
ACM Books is a series of high-quality books
published by ACM for the computer science
community. ACM Books publications are widely
distributed in print and digital formats by major
booksellers and are available to libraries and

library consortia. Individual ACM members may access ACM
Books publications via separate annual subscription.
BOOKS.ACM.ORG • WWW.MORGANCLAYPOOLPUBLISHERS.COM

ABOUT ACM BOOKS

This book is a celebration of Leslie Lamport’s work on concurrency, interwoven
in four-and-a-half decades of an evolving industry: from the introduction of the
first personal computer to an era when parallel and distributed multiprocessors
are abundant. His works lay formal foundations for concurrent computations
executed by interconnected computers. Some of the algorithms have become
standard engineering practice for fault tolerant distributed computing –
distributed systems that continue to function correctly despite failures of
individual components. He also developed a substantial body of work on the
formal specification and verification of concurrent systems, and has contributed
to the development of automated tools applying these methods.
 	 Part I consists of technical chapters of the book and a biography. The
technical chapters of this book present a retrospective on Lamport’s original
ideas from experts in the field. Through this lens, it portrays their long-lasting
impact. The chapters cover timeless notions Lamport introduced: the Bakery
algorithm, atomic shared registers and sequential consistency; causality
and logical time; Byzantine Agreement; state machine replication and Paxos;
temporal logic of actions (TLA). The professional biography tells of Lamport’s
career, providing the context in which his work arose and broke new grounds,
and discusses LaTeX – perhaps Lamport’s most influential contribution outside
the field of concurrency. This chapter gives a voice to the people behind the
achievements, notably Lamport himself, and additionally the colleagues around
him, who inspired, collaborated, and helped him drive worldwide impact. Part
II consists of a selection of Leslie Lamport’s most influential papers.
	 This book touches on a lifetime of contributions by Leslie Lamport to the
field of concurrency and on the extensive influence he had on people working
in the field. It will be of value to historians of science, and to researchers and
students who work in the area of concurrency and who are interested to read
about the work of one of the most influential researchers in this field.

Concurrency

ACM Books

Editor in Chief
M. Tamer Özsu, University of Waterloo

ACM Books is a series of high-quality books for the computer science community, published
by ACM and many in collaboration with Morgan & Claypool Publishers. ACM Books
publications are widely distributed in both print and digital formats through booksellers
and to libraries (and library consortia) and individual ACM members via the ACM Digital
Library platform.

Concurrency: The Works of Leslie Lamport
Dahlia Malkhi, VMware Research and Calibra
2019

Providing Sound Foundations for Cryptography: On the work of
Shafi Goldwasser and Silvio Micali
Oded Goldreich, Weizmann Institute of Science
2019

The Essentials of Modern Software Engineering: Free the Practices from the
Method Prisons!
Ivar Jacobson, Ivar Jacobson International
Harold “Bud” Lawson, Lawson Konsult AB (deceased)
Pan-Wei Ng, DBS Singapore
Paul E. McMahon, PEM Systems
Michael Goedicke, Universität Duisburg–Essen
2019

Data Cleaning
Ihab F. Ilyas, University of Waterloo
Xu Chu, Georgia Institute of Technology
2019

Conversational UX Design: A Practitioner’s Guide to the Natural
Conversation Framework
Robert J. Moore, IBM Research–Almaden
Raphael Arar, IBM Research–Almaden
2019

Heterogeneous Computing: Hardware and Software Perspectives
Mohamed Zahran, New York University
2019

Hardness of Approximation Between P and NP
Aviad Rubinstein, Stanford University
2019

The Handbook of Multimodal-Multisensor Interfaces, Volume 3:
Language Processing, Software, Commercialization, and Emerging Directions
Editors: Sharon Oviatt, Monash University
Björn Schuller, Imperial College London and University of Augsburg
Philip R. Cohen, Monash University
Daniel Sonntag, German Research Center for Artificial Intelligence (DFKI)
Gerasimos Potamianos, University of Thessaly
Antonio Krüger, Saarland University and German Research Center for Artificial Intelligence
(DFKI)
2019

Making Databases Work: The Pragmatic Wisdom of Michael Stonebraker
Editor: Michael L. Brodie, Massachusetts Institute of Technology
2018

The Handbook of Multimodal-Multisensor Interfaces, Volume 2:
Signal Processing, Architectures, and Detection of Emotion and Cognition
Editors: Sharon Oviatt, Monash University
Björn Schuller, University of Augsburg and Imperial College London
Philip R. Cohen, Monash University
Daniel Sonntag, German Research Center for Artificial Intelligence (DFKI)
Gerasimos Potamianos, University of Thessaly
Antonio Krüger, Saarland University and German Research Center for Artificial Intelligence
(DFKI)
2018

Declarative Logic Programming: Theory, Systems, and Applications
Editors: Michael Kifer, Stony Brook University
Yanhong Annie Liu, Stony Brook University
2018

The Sparse Fourier Transform: Theory and Practice
Haitham Hassanieh, University of Illinois at Urbana-Champaign
2018

The Continuing Arms Race: Code-Reuse Attacks and Defenses
Editors: Per Larsen, Immunant, Inc.
Ahmad-Reza Sadeghi, Technische Universität Darmstadt
2018

Frontiers of Multimedia Research
Editor: Shih-Fu Chang, Columbia University
2018

Shared-Memory Parallelism Can Be Simple, Fast, and Scalable
Julian Shun, University of California, Berkeley
2017

Computational Prediction of Protein Complexes from Protein Interaction
Networks
Sriganesh Srihari, The University of Queensland Institute for Molecular Bioscience
Chern Han Yong, Duke-National University of Singapore Medical School
Limsoon Wong, National University of Singapore
2017

The Handbook of Multimodal-Multisensor Interfaces, Volume 1:
Foundations, User Modeling, and Common Modality Combinations
Editors: Sharon Oviatt, Incaa Designs
Björn Schuller, University of Passau and Imperial College London
Philip R. Cohen, Voicebox Technologies
Daniel Sonntag, German Research Center for Artificial Intelligence (DFKI)
Gerasimos Potamianos, University of Thessaly
Antonio Krüger, Saarland University and German Research Center for Artificial Intelligence
(DFKI)
2017

Communities of Computing: Computer Science and Society in the ACM
Thomas J. Misa, Editor, University of Minnesota
2017

Text Data Management and Analysis: A Practical Introduction to Information
Retrieval and Text Mining
ChengXiang Zhai, University of Illinois at Urbana–Champaign
Sean Massung, University of Illinois at Urbana–Champaign
2016

An Architecture for Fast and General Data Processing on Large Clusters
Matei Zaharia, Stanford University
2016

Reactive Internet Programming: State Chart XML in Action
Franck Barbier, University of Pau, France
2016

Verified Functional Programming in Agda
Aaron Stump, The University of Iowa
2016

The VR Book: Human-Centered Design for Virtual Reality
Jason Jerald, NextGen Interactions
2016

Ada’s Legacy: Cultures of Computing from the Victorian to the Digital Age
Robin Hammerman, Stevens Institute of Technology
Andrew L. Russell, Stevens Institute of Technology
2016

Edmund Berkeley and the Social Responsibility of Computer Professionals
Bernadette Longo, New Jersey Institute of Technology
2015

Candidate Multilinear Maps
Sanjam Garg, University of California, Berkeley
2015

Smarter Than Their Machines: Oral Histories of Pioneers in Interactive Computing
John Cullinane, Northeastern University; Mossavar-Rahmani Center for Business
and Government, John F. Kennedy School of Government, Harvard University
2015

A Framework for Scientific Discovery through Video Games
Seth Cooper, University of Washington
2014

Trust Extension as a Mechanism for Secure Code Execution on Commodity
Computers
Bryan Jeffrey Parno, Microsoft Research
2014

Embracing Interference in Wireless Systems
Shyamnath Gollakota, University of Washington
2014

Concurrency
The Works of Leslie Lamport

Dahlia Malkhi, editor
VMware Research and Calibra

ACM Books #29

Copyright © 2019 by Association for Computing Machinery

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means—electronic, mechanical, photocopy,
recording, or any other except for brief quotations in printed reviews—without the prior
permission of the publisher.

Designations used by companies to distinguish their products are often claimed as trade-
marks or registered trademarks. In all instances in which the Association for Computing
Machinery is aware of a claim, the product names appear in initial capital or all capital
letters. Readers, however, should contact the appropriate companies for more complete
information regarding trademarks and registration.

Concurrency: The Works of Leslie Lamport

Dahlia Malkhi, editor

books.acm.org
http://books.acm.org

ISBN: 978-1-4503-7270-1 hardcover
ISBN: 978-1-4503-7271-8 paperback
ISBN: 978-1-4503-7273-2 eBook
ISBN: 978-1-4503-7272-5 EPUB

Series ISSN: 2374-6769 print 2374-6777 electronic

DOIs:

10.1145/3335772 Book 10.1145/3335772.3335781 Chapter 6
10.1145/3335772.3335773 Preface 10.1145/3335772.3335782 Paper 1
10.1145/3335772.3335774 Introduction 10.1145/3335772.3335934 Paper 2
10.1145/3335772.3335775 Paper 0 10.1145/3335772.3335935 Paper 3
10.1145/3335772.3335776 Chapter 1 10.1145/3335772.3335936 Paper 4
10.1145/3335772.3335777 Chapter 2 10.1145/3335772.3335937 Paper 5
10.1145/3335772.3335778 Chapter 3 10.1145/3335772.3335938 Paper 6
10.1145/3335772.3335779 Chapter 4 10.1145/3335772.3335939 Paper 7
10.1145/3335772.3335780 Chapter 5 10.1145/3335772.3335940 References/Index/Bios

A publication in the ACM Books series, #29
Editor in Chief: M. Tamer Özsu, University of Waterloo

This book was typeset in Arnhem Pro 10/14 and Flama using ZzTEX.

First Edition

10 9 8 7 6 5 4 3 2 1

http://books.acm.org
http://dx.doi.org/10.1145/3335772
http://dx.doi.org/10.1145/3335772.3335781
http://dx.doi.org/10.1145/3335772.3335773
http://dx.doi.org/10.1145/3335772.3335782
http://dx.doi.org/10.1145/3335772.3335774
http://dx.doi.org/10.1145/3335772.3335934
http://dx.doi.org/10.1145/3335772.3335775
http://dx.doi.org/10.1145/3335772.3335935
http://dx.doi.org/10.1145/3335772.3335776
http://dx.doi.org/10.1145/3335772.3335936
http://dx.doi.org/10.1145/3335772.3335777
http://dx.doi.org/10.1145/3335772.3335937
http://dx.doi.org/10.1145/3335772.3335778
http://dx.doi.org/10.1145/3335772.3335938
http://dx.doi.org/10.1145/3335772.3335779
http://dx.doi.org/10.1145/3335772.3335939
http://dx.doi.org/10.1145/3335772.3335780
http://dx.doi.org/10.1145/3335772.3335940

Contents

Preface xvii

Photo and Text Credits xix

Introduction 1

Dahlia Malkhi, Idit Keidar

Chapter 1: Shared Memory and the Bakery Algorithm 3
Chapter 2: The Notions of Time and Global State in a Distributed System 5
Chapter 3: Byzantine Faults 7
Chapter 4: State Machine Replication with Benign Failures 9
Chapter 5: Formal Specification and Verification 10
Chapter 6: Biography 11
Closing Remarks 12

The Computer Science of Concurrency: The Early Years 13

Leslie Lamport

1 Foreword 13
2 The Beginning: Mutual Exclusion 14
3 Producer-Consumer Synchronization 17
4 Distributed Algorithms 23
5 Afterwards 24

References 25

PART I TECHNICAL PERSPECTIVES ON LAMPORT’S WORK 27

Chapter 1 Shared Memory and the Bakery Algorithm 29

Hagit Attiya, Jennifer L. Welch

1.1 Introduction 29

xii Contents

1.2 Flavors of the Bakery Algorithm 30
1.3 A Plethora of Registers 36
1.4 A New Model for Describing Concurrency 41
1.5 Sequential Consistency 44

Chapter 2 The Notions of Time and Global State in a Distributed System 47

Karolos Antoniadis, Rachid Guerraoui

2.1 Introduction 47
2.2 The Notion of Logical Time 49
2.3 The Distributed State Machine Abstraction 53
2.4 The Notion of Distributed Global State 58
2.5 Conclusion 65

Chapter 3 Byzantine Faults 67

Christian Cachin

3.1 Introduction 67
3.2 Byzantine Agreement 68
3.3 Byzantine Clock Synchronization 76
3.4 Digital Signatures 77

Chapter 4 State Machine Replication with Benign Failures 83

Robbert van Renesse

4.1 Active versus Passive Replication 85
4.2 A Brief Review of State Machine Replication 85
4.3 Benign System Models 87
4.4 SMR Protocol Basics 88
4.5 Early Asynchronous Consensus Protocols 90
4.6 Paxos 96
4.7 Dynamic Reconfiguration 100

Chapter 5 Formal Specification and Verification 103

Stephan Merz

5.1 Introduction 103
5.2 The Temporal Logic of Actions 105
5.3 The Specification Language tla+++ 115
5.4 PlusCal: An Algorithm Language 119

Contents xiii

5.5 Tool Support 123
5.6 Impact 127

Chapter 6 Biography 131

Roy Levin

6.1 Early Years 131
6.2 Education and Early Employment 133
6.3 The COMPASS Years (1970–1977) 134
6.4 The SRI Years (1977–1985) 139
6.5 The DEC/Compaq Years (1985–2001) 146
6.6 The Microsoft Years (2001–) 155
6.7 Honors 163
6.8 Collegial Influences 165

PART II SELECTED PAPERS 171

A New Solution of Dijkstra’s Concurrent Programming Problem 173

Leslie Lamport

Introduction 173
The Algorithm 174
Proof of Correctness 175
Further Remarks 177
Conclusion 177
References 178

Time, Clocks, and the Ordering of Events in a Distributed System 179

Leslie Lamport

Introduction 180
The Partial Ordering 180
Logical Clocks 182
Ordering the Events Totally 185
Anomalous Behavior 189
Physical Clocks 190
Conclusion 192
Appendix 193
References 196

xiv Contents

How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs 197

Leslie Lamport

References 201

The Byzantine Generals Problem 203

Leslie Lamport, Robert Shostak, Marshall Pease

1 Introduction 204
2 Impossibility Results 206
3 A Solution with Oral Messages 210
4 A Solution with Signed Messages 213
5 Missing Communication Paths 217
6 Reliable Systems 221
7 Conclusion 225

References 226

The Mutual Exclusion Problem: Part I—A Theory of Interprocess
Communication 227

Leslie Lamport

Abstract 227
1 Introduction 228
2 The Model 228
3 Interprocess Communication 234
4 Processes 239
5 Multiple-Reader Variables 242
6 Discussion of the Assumptions 243
7 Conclusion 244

Acknowledgments 244
References 244

The Mutual Exclusion Problem: Part II—Statement and Solutions 247

Leslie Lamport

Abstract 247
1 Introduction 248
2 The Problem 249

Contents xv

3 The Solutions 258
4 Conclusion 273

References 275

The Part-Time Parliament 277

Leslie Lamport

1 The Problem 278
2 The Single-Decree Synod 281
3 The Multidecree Parliament 294
4 Relevance to Computer Science 304

Acknowledgments 316
References 316

References 319

Index 335

Biographies 343

Preface

This book is a collective work of many contributors. Leslie Lamport gave the world
his work. Chapter authors, listed at the beginning of each chapter, volunteered their
time and expert knowledge. Additional people contributed comments or portions
of chapters, including: Mani Chandy, Vassos Hadzilacos, Jon Howell, Igor Konnov,
Daphna Keidar, Butler Lampson, Kartik Nayak, Tom Rodeheffer, Fred Schneider,
Yuan Yu, Lidong Zhou. Ted Yin edited the bibliography and helped typeset the
biography chapter. Ruth E. Thaler-Carter provided preliminary biographical notes.
Mimi Bussam and Fred Schneider provided several photos of Lamport for this book.
The ACM and Turing series editor Tamer Özsu initiated this work and provided
support and resources for it. Leslie Lamport developed LaTEX, the typesetting macro
environment used for writing this book.

Leslie Lamport at his uncle’s wedding, seated in front.
He is about six years old in this photo.

Leslie Lamport at the National Academy of Sciences
induction, Washington, April 28, 2011.

Photo and Text Credits

Photos
Page viii Richard Morgenstein Photography, © Association for Computing Machinery, Inc.
2014

Page xviii Photo courtesy of Leslie Lamport

Page xviii Photo courtesy of Leslie Lamport

Page 27 © Dag Johansen, Photo courtesy of Leslie Lamport

Page 28 Photo courtesy of Leslie Lamport

Page 170 Photo courtesy of Leslie Lamport

Page 170 © Keith Marzullo 2001

Page 171 Photo courtesy of Leslie Lamport

Page 172 Photo courtesy of Leslie Lamport

Page 172 Photo courtesy of Leslie Lamport

Page 343 Photo courtesy of Dahlia Malkhi

Text
Page 1 “Introduction” by Dahlia Malkhi and Idit Keider. Copyright © Dahlia Malkhi and Idit
Keider. Reprinted by permission of Dahlia Malkhi and Idit Keider.

Page 13 Leslie Lamport. 2015. Turing lecture: The computer science of concurrency: the early
years. Commun. ACM 58, 6 (May 2015), 71–76. DOI: https://doi.org/10.1145/2771951

Page 29 “Shared Memory and the Bakery Algorithm,” Hagit Attiya and Jennifer L. Welch,
Copyright © Hagit Attiya and Jennifer L. Welch. Reprinted by permission of Hagit Attiya and
Jennifer L. Welch.

Page 47 “The Notions of Time and Global Sstate in a Distributed System” by Karoloa
Antoniadis and Rachid Guerraoui. Copyright © Karoloa Antoniadis and Rachid Geurraoiu.
Reprinted by permission of Karoloa Antoniadis and Rachid Guerraoui.

Page 67 “Byzantine Faults” by Christian Cachin. Copyright © Christian Cachin. Reprinted by
permission of Christian Cachin.

https://doi.org/10.1145/2771951

xx Photo and Text Credits

Page 83 “State Machine Replication with Benign Failures” by Robbert van Renesse. Copyright
© Robbert van Renesse. Reprinted by permission of Robbert van Renesse.

Page 103 “Formal Specification and Verification” by Stephan Merz. Copyright © Stephan
Merz. Reprinted by permission of Stephan Merz.

Page 131 “Biography of Leslie Lamport” by Roy Levin. Copyright © Roy Levin. Reprinted with
permission of Roy Levin.

Page 173 Leslie Lamport. 1974. A new solution of Dijkstra’s concurrent programming
problem. Commun. ACM 17, 8 (August 1974), 453–455. DOI: https://doi.org/10.1145/361082
.361093

Page 179 Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM 21, 7 (July 1978), 558–565. DOI: http://dx.doi.org/10.1145/359545
.359563

Page 197 Lamport, “How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs,” in IEEE Transactions on Computers, vol. C-28, no. 9, pp. 690–691,
Sept. 1979. DOI: 10.1109/TC.1979.1675439

Page 203 Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine Generals
Problem. ACM Trans. Program. Lang. Syst. 4, 3 (July 1982), 382–401. DOI: http://dx.doi.org/
10.1145/357172.357176

Page 227 Leslie Lamport. 1986. The mutual exclusion problem: part II—statement and
solutions. J. ACM 33, 2 (April 1986), 327–348. DOI: http://dx.doi.org/10.1145/5383.5385

Page 247 Leslie Lamport. 1986. The mutual exclusion problem: part II—statement and
solutions. J. ACM 33, 2 (April 1986), 327–348. DOI: http://dx.doi.org/10.1145/5383.5385

Page 277 Leslie Lamport. 1998. The part-time parliament. ACM Trans. Comput. Syst. 16, 2
(May 1998), 133–169. DOI: https://doi.org/10.1145/279227.279229

https://doi.org/10.1145/361082.361093
https://doi.org/10.1145/361082.361093
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1145/357172.357176
http://dx.doi.org/10.1145/357172.357176
http://dx.doi.org/10.1145/5383.5385
http://dx.doi.org/10.1145/5383.5385
https://doi.org/10.1145/279227.279229

Introduction
Dahlia Malkhi, Idit Keidar

Back in the days when the world’s first multiprocessor computers were being built
and clouds existed only in the sky, Leslie Lamport ruminated about a bakery. He
observed that in order to be served one at a time, customers had to solve a mutual
exclusion problem, and discovered a way for them to do so without the baker’s
help. The resulting Bakery algorithm foreshadowed some of the most important
developments in multiprocessor programming for years to come. Lamport’s works
have since been interwoven with four and a half decades of evolution of digital
computing technology, while multiprocessing and distributed computing have
become increasingly commonplace.

The body of Lamport’s works lays formal foundations for concurrent computa-
tions executed by multiple processes—be they threads running on a shared mem-
ory multicore platform or autonomous agents communicating via message pass-
ing. He put forward fundamental concepts, such as causality and logical time,
atomic shared registers, sequential consistency, state machine replication, Byzan-
tine agreement, and wait-freedom. Some of his algorithms have become standard
engineering practice for fault-tolerant distributed computing—distributed systems
that continue to function correctly despite failures of individual components. He
developed a substantial body of work on the formal specification and verification
of concurrent systems, and has contributed to the development of automated tools
applying these methods.

This book begins with an article covering Lamport’s A.M. Turing Award lec-
ture, which he gave at the PODC Conference in 2014. The article was published
in the Communications of the ACM in 2015. It recalls the cradle of concurrency from
1965 to 1977, with forty years of hindsight. The first concurrent computing problem

2 Introduction

formulated was mutual exclusion. Next came producer-consumer algorithms and
their extensions, and then distributed algorithms. With these problems as exam-
ples, the article illustrates different approaches to describing concurrent algo-
rithms and to reasoning about them. Lamport dedicated this historical review to
Edsger Dijkstra, who played a fundamental role in the study of concurrency.

This introduction is followed by two parts. Part I includes technical chapters
centered around five key topics addressed in Lamport’s works: Chapter 1, shared
memory and the Bakery algorithm for mutual exclusion; Chapter 2, state machines
and event ordering; Chapter 3, Byzantine protocols; Chapter 4, fault-tolerant repli-
cation; and Chapter 5, formal methods. Each of the chapters presents an expert’s
retrospective on Lamport’s original ideas. They explain how Lamport tackled cer-
tain problems and also underscore a number of common themes that recurred
throughout his career.

One prominent characteristic of Lamport’s work is that to approach specific
problems, he develops novel and more general foundations. Time and time again,
the experience of devising concurrent algorithms and the challenge of verifying
their correctness led him to focus on the basic premises that would enable a math-
ematical study of multiprocessor behavior. For example, working on the Bakery
algorithm (Chapter 1) led Lamport to define the semantics of memory “store” and
“load” operations in multiprocessors. Lamport later said, “For a couple of years af-
ter my discovery of the Bakery algorithm, everything I learned about concurrency
came from studying it” [Lamport and Levin 2016a]. Another example is the Byzan-
tine generals problem, an agreement problem in a model that characterizes faulty
(or “buggy”) processor behavior. This concept emerged while working on a fault-
tolerant multicomputer system for executing avionics software. All in all, many of
the abstractions and principles that Lamport invented in order to tackle specific
problems ended up becoming theoretical pillars of concurrent programming.

A second theme in Lamport’s work is addressing practical problems. Indeed,
spending his research career in industrial research environments was not an acci-
dent. “I like working in an industrial research lab, because of the input,” Lamport
said. “If I just work by myself and come up with problems, I’d come up with some
small number of things, but if I go out into the world, where people are working on
real computer systems, there are a million problems out there. When I look back
on most of the things I worked on—Byzantine generals, Paxos—they came from
real-world problems” [American Mathematical Society 2019a].

Lamport’s works are also characterized by the use of amusing metaphors and
associated parables to explain new solutions to problems. Lamport adopted this

Chapter 1: Shared Memory and the Bakery Algorithm 3

approach from another prominent computer scientist of that era, Edsger Dijkstra,
who popularized a multiprocess synchronization problem by casting it in terms of
philosophers competing for dining utensils. On his “My Writings” page [Lamport
2019], Lamport writes, “The popularity of the dining philosophers problem taught
me that the best way to attract attention to a problem is to present it in terms
of a story.” As noted above, Lamport used a bakery metaphor for his solution of
Dijkstra’s mutual exclusion problem. To explain the challenge of coordinating
multiple bug-prone computers, he used the metaphor of an attack by Byzantine
generals. And his solution for fault-tolerant state replication was explained using
the story of the island of Paxos and its imaginary part-time parliament.

The chapters of Part I are described below. They are organized roughly in chrono-
logical order of the literature they cover. The last chapter in Part I describes Lam-
port’s professional biography. It provides the context in which his pioneering work
arose and sheds light on the people involved with breaking the new ground.

This book would not be complete without a glimpse onto the works themselves.
A small selection of the original papers introducing the key notions discussed in
the contributed chapters is given in Part II. Yet within the scope of a single book
we cannot hope to cover all of Lamport’s important contributions. We therefore
encourage readers to visit Lamport’s “My Writings” page [Lamport 2019], where he
gives a complete list of his papers accompanied by historical notes that describe
the motivation and context of each result.

Chapter 1: Shared Memory and the Bakery Algorithm
Lamport’s influential works from the 1970s and 1980s came at a time when the
fundamental issues of concurrent programming were not well understood. Chap-
ter 1, by Hagit Attiya and Jennifer L. Welch, starts with the seminal Bakery algo-
rithm [Lamport 1974a] for solving “mutual exclusion,” a fundamental requirement
in multiprocessor programming. After developing the Bakery algorithm, Lamport
used it as a vehicle for formalizing a number of concepts that facilitate reason-
ing about concurrent programs. The chapter further covers related concepts that
Lamport developed while studying the Bakery algorithm.

At the time, it was known that correct execution may require parallel activities
to exclude one another during “critical sections” when they manipulate the same
data, in order to prevent undesired interleaving of operations. The mutual exclu-
sion problem originated from Edsger Dijkstra’s pioneering work, which includes

4 Introduction

his solution [Dijkstra 1965]. Dijkstra’s algorithm, while correct, depends on shared
memory accesses being atomic—that one processor reading when another is writ-
ing will be made to wait, rather than returning a possibly garbled value. In a sense,
it constructs a high-level solution out of the low-level mutual exclusion already im-
plemented by the hardware.

Lamport’s Bakery algorithm does not depend on low-level mutual exclusion. In
particular, when one processor reads data from a shared variable while the same
variable is being updated by another processor, it is acceptable for the former to
read garbage, and the algorithm still works! The Bakery algorithm has become
textbook material, and most undergraduates in computer science encounter it in
the course of their studies.

Among the conceptual contributions emanating from the study of the Bakery
algorithm is the notion that processes can make progress independently of the
speed of other processes. Rather than preassign turns to processes in a rotation,
the Bakery algorithm assigns turns to processes in the order of their arrival. Using
the bakery analogy, preassigning turns would be akin to arriving to an empty bakery
and being asked to wait for a customer who hasn’t even arrived at the bakery yet.
Independent progress is a crucial concept that has been used in the design of many
subsequent algorithms and in memory architectures. Wait-freedom, a condition
requiring independent progress despite failures, has its clear roots in this notion
and the Bakery doorway concept. It was later extensively explored by Herlihy [1991]
and others.

The Bakery algorithm also led Lamport to wonder about the precise semantics
of memory when multiple processes interact with shared data. The result is the
abstractions of atomic, regular, and safe registers [Lamport 1986c, 1986d].

A register is basically a shared memory location that can be read (loaded) and
written (stored) by multiple processes concurrently. Lamport’s theory gives each
operation on a shared register an explicit duration, starting with an invocation
and ending with a result. The registers can be implemented by a variety of tech-
niques, such as replication of the register’s data to tolerate faults. Nevertheless,
the interactions of processes with an atomic register are supposed to “look like”
serial accesses to actual shared memory. The theory also includes semantics of
interaction weaker than atomicity, namely, those of regular and safe registers.
A regular register captures situations in which processes read different replicas
of the register while it is being updated. At any moment in time, some replicas
may be updated while others are not, and eventually, all replicas will hold the
updated value. The even weaker notion of safe registers allows reads that over-
lap a write to obtain an arbitrary value. Importantly, these weak semantics suffice

Chapter 2: The Notions of Time and Global State in a Distributed System 5

for achieving mutual exclusion: the Bakery algorithm works correctly with safe
registers.

It is worth noting that Lamport’s study of atomic objects covered in Chapter 1
was restricted to registers, which support only read and write operations. The
notion of atomicity was generalized to other data types by Herlihy and Wing [1990],
and their term linearizability became synonymous with it.

Before the theory of shared registers was completed, Lamport worked on a con-
dition for coherent cache behavior in multiprocessors. That work brought some
order to the chaos in this field by introducing sequential consistency [Lamport
1979b], the last concept covered in the chapter. This simple and intuitive notion
provides just the right level of “atomicity” to allow software to work and has become
the gold standard for memory consistency models. Today, we design hardware sys-
tems with timestamp ordering or partial-store ordering, with added memory fence
instructions that allow programmers to make the hardware appear sequentially
consistent. Sequential consistency underlies the memory consistency models de-
fined for programming languages like Java and C++. Thus our multicore software
runs based on principles described by Leslie Lamport in 1979.

In addition, essentially all nonrelational storage systems developed by com-
panies like Amazon, Google, and Facebook adopt linearizability and sequential
consistency as their data coherence guarantees.

Chapter 2: The Notions of Time and Global State
in a Distributed System
A prominent type of concurrent system is a distributed one, where processes use
messages to interact with each other. Chapter 2, by Karolos Antoniadis and Rachid
Guerraoui, covers powerful notions introduced by Lamport that have shaped the
way we think about distributed systems as well as the engineering practices of the
field.

The first of these is “logical clocks” and the corresponding “logical timestamps,”
which, in fact, are often referred to as “Lamport timestamps.” Many people real-
ized that a global notion of time is not natural for a distributed system, but Lamport
was the first to formalize a precise alternative. He defined the “happened before”
relation on events—a partial order capturing the causality induced by message
exchange. Consider, for example, a process in San Francisco that reads the tem-
perature from a sensor, and a process in London that prints the temperature in
San Francisco on a screen. If the Californian process sends a message after read-
ing the sensor and this message is received in London before the temperature is

6 Introduction

presented on the screen, then it is possible that the sensor read in San Francisco
has “caused” a specific temperature to be printed out in London. Lamport’s logical
clocks capture this potential causality, stipulating that the sensor read happened
before the temperature was printed.

Logical clocks are defined in the paper “Time, Clocks, and the Ordering of
Events in a Distributed System” [Lamport 1978b] (“Time/Clocks”), which has be-
come the most cited of Lamport’s works. The paper won the very first Principles of
Distributed Computing Influential Paper Award (later renamed the Edsger W. Dijk-
stra Prize in Distributed Computing) in 2000 and an ACM SIGOPS Hall of Fame
Award in 2007.

At the time of the invention, there was no good way to capture the commu-
nication delay in distributed systems except by using real time, and hence the
work has become so influential. Lamport realized that the communication delay
made those systems very different from shared-memory multiprocessors. The in-
sight came when reading a paper on replicated databases [Johnson and Thomas
1975] and realizing that its logical ordering of commands might violate causality.

Originally, Lamport introduced logical time as a tool to synchronize the copies
of replicated service, though it became a powerful notion by itself. Today, this
ordering of events is widely used for intuitive proofs of concurrent synchronization
algorithms.

In order to correctly replicate a service, Lamport introduced in the same “Time/
Clocks” paper one of his most significant contributions, the state machine repli-
cation (SMR) paradigm. This paradigm abstracts any service as a centralized state
machine—a kind of universal computing engine similar to a Turing machine. A
state machine has an internal state, and it processes commands in sequence, each
resulting in a new internal state and producing a response. Lamport realized that
the daunting task of replicating a service over multiple computers can be made
remarkably simple if you present the same sequence of input commands to all repli-
cas and they proceed through an identical succession of states. Chapter 2 describes
an SMR solution introduced in Lamport [1978b], which uses logical timestamps to
replicate an arbitrary state machine in a distributed system that does not suffer
from failures. Fault-tolerant solutions came later, and are the focus of Chapter 4.

A related problem is that of consistently reading the state (taking a “snapshot”)
of an arbitrary distributed system. If the global system state is constructed by prob-
ing all system components, but due to communication delays they are physically
probed at different times, how do we know if that picture is consistent? In a joint
work with Mani Chandy, Lamport observed that once you define causal order, the

Chapter 3: Byzantine Faults 7

notion of a “consistent global state” naturally follows [Chandy and Lamport 1985].
In a nutshell, if one event happens before (i.e., causally precedes) another, then
the global state should not reflect the latter without the former. This notion is also
covered in Chapter 2 along with the Chandy and Lamport [1985] algorithm for ob-
taining such a consistent snapshot. This is such a powerful notion that others later
used it in different domains, like networking, self-stabilization, debugging, and
distributed systems. The paper received the 2013 ACM SIGOPS Hall of Fame Award
and the 2014 Edsger W. Dijkstra Prize in Distributed Computing.

Chapter 3: Byzantine Faults
Before Lamport developed a full solution for fault-tolerant SMR, he addressed a
core ingredient, namely, distributed agreement. Chapter 3, by Christian Cachin,
describes the work formulating the agreement problem.

The work arose at SRI International, which had previously been called Stanford
Research Institute, in the 1970s. Lamport was part of a team that helped NASA
design a robust avionics control system. Formal guarantees were an absolute ne-
cessity because of the mission-critical nature of the task. Safety had to be assured
against the most extreme system malfunction one could imagine. One of the first
challenges the team at SRI was asked to undertake was proving the correctness of a
cockpit control scheme that NASA had designed. The scheme relied on three com-
puters replicating the computation and using majority voting to mask any single
faulty component.

The team’s work resulted in several foundational concepts and insights regard-
ing these stringent types of robust systems. It included a fundamental definition of
robustness in this setting, an abstraction of the coordination problem that under-
lies any replicated system to date, and a surprising revelation on the prerequisites
for three computers to safely run a mission-critical cockpit.

In two seminal works published by Lamport, Marshall Pease, and Robert
Shostak [Pease et al. 1980, Lamport et al. 1982], the team first identified a somewhat
peculiar vulnerability. They posited that “a failed component may exhibit a type of
behavior that is often overlooked—namely, sending conflicting information to dif-
ferent parts of the system.” More generally, a malfunctioning component could
function in a manner completely inconsistent with its prescribed behavior, and
might appear almost malicious.

The new fault model needed a name; thus the Byzantine generals tale was born,
and the name Byzantine failure was introduced to capture an arbitrary computer

8 Introduction

malfunction. Reaching far beyond the mission-critical avionics system for which
it was conceived, the Byzantine fault model is still in use for capturing the worst
mishaps and security flaws in systems.

In 1980, Pease, Shostak, and Lamport formulated the problem of reaching
coordination despite Byzantine failures [Pease et al. 1980], and in 1982 named it
Byzantine agreement [Lamport et al. 1982]. Their succinct formulation expresses
the control coordination task as the problem of agreeing upon an individual bit,
starting with potentially different bits input to each component. One can use it
repeatedly in order to keep the system coordinated. In the papers, they show that
in the system settings for which NASA designed, four computers are needed for
a single bit in the face of a single malfunction. Three are not enough, because
then a faulty unit may send conflicting values to the other two units and form a
different majority with each one. More generally, they showed that 3t + 1 units are
needed in order to overcome t simultaneously faulty components. To prove this,
they used a beautiful symmetry argument now known as the hexagon argument.
This archetypal argument has been subsequently used in additional settings where
a malfunctioning unit that sends conflicting information to different parts of the
system looks indistinguishable from a symmetrical situation in which the correct
and faulty roles are reversed.

The papers additionally demonstrated that 3t + 1 units are enough, present-
ing an algorithm that reaches Byzantine agreement among 3t + 1 units in t + 1
synchronous communication rounds. They further showed that if you use digital
signatures, 2t + 1 units are sufficient and necessary.

The Byzantine agreement problem and its solutions have become pinnacles of
fault-tolerant systems. Most systems constructed with redundancy use agreement
internally for replication and coordination. Lamport himself later used it to develop
fault-tolerant SMR, which is the topic of Chapter 4.

The 1980 paper [Pease et al. 1980] was awarded the 2005 Edsger W. Dijkstra Prize
in Distributed Computing, and the 1982 paper [Lamport et al. 1982] received the
Jean-Claude Laprie Award in Dependable Computing.

Working on synchronous algorithms for Byzantine agreement made Lamport
realize that it is necessary to synchronize clocks among the processes. The chapter
also includes a brief recollection of another seminal work [Lamport and Melliar-
Smith 1985] in which Lamport, together with Michael Melliar-Smith, formalized
the Byzantine clock synchronization problem and gave its first solutions.

The last topic covered in the chapter is a “one off” work Lamport did in cryptog-
raphy, one-time signatures based on one-way functions.

Chapter 4: State Machine Replication with Benign Failures 9

Chapter 4: State Machine Replication with Benign Failures
The first SMR solution Lamport presented in his 1978 “Time/Clocks” paper as-
sumed there are no failures, and it made use of logical time to step replicas through
the same command sequence. With the growing understanding of reaching agree-
ment in distributed systems, it was time for Lamport to go back to state machine
replication and address failures and lack of synchrony. This is the topic of Chapter 4,
by Robbert van Renesse.

In 1989, Lamport designed a fault-tolerant algorithm called Paxos [Lamport
1998a]. Continuing his trend of humorous parable-telling, the paper presents the
imaginary story of an ancient parliament on the Greek island of Paxos, where the
absence of any number of its members, or possibly all of them, can be tolerated
without losing consistency.

Unfortunately, the setting as a Greek parable made the paper difficult for most
readers to comprehend, and it took nine years from submission to publication in
1998. But the 1989 DEC technical report did get noticed. Lamport’s colleague Butler
Lampson evangelized the idea to the distributed computing community [Lampson
1996].

Paxos stitches together a succession of agreement decisions into a sequence of
state machine commands in an optimized manner. Importantly, the first phase
of the agreement component given in the Paxos paper (called Synod) can be
avoided when the same leader presides over multiple decisions; this first phase
needs to be performed only when a leader needs to be replaced. This insightful
breakthrough accounts for much of the popularity of Paxos, and was later called
Multi-Paxos by a Google team that implemented the algorithm [Chandra et et
al. 2007]. Lamport’s Paxos paper won the ACM SIGOPS Hall of Fame Award in
2012.

SMR and Paxos have become the de facto standard framework for designing and
reasoning about replication methods. State machine replication à la Paxos is now
widely offered and deployed as an external service via libraries and toolkits such
as Google’s Chubbie [Burrows 2006], Apache’s open-source ZooKeeper [Hunt et al.
2010], the popular open-source etcd/raft library, and more. Virtually all companies
building critical information systems, including Google, Yahoo, Microsoft, and
Amazon, have adopted the Paxos foundations. The engineering of reliable systems
led to several important variants and modifications of Paxos. The chapter briefly
describes Disk Paxos [Gafni and Lamport 2003], Cheap Paxos [Lamport and Massa
2004], Vertical Paxos [Lamport et al. 2009a], and Stoppable Paxos [Lamport et al.
2010].

10 Introduction

Chapter 5: Formal Specification and Verification
Even before he worked on the Bakery algorithm, Lamport learned, through an
erroneous manuscript he submitted for publication, the importance of rigorously
specifying and proving algorithms correct. Chapter 5, by Stephan Merz, describes
his quest for good foundations and tools to describe solutions and prove their
correctness.

Lamport has made central contributions to the theory of specification and veri-
fication of concurrent programs. He was the first to articulate the notions of safety
properties and liveness properties for asynchronous distributed algorithms. These
were the generalization of “partial correctness” and “total correctness” properties
previously defined for sequential programs. Today, safety and liveness form the
standard classification for correctness properties of asynchronous distributed al-
gorithms.

Another work, with Martin Abadi, introduced prophecy variables: an abstraction
that can be added to an algorithm model in order to handle a situation where an
algorithm resolves a nondeterministic choice before its specification does. These
complement the previously suggested notion of history variables, auxiliary variables
that record past actions of the algorithm. Abadi and Lamport [1991] pointed out
situations where such problems arise and developed the foundations needed to
support this extension to the theory. Moreover, they proved that whenever an al-
gorithm meets a specification, where both are expressed as state machines, the
correspondence between them can be proved using a combination of prophecy
and history variables. This work won the 2008 LICS Test-of-Time Award.

Lamport realized that computer scientists need more than foundational notions
for reasoning about concurrency. They need languages to formally express solu-
tions and tools for verifying their correctness. Chapter 5 gives an overview of the
tla (temporal logic of actions) logic and the specification language tla+ Lamport
developed for modeling and verifying distributed algorithms and systems. tla and
tla+support specification and proof of both safety and liveness properties using
notation based on temporal logic.

Lamport has supervised the development of verification tools based on tla+,
notably the tlc model checker built by Yuan Yu. tla+ and tlc have been used to
describe and analyze real systems. For example, tla+ was used to find a major
error in the coherence protocol used in the hardware for Microsoft’s Xbox 360
prior to its release in 2005. They were also used for the analysis of cache coherence
protocols at DEC and Intel. To teach engineers how to use his formal specification
tools, Lamport wrote a book [2002] and also developed the PlusCAL [2009] formal

Chapter 6: Biography 11

language and tools for use in verifying distributed algorithms. At the time of this
writing, Leslie Lamport continues to work actively on enhancing and evangelizing
the tla+ toolset.

Chapter 6: Biography
Chapter 6, by Roy Levin, tells of Lamport’s career. It views his works in historical
perspective, providing the context in which they arose during four decades of an
evolving industry: from the introduction of the first personal computer to an era
when parallel and distributed multiprocessors are abundant. Through this lens, it
portrays their long-lasting impact.

The biography also tells of LaTEX, perhaps Lamport’s most influential contribu-
tion outside the field of concurrency. As a prolific author, Lamport would naturally
wish for a convenient typesetting tool. He did not just wish for one, he created
one for the entire community. Lamport’s LaTEX system [Lamport 1994b] is a set
of macros for use with Donald Knuth’s TEX typesetting system. In creating LaTEX,
Lamport brought to TEX three concepts that he borrowed from Brian Reid’s Scribe
system and comprehensively elaborated:

. The concept of “typesetting environment”

. A strong emphasis on structural rather than typographic markup

. A generic document design, flexible enough to be adequate for a wide variety
of documents

LaTEX is a system that provides the quality of TEX and a lot of its flexibility, but
is much easier to use. It has became the de facto standard for technical publishing
in computer science and many other fields.

