long as we ensure that x1 is always equal to one. This ensures that  
β1 is always a constant factor representing our intercept. x1 is called the bias term.

Having generalized the linear equation in terms of beta, easy to extend to as many 
coefficients as we'd like:

1 1 2 2 n ny x x xβ β β= + + +�

Each of the values of x1 up to xn correspond to an independent variable that 
might help explain the value of y. Each of the values of β1 up to βn correspond to a 
coefficient that determines the relative contribution of this independent variable.

Our simple linear regression aimed to explain weight only in terms of height, but 
many other factors help to explain someone's weight: their age, gender, diet, and 
body type. We know the ages of our Olympic swimmers, so we could build a model 
that incorporates this additional data too.
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We've been providing the independent variable as a single sequence of values, but 
with multiple parameters, we'll need to provide several values for each x. We can use 
Incanter's i/$ function to select multiple columns and manipulate each x as a Clojure 
vector, but there is a better way: matrices.

Matrices
A matrix is a two-dimensional grid of numbers. The dimensions are expressed as the 
number of rows and columns in the matrix.

For example, A is a matrix with four rows and two columns:

1402 191
1371 821
949 1427
147 1448

A

 
 
 =
 
 
 

In mathematical notation, a matrix will usually be assigned to a variable with an 
upper-case letter to distinguish it from other variables in an equation.

We can construct a matrix from our dataset using Incanter's incanter.core/to-
matrix function:

(defn ex-3-16 []
  (->> (swimmer-data)
       (i/$ ["Height, cm" "Weight"])
       (i/to-matrix)))

Incanter also defines the incanter.core/matrix function that will take a sequence 
of scalar values or a sequence of sequences and convert them into a matrix if it can:

(defn ex-3-17 []
  (->> (swimmer-data)
       (i/$ "Height, cm")
       (i/matrix)))

If you run this in the REPL, the output will be a summary of the contents of the matrix:

  A 859x1 matrix
 ---------------
 1.66e+02
 1.92e+02
 1.73e+02
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 ...
 1.88e+02
 1.87e+02
 1.83e+02

Incanter returns a representation exactly as shown in the preceding example, 
presenting only the top and bottom three rows of the matrix. Matrices can often 
become very large and Incanter takes care not to inundate the REPL with information.

Dimensions
The element in the ith row jth column is referred to as Aij. Therefore, in our  
earlier example:

31 2A =

One of the most fundamental attributes of a matrix is its size. Incanter provides the 
incanter.core/dim, ncol, and nrow functions to query matrices dimensions.

Vectors
A vector is a special case of matrix with only one column. The number of rows in the 
vector are referred to as its dimension:

460
232
315
178

y

 
 
 =
 
 
 

Here, y is a four-dimensional vector. The ith element is referred to as yi.

Vectors in mathematical literature are one-indexed unless otherwise specified.  
So, y1 refers to the first element, not the second. Vectors are generally assigned to 
lowercase variables in equations. Incanter's API doesn't distinguish between vectors 
and single column matrices and we can create a vector by passing a single sequence 
to the incanter.core/matrix function.
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Construction
As we've seen, it's possible to build matrices out of Clojure sequences and Incanter 
datasets. It's also possible to build matrices out of smaller building blocks, provided 
the dimensions are compatible. Incanter provides the incanter.core/bind-
columns and incanter.core/bind-rows functions to stack matrices above one 
another or side by side.

For example, we could add a column of 1s to the front of another matrix in the 
following way:

(defn add-bias [x]
  (i/bind-columns (repeat (i/nrow x) 1) x))

In fact, we'll want to do this for our bias term. Recall that β1 will represent  
a constant value, so we must ensure that our corresponding x1 is constant too. 
Without the bias term, y would have to be zero when the values of x are zero.

Addition and scalar multiplication
A scalar is a name for a simple number. When we add a scalar to a matrix, it's as if 
we added the number to each element of the matrix, individually. Incanter provides 
the incanter.core/plus function to add scalars and matrices together.

Matrix-matrix addition works by adding the elements in each corresponding 
position. Only matrices of the same dimensions can be added together. If the 
matrices are of the same dimensions, they are said to be compatible.

1 0 4 0.5 5 0.5
2 5 2 5 4 10
3 1 0 1 3 2

     
     + =     
          

The plus function will also add compatible matrices. The minus function will 
subtract scalars or compatible matrices. Multiplying a matrix by a scalar results  
in each of the elements in the matrix being multiplied by the scalar.

1 0 3 0
3 2 5 6 15

3 1 9 3

   
   × =   
      

The incanter.core/mult performs matrix-scalar multiplication, while incanter.
core/div performs the inverse.
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We can also use mult and div on compatible matrices, but this element-wise method 
of multiplying and dividing is not what we normally intend to do when we speak of 
matrix multiplication.

Matrix-vector multiplication
The standard way to multiply matrices is handled by the incanter.core/mmult 
function, which applies the complex matrix multiplication algorithm. For example, the 
result of multiplying a 3 x 2 matrix with a 2 x 1 matrix is a 3 x 1 matrix. The number of 
columns on the left has to match the number of rows on the right of the multiplication:

1 3
0 4
2 1

A
 
 =  
  

1
5

x  
=  
 

1 3 1 1 3 5 16
1

0 4 0 1 4 5 20
5

2 1 2 1 1 5 7
Ax

× + ×     
      = = × + × =            × + ×     

To get Ax, multiply each row of A element-by-element with the corresponding 
element of x and sum the results. For example, the first row of matrix A contains the 
elements 1 and 3. These are multiplied pairwise by the elements in vector x: 1 and 5. 
Then, the products are added together to produce 16. This is called the dot product 
and is what is commonly intended by matrix multiplication.

Matrix-matrix multiplication
Matrix-matrix multiplication proceeds very similarly to matrix-vector multiplication. 
The sum of the products is taken pairwise, row by row and column by column, from 
the corresponding elements of matrices A and B.

1 3
0 4
2 1

A
 
 =  
  



Correlation

[ 144 ]

1 0
5 6

B  
=  
 

1 3 1 1 3 5 1 0 3 6 16 18
1 0

0 4 0 1 4 5 0 0 4 6 20 24
5 6

2 1 2 1 1 5 2 0 1 6 7 6
AB

× + × × + ×     
      = = × + × × + × =            × + × × + ×     

As before, we can only multiply matrices together when the number of columns in 
the first matrix is equal to the number of rows in the second matrix. If the first matrix 
A is of dimensions A Am n×  and the second matrix B is of dimensions B Bm n× , nA and 
mB must be equal if the matrices are to be multiplied.

In the previous visual example:

1,1 1,1 1,2 2,1 1,1a b a b c+ =

2,1 1,2 2,2 2,2 2,2a b a b c+ =

Luckily, we don't have to remember the process ourselves. Incanter uses very 
efficient algorithms to perform matrix algebra for us.
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Transposition
Transposing a matrix means flipping the matrix over the main diagonal running 
from the top-left to the bottom-right corner. The transpose of matrix A is represented 
as AT:

1 0 2
3 4 1

TA  
=  
 

The columns and rows have been changed such that:

T
ij jiA A=

Therefore, if:

31 2A =

Then:

13 2TA =

Incanter provides the incanter.core/trans function to transpose a matrix.

The identity matrix
Certain matrices have special properties and are used regularly in matrix algebra. 
One of the most important of these is the identity matrix. It's a square matrix with  
ones along the main diagonal and zeros everywhere else:

1 0 0
0 1 0

0
0 0 0 1

 
 
 
 
 
 

�
�

� � �

The identity matrix is the identity for matrix multiplication. As with a scalar 
multiplication by the number one, a matrix multiplication by the identity  
matrix has no effect.
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Incanter provides the incanter.core/identity-matrix function to construct 
identity matrices. Since they're always square, we only provide a single argument 
corresponding to both, the width and height.

Inversion
If we have a square matrix A, the inverse of A is denoted as A-1 and it will have the 
following properties, where I is the identity matrix:

1 1 1A A A A− −× = × =

The identity matrix is its own inverse. Not all matrices are invertible and 
noninvertible matrices are also called singular or degenerate matrices. We can 
calculate the inverse of a matrix with the incanter.core/solve function. solve  
will raise an exception if passed a singular matrix.

The normal equation
Now that we've covered the basics of matrix and vector manipulation we're in a 
position to study the normal equation. This is an equation that uses matrix algebra 
to calculate the coefficients of our OLS linear regression model:

( ) 1T TX X X yβ
−

=

We read "to find β, multiply the inverse of X transpose X, by X transpose y" where X 
is the matrix of independent variables (including the intercept term) for our sample 
and y is a vector containing the dependent variables for our sample. The result β 
contains the calculated coefficients. This normal equation is relatively easy to derive 
from the equation of multiple regression, applying the rules of matrix multiplication, 
but the mathematics is beyond the scope of this book.

We can implement the normal equation with Incanter using only the functions we 
have just encountered:

(defn normal-equation [x y]
  (let [xtx  (i/mmult (i/trans x) x)
        xtxi (i/solve xtx)
        xty  (i/mmult (i/trans x) y)]
    (i/mmult xtxi xty)))
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This normal equation expresses the mathematics of least squares linear regression in 
a very succinct way. We can use it as follows (remembering to add the bias term):

(defn ex-3-18 []
  (let [data (swimmer-data)
        x (i/matrix (i/$ "Height, cm" data))
        y (i/matrix (i/log (i/$ "Weight" data)))]
    (normal-equation (add-bias x) y)))

This yields the following matrix:

 A 2x1 matrix
 -------------
 1.69e+00
 1.43e-02

These are the values of β1 and β2 corresponding to the intercept and slope parameters. 
Happily, they agree with the values we calculated previously.

More features
Part of the strength of the normal equation is that we've now implemented 
everything we need in order to support multiple linear regression. Let's write  
a function to convert the features of interest to a matrix:

(defn feature-matrix [col-names dataset]
  (-> (i/$ col-names dataset)
      (i/to-matrix)))

This function will allow us to select specific columns as a matrix in one step.

A feature is a synonym for an independent variable and is popularly 
used in machine learning. Other synonyms are predictor, regressor, 
and explanatory variable, or simply input variable.

To start with, let's select height and age as our two features:

(defn ex-3-19 []
  (feature-matrix ["Height, cm" "Age"] (swimmer-data)))

This returns the following matrix of two columns:

A 859x2 matrix
 ---------------
 1.66e+02  2.30e+01
 1.92e+02  2.20e+01
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 1.73e+02  2.00e+01
 ...
 1.88e+02  2.40e+01
 1.87e+02  1.90e+01
 1.83e+02  2.20e+01

Our normal equation function will accept this new matrix without any further change:

(defn ex-3-20 []
  (let [data (swimmer-data)
        x (->> data
                (feature-matrix ["Height, cm" "Age"])
                (add-bias))
        y (->> (i/$ "Weight" data)
                (i/log)
                (i/matrix))]
    (normal-equation x y)))

It will return the following coefficients:

 A 3x1 matrix
 -------------
 1.69e+00
 1.40e-02
 2.80e-03

These three numbers correspond to the intercept, the slope for height, and the slope 
for age, respectively. To determine whether our model has significantly improved by 
this new data, we could calculate the R2 value of our new model and compare it to 
the earlier one.

Multiple R-squared
While calculating R2 previously, we saw how it was the amount of variance 
explained by the model:

( )
( )

2 var
1

var y
R

ε
= −
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Since the variance is the mean squared error, we can multiply both the var(ε) and 
var(y) terms by the sample size and arrive at the following alternative equation  
for R2:

( )
( )

2
2

2

ˆ
1

ˆ

y y
R

y y

−
= −

−
∑
∑

This is simply the sum of squared residuals over the sum of squared differences from 
the mean. Incanter contains the incanter.core/sum-of-squares function  
that makes this very simple to express:

(defn r-squared [coefs x y]
   (let [fitted      (i/mmult x coefs)
         residuals   (i/minus y fitted)
         differences (i/minus y (s/mean y))
         rss         (i/sum-of-squares residuals)
         ess         (i/sum-of-squares differences)]
     (- 1 (/ rss ess))))

We use the variable names rss for residual sum of squares and ess for explained 
sum of squares. We can calculate the matrix R2 for our new model as follows:

(defn ex-3-21 []
  (let [data (swimmer-data)
        x (->> (feature-matrix ["Height, cm" "Age"] data)
               (add-bias))
        y (->> (i/$ "Weight" data)
               (i/log)
               (i/matrix))
        beta (normal-equation x y)]
    (r-squared beta x y)))

This yields the value 0.757. Our R2 value has increased by a small amount by 
including the age value. Because we have used multiple independent variables,  
R2 is now called the coefficient of multiple determination.

Adjusted R-squared
As we add more independent variables to our regression, we might be encouraged 
by the fact that our R2 value always increases. Adding a new independent variable 
isn't going to make it harder to predict the dependent variable—if the new variable 
has no explanatory power, then its coefficient will simply be zero and the R2 will 
remain the same as it was without the independent variable.
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However, this doesn't tell us whether a model has been improved by the addition of 
a new variable. If we want to know whether our new variable is really helping it to 
generate a better fit, we can use the adjusted R2, often written as 2R  and pronounced 
as "R-bar squared." Unlike R2, 2R  will only increase if the new independent variable 
increases R2 more than would be expected due to chance:

(defn matrix-adj-r-squared [coefs x y]
  (let [r-squared (matrix-r-squared coefs x y)
        n (count y)
        p (count coefs)]
    (- 1
       (* (- 1 r-squared)
          (/ (dec n)
             (dec (- n p)))))))

The adjusted R2 depends on two additional parameters, n and p, corresponding to 
the sample size and number of model parameters, respectively:

(defn ex-3-22 []
  (let [data (swimmer-data)
        x (->> (feature-matrix ["Height, cm" "Age"] data)
               (add-bias))
        y (->> (i/$ "Weight" data)
               (i/log)
               (i/matrix))
        beta (normal-equation x y)]
    (adj-r-squared beta x y)))

This example returns a value of 0.756. This is still greater than the original model,  
so age certainly carries some explanatory power.

Incanter's linear model
While implementing our own version of the normal equation and R2 provides a 
valuable opportunity to introduce matrix algebra, it's important to note that Incanter 
provides the incanter.stats/linear-model function that does everything we've 
covered and more.

The function expects to be called with y and x (as either sequences or, in the case of 
multiple regression, matrices). We can also pass in an optional keyword argument—
intercept with a Boolean value—indicating whether we'd like Incanter to add the 
intercept term for us. The function will return a map containing the coefficients of 
the linear model—:coefs and the fitted data—:fitted, as well as :residuals, 
:r-square, and :adj-r-square, amongst others.
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It will also return significance tests and 95 percent confidence intervals for the 
coefficients as the :t-probs and :coefs-ci keys, respectively, as well as the 
:f-prob keys, corresponding to a significance test on the regression model as  
a whole.

The F-test of model significance
The :f-prob key returned by linear-model is a significance test of the entire model 
using an F-test. As we discovered in the previous chapter, an F-test is appropriate 
when performing multiple significance tests at once. In the case of multiple linear 
regression, we are testing whether any of the coefficients of the model, except for the 
intercept term, are statistically indistinguishable from zero.

Our null and alternate hypotheses are therefore:

0 2: 0nH θ θ= = =�

1 : 0jH θ =/

Here, j is some index in the parameter's vector excluding the intercept. The F-statistic 
we calculate is the ratio of explained variance over the unexplained (residual) 
variance. This can be expressed as the mean square model (MSM) over the mean 
square error (MSE):

MSMF
MSE

=

The MSM is equal to the explained sum of squares (ESS) divided by the model 
degree of freedom, where the model degree of freedom is the number of parameters 
in the model excluding the intercept term. The MSE is equal to the sum of residual 
squares (RSS) divided by the residual degree of freedom, where the residual degree 
of freedom is the size of the sample minus the number of model parameters.

Once we've calculated the F-statistic, we look it up in an F-distribution 
parameterized by the same two degrees of freedom:

(defn f-test [y x]
  (let [coefs       (normal-equation x y)
        fitted      (i/mmult x coefs)
        difference  (i/minus fitted (s/mean y))
        residuals   (i/minus y fitted)
        ess         (i/sum-of-squares difference)
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        rss         (i/sum-of-squares residuals)
        p           (i/ncol x)
        n           (i/nrow y)
        df1         (- p 1)
        df2         (- n p)
        msm         (/ ess df1)
        mse         (/ rss df2)
        f-stat      (/ msm mse)]
    (s/cdf-f f-stat :df1 df1 :df2 df2 :lower-tail? false)))

(defn ex-3-23 []
  (let [data (swimmer-data)
        x (->> (feature-matrix ["Height, cm" "Age"] data)
               (add-bias))
        y (->> (i/$ "Weight" data)
               (i/log))
        beta (:coefs (s/linear-model y x :intercept false))]
    (f-test beta x y)))

The test returns a result of 1.11x10e-16. This is a tiny number; as a result, we can be 
certain that the model is significant.

Note that with smaller samples of data, the F-test quantifies increasing uncertainty 
that a linear model is appropriate. With a random sample of five, for example, the 
data sometimes shows barely any linear relationship at all and the F-test judges the 
data insignificant at even a 50 percent confidence interval.

Categorical and dummy variables
We might attempt at this point to include "Sex" as a feature in our regression 
analysis, but we'll encounter a problem. The input is expressed as "M" or "F" rather 
than a number. This is an example of a categorical variable: a variable that can take 
one of a finite set of values that are unordered and (usually) not numeric. Other 
examples of categorical variables are the sport that the athlete participates in or the 
particular event in which they are most proficient.

Ordinary least squares relies on a numerical value of residual distance to minimize. 
What could the numeric distance between swimming and athletics be? This might 
imply that it is impossible to include categorical variables in our regression equation.
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Categorical or nominal variables are distinct from continuous 
variables, because they don't sit on the number line. Sometimes 
categories are represented by numbers like for ZIP codes, but we 
shouldn't assume that numeric categories are necessarily ordered 
or that the interval between categories are equal.

Fortunately, many categorical variables can be considered dichotomies and, in 
fact, our sample data contains two categories for sex. These can be included in our 
regression model provided we transform them into two numbers, for example, zero 
and one.

When a category such as sport takes on more than two values, we could include 
an independent variable for each type of sport. We would create a variable for 
swimming and another for weightlifting, and so on. The value of swimming  
would be one for swimmers and zero otherwise.

Since sex might be a useful explanatory variable for our regression model, let's 
convert female to 0 and male to 1. We can add a derived column containing our 
dummy variable using Incanter's incanter.core/add-derived-column function.

Let's calculate our 2R  value to see if it has improved:

(defn dummy-mf [sex]
  (if (= sex "F")
    0.0 1.0))

(defn ex-3-25 []
  (let [data (->> (swimmer-data)
                  (i/add-derived-column "Dummy MF"
                                        ["Sex"]
                                        dummy-mf))
        x (->> data
               (feature-matrix ["Height, cm"
                                "Age"
                                "Dummy MF"])
               (add-bias))
        y (->> (i/$ "Weight" data)
               (i/log)
               (i/matrix))
        beta (normal-equation x y)]
    (adj-r-squared beta x y)))

The code yields the value 0.809. Using the height, age, and gender features,  
we have successfully explained over 80 percent of the variance in weight of  
our Olympic swimmers.
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Relative power
At this point, it might be useful to ask what is the most important feature to explain 
the observed weight: is it age, gender, or height? We could make use of our adjusted 
R2 and see how much the value changes, but this would require us to re-run the 
regression for each variable we want to test.

We can't look at the magnitude of the coefficients, because the ranges of the data 
they apply to are vastly different: height in centimeters, age in years, and gender 
measured as a dummy variable in the range zero to one.

In order to compare the relative contributions of the coefficients, we can calculate the 
standardized regression coefficient, or beta weight.

( )
i

ii adj
x
y

σβ β
σ

=

To calculate the beta weight we multiply each coefficient by the ratio of the standard 
deviations for the associated independent variable and the model's dependent 
variable. This can be accomplished with the following Clojure code:

(defn beta-weight [coefs x y]
  (let [sdx (map s/sd (i/trans x))
        sdy (s/sd y)]
    (map #(/ (* %1 %2) sdy) sdx coefs)))

(defn ex-3-26 []
  (let [data (->> (swimmer-data)
                  (i/add-derived-column "Dummy MF"
                                        ["Sex"]
                                        dummy-mf))
        x (->> data
               (feature-matrix ["Height, cm"
                                "Age"
                                "Dummy MF"])
               (add-bias))
        y (->> (i/$ "Weight" data)
               (i/log)
               (i/matrix))
        beta (normal-equation x y)]
    (beta-weight beta x y)))
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This outputs (rounded to three decimal places):

(0.0 0.650 0.058 0.304)

This indicates that height is the most important explanatory variable, followed by 
gender and then age. Transforming it into standardized coefficients tells us that  
with an increase of one standard deviation in height, the mean weight increases  
by 0.65 standard deviations.

Collinearity
We might try at this point to keep adding features to our model in an attempt to 
increase its explanatory power.

For example, we also have a "Date of birth" column and we may be tempted to 
try and include this too. It is a date, but we could easily convert it into a number 
suitable for use in regression. We could do this simply by extracting the year from 
their birth date using the clj-time library:

(defn to-year [str]
  (-> (coerce/from-date str)
      (time/year)))

(defn ex-3-27 []
  (let [data (->> (swimmer-data)
                  (i/add-derived-column "Dummy MF"
                                        ["Sex"]
                                        dummy-mf)
                  (i/add-derived-column "Year of birth"
                                        ["Date of birth"]
                                        to-year))
        x (->> data
               (feature-matrix ["Height, cm"
                                "Age"
                                "Dummy MF"
                                "Year of birth"])
               (add-bias))
        y (->> (i/$ "Weight" data)
               (i/log)
               (i/matrix))
        beta (normal-equation x y)]
    (beta-weight beta x y)))

;; (-0.0 0.650 0.096 0.304 0.038)
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The new "Year of Birth" feature has a beta weight of only 0.038, less than the  
weight of the age feature we calculated earlier. However, the age weight of the age 
feature is now showing a value of 0.096. Its relative importance has increased by 
over 65 percent since we added "Year of birth" as a feature. The fact that the 
addition of a new feature has altered the importance of an existing feature indicates 
that we have a problem.

By including the additional "Year of birth" parameter, we have inadvertently 
broken a rule of the regression estimator. Let's see why:

(defn ex-3-28 []
  (let [data (->> (swimmer-data)
                  (i/add-derived-column "Year of birth"
                                        ["Date of birth"]
                                        to-year))
        x (->> (i/$ "Age" data)
               (map (jitter 0.5)))
        y (i/$ "Year of birth" data)]
    (-> (c/scatter-plot x y
                        :x-label "Age"
                        :y-label "Year of birth")
        (i/view))))

The following scatter plot shows the age of swimmers (with jittering) plotted against 
their year of birth. As you would expect, the two variables are very closely correlated:
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The two features are so highly correlated that the algorithm is unable to determine 
which of them best explains the observed changes in y. This is an undesirable issue 
when we deal with multivariate linear regression called collinearity.

Multicollinearity
For multiple regression to produce the best coefficient estimates, the underlying data 
must conform to the same assumptions as simple regression plus one additional 
assumption— the absence of perfect multicollinearity. This means that the 
independent variables should not be exactly linearly correlated with each other.

In practice, independent variables are often collinear in some way. 
Consider, for example, that age and height or gender and height are 
themselves correlated with each other. It's only when this condition 
becomes extreme that serious coefficient errors can arise.

If the independent variables are, in fact, not independent, then linear regression can't 
determine the relative contribution of each independent variable. If two features 
are so strongly correlated that they always vary together, how can the algorithm 
distinguish their relative importance? As a result, there may be high variance in the 
coefficient estimates and a high standard error.

We've already seen one symptom of high multicollinearity: regression coefficients 
that change significantly when independent variables are added or removed from 
the equation. Another symptom is when there is an insignificant coefficient in a 
multiple regression for a particular independent variable, but a substantial R2 for  
the simple regression model using the same independent variable.

While these offer clues of multicollinearity, to confirm, we must look directly 
at the intercorrelation of the independent variables. One way to determine the 
intercorrelation is to examine the correlation between each of the independent 
variables, looking for coefficients of 0.8 or more. While this simple approach often 
works, it may fail to take into account situations where an independent variable has 
a linear relationship with the other variables taken together.

The surest method to assess multicollinearity is to regress each independent variable 
on all the other independent variables. When any of the R2 from these equations is 
near 1.0, there is high-multicollinearity. In fact, the largest of these R2 serves as an 
indicator of the degree of multicollinearity that exists.
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Once identified, there are several ways to address multicollinearity:

• Increase the sample size. More data can produce more precise parameter 
estimates with smaller standard errors.

• Combine the features into one. If you have several features that measure 
essentially the same attribute, find a way to unify them into a single feature.

• Discard the offending variable(s).
• Limit the equation of prediction. Collinearity affects the coefficients of the 

model, but the result may still be a good fit for the data.

Since age and year of birth carry essentially the same information, we may as well 
discard one. We can easily see which of the two contains more explanatory power by 
calculating the bivariate regression for each feature and the dependent variable.

"Age" R2 = 0.1049, whereas "Year of birth" R2 = 0.1050.

As expected, there is virtually no difference between the two features, both 
explaining around 10 percent of the variance in weight. Since the year of birth 
marginally explains marginally more of the variance, we'll keep it and discard  
the age feature.

Prediction
Finally, we arrive at one of the most important uses of linear regression: prediction. 
We've trained a model capable of predicting the weight of Olympic swimmers given 
the data about their height, gender, and year of birth.

Mark Spitz is a nine-time Olympic swimming champion, and he won seven gold 
medals at the 1972 Olympics. He was born in 1950 and, according to his Wikipedia 
page, is 183cm tall and weighs 73kg. Let's see what our model predicts as his weight.

Our multiple regression model requires these values to be presented as a matrix 
form. Each of the parameters needs to be provided in the order in which the model 
learned the features so that the correct coefficient is applied. After the bias term, our 
feature vector needs to contain height, gender, and year of birth in the same units as 
our model was trained:

1.0
183

1
1950

spitzx

 
 
 =
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Our β matrix contains the coefficients for each of these features:

6.90
0.011
0.097
0.002

β

 
 
 ≈
 
 − 

The prediction of our model will be the sum of the products of the β coefficients and 
features x for each row:

0

ˆ
n

i i
i

y xβ
=

=∑

Since matrix multiplication produces each element by adding up the products of the 
rows and columns of each matrix respectively, producing our result is as simple as 
multiplying the transpose of β with the xspitz vector.

Recall that the dimensions of the resulting matrix will be the number of rows from 
the first matrix and the number of columns from the second matrix:

ˆ Ty xβ=

T xβ  is a product of a 1 n×  matrix and an 1n×  matrix. The result is a 1 1×  matrix:



Correlation

[ 160 ]

Calculating this in code is very simple:

(defn predict [coefs x]
  (-> (i/trans coefs)
      (i/mmult x)
      (first)))

We call first to return the first (and only) element from the matrix rather than the 
matrix itself:

(defn ex-3-29 []
  (let [data (->> (swimmer-data)
                  (i/add-derived-column "Dummy MF"
                                        ["Sex"]
                                        dummy-mf)
                  (i/add-derived-column "Year of birth"
                                        ["Date of birth"]
                                        to-year))
        x (->> data
               (feature-matrix ["Height, cm"
                                "Dummy MF"
                                "Year of birth"])
               (add-bias))
        y (->> (i/$ "Weight" data)
               (i/log)
               (i/matrix))
        beta (normal-equation x y)
        xspitz (i/matrix [1.0 183 1 1950])]
    (i/exp (predict beta xspitz))))

This returns 84.21, corresponding to a expected weight of 84.21 kg. This is much 
heavier than Mark Spitz's reported weight of 73 kg. Our model doesn't appear to 
have performed very well.

The confidence interval of a prediction
We previously calculated confidence intervals for population parameters.  
It's also possible to construct confidence intervals for a specific prediction called 
prediction interval. The prediction interval quantifies the amount of uncertainty  
in the prediction by providing a minimum and a maximum value between which  
the true value is expected to fall with a certain probability.
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The prediction interval for ŷ  is wider than the confidence interval for a population 
parameter such as µ, the mean. This is because the confidence interval simply needs 
to account for our uncertainty in estimating the mean, while the prediction interval 
must also take into account the variance of y from the mean.

The previous image shows the relationship between the outer prediction interval  
and the inner confidence interval. We can calculate the prediction interval using  
the following formula:

( )( )12
/2,ˆ 1 T T

p n p p py t x X X xα σ
−

−± +

Here, ˆ py  is the prediction, plus or minus the interval. We're making use of the 
t-distribution, where the degree of freedom is n p− , the sample size minus the 
number of parameters. This is the same as we calculated for the F-test previously. 
While the formula may look intimidating, it's relatively straightforward to translate 
into the code shown in the following example, which calculates the 95 percent 
prediction interval:

 (defn prediction-interval [x y a]
  (let [xtx    (i/mmult (i/trans x) x)
        xtxi   (i/solve xtx)
        xty    (i/mmult (i/trans x) y)
        coefs  (i/mmult xtxi xty)
        fitted (i/mmult x coefs)
        resid  (i/minus y fitted)
        rss    (i/sum-of-squares resid)
        n      (i/nrow y)
        p      (i/ncol x)
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        dfe    (- n p)
        mse    (/ ssr dfe)
        se-y   (first (i/mmult (i/trans a) xtxi a))
        t-stat (i/sqrt (* mse (+ 1 se-y)))]
    (* (s/quantile-t 0.975 :df dfe) t-stat)))

Since the t-statistic is parameterized by the degree of freedom of the error, it takes 
into account the uncertainty present in the model.

If we'd like to calculate the confidence interval for the mean instead of the prediction 
interval, we can simply omit the addition of one to se-y while calculating t-stat.

The preceding code can be used to generate the following chart, showing how the 
prediction interval varies with the value of the independent variable:

In the preceding graph, a model trained on a sample size of five shows how the 
95 percent prediction interval increases as we move further from the mean height. 
Applying the previous formula to Mark Spitz yields the following:

(defn ex-3-30 []
  (let [data (->> (swimmer-data)
                  (i/add-derived-column "Dummy MF"
                                        ["Sex"]
                                        dummy-mf)
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                  (i/add-derived-column "Year of birth"
                                        ["Date of birth"]
                                        to-year))
        x (->> data
               (feature-matrix ["Height, cm"
                                "Dummy MF"
                                "Year of birth"])
               (add-bias))
        y (->> (i/$ "Weight" data)
               (i/log)
               (i/matrix))
        xspitz (i/matrix [1.0 183 1 1950])]
    (i/exp (prediction-interval x y xspitz))))

This returns the range from 72.7 kg to 97.4 kg. This range just includes Mark's  
weight of 73 kg, so our prediction is within the 95 percent prediction interval.  
It's uncomfortably close to the bounds though.

Model scope
Mark Spitz was born in 1950, decades before even the oldest swimmer in the  
2012 Olympic Games. By trying to predict Mark's weight using his year of birth, 
we're guilty of trying to extrapolate too far beyond our training data. We have 
exceeded the scope of our model.

There is a second way in which this is problematic. Our data was based entirely  
on swimmers currently competing at international standard, whereas Mark has not 
competed for many years. In other words, Mark is now not a part of the population 
we have trained our model on. To fix both of these problems, we need to look up 
Mark's details from 1979, when he was a competition swimmer.

According to http://www.topendsports.com/athletes/swimming/spitz-mark.htm, 
in 1972, 22-year-old Mark Spitz was 185 cm tall and he weighed 79 kg.

Selecting the right features is one of the most important prerequisites 
to get good results from any predictive algorithm.

You should strive to select features not only on the basis of their predictive power, 
but also on their relevance to the domain being modeled.
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The final model
Although it has a slightly lower R2, let's retrain our model with age in place of year 
of birth as a feature. This will allow us to easily predict weights for past and future 
unseen data, as it models more closely the variable we suspect of having a causal 
relationship with weight.

This yields β of approximately:

2.230
0.011
0.097
0.002

β
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 − 

Our features for Mark in the 1972 games are:

1.0
185

1
22

spitzx

 
 
 =
 
 
 

We can use them to predict his competitive weight with the following code:

(defn ex-3-32 []
  (let [data (->> (swimmer-data)
                  (i/add-derived-column "Dummy MF"
                                        ["Sex"]
                                        dummy-mf))
        x (->> data
               (feature-matrix ["Height, cm"
                                "Dummy MF"
                                "Age"])
               (add-bias))
        y (->> (i/$ "Weight" data)
               (i/log)
               (i/matrix))
        beta (normal-equation x y)
        xspitz (i/matrix [1.0 185 1 22])]
    (i/exp (predict beta xspitz))))
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This returns 78.47, corresponding to a prediction of 78.47 kg. This is now very close 
to Mark's true competition weight of 79 kg.

Summary
In this chapter, we've learned about how to determine whether two or more 
variables share a linear relationship. We've seen how to express the strength of  
their correlation with r and how well a linear model explains the variance with R2 
and 2R . We've also performed hypothesis tests and calculated confidence intervals  
to infer the range of the true population parameter for correlation, ρ .

Having established a correlation between variables, we were able to build a 
predictive model using ordinary least squares regression and simple Clojure 
functions. We then generalized our approach using Incanter's matrix functionality 
and the normal equation. This simple model demonstrated the principles of machine 
learning by determining the model parameters β, inferred from our sample data, 
that could be used to make predictions. Our model was able to predict an expected 
weight for a new athlete that fell well within the prediction interval of the true value.

In the next chapter, we'll see how similar techniques can be used to classify  
data into discrete classes. We'll demonstrate a variety of different approaches 
particular to classification as well as introduce a very general technique for 
parameter optimization that works for a variety of machine learning models, 
including linear regression.
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Classification
"It is a truth universally acknowledged, that a single man in possession of a good 
fortune, must be in want of a wife."

                                                                      – Jane Austen, Pride and Prejudice

In the previous chapter, we learned how to make numeric predictions using linear 
regression. The model we built was able to learn how the features of Olympic 
swimmers related to their weight and we were able to use the model to make a 
weight prediction for a new swimmer. As with all regression techniques, our output 
was a number.

Not all predictions demand a numeric solution, though—sometimes we want our 
predictions to be items. For example, we may want to predict which candidate a 
voter will back in an election. Or we may want to know which of several products 
a customer is likely to buy. In these cases, the outcome is a selection from one of a 
number of possible discrete options. We call these options classes, and models we'll 
build in this chapter are classifiers.

We'll learn about several different types of classifier and compare their performance 
on a sample dataset—the list of passengers from the Titanic. Prediction and 
classification are intimately connected to theories of probability and information, 
and so we'll cover these in more detail too. We'll begin the chapter with ways of 
measuring relative probabilities between groups and move then on to applying 
statistical significance testing to the groups themselves.
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About the data
This chapter will make use of data about the passengers on the Titanic, which 
famously sank on her maiden voyage in 1912 after hitting an iceberg. The survival 
rates of passengers were strongly affected by a variety of factors, including class  
and sex.

The dataset is derived from a painstakingly compiled dataset produced by Michael 
A. Findlay. For more information about how the data was derived, including links to 
original sources, consult the book's wiki at http://wiki.clojuredatascience.com.

The example code for this chapter is available from Packt Publishing's 
website or from https://github.com/clojuredatascience/ch4-
classification.

The data is small enough to have been included together with the source code in the 
data directory.

Inspecting the data
We encountered categorical variables in the previous chapter as the dichotomous 
variable "sex" in the athlete dataset. That dataset also contained many other 
categorical variables including "sport", "event", and "country".

Let's take a look at the Titanic dataset (using the clojure.java.io library to access 
the file resource and the incanter.io library to read it in):

(defn load-data [file]
  (-> (io/resource file)
      (str)
      (iio/read-dataset :delim \tab :header true)))

(defn ex-4-1 []
  (i/view (load-data :titanic)))

http://wiki.clojuredatascience.com
https://github.com/clojuredatascience/ch4-classification
https://github.com/clojuredatascience/ch4-classification
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The preceding code generates the following table:

The Titanic dataset includes categorical variables too. For example—:sex, :pclass 
(the passenger class), and :embarked (a letter signifying the port of boarding). These 
are all string values, taking categories such as female, first, and C, but classes don't 
always have to be string values. Columns such as :ticket, :boat, and :body can be 
thought of as containing categorical variables too. Despite having numeric values, 
they are simply labels that have been applied to things.

A categorical variable is one that can take on only a discrete 
number of values. This is in contrast to a continuous 
variable that can take on any value within its range.

Other numbers representing counts are not so easy to define. The field :sibsp reports 
how many companions (spouse or siblings) were traveling with a passenger. These 
are counts, and their units are people. But they could just as easily represent labels, 
with 0 standing for "a passenger with no companions" and 1 "a passenger with 
one companion", and so on. There are only a small set of labels, and so the field's 
representation as a number is largely convenience. In other words, we could choose 
to represent :sibsp (and :parch—a count of related parents and children) as either 
categorical or numerical features.

Since categorical variables don't make sense on the number line, we can't plot a chart 
showing how these numbers relate to each other. We can construct a frequency table, 
though, showing how the counts of passengers in each of the groups are distributed. 
Since there are two sets of two variables, there are four groups in total.
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The data can be summarized using Incanter core's $rollup function:

(defn frequency-table [sum-column group-columns dataset]
  (->> (i/$ group-columns dataset)
       (i/add-column sum-column (repeat 1))
       (i/$rollup :sum sum-column group-columns)))

(defn ex-4-2 []
  (->> (load-data "titanic.tsv")
       (frequency-table :count [:sex :survived])))

Incanter's $rollup requires that we provide three arguments—a function with which 
to "roll up" a group of rows, a column to roll up, and the columns whose unique 
values define the groups of interest. Any function that reduces a sequence to a single 
value can be used as a rollup function, but some are so common we can supply the 
keywords :min, :max, :sum, :count, and :mean instead.

The example generates the following table:

| :survived |   :sex | :count |
|-----------+--------+--------|
|         n |   male |    682 |
|         n | female |    127 |
|         y |   male |    161 |
|         y | female |    339 |

This chart represents the frequencies of passengers falling into the various groups 
"males who perished", "females who survived", and so on. There are several ways  
of making sense of frequency counts like this; let's start with the most common.

Comparisons with relative risk and odds
The preceding Incanter dataset is an easily comprehensible representation of our 
data, but to extract the numbers for each of the groups individually we'll want to 
store the data in a more readily accessible data structure. Let's write a function to 
convert the dataset to a series of nested maps:

(defn frequency-map [sum-column group-cols dataset]
  (let [f (fn [freq-map row]
            (let [groups (map row group-cols)]
              (->> (get row sum-column)
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                   (assoc-in freq-map groups))))]
    (->> (frequency-table sum-column group-cols dataset)
         (:rows)
         (reduce f {}))))

For example, we can use the frequency-map function as follows to calculate a nested 
map of :sex and :survived:

(defn ex-4-3 []
  (->> (load-data "titanic.tsv")
       (frequency-map :count [:sex :survived])))

;; => {"female" {"y" 339, "n" 127}, "male" {"y" 161, "n" 682}}

More generally, given any dataset and sequence of columns, this will make it easier to 
pull out just the counts we're interested in. We're going to be comparing the survival 
rates of males and females, so let's use Clojure's get-in function to extract the number 
of fatalities for men and women as well as the overall counts of men and women:

(defn fatalities-by-sex [dataset]
  (let [totals (frequency-map :count [:sex] dataset)
        groups (frequency-map :count [:sex :survived] dataset)]
    {:male (/ (get-in groups ["male" "n"])
              (get totals "male"))
     :female (/ (get-in groups ["female" "n"])
                (get totals "female"))}))

(defn ex-4-4 []
  (-> (load-data "titanic.tsv")
      (fatalities-by-sex)))

;; {:male 682/843, :female 127/466}

From these numbers, we can calculate simple ratios. Relative risk is a ratio of 
probabilities of an event occurring in two separate groups:

( )
( )

P event in group 
P event in group 

A
RR

B
=

682
843 2.97127
466

RR = =
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Where P(event) is the probability of the event occurring. The risk of perishing on the 
Titanic as a male was 682 divided by 843; the risk of perishing on the Titanic as a 
female was 127 divided by 466:

(defn relative-risk [p1 p2]
  (float (/ p1 p2)))

(defn ex-4-5 []
  (let [proportions (-> (load-data "titanic.tsv")
                        (fatalities-by-sex))]
    (relative-risk (get proportions :male)
                   (get proportions :female))))
;; 2.9685

In other words, the risk of perishing on the Titanic was almost three times higher 
if you were a man. The relative risk is often used in healthcare to show how one's 
chances of developing an illness are affected by some other factor. A relative risk of 
one means that there is no difference in risk between the groups.

In contrast, the odds ratio can be either positive or negative and measures the extent 
to which being in a group raises your odds of some other attribute. As with any 
correlation, no causation is implied. Both attributes could of course be linked by a 
third property—their mutual cause:

events  in group / events  in group 
events  in group / events  in group 

y A n AOR
y B n B

=

682
161 11.31127
339

OR = =

The odds of perishing as a male are 682:161 and the odds of perishing as a female are 
127:339. The odds ratio is simply the ratio of the two:

(defn odds-ratio [p1 p2]
  (float
   (/ (* p1 (- 1 p2))
      (* p2 (- 1 p1)))))

(defn ex-4-6 []
  (let [proportions (-> (load-data "titanic.tsv")
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                        (fatalities-by-sex))]
    (odds-ratio (get proportions :male)
                (get proportions :female))))
;; 11.3072

This example shows how the odds ratio is sensitive to stating relative positions, and 
can generate much larger numbers.

When presented with ratios, make sure you're aware whether 
they're relative-risk or odds ratios. While the two approaches 
appear similar, they output results over very different ranges.

Compare the two equations for relative risk and odds ratio. The numerators are the 
same in each case but for risk the denominator is all females, whereas with the odds 
ratio it is females who survived.

The standard error of a proportion
It's clear that the proportion of women surviving the Titanic is much greater than  
the proportion of men. But, as with the dwell time differences we encountered in 
Chapter 2, Inference, we should ask ourselves whether these differences could have 
occurred due to chance alone.

We have seen in previous chapters how to construct confidence intervals around 
statistics based on the sample's standard error. The standard error is based on the 
sample's variance, but what is the variance of a proportion? No matter how many 
samples we take, only one proportion will be generated—the proportion in the 
overall sample.

Clearly a proportion is still subject to some sort of variance. When we flip a fair coin 
10 times we would expect to get roughly five heads, but there's it's not impossible 
we'd get ten heads in a row.

Estimation using bootstrapping
In Chapter 2, Inference, we learned about bootstrapping statistics such as the mean 
and we saw how bootstrapping can be a useful way of estimating parameters 
through simulation. Let's use bootstrapping to estimate the standard error of the 
proportion of female passengers surviving the Titanic.
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We can represent the 466 female passengers as a sequence of zeros and ones. Zero 
could represent a passenger who perished, and one a passenger who survived. This 
is a convenient representation because it means the sum of the whole sequence 
equals the total number of passengers who survived. By taking repeated random 
samples of 466 elements from this sequence of 466 zeros and ones, and taking the 
sum each time, we can get an estimate of the variance in the proportion:

(defn ex-4-7 []
  (let [passengers (concat (repeat 127 0)
                           (repeat 339 1))
        bootstrap (s/bootstrap passengers i/sum :size 10000)]
    (-> (c/histogram bootstrap
                     :x-label "Female Survivors"
                     :nbins 20)
        (i/view))))

The preceding code generates the following histogram:
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The histogram appears to show a normal distribution with a mean of 339—the 
measured number of female survivors. The standard deviation of this distribution is 
the standard error of the sampled survivors and we can calculate it simply from the 
bootstrapped samples like so:

(defn ex-4-8 []
  (-> (concat (repeat 127 0)
              (repeat 339 1))
      (s/bootstrap i/sum :size 10000)
      (s/sd)))

;; 9.57

Your standard deviation may be slightly different, depending on chance variation in 
the bootstrapped sample. It should be very close, though.

The units of standard deviation are people—female passengers—so to figure  
out the standard error of the proportion we have to divide this through by the 
total number of passengers in our sample, 466. This yields a standard error of the 
proportion of 0.021.

The binomial distribution
The preceding histogram looks a great deal like a normal distribution, but in fact it 
is a binomial distribution. The two distributions are very similar, but the binomial 
distribution is used to model cases where we want to determine how many times a 
binary event is expected to occur.

Let's plot both the binomial and the normal distribution on a histogram to see how 
they compare:

(defn ex-4-9 []
  (let [passengers (concat (repeat 127 0)
                           (repeat 339 1))
        bootstrap (s/bootstrap passengers i/sum :size 10000)
        binomial (fn [x]
                   (s/pdf-binomial x :size 466 :prob (/ 339 466)))
        normal (fn [x]
                 (s/pdf-normal x :mean 339 :sd 9.57))]
    (-> (c/histogram bootstrap
                     :x-label "Female Survivors"
                     :series-label "Bootstrap"
                     :nbins 20
                     :density true



Classification

[ 176 ]

                     :legend true)
        (c/add-function binomial 300 380
                        :series-label "Biomial")
        (c/add-function normal 300 380
                        :series-label "Normal")
        (i/view))))

The preceding code generates the following chart:

Notice how in the preceding chart the line corresponding to the binomial distribution 
is jagged—it represents discrete counts of things rather than a continuous value such 
as the normal distribution.
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The standard error of a proportion formula
We have calculated the standard error empirically and found it to equal 0.021, using 
only the proportion of female survivors and the total number of female passengers. 
Although it's been instructive to see what the standard error of the proportion is 
actually measuring, there is a formula that allows us to get there in one step:

( ) 1p p
SE

n
−

=

Substituting in the counts of female survivors gives us the following:

339 127
466 466 0.0206

466
SE

⋅
= =

Fortunately, this number closely matches the standard error we calculated through 
bootstrapping. It's not exact, of course, since our bootstrapping calculation has its 
own sampling error.

(defn standard-error-proportion [p n]
  (-> (- 1 p)
      (* p)
      (/ n)
      (i/sqrt)))

(defn ex-4-10 []
  (let [survived (->> (load-data "titanic.tsv")
                      (frequency-map :count [:sex :survived]))
        n (reduce + (vals (get survived "female")))
        p (/ (get-in survived ["female" "y"]) n)]
    (se-proportion p n)))

;; 0.0206

The equation for the standard error of a proportion gives us an important insight—
the value of p(1 - p) is greatest when p is close to 0.5. This means that the greatest 
standard error in a proportion is when the proportion is close to a half.
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If this seems surprising to you, consider this—when the proportion is 50 percent, the 
variation in the sample is greatest. Like a fair coin toss, we have no way of predicting 
what the next value will be. As the proportion increases (or decreases) within the 
sample, the data becomes increasingly homogenous. As a result, the variation 
decreases, and so the standard error decreases accordingly.

Significance testing proportions
Let's return to the question of whether the measured differences in male or female 
fatality rates could be due to chance alone. As in Chapter 2, Inference, our z-test is 
simply the difference in proportions divided by the pooled standard error:

1 2p pz
SE
−

=

In the preceding formula, p1 denotes the proportion of women who survived,  
that is, 339/466 = 0.73. And p2 denotes the proportion of men who survived,  
that is, 161/843 = 0.19.

To calculate the z-statistic, we need to pool our standard errors for the two 
proportions. Our proportions measure the survival rates of males and females 
respectively, so the pooled standard error is simply the standard error of the males 
and females combined, or the total survival rate overall, as follows:

500 809
1309 1309 0.013

1309pooledSE
⋅

= =

Substituting the values into the equation for the z-statistic:

 0.73 0.19 39.95
0.013

z −
= =

Using a z-score means we'll use the normal distribution to look up the p-value:

(defn ex-4-11 []
  (let [dataset     (load-data "titanic.tsv")
        proportions (fatalities-by-sex dataset)
        survived    (frequency-map :count [:survived] dataset)
        total  (reduce + (vals survived))
        pooled (/ (get survived "n") total)
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        p-diff (- (get proportions :male)
                  (get proportions :female))
        z-stat (/ p-diff (se-proportion pooled total))]
    (- 1 (s/cdf-normal (i/abs z-stat)))))

;; 0.0

As we have a one-tailed test, the p-value is the probability that the z-score is less 
than 39.95. The response is zero, corresponding to a very, very significant result. 
This allows us to reject the null hypothesis and conclude that the difference between 
survival rates between men and women was certainly not down to chance alone.

Adjusting standard errors for large samples
You may be wondering why we're talking about standard errors at all. The data we 
have on passengers on the Titanic is not a sample of a wider population. It is the 
population. There was only one Titanic and only one fateful journey.

While this is true in one sense, there are many ways in which the Titanic disaster 
could have occurred. If the "women and children first" instructions had not been 
followed or had been followed more universally, a different set of results would  
have been obtained. If there had been enough lifeboats for everyone, or the 
evacuation process had run more smoothly, then this would have been  
represented in the outcome too.

Standard error and significance testing allows us to treat the disaster as one of an 
infinite number of potential similar disasters and determine whether the observed 
differences are likely to have been systemic or purely coincidental.

That said, sometimes we are more interested in how confident we can be that our 
samples are representative of a finite, quantified population. Where samples begin to 
measure more than about 10 percent of the population, we can adjust the standard 
error downwards to account for the decreased uncertainty:

( ) ( )
( )

1
1

p p N n
SE

n N
− −

=
−

This can be written in Clojure as:

(defn se-large-proportion [p n N]
  (* (se-proportion p n)
     (i/sqrt (/ (- N n)
                (- n 1)))))
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Where N is the size of the overall population. As the sample size increases relative 
to the size of the population, (N - n) tends towards zero. If you sample the entire 
population, then any difference in proportion—however small—is going to be 
judged significant.

Chi-squared multiple significance testing
Not all categories are dichotomous (such as male and female, survived and 
perished). Although we would expect categorical variables to have a finite number 
of categories, there is no hard upper limit on the number of categories a particular 
attribute can have.

We could use other categorical variables to separate out the passengers on the 
Titanic, such as the class in which they were traveling. There were three class levels 
on the Titanic, and the frequency-table function we constructed at the beginning 
of this chapter is already able to handle multiple classes.

(defn ex-4-12 []
  (->> (load-data "titanic.tsv")
       (frequency-table :count [:survived :pclass])))

This code generates the following frequency table:

| :pclass | :survived | :count |
|---------+-----------+--------|
|   third |         y |    181 |
|   third |         n |    528 |
|  second |         y |    119 |
|  second |         n |    158 |
|   first |         n |    123 |
|   first |         y |    200 |

These three classes give us an additional way to cut our data on survival rates. As 
the number of classes increases, it becomes harder to read patterns in the frequency 
table, so let's visualize it.

Visualizing the categories
Although they were originally devised to represent proportions, pie charts are 
generally not a good way to represent parts of a whole. People have a difficult time 
visually comparing the areas of slices of a circle. Representing quantities linearly, as 
with a stacked bar chart, is nearly always a better approach. Not only are the areas 
easier to interpret but they're easier to compare side by side.



Chapter 4

[ 181 ]

We can visualize our data as a stacked bar chart:

(defn ex-4-13 []
  (let [data (->> (load-data "titanic.tsv")
                  (frequency-table :count [:survived :pclass]))]
    (-> (c/stacked-bar-chart :pclass :count
                             :group-by :survived
                             :legend true
                             :x-label "Class"
                             :y-label "Passengers"
                             :data data)
        (i/view))))

The preceding code generates the following chart:

The data clearly shows a difference in both the number of passengers who perished, 
and the proportion of passengers who perished, most visible between first and third 
class. We'd like to determine if this difference is significant.

We could perform a z-test between each pair of proportions but, as we learned in 
Chapter 2, Inference, this is much more likely to lead to Type I errors and cause us to 
find a significant result where, in fact, there is none.
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The problem of multiple-category significance testing may seem to call for the  
F-test but the F-test is based on the ratio of variance of some continuous variable 
within and between groups. What we'd like, therefore, is a similar test that cares  
only about the relative proportion between groups. This is the premise on which  
the X2 test is based.

The chi-squared test
Pronounced kai square, the X2 test is a statistical test applied to sets of categorical data 
to evaluate how likely it is that any observed difference between proportions of those 
categories in the sets arose by chance.

When performing a X2 test, therefore, our null hypothesis is that the observed 
difference in proportions between groups is simply the result of chance variation. 
We can think of this as an independence test between two categorical variables. If 
category A is the passenger class and category B is whether they survived or not, 
the null hypothesis is that passenger class and survival rate are independent of each 
other. The alternate hypothesis is that the categories are not independent—that the 
passenger class and survival are related to each other in some way.

The X2 statistic is calculated by comparing the observed frequency counts from the 
sample to a table of frequencies calculated under the assumption of independence. 
This frequency table is an estimation of what the data would have looked like had 
the categories been independent. We can calculate the frequency table assuming 
independence in the following way, using the row, column, and grand totals:

Survived Perished Total
First Class 323*500/1309 = 123.4 323*809/1309 = 199.6 323
Second Class 277*500/1309 = 105.8 277*809/1309 = 171.2 277
Third Class 709*500/1309 = 270.8 709*809/1309 = 438.2 709
Total 500 809 1,309

A simple formula calculates each cell value using only the totals for each row 
and column, and assumes an even distribution amongst cells. This is our table of 
expected frequencies.

(defn expected-frequencies [data]
  (let [as (vals (frequency-map :count [:survived] data))
        bs (vals (frequency-map :count [:pclass] data))
        total (-> data :rows count)]
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    (for [a as
          b bs]
      (* a (/ b total)))))

(defn ex-4-14 []
  (-> (load-data "titanic.tsv")
      (expected-frequencies)))

;; => (354500/1309 138500/1309 9500/77 573581/1309 224093/1309  
15371/77)

To demonstrate a statistically significant difference between the survival rates by 
class, we'll need to show that the difference between the frequencies assuming 
independence and the observed frequencies is unlikely to have arisen through 
chance alone.

The chi-squared statistic
The X2 statistic simply measures how far the actual frequencies differ from those 
calculated under the assumption of independence:

2
2 ( )ij ij

ij ij

f F
F

χ
−

=∑

Fij is the expected frequency assuming independence for categories i and j, and fij is 
the observed frequency for categories i and j. We therefore need to fetch the observed 
frequencies for our data. We can calculate this in Clojure as follows:

(defn observed-frequencies [data]
  (let [as (->> (i/$rollup :sum :count :survived data)
                (summary :count [:survived]))
        bs (->> (i/$rollup :sum :count :pclass data)
                (summary :count [:pclass]))
        actual (summary :count [:survived :pclass] data)]
    (for [a (keys as)
          b (keys bs)]
      (get-in actual [a b]))))
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As with the expected-frequencies function earlier, the observed-frequencies 
function returns a sequence of frequency counts for each combination of categories.

(defn ex-4-15 []
  (-> (load-data "titanic.tsv")
      (observed-frequencies)))

;; (200 119 181 123 158 528)

This sequence—and the sequence of expected values from the previous example—
give us all we need to calculate the X2 statistic:

(defn chisq-stat [observed expected]
  (let [f (fn [observed expected]
            (/ (i/sq (- observed expected)) expected))]
    (reduce + (map f observed expected))))

(defn ex-4-16 []
  (let [data (load-data "titanic.tsv")
        observed (observed-frequencies data)
        expected (expected-frequencies data)]
    (float (chisq-stat observed expected))))

;; 127.86

Now that we have our test statistic, we'll need to look this up in the relevant 
distribution to determine if the result is significant. Unsurprisingly, the distribution 
we refer to is the X2 distribution.

The chi-squared test
The X2 distribution is paramaterized by one degree of freedom: the product of each 
of the category counts less one:

( )( )1 1df a b= − −

Here, a is the number of categories for attribute A and b is the number of categories 
for attribute B. For our Titanic data, a is 3 and b is 2, so our degrees of freedom 
parameter is 2.
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Our X2 test simply needs to view our X2 statistic against the X2 cumulative 
distribution function (CDF). Let's do this now:

(defn ex-4-17 []
  (let [data (load-data "titanic.tsv")
        observed (observed-frequencies data)
        expected (expected-frequencies data)
        x2-stat  (chisq-stat observed expected)]
    (s/cdf-chisq x2-stat :df 2 :lower-tail? false)))

;; 1.721E-28

This is an absolutely tiny number, and is as close to zero as makes no difference 
so we can comfortably reject the null hypothesis at any significance level. In other 
words, we can be absolutely certain that the observed difference is not the result of  
a chance sampling error.

Although it is useful to see the X2 conducted by hand, the Incanter stats namespace 
has a function, chisq-test, for conducting the X2 test in one step. To use it we 
simply need to supply our original table of observations as a matrix:

(defn ex-4-18 []
  (let [table  (->> (load-data "titanic.tsv")
                    (frequency-table :count [:pclass :survived])
                    (i/$order [:survived :pclass] :asc))
        frequencies (i/$ :count table)
        matrix      (i/matrix frequencies 3)]
    (println "Observed:"     table)
    (println "Frequencies:"  frequencies)
    (println "Observations:" matrix)
    (println "Chi-Squared test:")
    (-> (s/chisq-test :table matrix)
        (clojure.pprint/pprint))))

In preceding the code, we calculated a frequency-table from the Titanic data and then 
ordered the contents, using i/$order, so that we get a table like this:

| :survived | :pclass | :count |
|-----------+---------+--------|
|         n |   first |    123 |
|         n |  second |    158 |
|         n |   third |    528 |
|         y |   first |    200 |
|         y |  second |    119 |
|         y |   third |    181 |
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We take the count column and convert it into a matrix of three columns using  
(i/matrix frequencies 3):

A 2x3 matrix
 -------------
 1.23e+02  1.58e+02  5.28e+02
 2.00e+02  1.19e+02  1.81e+02

This matrix is the only input required by Incanter's s/chisq-test function. Run the 
example and you'll see the response is a map containing keys :X-sq, the X2 statistic, 
and :p-value, the result of the test, amongst many others.

We have established that the categories of class and survived, and gender and 
survived are certainly not independent. This is analogous to discovering a 
correlation between variables—height, sex, and weight—in the previous chapter.

Now, as then, the next step is to use the dependence between the variables to make 
predictions. Whereas in the previous chapter our output was a predicted number—
the weight—in this chapter our output will be a class—a prediction about whether 
the passenger survived or not. Assigning items to their expected class based on other 
attributes is the process of classification.

Classification with logistic regression
In the previous chapter, we saw how linear regression produces a predicted value, ŷ, 
from an input vector x and a vector of coefficients β:

ˆ Ty xβ=

Here, ŷ can be any real number. Logistic regression proceeds in a very similar way, 
but adjusts the prediction to guarantee an answer only between zero and one:

{ }ˆ 0,1y∈

Zero and one represent two different classes. The change is a simple one; we simply 
wrap the prediction in a function g that constrains the output between zero and one:

( )ˆ Ty g xβ=
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Where g is called the sigmoid function. This seemingly minor change is enough to 
transform linear regression into logistic regression and turn real-valued predictions 
into classes.

The sigmoid function
The sigmoid function is also referred to as the logistic function and is shown next:

( ) 1
1 yg y
e−

=
+

For positive inputs, the logistic function rises quickly to one while, for negative 
inputs, it falls quickly to zero. These outputs correspond to the predicted classes. For 
values close to zero, the logistic function returns values close to 0.5. This corresponds 
to increased uncertainty about the correct output class.

Combining the formulae we have seen already gives rise to the following complete 
definition of the logistic hypothesis:

1ˆ  
1

T x
y

e β−
=

+
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As with linear regression, the parameter vector β contains the coefficients that we're 
seeking to learn, and x is our vector of input features. We can express this in Clojure 
with the following higher-order function. Given a vector of coefficients, this function 
returns a function that will calculate ŷ for a given x:

(defn sigmoid-function [coefs]
  (let [bt (i/trans coefs)
        z  (fn [x] (- (first (i/mmult bt x))))]
    (fn [x]
      (/ 1
         (+ 1
            (i/exp (z x)))))))

If the logistic function is given a β of [0], then the feature is discounted as having 
any predictive power. The function will output 0.5, corresponding to complete 
uncertainty, for any input x:

(let [f (sigmoid-function [0])]
  (f [1])
  ;; => 0.5

  (f [-1])
  ;; => 0.5

  (f [42])
  ;; => 0.5
  )

However, if values other than zero are provided as coefficients, the sigmoid function 
can return values other than 0.5. A positive β will result in a greater probability of 
a positive class given a positive x, whereas a negative β will correspond to a greater 
probability of a negative class given a positive x.

(let [f (sigmoid-function [0.2])
      g (sigmoid-function [-0.2])]
  (f [5])
  ;; => 0.73

  (g [5])
  ;; => 0.27
  )

Since values above 0.5 correspond to a positive class and values less than 0.5 
correspond to a negative class, the sigmoid function output can simply be rounded 
to the nearest integer to get the output class. This would result in values of exactly 
0.5 being classified as the positive class.
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Now that we have a sigmoid-function that can return class predictions, we need  
to learn the parameters β which yield the best predictions ŷ. In the previous chapter, 
we saw two methods for calculating the coefficients for a linear model—calculating 
the slope and intercept using covariance, and the normal equation using matrices.  
In both cases the equations were able to find a linear solution that minimized the 
least-squares estimates of our model.

The squared error was an appropriate function to use for our linear model, but it 
doesn't translate well to classification where classes are measured only between 
zero and one. We need an alternative method of determining how incorrect our 
predictions are.

The logistic regression cost function
As with linear regression, the logistic regression algorithm must learn from data. The 
cost function is a way to let the algorithm know how well, or poorly, it's doing.

The following is the cost function for logistic regression, which imposes a different 
cost depending on whether the output class is supposed to be zero or one. The cost 
for a single training example is calculated like so:

( ) ( )
( )

  1ˆ
ˆ,

ˆ1   0
log if y

cost y y
log f y

y
y i

 − == − − =

This pair of functions captures the intuition that, if ŷ = 0 but y = 1, then the model 
should be penalized by a very large cost. Symmetrically, the model should also be 
heavily penalized if ŷ = 1 and y = 0. Where the model closely agrees with the data, 
the cost falls steeply towards zero.

This is the cost for an individual training point. To combine the individual costs and 
calculate an overall cost for a given vector of coefficients and a set of training data, 
we can simply take the average across all the training examples:

( ) ( )
1

1 ,ˆ
m

i i
i

cost co yst y
m

β
=

= ∑
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This can be represented in Clojure as follows:

(defn logistic-cost [ys y-hats]
  (let [cost (fn [y y-hat]
               (if (zero? y)
                 (- (i/log (- 1 y-hat)))
                 (- (i/log y-hat))))]
    (s/mean (map cost ys y-hats))))

Now that we have a cost function that can quantify how incorrect our predictions 
are, the next step is to make use of this information to figure out better predictions. 
The very best classifier will be the one with the lowest overall cost, since by 
definition its predicted classes will be closest to the true classes. The method by 
which we can incrementally improve our cost is called gradient descent.

Parameter optimization with gradient descent
The cost function, also called the loss function, is the function that calculates the 
error of the model based on our coefficients. Different parameters will generate 
different costs for the same dataset, and we can visualize how the cost function 
changes with respect to the parameters on a graph.
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The preceding chart shows a representation of a cost function for a two-parameter 
model. The cost is plotted on the y axis (higher values correspond to a higher cost) 
and the two parameters are plotted on the x and z axes, respectively.

The best parameters are the ones that minimize the cost function, corresponding 
to the parameters at the point identified as the "Global minimum". We don't know 
ahead of time what these parameters will be, but we can make an initial, arbitrary 
guess. These parameters are the ones identified by the point "P".

Gradient descent is an algorithm that iteratively improves on the initial condition by 
following the gradient downhill towards the minimum value. When the algorithm 
can't descend any further, the minimum cost has been found. The parameters at  
this point correspond to our best estimate for the parameters that minimize the  
cost function.

Gradient descent with Incanter
Incanter provides the ability to run gradient descent with the function minimize in 
the incanter.optimize namespace. Mathematical optimization is the general term 
for a series of techniques that aim to find the best available solution to some set of 
constraints. The incanter.optimize namespace contains functions for calculating 
the parameters that will minimize or maximize the value of any arbitrary function.

For example, the following code finds the minimum value of f given a starting 
position of 10. Since f is x2, the input that will produce the minimum value is 0:

(defn ex-4-19 []
  (let [f (fn [[x]]
            (i/sq x))
        init [10]]
    (o/minimize f init)))

Indeed, if you run the example you should get an answer very close to zero. You are 
very unlikely to get exactly zero though because gradient descent tends to provide 
only approximate answers—Incanter's minimize function accepts a tolerance 
argument :tol that defaults to 0.00001. If the result differs by less than this amount 
between iterations, then the equation is said to have converged. The function also 
accepts a :max-iter argument, the maximum number of steps to take before 
returning an answer, irrespective of convergence.
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Convexity
Gradient descent is not always guaranteed to find the lowest possible cost for all 
equations. For example, the answer may find what is called a "local minimum", 
which represents the lowest cost in the vicinity of the initial guess but doesn't 
represent the best overall solution to the problem. This is illustrated in the  
following illustration:

If the initial position corresponds to either of the points labeled C on the graph, then 
the algorithm will converge to a local minimum. Gradient descent will have found a 
minimum, but it is not the best overall solution. Only initial guesses within the range 
A to B will converge on the global minimum.

It is therefore possible that gradient descent will converge to different answers 
depending on its initialization. For gradient descent to guarantee the optimal 
solution, the equation to optimize needs to be a convex equation. This means that 
there is a single global minimum and no local minima.

For example, there is no global minimum of the sin function. The result we calculate 
for the minimum will depend strongly on our starting conditions:

(defn ex-4-20 []
  (let [f (fn [[x]]
            (i/sin x))]
    (println (:value (o/minimize f [1])))
    (println (:value (o/minimize f [10])))
    (println (:value (o/minimize f [100])))))

A 1x1 matrix
 -------------
-2.14e+05

 A 1x1 matrix
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 -------------
 1.10e+01

 A 1x1 matrix
 -------------
 9.90e+01

Fortunately, logistic regression is a convex function. This means that gradient 
descent will be able to determine the values of our coefficients corresponding  
to the global minimum irrespective of our starting position.

Implementing logistic regression with 
Incanter
We can define a logistic regression function with Incanter's minimize function  
as follows:

(defn logistic-regression [ys xs]
  (let [cost-fn (fn [coefs]
                  (let [classify (sigmoid-function coefs)
                        y-hats   (map (comp classify i/trans) xs)]
                    (logistic-cost ys y-hats)))
        init-coefs (repeat (i/ncol xs) 0.0)]
    (o/minimize cost-fn init-coefs)))

The cost-fn accepts a matrix of coefficients. We create a classifier from the 
coefficients using the sigmoid-function previously defined, and a sequence of 
predictions, y-hats, based on the input data. Finally, we can calculate and return  
the logistic-cost value based on the provided coefficients.

To perform logistic regression, we minimize the logistic cost-fn by selecting the 
optimal parameters to the sigmoid-function. Since we have to start somewhere, 
our initial coefficients are simply 0.0 for each parameter.

The minimize function expects to receive an input in numeric form. Like the athlete 
data in the previous chapter, we have to convert our Titanic data into a feature 
matrix and create dummy variables for our categorical data.
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Creating a feature matrix
Let's define a function, add-dummy, that will create a dummy variable for a given 
column. Where the value in the input column equals a particular value, the dummy 
column will contain a 1. Where the value in the input column does not contain that 
value, the dummy column will be 0.

(defn add-dummy [column-name from-column value dataset]
  (i/add-derived-column column-name
                        [from-column]
                        #(if (= % value) 1 0)
                        dataset))

This simple function makes it very straightforward to convert our Titanic data to a 
feature matrix:

(defn matrix-dataset []
  (->> (load-data "titanic.tsv")
       (add-dummy :dummy-survived :survived "y")
       (i/add-column :bias (repeat 1.0))
       (add-dummy :dummy-mf :sex "male")
       (add-dummy :dummy-1 :pclass "first")
       (add-dummy :dummy-2 :pclass "second")
       (add-dummy :dummy-3 :pclass "third")
       (i/$ [:dummy-survived :bias :dummy-mf
             :dummy-1 :dummy-2 :dummy-3])
       (i/to-matrix)))

Our output matrix will entirely consist of zeros and ones. The first element in the 
feature matrix is the dummy variable determining survival. This is our class label.  
0 corresponds to perishing and 1 corresponds to survival. The second is a bias term, 
which always contains the value 1.0.