Several other works of Lamport’s that are omitted from the technical chapters
of this book surface in the biography chapter. The chapter underscores a lifetime
achievement and the long-lasting impact Lamport has had on the computer science
field. It paints a picture of how his timeless impact on the foundations of concur-
rency formed. It threads Lamport’s thought process as he developed solutions for
the challenges he tackled.

The biography chapter gives a glimpse into the professional interactions, and
even some conflicts, that the pioneers of the concurrency arena had as they broke
new grounds. The chapter concludes by giving a voice to the people behind the
achievements, notably Lamport himself and additionally the colleagues around
him, who have inspired, collaborated, and helped him drive worldwide impact.

12 Introduction

Closing Remarks
If one could travel back in time to 1974, perhaps one would find Leslie Lam-
port arranging a queue for customers at his busy local neighborhood bakery to
be served one at a time via the Bakery algorithm. This and Lamport’s other pio-
neering works—many with amusing names and associated parables—have become
pillars of computer science. His collection forms the foundation of broad areas in
concurrency and has influenced the specification, development, and verification of
concurrent systems. Any time you access a modern computer, you are likely to be
impacted by Leslie Lamport’s algorithms.

This book touches on a lifetime of contributions by Leslie Lamport to the field
of concurrency and on the extensive influence has he had on people working in
the field. Those who have collaborated with him have often found the experience
remarkable and sometimes even career-altering.

And all of this work started with the quest to understand how to organize a queue
at the local bakery.

The Computer Science of
Concurrency: The Early Years
Leslie Lamport (Microsoft Research)

28 February 2015

To Edsger Dijkstra

It is insufficiently considered that men more often require to be reminded
than informed.

—Samuel Johnson

1 Foreword
I don’t know if concurrency is a science, but it is a field of computer science.
What I call concurrency has gone by many names, including parallel computing,
concurrent programming, and multiprogramming. I regard distributed computing
to be part of the more general topic of concurrency. I also use the name algorithm for
what were once usually called programs and were generally written in pseudo-code.

This is a personal view of the first dozen years of the history of the field of
concurrency—a view from today, based on 40 years of hindsight. It reflects my
biased perspective, so despite covering only the very beginning of what was then
an esoteric field, it is far from complete. The geneses of my own contributions are
described in comments in my publications web page.

The omission that would have seemed most striking to someone reading this
history in 1977 is the absence of any discussion of programming languages. In the
late 1960s and early 1970s, most papers considered to be about concurrency were
about language constructs for concurrent programs. A problem such as mutual

14 The Computer Science of Concurrency: The Early Years

exclusion was considered to be solved by introducing a language construct that
made its solution trivial. This article is not about concurrent programming; it is
about concurrent algorithms and their underlying principles.

2 The Beginning: Mutual Exclusion

2.1 The Problem
While concurrent program execution had been considered for years, the computer
science of concurrency began with Edsger Dijkstra’s seminal 1965 paper that intro-
duced the mutual exclusion problem [5]. He posed the problem of synchronizingN
processes, each with a section of code called its critical section, so that the following
properties are satisfied:

Mutual Exclusion No two critical sections are executed concurrently. (Like
many problems in concurrency, the goal of mutual exclusion is to elimi-
nate concurrency, allowing us to at least pretend that everything happens
sequentially.)

Livelock Freedom If some process is waiting to execute its critical section, then
some process will eventually execute its critical section.

Mutual exclusion is an example of what is now called a safety property, and live-
lock freedom is called a liveness property. Intuitively, a safety property asserts that
something bad never happens; a liveness property asserts that something good
must eventually happen. Safety and liveness were defined formally in 1985 [1].

Dijkstra required a solution to allow any computer to halt outside its critical
section and associated synchronizing code. This is a crucial requirement that rules
out simple, uninteresting solutions—for example, ones in which processes take
turns entering their critical sections. The 1-buffer case of the producer-consumer
synchronization algorithm given below essentially is such a solution for N = 2.

Dijkstra also permitted no real-time assumption. The only progress property
that could be assumed was process fairness, which requires every process that hasn’t
halted to eventually take a step. In those days, concurrency was obtained by having
multiple processes share a single processor. One process could execute thousands
of steps while all other processes did nothing. Process fairness was all one could
reasonably assume.

Dijkstra was aware from the beginning of how subtle concurrent algorithms are
and how easy it is to get them wrong. He wrote a careful proof of his algorithm. The
computational model implicit in his reasoning is that an execution is represented

2 The Beginning: Mutual Exclusion 15

as a sequence of states, where a state consists of an assignment of values to the
algorithm’s variables plus other necessary information such as the control state of
each process (what code it will execute next). I have found this to be the most gen-
erally useful model of computation—for example, it underlies a Turing machine. I
like to call it the standard model.

The need for careful proofs should have become evident a few months later,
when the second published mutual exclusion algorithm [9] was shown to be incor-
rect [10]. However, incorrect concurrent algorithms are still being published and
will no doubt continue to be for a long time, despite modern tools for catching
errors that require little effort—in particular, model checkers.

2.2 The First “Real” Solution
Although of little if any practical use, the bakery algorithm [11] has become a pop-
ular example of a mutual exclusion algorithm. It is based on a protocol sometimes
used in retail shops: customers take successively numbered tickets from a machine,
and the lowest-numbered waiting customer is served next. A literal implementation
of this approach would require a ticket-machine process that never halts, violat-
ing Dijkstra’s requirements. Instead, an entering process computes its own ticket
number by reading the numbers of all other synchronizing processes and choosing
a number greater than any that it sees.

A problem with this algorithm is that ticket numbers can grow without bound.
This shouldn’t be a practical problem. If each process chooses a number at most
one greater than one that was previously chosen, then numbers should remain well
below 2128. However, a ticket number might have to occupy more than one memory
word, and it was generally assumed that a process could atomically read or write at
most one word.

The proof of correctness of the algorithm revealed that the read or write of
an entire number need not be atomic. The bakery algorithm is correct as long as
reading a number returns the correct value if the number is not concurrently being
written. It doesn’t matter what value is returned by a read that overlaps a write.
The algorithm is correct even if reading a number while it is changing from 9 to 10
obtains the value 2496.

This amazing property of the bakery algorithm means that it implements mu-
tual exclusion without assuming that processes have mutually exclusive access to
their ticket numbers. It was the first algorithm to implement mutual exclusion
without assuming any lower-level mutual exclusion. In 1973, this was considered
impossible [4, page 88]. Even in 1990, experts still thought it was impossible [21,
question 28].

16 The Computer Science of Concurrency: The Early Years

One problem remained: How can we maintain a reasonable bound on the values
of ticket numbers if a read concurrent with a write could obtain any value? For
example, what if reading a number while it changes from 9 to 10 can obtain the
value 22496? A closely related problem is to implement a system clock that provides
the current time in nanoseconds if reads and writes of only a single byte are
atomic, where a read must return a time that was correct sometime during the
read operation. Even trickier is to implement a cyclic clock. I recommend these
problems as challenging exercises. Solutions have been published [12].

2.3 A Rigorous Proof of Mutual Exclusion
Previous correctness proofs were based on the standard model, in which an execu-
tion is represented as a sequence of states. This model assumes atomic transitions
between states, so it doesn’t provide a natural model of the bakery algorithm with
its non-atomic reads and writes of numbers.

Before I discuss a more suitable model, consider the following conundrum. A
fundamental problem of interprocess synchronization is to ensure that an opera-
tion executed by one process precedes an operation executed by another process.
For example, mutual exclusion requires that if two processes both execute their
critical sections, then one of those operation executions precedes the other. Many
modern multiprocessor computers provide a Memory Barrier (MB) instruction for
implementing interprocess synchronization. Executing an instruction A then an
MB then instruction B in a single process ensures that the execution of A pre-
cedes that of B. Here is the puzzle: An MB instruction enforces an ordering of two
operations performed by the same process. Why is that useful for implementing
interprocess synchronization, which requires ordering operations performed by
different processes? The reader should contemplate this puzzle before reading the
following description of the two-arrow model.

In the two-arrow model, an execution of the algorithm is represented by a set of
operation executions that are considered to have a finite duration with starting and
stopping times. The relations −→ and > on this set are defined as follows, for
arbitrary operation executions A and B:

A−→ B is true iff (if and only if) A ends before B begins.

A > B is true iff A begins before B ends.

It is easy to check that these relations satisfy the following properties, for any
operation executions A, B, C, and D:

1. (a) A−→ B −→ C implies A−→ C (−→ transitively closed)
(b) A �−→ A. (−→ irreflexive)

3 Producer-Consumer Synchronization 17

2. A−→ B implies A > B and B � > A.

3. A−→ B > C or A > B −→ C implies A > C.

4. A−→ B > C −→D implies A−→D.

The model abstracts away the explicit concept of time and assumes only a set
of operation executions and relations −→ and > on it satisfying A1–A4. (An
additional property is needed to reason about liveness, which I ignore here.)

Proving correctness of the bakery algorithm requires some additional assump-
tions:

. All the operation executions within a single process are totally ordered
by −→.

. For any read R and writeW of the same variable, either R >W orW −→ R

holds.

Each variable in the algorithm is written by only a single process, so all writes to
that variable are ordered by−→. We assume that a read that doesn’t overlap a write
obtains the correct value. More precisely, if a read R of a variable satisfies R −→W

or W −→ R for every write W of the variable, then R obtains the value written by
the latest writeW withW −→ R.

With these assumptions, the two-arrow formalism provides the most elegant
proof of the bakery algorithm that I know of. Such a proof of a variant of the
algorithm appears in [14].

The conundrum of the MB command described at the beginning of this section
is easily explained in terms of the two-arrow formalism. Suppose we want to ensure
that an operation execution A in process p precedes an operation execution D in
a different process q—that is, to ensure A−→D. Interprocess communication by
accessing shared registers can reveal only that an operation execution C in q sees
the effect of an operation execution B in p, which implies B > C. The only way to
deduce a−→ relation from a > relation is with A4. It allows us to deduceA−→D

fromB > C ifA−→B andC −→D. The latter two−→ relations can be ensured by
using MB instructions, which enforces−→ relations between operation executions
by the same process.

3 Producer-Consumer Synchronization

3.1 The FIFO Queue
The second fundamental concurrent programming problem to be studied was
producer-consumer synchronization. This form of synchronization was used at the

18 The Computer Science of Concurrency: The Early Years

--algorithm PC {
variables in= Input, out = 〈 〉, buf = 〈 〉;
fair process (Producer = 0) {
P : while (true) {

await Len(buf) < N ;
buf := Append(buf, Head(in)) ;
in := Tail(in) }}

fair process (Consumer = 1) {
C: while (true) {

await Len(buf) > 0 ;
out := Append(out, Head(buf)) ;
buf := Tail(buf) }} }

Figure 1 Producer-consumer synchronization.

hardware level in the earliest computers, but it was first identified as a concurrency
problem by Dijkstra in 1965, though not published in this formulation until 1968
[6]. Here, I consider an equivalent form of the problem: a bounded FIFO (first-
in-first-out) queue. It can be described as an algorithm that reads inputs into an
N -element buffer and then outputs them. The algorithm uses three variables:

in The infinite sequence of unread input values.

buf A buffer that can hold up to N values.

out The sequence of values output so far.

A Producer process moves values from in to buf, and a Consumer process moves them
from buf to out. In 1965 the algorithm would have been written in pseudo-code.
Today, we can write it in the PlusCal algorithm language [15] as algorithm PC of
Figure 1. The initial value of the variable in is the constant Input, which is assumed
to be an infinite sequence of values; variables buf and out initially equal the empty
sequence. The processes Producer and Consumer are given the identifiers 0 and 1. In
PlusCal, an operation execution consists of execution of the code from one label to
the next. Hence, the entire body of each process’s while loop is executed atomically.
The await statements assert enabling conditions of the actions. The keywords fair
specify process fairness.

Figure 2 shows the first four states of an execution of the algorithm represented
in the standard model. The letter P or C atop an arrow indicates which process’s
atomic step is executed to reach the next state.

3 Producer-Consumer Synchronization 19

⎡
⎢⎣

in = 〈v1, v2, . . .〉
out = 〈 〉
buf = 〈 〉

⎤
⎥⎦ P−→

⎡
⎢⎣

in = 〈v2, v3, . . .〉
out = 〈 〉
buf = 〈v1〉

⎤
⎥⎦ C−→

⎡
⎢⎣

in = 〈v2, v3, . . .〉
out = 〈v1〉
buf = 〈 〉

⎤
⎥⎦ P−→

⎡
⎢⎣

in = 〈v3, v4, . . .〉
out = 〈v1〉
buf = 〈v2〉

⎤
⎥⎦ P−→ . . .

Figure 2 An execution of the FIFO queue.

Algorithm PC is a specification; a bounded FIFO queue must implement that
specification. A specification is a definition, and it makes no formal sense to ask if
a definition is correct. However, we can gain confidence that this algorithm does
specify a bounded FIFO queue by proving properties of it. The most important
class of properties one proves about an algorithm are invariance properties. A state
predicate is an invariant iff it is true in every state of every execution. The following
invariant of algorithmPC suggests that it is a correct specification of anN -element
bounded queue:

(Len(buf)≤N) ∧ (Input = out ◦ buf ◦ in)

where Len(buf) is the length of the sequence buf and ◦ is sequence concatenation.
The basic method for proving that a predicate Inv is an invariant of a concurrent

algorithm was introduced by Edward Ashcroft in 1975 [2]. We find a suitable predi-
cate I (the inductive invariant) and prove that (i) I is true in every initial state, (ii) I
is left true by every step of the algorithm, and (iii) I implies Inv. It is easy to prove
that the state predicate above is an invariant of algorithm PC. The appropriate in-
ductive invariant I is the conjunction of this invariant with a predicate asserting
that each variable has a “type-correct” value. (PlusCal is an untyped language.)

3.2 Another Way of Looking at a FIFO Queue
The FIFO queue specification allows only a single initial state, and executing ei-
ther process’s action can produce only a single next state. Hence the execution
of Figure 2 is completely determined by the sequence P → C→ P → P → . . . of
atomic-action executions. ForN = 3, all such sequences are described by the graph
in Figure 3. The nodes of the graph are called events, each event representing an

20 The Computer Science of Concurrency: The Early Years

Figure 3 An event history for the FIFO queue with N = 3.

atomic execution of the algorithm step with which the event is labeled. The graph
defines an irreflexive partial order ≺ on the events, where e ≺ f iff e �= f and there
is a path through the graph from event e to event f . For want of a standard term for
it, I will call such a partially ordered set of events, in which events are labeled with
atomic steps, an event history.

This event history describes all sequences of states that represent executions of
algorithm PC in the standard model. Such a sequence of states is described by a
sequence of infinitely manyP andC events—that is, by a total ordering of the events
in the event history. A total ordering of these events describes a possible execution
of algorithmPC iff it is consistent with the partial order≺. To see this, observe that
the downward pointing diagonal arrows imply that the ith P event (which moves the
ith input to the buffer) must precede the ith C event (which moves that input from
the buffer to the output). The upward pointing diagonal arrows indicate that the
ith C event must precede the (i + 3)rd P event, which is necessary to ensure that
there is room for the (i + 3)rd input value in the buffer, which can hold at most 3
elements.

We can view the event history of the figure to be the single “real” execution of
algorithm PC. The infinitely many different executions in the standard model are
artifacts of the model; they are not inherently different. Two events not ordered
by the ≺ relation—for example, the second C event and the fourth P event—
represent operations that can be executed concurrently. However, the standard
model requires concurrent executions of the two operations to be modeled as
occurring in some order.

3.3 Mutual Exclusion versus Producer-Consumer Synchronization
Producer-consumer synchronization is inherently deterministic. On the other
hand, mutual exclusion synchronization is inherently nondeterministic. It has an
inherent race condition: two processes can compete to enter the critical section,
and either might win.

Resolving a race requires an arbiter, a device that decides which of two events
happens first [3]. An arbiter can take arbitrarily long to make its decision. (A well-

3 Producer-Consumer Synchronization 21

Figure 4 Another view of the FIFO queue for N = 3.

designed arbiter has an infinitesimal probability of taking very long.) Any mutual
exclusion algorithm can therefore, in principle, take arbitrarily long to allow some
waiting process to enter its critical section. This is not an artifact of any model. It
appears to be a law of nature.

Producer-consumer synchronization has no inherent nondeterminism, hence
no race condition. It can be implemented without an arbiter, so each operation can
be executed in bounded time. It is a fundamentally different class of problem than
mutual exclusion.

3.4 The FIFO Queue as an N-Process System
The graph in Figure 3 is drawn with two rows, each containing the events corre-
sponding to actions of one of the two processes. Figure 4 is the same graph drawn
with three rows. We can consider the three rows to be three separate processes.
If we number these rows 0, 1, and 2 and we number the elements in the Input
sequence starting from 0, then the events corresponding to the reading and out-
putting of element i of Input are in row i mod 3. We can consider each of those
rows to be a process, making the FIFO queue a 3-process system for N = 3, and
an N -process system in general. If we were to implement the variable buf with an
N -element cyclic buffer, each of these processes would correspond to a separate
buffer element.

In the event history model, any totally ordered subset of events can be consid-
ered a process. The standard model has no inherent notion of processes. In that
model, an execution is just a sequence of states. Processes are an artifact of the way
the sequence of states is represented. The set of executions of algorithm PC can
also be described by an N -process PlusCal algorithm.

3.5 Generalized Producer-Consumer Synchronization
The generalization of producer-consumer synchronization is marked-graph syn-
chronization. Marked graphs were introduced by Holt and Commoner in 1970 [8].

22 The Computer Science of Concurrency: The Early Years

A marked graph is a directed graph together with a marking that assigns a finite set
of indistinguishable tokens to each arc. A node is fired in a marking by removing
one token from each of its input arcs and adding one token to each of its output arcs
(producing a new marking). A firing sequence of a marked graph is a sequence of fir-
ings that can end only with a marking in which no node may be fired. (By definition
of firing, a node can be fired iff it has at least one token on each input arc.)

A marked graph synchronization problem is described by labeling the nodes of a
marked graph with the names of atomic operations. This specifies that a sequence
of atomic operation executions is permitted iff it is the sequence of labels of the
nodes in a possible firing sequence of the marked graph. For example, the following
marked graph describes the FIFO queue for N = 3.

A token on the top arc represents a value in the buffer, and a token on the bottom
arc represents space for one value in the buffer. Observe that the number of tokens
on this marked graph remains constant throughout a firing sequence. The general-
ization of this observation to arbitrary marked graphs is that the number of tokens
on any cycle remains constant.

All executions of a marked graph synchronization algorithm are described by a
single event history. Marked graph synchronization can be implemented without
an arbiter, so each operation can be executed in a bounded length of time.

Marked graphs can be viewed as a special class of Petri nets [18]. Petri nets
are a model of concurrent computation especially well-suited for expressing the
need for arbitration. Although simple and elegant, Petri nets are not expressive
enough to formally describe most interesting concurrent algorithms. Petri nets
have been used successfully to model some aspects of real systems, and they have
been generalized to more expressive languages. But to my knowledge, neither Petri
nets nor their generalizations have significantly influenced the field of concurrent
algorithms.

3.6 The Two-Arrow Formalism Revisited
Let E be an event history with partial order≺ . Suppose we partition E into nonempty
disjoint subsets called operation executions. We can define two relations −→ and

> on the set of operation executions as follows, for any operation executions A

4 Distributed Algorithms 23

and B:

A−→ B iff ∀ e ∈ A, f ∈ B : e ≺ f .

A > B iff ∃ e ∈ A, f ∈ B : e ≺ f .

It is straightforward to see that these definitions (and the assumption that ≺ is
an irreflexive partial order) imply properties A1–A4 of Section 2.3. Thus, we can
obtain a two-arrow representation of the execution of an algorithm with non-atomic
operations from an event history whose events are the atomic events that make
up the operation executions. The event history does not have to be discrete. Its
events could be points in a space-time continuum, where≺ is the causality relation
introduced by Minkowski [17].

4 Distributed Algorithms
Pictures of event histories were first used to describe distributed systems. Figure 5
is an event history that appeared as an illustration in [13]. The events come from
three processes, with time moving upwards. A diagonal arc joining events from two
different processes represents the causality relation requiring that a message must
be sent before it is received. For example, the arc from q4 to r3 indicates that event
q4 of the second process sent a message that was received by event r3 of the third
process.

Figure 5 An event history for a distributed system.

24 The Computer Science of Concurrency: The Early Years

In general, executions of such a distributed system can produce different event
histories. For example, in addition to the history of Figure 5, there might be an event
history in which the message sent by event q1 is received before the message sent
by event q4. In such a case, there is true nondeterminism and the system requires
arbitration.

Let a consistent cut of an event history consist of a set C of events such that
for every two events c and d, if event c is in C and d ≺ c, then d is in C. For
example, {p1, q1, q2, r1, r2} is a consistent cut of the event history of Figure 5. Every
consistent cut defines a global state of the system during some execution in the
standard model—the state after executing the steps associated with the events in
the consistent cut.

An event history like that of Figure 5 allows incompatible consistent cuts—that
is two consistent cuts, neither of which is a subset of the other. They describe
possible global states that, in the standard model, may not occur in the same
execution. This shows that there is no meaningful concept of a unique global
state at an instant. For example, there are different consistent cuts containing only
events q1 and q2 of the second process. They represent different possible global
states immediately after the process has executed event q2. There is no reason to
distinguish any of those global states as the global state at that instant.

Because the standard model refers to global states, it has been argued that the
model should not be used for reasoning about distributed algorithms and systems.
While this argument sounds plausible, it is wrong. An invariant of a global system
is a meaningful concept because it is a state predicate that is true for all possible
global states, and so does not depend on any preferred global states. The problem
of implementing a distributed system can often be viewed as that of maintaining
a global invariant even though different processes may have incompatible views of
what the current state is at any instant.

Thinking is useful, and multiple ways of thinking can be even more useful.
However, while event histories may be especially useful for helping us understand
distributed systems, the best way to reason about these systems is usually in terms
of global invariants. The standard model provides the most practical way to reason
about invariance.

5 Afterwards
After distributed systems, the next major step in concurrent algorithms was the
study of fault tolerance. The first scientific examination of fault tolerance was
Dijkstra’s seminal 1974 paper on self-stabilization [7]. However, as sometimes

References 25

happens with work that is ahead of its time, that paper received little attention
and was essentially forgotten for a decade. A survey of fault tolerance published in
1978 [20] does not mention a single algorithm, showing that fault tolerance was
still the province of computer engineering, not of computer science.

At about the same time that the study of fault-tolerant algorithms began in
earnest, the study of models of concurrency blossomed. Arguably, the most influ-
ential of this work was Milner’s CCS [16]. These models were generally event-based,
and avoided the use of state. They did not easily describe algorithms or the usual
way of thinking about them based on the standard model. As a result, the study
of concurrent algorithms and the study of formal models of concurrency split into
two fields. A number of formalisms based on the standard model were introduced
for describing and reasoning about concurrent algorithms. Notable among them
is temporal logic, introduced by Amir Pnueli in 1977 [19].

The ensuing decades have seen a huge growth of interest in concurrency—
particularly in distributed systems. Looking back at the origins of the field, what
stands out is the fundamental role played by Edsger Dijkstra, to whom this history
is dedicated.

References
[1] Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing Letters,

21(4):181–185, October 1985.

[2] E. A. Ashcroft. Proving assertions about parallel programs. Journal of Computer and
System Sciences, 10:110–135, February 1975.

[3] J. C. Barros and B. W. Johnson. Equivalence of the arbiter, the synchronizer, the latch,
and the inertial delay. IEEE Transactions on Computers, C-32(7):603–614, July 1983.

[4] Per Brinch Hansen. Operating System Principles. Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1973.

[5] E. W. Dijkstra. Solution of a problem in concurrent programming control. Communi-
cations of the ACM, 8(9):569, September 1965.

[6] E. W. Dijkstra. Cooperating sequential processes. In F. Genuys, editor, Programming
Languages, pages 43–112. Academic Press, New York, 1968. Originally appeared as
EWD123 (1965).

[7] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM, 17(11):643–644, November 1974.

[8] A. Holt and F. Commoner. Events and conditions. In Record of the Project MAC
Conference on Concurrent Systems and Parallel Computation, pages 3–52. Project MAC,
June 1970.

[9] Harris Hyman. Comments on a problem in concurrent programming control.
Communications of the ACM, 9(1):45, January 1966.

26 The Computer Science of Concurrency: The Early Years

[10] D. E. Knuth. Additional commments on a problem in concurrent program control.
Communications of the ACM, 9(5):321–322, May 1966.

[11] Leslie Lamport. A new solution of Dijkstra’s concurrent programming problem.
Communications of the ACM, 17(8):453–455, August 1974.

[12] Leslie Lamport. Concurrent reading and writing. Communications of the ACM,
20(11):806–811, November 1977.

[13] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, July 1978.

[14] Leslie Lamport. A new approach to proving the correctness of multiprocess programs.
ACM Transactions on Programming Languages and Systems, 1(1):84–97, July 1979.

[15] Leslie Lamport. The PlusCal algorithm language. In Martin Leucker and Carroll
Morgan, editors, Theoretical Aspects of Computing, ICTAC 2009, volume 5684 of Lecture
Notes in Computer Science, pages 36–60. Springer-Verlag, 2009.

[16] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin, Heidelberg, New York, 1980.

[17] H. Minkowski. Space and time. In The Principle of Relativity, pages 73–91. Dover, 1952.

[18] C. A. Petri. Fundamentals of a theory of asynchronous information flow. In Cicely M.
Popplewell, editor, Information Processing 1962, Proceedings of IFIP Congress 62, pages
386–390. North-Holland, 1962.

[19] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual
Symposium on the Foundations of Computer Science, pages 46–57. IEEE, November
1977.

[20] B. Randell, P. A. Lee, and P.C. Treleaven. Reliability issues in computing system design.
Computing Surveys, 10(2):123–165, June 1978.

[21] Brian A. Rudolph. Self-assessment procedure xxi. Communications of the ACM,
33(5):563–575, May 1990.

IP A R T

TECHNICAL
PERSPECTIVES ON
LAMPORT’S WORK

Leslie Lamport skiing in Norway in 2002. (Photo by Dag Johansen)

Leslie Lamport lecturing at Cornell University, Ithaca, NY, December 2, 2013.

1Shared Memory and the
Bakery Algorithm
Hagit Attiya, Jennifer L. Welch

1.1 Introduction
Starting in the early 1970s, Lamport was intrigued by the question of how to achieve
synchronization and exclusion for multiprocessor computer systems in software,
even when the hardware does not provide such facilities. This study of shared mem-
ory marked Lamport’s first venture into distributed algorithms [Lamport 2019].

A multiprocessor consists of a set of sequential processes that communicate
with each other through shared memory modules, which support fetch and store
requests from the processes to read and write shared memory registers. Mutual
exclusion is a fundamental problem in multiprocessors in which each process may
occasionally request exclusive access to some resource for some finite period of
time. A solution to the problem should ensure that each request is eventually
granted.

Previous algorithms proposed for this problem suffered from several drawbacks
that Lamport noticed. One drawback was that the algorithms were not fault toler-
ant: if a process crashed at an inopportune time, then the entire system would
halt. Lamport [1974a] presented the Bakery algorithm for mutual exclusion, which
avoids this problem. We present this algorithm in Section 1.2.

Another drawback was that previous work had assumed the shared memory was
atomic, meaning that the reads and writes appeared to occur instantaneously and
in some sequential order. But this is a strong assumption. A remarkable aspect of
the Bakery algorithm is that its correctness does not depend on this assumption!
It is still correct even if the shared memory satisfies much weaker properties.

To capture the weaker types of shared memory, Lamport introduced a new for-
malism [Lamport 1986c, 1986d]. Unlike most prior work, this formalism is not

30 Chapter 1 Shared Memory and the Bakery Algorithm

based on atomic actions. Instead, a system execution is modeled as a set of op-
eration executions together with two precedence relations on the operation execu-
tions: “precedes” and “can affect”. Different types of shared memory are captured
by increasingly stronger sets of axioms these relations must satisfy. This formalism
is then used to show how various types of shared memory can be simulated by one
another. We present these simulations and their informal proofs in Section 1.3 and
an overview of the formalism and its applications in Section 1.4.

Even earlier, Lamport introduced a shared memory consistency condition called
sequential consistency [Lamport 1979b]. Although a similar notion was used previ-
ously [Dijkstra 1971, Lamport 1977a, Owicki and Gries 1976], this paper was the
first to coin the term sequential consistency. The paper presents necessary and suf-
ficient conditions for implementing sequential consistency in a multiprocessor.
We discuss these results in Section 1.5.

1.2 Flavors of the Bakery Algorithm
The section describes the Bakery algorithm [Lamport 1974a], a mutual exclusion
algorithm, as a vehicle to explain different types of shared memory. Unlike prior
mutual exclusion algorithms, the Bakery algorithm tolerates crash failures of par-
ticipating processes.

We first describe the algorithm assuming intuitive, atomic registers are used. We
prove its correctness. Then we introduce weaker forms of shared memory, namely,
regular and safe registers, and argue that the Bakery algorithm is still correct. For
safe registers, shared variables used in the algorithm can increase arbitrarily, but
we describe a fix for this undesirable behavior [Lamport 1977].

1.2.1 The Mutual Exclusion Problem
The mutual exclusion problem concerns a group of processes that occasionally need
access to some resource that cannot be used simultaneously by more than a single
process; for example, some output device. Each process may need to execute a code
segment called a critical section such that, informally speaking, at any time, at most
one process is in the critical section (mutual exclusion), and if one or more processes
try to enter the critical section, then one of them eventually succeeds as long as no
process stays in the critical section forever (no deadlock).

The above properties do not provide any guarantee on an individual basis be-
cause a process may try to enter the critical section and yet fail because it is always
bypassed by other processes. A stronger property, which implies no deadlock, is

1.2 Flavors of the Bakery Algorithm 31

no lockout: If a process wishes to enter the critical section, then it will eventually
succeed as long as no process stays in the critical section forever. (This property is
sometimes called no starvation.) Later we will see an even stronger property that
limits the number of times a process might be bypassed while trying to enter the
critical section.

Original solutions to the mutual exclusion problem relied on special synchro-
nization support, such as semaphores and monitors. Here we focus on distributed
software solutions using ordinary shared variables.

Each process executes some additional code before and after the critical section
to ensure the above properties; we assume the program of a process is partitioned
into the following sections:

Entry (trying). The code executed in preparation for entering the critical sec-
tion.

Critical. The code to be protected from concurrent execution.

Exit. The code executed on leaving the critical section.

Remainder. The rest of the code.

Each process cycles through these sections in the order remainder, entry, criti-
cal, and exit. If a process wants to enter the critical section, it first executes the entry
section; after that, the process enters the critical section; then the process releases
the critical section by executing the exit section and returning to the remainder
section.

A mutual exclusion algorithm consists of code for the entry and exit sections
and should work no matter what goes in the critical and remainder sections. In
particular, a process may transition from the remainder section to the entry section
any number of times, either finite or infinite. We assume that the variables, both
shared and local, accessed in the entry and exit sections are not accessed in the
critical and remainder sections. We also assume that no process stays in the critical
section forever.

To capture these requirements, we make the following assumptions in the for-
mal model. If a process takes a step while in the remainder (resp., critical) section,
it immediately enters the entry (resp., exit) section. The definition of admissible
execution is changed to allow a process to stop in the remainder section. Thus an
execution is admissible if for every process pi, either pi takes an infinite number of
steps or pi ends in the remainder section.

32 Chapter 1 Shared Memory and the Bakery Algorithm

More formally, an algorithm for a shared memory system solves the mutual
exclusion problem with no deadlock (or no lockout) if the following hold:

Mutual exclusion. In every configuration of every execution, at most one pro-
cess is in the critical section.

No deadlock. In every admissible execution, if some process is in the entry
section in a configuration, then there is a later configuration in which some
process is in the critical section.

No lockout. In every admissible execution, if some process is in the entry
section in a configuration, then there is a later configuration in which that
same process is in the critical section.

We also require that in an admissible execution, no process is ever stuck in
the exit section; this is called the unobstructed exit condition. In all the algorithms
presented in this chapter, the exit sections are straight-line code (i.e., no loops),
and thus the condition obviously holds.

Note that the mutual exclusion condition is required to hold in every execution,
not just admissible ones.

1.2.2 The Bakery Algorithm
In this section, we describe the Bakery algorithm for mutual exclusion among n
processes; the algorithm provides mutual exclusion and no lockout.

The main idea is to consider processes wishing to enter the critical section as
customers in a bakery. Each customer arriving at the bakery gets a number, and the
one with the smallest number is the next to be served. The number of a customer
who is not standing in line is 0 (which does not count as the smallest ticket).

To make the bakery metaphor more concrete, we employ the following shared
data structures: Number is an array of n integers that holds in its ith entry the
number of pi; Choosing is an array of n Boolean values such that Choosing[i] is
true while pi is in the process of obtaining its number.

Each process pi wishing to enter the critical section tries to choose a number
that is greater than all the numbers of the other processes and writes it to Number[i].
This is done by reading Number[0], . . . , Number[n− 1] and taking the maximum
among them plus one. However, because several processes can read Number con-
currently, it is possible for several processes to obtain the same number. To break
symmetry, we define pi’s ticket to be the pair (Number[i], i). Clearly, the tickets
held by processes wishing to enter the critical section are unique. We use the lexi-
cographic order on pairs to define an ordering between tickets.

1.2 Flavors of the Bakery Algorithm 33

Algorithm 1.1 The Bakery algorithm: code for process pi, 0≤ i ≤ n− 1

Initially Number[i]= 0 and
Choosing[i]= false, for i, 0≤ i ≤ n− 1

〈Entry〉:
1 Choosing[i] := true
2 Number[i] :=max(Number[0], . . . , Number[n− 1])+ 1
3 Choosing[i] := false
4 for j := 0 to n− 1 (�= i) do
5 wait until Choosing[j]= false
6 wait until Number[j]= 0 or (Number[j], j) > (Number[i], i)
7 end for
〈Critical Section〉
〈Exit〉:

8 Number[i] := 0
〈Remainder〉

After choosing its number, pi waits until its ticket is minimal: For each other
process pj , pi waits until pj is not in the middle of choosing its number and then
compares their tickets. Ifpj ’s ticket is smaller, pi waits untilpj executes the critical
section and leaves it. The pseudocode appears in Algorithm 1.1.

We now prove the correctness of the Bakery algorithm. That is, we prove that
the algorithm provides the three properties discussed above, mutual exclusion, no
deadlock, and no lockout.

Fix an execution α of the algorithm. To show mutual exclusion, we first prove a
property concerning the relation between tickets of processes.

Lemma 1.1 In every configuration C of α, if process pi is in the critical section and for some
k �= i, Number[k] �= 0, then (Number[k], k) > (Number[i], i).

Proof Since pi is in the critical section in configuration C, it finished the for loop, in par-
ticular the second wait statement (line 6), for j = k. There are two cases according
to the two conditions in line 6:

Case 1: pi read that Number[k]= 0. In this case, when pi finished line 6 (the
second wait statement) with j = k, pk either was in the remainder or was not
finished choosing its number (since Number[k]= 0). But pi already finished line 5
(the first wait statement) with j = k and observed Choosing[k]= false. Thus pk was
not in the middle of choosing its number. Therefore, pk started reading the Number
array after pi wrote to Number[i]. Thus, in configurationC, Number[i]< Number[k],
which implies (Number[i], i) < (Number[k], k).

34 Chapter 1 Shared Memory and the Bakery Algorithm

Case 2: pi read that (Number[k], k) > (Number[i], i). In this case, the condition
will clearly remain valid until pi exits the critical section or as long as pk does not
choose another number. If pk chooses a new number, the condition will still be
satisfied since the new number will be greater than Number[i] (as in case 1).

The above lemma implies that a process that is in the critical section has the
smallest ticket among the processes trying to enter the critical section. To apply
this lemma, we need to prove that whenever a process is in the critical section its
number is nonzero.

Lemma 1.2 If pi is in the critical section, then Number[i]> 0.

Proof First, note that for any processpi, Number[i] is always nonnegative. This can be eas-
ily proved by induction on the number of assignments to Number in the execution.
The base case is obvious by the initialization. For the inductive step, each number
is assigned either 0 (when exiting the critical section) or a number greater than the
maximum current value, which is nonnegative by assumption.

Each process chooses a number before entering the critical section. This num-
ber is strictly greater than the maximum current number, which is nonnegative.
Therefore, the value chosen is positive.

To prove mutual exclusion, note that if two processes, pi and pj , are simultane-
ously in the critical section, then Number[i] �= 0 and Number[j] �= 0, by Lemma 1.2.
Lemma 1.1 can then be applied (twice) to derive that (Number[i], i) < (Number[j],
j) and (Number[i], i) > (Number[j], j), which is a contradiction. This implies

Theorem 1.1 Algorithm 1.1 provides mutual exclusion.

Finally, we show that each process wishing to enter the critical section eventually
succeeds (no lockout). This also implies the no deadlock property.

Theorem 1.2 Algorithm 1.1 provides no lockout.

Proof Consider any admissible execution. Thus no process stays in the critical section
forever. Assume, by way of contradiction, that there is a starved process that wishes
to enter the critical section but does not succeed. Clearly, all processes wishing to
enter the critical section eventually finish choosing a number, because there is no
way to be blocked while choosing a number. Let pi be the process with the smallest
(Number[i], i) that is starved.

All processes entering the entry section after pi has chosen its number will
choose greater numbers and therefore will not enter the critical section before pi.
All processes with smaller numbers will eventually enter the critical section (since

1.2 Flavors of the Bakery Algorithm 35

by assumption they are not starved) and exit it (since no process stays in the critical
section forever). At this point, pi will pass all the tests in the for loop and enter the
critical section, a contradiction.

The numbers chosen by the processes can grow without bound during an exe-
cution. However, their values are upper bounded by approximately the number of
requests to enter the critical section that have occurred so far in the execution.

The Bakery algorithm tolerates failures of the processes under the assumption
that a process that crashes returns to its remainder section and eventually all the
variables that it writes are reset to zero. Crashed processes that are repaired can
start participating in the algorithm again. However, if a process continually fails
and restarts, then it could cause other processes to deadlock, as other processes
might always read a one from the Choosing variable of the faulty process.

Another pleasing feature of the Bakery algorithm is that, unlike some of the
previous mutual exclusion algorithms, “turns” are not preassigned to processes.
Instead, turns are assigned to processes in the order in which they contend for
access to the critical section, and thus contending processes can make progress
regardless of the speed of noncontending processes.

1.2.3 Weakening the Shared Variables
The analysis of the Bakery algorithm given above assumes that shared registers are
atomic, so that operations appear to occur instantaneously. One pleasant feature of
the Bakery algorithm is that such strong memory is not necessary for its correctness.
As discussed in more detail in Section 1.3, Lamport introduced weaker forms of
memory, regular and safe, which take into account the fact that reads and writes in
reality are not instantaneous. Informally, a read of a regular register returns either
the value of an overlapping write or the value of the latest write that ends before
the read begins. A read of a safe register that overlaps a write can return any value
in the range of the register, but if the read does not overlap a write, then it returns
the value of the latest write that ends before the read begins.

As pointed out in Lamport [1974a], nothing in the analysis of the correctness of
the Bakery algorithm relies on the shared variables being atomic, and in fact the
algorithm is correct even if the shared variables only satisfy the safe property. The
Choosing variables are binary and thus every read, even if it overlaps a write, gets
either the old value or the new value. However, reading a Number variable while it
is being written could return an arbitrary value, neither the old nor new one.

Consequently, with safe registers, as opposed to atomic or regular, the values
of the Number variables are not guaranteed to have any relationship to the number

36 Chapter 1 Shared Memory and the Bakery Algorithm

of critical section entry requests that have occurred in the system. Lamport [1977]
shows how to keep the Number variables incrementing by 1 instead of by arbitrary
amounts. Replace each Number variable with a sequence of safe variables, each
one holding one (nonnegative) digit of the number. To write a value to a Number
variable, write the digits, in the separate safe variables, from right to left. To read a
value from a Number variable, read the digits, in the separate safe variables, in the
opposite direction, from left to right.

The idea of reading and writing data items in opposite orders is a common
theme in Lamport [1977], where it is also applied to solve other distributed syn-
chronization problems, including general readers-writers and producer-consumer.
It is also used in an algorithm presented in Section 1.3.

1.3 A Plethora of Registers
Lamport [1986d] delved deeper into a study of the different kinds of registers men-
tioned in Section 1.2 and explored how stronger ones could be wait-free imple-
mented out of weaker ones (the “base” registers). An implementation is wait-free
if every execution of an operation on the simulated register completes within a fi-
nite number of operations on the base registers, regardless of the behavior of other
processes. Wait-free implementations are desirable as they avoid any dependence
on solving mutual exclusion or on timing assumptions. In addition to the consis-
tency condition (safe, regular, or atomic), the main parameters of interest are the
number of values that can be stored in the register (two or more) and the number
of processes that can read the register (one or more). This paper did not consider
the possibility of multiple writers accessing the same register.

1.3.1 Increasing the Number of Readers
Lamport [1986d] gave an intuitive algorithm for implementing an m-reader safe
register out of a collection ofm single-reader safe registers, in which each reader is
assigned to one of the registers to read. In order to write the value v to the simulated
register, the writer writes v into each of them single-reader registers, one at a time.
In order for the ith reader to read the simulated register, it reads the register to
which it is assigned. The simulated register provides the same number of values as
do the base registers.

The algorithm is wait-free, as each operation on the simulated register consists
of a fixed finite number of operations on the base registers. The safe condition is
guaranteed as any simulated read that does not overlap a simulated write returns

1.3 A Plethora of Registers 37

the latest value written in its assigned base register, which is the value of the latest
simulated write.

As noted in Lamport [1986d], the algorithm also works if the base registers are
regular to simulate a regular multi-reader register. The only danger is if the base
register read inside a simulated read is concurrent with a base register write inside
a simulated write. But the base read is guaranteed to get either the old or new value
of the base register, which is also the old or new value of the simulated register.

Unfortunately, if the building block registers are atomic, the algorithm does
not ensure that the simulated register is atomic, as it is possible for two consec-
utive simulated reads that are concurrent with a simulated write to see first the
new value and then the old value; this behavior is called a new-old inversion. How-
ever, subsequent work by Israeli and Shaham [1993] provided a more complicated
algorithm to solve this problem. In this algorithm, the readers of the simulated
register exchange information among themselves by writing information to shared
base registers; this information includes sequence numbers, which grow without
bound. A brief description of this algorithm follows.

To avoid new-old inversions, the readers write to each other through additional
registers, creating an ordering among them. Before a reader returns from a read
operation, it announces the value it has decided to return. A reader reads not only
the value written for it by the writer but also the values announced by the other
readers. It then chooses the most recent value among the values it has read. In order
to decide which value is most recent, every value written is tagged with a sequence
number i indicating that the current value is the ith value written by the writer.

With more effort (e.g., [Dwork and Waarts 1992, Singh et al. 1994, Dolev and
Shavit 1997, Attiya and Welch 1998]), the sequence numbers can be bounded.
However, the requirement for readers to write is provably necessary, as shown next.

Theorem 1.3 In any wait-free implementation of a single-writer multi-reader atomic register
from single-writer single-reader atomic registers, at least one reader must write
[Attiya and Welch 2004].

Proof Suppose in contradiction there is such an algorithm for two readers p1 and p2 in
which no reader writes. Let 0 be the initial value of the simulated register. Since the
base registers are single-reader, we can partition them into two sets: S1, which are
read by p1, and S2, which are read by p2. Consider the execution in which the writer
writes 1 to the simulated register. The write algorithm performs a series of writes
w1, w2, . . . , wk to the base registers. Let vij be the value that would be returned
if pi were to read the simulated register immediately after wj , where i = 1, 2 and
j = 1, . . . , k.

38 Chapter 1 Shared Memory and the Bakery Algorithm

For each reader, the atomicity condition requires that there be a point when the
writes to the base registers cause the value of the simulated register, as it would
be observed by that reader, to “switch” from the old value 0 to the new value 1.
Suppose it is after wa for p1 for some a; that is, v1

1 = v1
2 = . . .= v1

a−1= 0 while
v1
a
= v1

a+1= . . .= v2
k
= 1. Similarly, it is after wb for p2 for some b. Since the base

registers are single-reader, a cannot equal b, as wa must write to a register in S1

while wb must write to a register in S2.
Without loss of generality, assume a < b. Now suppose that between wa and

wa+1, p1 reads the simulated register and then p2 reads the simulated register. The
first read will return the new value 1 while the second read will return the old value
0, which is a new-old inversion and violates atomicity, a contradiction.

1.3.2 Increasing the Number of Values
When considering safe registers, Lamport [1986d] shows that the standard bi-
nary representation of integers suffices for implementing a k-valued register using

log2 k� binary registers: In order to write the value v to the simulated register, the
writer writes the bits of v’s binary representation into the base registers. In order
to read the simulated register, the reader reads all the base registers and returns
the represented value. Any number of readers can be supported as long as the base
registers support the same number.

Unfortunately, the binary representation algorithm does not work for the reg-
ular condition. If a read overlaps multiple writes, it may observe an arbitrary se-
quence of bits representing a value that is neither the previously written value nor
that of any overlapping write.

Lamport [1986d] described an algorithm for implementing a k-valued regular
register using k binary regular registers based on the unary encoding of the value.
Let b1, b2, . . . , bk be the base registers. To write v, the writer writes 1 into bv and
then writes 0 into bv−1 down to b1. To read, each reader reads the binary registers in
order b1, b2, . . . until observing a 1, say, in bv; then the reader returns v. Any number
of readers can be supported by the simulated register as long as the base registers
support the same number of readers.

The correctness of this algorithm is not obvious (and in fact is proved using the
formalism discussed in Section 1.4). Part of the analysis shows that the reader is
guaranteed to observe a 1 in some base register, and thus the reader will never read
a 0 from bk. Hence bk is not necessary and the algorithm can be optimized to use
only k − 1 base registers.

Lamport [1986d] does not consider the analogous problem for atomic registers,
other than pointing out that the regular algorithm is subject to new-old inversions

1.3 A Plethora of Registers 39

and thus does not work in the atomic case. However, Vidyasankar [1988] gave an al-
gorithm for implementing a k-valued atomic register using binary atomic registers,
where k > 2. Like the regular algorithm, it is based on the unary representation of
the value and thus uses k base registers b1, b2, . . . , bk, but it has a new twist. The
value i is represented by a 1 in bi and 0 in all other base registers. To avoid new-old
inversions, two changes are made to the regular algorithm. First, a write operation
clears only the entries whose indices are smaller than the value it is writing. Second,
a read operation does not stop when it finds the first 1 but makes sure there are still
zeros in all lower indices. Specifically, the reader scans from the low values toward
the high values until it finds the first 1; then it reverses direction and scans back
down to the beginning, keeping track of the smallest index observed to contain a
1 during the downward scan. This is the value returned.

1.3.3 Strengthening the Consistency Condition
Implementing a regular binary register out of a safe binary register is easy [Lamport
1986d]. The only delicate point is that the writer should not write the safe register
unless it is actually changing the value. Otherwise, reading and writing the simu-
lated register is done simply by reading and writing the base register.

Using regular base registers to simulate an atomic register is rather involved.
Lamport [1986d] presents an algorithm for one reader that implements a k-valued
atomic register using two regular registers. One of the regular registers must hold
2k(k + 2) values and is written by the writer and read by the reader, while the other
one is Boolean and is written by the reader and read by the writer. This algorithm
also has a nontrivial correctness proof, which is done using the formalism dis-
cussed in Section 1.4.

Note that in the algorithm for implementing an atomic register out of regular
registers, the reader and writer communicate with each other. It turns out that it is
necessary for the reader to write for such algorithms [Lamport 1986d].

Theorem 1.4 In any algorithm that implements an atomic register using a finite number of
regular registers, one of the regular registers must be written by a reader.

Proof Assume in contradiction that there is such an algorithm in which no reader writes
to a base register. First note that without loss of generality, since there is only one
writer, we can assume that there is only one base register and the writer writes to
it just once. Similarly, we can argue that there is no point in a reader reading the
base register more than once.

Suppose the initial value of the simulated register is 0. Consider an execution
of the algorithm consisting of the following three consecutive operations on the

40 Chapter 1 Shared Memory and the Bakery Algorithm

simulated register: read 0, write 1, read 1. Each simulated operation consists of a
single operation on the base register: first a read, then a write, and then a read. Let
v0 be the state of the base register before the write and v1 be its state afterward. This
execution implies that if the reader reads v0 (resp., v1) from the base register, then
it must return 0 (resp., 1).

Now consider another execution in which two consecutive reads overlap a write
of 1, and in particular, both reads of the base register overlap the write to the base
register. Because the base register only satisfies regularity, it is possible for the first
read to obtain v1 and the second read to obtain v0. Thus the first read returns 1 and
the second read returns 0, which is a new-old inversion and violates atomicity.

1.3.4 Increasing the Number of Writers
The case of multiple writers is not considered in Lamport [1986d] and has primarily
been studied only for atomic registers, as generalizing the definitions of the safe
and regular conditions for multiple writers is more involved. Vitányi and Awerbuch
[1986] presented an algorithm for implementing a multi-writer atomic register
out of single-writer atomic registers. In this algorithm, the writers communicate
among themselves, and thus writers read; part of the information they exchange
are sequence numbers that grow without bound.

A simplified version of the algorithm works as follows [Christian Cachin, per-
sonal communication, 2006]. Each writer is assigned one base register. All values
written are tagged with a sequence number. To write the value v to the simulated
register, a writer reads all the registers, chooses the largest sequence number that
it observes, increments this sequence number by 1, and writes v together with the
sequence number to its register. To read the simulated register, a reader reads all
the registers and returns the value associated with the largest sequence number.

With more effort, the sequence numbers can be bounded (e.g., [Dwork and
Waarts 1992, Dolev and Shavit 1997, Attiya and Welch 1998, Israeli 2005]). However,
the requirement for readers to write is provably necessary, as shown next.

Theorem 1.5 In any wait-free implementation of a multi-writer atomic register from single-writer
atomic registers, at least one writer must read.

Proof Suppose in contradiction there is such an algorithm for two writers p1 and p2 in
which no writer reads. Since the base registers are single-writer, we can partition
them into two sets: S1, which are written by p1, and S2, which are written by p2.
Consider the execution in which p1 writes 1 to the simulated register, then p2

writes 2 to the simulated register, and then a reader reads the simulated register;
by atomicity the reader must obtain 2.

1.4 A New Model for Describing Concurrency 41

Since the writers do not read, each one is oblivious to the existence of other
writers or readers and thus it always writes the same values to the same base
registers, depending solely on its own local history. Also, since the writers write
to disjoint sets of base registers, they cannot overwrite each other. As a result, the
values of all the base registers in the two executions are the same after the two
writes take place. Thus the reader observes the same values in the base registers
in the second execution as it does in the first and returns 2, which is a new-old
inversion and violates atomicity.

1.4 A New Model for Describing Concurrency
Many arguments about the correctness of shared memory algorithms were infor-
mal, and Lamport was interested in also having more formal proofs that could
be used, for instance, in proving the register algorithms discussed in Section 1.3.
Toward this goal, he presented a formalism in Lamport [1986c] for specifying con-
current systems that, unlike previous ones, did not assume that actions are atomic.
For concreteness, imagine a system that implements operations on a shared object
where the operations consist of lower-level actions and there is a global time model.
Since the operations are not atomic, they might overlap in time. One operation ex-
ecutionA can “affect” another operation B ifA either precedes or overlaps B. That
is, some lower-level action inside A precedes some lower-level action inside B.

More formally, a system execution is a triple 〈S , −→, >〉, where S is a set of
operation executions and −→ and > are precedence relations on S satisfying

A1. −→ is an irreflexive partial ordering.

A2. If A−→ B, then A > B and B �−→ B. (If A precedes B, then A can affect
B but B does not precede A.)

A3. If A −→ B > C or A > B −→ C, then A −→ C. (If A precedes B and
B can affect C, then A can affect C, and similarly if A can affect B and B
precedes C.)

A4. If A−→ B > C −→D, then A−→D. (If A precedes B, B can affect C,
and C precedes D, then A precedes D.)

A5. For anyA, the set of all B such thatA �−→ B is finite. (Only a finite number
of operation executions precede or overlap A.)

Lamport’s experience is that “proofs based upon these axioms are simpler and
more instructive than ones that involve modeling operation executions as sets of

42 Chapter 1 Shared Memory and the Bakery Algorithm

events” [Lamport 1986c]. See below for an example of a correctness proof using this
formalism.

This formalism facilitates specifying and reasoning about hierarchical systems.
Suppose 〈S ,−→, >〉 is a system execution. Let H be a set whose elements are sets
of operation executions from S; the elements of H are called higher-level operation
executions. An intuitive interpretation is that each higher-level operation in H is
executed via a set of (lower-level) operation executions in S.

More formally, supposeG and H are in H. DefineG
∗−→H to mean that for all

A ∈G and for allB ∈H ,A−→ B; i.e.,G precedesH if every lower-level operation in
G precedes every lower-level operation in H . Define G

∗
> H to mean there exists

A ∈G and there exists B ∈H such that A > B or A= B; i.e., G can affect H if
there exists a lower-level operation in A that either can affect or is equal to some
lower-level operation in B.

The triple 〈H,
∗−→,

∗
>〉 satisfies Axioms A1–A4 because 〈S , −→, >〉 does.

In order to ensure that 〈H,
∗−→,

∗
>〉 is a system execution, it remains to add

the following requirement that ensures Axiom A5: Each element of H is a finite,
nonempty subset of S, and each element of S belongs to at least one element of H
(but only a finite number). If H satisfies this condition, then H is called a higher-level
view of S.

A system execution 〈S , −→, >〉 implements a system execution 〈H,
H−→,

H
>〉

if H is a higher-level view of S and for allG andH in H, ifG
∗−→H , thenG

H−→H .
A system is defined to be a set of system executions. A system S implements

a system H if there is a mapping ι: S �→ H such that for every system execution
〈S , −→, >〉 in S, 〈S , −→, >〉 implements ι(〈S , −→, >〉).

Lamport [1986d] refines the formalism from [1986c] specifically for analyzing
register implementations (cf. Section 1.3). The following additional axioms that
must be satisfied by system executions are stated for a single register:

B0. The set of write operations is {V [0], V [1], . . .} with V [0] −→ V [1] −→ . . . ,
whereV [i] writes the value v[i], and for each readR, V [0]−→R. That is, all the
writes are totally ordered, as there is only one writer, and there is an initial
write that precedes every read.

B1. For each read R and write W , either R > W or W > R. That is, there
must be some causal connection between the reads and writes.

B2. Each read obtains one of the values that may be written to the register.

The axioms for safe, regular, and atomic registers rely on the following definition:
A read R is said to see v[i ,j], where i is the maximum k such that R � > V [k] and j is

1.4 A New Model for Describing Concurrency 43

the maximum k such that V [k] > R. That is, R can see traces of the values written
by the writes between V [i] and V [j].

B3. A read that sees v[i , i] obtains the value v[i]. That is, a read that does not
overlap any writes returns the value of the latest preceding write.

B4. A read that sees v[i ,j] obtains the value v[k], for some k with i ≤ k ≤ j . That
is, a read returns the value of an overlapping write or the latest preceding
write.

B5. If a read sees v[i ,j], then i = j . That is, a read does not (appear to) overlap
any write.

A safe register satisfies B0–B3, a regular register satisfies B0–B4, and an atomic
register satisfies B0–B5.

Consider the algorithm discussed in Section 1.3.1 for implementing anm-reader
safe register out of m single-reader safe registers, denoted v1, . . . , vm. Here is an
outline of how the formalism is used to prove its correctness. The construction
defines a system S that consists of all system executions 〈S , −→, >〉 such that

. S consists of reads and writes of the vi registers.

. Each vi, 1≤ i ≤m, is written by the same writer and is read only by the ith
reader.

. For each i and j , 1≤ i , j ≤m, if the write V [k]
i occurs, then V [k]

j also occurs

and V [k−1]
i −→ V

[k]
j . That is, a high-level write consists of writing all the vi’s

and one high-level write finishes before the next begins.

. Each vi is a safe register, i.e., satisfies B0–B3.

The target system H consists of all system executions 〈H,
H−→,

H
>〉 that consist

of reads and writes to an m-reader safe register. To show that S implements H, it
must be shown there is a mapping ι: S �→H such that for every system execution
〈S ,−→, >〉 in S, 〈S ,−→, >〉 implements some system execution ι(〈S ,−→, >

〉) in H. Given 〈S , −→, >〉, the mapping ι is defined as follows. The set of high-
level operation executions, denoted ι(S), is created by having each set of low-level
writes {V [k]

1 , . . . V [k]
m
} form a high-level write V [k] and having each low-level read

form a high-level read. Then define
H−→ to be

∗−→ and
H
> to be

∗
>. To finish the

proof, it must be shown that 〈ι(S), H−→,
H
>〉 is a system execution (satisfies A1–

A5), 〈S ,−→, >〉 implements 〈ι(S ,
H−→,

H
>〉, and 〈ι(S), H−→,

H
>〉 is in H (satisfies

B0–B3 for the simulated register).

44 Chapter 1 Shared Memory and the Bakery Algorithm

1.5 Sequential Consistency
Lamport coined the term sequentially consistent for a multiprocessor that ensures
that “the result of any execution is the same as if the operations of all the processes
were executed in some sequential order, and the operations of each individual
process appear in this sequence in the order specified by its program” [Lamport
1979b]. This correctness condition had been considered in previous work (e.g.,
[Dijkstra 1971, Owicki and Gries 1976, Lamport 1977]) but not under this name. As
we explain below, sequentially consistent memory is weaker than atomic memory
but is incomparable with regular and safe memory.

Even though a multiprocessor contains sequential processes, the sequential
nature of the processes alone is not sufficient to ensure sequential consistency for
the multiprocessor, since memory operations are not instantaneous. However, in
Lamport [1979b], two necessary and sufficient conditions are given to ensure that
the multiprocessor is sequentially consistent.

The first condition, R1, is that each process must issue its memory fetch and
store requests in the order of its program. This is fairly intuitive, but does rule out
some optimizations that are benign in the single-process situation.

The second condition, R2, is that all memory requests to the same memory
module (or cell) must be serviced in the order in which the requests are made.
In other words, there is a single FIFO queue for each memory module into which
requests are put. Here’s an example execution showing that without R2, sequen-
tial consistency is violated. Suppose there are two shared variables, a and b, both
initially 0, and two processes, p1 and p2. Let p1’s sequential program consist
of writing 1 to a and then reading b, while p2’s sequential program consists of
writing 1 to b and then reading a. Consider the execution in which p1 sends a
request to write 1 to a to memory module 1, which is currently busy and thus
puts the request in a queue, and then p1 sends a request to read b to mem-
ory module 2, which immediately services the request. Then suppose p2 sends
a request to write 1 to b to memory module 2, which immediately services the
request, and then p2 sends a request to read a to memory module 1. If mem-
ory module 1 is still busy, then p2’s request is put in a queue, which is not
the one containing p1’s request. Suppose memory module 1 eventually services
p2’s read request before p1’s write request (see Figure 1.1). Then p2’s read of a
gets the old value 0 instead of the new value 1. There is no sequentially consis-
tent way to reconcile this behavior with the fact that p1’s read of b gets the old
value 0.

1.5 Sequential Consistency 45

P1

a := 1

b := 1

fetch b

fetch adone

queue
request

queue
request

b = 0

MM1 MM2 P2

Figure 1.1 Diagram to justify the necessity of condition R2.

To prove the sufficiency of R1 and R2, first define a relation→ on memory re-
quests that orders requests by the same process in the order in which the process
issues them and orders requests by different processes on the same memory mod-
ule in the order in which the requests are enqueued. It is straightforward to see
that → is a partial ordering. Then it can be shown that in any execution of the
multiprocessor, each fetch and store operation has the same effect as if the oper-
ations were executed instantaneously in any total order that is consistent with the
→ partial order.

Tying back to the registers discussed in Section 1.3, sequential consistency is
weaker than atomicity. Both conditions require a sequential ordering of the opera-
tions, but for atomic registers the ordering must reflect that of all non-overlapping
operations, while for sequential consistency it is only for operations by the same
process. Thus an execution in which one process writes a new value to the reg-
ister and then later a second process reads the old value of the register may be
sequentially consistent but not atomic. On the other hand, sequential consistency
is incomparable with both regularity and safety, as the previous execution is not safe
(and thus not regular), but the following execution is regular (and thus safe) but not
sequentially consistent: the reader does two consecutive reads, both of which over-
lap with a write, where the first read returns the new value and the second read
returns the old value.

46 Chapter 1 Shared Memory and the Bakery Algorithm

A tremendous amount of work has been done on sequential consistency. A few
(nonexhaustive) directions of interest include lower bounds on the latency of op-
erations on sequentialy consistent memory (e.g., Lipton and Sandberg [1988]);
performance differences between sequential consistency and other conditions
(e.g., Attiya and Welch [1994]); identifying programming patterns that provide
the illusion of sequential consistency on top of weaker conditions (e.g., Adve and
Hill [1990], Gibbons et al. [1991]); determining whether a multiprocess actually
provides sequential consistency (e.g., Gibbons [1997]); and understanding the
complexity of deciding whether a protocol provides sequential consistency (e.g.,
Condon and Hu [2003]).

2The Notions of Time
and Global State in a
Distributed System
Karolos Antoniadis, Rachid Guerraoui

2.1 Introduction
Our day-to-day life is filled with a smorgasbord of events: a child drops a ball, a
phone rings, etc. Ordering such events by global time is simple. For example, if the
phone rings at 2:00 pm and the child drops the ball at 5:00 pm, then we know that the
phone rang before the child dropped the ball. But what if events occur very close to
each other in time? It is still easy to order events if we are present when they occur.
For instance, we can easily recognize that we received an email before our colleague
coughed. Things get tricky if we want to order events occurring close to each other
in different parts of the world. To give an example, Figure 2.1 depicts two persons,
John and Alice, experiencing events. In this example, John buys a chocolate bar at
time 10:59 pm based on his watch, while Alice gets the newspaper at time 11:00 pm
based on her watch. But if Alice’s watch is 3 minutes ahead then in reality, the
purchase of the newspaper occurred before the purchase of the chocolate.

Nevertheless and as we will see later on, if the two persons interact in some way,
then we can potentially infer the order of some events. For instance, if Alice throws
a banana peel and then John passes by and slips on it, then we can infer that the
throwing of the banana peel happened before the slip. In other words, we cannot
really deduce whether the purchase of the chocolate or the newspaper took place
first, but we can be certain that Alice first threw the banana peel and thereafter John
slipped on it. We depict this “happens before” relation with an arrow between the

48 Chapter 2 The Notions of Time and Global State in a Distributed System

John

Alice

Chocolate Slips on banana peel

Newspaper Throws banana peel
Time

Figure 2.1 Two persons, John and Alice, experiencing events.

related events in Figure 2.1. Notice that in Figure 2.1, as well as all other figures in
this chapter, time is depicted from left to right.

Similar to real life with different people, ordering events in distributed comput-
ing systems is a difficult issue. Distributed computing systems consist of a set of
independent Turing machines (also called processes or nodes) that communicate
with each other. Processes perform events that in a distributed system correspond
to performing a computation, sending or delivering messages. We could try to in-
troduce physical clocks to the processes to order events, but it would be difficult to
keep them synchronized in order to extract meaningful information from them. It
is natural for clocks to drift apart, so some clocks might move faster than others.

Lamport devised an approach to order events without resorting to physical time.
His approach captures what he called logical time. Roughly speaking, logical time
orders events based on causality: if some event possibly causes another event, then
the first event happens before the other. We describe logical time in Section 2.2.

Lamport introduced his notion of logical time in 1978 in his celebrated paper
“Time, Clocks, and the Ordering of Events in a Distributed System” [Lamport
1978b]. This paper is mostly known for defining logical time, as well as the concept
of causality. However, of equal if not greater importance was the introduction (in
the same paper) of a way to implement an arbitrary state machine in a distributed
setting. In other words, he devised an approach that is based on a logical ordering
of events and that can be used to implement in a distributed fashion every possible
algorithm. We describe the distributed state machine abstraction idea and an
algorithm to implement any algorithm in a distributed setting in Section 2.3.

Lastly, in Section 2.4 we describe the very concept of global state and how
to retrieve it in a distributed system. This was first introduced in the influential
paper by Chandy and Lamport [1985] titled “Distributed Snapshots: Determining
Global States of Distributed Systems.” This paper utilized ideas from logical time
to capture the concept of global state in a distributed system.

2.2 The Notion of Logical Time 49

p1

p2

p0

e0

g0

f0 f1

e1 e2

Time

Figure 2.2 Three processes and their respective events.

2.2 The Notion of Logical Time
A distributed system consists of a set of independent processes (Turing machines)
that communicate with each other, typically by exchanging messages1 as depicted
in Figure 2.2. Three types of events can take place in a distributed system from
the perspective of every process: (i) perform some local computation, (ii) send a
message, and (iii) deliver a message.

In Figure 2.2, we depict three processes p0, p1, and p2 together with their
respective events. Process p0 performs some local computation (event e0), then
delivers a message (event e1) and afterward sends a message (event e2). Similarly,
process p1 sends a message (event f0) and delivers a message (event f1). Process p2

performs a single computation (event g0).
As we pointed out before, it is challenging to order events based on the actual

physical time when the events occur. Sometimes, we are not even interested in
which event took place first. For example, in Figure 2.2, whether e0 took place before
or after g0 is perhaps unlikely to be of any consequence. Furthermore, even if we
could augment each process with a physical clock, physical clocks could drift apart
from each other, making it challenging to order events. Lamport realized that we
can order events in a different but still useful way: based on causality. This way, if
an event e possibly causes event f , then we can order these two events e and f and
argue that e happened before f . For instance, if an event corresponds to a delivery
of a message, this means that the event that sent this message preceded the delivery
event. Knowledge of the order of events can be utilized to build distributed state
machines. Knowing the order of events can also be useful in debugging distributed
systems, garbage collecting old versions of data, etc. Lamport devised an algorithm

1. A multiprocessor can also be considered a distributed system. However, processes in a multi-
processor communicate by reading/writing to shared memory (see Chapter 1).

50 Chapter 2 The Notions of Time and Global State in a Distributed System

that captures what is called logical time and can express the possible causal order
between events.

Remarks. Lamport’s main inspiration for logical time was a report titled “The
Maintenance of Duplicate Databases” by Johnson and Thomas [1975]. Johnson
and Thomas introduced in this report the notion of timestamps in order to keep
different copies of a database eventually consistent.2 They used timestamps to
order the operations issued to a distributed database. However, the timestamps
they proposed were associated with clocks of processes and hence could get out
of synchrony, thus violating causality. Furthermore, their work was specific to
distributed databases. In contrast, logical time is applicable to every distributed
system. As a side note, Johnson and Thomas pointed out in the same work that
when a network partition occurs, either consistency is violated or we cannot provide
availability. Eric Brewer made a similar observation 25 years later that is today
known as the CAP theorem [Brewer 2000, Gilbert and Lynch 2002].

Another source of inspiration for logical time was Lamport’s knowledge of
special relativity. According to special relativity there is no fixed order on the exact
time an event took place: different observers could experience the same event at
different times. Lamport realized that the same principle applies to the events of
a distributed system; however, we can still argue whether one event could have
potentially caused another one.

2.2.1 Causality and Logical Time
Lamport’s idea behind logical time is both simple and clever. Lamport realized
that certain events in a distributed system are associated with each other through
a “happens before” relation, while others are not. We cannot relate all events with
regard to “happens before” since some events are concurrent (e.g., events e0 and g0

of Figure 2.2 are concurrent). Nevertheless, there are cases in which we can clearly
state that one event happened before another event. For example, all the events
that are occurring at a single process are ordered sequentially (e.g., a process first
performed a computation, then the process sent a message, etc.). In other words,
the “happens before” relation induces a partial order.

Given two events e, f , e→ f denotes that an event e precedes another event f
and we say that e “happens before” f . The → relation captures causality since it

2. Eventually consistent means that if processes stop performing updates to the database for
enough time, then eventually all the copies of the database contain the exact same data.

2.2 The Notion of Logical Time 51

means that e potentially caused f . We can infer whether an event e precedes an
event f based on the following rules:

. If one process performs an event e before starting an event f , we can infer
that e precedes f (e→ f).

. If e corresponds to the sending of a message from some process and f
corresponds to the respective delivery of this message by some other process,
then we can establish that e→ f .

. Naturally, transitivity applies and therefore if an event g exists such that
e→ g and g→ f , then e→ f .

Logical time refers to the fact that we can utilize the→ relation to order events
without knowing the actual physical time of the events.

2.2.2 An Algorithm to Capture Causality
A process in a distributed algorithm could utilize the notion of logical time to wait
until something happens, before it proceeds to perform a computation. Therefore,
capturing the aforementioned notion of causality algorithmically can prove useful.
(We will see an example of the usefulness of capturing causality in the next section.)

To capture causality, Lamport devised a simple algorithm (see Algorithm 2.1).
This algorithm can be used to augment other distributed algorithms and allow
them to know if an event e precedes another event f . The algorithm operates as
follows. Each processp is associated with a logical clock tp that “ticks” at every event.
In other words, each event is associated with a number (also known as Lamport
timestamp) that is given by the logical clock. Each time a process p performs an
event, p increments its clock tp. Furthermore, each message is augmented with
this clock value, so when a process p sends a message, p also includes the value
of tp. On the other end, when a process p receives a message, p sets its timestamp
to the maximum between its local clock timestamp tp and the received timestamp
and then p increments tp by one. Assuming the timestamp of each event is given
by a function C : events→ N, Algorithm 2.1 guarantees that for every two events e
and f , if e→ f , thenC(e) < C(f). Figure 2.3 depicts the execution of Algorithm 2.1
and the timestamp assigned to each event.

Total Order. We can extend the partial order of events to a total order by extending
the timestamp with a unique identifier. This identifier could be, for example, the
process identifier. For instance, an event in such a setting would be (e, ide)where e
is an event and ide is an identifier. Then for any two events (e, ide) and (f , idf) we
can say that (e, ide) < (f , idf) if e→ f , or if e �→ f and f �→ e and ide < idf .

52 Chapter 2 The Notions of Time and Global State in a Distributed System

Algorithm 2.1 Lamport’s timestamps (for a process p)

procedure onComputation()
tp← tp + 1

end procedure

procedure onSend (msg , pk) � send message msg to process pk
tp← tp + 1
send([msg , tp], pk)

end procedure

procedure onReceive() � on receiving some message
[m, t]← receive()
tp←max(t , tp)+ 1

end procedure

p1

p2

p0

1

1 5

1 4

2 3

Time

Figure 2.3 The timestamps assigned to events by using Algorithm 2.1.

By extending the partial order to a total order, we can utilize the total order to
implement an arbitrary distributed state machine, as we show in the next section.

2.2.3 Impact of Logical Time
Lamport’s work on logical time had an enormous impact in both theory research
and practical systems.

An important extension emerging from Lamport’s clocks is the notion of vector
clocks. Vector clocks can capture the lack of causality while Lamport’s clocks can-
not. In other words, if e→ f , then C(e) < C(f), but C(e) < C(f) does not mean
that e→ f . For example, in Figure 2.3, the first event of process p2 has a smaller
timestamp than the third event of process p0; however, this does not mean that
p2’s first event occurred before the third event of p0. Vector clocks were devel-

2.3 The Distributed State Machine Abstraction 53

oped independently in the late 1980s by Fidge [1988], Mattern [1989], and Schmuck
[1988].

In practical systems, ideas based on logical time have been extensively used for
replicating data (e.g., ISIS [Birman 1986, Birman et al. 1991]), debugging purposes
(e.g., ShiViz [Beschastnikh et al. 2016]), garbage collection [Liskov and Ladin 1986,
Terry et al. 1995], and reducing message communication (e.g., Bayou [Terry et al.
1995]). Among others, version vectors [Parker et al. 1983] that utilize logical time
have been used in key-value stores, such as Dynamo [DeCandia et al. 2007], Riak
[2019], and Voldemort [2019], as well as file systems (e.g., Coda [Satyanarayanan
et al. 1990]) to handle write conflicts. Recently, causal consistency has gained at-
tention. Causal consistency [Ahamad et al. 1995] is a consistency model inspired
by causality and is the strongest consistency model that can tolerate network parti-
tions [Attiya et al. 2015]. A multitude of recent distributed storage systems [Didona
2018, Du 2014, Lloyd et al. 2011, Lloyd et al. 2013, Zawirski et al. 2015] provide
causal consistency.

2.3 The Distributed State Machine Abstraction
As with logical time, Lamport’s inspiration behind the distributed machine abstrac-
tion was the Johnson and Thomas report [Johnson and Thomas 1975]. Johnson
and Thomas tried to keep different copies (i.e., replicas) of a database eventually
consistent, while allowing each replica to independently introduce updates. Lam-
port came up with a clean abstraction to solve this problem: the distributed state
machine abstraction. Lamport’s main insight behind the distributed state machine
abstraction is that, by applying commands in the same order at all the replicas of
a distributed system, we can obtain a universal approach for keeping the replicas
consistent with each other.

Roughly speaking, Lamport’s idea states that all the processes together simulate
a state machine. This can be achieved if each process applies the exact same com-
mands of the machine and in the same order as every other process. Specifically,
this can be done with the following approach. Each process contains a local copy
of the state machine. All processes initialize their state machine to the same ini-
tial state. Processes apply commands to their state machine such that each process
applies the exact same commands in the same order.

The main difficulty of such an approach is ordering the commands, and this is
where logical time comes into play. Although the approach seems simple, Lamport
was the first one to conceptualize it, and it had an immense impact in practical
systems.

54 Chapter 2 The Notions of Time and Global State in a Distributed System

We call an algorithm that implements a universal state machine in a distributed
system by utilizing replication a state machine replication (SMR) algorithm. SMR
algorithms are useful in practice in order to implement fault-tolerant systems. Im-
plementing an SMR algorithm in a system where failures can occur (e.g., crashes) is
a difficult problem [Lamport 1998a, Liskov and Cowling 2012, Ongaro and Ouster-
hout 2014].

To demonstrate the universality of the SMR approach, Lamport first presented
a simple SMR algorithm that does not tolerate process failures. Equipped with the
notions of logical time and SMR, the problem of keeping the replicas of a database
consistent with each other is simply a matter of tracking the logical time of the
updates that are separately generated and received by them. At the time there was
no solution for keeping the copies of a database consistent.

Additionally, Lamport’s SMR algorithm assumes that the communication links
between processes are perfect and FIFO [Cachin et al. 2011]. By perfect we mean that
if a process p sends a message m to a process q, then q eventually delivers m; and
by FIFO we mean that if a process p sends a message m1 before sending message
m2 to some process q, then q cannot deliver m2 before having delivered m1.

We continue by presenting Lamport’s SMR algorithm that uses logical time. We
conclude this section by discussing the impact Lamport’s idea had in the theory of
distributed computing, as well as in practical systems.

2.3.1 SMR Algorithm
We consider a state machine sm that serves commands c1, . . . , ck , and we want
to have a distributed algorithm in which each process simulates the execution
of this state machine. In the following description we assume an asynchronous
system with n processes p0, p1, . . . , pn−1. Each process has a state machine sm in
an initial state. Additionally, each process contains a log of unexecuted (i.e., not yet
applied) commands. Figure 2.4 depicts the data structures each process maintains
locally, where the right box corresponds to the log of not yet applied commands
(i.e., commands c3 and c13 have not yet been applied to sm). Each entry in the log
contains a Lamport timestamp, and the log is kept sorted according to timestamp
order.

Finally, each process contains an array of n timestamps, the latest timestamp
received from each other process. Process pi maintains its own logical clock in
timestamps[i]. Timestamps are maintained based on the Lamport timestamp al-
gorithm presented in Section 2.2.2. In what follows, when we say that a message
containing a timestamp t is being sent, this means that t corresponds to the time-
stamp given by the logical clock of the process for the “sending of the message”
event.

2.3 The Distributed State Machine Abstraction 55

c3, t23
timestamps

sm

…

c13, t7

Figure 2.4 The data structures that a process maintains locally.

The main idea behind the SMR algorithm is that a process p can apply a com-
mand c by first broadcasting a messagem that contains command c to all the other
processes. Process p can apply command c to p’s state machine when p receives
from all the other processes at least one message carrying a higher timestamp
than m.

Specifically, the SMR algorithm operates using the following simple rules:

. When a processpi receives a message containing a timestamp t from another
process pj , pi updates the timestamps[j] element of the array to contain t
(recall that links are FIFO).

. To apply a command ck, process pi sends message [ck , t] to all the other pro-
cesses where t is the timestamp of the message. Then, process pi creates an
entry [ck , t] and appends this entry to the log of not yet applied commands.

. When a process pi receives a message [ck , t], process pi appends the [ck , t]
entry in its log of not yet applied commands and subsequently sends an ac-
knowledgment message (i.e., [ack , t ′]) to every other process (i.e., broadcasts
the message). Naturally, it is the case that t ′ > t . By sending an acknowledg-
ment message, a process informs other processes that it has received the
command.

. A process pi applies a command ck if the first (i.e., oldest) entry in pi’s log of
not yet applied commands is [ck , t]. However, pi can only apply command ck
ifpi has received messages from every other process with timestamps greater
than t (i.e., all the timestamps in the timestamps array contain values> t). If
this is the case, pi can apply ck on its local state machine and remove the
entry from its log.

Algorithm 2.2 presents the algorithm of process pi.

56 Chapter 2 The Notions of Time and Global State in a Distributed System

Algorithm 2.2 An SMR algorithm using logical time

1 � local variables
2 smi← init � initial state machine
3 logi←∅ � log of not yet applied commands
4 timestamps[n]← {0, . . . , 0}
5 procedure applyCommand(ck)
6 timestamps[i]← timestamps[i]+ 1
7 ∀pj �= pi, send([ck , timestamps[i]], pj)
8 logi .append([ck , timestamps[i]])
9 end procedure

10 procedure onReceive ()
11 � pi on receiving a message from process pj
12 msg ← receive()
13 if msg = [cl , tj] is a command message then
14 logi .append([cl , tj])
15 timestamps[i]←max(timestamps[i], tj)+ 1
16 timestamps[j]← tj

17 ∀pj �= pi, send([ack , timestamps[i]], pj)
18 else �msg = [ack , tj] is an acknowledgment (ack) message
19 timestamps[j]← tj

20 end if
21 end procedure

22 procedure constantCheck()
23 while true do
24 [first command , first ts]← logi .peek()
25 can apply← true

26 for j = 0; j < n; j = j + 1 do
27 if j �= i and first ts ≥ timestamps[j] then
28 can apply← f alse

29 break
30 end if
31 end for
32 if can apply then
33 sm.apply(first command)
34 logi.remove([first command , first ts])
35 end if
36 end while
37 end procedure

2.3 The Distributed State Machine Abstraction 57

p1

p2

p0

Time

applyCommand (c0)

applyCommand (c1)

applyCommand (c2)

sendAck sendAck

Figure 2.5 Execution of the SMR algorithm.

Procedure constantCheck of Algorithm 2.2 runs in the background and
checks (line 27) if there are entries from all processes in the log. In this case, the
head of the log (i.e., the entry whose timestamp is the lowest) is applied.

The algorithm applies the exact same commands and in the same order at each
process, since a processp applies a command c only ifp has received messages with
higher timestamps from all other processes. This guarantees that no command
preceding c in the timestamp order exists, since p’s communication with all other
processes preserves FIFO order.

Figure 2.5 depicts an execution of Algorithm 2.2 in which three processes re-
quest to apply different commands concurrently. Although requests are issued
concurrently, the processes apply the commands in the same order. Recall that logs
are kept ordered by the global timestamp order. Assume that the timestamp order-
ing of the three commands in this scenario is c0, c1, c2. For a process p to apply a
command that is in its log, p needs to receive messages from all the other processes
with greater timestamps. For instance, when process p1 calls applyCommand(c1),
p1 just knows of its own command c1. In order for p1 to apply c1, p1 would need
to receive messages with greater timestamps from processes p0 and p2. Since the
communications links are FIFO, process p0 would first send its command c0 to p1

and afterward the acknowledgment message to p1. Therefore, p1 would realize that
it first needs to apply command c0 of process p0 before applying command c1.

Remarks. The knowledgeable reader might think that if we assume a setting with-
out failures, implementing an SMR algorithm can be easily done by using a leader-
based approach. With a leader-based approach we can trivially achieve total order-
ing of the commands. For example, if we assume that a single process of the system
acts as a leader, then it is easy to devise an SMR algorithm. Assuming that process
p0 is the leader, such an algorithm could operate as follows. Every process gets

58 Chapter 2 The Notions of Time and Global State in a Distributed System

informed on what commands to apply and in which order by process p0. Specifi-
cally, before a process applies a command, the process first sends the command to
the leader p0. Process p0 can then order the commands it has received and dictate
the execution order of these commands. Subsequently, p0 can inform all the other
processes about this execution order. Since there are no failures, we are guaran-
teed that p0 is always up and running. However, the problem of implementing an
SMR algorithm remains challenging if we exclude the trivial leader-based solution.
Nevertheless, by utilizing logical time we can implement an SMR algorithm.

The reason Lamport proposed a non-leader-based SMR algorithm probably has
to do with the fact that he was still thinking about the problem in the context of
databases where we want to keep replicas consistent. Nevertheless, note that the
SMR algorithm described in this section is quite effective as the basis for a fault-
tolerant solution when clocks are synchronized. Lamport’s first way of tackling fault
tolerance was in fact to assume synchronized clocks (and separately to work on
clock-synchronization protocols, which are mentioned in the next chapter).

2.3.2 Impact of the Distributed State Machine Abstraction
Although in retrospect the distributed state machine abstraction is conceptually
simple, it had a tremendous impact on both theory and practice.

The distributed state machine abstraction appeared repeatedly in Lamport’s
subsequent work. After the “Time, Clocks, and the Ordering of Events in a Dis-
tributed System” [Lamport 1978b], Lamport proceeded to work on various SMR
implementations. The culmination of Lamport’s work led to SMR algorithms for
both benign and Byzantine settings. See Chapters 3 and 4 for some of these algo-
rithms.

In practice and with the surge of cloud computing, the SMR abstraction has
been extensively used in practical systems. Major cloud infrastructure companies
report using SMR in their data centers for lock services, data replication, and
atomicity management. Likewise, major storage vendors are using it to manage
data redundancy.

2.4 The Notion of Distributed Global State
A distributed snapshot refers to taking a “photograph” of a distributed system. This
snapshot comprises the state of each process at the moment the snapshot is taken.
The state of a process corresponds to the state of the local data structures of the
process and what the process is executing (i.e., program counter). In other words,
a snapshot captures the global state of the system. In this section, we describe an
algorithm that is able to capture a distributed snapshot and discuss how it relates to

2.4 The Notion of Distributed Global State 59

the notion of the distributed global state. Before we start, we present the following
analogy to better convey the meaning of a snapshot.

A parent had three children: Bob, Dan, and Tom. The parent wanted to instill
financial awareness to his three sons and decided to give them an allowance of $20
each. Immediately after, the children started exchanging money with each other
for toys, etc. One day, the father wanted to check on his children to see how much
money each of them had. During that day, the father asked Bob, then Dan, and at
the end Tom how much money they currently had. At the end of the day and based
on the responses of the children, the father deduced that Bob, Dan, and Tom have
$10, $30, and $50, respectively. Surprisingly, the children had $30 more than what
they received from their father! The father quickly realized that the children did not
magically become richer. Instead, what happened was that after asking Dan how
much money he had and before asking Tom, Dan gave his $30 to Tom. Ideally, the
father would want to get an instantaneous view of his sons’ money boxes in which
the total money is $60. In other words, the father wants to get a snapshot of his
sons’ money boxes.

In a distributed setting, the children are the processes and the father is an
algorithm that takes a snapshot in order to perform some action. For example,
instead of checking how much money each child had, we would like to find out the
CPU utilization of each process when the snapshot is taken. However, compared
with the aforementioned analogy, taking a snapshot in a distributed system is a
more difficult problem. For instance, we cannot gather all the processes together
in the same room and “ask” them what their current state is, something that
the father could easily do. Such an approach would be analogous to having a
synchronous system in which all processes provide their state at a specific point
in time.