With our matrix-dataset and logistic-regression functions defined, running 
logistic regression is as simple as this:

(defn ex-4-21 []
  (let [data (matrix-dataset)
        ys (i/$ 0 data)
        xs (i/$ [:not 0] data)]
    (logistic-regression ys xs)))

We're providing 0 to Incanter's i/$ function to select the first column of the matrix 
(the classes), and [:not 0] to select everything else (the features):

;; [0.9308681940090573 -2.5150078795265753 1.1782368822555778
;;  0.29749924127081434 -0.5448679293359383]
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If you run this example, you'll find that it returns a vector of numbers. This vector 
corresponds to the best estimates for the coefficients of the logistic model.

Evaluating the logistic regression classifier
The vector calculated in the previous section contains the coefficients of our logistic 
model. We can make predictions with them by passing them to our sigmoid-
function like this:

(defn ex-4-22 []
  (let [data (matrix-dataset)
        ys (i/$ 0 data)
        xs (i/$ [:not 0] data)
        coefs (logistic-regression ys xs)
        classifier (comp logistic-class
                      (sigmoid-function coefs)
                      i/trans)]
    (println "Observed: " (map int (take 10 ys)))
    (println "Predicted:" (map classifier (take 10 xs)))))

;; Observed:  (1 1 0 0 0 1 1 0 1 0)
;; Predicted: (1 0 1 0 1 0 1 0 1 0)

You can see that the classifier is not doing a perfect job—it's confused by some of the 
classes. In the first ten results, it's getting four classes incorrect, which is only just 
better than chance. Let's see what proportion of classes was correctly identified over 
the entire dataset:

(defn ex-4-23 []
  (let [data (matrix-dataset)
        ys (i/$ 0 data)
        xs (i/$ [:not 0] data)
        coefs (logistic-regression ys xs)
        classifier (comp logistic-class
                      (sigmoid-function coefs)
                      i/trans)
        y-hats (map classifier xs)]
    (frequencies (map = y-hats (map int ys)))))

;; {true 1021, false 288}

In the preceding code we train a classifier as before, and simply map over the entire 
dataset looking for predictions that equal observed classes. We use Clojure core's 
frequencies function to provide a simple count of the number of times the classes 
are equal.
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Predicting the correct outcome 1,021 times out of 1,309 equates to 78 percent correct. 
Our classifier is definitely performing better than chance.

The confusion matrix
While percent correct is a simple measure to calculate and comprehend, it's 
vulnerable to situations where a classifier systematically under- or over-represents 
a given class. As an extreme example, consider a classifier that always classifies 
passengers as having perished. On our Titanic dataset such a classifier would appear 
to be 68 percent correct, but it would perform terribly on an alternative dataset 
where most of the passengers survived.

A confusion-matrix function shows how many misclassified items there are in 
the training set, split into true positives, true negatives, false positives, and false 
negatives. The confusion matrix has a row for each category of the input and a 
column for each category of the model. We can create one like this in Clojure:

(defn confusion-matrix [ys y-hats]
  (let [classes   (into #{} (concat ys y-hats))
        confusion (frequencies (map vector ys y-hats))]
    (i/dataset (cons nil classes)
               (for [x classes]
                 (cons x
                       (for [y classes]
                         (get confusion [x y])))))))

We can then run our confusion matrix on the results of our logistic regression like so:

(defn ex-4-24 []
  (let [data (matrix-dataset)
        ys (i/$ 0 data)
        xs (i/$ [:not 0] data)
        coefs (logistic-regression ys xs)
        classifier (comp logistic-class
                      (sigmoid-function coefs)
                      i/trans)
        y-hats (map classifier xs)]
    (confusion-matrix (map int ys) y-hats)))

which returns the following matrix:

|   |   0 |   1 |
|---+-----+-----|
| 0 | 682 | 127 |
| 1 | 161 | 339 |
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We can see how the model returned 682 true negatives and 339 true positives, 
adding up to the 1,021 correctly predicted results. The confusion matrix for a  
good model will be dominated by counts along the diagonal, with much smaller 
numbers in the off-diagonal positions. A perfect classifier would have zero in all  
off-diagonal cells.

The kappa statistic
The kappa statistic can be used for comparing two pairs of classes to see how well 
the classes agree. It is more robust that simply looking at percentage agreement 
because the equation aims to account for the possibility that some of the agreement 
has occurred simply due to chance alone.

The kappa statistic models how often each class occurs in each sequence and factors 
this into the calculation. For example, if I correctly guess the result of a coin toss 50 
percent of the time, but I always guess heads, the kappa statistic will be zero. This is 
because the agreement is no more than could be expected by chance.

To calculate the kappa statistic we need to know two things:

• p(a): This is the probability of actual observed agreement
• p(e): This is the probability of expected agreement

The value of p(a) is the percentage agreement we calculated previously to be  
78 percent. It's the sum of true positives and true negatives divided by the size  
of the sample.

To calculate the value of p(e) we need to know both the proportion of negative  
classes present in the data, and the proportion of negative classes predicted  
by our model. The proportion of negative classes in our data is 809

1309
, or 62 percent. 

This is the probability of perishing in the Titanic disaster overall. The proportion of 
negative classes in our model can be calculated from the confusion matrix as 843

1309
,  

or 64 percent.

The probability that the data and model might agree by chance, p(e), is the 
probability that the model and the data both have a negative class 809 843

1309 1309
 ⋅ 
 

  
plus the probability that both the data and the model have a positive class  

500 466
1309 1309
 ⋅ 
 

. Therefore the probability of random agreement p(e) is about 53 percent.
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The preceding information is all we need to calculate the kappa statistic:

( ) ( )
( )1

p a p e
k

p e
−

=
−

Substituting in the values we just calculated yields:

0.78 0.53 0.53
1 0.53

k −
= =

−

We can calculate this in Clojure as follows:

(defn kappa-statistic [ys y-hats]
  (let [n (count ys)
        pa (/ (count (filter true? (map = ys y-hats))) n)
        ey (/ (count (filter zero? ys)) n)
        eyh (/ (count (filter zero? y-hats)) n)
        pe (+ (* ey eyh)
              (* (- 1 ey)
                 (- 1 eyh)))]
    (/ (- pa pe)
       (- 1 pe))))

(defn ex-4-25 []
   (let [data (matrix-dataset)
         ys (i/$ 0 data)
         xs (i/$ [:not 0] data)
         coefs (logistic-regression ys xs)
         classifier (comp logistic-class
                       (sigmoid-function coefs)
                       i/trans)
         y-hats (map classifier xs)]
     (float (kappa-statistic (map int ys) y-hats))))

;; 0.527

Values of kappa range between 0 and 1, with 1 corresponding to complete agreement 
across both output classes. Complete agreement for only one output class is 
undefined with kappa—if I guess the result of a coin toss correctly 100 percent of the 
time, but the coin always comes up heads, there is no way of knowing that the coin 
was a fair coin.



Chapter 4

[ 199 ]

Probability
We have encountered probability in several guises so far in this book: as p-values, 
confidence intervals, and most recently as the output of logistic regression where 
the result can be considered as the probability of the output class being positive. The 
probabilities we calculated for the kappa statistic were the result of adding up counts 
and dividing by totals. The probability of agreement, for example, was calculated 
as the number of times the model and the data agreed divided by the number of 
samples. This way of calculating probabilities is referred to as frequentist, because it 
is concerned with the rates at which things happen.

An output of 1.0 from logistic regression (pre-rounding) corresponds to the 
certainty that the input is in the positive class; an output of 0.0 corresponds to the 
certainty that the input isn't in the positive class. An output of 0.5 corresponds to 
complete uncertainty about the output class. For example, if ŷ = 0.7 the probability  
of y = 1 is 70 percent. We can write this in the following way:

ˆ  ( 1| ; )y P y x β= =

We say y-hat equals the probability that y equals one given x, parameterized by beta. 
This new notation expresses the fact that our prediction, ŷ, is informed by inputs 
including x and β. The values contained in these vectors affect our calculation of  
the output probability, and correspondingly our prediction for y.

An alternative to the frequentist view of probability is Bayesian view. The Bayesian 
conception of probability incorporates a prior belief into the probability calculation. 
To illustrate the difference, let's look again at the example of tossing a coin.

Let's imagine that a coin is tossed 14 times in a row and comes up as heads 10 times. 
You're asked to bet whether it will land heads on the next two throws. Would you 
take the bet?

To a frequentist, the probability of the coin landing heads for two consecutive further 
throws is 10 10 25

14 14 49
⋅ = . This is marginally better than 50 percent, so it makes sense to take 

the bet.

A Bayesian would frame the problem differently. With a prior belief that the coin is 
fair, how well does the data fit this belief? The standard error of the proportion over 
14 throws is 0.12. The difference between 10

14
 and 1

2
 divided by the standard error 

is approximately 1.77, corresponding to a p-value of about 0.08. There's simply not 
enough evidence to reject the theory that the coin is fair. If the coin were fair, then 
the probability of getting two consecutive heads is 1 1 1

2 2 4
⋅ =  and we would likely lose 

the bet.
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In the 18th Century, Pierre-Simon Laplace posited "What is the 
probability the sun will rise tomorrow?" to illustrate the difficulty of 
using probability theory to evaluate the plausibility of statements.

The Bayesian view of probability gives rise to a very useful theorem called  
Bayes theorem.

Bayes theorem
The logistic regression equation we presented in the previous section is an example 
of conditional probability:

ˆ  ( 1| ; )y P y x β= =

The probability of our prediction ŷ is determined by the values x and β. A conditional 
probability is the likelihood of one thing given another thing we already know 
about. For example, we have already considered questions such as the "probability of 
survival given that the passenger was female".

Assuming we are interested in x, y, and z, the basic notation for probability is  
as follows:

• ( )P A : This is the probability of A occurring
• ( )P A B∩ : This is the joint probability of both A and B occurring
• ( )P A B∪ : This is the probability of A or B occurring
• ( | )P A B : This is the probability of A occurring given B has occurred
• ( , | )P A B C : This is the probability of both A and B occurring given that  

C has occurred

The relationship between the preceding variables is expressed in the following 
formula:

( ) ( ) ( )( | ) ( | )P A B P B P A B P B A P A= ∩ =

Using this, we can solve for ( | )P A B  assuming ( ) 0P A ≠  to get what is called  
Bayes theorem:

( )
( )

( | )
( | )

P B A P A
P A B

P B
=
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We read this as "the probability of A given B is equal to the probability of B, given A, 
times the probability of A all over the probability of B".

( )P A  is the prior probability: the initial degree of belief in A.

( | )P A B  is the conditional probability—the degree of belief in A having taken B  
into account.

The quotient ( )
P(B | A)
P B

 represents the support that B provides for A.

Bayes theorem can appear intimidating and abstract, so let's see an example of 
why it's useful. Let's say we're testing for disease that has infected 1 percent of the 
population. We have a highly sensitive and specific test that is not quite perfect:

• 99 percent of sick patients test positive
• 99 percent of healthy patients test negative

Given that a patient tests positive, what is the probability that the patient is  
actually sick?

The preceding bullet points appear to imply that a positive test means a 99 percent 
chance of being sick, but this fails to take into account how rare the disease is in the 
population. Since the probability of being infected (the prior) is so small, this hugely 
decreases your chances of actually having the disease even if you test positive.

Let's work through the numbers with 10,000 representative people. That would mean 
that 100 are sick, but 9,900 are healthy. If we applied the test to all 10,000 people we 
would find 99 sick people testing sick (true positives), but 99 healthy people, testing 
sick (false positives) as well. If you test positive, the chances of actually having the 
disease are 99

99
, or 50 percent:
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We can calculate the same example using Bayes rule. Let y to refer to "sick" and x 
refer to the event "+" for a positive result:

( )
( )

( | ) 0.99 0.01( | ) 0.5
0.99 0.01 0.01 0.99

P sick P sick
P sick

P
+ ⋅

+ = = =
+ ⋅ + ⋅

In other words, although a positive test has vastly increased your chances of having 
the disease (up from 1 percent in the population), you still only have even odds of 
actually being sick—nowhere near the 99 percent implied by the test accuracy alone.

The previous example provides neat numbers for us to work through, let's run the 
example on the Titanic data now.

The probability of surviving given you are female is equal to the probability of being 
female given you survived multiplied by the probability of surviving all divided by 
the probability of being a woman on the Titanic:

( )
( )

( | )
( | )

P female survival P suvival
P survival female

P female
=

Let's remind ourselves of the contingency table from earlier:

| :survived |   :sex | :count |
|-----------+--------+--------|
|         n |   male |    682 |
|         n | female |    127 |
|         y |   male |    161 |
|         y | female |    339 |

P(survival|female)is the posterior, the degree of belief in survival given the evidence. 
This is the value we are trying to calculate.

P(female|survival) is the conditional probability of being female, given survival:

339 339( | )
339 161 500

P female survival = =
+

P(survival) is the prior, the initial degree of belief in survival:

( ) 339 161 500
1309 1309

P survival +
= =
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P(female) is the evidence:

( ) 127 339 466
1309 1309

P female +
= =

Substituting these proportions into Bayes rule:

339 500 339 339500 1309 1309( | ) 446 446 4461309 1309
P survival female = = =

Using Bayes rule we have calculated that the probability of survival, given being 
female, is 339

446
 or 76 percent.

Notice that we could have calculated this value from the contingency table too, by 
looking up the proportion of survivors out of the total females: 339

339 127+ . The reason 
for the popularity of Bayes rule is that it gives us a way of calculating this probability 
where no such contingency table exists.

Bayes theorem with multiple predictors
As an example of how we can use Bayes rule without a full contingency table,  
let's use the example of a third-class male. What's the probability of survival  
for third-class male passengers?

Let's write out Bayes rule for this new question:

( )
( )

( | )
( | )

P male third survival P suvival
P survival male third

P male third
∩

∩ =
∩

Next, we have two contingency tables:

| :survived | :pclass | :count |
|-----------+---------+--------|
|         n |   first |    123 |
|         n |  second |    158 |
|         n |   third |    528 |
|         y |   first |    200 |
|         y |  second |    119 |



Classification

[ 204 ]

|         y |   third |    181 |

| :survived |   :sex | :count |
|-----------+--------+--------|
|         n | female |    127 |
|         n |   male |    682 |
|         y | female |    339 |
|         y |   male |    161 |

"Third-class male" is not a category in any of our contingency tables that we can 
simply look up. However, by using Bayes theorem we can calculate it like this:

The posterior probability we're seeking is P(survive|male,third).

The prior probability of survival is the same as before: 500 
1309

 or about 0.38.

The conditional probability is (   | )P male third survival∩ . This is the same as 
( | ) ( | )P male survive P third survive . In other words, we can multiply the two  

probabilities together:

161 181 161 181( | ) ( | )
161 339 181 119 200 500 500

P male survive P third survive⋅ = ⋅ = ⋅
+ + +

0.12≈

The evidence is the probability of being both male and in third class ( ) P male third∩ :

( ) ( ) 682 161 528 181 843 709
1309 1309 1309 1309

P male P third + +
⋅ = ⋅ = ⋅

0.35≈

Putting this all together:

0.12 0.38( | ) 0.13
0.35

P survival male third ⋅
∩ = =

In actual fact, there were 75 surviving third class males out of 493 in total, giving a 
true survival rate of 15 percent. Bayes Theorem has allowed us to calculate the true 
answer very closely, without the use of a complete contingency table.
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Naive Bayes classification
The reason that the answer we arrived at using Bayes theorem and the actual result 
differ slightly is that by using Bayes rule we made an assumption when calculating 
( ) P male third∩  that the probability of being male, and the probability of being in  

third class, are independent. In the next section, we'll use Bayes theorem to produce 
a naive Bayes classifier.

The reason this algorithm is called naive is because it assumes all 
variables are independent. We know this is often not the case, and 
there are interaction effects between variables. For example, we might 
know that combinations of parameters make a certain class very much 
more likely—for example, being both male and in third class.

Let's look at how we might use Bayes rule for a classifier. The Bayes theorem for two 
possible classes, survive and perish, are shown as follows for a male in third class:

( )
( )

( | )
( | )

P male third survive P survive
P survive male third

P male third
∩

∩ =
∩

( )
( )

( | )
( | )

P male third perish P perish
P perish male third

P male third
∩

∩ =
∩

The most likely class will be the one with the greatest posterior probability.

( ) P male third∩  appears as the common factor for both classes. If we were to relax the 
requirements of Bayes theorem a little so that it didn't have to return probabilities, 
we could remove the common factor to arrive at the following:

( )( | ) ( | )P survive male third P male third survive P survive∩ ≈ ∩

( )( | ) ( | )P perish male third P male third perish P perish∩ ≈ ∩

We have simply removed the denominator from the right hand side of both 
equations. Since we are no longer calculating probabilities, the equals sign has 
become ≈ , meaning "is proportional to".
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Putting the values from our previous table of data into the equations yields:

500 181 161( | ) 0.045
1309 500 500

P survive male third∩ ≈ ⋅ ⋅ =

809 528 682( | ) 0.340
1309 809 809

P perish male third∩ ≈ ⋅ ⋅ =

We can instantly see that we are not calculating probabilities because the two classes 
do not add up to one. This doesn't matter for our classifier since we were only going 
to select the class associated with the highest value anyway. Unfortunately for our 
third-class male, our naive Bayes model predicts that he will perish.

Let's do the equivalent calculation for a first class female:

500 200 339( | ) 0.104
1309 500 500

P survive female first∩ ≈ ⋅ ⋅ =

809 123 127( | ) 0.015
1309 809 809

P perish female first∩ ≈ ⋅ ⋅ =

Fortunately for our first class female, the model predicts that she will survive.

A Bayes classifier is a combination of the Bayes probability model combined with 
a decision rule (which class to choose). The decision rule described earlier is the 
maximum a posteriori rule, or MAP rule.

Implementing a naive Bayes classifier
Fortunately, implementing a naive Bayes model in code is much easier than 
understanding the mathematics. The first step is simply to calculate the number of 
examples corresponding to each value of each feature for each class. The following 
code keeps a count of the number of times each parameter is seen for each class label:

(defn inc-class-total [model class]
  (update-in model [class :total] (fnil inc 0)))

(defn inc-predictors-count-fn [row class]
  (fn [model attr]
    (let [val (get row attr)]
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      (update-in model [class attr val] (fnil inc 0)))))

(defn assoc-row-fn [class-attr predictors]
  (fn [model row]
    (let [class (get row class-attr)]
      (reduce (inc-predictors-count-fn row class)
              (inc-class-total model class)
              predictors))))

(defn bayes-classifier [data class-attr predictors]
  (reduce (assoc-row-fn class-attr predictors) {} data))

The label is the attribute corresponding to the class (for example, in our Titanic data 
"survived" is the label corresponding to our classes true and false), and parameters 
are the sequence of attributes corresponding to the features (sex and class).

It can be used like so:

(defn ex-4-26 []
  (->> (load-data "titanic.tsv")
       (:rows)
       (bayes-classifier :survived [:sex :pclass])
       (clojure.pprint/pprint)))

This example yields the following Bayes model:

{:classes
 {"n"
  {:predictors
   {:pclass {"third" 528, "second" 158, "first" 123},
    :sex {"male" 682, "female" 127}},
   :n 809},
  "y"
  {:predictors
   {:pclass {"third" 181, "second" 119, "first" 200},
    :sex {"male" 161, "female" 339}},
   :n 500}},
 :n 1309}

The model is simply a two-level hierarchy implemented as nested maps. At the top 
level are our two classes—"n" and "y", corresponding to "perished" and "survived", 
respectively. For each class we have a map of predictors—:pclass and :sex. 
Each key corresponds to a map of possible values and counts. As well as a map of 
predictors, each class has a count :n.
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Now that we have calculated our Bayes model, we can implement our MAP decision 
rule. The following is a function that calculates the conditional probability of a 
provided class. For example, ( )( | )P male third survive P survive∩ :

(defn posterior-probability [model test class-attr]
  (let [observed (get-in model [:classes class-attr])
        prior (/ (:n observed)
                 (:n model))]
    (apply * prior
           (for [[predictor value] test]
             (/ (get-in observed [:predictors predictor value])
                (:n observed))))))

Given a particular class-attr, the preceding code will calculate the posterior 
probability of the class, given the observations. Having implemented the earlier 
code, the classifier simply needs to return the class corresponding to the maximum 
posterior probability:

(defn bayes-classify [model test]
  (let [probability (partial posterior-probability model test)
        classes     (keys (:classes model))]
    (apply max-key probability classes)))

The preceding code calculates the probability of the test input against each  
of the model's classes. The returned class is simply the one with the highest  
posterior probability.

Evaluating the naive Bayes classifier
Now that we have written two complementary functions, bayes-classifier and 
bayes-classify, we can use our model to make predictions. Let's train our model 
on the Titanic dataset and check its predictions for the third-class male and first-class 
female that we've already calculated:

(defn ex-4-27 []
  (let [model (->> (load-data "titanic.tsv")
                   (:rows)
                   (naive-bayes :survived [:sex :pclass]))]
    (println "Third class male:"
             (bayes-classify model {:sex "male" :pclass "third"}))
    (println "First class female:"
             (bayes-classify model {:sex "female" :pclass "first"}))))

;; Third class male: n
;; First class female: y
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It's a good start—our classifier is in agreement with the outcomes we've calculated 
by hand. Let's take a look at the percent correct for the naive Bayes classifier:

(defn ex-4-28 []
   (let [data (:rows (load-data "titanic.tsv"))
         model (bayes-classifier :survived [:sex :pclass] data)
         test (fn [test]
                (= (:survived test)
                   (bayes-classify model
                            (select-keys test [:sex :class]))))
         results (frequencies (map test data))]
     (/ (get results true)
        (apply + (vals results)))))

;; 1021/1309

By replicating our test over the entire dataset and comparing outputs, we can see 
how often our classifier got the correct answer. 78 percent is the same percent correct 
we got using our logistic regression classifier. For such a simple model, naive Bayes 
is performing remarkably well.

We can calculate a confusion matrix:

(defn ex-4-195 []
    (let [data (:rows (load-data "titanic.tsv"))
          model (bayes-classifier :survived [:sex :pclass] data)
          classify (fn [test]
                     (->> (select-keys test [:sex :pclass])
                          (bayes-classify model)))
          ys      (map :survived data)
          y-hats (map classify data)]
      (confusion-matrix ys y-hats)))

The preceding code generates the following matrix:

|   |   n |   y |
|---+-----+-----|
| n | 682 | 127 |
| y | 161 | 339 |

This confusion matrix is identical to the one we obtained previously from logistic 
regression. Despite taking very different approaches, they have both been able to 
classify the dataset to the same degree of accuracy.
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Comparing the logistic regression and naive Bayes 
approaches
Although they have performed equally well on our small Titanic dataset, the two 
methods of classification are generally suited to different tasks.

In spite of being conceptually a simpler classifier as compared to logistic regression, 
naive Bayes can often outperform it in cases where either data is scarce or the 
number of parameters is very large. Because of naive Bayes' ability to deal with a 
very large number of features, it is often employed for problems such as automatic 
medical diagnosis or in spam classification. In spam classification, features could run 
into the tens or hundreds of thousands, with each word representing a feature that 
can help identify whether the message is spam or not.

However, a drawback of naive Bayes is its assumption of independence—in problem 
domains where this assumption is not valid, other classifiers can outperform naive 
Bayes. With a lot of data, logistic regression is able to learn more sophisticated 
models and classify potentially more accurately than naive Bayes is able to.

There is another method that—while simple and relatively straightforward to 
model—is able to learn more sophisticated relationships amongst parameters.  
This method is the decision tree.

Decision trees
The third method of classification we'll look at in this chapter is the decision tree. 
A decision tree models the process of classification as a series of tests that checks 
the value of a particular attribute or attributes of the item to be classified. It can be 
thought of as similar to a flowchart, with each test being a branch in the flow. The 
process continues, testing and branching, until a leaf node is reached. The leaf node 
will represent the most likely class for the item.

Decision trees share some similarities with both logistic regression and  
naive Bayes. Although the classifier can support categorical variables without 
dummy coding, it is also able to model complex dependencies between variables 
through repeated branching.
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In the old-fashioned parlor game Twenty Questions, one person, the "answerer", 
chooses an object but does not reveal their choice to the others. All other players 
are "questioners" and take turns to ask questions that aim to guess the object the 
answerer has thought of. Each question can only be answered with a simple "yes" 
or "no". The challenge for the questioners is to guess the object the answerer was 
thinking of in only 20 questions, and to pick questions that reveal the most amount 
of information about the object the answerer is thinking of. This is not an easy task—
ask questions that are too broad and you do not gain much information through the 
answer. Ask questions that are too specific and you will not reach an answer in only 
20 steps.

Unsurprisingly, these concerns also appear in decision tree classification. Information 
is something that is quantifiable, and decision trees aim to ask questions that are 
likely to yield the biggest information gain.

Information
Imagine that I pick a random card from a normal deck of 52 playing cards. Your 
challenge is to guess what card I have picked. But first, I offer to answer one question 
with a "yes" or a "no". Which question would you rather ask?

• Is it red? (a Heart or a Diamond)
• Is it a picture card? (a Jack, Queen, or King)

We will explore this challenge in detail over the coming pages. Take a moment to 
consider your question.

There are 26 red cards in a deck, so the probability of a random red card being 
chosen is 1

2
. There are 12 picture cards in a deck so the probability of a picture  

card being randomly chosen is 3
13

.

The information I associated with a single event is:

( ) ( )2  I e log P e= −

Incanter has a log2 function that enables us to calculate information like this:

(defn information [p]
  (- (i/log2 p)))
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Here, log2 is the log to base 2. Therefore:

( ) 2
1 1
2

I red log= − =

( ) 2
3 2.12

13
I picture log= − =

Since a picture card has the lower probability, it also carries the highest information 
value. If we know the card is a picture card, there are only 12 cards it could possibly 
be. If we know the card is red, then 26 possibilities still remain.

Information is usually measured in bits. The information content of knowing the 
card is red carries only one bit of information. A computer bit can only represent a 
zero or a one. One bit is enough to contain a simple 50/50 split. Knowing that the 
card is a picture card offers two bits of information. This appears to suggest that the 
best question to ask therefore is "Is it a picture card?". An affirmative answer will 
carry with it a lot of information.

But look what happens if we find out the answer to the question is "no". What's the 
information content of finding out that the card I've chosen is not a picture card?

( ) 2
1 1
2

I black log= − =

( ) 2
10 0.38
13

I not picture log= − =

It appears that now we could be better off asking whether the card is red, since the 
information content is greater. Finding out our card is not a picture card still leaves 
36 possibilities remaining. We clearly don't know in advance whether the answer 
will be "yes" or "no", so how can we go about choosing the best question?
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Entropy
Entropy is a measure of uncertainty. By calculating the entropy we can strike a 
balance between information content over all possible responses.

The concept of entropy was introduced by Rudolf Clausius in 
the mid-nineteenth century as part of the emerging science of 
thermodynamics to help explain how part of the functional energy 
of combustion engines was lost due to heat dissipation. In this 
chapter we talk about Shannon Entropy, which comes from Claude 
Shannon's work on information theory in the mid-twentieth 
century. The two concepts are closely related, despite hailing from 
different corners of science in very different contexts.

Entropy, H, can be calculated in the following way:

( ) ( ) ( )( ) i i
i

H X P x I P x=∑

Here, P(x)is the probability of x occurring and I(P(x))is the information content of x.

For example, let's compare the entropy of a pack of cards where each class is 
simply "red" and "not red". We know the information content of "red" is 1 and the 
probability is 1

2
. The same is true for "not red", so the entropy is the following sum:

1 11 1 1
2 2
⋅ + ⋅ =

Splitting the pack in this way yields an entropy of 1. What about splitting the pack 
into "picture" and "not picture" cards? The information content of "picture" is 2.12 
and the probability is 3

13
. The information content of "not picture" is 0.38 and the 

probability is 10
13

:

3 102.12 0.38 0.78
13 13
⋅ + ⋅ =
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If we imagine the deck of cards as a sequence of classes, positive and negative, we 
can calculate the entropy for our two decks using Clojure:

(defn entropy [xs]
  (let [n (count xs)
        f (fn [x]
            (let [p (/ x n)]
              (* p (information p))))]
    (->> (frequencies xs)
         (vals)
         (map f)
         (reduce +))))

(defn ex-4-30 []
  (let [red-black (concat (repeat 26 1)
                          (repeat 26 0))]
    (entropy red-black)))

;; 1.0

(defn ex-4-202 []
  (let [picture-not-picture (concat (repeat 12 1)
                                    (repeat 40 0))]
    (entropy picture-not-picture)))

;; 0.779

Entropy is a measure of uncertainty. The lower entropy by splitting the deck into 
"picture" and "not picture" groups shows us that asking whether or not the card is 
a picture is the best question to ask. It remains the best question to have asked even 
if we discover that my card is not a picture card, because the amount of uncertainty 
remaining in the deck is lower. Entropy does not just apply to sequences of numbers, 
but to any sequence.

(entropy "mississippi")
;; 1.82

is lower than

(entropy "yellowstone")
;; 2.91

This in spite of their equal length, because there is more consistency amongst  
the letters.
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Information gain
Entropy has indicated to us that the best question to ask—the one that will decrease 
the entropy of our deck of cards most—is whether or not the card is a picture card.

In general, we can use entropy to tell us whether a grouping is a good grouping or 
not using the theory of information gain. To illustrate this, let's return to our Titanic 
survivors. Let's assume that I've picked a passenger at random and you have to 
guess whether or not they survived. This time, before you answer, I offer to tell you 
one of two things:

• Their sex (male or female)
• The class they were traveling in (first, second, or third)

Which would you rather know?

It might appear at first that the best question to ask is which class they were 
travelling in. This will divide the passengers into three groups and, as we saw with 
the playing cards, smaller groups are better. Don't forget, though, that the objective is 
to guess the survival of the passenger. To determine the best question to ask we need 
to know which question gives us the highest information gain.

Information gain is measured as the difference between entropy before and after we 
learn the new information. Let's calculate the information gain when we learn that 
the passenger is male. First, let's calculate the baseline entropy of the survival rates 
for all passengers.

We can use our existing entropy calculation and pass it the sequence of  
survival classes:

(defn ex-4-32 []
  (->> (load-data "titanic.tsv")
       (:rows)
       (map :survived)
       (entropy)))

;; 0.959
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This is a high entropy. We already know that an entropy of 1.0 indicates a 50/50 
split, yet we also know that survival on the Titanic was around 38 percent. The 
reason for this apparent discrepancy is that entropy does not change linearly, but 
rises quickly towards 1 as illustrated in the following graph:

Next, let's consider the entropy of survival when split by sex. Now we have two 
groups to calculate entropy for: males and females. The combined entropy is the 
weighted average of the two groups. We can calculate the weighted average for  
an arbitrary number of groups in Clojure by using the following function:

(defn weighted-entropy [groups]
  (let [n (count (apply concat groups))
        e (fn [group]
            (* (entropy group)
               (/ (count group) n)))]
    (->> (map e groups)
         (reduce +))))

(defn ex-4-33 []
  (->> (load-data "titanic.tsv")
       (:rows)
       (group-by :sex)
       (vals)
       (map (partial map :survived))
       (weighted-entropy)))

;; 0.754
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We can see that the weighted entropy for the survival classes that have been grouped 
by sex is lower than the 0.96 we obtained from the passengers as a whole. Therefore 
our information gain is 0.96 - 0.75 = 0.21 bits.

We can easily express the gain as a Clojure function based on the entropy and 
weighted-entropy functions that we've just defined:

(defn information-gain [groups]
  (- (entropy (apply concat groups))
     (weighted-entropy groups)))

Let's use this to calculate the gain if we group the passengers by their class, instead:

(defn ex-4-205 []
  (->> (load-data "titanic.tsv")
       (:rows)
       (group-by :pclass)
       (vals)
       (map (partial map :survived))
       (information-gain)))

;; 0.07

The information gain for passenger class is 0.07, and for sex is 0.21. Therefore, when 
classifying survival rates, knowing the passenger's sex is much more useful than the 
class they were traveling in.

Using information gain to identify the best 
predictor
Using the functions we have just defined, we can construct an effective tree classifier. 
We'll want a general purpose way to calculate the information gain for a specific 
predictor attribute, given an output class. In the preceding example, the predictor was 
:pclass and the class attribute was :survived, but we can make a generic function 
that will accept these keywords as the arguments class-attr and predictor:

(defn gain-for-predictor [class-attr xs predictor]
  (let [grouped-classes (->> (group-by predictor xs)
                             (vals)
                             (map (partial map class-attr)))]
    (information-gain grouped-classes)))
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Next, we'll want a way to calculate the best predictor for a given set of rows. We can 
simply map the preceding function over all the desired predictors and return the 
predictor corresponding to the highest gain:

(defn best-predictor [class-attr xs predictors]
  (let [gain (partial gain-for-predictor class-attr xs)]
    (when (seq predictors)
      (apply max-key gain predictors))))

Let's test this function by asking which of the predictors :sex and :pclass is the 
best predictor:

(defn ex-4-35 []
  (->> (load-data "titanic.tsv")
       (:rows)
       (best-predictor :survived [:sex :pclass])))

;; :sex

Reassuringly, we're getting the same answer as before. Decision trees allow us to 
apply this logic recursively to build a tree structure that chooses the best question  
to ask at each branch, based solely on the data in that branch.

Recursively building a decision tree
By applying the functions we have written recursively to the data, we can build 
up a data structure that represents the best category split at each level of the tree. 
First, let's define a function that will return the modal (most common) class, given 
a sequence of data. When our decision tree reaches a point at which it can't split the 
data any more (either because the entropy is zero or because there are no remaining 
predictors left on which to split), we'll return the modal class.

(defn modal-class [classes]
  (->> (frequencies classes)
       (apply max-key val)
       (key)))

With that simple function in place, we're ready to construct the decision tree. 
This is implemented as a recursive function. Given a class attribute, a sequence of 
predictors, and a sequence of values, we build a sequence of available classes by 
mapping the class-attr over our xs. If the entropy is zero, then all the classes are 
the same, so we simply return the first.
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If the classes are not identical in our group, then we need to pick a predictor to branch 
on. We use our best-predictor function to select the predictor associated with the 
highest information gain. We remove this from our list of predictors (there's no point 
in trying to use the same predictor twice), and construct a tree-branch function. This 
is a partial recursive call to decision-tree with the remaining predictors.

Finally, we group our data on the best-predictor, and call our partially applied 
tree-branch function on each group. This causes the whole process to repeat again, 
but this time only on the subset of data defined by group-by. The return value is 
wrapped in a vector, together with the predictor:

(defn decision-tree [class-attr predictors xs]
  (let [classes (map class-attr xs)]
    (if (zero? (entropy classes))
      (first classes)
      (if-let [predictor (best-predictor class-attr
                                         predictors xs)]
        (let [predictors  (remove #{predictor} predictors)
              tree-branch (partial decision-tree
                                   class-attr predictors)]
          (->> (group-by predictor xs)
               (map-vals tree-branch)
               (vector predictor)))
        (modal-class classes)))))

Let's visualize the output of this function for the predictors :sex and :pclass.

(defn ex-4-36 []
  (->> (load-data "titanic.tsv")
       (:rows)
       (decision-tree :survived [:pclass :sex])
       (clojure.pprint/pprint)))

;; [:sex
;;  {"female" [:pclass {"first" "y", "second" "y", "third" "n"}],
;;   "male" [:pclass {"first" "n", "second" "n", "third" "n"}]}]

We can see how the decision tree is represented as a vector. The first element of the 
vector is the predictor that's being used to branch the tree. The second element is a 
map containing the attributes of this predictor as keys "male" and "female" with 
values corresponding to a further branch on :pclass.
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To see how we can build up arbitrarily deep trees using this function, let's add a 
further predictor :age. Unfortunately, the tree classifier we've built is only able to 
deal with categorical data, so let's split the age continuous variable into three simple 
categories: unknown, child, and adult.

(defn age-categories [age]
  (cond
   (nil? age) "unknown"
   (< age 13) "child"
   :default   "adult"))

(defn ex-4-37 []
  (let [data (load-data "titanic.tsv")]
    (->> (i/transform-col data :age age-categories)
         (:rows)
         (decision-tree :survived [:pclass :sex :age])
         (clojure.pprint/pprint))))

This code yields the following tree:

[:sex
 {"female"
  [:pclass
   {"first" [:age {"adult" "y", "child" "n", "unknown" "y"}],
    "second" [:age {"adult" "y", "child" "y", "unknown" "y"}],
    "third" [:age {"adult" "n", "child" "n", "unknown" "y"}]}],
  "male"
  [:age
   {"unknown" [:pclass {"first" "n", "second" "n", "third" "n"}],
    "adult" [:pclass {"first" "n", "second" "n", "third" "n"}],
    "child" [:pclass {"first" "y", "second" "y", "third" "n"}]}]}]

Notice how the best overall predictor is still the sex of the passenger, as before. 
However, if the sex is male, age is the next most informative predictor. On the other 
hand, if the sex is female, passenger class is the most informative predictor. Because 
of the recursive nature of the tree, each branch is able to determine the best predictor 
only for the data in that particular branch of the tree.
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Using the decision tree for classification
With the data structure returned from the decision-tree function, we have all the 
information we require to classify passengers into their most likely class. Our 
classifier will also be implemented recursively. If a vector has been passed in as 
the model, we know it will contain two elements—the predictor and the branches. 
We destructure the predictor and branches from the model and then determine 
the branch our test is on. To do this, we simply get the value of the predictor 
from the test with (get test predictor). The branch we want will be the one 
corresponding to this value.

Once we have the branch, we need to call tree-classify again on the branch. 
Because we're in the tail position (no further logic is applied after the if) we can  
call recur, allowing the Clojure compiler to optimize our recursive function call:

(defn tree-classify [model test]
  (if (vector? model)
    (let [[predictor branches] model
          branch (get branches (get test predictor))]
      (recur branch test))
    model))

We continue to call tree-classify recursively until (vector? model) returns false. At 
this point we will have traversed the full depth of the decision tree and reached a leaf 
node. At this point the model argument contains the predicted class, so we simply 
return it.

(defn ex-4-38 []
  (let [data (load-data "titanic.tsv")
        tree (->> (i/transform-col data :age age-categories)
                  (:rows)
                  (decision-tree :survived [:pclass :sex :age]))
        test {:sex "male" :pclass "second" :age "child"}]
    (tree-classify tree test)))

;; "y"

The decision tree predicts that the young male from second class will survive.
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Evaluating the decision tree classifier
As before, we can calculate our confusion matrix and kappa statistic:

(defn ex-4-39 []
  (let [data (-> (load-data "titanic.tsv")
                 (i/transform-col :age age-categories)
                 (:rows))
        tree (decision-tree :survived [:pclass :sex :age] data)]
    (confusion-matrix (map :survived data)
                      (map (partial tree-classify tree) data))))

The confusion matrix looks like this:

|   |   n |   y |
|---+-----+-----|
| n | 763 |  46 |
| y | 219 | 281 |

We can immediately see that the classifier is generating a lot of false negatives: 219. 
Let's calculate the kappa statistic:

(defn ex-4-40 []
   (let [data (-> (load-data "titanic.tsv")
                  (i/transform-col :age age-categories)
                  (:rows))
         tree (decision-tree :survived [:pclass :sex :age] data)
         ys     (map :survived data)
         y-hats (map (partial tree-classify tree) data)]
     (float (kappa-statistic ys y-hats))))

;; 0.541

Our tree classifier isn't performing nearly as well as others we have tried. One way 
we could try to improve the accuracy is to increase the number of predictors we're 
using. Rather than use crude categories for age, let's use the actual data for age as a 
feature. This will allow our classifier to better distinguish between our passengers. 
While we're at it, let's add the fare too:

(defn ex-4-41 []
   (let [data (-> (load-data "titanic.tsv")
                  (:rows))
         tree (decision-tree :survived
                             [:pclass :sex :age :fare] data)
         ys     (map :survived data)



Chapter 4

[ 223 ]

         y-hats (map (partial tree-classify tree) data)]
     (float (kappa-statistic ys y-hats))))

;; 0.925

Great! We've made fantastic progress; our new model is the best yet. By adding  
more granular predictors, we've built a model that's able to predict with a very  
high degree of accuracy.

Before we celebrate too much, though, we should think carefully about how general 
our model is. The purpose of building a classifier is usually to make predictions 
about new data. This means that it should perform well on data that it's never seen 
before. The model we've just built has a significant problem. To understand what it 
is, we'll turn to the library clj-ml, which contains a variety of functions for training 
and testing classifiers.

Classification with clj-ml
While building our own versions of logistic regression, naive Bayes, and decision 
trees has provided a valuable opportunity to talk about the theory behind them, 
Clojure gives us several libraries for building classifiers. One of the better supported 
is the clj-ml library.

The clj-ml library is currently maintained by Josua Eckroth and is documented on 
his GitHub page at https://github.com/joshuaeckroth/clj-ml. The library 
provides Clojure interfaces for running linear regression described in the previous 
chapter, as well as classification with logistic regression, naive Bayes, decision trees, 
and other algorithms.

The underlying implementation for most machine learning 
functionality in clj-ml is provided by the Java machine learning library 
Weka. Waikato Environment for Knowledge Analysis (Weka), 
an open source machine learning project released and maintained 
primarily by the Machine Learning Group at the University of Waikato, 
New Zealand (http://www.cs.waikato.ac.nz/ml/).

https://github.com/joshuaeckroth/clj-ml
http://www.cs.waikato.ac.nz/ml/
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Loading data with clj-ml
Because of its specialized support for machine learning algorithms, clj-ml provides 
functions for creating datasets that identify the classes and attributes of a dataset. 
The function clj-ml.data/make-dataset allows us to create a dataset that can be 
passed to Weka's classifiers. In the following code, we include clj-ml.data as mld:

(defn to-weka [dataset]
  (let [attributes [{:survived ["y" "n"]}
                    {:pclass ["first" "second" "third"]}
                    {:sex ["male" "female"]}
                    :age
                    :fare]
        vectors (->> dataset
                     (i/$ [:survived :pclass :sex :age :fare])
                     (i/to-vect))]
    (mld/make-dataset :titanic-weka attributes vectors
                      {:class :survived})))

mld/make-dataset expects to receive the name of the dataset, a vector of attributes, 
a dataset as a sequence of row vectors, and an optional map of further settings. The 
attributes identify the column names and, in the case of categorical variables, also 
enumerate all the possible categories. Categorical variables, for example :survived, 
are passed as a map {:survived ["y" "n"]}, whereas continuous variables such 
as :age and :fare are passed as straightforward keywords. The dataset must 
be provided as a sequence of row vectors. To construct this, we're simply using 
Incanter's i/$ function and calling i/to-vect on the results.

While make-dataset is a flexible way to create datasets from arbitrary 
data sources, clj-ml.io provides a load-instances function that 
loads data from a variety of sources such as CSV or Attribute-Relation 
File Format (ARFF) files and the MongoDB database.

With our dataset in a format that clj-ml understands, it's time to train a classifier.
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Building a decision tree in clj-ml
Clj-ml implements a large variety of classifiers, and all are accessible through the  
cl/make-classifier function. We pass two keyword arguments to the constructor: 
the classifier type and an algorithm to use. For example, let's look at the :decision-
tree, :c45 algorithm. The C4.5 algorithm was devised by Ross Quinlan and builds a 
tree classifier based on information entropy in the same way as our very own tree-
classifier function from earlier in the chapter. C4.5 extends the classifier we built 
in a couple of ways:

• Where none of the predictors provide any information gain, C4.5 creates a 
decision node higher up the tree using the expected value of the class

• If a previously-unseen class is encountered, C4.5 will create a decision node 
higher up the tree with the expected value of the class

We can create a decision tree in clj-ml with the following code:

(defn ex-4-42 []
   (let [dataset (to-weka (load-data "titanic.tsv"))
         classifier (-> (cl/make-classifier :decision-tree :c45)
                        (cl/classifier-train dataset))
         classify (partial cl/classifier-classify classifier)
         ys     (map str  (mld/dataset-class-values dataset))
         y-hats (map name (map classify dataset))]
     (println "Confusion:" (confusion-matrix ys y-hats))
     (println "Kappa:" (kappa-statistic ys y-hats))))

The preceding code returns the following information:

;; Confusion:
;; |   |   n |   y |
;; |---+-----+-----|
;; | n | 712 |  97 |
;; | y | 153 | 347 |
;;
;; Kappa: 0.587

Notice how we don't need to explicitly provide the class and predictor attributes 
while training our classifier or using it for prediction. The Weka dataset already 
contains the information about the class attribute of each instance, and the 
classifier will use all the attributes it can to arrive at a prediction. In spite of this, 
the results still aren't as good as we were getting before. The reason is that Weka's 
implementation of decision trees is refusing to over-fit the data.
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Bias and variance
Overfitting is a problem that occurs with machine learning algorithms that are able 
to generate very accurate results on a training dataset but fail to generalize very well 
from what they've learned. We say that models which have overfit the data have 
very high variance. When we trained our decision tree on data that included the 
numeric age of passengers, we were overfitting the data.

Conversely, certain models may have very high bias. This is a situation where the 
model has a strong tendency towards a certain outcome irrespective of the training 
examples to the contrary. Recall our example of a classifier that always predicts 
that a survivor will perish. This classifier would perform well on dataset with low 
survivor rates, but very poorly otherwise.

In the case of high bias, the model is unlikely to perform well on diverse inputs at the 
training stage. In the case of high variance, the model is unlikely to perform well on 
data that differs from that which it was trained on.

Like the balance to be struck between Type I and Type II errors 
in hypothesis testing, balancing bias and variance is critical for 
producing good results from machine learning.

If we have too many features, the learned hypothesis may fit the training set very 
well but fail to generalize to new examples very well.

Overfitting
The secret to identifying overfitting, then, is to test the classifier on examples that 
it has not been trained on. If the classifier performs poorly on these examples then 
there is a possibility that the model is overfitting.

The usual approach is to divide the dataset into two groups: a training set and a test 
set. The training set is used to train the classifier, and the test set is used to determine 
whether the classifier is able to generalize well from what it has learned.

The test set should be large enough that it will be a representative sample from the 
dataset, but should still leave the majority of records for training. Test sets are often 
around 10-30 percent of the overall dataset. Let's use clj-ml.data/do-split-
dataset to return two sets of instances. The smaller will be our test set and the larger 
will be our training set:

(defn ex-4-43 []
  (let [[test-set train-set] (-> (load-data "titanic.tsv")
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                                 (to-weka)
                                 (mld/do-split-dataset :percentage
                                                       30))
        classifier (-> (cl/make-classifier :decision-tree :c45)
                       (cl/classifier-train train-set))
        classify (partial cl/classifier-classify classifier)
        ys     (map str  (mld/dataset-class-values test-set))
        y-hats (map name (map classify test-set))]
    (println "Confusion:" (confusion-matrix ys y-hats))
    (println "Kappa:" (kappa-statistic ys y-hats))))

;; Confusion:
;; |   |   n |   y |
;; |---+-----+-----|
;; | n | 152 |   9 |
;; | y |  65 | 167 |
;;
;; Kappa: 0.630

If you compare this kappa statistic to the previous one, you'll see that actually our 
accuracy has improved on unseen data. Whilst this appears to suggest our classifier 
is not overfitting our training set, it doesn't seem very realistic that our classifier 
should be able to make better predictions for new data than the data we've actually 
told it about.

This suggests that we may have been fortunate with the values that were returned 
in our test set. Perhaps this just happened to contain some of the easier-to-classify 
passengers compared to the training set. Let's see what happens if we take the test 
set from the final 30 percent instead:

(defn ex-4-44 []
  (let [[train-set test-set] (-> (load-data "titanic.tsv")
                                 (to-weka)
                                 (mld/do-split-dataset :percentage
                                                       70))
        classifier (-> (cl/make-classifier :decision-tree :c45)
                       (cl/classifier-train train-set))
        classify (partial cl/classifier-classify classifier)
        ys     (map str  (mld/dataset-class-values test-set))
        y-hats (map name (map classify test-set))]
    (println "Kappa:" (kappa-statistic ys y-hats))))

;; Kappa: 0.092
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The classifier is struggling on test data from the final 30 percent of the dataset. To 
get a fair reflection of the actual performance of the classifier overall, therefore, we'll 
want to make sure we test it on several random subsets of the data to even out the 
classifier's performance.

Cross-validation
The process of splitting a dataset into complementary subsets of training and test data 
is called cross-validation. To reduce the variability in output we've just seen, with a 
lower error rate on the test set compared to the training set, it's usual to run multiple 
rounds of cross-validation on different partitions of the data. By averaging the results 
of all runs we get a much more accurate picture of the model's true accuracy. This is 
such a common practice that clj-ml includes a function for just this purpose:

(defn ex-4-45 []
  (let [dataset (-> (load-data "titanic.tsv")
                    (to-weka))
         classifier (-> (cl/make-classifier :decision-tree :c45)
                        (cl/classifier-train dataset))
         evaluation (cl/classifier-evaluate classifier
                                            :cross-validation
                                            dataset 10)]
     (println (:confusion-matrix evaluation))
     (println (:summary evaluation))))

In the preceding code, we make use of cl/classifier-evaluate to run  
10 cross-validations on our dataset. The result is returned as a map with useful 
information about the model performance—for example, a confusion matrix and a 
list of summary statistics—including the kappa statistic we've been tracking so far. 
We print out the confusion matrix and the summary string that clj-ml provides,  
as follows:

;; === Confusion Matrix ===
;;
;;    a   b   <-- classified as
;;  338 162 |   a = y
;;   99 710 |   b = n
;;
;;
;; Correctly Classified Instances        1048            80.0611 %
;; Incorrectly Classified Instances       261            19.9389 %
;; Kappa statistic                          0.5673
;; Mean absolute error                      0.284
;; Root mean squared error                  0.3798
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;; Relative absolute error                 60.1444 %
;; Root relative squared error             78.171  %
;; Coverage of cases (0.95 level)          99.3888 %
;; Mean rel. region size (0.95 level)      94.2704 %
;; Total Number of Instances             1309    

The kappa after 10 cross-validations is 0.56, only slightly lower than our model 
validated against the training data. This seems about as high as we will be able  
to get.

Addressing high bias
Whereas overfitting can be caused by including too many features in our model—
such as when we included age as a categorical variable in our decision tree—high 
bias can be caused by other factors including not having enough data.

One simple way of increasing the accuracy of the model is to ensure that there are 
no missing values in the training set. Missing values are necessarily discarded by the 
model, limiting the number of training examples from which the model can learn. 
With a relatively small dataset such as this, each example can have a material effect 
on the outcome, and there are numerous age values and one fare value missing from 
the dataset.

We could simply substitute the mean value for a missing value in numeric columns. 
This is a reasonable default value and a fair tradeoff—in return for slightly lowering 
the variance of the field, we are potentially gaining several more training examples.

Clj-ml contains numerous filters in the clj-ml.filters namespace that are able to 
alter the dataset in some way. A useful filter is :replace-missing-values, which 
will substitute any missing numeric values with the means from the dataset. For 
categorical data, the modal category is substituted.

(defn ex-4-46 []
  (let [dataset (->> (load-data "titanic.tsv")
                     (to-weka)
                     (mlf/make-apply-filter
                      :replace-missing-values {}))
        classifier (-> (cl/make-classifier :decision-tree :c45)
                       (cl/classifier-train dataset))
        evaluation (cl/classifier-evaluate classifier
                                           :cross-validation
                                           dataset 10)]
    (println (:kappa evaluation))))

;; 0.576
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Simply plugging the missing values in the age column has nudged our kappa statistic 
upwards. Our model is currently struggling to distinguish between passengers with 
different survival outcomes and more information may help the algorithm determine 
the correct class. Whilst we could return to the data and pull in all of the remaining 
fields, it's also possible to construct new features out of existing features.

For numeric values, another way of increasing the number of 
parameters is to include polynomial versions of the values as 
features. For example we could create features for age2 and age3 
simply by squaring or cubing the existing age value. While these 
may appear to add no new information to the model, polynomials 
scale differently and provide alternative features for the model to 
learn from.

The final way we'll look at for balancing bias and variance is to combine the output 
from multiple models.

Ensemble learning and random forests
Ensemble learning combines the output from multiple models to obtain a better 
prediction than could be obtained with any of the models individually. The principle 
is that the combined accuracy of many weak learners is greater than any of the weak 
learners taken individually.

Random forests is an ensemble learning algorithm devised and trademarked by Leo 
Breiman and Adele Cutler. It combines multiple decision trees into one large forest 
learner. Each tree is trained on the data using a subset of the available features, 
meaning that each tree will have a slightly different view of the data and is capable 
of generating a different prediction from that of its peers.

Creating a Random Forest in clj-ml simply requires that we alter the arguments to 
cl/make-classifier to :decision-tree, :random-forest.

Bagging and boosting
Bagging and boosting are two opposing techniques for creating ensemble models. 
Boosting is the name for a general technique of building an ensemble by training 
each new model to emphasize correct the classification of training examples that 
previous models weren't able to correctly classify. It is a meta-algorithm.
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One of the most popular boosting algorithms is AdaBoost, a 
portmanteau of "adaptive boosting". As long as each model performs 
slightly better than random guessing, the combined output can be 
shown to converge to a strong learner.

Bagging is a portmanteau of "bootstrap aggregating" and is the name of another 
meta-algorithm that is usually applied to decision tree learners but can be applied 
to other learners too. In cases where a single tree might overfit the training data, 
bagging helps reduce the variance of the combined model. It does this by sampling 
the training data with replacement, just as with our bootstrapped standard error 
at the beginning of the chapter. As a result, each model in the ensemble has a 
differently incomplete view of the world, making it less likely that the combined 
model will learn an overly specific hypothesis on the training data. Random forests is 
an example of a bagging algorithm.

(defn ex-4-47 []
  (let [dataset (->> (load-data "titanic.tsv")
                     (to-weka)
                     (mlf/make-apply-filter
                      :replace-missing-values {}))
        classifier (cl/make-classifier :decision-tree
                                       :random-forest)
        evaluation (cl/classifier-evaluate classifier
                                           :cross-validation
                                           dataset 10)]
    (println (:confusion-matrix evaluation))
    (println (:summary evaluation))))

With the random forests classifier, you should observe a kappa of around 0.55, 
slightly lower than the decision tree we have been optimizing. The random forest 
implementation has sacrificed some of the variance of the model.

Whilst this might seem disappointing, it is actually part of the reason for random 
forests' appeal. Their ability to strike a balance between bias and variance makes 
them flexible and general-purpose classifiers suitable for a wide variety of problems.
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Saving the classifier to a file
Finally, we can write out our classifier to a file using clj-ml.utils/serialize-to-
file:

(defn ex-4-48 []
  (let [dataset (->> (load-data "titanic.tsv")
                     (to-weka)
                     (mlf/make-apply-filter
                      :replace-missing-values {}))
        classifier (cl/make-classifier :decision-tree
                                       :random-forest)
        file (io/file (io/resource "classifier.bin"))]
    (clu/serialize-to-file classifier file)))

At some point later, we can load up our trained classifier using the clj-ml.utils/
deserialize-from-file and immediately begin classifying new data.

Summary
In this chapter, we've learned about how to make use of categorical variables to 
group data into classes.

We've seen how quantify the difference between groups using the odds ratio and 
relative risk, and how to perform statistical significance tests on groups using the X2 
test. We've learned about how to build machine learning models suitable for the task 
of classification with a variety of techniques: logistic regression, naive Bayes, decision 
trees, and random forests, and several methods of evaluating them; the confusion 
matrix and the kappa statistic. We also learned about the opposing dangers of high 
bias and of overfitting in machine learning, and how to ensure that your model is 
not overfitting by making use of cross-validation. Finally, we've seen how the clj-ml 
library can help to prepare data and to build many different types of classifiers and 
save them for future use.

In the next chapter, we'll learn about how to adapt some of the techniques we've 
learned about so far to the task of processing very large datasets that exceed the 
storage and processing capabilities of any single computer—so-called Big Data.  
We'll see how one of the techniques we encountered in this chapter, gradient  
descent, turns out to be particularly amenable to parameter optimization on a  
very large scale.
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Big Data
"More is different."

                                                                                     - Philip Warren Anderson

In the previous chapters, we've used regression techniques to fit models to the data. 
In Chapter 3, Correlation, for example, we built a linear model that used ordinary least 
squares and the normal equation to fit a straight line through the athletes' heights 
and log weights. In Chapter 4, Classification, we used Incanter's optimize namespace 
to minimize the logistic cost function and build a classifier of Titanic's passengers. 
In this chapter, we'll apply similar analysis in a way that's suitable for much larger 
quantities of data.

We'll be working with a relatively modest dataset of only 100,000 records. This isn't 
big data (at 100 MB, it will fit comfortably in the memory of one machine), but it's 
large enough to demonstrate the common techniques of large-scale data processing. 
Using Hadoop (the popular framework for distributed computation) as its case 
study, this chapter will focus on how to scale algorithms to very large volumes of 
data through parallelism. We'll cover two libraries that Clojure offers to work with 
Hadoop—Tesser and Parkour.

Before we get to Hadoop and distributed data processing though, we'll see how 
some of the same principles that enable Hadoop to be effective at a very large scale 
can also be applied to data processing on a single machine, by taking advantage of 
the parallel capacity available in all modern computers.

Downloading the code and data
This chapter makes use of data on individual income by the zip code provided by the 
U.S. Internal Revenue Service (IRS). The data contains selected income and tax items 
classified by state, zip code, and income classes.
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It's 100 MB in size and can be downloaded from http://www.irs.gov/pub/irs-
soi/12zpallagi.csv to the example code's data directory. Since the file contains the 
IRS Statistics of Income (SoI), we've renamed the file to soi.csv for the examples.

The example code for this chapter is available from the Packt Publishing's 
website or https://github.com/clojuredatascience/ch5-big-
data.

As usual, a script has been provided to download and rename the data for you. It can 
be run on the command line from within the project directory with:

script/download-data.sh

If you run this, the file will be downloaded and renamed automatically.

Inspecting the data
Once you've downloaded the data, take a look at the column headings in the first line 
of the file. One way to access the first line of the file is to load the file into memory, 
split on newline characters, and take the first result. The Clojure core library's 
function slurp will return the whole file as a string:

(defn ex-5-1 []
  (-> (slurp "data/soi.csv")
      (str/split #"\n")
      (first)))

The file is around 100 MB in size on disk. When loaded into memory and converted 
into object representations, the data will occupy more space in memory. This is 
particularly wasteful when we're only interested in the first row.

Fortunately, we don't have to load the whole file into memory if we take advantage 
of Clojure's lazy sequences. Instead of returning a string representation of the 
contents of the whole file, we could return a reference to the file and then step 
through it one line at a time:

(defn ex-5-2 []
  (-> (io/reader "data/soi.csv")
      (line-seq)
      (first)))

http://www.irs.gov/pub/irs-soi/12zpallagi.csv
http://www.irs.gov/pub/irs-soi/12zpallagi.csv
https://github.com/clojuredatascience/ch5-big-data
https://github.com/clojuredatascience/ch5-big-data
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In the preceding code, we're using clojure.java.io/reader to return a reference 
to the file. Also, we're using the clojure.core function line-seq to return a lazy 
sequence of lines from the file. In this way, we can read files even larger than the 
available memory.

The result of the previous function is as follows:

"STATEFIPS,STATE,zipcode,AGI_STUB,N1,MARS1,MARS2,MARS4,PREP,N2,NUMDEP,
A00100,N00200,A00200,N00300,A00300,N00600,A00600,N00650,A00650,N00900,
A00900,SCHF,N01000,A01000,N01400,A01400,N01700,A01700,N02300,A02300,N0
2500,A02500,N03300,A03300,N00101,A00101,N04470,A04470,N18425,A18425,N1
8450,A18450,N18500,A18500,N18300,A18300,N19300,A19300,N19700,A19700,N0
4800,A04800,N07100,A07100,N07220,A07220,N07180,A07180,N07260,A07260,N5
9660,A59660,N59720,A59720,N11070,A11070,N09600,A09600,N06500,A06500,N1
0300,A10300,N11901,A11901,N11902,A11902"

There are 77 fields in the file, so we won't identify them all. The first four fields are:

• STATEFIPS: This is the Federal Information Processing System (FIPS) code.
• STATE: This is the two-letter code for the State.
• zipcode: This is the 5-digit zip code.
• AGI_STUB: This is the side of the adjusted gross income, binned in the 

following way:
1. $1 under $25,000
2. $25,000 under $50,000
3. $50,000 under $75,000
4. $75,000 under $100,000
5. $100,000 under $200,000
6. $200,000 or more

The other fields that we're interested in are as follows:

• N1: The number of returns submitted
• MARS2: The number of joint returns submitted
• NUMDEP: The number of dependents
• N00200: The number of returns with salaries and wages
• N02300: The number of returns with unemployment compensation

If you're curious, the full list of column definitions is available in the IRS data 
definition document at http://www.irs.gov/pub/irs-soi/12zpdoc.doc.

http://www.irs.gov/pub/irs-soi/12zpdoc.doc
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Counting the records
Our file is certainly wide, but is it tall? We'd like to determine the total number of 
rows in the file. Having created a lazy sequence, this is simply a matter of counting 
the length of the sequence:

(defn ex-5-3 []
  (-> (io/reader "data/soi.csv")
      (line-seq)
      (count)))

The preceding example returns 166,905, including the header row, so we know there 
are actually 166,904 rows in the file.

The count function is the simplest way to count the number of elements in a 
sequence. For vectors (and other types implementing the counted interface), this is 
also the most efficient one, since the collection already knows how many elements it 
contains and therefore it doesn't need to recalculate it. For a lazy sequence however, 
the only way to determine how many elements are contained in the sequence is to 
step through it from the beginning to the end.

Clojure's implementation of count is written in Java, but the Clojure equivalent 
would be a reduce over the sequence like this:

(defn ex-5-4 []
  (->> (io/reader "data/soi.csv")
       (line-seq)
       (reduce (fn [i x]
                 (inc i)) 0)))

The preceding function we pass to reduce accepts a counter i and the next element 
from the sequence x. For each x, we simply increment the counter i. The reduce 
function accepts an initial value of zero, which represents the concept of nothing.  
If there are no lines to reduce over, zero will be returned.

As of version 1.5, Clojure offers the reducers library (http://clojure.org/
reducers), which provides an alternative way to perform reductions that trades 
memory efficiency for speed.

http://clojure.org/reducers
http://clojure.org/reducers
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The reducers library
The count operation we implemented previously is a sequential algorithm. Each line 
is processed one at a time until the sequence is exhausted. But there is nothing about 
the operation that demands that it must be done in this way.

We could split the number of lines into two sequences (ideally of roughly equal 
length) and reduce over each sequence independently. When we're done, we  
would just add together the total number of lines from each sequence to get the  
total number of lines in the file:

If each Reduce ran on its own processing unit, then the two count operations would 
run in parallel. All the other things being equal, the algorithm would run twice as 
fast. This is one of the aims of the clojure.core.reducers library—to bring the 
benefit of parallelism to algorithms implemented on a single machine by taking 
advantage of multiple cores.

Parallel folds with reducers
The parallel implementation of reduce implemented by the reducers library is called 
fold. To make use of a fold, we have to supply a combiner function that will take the 
results of our reduced sequences (the partial row counts) and return the final result. 
Since our row counts are numbers, the combiner function is simply +.

Reducers are a part of Clojure's standard library, they do not 
need to be added as an external dependency.

The adjusted example, using clojure.core.reducers as r, looks like this:

(defn ex-5-5 []
  (->> (io/reader "data/soi.csv")
       (line-seq)
       (r/fold + (fn [i x]
                   (inc i)))))
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The combiner function, +, has been included as the first argument to fold and our 
unchanged reduce function is supplied as the second argument. We no longer 
need to pass the initial value of zero—fold will get the initial value by calling the 
combiner function with no arguments. Our preceding example works because +, 
called with no arguments, already returns zero:

(defn ex-5-6 []
  (+))

;; 0

To participate in folding then, it's important that the combiner function have two 
implementations: one with zero arguments that returns the identity value and 
another with two arguments that combines the arguments. Different folds will, of 
course, require different combiner functions and identity values. For example, the 
identity value for multiplication is 1.

We can visualize the process of seeding the computation with an identity value, 
iteratively reducing over the sequence of xs and combining the reductions into an 
output value as a tree:
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There may be more than two reductions to combine, of course. The default 
implementation of fold will split the input collection into chunks of 512 elements. 
Our 166,000-element sequence will therefore generate 325 reductions to be combined. 
We're going to run out of page real estate quite quickly with a tree representation 
diagram, so let's visualize the process more schematically instead—as a two-step 
reduce and combine process.

The first step performs a parallel reduce across all the chunks in the collection. The 
second step performs a serial reduce over the intermediate results to arrive at the 
final result:

The preceding representation shows reduce over several sequences of xs, 
represented here as circles, into a series of outputs, represented here as squares.  
The squares are combined serially to produce the final result, represented by a star.

Loading large files with iota
Calling fold on a lazy sequence requires Clojure to realize the sequence into memory 
and then chunk the sequence into groups for parallel execution. For situations where 
the calculation performed on each row is small, the overhead involved in coordination 
outweighs the benefit of parallelism. We can improve the situation slightly by using a 
library called iota (https://github.com/thebusby/iota).

The iota library loads files directly into the data structures 
suitable for folding over with reducers that can handle files larger 
than available memory by making use of memory-mapped files.

https://github.com/thebusby/iota
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With iota in the place of our line-seq function, our line count simply becomes:

(defn ex-5-7 []
  (->> (iota/seq "data/soi.csv")
       (r/fold + (fn [i x]
                   (inc i)))))

So far, we've just been working with the sequences of unformatted lines, but if we're 
going to do anything more than counting the rows, we'll want to parse them into a 
more useful data structure. This is another area in which Clojure's reducers can help 
make our code more efficient.

Creating a reducers processing pipeline
We already know that the file is comma-separated, so let's first create a function to 
turn each row into a vector of fields. All fields except the first two contain numeric 
data, so let's parse them into doubles while we're at it:

(defn parse-double [x]
  (Double/parseDouble x))

(defn parse-line [line]
  (let [[text-fields double-fields] (->> (str/split line #",")
                                         (split-at 2))]
    (concat text-fields
            (map parse-double double-fields))))

We're using the reducers version of map to apply our parse-line function to each of 
the lines from the file in turn:

(defn ex-5-8 []
   (->> (iota/seq "data/soi.csv")
        (r/drop 1)
        (r/map parse-line)
        (r/take 1)
        (into [])))

;; [("01" "AL" 0.0 1.0 889920.0 490850.0 ...)]

The final into function call converts the reducers' internal representation  
(a reducible collection) into a Clojure vector. The previous example should  
return a sequence of 77 fields, representing the first row of the file after the header.
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We're just dropping the column names at the moment, but it would be great if we 
could make use of these to return a map representation of each record, associating the 
column name with the field value. The keys of the map would be the column headings 
and the values would be the parsed fields. The clojure.core function zipmap will 
create a map out of two sequences—one for the keys and one for the values:

(defn parse-columns [line]
  (->> (str/split line #",")
       (map keyword)))

(defn ex-5-9 []
  (let [data (iota/seq "data/soi.csv")
        column-names (parse-columns (first data))]
    (->> (r/drop 1 data)
         (r/map parse-line)
         (r/map (fn [fields]
                  (zipmap column-names fields)))
         (r/take 1)
         (into []))))

This function returns a map representation of each row, a much more user-friendly 
data structure:

[{:N2 1505430.0, :A19300 181519.0, :MARS4 256900.0 ...}]

A great thing about Clojure's reducers is that in the preceding computation, calls to 
r/map, r/drop and r/take are composed into a reduction that will be performed 
in a single pass over the data. This becomes particularly valuable as the number of 
operations increases.

Let's assume that we'd like to filter out zero ZIP codes. We could extend the reducers 
pipeline like this:

(defn ex-5-10 []
  (let [data (iota/seq "data/soi.csv")
        column-names (parse-columns (first data))]
    (->> (r/drop 1 data)
         (r/map parse-line)
         (r/map (fn [fields]
                  (zipmap column-names fields)))
         (r/remove (fn [record]
                     (zero? (:zipcode record))))
         (r/take 1)
         (into []))))
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The r/remove step is now also being run together with the r/map, r/drop and  
r/take calls. As the size of the data increases, it becomes increasingly important 
to avoid making multiple iterations over the data unnecessarily. Using Clojure's 
reducers ensures that our calculations are compiled into a single pass.

Curried reductions with reducers
To make the process clearer, we can create a curried version of each of our previous 
steps. To parse the lines, create a record from the fields and filter zero ZIP codes.  
The curried version of the function is a reduction waiting for a collection:

(def line-formatter
  (r/map parse-line))

(defn record-formatter [column-names]
  (r/map (fn [fields]
           (zipmap column-names fields))))

(def remove-zero-zip
  (r/remove (fn [record]
              (zero? (:zipcode record)))))

In each case, we're calling one of reducers' functions, but without providing a 
collection. The response is a curried version of the function that can be applied to  
the collection at a later time. The curried functions can be composed together into  
a single parse-file function using comp:

(defn load-data [file]
  (let [data (iota/seq file)
        col-names  (parse-columns (first data))
        parse-file (comp remove-zero-zip
                         (record-formatter col-names)
                         line-formatter)]
    (parse-file (rest data))))

It's only when the parse-file function is called with a sequence that the pipeline is 
actually executed.



Chapter 5

[ 243 ]

Statistical folds with reducers
With the data parsed, it's time to perform some descriptive statistics. Let's assume 
that we'd like to know the mean number of returns (column N1) submitted to the IRS 
by ZIP code. One way of doing this—the way we've done several times throughout 
the book—is by adding up the values and dividing it by the count. Our first attempt 
might look like this:

(defn ex-5-11 []
  (let [data (load-data "data/soi.csv")
        xs (into [] (r/map :N1 data))]
    (/ (reduce + xs)
       (count xs))))

;; 853.37

While this works, it's comparatively slow. We iterate over the data once to create xs, 
a second time to calculate the sum, and a third time to calculate the count. The bigger 
our dataset gets, the larger the time penalty we'll pay. Ideally, we would be able 
to calculate the mean value in a single pass over the data, just like our parse-file 
function previously. It would be even better if we can perform it in parallel too.

Associativity
Before we proceed, it's useful to take a moment to reflect on why the following code 
wouldn't do what we want:

(defn mean
  ([] 0)
  ([x y] (/ (+ x y) 2)))

Our mean function is a function of two arities. Without arguments, it returns zero, the 
identity for the mean computation. With two arguments, it returns their mean:

(defn ex-5-12 []
  (->> (load-data "data/soi.csv")
       (r/map :N1)
       (r/fold mean)))

;; 930.54

The preceding example folds over the N1 data with our mean function and produces 
a different result from the one we obtained previously. If we could expand out the 
computation for the first three xs, we might see something like the following code:

(mean (mean (mean 0 a) b) c)



Big Data

[ 244 ]

This is a bad idea, because the mean function is not associative. For an associative 
function, the following holds true:

( )( ) ( )( ), , , ,f f a b c f a f b c=

Addition is associative, but multiplication and division are not. So the mean function is 
not associative either. Contrast the mean function with the following simple addition:

(+ 1 (+ 2 3))

This yields an identical result to:

(+ (+ 1 2) 3)

It doesn't matter how the arguments to + are partitioned. Associativity is an 
important property of functions used to reduce over a set of data because, by 
definition, the results of a previous calculation are treated as inputs to the next.

The easiest way of converting the mean function into an associative function is 
to calculate the sum and the count separately. Since the sum and the count are 
associative, they can be calculated in parallel over the data. The mean function  
can be calculated simply by dividing one by the other.

Calculating the mean using fold
We'll create a fold using two custom functions, mean-combiner and mean-reducer. 
This requires defining three entities:

• The identity value for the fold
• The reduce function
• The combine function

We discovered the benefits of associativity in the previous section, and so we'll want 
to update our intermediate mean by using associative operations only and calculating 
the sum and count separately. One way of representing the two values is a map of 
two keys, :count and :sum. The value that represents zero for our mean would be a 
sum of zero and a count of zero, or a map such as the following: {:count 0 :sum 0}.
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The combine function, mean-combiner, provides the seed value when it's called 
without arguments. The two-argument combiner needs to add together the :count 
and the :sum for each of the two arguments. We can achieve this by merging the 
maps with +:

(defn mean-combiner
  ([] {:count 0 :sum 0})
  ([a b] (merge-with + a b)))

The mean-reducer function needs to accept an accumulated value (either an identity 
value or the results of a previous reduction) and incorporate the new x. We do this 
simply by incrementing the :count and adding x to the accumulated :sum:

(defn mean-reducer [acc x]
  (-> acc
      (update-in [:count] inc)
      (update-in [:sum] + x)))

The preceding two functions are enough to completely specify our mean fold:

(defn ex-5-13 []
  (->> (load-data "data/soi.csv")
       (r/map :N1)
       (r/fold mean-combiner
               mean-reducer)))

;; {:count 166598, :sum 1.4216975E8}

The result gives us all we need to calculate the mean of N1, which is calculated in 
only one pass over the data. The final step of the calculation can be performed with 
the following mean-post-combiner function:

(defn mean-post-combiner [{:keys [count sum]}]
  (if (zero? count) 0 (/ sum count)))

(defn ex-5-14 []
  (->> (load-data "data/soi.csv")
       (r/map :N1)
       (r/fold mean-combiner
               mean-reducer)
       (mean-post-combiner)))

;; 853.37

Happily, the values agree with the mean we calculated previously.
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Calculating the variance using fold
Next, we'd like to calculate the variance of the N1 values. Remember that the variance 
is the mean squared difference from the mean:

( )22

1

1 n

i
i

s x x
n =

= −∑

To implement this as a fold, we might write something as follows:

(defn ex-5-15 []
   (let [data (->> (load-data "data/soi.csv")
                   (r/map :N1))
         mean-x (->> data
                     (r/fold mean-combiner
                             mean-reducer)
                     (mean-post-combine))
         sq-diff (fn [x] (i/pow (- x mean-x) 2))]
     (->> data
          (r/map sq-diff)
          (r/fold mean-combiner
                  mean-reducer)
          (mean-post-combine))))

;; 3144836.86

First, we calculate the mean value of the series using the fold we constructed just 
now. Then, we define a function of x and sq-diff, which calculates the squared 
difference of x from the mean value. We map it over the squared differences and  
call our mean fold a second time to arrive at the final variance result.

Thus, we make two complete passes over the data, firstly to calculate the mean, and 
secondly to calculate the difference of each x from the mean value. It might seem 
that calculating the variance is necessarily a sequential algorithm: it may not seem 
possible to reduce the number of steps further and calculate the variance in only a 
single fold over the data.
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In fact, it is possible to express the variance calculation as a single fold. To do so,  
we need to keep track of three things: the count, the (current) mean, and the sum  
of squared differences:

(defn variance-combiner
  ([] {:count 0 :mean 0 :sum-of-squares 0})
  ([a b]
   (let [count (+ (:count a) (:count b))]
     {:count count
      :mean (/ (+ (* (:count a) (:mean a))
                  (* (:count b) (:mean b)))
               count)
      :sum-of-squares (+ (:sum-of-squares a)
                         (:sum-of-squares b)
                         (/ (* (- (:mean b)
                                  (:mean a))
                               (- (:mean b)
                                  (:mean a))
                               (:count a)
                               (:count b))
                            count))})))

Our combiner function is shown in the preceding code. The identity value is a map 
with all three values set to zero. The zero-arity combiner returns this value.

The two-arity combiner needs to combine the counts, means, and sums-of-squares 
for both of the supplied values. Combining the counts is easy—we simply add them 
together. The means is only marginally trickier: we need to calculate the weighted 
mean of the two means. If one mean is based on fewer records, then it should count 
for less in the combined mean:

,
a a b b

a b
a b

n n
n n

µ µµ +
=

+

Combining the sums of squares is the most complicated calculation. While adding 
the sums of squares, we also need to add a factor to account for the fact that the sum 
of squares from a and b were likely calculated from differing means:

(defn variance-reducer [{:keys [count mean sum-of-squares]} x]
  (let [count' (inc count)
        mean'  (+ mean (/ (- x mean) count'))]
    {:count count'
     :mean mean'
     :sum-of-squares (+ sum-of-squares
                        (* (- x mean') (- x mean)))}))
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The reducer is much simpler and contains the explanation on how the variance fold 
is able to calculate the variance in one pass over the data. For each new record, the 
:mean value is recalculated from the previous mean and current count. We then add 
to the sum of squares the product of the difference between the means before and 
after taking account of this new record.

The final result is a map containing the count, mean and total sum-of-squares. Since 
the variance is just the sum-of-squares divided by the count, our variance-post-
combiner function is a relatively simple one:

(defn variance-post-combiner [{:keys [count mean sum-of-squares]}]
   (if (zero? count) 0 (/ sum-of-squares count)))

Putting the three functions together yields the following:

(defn ex-5-16 []
  (->> (load-data "data/soi.csv")
       (r/map :N1)
       (r/fold variance-combiner
               variance-reducer)
       (variance-post-combiner)))

;; 3144836.86

Since the standard deviation is simply the square root of the variance, we only need 
a slightly modified variance-post-combiner function to calculate it as well.

Mathematical folds with Tesser
We should now understand how to use folds to calculate parallel implementations 
of simple algorithms. Hopefully, we should also have some appreciation for the 
ingenuity required to find efficient solutions that will perform the minimum number 
of iterations over the data.

Fortunately, the Clojure library Tesser (https://github.com/aphyr/tesser) 
includes implementations for common mathematical folds, including the mean, 
standard deviation, and covariance. To see how to use Tesser, let's consider the 
covariance of two fields from the IRS dataset: the salaries and wages, A00200, the 
unemployment compensation, A02300.

https://github.com/aphyr/tesser
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Calculating covariance with Tesser
We encountered covariance in Chapter 3, Correlation, as a measure of how two 
sequences of data vary together. The formula is reproduced as follows:

( ) ( )( )
1

1cov ,
n

i i
i

X Y x x y y
n =

= − −∑

A covariance fold is included in tesser.math. In the following code, we'll include 
tesser.math as m and tesser.core as t:

(defn ex-5-17 []
  (let [data (into [] (load-data "data/soi.csv"))]
    (->> (m/covariance :A02300 :A00200)
         (t/tesser (t/chunk 512 data )))))

;; 3.496E7

The m/covariance function expects to receive two arguments: a function to return 
the x value and another to return the y value. Since keywords act as functions  
to extract their corresponding values from a map, we simply pass the keywords  
as arguments.

Tesser works in a similar way to Clojure's reducers, but with some minor  
differences. Clojure's fold takes care of splitting our data into subsequences for 
parallel execution. With Tesser however, we must divide our data into chunks 
explicitly. Since this is something we're going to do repeatedly, let's create a little 
helper function called chunks:

(defn chunks [coll]
  (->> (into [] coll)
       (t/chunk 1024)))

For the most of the rest of this chapter, we'll be using the chunks function to split our 
input data into groups of 1024 records.
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Commutativity
Another difference between Clojure's reducers and Tesser's folds is that Tesser 
doesn't guarantee that the input order will be preserved. Along with being 
associative, as we discussed previously, Tesser's functions must be commutative. 
A commutative function is the one whose result is the same if its arguments are 
provided in a different order:

( ) ( ), ,f a b f b a=

Addition and multiplication are commutative, but subtraction and division are 
not. Commutativity is a useful property of functions intended for distributed data 
processing, because it lowers the amount of coordination required between subtasks. 
When Tesser executes a combine function, it's free to do so on whichever reducer 
functions return their values first. If the order doesn't matter, it doesn't need to  
wait for the first to complete.

Let's rewrite our load-data function into a prepare-data function that will return 
a commutative Tesser fold. It performs the same steps (parsing a line of the text file, 
formatting the record as a map and removing zero ZIP codes) that our previous 
reducers-based function did, but it no longer assumes that the column headers will 
be the first row in the file—first is a concept that explicitly requires ordered data:

(def column-names
  [:STATEFIPS :STATE :zipcode :AGI_STUB :N1 :MARS1 :MARS2 ...])

(defn prepare-data []
  (->> (t/remove #(.startsWith % "STATEFIPS"))
       (t/map parse-line)
       (t/map (partial format-record column-names))
       (t/remove  #(zero? (:zipcode %)))))

Now that all the preparation is being done in Tesser, we can pass the result of  
iota/seq directly as input. This will be particularly useful when we come to  
run our code distributed on Hadoop later in the chapter:

(defn ex-5-18 []
  (let [data (iota/seq "data/soi.csv")]
    (->> (prepare-data)
         (m/covariance :A02300 :A00200)
         (t/tesser (chunks data)))))

;; 3.496E7
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In Chapter 3, Correlation, we saw how in the case of simple linear regression with one 
feature and one response variable, the correlation coefficient is the covariance over 
the product of standard deviations:

( )cov ,

X Y

X Y
r

σ σ
=

Tesser includes functions to calculate the correlation of a pair of attributes as a  
fold too:

(defn ex-5-19 []
  (let [data (iota/seq "data/soi.csv")]
    (->> (prepare-data)
         (m/correlation :A02300 :A00200)
         (t/tesser (chunks data)))))

;; 0.353

There's a modest, positive correlation between these two variables. Let's build  
a linear model that predicts the value of unemployment compensation, A02300, 
using salaries and wages, A00200.

Simple linear regression with Tesser
Tesser doesn't currently provide a linear regression fold, but it does give us the tools 
we need to implement one. We saw in Chapter 3, Correlation, how the coefficients for 
a simple linear regression model, the slope and the intercept, can be calculated as a 
simple function of the variance, covariance, and means of the two inputs:

( )
( )

cov ,
var
X Y

r
X

=

a y bx= −

The slope b is the covariance divided by the variance in X. The intercept is the value 
that ensures the regression line passes through the means of both the series. Ideally, 
therefore, we'd be able to calculate each of these four variables in a single fold over 
the data. Tesser provides two fold combinators, t/fuse and t/facet, to build more 
sophisticated folds out of more basic folds.
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In cases where we have one input record and multiple calculations to be run in 
parallel, we should use t/fuse. For example, in the following example, we're fusing 
the mean and the standard deviation folds into a single fold that will calculate both 
values at once:

(defn ex-5-20 []
  (let [data (iota/seq "data/soi.csv")]
    (->> (prepare-data)
         (t/map :A00200)
         (t/fuse {:A00200-mean (m/mean)
                  :A00200-sd   (m/standard-deviation)})
         (t/tesser (chunks data)))))

;; {:A00200-sd 89965.99846545042, :A00200-mean 37290.58880658831}

Here, we have the same calculation to run on all the fields in the map; therefore,  
we should use t/facet:

(defn ex-5-21 []
  (let [data (iota/seq "data/soi.csv")]
    (->> (prepare-data)
         (t/map #(select-keys % [:A00200 :A02300]))
         (t/facet)
         (m/mean)
         (t/tesser (chunks data)))))

;; {:A02300 419.67862159209596, :A00200 37290.58880658831}

In the preceding code, we selected only two values from the record (A00200 and 
A02300) and calculated the mean value for both of them simultaneously. Returning 
to the challenge of performing simple linear regression—we have four numbers to 
calculate, so let's fuse them together:

(defn calculate-coefficients [{:keys [covariance variance-x
                                      mean-x mean-y]}]
  (let [slope     (/ covariance variance-x)
        intercept (- mean-y (* mean-x slope))]
    [intercept slope]))

(defn ex-5-22 []
  (let [data (iota/seq "data/soi.csv")
        fx :A00200
        fy :A02300]
    (->> (prepare-data)
         (t/fuse {:covariance (m/covariance fx fy)
                  :variance-x (m/variance (t/map fx))
                  :mean-x (m/mean (t/map fx))
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                  :mean-y (m/mean (t/map fx))})
         (t/post-combine calculate-coefficients)
         (t/tesser (chunks data)))))

;; [37129.529236553506 0.0043190406799462925]

fuse very succinctly binds together the calculations we want to perform. In addition, 
it allows us to specify a post-combine step to be included as part of the fuse. Rather 
than handing the result off to another function to finalize the output, we can specify  
it directly as an integral part of the fold. The post-combine step receives the four 
results and calculates the slope and intercept from them, returning the two coefficients 
as a vector.

Calculating a correlation matrix
We've only compared two features to see how they are correlated, but Tesser makes 
it very simple to look at the inter-correlation of a large number of target features. We 
supply the target features as a map of the feature name to some function of the input 
record that returns the desired feature. In Chapter 3, Correlation, for example, we 
would have taken the logarithm of the height. Here, we will simply extract each of 
the features as it is and provide human-readable names for each of them:

(defn ex-5-23 []
  (let [data (iota/seq "data/soi.csv")
        attributes {:unemployment-compensation :A02300
                    :salary-amount             :A00200
                    :gross-income              :AGI_STUB
                    :joint-submissions         :MARS2
                    :dependents                :NUMDEP}]
    (->> (prepare-data)
         (m/correlation-matrix attributes)
         (t/tesser (chunks data)))))

Tesser will calculate the correlation between each pair of features and return the 
results in a map. The map is keyed by tuples (vectors of two elements) containing  
the names of each pair of features, and the associated value is the correlation 
between them.

If you run the preceding example now, you'll find that there are a high correlations 
between some of the variables. For example, the correlation between :dependents 
and :unemployment-compensation is 0.821. Let's build a linear regression model  
that uses all of these variables as inputs.
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Multiple regression with gradient descent
When we ran multiple linear regression in Chapter 3, Correlation, we used the normal 
equation and matrices to quickly arrive at the coefficients for a multiple linear 
regression model. The normal equation is repeated as follows:

( ) 1T TX X X yβ
−

=

The normal equation uses matrix algebra to very quickly and efficiently arrive at the 
least squares estimates. Where all data fits in memory, this is a very convenient and 
concise equation. Where the data exceeds the memory available to a single machine 
however, the calculation becomes unwieldy. The reason for this is matrix inversion. 

The calculation of ( ) 1TX X
−

 is not something that can be accomplished on a fold  
over the data—each cell in the output matrix depends on many others in the input 
matrix. These complex relationships require that the matrix be processed in a 
nonsequential way.

An alternative approach to solve linear regression problems, and many other related 
machine learning problems, is a technique called gradient descent. Gradient descent 
reframes the problem as the solution to an iterative algorithm—one that does not 
calculate the answer in one very computationally intensive step, but rather converges 
towards the correct answer over a series of much smaller steps.

We encountered gradient descent in the previous chapter, when we used Incanter's 
minimize function to calculate the parameters that produced the lowest cost for our 
logistic regression classifier. As the volume of data increases, Incanter no longer 
remains a viable solution to run gradient descent. In the next section, we'll see how 
we can run gradient descent for ourselves using Tesser.

The gradient descent update rule
Gradient descent works by the iterative application of a function that moves the 
parameters in the direction of their optimum values. To apply this function, we  
need to know the gradient of the cost function with the current parameters.

Calculating the formula for the gradient involves calculus that's beyond the scope of 
this book. Fortunately, the resulting formula isn't terribly difficult to interpret:

( ) ( )ˆ j
j

J y y xδ β
δβ

= −
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j

δ
δβ  is the partial derivative, or the gradient, of our cost function J(β) for the 
parameter at index j. Therefore, we can see that the gradient of the cost function with 
respect to the parameter at index j is equal to the difference between our prediction 
and the true value of y multiplied by the value of x at index j.

Since we're seeking to descend the gradient, we want to subtract some proportion  
of the gradient from the current parameter values. Thus, at each step of gradient 
descent, we perform the following update:

( )ˆ:j j jy y xβ β α= − −

Here, := is the assigment operator and α is a factor called the learning rate. The 
learning rate controls how large an adjustment we wish make to the parameters 
at each iteration as a fraction of the gradient. If our prediction ŷ nearly matches 
the actual value of y, then there would be little need to change the parameters. In 
contrast, a larger error will result in a larger adjustment to the parameters. This rule 
is called the Widrow-Hoff learning rule or the Delta rule.

The gradient descent learning rate
As we've seen, gradient descent is an iterative algorithm. The learning rate, usually 
represented by α, dictates the speed at which the gradient descent converges to the 
final answer. If the learning rate is too small, convergence will happen very slowly. 
If it is too large, gradient descent will not find values close to the optimum and may 
even diverge from the correct answer:
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In the preceding chart, a small learning rate leads to a show convergence over many 
iterations of the algorithm. While the algorithm does reach the minimum, it does 
so over many more steps than is ideal and, therefore, may take considerable time. 
By contrast, in following diagram, we can see the effect of a learning rate that is too 
large. The parameter estimates are changed so significantly between iterations that 
they actually overshoot the optimum values and diverge from the minimum value:

The gradient descent algorithm requires us to iterate repeatedly over our dataset. 
With the correct version of alpha, each iteration should successively yield better 
approximations of the ideal parameters. We can choose to terminate the algorithm 
when either the change between iterations is very small or after a predetermined 
number of iterations.

Feature scaling
As more features are added to the linear model, it is important to scale features 
appropriately. Gradient descent will not perform very well if the features have 
radically different scales, since it won't be possible to pick a learning rate to  
suit them all.
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A simple scaling we can perform is to subtract the mean value from each of the 
values and divide it by the standard-deviation. This will tend to produce values with 
zero mean that generally vary between -3 and 3:

(defn feature-scales [features]
  (->> (prepare-data)
       (t/map #(select-keys % features))
       (t/facet)
       (t/fuse {:mean (m/mean)
                :sd   (m/standard-deviation)})))

The feature-factors function in the preceding code uses t/facet to calculate the mean 
value and standard deviation of all the input features:

(defn ex-5-24 []
  (let [data (iota/seq "data/soi.csv")
        features [:A02300 :A00200 :AGI_STUB :NUMDEP :MARS2]]
    (->> (feature-scales features)
         (t/tesser (chunks data)))))

;; {:MARS2 {:sd 533.4496892658647, :mean 317.0412009748016}...}

If you run the preceding example, you'll see the different means and standard 
deviations returned by the feature-scales function. Since our feature scales  
and input records are represented as maps, we can perform the scale across  
all the features at once using Clojure's merge-with function:

(defn scale-features [factors]
  (let [f (fn [x {:keys [mean sd]}]
            (/ (- x mean) sd))]
    (fn [x]
      (merge-with f x factors))))

Likewise, we can perform the all-important reversal with unscale-features:

(defn unscale-features [factors]
  (let [f (fn [x {:keys [mean sd]}]
            (+ (* x sd) mean))]
    (fn [x]
      (merge-with f x factors))))



Big Data

[ 258 ]

Let's scale our features and take a look at the very first feature. Tesser won't  
allow us to execute a fold without a reduce, so we'll temporarily revert to using 
Clojure's reducers:

(defn ex-5-25 []
  (let [data     (iota/seq "data/soi.csv")
        features [:A02300 :A00200 :AGI_STUB :NUMDEP :MARS2]
        factors (->> (feature-scales features)
                     (t/tesser (chunks data)))]
    (->> (load-data "data/soi.csv")
         (r/map #(select-keys % features ))
         (r/map (scale-features factors))
         (into [])
         (first))))

;; {:MARS2 -0.14837567114357617, :NUMDEP 0.30617757526890155,
;;  :AGI_STUB -0.714280814223704, :A00200 -0.5894942801950217,
;;  :A02300 0.031741856083514465}

This simple step will help gradient descent perform optimally on our data.

Feature extraction
Although we've used maps to represent our input data in this chapter, it's going to be 
more convenient when running gradient descent to represent our features as a matrix. 
Let's write a function to transform our input data into a map of xs and y. The y axis 
will be a scalar response value and xs will be a matrix of scaled feature values.

As in the previous chapters, we're adding a bias term to the returned matrix  
of features:

(defn feature-matrix [record features]
  (let [xs (map #(% record) features)]
    (i/matrix (cons 1 xs))))

(defn extract-features [fy features]
  (fn [record]
    {:y  (fy record)
     :xs (feature-matrix record features)}))
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Our feature-matrix function simply accepts an input of a record and the features 
to convert into a matrix. We call this from within extract-features, which returns 
a function that we can call on each input record:

(defn ex-5-26 []
  (let [data     (iota/seq "data/soi.csv")
        features [:A02300 :A00200 :AGI_STUB :NUMDEP :MARS2]
        factors (->> (feature-scales features)
                     (t/tesser (chunks data)))]
    (->> (load-data "data/soi.csv")
         (r/map (scale-features factors))
         (r/map (extract-features :A02300 features))
         (into [])
         (first))))

;; {:y 433.0, :xs  A 5x1 matrix
;;  -------------
;;  1.00e+00
;; -5.89e-01
;; -7.14e-01
;;  3.06e-01
;; -1.48e-01
;; }

The preceding example shows the data converted into a format suitable to perform 
gradient descent: a map containing the y response variable and a matrix of values, 
including the bias term.

Creating a custom Tesser fold
Each iteration of gradient descent adjusts the coefficients by an amount determined 
by the cost function. The cost function is calculated by summing over the errors for 
each parameter in the dataset, so it will be useful to have a fold that sums the values 
of the matrices element-wise.
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Whereas Clojure represents a fold with a reducer, a combiner, and an identity value 
obtained from the combiner, Tesser folds are expressed as six collaborative functions. 
The implementation of Tesser's m/mean fold is as follows:

{:reducer-identity  (constantly [0 0])
 :reducer           (fn reducer [[s c] x]
                     [(+ s x) (inc c)])
 :post-reducer      identity
 :combiner-identity (constantly [0 0])
 :combiner          (fn combiner [x y] (map + x y))
 :post-combiner     (fn post-combiner [x]
                      (double (/ (first x)
                                 (max 1 (last x)))))}

Tesser chooses to represent the reducer identity separately from the combiner 
function, and includes three other functions as well; the combiner-identity,  
post-reducer, and post-combiner functions. Tesser's mean fold represents  
the pair of numbers (the count and the accumulated sum) as a vector of two  
numbers but, in other respects, it's similar to our own.

We've already seen how to make use of a post-combiner function with our mean-
post-combiner and variance-post-combiner functions earlier in the chapter.

Creating a matrix-sum fold
To create a custom matrix-sum fold, we'll need an identity value. We encountered 
the identity matrix in Chapter 3, Correlation, but this is the identity for matrix 
multiplication not addition. If the identity value for + is zero (because adding zero to 
a number doesn't change it), it follows that the identity matrix for matrix addition is 
simply a matrix of zeros.
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We have to make sure that the matrix is the same size as the matrices we want to 
add. So, let's parameterize our matrix-sum fold with the number rows and columns 
for the matrix. We can't know in advance how large this needs to be, because the 
identity function is called before anything else in the fold:

(defn matrix-sum [nrows ncols]
  (let [zeros-matrix (i/matrix 0 nrows ncols)]
    {:reducer-identity (constantly zeros-matrix)
     :reducer i/plus
     :combiner-identity (constantly zeros-matrix)
     :combiner i/plus}))

The preceding example is the completed matrix-sum fold definition. We don't 
provide the post-combiner and post-reducer functions; since, if omitted, these  
are assumed to be the identity function, which is what we want. We can use our  
new fold to calculate a sum of all the features in our input like this:

(defn ex-5-27 []
   (let [columns [:A02300 :A00200 :AGI_STUB :NUMDEP :MARS2]
         data    (iota/seq "data/soi.csv")]
     (->> (prepare-data)
          (t/map (extract-features :A02300 columns))
          (t/map :xs)
          (t/fold (matrix-sum (inc (count columns)) 1))
          (t/tesser (chunks data)))))

;; A 6x1 matrix
;; -------------
;; 1.67e+05
;; 6.99e+07
;; 6.21e+09
;; ...
;; 5.83e+05
;; 9.69e+07
;; 5.28e+07

Calculating the sum of a matrix gets us closer to being able to perform gradient 
descent. Let's use our new fold to calculate the total model error, given some  
initial coefficients.
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Calculating the total model error
Let's take a look again at the delta rule for gradient descent:

( )
1

1 ˆ:
m

j j
i
y y x

m
β β α

=

= − −∑

For each parameter j, we adjust the parameter by some proportion of the overall 
prediction error, ŷ - y, multiplied by the feature. Larger features, therefore, get a 
larger share of the cost than smaller features and are adjusted by a correspondingly 
larger amount. To implement this in the code, we need to calculate:
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This is the sum of the prediction error multiplied by the feature across all the input 
records. As we did earlier, our predicted value of y will be calculated using the 
following formula for each input record x:

ˆ Ty xβ=

The coefficients β will be the same across all our input records, so let's create a 
calculate-error function. Given the transposed coefficients βT, we return a 
function that will calculate ( )ŷ y x− . Since x is a matrix and ŷ - y is a scalar,  
the result will be a matrix:

(defn calculate-error [coefs-t]
  (fn [{:keys [y xs]}]
    (let [y-hat (first (i/mmult coefs-t xs))
          error (- y-hat y)]
      (i/mult xs error))))

To calculate the sum of the error for the entire dataset, we can simply chain our 
previously defined matrix-sum function after the calculate-error step:

(defn ex-5-28 []
  (let [columns [:A02300 :A00200 :AGI_STUB :NUMDEP :MARS2]
        fcount  (inc (count columns))
        coefs   (vec (replicate fcount 0))
        data    (iota/seq "data/soi.csv")]
    (->> (prepare-data)
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         (t/map (extract-features :A02300 columns))
         (t/map (calculate-error (i/trans coefs)))
         (t/fold (matrix-sum fcount 1))
         (t/tesser (chunks data)))))

;; A 6x1 matrix
;;  -------------
;; -6.99e+07
;; -2.30e+11
;; -8.43e+12
;;  ...
;; -1.59e+08
;; -2.37e+11
;; -8.10e+10

Notice how the gradient is negative for all the features. This means that in order 
to descend the gradient and produce better estimates of the model coefficients, 
parameters must be increased.

Creating a matrix-mean fold
The update rule defined in the previous code actually calls for the mean of the cost to 
be assigned to each of the features. This means that we need both sum and count to 
be calculated. We don't want to perform two separate passes over the data. So, as we 
did previously, we fuse the two folds into one:

(defn ex-5-29 []
  (let [columns [:A02300 :A00200 :AGI_STUB :NUMDEP :MARS2]
        fcount  (inc (count columns))
        coefs   (vec (replicate fcount 0))
        data    (iota/seq "data/soi.csv")]
    (->> (prepare-data)
         (t/map (extract-features :A02300 columns))
         (t/map (calculate-error (i/trans coefs)))
         (t/fuse {:sum   (t/fold (matrix-sum fcount 1))
                  :count (t/count)})
         (t/post-combine (fn [{:keys [sum count]}]
                           (i/div sum count)))
         (t/tesser (chunks data)))))

The fuse function will return a map of :sum and :count, so we'll call post-combine 
on the result. The post-combine function specifies a function to be run at the end of 
our fold which simply divides the sum by the count.



Big Data

[ 264 ]

Alternatively, we could create another custom fold to return the mean instead of 
the sum of a sequence of matrices. It has a lot in common with the matrix-sum fold 
defined previously but, like the mean fold we calculated earlier in the chapter, we 
will also keep track of the count of records processed:

(defn matrix-mean [nrows ncols]
  (let [zeros-matrix (i/matrix 0 nrows ncols)]
    {:reducer-identity  (constantly [zeros-matrix 0])
     :reducer           (fn [[sum counter] x]
                          [(i/plus sum x) (inc counter)])
     :combiner-identity (constantly [zeros-matrix 0])
     :combiner          (fn [[sum-a count-a] [sum-b count-b]]
                          [(i/plus sum-a sum-b)
                           (+ count-a count-b)])
     :post-combiner     (fn [[sum count]]
                          (i/div sum count))}))

The reducer identity is a vector containing [zeros-matrix 0]. Each reduction adds 
to the matrix total and increments the counter by one. Each combine step sums the 
two matrices—and both the counts—to yield a total sum and count over all the 
partitions. Finally, in the post-combiner step, the mean is calculated as the ratio of 
sum and count.

Although the code for the custom fold is more lengthy than our fused sum and count 
solution, we now have a general way of computing the means of matrices. It leads to 
more concise and readable examples and we can use it in our error-calculating code 
like this:

(defn ex-5-30 []
  (let [features [:A02300 :A00200 :AGI_STUB :NUMDEP :MARS2]
        fcount   (inc (count features))
        coefs    (vec (replicate fcount 0))
        data     (iota/seq "data/soi.csv")]
    (->> (prepare-data)
         (t/map (extract-features :A02300 features))
         (t/map (calculate-error (i/trans coefs)))
         (t/fold (matrix-mean fcount 1))
         (t/tesser (chunks data)))))

;;  A 5x1 matrix
;;  -------------
;;  4.20e+01
;;  3.89e+01
;;  -3.02e+01
;;  9.02e+01
;;  6.62e+01
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The small extra effort of creating a custom fold has made the intention of the calling 
code a little easier to follow.

Applying a single step of gradient descent
The objective of calculating the cost is to determine the amount by which to adjust 
each of the coefficients. Once we've calculated the average cost, as we did previously, 
we need to update the estimate of our coefficients β. Together, these steps represent a 
single iteration of gradient descent:
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We can return the updated coefficients in a post-combiner step that makes use 
of the average cost, the value of alpha, and the previous coefficients. Let's create a 
utility function update-coefficients, which will receive the coefficients and alpha 
and return a function that will calculate the new coefficients, given a total model cost:

(defn update-coefficients [coefs alpha]
  (fn [cost]
    (->> (i/mult cost alpha)
         (i/minus coefs))))

With the preceding function in place, we have everything we need to package up a 
batch gradient descent update rule:

(defn gradient-descent-fold [{:keys [fy features factors
                                     coefs alpha]}]
  (let [zeros-matrix (i/matrix 0 (count features) 1)]
    (->> (prepare-data)
         (t/map (scale-features factors))
         (t/map (extract-features fy features))
         (t/map (calculate-error (i/trans coefs)))
         (t/fold (matrix-mean (inc (count features)) 1))
         (t/post-combine (update-coefficients coefs alpha)))))

(defn ex-5-31 []
  (let [features [:A00200 :AGI_STUB :NUMDEP :MARS2]
        fcount   (inc (count features))
        coefs    (vec (replicate fcount 0))
        data     (chunks (iota/seq "data/soi.csv"))
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        factors  (->> (feature-scales features)
                      (t/tesser data))
        options {:fy :A02300 :features features
                 :factors factors :coefs coefs :alpha 0.1}]
    (->> (gradient-descent-fold options)
         (t/tesser data))))

;; A 6x1 matrix
;; -------------
;; -4.20e+02
;; -1.38e+06
;; -5.06e+07
;; -9.53e+02
;; -1.42e+06
;; -4.86e+05

The resulting matrix represents the values of the coefficients after the first iteration of 
gradient descent.

Running iterative gradient descent
Gradient descent is an iterative algorithm, and we will usually need to run it many 
times to convergence. With a large dataset, this can be very time-consuming.

To save time, we've included a random sample of soi.csv in the data directory called 
soi-sample.csv. The smaller size allows us to run iterative gradient descent in a 
reasonable timescale. The following code runs gradient descent for 100 iterations, 
plotting the values of the parameters between each iteration on an xy-plot:

(defn descend [options data]
  (fn [coefs]
    (->> (gradient-descent-fold (assoc options :coefs coefs))
         (t/tesser data))))

(defn ex-5-32 []
  (let [features [:A00200 :AGI_STUB :NUMDEP :MARS2]
        fcount   (inc (count features))
        coefs    (vec (replicate fcount 0))
        data     (chunks (iota/seq "data/soi-sample.csv"))
        factors  (->> (feature-scales features)
                      (t/tesser data))
        options  {:fy :A02300 :features features
                  :factors factors :coefs coefs :alpha 0.1}
        iterations 100
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        xs (range iterations)
        ys (->> (iterate (descend options data) coefs)
                (take iterations))]
    (-> (c/xy-plot xs (map first ys)
                   :x-label "Iterations"
                   :y-label "Coefficient")
        (c/add-lines xs (map second ys))
        (c/add-lines xs (map #(nth % 2) ys))
        (c/add-lines xs (map #(nth % 3) ys))
        (c/add-lines xs (map #(nth % 4) ys))
        (i/view))))

If you run the example, you should see a chart similar to the following:

In the preceding chart, you can see how the parameters converge to relatively stable 
the values over the course of 100 iterations.
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Scaling gradient descent with Hadoop
The length of time each iteration of batch gradient descent takes to run is determined 
by the size of your data and by how many processors your computer has. Although 
several chunks of data are processed in parallel, the dataset is large and the 
processors are finite. We've achieved a speed gain by performing calculations in 
parallel, but if we double the size of the dataset, the runtime will double as well.

Hadoop is one of several systems that has emerged in the last decade which aims 
to parallelize work that exceeds the capabilities of a single machine. Rather than 
running code across multiple processors, Hadoop takes care of running a calculation 
across many servers. In fact, Hadoop clusters can, and some do, consist of many 
thousands of servers.

Hadoop consists of two primary subsystems— the Hadoop Distributed File System 
(HDFS)—and the job processing system, MapReduce. HDFS stores files in chunks. 
A given file may be composed of many chunks and chunks are often replicated 
across many servers. In this way, Hadoop can store quantities of data much too 
large for any single server and, through replication, ensure that the data is stored 
reliably in the event of hardware failure too. As the name implies, the MapReduce 
programming model is built around the concept of map and reduce steps. Each job 
is composed of at least one map step and may optionally specify a reduce step. An 
entire job may consist of several map and reduce steps chained together.

In the respect that reduce steps are optional, Hadoop has a slightly more flexible 
approach to distributed calculation than Tesser. Later in this chapter and in the 
future chapters, we'll explore more of the capabilities that Hadoop has to offer. 
Tesser does enable us to convert our folds into Hadoop jobs, so let's do this next.
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Gradient descent on Hadoop with Tesser and 
Parkour
Tesser's Hadoop capabilities are available in the tesser.hadoop namespace, which 
we're including as h. The primary public API function in the Hadoop namespace is 
h/fold.

The fold function expects to receive at least four arguments, representing the 
configuration of the Hadoop job, the input file we want to process, a working 
directory for Hadoop to store its intermediate files, and the fold we want to run, 
referenced as a Clojure var. Any additional arguments supplied will be passed as 
arguments to the fold when it is executed.

The reason for using a var to represent our fold is that the function call initiating 
the fold may happen on a completely different computer than the one that actually 
executes it. In a distributed setting, the var and arguments must entirely specify the 
behavior of the function. We can't, in general, rely on other mutable local state (for 
example, the value of an atom, or the value of variables closing over the function) to 
provide any additional context.

Parkour distributed sources and sinks
The data which we want our Hadoop job to process may exist on multiple 
machines too, stored distributed in chunks on HDFS. Tesser makes use of a library 
called Parkour (https://github.com/damballa/parkour/) to handle accessing 
potentially distributed data sources. We'll study Parkour in more detail later this and 
the next chapter but, for now, we'll just be using the parkour.io.text namespace to 
reference input and output text files.

Although Hadoop is designed to be run and distributed across many servers, it can 
also run in local mode. Local mode is suitable for testing and enables us to interact 
with the local filesystem as if it were HDFS. Another namespace we'll be using  
from Parkour is the parkour.conf namespace. This will allow us to create a  
default Hadoop configuration and operate it in local mode:

(defn ex-5-33 []
  (->> (text/dseq "data/soi.csv")
       (r/take 2)
       (into [])))

In the preceding example, we use Parkour's text/dseq function to create a 
representation of the IRS input data. The return value implements Clojure's  
reducers protocol, so we can use r/take on the result.

https://github.com/damballa/parkour/
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Running a feature scale fold with Hadoop
Hadoop needs a location to write its temporary files while working on a task, and 
will complain if we try to overwrite an existing directory. Since we'll be executing 
several jobs over the course of the next few examples, let's create a little utility 
function that returns a new file with a randomly-generated name.

(defn rand-file [path]
  (io/file path (str (long (rand 0x100000000)))))

(defn ex-5-34 []
  (let [conf     (conf/ig)
        input    (text/dseq "data/soi.csv")
        workdir  (rand-file "tmp")
        features [:A00200 :AGI_STUB :NUMDEP :MARS2]]
    (h/fold conf input workdir #'feature-scales features)))

Parkour provides a default Hadoop configuration object with the shorthand  
(conf/ig). This will return an empty configuration. The default value is enough,  
we don't need to supply any custom configuration.

All of our Hadoop jobs will write their temporary files to a random 
directory inside the project's tmp directory. Remember to delete this 
folder later, if you're concerned about preserving disk space.

If you run the preceding example now, you should get an output similar to  
the following:

;; {:MARS2 317.0412009748016, :NUMDEP 581.8504423822615,
;; :AGI_STUB 3.499939975269811, :A00200 37290.58880658831}

Although the return value is identical to the values we got previously, we're now 
making use of Hadoop behind the scenes to process our data. In spite of this, notice 
that Tesser will return the response from our fold as a single Clojure data structure.

Running gradient descent with Hadoop
Since tesser.hadoop folds return Clojure data structures just like tesser.core 
folds, defining a gradient descent function that makes use of our scaled features is 
very simple:

(defn hadoop-gradient-descent [conf input-file workdir]
  (let [features [:A00200 :AGI_STUB :NUMDEP :MARS2]
        fcount  (inc (count features))
        coefs   (vec (replicate fcount 0))
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        input   (text/dseq input-file)
        options {:column-names column-names
                 :features features
                 :coefs coefs
                 :fy :A02300
                 :alpha 1e-3}
        factors (h/fold conf input (rand-file workdir)
                        #'feature-scales
                        features)
        descend (fn [coefs]
                  (h/fold conf input (rand-file workdir)
                          #'gradient-descent-fold
                          (merge options {:coefs coefs
                                          :factors factors})))]
    (take 5 (iterate descend coefs))))

The preceding code defines a hadoop-gradient-descent function that iterates 
a descend function 5 times. Each iteration of descend calculates the improved 
coefficients based on the gradient-descent-fold function. The final return  
value is a vector of coefficients after 5 iterations of a gradient descent.

We run the job on the full IRS data in the following example:

(defn ex-5-35 []
  (let [workdir  "tmp"
        out-file (rand-file workdir)]
    (hadoop-gradient-descent (conf/ig) "data/soi.csv" workdir)))

After several iterations, you should see an output similar to the following:

;; ([0 0 0 0 0]
;; (20.9839310796048 46.87214911003046 -7.363493937722712
;;  101.46736841329326 55.67860863427868)
;; (40.918665605227744 56.55169901254631 -13.771345753228694
;;  162.1908841131747 81.23969785586247)
;; (59.85666340457121 50.559130068258995 -19.463888245285332
;;  202.32407094149158 92.77424653758085)
;; (77.8477613139478 38.67088624825574 -24.585818946408523
;;  231.42399118694212 97.75201693843269))

We've seen how we're able to calculate gradient descent using distributed techniques 
locally. Now, let's see how we can run this on a cluster of our own.
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Preparing our code for a Hadoop cluster
Hadoop's Java API defines Tool and the associated ToolRunner classes that are 
intended to help execute jobs on a Hadoop cluster. A Tool class is Hadoop's name 
for a generic command-line application that interacts with the Hadoop framework. 
By creating our own tool, we create a command-line application that can be 
submitted to a Hadoop cluster.

Since it's a Java framework, Hadoop expects to interact with class representations 
of our code. So, the namespace defining our tool needs to contain the :gen-class 
declaration, which instructs the Clojure compiler to create a class from our namespace:

(ns cljds.ch5.hadoop
  (:gen-class)
  ...)

By default, :gen-class will expect the namespace to define a main function called 
-main. This will be the function that Hadoop will call with our arguments, so we can 
simply delegate the call to a function that will actually execute our job:

(defn -main [& args]
  (tool/run hadoop-gradient-descent args))

Parkour provides a Clojure interface to many of Hadoop's classes. In this case, 
parkour.tool/run contains all we need to run our distributed gradient descent 
function on Hadoop. With the preceding example in place, we need to instruct the 
Clojure compiler to ahead-of-time (AOT) compile our namespace and specify the 
class we'd like our project's main class to be. We can achieve it by adding the :aot 
and :main declarations to the project.clj function like this:

{:main cljds.ch5.hadoop
 :aot [cljds.ch5.hadoop]}

In the example code, we have specified these as a part of the :uberjar profile, since 
our last step, before sending the job to the cluster, would be to package it up as an 
uberjar file.
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Building an uberjar
A JAR contains executable java code. An uberjar contains executable java code, plus 
all the dependencies required to run it. An uberjar provides a convenient way to 
package up code to be run in a distributed environment, because the job can be sent 
from machine to machine while carrying its dependencies with it. Although it makes 
for large job payloads, it avoids the need to ensure that job-specific dependencies 
are preinstalled on all the machines in the cluster. To create an uberjar file with 
Leiningen, execute the following command line within the project directory:

lein uberjar

Once you do this, two files will be created in the target directory. One file,  
ch5-0.1.0.jar, contains the project's compiled code. This is the same file as  
the one that would be generated with lein jar. In addition, uberjar generates the 
ch5-0.1.0-standalone.jar file. This contains the AOT-compiled project code 
in addition to the project's dependencies. The resulting file is large, but it contains 
everything the Hadoop job will need in order to run.

Submitting the uberjar to Hadoop
Once we've created an uberjar file, we're ready to submit it to Hadoop. Having a 
working local Hadoop installation is not a prerequisite to follow along with the 
examples in this chapter, and we won't describe the steps required to install it here.

Links to Hadoop installation guides are provided on this book's 
wiki at http://wiki.clojuredatascience.com.

However, if you already have Hadoop installed and configured in local mode, you 
can run the example job on the command line now. Since the tool specified by the 
main class also accepts two arguments—the work directory and the input file—these 
will need to be provided too:

hadoop jar target/ch5-0.1.0-standalone.jar data/soi.csv tmp

http://wiki.clojuredatascience.com
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If the command runs successfully, you may see logging messages as an output by  
the Hadoop process. After some time, you should see the final coefficients output  
by the job.

Although it takes more time to execute at the moment, our Hadoop job has the 
advantage that it can be distributed on a cluster that can scale indefinitely with  
the size of the data we have.

Stochastic gradient descent
The method we've just seen of calculating gradient descent is often called batch 
gradient descent, because each update to the coefficients happens inside an iteration 
over all the data in a single batch. With very large amounts of data, each iteration can 
be time-consuming and waiting for convergence could take a very long time.

An alternative method of gradient descent is called stochastic gradient descent  
or SGD. In this method, the estimates of the coefficients are continually updated as 
the input data is processed. The update method for stochastic gradient descent looks 
like this:
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In fact, this is identical to batch gradient descent. The difference in application is 
purely that expression ( )ŷ y x−  is calculated over a mini-batch—a random smaller 
subset of the overall data. The mini-batch size should be large enough to represent a 
fair sample of the input records—for our data, a reasonable mini-batch size might be 
about 250.

Stochastic gradient descent arrives at the best estimates by splitting the entire dataset 
into mini-batches and processing each of them in turn. Since the output of each 
mini-batch is the coefficient we would like to use for the next mini-batch (in order to 
incrementally improve the estimates), the algorithm is inherently sequential.
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The advantage stochastic gradient descent offers over batch gradient descent is that 
it can arrive at good estimates in just one iteration over the dataset. For very large 
datasets, it may not even be necessary to process all the mini-batches before good 
convergence has been achieved.

We could implement SGD with Tesser by taking advantage of the fact that the 
combiner is applied serially, and treat each chunk as a mini-batch from which the 
coefficients could be calculated. This would mean that our reduce step was the 
identity function—we have no reduction to perform.

Instead, let's use this as an opportunity to learn more on how to construct a Hadoop 
job in Parkour. Before delving more into Parkour, let's see how stochastic gradient 
descent could be implemented using what we already know:

(defn stochastic-gradient-descent [options data]
  (let [batches (->> (into [] data)
                     (shuffle)
                     (partition 250))
        descend (fn [coefs batch]
                  (->> (gradient-descent-fold
                        (assoc options :coefs coefs))
                       (t/tesser (chunks batch))))]
    (reductions descend (:coefs options) batches)))
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The preceding code groups the input collection into smaller groups of 250 elements. 
Gradient descent is run on each of these mini-batches and the coefficients are updated. 
The next iteration of gradient descent will use the new coefficients on the next batch 
and, for an appropriate value of alpha, produce improved recommendations.

The following code will chart the output over many hundreds of batches:

(defn ex-5-36 []
  (let [features [:A00200 :AGI_STUB :NUMDEP :MARS2]
        fcount   (inc (count features))
        coefs    (vec (replicate fcount 0))
        data     (chunks (iota/seq "data/soi.csv"))
        factors  (->> (feature-scales features)
                      (t/tesser data))
        options  {:fy :A02300 :features features
                  :factors factors :coefs coefs :alpha 1e-3}
        ys       (stochastic-gradient-descent options data)
        xs       (range (count ys))]
    (-> (c/xy-plot xs (map first ys)
                   :x-label "Iterations"
                   :y-label "Coefficient")
        (c/add-lines xs (map #(nth % 1) ys))
        (c/add-lines xs (map #(nth % 2) ys))
        (c/add-lines xs (map #(nth % 3) ys))
        (c/add-lines xs (map #(nth % 4) ys))
        (i/view))))
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We're supplying a learning rate over 100 times smaller than the value for batch 
gradient descent. This will help ensure that mini-batches containing outliers don't 
pull the parameters too far away from their optimal values. Because of the variance 
inherent in each of the mini-batches, the output of stochastic gradient descent will 
not converge exactly to the most optimal parameters, but will instead oscillate 
around the minimum.

The preceding image shows the more random effect of stochastic gradient descent; in 
particular, the effect of variance among the mini-batches on the parameter estimates. 
In spite of the much lower learning rate, we can see spikes corresponding to the 
batches with the data containing outliers.

Stochastic gradient descent with Parkour
For the rest of this chapter, we're going to build a Hadoop job directly with Parkour. 
Parkour exposes more of Hadoop's underlying capabilities than Tesser does, and 
this is a mixed blessing. While Tesser makes it very easy to write folds and apply 
them to large datasets in Hadoop, Parkour will require us to understand more about 
Hadoop's computation model.
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Although Hadoop's approach to MapReduce embodies many of the principles  
we've encountered so far this chapter, it differs from Tesser's abstractions in  
several critical ways:

• Hadoop assumes that the data to be processed are key/value pairs
• Hadoop does not require a reduce stage following a map
• Tesser folds over the whole sequence of inputs, Hadoop reduces over groups
• Hadoop's groups of values are defined by a partitioner
• Tesser's combine phase happens after reduce, Hadoop's combine stage 

happens before reduce

The last of these is particularly unfortunate. The terminology we've learned for 
Clojure reducers and Tesser is reversed for Hadoop: for Hadoop, the combiners 
aggregate the output from the mappers before the data is sent to the reducers.

We can see the broad flow represented in the following diagram with the output of 
the mappers combined into intermediate representations and sorted before being 
sent to the reducers. Each reducer reduces over a subset of the entire data. The 
combine step is optional and, in fact, we won't need one for our stochastic gradient 
descent jobs:

With or without a combining step, the data is sorted into groups before being sent 
to the reducers and the grouping strategy is defined by a partitioner. The default 
partitioning scheme is to partition by the key of your key/value pair (different keys 
are represented by different shades of gray in the preceding diagram). In fact, any 
custom partitioning scheme can be used.
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As you can see, Parkour and Hadoop do not assume that the output is a single result. 
Since the groups that Hadoop reduces over are by default defined by the grouping 
key, the result of a reduce can be a dataset of many records. In the preceding 
diagram, we illustrated the case for three different results, one for each of the  
keys in our data.

Defining a mapper
The first component of the Hadoop job we'll define is the mapper. The mapper's 
role is usually to take a chunk of input records and transform them in some way. 
It's possible to specify a Hadoop job with no reducers; in this case, the output of the 
mappers is also the output of the whole job.

Parkour allows us to define the action of a mapper as a Clojure function. The only 
requirement of the function is that it accepts the input data (either from a source 
file or the output of a previous MapReduce step) as the final argument. Additional 
arguments can be provided if necessary, so long as the input is the final argument:

(defn parse-m
  {::mr/source-as :vals
   ::mr/sink-as   :vals}
  [fy features factors lines]
  (->> (skip-header lines)
       (r/map parse-line)
       (r/map (partial format-record column-names))
       (r/map (scale-features factors))
       (r/map (extract-features fy features))
       (into [])
       (shuffle)
       (partition 250)))

The map function in the preceding example, parse-m (by convention, Parkour 
mappers have the suffix -m), is responsible for taking a single line of the input and 
converting it into a feature representation. We're reusing many of the functions 
we defined earlier in the chapter: parse-line, format-record, scale-features, 
and extract-features. Parkour will provide input to the mapper function as a 
reducible collection, so we will chain the functions together with r/map.

Stochastic gradient descent expects to process data in mini-batches, so our mapper 
is responsible for partitioning the data into groups of 250 rows. We shuffle before 
calling partition to ensure that the ordering of the data is random.
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Parkour shaping functions
We're also supplying metadata to the parse-m function in the form of the {::mr/
source-as :vals ::mr/sink-as :vals} map. These are two namespaced 
keywords referencing parkour.mapreduce/source-as and parkour.mapreduce/
sink-as, and are instructions to Parkour on how the data should be shaped before 
providing it to the function and what shape of data it can expect in return.

Valid options for a Parkour mapper are :keyvals, :keys, and :vals. The preceding 
diagram shows the effect for a short sequence of three key/value pairs. By requesting 
to source our data as :vals, we get a sequence containing only the value portion of the 
key/value pair.

Defining a reducer
Defining a reducer in Parkour is the same as defining a mapper. Again, the last 
argument must be the input (now, the input from a prior map step), but additional 
arguments can be provided. Our Parkour reducer for stochastic gradient descent 
looks like this:

(defn sum-r
  {::mr/source-as :vals
   ::mr/sink-as   :vals}
  [fcount alpha batches]
  (let [initial-coefs (vec (replicate fcount 0))
        descend-batch (fn [coefs batch]
                        (->> (t/map (calculate-error
                                     (i/trans coefs)))
                             (t/fold (matrix-mean fcount 1))
                             (t/post-combine
                              (update-coefficients coefs alpha))
                             (t/tesser (chunks batch))))]
    (r/reduce descend-batch initial-coefs batches)))
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Our input is provided as a reducible collection like before, so we use the  
Clojure's reducers library to iterate over it. We're using r/reduce rather than  
r/fold, because we don't want to perform our reduction in parallel over the data. 
In fact, the reason for using Hadoop is that we can control the parallelism of each of 
the map and reduce phases independently. Now that we have our map and reduce 
steps defined, we can combine them into a single job by using the functions in the 
parkour.graph namespace.

Specifying Hadoop jobs with Parkour graph
The graph namespace is Parkour's main API to define Hadoop jobs. Each job must 
have at a minimum an input, a mapper, and an output, and we can chain these 
specifications with Clojure's -> macro. Let's first define a very simple job, which 
takes the output from our mappers and writes them immediately to disk:

(defn hadoop-extract-features [conf workdir input output]
  (let [fy       :A02300
        features [:A00200 :AGI_STUB :NUMDEP :MARS2]
        fcount   (inc (count features))
        input   (text/dseq input)
        factors (h/fold conf input (rand-file workdir)
                        #'feature-scales
                        features)
        conf (conf/ig)]
    (-> (pg/input input)
        (pg/map #'parse-m fy features factors)
        (pg/output (text/dsink output))
        (pg/execute conf "extract-features-job"))))

(defn ex-5-37 []
  (let [workdir  "tmp"
        out-file (rand-file workdir)]
    (hadoop-extract-features (conf/ig) "tmp"
                             "data/soi.csv" out-file)
    (str out-file)))

;; "tmp/1935333306"

The response from the preceding example should be a directory within the project's 
tmp directory, where Hadoop will have written its files. If you navigate to the 
directory, you should see several files. On my computer, I see four files—_SUCCESS, 
part-m-00000, part-m-00001, and part-m-00002. The presence of the _SUCCESS 
file indicates that our job is completed successfully. The part-m-xxxxx files are 
chunks of our input file.
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The fact that there are three files indicates that Hadoop created three mappers to 
process our input data. If we were running in distributed mode, these could have 
been created in parallel. If you open one of the files, you should see a long sequence 
of clojure.lang.LazySeq@657d118e. Since we wrote to a text file, it is a text 
representation of the output of our mapper data.

Chaining mappers and reducers with Parkour graph
What we really want to do is to its chain our map and reduce steps to happen one 
after the other. For this, we will have to insert an intermediate step, the partitioner, 
and tell the partitioner how to serialize our clojure.lang.LazySeqs.

The latter can be accomplished by borrowing from Tesser, which implements the 
serialization and deserialization of arbitrary Clojure data structures using Fressian. 
In the next chapter, we'll look closer, at the support Parkour provides to create  
well-defined schemas for our partitioned data but, for now, it's simply enough  
for the partitioner to pass the encoded data through.

Fressian is an extensible binary data format. You 
can learn more about it from the documentation at 
https://github.com/clojure/data.fressian.

Our keys will be encoded as FressianWritable, while our keys are not specified 
at all (we sink our map data just as vals). Hadoop's representation of nil is a 
NullWritable type. We import both in our namespace with:

(:import [org.apache.hadoop.io NullWritable]
         [tesser.hadoop_support FressianWritable])

With the import in place, we can specify our job in its entirety:

(defn hadoop-sgd [conf workdir input-file output]
  (let [kv-classes [NullWritable FressianWritable]
        fy       :A02300
        features [:A00200 :AGI_STUB :NUMDEP :MARS2]
        fcount   (inc (count features))
        input   (text/dseq input-file)
        factors (h/fold conf input (rand-file workdir)
                        #'feature-scales
                        features)
        conf (conf/assoc! conf "mapred.reduce.tasks" 1)]
    (-> (pg/input input)
        (pg/map #'parse-m fy features factors)

https://github.com/clojure/data.fressian
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        (pg/partition kv-classes)
        (pg/reduce #'sum-r fcount 1e-8)
        (pg/output (text/dsink output))
        (pg/execute conf "sgd-job"))))

We need to ensure that we have only one reducer processing our mini-batches 
(although there are variations of SGD that would permit us to average the results  
of several stochastic gradient descent runs, we want to arrive at a single set of  
near-optimal coefficients). We will use Parkour's conf namespace to assoc!  
mapred.reduce.tasks to 1.

Between the map and reduce steps, we specify the partitioner and pass the  
kv-classes function defined at the top of the function. The final example  
simply runs this job:

(defn ex-5-38 []
  (let [workdir  "tmp"
        out-file (rand-file workdir)]
    (hadoop-sgd (conf/ig) "tmp" "data/soi.csv" out-file)
    (str out-file)))

;; "tmp/4046267961"

If you navigate to the directory returned by the job, you should now see a directory 
containing just two files—_SUCCESS and part-r-00000. One file is the output per 
reducer, so with one reducer, we ended up with one part-r-xxxxx file. Inside  
this file will be the coefficients of the linear model calculated with stochastic  
gradient descent.

Summary
In this chapter, we learned some of the fundamental techniques of distributed data 
processing and saw how the functions used locally for data processing, map and 
reduce, are powerful ways of processing even very large quantities of data. We 
learned how Hadoop can scale unbounded by the capabilities of any single server 
by running functions on smaller subsets of the data whose outputs are themselves 
combined to finally produce a result. Once you understand the tradeoffs, this "divide 
and conquer" approach toward processing data is a simple and very general way of 
analyzing data on a large scale.

We saw both the power and limitations of simple folds to process data using both 
Clojure's reducers and Tesser. We've also begun exploring how Parkour exposes 
more of Hadoop's underlying capabilities.

In the next chapter, we'll see how to use Hadoop and Parkour to address a particular 
machine learning challenge—clustering a large volume of text documents.





[ 285 ]

Clustering
Things that have a common quality ever quickly seek their kind.

- Marcus Aurelius

In previous chapters, we covered multiple learning algorithms: linear and logistic 
regression, C4.5, naive Bayes, and random forests. In each case we were required to 
train the algorithm by providing features and a desired output. In linear regression, 
for example, the desired output was the weight of an Olympic swimmer, whereas 
for the other algorithms we provided a class: whether the passenger survived 
or perished. These are examples of supervised learning algorithms: we tell our 
algorithm the desired output and it will attempt to learn a model that reproduces it.

There is another class of learning algorithm referred to as unsupervised learning. 
Unsupervised algorithms are able to operate on the data without a set of reference 
answers. We may not even know ourselves what structure lies within the data; the 
algorithm will attempt to determine the structure for itself.

Clustering is an example of an unsupervised learning algorithm. The results of 
cluster analysis are groupings of input data that are more similar to each other in 
some way. The technique is general: any set entities that have a conceptual similarity 
or distance from each other can be clustered. For example, we could cluster groups of 
social media accounts by similarity in terms of shared followers, or we could cluster 
the results of market research by measuring the similarity of respondents' answers to 
a questionnaire.

One common application of clustering is to identify documents that share similar 
subject matter. This provides us with an ideal opportunity to talk about text 
processing, and this chapter will introduce a variety of techniques specific  
to dealing with text.
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Downloading the data
This chapter makes use of the Reuters-21578 dataset: a venerable collection of articles 
that were published on the Reuters newswire in 1987. It is one of the most widely 
used for testing the categorization and classification of text. The copyright for the text 
of articles and annotations in the Reuters-21578 collection resides with Reuters Ltd. 
Reuters Ltd. and Carnegie Group, Inc. have agreed to allow the free distribution of 
this data for research purposes only.

You can download the example code for this chapter from the 
Packt Publishing's website or from https://github.com/
clojuredatascience/ch6-clustering.

As usual, within the sample code is a script to download and unzip the files  
to the data directory. You can run it from within the project directory with the 
following command:

script/download-data.sh

Alternatively, at the time of writing, the Reuters dataset can be downloaded from 
http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.tar.gz. The 
rest of this chapter will assume that the files have been downloaded and installed to 
the project's data directory.

Extracting the data
After you run the preceding script, the articles will be unzipped to the directory 
data/reuters-sgml. Each .sgm file in the extract contains around 1,000 short 
articles that have been wrapped in XML-style tags using Standard Generalized 
Markup Language (SGML). Rather than write our own parser for the format,  
we can make use of the one already written in the Lucene text indexer.

(:import [org.apache.lucene.benchmark.utils ExtractReuters])

(defn sgml->txt [in-path out-path]
  (let [in-file  (clojure.java.io/file in-path)
        out-file (clojure.java.io/file out-path)]
    (.extract (ExtractReuters. in-file out-file))))

Here we're making use of Clojure's Java interop to simply call the extract method on 
Lucene's ExtractReuters class. Each article is extracted as its own text file.

https://github.com/clojuredatascience/ch6-clustering
https://github.com/clojuredatascience/ch6-clustering
http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.tar.gz


Chapter 6

[ 287 ]

This code can be run by executing:

lein extract-reuters

on the command line within the project directory. The output will be a new 
directory, data/reuters-text, containing over 20,000 individual text files.  
Each file contains a single Reuters newswire article.

If you're short on disk space you can delete the reuters-sgml and reuters21578.
tar.gz files now: the contents of the reuters-text directory are the only files we 
will be using in this chapter. Let's look at a few now.

Inspecting the data
The year 1987 was the year of "Black Monday". On 19th October stock markets  
around the world crashed and the Dow Jones Industrial Average declined 508 points 
to 1738.74. Articles such as the one contained in reut2-020.sgm-962.txt describe 
the event:

19-OCT-1987 16:14:37.57

WALL STREET SUFFERS WORST EVER SELLOFF

Wall Street tumbled to its worst point loss ever and the worst  
percentage decline since the First World War as a frenzy of stock  
selling stunned even the most bearish market participants.  
"Everyone is in awe and the word 'crash' is on everyone's mind,"  
one trader said.     The Dow Jones industrial average fell 508  
points to 1738, a level it has not been at since the Autumn of  
1986.     Volume soared to 603 mln shares, almost doubling the  
previous record of 338 mln traded just last Friday. Reuter &#3;

The structure of this article is representative of the majority of articles in the corpus. 
The first line is the timestamp indicating when the article was published, followed 
by a blank line. The article has a headline which is often—but not always—in upper 
case, and then another blank line. Finally comes the article body text. As is often the 
case when working with semi-structured text such as this, there are multiple spaces, 
odd characters, and abbreviations.

Other articles are simply headlines, for example in reut2-020.sgm-761.txt:

20-OCT-1987 17:09:34.49
REAGAN SAYS HE SEES NO RECESSION

These are the files on which we will be performing our cluster analysis.
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Clustering text
Clustering is the process of finding groups of objects that are similar to each other. 
The goal is that objects within a cluster should be more similar to each other than to 
objects in other clusters. Like classification, it is not a specific algorithm so much as a 
general class of algorithms that solve a general problem.

Although there are a variety of clustering algorithms, all rely to some extent on  
a distance measure. For an algorithm to determine whether two objects belong  
in the same or different clusters it must be able to determine a quantitative measure 
of the distance (or, if you prefer, the similarity) between them. This calls for a 
numeric measure of distance: the smaller the distance, the greater the similarity 
between two objects.

Since clustering is a general technique that can be applied to diverse data types,  
there are a large number of possible distance measures. Nonetheless, most data can 
be represented by one of a handful of common abstractions: a set, a point in space,  
or a vector. For each of these there exists a commonly-used measure.

Set-of-words and the Jaccard index
If your data can be represented as a set of things the Jaccard index, also known as 
the Jaccard similarity, can be used. It's one of the simplest measures conceptually: it 
is the set intersection divided by the set union, or the number of shared elements in 
common out of the total unique elements in the sets:
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Many things can be represented as sets. Accounts on social networks can be 
represented as sets of friends or followers, and customers can be represented as  
sets of products purchased or viewed. For our text documents, a set representation 
could simply be the set of unique words used.
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The Jaccard index is very simple to calculate in Clojure:

(:require [clojure.set :as set])

(defn jaccard-similarity [a b]
  (let [a (set a)
        b (set b)]
    (/ (count (set/intersection a b))
       (count (set/union a b)))))

(defn ex-6-1 []
  (let [a [1 2 3]
        b [2 3 4]]
    (jaccard a b)))

;; => 1/2

It has the advantage that the sets don't have to be of the same cardinality for the 
distance measure to make sense. In the preceding diagram, A is "larger" than B, yet 
the intersection divided by the union is still a fair reflection of their similarity. To 
apply the Jaccard index to text documents, we need to translate them into sets of 
words. This is the process of tokenization.

Tokenizing the Reuters files
Tokenization is the name for the technique of taking a string of text and splitting it 
into smaller units for the purpose of analysis. A common approach is to split a text 
string into individual words. An obvious separator would be whitespace so that 
"tokens like these" become ["tokens" "like" "these"].

(defn tokenize [s]
  (str/split s #"\W+"))

This is convenient and simple, but unfortunately, language is subtle and few  
simple rules can be applied universally. For example, our tokenizer treats 
apostrophes as whitespace:

(tokenize "doesn't handle apostrophes")
;; ["doesn" "t" "handle" "apostrophes"]

Hyphens are treated as whitespace too:

(tokenize "good-looking user-generated content")
;; ["good" "looking" "user" "generated" "content"]
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and removing them rather changes the meaning of the sentence. However, not all 
hyphens should be preserved:

(tokenize "New York-based")
;; ["New" "York" "based"]

The terms "New", "York", and "based" correctly represent the subject of the phrase, 
but it would be preferable to group "New York" into a single term, since it represents 
a specific name and really ought to be preserved intact. York-based, on the other 
hand, would be a meaningless token on its own.