Here we consider an asynchronous system. In an asynchronous system, the
notion of global state is elusive. For instance, it is challenging to define what a
global state is, since we have no notion of global time. Ideally, we want to take a
snapshot of a system while the system is executing a distributed algorithm, but
without impeding the progress of the algorithm. In such a setting, it is hard to
conceive what the global state of a system is, since the system is constantly in
fluctuation (i.e., processes keep performing events).

Chandy and Lamport [1985] devised an algorithm to capture a snapshot in
an asynchronous distributed system in their influential “Distributed Snapshots:
Determining Global States of Distributed Systems.” In that work, they managed to
capture the notion of a distributed global state. We explain a simplified version
of their algorithm in the next section. In Section 2.4.2 we describe the impact of
their work.

60 Chapter 2 The Notions of Time and Global State in a Distributed System

Algorithm 2.3 Snapshot algorithm (for process pi)

1 � local variables
2 stateRetrievedi← f alse

3 procedure startSnapshot()
4 statei← pi .getState()
5 stateRetrievedi← true
6 ∀j �= i, send(marker , pj)
7 end procedure

8 procedure onReceiveMarker()
9 if stateRetrievedi �= true then

10 statei← pi .getState()
11 stateRetrievedi← true
12 ∀j �= i, send(marker , pj)
13 end if
14 end procedure

2.4.1 The Distributed Snapshot Algorithm
Similarly to Section 2.3, we consider an asynchronous system with no failures and
with reliable and FIFO communication links. Furthermore, we assume that each
process provides a getState function that can take a local snapshot of the local state
(i.e., local data structures, program counter, etc.) of the process instantaneously.
We present the algorithm for taking a distributed snapshot in Algorithm 2.3.

The algorithm works as follows: a single central process3 p decides to take the
snapshot and starts by executing startSnapshot. Process p takes a snapshot of
its local state (line 4), then sets the stateRetrieved variable to true (line 5) so that
p does not retrieve its local state again at some later point in time (line 9), and
then p sends a message that contains a marker (line 6) to every other process. The
marker message is simply used to inform other processes to take a snapshot. When
a process receives a marker message, it executes the onReceiveMarker function
that retrieves the local state if it has not already retrieved it (line 9) and sends a
marker message to all the other processes.

We remark that Algorithm 2.3 can augment a distributed algorithm in order
to capture the global state of the system during the algorithm’s execution with-
out impeding the algorithm’s progress (i.e., the distributed algorithm can keep

3. The central process can be assigned before the distributed system starts. Another way to decide
on a central process can be by using the SMR algorithm of Section 2.3.

2.4 The Notion of Distributed Global State 61

p1

p2

p0

1

1
1

(0, 0, 0) (1, 0, 0) (1, 1, 0) (1, 1, 1)

onReceiveMarker

onReceiveMarker

startSnapshot

Time

Figure 2.6 The distributed snapshot algorithm does not necessarily capture a global system state
that actually occurred during an execution.

performing events while the snapshot is being taken). Additionally, note that Algo-
rithm 2.3 describes when each process should take a snapshot of its local state but
not how all the local states are assembled together to form the global state. This is
beyond the scope of this section, but could be easily accomplished by having each
process broadcast its local state after retrieving it.

Assume a distributed algorithm executing in a system with n processes that
uses logical clocks to timestamp its events. Then we can think of a distributed
snapshot taken by Algorithm 2.3 as a vector (ts0, ts1, . . . , tsn−1) of n elements (also
known as a cut) where the local state of a process pi is retrieved after an event e
timestamped with tsi and before the event immediately following e in process pi.
Figure 2.6 depicts the execution of an algorithm (red events at each process). Before
process p0 performs an event, p0 starts capturing a snapshot of the system. The
marker messages sent by p0 are delivered to processes p1 and p2 after each of them
has performed one event. The resulting distributed snapshot corresponds to the
cut (0, 1, 1). However, such a global state never existed in the system. The green-
dashed vertical lines in Figure 2.6 show the global states that existed in the system.
These global states correspond to the cuts (0, 0, 0), (1, 0, 0), (1, 1, 0), and (1, 1, 1).
Surprisingly, the snapshot algorithm captures a global state that did not exist. It
is challenging to capture a global state at a specific instant while processes keep
performing events.

However, the snapshot algorithm satisfies two useful properties. The first prop-
erty has to do with all the events that take place between the moment process p0

invoked startSnapshot and the moment all the processes have retrieved their lo-
cal state (i.e., have called the getState function). We can reorder these events and
execute the distributed algorithm based on this new order of events such that the
snapshot returned by the snapshot algorithm corresponds to a global state during
the distributed algorithm’s execution. For instance, in Figure 2.6 if the events of pro-
cesses p1 and p2 were ordered before the event of process p0, then the cut (0, 1, 1)

62 Chapter 2 The Notions of Time and Global State in a Distributed System

p1

p2

p0

1 2 3

2 3

4 5onReceiveMarker

onReceiveMarker

startSnapshot

Time

Figure 2.7 Taking a distributed snapshot during the execution of an algorithm.

would correspond to a global state during the execution of the system. The second
property states that if the global state captured by the snapshot algorithm contains
an event e in the local state of some process, then all the events that causally pre-
cede e are captured in the local states of some other processes that belong to the
snapshot. In other words, the notion of a distributed global state is intertwined
with causality.

In Figure 2.7 we present another example that depicts the execution of an algo-
rithm while a distributed snapshot is being taken (blue and yellow events). In this
example, p0 is the process that initiates the snapshot by invoking startSnapshot.
By doing so, a marker message is sent to all the other processes. Process p2 is the
first process that receives the marker, so p2 takes a snapshot of its local state and
sends a marker to the other processes. Notice that since the communication links
are FIFO the marker sent by p2 reaches p1 before the message that p2 sent during
the event with timestamp 3. When p1 receives the marker, p1 takes a snapshot of its
local state and sends marker messages as well. For clarity and since each process
has taken a snapshot of its local state, we omit the additional marker messages
that are sent by the processes. Afterward, when p1 receives the marker from p0 (the
yellow event), process p1 does not perform anything since p1 has already taken a
snapshot of its local state.

Finally, in Figure 2.8 we present the same execution as in Figure 2.7 and show
possible snapshots that can and cannot be returned by the algorithm. The red
curved dashed lines correspond to snapshots that cannot be returned by the snap-
shot algorithm. For example, the snapshot that corresponds to the cut (2, 4, 2)
cannot be returned by the algorithm, since p1 includes the state of the process
after the event with timestamp 4 has occurred but does not include the event with
timestamp 3 of process p2 that causally precedes p1’s event. Similarly, a snapshot
that corresponds to the cut (2, 5, 3) cannot be returned by the algorithm since the

2.4 The Notion of Distributed Global State 63

p1

p2

p0

1 2 3

Time(1, 0, 2) (2, 4, 3) (2, 5, 3)(2, 4, 2)
3

4

5

Figure 2.8 Valid (green) and invalid (red) snapshots based on causality. Algorithm 2.3 returns only
valid snapshots.

cut does not capture causality. The green curved dashed lines correspond to cuts
that can be returned by the snapshot algorithm, such as (1, 0, 2) and (2, 4, 3).

Remarks. Someone might think that we could take a distributed snapshot by
utilizing an SMR algorithm. An idea would be for processes to just apply commands
to the global (i.e., simulated) state machine. This way, if a process wants to get the
global state of the system, the process just needs to retrieve the state of the global
state machine. Such an approach is unsatisfactory since it does not really capture
the state of the process, but instead captures the state of the global state machine.
Additionally, such an approach is less practical since each possible event has to go
through the SMR algorithm.

2.4.2 Impact of Distributed Global State
The distributed snapshot algorithm might take a snapshot of a global state of
the system that never existed in reality. This raises the question whether such an
algorithm is even useful.

However, as we mentioned before, the snapshot algorithm satisfies two useful
properties. One of them states that there exists a reordering of the events that take
place during the retrieval of the snapshot such that the returned global state exists
in an execution corresponding to these reordered events. We present an example
of this property in Figure 2.9, assuming that the snapshot algorithm returned
a global state s

′
i
. Specifically, Figure 2.9(i) depicts the sequence of global states

during the execution of the distributed algorithm. Note that state s
′
i

does not exist
in the sequence of global states in Figure 2.9(i). Furthermore, global state sstart
corresponds to the state where the snapshot algorithm is first invoked by process
p0, while send corresponds to the state where all processes have retrieved their local
state. If we reorder the events that took place during the execution of the snapshot

64 Chapter 2 The Notions of Time and Global State in a Distributed System

sendsstart s0

sendsstart … … …

……(i)

(ii) s′0 s′i

Figure 2.9 Sequence of global states (ii) corresponds to the states generated by an execution of the
reordered events of execution (i).

algorithm, we get a possible different sequence of states (e.g., s0 is different from s
′
0)

that is depicted in Figure 2.9(ii) and in which state s
′
i

exists. The snapshot algorithm
guarantees that immediately after the reordering of the events the system is in the
same state as before the reordering; hence both sequences of states end with the
state send . We refer the interested reader to the original paper [Chandy and Lamport
1985] for a formal proof for why the events-reordering property holds.

We can now see how the aforementioned property of the snapshot algorithm
is useful in practice. The snapshot algorithm’s property is useful in identifying
whether a stable property of a system holds. A stable property is a property that
if it holds in some state of the system, it holds in every subsequent state of the
system. For instance, whether a deadlock has occurred is a stable property since
if a deadlock occurs, the system remains forever deadlocked. We can use the dis-
tributed snapshot algorithm to detect a stable property by retrieving the global
state and examining whether the stable property holds in the retrieved global
state. If the stable property holds in the retrieved global state, then this means
that the stable property holds in the system. For instance, if the stable prop-
erty holds in the retrieved state s

′
i

in Figure 2.9(ii), this means that the stable
property also holds in send and any subsequent state of send and hence the sta-
ble property holds in the system. To give an example, if we retrieve the global
state and we detect a deadlock in this state, we can infer that the system is
deadlocked. Detecting stable properties during the execution of an algorithm is
extremely useful. Among others, such a detection mechanism can be used for
checkpointing and failure recovery [Koo and Toueg 1987, Prakash and Singhal
1996].

To conclude, the notion of a global state in distributed computing had a huge
impact in the last three decades, ranging from distributed [Mattern 1989] to con-
current [Afek et al. 1993, Jayanti 2005] systems.

2.5 Conclusion 65

2.5 Conclusion
After getting acquainted with the notions of time and global state in a distributed
system, they become clear and might appear obvious in retrospect. This does not
mean this was indeed the case. The work of Lamport successfully democratized
these notions. Lamport’s paper “Time, Clocks, and the Ordering of Events in a Dis-
tributed System” had tremendous impact on introducing the notion of time in a
distributed system. Most importantly, the distributed state machine abstraction
approach that stemmed from this paper spawned new research areas and has been
widely implemented in various settings and deployed in a plethora of practical sys-
tems. Finally, the “Distributed Snapshots: Determining Global States of Distributed
Systems” paper by Chandy and Lamport introduced the notion of a global state in
a distributed system.

3Byzantine Faults
Christian Cachin

3.1 Introduction
This chapter covers Lamport’s most prominent works addressing attackers and ma-
licious acts in distributed computing systems. One would think that dealing with
adversaries lies in the domain of computer security and cryptography—both areas
outside Lamport’s core domain of concurrency, according to this book’s title. But
Lamport has initiated the study of distributed protocols in such adversarial settings
through the formulation of the Byzantine generals problem and thereby founded a
fruitful research program that has been vibrantly active for several decades. It is
less widely known that he also made seminal contributions to cryptography and
computer security in the early days of these fields.

In more detail, Lamport’s work on the Byzantine generals problem [Lamport
et al. 1982] has influenced generations of researchers and practitioners and rep-
resents one of his most important contributions. The intuitive story of the paper
around the problem of reaching agreement, with all the connotations of the term
Byzantine, has attracted and fascinated many people. However, the problem of
reaching agreement in the presence of faults had already been the subject of two
of his earlier papers that grew out of the NASA-sponsored Software Implemented
Fault Tolerance (SIFT) project, whose goal was to build a resilient aircraft control
system that tolerated faults of its components. Lamport’s first research paper on
SIFT appeared in 1978, with Wensley et al. [1978], and the second one in 1980,
with Pease and Shostak [Pease et al. 1980]. But widespread interest in the prob-
lem arose only after the publication of the “The Byzantine Generals Problem” in
1982. Indeed, Lamport’s intention behind writing this paper was to popularize the
agreement problem. To use his own words [Lamport 2019]:

I have long felt that, because it was posed as a cute problem about philoso-
phers seated around a table, Dijkstra’s dining philosopher’s problem received

68 Chapter 3 Byzantine Faults

much more attention than it deserves. (For example, it has probably received
more attention in the theory community than the readers/writers problem, which
illustrates the same principles and has much more practical importance.) I be-
lieved that the problem introduced in [Lamport et al. 1982] was very important
and deserved the attention of computer scientists. The popularity of the dining
philosophers problem taught me that the best way to attract attention to a prob-
lem is to present it in terms of a story.

In order to reduce the problem to its most extreme case, the story of the Byzan-
tine generals lets the faulty generals behave maliciously and adversarially. Lamport
and coauthors originally did not think it was realistic to assume an attacker had ac-
tually gained access and was trying to create disruption from within, when their
protocols would run in an industrial control system or even on an aircraft. This
was rather chosen as a realistic and intuitive abstraction for covering all incorrect
behavior that a protocol participant might exhibit. Much later only has the term
Byzantine fault tolerance gained its current meaning of dealing with actually mali-
cious parties and tolerating their actions.

Still, Lamport was very much aware of the need to secure distributed com-
puter systems from attackers. In concurrent work addressing problems in secu-
rity and cryptology, he introduced one-time signatures [Lamport 1979a], which are
today known as Lamport signatures in cryptography, and a novel protocol for pass-
word authentication using one-way functions [Lamport 1981], which pioneered many
others.

In the following, we highlight three prominent works of Lamport that deal with
adversarial protocol participants: Byzantine agreement, clock synchronization in
the presence of arbitrary faults, and digital signature schemes built from one-way
functions.

3.2 Byzantine Agreement
The two papers by Lamport, Shostak, and Pease [Pease et al. 1980, Lamport et al.
1982] on Byzantine agreement address the same problem: Given n processes
p1, . . . , pn with one input value each, how to synchronize them with a protocol
that only uses point-to-point messages such that all processes agree on an output
vector V of n values that correctly represent the inputs. During the protocol ex-
ecution, an unknown set of t processes is faulty or Byzantine and the remaining
n− t processes are correct. The Byzantine processes may behave in arbitrary and
adversarial ways, as if intending to prevent the correct processes from reaching
agreement.

3.2 Byzantine Agreement 69

3.2.1 Definitions
The Byzantine agreement problem can be described in three slightly different ways,
which are all equivalent to each other in the synchronous model considered by
Lamport and coauthors. There are small and conceptually simple transformations
to convert one variant to another. The three forms are called interactive consistency,
the Byzantine generals problem, and Byzantine agreement. (In asynchronous systems,
however, where no common clock exists, these three notions differ considerably;
failure to distinguish these nuances has led to some confusion in the literature. We
consider only synchronous systems in this chapter.)

Interactive Consistency. The agreement problem described in the paragraph above
is called interactive consistency: Each process inputs a value, say, pi inputs vi, and
each process outputs a vector V of such values. It satisfies these properties:

Agreement. Each correct process outputs the same vector of values.

Validity. If a correct process outputs V and a process pi is correct and inputs
vi, then V [i]= vi.

In the SIFT project building an aircraft controller, interactive consistency was
intended to synchronize the different processes, where each process would supply
its locally read sensor values as input. After reaching agreement on an output vector
like this, each process would then derive its actions deterministically from the
output. This ensures that the actions of all processes remain synchronized and safe.

Byzantine Generals Problem. The Byzantine generals problem [Lamport et al. 1982]
is best understood as a broadcast primitive, where a designated sender process ps
starts with an input value v and all other processes have no input; at the end all
processes output some value. The goal is that the sender conveys its input to all
processes in a reliable way such that all processes output the same value. For this
reason we call it Byzantine broadcast here, also because it is reminiscent of other
notions for (Byzantine) reliable broadcast [Cachin et al. 2011].

In the Byzantine generals formulation, there is one commander acting as the
sender ps and all other processes are lieutenants that should obey the order of the
commander. More abstractly, a protocol for the Byzantine generals problem or for
Byzantine broadcast ensures

Agreement. Each correct process outputs the same value.

Validity. If the sender process, ps, is correct and has input v, then every correct
process also outputs v.

70 Chapter 3 Byzantine Faults

This notion was formalized by Lamport et al. [1982] and used to describe the im-
possibility results and several protocols. In the introduction of the paper, however,
the story describes that “the multiple divisions of the Byzantine army are camped
outside an enemy city, each division commanded by its own general” and that “they
must decide upon a common plan of action.” This is again the notion of interactive
consistency.

The relation between the two primitives is straightforward, which is why Lam-
port et al. introduce the simplification. Namely, given a solution for Byzantine
broadcast, interactive consistency can be achieved by running n separate instances
of Byzantine broadcast in parallel, one for each process, and that process acts as the
sender in its instance. In the other direction, the relation is already evident from
the definition, as interactive consistency is the composition of n Byzantine broad-
casts, one for each process as a sender. Lamport et al. [1982] explain all of this in
the classic paper.

Byzantine Agreement. The notion of Byzantine agreement or Byzantine consensus
stands between interactive consistency and the Byzantine generals problem. In
this primitive, every process inputs a value and every process outputs again a single
value. Formally, it satisfies

Agreement. Each correct process outputs the same value.

Validity. If all correct processes input the same value v, then every correct
process outputs v.

Note that validity in Byzantine agreement may not be useful for practical appli-
cations since it says nothing about the situation where the correct processes start
with diverging inputs. If not all processes supply the same input, then Byzantine
agreement may choose a value that comes out of thin air; for example, it could be
some default value⊥ to indicate that no agreement was reached or it could be some-
thing made up by the faulty processes. On the other hand, if all correct processes
input the same value, they appear to “agree” already, so why should they run an
agreement protocol? The answer is, clearly, that running the protocol helps them
because they don’t know that they agree a priori.

The validity notion of Byzantine agreement has many subtle aspects. One could
simplify it by additionally requiring that the output value was input by a correct
process. However, then the set from which those values are chosen starts to play a
role [Fitzi and Garay 2003] and impacts the resilience of possible protocols (i.e., the
relation between the number of faulty processes, t , and n). In other contexts, it has
been suggested to externalize the decision on which agreement values are “valid”

3.2 Byzantine Agreement 71

and permit any value to be output, as long as it satisfies some predicate known to
each process [Ben-Or and El-Yaniv 2003, Cachin et al. 2001].

Despite these and other issues with validity in Byzantine agreement, this for-
mulation of the agreement problem has become the preferred one of the three
variants. This may also be because the equivalent notion of consensus in asynchro-
nous systems, even if processes are only subject to crashes, plays a fundamental
role in distributed computing [Herlihy and Wing 1990, Chandra and Toueg 1996].

To implement Byzantine agreement from interactive consistency, the processes
first run interactive consistency to agree on an input value for each process. Then ev-
ery process runs a deterministic procedure locally that selects the output according
to the validity notion required by Byzantine agreement. Implementing Byzantine
agreement from a primitive for Byzantine broadcast (i.e., a protocol for the Byzan-
tine generals problem) works similarly.

To realize Byzantine broadcast for senderps from Byzantine agreement, process
ps first sends its value directly to each process in the system. Then all processes
run Byzantine agreement once, whereby a correct process inputs the value received
from ps. This protocol can be extended to an implementation of interactive consis-
tency as explained under the description of the Byzantine generals problem.

3.2.2 Implementations
Protocols for Byzantine agreement start from a model that makes authenticated
point-to-point links available, such as provided by physical channels linking all
pairs of processes or by using an open communication network and protecting the
communication using a cryptographic message-authentication code (MAC) that
prevents the Byzantine processes from tampering with messages among correct
processes.

The necessary and sufficient conditions on t and n that make Byzantine agree-
ment possible differ based on whether one considers oral messages or permits the
use of digital signatures. With oral messages, the integrity of a statement made by
one process and forwarded by a Byzantine process cannot be guaranteed, in the
sense that the recipient process cannot determine whether the forwarding process
has altered the statement. Digital signatures, on the other hand, provide data au-
thentication based on a cryptographic public-key/private-key pair for each process.

Digital Signatures. A digital signature scheme provides two operations, signi and
verifyi. Every invocation of signi(v) specifies the index i of a process, takes a bit
string v ∈ {0, 1}∗ as input, and returns a signature σ ∈ {0, 1}∗with the response. Only
pi may invoke signi. The operation verifyi takes a bit string σ that should be verified

72 Chapter 3 Byzantine Faults

and a bit string v as parameters. It returns a Boolean value with the response.
Implementations of these methods satisfy that verifyi(σ , v) returns true for any
i ∈ {1, . . . , n} and v ∈ {0, 1}∗ if and only if pi has executed signi(v) and obtained
σ before; otherwise, verifyi(σ , v) returns false. Every process may invoke verify.
Therefore, it is not possible for any Byzantine process to cook up a statement and
a valid signature on it from a correct process.

Impossibility Results. The most fundamental impossibility result concerning
Byzantine agreement states that Byzantine broadcast with oral messages (in the
synchronous model) requires n > 3t . In other words, no protocol exists for n≤ 3t .
To see why, consider the Byzantine broadcast problem for the special case n= 3
and t = 1 as follows [Lamport et al. 1982].

The commander C should send either attack or retreat to the two lieutenants,
L1 and L2. The argument introduces two scenarios that are indistinguishable from
each other by one of the correct participants (L1) because it receives exactly the
same information. In the first scenario, the sender C is correct and inputs attack.
ThenL1 receives attack directly fromC butL2 is Byzantine and changes all protocol
messages to L1 as if C had input retreat. By the validity property, L1 must output
attack. However, in a second scenario, C is Byzantine and acts toward L1 as if its
input were attack and toward L2 as if its input were retreat. Since L2 is correct,
it behaves toward L1 as if C had input retreat. The correct L1 observes the same
information as in the first scenario and decides attack. A dual argument for the
second scenario then implies also that L2 decides retreat, since C acts toward L2

with input retreat. Then the two correct lieutenants output different values, which
violates the agreement condition and shows that no such protocol exists.

The result can be extended to arbitraryn≤ 3t by considering groups of processes
[Lamport et al. 1982]. Many subsequent results have used this proof method to es-
tablish impossibilities and lower bounds on the resilience of distributed protocols
for other tasks and under different assumptions.

Intuitively, process L1 cannot obtain the correct output in the example because
there are only two other processes that interact with L1, each one suggesting a
different binary value. With one more process, L1 could decide for the value that it
learns from a majority and break the tie. The underlying problem is the same as in
an error-correcting code for tolerating garbled symbols, specifically, in a repetition
code that requires two correctly transmitted symbols for each corrupted symbol.
The relation between agreement problems and error-correcting codes was explored
in depth later, for example, by Friedman et al. [2007].

3.2 Byzantine Agreement 73

Table 3.1 Bounds on the resilience of (synchronous, deterministic) Byzantine agreement
problems

Problem Signed Messages Oral Messages

Interactive consistency n > 2t n > 3t

Byzantine broadcast (Byzantine generals) n > t n > 3t

Byzantine agreement n > 2t n > 3t

The lower bound of n > 3t extends in a straightforward way to the problems of
interactive consistency and Byzantine agreement. Note that the argument exploits
the mutability of oral messages. In fact, if digital signatures are available, then
the Byzantine broadcast problem can be implemented for any n > t . Protocols for
interactive consistency and for Byzantine agreement with signatures require n > 2t ,
however.

The difference arises, intuitively, because there is much less ambiguity about
the output value in a Byzantine broadcast if signatures are available than about
the decision in an agreement problem. Since the sender ps may digitally sign
its input, every process can recognize this value as correct from the signature. A
typical protocol would spread around the signed input until every correct process
is guaranteed to have it [Lamport et al. 1982, Sec. 4]. This mechanism also prevents
disagreement among the receivers because if ps were to sign multiple inputs, then
the dissemination protocol ensures that every correct process would get all of them.
The processes would then decide that the sender was faulty and output a default
value.

In Byzantine broadcast without signatures, on the other hand, and in the other
two variants (interactive consistency and Byzantine agreement), no such knowledge
from a single sender exists. In these forms of the problem, every process has an
input value or is free to echo what it heard directly from ps in Byzantine broadcast.
Hence digital signatures cannot “isolate” the correct output value in a Byzantine
broadcast, and the protocols must resort to decisions among a correct majority.

Table 3.1 summarizes these bounds on the resilience of Byzantine agreement
variants, with digitally signed messages and oral messages (and deterministic pro-
tocols in the synchronous model).

Protocols. The most intuitive protocol for one of the Byzantine agreement prob-
lems in the two classic papers solves Byzantine broadcast. It uses digital signatures,
takes t + 1 rounds, and incurs exponential communication cost in n.

74 Chapter 3 Byzantine Faults

Algorithm 3.1 Byzantine broadcast using digital signatures for pi

1 V ←∅
2 on input v do � Sender (commander) ps only
3 σs← signs(value‖v)
4 send round-0 message [v , 0; ps; σs] to p1, . . . , pn
5 end on
6 for k← 1, . . . , t + 1 do
7 on receiving a round-(k − 1)messageM from pj do
8 [v , m; ps , pi1, . . . , pim; σs , σi1, . . . , σim]←M

9 if m= k − 1∧ im = j ∧ validate(M) ∧ v �∈ V then
10 V ← V ∪ {v} � Collect all values in V
11 σi← signi(M)
12 M ′ ← [v , m+ 1; ps , pi1, . . . , pim , pi; σs , σi1, . . . , σim , σi]
13 send round-k messageM ′ to p� ∈ {p1, . . . , pn} \ {pi , pi1, . . . , pim}
14 end if
15 end on
16 end for
17 if V = {w} then
18 output w
19 else � |V |> 1
20 output ⊥
21 end if

Recall that in a Byzantine broadcast (or the Byzantine generals problem), a
designated senderps (the commander) conveys an order to the other processes (the
lieutenants). Any t of the n processes may be Byzantine. The protocol introduced
in the paper proceeds in t + 1 synchronized rounds. Basically, the sender signs
the value it wants to broadcast and sends it to all processes. Whenever a process
receives a properly signed message, it remembers the value and signs the message
again. Then the process appends its own signature to the message and forwards
it to those processes that have not yet signed it. At the end, after t + 1 rounds,
a process examines its set of received values: if it contains exactly one entry, the
process outputs this value as its decision, otherwise, it chooses a default value.
The pseudocode is shown in Algorithm 3.1. As an optimization, in the last round
(k = t + 1) a process can skip lines 11–13.

The function validate(M) is defined on a messageM as follows:

3.2 Byzantine Agreement 75

function validate(M)
[v , m; ps , pi1, . . . , pim; σs , σi1, . . . , σim]←M

if m= 0 then
return verifys(σs , value‖v)

else
M ′ ← [v , m− 1; ps , pi1, . . . , pim−1

; σs , σi1, . . . , σim−1
])

return verifyim(σim ,M ′) ∧ validate(M ′)
end if

end function

To see why this algorithm is correct, let us first examine validity: If the sender ps
is correct and has input v, then no protocol message with a value different from
v will be accepted by validate. Since ps also sends v in its first protocol message
to all processes, it follows that V = {v} for each correct process when the pro-
tocol terminates. Hence every correct process outputs v. The agreement property
requires that no two correct processes output different values. Since the function
determining the output from variable V is deterministic, it is sufficient to show
that all correct processes have the same V after round t + 1. Suppose some cor-
rect pi adds vi to its V in some round. Then we must show that another correct
process pj also adds vi to its set V . There are two cases to consider: (1) If pi re-
ceives vi from p1 in round 1, then it sends a round-1 message containing vi to
pj and pj adds vi after receiving this. (2) If pi receives vi in round k ≥ 2, then
pi has received a round-(k − 1) message with k signatures. If pj is one of the
signers, then it already has added vi to its set V according to the protocol. Oth-
erwise, we consider again two cases: (2a) If k ≤ t , then pi forwards vi to pj in
its round-k message; pj receives this in round k + 1 and adds vi to its V . Else
(2b) we have k = t + 1 and among the t + 1 processes that issued the t + 1 sig-
natures in the round-t message received by pi, there must be at least one other
correct process. This process has also forwarded vi to pj in a valid message and
the set V at pj therefore contains vi. Hence the two processes output the same
value.

This protocol incurs exponentially large communication cost and time com-
plexity in n (for t =O(n)) because, in the worst case, each process pi may receive a
round-k message signed by a set of k + 1 processes for each one of the (k + 1)! pos-
sible paths across the process set that such a message from the sender may have
taken until it reached pi. In fact, all Byzantine agreement protocols in the early pa-
pers of Lamport, Shostak, and Pease [Pease et al. 1980, Lamport et al. 1982] used

76 Chapter 3 Byzantine Faults

this protocol structure, which has also been called exponential information gathering
[Lynch 1996].

In the model with oral messages, a variant of this protocol is described by
Lamport et al. [1982], also implementing Byzantine broadcast. Informally, the
modification introduces a step of choosing a value among multiple ones that a
process receives from others. This provides an example of how a majority decision
ensures safety in an agreement algorithm.

Soon after the pioneering papers appeared, Byzantine agreement protocols with
polynomial cost were developed for the models with signatures and without, first
by Dolev and Strong [1982, 1983]. The same authors also showed formally that t + 1
rounds are required for deterministic synchronous Byzantine agreement [Dolev
and Strong 1983].

Many more protocols for Byzantine agreement were developed later; their num-
ber is so large that one cannot even start with most important ones here. The
longest-lasting open problem posed directly by Lamport in the two early papers
was closed only about 15 years later, when Garay and Moses [1998] described the
first efficient (polynomial-time) protocol with oral messages that achieves optimal
resilience n > 3t and an optimal latency of t + 1 rounds.

The following section further examines distributed agreement protocols in
asynchronous and partially synchronous networks. These algorithms use slightly
different approaches. Protocols that completely disregard synchrony also introduce
randomization as a fundamental mechanism to relax the deterministic models dis-
cussed here.

3.3 Byzantine Clock Synchronization
In order to achieve the synchrony necessary to operate a distributed system, early
works by Lamport focused on the problem of synchronizing the clocks of a group
of processes. In a classic paper Lamport and Melliar-Smith [1985] formalized this
problem for the first time and initiated a long series of works that extended and
refined their ideas.

Their model assumes that each process has an associated clock; this clock
can be read by all processes in the system as in a shared-memory multiprocessor
computer. This assumption stands in contrast to models used later, where each
process has exclusive access to its own clock. However, this variation does not lead
to a fundamental change in the ideas used by the respective clock synchronization

3.4 Digital Signatures 77

protocols. Faulty clocks and processes may be Byzantine and subject to arbitrary
faults.

To formalize the problem, Lamport and Melliar-Smith assume that all clocks are
initially synchronized and that the clocks of correct processes run at approximately
the same rate, that is, their differences are bounded by some small value δ per
unit of real time. The second assumption they introduce concerns the message-
transmission times: the processes must know how fast they can convey information
to each other. In particular, a correct process can obtain the difference between its
own clock and that of another correct process within a time interval bounded by ε.

Synchronizing the clocks means (1) that the clock values at the correct processes
are approximately the same at each instant, and (2) that the clock at every correct
process differs at most by a bounded value from real time. In their pioneering paper,
Lamport and Melliar-Smith introduce two fundamental methods for addressing
clock synchronization.

The first algorithm is based on averaging the time values read from other pro-
cesses. Very informally speaking, this means that each process periodically reports
its clock reading to all others; each process then sets its own clock to the average
of the reported clock values. Unreasonably large differences between a reported
value and the clock of the receiver process are discarded. This can be done safely,
assuming that bounds are placed on the message transmission times and on the
difference between the clocks among the correct processes. The protocol itself uses
a simple structure with direct messages among the processes, only conveying clock
readings to each other.

The second algorithm introduces the idea of setting the clock of a process to the
median among reported values; this reduces the influence of outliers compared to
the average and ensures that, with n processes and at most t < n/3 faulty ones,
the derived clock value always lies between the real clock value of two correct pro-
cesses. Processes use in this solution a subprotocol for interactive consistency, as
in the earlier papers on agreement, in order to exchange clock values. The subpro-
tocol is extended by measures that take into account the time spent executing the
protocols.

3.4 Digital Signatures
Around the same time as he was working on distributed agreement and replica-
tion, Lamport developed an interest in the nascent field of public-key cryptogra-
phy. Modern cryptography was born in 1976 with the paper “New Directions in

78 Chapter 3 Byzantine Faults

Cryptography” by Diffie and Hellman [1976], which introduced the field of public-
key cryptography with the novel concepts of trapdoor one-way functions, public-key
cryptosystems, and digital signatures. Although the paper postulated that all these
primitives could be realized from computationally hard problems that arise in num-
ber theory and discrete mathematics, it did not provide concrete realizations except
for the interactive key-agreement protocol that now bears the name of the paper’s
authors.

Digital signatures were envisaged by Diffie and Hellman to have applications
to authenticating digital documents, securing messages sent over a network from
tampering, and protecting remote logins to multiuser computers. (All these pre-
dictions, and many more, have come true.) And while the key-agreement protocol
of Diffie and Hellman had been closely related to public-key cryptosystems, and
therefore a candidate implementation seemed feasible, there was no similar con-
struction for a digital signature anywhere on the horizon.

However, Lamport had developed such a primitive from more traditional cryp-
tographic building blocks soon after hearing about the invention of public-key
cryptography. The scheme is actually contained in the paper of Diffie and Hellman
and is attributed there to Lamport [Diffie and Hellman 1976, Sec. IV], but he actu-
ally never published it himself. Lamport devised a related signature scheme later
and described it in a technical report [Lamport 1979a].

Cryptographic Definition of Digital Signatures. Recall the notion of a digital signature
scheme from Section 3.2.2, with two operations, sign and verify. This is an idealized
formulation (in the sense of Dolev and Yao [1983]) made for studying protocols be-
cause it omits the key material, but not suitable for describing and analyzing actual
constructions. Here we redefine a signature scheme, as in modern cryptography,
to consist of a triple (keygen, sign, verify) of efficient algorithms. The key generation
algorithm keygen outputs a public-key/private-key pair (pk, sk). The signing algo-
rithm sign takes as input the private key and a messagem ∈ {0, 1}∗, and produces a
signature σ ∈ {0, 1}∗. The verification algorithm verify takes the public key, a mes-
sage m, and a putative signature σ , and outputs a Boolean value (true or false)
that indicates whether it accepts or rejects the signature. The signature is valid for
the message when verify accepts. All signatures produced by the signing algorithm
must be valid.

A digital signature scheme is secure against existential forgery if no efficient
adversary A can output any message together with a valid signature that was not
produced by the legitimate signer. More formally, A is given pk and is allowed to
request and obtain signatures on a sequence of messages of its choice, where any

3.4 Digital Signatures 79

message may depend on previously observed signatures. If A can output a valid
signature on a message whose signature it never obtained, then the adversary has
successfully forged a signature. A signature scheme is secure if any efficient A can
forge a signature only with negligible probability. (Formally, efficient means with
running time polynomial in a security parameter κ of the scheme, and negligible is
smaller than any polynomial fraction of κ .)

Lamport Signatures. Lamport’s signature scheme from 1976 is based on a generic
cryptographic one-way function. This is a function F : {0, 1}k→ {0, 1}k that is effi-
ciently computable but hard to invert on average. More precisely, this means for
x ∈R {0, 1}k, i.e., a random, uniformly chosen k-bit string, and y = F(x), and any
efficient adversary A that is given y, the probability that A(y) outputs x is negligi-
ble. In practice, a one-way function is often implemented by a collision-free hash
function, such as SHA-2 or SHA-3, or constructed from a block cipher like AES.

Key generation for a Lamport signature on �-bit messages first selects 2� random
bit strings of length k each, which together form the private key

sk = (x1[0], x1[1], . . . , x�[0], x�[1]).

Then the one-way function F is applied to each xj [b] to compute

yj [b]= F(xj [b]), for j = 1, . . . , � and b ∈ {0, 1}.
The public key is the list of 2� such bit strings of length k each,

pk = (y1[0], y1[1], . . . , y�[0], y�[1]).

To sign an �-bit message m= (m1, . . . , m�), algorithm sign(sk, m) returns

σ = (x1[m1], . . . , x�[m�]),

i.e., one preimage under F as prepared during key generation for each message
position, selected by the bit value in that position.

For validating a signature σ = (σ1, . . . , σ�) on m, algorithm verify(pk, m, σ) ap-
plies F itself to the bit strings in the signature and checks if all of them match pk,
as determined by the bits in the message, according to

yj [mj] ?= F(σj), for j = 1, . . . , �.

Discussion. The signature scheme exploits a simple but powerful idea, which is to
reveal secrets selectively determined by a protocol input. The fixed length is not
a drawback. In practice, messages of arbitrary length are first compressed with

80 Chapter 3 Byzantine Faults

a collision-free cryptographic hash function to the �-bit inputs of the signature
scheme.

Still, the public key and the secret key each have size 2�k, which is not practical.
Merkle [1980] reduced the public-key size to one k-bit string by constructing a tree,
with all 2� strings in the private key at the leaves. Each node in this tree, which now
bears Merkle’s name, is the output of a cryptographic hash function applied to its
children. During a sign operation, extra values in the tree are added and allow verify
to establish the same integrity properties as in Lamport’s scheme. In particular, for
authenticating a leaf node, Merkle’s scheme considers the path from a leaf node
to the root and adds the values of all sibling nodes along the path to the signature.

In contrast to the general notion of a public-key digital signature, however,
Lamport’s scheme can be used only once for a given key pair. Namely, if any index
j∗ ∈ {1, . . . , �}would be reused by different sign operations for messagesm′ andm′′

that differ in position j∗ and also elsewhere, then the adversary could exploit this
and forge a valid signature on a message m∗ that has never been signed. Such an
m∗ can be obtained, for instance, by flipping bit j∗ in m′.

For this reason, Lamport signatures are also called one-time signatures. Even
if a larger key is prepared to sign multiple messages, this will be exhausted in
linear time, proportional to the number of signing operations. If multiple uses are
foreseen, then the signing operation must keep state—a further drawback that is
problematic in practice compared to generic public-key signatures.

To see why the scheme satisfies the definition of a cryptographic signature
scheme, observe first that for every signature produced by sign, algorithm verify
returns true. For the unforgeability property, assume that no index in the key is
used twice. Toward a contradiction, suppose adversary A has produced a forgery
in terms of a message m∗ and a signature σ ∗ such that verify(pk, m∗, σ ∗)= true.
Since no index in σ ∗ has been used before, A has successfully inverted F on the bit
strings in pk. However, this is not possible if F is one-way.

The RSA cryptosystem [Rivest et al. 1978] provided the first practical realization
of digital signatures that fully matched the concept proposed by Diffie and Hell-
man. Many other constructions based on trapdoor one-way functions built from
number-theoretic primitives followed. Lamport’s one-time signatures, on the other
hand, were not developed much further due to their impracticality with large keys
and the state to be kept by the signer.

Revival. Around 1990, surprising results by Naor and Yung [1989] and Rompel
[1990] showed that, in principle, one-way functions were sufficient to build cryp-
tographically secure digital signatures (instead of trapdoor one-way functions as

3.4 Digital Signatures 81

postulated by Diffie and Hellman). These constructions rely at their core on Lam-
port’s one-time scheme, but they had no impact on the practice of cryptography.

Lamport’s and Merkle’s signature schemes were largely neglected until around
2005–2010 when the approach was rediscovered for practical use due to the threat
that quantum computers pose to number-theoretic cryptographic primitives. All
cryptographic digital signature schemes used in practice today (2019) rely on the
hardness of factoring, the RSA problem, or the difficulty of computing discrete
logarithms. However, a working quantum computer would make it possible to
break these assumptions, as has been known since the 1990s. For these reasons,
research on quantum-safe or post-quantum cryptosystems has grown tremendously
in the last 15 years and become an important and successful development in
cryptography.

As the security of ordinary cryptographic hash functions is not threatened, in
principle, by quantum computers, research into signature schemes based on hash
functions has resumed and led to many new schemes, such as XMSS [Buchmann
et al. 2011], which introduced forward security to hash-based signatures. The
SPHINCS scheme of Bernstein et al. [2015] was the first practical scheme of this
kind that removed the need for the signer to store state. It relies on algorithmic
advances, which can be seen to improve the efficiency of earlier theoretical con-
structions of suitable Merkle trees, and on a modern interpretation of what is
considered to be “practical.” Due to advances in computer hardware, the signature
size of SPHINCS, which amounts to some dozen kilobytes, is no longer prohibitive.

A multiyear standardization process for post-quantum cryptography has been
initiated by NIST, the US National Institute of Standards and Technology [NIST
2018]; it received more than 80 submissions in late 2017. The newly proposed
constructions rely on lattices, multivariate polynomials, error-correcting codes,
and other primitives. Two stateless hash-based signature constructions have also
been submitted, both of which extend SPHINCS. The agreement and process driven
by NIST will proceed in multiple rounds and is expected to conclude with draft
standards around 2022–2024.

Through these surprising developments, Lamport’s work on digital signatures
may also gain a lasting impact on the cryptography that secures communications
over the Internet.

4State Machine Replication
with Benign Failures
Robbert van Renesse

Lamport’s interest in replication emerged in an era when it was conjectured that
no solution can keep the copies of a database synchronized, but nothing had been
proved or disproved.

The earliest known examples of replication are for databases in the early 1970s
(for example, Mullery [1971]). RFC 677 by Johnson and Thomas [1975] listed in-
creasing reliability and ensuring efficiency of data access as primary motivations
for replication. The RFC presented a replication technique using local timestamps,
ties broken by replica identifiers, where “the latest update wins.” It may be the first
example of an “eventually consistent” database, which as a concept became very
popular at the beginning of the cloud computing era [Vogels 2009]. Interestingly,
RFC 677 concluded that “the probability of seemingly strange behavior can be made
very small. However, the distributed nature of the system dictates that this proba-
bility can never be zero.”

In 1976, Alsberg and Day [1976] presented a technique that goes a long way
toward proving this assertion wrong, but not quite. Often claimed to be the first
description of a primary-backup protocol, the basic technique involves a primary
server and a backup server. Clients send update requests to the primary server,
which orders and applies all incoming updates and forwards them to the backup
server. The backup server also applies the updates, in the order set by the primary
server, and sends acknowledgments back to the client. The paper gives no infor-
mation on how to perform read commands and has only vague descriptions of how
to deal with network partitions or how to generalize to multiple backups. But for
the two-server case the protocol can perhaps be claimed as the first instantiation of
a replication protocol that provides sequential consistency. The protocol does not

84 Chapter 4 State Machine Replication with Benign Failures

deal with mistaken failure suspicions due to, say, network partitions. Moreover,
reading from the primary can lead to incorrect results. An inefficient workaround
is to treat read commands the same as updates. A better solution, suggested by
van Renesse and Schneider [2004] in a variant called chain replication, is to have
only the backup server respond to read commands.

In 1977, Clarence Ellis of Xerox PARC developed techniques for maintaining
multiple copies of a database complete with a formal specification and verifica-
tion based on Petri nets [Ellis 1977]. The techniques provide eventual consistency
similar to RFC 677. Again, the techniques do not address query commands, and
although fault tolerance is claimed as a useful property, the solutions presented do
not appear to offer it by today’s understanding of fault tolerance. Specifically, for
liveness the techniques require that each crashed replica is eventually restarted,
and from the state at which it crashed.

Lamport’s seminal 1978 “Time, Clocks, and the Ordering of Events” paper is
the first to present state machine replication (SMR), although not by that name, as a
general principle for keeping copies of a deterministic state machine synchronized,
although only focusing on the failure-free case. Lamport later writes that RFC 677
inspired this paper. Indeed, Lamport proves the assertion in the conclusion of RFC
677 wrong. (As pointed out in Chapter 2, the problem with RFC 677 timestamps
is that they do not capture causality.) The SMR technique is presented almost as a
side note, noting its generality but developing it for the specific case of distributed
mutual exclusion. However, it should be recognized as a groundbreaking result,
demonstrating that, at least in the absence of failures, strong consistency (single-
copy semantics) and replication can coexist.

In the same year, Lamport published “The Implementation of Reliable Dis-
tributed Multiprocess Systems” in Computer Networks [Lamport 1978] (first pub-
lished as a Massachusetts Computer Associates Technical Report in 1977), which
demonstrates protocols for SMR for synchronous networks: one for fail-stop fail-
ures and one for Byzantine failures. This may be the first paper that describes a
fault-tolerant SMR protocol providing strong consistency and the first paper that
describes Byzantine failures (although again not by that name).

These two Lamport papers started a cottage industry of SMR papers that contin-
ues to this day, over 40 years later. This chapter focuses on the SMR model in the
face of so-called benign process failures. “Benign” is a misnomer, but it indicates
that a process follows its specification until it stops altogether. In particular, a pro-
cess will not execute steps that are not according to its specification, but a faulty
process may stop performing steps that are in its specification.

4.2 A Brief Review of State Machine Replication 85

4.1 Active versus Passive Replication
In the literature, we find a distinction between active and passive replication proto-
cols. Informally, in active replication protocols each replica is a copy of the original
state machine, starting in the same state, and each (surviving) replica is presented
with the same commands in the same order. In passive replication, at any time
there is only a single copy of the state machine, the primary, while the remaining
replicas, the backups, only maintain state. Clients send commands to the primary.
Commands that cause a state change result in the primary broadcasting “state
update commands” to the backups. Such state update commands simply request
overwriting part of the state kept on the backups with a specific new value. Should
the primary fail, one of the backups is promoted to be primary. Note that, under this
definition, the Alsberg and Day [1976] protocol, while often claimed to be the first
passive replication protocol, is actually an active replication protocol, as all replicas
are “active,” maintaining the full state machine and applying client commands in
the same order.

Both active and passive replication are generic approaches to making a state
machine fault tolerant. Passive replication appears more efficient as on average the
replicas do less work, but failure recovery takes time; in contrast, active replication
masks failures. However, a slight refactoring of function reveals that they are both
instantiations of the SMR approach. In passive replication, client update requests
are preprocessed and turned into state update commands. After that, all state
update commands are applied to all replicas in the same order. Note that because
state update commands may write overlapping parts of the state, the order is
important. So for the purposes of this chapter, we do not equate active replication
and SMR, but consider both active and passive replication instantiations of the
SMR approach.

4.2 A Brief Review of State Machine Replication
The objective of SMR is to provide the illusion of a single “state machine,” how-
ever one that is particularly reliable and responsive in the face of various types of
failures. Consider a state machine (SM) to be a process that receives a sequence
of commands and produces a sequence of output values. Most importantly, the
entire sequence of output values generated by an SM is completely determined
by the sequence of commands the SM has processed. This appears to require
that an SM is purely sequential and deterministic. Fortunately, there exist deter-
ministic parallelism techniques that still allow an SM to leverage concurrency

86 Chapter 4 State Machine Replication with Benign Failures

[Bocchino et al. 2009]. In addition, nondeterministic choices such as reading a
clock or generating a random number can be modeled as inputs to a determinis-
tic SM.

The output values of the SM are tagged with their intended destination, often
clients who send request commands to the SM. We do not, however, require that
clients and SMs follow a client-server or RPC-style communication pattern. For
example, one client can send a command to the SM, and the SM in response can
produce multiple different output values intended for multiple other destination
processes.

Both SMs and clients are instances of processes. Consistent with the end-to-end
model of communication [Saltzer et al. 1984], we assume that the network that
connects these processes can lose, reorder, and duplicate messages. We assume
that messages have checksums so that garbled messages can be equated with lost
messages. Finally, we assume that the network is fair, meaning that if a message is
continuously retransmitted from a correct sending process to a correct destination
process, then eventually the destination process will receive and process at least
one copy of the message. (A correct process is a process that never crashes.) Using
sequence numbers and retransmission, it is then possible to implement reliable
transmission between correct processes while filtering out duplicates. We therefore
assume that communication between correct processes is reliable and ordered,
although it will not always be necessary to make it so. We also assume that if a
process p receives a message, then some process sent that message to p.

Processes can crash, and in particular a single SM fails if the process that runs
the SM crashes. To improve fault tolerance of an SM, a replicated state machine
consists of a set of copies of an SM, aka replicas, with the following properties:

Same Initial State. The replicas start in the same state.

Agreement. If replica R1 has processed a sequence of commands S1, and
replica R2 has processed a sequence of commands S2, then S1 is a prefix
of S2 or vice versa.

Completion. At least one replica is correct and eventually processes all com-
mands sent to the SM by correct clients.

For more details, we refer to Schneider’s “Implementing Fault-Tolerant Services
Using the State-Machine Approach” [Schneider 1990]. It is up to a specific SMR
protocol to ensure that these properties hold. Given that they do, it is easy to see
that the SMR produces the same output values that an unreplicated SM would have.
Moreover, the duplication of output messages produced due to having multiple

4.3 Benign System Models 87

replicas is filtered out by the destination processes by the very same sequence
numbers used to ensure reliable end-to-end communication channels.

4.3 Benign System Models
Before we delve into SMR protocols, it is useful to look more carefully at timing
properties and process failure properties. These are assumptions that one makes
about the system, and it should be carefully considered that every assumption
made is a potential weakness. The two extreme timing models are synchrony and
asynchrony:

Synchrony. There is a known upper bound on message latencies, the time for
a process to handle a command and produce zero or more output values,
the drift of the clock of a process (the rate at which the clock of a process
differs from real time), as well as the maximum skew (difference) between
clock values of different processes at the same time.

Asynchrony. There are no assumptions on timing whatsoever.

In between, there are useful so-called semi-synchronous models. We use the
following semi-synchronous model below:

Almost-Asynchrony. (aka partial synchrony) There is an unknown upper bound
on message latencies, message handling (processing step) latencies, and
clock drift.

We note that this almost-asynchronous assumption makes very weak timing
assumptions. For example, it includes systems where a message between correct
processes is delivered within a million years, and clocks drift by a factor of 1000
(1000 times slower or faster than real time), although processes do not actually
know what these bounds are. But, from a theoretical point of view, the distinction
from asynchrony is significant, as we shall soon see.

In addition, we will be more precise about various classes of benign process
failures. We distinguish the following two types of assumptions about process
failures:

Crash Failures. Processes follow their specification in that they do not take any
steps that deviate from the specification. However, if a process crashes, then
the process stops making steps indefinitely. Note that crash failures are a
stronger assumption than Byzantine failures. Also note that in a synchro-
nous environment crash failures can be detected accurately with a pinging

88 Chapter 4 State Machine Replication with Benign Failures

protocol, while no such protocol is possible in an asynchronous environ-
ment. Even the almost-asynchronous environment does not support accu-
rate failure detection because processes do not know the timing bounds in
the system.

Fail-Stop Failures. These are like crash failures, except that we assume that fail-
ures can be detected accurately by a failure detection oracle or simply failure
detector. In particular, we assume that the crash of a process is eventually de-
tected by all correct processes, while no correct process is ever suspected of
having crashed. Note that fail-stop failures are essentially a synchrony as-
sumption in disguise—in a synchronous environment we do not need to
make a distinction between crash failures and fail-stop failures. But in an
almost-asynchronous or asynchronous environment, fail-stop failures are a
stronger assumption than crash failures.

A process that keeps its state on disk can survive power failures, but not disk
failures. In fact, in an asynchronous or almost-asynchronous environment, a power
failure is not a failure at all unless it persists. Thus while in practice keeping state on
disk can be helpful, from a theoretical perspective it does not have much influence
on the design of the protocol.

4.4 SMR Protocol Basics
An SMR protocol implements the SMR properties above given a certain set of sys-
tem assumptions. There are two general—and essentially equivalent—approaches,
both involving a group of participants:

Total Ordering Protocols. A total ordering protocol is a protocol in which pro-
cesses broadcast messages to one another, satisfying the following prop-
erties:

T-Completion. A message sent or delivered by a correct process is even-
tually delivered to all correct processes.

T-Validity. If a process delivers a message, it was sent by some process.

T-Agreement. If two processes deliver the same two messages, they
deliver them in the same order.

Consensus Protocols. A consensus protocol is a protocol in which processes
in the group can each propose a value. The properties are then as follows:

C-Completion. If a correct process proposes or decides a value, all
correct processes eventually decide a value.

4.4 SMR Protocol Basics 89

C-Validity. If a process decides a value, then that value was proposed by
some process.

C-Agreement. If two processes decide a value, they decide the same
value.

A total ordering protocol only needs to be instantiated once per SMR. Instead,
a consensus protocol is instantiated for each “slot” in the sequence of commands
to an SMR. The processes can be the same set of processes that run the replicas
of the SMR or a separate set of processes that relate their decisions to the replicas.
It is straightforward to see that one can build a total ordering protocol out of a
consensus protocol and vice versa.

The aforementioned paper “The Implementation of Reliable Distributed Multi-
process Systems” by Lamport demonstrates what is possibly the first total ordering
protocol for a synchronous environment with process failures. The conceptual idea
is to assign a unique timestamp (ties broken by source identifier) to each message
sent, and then flood the message to all other processes so all messages are delivered
within a maximum amount of time that can be computed from the network topol-
ogy. After this time, a message can be delivered in order of its timestamp, knowing
that all prior messages must have been received as well.

The synchronous model, while simplifying the SMR problem significantly, is un-
fortunately rarely realistic in today’s computing environments. On the other hand,
Fischer et al. [1985] show that in an asynchronous environment it is impossible to
solve consensus in the presence of crash failures. Most protocols therefore provide
only Agreement in purely asynchronous settings, and make one of the following
trade-offs for Completion:

. Completion guaranteed only if the environment is almost-asynchronous.

. Completion guaranteed with probability 1 (aka Almost Surely). That is, Com-
pletion is ensured with the same probability as the probability of heads com-
ing up when a coin is flipped indefinitely.

Both of these are eminently practical trade-offs, and thus for the remainder of
this chapter we will ignore synchronous SMR protocols as well as protocols that
assume fail-stop failures. Also, we will mostly cover consensus protocols rather than
totally ordered broadcast protocols, because most of both the early and more recent
work on SMRs has focused on the problem of consensus.

Asynchronous consensus protocols with crash failures require at least 2f + 1
participants. To see why this is so, consider a fictitious protocol that survives f
crash failures but requires only 2f processes. Split the processes into two groups

90 Chapter 4 State Machine Replication with Benign Failures

of f processes, one in which all processes propose some proposal Red and another
in which all processes propose some proposal Blue. Consider the following three
scenarios:

1. All the processes that proposed Red crash before sending any messages.
The processes that proposed Blue cannot discover if the other processes
proposed Red or Blue. Thus they have no choice but to decide eventually
(C-Completion), and they must decide Blue (C-Validity). Assume that they
do so by some time Tb.

2. Same but vice versa: The Red processes decide Red by some time Tr .

3. All processes are correct. LetT be the maximum ofTb andTr , and assume that
until time T there exists a network partition in which processes in different
groups cannot exchange messages. Because the network is fair, the network
partition cannot persist indefinitely. Unfortunately, to the Red and Blue

processes this situation is indistinguishable from the first two scenarios, and
thus they decide before T inconsistently, violating C-Agreement.

4.5 Early Asynchronous Consensus Protocols
Working up to Lamport’s seminal Paxos protocol, we now review two works that
precede Paxos but that illustrate various important concepts in asynchronous con-
sensus protocols, including rounds, phases, majority voting, and leaders.

4.5.1 Ben-Or
In 1983, Michael Ben-Or published an extended abstract in the Proceedings of the
ACM Symposium on Principles of Distributed Computing (PODC) called “Another
Advantage of Free Choice: Completely Asynchronous Agreement Protocols” [Ben-
Or 1983]. The consensus protocol (which we will name after Ben-Or) is intended for
an asynchronous environment with crash failures and guarantees both C-Validity
and C-Agreement, and C-Completion with probability 1.

The protocol is binary in that there are only two possible proposals, which we
call Red and Blue. Nonetheless, the protocol illustrates important concepts that
most asynchronous and almost-asynchronous consensus protocols share. Assume
there areN processes total,N > 2f . Figure 4.1 shows the protocol that each process
p runs (slightly modified from its original to be more consistent with the protocols
that follow in this chapter).

The protocol is an excellent illustration of Lamport’s lessons on “Time, Clocks,
and the Ordering of Events” in practice. In the asynchronous model, there is no

4.5 Early Asynchronous Consensus Protocols 91

0. Initially, set estimate ep to p’s proposal and round number rp = 1.

1. Phase P1:

(a) Broadcast message 〈phase= P1, round = rp , estimate= ep〉.
(b) Wait for messages of the form 〈phase= P1, round = rp , estimate= ∗〉 from>N/2

different processes.

(c) If all contain the same estimate e, then set vp = e. Otherwise set vp =⊥.

2. Phase P2:

(a) Broadcast message 〈phase= P2, round = rp , estimate= vp〉.
(b) Wait for messages of the form 〈phase= P2, round = rp , estimate= ∗〉 from>N/2

different processes.

(c) (i) If all messages contain the same non-⊥ estimate e, then decide e.

(ii) If one of the messages contains a non-⊥ estimate e, then accept e by setting

ep = e. Otherwise accept a random estimate by setting ep to Red or Blue

uniformly at random.

3. Increment rp and go to Step 1.

Figure 4.1 A variant of the Ben-Or consensus protocol.

concept of time or clocks. The round number rp simulates a local clock for p.
However, note that there is no bound on the difference between the round numbers
of two different processes, nor on the rate at which the round number of a process
increases. Processp only considers messages for the round rp that it is in; it ignores
messages for prior rounds and buffers messages for future rounds. Doing so, the
processes can pretend that together they run one round at a time, but in reality their
execution may be arbitrarily skewed and different rounds will typically overlap in
real time.

Each process p maintains an estimate ep. A process can accept as well as
decide an estimate in the second phase of a round. Accepting an estimate simply
means that a process updates its own estimate. (Accepting is also referred to as
voting, but we use Lamport’s terminology here.) It is guaranteed that if a process
decides estimate e, it also accepts e.

Define an estimate e to be safe in round r if the following two properties hold:

1. Some process proposed e as its initial estimate in step 0; and

2. No process decides or has decided a different estimate in round r ′ where
r ′ ≤ r .

92 Chapter 4 State Machine Replication with Benign Failures

An important invariant to keep in mind in this consensus protocol is that at any
time and for any processp, any estimate thatp accepts is safe in round rp. A similar
invariant usually holds in other asynchronous consensus protocols. Because a
process never decides an estimate that it does not accept in the same round, C-
Validity and C-Agreement follow trivially from this invariant.

The protocol subdivides a round into two subrounds or phases, P1 and P2. Each
phase consists of each correct process p performing three actions:

(a) p broadcasts a message (sent to all processes including self);

(b) p waits for more than N/2 messages (but no more than N − f) from peers
(including self);

(c) p updates its local state based on its current state and the messages that p
has received.

Inductively, it is easy to show that each phase, and therefore each round, even-
tually terminates. After all, given that no more than f processes crash andN > 2f ,
each process is guaranteed to receiveN − f (N − f >N/2) messages in each phase.

An invariant of the Ben-Or protocol is that the estimates of all processes going
into phase P1 (either from step 0 or from step 3) of round r are safe in round r − 1.
It is clear that this is true for the initial estimates (all estimates are safe in round 0
as no proposal has been decided yet), and we will informally argue that it also holds
for later rounds while explaining the protocol.

The purpose of phase P1 in the Ben-Or protocol is to reduce the number of
estimates that are eligible for decision in phase P2 to at most a single one. To win,
each process p computes a value vp that is either a proposal (Red or Blue) or ⊥ in
step 1c after having received a majority of estimates. Because it is not possible that
there exist two different majorities, one in which all processes have sent estimate
Red and another in which all processes have sent estimate Blue, it must be the case
that if two processes p and q compute non-⊥ values vp and vq, then vp = vq. It is
also important to note that, if all processes that broadcast an estimate in step 1a
broadcast the same estimate e, then all processes p that set vp in step 1c set vp = e.

The purpose of phase P2 is for each process p to possibly decide an estimate
and in any case accept an estimate that is safe in round rp. A process p decides
an estimate e in round rp if it receives that estimate from more than a majority of
processes in phase P2 of round rp.

First assume this is the case. Because all other processes wait for P2 messages
from a majority of processes, it follows that all other processes that reach step 2c
in the same round must receive at least one P2 message with the same estimate

4.5 Early Asynchronous Consensus Protocols 93

e. Moreover, as we saw above, it is not possible that processes receive a non-⊥
estimate other than e. Thus all processes that reach step 2c of round r will accept
(and possibly decide) e in round r . Moreover, as e was safe in round r − 1 and no
estimate other than e could have been decided before round r , e must still be safe.
In this case, all processes that enter the next round r + 1 enter with their estimate
set to e, satisfying the invariant.

Perhaps the more interesting case is what happens when no process decides in
some round r because no process received a non-⊥ estimate from a majority. Note
that if some estimate e had been decided before round r , then only that estimate
would have been safe in round r − 1 and all processes would have received e in step
1c. Since this is not the case, we may conclude that no estimate was decided before
round r . Because no process decides in round r either, both Red and Blue are safe
estimates in round r .

In this case, some processes may still receive a non-⊥ estimate in step 2b.
Recall that all such processes are guaranteed to receive the same estimate e and
thus will set their estimate to e in step 2c.ii. The remaining processes accept a
random estimate in step 2c.ii. By accepting a random estimate if only ⊥messages
are received in phase P2, there is a chance, even if small, that all processes doing so
happen to accept the same estimate e in step 2c.ii. And this in turn would cause all
correct processes to decide e in the next round. Thus each round (except possibly
the first) has a nonzero chance of deciding. Given that the number of rounds is
unbounded, the Ben-Or protocol satisfies C-Completion with probability 1, just like
the probability of heads coming up is 1 if a coin is flipped an unbounded number
of times. This convergence can be sped up dramatically if the processes use a so-
called shared coin, that is, a pseudorandom coin that comes up the same at all
processes in the same round.

Note that although the protocol as described continues to run even after all
correct processes have decided, it is easy to see that a process that decides can stop
running the protocol after finishing just one more round, as all correct processes
are guaranteed to have decided by then.

The reader may wonder why it is necessary to have two phases, rather than just
one. In fact, it is easy to design a consensus protocol that has only one phase.
However, the minimal number of participants for such a protocol has to be 3f + 1
in order to tolerate f failures [Brasileiro et al. 2001]. By reducing the number of
eligible proposals to at most one in phase P1 of the Ben-Or protocol, a simple
majority vote in phase P2 is sufficient to decide. Replicas are expensive, and two
phases allow asynchronous consensus protocols to meet the 2f + 1 lower bound
on the number of replicas.

94 Chapter 4 State Machine Replication with Benign Failures

4.5.2 Dwork, Lynch, and Stockmeyer
In 1984, one year after the publication of the Ben-Or consensus protocol, Cynthia
Dwork, Nancy Lynch, and Larry Stockmeyer published a preliminary version of their
“Consensus in the Presence of Partial Synchrony” paper [Dwork et al. 1988] about
a consensus protocol (referred to here as the DLS protocol after its authors) for the
almost-synchronous model that illustrates two other important concepts. The first
is the concept of using a leader, and the second is demonstrating that consensus
can satisfy C-Completion in the almost-asynchronous model.

As pointed out above, asynchronous consensus protocols that meet the lower
bound on the number of replicas need two phases, the first of which reduces the
number of proposals eligible for decision and acceptance to at most one. For the
Ben-Or protocol, this was accomplished by a majority vote in the first phase. A
simpler approach is to assign to each round a leader and have that leader select
a safe estimate for that round. Should the leader crash, then the next round, with
another leader, can still make progress.

We will not reproduce the entire DLS protocol here. Instead, we modify the Ben-
Or protocol to use a leader in phase P1. We call the resulting protocol Franken
consensus. Let the leader of a round r be the participating process r mod N . Fig-
ure 4.2 shows the steps that each process p executes.

There are three important differences from the Ben-Or protocol:

1. The Franken protocol uses a timeout parameter Tp, which is initialized to
a nonzero value and increased for each round (doubling is not essential, as
long as Tp increases by a nontrivial amount on each round).

2. Phase P1 of the protocol has a leader proposing a particular estimate instead
of the processes determining one by majority vote. Note that the number of
messages that cross the network in phase P1 is reduced from N(N − 1) to
N − 1. If a process times out waiting for the estimate from the leader of the
current round, it continues with the ⊥ value.

3. In step 2c.ii, if a process receives only messages containing⊥ estimates, then
it accepts its current estimate, rather than accepting a random estimate.

Phase P1 of Ben-Or consensus and Franken consensus are different implemen-
tations but serve exactly the same purpose: to select at most one of the estimates
that are safe in round r − 1 for acceptance by the processes in round r . Initially, all
processes may time out, but eventually parameter Tp will grow sufficiently large so
that other processes will not time out waiting for messages from a correct leader,
guaranteeing C-Completion. However, until then it is possible that all processes do

4.5 Early Asynchronous Consensus Protocols 95

0. Initially, set estimate ep to p’s proposal, round number rp to 1, and Tp to some initial

value > 0.

1. Phase P1:

(a) If p is leader of rp, broadcast 〈phase= P1, round = rp , estimate= ep〉.
(b) Leader or not:

(i) Wait for a message of the form 〈phase= P1, round = rp , estimate= e〉 from

the leader of rp, up to Tp ticks measured on p’s clock.

(ii) Upon receipt set vp = e. On timeout, set vp =⊥.

2. Phase P2:

(a) Broadcast 〈phase= P2, round = rp , estimate= vp〉.
(b) Wait for messages of the form 〈phase= P2, round = rp , estimate= ∗〉 from>N/2

different processes.

(c) (i) If all messages contain the same non-⊥ estimate e, then decide e.

(ii) If one of the messages contains a non-⊥ estimate e, then accept e by setting

ep = e. Otherwise accept ep (i.e., leave ep unchanged).

3. Increment rp, double Tp, and go to step 1.

Figure 4.2 The Franken consensus protocol.

timeout waiting for a correct leader even if all estimates started out the same. Thus,
unlike in the Ben-Or protocol, a process may not decide in phase P2 if all estimates
going into phase P1 are the same, and in particular, a process may not decide in
round r if some estimate was decided in a round prior to r .

In step 2c, it would not be safe for a process to accept a random estimate if it
received only ⊥ estimates. Instead, a process accepts its current estimate. To see
why this estimate is safe, consider the following. As in the Ben-Or protocol, if a
process decides an estimate e in a round r , all correct processes are guaranteed to
accept (and possibly decide) e in round r . Moreover, going into round r + 1 the only
estimate left in play is estimate e because processes running the Franken protocol
accept no random values.

If the initial timeout parameter of each process is chosen reasonably well and
crash failures are rare, Franken consensus is a significant improvement in practice
over Ben-Or consensus. In this sometimes called “normal case,” all correct par-
ticipants in the Franken consensus protocol will decide the leader’s estimate in
a single round, even if all processes start with different proposals. Also note that,
unlike the Ben-Or protocol, Franken consensus supports more than two different
proposals.

96 Chapter 4 State Machine Replication with Benign Failures

The published DLS protocol, while different, shares all these advantages with
the Franken protocol. Unfortunately, the DLS protocol remained a theoretical cu-
riosity, and SMR protocols at the time only existed in the form of primary-backup
protocols. Such protocols assume fail-stop failures and can violate Agreement when
there are latency anomalies either in the network or in a process itself violating the
fail-stop assumption.

4.6 Paxos
Lamport discovered the Paxos protocol in the late 1980s while investigating the fault
tolerance of the Echo file system being developed at Digital’s Systems Research Cen-
ter [Hisgen et al. 1989]. Paxos made SMR for almost-asynchronous environments
significantly more practical. Described in his seminal “The Part-Time Parliament”
paper [Lamport 1998a], its underlying consensus protocol (known as the Synod
protocol, but these days most use Paxos to refer to both the SMR protocol and the
underlying consensus algorithm) has two important improvements over prior pro-
tocols:

1. Like other protocols that meet the 2f + 1 lower bound, Paxos uses two phases
per round (called ballots in Paxos), but both phases P1 and P2 only use
O(N) messages instead of O(N2) messages. Hence a round only uses O(N)
messages.

2. In the “normal case” in which failures and failure suspicions are rare, the
leader of a round can make a series of decisions, requiring running only
phase P2 for each command executed by the SMR.

As in the original Paxos paper, we develop the protocol in two steps: first reduc-
ing the message complexity, and then eliminating the first phase except in case
a leader is suspected of having failed. For the first protocol, we reuse the struc-
ture of the Franken protocol, in the hope that the intuitions about consensus in
the almost-asynchronous model learned above help with understanding the Paxos
protocol. However, each phase consists of two subphases:

(a) The leader broadcasts a message to the processes, called acceptors in Paxos.
Upon receipt, an acceptor updates its state;

(b) Each acceptor that received a message responds to the leader. The leader
awaits responses from a majority of acceptors and updates its state.

Figure 4.3 shows the steps that each process p executes in a variant of Lamport’s
“single-decree Synod protocol.”

4.6 Paxos 97

0. Initially, set estimate ep =⊥, round number rp = 1, and Tp to some initial value > 0.

1. Phase P1:

(a) (i) If p is leader of rp, broadcast 〈phase= P1a , round = rp〉.
(ii) Leader or not:

– Wait for a message of the form 〈phase= P1a , round = r〉 such that r ≥ rp.

– Set rp = r .

(b) (i) Send 〈phase= P1b, round = r , estimate= ep〉 to the leader of r .

(ii) If p is leader of rp, then:

– Wait for messages of the form 〈phase = P1b, round = rp ,

estimate= ∗〉 from >N/2 different processes.

– If some estimates are non-⊥, set vp to the proposal in the highest

numbered estimate. If instead all estimates are ⊥, then set vp to the

initial proposal of p.

2. Phase P2:

(a) (i) If p is leader of rp, broadcast 〈phase= P2a , round = rp , estimate= 〈rp , vp〉〉.
(ii) Leader or not:

– Wait for a message of the form 〈phase = P2a , round = rp ,

estimate= e〉 from the leader of rp.

– Accept e by setting estimate ep = e.

(b) (i) Send 〈phase= P2b, round = rp〉 to the leader of rp.

(ii) If p is leader of rp, then:

– Wait for messages of the form 〈phase = P2b, round = rp〉 from > N/2

different processes.

– Decide the proposal in ep and broadcast decision to all replicas.

3. If p is not leader of round rp, then upon timeout waiting for a message from the leader

of round rp:

Increase rp to the next round for which p is leader.

Double Tp and go to step 1.

Figure 4.3 A variant of the single-decree Paxos protocol.

While the protocol resembles the Franken protocol, there are some important
differences to note:

. Estimate ep is no longer a proposal, but initially⊥ and later assigned to be a
〈round number , proposal〉 pair. There cannot be two different estimates with
the same round number (as the leader of a round only generates at most one).

98 Chapter 4 State Machine Replication with Benign Failures

Estimates are ordered by round number, with ⊥ representing the smallest
possible estimate.

. In the Franken protocol, all estimates going into phase 1 of round r are safe
in round r − 1. Not so in Paxos. In phase P1, the leader of round r does not
distribute its estimate, because it may not be safe. Instead, it announces
only its round number and collects the estimates of its peers, who promise
not to accept more estimates in rounds less than r . After hearing back from
a majority, the leader determines the highest estimate among them. If this
is⊥, the leader learns that no proposal was decided in rounds lower than r . In
this case, it will use as a safe estimate 〈r , leader ′s own proposal〉. Otherwise,
the highest estimate is safe in round r .

. In phase P2, instead of anN2 communication pattern, the leader broadcasts
its estimate. If still acceptable given the peer’s round number, the peer
accepts the estimate and responds to the leader. If the leader hears back
from a majority, it knows that any future leader that might take over will
learn about this estimate, and therefore it can decide the proposal in the
estimate.

. A process p no longer simply runs one round at a time. Instead, it can skip
to any future round when it receives a P1a message from the leader of such
a round. When doing this, its stored estimate in ep may no longer be safe in
the new round. This is why eligible estimates are determined at the end of
phase P1, rather than at the beginning.

. A leader may crash, and therefore each wait on a message from the leader
has a timeout of Tp time units. When timing out on a leader, a process tries
to become the leader itself by initiating a new round, as specified in step 3.

If all this sounds complicated, there is a reason for that: it is difficult for anyone
but a computer to understand an operational description of a protocol. The beauty
of the “Part-Time Parliament” paper is that it starts out with demonstrating what
principles a consensus protocol must satisfy in order for it to satisfy C-Validity and
C-Agreement. (The paper does not address C-Completion.) As a result, the paper
describes a family of consensus protocols that satisfy C-Validity and C-Agreement
by construction. We will not even attempt to duplicate the beautiful presentation
of the “Part-Time Parliament” paper here (or its “simpler cousin” [Lamport 2001]),
for the simple reason that there is no need to.

The “Part-Time Parliament” goes on to describe an important improvement by
allowing the same leader to decide a sequence of proposals rather than just a single

4.6 Paxos 99

one. This way, execution of phase P1 can be avoided unless the leader is suspected
of having crashed. This advance is made possible because a leader does not propose
a value until the end of phase P1. The leader can continue to extend the sequence of
decided proposals until (after a timeout causing the leader to be suspected of having
crashed) a majority of acceptors have moved on with a larger round number. The
resulting protocol is these days often called Multi-Paxos [Chandra et et al. 2007].

4.6.1 Read-Only Commands
In many workloads, read commands are much more frequent than update com-
mands, and thus their efficiency is important to the overall practicality of SMR. If
clients were to read from any replica, they may well read from a stale one, violat-
ing one-copy semantics. Performing read commands just like update commands
is inefficient, particularly if Paxos state is kept on disk. Reading from all replicas
and selecting the most recent one would not be fault tolerant and intolerably slow
even if all replicas were up. It is possible to read from a quorum of replicas, but
obtaining the state this way is tricky to get right and still inefficient compared to
reading off a single replica.

To solve the problem, the “Part-Time Parliament” paper proposes to appoint
primary replicas for specific intervals of real time. This is akin to leases [Gray and
Cheriton 1989]. Only one replica can have a lease at a time. Only a replica with
a valid lease can produce output messages, and only that replica can respond to
queries. The time intervals assigned to leases should be short so that, should the
lease holder crash, it will not be long before another replica can take over. This
elegant solution has approximately the same read efficiency as an unreplicated SM,
but note that it requires that processor clocks are tightly synchronized. While it is
possible to allow for a known bounded skew between clocks, or even just to rely
on a known bounded drift of clocks, these assumptions are still stronger than the
almost-asynchronous model. In practice, however, it is easy to have access today
to clocks with bounded skew and/or drift, while message latencies and processing
times are still hard to bound.

4.6.2 Discussion
While it is often claimed that viewstamped replication (VR) by Oki and Liskov
[1988] bears a resemblance to Multi-Paxos (and indeed, VR can be considered a
protocol in the Paxos family of consensus protocols), the VR protocol is a specific
implementation of a consensus protocol for passive replication. The VR protocol
is a significant advance, but the paper gives only an operational description of
the VR protocol and contains no clear expression of principles nor a proof of

100 Chapter 4 State Machine Replication with Benign Failures

the protocol’s correctness. The “Part-Time Parliament” paper thus represents an
important contribution to the science of fault-tolerant asynchronous distributed
systems even if an example of a protocol in the Paxos family had been demonstrated
previously.

Paxos was first deployed in the Petal distributed storage system [Lee and Thek-
kath 1996]. In time, Paxos has become probably the best-known replication pro-
tocol and variants of it have been widely deployed, including in systems such as
Google’s Chubby system [Burrows 2006] and Microsoft’s NoSQL Azure Cosmos
database, and in countless open source projects such as Yahoo!/Apache ZooKeeper
[Hunt et al. 2010], Facebook Cassandra [Lakshman and Malik 2009], Ceph [Weil
et al. 2006], and Raft [Ongaro and Ousterhout 2014].

Disk Paxos [Gafni and Lamport 2003] replaces acceptor processes with disks that
support only read block and write block operations and can therefore be considered
a “shared memory” version of Paxos. It was originally developed in 1998 for an
interesting scenario at Digital Equipment Corporation’s storage group, in which
there were only two processors. Two processors are generally not enough to tolerate
a crash failure in an asynchronous environment, but it turns out it can be done if
there are at least three independent disks that can be accessed by both processors.
In general, Disk Paxos requires m> f processors and n > 2f disks to tolerate f
processor and f disk failures.

The protocol still resembles the original Paxos. There arem leaders, one on each
processor. Each leader has a block on each disk that only that leader can write, but
all leaders can read all blocks. Thus there are a total of n×m blocks. To start a new
round, a leader remotely writes a P1a message to its block on at least a majority
of the disks, simulating a broadcast to the acceptors. The leader then tries to read
all m blocks from each of a majority of disks to see if some other leader initiated a
higher round. If not, the leader moves on to phase P2, which proceeds similarly.

4.7 Dynamic Reconfiguration
Being able to replace replicas is important for fault-tolerant services that must re-
main up 24/7 and cannot be taken down temporarily for maintenance operations,
such as replacing failed replicas or performing hardware upgrades. Lamport de-
scribed how to do this in synchronous environments in his 1984 paper “Using
Time Instead of Timeout for Fault-Tolerant Distributed Systems.” The basic idea
is to introduce a reconfiguration command that replaces the set of replicas. The
“Part-Time Parliament” paper adopts the same approach, but using slot numbers

4.7 Dynamic Reconfiguration 101

(indexes into the message input stream to the SMR) instead of time. So slot i could
contain a reconfiguration command that specifies what the configuration is start-
ing at slot i + α. While α could be as small as 1, this would require that one cannot
know the configuration for slot i + 1 until after a command is decided for slot i.
Hence no concurrency would be possible. For α > 1, the current configuration of
replicas can be deciding α commands (slots i through i + α − 1) in parallel, which
can improve throughput.

While perhaps sounding simple enough, dealing with reconfiguration has been
an Achilles’ heel for practical Paxos deployments. The dynamic reconfiguration
approach described above has complicated implementation corner cases. For ex-
ample, clients have to deal with the fact that multiple configurations may be simul-
taneously active, while replicas have to deal with the fact that decisions may come
out of order, both within a configuration and across configurations. Also, as mul-
tiple (α) decisions may be outstanding at any time, a single configuration can, in
theory, decide on multiple future configurations.

Much work in the last couple of decades has gone into refining failure handling
and recovery for practical, large-scale deployments of Paxos. An early approach,
Cheap Paxos [Lamport and Massa 2004], looks at reducing cost in the normal case
while still being able to reconfigure the replicas should the need arise. Instead of
using 2f + 1 or more acceptors, Cheap Paxos uses only f + 1 acceptors combined
with f “auxiliary” acceptors that are idle during normal execution but play an im-
portant role in failure recovery. The optimization is based on the observation that
during normal operation Paxos only needs a majority of processes to participate in
the protocol. However, if one of those processes becomes unresponsive, some of
the auxiliary acceptors are necessary to run phase P1 of the protocol. The reconfig-
uration protocol of Paxos can then be used to replace the unresponsive acceptors
with new ones, restoring the fault tolerance of the system.

Vertical Paxos [Lamport et al. 2009a] takes this idea a step further, fixing the
round number and leader during normal operation, similar to primary-backup
protocols. When a failure occurs, an auxiliary “configuration master” decides on
what the new configuration will be. The new leader then accesses the state of the
processes in the old configuration to obtain the old state and informs the configu-
ration master. This old state can then be used to create a new configuration that is
a consistent continuation of the old one. A similar technique is used for recovery in
the Google File System [Ghemawat et al. 2003] and the chain replication protocol
[van Renesse and Schneider 2004]. In order to be fault tolerant, the configuration
master itself must be replicated and may also require dynamic reconfiguration.

102 Chapter 4 State Machine Replication with Benign Failures

An alternative approach to dynamic reconfiguration is to, in a single reconfig-
uration operation, terminate the old configuration and create a new one. This ap-
proach takes inspiration from so-called view changes in group communication pro-
tocols such as Isis [Birman et al. 1991]. For example, in Stoppable Paxos [Lamport
et al. 2010], a special STOP reconfiguration command has the simplifying property
that if some configuration decides a STOP command in slot i, then that configura-
tion can no longer decide commands in slots after i (while still allowing concur-
rency). In Lamport et al. [2010], Lamport, Malkhi, and Zhou discuss advantages
and disadvantages of various SMR reconfiguration methods.

5Formal Specification
and Verification
Stephan Merz

5.1 Introduction
Beyond his seminal contributions to the theory and the design of concurrent and
distributed algorithms, Leslie Lamport has throughout his career worked on meth-
ods and formalisms for rigorously establishing the correctness of algorithms. Com-
menting on his first article about a method for proving the correctness of mul-
tiprocess programs [Lamport 1977a] on the website providing access to his col-
lected writings [Lamport 2019], Lamport recalls that this interest originated in his
submitting a flawed mutual exclusion algorithm in the early 1970s. As a trained
mathematician, Lamport is perfectly familiar with mathematical set theory, the
standard formal foundation of classical mathematics. His career in industrial re-
search environments and the fact that his main interest has been in algorithms,
not formalisms, has certainly contributed to his designing reasoning methods that
combine pragmatism and mathematical elegance. The methods that he designed
have always been grounded in the semantics of programs and their executions
rather than being driven by the syntax in which these programs are expressed, in
contrast to many methods advocated by “pure” computer scientists.

The famous “Time/Clocks” paper [Lamport 1978b] describes executions of dis-
tributed state machines and introduces the happened-before or causality relation,
a partial order on the events occurring in runs. The “philosophically correct” way for
reasoning about distributed executions would thus appear to be based on a partial
ordering between operations. Indeed, Lamport explored this idea and proposed a
method based on two relations called precedes and may affect [Lamport 1979c]. This
method can notably be applied to algorithms that involve nonatomic operations,
such as the Bakery algorithm. However, Lamport felt that the method did not scale

104 Chapter 5 Formal Specification and Verification

well, unlike assertional reasoning about global states of systems that can be visible
to an idealized external observer, even if no single process can observe them. This
style of reasoning considers linearizations of distributed executions, and it gener-
ally requires algorithms to be described in terms of their atomic operations (an
exception being [Lamport 1990]). The notion of an overall system invariant that is
preserved by every operation plays a central role in this approach: such an invariant
explains why the algorithm is correct. Assertional proofs have since been demon-
strated to be completely rigorous, to be amenable to mechanized checking, and to
scale well.

Lamport realized that there are two fundamental classes of correctness prop-
erties that arise in the verification of concurrent algorithms, for which he coined
the terms safety and liveness properties [Lamport 1977a]. Generalizing, respec-
tively, partial correctness and termination of sequential programs, safety proper-
ties assert that “nothing bad ever happens” and liveness properties require that
“something good happens eventually.” These intuitive concepts were later formal-
ized by Alpern and Schneider [1985], who showed that any property of runs can
be expressed as the intersection of a safety property and a liveness property. Al-
though proofs of liveness properties generally rely on auxiliary invariants, the basic
principles for proving safety and liveness properties are different, and the two are
therefore best considered separately.

Lamport advocates describing algorithms in terms of state machines whose
operations are atomic. Invariants, and more generally safety properties, are then
established by induction: the invariant holds in all possible initial states and is
preserved by every operation of the state machine. The proof of liveness properties
usually relies on associating a measure with the states of the algorithm and showing
that the measure decreases with every step as long as the “good state” has not
been reached. This argument is made formal through the use of well-founded
orderings, which do not admit infinite decreasing chains. A direct application of
that proof principle would require fixing a scheduler that governs the execution of
different processes—an undesirable requirement since one wants to establish the
correctness of the algorithm for any “reasonable” scheduler. A useful generalization
requires that as long as the target state has not been reached, no step of the
algorithm increases the measure, “helpful” steps decrease the measure, and some
helpful step will eventually be executed. In order to justify the latter (which in itself
is a liveness property!), one invokes fairness assumptions [Attie et al. 1993, Lamport
2000] that assert that executable operations will not be neglected forever, fixing the
precise understanding of a “reasonable” scheduler for the particular application.