In short, text is messy, and parsing meaning reliably from free text is an extremely 
rich and active area of research. In particular, for extracting names (e.g. "New York") 
from text, we need to consider the context in which the terms are used. Techniques 
that label tokens within a sentence by their grammatical function are called  
parts-of-speech taggers.

For more information on advanced tokenization and parts-of-speech 
tagging, see the clojure-opennlp library at https://github.
com/dakrone/clojure-opennlp.

In this chapter we have the luxury of a large quantity of documents and so we'll 
continue to use our simple tokenizer. We'll find that—in spite of its deficiencies—it 
will perform well enough to extract meaning from the documents.

Let's write a function to return the tokens for a document from its file name:

(defn tokenize-reuters [content]
  (-> (str/replace content  #"^.*\n\n" "")
      (str/lower-case)
      (tokenize)))

(defn reuters-terms [file]
  (-> (io/resource file)
      (slurp)
      (tokenize-reuters)))

We're removing the timestamp from the top of the file and making the text  
lower-case before tokenizing. In the next section, we'll see how to measure  
the similarity between tokenized documents.

https://github.com/dakrone/clojure-opennlp
https://github.com/dakrone/clojure-opennlp
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Applying the Jaccard index to documents
Having tokenized our input documents, we can simply pass the resulting sequence 
of tokens to our jaccard-similarity function defined previously. Let's compare 
the similarity of a couple of documents from the Reuters corpus:

(defn ex-6-2 []
  (let [a (set (reuters-terms "reut2-020.sgm-761.txt"))
        b (set (reuters-terms "reut2-007.sgm-750.txt"))
        s (jaccard a b)]
    (println "A:" a)
    (println "B:" b)
    (println "Similarity:" s)))

A: #{recession says reagan sees no he}
B: #{bill transit says highway reagan and will veto he}
Similarity: 1/4

The Jaccard index outputs a number between zero and one, so it has judged these 
documents to be 25 percent similar based on the words in their headlines. Notice 
how we've lost the order of the words in the headline. Without further tricks that 
we'll come to shortly, the Jaccard index looks only at the items in common between 
two sets. Another aspect we've lost is the number of times a term occurs in the 
document. A document that repeats the same word many times may in some sense 
regard that word as more important. For example, reut2-020.sgm-932.txt has a 
headline like this:

19-OCT-1987 16:41:40.58
NYSE CHAIRMAN JOHN PHELAN SAYS NYSE WILL OPEN TOMORROW ON TIME

NYSE appears twice in the headline. We could infer that this headline is especially 
about the New York Stock Exchange, perhaps more so than a headline that 
mentioned NYSE only once.

The bag-of-words and Euclidean distance
A possible improvement over the set-of-words approach is the bag-of-words 
approach. This preserves the word count of the terms within the document.  
The term count can be incorporated by distance measures for a potentially  
more accurate result.
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One of the most common conceptions of distance is the Euclidean distance measure. 
In geometry, the Euclidean measure is how we calculate the distance between  
two points in space. In two dimensions, the Euclidean distance is given by the 
Pythagoras formula:

( ) ( )2 2
2 1 2 1d x x y y= − + −

This represents the difference between two points as the length of the straight-line 
distance between them.

This can be extended to three dimensions:

( ) ( ) ( )2 2 2
2 1 2 1 2 1d x x y y z z= − + − + −

and generalized to n dimensions:
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n
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where Ai and Bi are the values of A or B at dimension i. The distance measure is thus 
the overall similarity between two documents, having taken into account how many 
times each word occurs.

(defn euclidean-distance [a b]
  (->> (map (comp i/sq -) a b)
       (apply +)
       (i/sqrt)))

Since each word now represents a dimension in space, we need to make sure that 
when we calculate the Euclidean distance measure we are comparing the magnitude 
in the same dimension of each document. Otherwise, we may literally be comparing 
"apples" with "oranges".

Representing text as vectors
Unlike the Jaccard index, the Euclidean distance relies on a consistent ordering of 
words into dimensions. The word count, or term frequency, represents the position 
of that document in a large multi-dimensional space, and we need to ensure that 
when we compare values we do so in the correct dimension. Let's represent our 
documents as term frequency vectors.

Imagine all the words that could appear in a document being given a unique 
number. For example, the word "apple" could be assigned the number 53, the word 
"orange" could be assigned the number 21,597. If all numbers are unique, they could 
correspond to the index that a word appears in a term vector.

The dimension of these vectors can be very large. The maximum number of 
dimensions possible is the cardinality of the vector. The value of the element at the 
index corresponding to a word is usually the number of occurrences of the word in 
the document. This is known as the term frequency (tf), weighting.

In order to be able to compare text vectors it's important that the same word always 
appears at the same index in the vector. This means that we must use the same 
word/index mapping for each vector that we create. This word/index mapping is 
our dictionary.
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Creating a dictionary
To create a valid dictionary, we need to make sure that the indexes for two words 
don't clash. One way to do this is to have a monotonically increasing counter which 
is incremented for each word added to the dictionary. The count at the point the 
word is added becomes the index of the word. To both add a word to the dictionary 
and increment a counter in a thread-safe way, we can use an atom:

(def dictionary
  (atom {:count 0
         :words {}}))

(defn add-term-to-dict [dict word]
  (if (contains? (:terms dict) word)
    dict
    (-> dict
        (update-in [:terms] assoc word (get dict :count))
        (update-in [:count] inc))))

(defn add-term-to-dict! [dict term]
  (doto dict
    (swap! add-term-to-dict term)))

To perform an update to an atom, we have to execute our code in a swap! function.

(add-term-to-dict! dictionary "love")

;; #<Atom@261d1f0a: {:count 1, :terms {"love" 0}}>

Adding another word will cause the count to increase:

(add-term-to-dict! dictionary "music")

;; #<Atom@261d1f0a: {:count 2, :terms {"music" 1, "love" 0}}>

And adding the same word twice will have no effect:

(add-term-to-dict! dictionary "love")

;; #<Atom@261d1f0a: {:count 2, :terms {"music" 1, "love" 0}}>

Performing this update inside an atom ensures that each word gets its own index 
even when the dictionary is being simultaneously updated by multiple threads.

(defn build-dictionary! [dict terms]
  (reduce add-term-to-dict! dict terms))
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Building a whole dictionary is as simple as reducing our add-term-to-dict! 
function over a supplied dictionary atom with a collection of terms.

Creating term frequency vectors
To calculate the Euclidean distance, let's first create a vector from our dictionary 
and document. This will allow us to easily compare the term frequencies between 
documents because they will occupy the same index of the vector.

(defn term-id [dict term]
  (get-in @dict [:terms term]))

(defn term-frequencies [dict terms]
  (->> (map #(term-id dict %) terms)
       (remove nil?)
       (frequencies)))

(defn map->vector [dictionary id-counts]
  (let [zeros (vec (replicate (:count @dictionary) 0))]
    (-> (reduce #(apply assoc! %1 %2) (transient zeros) id-counts)
        (persistent!))))

(defn tf-vector [dict document]
  (map->vector dict (term-frequencies dict document)))

The term-frequencies function creates a map of term ID to frequency count for each 
term in the document. The map->vector function simply takes this map and associates 
the frequency count at the index of the vector given by the term ID. Since there may be 
many terms, and the vector may be very long, we're using Clojure's transient! and 
persistent! functions to temporarily create a mutable vector for efficiency.

Let's print the document, dictionary, and resulting vector for reut2-020.sgm-742.txt:

(defn ex-6-3 []
  (let [doc  (reuters-terms "reut2-020.sgm-742.txt")
        dict (build-dictionary! dictionary doc)]
    (println "Document:" doc)
    (println "Dictionary:" dict)
    (println "Vector:" (tf-vector dict doc))))

The output is shown as follows (the formatting has been adjusted for legibility):

;; Document: [nyse s phelan says nyse will continue program
;;            trading curb until volume slows]
;; Dictionary: #<Atom@bb156ec: {:count 12, :terms {s 1, curb 8,
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;;             phelan 2, says 3, trading 7, nyse 0, until 9,
;;             continue 5, volume 10, will 4, slows 11,
;;             program 6}}>
;; Vector: [2 1 1 1 1 1 1 1 1 1 1 1]

With 12 terms in the input, there are 12 terms in the dictionary and a vector of 12 
elements returned.

(defn print-distance [doc-a doc-b measure]
  (let [a-terms (reuters-terms doc-a)
        b-terms (reuters-terms doc-b)
        dict (-> dictionary
                 (build-dictionary! a-terms)
                 (build-dictionary! b-terms))
        a (tf-vector dict a-terms)
        b (tf-vector dict b-terms)]
    (println "A:" a)
    (println "B:" b)
    (println "Distance:" (measure a b))))

(defn ex-6-4 []
  (print-distance "reut2-020.sgm-742.txt"
                  "reut2-020.sgm-932.txt"
                  euclidean-distance))

;; A: [2 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0]
;; B: [2 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1]
;; Distance: 3.7416573867739413

Like the Jaccard index, the Euclidean distance cannot decrease below zero. Unlike 
the Jaccard index, though, the value can grow indefinitely.

The vector space model and cosine distance
The vector space model can be considered a generalization of the set-of-words 
and bag-of-words models. Like the bag-of-words model, the vector space model 
represents each document as a vector, each element of which represents a term. The 
value at each index is a measure of importance of the word, which may or may not 
be the term frequency.

If your data conceptually represents a vector (that is to say, a magnitude in a 
particular direction), then the cosine distance may be the most appropriate choice. 
The cosine distance measure determines the similarity of two elements as the cosine 
of the angle between their vector representations.
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If both vectors point in the same direction, then the angle between them will  
be zero and the cosine of zero is one. The cosine similarity can be defined in  
the following way:
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This is a more complicated equation than the ones we've covered previously. It relies 
on calculating the dot product of the two vectors and the magnitude of each.

(defn cosine-similarity [a b]
  (let [dot-product (->> (map * a b)
                         (apply +))
        magnitude (fn [d]
                    (->> (map i/sq d)
                         (apply +)
                         (i/sqrt)))]
    (/ dot-product (* (magnitude a) (magnitude b)))))
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Examples of the cosine similarity are shown as follows:

The cosine similarity is often used as a similarity measure in high-dimensional 
spaces where each vector contains a lot of zeros because it can be very efficient 
to evaluate: only the non-zero dimensions need to be considered. Since most text 
documents use only a small fraction of all words (and therefore are zero for a large 
proportion of dimensions), the cosine measure is often used for clustering text.

In the vector space model, we need a consistent strategy for measuring the importance 
of each term. In the set-of-words model, all terms are counted equally. This is 
equivalent to setting the value of the vector at that point to one. In the bag-of-words 
model, the term frequencies were counted. We'll continue to use the term frequency 
for now, but we'll see shortly how to use a more sophisticated measure of importance, 
called term frequency-inverse document frequency (TF-IDF).

(defn ex-6-5 []
  (print-distance "reut2-020.sgm-742.txt"
                  "reut2-020.sgm-932.txt"
                  cosine-similarity))

;; A: [2 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0]
;; B: [2 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1]
;; Distance: 0.5012804118276031

The closer the cosine value is to 1, the more similar the two entities are. To  
convert cosine-similarity to a distance measure, we can simply subtract  
the cosine-similarity from 1.

Although all the measures mentioned earlier produce different measures for the 
same input, they all satisfy the constraint that the distance between A and B should 
be the same as the difference between B and A. Often the same underlying data can 
be transformed to represent a set (Jaccard), a point in space (Euclidean), or a vector 
(Cosine). Sometimes the only way to know which is right is to try it and see how 
good the results are.
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The number of unique words that appear in one document is typically small 
compared to the number of unique words that appear in any document in a 
collection being processed. As a result, these high-dimensional document  
vectors are quite sparse.

Removing stop words
Much of the similarity between the headlines has been generated by often-occurring 
words that don't add a great deal of meaning to the content. Examples are "a", "says", 
and "and". We should filter these out in order to avoid generating spurious similarities.

Consider the following two idioms:

• "Music is the food of love"

• "War is the locomotive of history"

We could calculate the cosine similarity between them using the following  
Clojure code:

(defn ex-6-6 []
  (let [a (tokenize "music is the food of love")
        b (tokenize "war is the locomotive of history")]
    (add-documents-to-dictionary! dictionary [a b])
    (cosine-similarity (tf-vector dictionary a)
                       (tf-vector dictionary b))))

;; 0.5

The two documents are showing a similarity of 0.5 in spite of the fact that the only 
words they share in common are is, the, and of. Ideally we'll want to remove these.

Stemming
Now let's consider an alternative phrase:

• "Music is the food of love"

• "It's lovely that you're musical"

Let's compare their cosine similarity as well:

(defn ex-6-7 []
  (let [a (tokenize "music is the food of love")
        b (tokenize "it's lovely that you're musical")]
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    (add-documents-to-dictionary! dictionary [a b])
    (cosine-similarity (tf-vector dictionary a)
                       (tf-vector dictionary b))))

;; 0.0

In spite of the fact that the two sentences refer to music and positive feelings, the two 
phrases have a cosine similarity of zero: there are no words in common between the 
two phrases. This makes sense but does not express the behavior we usually want, 
which is to capture the similarity between "concepts", rather than the precise words 
that were used.

One way of tackling this problem is to stem words, which reduces them to their 
roots. Words which share a common meaning are more likely to stem to the same 
root. The Clojure library stemmers (https://github.com/mattdw/stemmers) will 
do this for us, and fortunately they will also remove stop words too.

(defn ex-6-8 []
  (let [a (stemmer/stems "music is the food of love")
        b (stemmer/stems "it's lovely that you're musical")]
    (add-documents-to-dictionary! dictionary [a b])
    (cosine-similarity (tf-vector dictionary a)
                       (tf-vector dictionary b))))

;; 0.8164965809277259

Much better. After stemming and stop word removal, the similarity between the 
phrases has dropped from 0.0 to 0.82. This is a good outcome since, although the 
sentences used different words, the sentiments they expressed were related.

Clustering with k-means and Incanter
Finally, having tokenized, stemmed, and vectorized our input documents—and with 
a selection of distance measures to choose from—we're in a position to run clustering 
on our data. The first clustering algorithm we'll look at is called k-means clustering.

k-means is an iterative algorithm that proceeds as follows:

1. Randomly pick k cluster centroids.
2. Assign each of the data points to the cluster with the closest centroid.
3. Adjust each cluster centroid to the mean of its assigned data points.
4. Repeat until convergence or the maximum number of iterations reached.

https://github.com/mattdw/stemmers
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The process is visualized in the following diagram for k=3 clusters:

In the preceding figure, we can see that the initial cluster centroids at iteration 1 don't 
represent the structure of the data well. Although the points are clearly arranged in 
three groups, the initial centroids (represented by crosses) are all distributed around 
the top area of the graph. The points are colored according to their closest centroid. 
As the iterations proceed, we can see how the cluster centroids are moved closer to 
their "natural" positions in the center of each of the groups of points. 

Before we define the main k-means function, it's useful to define a couple of utility 
functions first: a function to calculate the centroid for a cluster, and a function to 
group the data into their respective clusters.

(defn centroid [xs]
  (let [m (i/trans (i/matrix xs))]
    (if (> (i/ncol m) 1)
      (i/matrix (map s/mean m))
     m)))

(defn ex-6-9 []
  (let [m (i/matrix [[1 2 3]
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                     [2 2 5]])]
    (centroid m)))

;; A 3x1 matrix
;;  -------------
;; 1.50e+00
;; 2.00e+00
;; 4.00e+00

The centroid function simply calculates the mean of each column of the input matrix.

(defn clusters [cluster-ids data]
  (->> (map vector cluster-ids data)
       (conj-into {})
       (vals)
       (map i/matrix))) 

(defn ex-6-10 []
  (let [m (i/matrix [[1 2 3]
                     [4 5 6]
                     [7 8 9]])]
    (clusters [0 1 0] m)))

;; A 1x3 matrix
;; -------------
;; 4.00e+00  5.00e+00  6.00e+00 
;;  A 2x3 matrix
;; -------------
;; 7.00e+00  8.00e+00  9.00e+00 
;; 1.00e+00  2.00e+00  3.00e+00

The clusters function splits a larger matrix up into a sequence of smaller matrices 
based on the supplied cluster IDs. The cluster IDs are provided as a sequence of 
elements the same length as the clustered points, listing the cluster ID of the point 
at that index in the sequence. Items that share a common cluster ID will be grouped 
together. With these two functions in place, here's the finished k-means function:

(defn k-means [data k]
  (loop [centroids (s/sample data :size k)
         previous-cluster-ids nil]
    (let [cluster-id (fn [x]
                       (let [distance  #(s/euclidean-distance x %)
                             distances (map distance centroids)]
                         (->> (apply min distances)
                              (index-of distances))))
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          cluster-ids (map cluster-id data)]
      (if (not= cluster-ids previous-cluster-ids)
        (recur (map centroid (clusters cluster-ids data))
               cluster-ids)
        clusters))))

We start by picking k random cluster centroids by sampling the input data.  
Then, we use loop/recur to continuously update the cluster centroids until 
previous-cluster-ids are the same as cluster-ids. At this point, no  
documents have moved cluster, so the clustering has converged.

Clustering the Reuters documents
Let's use our k-means function to cluster the Reuters documents now. Let's go  
easy on our algorithm to start with, and pick a small sample of larger documents. 
Larger documents will make it more likely that the algorithm will be able to 
determine meaningful similarities between them. Let's set the minimum threshold 
at 500 characters. This means that at the very least our input documents will have a 
headline and a couple of sentences of body text to work with.

(defn ex-6-11 []
  (let [documents (fs/glob "data/reuters-text/*.txt")
        doc-count 100
        k 5
        tokenized (->> (map slurp documents)
                       (remove too-short?)
                       (take doc-count)
                       (map stem-reuters))]
    (add-documents-to-dictionary! dictionary tokenized)
    (-> (map #(tf-vector dictionary %) tokenized)
        (k-means k))))

We're using the fs library (https://github.com/Raynes/fs) to create a list of files 
to perform our clustering on by calling fs/glob with a pattern that matches all the 
text files. We remove those which are too short, tokenize the first 100, and add them 
to the dictionary. We create tf vectors for our inputs and then call k-means on them.

If you run the preceding example, you'll receive a list of clustered document vectors, 
which isn't very useful. Let's create a summary function that uses the dictionary to 
report the most common terms in each of the clusters.

(defn cluster-summary [dict clusters top-term-count]
  (for [cluster clusters]
    (let [sum-terms (if (= (i/nrow cluster) 1)
                      cluster

https://github.com/Raynes/fs
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                      (->> (i/trans cluster)
                           (map i/sum)
                           (i/trans)))
          popular-term-ids (->> (map-indexed vector sum-terms)
                                (sort-by second >)
                                (take top-term-count)
                                (map first))
          top-terms (map #(id->term dict %) popular-term-ids)]
      (println "N:" (i/nrow cluster))
      (println "Terms:" top-terms))))

(defn ex-6-12 []
  (cluster-summary dictionary (ex-6-11) 5))

k-means is by its nature a stochastic algorithm, and is sensitive to the starting 
position for the centroids. I get the following output, but yours will almost  
certainly differ:

;; N: 2
;; Terms: (rocket launch delta satellit first off weather space)
;;  N: 4
;; Terms: (said will for system 000 bank debt from bond farm)
;; N: 12
;; Terms: (said reuter for iranian it iraq had new on major)
;; N: 62
;; Terms: (said pct dlr for year mln from reuter with will)
;; N: 20
;; Terms: (said for year it with but dlr mln bank week)

Unfortunately, we don't seem to be getting very good results. The first cluster 
contains two articles about rockets and space, and the third seems to consist of 
articles about Iran. The most popular word in most of the articles is "said".

Better clustering with TF-IDF
Term Frequency-Inverse Document Frequency (TF-IDF) is a general approach to 
weighting terms within a document vector so that terms that are popular across the 
whole dataset are not weighted as highly as terms that are less usual. This captures 
the intuitive conviction—and what we observed earlier—that words such as "said" 
are not a strong basis for building clusters.
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Zipf's law
Zipf's law states that the frequency of any word is inversely proportional to its rank 
in the frequency table. Thus, the most frequent word will occur approximately twice 
as often as the second most frequent word and three times as often as the next most 
frequent word, and so on. Let's see if this applies across our Reuters corpus:

(defn ex-6-13 []
  (let [documents (fs/glob "data/reuters-text/*.txt")
        doc-count 1000
        top-terms 25
        term-frequencies (->> (map slurp documents)
                              (remove too-short?)
                              (take doc-count)
                              (mapcat tokenize-reuters)
                              (frequencies)
                              (vals)
                              (sort >)
                              (take top-terms))]
    (-> (c/xy-plot (range (inc top-terms)) term-frequencies
                   :x-label "Terms"
                   :y-label "Term Frequency")
        (i/view))))

Using the preceding code we can calculate the frequency graph of the top 25 most 
popular terms in the first 1,000 Reuters documents.
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In the first 1,000 documents, the most popular term appears almost 10,000 times. The 
25th most popular term appears around 1,000 times overall. In fact, the data is showing 
that words are appearing more commonly in the Reuters corpus than their placement 
in the frequency table would suggest. This is most likely due to the bulletin nature of 
the Reuters corpus, which tends to re-use the same short words repeatedly.

Calculating the TF-IDF weight
Calculating TF-IDF only requires two modifications to the code we've created 
already. Firstly, we must keep track of how many documents a given term appears in. 
Secondly, we must weight the term appropriately when building the document vector.

Since we've already created a dictionary of terms, we may as well store the document 
frequencies for each term there.

(defn inc-df! [dictionary term-id]
  (doto dictionary
    (swap! update-in [:df term-id] (fnil inc 0))))

(defn build-df-dictionary! [dictionary document]
  (let [terms    (distinct document)
        dict     (build-dictionary! dictionary document)
        term-ids (map #(term-id dictionary %) document)]
    (doseq [term-id term-ids]
      (inc-df! dictionary term-id))
    dict))

The build-df-dictionary function earlier accepts a dictionary and a sequence of 
terms. We build the dictionary from the distinct terms and look up the term-id for 
each one. Finally, we iterate over the term IDs and increment the :df for each one.

If a document has words w1, …, wn, then the inverse document frequency for word wi 
is defined as:
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That is, the reciprocal of the number of documents it appears in. If a word occurs 
commonly across a collection of documents, its DF value is large and its IDF value 
is small. With a large number of documents, it's common to normalize the IDF value 
by multiplying it by a constant number, usually the document count N, so the IDF 
equation looks like this:
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=

The TF-IDF weight Wi of word wi is given by the product of the term frequency and 
the inverse document frequency:
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However, the IDF value in the preceding equation is still not ideal since for large 
corpora the range of the IDF term is usually much greater than the TF and can 
overwhelm its effect. To reduce this problem, and balance the weight of the TF and 
the IDF terms, the usual practice is to use the logarithm of the IDF value instead:
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Thus, the TF-IDF weight Wi for a word wi becomes:
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This is a classic TF-IDF weighting: common words are given a small weight 
and terms that occur infrequently get a large weight. The important words for 
determining the topic of a document usually have a high TF and a moderately 
large IDF, so the product of the two becomes a large value, thereby giving more 
importance to these words in the resulting vector.

(defn document-frequencies [dict terms]
  (->> (map (partial term-id dict) terms)
       (select-keys (:df @dict))))

(defn tfidf-vector [dict doc-count terms]
  (let [tf (term-frequencies dict terms)
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        df (document-frequencies dict (distinct terms))
        idf   (fn [df] (i/log (/ doc-count df)))
        tfidf (fn [tf df] (* tf (idf df)))]
    (map->vector dict (merge-with tfidf tf df))))

The preceding code calculates the TF-IDF from term-frequencies defined 
previously and document-frequencies extracted from our dictionary.

k-means clustering with TF-IDF
With the preceding adjustments in place, we're in a position to calculate the TF-IDF 
vectors for the Reuters documents. The following example is a modification of  
ex-6-12 using the new tfidf-vector function:

(defn ex-6-14 []
  (let [documents (fs/glob "data/reuters-text/*.txt")
        doc-count 100
        k 5
        tokenized (->> (map slurp documents)
                       (remove too-short?)
                       (take doc-count)
                       (map stem-reuters))]
    (reduce build-df-dictionary! dictionary tokenized)
    (-> (map #(tfidf-vector dictionary doc-count %) tokenized)
        (k-means k)
        (cluster-summary dictionary 10))))

The preceding code is very similar to the previous example, but we have substituted 
our new build-df-dictionary and tfidf-vector functions. If you run the 
example, you should see output that looks a little better than before:

N: 5
Terms: (unquot unadjust year-on-year novemb grew sundai labour m-3  
ahead 120)
N: 15
Terms: (rumor venezuela azpurua pai fca keat ongpin boren gdp  
moder)
N: 16
Terms: (regan drug lng soviet bureau deleg gao dean fdic algerian)
N: 46
Terms: (form complet huski nrc rocket north underwrit card oat  
circuit)
N: 18
Terms: (freez cocoa dec brown bean sept seixa telex argentin  
brown-forman)
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Although the top words may be hard to interpret because they have been stemmed, 
these represent the most unusually common words within each of the clusters. 
Notice that "said" is no longer the most highly rated word across all clusters.

Better clustering with n-grams
It should be clear from looking at the earlier lists of words how much has been 
sacrificed by reducing our documents to unordered sequences of terms. Without 
the context of a sentence, it's very hard to get more than a vague sense of what each 
cluster might be about.

There is, however, nothing inherent in the vector space model that precludes 
maintaining the order of our input tokens. We can simply create a new term to 
represent a combination of words. The combined term, representing perhaps  
several input words in sequence, is called an n-gram.

An example of an n-gram might be "new york", or "stock market". In fact, because 
they contain two terms, these are called bigrams. n-grams can be of arbitrary length. 
The longer an n-gram, the more context it carries, but also the rarer it is.

n-grams are closely related to the concept of shingling. When we shingle our 
n-grams, we're creating overlapping sequences of terms. The term shingling  
comes from the way the terms overlap like roof shingles.

(defn n-grams [n words]
  (->> (partition n 1 words)
       (map (partial str/join " ")))) 

(defn ex-6-15 []
  (let [terms (reuters-terms "reut2-020.sgm-761.txt")]
    (n-grams 2 terms)))

;; ("reagan says" "says he" "he sees" "sees no" "no recession")

Already, using 2-grams would allow us (for example) to distinguish between the 
following uses of the word "coconut" in the dataset: "coconut oil", "coconut planters", 
"coconut plantations", "coconut farmers", "coconut association", "coconut authority", 
"coconut products", "coconut exports", "coconut industry", and the rather pleasing 
"coconut chief". Each of these pairs of words defines a different concept—sometimes 
subtly different—that we can capture and compare across documents.
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We can get the best of both worlds with n-grams and shingling by combining the 
results of multiple lengths of n-gram:

(defn multi-grams [n words]
  (->> (range 1 (inc n))
       (mapcat #(n-grams % words))))

(defn ex-6-16 []
  (let [terms (reuters-terms "reut2-020.sgm-761.txt")]
    (multi-grams 4 terms)))

;; ("reagan" "says" "he" "sees" "no" "recession" "reagan says" 
;; "says he" "he sees" "sees no" "no recession" "reagan says he" 
;; "says he sees" "he sees no" "sees no recession" "reagan says he 
;; sees" "says he sees no" "he sees no recession")

While stemming and stop word removal had the effect of reducing the size of our 
dictionary, and using TF-IDF had the effect of improving the utility of the weight for 
each term in a document, producing n-grams has the effect of massively expanding 
the number of terms we need to accommodate.

This explosion of features is going to immediately overwhelm our implementation 
of k-means in Incanter. Fortunately, there's a machine learning library called Mahout 
that's specifically designed to run algorithms such as k-means on very large quantities 
of data.

Large-scale clustering with Mahout
Mahout (http://mahout.apache.org/) is a machine learning library intended 
for use in distributed computing environments. Version 0.9 of the library targets 
Hadoop and is the version we'll be using here.

At the time of writing, Mahout 0.10 has just been released and 
also targets Spark. Spark is an alternative distributed computing 
framework that we'll be introducing in the next chapter.

We saw in the previous chapter that one of Hadoop's abstractions is the sequence 
file: a binary representation of Java keys and values. Many of Mahout's algorithms 
expect to operate on sequence files, and we'll need to create one as input to Mahout's 
k-means algorithm. Mahout's k-means algorithm also expects to receive its input as a 
vector, represented by one of Mahout's vector types.

http://mahout.apache.org/
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Although Mahout contains classes and utility programs that will extract vectors 
from text, we'll use this as an opportunity to demonstrate how to use Parkour and 
Mahout together. Not only will we have finer-grained control over the vectors that 
are created, but it will allow us to demonstrate more of the capabilities of Parkour for 
specifying Hadoop jobs.

Converting text documents to a sequence file
We won't define a custom job to convert our text documents into a 
sequence file representation, though: Mahout already defines a useful 
SequenceFilesFromDirectory class to convert a directory of text files. We'll use this 
to create a single file representing the entire contents of the reuters-txt directory.

Though the sequence file may be physically stored in separate chunks (on HDFS, for 
example), it is logically one file, representing all the input documents as key/value 
pairs. The key is the name of the file, and the value is the file's text contents.

The following code will handle the conversion:

(:import [org.apache.mahout.text
           SequenceFilesFromDirectory])

(defn text->sequencefile [in-path out-path]
  (SequenceFilesFromDirectory/main
   (into-array String (vector "-i" in-path
                              "-o" out-path
                              "-xm" "sequential"
                              "-ow"))))

(defn ex-6-17 []
  (text->sequencefile "data/reuters-text"
                      "data/reuters-sequencefile"))
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SequenceFilesFromDirectory is a Mahout utility class, part of a suite of classes 
designed to be called on the command line.

Since running the preceding example is a prerequisite for 
subsequent examples, it's also available on the command line:
lein create-sequencefile

We're calling the main function directly, passing the arguments we would otherwise 
pass on the command line as a string array.

Using Parkour to create Mahout vectors
Now that we have a sequence file representation of the Reuters corpus, we need to 
transform each document (now represented as a single key/value pair) into a vector. 
We saw how to do this earlier using a shared dictionary modeled as a Clojure atom. 
The atom ensures that each distinct term gets its own ID even in a multi-threaded 
environment.

We will be using Parkour and Hadoop to generate our vectors, but this presents 
a challenge. How can we assign a unique ID to each word when the nature of 
MapReduce programming is that mappers operate in parallel and share no state? 
Hadoop doesn't provide the equivalent of a Clojure atom for sharing mutable 
state across nodes in a cluster, and in fact minimizing shared state is key to scaling 
distributed applications.

Creating a shared set of unique IDs therefore presents an interesting challenge for 
our Parkour job: let's see how we can produce unique IDs for our dictionary in a 
distributed way.

Creating distributed unique IDs
Before we look at Hadoop-specific solutions, though, it's worth noting that one easy 
way of creating a cluster-wide unique identifier is to create a universally unique 
identifier, or UUID.

(defn uuid []
  (str (java.util.UUID/randomUUID)))

This creates a long string of bytes in the form: 3a65c7db-6f41-4087-a2ec-
8fe763b5f185 that is virtually guaranteed not to clash with any other UUID 
generated anywhere else in the world.
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While this works for generating unique IDs, the number of possible IDs is 
astronomically large, and Mahout's sparse vector representation needs to be 
initialized with the cardinality of the vector expressed as an integer. IDs generated 
with uuid are simply too big. Besides, it doesn't help us coordinate the creation of 
IDs: every machine in the cluster will generate different UUIDs to represent the  
same terms.

One way of getting around this is to use the term itself to generate a unique ID. If 
we used a consistent hashing function to create an integer from each input term, all 
machines in the cluster would generate the same ID. Since a good hashing function 
is likely to produce a unique output for unique input terms, this technique is likely 
to work well. There will be some hash collisions (where two words hash to the same 
ID) but this should be a small percentage of the overall.

The method of hashing the features themselves to create a unique ID 
is often referred to as the "hashing trick". Although it's commonly 
used for text vectorization, it can be applied to any problem that 
involves large numbers of features.

However, the challenge of producing distinct IDs that are unique across the whole 
cluster gives us the opportunity to talk about a useful feature of Hadoop that 
Parkour exposes: the distributed cache.

Distributed unique IDs with Hadoop
Let's consider what our Parkour mapper and reducer might look like if we were to 
calculate unique, cluster-wide IDs. The mapper is easy: we'll want to calculate the 
document frequency for each term we encounter, so the following mapper simply 
returns a vector for each unique term: the first element of the vector (the key) is the 
term itself, and the second element (the value) is 1.

(defn document-count-m
  {::mr/source-as :vals}
  [documents]
  (->> documents
       (r/mapcat (comp distinct stemmer/stems))
       (r/map #(vector % 1))))



Clustering

[ 314 ]

The reducer's job will be to take these key/value pairs of terms to document count and 
reduce them such that each unique term has a unique ID. A trivial way of doing this 
would be to ensure that there is only one reducer on the cluster. Since all the terms 
would all be passed to this single process, the reducer could simply keep an internal 
counter and assign each term an ID in a similar way to what we did with the Clojure 
atom earlier. This isn't taking advantage of Hadoop's distributed capabilities, though.

One feature of Parkour that we haven't introduced yet is the runtime context that's 
accessible from within every mapper and reducer. Parkour binds the parkour.
mapreduce/*context* dynamic variable to the Hadoop task context of the task 
within which our mappers and reducers run. The task context contains, amongst 
other things, the following properties:

Property Type Description
mapred.job.id String The job's ID
mapred.task.id int The task attempt ID
mapred.task.partition int The ID of the task within the job

The last of these, the mapred.task.partition property, is the number of the task 
assigned by Hadoop, guaranteed to be a monotonically increasing integer unique 
across the cluster. This number is our task's global offset. Within each task we can 
also keep a local offset and output both with each word processed. The two offsets 
together—global and local—provide a unique identifier for the term across the cluster.

The following diagram visualizes the process for eight terms processed on three 
separate mappers:
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Each mapper is only aware of its own partition number and the term's local offset. 
However, these two numbers are all that's required to calculate a unique, global ID. 
The preceding Calculate Offsets box determines what the global offset should be for 
each task partition. Partition 1 has a global offset of 0. Partition 2 has a global offset 
of 3, because partition 1 processed 3 words. Partition 3 has an offset of 5, because 
partitions 1 and 2 processed 5 words between them, and so on.

For the preceding approach to work, we need to know three things: the global offset 
of the mapper, the local offset of the term, and the total number of terms processed 
by each mapper. These three numbers can be used to define a unique, cluster-wide 
ID for each term. The reducer that creates these three numbers is defined as follows. 
It introduces a couple of new concepts that we'll discuss shortly.

(defn unique-index-r
  {::mr/source-as :keyvalgroups,
   ::mr/sink-as dux/named-keyvals}
  [coll]
  (let [global-offset (conf/get-long mr/*context*
                                     "mapred.task.partition" -1)]
    (tr/mapcat-state
     (fn [local-offset [word doc-counts]]
       [(inc local-offset)
        (if (identical? ::finished word)
          [[:counts [global-offset local-offset]]]
          [[:data [word [[global-offset local-offset]
                         (apply + doc-counts)]]]])])
     0 (r/mapcat identity [coll [[::finished nil]]]))))

The first step the reducer performs is to fetch the global-offset, the task partition 
for this particular reducer. We're using mapcat-state, a function defined in the 
transduce library (https://github.com/brandonbloom/transduce) to build up a 
sequence of tuples in the format [[:data ["apple" [1 4]] [:data ["orange" [1 
5]] ...] where the vector of numbers [1 4] represents the global and local offsets 
respectively. Finally, when we've reached the end of this reduce task, we append a 
tuple to the sequence in the format [:counts [1 5]]. This represents the final local 
count, 5, for this particular reducer partition, 1. Thus, a single reducer is calculating 
all three of the elements we require to calculate all the term IDs.

https://github.com/brandonbloom/transduce
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The keyword provided to ::mr/source-as is not one we've encountered previously. 
In the previous chapter, we saw how the shaping options :keyvals, :keys, and 
:vals let Parkour know how we wanted our data provided, and the structure 
of the data we'd be providing in return. For reducers, Parkour describes a more 
comprehensive set of shaping functions that account for the fact that inputs may  
be grouped. The following diagram illustrates the available options:

The option provided to ::mr/sink-as is not one we've encountered before either. 
The parkour.io.dux namespace provides options for de-multiplexing outputs. In 
practice this means that, by sinking as dux/named-keyvals, a single reducer can 
write to several different outputs. In other words, we've introduced a fork into our 
data pipeline: some data is written to one branch, the rest to another.

Having set a sink specification of dux/named-keyvals, the first element of our tuple 
will be interpreted as the destination to write to; the second element of our tuple will 
be treated as the key/value pair to be written. As a result, we can write out the :data 
(the local and global offset) to one destination and the :counts (number of terms 
processed by each mapper) to another.

The job that makes use of the mapper and reducer that we've defined is presented 
next. As with the Parkour job we specified in the previous chapter, we chain together 
an input, map, partition, reduce, and output step.

(defn df-j [dseq]
  (-> (pg/input dseq)
      (pg/map #'document-count-m)
      (pg/partition (mra/shuffle [:string :long]))
      (pg/reduce #'unique-index-r)
      (pg/output :data (mra/dsink [:string index-value])
                 :counts (mra/dsink [:long :long]))))
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There are two primary differences between the preceding code and the job 
specification we've seen previously. Firstly, our output specifies two named sinks: 
one for each of the outputs of our reducer. Secondly, we're using the parkour.
io.avro namespace as mra to specify a schema for our data with (mra/dsink 
[:string long-pair]).

In the previous chapter we made use of Tesser's FressianWritable to serialize 
arbitrary Clojure data structures to disk. This worked because the contents of the 
FressianWritable did not need to be interpreted by Hadoop: the value was 
completely opaque. With Parkour, we have the option to define custom key/value pair 
types. Since the key and value do need to be interpreted as separate entities by Hadoop 
(for the purpose of reading, partitioning, and writing sequence files), Parkour allows 
us to define a "tuple schema" using the parkour.io.avro namespace, which explicitly 
defines the type of the key and the value. long-pair is a custom schema used to store 
both the local and global offset in a single tuple:

(def long-pair (avro/tuple-schema [:long :long]))

And, since schemas are composable, we can refer to the long-pair schema when 
defining our output schema: (mra/dsink [:string long-pair]).

Parkour uses the library Acbracad to serialize Clojure 
data structures using Avro. For more information about 
serialization options consult the documentation for Abracad 
at https://github.com/damballa/abracad.

Let's look at another feature of Hadoop that Parkour exposes which allows our term 
ID job to be more efficient than it would otherwise be: the distributed cache.

Sharing data with the distributed cache
As we discussed in the previous section, if we know the local offset of each word 
for a particular mapper, and we know how many records each mapper processed 
overall, then we're in a position to calculate a unique, contiguous ID for each word.

The diagram that showed the process a few pages ago contained two central boxes 
each labeled Calculate Offsets and a Global ID. Those boxes map directly to the 
functions that we present next:

(defn global-id [offsets [global-offset local-offset]]
  (+ local-offset (get offsets global-offset)))

(defn calculate-offsets [dseq]
  (->> (into [] dseq)

https://github.com/damballa/abracad
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       (sort-by first)
       (reductions (fn [[_ t] [i n]]
                     [(inc i) (+ t n)])
                   [0 0])
       (into {})))

Once we've calculated the map of offsets to use for generating unique IDs,  
we'd really like them to be available to all of our map and reduce tasks as a  
shared resource. Having generated the offsets in a distributed fashion, we'd  
like to consume it in a distributed fashion too.

The distributed cache is Hadoop's way of allowing tasks to access common data. This 
is a much more efficient way of sharing small quantities of data (data that's small 
enough to reside in memory) than through potentially costly data joins.

Before reading from the distributed cache, we have to write something to it. This can 
be achieved with Parkour's parkour.io.dval namespace:

(defn unique-word-ids [conf df-data df-counts]
  (let [offsets-dval (-> (calculate-offsets df-counts)
                         (dval/edn-dval))]
    (-> (pg/input df-data)
        (pg/map #'word-id-m offsets-dval)
        (pg/output (mra/dsink [word-id]))
        (pg/fexecute conf `word-id)
        (->> (r/map parse-idf)
             (into {}))
        (dval/edn-dval))))
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Here, we're writing two sets of data to the distributed cache with the dval/edn-dval 
function. The first is the result of the calculate-offsets function just defined which 
is passed to the word-id-m mappers for their use. The second set of data written to 
the distributed cache is their output. We'll see how this is generated in the word-id-m 
function, as follows:

(defn word-id-m
  {::mr/sink-as :keys}
  [offsets-dval coll]
  (let [offsets @offsets-dval]
    (r/map
     (fn [[word word-offset]]
       [word (global-id offsets word-offset)])
     coll)))

The value returned by dval/edn-dval implements the IDRef interface. This 
means that we can use Clojure's deref function (or the deref macro character @) to 
retrieve the value that it wraps, just as we do with Clojure's atoms. Dereferencing 
the distributed value the first time causes the data to be downloaded from the 
distributed cache to a local mapper cache. Once the data is available locally, Parkour 
takes care of reconstructing the Clojure data structure (the map of offsets) that we 
wrote to it in EDN format.

Building Mahout vectors from input 
documents
In the previous sections, we took a detour to introduce several new Parkour and 
Hadoop concepts, but we're finally in a position to build text vectors for Mahout using 
unique IDs for every term. Some further code is omitted for brevity but the whole job 
is available to view in the cljds.ch6.vectorizer example code namespace. 

As mentioned previously, Mahout's implementation of k-means expects us 
to provide a vector representation of our input using one of its vector classes. 
Since our dictionary is large, and most documents use few of these terms, 
we'll be using a sparse vector representation. The following code makes use 
of a dictionary distributed value to create a org.apache.mahout.math.
RandomAccessSparseVector for every input document:

(defn create-sparse-tfidf-vector [dictionary [id doc]]
  (let [vector (RandomAccessSparseVector. (count dictionary))]
    (doseq [[term tf] (-> doc stemmer/stems frequencies)]
      (let [term-info (get dictionary term)
            id  (:id term-info)
            idf (:idf term-info)]
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        (.setQuick vector id (* tf idf))))
    [id vector]))

(defn create-tfidf-vectors-m [dictionary coll]
  (let [dictionary @dictionary]
    (r/map #(create-sparse-tfidf-vector dictionary %) coll)))

Finally, we make use of the create-tfidf-vectors-m function, which brings 
everything we've covered together into a single Hadoop job:

(defn tfidf [conf dseq dictionary-path vector-path]
  (let [doc-count (->> dseq (into []) count)
        [df-data df-counts] (pg/execute (df-j dseq) conf df)
        dictionary-dval (make-dictionary conf df-data
                                         df-counts doc-count)]
    (write-dictionary dictionary-path dictionary-dval)
    (-> (pg/input dseq)
        (pg/map #'create-tfidf-vectors-m dictionary-dval)
        (pg/output (seqf/dsink [Text VectorWritable] vector-path))
        (pg/fexecute conf `vectorize))))

This task handles the creation of the dictionary, writing the dictionary to the 
distributed cache, and then using the dictionary—with the mapper we just defined—
to convert each input document to a Mahout vector. To ensure sequence file 
compatibility with Mahout, we set the key/value classes of our final output to be 
Text and VectorWritable, where the key is the original filename of the document 
and the value is the Mahout vector representation of the contents.

We can call this job by running:

(defn ex-6-18 []
  (let [input-path  "data/reuters-sequencefile" 
        output-path "data/reuters-vectors"]
    (vectorizer/tfidf-job (conf/ig) input-path output-path)))

The job will write the dictionary out to the dictionary-path (we'll be needing it 
again), and the vectors out to the vector-path.

Since running the preceding example is a prerequisite for 
subsequent examples, it's also available on the command line:
lein create-vectors

Next, we'll discover how to use these vectors to actually perform clustering  
with Mahout.
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Running k-means clustering with Mahout
Now that we have a sequence file of vectors suitable for consumption by Mahout, it's 
time to actually run k-means clustering on the whole dataset. Unlike our local Incanter 
version, Mahout won't have any trouble dealing with the full Reuters corpus.

As with the SequenceFilesFromDirectory class, we've created a wrapper around 
another of Mahout's command-line programs, KMeansDriver. The Clojure variable 
names make it easier to see what each command-line argument is for.

(defn run-kmeans [in-path clusters-path out-path k]
  (let [distance-measure  "org.apache.mahout.common.distance.
CosineDistanceMeasure"
        max-iterations    100
        convergence-delta 0.001]
    (KMeansDriver/main
     (->> (vector "-i"  in-path
                  "-c"  clusters-path
                  "-o"  out-path
                  "-dm" distance-measure
                  "-x"  max-iterations
                  "-k"  k
                  "-cd" convergence-delta
                  "-ow"
                  "-cl")
          (map str)
          (into-array String)))))

We're providing the string org.apache.mahout.common.distance.
CosineDistanceMeasure to indicate to the driver that we'd like to use  
Mahout's implementation of the cosine distance measure. Mahout also includes 
a EuclideanDistanceMeasure and a TanimotoDistanceMeasure (similar to the 
Jaccard distance, the complement of the Jaccard index, but one that will operate on 
vectors rather than sets). Several other distance measures are also defined; consult 
the Mahout documentation for all the available options.

With the preceding run-kmeans function in place, we simply need to let Mahout 
know where to access our files. As in the previous chapter, we assume Hadoop is 
running in local mode and all file paths are relative to the project root:

(defn ex-6-19 []
  (run-kmeans "data/reuters-vectors/vectors"
              "data/kmeans-clusters/clusters"
              "data/kmeans-clusters"
              10))

This example may run for a little while as Mahout iterates over our large dataset.
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Viewing k-means clustering results
Once it's finished, we'll want to see a cluster summary for each cluster as we did with 
our Incanter implementation. Fortunately, Mahout defines a ClusterDumper class 
that will do exactly this for us. We need to provide the location of our clusters, of 
course, but we'll provide the location of our dictionary, too. Providing the dictionary 
means that the output can return the top terms for each cluster.

(defn run-cluster-dump [in-path dict-path points-dir out-path]
  (let [distance-measure
        "org.apache.mahout.common.distance.CosineDistanceMeasure"]
    (ClusterDumper/main
     (->> (vector "-i" in-path
                  "-o" out-path
                  "-d" dict-path
                  "--pointsDir" points-dir
                  "-dm" distance-measure
                  "-dt" "sequencefile"
                  "-b" "100"
                  "-n" "20"
                  "-sp" "0"
                  "--evaluate")
          (map str)
          (into-array String)))))

Next, we define the code that will actually call the run-cluster-dump function:

(defn path-for [path]
  (-> (fs/glob path)
      (first)
      (.getAbsolutePath)))

(defn ex-6-20 []
  (run-cluster-dump
   (path-for "data/kmeans-clusters/clusters-*-final")
   "data/reuters-vectors/dictionary/part-r-00000"
   "data/kmeans-clusters/clusteredPoints"
   "data/kmeans-clusterdump"))

We're making use of the me.raynes.fs library once again to determine which 
directory the final clusters are contained by. Mahout will append -final to the 
directory containing the final clusters, but we don't know ahead of time which 
directory this will be. The fs/glob function will find a directory that matches the 
pattern clusters-*-final, and replace * with whichever iteration number the true 
directory name contains.
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Interpreting the clustered output
If you open the file created by the previous example, data/kmeans-clusterdump, in 
any text editor, you'll see output representing the top terms of the Mahout clusters. 
The file will be large, but an excerpt is provided next:

:VL-11417{n=312 c=[0.01:0.039, 0.02:0.030, 0.07:0.047, 0.1:0.037, 
0.10:0.078, 0.11:0.152, 0.12:0.069,
  Top Terms:
    tonnes              =>   2.357810452962533
    department          =>   1.873890568048526
    wheat               =>  1.7797807546762319
    87                  =>  1.6685682321206117
    u.s                 =>   1.634764205186795
    mln                 =>  1.5050923755535712
    agriculture         =>  1.4595903158187866
    ccc                 =>  1.4314624499051998
    usda                =>  1.4069041441648433
    dlrs                =>  1.2770121846443567

The first line contains information about the cluster: the ID (in this case VL-11417) 
followed by curly braces containing the size of the cluster and the location of the 
cluster centroid. Since the text has been converted to weights and numeric IDs, the 
centroid is impossible to interpret on its own. The top terms beneath the centroid 
description hint at the contents of the cluster, though; they're the terms around 
which the cluster has coalesced.

VL-12535{n=514 c=[0:0.292, 0.25:0.015, 0.5:0.012, 00:0.137, 
00.46:0.018, 00.50:0.036, 00.91:0.018, 0
  Top Terms:
    president           =>   3.330068911559851
    reagan              =>   2.485271333256584
    chief               =>  2.1148699971952327
    senate              =>   1.876725117983985
    officer             =>  1.8531712558019022
    executive           =>  1.7373591731030653
    bill                =>  1.6326750159727461
    chairman            =>  1.6280977206471365
    said                =>  1.6279512813119108
    house               =>  1.5771017798189988

The two clusters earlier hint at two clear topics present in the data set, although your 
clusters may be different due to the stochastic nature of the k-means algorithm.
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Depending on your initial centroids and how many iterations you let the algorithm 
run, you may see clusters that appear "better" or "worse" in some respect. This will 
be based on an instinctive response to how well the clustered terms go together. 
But often it's not clear simply by looking at the top terms how well clustering has 
performed. In any case, instinct is not a very reliable way of judging the quality of 
an unsupervised learning algorithm. What we'd ideally like is some quantitative 
measure for how well the clustering has performed.

Cluster evaluation measures
At the bottom of the file we looked at in the previous section, you'll see some 
statistics that suggest how well the data has been clustered:

Inter-Cluster Density: 0.6135607681542804
Intra-Cluster Density: 0.6957348405534836

These two numbers can be considered as the equivalent to the variance within and 
the variance between measures we have seen in Chapter 2, Inference and Chapter 3, 
Correlation. Ideally, we are seeking a lower variance (or a higher density) within 
clusters compared to the density between clusters.

Inter-cluster density
Inter-cluster density is the average distance between cluster centroids. Good clusters 
probably don't have centers that are too close to each other. If they did, it would 
indicate the clustering is creating groups with similar features, and perhaps drawing 
distinctions between cluster members that are hard to support.

Thus, ideally our clustering will produce clusters with a large inter-cluster distance.
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Intra-cluster density
By contrast, the intra-cluster density is a measure of how compact the clusters 
are. Ideally, clustering will identify groups of items that are similar to each other. 
Compact clusters indicate that all of the items within a cluster are strongly alike.

The best clustering outcomes therefore produce compact, distinct clusters with a 
high intra-cluster density and a low inter-cluster density.

It is not always clear how many clusters are justified by the data, though. Consider 
the following that shows the same dataset grouped into varying numbers of clusters. 
It's hard to say with any degree of confidence what the ideal number of clusters is.
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Although the preceding illustration is contrived, it illustrates a general issue with 
clustering data. There is often no one, clear "best" number of clusters. The most 
effective clustering will depend to a large degree on the ultimate use of the data.

We can however infer which might be better values of k by determining how the 
value of some quality score varies with the number of clusters. The quality score 
could be a statistic such as the inter- or intra-cluster density. As the number of 
clusters approaches its ideal, we would expect the value of this quality score to 
improve. Conversely, as the number of clusters diverges from its ideal we would 
expect the quality to decrease. To get a reasonable idea of how many clusters are 
justified in the dataset, therefore, we should run the algorithm many times for 
different values of k.

Calculating the root mean square error with 
Parkour
One of the most common measures of cluster quality is the sum of squared errors 
(SSE). For each point, the error is the measured distance to the nearest cluster 
centroid. The total clustering SSE is therefore the sum over all clusters for a  
clustered point to its corresponding centroid:
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where µi is the centroid of points in cluster Si, k is the total number of clusters and n 
is the total number of points.

To calculate the RMSE in Clojure we therefore need to be able to relate each point in 
the cluster to its corresponding cluster centroid. Mahout saves cluster centroids and 
clustered points in two separate files, so in the next section we'll combine them.

Loading clustered points and centroids
Given a parent directory (e.g. data/reuters-kmeans/kmeans-10), the following 
function will load points into vectors stored in a map indexed by cluster ID using 
Parkour's seqf/dseq function to load key/value pairs from a sequence file. In this 
case, the key is the cluster ID (as an integer) and the value is the TF-IDF vector.

(defn load-cluster-points [dir]
  (->> (points-path dir)
       (seqf/dseq)
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       (r/reduce
        (fn [accum [k v]]
          (update-in accum [k] conj v)) {})))

The output of the preceding function is a map keyed by cluster ID whose values are 
sequences of clustered points. Likewise, the following function will convert each 
cluster into a map, keyed by cluster ID, whose values are maps containing the keys 
:id and :centroid.

(defn load-cluster-centroids [dir]
  (let [to-tuple (fn [^Cluster kluster]
                   (let [id (.getId kluster)]
                     [id  {:id id
                           :centroid (.getCenter kluster)}]))]
    (->> (centroids-path dir)
         (seqf/dseq)
         (r/map (comp to-tuple last))
         (into {}))))

Having two maps keyed by cluster ID means that combining the clustered points 
and cluster centroids is a simple matter of calling merge-with on the maps 
supplying a custom merging function. In the following code, we merge the  
clustered points into the map containing the cluster :id and :centroid.

(defn assoc-points [cluster points]
  (assoc cluster :points points))

(defn load-clusters [dir]
  (->> (load-cluster-points dir)
       (merge-with assoc-points
                   (load-cluster-centroids dir))
       (vals)))

The final output is a single map, keyed by cluster ID, with each value as a map of 
:id, :centroid and :points. We'll use this map in the next section to calculate the 
clustering RMSE.
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Calculating the cluster RMSE
To calculate the RMSE, we need to be able to establish the distance between 
every point and its associated cluster centroid. Since we used Mahout's 
CosineDistanceMeasure to perform the initial clustering, we should use the  
cosine distance to evaluate the clustering as well. In fact, we can simply make  
use of Mahout's implementation.

(def measure
  (CosineDistanceMeasure.))

(defn distance [^DistanceMeasure measure a b]
  (.distance measure a b))

(defn centroid-distances [cluster]
  (let [centroid (:centroid cluster)]
    (->> (:points cluster)
         (map #(distance measure centroid %)))))

(defn squared-errors [cluster]
  (->> (centroid-distances cluster)
       (map i/sq)))

(defn root-mean-square-error [clusters]
  (->> (mapcat squared-errors clusters)
       (s/mean)
       (i/sqrt)))

If the RMSE is plotted against the number of clusters, you'll find that it declines as 
the number of clusters increases. A single cluster will have the highest RMSE error 
(the variance of the original dataset from the mean), whereas the lowest RMSE will 
be the degenerate case when every point is in its own cluster (an RMSE of zero). 
Clearly either of these extremes will provide a poor explanation for the structure of 
the data. However, the RMSE doesn't decline in a straight line. It declines sharply 
as the number of clusters is increased from 1, but will fall more slowly once the 
"natural" number of clusters has been exceeded.

Therefore, one way of judging the ideal number of clusters is to plot how the RMSE 
changes with respect to the number of clusters. This is called the elbow method.
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Determining optimal k with the elbow method
In order to determine the value of k using the elbow method, we're going to have  
to re-run k-means a number of times. The following code accomplishes this for  
all k between 2 and 21.

(defn ex-6-21 []
  (doseq [k (range 2 21)
          :let [dir (str "data/kmeans-clusters-" k)]]
    (println dir)
    (run-kmeans "data/reuters-vectors/vectors"
                (str dir "/clusters")
                dir k)))

This will take a little while to run, so it might be time to go and make a hot drink: the 
println statement will log each clustering run to let you know how much progress 
has been made. On my laptop the whole process takes about 15 minutes.

Once it's complete, you should be able to run the example to generate a scatter plot 
of the RMSE for each of the clustered values:

(defn ex-6-22 []
  (let [ks (range 2 21)
        ys (for [k ks
                 :let [dir (str "data/kmeans-clusters-" k)
                       clusters (load-clusters dir)]]
             (root-mean-square-error clusters))]
    (-> (c/scatter-plot ks ys
                        :x-label "k"
                        :y-label "RMSE")
        (i/view))))
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This should return a plot similar to the following:

The preceding scatter plot shows the RMSE plotted against the number of clusters. It 
should be clear how the rate of RMSE change slows as k exceeds around 13 clusters 
and increasing the number of clusters further yields diminishing returns. Therefore, 
the preceding chart suggests for our Reuters data that around 13 clusters is a  
good choice.

The elbow method provides an intuitive means to determine the ideal number 
of clusters, but it is sometimes hard to apply in practice. This is because we must 
interpret the shape of the curve defined by the RMSE for each k. If k is small, or the 
RMSE contains a lot of noise, it may not be apparent where the elbow falls, or if there 
is an elbow at all.

Since clustering is an unsupervised learning algorithm, we assume 
here that the internal structure of the clusters is the only means of 
validating the quality of clustering. If true cluster labels are known 
then it's possible to use external validation measures (such as 
entropy) of the kind that we encountered in Chapter 4, Classification 
to validate the success of the model.
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Other clustering evaluation schemes aim to provide a clearer means of determining 
the precise number of clusters. The two we'll cover are the Dunn index and the 
Davies-Bouldin index. Both are internal evaluation schemes, meaning that they only 
look at the structure of the clustered data. Each aims to identify the clustering that 
has produced the most compact, well-separated clusters, in different ways.

Determining optimal k with the Dunn index
The Dunn index offers an alternative way to choose the optimal number of k. Rather 
than considering the average error remaining in the clustered data, the Dunn index 
instead considers the ratio of two "worst-case" situations: the minimum distance 
between two cluster centroids, divided by the maximum cluster diameter. A higher 
index therefore indicates better clustering since in general we would like large inter-
cluster distances and small intra-cluster distances.

For k clusters we can express the Dunn index in the following way:
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where δ(Ci,Cj) distance between the two clusters Ci and Cj and 1max m k mS≤ ≤  represents 
the size (or scatter) of the largest cluster.

There are several possible ways to calculate the scatter of a cluster. We could take 
the distance between the furthest two points inside a cluster, or the mean of all the 
pairwise distances between data points inside the cluster, or the mean of each data 
point from the cluster centroid itself. In the following code, we calculate the size by 
taking the median distance from the cluster centroid.

(defn cluster-size [cluster]
  (-> cluster
      centroid-distances
      s/median))

(defn dunn-index [clusters]
  (let [min-separation (->> (combinations clusters 2)
                            (map #(apply separation %))
                            (apply min))
        max-cluster-size (->> (map cluster-size clusters)
                              (apply max))]
    (/ min-separation max-cluster-size)))
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The preceding code makes use of the combinations function from clojure.math.
combinatorics (https://github.com/clojure/math.combinatorics/) to 
produce a lazy sequence of all pairwise combinations of clusters.

(defn ex-6-23 []
  (let [ks (range 2 21)
        ys (for [k ks
                 :let [dir (str "data/kmeans-clusters-" k)
                       clusters (load-clusters dir)]]
             (dunn-index clusters))]
    (-> (c/scatter-plot ks ys
                        :x-label "k"
                        :y-label "Dunn Index")
        (i/view))))

We use the dunn-index function in the preceding code to generate a scatter plot for 
the clusters from k=2 to k=20:

A higher Dunn index indicates a better clustering. Thus, it appears that the best 
clustering is for k=2, followed by k=6, with k=12 and k=13 following closely behind. 
Let's try an alternative cluster evaluation scheme and compare the results.

https://github.com/clojure/math.combinatorics/
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Determining optimal k with the  
Davies-Bouldin index
The Davies-Bouldin index is an alternative evaluation scheme that measures the 
mean ratio of size and separation for all values in the cluster. For each cluster, an 
alternative cluster is found that maximizes the ratio of the sum of cluster sizes 
divided by the inter-cluster distance. The Davies-Bouldin index is defined as the 
mean of this value for all clusters in the data:
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where δ(Ci,Cj)is the distance between the two cluster centroids Ci and Cj, and Si and Sj 
are the scatter. We can calculate the Davies-Bouldin index using the following code:

(defn scatter [cluster]
  (-> (centroid-distances cluster)
      (s/mean)))

(defn assoc-scatter [cluster]
  (assoc cluster :scatter (scatter cluster)))

(defn separation [a b]
  (distance measure (:centroid a) (:centroid b)))

(defn davies-bouldin-ratio [a b]
  (/ (+ (:scatter a)
        (:scatter b))
     (separation a b)))

(defn max-davies-bouldin-ratio [[cluster & clusters]]
  (->> (map #(davies-bouldin-ratio cluster %) clusters)
       (apply max)))

(defn rotations [xs]
  (take (count xs)
        (partition (count xs) 1 (cycle xs))))

(defn davies-bouldin-index [clusters]
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  (let [ds (->> (map assoc-scatter clusters)
                (rotations)
                (map max-davies-bouldin-ratio))]
    (s/mean ds)))

Let's now plot the Davies-Bouldin on a scatter plot for clusters k=2 to k=20:

(defn ex-6-24 []
  (let [ks (range 2 21)
        ys (for [k ks
                 :let [dir (str "data/kmeans-clusters-" k)
                       clusters (load-clusters dir)]]
             (davies-bouldin-index clusters))]
    (-> (c/scatter-plot ks ys
                        :x-label "k"
                        :y-label "Davies-Bouldin Index")
        (i/view))))

This should generate the following plot:
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Unlike the Dunn index, the Davies-Bouldin index is minimized for good clustering 
schemes since in general we seek out clusters that are compact in size and have high 
inter-cluster distances. The preceding chart suggests that k=2 is the ideal cluster size 
followed by k=13.

The drawbacks of k-means
k-means is one of the most popular clustering algorithms due to its relative ease of 
implementation and the fact that it can be made to scale well to very large datasets. 
In spite of its popularity, there are several drawbacks.

k-means is stochastic, and does not guarantee to find the global optimum solution for 
clustering. In fact, the algorithm can be very sensitive to outliers and noisy data: the 
quality of the final clustering can be highly dependent on the position of the initial 
cluster centroids. In other words, k-means will regularly discover a local rather than 
global minimum.
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The preceding diagram illustrates how k-means may converge to a local minimum 
based on poor initial cluster centroids. Non-optimal clustering may even occur if the 
initial cluster centroids are well-placed, since k-means prefers clusters with similar 
sizes and densities. Where clusters are not approximately equal in size and density, 
k-means may fail to converge to the most natural clustering:

Also, k-means strongly prefers clusters that are "globular" in shape. Clusters with 
more intricate shapes are not well-identified by the k-means algorithm.

In the next chapter, we'll see how a variety of dimensionality reduction techniques 
can help work around these problems. But before we get there, let's develop an 
intuition for an alternative way of defining distance: as a measure of how far away 
from a "group" of things an element is.

The Mahalanobis distance measure
We saw at the beginning of the chapter how some distance measures may be more 
appropriate than others, given your data, by showing how the Jaccard, Euclidean, 
and cosine measures relate to data representation. Another factor to consider when 
choosing a distance measure and clustering algorithm is the internal structure of 
your data. Consider the following scatter plot:
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It's "obvious" that the point indicated by the arrow is distinct from the other points. 
We can clearly see that it's far from the distribution of the others and therefore 
represents an anomaly. Yet, if we calculate the Euclidean distance of all points 
from the mean (the "centroid"), the point will be lost amongst the others that are 
equivalently far, or even further, away:

(defn ex-6-25 []
  (let [data (dataset-with-outlier)
        centroid  (i/matrix [[0 0]])
        distances (map #(s/euclidean-distance centroid %) data)]
    (-> (c/bar-chart (range 202) distances
                     :x-label "Points"
                     :y-label "Euclidean Distance") 
        (i/view))))
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The preceding code generates the following chart:

The Mahalanobis distance takes into account the covariance among the variables 
in calculating distances. In two dimensions, we can imagine the Euclidean distance 
as a circle growing out from the centroid: all points at the edge of the circle are 
equidistant from the centroid. The Mahalanobis distance stretches and skews this 
circle to correct for the respective scales of the different variables, and to account for 
correlation amongst them. We can see the effect in the following example:

(defn ex-6-26 []
  (let [data (dataset-with-outlier)
        distances    (map first (s/mahalanobis-distance data))]
    (-> (c/bar-chart (range 202) distances
                     :x-label "Points"
                     :y-label "Mahalanobis Distance")
        (i/view))))
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The preceding code uses the function provided by incanter.stats to plot the 
Mahalanobis distance between the same set of points. The result is shown on the 
following chart:

This chart clearly identifies one point in particular as being much more distant than 
the other points. This matches our perception that this point in particular should be 
considered as being further away from the others.

The curse of dimensionality
There is one fact that the Mahalanobis distance measure is unable to overcome, 
though, and this is known as the curse of dimensionality. As the number of 
dimensions in a dataset rises, every point tends to become equally far from every 
other point. We can demonstrate this quite simply with the following code:

(defn ex-6-27 []
  (let [distances (for [d (range 2 100)
                        :let [data (->> (dataset-of-dimension d)
                                        (s/mahalanobis-distance)
                                        (map first))]]
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                    [(apply min data) (apply max data)])]
    (-> (c/xy-plot (range 2 101) (map first distances)
                   :x-label "Number of Dimensions"
                   :y-label "Distance Between Points"
                   :series-label "Minimum Distance"
                   :legend true)
        (c/add-lines (range 2 101) (map second distances)
                     :series-label "Maximum Distance")
        (i/view))))

The preceding code finds both the minimum and the maximum distance between 
any two pairs of points in a synthetic generated dataset of 100 points. As the number 
of dimensions approaches the number of elements in the set, we can see how the 
minimum and the maximum distance between each pair of elements approach  
one another:

The effect is striking: as the number of dimensions increases, the distance between 
the closest two points rises too. The distance between the furthest two points rises 
as well, but at a slower rate. Finally, with 100 dimensions and 100 data points, every 
point appears to be equally far from every other.
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Of course, this is synthetic, randomly generated data. If we're attempting to cluster 
our data, we implicitly hope that it will have a discernible internal structure that we 
can tease out. Nonetheless, this structure will become more and more difficult to 
identify as the number of dimensions rises.

Summary
In this chapter, we've learned about the process of clustering and covered the 
popular k-means clustering algorithm to cluster large numbers of text documents. 

This provided an opportunity to cover the specific challenges presented by text 
processing where data is often messy, ambiguous, and high-dimensional. We saw 
how both stop words and stemming can help to reduce the number of dimensions 
and how TF-IDF can help identify the most important dimensions. We also saw how 
n-grams and shingling can help to tease out context for each word at the cost of a 
vast proliferation of terms.

We've explored Parkour in greater detail and seen how it can be used to write 
sophisticated, scalable, Hadoop jobs. In particular, we've seen how to make use of 
the distributed cache and custom tuple schemas to write Hadoop job process data 
represented as Clojure data structures. We used both of these to implement a method 
for generating unique, cluster-wide term IDs.

Finally, we witnessed the challenge presented by very high-dimensional spaces: 
the so-called "curse of dimensionality". In the next chapter, we'll cover this topic 
in more detail and describe a variety of techniques to combat it. We'll continue to 
explore the concepts of "similarity" and "difference" as we consider the problem of 
recommendation: how we can match users and items together.





[ 343 ]

Recommender Systems
"People who like this sort of thing will find this the sort of thing they like."

                                                                          - attributed to Abraham Lincoln

In the previous chapter, we performed clustering on text documents using the 
k-means algorithm. This required us to have a measure of similarity between the text 
documents to be clustered. In this chapter, we'll be investigating recommender systems 
and we'll use this notion of similarity to suggest items that we think users might like.