Another fundamental concept underlying the rigorous development and proof
of concurrent algorithms advocated by Lamport is that of refinement. It allows a

5.2 The Temporal Logic of Actions 105

designer to describe the fundamental correctness properties using a high-level
(possibly centralized) state machine and then prove that another state machine
whose description is given at a lower level of abstraction faithfully implements the
high-level description. For example, a high-level state machine describing a con-
sensus algorithm [Lamport et al. 1982] could have a variable chosen holding a set
of values, initialized to the empty set, aChoose operation that assigns chosen to the
singleton set {v} for some value v among the proposed values, and Decide opera-
tions that set the decision values of each process to that chosen value. A lower-level
refinement would then describe the actual algorithm in terms of exchanged mes-
sages and votes. A technical complication in that approach is that the lower-level
state machine will have operations that modify only low-level variables, i.e., vari-
ables that do not exist at the higher level of abstraction. These operations cannot be
mapped to operations of the high-level state machine. For example, operations that
send messages in the putative consensus algorithm have no meaning in the high-
level specification. Lamport advocates that formalisms for describing executions
of state machines should be insensitive to stuttering steps that leave unchanged the
state visible to the specification.

The remainder of this chapter focuses on the Temporal Logic of Actions (tla)
and the specification language tla+. These are Lamport’s contributions to the for-
mal specification and verification of algorithms that have had the greatest impact
in the academic community and in industry, and their design was guided by the
principles that have been outlined above.

5.2 The Temporal Logic of Actions
Temporal logic [Prior 1967] is a branch of modal logic in which the accessibility
relation corresponds to temporal succession. During the 1970s, several authors
[Burstall 1974, Kröger 1977] suggested adopting temporal logic as a basis for prov-
ing programs correct. Pnueli’s influential paper [Pnueli 1977] provided the insight
that temporal logic was most useful for specifying and reasoning about reactive
systems, which include concurrent and distributed systems. A generalization of
Pnueli’s logic that is based on the “next” and “until” connectives remains the stan-
dard variant of linear-time temporal logic used in computer science to this day.

5.2.1 The Genesis of tla
In 1977, Lamport proposed a method for proving the correctness of concurrent
programs [Lamport 1977a]. It used invariant reasoning (based on Floyd’s method
[Floyd 1967]) for establishing safety properties and lattices of leads-to properties

106 Chapter 5 Formal Specification and Verification

for proving liveness. The method relied on a fixed progress assumption for each
process in order to establish elementary leads-to properties.

Lamport was introduced to temporal logic in the late 1970s during a seminar
organized by Susan Owicki at Stanford University. At that time, the distinction
between linear-time and branching-time temporal logics was not yet clearly estab-
lished in computer science. Lamport clarified this difference [Lamport 1980] and
showed that the expressive powers of LTL and CTL are incomparable. He quickly
realized that temporal logic was a convenient language for expressing and reason-
ing about fairness and liveness properties. For example, weak and strong fairness
of executions with respect to an action α, representing an operation of a process in
a concurrent system, can be written as

(en(α)⇒� exec(α)) and (� en(α)⇒� exec(α)).

In these formulas, the predicate en(α) characterizes those states in which α is en-
abled (may be executed), exec(α) is true when action α has been executed, and and
� are the “always” and “eventually” operators of LTL. Weak fairness requires that
an action cannot remain perpetually enabled without eventually being executed.
Strong fairness requires that even an action that is infinitely often (but perhaps not
perpetually) enabled must eventually be executed. Using such formulas, more gen-
eral fairness hypotheses than uniform progress of processes considered in Lamport
[1977a] can be expressed unambiguously. Moreover, the principles of reasoning
about leads-to lattices could be derived from the general proof rules of temporal
logic. A joint paper with Owicki [Owicki and Lamport 1982] develops these ideas
into a full-fledged method for proving the correctness of concurrent programs. In
the introduction to this paper, the authors write:

While we hope that logicians will find this work interesting, our goal is to define
a method that programmers will find useful.

This motto describes well Lamport’s approach to formalisms for specification and
verification.

Whereas standard LTL was clearly useful for expressing fairness and liveness
properties, Lamport felt that it was not convenient for writing complete specifica-
tions of actual systems. His intuition was confirmed when he observed colleagues
at SRI struggling with specifying a FIFO queue in Pnueli’s temporal logic. (It was
later proved that this was actually impossible unless one assumes that the values
presented to the queue are unique.) This observation led his colleagues to intro-
duce a more expressive temporal logic based on intervals [Schwartz et al. 1984].
In contrast, Lamport concluded that the fundamental problem was the “property-

5.2 The Temporal Logic of Actions 107

oriented” style of specifications as a list (conjunction) of properties observed at the
interface of a system, such as the inputs and outputs of the queue, but excluding
any reference to internal system states. He designed tla as a logic geared toward
specifying and reasoning about state machines, based on a few orthogonal and
simple concepts that provide a higher level of abstraction (and elegance!) than the
use of a pseudo-programming language, as in the earlier paper with Owicki [Owicki
and Lamport 1982].

5.2.2 The Logic tla
Lamport designed tla around 1990 [Lamport 1991, 1994c]. tla formulas are built
from constants, whose values are fixed throughout an execution, and (state) vari-
ables. We use x , y , z to denote constants and u, v , w to denote variables. A state is
a mapping from variables to values. tla distinguishes three levels of expressions:

. The syntax of state functions and state predicates is that of standard terms
and formulas of first-order logic. Concrete examples of state predicates are
v ≥ 0 or ∃x : x ∈ u ∧ x �∈ v. Semantically, they are interpreted over individual
states.1

. Transition functions and transition predicates, also called actions, are first-
order terms and formulas that may contain both standard (unprimed) vari-
ables u, v , w and primed variables u′, v′, w′. Example formulas are u′ ∈ v or
∃x : u′ + x = v. Semantically, transition formulas are interpreted over pairs
〈s , t〉 of states, with unprimed variables being interpreted in state s and
primed variables in t .

. Temporal formulas are built from state and transition formulas by applying
operators of temporal logic according to the rules given below. They are
interpreted over behaviors, i.e., sequences σ = 〈s0, s1, . . .〉 of states.

Whereas standard LTL builds temporal formulas solely from state formulas, the
introduction of transition formulas as a primitive building block is fundamental to
specifying state machines. For example, the LTL equivalent to the tla action u′ ∈ v
would be

∃x : x ∈ v ∧ ◦(u= x)

1. We could distinguish a level of constant formulas that do not contain any variables, but we will
consider such formulas to be state formulas.

108 Chapter 5 Formal Specification and Verification

where ◦ denotes LTL’s next-time operator. Rather than using a pseudo-program-
ming notation as in Owicki and Lamport [1982], actions are just first-order formulas
over primed and unprimed variables. One reasons about them using ordinary
mathematical logic, rather than introducing special principles for reasoning about
programs. At the temporal level, any formula can in principle be considered as
a system specification or as a property. There is no formal distinction between
the two, and reasoning about them relies on the same fundamental principles of
temporal logic.

tla introduces several notations at the levels of state and transition formulas.
Given a state formula e, the transition formula e′ is obtained by replacing all
(free) occurrences of state variables by their primed counterparts. Semantically,
e′ denotes the value of e at the second state of the pair of states at which e′ is
evaluated. The action unchanged e is shorthand for e′ = e. For an action A and
a state formula e, the actions [A]e and 〈A〉e stand for A ∨ e′ = e and A ∧ e′ �= e,
respectively. The action formula [A]e represents closure ofA under stuttering (with
respect to e); in particular, it is true of a pair of states 〈s , t〉 if A is true or if
s = t . Dually, 〈A〉e requires A to be true and the step from state s to state t to be
observable through a change of e. Finally, the state predicate enabledA is obtained
by existential quantification over all primed state variables that occur in the action
A. For example,2

if A 	= v > 0∧ v′ = v − 1∧ w′ = w
then enabled A 	= ∃v′, w′ : v > 0∧ v′ = v − 1∧ w′ = w

It is easy to see that for this example, enabled A is logically equivalent to the
predicate v > 0. In general, enabled A is true at state s if there exists some state t
such that A holds for the pair 〈s , t〉.

Formulas at all three levels are closed under Boolean operators (¬, ∧, ∨,⇒, ≡)
and first-order quantifiers (∀, ∃). The rules for forming temporal formulas are as
follows:

. Every state predicate is a temporal formula.

. If A is an action and e is a state formula, then [A]e is a temporal formula.

. If ϕ is a temporal formula, then so is ϕ.

. If ϕ is a temporal formula, x is a constant, and v is a variable, then ∃ x : ϕ and
∃∃∃ v : ϕ are temporal formulas.

2. The symbol 	= denotes “is defined as.”

5.2 The Temporal Logic of Actions 109

The formulas � ϕ and �〈A〉e are shorthand for¬ ¬ϕ and¬ [¬A]e, respectively.
Also, ϕ�ψ (“ϕ leadstoψ”) abbreviates (ϕ⇒� ψ). Observe in particular that ifA is
an action formula, A is in general not well formed: actions need to be “protected”
by square or angle brackets inside temporal formulas.

The operators and � are the familar “always” and “eventually” operators of
LTL: ϕ is true of σ if ϕ is true of every suffix of σ . The formula [A]e is true of
σ = 〈s0, s1, . . .〉 if, for all n ∈ N, the action A holds for the state pair 〈sn, sn+1〉 or the
state formula e evaluates to the same value in sn and sn+1, and the interpretation of
�〈A〉e is dual. The syntactic restriction of allowing action formulas to appear only
inside brackets ensures that all temporal formulas ϕ of tla are insensitive to finite
stuttering: if two state sequences σ and τ agree up to insertions or removals of finite
repetitions of states, thenϕ is true of σ if and only ifϕ is true of τ . The formula ∃∃∃ v :ϕ
is true of σ = 〈s0, s1, . . .〉 if ϕ is true of a sequence τ = 〈t0, t1, . . .〉 such that, for all n,
sn and tn agree on the values of all variables except possibly v. The formal definition
is somewhat more complicated in order to preserve invariance under stuttering
[Lamport 1994c].

The notion of validity of tla formulas is standard. In particular, a temporal
formula ϕ is valid if it is true of all behaviors. Lamport also provides a set of
proof rules for tla. In particular, he states that the proof rules reproduced in
Figure 5.1, plus ordinary first-order reasoning, are sufficient (in the sense of relative
completeness [Apt 1981]) for reasoning about algorithms specified in tla without
quantification over state variables. These rules should be read as asserting that if
the hypotheses are valid, then so is the conclusion. For example, rule STL1 is the

STL1.
ϕ

ϕ
STL4.

ϕ⇒ ψ

ϕ⇒ ψ

STL2. ϕ⇒ ϕ STL5. (ϕ ∧ ψ)≡ ϕ ∧ ψ

STL3. ϕ ≡ ϕ STL6. � (ϕ ∧ ψ)≡ � ϕ ∧ � ψ

TLA1.
P ∧ e′ = e⇒ P ′

P ≡ P ∧ [P ⇒ P ′]e
TLA2.

P ∧ [A]e⇒Q ∧ [B]f
P ∧ [A]e⇒ Q ∧ [B]f

Lattice.

(S , ≺) is a well-founded ordering
∀ x ∈ S: ϕ(x)� (ψ ∧ ∃ y ∈ S: y ≺ x ∧ ϕ(y))

(∃ x ∈ S: ϕ(x))�ψ

Figure 5.1 Proof rules for simple tla.

110 Chapter 5 Formal Specification and Verification

well-known necessitation rule of modal logic, and it is justified because any suffix
of a behavior is again a behavior, of which ϕ is true by the hypothesis of the rule. Of
course, the implication ϕ⇒ ϕ is not valid in general. From the elementary rules
of Figure 5.1, further useful verification rules can be derived, such as the following
rule for proving that a state predicate P is an invariant of a system specification:

INV1.
P ∧ [A]e⇒ P ′

P ∧ [A]e⇒ P .

This rule, like most other rules for system verification in tla, establishes a conclu-
sion expressed in temporal logic from nontemporal (action-level) hypotheses. In
this way, reasoning at the temporal level is confined to the top levels of a tla proof
and typically represents less than 5% of the proof steps. In particular, reasoning
about safety properties does not involve temporal logic.

Lamport’s rules are intended for the verification of algorithms. In contrast,
providing a proof system for—even propositional—tla that is complete in the
standard sense of formal logic (i.e., that allows all valid formulas to be derived as
theorems) is more delicate. In particular, whereas INV1 is sufficient for proving
invariants of systems, the general induction axiom of LTL

(ϕ⇒◦ϕ) ⇒ (ϕ⇒ ϕ)

cannot be expressed in tla because there is no next-time operator that could be
applied to temporal formulas. A generalization of tla, together with a system of
rules that is complete for the propositional fragment of that logic, appears in Merz
[1999].

5.2.3 Refinement, Hiding, and Composition
We mentioned above that tla does not formally distinguish between system speci-
fications and their properties: both are represented as temporal formulas. In prac-
tice, specifications of state machines are usually written in the form

Init ∧ [Next]v ∧ L (5.1)

where the state predicate Init specifies the possible initial states of the system, the
action Next represents its next-state relation, v is the tuple of all state variables
used in the specification, and L expresses fairness conditions. Typically, Next is
a disjunction of actions Ai that describe atomic transitions of the system or of its
environment, andL is a conjunction of strong or weak fairness conditions on (some
of) the actions Ai.

5.2 The Temporal Logic of Actions 111

Refinement of Specifications. Perhaps influenced by ideas on program refinement
developed by Back [1981] and Morgan [1990], ultimately inspired by Dijkstra [1976],
Lamport [1983d] already observes that “temporal logic supports hierarchical spec-
ification and reasoning in a simple, natural way.” He also notes that the essential
ingredient for this to be possible is the invariance of temporal logic formulas un-
der stuttering, ensured by the absence of a next-time operator. The idea is that a
refinementR of a high-level specification S introduces implementation detail, rep-
resented by additional state variables. Newly introduced actions that modify solely
these new variables correspond to stuttering steps at the level of S and cannot in-
validate S. Actions that modify the variables present in S must do so in ways that
are allowed by (the next-state relation of) S. Whereas R may have fewer behaviors
(when projected to the state space of S), the fairness conditions in S must be pre-
served: if a high-level actionAi for which S states a fairness condition is sufficiently
often enabled in a run, R must ensure that some action whose effect corresponds
to the occurrence of Ai will eventually occur in that run.

Summing up,R refines S if and only if the implicationR⇒ S is valid. Assuming
that R and S are specified using formulas of shape (5.1) (with superscripts R and
S), refinement is proved by finding a state predicate I such that all of the following
implications hold:

InitR⇒ I ∧ InitS

I ∧ [NextR]vR⇒ I ′ ∧ [NextS]vS

I ∧ [NextR]vR ∧ LR⇒ LS

In words, I is an invariant of the low-level specification R that is strong enough
to prove that every transition according to R’s next-state relation is also a possible
transition for S, possibly stuttering, and to show that R implies the liveness hy-
potheses asserted by S. The first two proof obligations establish the safety part of
the refinement and do not involve temporal logic; the third one concerns liveness
and requires temporal reasoning.

Hiding of Internal State. The standard form (5.1) of specifications is useful for de-
scribing a system as a state machine, but it does not distinguish between variables
that are visible at the interface and those that represent the internal state of the
machine. This distinction is, however, important in the sense that the “contract”
between the implementation of a system and its users should only constrain the
interface, not the internal state. For example, a high-level specification Sset of a

112 Chapter 5 Formal Specification and Verification

key-value store may represent the current content of the store in a variable store
holding a set of pairs (k , v), but the implementer should be free to choose another
suitable data structure, such as a hash table. Because the operations of the lower-
level specification Stbl update a hash table instead of a set of pairs, the implication
Stbl ⇒ Sset cannot be proved. Indeed, the internal variable store (and the set of val-
ues that it holds) is not part of the interface of the system, which consists solely
of the input and output channels through which the system corresponds with its
environment. Lamport realized that this form of information hiding corresponds to
existential quantification: the actual high-level specification of our system is not
Sset, but rather ∃∃∃ store : Sset, which asserts that the system behaves as if it contained
a store represented as a set of key-value pairs. Similarly, the lower-level specifi-
cation is ∃∃∃ store : Stbl,

3 and in order to establish refinement, we have to prove the
implication

(∃∃∃ store : Stbl)⇒ (∃∃∃ store : Sset). (5.2)

Applying standard quantifier rules, that proof can be reduced to proving the impli-
cation

Stbl ⇒ (∃∃∃ store : Sset)

where the internal state of the lower-level specification has been exposed. It now
suffices to find a suitable state function s that provides a witness term for the
internal state of the higher-level specification, i.e., such that the implication

Stbl ⇒ (Sset with store← s) (5.3)

is provable. (The notation used here for substituting the variable store by the ex-
pression s is not part of tla.) In our example, a suitable witness s is provided by
the contents of the hash table.

State functions that serve as witness terms for refinement proofs are known
as refinement mappings. They serve to reconstruct the value of an internal state
variable used in the high-level specification from the corresponding lower-level
state. Semantically, showing an implication of the form (5.2) requires exhibiting an
infinite sequence of values for the quantified variable on the right-hand side, given
a sequence of values for the variable on the left. In contrast, a refinement mapping

3. Of course, it is immaterial if the names of the bound variables in the two specifications are the
same or not.

5.2 The Temporal Logic of Actions 113

as in (5.3) computes values state by state, which is clearly weaker: one cannot
refer to previous or future values in the sequence of values satisfying the left-hand
specification. Indeed, in general a suitable refinement mapping need not exist even
if (5.2) holds. Abadi and Lamport [1991] suggested that for the proof of refinement,
the low-level specification may be augmented by auxiliary variables. The augmented
specification is semantically equivalent to the original one, but the additional
variables help in defining a refinement mapping. In particular, Abadi and Lamport
defined principles for augmenting specifications by history and prophecy variables,
and they provided sufficient conditions for these principles to be complete for
proving refinement. The constructions were presented in a semantic framework
independent of tla. Proof rules for introducing auxiliary variables in tla appear
in Lamport and Merz [2017].

Representing Parallel Composition. The above discussion has shown that refine-
ment and hiding can be represented in tla using implication and quantification,
and therefore standard principles of logical deduction can be applied to reason
about these concepts. Now consider two components, specified by tla formulas

and �, that are intended to operate in parallel. In order for both parallel compo-
nents to adhere to their specifications, the variables of the first component must
evolve as prescribed by
, and similarly for the second component. In particular,
any steps that change a variable shared by both components must be permitted by
both
 and�. Transitions that exclusively modify variables from one specification
appear as stuttering steps to the other one and are trivially allowed by that spec-
ification, whereas variables shared between
 and � synchronize transitions of
the two specifications. It follows that the formula
 ∧� characterizes the parallel
composition of the two specifications. (We see in Section 5.3.3 that for some com-
putational models, it may be useful to adopt a stronger specification
 ∧� ∧ �,
where � expresses extra synchronization hypotheses embodied in the computa-
tional model.)

Expressing composition as conjunction corresponds to the overall philosophy
of tla that structural concepts are expressed by logical operators. Although the
conjunction of two specifications
 and � written in the standard form of (5.1)
is not itself in standard form, it can easily be transformed into standard form by
applying the equivalence

[A]u ∧ [B]v ≡
[
[A]u ∧ [B]v

]
〈u,v〉

114 Chapter 5 Formal Specification and Verification

Specifying Open or Closed Systems. When specifying a component, one invari-
ably has to describe not just the component itself but also the environment that
the component is going to operate in. A closed-system specification of a compo-
nent describes the most general environment that is acceptable, together with the
component itself. In particular, the specification’s next-state relation will be a dis-
junction of actions that describe the component’s transitions and of actions that
describe steps of the environment. Although this style works well in practice, it
does not yield the most general specification of the overall system. Instead of con-
straining the environment, we may want to write a specification that allows the
environment to behave arbitrarily, but that leaves the behavior of the component
unconstrained after a step occurs that is disallowed by the assumptions on the
environment. Abadi and Lamport considered ways of writing specifications that
separate the environment assumptions E and the component guarantees C. The
implication E⇒ C is a natural way for expressing such an assumption-guarantee
specification, and this form is explored in Abadi and Lamport [1993]. However,
the implication holds of behaviors in which first the component violates C, and
later the environment violates E. In later work, Abadi and Lamport [1994, 1995]
introduced the stronger operator +−� such that E +−� C requires that (the safety
part of) C may be violated only if (the safety part of) E was violated strictly ear-
lier.4 Given two components described through assume-guarantee specifications,
one may wish to prove that their composition refines a higher-level specification
of the composed system. This is expressed in tla as a proof obligation of the
form

(E1
+−� C1) ∧ (E2

+−� C2) ⇒ (E
+−� C)

In order to establish the overall system guarantee C from the component guaran-
tees C1 and C2, one will need to show that the environment assumptions E1 and
E2 hold true. Now, the environment of each component consists of the overall en-
vironment (assumptions on which are expressed by E) and the other component,
so one will want to use both E and C2 for establishing E1, and similarly for the
other component. Despite the apparent circularity of this reasoning chain, Abadi
and Lamport [1995] give rules that support this approach in a sound way, based
on a form of computational induction that is embodied in the definition of the +−�
operator.

4. +−� can actually be expressed in tla, but it is useful to consider it as a separate operator.

5.3 The Specification Language tla+++ 115

5.3 The Specification Language tla+++
Lamport designed tla as a variant of linear-time temporal logic that is particularly
appropriate for specifying executions of fair state machines. Stuttering invariance
is key for representing composition as conjunction of specifications, and refine-
ment as validity of implication. Quantification over state variables adds significant
expressive power and is useful notably for distinguishing the state visible at the
interface of a component from the internal state used for its implementation.

However, tla is not a full specification language: it does not fix the interpre-
tation of elementary function and predicate symbols such as + and ∈. These sym-
bols are provided by an underlying mathematical language based on first-order or
higher-order logic. In particular, nontemporal proof obligations that arise during
the verification of a system property or during a refinement proof should then be
discharged using a (possibly mechanized) proof system associated with that host
language.

5.3.1 Overall Design of tla+++
Starting in the early 1990s and encouraged by successful experiments with TLP
[Engberg et al. 1992], a prototype proof system for tla based on the Larch Prover,
Lamport developed the specification language tla+. The language is described in
the book Specifying Systems [Lamport 2002]; the Hyperbook and Lamport’s video
series [Lamport 2015, 2018] provide excellent tutorial introductions, whereas the
description of tla+ in Merz [2008] focuses on the semantics of the language.

tla+ is based on a variant of Zermelo-Fraenkel set theory with choice (ZFC) for
describing the data manipulated by an algorithm. ZFC is widely accepted by mathe-
maticians as the basis for formalizing mathematical theories. In order to emphasize
the expressiveness of ZFC, Lamport shows that a formal definition of the Riemann
integral can be given in just 15 lines starting from a standard module defining the
real numbers with ordinary arithmetical operators [Lamport 1992]. When writing
high-level specifications of algorithms, it is useful to model data in terms of con-
cepts such as sets and functions rather than using low-level data types provided by
programming languages and their libraries. In this respect, tla+ adopts a similar
approach to the specification languages Z and (Event-)B [Abrial 1996, Abrial 2010,
Spivey 1992]. However, the latter languages impose a typing discipline on set theory,
whereas tla+ is untyped. Again, Lamport follows classical mathematical practice
and, for example, considers that the set {2, 4, 6, . . .} of positive even numbers can
be viewed as a type just like the set of all integers. He maintains that imposing a

116 Chapter 5 Formal Specification and Verification

decidable type system on a specification language leads to unacceptable restric-
tions of the expressiveness of that language. Also, embedding partial operations
in a typed language often leads to objectionable choices. For example, declaring
integer division as a binary operation with integer arguments and result asserts
that division by 0 returns an integer, whereas implementations naturally raise an
exception.5 Although tla+ is untyped and handles partial operators by underspec-
ification [Gries and Schneider 1995], this does not preclude tools for tla+ from
contructing types when this is convenient for their analyses. An article by Lamport
and Paulson [1999] contains an interesting discussion of these questions.

5.3.2 A Glimpse of tla+++
tla+ specifications are organized in modules. A module can extend other modules;
semantically, this is equivalent to copying the content of the extended modules
(with duplicates removed) into the extending module.

A module may declare constant and variable parameters. Any symbol that oc-
curs in an expression in the module must be either a built-in symbol of tla+, a
parameter in the context in which the expression appears, or a symbol that was
previously defined or declared.

Modules may assert properties of constant parameters in the form of assump-
tions or axioms, both of which express hypotheses of the module.6 Modules may
also state theorems that can be proved using tlaps, the tla+ Proof System.

The bulk of the contents of a typical tla+ module consists of definitions of
operators, used to build up more complex expressions. An operator may take zero
or more arguments, including operator arguments (whose arity must be specified).
For example, the definition

Symmetric(R(,), S) 	= ∀x , y ∈ S :R(x , y)≡ R(y , x)

introduces an operator characterizing a symmetric binary relation R over a set
S. Besides the ordinary operators of first-order set theory, tla+ also borrows a
few constructions from programming languages, such as conditional expressions
(including n-ary case distinctions) and local definitions introduced through let-
bindings.

5. Some proof assistants such as Isabelle/HOL go even further and define n div 0= 0, which is
unlikely to hold in an implementation and may actually mask errors.

6. tlc will verify that an assumption evaluates to true for the concrete values substituted for the
module parameters, but it will not evaluate axioms.

5.3 The Specification Language tla+++ 117

module FIFO
extends Sequences
constants Data, null
assume null �∈ Data
variables in, q, out

TypeOK 	= in ∈ (Data ∪ {null}) ∧ out ∈ (Data ∪ {null}) ∧ q ∈ Seq(Data)
Init 	= in= null ∧ out = null ∧ q= 〈 〉
Enq 	= ∧ in′ ∈ (Data ∪ {null}) \ {in}

∧ q′ = if in′ ∈ Data then Append(q, in′) else q
∧ out′ = out

Deq 	=∧ ∨ q= 〈 〉 ∧ out′ = null ∧ q′ = q
∨ q �= 〈 〉 ∧ out′ = Head(q) ∧ q′ = Tail(q)
∧ in′ = in

vars 	= 〈in, q, out〉
FIFO 	= Init ∧ [Enq ∨ Deq]vars ∧WFvars(Deq)

theorem FIFOType 	= FIFO⇒ TypeOK
theorem InOut 	= FIFO⇒ [in′ = in ∨ out′ = out]vars

theorem Liveness 	= FIFO⇒∀ x ∈ Data: (in= x)� (out = x)

Figure 5.2 tla+ specification of a FIFO queue.

A module containing a system specification usually defines operators corre-
sponding to the initial condition, the next-state relation, the overall specification,
and properties to be verified. As a concrete example, Figure 5.2 contains a tla+

specification of a FIFO queue. It extends the library module Sequences, which de-
fines the set Seq(S) of finite sequences that contain elements of S and operations
such as Head and Tail to access the first element and the remaining elements of a
sequence. Module FIFO then declares two constants Data and null that correspond
to the data to be stored in the queue and a “null” element representing the absence
of data. The module also declares the variables in, out, and q that are used for spec-
ifying the state machine describing the behavior of the FIFO queue. Concretely, in
and out represent the channels for data input and output, whereas q contains the
current contents of the queue.

Again, tla+ is untyped, and consequently one does not declare types for con-
stant or variable parameters. Because tla+ is based on set theory, there is no need
to assert that Data is a set. In fact, semantically all values are sets, although it is

118 Chapter 5 Formal Specification and Verification

more useful to think of the elements of set Data ∪ {null}, as well as of numbers or
strings, as atomic values.

The second block of the module contains operator definitions.7 The first oper-
ator corresponds to the (intended) type invariant of the specification. The defini-
tions of the operators Init, Enq, and Deq introduce the initial condition and the
enqueue and dequeue actions of the queue. The initial predicate simply requires
that the input and output channels contain the null value and that the queue is
empty. The enqueue action models a change of value at the input channel. If a
data value is sent over the channel, it is appended to the current contents of the
queue. Otherwise (i.e., if a null value appears on the channel), the queue remains
unchanged. The output value of the queue remains unchanged during an enqueue
operation. Symmetrically, a dequeue operation does not modify the input channel.
It puts null on the output channel and leaves the queue unchanged if the queue
is empty and otherwise sends Head(q) on the output channel and removes that el-
ement from the queue. Formula FIFO represents the overall queue specification.
Its next-state relation is the disjunction of the enqueue and dequeue actions. The
fairness conjunct requires dequeue actions to happen eventually so that the queue
must eventually output the values it stores.

The third block of the module states three theorems. The first theorem asserts
that the type correctness predicate holds throughout any execution. The second
theorem states that the values of the input and output channels never change
simultaneously, and the third theorem asserts that every data value that appears
on the input channel will eventually be output by the queue. We see in Section 5.5
how these properties can be verified using the tla+ tools.

5.3.3 Composing Modules
Beyond module extension, tla+ offers instantiation as a second way for composing
modules. An instance conceptually creates a copy of the original module in which
the constant and variable parameters can be instantiated by (constant and state)
expressions. This construction is useful for composing specifications. For exam-
ple, module TwoFIFO of Figure 5.3 declares the composition of two FIFO queues by
creating two instances Left and Right of the FIFO module of Figure 5.2. Instance Left
uses variables q1 and mid for the internal queue and the output channel; all other
parameters are instantiated by the parameters of the same name declared in mod-
ule TwoFIFO. Similarly, instance Right uses mid and q2 for in and q. The conjunction
of the two instantiated specifications Left!FIFO and Right!FIFO describes the com-

7. The horizontal bars are decorative and have no semantic meaning.

5.4 PlusCal: An Algorithm Language 119

module TwoFIFO
extends Sequences
constants Data, null
assume null �∈ Data
variables in, q1, mid , q2, out

Left 	= instance FIFO with q← q1, out←mid
Right 	= instance FIFO with in←mid , q← q2
Conc 	= instance FIFO with q← q2 ◦ q1
Interleave 	= in′ = in ∨ out′ = out
TwoFIFO 	= Left! FIFO ∧ Right!FIFO ∧ [Interleave]in, out

theorem Implementation 	= TwoFIFO⇒ Conc!FIFO

Figure 5.3 Composition of two FIFO queues.

position of two FIFO queues that communicate through the shared communication
channel mid. We would like to assert that the conjunction of these specifications
behaves like a FIFO whose internal queue is given by the concatenation of the in-
ternal queues of the two components. The instance Conc represents this “longer”
FIFO queue with input channel in and output channel out, and we would therefore
like to assert the theorem

Left!FIFO ∧ Right!FIFO⇒ Conc!FIFO.

However, this implication is not valid: the conjunction on the left-hand side allows
an enqueue action of the left FIFO queue and a dequeue action of the right FIFO
queue to happen simultaneously (observe that both actions leave the shared vari-
able mid unchanged). In this case, the values of the channels in and out change
simultaneously, and this is not allowed by specification Conc!FIFO. Indeed, we
wrote our specification according to an interleaving model, where enqueue and
dequeue actions do not happen simultaneously. We have to explicitly enforce this
interleaving assumption for the composition of the two FIFO queues, as expressed
in the specification TwoFIFO, in order to obtain the theorem Implementation stated
at the end of the module.

5.4 PlusCal: An Algorithm Language
Due to its expressiveness and high level of abstraction, tla+ is a very powerful
language for specifying high-level designs of concurrent algorithms and systems.

120 Chapter 5 Formal Specification and Verification

However, it may feel unfamiliar to programmers, in particular due to the syntax
based on mathematical logic and to the absence of explicit control flow in the spec-
ification of systems and algorithms. Lamport designed PlusCal [Lamport 2009] as
a language for describing algorithms that combines the look and feel of pseudocode
and the precision of tla+. It uses primitives that are familiar from imperative pro-
gramming languages for describing the control flow of an algorithm. In contrast,
the data manipulated by the algorithm is represented by tla+ expressions, letting
the algorithm designer benefit from the abstraction afforded by set theory without
being constrained by concerns of how to concretely implement data structures.

A PlusCal algorithm is embedded as a comment within a tla+ module and
has access to all operators available at that point of the module (whether defined
in extended modules or locally). The PlusCal translator converts the algorithm
into a tla+ specification that is inserted into the module. The user then states
properties in terms of the tla+ translation and verifies them just as for any other
tla+ specification, using the tools described in Section 5.5.

A PlusCal algorithm may declare several process templates for parallel execu-
tion, and each template can have a fixed number of instances.8 Variables can be de-
clared globally, representing shared state (including the communication network
of a distributed system), or locally for each process. The control flow of each pro-
cess is described using standard primitives of imperative languages (sequencing,
conditional statements, loops, procedure calls, etc.). In addition, the two primitives

either { . . . } and with(x ∈ S){ . . . }
or { . . . }

are available for modeling nondeterminism. The first construct can be used to
introduce a fixed number of alternatives; the second one executes a block of code
for some value that is chosen nondeterministically from the set S. Synchronization
among processes is modeled using the instruction await P that blocks until the
predicate P becomes true.

An important aspect for the specification of concurrent algorithms is to identify
the “grain of atomicity,” i.e., which blocks of statements should be executed with-
out interference from other processes. Rather than imposing an arbitrary fixed level
of atomicity, PlusCal uses labels to identify yield points at which processes may be
interrupted. A group of statements between two labels is assumed to be executed
atomically. This allows the designer to choose the degree of atomicity appropri-
ate for the specification and to compare algorithms described at different degrees

8. PlusCal does not support dynamic spawning of processes.

5.4 PlusCal: An Algorithm Language 121

module ProducerConsumer
extends Naturals, Sequences
constants Data, maxCapacity
assume maxCapacity ∈ Nat\{0}
(*
–algorithm ProducerConsumer {

variable q = 〈〉;
define {

nonempty 	= Len(q) > 0
nonfull 	= Len(q) <maxCapacity

}
process (Producer = “p”) {
p: while (true) {

await nonfull;
with (item ∈ Data) {
q := Append(q , item)

} } }
fair process (Consumer = “c”)

variable rcvd; {
c: while (true) {

await nonempty;
rcvd := Head(q);
q := Tail(q)

} }
}
*)

Figure 5.4 A specification of a producer-consumer system in PlusCal.

of atomicity.9 In order to ensure liveness of PlusCal algorithms, fairness condi-
tions may be attached to labels or to entire processes. These ensure that the group
of statements following the label (respectively, the entire process) will eventually
execute if it is enabled sufficiently often.

As an example, a PlusCal algorithm modeling a simple producer-consumer
system appears in Figure 5.4. It declares two process templates for the producer and

9. Some rules govern where labels must or cannot be placed, essentially to ensure that PlusCal
algorithms are easy to translate into tla+ specifications.

122 Chapter 5 Formal Specification and Verification

the consumer, each of which is instantiated once for process identities “p” and “c.”
The two processes communicate using a shared FIFO queue of bounded capacity
maxCapacity. Each process has an infinite loop: the producer repeatedly adds new
data to the queue, while the consumer retrieves the data from the queue. By declar-
ing a (weak) fairness condition for the consumer process, we ensure that every data
item that is present in the queue will eventually be consumed. In this specification
of the algorithm, the bodies of the while loops execute atomically; nonatomic execu-
tion would be modeled by inserting additional labels. The operations Len, Append,
Head, and Tail that appear in the presentation of the algorithm are defined in the
standard module Sequences that is extended by module ProducerConsumer.

Invoking the PlusCal translator on module ProducerConsumer generates a
tla+ specification corresponding to the algorithm. In particular, the translator
generates declarations of tla+ variables corresponding to the global and local
variables of the PlusCal algorithm, and it derives the initial condition from the
initializations of the PlusCal variables.10 The essential step of the translation is
to generate a tla+ action for each group of statements between two consecutive
labels. For example, the single group of statements contained in the producer
process of Figure 5.4 is represented by the action

Producer 	= ∧ nonfull

∧ ∃ item ∈ Data: q ′ = Append(q , item)

∧ rcvd′ = rcvd

For more complicated algorithms, the translator adds a variable pc that represents
the current point of control of each process. When a process type has several
instances, their local variables are represented using arrays (i.e., tla+ functions).

Because the translation from PlusCal to tla+ is fairly direct, the generated
tla+ specification is usually quite readable. This is important because correctness
properties of the algorithm are written in tla+ rather than in PlusCal. For our
producer-consumer example, we may want to verify the invariant BoundedQueue
and the temporal property Liveness, defined as

BoundedQueue 	= q ∈ Seq(Data) ∧ Len(q)≤maxCapacity

Liveness 	= ∀ d ∈ Data: (∃ i ∈ 1..Len(q): q[i]= d)� rcvd = d
that express type correctness and eventual reception of every data item contained
in the queue.

10. For PlusCal variables that are not initialized, such as rcvd in our example, the translator adds
a default initialization, which is necessary for model checking using tlc.

5.5 Tool Support 123

5.5 Tool Support

5.5.1 The Model Checker tlc
Lamport originally designed tla+ as a precise and expressive language for specify-
ing algorithms and for (deductively) reasoning about their properties. It was used
in the second half of the 1990s by hardware designers at Digital Equipment Corpo-
ration, in particular for describing cache coherence protocols of multiprocessors
[Joshi et al. 2003]. They wrote rigorous, informal proofs for key invariants main-
tained by these protocols. Yuan Yu then recognized that it was possible to support
this type of reasoning using model checking. Lamport reports that originally he
was very skeptical of this idea. Input languages for model checkers such as Spin
[Holzmann 2003], SMV [McMillan 1993], or Murphi [Dill et al. 1992] are based on
low-level primitives carefully chosen to support efficient verification of finite-state
systems, whereas tla+ uses the full power of ZF set theory and is intended for
modeling systems of arbitrary size. It is not possible in general to systematically
enumerate all behaviors that satisfy a given tla+ formula.

tlc, the tla+ model checker, accepts a subset of tla+ specifications written
in standard form (5.1). It is an explicit-state model checker, intended for verifying
finite instances of specifications. In addition to the specification, the user has to
provide the model checker with a model that describes a finite instance by fixing
specific values for constant parameters. For the queue specification of Figure 5.2,
one could, for example, fix parameter values Data= {1, 2, 3} and null = 0. tlc then
interprets the specification, restricted to this model, by decomposing the next-
state relation into disjuncts (bounded existential quantification over finite sets is
expanded into an explicit disjunction) and evaluating each disjunct from left to
right. The first occurrence of a primed variable v′ has to be of the form v′ = e or v′ ∈ e
for an expression e that tlc can evaluate; in the second form, e must evaluate to a
finite set. The first form is interpreted as an assignment of (the value denoted by) e
to v in the successor state. The second form leads to the generation of one successor
state per element of e, with v assigned to that element. Subsequent occurrences of
v′ are interpreted by the value assigned to v in the successor state in this way. For
example, the conjunct

in′ ∈ (Data ∪ {null}) \ {in}
of the action Enq of Figure 5.2 generates one successor state for each element of
Data∪ {null}, except for the current value of in. The occurrences of in′ in the second
conjunct of Enq then refer to the value chosen for that successor state. The initial
predicate is evaluated in a similar way. tlc aborts with an error message if the initial

124 Chapter 5 Formal Specification and Verification

predicate or some subaction of the next-state relation does not assign a value to
some of the variables declared in the module.

When evaluating set-theoretic expressions, tlc will generally enumerate the
elements, but it will apply some optimizations. For example, in evaluating the
predicate e ∈ Nat that may occur in a typing invariant, tlc simply checks if (the
value denoted by) e is a natural number. tlc disallows unbounded quantification,
and it will signal an error when it would have to enumerate an infinite set.

Using the strategy outlined above, tlc enumerates all reachable states in a
breadth-first manner, and it checks the invariant predicates provided by the user
during this state enumeration. When an invariant evaluates to false, the run is
aborted and a counterexample is displayed. (Due to breadth-first search, that coun-
terexample will be of minimal length.) Liveness properties are evaluated over the
state graph computed during state enumeration, based on the tableau algorithm
of Lichtenstein and Pnueli [1985]. tlc parallelizes state enumeration on multicore
machines and provides a distributed implementation for running in a cluster or
cloud environment. States may be stored to disk so that state exploration is not
memory bound, and tlc regularly performs checkpoints so that model checking
can be resumed in case of a crash. In order to limit the explored state space, the user
can impose state constraints. For example, the FIFO queue of Figure 5.2 generates
an unbounded state space even for a fixed finite set Data because the length of the
queue can grow without bound, and the user can choose not to explore successors
of states in which Len(q) exceeds some fixed value. tlc also implements symmetry
reduction in order to explore only a quotient of the state space with respect to an
equivalence relation. In the queue example, the user may choose to declare Data (or
more precisely, the set that the parameter Data is instantiated with in the concrete
model) as a symmetry set because all operations are insensitive to particular values
in that set.

Although tlc imposes certain restrictions on the specifications that it can
check, most specifications that are written in practice adhere to those restrictions
or can easily be rewritten so that they do. (The fact that tlc has been the main analy-
sis tool for tla+ specifications has also contributed to disciplining users so that
they respect those restrictions.) In particular, tla+ specifications obtained from
translating PlusCal algorithms can be checked using tlc. The different properties
asserted in the modules of the previous sections can be verified by tlc for concrete
instances of parameters, including the theorems of Figures 5.2 and 5.3, as well as
the properties of the producer-consumer system given at the end of Section 5.4.11

11. The specification TwoFIFO of Figure 5.3 needs to be rewritten in standard form so that tlc
can verify it.

5.5 Tool Support 125

Like most model checkers, tlc is most useful when a counterexample to a
putative property is discovered. A positive verdict only means that the checked
properties hold for the particular model that tlc checked, and it requires sound en-
gineering judgment to determine if this gives enough confidence in the correctness
of the properties for arbitrary instances of the specification.

5.5.2 The tla+++ Proof System
tlaps, the tla+ Proof System [Cousineau et al. 2012], is a proof assistant for
checking proofs written in tla+. For this purpose, tla+ was extended to include
a language for writing hierarchical proofs based on a format that Lamport had
proposed earlier [Lamport 1995] for writing rigorous pencil-and-paper proofs. For
example, the proof of type correctness for the FIFO queue of Figure 5.2 can be
written as follows.

theorem FIFOType 	= FIFO⇒ TypeOK

〈1〉1. Init⇒ TypeOK

by def Init, TypeOK

〈1〉2. TypeOK ∧ [Enq ∨ Deq]vars⇒ TypeOK ′

by def Enq, Deq, vars, TypeOK

〈1〉3. qed

by 〈1〉1, 〈1〉2, PTL def FIFO

Following a standard pattern for invariance proofs (cf. rule INV1 of Section
5.2.2), the first two steps of the proof establish that the initial predicate of the FIFO
specification implies predicate TypeOK, and that the predicate is preserved by ev-
ery step allowed by the next-state relation. The third step concludes the proof of
the theorem. The justifications for each step are indicated following the keyword
by. For the first two steps, it suffices to expand the relevant definitions and then
apply built-in automatic proof back-ends that mechanize standard mathematical
reasoning. The justification of the third step uses the assertions of the two preced-
ing steps and propositional temporal logic; it also expands the definition of FIFO
in order to expose its initial and next-state predicates. Because the proof is so sim-
ple, we only need one level of proof: all step names have the form 〈1〉n. The steps
of more complicated proofs can be decomposed into lower-level proof steps until
tlaps can prove the leaf steps of the proof automatically.