We also saw the challenge presented by high-dimensional data—the so-called curse 
of dimensionality. Although it's not a problem specific to recommender systems, 
this chapter will show a variety of techniques that tackle its effects. In particular, 
we'll look at the means of establishing the most important dimensions with principle 
component analysis and singular value decomposition, and probabilistic ways 
of compressing very high dimensional sets with Bloom filters and MinHash. In 
addition—because determining the similarity of items with each other involves 
making many pairwise comparisons—we'll learn how to efficiently precompute 
groups with the most probable similarity using locality-sensitive hashing.

Finally, we'll introduce Spark, a distributed computation framework, and an 
associated Clojure library called Sparkling. We'll show how Sparkling can be  
used with Spark's machine learning library MLlib to build a distributed 
recommender system.

But first, we'll begin this chapter with a discussion on the basic types of 
recommender systems and implement one of the simplest in Clojure. Then,  
we'll demonstrate how Mahout, introduced in the previous chapter, can be  
used to create a variety of different types of recommender.
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Download the code and data
In this chapter, we'll make use of data on film recommendations from the website 
https://movielens.org/. The site is run by GroupLens, a research lab in the 
Department of Computer Science and Engineering at the University of Minnesota, 
Twin Cities.

Datasets have been made available in several different sizes at https://grouplens.
org/datasets/movielens/. In this chapter, we'll be making use of "MovieLens 
100k"—a collection of 100,000 ratings from 1,000 users on 1,700 movies. As the data 
was released in 1998, it's beginning to show its age, but it provides a modest dataset 
on which we can demonstrate the principles of recommender systems. This chapter 
will give you the tools you need to process the more recently released "MovieLens 
20M" data: 20 million ratings by 138,000 users on 27,000 movies.

The code for this chapter is available from the Packt Publishing's 
website or from https://github.com/clojuredatascience/
ch7-recommender-systems.

As usual, a shell script has been provided that will download and decompress the 
data to this chapter's data directory. You can run it from within the same code 
directory with:

script/download-data.sh

Once you've run the script, or downloaded an unpacked data manually, you should 
see a variety of files beginning with the letter "u". The ratings data we'll be mostly 
using in this chapter is in the ua.base file. The ua.base, ua.test, ub.base, and 
ub.test files contain subsets of the data to perform cross-validation. We'll also be 
using the u.item file, which contains information on the movies themselves.

Inspect the data
The ratings files are tab-separated, containing the field's user ID, item ID, rating, 
and timestamp. The user ID links to a row in the u.user file, which provides basic 
demographic information such as age, sex, and occupation:

(defn ex-7-1 []
  (->> (io/resource "ua.base")
       (io/reader)
       (line-seq)
       (first)))

;; "1\t1\t5\t874965758"

https://movielens.org/
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://github.com/clojuredatascience/ch7-recommender-systems
https://github.com/clojuredatascience/ch7-recommender-systems
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The string shows a single line from the file—a tab-separated line containing the user 
ID, item ID, rating (1-5), and timestamp showing when the rating was made. The 
rating is an integer from 1 to 5 and the timestamp is given as the number of seconds 
since January 1, 1970. The item ID links to a row in the u.item file.

We'll also want to load the u.item file, so we can determine the names of the items 
being rated (and the items being predicted in return). The following example shows 
how data is stored in the u.item file:

(defn ex-7-2 []
  (->> (io/resource "u.item")
       (io/reader)
       (line-seq)
       (first)))

;; "1|Toy Story (1995)|01-Jan-1995||http://us.imdb.com/M/title-
exact?Toy%20Story%20(1995)|0|0|0|1|1|1|0|0|0|0|0|0|0|0|0|0|0|0|0"

The first two fields are the item ID and name, respectively. Subsequent fields, not 
used in this chapter, are the release date, the URL of the movie on IMDB, and a  
series of flags indicating the genre of the movie.

Parse the data
Since the data will all fit in the main memory for convenience, we'll define several 
functions that will load the ratings into Clojure data structures. The line->rating 
function takes a line, splits it into fields where a tab character is found, converts each 
field to a long datatype, then uses zipmap to convert the sequence into a map with 
the supplied keys:

(defn to-long [s]
  (Long/parseLong s))

(defn line->rating [line]
  (->> (s/split line #"\t")
       (map to-long)
       (zipmap [:user :item :rating])))

(defn load-ratings [file]
  (with-open [rdr (io/reader (io/resource file))]
    (->> (line-seq rdr)
         (map line->rating)
         (into []))))

(defn ex-7-3 []
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  (->> (load-ratings "ua.base")
       (first)))

;; {:rating 5, :item 1, :user 1}

Let's write a function to parse the u.items file as well, so that we know what the 
movie names are:

(defn line->item-tuple [line]
  (let [[id name] (s/split line #"\|")]
    (vector (to-long id) name)))

(defn load-items [path]
  (with-open [rdr (io/reader (io/resource path))]
    (->> (line-seq rdr)
         (map line->item-tuple)
         (into {}))))

The load-items function returns a map of an item ID to a movie name, so that we 
can look up the names of movies by their ID.

(defn ex-7-4 []
  (-> (load-items "u.item")
      (get 1)))

;; "Toy Story (1995)"

With these simple functions in place, it's time to learn about the different types of 
recommender systems.

Types of recommender systems
There are typically two approaches taken to the problem of recommendation.  
Both make use of the notion of similarity between things, as we encountered  
it in the previous chapter.

One approach is to start with an item we know the user likes and recommend the 
other items that have similar attributes. For example, if a user is interested in action 
adventure movies, we might present to them a list of all the action adventure movies 
that we can offer. Or, if we have more data available than simply the genre—perhaps 
a list of tags—then we could recommend movies that have the most tags in common. 
This approach is called content-based filtering, because we're using the attributes of 
the items themselves to generate recommendations for similar items.
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Another approach to recommendation is to take as input some measure of the 
user's preferences. This may be in the form of numeric ratings for movies, or of 
movies bought or previously viewed. Once we have this data, we can identify the 
movies that other users with similar ratings (or purchase history, viewing habits, 
and so on) have a preference for that the user in question has not already stated a 
preference for. This approach takes into account the behavior of other users, so it's 
commonly called collaborative filtering. Collaborative filtering is a powerful means 
of recommendation, because it harnesses the so-called "wisdom of the crowd".

In this chapter, we'll primarily study collaborative filtering approaches. However, by 
harnessing notions of similarity, we'll provide you with the concepts you'll need to 
implement content-based recommendation as well.

Collaborative filtering
By taking account only of the users' relationship to items, these techniques require 
no knowledge of the properties of the items themselves. This makes collaborative 
filtering a very general technique—the items in question can be anything that can be 
rated. We can picture collaborative filtering as the act of trying to fill a sparse matrix 
containing known ratings for users. We'd like to be able to replace the unknowns 
with predicted ratings and then recommend the predictions with the highest score.

Notice that each question mark sits at the intersection of a row and a column. The 
rows contain a particular user's preference for all the movies they've rated. The 
columns contain the ratings for a particular movie from all the users who have rated 
it. To substitute the question marks in this matrix using only the other numbers in 
this matrix is the core challenge of collaborative filtering.
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Item-based and user-based 
recommenders
Within the field of collaborative filtering, we can usefully make the distinction between 
two types of filtering—item-based and user-based recommenders. With item-based 
recommenders, we take a set of items that a user has already rated highly and look for 
other items that are similar. The process is visualized in the next diagram:

A recommender might recommend item B, based on the information presented in 
the diagram, since it's similar to two items that are already highly rated.
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We can contrast this approach to the process of a user-based recommendation shown 
in the following diagram. A user-based recommendation aims to identify users with 
similar tastes to the user in question to recommend items that they have rated highly, 
but which the user has not already rated.

The user-based recommender is likely to recommend item B, because it has been 
rated highly by two other users with similar taste. We'll be implementing both  
kinds of recommenders in this chapter. Let's start with one of the simplest 
approaches—Slope One predictors for item-based recommendation.

Slope One recommenders
Slope One recommenders are a part of a family of algorithms introduced in a 2005 
paper by Daniel Lemire and Anna Maclachlan. In this chapter, we'll introduce the 
weighted Slope One recommender.

You can read the paper introducing the Slope One recommender 
at http://lemire.me/fr/abstracts/SDM2005.html.

http://lemire.me/fr/abstracts/SDM2005.html
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To illustrate how weighted Slope One recommendation works, let's consider the 
simple example of four users, labeled W, X, Y, and Z, who have rated three movies—
Amadeus, Braveheart, and Casablanca. The ratings each user has provided are 
illustrated in the following diagram:

As with any recommendation problem, we're looking to replace the question marks 
with some estimate on how the user would rate the movie: the highest predicted 
ratings can be used to recommend new movies to users.

Weighted Slope One is an algorithm in two steps. Firstly, we must calculate the 
difference between the ratings for every pair of items. Secondly, we'll use this  
set of differences to make predictions.

Calculating the item differences
The first step of the Slope One algorithm is to calculate the average difference 
between each pair of items. The following equation may look intimidating but,  
in fact, it's simple:

( )( )( ),

,
,cardi j

i j
i j

u S X i j

u u
S R∈

−
∆ = ∑

The formula calculates ,i j∆ , which is the average difference between the ratings for 
items i and j. It does so by summing over all the u taken from Si,j(R), which is the set 
of all the users who have rated both the items. The quantity that is summed is ui - uj, 
the difference between the user's rating for items i and j divided by ( )( ),card i jS R , the 
cardinality of set Si,j(R), or the number of people who have rated both the items.
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Let's make this more concrete by applying the algorithm to the ratings in  
the previous diagram. Let's calculate the difference between the ratings for 
"Amadeus" and "Braveheart".

There are two users who have rated both the movies, so ( )( ),card i jS R  is two. For 
each of these users, we take the difference between their ratings for each of the two 
movies and add them together.

( ) ( )
,

4 3 5 2 1 3 2
2 2 2 2amadeus braveheart

− −
∆ = + = + =

The result is 2, meaning on average, users voted Amadeus two ratings higher than 
Braveheart. As you might expect, if we calculate the difference in the other direction, 
between Braveheart and Amadeus, we get -2:

( ) ( )
,

3 4 2 5 1 3 2
2 2 2 2braveheart amadeus

− − − −
∆ = + = + = −

We can think of the result as the average difference in the rating between the two 
movies, as judged by all the people who have rated both the movies. If we perform 
the calculation several more times, we could end up with the matrix in the following 
diagram, which shows the average pairwise difference in the rating for each of the 
three movies:
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By definition, the values on the main diagonal are zero. Rather than continuing our 
calculations manually, we can express the computation in the following Clojure 
code, which will build up a sequence of differences between the pairs of items that 
every user has rated:

(defn conj-item-difference [dict [i j]]
  (let [difference (-  (:rating j) (:rating i))]
    (update-in dict [(:item i) (:item j)] conj difference)))

(defn collect-item-differences [dict items]
  (reduce conj-item-difference dict
          (for [i items
                j items
                :when (not= i j)]
            [i j])))

(defn item-differences [user-ratings]
  (reduce collect-item-differences {} user-ratings))

The following example loads the ua.base file into a sequence of ratings using 
the functions we defined at the beginning of the chapter. The collect-item-
differences function takes each user's list of ratings and, for each pair of rated 
items, calculates the difference between the ratings. The item-differences function 
reduces over all the users to build up a sequence of pairwise differences between the 
items for all the users who have rated both the items:

(defn ex-7-5 []
  (->> (load-ratings "ua.base")
       (group-by :user)
       (vals)
       (item-differences)
       (first)))

;; [893 {558 (-2 4), 453 (-1), 637 (-1), 343 (-2 -2 3 2) ...]

We're storing the lists in both directions as values contained within the nested maps, 
so we can retrieve the differences between any two items using get-in:

(defn ex-7-6 []
  (let [diffs (->> (load-ratings "ua.base")
                   (group-by :user)
                   (vals)
                   (item-differences))]
    (println "893:343" (get-in diffs [893 343]))
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    (println "343:893" (get-in diffs [343 893]))))

;; 893:343 (-2 -2 3 2)
;; 343:893 (2 2 -3 -2)

To use these differences for prediction, we'll need to summarize them into a mean 
and keep track of the count of ratings on which the mean was based:

(defn summarize-item-differences [related-items]
  (let [f (fn [differences]
            {:mean  (s/mean differences)
             :count (count  differences)})]
    (map-vals f related-items)))

(defn slope-one-recommender [ratings]
  (->> (item-differences ratings)
       (map-vals summarize-item-differences)))

(defn ex-7-7 []
  (let [recommender (->> (load-ratings "ua.base")
                         (group-by :user)
                         (vals)
                         (slope-one-recommender))]
    (get-in recommender [893 343])))

;; {:mean 0.25, :count 4}

One of the practical benefits of this method is that we have to perform the earlier 
step only once. From this point onwards, we can incorporate future user ratings by 
adjusting the mean difference and count only for the items that the user has already 
rated. For example, if a user has already rated 10 items, which have been incorporated 
into the earlier data structure, the eleventh rating only requires that we recalculate 
the differences for the eleven items. It is not necessary to perform the computationally 
expensive differencing process from scratch to incorporate new information.

Making recommendations
Now that we have calculated the average differences for each pair of items, we have 
all we need to recommend new items to users. To see how, let's return to one of our 
earlier examples.
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User X has already provided ratings for Amadeus and Braveheart. We'd like to infer 
how they would rate the movie Casablanca so that we can decide whether or not to 
recommend it to them.

In order to make predictions for a user, we need two things—the matrix of 
differences we calculated just now and the users' own previous ratings. Given these 
two things, we can calculate a predicted rating r̂  for item j, given user u, using the 
following formula:

( )( ), ,c =cardj i j iS R

( )( )

( )

, ,;
|

,;

ˆ
i j i j ii S u i j

j u
j ii S u i j

u c
r

c
∈ ≠

∈ ≠

∆ +
=
∑

∑

As before, this equation looks more complicated than it is, so let's step through it, 
starting with the numerator.

The ( );i S u i j∈ ≠∑ …  expression means that we're summing over all the i items that 
user u has rated (which clearly does not include j, the item for which we're trying 
to predict a rating). The sum we calculate is over the difference between the users' 
rating for i and j, plus u's rating for i. We multiply that quantity by cj,i—the number 
of users that rated both.

The ( ) ,; j ii S u i j
c

∈ ≠∑  denominator is simply the sum of all the users who have rated j 
and any of the movies that user u has rated. It's a constant factor to adjust the size of 
the numerator downwards to ensure that the output can be interpreted as a rating.
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Let's illustrate the previous formula by calculating the predicted rating of user X for 
"Casablanca" using the table of differences and the ratings provided earlier:

( ) ( )
|

1 5 2 0.75 2 2
ˆ

4casablanca Br
− + × + + ×

=

|
13.5ˆ 3.375

4casablanca Br = =

So, given the previous ratings, we would predict that user X would rate Casablanca 
3.375. By performing the same process for all the items also rated by the people 
who rated any of the other items rated by user X, we can arrive at a set of 
recommendations for user X.

The Clojure code calculates the weighted rating for all such candidates:

(defn candidates [recommender {:keys [rating item]}]
  (->> (get recommender item)
       (map (fn [[id {:keys [mean count]}]]
              {:item id
               :rating (+ rating mean)
               :count count}))))

(defn weighted-rating [[id candidates]]
  (let [ratings-count (reduce + (map :count candidates))
        sum-rating (map #(* (:rating %) (:count %)) candidates)
        weighted-rating (/ (reduce + sum-rating) ratings-count)]
    {:item id
     :rating weighted-rating
     :count  ratings-count}))

Next, we calculate a weighted rating, which is the weighted average rating for  
each candidate. The weighted average ensures that the differences generated by 
large numbers of users count for more than those generated by only a small number 
of users:

(defn slope-one-recommend [recommender rated top-n]
  (let [already-rated  (set (map :item rated))
        already-rated? (fn [{:keys [id]}]
                         (contains? already-rated id))
        recommendations (->> (mapcat #(candidates recommender %)
                                     rated)
                             (group-by :item)
                             (map weighted-rating)
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                             (remove already-rated?)
                             (sort-by :rating >))]
    (take top-n recommendations)))

Finally, we remove from the candidate pool any items we have already rated and 
order the remainder by rating descending: we can take just the highest rated results 
and present these as our top recommendations. The following example calculates the 
top ratings for user ID 1:

(defn ex-7-8 []
  (let [user-ratings (->> (load-ratings "ua.base")
                          (group-by :user)
                          (vals))
        user-1       (first user-ratings)
        recommender  (->> (rest user-ratings)
                          (slope-one-recommender))
        items     (load-items "u.item")
        item-name (fn [item]
                    (get items (:item item)))]
    (->> (slope-one-recommend recommender user-1 10)
         (map item-name))))

The earlier example will take a while to build the Slope One recommender and 
output the differences. It will take a couple of minutes, but when it's finished, you 
should see something like the following:

;; ("Someone Else's America (1995)" "Aiqing wansui (1994)"
;;  "Great Day in Harlem, A (1994)" "Pather Panchali (1955)"
;;  "Boys, Les (1997)" "Saint of Fort Washington, The (1993)"
;;  "Marlene Dietrich: Shadow and Light (1996) " "Anna (1996)"
;;  "Star Kid (1997)" "Santa with Muscles (1996)")

Try running slope-one-recommender in the REPL and predicting recommendations 
for multiple users. You'll find that once the differences have been built, making 
recommendations is very fast.
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Practical considerations for user and item 
recommenders
As we've seen in the previous section, compiling pairwise differences for all items  
is a time-consuming job. One of the advantages of item-based recommenders is  
that pairwise differences between items are likely to remain relatively stable over 
time. The differences matrix need only be calculated periodically. As we've seen,  
it's possible to incrementally update very easily too; for a user who has already  
rated 10 items, if they rate an additional item, we only need to adjust the difference 
for the 11 items they have now rated. We don't need to calculate the differences from 
scratch whenever we want to update the matrix.

The runtime of item-based recommenders scales with the number of items they store 
though. In situations where the number of users is small compared to the number 
of items, it may be more efficient to implement a user-based recommender. For 
example content aggregation sites, where items could outnumber users by orders of 
magnitude, are good candidates for user-based recommendation.

The Mahout library, which we encountered in the previous chapter, contains the tools 
to create a variety of recommenders, including user-based recommenders. Let's look 
at these next.

Building a user-based recommender with 
Mahout
The Mahout library comes with a lot of built-in classes, which are designed to 
work together to assist in building custom recommendation engines. Mahout's 
functionality to construct recommenders is in the org.apache.mahout.cf.taste 
namespace.

Mahout's recommendation engine capabilities come from 
the Taste open source project with which it merged in 2008.

In the previous chapter, we discovered how to make use of Mahout to cluster 
with Clojure's Java interop capabilities. In this chapter, we'll make use of Mahout's 
recommenders with GenericUserBasedRecommender available in the org.apache.
mahout.cf.taste.impl.recommender package.
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As with many user-based recommenders, we also need to define a similarity metric 
to quantify how alike two users are. We'll also define a user neighborhood as each 
user's set of 10 most similar users.

First, we must load the data. Mahout includes a utility class, FileDataModel, to 
load the MovieLens data in the org.apache.mahout.cf.taste.impl.model.file 
package, which we use next:

 (defn load-model [path]
  (-> (io/resource path)
      (io/file)
      (FileDataModel.)))

Having loaded the data, we can produce recommendations with the following code:

(defn ex-7-9 []
  (let [model        (load-model "ua.base")
        similarity   (EuclideanDistanceSimilarity. model)
        neighborhood (NearestNUserNeighborhood. 10 similarity
                                                model)
        recommender  (GenericUserBasedRecommender. model
                                                   neighborhood
                                                   similarity)
        items     (load-items "u.item")
        item-name (fn [id] (get items id))]
    (->> (.recommend recommender 1 5)
         (map #(item-name (.getItemID %))))))

;; ("Big Lebowski, The (1998)" "Peacemaker, The (1997)"
;;  "Rainmaker, The (1997)" "Game, The (1997)"
;;  "Cool Hand Luke (1967)")
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The distance metric that we used in the previous example was the Euclidean 
distance. This places each user in a high-dimensional space defined by the ratings  
for the movies they have rated.

The earlier chart places three users X, Y, and Z on a two-dimensional chart according 
to their ratings for movies A and B. We can see that users Y and Z are more similar to 
each other, based on these two movies, than they are to user X.

If we were trying to produce recommendations for user Y, we might reason that 
other items rated highly by user X would be good candidates.

k-nearest neighbors
Our Mahout user-based recommender is making recommendations by looking 
at the neighborhood of the most similar users. This is commonly called k-nearest 
neighbors or k-NN.

It might appear that a user neighborhood is a lot like the k-means clusters we 
encountered in the previous chapter, but this is not quite the case. This is because 
each user sits at the center of their own neighborhood. With clustering, we aim 
to establish a smaller number of groupings, but with k-NN, there are as many 
neighborhoods as there are users; each user is their own neighborhood centroid.

Mahout also defines ThresholdUserNeighbourhood that 
we could use to construct a neighborhood containing only the 
users that fall within a certain similarity from each other.
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The k-NN algorithm means that we only generate recommendations based on the 
taste of the k most similar users. This makes intuitive sense; the users with taste most 
similar to your own are most likely to offer meaningful recommendations.

Two questions naturally arise—what's the best neighborhood size? Which similarity 
measure should we use? To answer these questions, we can turn to Mahout's 
recommender evaluation capabilities and see how our recommender behaves against 
our data for a variety of different configurations.

Recommender evaluation with Mahout
Mahout provides a set of classes to help with the task of evaluating our 
recommender. Like the cross-validation we performed with the clj-ml library in 
Chapter 4, Classification, Mahout's evaluation proceeds by splitting the our ratings 
into two sets: a test set and a training set.

By training our recommender on the training set and then evaluating its  
performance on the test set, we can gain an understanding of how well, or poorly, 
our algorithm is performing against real data. To handle the task of training a model 
on the training data provided by Mahout's evaluator, we must supply an object 
conforming to the RecommenderBuilder interface. The interface defines just one 
method: buildRecommender. We can create an anonymous RecommenderBuilder 
type using reify:

(defn recommender-builder [sim n]
  (reify RecommenderBuilder
    (buildRecommender [this model]
      (let [nhood (NearestNUserNeighborhood. n sim model)]
        (GenericUserBasedRecommender. model nhood sim)))))

Mahout provides a variety of evaluators in the org.apache.mahout.cf.taste.
impl.eval namespace. In the following code, we construct a root-mean-square error 
evaluator using the RMSRecommenderEvaluator class by passing in a recommender 
builder and the data model that we've loaded:

(defn evaluate-rmse [builder model]
  (-> (RMSRecommenderEvaluator.)
      (.evaluate builder nil model 0.7 1.0)))
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The nil value we pass to evaluate in the preceding code indicates that we aren't 
supplying a custom model builder, which means the evaluate function will use 
the default model builder based on the model we supply. The numbers 0.7 and 1.0 
are the proportion of data used for training, and the proportion of the test data to 
evaluate on. In the earlier code, we're using 70 percent of the data for training and 
evaluate the model on 100 percent of what's left. The root mean square error (RMSE) 
evaluator will calculate the square root of the mean squared error between the 
predicted rating and the actual rating for each of the test data.

We can use both of the previous functions to evaluate the performance of the  
user-based recommender using a Euclidean distance and a neighborhood of  
10 like this:

(defn ex-7-10 []
  (let [model   (load-model "ua.base")
        builder (recommender-builder 10
                 (EuclideanDistanceSimilarity. model))]
    (evaluate-rmse builder model)))

;; 0.352

Your result may differ of course, since the evaluation is performed on random 
subsets of the data.

We defined the Euclidean distance d in the previous chapter to be a positive value 
where zero represents perfect similarity. This could be converted into a similarity 
measure s in the following way:

1
1

s
d

=
+

Unfortunately, the previous measure would bias against users with more rated items 
in common, since each dimension would provide an opportunity to be further apart. 
To correct this, Mahout computes the Euclidean similarity as:

1
ns
d

=
+

Here, n is the number of dimensions. As this formula might result in a similarity 
which exceeds 1, Mahout clips similarities at 1.
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Evaluating distance measures
We encountered a variety of other distance and similarity measures in the 
previous chapter; in particular, we made use of the Jaccard, Euclidean, and 
cosine distances. Mahout includes implementations of these as similarity 
measures in the org.apache.mahout.cf.taste.impl.similarity package 
as TanimotoCoefficientSimilarity, EuclideanDistanceSimilarity, and 
UncenteredCosineSimilarity respectively.

We've just evaluated the performance of the Euclidean similarity on our 
ratings data, so let's see how well the others perform. While we're at it, 
let's try two other similarity measures that Mahout makes available—
PearsonCorrelationSimilarity and SpearmanCorrelationSimilarity.

The Pearson correlation similarity
The Pearson correlation similarity is a similarity measure based on the correlation 
between users' tastes. The following diagram shows the ratings of two users for  
three movies A, B, and C.

One of the potential drawbacks of the Euclidean distance is that it fails to account 
for the cases where one user agrees with another precisely in their relative ratings 
for movies, but tends to be more generous with their rating. Consider the two users 
in the earlier example. There is perfect correlation between their ratings for movies 
A, B, and C, but user Y rates the movies more highly than user X. The Euclidean 
distance between these two users could be calculated with the following formula:

( ) ( ) ( )2 2 23 1 4 2 5 3 12− + − + − =
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Yet, in a sense, they are in complete agreement. Back in Chapter 3, Correlation we 
calculated the Pearson correlation between two series as:

1

1 n
i i

i x y

dx dyr
n σ σ=

= ∑

Here, i idx x x= −  and i idy y y= − . The example given earlier yields a Pearson 
correlation of 1.

Let's try making predictions with the Pearson correlation similarity. Mahout 
implements the Pearson correlation with the PearsonCorrelationSimilarity class:

(defn ex-7-11 []
  (let [model   (load-model "ua.base")
        builder (recommender-builder
                 10 (PearsonCorrelationSimilarity. model))]
    (evaluate-rmse builder model)))

;; 0.796

In fact, the RMSE has increased for the movies data using the Pearson correlation.

The Pearson correlation similarity is mathematically equivalent to the cosine 
similarity for data which have been centered (data for which the mean is zero). 
In the example of our two users X and Y illustrated earlier, the means are not 
identical, so the cosine similarity measure would give a different result to the 
Pearson correlation similarity. Mahout implements the cosine similarity as 
UncenteredCosineSimilarity.

Although the Pearson method makes intuitive sense, it has some drawbacks in the 
context of recommendation engines. It doesn't take into account the number of rated 
items that two users have in common. If they only share one item, then no similarity 
can be computed. Also, if one user always gives items the same rating, then no 
correlation can be computed between the user and any other user, even another user 
who does the same. Perhaps there's simply not enough variety of ratings in the data 
for the Pearson correlation similarity to work well.
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Spearman's rank similarity
Another way in which users may be similar is that the rankings are not particularly 
closely correlated, but the ordering of the ranks are preserved between users. Consider 
the following diagram showing the ratings of two users for five different movies:

We can see that the linear correlation between users' ratings is not perfect, since 
their ratings aren't plotted on a straight line. This would result in a moderate 
Pearson correlation similarity and an even lower cosine similarity. Yet, the ordering 
between their preferences is identical. If we were to compare a ranked list of users' 
preferences, they would be exactly the same.

The Spearman's rank correlation coefficient uses this measure to calculate the 
difference between users. It is defined as the Pearson correlation coefficient  
between the ranked items:

( )
2

2

61
1
id

n n
ρ ∑
= −

−
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Here, n is the number of ratings and i i id x y= −  is the difference between the ranks 
for item i. Mahout implements the Spearman's rank correlation similarity with 
the SpearmanCorrelationSimilarity class which we use in the next code. The 
algorithm has much more work to do, so we evaluate on a much smaller subset,  
just 10 percent of the test data:

(defn ex-7-12 []
  (let [model   (load-model "ua.base")
        builder (recommender-builder
                 10 (SpearmanCorrelationSimilarity. model))]
    (-> (RMSRecommenderEvaluator.)
        (.evaluate builder nil model 0.9 0.1))))

;; 0.907

The RMSE evaluation score is even higher than it is for the Pearson correlation 
similarity. It appears that the best similarity measure so far for the MovieLens  
data is the Euclidean similarity.

Determining optimum neighborhood size
One aspect we haven't altered in the earlier comparisons is the size of the user 
neighborhood on which the recommendations are based. Let's see how the RMSE is 
affected by the neighborhood size:

(defn ex-7-13 []
  (let [model (load-model "ua.base")
        sim   (EuclideanDistanceSimilarity. model)
        ns    (range 1 10)
        stats (for [n ns]
                (let [builder (recommender-builder n sim)]
                  (do (println n)
                      (evaluate-rmse builder model))))]
    (-> (c/scatter-plot ns stats
                        :x-label "Neighborhood size"
                        :y-label "RMSE")
        (i/view))))
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The previous code creates a scatterplot of the RMSE for the Euclidean similarity as 
the neighborhood increases from 1 to 10.

Perhaps surprisingly, as the size of the neighborhood grows, the RMSE of 
the predicted rating rises. The most accurate predicted ratings are based on a 
neighborhood of just two people. But, perhaps this should not surprise us: for the 
Euclidean similarity, the most similar other users are defined as being the users 
who most closely agree with a user's ratings. The larger the neighborhood, the more 
diverse a range of ratings we'll observe for the same item.

The earlier RMSE ranges between 0.25 and 0.38. On this basis alone, it's hard to know 
if the recommender is performing well or not. Does getting the rating wrong by 
0.38 matter much in practice? For example, if we always guess a rating that's exactly 
0.38 too high (or too low), we'll be making recommendations of a relative value that 
precisely agrees with the users' own. Fortunately, Mahout supplies an alternative 
evaluator that returns a variety of statistics from the field of information retrieval. 
We'll look at these next.
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Information retrieval statistics
One way for us to get a better handle on how to improve our recommendations is to 
use an evaluator that provides more detail on how well the evaluator is performing 
in a number of different aspects. The GenericRecommenderIRStatsEvaluator 
function includes several information retrieval statistics that provide this detail.

In many cases, it's not necessary to guess the exact rating that a user would have 
assigned a movie; presenting an ordered list from best to worst is enough. In fact, 
even the exact order may not be particularly important either.

Information retrieval systems are those which return results 
in response to user queries. Recommender systems can be 
considered a subset of information retrieval systems where the 
query is the set of prior ratings associated with the user.

The Information Retrieval statistics (IR stats) evaluator treats recommendation 
evaluation a bit like search engine evaluation. A search engine should strive to return 
as many of the results that the user is looking for without also returning a lot of 
unwanted information. These proportions are quantified by the statistics precision 
and recall.

Precision
The precision of an information retrieval system is the percentage of items it  
returns that are relevant. If the correct recommendations are the true positives  
and the incorrect recommendations are the false positives, then the precision  
can be measured as the total number of true positives returned:

true positivesprecision
true positives false positives

=
+

Since we return a defined number of recommendations, for example, the top 10,  
we would talk about the precision at 10. For example, if the model returns  
10 recommendations, eight of which were a part of the users' true top 10,  
the model's precision is 80 percent at 10.
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Recall
Recall complements precision and the two measures are often quoted together. Recall 
measures the fraction of relevant recommendations that are returned:

true positivesrecall
true positives false negatives

=
+

We could think of this as being the proportion of possible good recommendations 
the recommender actually made. For example, if the system only recommended  
five of the user's top 10 movies, then we could say the recall was 50 percent at 10.

Mahout's information retrieval evaluator
The statistics of information retrieval can reframe the recommendation problem as 
a search problem on a user-by-user basis. Rather than divide the data into test and 
training sets randomly, GenericRecommenderIRStatsEvaluator evaluates the 
performance of the recommender for each user. It does this by removing some quantity 
of the users' top-rated items (say, the top five). The evaluator will then see how many 
of the users' true top-five rated items were actually recommended by the system.

We implement this as follows:

(defn evaluate-ir [builder model]
  (-> (GenericRecommenderIRStatsEvaluator.)
      (.evaluate builder nil model nil 5
         GenericRecommenderIRStatsEvaluator/CHOOSE_THRESHOLD
         1.0)
      (bean)))

(defn ex-7-14 []
  (let [model   (load-model "ua.base")
        builder (recommender-builder
                 10 (EuclideanDistanceSimilarity. model))]
    (evaluate-ir builder model)))

The "at" value in the preceding code is 5, which we pass immediately before  
the GenericRecommenderIRStatsEvaluator/CHOOSE_THRESHOLD that causes 
Mahout to compute a sensible relevance threshold. The previous code returns  
the following output:

;; {:recall 0.002538071065989847, :reach 1.0,
;;  :precision 0.002538071065989847,
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;;  :normalizedDiscountedCumulativeGain 0.0019637198336778725,
;;  :fallOut 0.0011874376015289575,
;;  :f1Measure 0.002538071065989847,
;;  :class org.apache.mahout.cf.taste.impl.eval.IRStatisticsImpl}

The evaluator returns an instance of org.apache.mahout.cf.taste.eval.
IRStatistics, which we can convert into a map with Clojure's bean function.  
The map contains all the information retrieval statistics calculated by the evaluator. 
Their meaning is explained in the next section.

F-measure and the harmonic mean
Also called the F1 measure or the balanced F-score, the F-measure is the weighted 
harmonic mean of precision and recall:

2 precision recallF
precision recall
⋅ ⋅

=
+

The harmonic mean is related to the more common arithmetic mean and,  
in fact, is one of the three Pythagorean means. It's defined as the reciprocal of  
the arithmetic mean of the reciprocals and it's particularly useful in situations 
involving rates and ratios.

For example, consider a vehicle traveling a distance d at a certain speed x, then 
travelling distance d again at speed y. Speed is measured as a ratio of distance 
traveled over time taken and therefore the average speed is the harmonic mean  
of x and y. If x is 60 mph and y is 40 mph, then the average speed is 48 mph,  
which we can calculate like this:

2 481 1
60 40

=
+

Note that this is lower than the arithmetic mean, which would be 50 mph. If instead 
d represented a certain amount of time rather than distance, so the vehicle traveled 
for a certain amount of time at speed x and then the same amount of time at speed y, 
then its average speed would be the arithmetic mean of x and y, or 50 mph.
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The F-Measure can be generalized to the Fβ-measure that allows the weight 
associated with either precision or recall to be adjusted independently:

( )2
2

1 precision recall
precision recall

Fβ
β

β

+ ⋅ ⋅
=

⋅ +

Common measures are F2, which weights recall twice as much as precision, and F0.5, 
which weights precision twice as much as recall.

Fall-out
Also called the false positive rate, the proportion of nonrelevant recommendations 
that are retrieved out of all the nonrelevant recommendations:

false positivesFPR
false positives true negative

=
+

Unlike the other IR statistics we've seen so far, the lower the fall-out, the better our 
recommender is doing.

Normalized discounted cumulative gain
The Discounted Cumulative Gain (DCG) is a measure of the performance of a 
recommendation system based on the graded relevance of the recommended entities. 
It varies between zero and one, with one representing perfect ranking.

The premise of discounted cumulative gain is that highly relevant results appearing 
lower in a search result list should be penalized as a function of both their relevance 
and how far down the result list they appear. It can be calculated with the following 
formula:

( )1 2

2 1DCG
log 1

irelp

p
i i=

−
=

+∑

Here, reli is the relevance of the result at position i and p is the position in the rank. 
The version presented earlier is a popular formulation that places strong emphasis 
on retrieving relevant results.



Chapter 7

[ 371 ]

Since the search result lists vary in length depending on the query, we can't 
consistently compare results using the DCG alone. Instead, we can sort the result 
by their relevance and calculate the DCG again. Since this will give the best possible 
cumulative discounted gain for the results (as we sorted them in the order of 
relevance), the result is called the Ideal Discounted Cumulative Gain (IDCG).

Taking the ratio of the DCG and the IDCG gives the normalized discounted 
cumulative gain:

DCGnDCG
IDCG

=

In a perfect ranking algorithm, the DCG will equal the IDCG resulting in an nDCG of 
1.0. Since the nDCG provides a result in the range of zero to one, it provides a means 
to compare the relative performance of different query engines, where each returns 
different numbers of results.

Plotting the information retrieval results
We can plot the results of the information retrieval evaluation with the following code:

(defn plot-ir [xs stats]
  (-> (c/xy-plot xs (map :recall stats)
                 :x-label "Neighbourhood Size"
                 :y-label "IR Statistic"
                 :series-label "Recall"
                 :legend true)
      (c/add-lines xs (map :precision stats)
                   :series-label "Precision")
      (c/add-lines xs
                   (map :normalizedDiscountedCumulativeGain stats)
                   :series-label "NDCG")
      (i/view)))

(defn ex-7-15 []
  (let [model   (load-model "ua.base")
        sim     (EuclideanDistanceSimilarity. model)
        xs      (range 1 10)
        stats   (for [n xs]
                  (let [builder (recommender-builder n sim)]
                    (do (println n)
                        (evaluate-ir builder model))))]
    (plot-ir xs stats)))
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This generates the following chart:

In the previous chart, we can see that the highest precision corresponds to a 
neighborhood size of two; consulting the most similar user generates the fewest 
false positives. You may have noticed, though that the values reported for precision 
and recall are quite low. As the neighborhood grows larger, the recommender will 
have more candidate recommendations to make. Remember, however, that the 
information retrieval statistics are calculated at 5, meaning that only the top five 
recommendations will be counted.

There's a subtle problem concerning these measures in the context of 
recommenders—the precision is based entirely on how well we can predict the 
other items the user has rated. The recommender will be penalized for making 
recommendations for rare items that the user has not rated, even if they are  
brilliant recommendations for items the user would love.
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Recommendation with Boolean preferences
There's been an assumption throughout this chapter that the rating a user gives to an 
item is an important fact. The distance measures we've been looking at so far attempt 
in different ways to predict the numeric value of a user's future rating.

An alternative distance measure takes the view that the rating a user assigns to an 
item is much less important than the fact that they rated it at all. In other words, all 
ratings, even poor ones, could be treated the same. Consider that, for every movie a 
user rates poorly, there are many more that the user will not even bother to watch—
let alone rate. There are many other situations where Boolean preferences are the 
primary basis on which a recommendation is made; user's likes or favorites on social 
media, for example.

To use a Boolean similarity measure, we first have to convert our model into a 
Boolean preferences model, which we can do with the following code:

(defn to-boolean-preferences [model]
  (-> (GenericBooleanPrefDataModel/toDataMap model)
      (GenericBooleanPrefDataModel.)))

(defn boolean-recommender-builder [sim n]
  (reify RecommenderBuilder
    (buildRecommender [this model]
      (let [nhood (NearestNUserNeighborhood. n sim model)]
        (GenericBooleanPrefUserBasedRecommender.
         model nhood sim)))))

Treating a user's ratings as Boolean values can reduce the user's list of movie ratings 
to a set representation and, as we saw in the previous chapter, the Jaccard index can 
be used to determine set similarity. Mahout implements a similarity measure that's 
closely related to the Jaccard index called the Tanimoto coefficient.

The Tanimoto coefficient applies to vectors where each index 
represents a feature that can be zero or one, whereas the Jaccard 
index applies to sets which may contain, or not contain, an element. 
Which measure to use depends only on your data representation—
the two measures are equivalent.
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Let's plot the IR statistics for several different neighborhood sizes using Mahout's IR 
statistics evaluator:

(defn ex-7-16 []
  (let [model   (to-boolean-preferences (load-model "ua.base"))
        sim     (TanimotoCoefficientSimilarity. model)
        xs      (range 1 10)
        stats   (for [n xs]
                  (let [builder
                        (boolean-recommender-builder n sim)]
                    (do (println n)
                        (evaluate-ir builder model))))]
    (plot-ir xs stats)))

The previous code generates the following chart:

For a Boolean recommender, a larger neighborhood improves the precision score. 
This is an intriguing result, given what we observed for the Euclidean similarity. 
Bear in mind though that with Boolean preferences, there is no notion of relative item 
preference, they are either rated or not rated. The most similar users, and therefore 
the group forming a neighborhood, will be the ones who have simply rated the same 
items. The larger this group is, the more chance we will have of predicting the items 
a user rated.
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Also, because there's no relative score for Boolean preferences, the normalized 
discounted cumulative gain is missing from the earlier chart. The lack of order might 
make Boolean preferences seem less desirable than the other data, but they can be 
very useful, as we'll see next.

Implicit versus explicit feedback
In fact, rather than trying to elicit explicit ratings from users on what they like and 
dislike, a common technique is to simply observe user activity. For example, on an 
E-commerce site, the set of items viewed could provide an indicator of the sort of 
products a user is interested in. In the same way, the list of pages a user browses  
on a website is a strong indicator of the sort of content they're interested in reading.

Using implicit sources such as clicks and page views can vastly increase the  
amount of information on which to base predictions. It also avoids the so-called  
"cold start" problem, where a user must provide explicit ratings before you can  
offer any recommendations at all; the user will begin generating data as soon  
as they arrive on your site.

In these cases, each page view could be treated as an element in a large set of pages 
representing the users' preferences, and a Boolean similarity measure could be 
used to recommend related content. For a popular site, such sets will clearly grow 
very large very quickly. Unfortunately, Mahout 0.9's recommendation engines are 
designed to run on a single server in memory. So, they impose a limit on the quantity 
of data we can process.

Before we look at an alternative recommender that's designed to run on a cluster 
of machines and scale with the volume of data you have, let's take a detour to look 
at the ways of performing dimensionality reduction. We'll begin with the ways of 
probabilistically reducing the size of very large sets.

Probabilistic methods for large sets
Large sets appear in many contexts in data science. We're likely to encounter  
them while dealing with users' implicit feedback as previously mentioned, but  
the approaches described next can be applied to any data that can be represented  
as a set.
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Testing set membership with Bloom filters
Bloom filters are data structures that provide a means to compress the size of a  
set while preserving our ability to tell whether a given item is a member of the  
set or not. The price of this compression is some uncertainty. A Bloom filter tells us 
when an item may be in a set, although it will tell us for certain if it isn't. In situations 
where disk space saving is worth the small sacrifice in certainty, they are a very 
popular choice for set compression.

The base data structure of a Bloom filter is a bit vector—a sequence of cells that may 
contain 1 or 0 (or true or false). The level of compression (and the corresponding 
increase in uncertainty) is configurable with two parameters—k hash functions and 
m bits.

The previous diagram illustrates the process of taking an input item (the top square) 
and hashing it multiple times. Each hash function outputs an integer, which is used 
as an index into the bit vector. The elements matching the hash indices are set to 1. 
The following illustration shows a different element being hashed into a different bit 
vector, generating a different set of indices that will be assigned the value 1:
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We can implement Bloom filters using the following Clojure. We're using  
Google's implementation of MurmurHash with different seeds to provide k  
different hash functions:

(defn hash-function [m seed]
  (fn [x]
    (-> (Hashing/murmur3_32 seed)
        (.hashUnencodedChars x)
        (.asInt)
        (mod m))))

(defn hash-functions [m k]
  (map (partial hash-function m) (range k)))

(defn indices-fn [m k]
  (let [f (apply juxt (hash-functions m k))]
    (fn [x]
      (f x))))

(defn bloom-filter [m k]
  {:filter     (vec (repeat m false))
   :indices-fn (indices-fn m k)})

The earlier code defines a Bloom filter as a map containing a :filter (the bit vector) 
and an :indices function. The indices function handles the task of applying the k 
hash functions to generate k indices. We're representing the 0s as false and the 1s as 
true, but the effect is the same. We use the code to create a Bloom filter of length 8 
with 5 hash functions in the following example:

(defn ex-7-17 []
  (bloom-filter 8 5))

;; {:filter [false false false false false false false false],
;;  :indices-fn #<Bloom_filter$indices_fn$fn__43538 
;;  cljds.ch7.Bloom_filter$indices_fn$fn__43538@3da200c>}

The response is a map of two keys—the filter itself (a vector of Boolean values, all 
false), and an indices function, which has been generated from five hash functions. 
We can bring the earlier code together with a simple Bloom-assoc function:

(defn set-bit [seq index]
  (assoc seq index true))

(defn set-bits [seq indices]
  (reduce set-bit seq indices))

(defn bloom-assoc [{:keys [indices-fn] :as bloom} element]
  (update-in bloom [:filter] set-bits (indices-fn element)))
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Given a Bloom filter, we simply call the indices-fn function to get the indices we 
need to set in the Bloom filter:

(defn ex-7-18 []
  (-> (bloom-filter 8 5)
      (bloom-assoc "Indiana Jones")
      (:filter)))

;; [true true false true false false false true]

To determine whether the Bloom filter contains an item, we simply need to query 
whether all of the indices that should be true are actually true. If they are, we reason 
that the item has been added to the filter:

(defn bloom-contains? [{:keys [filter indices-fn]} element]
  (->> (indices-fn element)
       (map filter)
       (every? true?)))

(defn ex-7-19 []
  (-> (bloom-filter 8 5)
      (bloom-assoc "Indiana Jones")
      (bloom-contains? "Indiana Jones")))

;; true

We add "Indiana Jones" to the Bloom filter and find that it contains "Indiana 
Jones". Let's instead search for another of Harrison Ford's movies "The Fugitive":

(defn ex-7-20 []
  (-> (bloom-filter 8 5)
      (bloom-assoc "Indiana Jones")
      (bloom-contains? "The Fugitive")))

;; false

So far, so good. But we have traded some accuracy for this huge compression.  
Let's search for a movie that shouldn't be in the Bloom filter. Perhaps, the  
1996 movie Bogus:

(defn ex-7-21 []
  (-> (bloom-filter 8 5)
      (bloom-assoc "Indiana Jones")
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      (bloom-contains? "Bogus (1996)")))

;; true

This is not what we want. The filter claims to contain "Bogus (1996)", even though 
we haven't associated it into the filter yet. This is the tradeoff that Bloom filters make; 
although a filter will never claim that an item hasn't been added when it has, it may 
incorrectly claim that an item has been added when it hasn't.

In the information retrieval terminology we encountered earlier 
in the chapter, Bloom filters have 100 percent recall, but their 
precision is less than 100 percent. How much less is configurable 
through the values we choose for m and k.

In all, there are 56 movie titles out of the 1,682 titles in the MovieLens dataset that the 
Bloom filter incorrectly reports on after adding "Indiana Jones"—a 3.3 percent false 
positive rate. Given that we are only using five hash functions and an eight element 
filter, you may have expected it to be much higher. Of course, our Bloom filter only 
contains one element and, as we add more, the probability of obtaining a collision 
will rise sharply. In fact, the probability of a false positive is approximately:

1
kkn

me
− 

− 
 

Here, k and m are the number of hash functions and the length of the filter as it was 
before, and n is the number of items added to the set. For our earlier singular Bloom, 
this gives:

55
81 0.022e

− 
− ≈ 

 

So, in fact, the theoretical false positive rate is even lower than what we've observed.

Bloom filters are a very general algorithm, and are very useful when we want to 
test set membership and don't have the resources to store all the items in the set 
explicitly. The fact that the precision is configurable through the choice of values 
for m and k means that it's possible to select the false positive rate you're willing to 
tolerate. As a result, they're used in a large variety of data-intensive systems.



Recommender Systems

[ 380 ]

A drawback of Bloom filters is that it's impossible to retrieve the values you've added 
to the filter; although we can use the filter to test for set membership, we aren't 
able to say what that set contains without exhaustive checks. For recommendation 
systems (and indeed for others too, such as clustering), we're primarily interested 
in the similarity between two sets rather than their precise contents. But here, the 
Bloom lets us down; we can't reliably use the compressed filter as a measure of the 
similarity between two sets of items.

Next, we'll introduce an algorithm that will preserve set similarity as measured by 
the Jaccard similarity. It does so while also preserving the configurable compression 
provided by the Bloom filter.

Jaccard similarity for large sets with 
MinHash
The Bloom filter is a probabilistic data structure to determine whether an item is 
a member of a set. While comparing user or item similarities, what we are usually 
interested in is the intersection between sets, as opposed to their precise contents. 
MinHash is a technique that enables a large set to be compressed in such a way that 
we can still perform the Jaccard similarity on the compressed representations.

Let's see how it works with a reference to two of the most prolific raters in the 
MovieLens dataset. Users 405 and 655 have rated 727 and 675 movies respectively. In 
the following code, we extract their ratings and convert them into sets before passing 
to Incanter's jaccard-index function. Recall that this returns the ratio of movies 
they've both rated out of all the movies they've rated:

(defn rated-items [user-ratings id]
  (->> (get user-ratings id)
       (map :item)))

(defn ex-7-22 []
  (let [ratings      (load-ratings "ua.base")
        user-ratings (group-by :user ratings)
        user-a       (rated-items user-ratings 405)
        user-b       (rated-items user-ratings 655)]
    (println "User 405:" (count user-a))
    (println "User 655:" (count user-b))
    (s/jaccard-index (set user-a) (set user-b))))

;; User 405: 727
;; User 655: 675
;; 158/543
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There is an approximate similarity of 29 percent between the two large sets of 
ratings. Let's see how we can reduce the size of these sets while also preserving the 
similarity between them using MinHash.

The MinHash algorithm shares much in common with the Bloom filter. Our first task 
is to pick k hash functions. Rather than hashing the set representation itself, these k 
hash functions are used to hash each element within the set. For each of the k hash 
functions, the MinHash algorithm stores the minimum value generated by any of the 
set elements. The output therefore, is a set of k numbers; each equals the minimum 
hash value for that hash function. The output is referred to as the MinHash signature.

The following diagram illustrates the process for two sets, each containing three 
elements, being converted into MinHash signatures with a k of 2:

The input sets share two elements out of a total of four unique elements, which 
equates to Jaccard index of 0.5. The MinHash signatures for the two sets are #{3, 0} 
and #{3, 55} respectively, which equates to a Jaccard Index of 0.33. Thus, MinHash 
has reduced the size of our input sets (by just one, in this case), while conserving the 
approximate similarity between them.
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As with the Bloom filter, an appropriate choice of k allows you to specify the loss of 
precision that it is acceptable to tolerate. We can implement the MinHash algorithm 
using the following Clojure code:

(defn hash-function [seed]
  (let [f (Hashing/murmur3_32 seed)]
    (fn [x]
      (-> (.hashUnencodedChars f (str x))
          (.asInt)))))

(defn hash-functions [k]
  (map hash-function (range k)))

(defn pairwise-min [a b]
  (map min a b))

(defn minhasher [k]
  (let [f (apply juxt (hash-functions k))]
    (fn [coll]
      (->> (map f coll)
           (reduce pairwise-min)))))

In the following code, we define a minhasher function with a k of 10 and use it to 
perform a set test using the Jaccard index on the compressed ratings for users 405 
and 655:

 (defn ex-7-23 []
  (let [ratings      (load-ratings "ua.base")
        user-ratings (group-by :user ratings)
        minhash (minhasher 10)
        user-a  (minhash (rated-items user-ratings 405))
        user-b  (minhash (rated-items user-ratings 655))]
    (println "User 405:" user-a)
    (println "User 655:" user-b)
    (s/jaccard-index (set user-a) (set user-b))))

;; User 405: #{-2147145175 -2141119028 -2143110220 -2143703868 –
;; 2144897714 -2145866799 -2139426844 -2140441272 -2146421577 –
;; 2146662900}
;; User 655: #{-2144975311 -2140926583 -2141119028 -2141275395 –
;; 2145738774 -2143703868 -2147345319 -2147134300 -2146421577 –
;; 2146662900}
;; 1/4
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The Jaccard index based on our MinHash signatures is remarkably close to that 
on the original sets—25 percent compared to 29 percent—despite the fact that we 
compressed the sets down to only 10 elements each.

The benefit of much smaller sets is twofold: clearly storage space is much reduced, 
but so is the computational complexity required to check the similarity between the 
two sets as well. It's much less work to check the similarity of the sets that contain 
only 10 elements than the sets that contain many hundreds. MinHash is, therefore, 
not just a space-saving algorithm, but also a time-saving algorithm in cases where we 
need to make a large number of set similarity tests; cases that occur in recommender 
systems, for example.

If we're trying to establish a user neighborhood for the purposes of recommending 
items, we'll still need to perform a large number of set tests in order to determine 
which the most similar users are. In fact, for a large number of users, it may be 
prohibitively time-consuming to check every other user exhaustively, even after 
we've calculated MinHash signatures. The final probabilistic technique will look at 
addressing this specific problem: how to reduce the number of candidates that have 
to be compared while looking for similar items.

Reducing pair comparisons with  
locality-sensitive hashing
In the previous chapter, we computed the similarity matrix for a large number of 
documents. With the 20,000 documents in the Reuters corpus, this was already 
a time-consuming process. As the size of the dataset doubles, the length of time 
required to check every pair of items is multiplied by four. It can, therefore, become 
prohibitively time-consuming to perform this sort of analysis at scale.

For example, suppose we had a million documents and that we computed MinHash 
signatures of length 250 for each of them. This means we use 1,000 bytes to store each 
document. As all the signatures can be stored in a Gigabyte, they can all be stored in 

the main system memory for speed. However, there are 
2

2
N N−  pairs of documents, 

or 499,999, 500,000 pairwise combinations to be checked. Even if it takes only a 
microsecond to compare two signatures, it will still take almost 6 days to compute  
all the similarities overall.

Locality-sensitive hashing (LSH), addresses this problem by significantly reducing 
the number of pairwise comparisons that have to be made. It does this by bucketing 
sets that are likely to have a minimum threshold of similarity together; only the sets 
that are bucketed together need to be checked for similarity.
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Bucketing signatures
We consider any pair of items that hash to the same bucket a candidate pair and 
check only the candidate pairs for similarity. The aim is that only similar items 
should become candidate pairs. Dissimilar pairs that happen to hash to the same 
bucket will be false positives and we seek to minimize these. Similar pairs that hash 
to different buckets are false negatives and we likewise seek to minimize these too.

If we have computed MinHash signatures for the items, an effective way to bucket 
them would be to divide the signature matrix into b bands consisting of r elements 
each. This is illustrated in the following diagram:

Having already written the code to produce the MinHash signatures in the previous 
section, performing LSH in Clojure is simply a matter of partitioning the signature 
into a certain number of bands, each of length r. Each band is hashed (for simplicity, 
we're using the same hashing function for each band) to a particular bucket:

(def lsh-hasher (hash-function 0))

(defn locality-sensitive-hash [r]
  {:r r :bands {}})

(defn buckets-for [r signature]
  (->> (partition-all r signature)
       (map lsh-hasher)
       (map-indexed vector)))

(defn lsh-assoc [{:keys [r] :as lsh} {:keys [id signature]}]
  (let [f (fn [lsh [band bucket]]
            (update-in lsh [:bands band bucket] conj id))]
    (->> (buckets-for r signature)
         (reduce f lsh))))
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The earlier example defines a locality-sensitive hash simply as a map containing 
empty bands and some value, r. When we come to associate an item into the LSH 
with lsh-assoc, we split the signature into bands based on the value of r and 
determine the bucket for each band. The item's ID gets added to each of these 
buckets. Buckets are grouped by the band ID so that items which share a bucket  
in different bands are not bucketed together:

(defn ex-7-24 []
  (let [ratings (load-ratings "ua.base")
        user-ratings (group-by :user ratings)
        minhash (minhasher 27)
        user-a  (minhash (rated-items user-ratings 13))
        lsh     (locality-sensitive-hash 3)]
    (lsh-assoc lsh {:id 13 :signature user-a})))

;; {:r 3, :bands {8 {220825369 (13)}, 7 {-2054093854 (13)},
;; 6 {1177598806 (13)}, 5 {-1809511158 (13)}, 4 {-143738650 (13)},
;; 3 {-704443054 (13)}, 2 {-1217282814 (13)},
;; 1 {-100016681 (13)}, 0 {1353249231 (13)}}}

The preceding example shows the result of performing LSH on the signature of user  
13 with k=27 and r=3. The buckets for 9 bands are returned. Next, we add further 
items to the locality-sensitive hash:

(defn ex-7-25 []
  (let [ratings (load-ratings "ua.base")
        user-ratings (group-by :user ratings)
        minhash (minhasher 27)
        user-a  (minhash (rated-items user-ratings 13))
        user-b  (minhash (rated-items user-ratings 655))]
    (-> (locality-sensitive-hash 3)
        (lsh-assoc {:id 13  :signature user-a})
        (lsh-assoc {:id 655 :signature user-b}))))

;; {:r 3, :bands {8 {220825369 (655 13)}, 7 {1126350710 (655),
;; -2054093854 (13)}, 6 {872296818 (655), 1177598806 (13)},
;; 5 {-1272446116 (655), -1809511158 (13)}, 4 {-154360221 (655),
;; -143738650 (13)}, 3 {123070264 (655), -704443054 (13)},
;; 2 {-1911274538 (655), -1217282814 (13)}, 1 {-115792260 (655),
;; -100016681 (13)}, 0 {-780811496 (655), 1353249231 (13)}}}

In the previous example, we can see that both the user IDs 655 and 13 are placed  
in the same bucket for band 8, although they're in different buckets for all the  
other bands.
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The probability that the signatures agree for one particular band is sr, where s is 
the true similarity of the sets and r is the length of each band. It follows that the 
probability that the signatures do not agree in at least one particular band is 1 rs−  
and so, the probability that signatures don't agree across all bands is ( )1

brs− .  
Therefore, we can say the probability that two items become a candidates pair is 

( )1 1
brs− − .

Regardless of the specific values of b and r, this equation describes an S-curve. 
The threshold (the value of the similarity at which the probability of becoming a 
candidate is 0.5) is a function of b and r. Around the threshold, the S-curve rises 
steeply. Thus, pairs with similarity above the threshold are very likely to become 
candidates, while those below are correspondingly unlikely to become candidates.

To search for candidate pairs, we now only need to perform the same process on a 
target signature and see which other items hash to the same buckets in the same bands:

(defn lsh-candidates [{:keys [bands r]} signature]
  (->> (buckets-for r signature)
       (mapcat (fn [[band bucket]]
                 (get-in bands [band bucket])))
       (distinct)))

The preceding code returns the distinct list of items that share at least one bucket in 
at least one band with the target signature:

(defn ex-7-26 []
  (let [ratings (load-ratings "ua.base")
        user-ratings (group-by :user ratings)
        minhash   (minhasher 27)
        user-b    (minhash (rated-items user-ratings 655))
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        user-c    (minhash (rated-items user-ratings 405))
        user-a    (minhash (rated-items user-ratings 13))]
    (-> (locality-sensitive-hash 3)
        (lsh-assoc {:id 655 :signature user-b})
        (lsh-assoc {:id 405 :signature user-c})
        (lsh-candidates user-a))))

;; (655)

In the previous example, we associate the signature for users 655 and 405 into the 
locality-sensitive hash. We then ask for the candidates for user ID 13. The result is 
a sequence containing the single ID 655. Thus, 655 and 13 are candidate pairs and 
should be checked for similarity. User 405 has been judged by the algorithm as not 
being sufficiently similar, and we therefore will not check them for similarity.

For more information on locality-sensitive hashing, MinHash, 
and other useful algorithms to deal with huge volumes of data, 
refer to the excellent Mining of Massive Datasets online book for 
free at http://www.mmds.org/.

Locality-sensitive hashing is a way of significantly reducing the space of pairwise 
comparisons that we need to make while comparing sets for similarity. Thus, with 
appropriate values set for b and r, locality-sensitive hashing allows us to precompute 
the user neighborhood. The task of finding similar users, given a target user, is as 
simple as finding the other users who share the same bucket across any of the bands; 
a task whose time complexity is related to the number of bands rather than the 
number of users.

Dimensionality reduction
What algorithms such as MinHash and LSH aim to do is reduce the quantity of data 
that must be stored without compromising on the essence of the original. They're a 
form of compression and they define helpful representations that preserve our ability 
to do useful work. In particular, MinHash and LSH are designed to work with data 
that can be represented as a set.

http://www.mmds.org/
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In fact, there is a whole class of dimensionality-reducing algorithms that will work 
with data that is not so easily represented as a set. We saw, in the previous chapter 
with k-means clustering, how certain data could be most usefully represented as a 
weighted vector. Common approaches to reduce the dimensions of data represented 
as vectors are principle component analysis and singular-value decomposition. 
To demonstrate these, we'll return to Incanter and make use of one of its included 
datasets: the Iris dataset:

(defn ex-7-27 []
  (i/view (d/get-dataset :iris)))

The previous code should return the following table:

The first four columns of the Iris dataset contain measurements of the sepal length, 
sepal width, petal length, and petal width of Iris plants. The dataset is ordered by 
the species of plants. Rows 0 to 49 represent Iris setosa, rows 50 to 99 represent 
Iris virsicolor, and rows above 100 contain Iris virginica. The exact species aren't 
important; we'll only be interested in the differences between them.

Plotting the Iris dataset
Let's visualize some of the attributes of the Iris dataset on a scatter plot. We'll make 
use of the following helper function to plot each of the species as a separate color:

(defn plot-iris-columns [a b]
  (let [data (->> (d/get-dataset :iris)
                  (i/$ [a b])
                  (i/to-matrix))]
    (-> (c/scatter-plot (i/$ (range 50) 0 data)
                        (i/$ (range 50) 1 data)
                        :x-label (name a)
                        :y-label (name b))
        (c/add-points (i/$ (range 50 100) 0 data)
                      (i/$ (range 50 100) 1 data))
        (c/add-points (i/$ [:not (range 100)] 0 data)
                      (i/$ [:not (range 100)] 1 data))
        (i/view))))
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Having defined this function, let's see how the sepal widths and lengths compare for 
each of the three species:

(defn ex-7-28 []
  (plot-iris-columns :Sepal.Width
                     :Sepal.Length))

The previous example should generate the following chart:

We can see how one of the species is quite different from the other two while 
comparing these two attributes, but two of the species are barely distinguishable:  
the widths and heights for several of the points are evenly overlaid.

Let's instead plot the petal width and height to see how these compare:

(defn ex-7-29 []
  (plot-iris-columns :Petal.Width
                     :Petal.Length))
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This should generate the following chart:

This does a much better job of distinguishing between the different species. This 
is partly because the variance of the petal width and length is greater—the length, 
for example, stretches a full 6 units on the y axis. A useful side effect of this greater 
spread is that it allows us to draw a much clearer distinction between the species  
of Iris.

Principle component analysis
In principle component analysis, often abbreviated to PCA, we're looking to find 
a rotation of data that maximizes the variance. In the previous scatter plot, we 
identified a way of looking at the data that provided a high degree of variance on  
the y axis, but the variance of the x axis was not as great.

We have four dimensions available in the Iris dataset, each representing the value of 
the length and width of a petal or a sepal. Principle component analysis allows us to 
determine whether there is a another basis, which is some linear combination of all 
the available dimensions, that best re-expresses our data to maximize the variance.



Chapter 7

[ 391 ]

We can apply principle component analysis with the Incanter.stats' principle-
components function. In the following code, we pass it a matrix of data and plot  
the first two returned rotations:

(defn ex-7-30 []
  (let [data (->> (d/get-dataset :iris)
                  (i/$ (range 4))
                  (i/to-matrix))
        components (s/principal-components data)
        pc1 (i/$ 0 (:rotation components))
        pc2 (i/$ 1 (:rotation components))
        xs (i/mmult data pc1)
        ys (i/mmult data pc2)]
    (-> (c/scatter-plot (i/$ (range 50) 0 xs)
                        (i/$ (range 50) 0 ys)
                        :x-label "Principle Component 1"
                        :y-label "Principle Component 2")
        (c/add-points (i/$ (range 50 100) 0 xs)
                      (i/$ (range 50 100) 0 ys))
        (c/add-points (i/$ [:not (range 100)] 0 xs)
                      (i/$ [:not (range 100)] 0 ys))
        (i/view))))

The preceding example produces the following chart:
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Notice how the axes can no longer be identified as being sepals or petals—the 
components have been derived as a linear combination of the values across all the 
dimensions and define a new basis to view the data that maximizes the variance 
within each component. In fact, the principle-component function returns :std-
dev along with :rotation for each dimension.

For interactive examples demonstrating principle component 
analysis, see http://setosa.io/ev/principal-
component-analysis/.

As a result of taking the principle components of the data, the variance across  
the x and the y axis is greater than even the previous scatter plot showing petal  
width and length. The points corresponding to the different species of iris are 
therefore spread out as wide as they can be, so the relative difference of the  
species is clearly observable.

Singular value decomposition
A technique that's closely related to PCA is Singular Value Decomposition (SVD). 
SVD is, in fact, a more general technique than PCA which also seeks to change the 
basis of a matrix.

An excellent mathematical description of PCA and its relationship to 
SVD is available at http://arxiv.org/pdf/1404.1100.pdf.

As its name implies, SVD decomposes a matrix into three related matrices, 
commonly referred to as the U, Σ (or S), and V matrices, such that:

TX U V= ∑

If X is an m x n matrix, U is an m x m matrix, Σ is an m x n matrix, and V is an n x n 
matrix. Σ is, in fact, a diagonal matrix, meaning that all the cells with the exception 
of those on the main diagonal (top left to bottom right) are zero. Although clearly, 
it need not be square. The columns of the matrices returned by SVD are ordered by 
their singular value with the most important dimensions coming first. SVD thus 
allows us to represent the matrix X more approximately by discarding the least 
important dimensions.

For example, the decomposition of our 150 x 4 Iris matrix will result in a U of  
150 x 150, Σ of 150 x 4 and V of 4 x 4. Multiplying these matrices together will  
yield our original Iris matrix.

http://setosa.io/ev/principal-component-analysis/
http://setosa.io/ev/principal-component-analysis/
http://arxiv.org/pdf/1404.1100.pdf
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However, we could choose instead to take only the top two singular values and 
adjust our matrices such that U is 150 x 2, Σ is 2 x 2, and V is 2 x 4. Let's construct a 
function that takes a matrix and projects it into a specified number of dimensions by 
taking this number of columns from each of the U, Σ, and V matrices:

(defn project-into [matrix d]
  (let [svd (i/decomp-svd matrix)]
    {:U (i/$ (range d) (:U svd))
     :S (i/diag (take d (:S svd)))
     :V (i/trans
         (i/$ (range d) (:V svd)))}))

Here, d is the number of dimensions that we want to retain. Let's demonstrate this 
with a simple example by taking a multivariate normal distribution generated by 
Incanter using s/sample-mvn and reducing it to just one dimension:

(defn ex-7-31 []
  (let [matrix (s/sample-mvn 100
                             :sigma (i/matrix [[1 0.8]
                                               [0.8 1]]))]
    (println "Original" matrix)
    (project-into matrix 1)))

;; Original  A 100x2 matrix
;; :U  A 100x1 matrix
;; :S  A 1x1 matrix
;; :V  A 1x2 matrix

The output of the previous example contains the most important aspects of the data 
reduced to just one dimension. To recreate an approximation of the original dataset 
in two dimensions, we can simply multiply the three matrices together. In the 
following code, we project the one-dimensional approximation of the distribution 
back into two dimensions:

(defn ex-7-32 []
  (let [matrix (s/sample-mvn 100
                             :sigma (i/matrix [[1 0.8]
                                               [0.8 1]]))
        svd (project-into matrix 1)
        projection (i/mmult (:U svd)
                            (:S svd)
                            (:V svd))]
    (-> (c/scatter-plot (i/$ 0 matrix) (i/$ 1 matrix)
                        :x-label "x"
                        :y-label "y"
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                        :series-label "Original"
                        :legend true)
        (c/add-points (i/$ 0 projection) (i/$ 1 projection)
                      :series-label "Projection")
        (i/view))))

This produces the following chart:

Notice how SVD has preserved the primary feature of the multivariate distribution, 
the strong diagonal, but has collapsed the variance of the off-diagonal points. In this 
way, SVD preserves the most important structure in the data while discarding less 
important information. Hopefully, the earlier example makes it even clearer than the 
PCA example that the preserved features need not be explicit in the original data. In 
the example, the strong diagonal is a latent feature of the data.

Latent features are those which are not directly observable, but which 
can be inferred from other features. Sometimes, latent features refer to 
aspects that could be measured directly, such as the correlation in the 
previous example or—in the context of recommendation—they can be 
considered to represent underlying preferences or attitudes.
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Having observed the principle of SVD at work on the earlier synthetic data, let's see 
how it performs on the Iris dataset:

(defn ex-7-33 []
  (let [svd (->> (d/get-dataset :iris)
                 (i/$ (range 4))
                 (i/to-matrix)
                 (i/decomp-svd))
        dims 2
        u (i/$     (range dims) (:U svd))
        s (i/diag  (take dims   (:S svd)))
        v (i/trans (i/$ (range dims) (:V svd)))
        projection (i/mmult u s v)]
    (-> (c/scatter-plot (i/$ (range 50) 0 projection)
                        (i/$ (range 50) 1 projection)
                        :x-label "Dimension 1"
                        :y-label "Dimension 2")
        (c/add-points (i/$ (range 50 100) 0 projection)
                      (i/$ (range 50 100) 1 projection))
        (c/add-points (i/$ [:not (range 100)] 0 projection)
                      (i/$ [:not (range 100)] 1 projection))
        (i/view))))

This code generates the following chart:
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After comparing the Iris charts for PCA and SVD, it should be clear that the two 
approaches are closely related. This scatter plot looks a lot like an inverted version  
of the PCA plot that we saw previously.

Let's return to the problem of movie recommendation now, and see how 
dimensionality reduction could assist. In the next section, we'll make use of the 
Apache Spark distributed computing framework and an associated machine learning 
library, MLlib, to perform movie recommendations on dimensionally-reduced data.

Large-scale machine learning with 
Apache Spark and MLlib
The Spark project (https://spark.apache.org/) is a cluster computing framework 
that emphasizes low-latency job execution. It's a relatively recent project, growing 
out of UC Berkley's AMP Lab in 2009.

Although Spark is able to coexist with Hadoop (by connecting to the files stored on 
Hadoop Distributed File System (HDFS), for example), it targets much faster job 
execution times by keeping much of the computation in memory. In contrast with 
Hadoop's two-stage MapReduce paradigm, which stores files on the disk in between 
each iteration, Spark's in-memory model can perform tens or hundreds of times 
faster for some applications, particularly those performing multiple iterations over 
the data.

In Chapter 5, Big Data, we discovered the value of iterative algorithms to the 
implementation of optimization techniques on large quantities of data. This makes 
Spark an excellent choice for large-scale machine learning. In fact, the MLlib library 
(https://spark.apache.org/mllib/) is built on top of Spark and implements a 
variety of machine learning algorithms out of the box.

We won't provide an in-depth account of Spark here, but will explain just enough 
on the key concepts required to run a Spark job using the Clojure library, Sparkling 
(https://github.com/gorillalabs/sparkling). Sparkling wraps much of Spark's 
functionality behind a friendly Clojure interface. In particular, the use of the thread-
last macro ->> to chain Spark operations together can make Spark jobs written in 
Sparkling appear a lot like the code we would write to process data using Clojure's 
own sequence abstractions.

Be sure also to check out Flambo, which makes use of the 
thread-first macro to chain tasks: https://github.com/
yieldbot/flambo.

https://spark.apache.org/
https://spark.apache.org/mllib/
https://github.com/gorillalabs/sparkling
https://github.com/yieldbot/flambo
https://github.com/yieldbot/flambo
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We're going to be producing recommendations based on the MovieLens ratings, so 
the first step will be to load this data with Sparkling.

Loading data with Sparkling
Spark can load data from any storage source supported by Hadoop, including the 
local file system and HDFS, as well as other data sources such as Cassandra, HBase, 
and Amazon S3. Let's start with the basics by writing a job to simply count the 
number of ratings.

The MovieLens ratings are stored as a text file, which can be loaded in Sparkling 
using the text-file function in the sparkling.core namespace (referred to as 
spark in the code). To tell Spark where the file is located, we pass a URI that can 
point to a remote source such as hdfs://..., s3n://.... Since we're running 
Spark in local mode, it could simply be a local file path. Once we have the text file, 
we'll call spark/count to get the number of lines:

(defn count-ratings [sc]
  (-> (spark/text-file sc "data/ml-100k/ua.base")
      (spark/count)))

(defn ex-7-34 []
  (spark/with-context sc (-> (conf/spark-conf)
                             (conf/master "local")
                             (conf/app-name "ch7"))
    (count-ratings sc)))

;; 90570

If you run the previous example, you may see many logging statements from  
Spark printed to the console. One of the final lines will be the count that has  
been calculated.

Notice that we have to pass a Spark context as the first argument to the text-file 
function. The Spark context tells Spark how to access your cluster. The most basic 
configuration specifies the location of the Spark master and the application name 
Spark should use for this job. For running locally, the Spark master is "local", 
which is useful for REPL-based interactive development.
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Mapping data
Sparkling provides analogues to many of the Clojure core sequence functions you 
would expect such as map, reduce, and filter. At the beginning of this chapter, we 
stored our ratings as a map with the :item, :user, and :rating keys. While we 
could parse our data into a map again, let's parse each rating into a Rating object 
instead. This will allow us to more easily interact with MLlib later in the chapter.

The Rating class is defined in the org.apache.spark.mllib.recommendation 
package. The constructor takes three numeric arguments: representations of the user,  
the item, and the user's rating for the item. As well as creating a Rating object,  
we're also calculating the time modulo 10, returning a number between 0 and 9  
and creating tuple of both values:

(defn parse-rating [line]
  (let [[user item rating time] (->> (str/split line #"\t")
                                     (map parse-long))]
    (spark/tuple (mod time 10)
                 (Rating. user item rating))))

(defn parse-ratings [sc]
  (->> (spark/text-file sc "data/ml-100k/ua.base")
       (spark/map-to-pair parse-rating)))

(defn ex-7-35 []
  (spark/with-context sc (-> (conf/spark-conf)
                             (conf/master "local")
                             (conf/app-name "ch7"))
    (->> (parse-ratings sc)
         (spark/collect)
         (first))))

;; #sparkling/tuple [8 #<Rating Rating(1,1,5.0)>]

The returned value is a tuple with an integer key (defined as the time modulo 10) 
and a rating as the value. Having a key which partitions the data into ten groups  
will be useful when we come to split the data into test and training sets.



Chapter 7

[ 399 ]

Distributed datasets and tuples
Tuples are used extensively by Spark to represent pairs of keys and values. In the 
preceding example the key was an integer, but this is not a requirement—keys and 
values can be any type serializable by Spark.

Datasets in Spark are represented as Resilient Distributed Datasets (RDDs). In 
fact, RDDs are the core abstraction that Spark provides—a fault-tolerant collection 
of records partitioned across all the nodes in your cluster that can be operated in 
parallel. There are two fundamental types of RDDs: those that represent sequences of 
arbitrary objects (such as the kind returned by text-file—a sequence of lines), and 
those which represent sequences of key/value pairs.

We can convert between plain RDDs and pair RDDs simply, and this is accomplished 
in the previous example with the map-to-pair function. The tuple returned by our 
parse-rating function specifies the key and the value that should be used for each 
pair in the sequence. As with Hadoop, there's no requirement that the key be unique 
within the dataset. In fact, as we'll see, keys are often a useful means of grouping 
similar records together.

Filtering data
Let's now filter our data based on the value of the key and create a subset of the 
overall data that we can use for training. Like the core Clojure function of the same 
name, Sparkling provides a filter function that will keep only those rows for which 
a predicate returns logical true.

Given our pair RDD of ratings, we can filter only those ratings that have a key value 
less than 8. Since the keys roughly and uniformly distributed integers 0-9, this will 
retain approximately 80 percent of the dataset:

(defn training-ratings [ratings]
  (->> ratings
       (spark/filter (fn [tuple]
                       (< (s-de/key tuple) 8)))
       (spark/values)))

Our ratings are stored in a pair RDD, so the result of filter is also a pair RDD. We're 
calling values on the result so that we're left with a plain RDD containing only the 
Rating objects. This will be the RDD that we pass to our machine learning algorithm. 
We perform exactly the same process, but for the keys greater than or equal to 8, to 
obtain the test data we'll be using.
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Persistence and caching
Spark's actions are lazy and won't be calculated until they're needed. Similarly, once 
data has been calculated, it won't be explicitly cached. Sometimes, we'd like to keep 
data around though. In particular, if we're running an iterative algorithm, we don't 
want the dataset to be recalculated from source each time we perform an iteration. In 
cases where the results of a transformed dataset should be saved for subsequent use 
within a job, Spark provides the ability to persist RDDs. Like the RDDs themselves, 
the persistence is fault-tolerant, meaning that if any partition is lost, it will be 
recomputed using the transformations that originally created it.

We can persist an RDD using the spark/persist function, which expects us to pass 
the RDD and also configure the storage level most appropriate for our application. In 
most cases, this will be in-memory storage. But in cases where recomputing the data 
would be computationally expensive, we can spill to disk or even replicate the cache 
across disks for fast fault recovery. In-memory is most common, so Sparkling provides 
the spark/cache function shorthand that will set this storage level on an RDD:

(defn ex-7-36 []
  (spark/with-context sc (-> (conf/spark-conf)
                             (conf/master "local")
                             (conf/app-name "ch7"))
    (let [ratings (spark/cache (parse-ratings sc))
          train (training-ratings ratings)
          test  (test-ratings ratings)]
      (println "Training:" (spark/count train))
      (println "Test:"     (spark/count test)))))

;; Training: 72806
;; Test: 8778

In the preceding example, we cache the result of the call to parse-ratings. This 
means that the loading and parsing of ratings is performed a single time, and the 
training and test ratings functions both use the cached data to filter and perform 
their counts. The call to cache optimizes the performance of jobs and allows spark  
to avoid recalculating data more than necessary.

Machine learning on Spark with MLlib
We've covered enough of the basics of Spark now to use our RDDs for machine 
learning. While Spark handles the infrastructure, the actual work of performing 
machine learning is handled by an apache Spark subproject called MLlib.
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An overview of all the capabilities of the MLlib library are at  
https://spark.apache.org/docs/latest/mllib-guide.html.

MLlib provides a wealth of machine learning algorithms for use on Spark, including 
those for regression, classification, and clustering covered elsewhere in this 
book. In this chapter, we'll be using the algorithm MLlib provides for performing 
collaborative filtering: alternating least squares.

Movie recommendations with alternating least 
squares
In Chapter 5, Big Data, we discovered how to use gradient descent to identify the 
parameters that minimize a cost function for a large quantity of data. In this chapter, 
we've seen how SVD can be used to calculate latent factors within a matrix of data 
through decomposition.

The alternating least squares (ALS) algorithm can be thought of as a combination of 
both of these approaches. It is an iterative algorithm that uses least-squares estimates 
to decompose the user-movies matrix of rankings into two matrices of latent factors: 
the user factors and the movie factors.

https://spark.apache.org/docs/latest/mllib-guide.html
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Alternating least squares is therefore based on the assumption that the users' ratings 
are based on some latent property of the movie that can't be measured directly, but 
can be inferred from the ratings matrix. The earlier diagram shows how the sparse 
matrix of user-movie ratings can be decomposed into two matrices containing the 
user factors and the movie factors. The diagram associates just three factors with 
each user and movie, but let's make it even more simplistic by just using two factors.

We could hypothesize that all the movies exist in a two-dimensional space identified 
by their level of action, romance, and how realistic (or not) they may be. We visualize 
such a space as follows:

We could likewise imagine all the users represented in an equivalent two-dimensional 
space, where their tastes were simply expressed as their relative preference for 
Romance/Action and Realist/Escapist.

Once we've reduced all the movies and users to their factor representation, the 
problem of prediction is reduced to a simple matrix multiplication—our predicted 
rating for a user, given a movie, is simply the product of their factors. The challenge 
for ALS then is to calculate the two factor matrices.



Chapter 7

[ 403 ]

ALS with Spark and MLlib
At the time of writing, no Clojure wrapper exists for the MLlib library, so we'll be 
using Clojure's interop capabilities to access it directly. MLlib's implementation of 
alternating least squares is provided by the ALS class in the org.apache.spark.
mllib.recommendation package. Training ALS is almost as simple as calling the 
train static method on the class with our RDD and provided arguments:

(defn alternating-least-squares [data {:keys [rank num-iter
                                              lambda]}]
  (ALS/train (to-mllib-rdd data) rank num-iter lambda 10))

The slight complexity is that the RDD of training data returned by our preceding 
Sparkling job is expressed as a JavaRDD type. MLlib, since it has no Java API, 
expects to receive standard Spark RDD types. Converting between the two is a 
straightforward enough process, albeit somewhat tedious. The following functions 
convert back and forth between RDD types; into RDDs ready for consumption by 
MLlib and then back into JavaRDDs for use in Sparkling:

(defn to-mlib-rdd [rdd]
  (.rdd rdd))

(defn from-mlib-rdd [rdd]
  (JavaRDD/fromRDD rdd scala/OBJECT-CLASS-TAG))

The second argument in from-mllib-rdd is a value defined in the sparkling.
scalaInterop namespace. This is required to interact with the JVM bytecode 
generated by Scala's function definition.

For more on Clojure/Scala interop consult the excellent from the scala 
library by Tobias Kortkamp at http://t6.github.io/from-scala/.

With the previous boilerplate out of the way, we can finally perform ALS on the 
training ratings. We do this in the following example:

(defn ex-7-37 []
  (spark/with-context sc (-> (conf/spark-conf)
                             (conf/master "local")
                             (conf/app-name "ch7"))
    (-> (parse-ratings sc)
        (training-ratings)
        (alternating-least-squares {:rank 10
                                    :num-iter 10
                                    :lambda 1.0}))))

http://t6.github.io/from-scala/
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The function takes several arguments—rank, num-iter, and lambda, and it returns  
a MLlib MatrixFactorisationModel function. The rank is the number of features  
to use for the factor matrices.

Making predictions with ALS
Once we've calculated MatrixFactorisationModel, we can use it to make 
predictions with the recommendProducts method. This expects to receive the  
ID of the user to recommend to and the number of recommendations to return:

(defn ex-7-38 []
  (spark/with-context sc (-> (conf/spark-conf)
                             (conf/master "local")
                             (conf/app-name "ch7"))
    (let [options {:rank 10
                   :num-iter 10
                   :lambda 1.0}
          model (-> (parse-ratings sc)
                    (training-ratings )
                    (alternating-least-squares options))]
      (into [] (.recommendProducts model 1 3)))))

;; [#<Rating Rating(1,1463,3.869355232995907)>
;; #<Rating Rating(1,1536,3.7939806028920993)>
;; #<Rating Rating(1,1500,3.7130689437266646)>]

You can see that the output of the model, like the input, are the Rating objects. They 
contain the user ID, the item ID, and a predicted rating calculated as the product of 
the factor matrices. Let's make use of the function that we defined at the beginning of 
the chapter to give these ratings names:

(defn ex-7-39 []
  (spark/with-context sc (-> (conf/spark-conf)
                             (conf/master "local")
                             (conf/app-name "ch7"))
    (let [items   (load-items "u.item")
          id->name (fn [id] (get items id))
          options {:rank 10
                   :num-iter 10
                   :lambda 1.0}
          model (-> (parse-ratings sc)
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                    (training-ratings )
                    (alternating-least-squares options))]
      (->> (.recommendProducts model 1 3)
           (map (comp id->name #(.product %)))))))

;; ("Boys, Les (1997)" "Aiqing wansui (1994)"
;; "Santa with Muscles (1996)")

It's not particularly clear that these are good recommendations though. For this, we'll 
need to evaluate the performance of our ALS model.

Evaluating ALS
Unlike Mahout, Spark doesn't include a built-in evaluator for the model, so we're 
going to have to write our own. One of the simplest evaluators, and one we've used 
already in this chapter, is the root mean square error (RMSE) evaluator.

The first step for our evaluation is to use the model to predict ratings for all of our 
training set. Spark's implementation of ALS includes a predict function that we can 
use, which will accept an RDD containing all of the user IDs and item IDs to return 
predictions for:

(defn user-product [rating]
  (spark/tuple (.user rating)
               (.product rating)))

(defn user-product-rating [rating]
  (spark/tuple (user-product rating)
               (.rating rating))) 

(defn predict [model data]
  (->> (spark/map-to-pair user-product data)
       (to-mlib-rdd data)
       (.predict model)
       (from-mlib-rdd)
       (spark/map-to-pair user-product-rating)))
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The .recommendProducts method we called previously uses the model to return 
product recommendations for a specific user. By contrast, the .predict method will  
predict the rating for many users and items at once.

The result of our call to the .predict function is a pair RDD, where the key is itself a 
tuple of user and product. The value of the pair RDD is the predicted rating.

Calculating the sum of squared errors
To calculate the difference between the predicted rating and the actual rating given 
to the product by the user, we'll need to join the predictions and the actuals 
together based on a matching user/product tuple. As the keys will be the same 
in both the predictions and actuals RDDs, we can simply pass them both to 
Sparkling's join function:

(defn squared-error [y-hat y]
  (Math/pow (- y-hat y) 2))

(defn sum-squared-errors [predictions actuals]
  (->> (spark/join predictions actuals)
       (spark/values)
       (spark/map (s-de/val-val-fn squared-error))
       (spark/reduce +)))
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We can visualize the whole sum-squared-errors function as the following flow, 
comparing the predicted and actual ratings:
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Once we've calculated the sum-squared-errors, calculating the root mean square is 
simply a matter of dividing it by the count and taking the square root:

(defn rmse [model data]
  (let [predictions  (spark/cache (predict model data))
        actuals (->> (spark/map-to-pair user-product-rating
                                        data)
                     (spark/cache))]
    (-> (sum-squared-errors predictions actuals)
        (/ (spark/count data))
        (Math/sqrt))))

The rmse function will take a model and some data and calculate RMSE of  
the prediction against the actual rating. Earlier in the chapter, we plotted  
the different values of RMSE as the size of the neighborhood changed with  
a user-based recommender. Let's employ the same technique now, but alter  
the rank of the factor matrix:

(defn ex-7-40 []
  (spark/with-context sc (-> (conf/spark-conf)
                             (conf/master "local")
                             (conf/app-name "ch7"))
    (let [options {:num-iter 10 :lambda 0.1}
          training (-> (parse-ratings sc)
                       (training-ratings)
                       (spark/cache))
          ranks    (range 2 50 2)
          errors   (for [rank ranks]
                     (doto (-> (als training
                                    (assoc options :rank rank))
                               (rmse training))
                       (println "RMSE for rank" rank)))]
      (-> (c/scatter-plot ranks errors
                          :x-label "Rank"
                          :y-label "RMSE")
          (i/view)))))
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The earlier code generates the following plot:

Observe how, as we increase the rank of the factor matrix, the ratings returned by 
our model become closer and closer to the ratings that the model was trained on. 
As the dimensions of the factor matrix grow, it can capture more of the variation in 
individual users' ratings.

What we'd really like to do though is to see how well the recommender performs 
against the test set—the data it hasn't already seen. The final example in this chapter, 
ex-7-41, runs the preceding analysis again, but tests the RMSE of the model against 
the test set rather than the training set. The example generates the following plot:
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As we would hope, the RMSE of the predictions fall as the rank of the factor matrix is 
increased. A larger factor matrix is able to capture more of the latent features that lie 
within the ratings, and more accurately predict the rating a user will give a movie.

Summary
We've covered a lot of ground in this chapter. Although the subject was principally 
recommender systems, we've also discussed dimensionality reduction and 
introduced the Spark distributed computation framework as well.

We started by discussing the difference between content- and collaborative 
filtering-based approaches to the problem of recommendation. Within the context 
of collaborative filtering, we discussed item-item recommenders and built a Slope 
One recommender. We also discussed user-user recommenders and used Mahout's 
implementations of a variety of similarity measures and evaluators to implement 
and test several user-based recommenders too. The challenge of evaluation provided 
an opportunity to introduce the statistics of information retrieval.

We spent a lot of time in this chapter covering several different types of 
dimensionality reduction. For example, we learned about the probabilistic methods 
offered by Bloom filters and MinHash, and the analytic methods offered by 
principle component analysis and singular value decomposition. While not specific 
to recommender systems, we saw how such techniques could be used to help 
implement more efficient similarity comparisons.

Finally, we introduced the distributed computation framework Spark and learned 
how the alternating least squares algorithm uses dimensionality reduction to 
discover latent factors in a matrix of ratings. We implemented ALS and a RMSE 
evaluator using Spark, MLlib, and the Clojure library Sparkling.

Many of the techniques we learned this chapter are very general, and the next chapter 
will be no different. We'll continue to explore the Spark and Sparkling libraries as we 
learn about network analysis: the study of connections and relationships.
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Network Analysis
"The enemy of my enemy is my friend."

                                                                                                 - Ancient proverb

This chapter concerns itself with graphs in the mathematical rather than the  
visual sense. A graph is simply a set of vertices connected by the edges and the 
simplicity of this abstraction means that graphs are everywhere. They are an effective 
model for structures as diverse as the hyperlink structure of the web, the physical 
structure of the internet, and all sorts of networks: roads, telecommunications, and 
social networks.

Thus, network analysis is hardly new, but it has become particularly popular  
with the rise of social network analysis. Among the largest sites on the web are  
social networks, and Google, Facebook, Twitter, and LinkedIn all make use of  
large-scale graph processing to mine their users' data. The huge importance of 
targeted advertising for the monetization of websites means that there is a large 
financial reward for companies that effectively infer internet users' interests.

In this chapter, we'll use publicly available Twitter data to demonstrate the principles 
of network analysis. We'll apply pattern matching techniques such as triangle 
counting to look for a structure within the graph and apply whole-graph processing 
algorithms such as label propagation and PageRank to tease out the network 
structure of the graph. Ultimately, we'll use these techniques to identify the interests 
of a set of Twitter communities from their most influential members. We'll do all 
of this using Spark and a library called GraphX which uses the Spark distributed 
computation model to process very large graphs.

But before we scale up, we'll begin our exploration of graphs by considering a 
different sort of problem: that of graph traversal. For this, we'll make use of the 
Clojure library Loom.
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Download the data
This chapter makes use of the data of follower data from the Twitter social network. 
The data is provided as a part of the Stanford Large Network Dataset Collection. You 
can download the Twitter data from https://snap.stanford.edu/data/egonets-
Twitter.html.

We'll be making use of both the twitter.tar.gz file and the twitter_combined.
txt.gz files. Both of these files should be downloaded and decompressed inside  
the sample code's data directory.

The sample code for this chapter is available at https://github.com/
clojuredatascience/ch8-network-analysis.

As usual, a script has been provided that will do this for you. You can run it by 
executing the following command line from within the project directory:

script/download-data.sh

If you'd like to run this chapter's examples, make sure you download the data  
before continuing.

Inspecting the data
Let's look at one of the files in the Twitter directory, specifically the 
twitter/98801140.edges file. If you open it in a text editor, you'll see that each line 
of the file consists of a pair of integers separated by a space. The data is in what's 
known as an edge list format. It's one of the two primary ways of storing graphs (the 
other being the adjacency list format, which we'll come to later). The following code 
uses Clojure's line-seq function to read the file one line at a time and convert it into 
a tuple:

(defn to-long [l]
  (Long/parseLong l))

(defn line->edge [line]
  (->> (str/split line #" ")
       (mapv to-long)))

(defn load-edges [file]
  (->> (io/resource file)
       (io/reader)

https://snap.stanford.edu/data/egonets-Twitter.html
https://snap.stanford.edu/data/egonets-Twitter.html
https://github.com/clojuredatascience/ch8-network-analysis
https://github.com/clojuredatascience/ch8-network-analysis
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       (line-seq)
       (map line->edge)))

(defn ex-8-1 []
  (load-edges "twitter/98801140.edges"))

If you execute (ex-8-1) in the REPL or run the following on the command line, you 
should see the following sequence:

lein run –e 8.1

;;([100873813 3829151] [35432131 3829151] [100742942 35432131]

;;  [35432131 27475761] [27475761 35432131])

This simple sequence of pairs of numbers, each representing an edge, is already 
enough to represent the essence of the graph. It's not intuitive to see how the edges 
relate to each other, so let's visualize it.

Visualizing graphs with Loom
For the first half of this chapter, we'll be using Loom (https://github.com/aysylu/
loom) to process our graphs. Loom defines an API to create and manipulate graphs. It 
also contains many built-in graph traversal algorithms. We'll come to these shortly.

Firstly, we'll want to visualize our graph. For this, Loom relies on a system-level 
library called GraphViz. If you like to be able to replicate many of the images in  
this chapter, you'll need to install GraphViz now. If you're not sure that you have  
it installed, try running the following on the command line:

dot –V

GraphViz is available from http://graphviz.org/ and there 
are installers for Linux, MacOS, and Windows. GraphViz isn't a 
requirement to run all the examples in this chapter, just the ones 
that visualize the graphs.

Loom is able to create a graph from a sequence of edges like the ones we have when 
we apply the loom/graph function to the sequence. We'll require loom.graph as 
loom and loom.io as lio in the following examples. If you have GraphViz installed, 
run the following example:

(defn ex-8-2 []
  (->> (load-edges "twitter/98801140.edges")
       (apply loom/graph)
       (lio/view)))

https://github.com/aysylu/loom
https://github.com/aysylu/loom
http://graphviz.org/
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You should see a result like the following schematic representation:

Depending on your version of GraphViz, you may not get exactly the same layout 
as the previous version, but it doesn't matter. The relative positions of the nodes and 
the edges in the image aren't important. The only important fact about the graph is 
which nodes are connected to which other nodes.

As a Clojure programmer, you're familiar with tree structures as the nested structure 
of S-expressions and you've probably noticed that this graph looks a lot like a tree. In 
fact, a tree is just a special kind of graph: one that contains no loops. We refer to such 
graphs as acyclic.

In this graph there are only four edges, whereas there were five in the edge  
list we saw in the first example. This is because edges can be directed. They go  
from a node to another node. We can load directed graphs with Loom using the 
loom/digraph function:

(defn ex-8-3 []
  (->> (load-edges "twitter/98801140.edges")
       (apply loom/digraph)
       (lio/view)))
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This code generates the following image:

Notice how the act of adding directions to our edges has fundamentally altered the 
way we read the graph. In particular, the graph is clearly no longer a tree. Directed 
graphs are extremely important in cases where we want to represent an action that's 
performed on something by something else.

For example, in Twitter's social graph, an account may follow one account, but 
the act may not be reciprocal. Using Twitter's terminology, we can refer to either 
the followers or the friends of an account. A follow represents an outgoing edge, 
whereas a friend is an incoming edge. In the previous graph, for example, account 
382951 has two followers: accounts 35432131 and 100873813.

There are now two edges between nodes 27475761 and 35432131. This means that 
it's possible to get from one node back to the other. We call this a cycle. The technical 
term for a graph such as the earlier one is a directed, cyclic graph.

A cycle in a graph means that it's possible to get back to a node by 
moving only in the direction of edges. If a graph contains no such loops, 
then the graph is said to be acyclic. A Directed Acyclic Graph (DAG), is 
a model for a huge variety of hierarchical or ordered phenomena such as 
dependency graphs, family trees, and file system hierarchies.

We've seen that graphs can be directed or undirected. The third main type of 
graph is the weighted graph. A weight may be usefully associated with an edge to 
represent the strength of a connection between two nodes. For example, if the graph 
represents a social network, the weight between two accounts might be the strength 
of their connection (for example, their frequency of communication).



Network Analysis

[ 416 ]

We can load a weighted graph in loom with either the loom/weighted-graph or 
loom/weighted-digraph functions:

(defn ex-8-4 []
  (->> (load-edges "twitter/98801140.edges")
       (apply loom/weighted-digraph)
       (lio/view)))

Our input graph doesn't actually specify the weight of the edges. Loom's default 
weight for all the edges is 1.

Another aspect in which graphs can differ is whether its vertices and edges are 
typed, representing different entities or connections between them. For example, 
the Facebook graph contains many types of entities: notably "pages" and "people". 
People can "like" the pages, but they can't "like" other people. In heterogeneous 
graphs where nodes of type "A" are always connected to type "B" and vice versa 
(but never to each other), the graph is said to be bipartite. Bipartite graphs can be 
represented as two disjoint sets, where nodes in one set only ever link to the nodes  
in the other set.

Graph traversal with Loom
Traversal algorithms concern themselves with the ways of exploring the graph in 
a systematic way. Given the huge variety of phenomena that can be modeled with 
graphs, such algorithms could have a huge variety of uses.

The algorithms we'll consider in the next few sections concern some of the most 
common tasks such as:

• Determining whether a path exists that traces each edge exactly once
• Determining the shortest path between two vertices
• Determining the shortest tree that connects all the vertices
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If the graph in question represented the road network covered by a delivery driver's 
round, the vertices could represent intersections. Finding a path that traces each edge 
exactly once would be the way a delivery driver would travel all the roads without 
doubling back or passing the same addresses twice. The shortest path between the 
two vertices would be the most efficient way to navigate from one address to the 
next delivery. Finally, the shortest tree connecting all the vertices would be the most 
effective way to connect all of the vertices: perhaps, to lay a roadside power line for 
the lights at each intersection.

The seven bridges of Königsberg
The city of Königsberg in Prussia (now Kaliningrad, Russia) was set on both sides of 
the Pregel River, and included two large islands that were connected to each other 
and the mainland by seven bridges. The Seven bridges of Königsberg is a historically 
notable problem in mathematics that laid the foundation for graph theory and 
prefigured the idea of topology. The name Pregel will appear again later in this chapter.

The problem was to find a walk through the city that would cross each bridge once 
and only once. The islands could not be reached by any route other than the bridges 
and the bridges had to be crossed completely every time; one could not walk halfway 
onto the bridge and then turn around and later cross the other half from the other 
side (though the walk need not start and end at the same spot).
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Euler realized that the problem has no solution: that there could be no non-retracing 
route via the bridges, and the difficulty led to the development of a technique that 
established this assertion with mathematical rigor. The only structure of the problem 
that mattered were the connections between the bridges and landmasses. The essence 
of the problem could be preserved by representing the bridges as edges in a graph.

Euler observed that (except at the endpoints of the walk) one enters a vertex by one 
edge and leaves the vertex by a different edge. If every edge has been traversed 
exactly once, it follows that the number of connecting edges for each node must be 
even (half of them will have been traversed "inwards" and the other half will have 
been traversed "outwards").

Therefore, for an Euler tour to exist in a graph, all the nodes (with the possible 
exception of the start and end node) must have an even number of connecting edges. 
We refer to the number of connecting edges as the degree of the node. Determining 
whether or not an Euler tour exists in a graph therefore is simply a matter of 
counting the number of odd-degree vertices. If there are zero or two vertices, then 
an Euler tour can be constructed from the graph. The following function makes use 
of two utility functions provided by Loom, out-degree and nodes, to check for the 
presence of an Euler tour:

(defneuler-tour? [graph]
  (let [degree (partial loom/out-degree graph)]
    (->> (loom/nodes graph)
         (filter (comp odd? degree))
         (count)
         (contains? #{0 2}))))

In this code, we used Loom's out-degree function to calculate the degree of each 
node in the graph. We filter just the odd degree vertices and verify that the count is 
either 0 or 2. If it is, an Euler tour exists.
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Breadth-first and depth-first search
The previous example is historically notable, but a more common desire in graph 
traversal is to find a node within the graph starting from some other node. There 
are several ways of addressing this challenge. For unweighted graphs such as our 
Twitter follow graph, the most common are breadth first and depth first search.

Breadth first search starts with a particular vertex and then searches each of its 
neighbors for the target vertex. If the vertex isn't found, it searches each of the 
neighbor's neighbors in turn, until either the vertex is found or the entire graph  
has been traversed.

The following diagram shows the order in which the vertices are traversed, 
beginning at the top and working down in tiers, from left to right:

Loom contains a variety of traversal algorithms in the loom.alg namespace. Let's 
perform breadth first search on the same Twitter followers graph we have been 
studying, which is repeated for convenience:
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Breadth-first traversal is provided as the bf-traverse function. This will return  
a sequence of vertices in the order that they were visited which will allow us to see 
how breadth-first search traverses the graph:

(defn ex-8-5 []
  (let [graph (->> (load-edges "twitter/98801140.edges")
                   (apply loom/digraph))]
    (alg/bf-traverse graph 100742942)))

;;(100742942 35432131 27475761 3829151)

We're using the bf-traverse function to perform a traversal of the graph, beginning 
at node 100742942. Notice how the response does not contain the node 100873813. 
There's no way of traversing the graph to this vertex, following only the direction of 
the edges. The only way to get to vertex 100742942 would be to start there.

Also, note that 35432131 is only listed once, even though it's connected to  
both 27475761 and 3829151. Loom's implementation of breadth first search 
maintains a set of the visited vertices in memory. Once a vertex is visited, it  
need not be visited again.

An alternative approach to breadth-first search is depth-first search. This algorithm 
proceeds immediately to the bottom of the tree and visits the nodes in the order 
shown in the following diagram:

Loom includes a depth-first search as pre-traverse:

(defn ex-8-6 []
  (let [graph (->> (load-edges "twitter/98801140.edges")
                   (apply loom/digraph))]
    (alg/pre-traverse graph 100742942)))

;;(100742942 35432131 3829151 27475761)
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The advantage of depth-first search is that it has a much lower memory requirement 
than breadth-first search, because it's not necessary to store all of the nodes at each 
tier. This may make it less memory-intensive for large graphs.

However, depending on the circumstances, either a depth-first or breadth-first search 
may be more convenient. For example, if we were traversing a family tree, looking 
for a living relative, we could assume that person would be near the bottom of the 
tree, so a depth-first search may reach the target more quickly. If we were looking for 
an ancient ancestor, then a depth first search might waste its time checking a large 
number of more recent relatives and take much longer to reach the target.

Finding the shortest path
The algorithms presented earlier traversed the graph vertex by vertex and returned 
a lazy sequence of all the nodes in the graph. They were convenient for illustrating 
the two primary ways of navigating the graph structures. However, a more common 
task would be to find the shortest path from one vertex to another. This means that 
we'll be interested only in the sequence of nodes that lie between them.

If we have an unweighted graph, such as the previous graphs, we'll usually count 
the distance as the number of "hops": a hop being the step between two neighboring 
nodes. The shortest path will have the fewest number of hops. Breadth-first search is, 
in general, a more efficient algorithm to use in this case.

Loom implements the breadth-first shortest path as the bf-path function. To 
demonstrate it, let's load a more complex Twitter graph:

(defn ex-8-7 []
  (->> (load-edges "twitter/396721965.edges")
       (apply loom/digraph)
       (lio/view)))
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This code generates the following graph:

Let's see if we can identify the shortest path between the top and bottom nodes: 
75914648 and 32122637. There are many paths that the algorithm could return, but 
we want to identify the path that goes through points 28719244 and 163629705. This 
is the one with the fewest hops.

(defn ex-8-8 []
  (let [graph (->> (load-edges "twitter/396721965.edges")
                   (apply loom/digraph))]
    (alg/bf-path graph 75914648 32122637)))

;;(75914648 28719244 163629705 32122637)

Indeed it does.

Loom also implements a bidirectional breadth-first shortest path 
algorithm as bf-path-bi. This searches in parallel from both the 
source and the destination and may find the shortest path much 
faster on certain types of graphs.
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What if the graph is weighted? In this case, the fewest hops might not correspond 
to the shortest path between two nodes, because this path might be associated with 
a large weight. In this case, Dijkstra's algorithm is a method to find the shortest cost 
path between two nodes. The path may take a larger number of hops, but the sum of 
the edge weights traversed would be the lowest:

(defn ex-8-9 []
  (let [graph (->> (load-edges "twitter/396721965.edges")
                   (apply loom/weighted-digraph))]
    (-> (loom/add-edges graph [28719244 163629705 100])
        (alg/dijkstra-path 75914648 32122637))))

;;(75914648 28719244 31477674 163629705 32122637)

In this code, we loaded the graph as a weighted digraph and updated the edge 
between node 28719244 and 163629705 to have a weight of 100. All the other edges 
have a default weight of 1. This has the effect of assigning a very high cost to the 
most direct path, and so an alternative path is found.

Dijkstra's algorithm is particularly valuable for route finding. For example, if the 
graph models the road network, the best route may be the one that takes major 
roads, rather than the one which takes the fewest number of steps. Or, depending 
on the time of day and the amount of traffic on the roads, the cost associated with 
particular routes may change. In this case, Dijkstra's algorithm would be able to 
determine the best route at any time of the day.

An algorithm called A* (pronounced A-star) optimizes Dijkstra's 
algorithm by allowing a heuristic function. It's implemented as alg/
astar-path in Loom. The heuristic function returns an expected cost to 
the destination. Any function can be used as a heuristic as long as it does 
not over-estimate the true cost. The use of this heuristic allows the A* 
algorithm to avoid making an exhaustive search of the graph and thus, 
it can be much quicker. For more information on A* algorithm, refer to 
https://en.wikipedia.org/wiki/A*_search_algorithm.

Let's continue to consider weighted graphs and ask how we could construct a tree 
that connects all the nodes with the shortest cost. Such a tree is referred to as the 
minimum spanning tree.

https://en.wikipedia.org/wiki/A*_search_algorithm
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Minimum spanning trees
With the help of the previous algorithms, we considered how to traverse the graph 
between two points. However, what if we want to discover a route that connects all 
the nodes in the graph? In this case, we could use a minimum spanning tree. We can 
think of a minimum spanning tree as a hybrid of the full-graph traversal algorithms 
we have considered and the shortest path algorithm we saw recently.

Minimum spanning trees are particularly useful for weighted graphs. If the weight 
represents the cost of connecting two vertices, the minimum spanning tree finds 
the minimum cost of connecting the whole graph. They occur in problems such as 
network design. If the nodes represent offices, for example, and the edge weights 
represent the cost of phone lines between offices, the minimum spanning tree will 
provide the set of phone lines that connect all the offices with the lowest total cost.

Loom's implementation of minimum spanning trees makes use of Prim's algorithm 
and is available as the prim-mst function:

(defn ex-8-10 []
  (let [graph (->> (load-edges "twitter/396721965.edges")
                   (apply loom/weighted-graph))]
    (-> (alg/prim-mst graph)
        (lio/view))))

This will return the following graph:

If, once again, we update the edge between vertices 28719244 and 163629705 to be 
100, we will be able to observe the difference it makes to the minimum spanning tree:

(defn ex-8-11 []
  (let [graph (->> (load-edges "twitter/396721965.edges")
                   (apply loom/weighted-graph))]
    (-> (loom/add-edges graph [28719244 163629705 100])
        (alg/prim-mst)
        (lio/view))))
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This code returns the following chart:

The tree has been reconfigured to bypass the edge with the highest cost.

Subgraphs and connected components
A minimum spanning tree can only be specified for connected graphs, where all the 
nodes are connected to all the others by at least one path. Where the graphs are not 
connected, we're clearly unable to construct a minimum spanning tree (although we 
could construct a minimum spanning forest instead).

If a graph contains a set of subgraphs that are internally connected but are 
not connected to each other, then the subgraphs are referred to as connected 
components. We can observe the connected components if we load a still more 
complicated network:

(defn ex-8-12 []
  (->> (load-edges "twitter/15053535.edges")
       (apply loom/graph)
       (lio/view)))
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This example generates the following image:

Thanks to the layout of the graph, we can easily see that there are three connected 
components and Loom will calculate these for us with the connected-components 
function. We'll see later in this chapter how we can implement an algorithm to 
calculate this for ourselves:

(defn ex-8-13 []
  (->> (load-edges "twitter/15053535.edges")
       (apply loom/graph)
       (alg/connected-components)))

;;[[30705196 58166411] [25521487 34173635 14230524 52831025 30973
;; 55137311 50201146 19039286 20978103 19562228 46186400
;;14838506 14596164 14927205] [270535212 334927007]]

A directed graph is strongly connected if there is a path from every node to every 
other node. A directed graph is weakly connected if, only treating all the edges as 
being undirected, there is a path from every node to every other node.
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Let's load the same graph as a directed graph to see if there are any strongly 
connected components:

(defn ex-8-14 []
  (->> (load-edges "twitter/15053535.edges")
       (apply loom/digraph)
       (lio/view)))

This example generates the following image:

There are three weakly connected components as before. It's quite difficult to visually 
determine how many strongly connected components there are by just looking at 
the graph. Kosaraju's algorithm will calculate the number of strongly connected 
components in a graph. It's implemented by Loom as the alg/scc function:

(defn ex-8-15 []
  (->> (load-edges "twitter/15053535.edges")
       (apply loom/digraph)
       (alg/scc)
       (count)))

;; 13
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Kosaraju's algorithm makes use of the interesting property that the transpose 
graph—one with all the edges reversed—has exactly the same number of connected 
components as the input graph. The response contains all the strongly connected 
components (even the degenerate cases containing only one node) as sequence vectors. 
If we sort by length in descending order the first component will be the largest:

(defn ex-8-16 []
  (->> (load-edges "twitter/15053535.edges")
       (apply loom/digraph)
       (alg/scc)
       (sort-by count >)
       (first)))

;;[14927205 14596164 14838506]

The largest strongly connected component is merely three nodes.

SCC and the bow-tie structure of the web
Weakly and strongly connected components can provide an informative way of 
understanding the structure of a directed graph. For example, research performed on 
the link structure of the internet has shown that strongly connected components can 
grow very large indeed.

The paper from which the following numbers are quoted is available 
online at http://www9.org/w9cdrom/160/160.html.

Although the following numbers are from a study undertaken in 1999 and so they 
are therefore very out of date, we can see that at the center of the web was one  
large strongly connected component consisting of 56 million pages. This meant  
that from any page within the strongly connected component, you could reach  
any other within the strongly connected component only by following the  
outbound hyperlinks.

http://www9.org/w9cdrom/160/160.html
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44 million pages linked into the SCC, but were not linked from it, and 44 million 
pages were linked from the SCC, but did not link back. Only very few links bypassed 
the SCC entirely (the "tubes" in the preceding illustration).

Whole-graph analysis
Let's turn our attention away from the smaller graphs we've been working with 
towards the larger graph of followers provided by the twitter_combined.txt file. 
This contains over 2.4 million edges and will provide a more interesting sample to 
work with.

One of the simplest metrics to determine about a whole graph is its density. For 
directed graphs, this is defined as the number of edges |E|, over the number of 
vertices |V| multiplied by one less than itself.

( )
E

D
V V 1

=
−
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For a connected graph (one where every vertex is connected to every other vertex  
by an edge), the density would be 1. By contrast, a disconnected graph (one with  
no edges) would have a density of 0. Loom implements graph density as the  
alg/density function. Let's calculate the density of the larger Twitter graph:

(defn ex-8-17 []
  (->> (load-edges "twitter_combined.txt")
       (apply loom/digraph)
       (alg/density)
       (double)))

;; 2.675E-4

This seems very sparse, but bear in mind that a value of 1 would correspond to 
every account following every other account, which is clearly not the case on social 
networks. Some accounts may have many connections, while others may have none 
at all.

Let's see how the edges are distributed among nodes. We can re-use Loom's  
out-degree function to count the number of outgoing edges from each node  
and plot a histogram of the distribution using the following code:

(defn ex-8-18 []
  (let [graph (->> (load-edges "twitter_combined.txt")
                   (apply loom/digraph))
        out-degrees (map #(loom/out-degree graph %)
                         (loom/nodes graph))]
    (-> (c/histogram out-degrees :nbins 50
                     :x-label "Twitter Out Degrees")
        (i/view))))
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This generates the following histogram:

The distribution of out-degrees looks a lot like the exponential distribution we  
first encountered in Chapter 2, Inference. Notice how most people have very few  
out-degrees, but a handful have over a thousand.
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Let's also plot the histogram of in-degrees. On Twitter, the in-degree corresponds to 
the number of followers an account has.

The distribution of in-degrees is even more extreme: the tail extends further to the 
right than the previous histogram and the first bar is even taller than before. This 
corresponds to most accounts having very few followers but a handful having 
several thousand.

Contrast the previous histograms to the degree distribution we get when we 
generate a random graph of edges and nodes. Next, we use Loom's gen-rand 
function to generate a random graph with 10,000 nodes and 1,000,000 edges:

(defn ex-8-20 []
  (let [graph (generate/gen-rand (loom/graph) 10000 1000000)
        out-degrees (map #(loom/out-degree graph %)
                         (loom/nodes graph))]
    (-> (c/histogram out-degrees :nbins 50
                     :x-label "Random out degrees")
        (i/view))))
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This generates the following histogram:

The random graph shows that the mean number of out-degrees for a graph of ten 
thousand vertices connected by a million edges is around 200. The distribution of 
the degrees is approximately normal. It's very apparent that the Twitter graph hasn't 
been generated by a random process.

Scale-free networks
The Twitter degree histograms are a characteristic of power-law degree distributions. 
Unlike the normally distributed, randomly generated graph, the Twitter histograms 
show that a few vertices are connected to a large majority of the edges.

The term "scale-free network" was coined by researchers at 
the University of Notre Dame in 1999 to describe the structure 
they observed on the World Wide Web.
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In the graphs that model human interactions, we'll often observe a power law of 
connectedness. This is also called the Zipf scale and it indicates the so-called "law of 
preferential attachment", where a popular vertex is more likely to develop additional 
connections. Social media sites are prime examples of this sort of a process, where 
new users tend to follow already popular users.

In Chapter 2, Inference, we identified the exponential distribution by looking for 
a straight line when the data was plotted on log-linear axes. We can most easily 
determine a power-law relationship by looking for a straight line on log-log axes:

(defn ex-8-21 []
  (let [graph (->> (load-edges "twitter_combined.txt")
                   (apply loom/digraph))
        out-degrees (map #(loom/out-degree graph %)
                         (loom/nodes graph))
        points (frequencies out-degrees)]
    (-> (c/scatter-plot (keys points) (vals points))
        (c/set-axis :x (c/log-axis :label "log(out-degree)"))
        (c/set-axis :y (c/log-axis :label "log(frequency)"))
        (i/view))))

This code returns the following plot:
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Although not perfectly linear, the earlier chart is enough to show that a power law 
distribution is at work in the Twitter graph. If we visualize the connections between 
the nodes and edges in the graph, scale-free networks will be recognizable because 
of their characteristic "clustered" shape. Popular vertices tend to have a halo of other 
vertices around them.

Scaling up to the full Twitter combined dataset has caused the previous examples to 
run much more slowly, even though this graph is tiny in comparison to many social 
networks. The rest of this chapter will be devoted to a graph library that runs on top 
of the Spark framework called GraphX. GraphX expresses many of the algorithms 
we've covered already this chapter, but can take advantage of the Spark distributed 
computation model to process much larger graphs.

Distributed graph computation with 
GraphX
GraphX (https://spark.apache.org/graphx/) is a distributed graph processing 
library that is designed to work with Spark. Like the MLlib library we used in the 
previous chapter, GraphX provides a set of abstractions that are built on top  
of Spark's RDDs. By representing the vertices and edges of a graph as RDDs,  
GraphX is able to process very large graphs in a scalable way.

https://spark.apache.org/graphx/
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We've seen in previous chapters how to process a large dataset using MapReduce 
and Hadoop. Hadoop is an example of a data-parallel system: the dataset is divided 
into groups that are processed in parallel. Spark is also a data-parallel system: RDDs 
are distributed across the cluster and processed in parallel.

Data-parallel systems are appropriate ways of scaling data processing when your 
data closely resembles a table. Graphs, which may have complex internal structure, 
are not most efficiently represented as tables. Although graphs can be represented 
as edge lists, as we've seen, processing a graph stored in this way may involve 
complex joins and excessive data movement around the cluster because of how 
interconnected the data is.

The growing scale and significance of graph data has driven the development of 
numerous new graph-parallel systems. By restricting the types of computation that 
can be expressed and introducing techniques to partition and distribute graphs, these 
systems can efficiently execute sophisticated graph algorithms orders of a magnitude 
faster than general data-parallel systems.

Several libraries bring graph-parallel computation to Hadoop, 
including Hama, (https://hama.apache.org/) and Giraph 
(http://giraph.apache.org/).

https://hama.apache.org/
http://giraph.apache.org/
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The GraphX library brings graph-parallel computation to Spark. One of the 
advantages of using Spark as the engine for graph processing is that its in-memory 
computation model is well-suited to the iterative nature of many graph algorithms.

This diagram illustrates the challenge of processing graphs in parallel where the 
nodes may be interconnected. By processing the data within the graph topology, 
GraphX avoids excessive data movement and duplication. GraphX extends Spark's 
RDD abstraction by introducing the Resilient Distributed Graph, or RDG, and a set 
of functions to query and transform the graph in a structurally-aware way.

Creating RDGs with Glittering
Spark and GraphX are libraries that are predominantly written in Scala. In this 
chapter, we'll be using the Clojure library Glittering (https://github.com/
henrygarner/glittering) to interact with GraphX. In much the same way that 
Sparkling provides a thin Clojure wrapper around Spark, Glittering provides a thin 
Clojure wrapper around GraphX.

Our first task will be to create a graph. Graphs can be instantiated in two ways: either 
by supplying two RDD representations (one containing the edges and the other the 
vertices), or simply by supplying an RDD of edges. If only the edges are supplied, 
then we will supply a default value for each node. We'll see how to do this next.

https://github.com/henrygarner/glittering
https://github.com/henrygarner/glittering
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Since GraphX leverages Spark, every job requires an associated Spark context. In the 
previous chapter, we used Sparkling's sparkling.conf/conf default configuration. 
However, in this chapter, we'll use the default configuration provided by Glittering. 
Glittering extends Sparkling's defaults with the configuration necessary to serialize 
and deserialize GraphX types. In the following code, we'll include glittering.core 
as g and create a small graph of only three edges using Glittering's graph constructor:

 (defn ex-8-22 []
  (spark/with-context sc (-> (g/conf)
                             (conf/master "local")
                             (conf/app-name "ch8"))
    (let [vertices [[1 "A"] [2 "B"] [3 "C"]]
          edges [(g/edge 1 2 0.5)
                 (g/edge 2 1 0.5)
                 (g/edge 3 1 1.0)]]
      (g/graph (spark/parallelize sc vertices)
               (spark/parallelize sc edges)))))

;; #<GraphImpl org.apache.spark.graphx.impl.GraphImpl@adb2324>

The result is a GraphX graph object. Note that edges are provided as an RDD  
of g/edges: the g/edge function will create an edge type given a source ID, 
destination ID, and an optional edge attribute. Edge attributes can be any  
object that Spark can serialize. Note that vertices can have attributes too  
("A", "B", and "C" in the previous example).

An alternative way of constructing a graph is to use the g/graph-from-edges 
constructor. This will return a graph based solely on the RDD of edges. The Twitter 
data is supplied in the edge list format, so this is the function we'll use to load it. In 
the next code, we'll load the full twitter_combined.txt as a text file and create an 
edge list from it by mapping over the lines of the file. From each line, we'll create an 
edge of weight 1.0:

(defn line->edge [line]
  (let [[from to] (map to-long (str/split line #" "))]
    (g/edge from to 1.0)))

(defn load-edgelist [sc path]
  (let [edges (->> (spark/text-file sc path)
                   (spark/map line->edge))]
    (g/graph-from-edges edges 1.0)))

(defn ex-8-23 []
  (spark/with-context sc (-> (g/conf)
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                             (conf/master "local")
                             (conf/app-name "ch8"))
    (load-edgelist sc "data/twitter_combined.txt")))

;;#<GraphImpl org.apache.spark.graphx.impl.GraphImpl@c63044d>

The second argument to the graph-from-edges function is a default value to use as 
each vertex's attribute: the vertex attributes can't be provided in an edge list.

Measuring graph density with triangle 
counting
GraphX comes with a small selection of built-in graph algorithms, which Glittering 
makes available in the glittering.algorithms namespace. Before covering 
Glittering's API in more detail, let's run one of these on the Twitter follows graph. 
We'll show how to use Glittering to create a simple graph processing job, and then 
show how to use more of Glittering's API to implement the algorithm ourselves 
using GraphX's graph-parallel primitives.

Triangle counting is an algorithm to measure the density of the graph in the vicinity 
of each node. It's similar in principle to counting degrees, but also accounts for how 
well our neighbors are connected to each other. We can picture the process using this 
very simple graph:
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In this example, we can see that vertices A, B, and C all participate in one triangle, 
and vertex D participates in none. Both B and C follow A, but C also follows B. In 
the context of social network analysis, triangle counting is a measure of how many 
friends of friends also know each other. In tight-knit communities, we would expect 
the number of triangles to be high.

Triangle counting is already implemented by GraphX and is accessible as the 
triangle-count function in the glittering.algorithms namespace. Before  
we use this particular algorithm, GraphX requires us to do two things:

1. Point the edges in the "canonical" direction.
2. Ensure the graph is partitioned.

Both of these steps are the artifacts of the way triangle counting is implemented  
in GraphX. GraphX allows there to be multiple edges between two vertices, 
but triangle counting seeks only to count the distinct edges. The previous two 
steps ensure that GraphX is able to efficiently calculate the distinct edges before 
performing the algorithm.

The canonical direction of an edge always points from a smaller node ID to a larger 
node ID. We can achieve this by ensuring all the edges are created in this direction 
when we first construct our edge RDD:

(defn line->canonical-edge [line]
  (let [[from to] (sort (map to-long (str/split line #" ")))]
    (glitter/edge from to 1.0)))

(defn load-canonical-edgelist [sc path]
  (let [edges (->> (spark/text-file sc path)
                   (spark/map line->canonical-edge))]
    (glitter/graph-from-edges edges 1.0)))

By sorting the from and to IDs before we create the edge, we ensure that the from ID 
is always lower than the to ID. This is the first step towards making duplicate edge 
removal more efficient. The second is to choose a partitioning strategy for the graph. 
The next section describes our options.
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GraphX partitioning strategies
GraphX is built for distributed computation and so it must partition graphs  
across multiple machines. In general, there are two approaches that you could  
take while partitioning graphs: the 'edge cut' and 'vertex cut' approach. Each  
makes a different trade-off.

The edge cut strategy may seem the most "natural" way to partition a graph. 
By splitting the graph along the edges, it ensures that each vertex is assigned to 
exactly one partition indicated by the shade of gray. This presents an issue for the 
representation of edges that span partitions though. Any computation along the 
edge will necessarily need to be sent from one partition to another, and minimizing 
network communication is key to the implementation of efficient graph algorithms.

GraphX implements the "vertex cut" approach, which ensures that the edges are 
assigned to partitions and that the vertices may be shared across partitions. This 
appears to simply move the network communication to a different part of the 
graph—from the edges to the vertices—but GraphX provides a number of strategies 
that allow us to ensure that vertices are partitioned in the most appropriate way for 
the algorithm we wish to apply.

Glittering provides the partition-by function, which accepts a keyword 
representing the strategy to partition the graph. Accepted values are :edge-
partition-1d, :edge-partition-2d, :canonical-random-vertex-cut, and 
:random-vertex-cut.
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Your choice about which partitioning strategy to use is based on the structure of 
the graph and the algorithm you will apply. The :edge-partition-1d strategy 
ensures that all the edges with the same source are partitioned together. This means 
that operations that aggregate edges by the source (for example, counting outgoing 
edges) have all the data they require on an individual machine. Although this 
minimizes network traffic, it also means that with power-law graphs a few partitions 
may receive a significant proportion of the overall number of edges.

The :random-vertex-cut partitioning strategy splits a graph into edges based 
on both the source and destination vertices. This can help to create more balanced 
partitions at the cost of run-time performance, as a single source or destination node 
may be spread across many machines in the cluster. Even the edges that connect the 
same pair of nodes may be spread across two machines depending on the direction 
of the edge. To group edges regardless of direction, we can use :canonical-
random-vertex-cut.

Finally, :edge-partition-2d partitions edges by both their source and destination 
vertex using a more sophisticated partitioning strategy. As with the :canonical-
random-vertex-cut, nodes sharing both a source and a destination will be 
partitioned together. In addition, the strategy places an upper limit on the number 
of partitions that each node will be spread across. Where an algorithm aggregates 
information about edges sharing both a source and a destination node, and also by 
source or destination independently, this may be the most efficient strategy to use.

Running the built-in triangle counting 
algorithm
We've already seen how to load our edges in the canonical direction. The next step 
is to choose a partitioning strategy, and we'll go for :random-vertex-cut. The 
following example shows the full sequence of loading and partitioning the graph, 
performing triangle counting and visualizing the results using Incanter:

(defn ex-8-24 []
  (spark/with-context sc (-> (g/conf)
                             (conf/master "local")
                             (conf/app-name "ch8"))
    (let [triangles (->> (load-canonical-edgelist
                          sc "data/twitter_combined.txt")
                         (g/partition-by :random-vertex-cut)
                         (ga/triangle-count)
                         (g/vertices)
                         (to-java-pair-rdd)
                         (spark/values)
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                         (spark/collect)
                         (into []))
          data (frequencies triangles)]
      (-> (c/scatter-plot (keys data) (vals data))
          (c/set-axis :x (c/log-axis :label "# Triangles"))
          (c/set-axis :y (c/log-axis :label "# Vertices"))
          (i/view)))))

The output of triangle-count is a new graph where the attribute of each vertex  
is a count of the number of triangles that the vertex participates in. The ID of the 
vertex is unchanged. We're only interested in the triangle counts themselves—the 
vertex attributes of the returned graph—so we extract values from the vertices. The 
spark/collect function gathers all the values into a single Clojure sequence, so it's 
not something we'd want to do on a very large graph.

Having gathered the count of triangles, we calculate the frequency of each count and 
visualize the result on a log-log scatter plot using Incanter. The output is shown next:

Once again, we see the effect of a power law distribution. A few nodes connect a 
very large number of triangles.



Network Analysis

[ 444 ]

Running a built-in algorithm has allowed us to see how to create and manipulate a 
graph, but the real power of GraphX is the way it allows us to express this sort of 
computation efficiently for ourselves. In the next section, we'll see how to accomplish 
triangle counting using lower-level functions.

Implement triangle counting with Glittering
There are many ways to count the number of triangles in a graph, but GraphX 
implements the algorithm in the following way:

1. Compute the set of neighbors for each vertex.
2. For each edge, compute the intersection of the vertices at either end.
3. Send the count of the intersection to both vertices.
4. Compute the sum of the counts for each vertex.
5. Divide by two, since each triangle is counted twice.

The following diagram shows the steps on our simple graph consisting of only  
one triangle:

The algorithm ignores the direction of the edges and, as mentioned previously, 
expects the edges between any two nodes to be distinct. We'll therefore continue  
to work on the partitioned graph with the canonical edges we defined in the 
previous section.
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The full code to perform triangle counting isn't very long, so it's presented in  
full next. It's representative of most of the algorithms we'll cover for the rest  
of the chapter so, once we've presented the code, we'll walk through each of  
the steps one at a time:

(defn triangle-m [{:keys [src-id src-attr dst-id dst-attr]}]
  (let [c (count (set/intersection src-attr dst-attr))]
    {:src c :dst c}))

(defn triangle-count [graph]
  (let [graph (->> (g/partition-by :random-vertex-cut graph)
                   (g/group-edges (fn [a b] a)))
        adjacent (->> (g/collect-neighbor-ids :either graph)
                      (to-java-pair-rdd)
                      (spark/map-values set))
        graph (g/outer-join-vertices
               (fn [vid attr adj] adj) adjacent graph)
        counters (g/aggregate-messages triangle-m + graph)]
    (->> (g/outer-join-vertices (fn  [vid vattr counter]
                                  (/ counter 2))
                                counters graph)
         (g/vertices))))

For the algorithm to work, the input graph needs to have distinct edges. Once the 
canonical graph has been partitioned, we make sure the edges are distinct by calling 
(g/group-edges (fn [a b] a) graph) on the graph. The group-edges function is 
similar to reduce and it reduces over the collection of edges that share the same start 
and end node. We're simply choosing to keep the first edge. The attributes of the 
edge don't factor into triangle counting, only the fact that there is one.

Step one – collecting neighbor IDs
At step one, we want to collect the neighbor IDs for each vertex. Glittering makes 
this operation available as the g/collect-neighbor-ids function. We can choose 
to collect only the incoming or outgoing edges with :in or :out, respectively, or the 
edges in either direction with :either.

The g/collect-neighbor-ids function returns a pair RDD with the key being the 
vertex ID in question and the value being the sequence of neighbor IDs. Like MLlib 
in the previous chapter, the RDD is not the JavaRDD class that Sparkling expects, and 
so we must convert it accordingly. Once we've done so, converting the sequence of 
neighbor IDs into a set is as simple as calling set on each of the values in the pair 
RDD. The result of step one is a PairRDD containing the of node ID and set of neighbor 
IDs, so we've flattened the graph to a series of sets stored as the value of adjacent.
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This graph representation, as a sequence of sets of connected 
vertices, is commonly known as an adjacency list. Along with the 
edge list, it's one of the two primary means of representing graphs.

Step two requires us to assign values to the graph edges though, so we'll want to 
preserve the graph structure. We use the g/outer-join-vertices function to 
combine adjacent and the original graph. Given a graph and a pair RDD indexed by 
vertex ID, outer-join-vertices allows us to supply a function whose return value 
will be assigned as the attribute of each vertex in the graph. The function receives 
three arguments: the vertex ID, the current vertex attribute, and the value associated 
with the vertex ID in the pair RDD being outer joined to the graph. In the earlier 
code, we return the set of adjacent vertices as the new vertex attribute.

Steps two, three, and four – aggregate messages
The next several steps are handled by one function, g/aggregate-messages, the 
workhorse function of GraphX's graph-parallel implementation. It requires two 
arguments: a message sending function and a message combining function. In the 
way they work together, these two functions are like map and reduce adapted for  
the vertex-centric view of graph-parallel computation.

The send message function is responsible for sending messages along edges. The 
function is called once for each edge, but it can send multiple messages to either 
the source or destination vertex. The input to the function is a triplet (an edge with 
two connected vertices) and it responds with a sequence of messages. A message is 
a key/value pair where the key is one of :src or :dst and the value is the message 
to be sent. In the previous example, this is implemented as a map with the :src and 
:dst keys.
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The merge message function is responsible for combining all the messages for a 
particular vertex. In the earlier code, each message is a number and therefore the 
merge function has a sequence of numbers to merge. We can achieve this simply  
by passing + as the merge function.

Step five – dividing the counts
The final step of triangle counting is to divide the counts we have calculated for each 
vertex ID by two, since each triangle is counted twice. In the earlier code, we do this 
while simultaneously updating the vertex attributes with the triangle count using 
outer-join-vertices.

Running the custom triangle counting 
algorithm
With all of the earlier steps in place, we can run our custom triangle counting 
algorithm using Glittering. Let's first run it on one of our Twitter follow graphs  
from the beginning of the chapter to see the result we get:

(defn ex-8-25 []
  (spark/with-context sc (-> (g/conf)
                             (conf/master "local")
                             (conf/app-name "triangle-count"))
    (->> (load-canonical-edgelist
          sc "data/twitter/396721965.edges")
         (triangle-count)
         (spark/collect)
         (into []))))

;; #sparkling/tuple [21938120 1] #sparkling/tuple [31477674 3]
;; #sparkling/tuple [32122637 0] ...]

The result is a series of tuples with the vertex ID as the key and number of connected 
triangles as the value.

If we want to see how many triangles were there in the entire Twitter dataset, we 
could extract the values from the resulting graph (the values), add them up, and  
then divide them by three. Let's do this now:

(defn ex-8-26 []
  (spark/with-context sc (-> (g/conf)
                             (conf/master "local")
                             (conf/app-name "triangle-count"))
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    (let [triangles (->> (load-canonical-edgelist
                          sc "data/twitter_combined.txt")
                         (triangle-count)
                         (to-java-pair-rdd)
                         (spark/values)
                         (spark/reduce +))]
      (/ triangles 3))))

The algorithm shouldn't take too long to run. Our custom triangle counting code will 
be performant enough to run on the entire combined Twitter dataset.

If aggregate-messages is like a single step of MapReduce programming, we'll 
often end up performing it iteratively. Many graph algorithms will want to run to 
convergence. In fact, GraphX provides an alternative function that we will be able to 
use in this case called the Pregel API. We'll discuss it in detail in the next section.

The Pregel API
The Pregel API is GraphX's main abstraction to express custom, iterative,  
graph-parallel computation. It's named after Google's internal system for running 
large-scale graph processing, about which they published a paper in 2010. You may 
remember that it was also the river upon which the town of Königsberg was built.

Google's Pregel paper popularized the "think like a vertex" approach to graph 
parallel computation. Pregel's model fundamentally uses the message passing 
between the vertices in the graph organized into a series of steps called supersteps. 
At the beginning of each superstep, Pregel runs a user-specified function on each 
vertex, passing all the messages sent to it in the previous superstep. The vertex 
function has the opportunity to process each of these messages and send messages to 
other vertices in turn. Vertices can also "vote to halt" the computation and, when all 
the vertices have voted to halt, the computation will terminate.

The pregel function implemented by Glittering implements a very similar approach 
to graph processing. The primary difference is that the vertices don't vote to halt: the 
computation terminates either when there are no more messages being sent or when 
a specified number of iterations has been exceeded.

While the aggregate-messages function introduced in the previous section makes  
use of two symbiotic functions to express its intent, the pregel function makes  
use of three related functions, applied iteratively, to implement graph algorithms. 
The first two are the message function and the message combiner we encountered 
before, the third is the "vertex program": a function that processes the incoming 
messages for each vertex. The return value of this function is assigned as the vertex 
attribute for the next superstep.
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Let's see how the pregel function works in practice by implementing an algorithm 
we've already covered in this chapter: connected components.

Connected components with the Pregel API
Connected components can be expressed as an iterative algorithm in the  
following way:

1. Initialize all vertex attributes to the vertex ID.
2. For each edge, determine whether the source or destination vertex attribute  

is the lowest.
3. Down each edge, send the lower of the two attributes to the opposite vertex.
4. For each vertex, update attribute to be the lowest of the incoming messages.
5. Repeat until the node attributes no longer change.

As before, we can visualize the process on a simple graph of four nodes.

We can see how in six steps the graph has converged to a state where all the nodes 
have the lowest connected vertex ID as their attribute. Since the messages only 
travel along the edges, any nodes that don't share any edges will converge to 
different values. All the vertices that share the same attribute once the algorithm has 
converged will therefore be a part of the same connected component. Let's see the 
finished code first and we'll walk through the code in steps immediately afterwards:

(defn connected-component-m [{:keys [src-attr dst-attr]}]
  (cond
    (< src-attr dst-attr) {:dst src-attr}
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    (> src-attr dst-attr) {:src dst-attr}))

(defn connected-components [graph]
  (->> (glitter/map-vertices (fn [id attr] id) graph)
       (p/pregel {:vertex-fn (fn [id attr msg]
                               (min attr msg))
                  :message-fn connected-component-m
                  :combiner min})))

Using the g/pregel function is all that's required to implement an iterative 
connected components algorithm.

Step one – map vertices
Initializing all the vertex attributes to the vertex ID is handled outside of the pregel 
function by the g/map-vertices function. We pass it a function of two arguments, 
the vertex ID and vertex attribute, and it returns the vertex ID to be assigned as the 
vertex attribute.

Steps two and three – the message function
Glittering's pregel function expects to receive a map specifying at least three 
functions: a message function, a combiner function, and a vertex function. We'll 
discuss the last of these in more detail shortly. However, the first of these is 
responsible for steps two and three: for each edge, determining which connected 
node has the lower attribute and sending this value to the opposing node.

We introduced the message function along with the custom triangle counting 
function earlier in the chapter. This function receives the edge as a map and returns 
a map in return describing the messages to be sent. This time, only one message is 
sent: the src-attr attribute to the destination node if the source attribute is lower or  
the dst-attr attribute to the source node if the destination attribute is lower.

The combiner function aggregates all the incoming messages for a vertex. The 
combiner function for the connected components is simply the min function:  
we're only interested in the minimum value sent to each vertex.