Figure 5.5 schematizes the architecture of tlaps. The central component is
the proof manager that interprets the proof language, maintains the context of

126 Chapter 5 Formal Specification and Verification

Proof Manager

TLA+ Proof System

TLA+

Toolbox
(IDE)

Coalesce temporal/
first-order expressions

Interpret proofs
Compute proof obligations

Certify proof
(optional)

SMT solvers PTL (Is4) …Zenon Isabelle/TLA+

Call back-end provers to
attempt proof

Figure 5.5 Architecture of the tla+ Proof System.

each proof step (i.e., the visible identifiers, assumptions, and definitions) and com-
putes the corresponding proof obligations. In a nontemporal step (such as the first
two steps in the above example), primes are pushed inside complex expressions,
and then primed symbols are replaced by fresh identifiers. Similarly, any tempo-
ral expressions appearing in the context are abstracted by fresh predicate symbols.
Similarly, in a temporal step (such as the qed step above), any first-order formulas
are abstracted by propositional variables. This transformation is called coalescing
[Doligez et al. 2014]; it is necessary so that back-end provers see the proof obliga-
tion either as a standard formula of mathematical set theory or as a propositional
temporal logic formula. The proof manager then calls back-end provers to attempt
and prove the proof obligation. Currently, tlaps supports SMT solvers (via a transla-
tion to the SMT-LIB2 language [Barrett and Tinelli 2018]), the tableau prover Zenon
[Bonichon et al. 2007], and an encoding of tla+’s mathematical set theory as an
object logic in the logical framework Isabelle [Paulson 1994] for proving nontem-
poral steps. It also comes with a decision procedure for propositional temporal
logic [Suda and Weidenbach 2012] for proving temporal proof obligations. The
architecture is open for supporting additional back-end provers through suitable
translations of proof obligations into their input language. For increased confi-
dence in the correctness of tlaps proofs, when a back-end prover finds a proof it
may return a justification to the proof manager for checking by the trusted kernel
of Isabelle. This certification step is optional and currently only available for proofs
found by Zenon.

5.6 Impact 127

tlaps is currently restricted to proving safety properties. The planned extension
to liveness properties requires support for handling enabled predicates and for
first-order temporal logic reasoning, for example, for mechanizing the Lattice rule
of Section 5.2.2. tlaps has been used for verifying several distributed algorithms,
including variants of Paxos [Lamport 2011, Chand et al. 2016] and a version of the
Pastry distributed hash table [Azmy et al. 2018].

5.5.3 The tla+++ Toolbox
Editing and analyzing tla+ specifications is facilitated by the tla+ Toolbox, an
Eclipse application that provides an IDE (integrated development environment) for
tla+. It provides support for editing tla+ specifications and proofs, such as look-
ing up operator definitions, properly indenting tla+ specifications, renumbering
proof steps, and hiding subproofs that are irrelevant for the current branch. The
Toolbox is integrated with the tla+ tools, including sany, the tla+ syntactic and
semantic analyzer, the tlaTEX pretty printer, tlc, and tlaps. In particular, the user
interface to tlc provided by the Toolbox greatly simplifies the definition of finite-
state models to be verified, the analysis of counterexamples, and the evaluation of
tla+ expressions.

All tla+ tools are released as open-source software under licenses for use in
industry or academia.

5.6 Impact
The concepts that Lamport introduced for the formal specification and verifica-
tion of algorithms have deeply influenced the research community. The notions
of safety, liveness, and fairness are universally recognized for their fundamen-
tal importance. The concept of stuttering invariance is valuable in contexts other
than those strictly related to refinement and composition; in particular, it plays
an important role in partial-order reductions used for model checking distributed
systems [Godefroid and Wolper 1994, Valmari 1990]. The idea of writing system
specifications in terms of state machines is widely accepted [Abrial 2010, Gurevich
1995]. The specification language tla+ is taught at universities around the world,
and PlusCal is starting to be used as a vehicle for teaching courses on distributed
algorithms.

The first significant use of tla+ in industry was for specifying and verifying
cache coherence protocols by the group of hardware engineers that designed Digi-
tal Equipment Corporation’s Alpha processors [Joshi et al. 2003]. Members of that
group subsequently moved to Intel and continued to use tla+, although little is

128 Chapter 5 Formal Specification and Verification

publicly known about the impact of that work. Work at Microsoft using tla+ started
around 2003 with the specification of the Web Services Atomic Transaction proto-
col [Johnson et al. 2007]. This experience was considered successful, and engineers
at Microsoft continued to use tla+. Reportedly, use of tla+ contributed to identi-
fying a serious error in the XBox 360 memory system that would have been difficult
to debug using conventional techniques. The Farsite project [Bolosky et al. 2007] at
Microsoft Research developed a scalable, serverless, and location-transparent dis-
tributed file system that could tolerate nodes being unavailable, as well as malicious
participants. The designers used tla+ for specifying the distributed directory ser-
vice and refined a centralized functional specification into the formal description
of a distributed protocol. They report that the main benefit of using formal specifi-
cation and verification was to understand the invariants that the system must main-
tain through different levels of refinement. They consider that it would have been
far more costly to iterate through several designs at the implementation level where
aspects related to the distributed protocol would have been mixed with low-level
coding details. In contrast, they found that developing an implementation from
the protocol specification was rather straightforward because only sequential code
had to be written, without a need for thinking about aspects related to distributed
execution. In the later IronFleet project [Hawblitzel et al. 2015, 2017], researchers
at Microsoft pushed this idea even further. Combining a tla-style approach to state
machine specification and refinement with a Floyd-Hoare style of reasoning about
imperative programs provided by Dafny [Leino 2010], they obtained a mechanized
framework for designing, implementing, and verifying distributed systems from
high-level (centralized) specifications to distributed protocols and further to exe-
cutable code that exhibited competitive performance. Based on an embedding of
tla and its proof rules in Dafny, they could prove not only safety but even liveness
properties in a unified framework. The approach was used to develop a replicated
state machine library and a sharded key-value store.

An interesting account of the use of tla+ in industry was provided by a group
around Chris Newcombe working at Amazon Web Services [Newcombe et al. 2015].
They reported that not only have tla+ specifications contributed to finding sub-
tle bugs in high-level designs of distributed protocols, but the understanding and
confidence obtained from formal specification and verification allowed them to
make aggressive performance optimizations without sacrificing correctness. Sev-
eral other companies developing web and cloud services, including the groups
working on Azure at Microsoft, actively use tla+ and tlc for describing and ver-

5.6 Impact 129

ifying the protocols they design. The tla+ Google group12 and regular in-person
community meetings provide forums for the members of the tla+ community to
exchange and help each other in case of problems.

tla+ is intended as a formalism for modeling and verifying high-level designs
of algorithms and systems. Doing so does not prevent coding errors from creeping
into implementations of verified algorithms: such errors can be caught using tech-
niques of program verification. However, the implementation of a buggy design is
virtually guaranteed to contain the design errors, and finding and fixing these is-
sues at the level of executable code is much more difficult and costly than doing
so at an early stage of development, using specifications written at the appropriate
level of abstraction.

12. https://groups.google.com/forum/#!forum/tlaplus

https://groups.google.com/forum/#!forumtlaplus

6Biography
Roy Levin

6.1 Early Years
Leslie Lamport was born in 1941, the year the United States entered World War II.
Computers were specialized and primitive. Computing, as a discipline, didn’t exist.
Vannevar Bush’s famous essay As We May Think [Bush 1945], which foresaw the
modern computing world of interconnected computers on which Lamport would
have enormous impact, wouldn’t appear for another four years.

Lamport grew up in New York City. His interest in mathematics began in elemen-
tary school, and he recalls that his mother taught him long division years before
he heard about it in the classroom, which would normally have been around age 9.
Learning arithmetic at home was perhaps more common in the years before com-
puters became commonplace, as the focus of grade-school mathematics education
was to teach “shopkeeper math,” which most parents had learned themselves in
the same way. Now, of course, many parents can’t do division without a calculator.

The atmosphere of Lamport’s childhood home wasn’t math- or science-
oriented, though his father had prepared for medical school as a college under-
graduate, premed being a three-year, nondegree program then. Lamport’s father
never went to medical school (it was the Great Depression), but he had a scientific
turn of mind, and colleagues at his workplace called him “Doc” [Lamport 2018b].
Lamport recalls taking long walks with his father, during which his father told him
things that stimulated an interest in physics. (Recalling those walks, Lamport won-
dered “if that’s why I’ve always had the habit of getting up and walking (or pacing)
when I was thinking” [ibid.].)

In 1954 at age 13, Lamport began the tenth grade at the famed Bronx High
School of Science, having skipped two grades previously. He doesn’t recall any inter-
est in computers before entering high school, even though they had acquired broad

132 Chapter 6 Biography

public awareness through television in 1952 when a UNIVAC computer predicted
a landslide win for Dwight Eisenhower in the US presidential election.1 Lamport’s
family, however, didn’t acquire a television until 1954 (to see the Army-McCarthy
hearings). But he did become aware of computers—more precisely, the mathe-
matics behind the circuits out of which they were built—from a book on Boolean
algebra, probably in his junior year. He also thinks he probably saw them in the
movies [ibid.].

During high school, Lamport also tried to build a computer with a friend. He
visited IBM in New York City and acquired some functional used vacuum tubes.
(Maintenance procedures of the day dictated that tubes be replaced on a schedule
rather than waiting for them to fail.) Lamport and his friend got as far as building
a working four-bit counter: quite a way from a complete computer but enough
to impress interviewers at MIT when Lamport later applied for admission there
[Lamport and Levin 2016a, page 3].

These first explorations of computing, however, didn’t rival Lamport’s earlier
interest in mathematics.2 It was in his senior year of high school that he first en-
tertained the idea of a career as a mathematician, though he freely confesses that
he probably had no idea what that entailed [ibid.]. He showed the first signs of
mathematical creativity in that year, when he published his first paper, “Braid
Theory,” in the Mathematics Bulletin of the Bronx High School of Science [Lamport
1957]. Today, he downplays its significance, saying it “shows I was not a prodigy”
[Lamport 2019, comment 1]. But it shows that, even as a 16-year-old, Lamport
wanted to communicate his ideas effectively. The same publication contains the
companion article “An Introduction to Group Theory” by his classmate Alison
Lord, which Lamport’s paper references in its opening sentence as “essential”
background. Evidently, the teacher responsible for the publication saw sufficient
merit in Lamport’s work to provide readers with the context needed to under-
stand it.

1. This was the first use of computers for election prediction, and the CBS television network
executives suppressed the prediction, believing it to be wrong since it differed sharply from
conventional polling. When it proved accurate, CBS was forced to eat crow [Wikipedia 2018d].

2. Recalling his grade-school years more than a half century later, Lamport opined: “I suspect
that I was attracted to math because of its simple certainty, which was in stark contrast to the
unpredictable behavior of human beings. I see no point in trying to psychoanalyze that” [Lamport
2018b].

6.2 Education and Early Employment 133

6.2 Education and Early Employment
After graduating from high school, Lamport worked for a summer at Consolidated
Edison (Con Ed), the electric utility company in New York City. He began doing
what he characterized as “very boring stuff” [Lamport and Levin 2016a, page 3]
but managed to get transferred to the computer center where there was an IBM
705, a relatively sophisticated computer for 1957.3 Though Lamport’s job was to
be a classic “glass house” computer operator—mounting/dismounting tapes and
running card-deck jobs—he and the computer had enough spare time that he
learned to program it. Of course, he used assembly language, as FORTRAN was just
coming into existence [Backus et al. 1957]. Lamport recalls that his first program
computed e to around 125 digits, that number being chosen because it matched
the size of the 705’s accumulator, thereby sparing him the need to do multiple-
precision arithmetic [Lamport and Levin 2016a, page 3].

After his first summer at Con Ed, Lamport began his undergraduate years at
MIT. He initially planned to major in physics but switched to mathematics when he
discovered that it was the only major that didn’t require an undergraduate thesis
[ibid.]. Nevertheless, he continued to study physics as well, and supported him-
self by writing programs: during the academic year for a professor in the business
school and during the summer at Con Ed. The summer job offered him a differ-
ent kind of intellectual stimulation than math or physics. As Lamport recalled it
[Lamport and Levin 2016a, page 11, edited]:

I had a manager who became sort of a mentor to me, and he would give me these
problems. In those days, programs were on punch cards, and you would load
the punch cards into the hopper, and you’d press a button on the console. The
computer would read the first card and then put that card in memory and execute
that piece of memory as a program. So, the first card would usually be something
that had just enough of a program in it to load a few more cards, so you’d have
a decent-sized program that you would then execute to load your program and
start that program executing. I remember he posed the problem to me to write
a loader that worked all on a single card. And I worked on that problem and I
would present him the solution and he’d say, “Yeah, that’s good. Now make your
loader also have this other property,” and we went through a few iterations like
that. I just loved those puzzles.

3. Readers unfamiliar with computers of the era will find the technical marketing document
educational [IBM 1955]. In particular, the main memory capacity (magnetic cores) was trumpeted
as 20,000 characters.

134 Chapter 6 Biography

Lamport’s later focus on concurrency began with the same love of puzzles,
though more than 15 years would elapse before he found the opportunity to apply
his knowledge of physics to those problems. During his undergraduate years, he
pursued interests in math, physics, and computing, but they were “completely
separate worlds” [Lamport and Levin 2016a, page 4] to him at the time. He certainly
didn’t think of computing as a career, for as a math major, “the only thing I knew
that mathematicians did was teach math, so I suppose my career goal was to be a
professor of mathematics” [ibid.].

He undertook his graduate education in mathematics, at Brandeis University,
with that objective, earning his M.S. in 1963 and his Ph.D. in 1972. During those
years, computing continued to be a part-time livelihood. He worked as a program-
mer at MITRE Corporation (1962–65), a government contractor, then beginning
in 1970 at Massachusetts Computer Associates (COMPASS), a software contracting
company, on the recommendation of a Brandeis faculty member. In between, he
taught undergraduate mathematics at Marlboro College (1965–69) and authored
an unpublished calculus text.

As he approached his Ph.D. dissertation, Lamport initially planned to work
in mathematical physics, combining his two undergraduate foci, but he instead
settled on a topic in analytic partial differential equations. He characterizes his
thesis as “a small, solid piece of very classical math” and adds, “I learned nothing
about analytic partial differential equations except what was needed for my thesis
research, and I have never looked at them since then” [Lamport 2019, comment 7].

6.3 The COMPASS Years (1970–1977)
When Lamport finished his Ph.D. in 1972, he planned to leave Boston after 15 years
of education and become a professor at the University of Colorado in Colorado
Springs. But he had been working part-time at COMPASS for two years and they
offered him a staff position . . . in California. They had no office there, but antic-
ipated setting one up and said that he could work for them until the office was in
place. So, he turned down the academic job in Colorado and began working full-
time in the computer industry, where he remained throughout his career.

COMPASS’s main business was building FORTRAN compilers, something that
nearly every computer sold in the 1970s needed to have. Scientific computation,
for which FORTRAN was intended, often involves matrices whose elements can
be operated upon in parallel if the computer has the hardware to do so and if
the software can take advantage of it. But FORTRAN was conceived before parallel
computation was a reality, so FORTRAN programs on matrices were customarily

6.3 The COMPASS Years (1970–1977) 135

written as loops, often nested, obscuring the inherent parallelism.4 In the early
1970s, the University of Illinois tried to build an array processing computer, the
ILLIAC IV, for which COMPASS had contracted to create a FORTRAN compiler that
rediscovered the parallelism in these loops.5 This compiler was terra incognita for
COMPASS, and they turned to Lamport for help.

Lamport proposed that he work on the problem while spending a month or two
with a friend in New Mexico. COMPASS agreed. Lamport worked out the theory
(based on linear algebra), which he characterized as “pretty straightforward,” and
created the algorithms based on the theory [Lamport 2019, comment 9]. To com-
municate both clearly to his colleagues, he wrote a substantial document. Such a
thing was unheard of in the software industry at the time, but it had the desired
effect. Lamport said, “I learned later from observation that this tome . . . was prac-
tically a sacred text that people studied, and they did use it to build the compiler”
[Lamport and Levin 2016a, page 6].

In retrospect, this episode represents a significant first in Lamport’s career, for
several reasons. It was the first setting in which he created a software specification
with a firm mathematical foundation. It was his first substantive piece of work to
appear in the prestigious Communications of the ACM (CACM) [Lamport 1974b],
other than a short note earlier commenting on another’s work [Lamport 1970].
Perhaps most significantly, it established his ability to operate as an independent
researcher in a corporate context, for on the strength of the parallelizing compiler
work, COMPASS agreed to send him to California before their office existed. As
things transpired, the office never materialized, but Lamport moved to the San
Francisco Bay Area and worked independently for COMPASS, supported by various
government contracts while carrying out self-directed research that sometimes had
little immediate relevance to those contracts. As Lamport put it, the parallelizing
compiler work “reassured the people at COMPASS that I could go off by myself
without supervision and actually do something useful” [Lamport and Levin 2016a,
page 6]. He continued to do so, visiting the COMPASS office in Massachusetts for
about a month annually, for another five years. During those years he created two

4. FORTRAN was already well established as the de facto standard language for scientific compu-
tation, despite its unsuitability for expressing matrix computations. Better alternatives existed,
such as Iverson’s APL [Iverson 1962], a language in which arrays are the only data structure. APL
was commercially available on IBM S/360 computers in 1966. However, it was implemented as a
time-shared, multiuser interpreter, making it unsuitable for many workloads. Despite its power
and elegance, it never achieved widespread use.

5. ILLIAC IV’s design had four CPUs and 256 FPUs, but only one “quadrant” of the machine was
built, effectively creating a single-processor machine with 64 arithmetic units [Wikipedia 2019c].

136 Chapter 6 Biography

of his seminal works—the Bakery algorithm and the Time/Clocks paper—though
their significance would not be recognized for many years.

Lamport’s algorithms for the parallelizing FORTRAN compiler used a special-
ized kind of concurrent computation matched to the architecture of ILLIAC IV:
a single thread of control that operates synchronously in parallel on arrays dis-
tributed across multiple processing units.6 By contrast, the Bakery algorithm and
essentially all of Lamport’s subsequent work in concurrency use multiple commu-
nicating processes, the kind of parallelism that has become ubiquitous in modern
computing. Lamport described how the algorithm came about [Lamport and Levin
2016a, pages 7–8, edited]:

In 1972, I became a member of the ACM. One of the first CACM issues that I
received contained a mutual exclusion algorithm.7 I looked at that, and it seemed
to me that that was awfully complicated: there should be a simpler solution. I
decided, “Oh. Here’s a very simple solution for two processors.” I wrote it up,
I sent it to ACM, and the editor sent it back saying, “Here is the bug in your
algorithm.” That taught me something! It taught me that concurrency was a
difficult problem and that it was essential to have proofs of correctness of any
algorithm that I wrote. Well, of course, it got me mad at myself for being such an
idiot. I determined to solve the problem, and in attempting to solve it, I came up
with the Bakery algorithm.

Mutual exclusion of parallel processes accessing shared data is a central prob-
lem in concurrent computation. It was not new when Lamport conceived the Bakery
algorithm, having received considerable attention in publications going back at
least seven years earlier. Chapter 1 defines the problem and explains how Lamport’s
Bakery algorithm addresses it. Lamport didn’t mention either bakeries or mutual
exclusion in the title of his paper: “A New Solution of Dijkstra’s Concurrent Pro-
gramming Problem” [Lamport 1974a]. Indeed, the analogy with bakeries doesn’t
appear until nearly halfway through the concise paper. As noted in Lamport and
Levin [2016a, page 7], though the paper presents a concrete algorithm, it couldn’t

6. Lamport had earlier used another specialized form of concurrency when he designed a file
system for a computer being built by Foxboro Computers (again, COMPASS had the software
contract for the machine). This system used interrupts, a low-level form of concurrency requiring
careful discipline to program correctly [Lamport and Levin 2016a, page 5]. Much of the early
research in concurrency sought to create better-behaved mechanisms to replace interrupts.

7. In the early decades of computing, the Communications of the ACM had a monthly algorithms
section.

6.3 The COMPASS Years (1970–1977) 137

appear in CACM’s algorithms section, since publication there required working
code and, at the time, there were no working general multiprocessors! Despite its
brevity, the paper contains several notable features beyond its technical innovation.
It prominently includes a proof of the algorithm’s correctness—a direct conse-
quence of Lamport’s experience quoted above. It points the way to a major area of
Lamport’s future work, fault tolerance, with a single concluding sentence: “Since
[the algorithm] does not depend upon any form of central control, it is less sensi-
tive to component failure than previous solutions.” It devotes three paragraphs to
characterizing a practical problem in implementing the algorithm: the potentially
unbounded values of counters and the implications for storing them in fixed-length
registers. (Lamport subsequently worked on this problem as well; see the discus-
sion in Chapter 1.) The paper also contains the first appearance of some techniques
that Lamport would employ regularly in subsequent work, such as the use of a
counter as a timestamp. In fact, this kind of timestamp plays an essential role in
the other seminal work of Lamport’s COMPASS years, the Time/Clocks paper.

The Bakery algorithm paper of 1974 documents Lamport’s first significant re-
search result—one in which he takes pride [Lamport and Levin 2016a, page 11,
edited]:

I think in other things that I’ve done, I can look back and see: “This idea devel-
oped from something else.” Sometimes it would lead back to a previous idea of
mine, very often it would lead to something somebody else had done. But the
Bakery algorithm just seemed to come out of thin air to me. There was nothing
like it that preceded it, so perhaps that’s why I’m proudest of it.

“Time, Clocks and the Ordering of Events in a Distributed System” [Lamport
1978b]—generally shortened to the Time/Clocks paper—grew out of a working
paper by Paul Johnson and Robert Thomas entitled “The Maintenance of Duplicate
Databases” [Johnson and Thomas 1975], published as an RFC in 1975.8 Lamport
received a copy of the paper, probably in 1975, and realized that the algorithm it pro-
posed for keeping replicated databases in synchrony wasn’t quite right because “it
permitted a system to do things that, in ways, seemed to violate causality”[Lamport
and Levin 2016a, page 20]. Lamport believes that his physics background enabled

8. The acronym RFC (Request for Comments) in this context refers to the mechanism of technical
communication created as part of the ARPANET project, one of the inspirations for the Internet.
RFCs, which were hand-produced in days before computer-based word processing, ran the gamut
from working papers to specifications of standards.

138 Chapter 6 Biography

him both to recognize the deficiency and to correct it; specifically, he could di-
rectly apply special relativity and the space-time view of Minkowski’s seminal 1908
paper [Minkowski 2017]. “I realized that the problems in distributed systems are
very much analogous to what’s going on in relativity because in relativity there’s no
notion of a total ordering of events: to different observers, events will appear to hap-
pen in different orders. But there is a notion of causality, and I realized that there’s
an obvious analog of that in distributed systems” [Lamport and Levin 2016a, page
20, edited].

To order the events in their replicated databases paper, Johnson and Thomas
used timestamps, and Lamport’s solution does as well. Lamport has frequently
pointed this out when people mistakenly credit him with inventing the use of time-
stamps for this purpose. Perhaps the fame that this paper enjoyed for its real inno-
vations led readers to believe that everything in it was novel. Since Lamport’s paper
was not an explicit response to Johnson and Thomas—their paper served as the ini-
tial stimulus for Lamport’s thinking—many readers were doubtless unaware of the
earlier work, which did not receive the wide circulation of Lamport’s CACM paper.
Whatever the reason, it is ironic that many people consider the causal ordering of
events via timestamps, and the algorithm that Lamport chose to implement it, as
the key innovations of the paper. In Lamport’s words [Lamport and Levin 2016a,
page 21, edited]:

I realized that this algorithm was applicable not just to distributed databases,
but to anything, and the way to express “anything” is a state machine. What
I introduced in this paper was the notion of describing a system by a state
machine. . . . What I said in the paper was: what any system is supposed to do
can be described as a state machine, and you can implement any state machine
with this algorithm, so you can solve any problem. The simplest example I could
think of was a distributed mutual exclusion algorithm, and since distributed
computing was a very new idea, this was the first distributed mutual exclusion
algorithm, but I never took that seriously as an algorithm. Nor do I take the
Time/Clocks paper’s algorithm as the solution to all problems, because although
in principle you can solve any problem this way, it didn’t deal with failures. It’s
not clear that the solution would be efficient, and there could be better solutions.
In fact, I never thought that my distributed mutual exclusion algorithm would
in any sense be an efficient way of doing mutual exclusion. Well, the result of
publishing the paper was that some people thought that it was about the partial
ordering of the events, some people thought it was about distributed mutual
exclusion, and almost nobody thought it was about state machines! And as a
matter of fact, on two separate occasions, when I was discussing that paper with
somebody and I said, “the really important thing is state machines,” they said to

6.4 The SRI Years (1977–1985) 139

me, “There’s nothing about state machines in that paper.” I had to go back and
look at the paper to convince myself that I wasn’t going crazy and that I really did
mention state machines in that paper!9

Chapter 2 includes an overview of the Time/Clocks paper. Whether or not the
field remembers the paper’s key insight about the generality of state machines
for building distributed systems, the state machine approach caught on. A few
months after the paper appeared, Fred Schneider, then a first-year assistant pro-
fessor at Cornell University, mailed Lamport a draft of a paper [Schneider 1982]
that built on the Time/Clocks paper. Schneider’s paper considered failures, which
Lamport’s had not, and that first interaction led to a highly productive multidecade
collaboration and a half-dozen papers exploring how to reason about concurrent
programs. Inspired by the Time/Clocks paper, Schneider later produced a tutorial
on state machines that became the essential reference on the state machine ap-
proach [Schneider 1990].

A great deal of Lamport’s subsequent work in concurrency can be traced back
to these two seminal papers of his COMPASS years that address fundamental is-
sues in distributed systems: mutual exclusion (Bakery algorithm) and causality
(Time/Clocks). Remarkably, at that time distributed systems played a relatively
small and isolated role in the computing universe. Why, then, did Lamport work on
them? He said: “I don’t want to give the impression that I was drawn to concurrency
by fundamental problems. The fact of the matter is that they were just really cool
puzzles. Concurrency added a whole new dimension of complexity, and so even the
simplest problem became complicated” [Lamport and Levin 2016a, pages 11–12,
edited].

But the computing universe was rapidly changing. By the time the Time/Clocks
paper appeared, Lamport had moved to a new employer, and he quickly became
engaged in a project with a very real distributed system.

6.4 The SRI Years (1977–1985)
In 1977, COMPASS decided not to continue Lamport’s remote working arrange-
ment. Lamport wanted to remain in California, so he interviewed with two well-
known research labs: Xerox PARC in Palo Alto and SRI International in neighboring
Menlo Park.

9. As Butler Lampson put it: “The paper is quite famous, but hardly anyone (including myself, until
Leslie pointed it out to me) has noticed that it introduced replicated state machines; everyone has
focused on the fact that it introduced logical clocks, a much less important idea” [Lampson 2018].

140 Chapter 6 Biography

Xerox PARC had pioneered personal distributed computing in the early 1970s.
Its Computer Science Lab (CSL) created what became the archetype of personal
computing: the Alto workstation, the Ethernet, and essential network services for
file storage and printing. In retrospect, it seems a natural fit for someone doing
pioneering work in distributed systems, but at the time, Lamport didn’t strike the
leaders as sufficiently practically minded, so he didn’t receive a job offer [Lampson
2018].

SRI was a different sort of research lab. Originally a part of Stanford University,
SRI had become an independent entity doing contract research, much of it for the
US government. When Lamport interviewed, they had a multiyear contract to build
an airplane flight control system with stringent fault tolerance requirements, and
they hired him to join that effort.

The SIFT project (software-implemented fault tolerance) originated indirectly in
the so-called Arab Oil Crisis of 1973, in which an embargo on the export of oil from
the Middle East caused prices to skyrocket in much of the world [Wikipedia 2019a].
Conservation efforts ensued, including research into techniques for making air-
craft significantly lighter. To do so required active control of the flight surfaces,
implying the need for automation to effect small adjustments many times per sec-
ond. While computers performed a variety of functions in aircraft in the 1970s,
those functions weren’t critical, and the human crew could take over in the event
of a failure. For aircraft requiring continuous adjustments to continue flying, a com-
puter system became essential and obviously required high reliability, which could
only be achieved through replication of critical components and software to man-
age those components coherently. NASA contracted with SRI to build that software.
The contract specified a probability of system failure of less than 10−9 per hour,
comparable with manned spacecraft systems [Wensley et al. 1978].

When Lamport arrived at SRI, much of the work on SIFT had been done, in-
cluding the solution of a central problem: how to get a set of processors to agree
on something in the presence of faults. Marshall Pease had proved that 3t + 1
processors are necessary and sufficient to tolerate t faulty processors under cus-
tomary communication assumptions.10 Lamport observed that the result could be
significantly improved by the use of communication involving digital signatures,
reaching back to some work he had done at COMPASS before digital signatures
were generally known in the field. (They became known through Diffie and Hell-
man’s landmark cryptography paper [Diffie and Hellman 1976], which appeared in

10. Pease was inspired by the work of his colleague down the hall, Robert Shostak, who had proved
the result for t = 1, the case of practical interest for SIFT [Shostak 2018].

6.4 The SRI Years (1977–1985) 141

1976 but mentions Lamport’s earlier digital signature work.11) But Lamport says his
main contribution to the paper describing the fault tolerance results [Pease et al.
1980] was getting Shostak and Pease to write the paper in the first place [Lamport
2019, comment 41], as publication generally wasn’t (and generally still isn’t) a pri-
ority for researchers in industry.

Lamport continued to refine the fault tolerance algorithm (and its description),
which led to a second paper with Shostak and Pease. The first paper eventually came
to be recognized as a foundational result—it received the 2005 Edsger W. Dijkstra
Prize in Distributed Computing—but the second paper gave the problem of agree-
ment in the presence of arbitrary faults the name that has stuck. Lamport recalls
being inspired by Jim Gray, who had earlier described a problem that he coined the
“two generals paradox.” The problem involves two generals who want to coordinate
an attack that cannot succeed unless both of their armies participate. The generals
communicate only through messengers sent between them. The problem: Since
any messenger may fail to arrive, how can the generals ever be certain that they
have reached agreement to attack? The similarity with the fault tolerance problem
of the SIFT project led Lamport to seek a similar catchy name [Lamport and Levin
2016a, page 34, edited]:

I decided on a story of a bunch of generals who had to reach agreement on
something and they could only send messengers and stuff like that. I originally
called it the Albanian Generals, because at that time Albania was the most
communist country in the world; it was a black hole, and I figured nobody in
Albania is ever going object to that. Fortunately, Jack Goldberg, who was my boss
at SRI said, “You really should think of something else because, you know, there
are Albanians in the world.” So, I thought . . . and suddenly: Byzantine Generals!
Of course, with the connotation of intrigue, that was the perfect name.

The Byzantine generals paper [Lamport et al. 1982] overlapped significantly
with the earlier paper containing the central 3t + 1 result. Lamport freely admits
that “the main reason for writing this paper was to assign the new name to the
problem” [Lamport 2019, comment 46]. However, he reformulated the algorithm
in a simpler way, since Pease’s original algorithm, which Lamport characterized as
“an amazing piece of work” [Lamport and Levin 2016a, page 13], was difficult to

11. Diffie had been working on the digital signature problem in the mid-1970s. He met with
Lamport in a coffeehouse in Berkeley and told him about the problem. Lamport recalls that he
“thought a minute and literally on a napkin I wrote out a solution involving one-way functions”
[Lamport and Levin 2016a, page 14].

142 Chapter 6 Biography

follow and the proof was even more so. As Lamport recognized, names matter, so
while the earlier paper with the core result justly received the Dijkstra Prize, that
result indelibly bears the name from the later one: Byzantine agreement. During his
SRI years, Lamport continued to work on fault tolerance, incorporating the state
machine formulation he introduced in the Time/Clocks paper. Chapter 3 discusses
the original Byzantine generals result and subsequent ones.

Lamport’s work at SRI extended well beyond fault tolerance. Much as at COM-
PASS, Lamport nominally worked on a variety of contracts, but actually carried out
a largely self-directed research program, pursuing threads that reached back to
earlier work and would continue well into the future. One such thread involved
the arbiter problem, sometimes more colloquially named “the glitch,” in which
Lamport became interested some years earlier when it was noted that the Bakery
algorithm required an arbiter. The problem arises from trying to decide between
discrete outcomes—say, having a circuit output a zero or a one—in a bounded time
interval. Engineers were familiar with the problem, though many did not accept
that it was unsolvable. Lamport and Richard Palais, his former de jure thesis ad-
viser, found a mathematical formulation using a carefully chosen topology that,
coupled with theorems about continuity, produced a proof of impossibility. Their
paper, submitted for publication in 1976, was rejected because, Lamport believes,
the mathematics was foreign to the reviewers [Lamport and Levin 2016a, pages
24–25]. It is possible, however, that (in the spirit of “the impossible takes a little
longer”) they were reluctant to accept the conclusion. Lamport quotes a related
story [Lamport 2019, comment 60]:

Charles Molnar, one of the pioneers in the study of the problem, reported the
following in a lecture given on February 11, 1992, at HP Corporate Engineering
in Palo Alto, California: “One reviewer made a marvelous comment in rejecting
one of the early papers, saying that if this problem really existed it would be so
important that everybody knowledgeable in the field would have to know about
it, and ‘I’m an expert and I don’t know about it, so therefore it must not exist.’ ”

Lamport and Palais’s paper was never published, but Lamport wrote a less
formal treatment under the title “Buridan’s Principle.” Surprisingly, though it
described the arbiter problem for a general scientific audience, neither Science nor
Nature wanted to publish it. Eventually, in 2012, it found acceptance in Foundations
of Physics [Lamport 2012], perhaps because that discipline was more comfortable
with the mathematical ideas and with the sometimes unintuitive consequences of
formalizing the behavior of physical systems.

6.4 The SRI Years (1977–1985) 143

During his SRI years, Lamport explored concurrency well beyond the arbiter
problem. He contributed to an influential paper on concurrent garbage collec-
tion by Edsger Dijkstra in 1978. The paper was ahead of its time because, in the
late 1970s, programming languages generally didn’t depend on garbage collection
and rarely ran on computer systems offering true concurrency. (Lamport consid-
ered his contribution minor, but Dijkstra thought it significant enough to make
him a co-author.) In this area, as in others, Lamport foresaw practical problems
and devised their solutions decades before most of the field recognized their need
or importance. Other noteworthy papers by Lamport during this time include his
work with Mani Chandy on distributed snapshots [Chandy and Lamport 1985] (see
Chapter 2) and his paper on cache coherence [Lamport 1979b], which gives a pre-
cise definition of sequential consistency (see Chapter 1). As the size of programs
increased, spurred on by the exponential growth of computing capacity charac-
terized by Moore’s law, many researchers sought techniques to verify program
correctness. Since Lamport had worried about proving correctness at least since
his COMPASS days, he naturally contributed to this area, focusing on suitable for-
malisms and techniques for verification of concurrent programs. He published
several papers in this area while at SRI, including one that used arrows in a way
reminiscent of the causality relation in the Time/Clocks paper, and others that
represent initial forays into the use of temporal logic, which would become part
of the methodology he ultimately adopted for specification and verification (see
Chapter 5).

Aside from his Ph.D. thesis and a paper derived from it, Lamport never pub-
lished a mathematical paper. But during his time at SRI, he published something
that had a huge impact on the field of mathematics, as well as computer science:
the LaTEX system.

When Lamport began writing papers, computers provided only limited tools
to assist authors of technical communications. Simple computer-based text pro-
cessing systems had existed since the 1960s, but until the mid-1970s mechanical
typesetting remained the technology for creating books and journals, even if the
manuscript to be published had been prepared on a computer. Lamport himself did
not begin using computer-based document production systems until around the
time he arrived at SRI in 1977. What is now known as word processing was then in
its infancy, appearing in experimental systems such as Butler Lampson and Charles
Simonyi’s Bravo [Wikipedia 2018a] and Brian Reid’s Scribe [Wikipedia 2018c].
Coupled with computer-driven laser printing, these systems enabled authors to
produce immediately publishable versions of technical documents, without going

144 Chapter 6 Biography

through an intermediary that typeset their content. These new systems featured
multiple fonts and text styles, hierarchical sectioning, footnotes, bibiliographic ci-
tations, cross-referencing, and the like.12 Lamport began using Scribe soon after it
was available, around 1978 [Lamport 2018].

These early systems adopted an essentially linear document model that worked
adequately for ordinary prose but could not accommodate the two-dimensional
typesetting requirements of mathematics. Seeking to marry the benefits of an
author-controlled technical document production system with the printing quality
achievable in professional typesetting, Donald Knuth digressed from his ambitious
book project, The Art of Computer Programming, to create a system capable of
creating aesthetically pleasing documents with mathematical content.13 He named
that system TEX [Wikipedia 2019d].

TEX made two-dimensional layout a first-class notion, which distinguished it
not only from its contemporaries like Scribe and Bravo but also from most of their
successors, which tend to treat formulas and other two-dimensional structures as
a separate kind of object, like a picture or table, to be dropped into an otherwise
linear text stream. Knuth also created the necessary fonts of mathematical symbols
for formula construction.14 Finally, and crucially, Knuth wanted great flexibility in
the typesetting, so he avoided building in assumptions about document structure.
Instead, he gave TEX a macro capability, enabling users to build structures for
different purposes.

“If you build it, they will come.” The users came, and they built and exchanged
macro packages, and TEX quickly found adherents within the computer science and
mathematics communities.15 Lamport began using it around 1979 for his papers.
Knuth soon began working on a second version, which would come to be called
TEX82. Around the same time, Lamport began working on a book and decided that
the available macro packages for something of that size were unsuitable, so he set

12. This was a classic example of technologists innovating to solve a problem they personally
experienced: the cumbersome and error-prone publication cycle of manuscripts, galleys, and page
proofs.

13. Knuth begin this long-running book project in 1962. It was originally conceived as a single
book of 12 chapters, then of 7 volumes, some of which now (in 2018) have several subvolumes.

14. Some mathematical symbols could be incorporated in documents produced in Bravo through
its flexible font capability. Scribe could handle multiple fonts too, but in its early days it often
ran in computing environments with printers of limited capability. Lamport recalls trying to
create acceptable-looking mathematical symbols for dot-matrix printers and expoiting Scribe’s
font capabilities to print them [Lamport 2018].

15. Other disciplines, including physics and statistics, came along later.

6.4 The SRI Years (1977–1985) 145

out to develop his own macros and thought, “I might as well make them usable for
others” [Lamport 2018]. LaTEX was born.16

LaTEX combined the power of TEX’s 2D typesetting with Scribe’s notion of a
document style. Scribe was one of the first document systems to provide a flexible
and intuitive way of compartmentalizing detailed decisions about a document’s
structure and appearance, a feature that Lamport wanted for his book project.17

Unsurprisingly, that proved a winning combination with many authors, and after a
first version and manual became available around 1983, the system spread rapidly
through the computer science community.18 The manual was later published by
Addision-Wesley [Lamport 1994b]; the software itself has always been free.

Over the next few years, LaTEX became the de facto standard way to create com-
puter science papers and books, accelerating as personal computer workstations
became more common. But with success comes support, and by the end of the
1980s a group of volunteers [LaTEX Project 2019] had assumed responsibility for the
evolution of LaTEX, and Lamport ceased to be directly involved. (As of this writing
(mid 2019), LaTEX 2ε, with a manual from 1995, is the current version. Version 3 is
a long-running research project.) Three decades later, writers of computing papers
with mathematical content, including Lamport, still use LaTEX as their document
production system of choice, though other systems, such as Microsoft Word, have
caught up for other classes of papers.19

The book for which Lamport conceived LaTEX, which he self-mockingly calls
“The Great American Concurrency Book,” remains incomplete, though parts have

16. The Wikipedia article on TEX [Wikipedia 2019d] explains its pronunication (properly the final
letter is pronounced as in Bach but often has the sound of a “k”). LaTEX, Lamport’s system, is
variously pronounced with a long or short “a”. Wikipedia doesn’t indicate which is preferred, but
in ordinary conversation its creator generally says “lay-tek” [Lamport 2018].

17. In the first edition of the LaTEX manual, Lamport freely acknowledged Scribe’s influence,
quoting a sentiment attributed to Igor Stravinsky (among others): “Lesser artists borrow; great
artists steal.”

18. The American Mathematical Society, which naturally embraced TEX, initially standardized on
a different set of macros called AMS-TEX [American Mathematical Society 2019b], which existed in
an early version when Lamport began work on LaTEX. However, it did not include the larger-scale
document structuring capabilities of LaTEX. Subsequently, it harmonized the two in AMS-LaTEX
[American Mathematical Society 2019a].

19. In 2000 [Ziegler 2000], Lamport said: “I don’t think TEX and LaTEX would have become popular
had they not been free. Indeed, I think most users would have been happier with Scribe. Had
Scribe been free and had it continued to be supported, I suspect it would have won out over TEX.
On the other hand, I think it would have been supplanted more quickly by [Microsoft] Word than
TEX has been.”

146 Chapter 6 Biography

been written more than once. There may be a parallel here with Knuth’s The Art of
Computer Programming.

6.5 The DEC/Compaq Years (1985–2001)
In 1985, Lamport went looking for another job. SRI had changed its management
in a way that he felt introduced unnecessary structure, which often impedes re-
search activity. As he looked for job opportunities, he sought a situation in which
research would be stimulated by real-world problems, much as he had experienced
while working on SIFT. He gravitated toward corporate research labs rather than
academia for that reason, as professors in that era worked largely on self-defined
problems supported by government funding agencies that took a more expansive
view of research than they did a decade or two later [Lamport and Levin 2016a,
pages 18–19]. Digital Equipment Corporation (DEC), a high-flying computer com-
pany in the 1970s and early 1980s, had recently opened a new lab in Palo Alto, the
Systems Research Center (SRC), at which Lamport interviewed and was offered a
position. Comparing SRC with SRI, he recalled [ibid., pages 17–18, edited]:

There was more community. At SRI, we said “Grant proposals are our most
important product.”20 The people who started SRC were the people who came
from Xerox PARC, where they had just created personal computing, so there was
very much a sense that the lab would continue to create the computing of the
future. SRC had a qualitative feel that was different from SRI. That had a lot
to do with Bob Taylor, the lab director and founder, who was just a wonderful
manager.”