Step four – update the attributes
In step four, each vertex updates its attribute to equal the lowest of its current attribute 
and the value of all the received messages. If any of its incoming messages is lower 
than its current attribute, it will update its attribute to equal the lowest. This step is 
handled by the vertex program, the third of Pregel's three symbiotic functions.
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The vertex function for connected components is also trivial: for each vertex, we 
want to return the lower of the current vertex attribute and the lowest incoming 
message (as determined by the combiner function in the previous step). The return 
value will be used as the vertex attribute for the next superstep.

Step five – iterate to convergence
Step five is something we get "for free" with the pregel function. We didn't specify 
the maximum number of iterations, so the three functions just described will be 
run repeatedly until there are no more messages to be sent. For this reason (and for 
reasons of efficiency), it's important that our message function only sends messages 
when it needs to. This is why our cond value in the earlier message function ensures 
we don't send a message if the source and destination attributes are already equal.

Running connected components
Having implemented the previous connected components function, we use it in the 
following example:

 (defn ex-8-27 []
  (spark/with-context sc (-> (g/conf)
                             (conf/master "local")
                             (conf/app-name "cljds.ch8"))
    (->> (load-edgelist sc "data/twitter/396721965.edges")
         (connected-components)
         (g/vertices)
         (spark/collect)
         (into []))))

;; [#sparkling/tuple [163629705 21938120] #sparkling/tuple
;; [88491375 21938120] #sparkling/tuple [142960504 21938120] ...

By converting the graph back into an RDD, we can perform analysis in a data-parallel 
way. For example, we could determine the size of all of the connected components by 
counting the number of nodes that share the same attribute.
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Calculating the size of the largest connected 
component
In the next example, we'll use the same connected components function, but  
count the size of each connected component. We'll achieve this with Sparkling's 
count-by-value function:

(defn ex-8-28 []
  (spark/with-context sc (-> (g/conf)
                             (conf/master "local")
                             (conf/app-name "ch8"))
    (->> (load-canonical-edgelist
          sc "data/twitter_combined.txt")
         (connected-components)
         (g/vertices)
         (to-java-pair-rdd)
         (spark/values)
         (spark/count-by-value)
         (into []))))

;; [[12 81306]]

Code such as the previous example is one of the great benefits of using GraphX and 
Glittering. We can take flat data represented as an edge list, convert it into a graph 
structure to perform an iterative graph algorithm, and then convert the results back 
into a flat structure to calculate aggregates: all in a single pipeline.

The example's response indicates that all of our vertices—81,306 of them—are in one 
large connected component. This shows that everyone in the graph is connected to 
everyone else, either as a friend or a follower.

While it's useful to know that there are no isolated groups of users, it would be 
more interesting to understand how the users are organized within the connected 
component. If certain groups of users tend to be more densely connected to each 
other, then we could think of these users as forming a community.
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Detecting communities with label propagation
A community can be defined informally as a group of vertices that are more strongly 
connected to each other than they are to the vertices outside the community.

If every vertex is connected to every other vertex within the 
community, then we would call the community a clique.

Communities therefore correspond to increased density in the graph. We could  
think of communities within the Twitter network as groups of followers who tend 
to also follow each other's followers. Smaller communities might correspond to 
friendship groups, while larger communities are more likely to correspond to  
shared interest groups.

Community detection is a general technique and there are many algorithms that 
are capable of identifying communities. Depending on the algorithm, communities 
may overlap so that a user could be associated with more than one community. The 
algorithm we'll be looking at next is called label propagation and it assigns each user 
to a maximum of one community.

Label propagation can be implemented iteratively with the following steps:

1. Initialize all the vertex attributes to equal the vertex ID.
2. For each edge, send the source and destination attributes to the  

opposing node.
3. For each vertex, calculate the frequency of each incoming attribute.
4. For each vertex, update the attribute to be the most frequent of the  

incoming attributes.
5. Repeat until convergence or until maximum iteration count is reached.
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The steps of the algorithm are shown next on a graph with two communities. Each 
community is also a clique, but this is not a requirement for label propagation to 
work in general.

The code for label propagation using the pregel function is as follows:

(defn label-propagation-v [id attr msg]
  (key (apply max-key val msg)))

(defn label-propagation-m [{:keys [src-attr dst-attr]}]
  {:src {dst-attr 1}
   :dst {src-attr 1}})

(defn label-propagation [graph]
  (->> (glitter/map-vertices (fn [vid attr] vid) graph)
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       (p/pregel {:message-fn label-propagation-m
                  :combiner (partial merge-with +)
                  :vertex-fn label-propagation-v
                  :max-iterations 10})))

As before, let's walk through the code step by step.

Step one – map vertices
Step one for label propagation is identical to step one for the connected components 
algorithm we defined earlier. We use the g/map-vertices function to update each 
vertex attribute to equal the vertex ID.

Step two – send the vertex attribute
In step two, we send the opposing vertex attribute along each edge. Step three will 
require us to count the most frequent of the incoming attributes, so each message  
is a map of attribute to the value "1".

Step three – aggregate value
The combiner function receives all the messages for a vertex and produces an 
aggregate value. Since the messages are maps of attribute value to the number "1", 
we can use Clojure's merge-with function to combine the messages together with +. 
The result will be a map of attribute to frequency.

Step four – vertex function
Step four is handled by the vertex function. Given the frequency counts of all the 
incoming attributes, we want to pick the most frequent one. The (apply max-key 
val msg) expression returns the key/value pair from the map associated with 
the greatest value (the highest frequency). We pass this value to key to return the 
attribute associated with this value.

Step five – set the maximum iterations count
As with the connected components algorithm, iteration is the default behavior 
of the pregel function while there are messages to be sent. Unlike the connected 
components algorithm, we don't have a conditional clause in the earlier message 
function. In order to avoid an infinite loop, we pass :max-iterations of 10 in the 
map of options to pregel.
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Running label propagation
The following example makes use of the previous code to perform label propagation 
on the full Twitter dataset. We calculate the size of each community with Sparkling's 
count-by-value function and calculate the frequencies of the counts. The resulting 
histogram is then visualized on a log-log scatterplot using Incanter to show the 
distribution of community sizes:

 (defn ex-8-29 []
  (spark/with-context sc (-> (g/conf)
                             (conf/master "local")
                             (conf/app-name "ch8"))
    (let [xs (->> (load-canonical-edgelist
                   sc "data/twitter_combined.txt")
                  (label-propagation)
                  (g/vertices)
                  (to-java-pair-rdd)
                  (spark/values)
                  (spark/count-by-value)
                  (vals)
                  (frequencies))]
      (-> (c/scatter-plot (keys xs) (vals xs))
          (c/set-axis :x (c/log-axis :label "Community Size"))
          (c/set-axis :y (c/log-axis :label "# Communities"))
          (i/view)))))

This code generates the following chart:
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As we may have come to expect, the distribution of community sizes is also a power 
law: small communities are much more common than larger communities. The 
largest communities have around 10,000 members, while the smallest consist of just 
one member. We're beginning to tease apart the structure of the Twitter graph: we 
have a sense of how users are distributed into groups and we can hypothesize that 
the larger communities are likely to represent groups united by a shared interest.

In the final pages of this chapter, let's see whether we can establish what unites the 
largest of these communities. There are numerous ways we could go about this. If we 
had access to the tweets themselves, we could perform text analysis of the kind we 
performed in Chapter 6, Clustering to see whether there were particular words—or 
particular languages—more frequently used among these groups.

This chapter is about network analysis though, so let's just use the structure of the 
graph to identify the most influential accounts in each community. The list of the top 
ten most influential accounts might give us some indication of what resonates with 
their followers.

Measuring community influence using 
PageRank
One simplistic way of measuring influence within a community is to calculate how 
many incoming edges a particular vertex has. On Twitter, this would correspond 
to an account with a large number of followers. Such accounts represent the most 
"popular" within the network.

Counting incoming edges is a simplistic way to measure influence because it treats 
all the incoming edges as being equal. In social graphs, this is often not the case, as 
certain followers will themselves be popular accounts and therefore their follow 
carries more importance than a follower who has no followers themselves.

PageRank was developed at Stanford University in 1996 by 
Larry Page and Sergey Brin as part of the research project that 
ultimately became Google. PageRank works by counting both 
the number and quality of links to a page to determine a rough 
estimate of how important the website is.

The importance of an account is therefore based on two things: the number of 
followers and the importance of each of those followers. The importance of each 
follower is calculated in the same way. PageRank therefore has a recursive definition: 
it appears that we must calculate the importance of the followers before we can 
calculate the importance of the account, and so on.
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The flow formulation
Fortunately, it's possible to calculate PageRank iteratively. First, we initialize all the 
vertices to have the same weight. This could be a weight of one; in which case, the 
sum of all the weights equals the number of vertices N. Or, it could be a weight of 1

N ;  
in which case, the sum of all the weights will equal one. Although it doesn't change 
the fundamental algorithm, the latter is often preferred, as it means the results of 
PageRank can be interpreted as probabilities. We'll be implementing the former.

This initial weight is the PageRank r of each account at the start of the algorithm. At 
iteration one, each account sends an equal proportion of its own rank to all the pages 
it follows. After this step, the rank of account j and rj is defined as the sum of all the 
incoming ranks. We can express this with the following equation:

i
j

i j i

rr
n→

=∑

Here, ri is the rank of a follower and ni is the count of accounts they follow. Account j 
receives a proportion of the rank, i

i

r
n , from all of their followers.

If this were all there was to PageRank, then the accounts with no followers would 
already have zero rank and, at every iteration, the most popular pages would just 
get more and more popular. PageRank therefore also includes a damping factor. 
This factor ensures that even the least popular accounts retain some weight and that 
the algorithm can converge to stable values. This can be expressed by modifying the 
previous equation:

1
N

i
j

i j i

rdr d
n→

−
= − ∑

Here, d is the damping factor. A common damping factor to use is 85 percent.
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The effect of the damping factor for a group of eleven accounts is visualized in the 
following diagram:

Without the damping factor, all the weight would eventually accrue on accounts  
A, B, and C. With the damping factor, even the small accounts with no follows 
continue to receive a small percentage of the overall weight. Even though  
account E has more followers, account C has a higher rank, because it is  
followed by high-ranking account.

Implementing PageRank with Glittering
We implement PageRank with the pregel function in the following example code. 
The structure of the code should be familiar to you by now, although we will be 
making use of several new Glittering functions:

(def damping-factor 0.85)

(defn page-rank-v [id prev msgsum]
  (let [[rank delta] prev
        new-rank (+ rank (* damping-factor msgsum))]
    [new-rank (- new-rank rank)]))

(defn page-rank-m [{:keys [src-attr attr]}]
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  (let [delta (second src-attr)]
    (when (> delta 0.1)
      {:dst (* delta attr)})))

(defn page-rank [graph]
  (->> (glitter/outer-join-vertices (fn [id attr deg] (or deg 0))
                                    (glitter/out-degrees graph)
                                    graph)
       (glitter/map-triplets (fn [edge]
                               (/ 1.0 (glitter/src-attr edge))))
       (glitter/map-vertices (fn [id attr] (vector 0 0)))
       (p/pregel {:initial-message (/ (- 1 damping-factor)
                                      damping-factor)
                  :direction :out
                  :vertex-fn page-rank-v
                  :message-fn page-rank-m
                  :combiner +
                  :max-iterations 20})
       (glitter/map-vertices (fn [id attr] (first attr)))))

We begin in the usual way, using outer-join-vertices to join out-degrees of 
every node to itself. After this step, every node's attribute is equal to its number of 
outgoing links. Then, we use map-triplets to set all the edge attributes to be the 
inverse of their source vertex's attribute. The net effect is that each vertex's rank is 
split equally among all of its outgoing edges.

After this initialization step, we use map-edges to set the attribute of each node to the 
default value: a vector of two zeros. The vector contains the current page rank and 
the difference between this iteration's rank and the previous iteration's rank. Based 
on the size of the difference, our message function is able to decide whether or not to 
keep iterating.

Sort by highest influence
Before we run PageRank on the communities identified by label propagation, we'll 
implement a utility function to list just the top 10 accounts in descending order 
of their ranks. The top-n-by-pagerank function will allow us to only show the 
accounts with the largest rank:

(defn top-n-by-pagerank [n graph]
  (->> (page-rank graph)
       (g/vertices)
       (to-java-pair-rdd)
       (spark/map-to-pair
        (s-de/key-value-fn
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         (fn [k v]
           (spark/tuple v k))))
       (spark/sort-by-key false)
       (spark/take n)
       (into [])))

Once again, the fact that we can easily convert between graph and table 
representations of our data to enable this sort of data manipulation is one of the 
major benefits of using Glittering and Sparkling together for the graph analysis.

Finally, it will also be useful to have a function that returns the most frequently 
occurring node attributes appearing in the first line:

(defn most-frequent-attributes [graph]
  (->> (g/vertices graph)
       (to-java-pair-rdd)
       (spark/values)
       (spark/count-by-value)
       (sort-by second >)
       (map first)))

Given the output of label propagation, this function will return the community IDs 
as a sequence in the order of descending sizes.

Running PageRank to determine community 
influencers
At last, we can bring together all the earlier code to identify the most resonant interests 
of the communities identified by label propagation. Unlike the other algorithms we've 
implemented with Glittering so far, we're sending our messages in the direction of 
follow rather than in the canonical direction. Therefore in the next example, we'll load 
the graph with load-edgelist, which preserves the follow direction:

 (defn ex-8-30 []
  (spark/with-context sc (-> (g/conf)
                             (conf/master "local")
                             (conf/app-name "ch8"))
    (let [communities (->> (load-edgelist
                            sc "data/twitter_combined.txt")
                           (label-propagation))
          by-popularity (most-frequent-attributes 2 communities)]
      (doseq [community (take 10 by-popularity)]
        (println
         (pagerank-for-community community communities))))))
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This code will take a little while to run, but will eventually return a sequence of the 
most important nodes in each of the ten most popular community graphs as shown 
in the following example:

;;[#sparkling/tuple [132.8254006818738 115485051]
;;#sparkling/tuple [62.13049747055527 62581962]
;;#sparkling/tuple [49.80716333905785 65357070]
;;#sparkling/tuple [46.248688749879875 90420314] ...]

The first element of each tuple is the PageRank we've calculated for the vertex and 
the second element of each tuple is the node ID. The Twitter vertex IDs correspond 
to Twitter's own IDs. The accounts haven't been anonymized, so we can look up the 
Twitter accounts they correspond to.

At the time of writing, we can look up a Twitter account by ID using 
Twitter's Intent API available at https://twitter.com/intent/
user?user_id={$USER_ID}. Substituting {$USER_ID} for Twitter's 
numeric ID will return the basic profile information.

The accounts with the highest PageRank in community one are American comic and 
talk show host Conan O'Brien with Barack Obama, Felicia Day, and Neil Patrick 
Harris. We could broadly categorize these people as American celebrities. It's not 
entirely surprising that on Twitter, the largest community is gathered around some 
of the largest accounts with the broadest general appeal.

Moving down the list, the second-largest community features among its top 
influencers the band Paramore, its members Hayley and Taylor, as well as Lady 
Gaga. This community clearly has a very specific set of musical interests.

Communities three and four both appear to have a strong gaming bias featuring 
X-Box, PlayStation, Steam, and Markus Persson (the creator of Minecraft) as 
their top influencers.

Bear in mind that we've already established that the whole graph is a part of 
one connected component, so we're not looking at disjoint sets of users. Using a 
combination of label propagation and PageRank, we are able to determine the 
groups of Twitter users with related interests.



Chapter 8

[ 463 ]

Summary
In this chapter, we've learned about graphs: a useful abstraction to model a huge 
variety of phenomena. We started the chapter using the Clojure library Loom to 
visualize and traverse small graphs of Twitter followers. We learned about two 
different methods of graph traversal, depth-first and breadth-first search, and the 
effect of changing edge weights on the paths discovered by Dijkstra's algorithm and 
Prim's algorithm. We also looked at the density of the whole graph and plotted the 
degree distributions to observe the difference between random and scale-free graphs.

We introduced GraphX and the Clojure library Glittering as a means of processing 
large graphs in a scalable way using Spark. In addition to providing several 
built-in graph algorithms, Glittering also exposes GraphX's Pregel API: a set of 
three symbiotic functions to express graph algorithms in a vertex-centric way. 
We showed that this alternative model of computation could be used to express 
triangle counting, connected components, label propagation, and finally PageRank 
algorithms, and chained our label propagation and PageRank steps together to 
determine the top influencers for a set of Twitter communities.

This was our last chapter using parallel computing techniques. In the next chapter, 
we'll focus on local data processing, but we'll continue the thread of recursive 
analysis. We'll cover methods to deal with time series data—ordered sequences 
of observations in time—and demonstrate how recursive functions can be used to 
produce forecasts.
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Time Series
"Again time elapsed."

                                                     - Carolyn Keene, The Secret of the Old Clock

In several of the previous chapters, we saw how we can apply iterative algorithms 
to identify solutions to complex equations. We first encountered this with gradient 
descent—both batch and stochastic—but most recently we saw it in community 
detection in graphs using the graph-parallel model of computation.

This chapter is about time series data. A time series is any data series that consists 
of regular observations of a quantity arranged according to the time of their 
measurement. For many of the techniques in this chapter to work, we require that 
the intervals between successive observations are all equal. The period between 
measurements could be monthly in the case of sales figures, daily in the case of rainfall 
or stock market fluctuations, or by minute in the case of hits to a high-traffic website.

For us to be able to predict the future values of a time series, we require that the 
future values are, to some extent, based on the values that have come before. This 
chapter is therefore also about recursion: how we can build up a sequence where 
each new value is a function of the previous values. By modeling a real time series as 
a process where new values are generated in this way, we hope to be able to simulate 
the sequence forwards in time and produce a forecast.

Before we get to recursion though, we'll learn how we can adapt a technique we've 
already encountered—linear regression—to fit curves to time series data.
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About the data
This chapter will make use of two datasets that come pre-installed with Incanter: 
the Longley dataset, which contains data on seven economic variables measured 
in the United States between the years 1947 to 1962, and the Airline dataset, which 
contains the monthly total airline passengers from January 1949 to December 1960.

You can download the source code for this chapter from  
https://github.com/clojuredatascience/ch9-time-series.

The Airline dataset is where we will spend most of our time in this chapter, but first 
let's look at the Longley dataset. It contains columns including the gross domestic 
product (GDP), the number of employed and unemployed people, the population, 
and the size of the armed forces. It's a classic dataset for analyzing multicollinearity 
since many of the predictors are themselves correlated. This won't affect the analysis 
we're performing since we'll only be using one of the predictors at a time.

Loading the Longley data
Since Incanter includes the Longley dataset as part of its sample datasets library, 
loading the data in is a simple matter of calling incanter.datasets/get-dataset 
with :longley as the only argument. Once loaded, we'll view the dataset with 
incanter.core/view:

(defn ex-9-1 []
  (-> (d/get-dataset :longley)
      (i/view)))

https://github.com/clojuredatascience/ch9-time-series


Chapter 9

[ 467 ]

The data should look something like this:

The data was originally published by the National Institute for Standards and 
Technology as a statistical reference dataset and the column descriptions are listed 
on their website at http://www.itl.nist.gov/div898/strd/lls/data/LINKS/i-
Longley.shtml. We'll be considering the final three columns x4: the size of the armed 
forces, x5: the "non-institutional" population aged 14 and over, and x6: the year.

First, let's see how population changes with respect to time:

(defn ex-9-2 []
  (let [data (d/get-dataset :longley)]
    (-> (c/scatter-plot (i/$ :x6 data)
                        (i/$ :x5 data)
                        :x-label "Year"
                        :y-label "Population")
        (i/view))))

http://www.itl.nist.gov/div898/strd/lls/data/LINKS/i-Longley.shtml
http://www.itl.nist.gov/div898/strd/lls/data/LINKS/i-Longley.shtml
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The preceding code generates the following chart:

The plot of population against year shows a very clear not-quite-linear relationship. 
The slight curve suggests that the population growth rate is increasing as the 
population increases.

Recall Gibrat's law from Chapter 3, Correlation, the growth rate of firms 
is proportional to their size. It's common to see growth curves similar 
to the preceding one when analyzing populations where Gibrat's law 
applies: the rate of growth will tend to increase over time.

We have seen how to fit a straight line through data with Incanter's linear model. 
Perhaps surprisingly, it's also possible to fit curves with the linear-model function.
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Fitting curves with a linear model
First, let's remind ourselves how we would fit a straight line using Incanter's  
linear-model function. We want to extract the x5 and x6 columns from the  
dataset and apply them (in that order: x6, the year, is our predictor variable)  
to the incanter.stats/linear-model function.

(defn ex-9-3 []
  (let [data  (d/get-dataset :longley)
        model (s/linear-model (i/$ :x5 data)
                              (i/$ :x6 data))]
    (println "R-square" (:r-square model))
    (-> (c/scatter-plot (i/$ :x6 data)
                        (i/$ :x5 data)
                        :x-label "Year"
                        :y-label "Population")
        (c/add-lines (i/$ :x6 data)
                     (:fitted model))
        (i/view))))

;; R-square 0.9879

The preceding code generates the following chart:
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While the straight line is a close fit to the data—generating an R2 of over 0.98—it 
doesn't capture the curve of the line. In particular, we can see that points diverge 
from the line at either end and in the middle of the chart. Our straightforward 
model has high bias and is systematically under- and over-predicting the population 
depending on the year. A plot of the residuals would clearly show that the errors are 
not normally distributed with equal variance.

The linear-model function is so-called because it generates models that have a 
linear relationship with their parameters. However, and perhaps surprisingly, it's 
capable of generating non-linear predictions, provided we supply it with non-linear 
features. For example, we could add the year squared as a parameter, in addition to 
the year. In the following code, we do this using Incanter's bind-columns function to 
create a matrix of both of these features:

(defn ex-9-4 []
  (let [data  (d/get-dataset :longley)
        x     (i/$ :x6 data)
        xs    (i/bind-columns x (i/sq x))
        model (s/linear-model (i/$ :x5 data) xs)]
    (println "R-square" (:r-square model))
    (-> (c/scatter-plot (i/$ :x6 data)
                        (i/$ :x5 data)
                        :x-label "Year"
                        :y-label "Population")
        (c/add-lines (i/$ :x6 data)
                     (:fitted model))
        (i/view))))

;; 0.9983
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Our R2 has increased and we get the following chart:

This appears to be a much better fit for the data. We can use our model for 
forecasting by creating a forecast function that takes the coefficients of the  
model and returns a function of x, the year, that multiplies them them by the  
features we've defined:

(defn forecast [coefs]
  (fn [x]
    (first
     (i/mmult (i/trans coefs)
              (i/matrix [1.0 x (i/sq x)])))))

The coefficients includes a parameter for the bias term, so we're multiplying the 
coefficients by 1.0, x, and x2.

(defn ex-9-5 []
  (let [data  (d/get-dataset :longley)
        x     (i/$ :x6 data)
        xs    (i/bind-columns x (i/sq x))
        model (s/linear-model (i/$ :x5 data) xs)]
    (-> (c/scatter-plot (i/$ :x6 data)
                        (i/$ :x5 data)
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                        :x-label "Year"
                        :y-label "Population")
        (c/add-function (forecast (:coefs model))
                        1947 1970)
        (i/view))))

Next, we extend our function plot all the way to 1970 to more clearly see the curve of 
the fitted model as follows:

Of course, we are extrapolating beyond the bounds of our data. As discussed back in 
Chapter 3, Correlation, it is generally unwise to extrapolate very far. To illustrate why 
more clearly, let's turn our attention to another column in the Longley dataset, the 
size of the armed forces: x6.

We can plot this in the same way as before:

(defn ex-9-6 []
  (let [data (d/get-dataset :longley)]
    (-> (c/scatter-plot (i/$ :x6 data)
                        (i/$ :x4 data)
                        :x-label "Year"
                        :y-label "Size of Armed Forces")
        (i/view))))
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This generates the following chart:

This is clearly a much more complicated series. We can see a sharp increase in the 
size of the armed forces between 1950 and 1952 followed by a gentle decline. On  
June 27th 1950, President Truman ordered air and naval forces to assist South Korea 
in what would become known as the Korean War.

To fit a curve to these data, we'll need to generate higher order polynomials. First, 
let's construct a polynomial-forecast function that will create the higher-order 
features for us automatically, based on a single x and the highest-degree polynomial 
to create:

(defn polynomial-forecast [coefs degree]
  (fn [x]
    (first
     (i/mmult (i/trans coefs)
              (for [i (range (inc degree))]
                (i/pow x i))))))
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For example, we could train a model all the way up to x11 using the following code:

(defn ex-9-7 []
  (let [data (d/get-dataset :longley)
        degree 11
        x  (s/sweep (i/$ :x6 data))
        xs (reduce i/bind-columns
                   (for [i (range (inc degree))]
                     (i/pow x i)))
        model (s/linear-model (i/$ :x4 data) xs
                              :intercept false)]
    (println "R-square" (:r-square model))
    (-> (c/scatter-plot (i/$ 1 xs) (i/$ :x4 data)
                        :x-label "Distance from Mean (Years)"
                        :y-label "Size of Armed Forces")
        (c/add-function (polynomial-forecast (:coefs model)
                                             degree)
                        -7.5 7.5)
        (i/view))))

;; R-square 0.9755

The preceding code generates the following chart:
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The curve fits the data quite well, with an R2 of over 0.97. However, it should come 
as no surprise to you now to discover that we are overfitting the data. The model we 
have built is unlikely to have very much forecasting power. In fact, if we extend the 
range of the chart to the right, as we do with ex-9-8 to show predictions into the 
future, we obtain the following:

Just two-and-a-half years after the last measured data point, our model is predicting 
that the military will grow more than 500 percent to over 175,000 people.
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Time series decomposition
One of the problems that we have modeling the military time series is that there is 
simply not enough data to be able to produce a general model of the process that 
produced the series. A common way to model a time series is to decompose the 
series into a number of separate components:

• Trend: Does the series generally increase or decrease over time? Is the trend 
an exponential curve as we saw with the population?

• Seasonality: Does the series exhibit periodic rises and falls at a set number  
of intervals? For monthly data it is common to observe a period cycle of  
12 months.

• Cycles: Are there longer-term cycles in the dataset that span multiple 
seasons? For example, in financial data we might observe multi-year  
cycles corresponding to periods of expansion and recession.

Another way of specifying the issue with the military data is that there is not 
enough information to determine whether or not there is a trend, and whether the 
observed peak is part of a seasonal or cyclic pattern. Although the data appears to 
trend upwards, it could be that we are looking closely at a cycle that will eventually 
decline back to where it started.

One of the datasets that we'll study in this chapter is a classic time series looking at 
monthly airline passenger numbers from 1949-1960. This dataset is larger and clearly 
exhibits trend and seasonal components.

Inspecting the airline data
Like the Longley dataset, the Airline dataset is part of Incanter's datasets library.  
We load the incanter.datasets library as d and incanter.code as i.

(defn ex-9-9 []
  (-> (d/get-dataset :airline-passengers)
      (i/view)))
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The first few rows should look like this:

When analyzing time series, it's important that the data is ordered sequentially in 
time. This data is ordered by year and by month. All the January data is followed by 
all the February data, and so on. To proceed further, we'll need to convert the year and 
month columns into a single column we can sort by. For this, we'll use the clj-time 
library (https://github.com/clj-time/clj-time) once again.

Visualizing the airline data
When parsing times previously in Chapter 3, Correlation, we were able to take 
advantage of the fact that the string representation of the time was a default 
format that clj-time understood. Clj-time is not able to automatically infer all time 
representations of course. Particularly problematic is the difference between the 
mm/dd/yyyy American format and the dd/mm/yyyy favored by most of the rest of the 
world. The clj-time.format namespace provides a parse function that allows 
us to pass a format string instructing the library how it should interpret the string. 
We're including the format namespace as tf in the following code and specifying 
that our time will be expressed in the format "MMM YYYY".

A list of formatter strings used by clj-time is available at  
http://www.joda.org/joda-time/key_format.html.

In other words, three characters of "month" followed by four characters of "year".

(def time-format
  (tf/formatter "MMM YYYY"))

(defn to-time [month year]
  (tf/parse time-format (str month " " year)))

https://github.com/clj-time/clj-time
http://www.joda.org/joda-time/key_format.html
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With the earlier functions in place we can parse our year and month columns into a 
single time, order them sequentially, and extract the passenger numbers:

(defn airline-passengers []
  (->> (d/get-dataset :airline-passengers)
       (i/add-derived-column :time [:month :year] to-time)
       (i/$order :time :asc)
       (i/$ :passengers)))

The result is a sequence of numbers representing the passenger count in order of 
ascending time. Let's visualize this as a line chart now:

(defn timeseries-plot [series]
  (-> (c/xy-plot (range (count series)) series
               :x-label "Time"
               :y-label "Value")
      (i/view)))

(defn ex-9-10 []
  (-> (airline-passengers)
      (timeseries-plot)))

The preceding code generates the following chart:
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You can see how the data has a pronounced seasonal pattern (repeating every  
12 months), an upward trend, and a gentle growth curve.

The variance to the right of the chart is greater than the variance to the left, so we say 
that the data is exhibiting some heteroscedasticity. We'll want to remove the increase 
in variance and also the upward trend from the dataset. This will yield a time series 
which is stationary.

Stationarity
A stationary time series is one whose statistical properties are constant in time. 
Most statistical forecasting methodologies assume the series has been transformed 
to be stationary. A prediction is made much easier with a stationary time series: we 
assume the statistical properties of the series will be the same in the future as they 
have been in the past. To remove both the increasing variance and the growth curve 
from the airline data, we can simply take the logarithm of the passenger numbers:

(defn ex-9-11 []
  (-> (airline-passengers)
      (i/log)
      (timeseries-plot)))

This generates the following chart:
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The effect of taking the logarithm is twofold. Firstly, the heteroscedasticity evident in 
the initial chart has been removed. Secondly, the exponential growth curve has been 
reduced to a straight line.

This has made the data much easier to work with but we still have a trend, also 
known as drift, in the series. To get a truly stationary time series, we'll want to 
stabilize the mean as well. There are several ways to do this.

De-trending and differencing
The first method is de-trending the series. After taking the logarithm, the airline 
dataset contains a very strong linear trend. We could fit a linear model to this data 
and then plot the residuals:

(defn ex-9-12 []
  (let [data (i/log (airline-passengers))
        xs   (range (count data))
        model (s/linear-model data xs)]
    (-> (c/xy-plot xs (:residuals model)
                   :x-label "Time"
                   :y-label "Residual")
        (i/view))))

This generates the following chart:
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The residual plot shows a series whose mean is much more stable than the original 
series and the upward trend has been entirely removed. Unfortunately, though, the 
residuals don't appear to be quite normally distributed around the new mean. In 
particular there appears to be a "hump" in the middle of the chart. This suggests that 
our linear model is not performing ideally on the airline data. We could fit a curve to 
the data like we did at the beginning of the chapter, but let's instead look at another 
method of making time series stationary.

The second method is differencing. If we subtract the value of the directly preceding 
point from each point in the time series, we'll obtain a new time series (one data 
point shorter) that contains only the differences between successive points.

(defn difference [series]
  (map - (drop 1 series) series))

(defn ex-9-13 []
  (-> (airline-passengers)
      (i/log)
      (difference)
      (timeseries-plot)))

We can see the effect in the following chart:
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Notice how the upward trend has been replaced with a series of fluctuations 
around a constant mean value. The mean is slightly above zero, corresponding to an 
increased propensity for differences to be positive and leading to the upward trend 
we observe.

Both techniques aim to result in a series whose mean is constant. In some cases, it 
may be necessary to difference the series more than once, or to apply differencing 
after de-trending to obtain a series which a truly a stable mean. Some drift is still 
evident in the series after de-trending, for example, so we'll use the differenced data 
for the rest of this chapter.

Before moving on to discuss how to model such time series for forecasting, let's take 
a detour to think about what a time series is, and how we might model a time series 
as a recursive process.

Discrete time models
Discrete time models, such as the ones we have been looking at so far, separate time 
into slices at regular intervals. For us to be able to predict future values of time slices, 
we assume that they are dependent on past slices.

Time series can also be analyzed with respect to frequency rather than 
time. We won't discuss frequency domain analysis in this chapter 
but the book's wiki at http://wiki.clojuredatascience.com 
contains links to further resources.

In the following, let yt denote the value of an observation at time t. The simplest time 
series possible would be one where the value of each time slice is the same as the one 
directly preceding it. The predictor for such a series would be:

1|ˆt t ty y+ =

This is to say that the prediction at time t + 1 given t is equal to the observed value 
at time t. Notice that this definition is recursive: the value at time t depends on the 
value at t - 1. The value at t - 1 depends on the value at t - 2, and so on.

http://wiki.clojuredatascience.com
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We could model this "constant" time series as a lazy sequence in Clojure, where each 
value in the sequence is a constant value:

(defn constant-series [y]
  (cons y (lazy-seq (constant-series y))))

(defn ex-9-14 []
  (take 5 (constant-series 42)))

;; (42 42 42 42 42)

Notice how the definition of constant-series contains a reference to itself. This is 
a recursive function definition that creates an infinite lazy sequence from which we 
can consume values.

The next time slice, at time t + 1, the actual value is observed to be yt+1. If this value 
and our predicted value 1|ˆt ty +  differ, then we can compute this difference as the error 
of our prediction:

1 1 1|ˆt t t ty yε + + += −

By combining the two previous equations we obtain the stochastic model for a  
time series.

1t t ty y ε−= +

In other words, the value at the current time slice is the value at the previous time 
slice, plus some error.

Random walks
One of the simplest stochastic processes is the random walk. Let's extend our 
constant-series into a random-walk process. We'll want our errors to be normally 
distributed with a zero mean and constant variance. Let's simulate random noise 
with a call to Incanter's stats/sample-normal function.

(defn random-walk [y]
  (let [e (s/sample-normal 1)
        y (+ y e)]
    (cons y (lazy-seq (random-walk y)))))

(defn ex-9-15 []
  (->> (random-walk 0)
       (take 50)
       (timeseries-plot)))
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You'll get a different result, of course, but it should look similar to the following chart:

The random walk model is very often seen in finance and econometrics.

The term random walk was first introduced by Karl Pearson in 1905. 
Many processes—from fluctuating stock prices to the path traced by 
a molecule as it travels in a gas—can be modeled as simple random 
walks. In 1973, the Princeton economist Burton Gordon Malkiel argued 
in his book A Random Walk Down Wall Street that stock prices evolve 
according to a random walk as well.



Chapter 9

[ 485 ]

The random walk is not entirely unpredictable. Although the difference between each 
point and the next is governed by a random process, the variance of that difference 
is constant. This means that we can estimate confidence intervals for the magnitude 
of each step. However, since the mean is zero we cannot say with any confidence 
whether the difference will be positive or negative relative to the current value.

Autoregressive models
We've seen already in this chapter how to use a linear model to make a prediction 
based on a linear combination of predictors. In an autoregressive model we forecast  
the variable of interest by using a linear combination of the past values of the variable.

The autoregressive model regresses the predictor against itself. In order to see how 
this works in practice, let's look at the following code:

(defn ar [ys coefs sigma]
  (let [e (s/sample-normal 1 :sd sigma)
        y (apply + e (map * ys coefs))]
    (cons y (lazy-seq
             (ar (cons y ys) coefs sigma)))))

This shares much in common with the random walk recursive definition that we 
encountered a few pages previously. This time, however, we're generating each  
new y as a product of previous ys and the coefs.

We can generate an autoregressive series with a call to our new ar function, passing 
the previous ys and the coefficients of the autoregressive model:

(defn ex-9-16 []
  (->> (ar [1] [2] 0)
       (take 10)
       (timeseries-plot)))
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This generates the following chart:

By taking an initial value of 1.0 and a coefficient of 2.0, with zero noise, we're 
creating an exponential growth curve. Each time step in the series is a power of two.

The autoregressive series is said to be autocorrelated. In other words, each point is 
linearly correlated to its preceding points. In the earlier case, this is simply twice 
the preceding value. The quantity of coefficients is said to be the order of the 
autocorrelation model and is often denoted by the letter p. The preceding example  
is therefore an autoregressive process with p=1, or an AR(1) process.

More intricate autoregressive series can be generated by increasing p.

(defn ex-9-17 []
  (let [init (s/sample-normal 5)]
    (->> (ar init [0 0 0 0 1] 0)
         (take 30)
         (timeseries-plot))))
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For example, the previous code generates an autoregressive time series of order 5,  
or an AR(5) series. The effect is visible in the series as a regular cycle with a period  
of 5 points.

We can combine the autoregressive model together with some noise to introduce a 
component of the random walk we saw previously. Let's increase sigma to 0.2:

(defn ex-9-18 []
  (let [init (s/sample-normal 5)]
    (->> (ar init [0 0 0 0 1] 0.2)
         (take 30)
         (timeseries-plot))))
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This generates the following chart:

Notice how the characteristic "seasonal" cycle every five points is preserved, but has 
been combined with an element of noise too. Although this is simulated data, this 
simple model is beginning to approach the sort of series that regularly appears in 
time series analysis.

The general equation for an AR model of one lag is given by:

1 1t t ty c yε ϕ −= + +

where c is some constant, εt is the error, yt-1 is the value of the series at the previous 
time step, and φ1 is the coefficient denoted by the Greek symbol phi. More generally, 
the equation for an autoregressive model up to p lags is given by:

1 1t t t p t py c y yε ϕ ϕ− −= + + + +…

Since our series are stationary, we have omitted the constant term c in the code.
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Determining autocorrelation in AR models
Just as linear regression can establish a (linear) correlation between multiple 
independent variables, autoregression can establish a correlation between a  
variable and itself at different points in time.

Just as in linear regression we sought to establish correlation between the predictors 
and the response variable, so in time series analysis we seek to establish an 
autocorrelation with the time series and itself at a certain number of lags. Knowing 
the number of lags for which autocorrelation exists allows us to calculate the order of 
the autoregressive model.

It follows that we want to study the autocorrelation of the series at different lags. 
For example, a lag of zero will mean that we compare each point with itself (an 
autocorrelation of 1.0). A lag of 1 will mean that we compare each point with the 
directly preceding point. The autocorrelation function (ACF) is a linear dependence 
between a dataset and itself with a given lag. The ACF is therefore parameterized by 
the lag, k.

( )| corr ,y k t t ky yρ −=

Incanter contains an auto-correlation function that will return the autocorrelation 
for a given sequence and lag. However, we're defining our own autocorrelation 
function that will return the autocorrelation for a sequence of lags:

(defn autocorrelation* [series variance n k]
  (let [lag-product (->> (drop k series)
                         (map * series)
                         (i/sum))]
    (cons (/ lag-product variance n)
          (lazy-seq
           (autocorrelation* series variance n (inc k))))))

(defn autocorrelation [series]
  (autocorrelation* (s/sweep series)
                    (s/variance series)
                    (dec (count series)) 0))

Before calculating the autocorrelation, we use sweep function of incanter.stats 
to remove the mean from the series. This means that we can simply multiply the 
values of the series together with the values at lag k to determine whether they have 
a tendency to vary together. If they do, their products will be positive; if not, their 
products will be negative.
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This function returns an infinite lazy sequence of autocorrelation values 
corresponding to the autocorrelation of lags 0...k. Let's define a function for plotting 
these values as a bar chart. As with the timeseries-plot, this function will accept 
an ordered sequence of values:

(defn bar-plot [ys]
  (let [xs (range (count ys))]
    (-> (c/bar-chart xs ys
                     :x-label "Lag"
                     :y-label "Value")
        (i/view))))

(defn ex-9-19 []
  (let [init (s/sample-normal 5)
        coefs [0 0 0 0 1]]
    (->> (ar init coefs 0.2)
         (take 100)
         (autocorrelation)
         (take 15)
         (bar-plot))))

This generates the following chart:
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The peaks every 5 lags are consistent with our AR(5) series generator. They 
diminish over time as noise interferes with the signal and decreases the measured 
autocorrelation.

Moving-average models
An assumption of AR models is that noise is random with constant mean and 
variance. Our recursive AR function sampled values from the normal distribution to 
generate noise that satisfied these assumptions. In an AR process, therefore, the noise 
terms are uncorrelated with each other.

In some processes, though, the noise terms themselves are not uncorrelated. For an 
example of this consider a time series that reports the daily number of barbeques 
sold. We might observe peaks every 7 days corresponding to customers' increased 
likelihood of buying barbeques at the weekend. Occasionally, we might observe a 
period of several weeks where the total sales are down, and other periods of several 
weeks where the sales are correspondingly up. We might reason that this is due to 
the weather, with poor sales corresponding to a period of cold or rainy weather and 
good sales corresponding to a period of favorable weather. Whatever the cause, it 
will appear in our data as a pronounced shift in the mean value of the series. Series 
that exhibit this behavior are called moving-average (MA), models.

A first-order moving-average model, denoted by MA(1), is:

1 1+t t ty µ ε θ ε −= +

where μ is the mean of the series, εt are the noise values, and θ1 is the parameter to 
the model. More generally for q terms the MA model is given by:

1 1+t t t q t qy µ ε θ ε θ ε− −= + + +…

Thus, an MA model is conceptually a linear regression of the current value of the series 
against current and previous (unobserved) white noise error terms or random shocks. 
The error terms at each point are assumed to be mutually independent and come from 
the same (usually normal) distribution with zero mean and constant variance.
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In MA models, we make the assumption that the noise values themselves are 
autocorrelated. We can model it like this:

(defn ma [es coefs sigma]
  (let [e (s/sample-normal 1 :sd sigma)
        y (apply + e (map * es coefs))]
    (cons y (lazy-seq
             (ma (cons e es) coefs sigma)))))

Here, es are the previous errors, coefs are the parameters to the MA model, and 
sigma is the standard deviation of the errors.

Notice how the function differs from the ar function previously defined. Instead of 
retaining a sequence of the previous ys, we retain a sequence of the previous es. Let's 
see what sort of series an MA model generates:

(defn ex-9-20 []
  (let [init (s/sample-normal 5)
        coefs [0 0 0 0 1]]
    (->> (ma init coefs 0.5)
         (take 100)
         (timeseries-plot))))

This generates a graph similar to the following:
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You can see that the chart for an MA lacks the obvious repetition of the AR model. 
Viewed over a longer series of points, though, you can see how it reintroduces drift 
into the model as the reverberations of one random shock are perpetuated in a new 
temporary mean.

Determining autocorrelation in MA models
You may wonder if an autocorrelation plot would help identify an MA process. Let's 
plot that now. An MA model can be harder to spot, so we'll generate more points 
before plotting the autocorrelation.

(defn ex-9-21 []
  (let [init (s/sample-normal 5)
        coefs [0 0 0 0 1]]
    (->> (ma init coefs 0.2)
         (take 5000)
         (autocorrelation)
         (take 15)
         (bar-plot))))

This generates the following chart:
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You can see on the preceding chart how it clearly shows the order of the MA process 
with a pronounced peak at lag 5. Notice though that, unlike the autoregressive 
process, there is no recurring peak every 5 lags. It's a feature of the MA process that, 
since the process introduces drift into the mean, autocorrelation for the other lags is 
greatly diminished.

Combining the AR and MA models
The AR and MA models that we've been considering so far this chapter are two 
different but closely related ways of generating autocorrelated time series. They are 
not mutually exclusive, though, and when trying to model real time series you'll 
often encounter situations where the series appears to be a mixture of both.

1 1

p q

t t i t i i t i
i i

y c yε ϕ θ ε− −
= =

= + + +∑ ∑

We can combine both AR and MA processes into a single ARMA model,  
with two sets of coefficients: those of the autoregressive model and those of the 
moving-average model. The number of coefficients for each model need not be 
identical, and by convention the order of the AR model is identified by p and the 
order of the MA model identified by q.

(defn arma [ys es ps qs sigma]
  (let [e  (s/sample-normal 1 :sd sigma)
        ar (apply + (map * ys ps))
        ma (apply + (map * es qs))
        y  (+ ar ma e)]
    (cons y (lazy-seq
                (arma (cons y ys)
                      (cons e es)
                      ps qs sigma)))))

Let's plot a longer series of points to see what sort of structure emerges:

(defn ex-9-22 []
  (let [ys (s/sample-normal 10 :sd 1.0)
        es (s/sample-normal 10 :sd 0.2)
        ps [0 0 0 0.3 0.5]
        qs [0.2 0.8]]
    (->> (arma ys es ps qs 0.2)
         (take 500)
         (timeseries-plot))))
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Notice how we're specifying a different number of parameters for the AR and MA 
portions of the model: 5 parameters for the AR and 2 parameters for the MA model. 
This is referred to as an ARMA(5,2) model.

The plot of the earlier ARMA model over a longer series of points allows the effect 
of the MA terms to become visible. At this scale we can't see the effect of the AR 
component, so let's run the series though an autocorrelation plot as before:

(defn ex-9-23 []
  (let [ys (s/sample-normal 10 :sd 1.0)
        es (s/sample-normal 10 :sd 0.2)
        ps [0 0 0 0.3 0.5]
        qs [0.2 0.8]]
    (->> (arma ys es ps qs 0.2)
         (take 500)
         (autocorrelation)
         (take 15)
         (bar-plot))))
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You should see a chart similar to the following:

Far from making the order of the series clearer, with more data and both AR and MA 
components in the series the ACF plot is not very useful and quite unlike the strikingly 
clear autocorrelation plots that we have been looking at so far. The autocorrelation 
decays slowly to zero making it impossible to determine the order of the AR and MA 
processes, even though we've provided it with a large quantity of data.

The reason for this is that the MA portion of the model is overwhelming the AR 
portion of the model. We can't determine a cyclic pattern in the data because it is 
hidden behind a moving average that makes all points that are close to each other 
appear correlated. The best approach to fixing this is to plot the partial autocorrelation.

Calculating partial autocorrelation
The partial autocorrelation function (PACF) aims to address the issue of spotting 
cyclic components in a hybrid ARMA model. It's defined as the correlation 
coefficient between yt and yt+k given all the in-between observations. In other words, 
it's the autocorrelation at lag k that isn't already accounted for by lags 1 through k-1.
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The first order, lag 1 partial autocorrelation is defined to equal the first order 
autocorrelation. The second order, lag 2 partial autocorrelation is equal to:

( ) ( )
( ) ( )

2 1

1 2 1

cov , |
, 2

var | var |
t t t

t t t t

y y y
R t t

y y y y
− −

− − −
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This is the correlation between values two time periods apart, yt and yt-2, conditional 
on knowledge of yt-1. In a stationary time series, the two variances in the denominator 
will be equal.

The third order, lag 3 partial autocorrelation is equal to:
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And so on, for any lag.

Autocovariance
The equations for partial autocorrelation require us to calculate the covariance of 
our data with itself at some lag. This is called the autocovariance. We have seen in 
previous chapters how to measure the covariance between two series of data, the 
tendency of two or more attributes to vary together. This function is very similar 
to the autocorrelation function we defined earlier in the chapter, and calculates the 
autocovariance for a range of lags beginning at zero:

(defn autocovariance* [series n k]
  (let [lag-product (->> (drop k series)
                         (map * series)
                         (i/sum))]
    (cons (/ lag-product n)
          (lazy-seq
           (autocovariance* series n (inc k))))))

(defn autocovariance [series]
  (autocovariance* (s/sweep series) (count series) 0))

As before, the return value will be a lazy sequence of lags, so we'll be sure to take 
only the values we need.
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PACF with Durbin-Levinson recursion
Because of the need to account for previously explained variation, calculating  
partial autocorrelation is a lot more involved than calculating autocorrelation.  
The Durbin-Levinson algorithm provides a way to calculate it recursively.

Durbin-Levinson recursion, or simply Levinson Recursion, is a 
method for calculating the solution to equations involving matrices 
with constant values on the diagonals (called Toeplitz matrices). 
More information is available at https://en.wikipedia.org/
wiki/Levinson_recursion.

An implementation of Levinson recursion is shown as follows. The math is beyond 
the scope of this book, but the general shape of the recursive function should be 
familiar to you now. At each iteration, we calculate the partial autocorrelation  
with a function of the previous partial autocorrelations and the autocovariance.

(defn pac* [pacs sigma prev next]
  (let [acv (first next)
        sum (i/sum (i/mult pacs (reverse prev)))
        pac (/ (- acv sum) sigma)]
    (cons pac
          (lazy-seq
           (pac* (->> (i/mult pacs pac)
                      (reverse)
                      (i/minus pacs)
                      (cons pac))
                 (* (- 1 (i/pow pac 2)) sigma)
                 (cons acv prev)
                 (rest next))))))

(defn partial-autocorrelation [series]
  (let [acvs (autocovariance series)
        acv1 (first  acvs)
        acv2 (second acvs)
        pac  (/ acv2 acv1)]
    (concat [1.0 pac]
            (pac* (vector pac)
                  (- acv1 (* pac acv2))
                  (vector acv2)
                  (drop 2 acvs)))))

As before, this function will create an infinite lazy sequence of partial 
autocorrelations, so we have to take only the numbers that we actually want from it.

https://en.wikipedia.org/wiki/Levinson_recursion
https://en.wikipedia.org/wiki/Levinson_recursion
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Plotting partial autocorrelation
Now that we've implemented a function to calculate the partial autocorrelations  
of a time series, let's plot them. We'll use the same ARMA coefficients as before  
so we can compare the difference.

(defn ex-9-24 []
  (let [ys (s/sample-normal 10 :sd 1.0)
        es (s/sample-normal 10 :sd 0.2)
        ps   [0 0 0 0.3 0.5]
        qs   [0.2 0.8]]
    (->> (arma ys es ps qs 0.2)
         (take 500)
         (partial-autocorrelation)
         (take 15)
         (bar-plot))))

This should generate a bar chart similar to the following:

Fortunately, this is rather different from the ACF plot that we created previously. 
There is a high partial autocorrelation at lags 1 and 2. This suggests that an MA(2) 
process is at work. Then, there is low partial autocorrelation until lag 5. This suggests 
that there is a an AR(5) model at work too.
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Determining ARMA model order with ACF and PACF
The differences between ACF and PACF plots are useful to help with selecting 
the most appropriate model for the time series. The following table describes the 
appearance of ACF and PACF plots for idealized AR and MA series.

Model ACF PACF
AR(p) Decays gradually Cuts off after p lags
MA(q) Cuts off after q lags Decays gradually
ARMA(p,q) Decays gradually Decays gradually

We are often not confronted with data that confirms to these ideals though. Given 
a real time series, particularly one without a significant number of points, it's not 
always obvious which would be the most appropriate model. The best course of 
action is often to pick the simplest model (the one with the lowest order) capable  
of describing your data.
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The preceding illustration shows sample ACF and PACF plots for an idealized AR(1) 
series. Next are sample ACF and PACF plots for an idealized MA(1) series.

The dotted lines on the graphics indicate the threshold of significance. In general, we 
are not able to produce a model that perfectly captures all the autocorrelations in the 
time series and the significance threshold helps us prioritize the most important. A 
simple formula for determining significance threshold with an α of 5 percent is:

2
n

±

Here, n is the number of points in the time series. If all points in the ACF and PACF 
are close to zero, the data are basically random.

ACF and PACF of airline data
Let's return to the airline data that we started considering earlier and plot the ACF of 
the data for the first 25 lags.

(defn ex-9-25 []
  (->> (airline-passengers)
       (difference)
       (autocorrelation)
       (take 25)
       (bar-plot)))



Time Series

[ 502 ]

This code generates the following chart:

You can see that there are regular peaks and troughs in the data. The first peak is at 
lag 12; the second is at lag 24. Since the data is monthly, these peaks correspond to an 
annual, seasonal, cycle. Since we have 144 points in our time series, the threshold for 
significance is about 2

144
 or 0.17.

Next, let's look at the partial autocorrelation plot for the airline data:

(defn ex-9-26 []
  (->> (airline-passengers)
       (difference)
       (partial-autocorrelation)
       (take 25)
       (bar-plot)))
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This code generates the following chart:

The partial autocorrelation plot also has a peak at lag 12. Unlike the autocorrelation 
plot it doesn't have a peak at lag 24 because the periodic autocorrelation has already 
been accounted for at lag 12.

Although this appears to suggest an AR(12) model will be appropriate, that will 
create a large number of coefficients to learn, especially on a relatively small amount 
of data. Since the periodic cycle is seasonal, we ought to remove it with a second 
phase of differencing.

Removing seasonality with differencing
We have already differenced the data once, meaning that our model is referred to 
as an autoregressive integrated moving-average (ARIMA) model. The level of 
differencing is given the parameter d, and the full model order can therefore be 
specified as ARIMA(p,d,q).
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We can difference the data a second time to remove the strong seasonality in the 
data. Let's do this next:

(defn ex-9-27 []
  (->> (airline-passengers)
       (difference)
       (difference 12)
       (autocorrelation)
       (take 15)
       (bar-plot)))

First, we plot the autocorrelation:

Next, the partial autocorrelation:

(defn ex-9-28 []
  (->> (airline-passengers)
       (difference)
       (difference 12)
       (partial-autocorrelation)
       (take 15)
       (bar-plot)))
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This generates the following chart:

The strong seasonal cycle accounted for most of the significance in the charts. We're 
left with negative autocorrelation at lag 1 on both charts, and a barely significant 
autocorrelation at lag 9 on the ACF. A general rule of thumb is that positive 
autocorrelation is best treated by adding an AR term to the model, while negative 
autocorrelation is usually best treated by adding an MA term to the model.

It appears based on the preceding charts that a justified model is an MA(1) model. 
This would probably be a good enough model for this case, but let's use this as an 
opportunity to demonstrate how to fit a large number of parameters to a model by 
trying to capture the AR(9) autocorrelation as well.

We'll consider an alternative to the cost function, the likelihood, which measures 
how closely the given model fits the data. The better the model fits, the greater the 
likelihood. Thus, we will want to maximize the likelihood, a goal also known as 
maximum likelihood estimation.
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Maximum likelihood estimation
On several occasions throughout this book, we've expressed optimization problems 
in terms of a cost function to be minimized. For example, in Chapter 4, Classification, 
we used Incanter to minimize the logistic cost function whilst building a logistic 
regression classifier, and in Chapter 5, Big Data, we used gradient descent to minimize 
a least-squares cost function when performing batch and stochastic gradient descent.

Optimization can also be expressed as a benefit to maximize, and it's sometimes 
more natural to think in these terms. Maximum likelihood estimation aims to find 
the best parameters for a model by maximizing the likelihood function.

Let's say that the probability of an observation x given model parameters β is  
written as:

( )P |x β

Then, the likelihood can be expressed as:

( )L | xβ

The likelihood is a measure of the probability of the parameters, given the data.  
The aim of maximum likelihood estimation is to find the parameter values that  
make the observed data most likely.

Calculating the likelihood
Before calculating the likelihood for a time series, we'll illustrate the process by  
way of a simple example. Say we toss a coin 100 times and observe 56 heads, h, and 
44 tails, t. Rather than assume that we have a fair coin with P(h)=0.5 (and therefore 
that the slightly unequal totals are the result of chance variation), instead we could 
ask whether the observed values differ significantly from 0.5. We can do this by 
asking what value of P(h) makes the observed data most likely.

(defn ex-9-29 []
  (let [data 56
        f (fn [p]
            (s/pdf-binomial data :size 100 :prob p))]
    (-> (c/function-plot f 0.3 0.8
                         :x-label "P"
                         :y-label "Likelihood")
        (i/view))))
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In the preceding code, we're using binomial distribution to model the sequence of 
coin tosses (recall from Chapter 4, Classification, that binomial distribution is used to 
model the number of times a binary outcome is expected to occur). The key point 
is that the data is fixed, and we're plotting the varying probabilities of observing 
that data given different parameters to the binomial distribution. The following plot 
shows the likelihood surface:

As we might have expected, the most likely parameter to the binomial distribution 
is p=0.56. This contrived example could have more easily been calculated by hand, 
but the principle of maximum likelihood estimation is able to cope with much more 
complicated models.

In fact, our ARMA model is one such complicated model. The math for calculating 
the likelihood of time series parameters is beyond the scope of this book. We'll be 
making use of the Clojure library Succession (https://github.com/henrygarner/
succession) to calculate the likelihood for our time series.

https://github.com/henrygarner/succession
https://github.com/henrygarner/succession
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It is often the case that we work with the log-likelihood rather than the likelihood. 
This is simply for mathematical convenience, since the log-likelihood:

( ) ( )
1

LL | log |
k

i i
i

x f xβ β
=

= ∏

can be re-written as:

( ) ( )
1

LL | log |
k

i i
i

x f xβ β
=

=∑

Here, k is the number of parameters to the model. Taking the sum of a large number 
of parameters is more computationally convenient than taking the product, so the 
second formula is often preferred. Let's get a feel for how the likelihood function 
behaves on some test data by plotting the log-likelihood of different parameters 
against a simple AR(2) time series.

(defn ex-9-30 []
  (let [init  (s/sample-normal 2)
        coefs [0 0.5]
        data  (take 100 (ar init coefs 0.2))
        f     (fn [coef]
                (log-likelihood [0 coef] 2 0 data))]
    (-> (c/function-plot f -1 1
                         :x-label "Coefficient"
                         :y-label "Log-Likelihood")
        (i/view))))
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The preceding code generates the following chart:

The peak of the curve corresponds to the best estimate for the parameters, given the 
data. Notice how the peak in the preceding plot is a little higher than 0.5: the noise 
we added to the model has meant that the best estimate is not exactly 0.5. 

Estimating the maximum likelihood
The number of parameters to our ARMA model is large, and so to determine the 
maximum likelihood we're going to use an optimization method that performs well 
in high-dimensional spaces. The method is called the Nelder-Mead, or simplex, 
method. In a space of n dimensions, a simplex is a polytope of n+1 vertices.

A polytope is a geometric object with flat sides that can exist in an 
arbitrary number of dimensions. A two-dimensional polygon is 
2-polytope, and a three dimensional polyhedron is a 3-polytope.
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The advantage of simplex optimization is that it doesn't need to calculate the 
gradient at each point in order to descend (or ascend) to a more optimal position. 
The Nelder-Mead method extrapolates the behavior of the objective function 
measured at each test point on the simplex. The worst point is replaced with a point 
created by reflecting through the centroid of the remaining points. If the new point is 
better than the current best point then we stretch the simplex out exponentially along 
this line. If the new point isn't much better than before we could be stepping across a 
valley, so we contract the simplex towards a possibly better point.

The following plot shows an example of how the simplex, represented as a triangle, 
reflects and contracts to find the optimal parameters.

The simplex is always represented as a shape whose number of vertices is 
one greater than the number of dimensions. The simplex for two-dimensional 
optimization, as in the preceding plot, is represented by a triangle. For an arbitrary 
n-dimensional space, the simplex will be represented as a polygon of n+1 vertices.

The simplex method is also called the amoeba method due to the 
way it appears to crawl towards a more optimal position.

The simplex method of optimization isn't implemented in Incanter, but it's  
available in the Apache Commons Math library (http://commons.apache.org/
proper/commons-math/). To use it, we'll need to wrap our objective function,  
the log-likelihood, in a representation that the library understands.

http://commons.apache.org/proper/commons-math/
http://commons.apache.org/proper/commons-math/
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Nelder-Mead optimization with Apache Commons 
Math
Apache Commons Math is a large and sophisticated library. We can't cover more 
than the barest essentials here. The next example is provided simply to illustrate  
how to integrate Clojure code with the Java interfaces provided by the library.

An overview of Apache Commons Math's extensive optimization 
capabilities is available at http://commons.apache.org/
proper/commons-math/userguide/optimization.html.

The Apache Commons Math library expects that we'll provide an 
ObjectiveFunction to be optimized. Next, we create one by reifying a 
MultivariateFunction, since our objective function needs to be supplied with 
multiple parameters. Our response will be a single value: the log-likelihood.

(defn objective-function [f]
  (ObjectiveFunction. (reify MultivariateFunction
                        (value [_ v]
                          (f (vec v))))))

The preceding code will return an ObjectiveFunction representation of an 
arbitrary function f. A MultivariateFunction expects to receive a parameter  
vector v, which we pass straight through to our f.

With this in place, we use some Java interop to call optimize on a 
SimplexOptimizer with some sensible default values. Our InitialGuess at the 
parameters is simply an array of zeros. The NelderMeadSimplex must be initialized 
with a default step size for each dimension, which can be any value except zero. 
We're picking a value of 0.2 for each parameter.

(defn arma-model [p q ys]
  (let [m (+ p q)
        f (fn [params]
            (sc/log-likelihood params p q ys))
        optimal (.optimize (SimplexOptimizer. 1e-10 1e-10)
                           (into-array
                            OptimizationData
                            [(MaxEval. 100000)
                             (objective-function f)
                             GoalType/MAXIMIZE
                             (->> (repeat 0.0)
                                  (take m)
                                  (double-array)
                                  (InitialGuess.))

http://commons.apache.org/proper/commons-math/userguide/optimization.html
http://commons.apache.org/proper/commons-math/userguide/optimization.html
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                             (->> (repeat 0.1)
                                  (take m)
                                  (double-array)
                                  (NelderMeadSimplex.))]))
        point (-> optimal .getPoint vec)
        value (-> optimal .getValue)]
    {:ar (take p point)
     :ma (drop p point)
     :ll value}))

(defn ex-9-31 []
  (->> (airline-passengers)
       (i/log)
       (difference)
       (difference 12)
       (arma-model 9 1)))

Our model is a large one with many parameters and so the optimization will take 
a while to converge. If you run the preceding example you should eventually see 
returned parameters similar to those shown next:

;; {:ar (-0.23769808471685377 -0.012617164166298971 ...),
;;  :ma (-0.14754455658280236),
;;  :ll 232.97813750669314}

These are the maximum likelihood estimates for our model. Also included in the 
response is the log-likelihood for the model with the maximum-likelihood parameters.

Identifying better models with Akaike 
Information Criterion
When evaluating multiple models, it might appear that the best model is the 
one with the greatest maximum likelihood estimate. After all, the estimate has 
determined that the model is the best candidate for generating the observed data. 
However, the maximum likelihood estimate takes no account of the complexity of 
the model and, in general, simpler models are to be preferred. Think back to the 
beginning of the chapter and our high-order polynomial model that had a high R2 
but provided no predictive power.

The Akaike Information Criterion (AIC) is a method for comparing models that 
rewarded goodness of fit, as assessed by the likelihood function, but includes a 
penalty that is a function of the number of parameters. This penalty discourages 
overfitting, since increasing the number of parameters to the model almost always 
improves the goodness of fit.
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The AIC can be calculated from the following formula:

AIC 2 2logLk= −

Here, k is the number of parameters to the model and L is the likelihood function.  
We can calculate the AIC in the following way in Clojure with the parameter  
counts p and q.

(defn aic [coefs p q ys]
  (- (* 2 (+ p q 1))
     (* 2 (log-likelihood coefs p q ys))))

If we were to produce multiple models and pick the best one, we would want to pick 
the one with the lowest AIC.

Time series forecasting
With the parameter estimates having been defined, we're finally in a position to use 
our model for forecasting. We've actually already written most of the code we need 
to do this: we have an arma function that's capable of generating an autoregressive 
moving-average series based on some seed data and the model parameters p and q. 
The seed data will be our measured values of y from the airline data, and the values 
of p and q will be the parameters that we calculated using the Nelder-Mead method.

Let's plug those numbers into our ARMA model and generate a sequence of 
predictions for y:

(defn ex-9-32 []
  (let [data (i/log (airline-passengers))
        diff-1  (difference 1 data)
        diff-12 (difference 12 diff-1)
        forecast (->> (arma (take 9 (reverse diff-12))
                       []
                       (:ar params)
                       (:ma params) 0)
                      (take 100)
                      (undifference 12 diff-1)
                      (undifference 1 data))]
    (->> (concat data forecast)
         (i/exp)
         (timeseries-plot))))
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The preceding code generates the following chart:

The line up to time slice 144 is the original series. The line subsequent to this 
point is our forecast series. The forecast looks a lot like we might have hoped: the 
exponentially increasing trend continues, as do the regular seasonal pattern of peaks 
and troughs.

In fact, the forecast is almost too regular. Unlike the series at points 1 to 144, our 
forecast contains no noise. Let's add some noise to make our forecast more realistic. 
To determine how much noise is justified, we could look to see what the error was in 
our past forecasting. To avoid our errors compounding, we should make predictions 
one time step ahead, and observe the difference between the prediction and the 
actual value.

Let's run our ARMA function with a sigma of 0.02:

(defn ex-9-33 []
  (let [data (i/log (airline-passengers))
        diff-1  (difference 1 data)
        diff-12 (difference 12 diff-1)
        forecast (->> (arma (take 9 (reverse diff-12))
                       []
                       (:ar params)
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                       (:ma params) 0.02)
                      (take 10)
                      (undifference 12 diff-1)
                      (undifference 1 data))]
    (->> (concat data forecast)
         (i/exp)
         (timeseries-plot))))

The preceding code may generate a chart like the following:

Now we get a sense of the volatility of the forecast. By running the simulation 
several times we can get a sense of the variety of different possible outcomes. What 
would be useful is if we could determine the confidence interval of our predictions: 
the upper and lower expectation of all future series, including noise.

Forecasting with Monte Carlo simulation
Although analytic methods do exist for calculating the expected future value of a 
time series, together with confidence intervals, we'll use this final section to arrive  
at these values through simulation instead. By studying the variation amongst  
many forecasts we can arrive at confidence intervals for our model predictions.



Time Series

[ 516 ]

For example, if we run a very large number of simulations we can calculate the 
95 percent confidence intervals on our future predictions based on the range 
within which values fall 95 percent of the time. This is the essence of the Monte 
Carlo simulation, which is a commonly used statistical tool for problems that are 
analytically intractable.

The Monte Carlo method was developed and used systematically 
during the Manhattan Project, the American World War II effort to 
develop nuclear weapons. John Von Neumann and Stanislaw Ulam 
suggested it as a means to investigate properties of neutron travel 
through radiation shielding and named the method after the Monte 
Carlo Casino in Monaco.

We've already laid all the foundations for Monte Carlo simulations of the time series 
forecasts. We simply need to run the simulation many hundreds of times and collect 
the results. In the following code, we run 1,000 simulations and gather the mean and 
standard deviation across all forecasts at each future time slice. By creating two new 
series (an upper bound that adds the standard deviation multiplied by 1.96 and a 
lower bound that subtracts the standard deviation multiplied by 1.96), we're able to 
visualize the 95 percent confidence interval for the future values of the series.

(defn ex-9-34 []
  (let [data (difference (i/log (airline-passengers)))
        init (take 12 (reverse data))
        forecasts (for [n (range 1000)]
                    (take 20
                          (arma init [0.0028 0.0028]
                                (:ar params1)
                                (:ma params1)
                                0.0449)))
        forecast-mean (map s/mean (i/trans forecasts))
        forecast-sd (-> (map s/sd (i/trans forecasts))
                        (i/div 2)
                        (i/mult 1.96))
        upper (->> (map + forecast-mean forecast-sd)
                   (concat data)
                   (undifference 0)
                   (i/exp))
        lower (->> (map - forecast-mean forecast-sd)
                   (concat data)
                   (undifference 0)
                   (i/exp))
        n (count upper)]
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    (-> (c/xy-plot   (range n) upper
                     :x-label "Time"
                     :y-label "Value"
                     :series-label "Upper Bound"
                     :legend true)
        (c/add-lines (range n) lower
                     :series-label "Lower Bound")
        (i/view))))

This generates the following chart:

The upper and lower bounds provide the confidence intervals for our time series 
predictions into the future.



Time Series

[ 518 ]

Summary
In this chapter, we've considered the task of analyzing discrete time series: sequential 
observations taken at fixed intervals in time. We've seen how the challenge 
of modeling such a series can be made easier by decomposing it into a set of 
components: a trend component, a seasonal component, and a cyclic component.

We've seen how ARMA models decompose a series further into autoregressive 
and moving-average components, each of which is in some way determined by 
past values of the series. This conception of a series is inherently recursive, and 
we've seen how Clojure's natural capabilities for defining recursive functions 
and lazy sequences lend themselves to the algorithmic generation of such series. 
By determining each value of the series as a function of the previous values, 
we implemented a recursive ARMA generator that was capable of simulating a 
measured series and forecasting it forwards in time.

We've also learned about expectation maximization: a way of reframing solutions 
to optimization problems as those which generate the greatest likelihood, given 
the data. And we've also seen how the Apache Commons Math library can be used 
to estimate the maximum likelihood parameters using the Nelder-Mead method. 
Finally, we saw how forecasting could be accomplished by playing the sequence 
forward in time, and how Monte Carlo simulation could be used to estimate the 
future error of the series.

In the final chapter, we'll turn our attention away from data analysis towards data 
visualization. In some respects, the most important challenge for data scientists is 
communication, and we'll see how Clojure can support us in presenting our data in 
the most effective way.
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Visualization
"Numbers have an important story to tell. They rely on you to give them a clear 
and convincing voice."

                                                                                                       - Stephen Few

Every chapter in this book has made use of visualization in some way, primarily 
using Incanter. Incanter is an effective tool to produce a wide variety of charts  
as we work, and these are often the ones we'll reach out for first while trying to 
understand a dataset. This initial phase is often called exploratory data analysis and, 
at this stage, we're interested in summarizing statistics such as the distribution of 
numerical data, the counts of the categorical data, and how the attributes in our data 
are correlated.

Having found a meaningful way to interpret data, we'll often want to communicate 
it to others. One of the most important tools for communication is visualization, 
and we may be required to convey subtle or complicated ideas to people without a 
strong analytical background. In this chapter, we'll use the library Quil—which grew 
out of software developed for visual artists—to produce attractive graphics that 
can help bring data to life. Visualization and communication design are large, rich 
fields that we will not cover in detail here. Instead, this chapter will offer two case 
studies showing how Clojure's data abstractions and Quil's drawing API can be used 
together for good effect.

We'll begin this chapter by coming full circle and returning to the data we used  
in Chapter 1, Statistics. We'll introduce Quil by demonstrating how to build a simple 
two-dimensional histogram from the Russian election data. Having covered the 
basics of drawing in Quil, we'll show how a few basic drawing instructions can 
combine to produce a compelling representation of the distribution of wealth  
in the United States.



Visualization

[ 520 ]

Download the code and data
In this chapter, we'll return to the data we used in the very first chapter of this book: 
data from the 2011 Russian election. Back, in Chapter 1, Statistics, we used a scatter 
plot with transparency to visualize the relationship between voter turnout and the 
victor's percentage of the vote. In this chapter, we'll produce code to render the data 
as a two-dimensional histogram.

We'll also be making use of the data on the distribution of wealth in the United 
States. This data is so small that we won't have anything to download: we'll type  
the figures directly into the source code.

The source code for this chapter is available at https://github.com/
clojuredatascience/ch10-visualization.

The example code for this chapter contains a script to download the election data we 
used in Chapter 1, Statistics. Once you've downloaded the source code, you can execute 
the script by running the following command line from within the project root:

script/download-data.sh

If you downloaded the data for Chapter 1, Statistics previously, you can simply move 
the data files across into this chapter's data directory, if you prefer.

Exploratory data visualization
At the outset of any data science project, there is likely to be a period of iterative  
data exploration when you gain insight into the data. Throughout this book,  
Incanter has been our primary visualization tool. Although it includes a large 
number of charts there will be occasions when it won't contain the ideal chart  
for the data you seek to represent.

Other Clojure libraries are stepping in to offer exploratory data 
visualization capabilities. For examples, see clojurewerkz/envision 
https://github.com/clojurewerkz/envision and Karsten 
Schmidt's thi-ng/geom at https://github.com/thi-ng/
geom/tree/master/geom-viz.

https://github.com/clojuredatascience/ch10-visualization
https://github.com/clojuredatascience/ch10-visualization
https://github.com/clojurewerkz/envision
https://github.com/thi-ng/geom/tree/master/geom-viz
https://github.com/thi-ng/geom/tree/master/geom-viz
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For example, back in Chapter 1, Statistics, we used a scatter plot with alpha 
transparency to visualize the voter turnout proportion against the proportion 
of votes for the winner. This wasn't an ideal chart, because we were primarily 
interested in the density of points in a particular area. Alpha transparency helped 
reveal the structure of the data, but it wasn't an unambiguous representation. Some 
points were still too feint to be visible or so numerous that they appeared as one:

We could have solved these problems with a two-dimensional histogram. This 
type of plot uses color to communicate areas of high and low density over two 
dimensions. The chart is split into a grid with each cell of the grid signifying a range 
in both dimensions. The more the points fall into a cell of the grid, the greater is the 
density within the range.
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Representing a two-dimensional histogram
A histogram is simply a representation of a continuous distribution into a series  
of bins. Histograms were introduced in Chapter 1, Statistics and, at the time, we  
wrote a binning function that would separate continuous data into discrete bins:

(defn bin [n-bins xs]
  (let [min-x    (apply min xs)
        range-x  (- (apply max xs) min-x)
        max-bin  (dec n-bins)
        bin-fn   (fn [x]
                   (-> (- x min-x)
                       (/ range-x)
                       (* n-bins)
                       (int)
                       (min max-bin)))]
    (map bin-fn xs)))

This code will take a range of continuous xs and bucket them into distinct groups 
based on the n-bins parameter. For example, binning the range between 0 and 19 
into 5 bins yields the following sequence:

(defn ex-1-1 []
  (bin 5 (range 20)))

;;(0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4)

The bin function returns the bin index for each data point rather than the count, so 
we use Clojure's frequencies function to determine the count of the points falling 
into the bin:

(defn ex-1-2 []
  (frequencies (bin 5 (range 20))))

;;{0 4, 1 4, 2 4, 3 4, 4 4}
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This is a reasonable representation of a one-dimensional histogram: as a map of 
the bins to be counted. To represent a two-dimensional histogram, we can simply 
perform the same calculation on both the xs and the ys. We map the vector function 
over the bin indices so that each point is converted into a representation of [x-bin 
y-bin]:

(defn histogram-2d [xsys n-bins]
  (-> (map vector
           (bin n-bins xs)
           (bin n-bins ys))
      (frequencies)))

This function returns a map keyed by a vector of two values. The frequencies 
function will now count all the points that share both an x and a y bin:

(defn ex-10-3 []
  (histogram-2d (range 20)
                (reverse (range 20)) 5))

;;{[0 4] 4, [1 3] 4, [2 2] 4, [3 1] 4, [4 0] 4}

We'll want to plot real data with our histogram, so let's load the Russian data from 
Chapter 1, Statistics. If you've downloaded the data into the  sample code's data 
directory, you can run the following code:

(defn ex-10-4 []
  (let [data (load-data :ru-victors)]
    (histogram-2d (i/$ :turnout data)
                  (i/$ :victors-share data) 5)))

;; {[4 3] 6782, [2 2] 14680, [0 0] 3, [1 0] 61, [2 3] 2593,
;;  [3 3] 8171, [1 1] 2689, [3 4] 1188, [4 2] 3084, [3 0] 64,
;;  [4 1] 1131, [1 4] 13, [1 3] 105, [0 3] 6, [2 4] 193, [0 2] 10,
;;  [2 0] 496, [0 4] 1, [3 1] 3890, [2 1] 24302, [4 4] 10771,
;;  [1 2] 1170, [3 2] 13384, [0 1] 4, [4 0] 264}

We can see the huge range of values in the histogram bins: from just 1 in bin  
[0 4] to 24,302 in bin [2 1]. These counts will be the density values we plot  
on our histogram.



Visualization

[ 524 ]

Using Quil for visualization
Quil (https://github.com/quil/quil) is a Clojure library that provides an 
enormous amount of flexibility to produce custom visualizations. It wraps 
Processing (https://processing.org/), a Java framework that's been actively 
developed for many years by visual artists and designers, which aims promote 
"software literacy in visual arts and visual literacy within technology".

Any visualization done with Quil involves creating a sketch. A sketch is processing's 
term for a running a program that consists of drawing instructions. Most API 
functions are available from the quil.core namespace. We'll include it in our code 
as q. Calling q/sketch without any arguments will cause an empty window to pop 
up (although it may be obscured by other windows).

Drawing to the sketch window
The default window size is 500px by 300px. We'd like our two-dimensional 
histogram to be square, so let's make the window 250px in both directions:

(q/sketch :size [250 250])

Since we have 5 bins for each of our two axes, it means that each bin will be 
represented by a square that is 50px wide and 50px high.

Quil provides the standard 2D shape primitives for drawing: points, lines, arcs, 
triangles, quadrilaterals, rectangles, and ellipses. To draw a rectangle, we call the 
q/rect function with the location specified as the x and y coordinates, as well as a 
width and height.

Let's draw a square at the origin, 50px across. There are a couple of ways to supply 
drawing instructions to Quil but, in this chapter, we'll pass what's known as a setup 
function. This is a function of no arguments that we pass to sketch. Our zero-argument 
function simply calls rect with a position [0, 0] and a width and height of 50:

(defn ex-10-5 []
  (let [setup #(q/rect 0 0 50 50)]
    (q/sketch :setup setup
              :size [250 250])))

https://github.com/quil/quil
https://processing.org/
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The code generates the following image:

The rectangle may not be where you expected it to be, depending on your familiarity 
with computer graphics.

Rectangles can also be drawn with rounded corners by passing a 
radius as the fifth argument. Different radii can be used for each 
corner by passing the values as arguments five to eight.

Before we proceed further, we need to understand Quil's coordinate system.

Quil's coordinate system
The coordinate system Quil uses is the same as processing and most other  
computer graphics programs. If you're unfamiliar with drawing, this may seem 
counter-intuitive that the origin is at the top left corner of the display. The y axis  
runs down the screen and the x axis runs to the right.
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Clearly, this is not the direction of the y axis on most graphs, which means that the y 
coordinate will often need to be flipped while drawing.

A common way to do this is to subtract the desired y value (as measured from the 
bottom of the sketch) from the height of the sketch. This transformation causes a y of 
zero to correspond to the bottom of the sketch. Greater values of y will correspond to 
the values higher up the sketch.

Plotting the grid
Let's put this into practice with a simple grid. The following function accepts a number 
of bins, n-bins, and a size parameter expressed as a vector of [width height]:

defn draw-grid [{:keys [n-bins size]}]
  (let [[width height] size
        x-scale (/ width n-bins)
        y-scale (/ height n-bins)
        setup (fn []
                (doseq [x (range n-bins)
                        y (range n-bins)
                        :let [x-pos (* x x-scale)
                              y-pos (- height
                                       (* (inc y) y-scale))]]
                  (q/rect x-pos y-pos x-scale y-scale)))]
    (q/sketch :setup setup :size size)))
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From this, we can calculate x-scale and y-scale, a factor that enables us to convert 
bin index to pixel offset in each of the x and the y dimensions. These are used by  
our setup function that loops over both the x and the y bins, placing a rectangle  
for each bin.

Notice how we're executing the loop inside doseq. Our drawing 
instructions are executed as a side effect. If we don't do this, Clojure's 
lazy evaluation would cause nothing to be drawn.

The previous code generates the following graphic:

Having defined the earlier function, we've almost created a histogram. We just need 
to color each square in the grid with a color that represents an appropriate value 
for each bin in the histogram. To achieve this, we'll need two more functions: one 
to fetch the value from the data corresponding to the bin and the other to interpret 
these values as a color.
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Specifying the fill color
Filling colors in Quil is achieved with the q/fill function. Any fill we specify will 
continue to be used until we specify a new fill.

Many functions in Quil affect the current drawing context and are 
stateful. For example, when we specify a fill value, it will be used 
for all subsequent drawing instructions until the fill is altered. 
Other examples are fill, stroke, scale, and font.

The following code is an adapted version of our draw-grid function. The addition 
to draw-filled-grid is fill-fn: some way of coloring the rectangle at a point in 
the grid. The fill-fn function should be a function of two arguments, the x and y 
indices of the bin. It should return a representation that Quil can use as a fill:

(defn draw-filled-grid [{:keys [n-bins size fill-fn]}]
  (let [[width height] size
        x-scale (/ width n-bins)
        y-scale (/ height n-bins)
        setup (fn []
                (doseq [x (range n-bins)
                        y (range n-bins)
                        :let [x-pos (* x x-scale)
                              y-pos (- height
                                       (* (inc y) y-scale))]]
                  (q/fill (fill-fn x y))
                  (q/rect x-pos y-pos x-scale y-scale)))]
    (q/sketch :setup setup :size size)))

Quil's fill function accepts multiple arities:

• One argument: The RGB value (either as a number or the q/color 
representation)

• Two arguments: The RGB, as with one argument, plus an alpha transparency
• Three arguments: The red, green, and blue components of the color  

as numbers between 0 and 255 inclusive
• Four arguments: The red, green, blue, and alpha components as numbers

We'll see how to use the color representations shortly but, for now, we'll represent 
colors with a simple numeric representation: as a number between 0 and 255. When 
the same number is used for red, green, and blue (or when fill is called with one  
or two arguments), we get a gray color. 0 corresponds to black and 255 corresponds 
to white.
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If we divide the frequency of the value in each bin in the histogram by the maximum 
value, we'll get a number between 0 and 1.0. Multiplying by 255 will yield a value 
that Quil will convert into a gray color for us. We do this in the following fill-fn 
implementation, passing it to the draw-filled-grid function that we defined earlier:

(defn ex-10-6 []
  (let [data (load-data :ru-victors)
        n-bins 5
        hist (histogram-2d (i/$ :turnout data)
                           (i/$ :victors-share data)
                           n-bins)
        max-val (apply max (vals hist))
        fill-fn (fn [x y]
                  (-> (get hist [x y] 0)
                      (/ max-val)
                      (* 255)))]
    (draw-filled-grid {:n-bins n-bins
                       :size [250 250]
                       :fill-fn fill-fn})))

The previous code generates the following graphic:
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The chart is doing what we want, but it's a very crude representation of our data. 
Let's increase the number of bins to increase the resolution of our histogram:

(defn ex-10-7 []
  (let [data (load-data :ru-victors)
        n-bins 25
        hist (histogram-2d (i/$ :turnout data)
                           (i/$ :victors-share data)
                           n-bins)
        max-val (apply max (vals hist))
        fill-fn (fn [x y]
                  (-> (get hist [x y] 0)
                      (/ max-val)
                      (* 255)))]
    (draw-filled-grid {:n-bins n-bins
                       :size [250 250]
                       :fill-fn fill-fn})))

This code generates the following graphic:
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With 25 rectangles along each of the x and the y axes, we have a finer-grained 
picture of the structure of the data. However, a side effect is that it's become hard to 
discern detail in the histogram, because of how dim most of the cells are. Part of the 
problem is that the top right corner has such a high value that even the central area 
(previously the brightest) is now not much more than a gray smudge.

There are two solutions to this problem:

• Mitigate the effect of the outlier by plotting the z-score instead of the  
actual value

• Diversify the range of visual queues by using a greater range of colors

We'll discover how to convert values into a full spectrum of colors in the next 
section, but first, let's convert the histogram value to a z-score. Plotting z-scores 
is a distribution-aware way of coloring the chart that will go a long way toward 
diminishing the effect of the extreme outlier in the top right corner. With a z-score, 
we'll be plotting the number of standard deviations away from the mean for each cell.

To accomplish this, we need to know two things: the mean and the standard 
deviation of the frequencies in the histogram:

(defn ex-10-8 []
  (let [data (load-data :ru-victors)
        n-bins 25
        hist (histogram-2d (i/$ :turnout data)
                           (i/$ :victors-share data)
                           n-bins)
        mean (s/mean (vals hist))
        sd   (s/sd   (vals hist))
        fill-fn (fn [x y]
                  (-> (get hist [x y] 0)
                      (- mean)
                      (/ sd)
                      (q/map-range -1 3 0 255)))]
    (draw-filled-grid {:n-bins n-bins
                       :size [250 250]
                       :fill-fn fill-fn})))

The preceding code subtracts the mean from each value in the histogram and  
divides it by the mean. This will yield a value with a mean of zero. 1 will represent 
one standard deviation from the mean, 2 will represent two standard deviations 
from the mean, and so on.
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Quil exposes a useful map-range function that will take one range of values and 
map it onto another range of values. For example, we could take the desired range of 
standard deviations (-1 to 3 in the earlier example) and map them onto the range 0 
and 255. This would correspond to four standard deviations of the distribution being 
represented as the full range of gray from black to white. Any data exceeding this 
range would simply be clipped.

The result is a much more striking representation of the data in grayscale. The use of 
z-scores has brought more detail out in the main body of the histogram and we can 
perceive more of the variation in the tail.

However, the histogram is still not quite as clear as it could be, as distinguishing 
between the different shades of gray can be challenging. Where cells aren't adjacent 
to each other, it can be hard to determine whether they share the same value.

We can increase the range open to us by making use of color to represent each cell. 
This makes the histogram more like a heat map: "cooler" colors such as blue and 
green represent low values, while "hotter" colors such as orange and red represent 
the most dense regions of the heatmap.
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Color and fill
To create a heat map version of our two-dimensional histogram, we'll have to take 
our z-score and find some way of mapping it to a color value. Rather than showing 
a discrete palette of colors, say 5, our heat map should have a smooth palette 
containing all the colors in the spectrum.

For those reading the print book or in black and white, you  
can download color images from Packt Publishing's website 
https://www.packtpub.com/sites/default/files/
downloads/Clojure_for_Data_Science_ColorImages.pdf.

This is exactly what the Quil function q/lerp-color does. Given two colors and a 
ratio between zero and one, lerp-color will return a new color that interpolates 
between them. An amount of zero will return the first color and one the second, 
while 0.5 will return a color halfway between the two:

(defn z-score->heat [z-score]
  (let [colors [(q/color 0 0 255)   ;; Blue
                (q/color 0 255 255) ;; Turquoise
                (q/color 0 255 0)   ;; Green
                (q/color 255 255 0) ;; Yellow
                (q/color 255 0 0)]  ;; Red
        offset  (-> (q/map-range z-score -1 3 0 3.999)
                    (max 0)
                    (min 3.999))]
    (q/lerp-color (nth colors offset)
                  (nth colors (inc offset))
                  (rem offset 1))))

This code makes use of an array of colors in the order of the spectrum. We use  
q/map-range to determine which two colors we will interpolate between and  
call q/lerp-color with the floating-point portion of the range.

We've already implemented a draw-filled-grid function that accepts fill-fn to 
determine which color should be used to fill the grid. Let's pass our z-score->heat 
function to it now:

(defn ex-10-9 []
  (let [data (load-data :ru-victors)
        n-bins 25
        hist (histogram-2d (i/$ :turnout data)
                           (i/$ :victors-share data)
                           n-bins)

https://www.packtpub.com/sites/default/files/downloads/Clojure_for_Data_Science_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Clojure_for_Data_Science_ColorImages.pdf
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        mean (s/mean (vals hist))
        sd   (s/sd   (vals hist))
        fill-fn (fn [x y]
                  (-> (get hist [x y] 0)
                      (- mean)
                      (/ sd)
                      (z-score->heat)))]
    (draw-filled-grid {:n-bins n-bins
                       :size [250 250]
                       :fill-fn fill-fn})))

This code generates the following graphic:

The heat map has exposed even more of the internal structure of the data. In 
particular, while the strong diagonal shape of the data is still evident, we can now 
see more of the variation within it. Details that were previously hard to determine 
(either because the region was too dense or too sparse) have become more apparent.
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Outputting an image file
Now that we're happy with the histogram, we want to output a high-quality version. 
By adding a call to q/save within the setup function, passing a filename, Quil will 
output to a file as well as the screen. The format of the image created will depend on 
the filename suffix: .tif for TIFF files, .jpg for JPEG files, .png for PNG files, and 
.tga for TARGA files:

(defn draw-filled-grid [{:keys [n-bins size fill-fn]}]
  (let [[width height] size
        x-scale (/ width n-bins)
        y-scale (/ height n-bins)
        setup (fn []
                (doseq [x (range n-bins)
                        y (range n-bins)
                        :let [x-pos (* x x-scale)
                              y-pos (- height
                                       (* (inc y) y-scale))]]
                  (q/fill (fill-fn x y))
                  (q/rect x-pos y-pos x-scale y-scale))
                  (q/save "heatmap.png"))]
    (q/sketch :setup setup :size size)))

We're also able to output to PDF, as we'll show with the next visualization.

Visualization for communication
In the course of our work as data scientists, we may find ourselves needing to 
communicate with a wide variety of people. Our close colleagues and managers  
may be able to read and interpret our Incanter charts, but they're unlikely to  
impress the CEO. We may also have a role that requires us to communicate  
with the general public.

In either case, we should focus on making visualizations that are simple and 
powerful, but which don't sacrifice the integrity of the data. A lack of statistical 
training is no barrier to being able to understand subtle and nuanced arguments and 
we should respect our audience's intelligence. The challenge for us as data scientists 
is to find a representation that conveys the message effectively to them.

For the remainder of this chapter, we'll work on a visualization that aims to 
communicate a more complex set of data in a succinct and faithful way.
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The visualization we're going to create is a version of one of the 
graphs presented in the Wealth Inequality in America video online at 
https://www.youtube.com/watch?v=QPKKQnijnsM. Produced 
by anonymous film maker Politizane, the powerful video has gathered 
more than 16 million hits on YouTube.

As is often the case with graphical representations like these, our data will come 
from several different sources.

Visualizing wealth distribution
The first dataset we'll make use of is from an article by G. William Domhoff, research 
professor in psychology and sociology at the University of California, Santa Cruz. 
The numbers we will quote next are from an article entitled Wealth, Income, and 
Power at http://www2.ucsc.edu/whorulesamerica/power/wealth.html.

Although the article is well worth reading in its entirety, a particularly striking 
graphic is a pie chart that shows the financial net worth breakdown of people  
in the U.S. in 2010:

https://www.youtube.com/watch?v=QPKKQnijnsM
http://www2.ucsc.edu/whorulesamerica/power/wealth.html
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The pie chart is striking for several reasons. Firstly, the concept that over 40 percent 
of the financial wealth is owned by such a small percentage is hard to comprehend. 
Secondly, each slice of the pie represents not just the vastly different quantities 
of wealth, but vastly different quantities of people, too: from 1 percent of the 
population to 80 percent of the population. Pie charts are notoriously difficult  
to read at the best of times, so this chart is doubly challenging.

Pie charts are generally not a good way to represent data, even where 
the totals do conceptually represent parts of the whole. Author and 
programmer Steve Fenton has documented many of the reasons and 
provided appropriate alternatives at https://www.stevefenton.
co.uk/2009/04/pie-charts-are-bad/.

Let's see how we could go about reinterpreting this data to make it more 
comprehensible. As a first step, let's extract the numbers we'll be working  
with that are presented in the following table:

Percentile Total financial wealth, 2010
0-79 5%
80-89 11%
90-95 13%
96-99 30%
100 42%

A small improvement over the pie chart would be to represent the same data as a bar 
chart. While people generally struggle to interpret the relative sizes of the pie chart 
segments successfully, bar charts present no such problem. The next example simply 
creates a bar chart out of the earlier numbers:

(defn ex-10-10 []
  (let [categories ["0-79" "80-89" "90-95" "96-99" "100"]
        percentage [5      11      13      30      42   ]]
    (-> (c/bar-chart categories percentage
                     :x-label "Category"
                     :y-label "% Financial Wealth")
        (i/view))))

https://www.stevefenton.co.uk/2009/04/pie-charts-are-bad/
https://www.stevefenton.co.uk/2009/04/pie-charts-are-bad/
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This will return the following chart:

This is an improvement on the pie chart in the respect that it's easier to compare the  
relative sizes of the categories. A significant problem remains though: the number 
of people represented by each category are so vastly different. The bar to the left 
represents 80 percent of the population, while the bar to the right represents  
1 percent of the population.

If we wanted to make this data more comprehensible, we could divide up the total 
into 100 equal units, each representing one percentile of the population. The width of 
each bar could be adjusted according to the number of percentiles it represents while 
preserving its area. Since each percentile unit represents an equal number of people, 
the resulting chart would allow us to more easily make comparisons across groups.

One way we could achieve this is by returning a sequence of 100 elements, one for 
each percentile of the population. The value of each element in the sequence would 
be the proportion of overall wealth accounted for by the percentile. We already know 
that the top 1 percent owns 42 percent of overall wealth, but the other groups would 
get a value adjusted downwards for the number of percentiles they span:

(def wealth-distribution
  (concat (repeat 80 (/ 5  80))
          (repeat 10 (/ 11 10))
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          (repeat 5  (/ 13 5))
          (repeat 4  (/ 30 4))
          (repeat 1  (/ 42 1))))

(defn ex-10-11 []
  (let [categories (range (count wealth-distribution))]
    (-> (c/bar-chart categories wealth-distribution
                     :x-label "Percentile"
                     :y-label "% Financial Wealth")
        (i/view))))

This example generates the following bar chart:

By applying a simple transformation, we're able to gain a much better understanding 
of the true distribution. Each bar now represents an equal proportion of the 
population and the area of each bar represents the proportion of wealth owned by 
the percentile.
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Bringing data to life with Quil
The transformation in the previous section results in a chart that shows the difference 
between the extreme ends of the scale almost too starkly: it's hard to interpret 
anything but the largest bars. One solution would be to display the numbers on a 
log scale or a log-log scale as we did elsewhere in the book. If the audience for this 
chart are statistically literate, this might be the most appropriate thing to do, but let's 
assume that the intended audience for our visualization is the general public.

The problem with the chart presented earlier is that the rightmost bar is so large that 
it overwhelms all the other bars. 80 percent of the area is represented by nothing 
more than a few pixels. In the next section, we'll make use of Quil to produce a 
visualization that makes better use of space while it simultaneously preserving the 
integrity of the chart.

Drawing bars of differing widths
Over the next several sections, we'll build up a visualization in stages. Since we'll be 
drawing a Quil sketch, we'll first define some constants that will allow us to produce 
drawing instructions relative to the dimensions of the sketch. Some constants are 
omitted from the next code for brevity:

(def plot-x 56)
(def plot-y 60)
(def plot-width 757)
(def plot-height 400)
(def bar-width 7)

With these in place, we can begin to represent the bar chart in a more comprehensible 
way. The following code takes the wealth distribution and plots all but the final bar as 
a series of rectangles. The y-scale is calculated so that the largest bar we will draw will 
fill the height of the plot:

(defn draw-bars []
  (let [pc99    (vec (butlast wealth-distribution))
        pc1     (last wealth-distribution)
        y-max   (apply max pc99)
        y-scale (fn [x] (* (/ x y-max) plot-height))
        offset  (fn [i] (* (quot i 10) 7))]
    (dotimes [i 99] ;; Draw the 99%
      (let [bar-height (y-scale (nth pc99 i))]
        (q/rect (+ plot-x (* i bar-width) (offset i))
                (+ plot-y (- plot-height bar-height))
                bar-width bar-height)))
    (let [n-bars 5  ;; Draw the 1%
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          bar-height (y-scale (/ pc1 n-bars))]
      (q/rect (+ plot-x (* 100 bar-width) (offset 100))
              (+ plot-y (- plot-height bar-height))
              (* bar-width n-bars) bar-height))))

The bars we've drawn so far represent the 99 percent. The final bar will represent the 
final 1 percent of the population. So it fits the vertical scale we've devised without 
disappearing off the top of the sketch, we will make the bar correspondingly wider 
while preserving its area. As a result, the bar is 5 times shorter—but also 5 times 
wider—than the others:

(defn ex-10-12 []
  (let [size [960 540]]
    (q/sketch :size size
              :setup draw-bars)))

The example outputs the following graphic:

Already, we can see the relationship between largest bars more clearly, but it's not 
clearly apparent yet that it's a chart. In the next section, we'll add text to identify the 
subject of the chart and the range of the axes.
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Adding a title and axis labels
One of the convenient aspects of specialized visualization tools such as Incanter is 
that the axes can be automatically generated for our charts. Quil provides no help for 
us here, but since the bar widths are known, it's not terribly hard for us to achieve. In 
the following code, we'll make use of the text, text-align, text-size functions to 
write text to our visualization:

(defn group-offset [i]
  (* (quot i 10) 7))

(defn draw-axis-labels []
  (q/fill 0)
  (q/text-align :left)
  (q/text-size 12)
  (doseq [pc (range 0 (inc 100) 10)
          :let [offset (group-offset pc)
                x      (* pc bar-width)]]
    (q/text (str pc "%") (+ plot-x x offset) label-y))
    (q/text "\"The 1%\"" pc1-label-x  pc1-label-y))

What we lose by using a nonspecialist charting library we gain in terms of flexibility. 
Next, we'll write a function to produce letterpress-style embossing on the text:

(defn emboss-text [text x y]
  (q/fill 255)
  (q/text text x y)
  (q/fill 100)
  (q/text text x (- y 2)))

(defn draw-title []
  (q/text-size 35)
  (q/text-leading 35)
  (q/text-align :center :top)
  (emboss-text "ACTUAL DISTRIBUTION\nOF WEALTH IN THE US"
               title-x title-y))

We use the emboss-text function to draw a large title at the center of our chart. 
Notice how we also specify the alignment of the text with the positions being 
measured optionally from the top, bottom, center, left, or right of the text:

(defn ex-10-13 []
  (let [size [960 540]]
    (q/sketch :size size
              :setup #((draw-bars)
                       (draw-axis-labels)
     (draw-title)))))
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The earlier example generates the following graphic:

This chart, which is a mix of bar heights and areas, and custom text visualization 
would be very difficult to achieve in a standard charting application. Using Quil,  
we have a toolbox that allows us to freely mix graphics and data with ease.

Improving the clarity with illustrations
We're getting somewhere with our chart, but it's very spare at the moment. One way 
to add more visual interest would be with images. In the resources directory of the 
example project, are two SVG image files. One is a person icon and the other is a map 
of the United States sourced from Wikipedia.

Wikipedia contains a wide variety of SVG maps issued under 
a flexible creative commons license. For example, maps of the 
United States at https://commons.wikimedia.org/wiki/
Category:SVG_maps_of_the_United_States.

The map we're using in this chapter is available at https://commons.wikimedia.
org/wiki/File:Blank_US_Map,_Mainland_with_no_States.svg and was made 
available by Lokal_Profil under a CC-BY-SA-2.5 license.

https://commons.wikimedia.org/wiki/Category:SVG_maps_of_the_United_States
https://commons.wikimedia.org/wiki/Category:SVG_maps_of_the_United_States
https://commons.wikimedia.org/wiki/File:Blank_US_Map,_Mainland_with_no_States.svg
https://commons.wikimedia.org/wiki/File:Blank_US_Map,_Mainland_with_no_States.svg
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Using SVG images in Quil is a two-step process. First, we have to load the image  
into the memory using q/load-shape. This function accepts a single argument: the 
path to the SVG file that is to be loaded. Next, we have to actually draw the image  
on the screen. This is accomplished using the q/shape function, which expects a  
x, y position for the image and also an optional width and height. If we were using 
pixel-based images such as JPEGs or PNGs, we would instead use the corresponding 
q/load-image and q/image functions:

(defn draw-shapes []
  (let [usa    (q/load-shape "resources/us-mainland.svg")
        person (q/load-shape "resources/person.svg")
        colors [(q/color 243 195 73)
                (q/color 231 119 46)
                (q/color 77  180 180)
                (q/color 231 74  69)
                (q/color 61  76  83)]]
    (.disableStyle usa)
    (.disableStyle person)
    (q/stroke 0 50)
    (q/fill 200)
    (q/shape usa 0 0)
    (dotimes [n 99]
      (let [quintile (quot n 20)
            x (-> (* n bar-width)
                  (+ plot-x)
                  (+ (group-offset n)))]
        (q/fill (nth colors quintile))
        (q/shape person x icons-y icon-width icon-height)))
        (q/shape person
             (+ plot-x (* 100 bar-width) (group-offset 100))
             icons-y icon-width icon-height)))

In this code, we called .disableStyle on both the usa and the person shapes. This 
is because SVG files may contain embedded style such as fill color, stroke color, or 
border width information that will affect the way Quil draws the shape. We'd like 
complete control over our representation, so we choose to disable all the styles.

Also, note that we're loading the person shape once and drawing it many times with 
dotimes. We are setting the color based on quintile in which the user falls:

(defn ex-10-14 []
  (let [size [960 540]]
    (q/sketch :size size
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              :setup #((draw-shapes)
                       (draw-bars)
                       (draw-axis-labels)
                       (draw-title)))))

The result is shown in the next image:

The graphic is beginning to look like one we could show people without blushing. 
The people icons help communicate the idea that each bar represents a percentile 
of the population. The bars are not very attractive yet. Since each bar represents the 
wealth of each person, let's represent each bar as a pile of bank notes. While this 
might appear to be an overly literal interpretation, it would actually make it clearer 
that the 1 percent bar is actually 5 times as wide as everyone else's.

Adding text to the bars
By now, it should be no surprise that we can draw the banknotes as a series  
of rectangles:

(defn banknotes [x y width height]
  (q/no-stroke)
  (q/fill 80 127 64)
  (doseq [y (range (* 3 (quot y 3)) (+ y height) 3)
          x (range x (+ x width) 7)]
    (q/rect x y 6 2)))
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The only slight complexity in the previous code is the need to adjust the starting y 
position as an even multiple of 3. This will ensure that all the banknotes meet the x axis 
after an even number of multiples, irrespective of the height of the bar on the y axis. 
This is a side-effect of drawing the bars from top to bottom, rather than vice versa.

We'll add the earlier function to our sketch in the following example:

(defn ex-10-15 []
  (let [size [960 540]]
    (q/sketch :size size
              :setup #((draw-shapes)
                       (draw-banknotes)
                       (draw-axis-labels)
                       (draw-title)))))

This will generates the following chart:

This is now a reasonably complete chart representing the actual distribution of 
wealth in the United States. One of the strengths of the original YouTube video 
link provided earlier is that it contrasts the actual distribution with several other 
distributions: the distribution of wealth people expected and the distribution of 
wealth they would prefer.
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Incorporating additional data
Michael Norton, a Harvard Business Professor, and Dan Ariely, a behavioral 
economist performed a study on more than 5,000 Americans to assess their 
perception of wealth distribution. When they were shown a variety of examples on 
wealth distribution and asked to identify which one was sourced from the United 
States, most chose a distribution much more balanced than it actually was. When 
asked to choose their ideal distribution of wealth, 92 percent picked one that was 
even more equitable.

The following graphic shows the results of this study:

The preceding graphic was published by Mother Jones on http://www.
motherjones.com/politics/2011/02/income-inequality-in-america-chart-
graph based on the data sourced form http://www.people.hbs.edu/mnorton/
norton%20ariely%20in%20press.pdf.

The previous chart does a good job of showing the relative differences between 
people's perceptions and reality for each of the 5 quintiles. We'll be converting this 
data into an alternative representation so, like before, we can convert the data into a 
table representation.

Reading off the earlier chart and with reference to the linked paper, I've arrived at 
the following approximate breakdown by quintile:

Quintile Ideal % Expected % Actual %
100th 32.0% 58.5% 84.5%
80th 22.0% 20.0% 11.5%
60th 21.5% 12.0% 3.7%

http://www.motherjones.com/politics/2011/02/income-inequality-in-america-chart-graph
http://www.motherjones.com/politics/2011/02/income-inequality-in-america-chart-graph
http://www.motherjones.com/politics/2011/02/income-inequality-in-america-chart-graph
http://www.people.hbs.edu/mnorton/norton%20ariely%20in%20press.pdf
http://www.people.hbs.edu/mnorton/norton%20ariely%20in%20press.pdf
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Quintile Ideal % Expected % Actual %
40th 14.0% 6.5% 0.2%
20th 10.5% 3.0% 0.1%

Let's take the ideal and expected distributions and find a way to plot them on our 
existing wealth distribution chart. Our bar chart already represents the relative 
wealth of different percentiles as an area. In order to make the two datasets 
comparable, we should also do the same with this data. The previous table assisted 
us by already representing the data as five equally sized groups, so we don't need to 
apply a transformation like we did with the data sourced from the pie chart.

However, let's use this as an opportunity to learn more about drawing complex 
shapes in Quil and see whether we can arrive at a presentation of the data more  
like the following diagram:

The table provides the relative areas that we want to represent by the shapes labeled 
A, B, and C. In order to draw the earlier shapes, we'll have to calculate the heights x, 
y, and z. These will give us the coordinates that we can plot on our chart.
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The width of the areas A, B, and C is w. Therefore, the product of x and w will equal 
the area of A:

Axw =

Ax
w

=

It follows that the height of x is simply the area of A divided by w. Y is a little more 
complicated, but not much. The area of the triangular component of B is equal to:

B xw−

therefore:

( )2 B xw
y x

w
− 

= +  
 

We can calculate z in the same way:

( )2 C yw
z y

w
− 

= +  
 

Expanding our definitions gives the following equation for z:

( ) ( )2 B 2 Cxw ywAz
w w w

− −   
= + +   
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If we assume that w is 1 (all our quintiles are of a constant width), then we arrive at 
the following equations and so on for any number of sections:

x A=

( )2y A B A= + −

( ) ( )( )( )2 2 2z A B A C A B A= + − + − + −

This can be expressed as a simple recursive function. The first of our proportions will 
be assigned the value x. Subsequent values can be calculated from it as follows:

(defn area-points [proportions]
  (let [f (fn [prev area]
            (-> (- area prev)
                (* 2)
                (+ prev)))
        sum (reduce + proportions)]
    (->> (reductions f (first proportions) proportions)
         (map #(/ % sum)))))

The reductions function behaves exactly like reduce, but preserves the 
intermediate steps of our calculation. Rather than a single value, we'll get back a 
sequence of values that correspond to the (proportional) heights of our y-coordinates.

Drawing complex shapes
The area-points function defined in the previous section will provide a series of 
points for us to plot. However, we haven't yet covered the functions in Quil that will 
allow us to plot them. To draw lines, we could use the q/line function. The line 
function will accept a start and an end coordinate and draw a straight line between 
them. We would be able to construct an area graph this way, but it would have no 
fill. Lines simply describe outlines; we are not able to use them to construct colored 
shapes like we did with q/rect while making a histogram. To give our shapes a fill 
color, we need to build them up one vertex at a time.
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To build arbitrarily complex shapes with Quil, we first call q/begin-shape. This is 
a stateful function that lets Quil know that we want to start building up a series of 
vertices. Subsequent calls to q/vertex will be associated with the shape that we're 
constructing. Finally, a call to q/end-shape will complete the shape. We'll draw it 
with the stroke and fill the styles specified in the current drawing context.

Let's see how it works by drawing some test shapes using the area-points function 
defined in the previous section:

(defn plot-area [proportions px py width height]
  (let [ys      (area-points proportions)
        points  (map vector (range) ys)
        x-scale (/ width (dec (count ys)))
        y-scale (/ height (apply max ys))]
    (q/stroke 0)
    (q/fill 200)
    (q/begin-shape)
    (doseq [[x y] points]
      (q/vertex (+ px (* x x-scale))
                (- py (* y y-scale))))
      (q/end-shape)))

(defn ex-10-16 []
  (let [expected [3 6.5 12 20 58.5]
        width  640
        height 480
        setup (fn []
                (q/background 255)
                (plot-area expected 0 height width height))]
    (q/sketch :setup setup :size [width height])))
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This example plots the [3 6.5 12 20 58.5] series using the area-points function 
defined previously. This is the series of percentage values listed in the data table for 
the expected distribution of wealth in the United States. The plot-area function 
calls begin-shape, iterates over the sequence of ys returned by area-points, and 
calls end-shape. The result is as follows:

This isn't quite what we want. Although we're asking to fill the shape, we're not 
describing the full shape to be filled. Quil doesn't know how we want to close off 
the shape, so it's simply drawing an edge from the last point back to the first, cutting 
across the diagonal of our chart. Fortunately, the problem can be easily resolved by 
ensuring there are points at both the bottom corners of the diagram:

(defn plot-full-area [proportions px py width height]
  (let [ys      (area-points proportions)
        points  (map vector (range) ys)
        x-scale (/ width (dec (count ys)))
        y-scale (/ height (apply max ys))]
    (q/stroke 0)
    (q/fill 200)
    (q/begin-shape)
    (q/vertex 0 height)
    (doseq [[x y] points]
      (q/vertex (+ px (* x x-scale))
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                (- py (* y y-scale))))
    (q/vertex width height)
    (q/end-shape)))

(defn ex-10-17 []
  (let [expected [3 6.5 12 20 58.5]
        width  640
        height 480
        setup (fn []
                (q/background 255)
                (plot-full-area expected 0 height width height))]
    (q/sketch :setup setup :size [width height])))

The plot-full-area function adds an extra call to vertex before and after iterating 
over the sequence of ys. The points specified ensure that the shape is fully described 
before the call to end-shape. The result is shown in the following image:

This is better, and it's starting to look like an area plot. In the next section, we'll cover 
how to describe more complex shapes using curves. Although curves aren't required 
for our area plot, it will help make the results a little more attractive.
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Drawing curves
The area plot is starting to look good, but we could remove those sharp corners by 
making use of Quil's spline curves. Rather than building up the shape by adding 
vertices, we could call q/curve-vertex to smoothen out the joins between the edges.

The q/curve-vertex function implements a method of curve drawing known 
as Catmull-Rom splines. To draw a curve, we must specify at least four vertices: 
the first and last will be treated as the control points and the curve will be drawn 
between the middle two.

We visualize how Catmull-Rom splines work in the following diagram, which shows 
the path specified by points a, b, c, and d:

The tangent to the curve at point c is parallel to X: the line described between points 
a and b; the tangent to the curve at b is parallel to Y: the line described by points 
c and d. Thus, to draw a curve, we'll need ensure we add these additional control 
points at the beginning and the end of our line. Each control point is added with 
curve-vertex, which we call once before we iterate over our points and then again 
at the end:

(defn smooth-curve [xs ys]
  (let [points (map vector xs ys)]
    (apply q/curve-vertex (first points))
    (doseq [point points]
      (apply q/curve-vertex point))
    (apply q/curve-vertex (last points))))
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Now that we've defined a smooth-curve function, we'll use it in the following two 
functions, smooth-stroke and smooth-area:

(defn smooth-stroke [xs ys]
  (q/begin-shape)
  (q/vertex (first xs) (first ys))
  (smooth-curve (rest xs) (rest ys))
  (q/end-shape))

(defn smooth-area [xs ys]
  (q/begin-shape)
  (q/vertex (first xs) (first ys))
  (smooth-curve (rest xs) (rest ys))
  (q/vertex (last xs) (first ys))
  (q/end-shape))

The smooth-stroke function will draw the shape defined by the xs and ys by 
creating vertices for each of them. The smooth-area function extends this by closing 
off the shape and avoiding the situation we saw previously with a fill that crosses the 
shape diagonally. Bringing the two functions together is plot-curve, a function that 
accepts the xs and ys to be plotted, plus a fill color, stroke color, and stroke weight  
to use:

(defn plot-curve [xs ys fill-color
                  stroke-color stroke-weight]
  (let [points (map vector xs ys)]
    (q/no-stroke)
    (q/fill fill-color)
    (smooth-area xs ys)
    (q/no-fill)
    (q/stroke stroke-color)
    (q/stroke-weight stroke-weight)
    (smooth-stroke xs ys)))

Let's call the plot-curve function on the same sequence of expected values we 
plotted earlier, and compare the difference:

(defn plot-smooth-area [proportions px py width height]
  (let [ys      (cons 0 (area-points proportions))
        points  (map vector (range) ys)
        x-scale (/ width (dec (count ys)))
        y-scale (/ height (apply max ys) -1)]
    (plot-curve (map (point->px px x-scale) (range (count ys)))
                (map (point->px py y-scale) ys)
                (q/color 200)
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                (q/color 0) 2)))

(defn ex-10-18 []
  (let [expected [3 6.5 12 20 58.5]
        width  640
        height 480
        setup (fn []
                (q/background 255)
                (plot-smooth-area expected 0 height
                                  width height))]
    (q/sketch :setup setup :size [width height])))

This example generates the following image:

The effect of the curve is subtle, but it provides a polish to our chart that would 
otherwise be lacking. The previous chart shows the expected distribution of wealth 
from the study by Norton and Ariely. Before we combine this with the actual wealth 
distribution plot we created earlier, let's see how it could be combined with the ideal 
distribution of wealth from the same study.
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Plotting compound charts
The earlier description shows how to create a single curved graph scaled to fit an 
area. As we've defined it, the plot-smooth-area function will fill the height we 
specify for every area we draw. This makes sense from a drawing perspective, but 
it doesn't make sense while trying to draw two comparable charts: we need to make 
sure they use the same scale.

In the next block of code, we'll calculate a scale based on the larger of the two graphs 
and then plot both using this scale. This ensures that all of the series we plot will be 
comparable with each other. The combined chart will fill the width and height we 
allot to it:

(defn plot-areas [series px py width height]
  (let [series-ys (map area-points series)
        n-points  (count (first series-ys))
        x-scale   (point->px px (/ width (dec n-points)))
        xs        (map x-scale (range n-points))
        y-max     (apply max (apply concat series-ys))
        y-scale   (point->px py (/ height y-max -1))]
    (doseq [ys series-ys]
      (plot-curve (cons (first xs) xs)
                  (map y-scale (cons 0 ys))
                  (q/color 255 100)
                  (q/color 255 200) 3))))

(defn ex-10-19 []
  (let [expected [3 6.5 12 20 58.5]
        ideal    [10.5 14 21.5 22 32]
        width  640
        height 480
        setup (fn []
                (q/background 100)
                (plot-areas [expected ideal] 0 height
                            width height))]
    (q/sketch :setup setup :size [width height])))
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We plot both the expected and ideal series using the plot-areas function, having 
set a darker background to our sketch with the background function. In our call to 
plot-curve, we specify semitransparent white as the fill to be used. The following 
image shows the result:

To combine this chart with the chart showing the actuals created previously, we 
simply need to adjust its scale to match. The highest point on this chart at the top 
right corresponds to a probability density of 5 percent. The 96-99th percentiles on our 
actual plot represents 7.5 percent of the total, each on their plot. This means that we 
need to draw the previous chart at 2/3 of the height of the plot we already have for 
the axes to be comparable. Let's do this now, and add a series of labels to the two 
new series while we're at it:

(defn draw-expected-ideal []
  (let [expected [3 6.5 12 20 58.5]
        ideal    [10.5 14 21.5 22 32]]
    (plot-areas [expected ideal]
                plot-x
                (+ plot-y plot-height)
                plot-width
                (* (/ plot-height 0.075) 0.05))
    (q/text-size 20)
    (emboss-text "EXPECTED" 400 430)
    (emboss-text "IDEAL" 250 430)))
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Finally, we call the draw-expected-ideal function from our sketch along with the 
other functions defined previously:

(defn ex-10-20 []
  (let [size [960 540]]
    (q/sketch :size size
              :setup #((draw-shapes)
                       (draw-expected-ideal)
                       (draw-banknotes)
                       (draw-axis-labels)
                       (draw-title)))))

The finished result is shown in the next graphic:

Hopefully, you'll agree that the finished chart is attractive as well as informative. 
Most importantly, we've generated the chart by drawing instructions from actual 
data. The finished result has an integrity to it that would be harder to establish if the 
chart were produced by hand.
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Output to PDF
All the elements combined together yield a graphic of the kind that might end  
up in print. The drawing instructions we provided are vector-based—rather than 
pixel-based—so it will scale to any resolution required without loss of quality.

Rather than output to a pixel-based format using save as we did with the histogram, 
let's output to a PDF. The PDF format will preserve the scalability of our artwork and 
allow us to output at any resolution desired. To do this, we configure the sketch to 
use the PDF renderer by passing the :pdf keyword and also an :output-file path.

(defn ex-10-21 []
  (let [size [960 540]]
    (q/sketch :size size
              :setup #((draw-shapes)
                       (draw-expected-ideal)
                       (draw-banknotes)
                       (draw-axis-labels)
                       (draw-title))
              :renderer :pdf
              :output-file "wealth-distribution.pdf")))

The final example will output our finished PDF file to the root of the project directory.

Summary
In this chapter, we've seen how very simple visualizations—using nothing but 
colored rectangles—can bring useful insight from data, and how a combination of 
Clojure core functions and Quil's drawing API can enable us to generate powerful 
graphics that communicate a message.

We achieved all of this using the Quil library. There's much more to Quil than what 
we've shown here: it enables interactive animation, it supports ClojureScript output 
for the web, and it can produce 3D rendering as well. Visualization is a huge topic 
too, and we couldn't hope to provide more than a few examples to pique your 
interest in this chapter. By showing how even basic drawing instructions using 
rectangles, curves, and SVGs can combine into powerful graphics, we hope to have 
inspired you with the possibilities to create your own custom visualizations.
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This was the final chapter of Clojure for Data Science. Be sure to visit the book's 
website at http://clojuredatascience.com for more information on the topics 
covered and links to further reading. We intend to provide an ongoing resource for 
data scientists in general and Clojure programmers in particular.

It was an ambitious task to convey the breadth and depth of a field as diverse 
and quickly evolving as data science using a language whose libraries are quickly 
evolving as well. Nonetheless, we hope Clojure for Data Science has given you an 
appreciation for some of the fundamental concepts of statistics, machine learning, 
and big data processing. This conceptual basis should serve you well, even as the 
technical options—and perhaps even your choice of programming language—
continue evolving into the future.

http://clojuredatascience.com
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chi-squared test  182-186

chi-squared statistic  183, 184
chi-squared test  182-186
classifier

about  167
data  168
data, inspecting  168-170
relative risk and odds,  

comparing with  170-173
saving, to file  232

clj-ml
classification with  223
data, loading with  224
decision tree, building  225
URL  223

clj-time library
URL  477

Clojure library Tesser
URL  248

clojure-opennlp library
URL  290

Clojure reducers library
about  237
associativity  243, 244
curried reductions, with reducers  242
large files, loading with iota  239, 240
mean calculating, fold used  244, 245
parallel folds  237-239

reducers processing pipeline,  
creating  240, 241

statistical folds  243
URL  236
variance calculating, fold used  246-248

cluster evaluation, measures
about  324
clustered points and centroids,  

loading  326, 327
cluster RMSE, calculating  328
inter-cluster density  324
intra-cluster density  325
optimal k, determining with  

Davies-Bouldin index  333-335
optimal k, determining with  

Dunn index  331, 332
optimal k, determining with  

elbow method  329, 330
root mean square error, calculating with 

Parkour  326
clustering

data, downloading  286
data, extracting  286, 287
data, inspecting  287

clustering, text
about  288
dictionary, creating  294
Jaccard index  288, 289
Reuters files, tokenizing  289, 290
set-of-words  288, 289
text, representing as vectors  293

cluster RMSE
calculating  328

coefficient of determination  137
coefficient of multiple determination  149
collinearity

about  155-157
multicollinearity  157, 158

columns
adding  39-42

combinations function
URL  332

communities, with label propagation
aggregate value  455
detecting  453-455
map vertices  455



[ 565 ]

maximum iterations count, setting  455
vertex attribute, sending  455
vertex function  455

comparative visualizations
about  31
box and whisker plots  31, 32
cumulative distribution functions  32-34
probability mass function (PMF)  47-49
scatter plots  50-52
scatter transparency  53, 54

confidence interval  67-69, 125-128
confounding variables  129
confusion matrix  196, 197
connected components

size, calculating for largest  452
running  451

connected components, with Pregel API
about  449, 450
attributes, updating  450, 451
convergence, iterating to  451
map vertices  450
message function  450

content-based filtering  346
content distribution network (CDN)  91
correlation

data  111, 112
Guardian's excellent data blog, URL 111
inspecting  112, 113
visualizing 114-116

covariance
about  120, 121
calculating, with Tesser  249

cross-validation  228
cumulative distribution function (CDF)  125

D
daily means distribution  61-63
data scrubbing  8-10
Davies-Bouldin index

used, for determining optimal k  333-335
decision trees

about  210
building, in clj-ml  225
building, recursively  218-220
classifier, evaluating  222
entropy  213, 214

information  211, 212
information gain  215-218
using, for classification  221

degenerate matrices  146
degrees of freedom  78, 79
Delta rule  255
dependent variable  129
depth-first search  419-421
descriptive statistics

about  10
mathematical notation, interpreting  12
mean  11
median  13

dictionary
creating  294

dimensionality reduction
about  387
Iris dataset, plotting  388-390
principle component  

analysis (PCA)  390-392
Singular Value  

Decomposition (SVD)  392-396
dimensions  141
Directed Acyclic Graph (DAG)  415
Discounted Cumulative Gain (DCG)  370
discrete time models

about  482, 483
autocorrelation, determining in  

AR models  489-491
autoregressive (AR) models  485-488
moving-average (MA) models  491-493
partial autocorrelation function (PACF), 

calculating  496, 497
random walks  483-485
seasonality, removing with  

differencing  503-505
distance measures, evaluating

about  362
Pearson correlation similarity  362, 363
Spearman's rank similarity  364, 365

distributed cache
data, sharing with  317-319

distributed unique IDs
creating  312, 313
with Hadoop  313-317

dot product  143
dummy variables  152, 153
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Dunn index
used, for determining optimal k  331, 332

Durbin-Levinson recursion
about  498
URL  498
used, for calculating partial autocorrelation 

function (PACF)  498
dwell time

about  56
visualizing  57-59

E
edge-list format  412
elbow method

used, for determining optimal k  329, 330
ensemble learning  230
entropy  213, 214
explained sum of squares (ESS)  151
exploratory data analysis  519
exploratory data visualization  520, 521
exponential distribution  60, 61

F
F1 measure  369
F-distribution  101, 102
feature matrix

creating  194
Fisher z-transformation  126
Flambo

URL  396
fold  237
frequency vectors  293
frequentist  199
Fressian

URL  282
fs library

URL  303
F-statistic  102-104
F-test  151  104-107

G
Gaussian distribution

about  21
central limit theorem  21-24

Giraph
URL  436

GitHub
URL  2

Glittering
URL  437

gradient descent
about  190, 254
custom Tesser fold, creating  259, 260
feature extraction  258-259
feature scaling  256, 258
iterative gradient descent, running  266, 267
learning rate  255, 256
matrix-mean fold, creating  263-265
multiple regression with  254
scaling with Hadoop  268
single step, applying  265, 266
total model error, calculating  262
update rule  254

gradient descent on Hadoop, with Tesser 
and Parkour

about  269
code, preparing for Hadoop cluster  272
feature scale fold, running  

with Hadoop  270
gradient descent, running with  

Hadoop  270, 271
Parkour distributed sources and sinks  269
uberjar, building  273
uberjar, submitting to Hadoop  273, 274

graphs
visualizing, Loom used  413-416

graph traversal
Königsberg city, seven bridges  417, 418
with Loom  416

GraphViz
URL  413

GraphX
about  411, 435
built-in triangle counting algorithm, 

running  442, 443
communities with label propagation, 

detecting  453-455
connected components, running  451
custom triangle counting  

algorithm, running  447
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distributed graph computation  435-437
flow formulation  458, 459
graph density, measuring with triangle 

counting  439, 440
label propagation, running  456, 457
largest connected component, size  

calculating  452
PageRank, implementing with  

Glittering  459, 460
PageRank, running to determine 

community influencers  461, 462
partitioning strategies  441, 442
Pregel API  448
Pregel API, connected components  449
RDGs, creating with Glittering  437, 438
triangle counting, implementing with  

Glittering  444, 445

H
Hadoop Distributed File  

System (HDFS)  396
Hadoop installation guides

URL  273
Hama

URL  436
heteroscedasticity  479
histogram  17-20
hypothesis testing

about  73, 124, 125
significance testing  74

I
Ideal Discounted Cumulative  

Gain (IDCG)  371
identity matrix  145, 146
Incanter

F-test  151
gradient descent with  191
logistic regression, implementing with  193
library, URL  3
linear model  150

independent variable  129
indices function  377
inferential statistics  10
information gain

about  215-217

used, for identifying best predictor  217, 218
Information Retrieval statistics (IR stats) 

evaluator
about  367
Discounted Cumulative Gain (DCG)  370
fall-out  370
false positive rate  370
F-measure  369, 370
harmonic mean  369, 370
implicit, versus explicit feedback  375
normalized discounted  

cumulative gain  370, 371
of Mahout  368
precision  367
recall  368
results, plotting  371, 372

inter-cluster density  324
interface

binding  96, 97
interquartile range  16
intra-cluster density  325
inversion matrix  146
iota

for loading large files  239, 240
URL  239

IRS data definition
URL  235

IRS Statistics of Income (SoI)
URL  234

item-based recommenders
about  348, 349
practical considerations  357

J
Jaccard index

about  288, 289
applying, to documents  291

jStat
about  91
URL  91, 92

K
kappa statistic  197, 198
k hash functions  376
k-means

dimensionality, curse  339, 340
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drawbacks  335, 336
Mahalanobis distance measure  336-339

k-means clustering
about  300-303
with Term Frequency-Inverse Document 

Frequency (TF-IDF)  308, 309
k-means clustering, running with Mahout

about  321
clustered output, interpreting  323, 324
results, viewing  322

k-nearest neighbors (k-NN)  359, 360

L
label propagation

about  453
running  456

larger sets
Jaccard similarity, with MinHash  380-383
membership, testing with  

Bloom filters  376-379
probabilistic methods  375

large-scale clustering, with Mahout
about  310
data, sharing with  

distributed cache  317-319
distributed unique IDs, creating  312, 313
distributed unique IDs,  

with Hadoop  313-317
Mahout vectors, building from input 

documents  319, 320
Mahout vectors creating, Parkour used  312
text documents, converting to  

sequence file  311, 312
large-scale machine learning

caching  400
data, filtering  399
data, loading with Sparkling  397
data, mapping  398
distributed datasets  399
MLlib, using  396
persistence  400
Spark, using  396
tuples  399

learning rate  255
locality-sensitive hashing (LSH)

about  383

signatures, bucketing  384-386
URL  387
used, for reducing pair comparisons  383

logistic regression
and naive Bayes approaches,  

comparing  210
classifier, evaluating  195
cost function  189

logistic regression, classifying
about  186, 187
convexity  192, 193
gradient descent, with Incanter  191
logistic regression cost function  189, 190
parameter optimization, with gradient 

descent  190, 191
sigmoid function  187-189

logistic regression, implementing with 
Incanter

about  193
confusion matrix  196, 197
feature matrix, creating  194
kappa statistic  197, 198
logistic regression classifier, evaluating  195

log-linear  59
log-log chart  59
log-normal distribution

about  116, 117
correlation, visualizing  117-119
jittering  119, 120

Loom
graph traversal with  416, 417
URL  413
used, for visualizing graphs  413-416

loss function  132, 190

M
machine learning

ALS, evaluating  405
movie recommendations,  

with ALS  401, 402
sum of squared errors, calculating  406-410

Mahalanobis distance measure  336-339
Mahout

Information Retrieval statistics (IR stats) 
evaluator  368

URL  310
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used, for building user-based  
recommenders  357-359

used, for evaluating  
recommenders  360, 361

vectors, building from input  
documents  319, 320

vectors creating, Parkour used  312
matrix

about  140
construction  142
dimensions  141
identity matrix  145, 146
inversion  146
matrix-matrix multiplication  143, 144
matrix-vector multiplication  143
scalar addition  142
scalar multiplication  142
transposition  145
vectors  141

matrix-matrix multiplication  143, 144
matrix-vector multiplication  143
maximum likelihood estimation  505
maximum likelihood, time series

calculating  506-509
estimating  506-510
estimating, with Akaike Information  

Criterion  512, 513
estimating, with Nelder-Mead  

optimization  511, 512
m bits  376
mean

calculating, fold used  244, 245
mean square error (MSE)  151
mean square model (MSM)  151
Medley

URL  77
memoryless  60
meta-algorithm  230
MinHash

used, for Jaccard similarity for  
larger sets  380-383

MLlib
ALS, evaluating  406
URL  396, 401
used, for large-scale machine learning  396

used, for machine learning on Spark  400
using, with ALS  403
using, with Spark  403

Monte Carlo simulation
used, for forecasting time series  515-517

moving-average (MA) models
about  491-493
autocorrelation, determining  493, 494
combining, with autoregressive (AR)  

models  494-496
multimodal  72
multiple designs

testing  86
multiple linear regression  139
multiple tests

simulating  97, 98

N
naive Bayes classification

about  205, 206
evaluating  208, 209
implementing  206-208

natural logarithm  116
Nelder-Mead optimization

about  509
with Apache Commons Math  511, 512

network analysis
about  411
data, downloading  412
data, inspecting  412, 413
graphs, visualizing with Loom  413-416

new site design
testing  75

n-gram  309
nonresponse bias  70
normal distribution  21
normal equation

about  146, 147
features  147, 148

null hypothesis  73

O
one-sample t-test  84
one-tailed tests  82
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optimal k
determining, with Davies-Bouldin  

index  333-335
determining, with Dunn index  331, 332
determining, with elbow method  329-331

Ordinary Least Squares (OLS)
about  132
assumptions  136, 137
intercept  133
interpretation  134
slope  133
visualization  134-136

overfitting  226, 227

P
PageRank

highest influence, sorting by  460, 461
implementing, with Glittering  459, 460
running, to determine community  

influencers  461, 462
used, for measuring community  

influence  457
Parkour

URL  269
used, for creating Mahout vectors  312

partial autocorrelation
autocovariance  497
calculating  496, 497
plotting  499

partial autocorrelation function (PACF)
about  496
ARMA model order, determining  500, 501
calculating, with Durbin-Levinson 

recursion  498
plotting, of airline data  501-503

parts-of-speech taggers  290
Pearson's correlation

about  121, 123
sample r and population rho  123

phi-quantile  16
Poincaré's baker

about  24, 25
distributions, generating  25-27

polytope  509
populations

about  66, 67

visualizing  71-73
precision

about  367
false positives  367
true positives  367

prediction
about  158-160
confidence interval  160-163
final model  164
intervals  160
model, scope  163

Pregel API
about  448
connected components with  449, 450

probability
about  199
Bayes theorem  200-203
Bayes theorem, with multiple  

predictors  203, 204
densities, plotting  93, 94

probability mass function (PMF)  47-49
processing framework

URL  524
Pythagoras formula  292

Q
quantile-quantile plots  28-31
quantiles

about  15, 16
URL  16

quartiles  16
Quil, used for visualization

about  524
color and fill  533, 534
coordinate system  525, 526
fill color, specifying  528-532
grid, plotting  526, 527
image file, outputting  535
PDF, output to  560
sketch window, drawing to  524, 525
URL  524

R
random forests  230
random walks  483-485
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RDGs
creating, with Glittering  437-439

reagent  95
recommenders

code, downloading  344
downloading  344
downloading, URL  344
inspecting  344, 345
parsing  345, 346

recommenders, evaluating
distance measures  362
information retrieval statistics  367
Mahout, using  360, 361
optimum neighborhood size,  

determining  365, 366
recommendation with  

Boolean preferences  373-375
with Mahout  360, 361

recommender systems
collaborative filtering  347
types  346, 347

regression
about  129
linear equations  130, 131
residuals  131

regression lines  129
relative power  154, 155
resampling  85, 86
residual plot  136
Resilient Distributed Datasets (RDDs)  399
Reuters dataset

URL  286
Reuters documents

clustering  303, 304
Reuters files, tokenizing

about  289, 290
bag-of-words  291-293
Euclidean distance  291-293
frequency vectors  293
Jaccard index, applying to documents  291

root mean square error (RMSE)
about  361
calculating, with Parkour  326

R-squared
adjusted  149, 150
multiple  148, 149

Russian election data
visualizing  44-46

S
samples

about  66, 67
comparing  69, 70
means, calculating  87, 88

Scalable Vector Graphics (SVG)  93
scalar

addition  142, 143
multiplication  142

scale-free networks  433-435
scatter plots  50-52
scatter transparency  53, 54
shortest path

connected components  425-428
finding  421-423
minimum spanning trees  424, 425
SCC  428, 429
subgraphs  425-428
web, bow-tie structure  428, 429

sigmoid function  187, 188
significance testing

about  74
proportions  178, 179

simplex method  510
simulation

about  89
browser simulation  90, 91
compiling  89, 90

singular matrices  146
singular value  

decomposition (SVD)  392-396
skewed normal distribution  27
skewness

about  28
quantile-quantile plots  28-31

Slope One predictors  349
Slope One recommenders

about  349, 350
 item differences, calculating  350-353
recommendations, creating  354-356
URL  349
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Spark
URL  396
used, for large-scale machine learning  396

Sparkling
URL  396
used, for loading data  397
used, for mapping data  398

standard deviation  14, 15
standard error

about  65
adjusting, for large samples  179, 180
bootstrapping, estimating with  174, 175
of proportion  173
of proportion, formula  177

Standard Generalized Markup language 
(SGML)   286

state
about  95
updating  95, 96

stationary time series  479, 480
statistics

about  1
data, downloading  3
data, inspecting  3-8
data scrubbing  8-10
descriptive statistics  10
examples, running  2
sample code, downloading  2
URL  2

stemmers
URL  300

stemming  299
stochastic gradient descent (SGD)

about  274-277
Hadoop jobs, specifying with Parkour 

graph  281
mapper, defining  279
mappers, chaining with  

Parkour graph  282, 283
reducer, defining  280
reducers, chaining with  

Parkour graph  282, 283
shaping functions  280
with Parkour  277-279

summary statistics  10
sum of residual squares (RSS)  151
sum of squared errors (SSE)  326

supersteps  448
supervised learning algorithms  285
SVG maps

URL  543

T
Tanimoto coefficient  373
t-distribution  78, 79
Term Frequency-Inverse Document  

Frequency (TF-IDF)
about  304
clustering, with n-grams  309, 310
k-means clustering with  308
weigh, calculating  306-308
Zipf's law  305, 306

term frequency (tf)  293
term frequency vectors

cosine distance  296-299
creating  295, 296
stop words, removing  299
vector space model  296-299

Tesser
commutativity  250
correlation matrix, calculating  253
covariance, calculating with  249
mathematical folds  248
matrix-sum fold, creating  260, 261
simple linear regression  251-253

time series
airline data, inspecting  476, 477
Airline dataset  466
airline data, visualizing  477-479
decomposition  476
de-trending  480-482
differencing  480-482
forecasting  513-515
forecasting, with  

Monte Carlo simulation  515-517
Longley data, loading  466-468
Longley data, plotting with  

linear model  469-475
Longley dataset  466
maximum likelihood estimation  506
reference link  482
stationary time series  479, 480

Toeplitz matrices  498
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tokenization  289
transduce library

URL  315
triangle counting

aggregate messages  446
built-in triangle counting  

algorithm, running  442-444
counts, dividing  447
custom triangle counting  

algorithm, running  447, 448
graph density, measuring with  439, 440
implementing, with Glittering  444, 445
neighbor IDs, collecting  445, 446

t-statistic  79-81
t-test

performing  81, 82
Twitter's intent API

URL  412, 462
two-dimensional histogram

representing  522, 523
two-tailed tests  82-84

U
uberjar

building  273
submitting, to Hadoop  273, 274

unsupervised learning  285
user-based recommenders

about  348, 349
building, with Mahout  357-359
practical considerations  357

V
variance

about  13, 14
analysis  100, 101
calculating, fold used  246-248

vectors  141
visualization

about  35-37
code, downloading  520
comparative visualizations  31, 47
comparative visualizations, of electorate 

data  43, 44
data, downloading  520
electorate data  37-39

exploratory data visualization  520, 521
Quil, using  524
two-dimensional histogram,  

representing  522, 523
visualization, for communication

about  535
additional data, incorporating  547-550
axis labels, adding  542, 543
bars of differing widths, drawing  540, 541
clarity, improving with  

illustrations  543-545
complex shapes, drawing  550-556
compound charts, plotting  557-559
data, bringing to life  540
text, adding to bars  545, 546
title, adding  542, 543
wealth distribution, visualizing  536-539

W
Waikato Environment for Knowledge 

Analysis (Weka)
URL  223

weighted graph  415
Welch's t-test  84
whole-graph analysis  429-433
Widrow-Hoff learning rule  255

Z
Zipf scale  434
Zipf's law  305, 306
z-test

performing  75-77
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