Despite being young, SRC was already as large—about 15 researchers—as the
group that Lamport had left at SRI, and within a year it had become considerably
larger. Ultimately, it grew to about 60 researchers while retaining a completely flat
management structure, one of Bob Taylor’s many unconventional management
practices.21 The absence of hierarchy made it easy for researchers to share research
questions and to introduce each other to problems originating elsewhere in the
company. In fact, as Lamport noted in retrospect, more of the problems on which

20. A parody of a contemporary General Electric slogan: “Progress is our most important product.”

21. Taylor came to DEC from Xerox PARC, where he had been the director of CSL. His disagree-
ments there with his superiors over research management practices precipitated his departure
and the founding of DEC/SRC.

6.5 The DEC/Compaq Years (1985–2001) 147

he worked came from outside the lab, including especially from the rest of DEC
[ibid., page 19].

By the early 1980s, the march of Moore’s law had created single-chip micro-
processors sufficiently powerful to be used for general-purpose computation. They
were modest in performance but a great deal cheaper that the multichip CPUs
that preceded them. The idea of using a multiprocessor to get affordable desktop
computing power took hold in the research world. In 1984, as SRC was staffing
up, DEC introduced its MicroVAX line, which used DEC’s first single-chip CPU
that implemented the (non-floating-point) VAX instruction set. Researchers at SRC
launched a project to design a multiprocessor machine—the Firefly—around the
anticipated second chip in the family.22 Since no standard operating system yet
existed for multiprocessors, they launched a concurrent project to create one to
work in harmony with Unix, which already was well established on the VAX line in
addition to DEC’s flagship operating system, VMS. Just down the street from SRC
in Palo Alto, the Western Research Lab, a sibling DEC laboratory, was building an-
other multiprocessor—the MultiTitan [DEC WRL 2018]—with a CPU chip based on
WRL’s earlier Titan [Nielsen 2018]. Both multiprocessor projects involved Lamport,
though in different ways.

The hardware of a multiprocessor mediates access by the processors to the
shared memory. This mediation depends on mutual exclusion, a topic that had
engaged Lamport since his days at COMPASS. Shortly after Lamport came to DEC,
the MultiTitan designers sought his help to create a mutual exclusion algorithm,
using only reads and writes, that would be fast in the absence of contention. No one
had considered this problem before multiprocessing became practical. Lamport
created an algorithm and proved it was optimal [Lamport 1987].

Lamport’s involvement in the Firefly project was less direct, though what he
created would prove much more significant. SRC’s network of Firefly workstations
was to serve as a computing base for the researchers, many of whom had come
from PARC. As such, it would consolidate what they had learned about building
a practical, general-purpose, distributed computing environment. That environ-
ment would include scalable global naming, replicated fault-tolerant storage, and

22. This chip was colloquially called the MicroVAX II or Mayflower, though strictly speaking these
names referred to the DEC product machine built around the 78032 CPU chip (and its companion
78132 floating-point unit).

148 Chapter 6 Biography

network security; the project that put together those capabilities was the Echo Dis-
tributed File System [Birrell 1993]. Echo caught Lamport’s attention, for its fault
tolerance approach seemed to violate an impossibility result published a few years
earlier [Fischer et al. 1985].23 He recalled that “I sat down to try to prove that it
couldn’t be done. And, instead of coming up with the proof, I came up with an
algorithm. . . . It’s an algorithm that guarantees consistency,24 and it gets termi-
nation if you’re lucky” [Lamport and Levin 2016a, page 36]. That algorithm would
come to be known as Paxos, and it was destined to become one of Lamport’s most
important inventions.

Lamport completed his writeup of the Paxos algorithm and its correctness proof
in 1990 in a draft paper called “The Part-Time Parliament,” though by then Echo
was already in service using a different consensus algorithm to achieve consistency.
(See Chapter 4 for a technical description of the Paxos algorithm.) The significance
of Paxos was not widely recognized at the time. Lamport recalled [Lamport 2019,
comment 122]:

Inspired by my success at popularizing the consensus problem by describing it
with Byzantine generals, I decided to cast the algorithm in terms of a parliament
on an ancient Greek island. Leo Guibas suggested the name Paxos for the island.
I gave the Greek legislators the names of computer scientists working in the
field, transliterated with Guibas’s help into a bogus Greek dialect. (Peter Ladkin
suggested the title.) Writing about a lost civilization allowed me to eliminate
uninteresting details and indicate generalizations by saying that some details of
the parliamentary protocol had been lost. To carry the image further, I gave a
few lectures in the persona of an Indiana-Jones-style archaeologist, replete with
Stetson hat and hip flask. My attempt at inserting some humor into the subject
was a dismal failure. People who attended my lecture remembered Indiana Jones,
but not the algorithm. People reading the paper apparently got so distracted by
the Greek parable that they didn’t understand the algorithm.

23. Lamport said, “The FLP result, as it is generally known, says that, while you may have an
algorithm in which multiple processes agree on a value, the algorithm cannot guarantee that
such a value will eventually be chosen” [Lamport and Levin 2016a, page 36, edited]. He also
characterized it as “one of the most, if not the most, important papers on distributed systems
ever written” [ibid.].

24. The consistency guarantee means that the algorithm “can tolerate the failure of any num-
ber of its processes (possibly all of them) without losing consistency, and that will resume nor-
mal behavior when more than half the processes are again working properly” [Lamport 2019,
comment 122].

6.5 The DEC/Compaq Years (1985–2001) 149

When Lamport submitted the paper for publication, the reviewers wanted
the Paxos story removed. Annoyed, Lamport put the paper aside.25 Had it been
taken more seriously, a reviewer might have noticed a strong similarity between
the Paxos algorithm and one called viewstamped replication that appeared in
Brian Oki’s 1988 Ph.D. thesis [Oki and Liskov 1988]—a case of independent in-
vention of which Lamport became aware only years later: “I looked in Brian’s
thesis and there, indeed, was very clearly, the same algorithm. But I don’t feel guilty
about it being called Paxos, rather than Timestamp [sic] Replication, because [Oki
and Barbara Liskov, his adviser] never published a proof. And as far as I’m con-
cerned, an algorithm without a proof is a conjecture” [Lamport and Levin 2016a,
page 37].

Meanwhile, the problem of maintaining consistency in replicated systems grew
more important as networking and inter-networking became more widespread in
the 1990s. At SRC, Ed Lee and Chandu Thekkath wanted to build a distributed
system that provided replicated virtual disks, which they called Petal [Lee and
Thekkath 1996]. They therefore needed a consistency protocol, and another SRC
colleague, Mike Schroeder, directed them to the unpublished Paxos paper. They
produced an implementation for Petal, apparently unhindered by the lost Greek
civilization story. Subsequently, with SRC colleague Tim Mann, they built a scalable
distributed file system called Frangipani on top of Petal, which used a different
Paxos implementation for its distributed lock server.26 With Paxos thus in use,
in the mid-1990s Lamport was again motivated to try to publish his paper.27 The
revised version retained the storytelling of the original but added some annotations
on related work from the intervening years, which were provided by Lamport’s
colleague Keith Marzullo in a way that continued the parable. “The Part-Time

25. The anonymous reviewer wasn’t the only person who found the Paxos story problematic. Butler
Lampson recalls: “When Leslie wrote the first paper about Paxos, it was pretty incomprehensi-
ble. . . . I had to read the paper about 6 times before I could figure it out, but then it was clear to
me that it was really important.” Lampson tried unsuccessfully to convince Lamport to revise the
paper [Lampson 2018].

26. The Petal and Frangipani implementations of the Paxos algorithm were partial; fuller imple-
mentations of the Paxos algorithm are discussed later in this chapter.

27. Butler Lampson recalls an additional motivation: “Leslie . . . refused to make any changes,
so for eight years the paper remained unpublished. . . . I believe that what broke this logjam was
that I wrote a description of the algorithm that Leslie hated” [Lampson 2018].

150 Chapter 6 Biography

Parliament” finally appeared in 1998, nearly a decade after the invention of the
Paxos algorithm.28

During the years between the invention of Paxos and the eventual publication
of the paper, Lamport continued to pursue three interrelated threads of research
that had engaged him for more than a decade. The first, of course, was concurrent
algorithms, including mutual exclusion, interprocess communication, and fault
tolerance.29 The other two topics—precise specification of system behavior and
formal verification of program properties—had also prominently figured in his
work, motivated initially by the experience that led to his discovery of the Bakery
algorithm (recounted in Section 6.3). He published papers on the specification and
verification of concurrent programs beginning in 1977 [Lamport 1977a], and by the
time he came to SRC, he had published at least a dozen papers more. Much of this
work sought to create practical methods that didn’t collapse under the weight of
real-world algorithmic problems.

By the time he invented Paxos, Lamport had created the temporal logic of actions
(tla), a formal logic for specifying the behavior of a state machine and proving
invariance properties about it. He had been evolving toward this formalism since
he introduced the state machine model in the Time/Clocks paper, and he had used
invariance to characterize the meanings of programs even earlier at COMPASS in
his work on parallelizing FORTRAN.

Lamport developed tla at a time when many other researchers wanted to spec-
ify program behavior within a programming language. Lamport disagreed; he re-
garded mathematics as the correct vehicle. Accordingly, a specification in tla could
use mathematical objects not generally found in a programming language (such as
sets), thereby freeing the specification from the clutter of implementation details

28. There is evidence that the original journal editor’s objection to the style of the paper had
some validity. Lamport reports [Lamport 2019, comment 129] and Lampson confirms [Lampson
2018] that distributed systems specialists had difficulty understanding the algorithm. He then
relented and published Paxos Made Simple [Lamport 2001] with a one-sentence abstract: “The
Paxos algorithm, when presented in plain English, is very simple.” At least one commercial
implementation of Paxos took advantage of this paper [Burrows 2019], even though Lamport’s
web page warns against implementing from this informal description.

29. Around the time that Lamport joined SRC, he completed two two-part papers on mutual
exclusion [Lamport 1986a, 1986b] and interprocess communication [Lamport 1986c, 1986d] that
consolidated much of his work over the preceding decade or so. See Chapter 1. Considerably
earlier, in a 1979 paper [Lamport 1979b], he had also considered the problem of multiprocessor
cache coherence, a topic in mutual exclusion directly relevant to the Firefly.

6.5 The DEC/Compaq Years (1985–2001) 151

extraneous to an algorithm’s essence. In short, tla directly supported abstraction,
an essential technique for managing the complexity of describing and verifying
real-world systems. (See Chapter 5 for more background and details about tla.)

tla provided a formal way to state properties of programs, but proving those
properties was another matter. Lamport knew the pitfalls of informal verification,
and he recognized that for tla to be useful for anything other than small examples,
it would need to be supported by a mechanical proof system. Building a full-scale
theorem prover was and is a substantial and daunting undertaking, so Lamport
initiated a project to build a system to translate tla formulas into the input of
an existing theorem prover with which he and SRC colleagues had experience: LP,
the Larch prover [Garland and Guttag 1988]. Armed with this tool—later developed
further by Urban Engberg and dubbed TLP [Engberg 1996]—one could write a proof
in tla, translate it into the language of LP, and have LP check it.

However, tla with TLP was an incomplete solution for Lamport’s purposes.30

TLP demonstrated the feasibility of mechanically verifying a tla specification, but
it handled only a limited subset of what tla could express. It was a step along the
road, but many more would be required.

By 1993, Lamport had enough experience with tla to begin using it in pub-
lished work, introducing it first in a workshop paper [Lamport 1993] and then in
a journal paper the next year [Lamport 1994c]. tla figured prominently in most of
his published papers over the next several years. Then, in 1996, tla had its first
opportunity to affect a DEC product.

By the time the initial version of TLP was showing promise, multiprocessing had
moved from the research labs to the DEC product stream. During the 1980s, the
“RISC versus CISC” controversy raged in the field, sparked by the work on Reduced
Instruction Set Computers (RISC) at UC Berkeley (although similar architectures
had existed earlier). Most commercial computers of the era were of the non-RISC
type, at that time dubbed “CISC,” a back-formation for Complex (or Comprehen-
sive) Instruction Set Computer. DEC’s flagship VAX architecture was CISC, but
several influential engineers believed that the company’s survival depended on us-
ing a RISC design for the VAX’s successor. That architecture was eventually named

30. The initial work on TLP occurred around 1991, but the real-world test did not come until
several years later when Georges Gonthier carried out a mechanical proof of a concurrent garbage
collector for his Ph.D. thesis. Lamport wrote: “Gonthier estimated that using TLP instead of
working directly in LP reduced the amount of time it took him to do the proof by about a factor
of five” [Lamport 2019, comment 96].

152 Chapter 6 Biography

Alpha [Wikipedia 2019b]. In the same spirit as the VAX and the IBM S/360/370 ar-
chitectures, the Alpha design was intended to last 25 years, being implemented
in different but functionally compatible ways as technology evolved. This meant,
of course, that the Alpha architecture had to accommodate multiprocessor imple-
mentations and that the designers of each implementation would need to verify
that it satisfied a common specification. That specification was the Alpha Architec-
ture Reference Manual. It contained a major section on the Alpha memory model,
which had been formally specified by three DEC researchers: Kourosh Gharachor-
loo at WRL and Jim Saxe and Yuan Yu at SRC.

In 1996, a DEC product team had designed a multiprocessor system called
Wildfire that utilized a complicated Alpha processor with out-of-order execution,
internally called EV6. The cache coherence protocol to support this processor was
extremely complex. The protocol designers contacted Gharachorloo to inquire if
he or perhaps other researchers would be interested in verifying that the protocol
satisfied the Alpha memory model. Gharachorloo in turn contacted Yu and Saxe
to see if they would participate. Yu forwarded the invitation to Lamport, who soon
became involved [Lamport 2018c], along with Mark Tuttle of the DEC Cambridge
(Massachusetts) Research Lab.

Yu and Lamport brought complementary skills to the EV6 protocol verification
project. Yu’s Ph.D. dissertation at UT Austin involved verification of low-level code
and had been supervised by J Moore, one of the legends of mechanical theorem-
proving. Lamport, in addition to his nearly two decades of experience with precise
specification and correctness proofs, had by this time created tla+, an extension
of tla with capabilities to support large formulas,31 as well as a methodology for
organizing large proofs hierarchically [Lamport 1995], both of which would be
essential for the EV6 verification effort.

Essential, yes, but barely sufficient. tla+ lacked tools to support writing or
checking specifications, so the work was entirely manual. Lamport, Tuttle, and
Yu began by studying the EV6 documents, consulting the hardware engineers in
the product team when necessary to understand the protocol’s detailed workings.
They wrote in tla+ both an invariant describing the Alpha memory system and
an abstraction of the protocol that EV6 used to implement it, then proved that the
protocol indeed preserved the invariant.

31. The definition of tla+ didn’t appear in broadly available form until 2002 [Lamport 2002],
though an earlier version of part of that book appeared in 1999 in course notes for a summer
school [Lamport 1999]. See Section 5.3 for an overview of tla+.

6.5 The DEC/Compaq Years (1985–2001) 153

Of course, it wasn’t nearly that simple; the process was highly iterative and took
most of a year. Yu had no experience in formulating invariants of this kind. He re-
called that they spent most of the time in Lamport’s office, proposing abstractions
and invariants and trying to prove that one implied the other. Usually, an invariant
was either wrong or too weak, so the proof couldn’t be completed. Even when it
could be, they would often discover later it was flawed, since they had no tools to
check it rigorously [Yu 2018]. To carry out a complete proof by hand would have
been much too time consuming so, as they wrote [Lamport et al. 2002]:

We selected two conjuncts, each about 150 lines long, as the part of the invariant
most likely to reveal an error. We completed the proof for one of the conjuncts; it
was about 2000 lines long and 13 levels deep. The proof of the second conjunct
would have been about twice as long, but we stopped about halfway through
because we decided that the likelihood of its discovering an error was too small
to justify further effort. We spent about seven months on these two proofs. We
also wrote an informal higher-level proof of one crucial aspect of the protocol. It
was about 550 lines long and had a maximum depth of 10 levels.

While it was now evident that tla+ was equal to the task of specifying a real-
world memory system, neither Yu nor Lamport cared to attempt another such
project without tools. Yu began working on a model checker for (a subset of)
tla+, though Lamport was skeptical that it could be done and even tried to talk
Yu out of it. Yu persevered and within about three months had a working proof-
of-concept model checker. Lamport was immediately convinced and became a
strong supporter of tlc, as the model checker for tla+ came to be called. (See
Section 5.5.1.) Other than a simple syntax checker, tlc was the first real tool
supporting the production of tla+ specifications.32 It was none too soon, for a few
months later, Lamport and Yu would undertake the verification of EV7, the next
chip in the Alpha line.

The EV7 verification began in early 1998. “This time, the specification was
written by [a DEC product] engineer who received a few hours’ instruction on tla+.
(At the time, there was no language manual.) His specification was about 1800 lines
long” [ibid.]. Though no fanfare accompanied it, this marked the first use of tla+

32. A model checker is not a theorem prover. A theorem prover, when it succeeds, demonstrates
that a theorem is correct, but often gives little guidance when the “theorem” is wrong. By contrast,
a model checker examines a purported theorem in a specific, concrete instance (e.g., for a memory
system, the case of exactly two processors) and looks exhaustively for a counterexample. Model
checking is far more useful during the development and debugging of a specification, when it is
nearly always wrong, since the model checker pinpoints each error.

154 Chapter 6 Biography

by someone outside a research organization. The product group put tlc to work
and it paid off [Lamport et al. 2002]:

As soon as we started using tlc, we found many errors in the tla+ specifica-
tion. Not counting simple mistakes that were easily corrected, we found about
70 errors. About 90% of them were discovered by tlc; the rest were found by a
human reading the specification. Most of the errors were introduced when trans-
lating from the informal specification; they demonstrate the ambiguity inherent
in such specifications. Five design/implementation errors were discovered—one
directly by tlc, the other four by using tlc error traces to generate simulator
input.

The Alpha product engineers were pleased with the outcome. They planned to
use tla+ and tlc for EV8, the next processor in the Alpha line, and to replace
the English version of the cache coherence protocol specification with the tla+

one. But though tla+ was in the ascendant, DEC and the Alpha were not. Compaq
acquired DEC in 1998 and had no use for Alpha. The architecture that was intended
to last 25 years was sold to Intel in 2001, and DEC engineers went with it. Among
them were some who continued to use the tla+ approach to specification, marking
the first use of tla+ without Lamport as an in-house consultant.

In the several years preceding the EV6 verification project, Lamport had devel-
oped a style of proof well suited to the theorems that arise in formal verification. As
the preceding quotations indicate, these formulas are large—the specification for
the EV6 and EV7 cache coherence protocols each amounted to about 1800 lines. The
conventional proof style favored by mathematicians, being informal and essentially
linear, cannot cope with such complexity. As Lamport observed, “The structure of
mathematical proofs has not changed in 300 years. The proofs in Newton’s Prin-
cipia differ in style from those of a modern textbook only by being written in Latin.
Proofs are still written like essays, in a stilted form of ordinary prose” [Lamport
1995].

Conquering that complexity required a methodological tool that Lamport knew
well from his background as a programmer: hierarchical decomposition. Lamport
would repeatedly divide the steps of a proof into smaller and smaller statements
to be proved, essentially in the style of a formal deduction of a statement in math-
ematical logic, familiar to anyone who has taken a first-year symbolic logic course.
How far should that iterative decomposition go? Lamport wrote: “My own rule of
thumb is to expand the proof until the lowest level statements are obvious, and
then continue for one more level. This requires discipline” [ibid.]. The extent of

6.6 The Microsoft Years (2001–) 155

that discipline required for the EV6 verification is evident from looking back at the
numbers quoted above.

Discipline in carrying out a hand proof is a good thing, but relying on proof
automation is better still. “Structured hand proofs are much more reliable than
conventional mathematical proofs, but not as reliable as mechanically checked
ones” [Ladkin et al. 1999]. For tla+ to be more broadly adopted, Lamport would
need to provide it with tools that reduce the amount of discipline required.33 That
would be a priority in the next phase of his career.

6.6 The Microsoft Years (2001–)
In early 1996, Bob Taylor retired as the director of SRC, unhappy with management
changes that occurred as DEC attempted to adapt to the Internet age. Roy Levin took
over as director of SRC. Within two years, Compaq Computer Company, which had
established itself as a leader in the so-called IBM PC clone business, acquired DEC,
but was unable to capitalize on DEC’s technical and market strengths. As support
for research eroded, Levin and Assistant Director Mike Schroeder approached Rick
Rashid, founder and head of Microsoft Research, with the offer to create a lab
in Silicon Valley. Rashid was supportive, and in August the lab opened. By the
end of 2001, a few researchers from DEC/Compaq had joined, and Lamport was
among them.

Before moving to Microsoft, Lamport had been devoting much of his attention
to tla+ and its associated tools. The DEC engineers who moved to Intel with the
sale of the Alpha in 2001 wanted to continue using tla+, and therefore wanted
a license agreement to use Compaq’s intellectual property. The sale of Alpha had
been a symptom of Compaq’s decline, and in September 2001, HP announced that
it would acquire Compaq.34 Shortly before that announcement, Compaq released
tla+ code under a BSD-style license, which enabled Lamport to continue to evolve
it at Microsoft and to share the results broadly.

Lamport wanted to continue the tla+ collaboration with the now Intel engi-
neers, but he also saw opportunities for tla+ within his new employer. DEC had
been chiefly a hardware company, even though it did significant software develop-
ment. Microsoft had been a software company since day one and had a vast array

33. Indeed, the need for hierarchical proof structure accompanied by mechanical verification had
already been noted in the first use of tla with the TLP prover, described earlier.

34. 2001 was also the year that Dell moved ahead of Compaq as the biggest supplier of PCs, a fact
that certainly influenced HP’s decision to acquire Compaq [Wikipedia 2018b]. The HP acquisition
of Compaq was completed in mid-2002.

156 Chapter 6 Biography

of software systems, both products and internal services. Many of these systems
were just beginning to come to grips with distributed computing environments and
the problems of concurrency in which Lamport was an expert. An outside observer
might have thought it an ideal marriage of skills and needs.

Nevertheless, the relationship progressed slowly. A new research laboratory with
ten or twenty researchers needs time to find its way in a corporation with tens
of thousands of software developers, despite the well-established mechanisms
within Microsoft Research for engaging with product organizations. The Silicon
Valley lab sat on a satellite campus, and as most of Microsoft’s development work
occurred in the corporate center in Redmond, Washington, product organizations
and researchers had to learn how to build relationships at a distance. The ex-
SRC researchers knew all about this, since DEC’s central development sites had
been across the country in Massachusetts, but it was a new way of working for
product developers accustomed to having researchers a few blocks away. Even
though the new lab was in the same time zone—an advantage that SRC researchers
hadn’t had—it took some time before product groups became comfortable with
remote collaboration. Unsurprisingly, researchers at the new lab established initial
ties to product groups on the satellite campus in Mountain View where the new
lab resided. However, none of these connections provided a natural outlet for
Lamport’s expertise.

Once the tlc model checker had demonstrated its value in hardware verifica-
tion, Lamport knew that tla+ now could reach a wider user audience. Writing
formal specifications without tools required dedication that only Lamport and his
closest disciples could muster; with tools, the methodology could be adopted by
practitioners and taught to a new generation of engineers. At DEC, Lamport had
begun to promulgate the tla+ approach—he had begun writing a book on con-
currency before the Compaq acquisition and had used portions of it in a course in
1998 [Lamport 1999]. At Microsoft, he completed the book Specifying Systems and
published it in 2002 [Lamport 2002]. By this time, the tla+ toolset comprised the
tlc model checker, the syntactic analyzer that parses specifications and checks for
errors, and the tlaTEX typesetter that renders the plaintext specifications accepted
by other tools more readable using established publication conventions for math-
ematical works.35 Lamport explicitly described Specifying Systems as the reference
manual for tla+ and its tools, and much of it is devoted to extensive, varied ex-
amples that illustrate Lamport’s approach to formal specification. To reduce the

35. Leveraging Lamport’s own LaTEX, of course.

6.6 The Microsoft Years (2001–) 157

adoption barrier further (and with the notable support of his publisher, Addison-
Wesley), Lamport made the book freely available online for noncommercial use.

With this material now readily available, Lamport pursued a two-pronged strat-
egy for tla+: engage with product organizations to help them understand how
tla+ can benefit them and enhance the toolset to make tla+ more robust and
more attractive to practitioners. He was under no illusions about how difficult the
first of these would be. In 2002, he published an experience paper [Lamport et al.
2002] with coauthors who had joined him on specification/verification projects at
DEC. In it they wrote [page 4]:

An important lesson we have learned is that moving formal methods from the
research community to the engineering community requires patience and perse-
verance. Engineers are under severe constraints when designing a system. Speed
is of the essence, and they never have as many people as they can use. Engineers
must be convinced that formal methods will help before they will risk using them.

They also noted that, although there is “no fundamental difference between
hardware and software” when dealing at the specification level, hardware engineers
are both more accustomed and more inclined to use formal methods for specifi-
cation, in part because of the higher, more immediate cost of errors in hardware
design. They further noted:

tla+, which has proven useful for hardware, should be just as useful for software.
However, there does seem to be a cultural difference between hardware and
software engineers. Software engineers do not have the same tradition of relying
on specifications that hardware engineers do.

Now that Lamport worked in a software company, he knew he faced a challeng-
ing path to get tla+ adopted for specifying software systems.

By late 2002, when Specifying Systems appeared, the so-called dot-com boom
had ended rather abruptly, and the industry, perhaps somewhat chastened, began
regrouping. The term “Web 2.0” became popular, loosely referring to web-based
behavior beyond the first generation of static web pages. Rather than being a
specific technical idea, Web 2.0 was a philosophy of interaction between users
and services that emphasized the more dynamic behavior now familiar in such
ubiquitous capabilities as online shopping and forums. Such a world required
communication capabilities and standards beyond the basic HTTP protocol of the
early web.

158 Chapter 6 Biography

Microsoft, originally successful as a packaged software company, was rapidly
retooling itself to address this new distributed world. It had several organizations
focused on “web services.” Lamport and a visiting academic colleague, Friedrich
“Fritz” Vogt, met two key architects in Redmond, James Johnson and David Lang-
worthy, who liked the idea of creating formal specifications for web services proto-
cols for which they had informal descriptions. Lamport summarized the resulting
collaboration to write a specification for a web services atomic transaction protocol
[Lamport 2019, comment 150]:

Fritz and I spent part of our time for a couple of months writing it, with a lot of
help from Jim and Dave in understanding the protocol. . . . This was a routine
exercise for me, as it would have been for anyone with a moderate amount of
experience specifying concurrent systems. Using tla+ for the first time was a
learning experience for Fritz. It was a brand new world for Jim and Dave, who had
never been exposed to formal methods before. They were happy with the results.
Dave began writing specifications by himself, and has become something of a
tla+ guru for the Microsoft networking group.

The experience paper reporting on this project appeared in 2004, by which time
Lamport’s other efforts toward tla+ adoption within Microsoft had begun to pay
off. Notably, he was no longer the only person using tla+ within the research or-
ganization: Tom Rodeheffer, a local colleague, was engaged with another product
group designing a protocol, and two researchers in Microsoft’s Redmond lab were
using tla+ to specify the protocol for a distributed storage project. Dave Lang-
worthy’s initial enthusiasm had matured into advocacy, noting that “[My team and
Lamport] spent a day working on replication and discussed several other topics. . . .
Above the specific interactions, Leslie has improved the way we think about build-
ing distributed systems” [Langworthy 2005].

Any builder of software knows that, regardless of how well developed the concept
behind a system is, its users always ask for more. So, as Lamport pursued the sec-
ond prong of his tla+ strategy—growing the toolset—he enhanced the system in
response to his users’ experience and requests. Yuan Yu, who had built the original
tlc, reimplemented it more robustly and with somewhat expanded capabilities.
But though the model checker made specifications easier to debug, it didn’t help
with writing them in the first place.

One frequent obstacle for engineers encountering tla+ was its grounding in
mathematical logic, a subject superficially related to programming but essentially
different. This difference created a wide gulf between the way engineers think

6.6 The Microsoft Years (2001–) 159

about algorithms and the way they are specified in tla+. To bridge that gulf, Keith
Marzullo suggested creating a form of pseudocode, which engineers often use to
sketch algorithms, that could be mechanically translated into a tla+ specification.
Lamport and Marzullo built the translator and called their pseudocode language
PlusCal (initially, +Cal), a nod to Pascal, which had often been used as a basis for
informal pseudocode36 [Lamport 2009, 2006c]. (See Section 5.4 for an overview of
PlusCal.)

Even with the addition of PlusCal, the tla+ Toolbox, as it was now called, still
lacked an important capability: mechanical proof. tlc, the model checker, had
made it practical to find errors in specifications, but as Edsger Dijkstra famously
observed, “Program testing can be used very effectively to show the presence of bugs
but never to show their absence” [Dijkstra 1971]. Since the experiments with TLP in
the early 1990s (see Section 6.5), Lamport had wanted a theorem prover for tla+.
In 2006, he found a way to get one. Microsoft Research and INRIA had recently
launched a joint research lab in Paris, and several of Lamport’s former collabo-
rators began working there. He organized a project to create a modern theorem
prover for tla+. Despite advances in the theorem-proving technology and vastly
more powerful hardware on which to run it, the project faced considerable chal-
lenges in producing a usable tool. In 2010, the first release of tlaps, the tla+ Proof
System, joined the tla+ Toolbox [Microsoft Research 2019]. (See Section 5.5.2 for
an overview of tlaps.)

The arrival of the theorem prover amplified the efforts of Lamport’s colleagues
who were trying to use tla+ for their own research. Chief among them was Tom
Rodeheffer, who had been intrepid enough to use tla+ even before the model
checker was available. Now Rodeheffer was able to apply tla+ to a partial replica-
tion system, a distributed atomic memory system, and a data-center network built
out of configurable switches. Rodeheffer sat two offices away from Lamport and
was the source of many suggestions for enhancement of the tool suite.

The last component of the Toolbox differed in character from its predecessors.
The word “toolbox” suggests something holds all the tools, which perform their
individual functions. Indeed, from the outset, the individual tla+ tools had been

36. Lamport has often written about the way in which programming languages limit software
developers’ thinking, and he repeatedly resisted (indeed, railed against) adding language-like
features, such as types, to tla+. PlusCal doesn’t do that; it provides a thin layer of surface
syntax over tla+ to help those who, Lamport might say, are afflicted with “Whorfian syndrome,”
which he defines as confusing language (programming) with reality (mathematics) [Lamport and
Levin 2016a, page 22].

160 Chapter 6 Biography

built in the conventional command-line style. While natural enough in the previous
century, in the present one the lack of tool integration was a bit quaint. Develop-
ers had increasingly become accustomed to using a programming environment
in which the tools were tightly integrated, so that program editors, compilers, de-
buggers, performance analyzers, and the like seamlessly shared an understanding
of the program under development and could display its various aspects simul-
taneously in a collection of interrelated display windows. tla+ needed a similar
interactive development environment (IDE).

To build the IDE for tla+, Lamport turned to Simon Zambrovski, who spent
a postdoctoral year working with Lamport at Microsoft. He built it on Eclipse, a
widely available open-source platform used chiefly for Java, in which the original
tla+ tools had been written. The IDE, first released in 2010, received subsequent
improvements from Markus Kuppe (who as an intern with Lamport had built a
distributed version of tlc that enabled it to check specifications on larger cases)
and Daniel Ricketts. By 2013, tla+ had an integrated, comprehensive Toolbox
available to the computing community [Lamport 2019]. (See Section 5.5.3 for an
overview of the Toolbox.)

Finally, more than two decades after the creation of tla, Lamport could see
the fruits of his efforts. tla+ and its toolset had taken root in Microsoft product
organizations and in other companies. Brannon Batson, a former DEC engineer on
the Alpha team that went to Intel, characterized tla+ around 2006 as follows [Merz
2008]:

The next big frontier in computer engineering is algorithmic complexity. In or-
der to tackle this increasingly complex world, we need tools and languages which
augment human thought, not supplant it. tla+ is a language which connects en-
gineers to the underlying mathematics of their design—providing insight which
they otherwise wouldn’t have.

Later, Chris Newcombe, a former principal engineer at Amazon, wrote on a tla+

discussion group [Newcombe 2012]:

tla+ is the most valuable thing that I’ve learned in my professional career.
It has changed how I work, by giving me an immensely powerful tool to find
subtle flaws in system designs. It has changed how I think, by giving me a
framework for constructing new kinds of mental-models, by revealing the precise
relationship between correctness properties and system designs, and by allowing
me to move from “plausible prose” to precise statements much earlier in the
software development process.

6.6 The Microsoft Years (2001–) 161

By 2012, tla+was in regular use at Amazon, with the distributed model checker
running on hundreds of computers [ibid.]. Lamport believes that Amazon’s expe-
rience, reported in Newcombe et al. [2015], was influential in stimulating use of
tla+ within Microsoft’s Azure team.

Much of Lamport’s effort on tla+ in his Microsoft years could be called the
unglamorous part of research: taking an idea that has had a successful proof of
concept and pushing it forward into a practical system that others can and want
to use. The effort required to do this in a research environment should not be
underestimated, as the innovator cannot usually bring an idea to fruition alone
and colleagues with the right skills and temperament for this kind of work are rare.
Lamport was very fortunate to find such colleagues in the research labs at DEC,
Microsoft, and INRIA.37 Nevertheless, getting tla+ adopted for precise, verifiable
specification of algorithms remains one of Lamport’s long-term projects.

While maintaining a steady pressure to advance tla+ and its toolset, Lamport
also pursued other research interests. During the same years in which the tla+

Toolbox was expanding, Lamport continued to work on the problem of agreement
protocols that had inspired his Paxos work in the 1990s. Even before the Paxos paper
appeared in 1998, a product effort at DEC to build a replicated storage system had
led Lamport and colleague Eli Gafni to create Disk Paxos [Gafni and Lamport 2003].
Within a few years, the explosion of Internet-based services led various groups at
Yahoo, Google, Microsoft, Facebook, and elsewhere to build and deploy systems
that used Paxos (see Section 4.6.2). However, these systems did not use the full
generality of the algorithm.

Lamport’s insights into the fundamental behavior of distributed systems had
led him, in Paxos, to specify a very general algorithm that intertwined the solutions
to two problems: replication of state to achieve robustness and reconfiguration to
maintain system availability. In practice, this intertwining posed many implemen-
tation challenges, which is why Paxos implementations from Petal onward used
Paxos’s state machine replication but invented alternative, simpler mechanisms for
availability. In the mid-2000s, Lamport worked on variants of Paxos that improved
its performance by reducing the number of replicas (Cheap Paxos [Lamport and
Massa 2004], inspired by Microsoft product engineer and coauthor Mike Massa)
or messages required for the protocol (Fast Paxos [Lamport 2006b]), but these

37. In an interview in 2002, Lamport was asked: “To what extent do you consider research fun
versus hard work?” He replied: “Hard work is hauling bales of hay or cleaning sewers. Scientists
and engineers should be grateful that society is willing to pay us to have fun” [Milojicic 2002].

162 Chapter 6 Biography

enhancements did not directly address the complexity of implementing reconfigu-
ration. Eventually, however, colleague Dahlia Malkhi persuaded Lamport that the
separation of replication and reconfiguration, which occurred in all known Paxos
implementations, needed a principled foundation. At the end of the decade, Lam-
port, Malkhi, and their colleague Lidong Zhou published Vertical Paxos [Lamport
et al. 2009a] and two related papers [Lamport et al. 2009b, Lamport et al. 2010] that
established that foundation (see Section 4.7).38

During these years of Paxos evolution, Lamport also continued to explore the
relationships between Paxos and other agreement protocols, including a paper with
Jim Gray showing that classic two-phase commit is a special case of Paxos [Gray
and Lamport 2006] and a paper showing the Castro-Liskov algorithm for handling
Byzantine faults is a refinement of Paxos [Lamport 2011]. The latter paper notably
exploited the tla+ Proof System, tlaps, to formally verify the relationship.

By 2012—more than two decades after Lamport invented the Paxos algorithm—
its importance for creating practical, large-scale, fault-tolerant distributed systems
had been widely recognized, and “The Part-time Parliament”—a paper that almost
was never published—won the SIGOPS Hall of Fame Award.39

As of this writing (mid 2019), Lamport continues his research at Microsoft.
Though Microsoft Research Silicon Valley was closed in 2014, he collaborates with
colleagues at INRIA and elsewhere. For someone who has spent his entire career
in industry rather than academia, Lamport invests very considerable effort in ed-
ucation through both frequent lectures and papers. Indeed, roughly a tenth of his
papers could be viewed as efforts to teach others what he has learned through his
research rather than as reports of that research. Unsurprisingly, the fraction of such
papers has increased in recent years; after nearly half a century of carrying out and
reflecting on research, he increasingly tries to distill in writing the insights he has
gained. He believes in the power of writing; in Specifying Systems, he opens with a
favorite quote, from cartoonist Dick Guindon: “Writing is nature’s way of letting
you know how sloppy your thinking is.” Some examples of Lamport’s own pithy
observations:

38. Vertical Paxos provided a jumping-off spot for researchers other than Lamport to explore
further evolution of the algorithm, notably Howard, Malkhi, and Spiegelman’s Flexible Paxos
[Howard et al. 2016].

39. Somewhat analogously, a paper by Butler Lampson and Howard Sturgis, “Crash Recovery in a
Distributed Data Storage System,” also won a SIGOPS Hall of Fame Award, but was never published
[Lampson and Sturgis 1979]. For years, it was informally referred to as an “underground classic.”

6.7 Honors 163

. On using mathematics rather than natural language for specifications:
“Mathematics is nature’s way of letting you know how sloppy your writing
is” [Lamport 2002, page 2].

. On the indispensability of proof: “Never believe anything that is obvious until
you have a proof of it” [Lamport and Levin 2016a, page 33].

. On using structured rather than prose proofs: “A proof should not be great
literature; it should be beautiful mathematics. Its beauty lies in its logical
structure, not its prose” [Lamport 2012, page 19].

. On distributed systems: “A distributed system is one in which the failure of a
computer you didn’t even know existed can render your own computer unus-
able” [Lamport 1987]. This is probably his most frequently quoted aphorism,
written in an email in 1987.

6.7 Honors
Lamport’s work has been extensively recognized:

. National Academy of Engineering (1991)

. PODC Influential Paper Award (2000) (for [Lamport 1978b])

. Honorary doctorate, University of Rennes (2003)

. Honorary doctorate, Christian Albrechts University, Kiel (2003)

. Honorary doctorate, École Polytechnique Fédérale de Lausanne (2004)

. IEEE Piore Award (2004)

. Edsger W. Dijkstra Prize in Distributed Computing (2005) (for [Pease et al.
1980])

. Honorary doctorate, Università della Svizzera Italiana, Lugano (2006)

. ACM SIGOPS Hall of Fame Award (2007) (for [Lamport 1978b])

. Honorary doctorate, Université Henri Poincaré, Nancy (2007)

. LICS 1988 Test of Time Award (2008) (for [Abadi and Lamport 1991])

. IEEE John von Neumann Medal (2008)

. National Academy of Sciences (2011)

. ACM SIGOPS Hall of Fame Award (2012) (for [Lamport 1998a])

. Jean-Claude Laprie Award in Dependable Computing (2013) (for [Lamport
et al. 1982])

164 Chapter 6 Biography

. ACM SIGOPS Hall of Fame Award (2013) (for [Chandy and Lamport 1985])

. 2013 ACM A. M. Turing Award (2014)

. American Academy of Arts and Sciences (2014)

. Jean-Claude Laprie Award in Dependable Computing (2014) (for [Wensley
et al. 1978])

. Edsger W. Dijkstra Prize in Distributed Computing (2014) (for [Chandy and
Lamport 1985])

. Honorary doctorate, Brandeis University (2017)

. Fellow, Computer History Museum (2019)

It is noteworthy that the first of these honors—membership in the National Acad-
emy of Engineering—is one more customarily awarded considerably later in an in-
dividual’s career, after other honors have brought them to prominence. One would
also be hard pressed to identify another computer scientist with as many honorary
doctorates, even among those in the elite category of Turing Award recipients.

Several awards Lamport received recognize work that has stood the “test of
time.” While such awards inherently occur years after the work they recognize,
in Lamport’s case recognition occurred after uncharacteristically long intervals.
The Time/Clocks paper [Lamport 1978b] appeared in 1978; it was recognized in
2000 and 2007. The Byzantine generals work appeared in papers in 1980 and 1982;
it was recognized in 2005 and 2013. The Paxos paper, published in 1998 but em-
bodying work done nearly a decade before, was recognized in 2012. And the Dis-
tributed Snapshots paper [Chandy and Lamport 1985] that Lamport wrote with
Mani Chandy, another luminary in the field of distributed systems, appeared in
1985 and was recognized in 2013 and 2014.40 These intervals, averaging roughly 20
years, suggest how far-sighted some of Lamport’s most important works have been
and how long it took the field to fully appreciate them, since for most awards the
“test of time” is a decade. (To be fair, some of the awards only came into existence
in the 21st century, though Lamport’s seminal works weren’t always recognized in
their inaugural year.)

Lamport received the ACM A. M. Turing Award, generally considered the equiv-
alent of the Nobel Prize in computing, for 2013. It recognizes a body of work “for
major contributions of lasting importance to computing.” Lamport’s award cita-
tion reads: “For fundamental contributions to the theory and practice of distributed

40. Surprisingly, this was the only paper these two distributed computing experts ever wrote
together.

6.8 Collegial Influences 165

and concurrent systems, notably the invention of concepts such as causality and
logical clocks, safety and liveness, replicated state machines, and sequential con-
sistency.” While the specific concepts listed occupied much of Lamport’s attention
in the 1970s and 1980s, the first portion of the citation embraces his work on Paxos
and fault tolerance as well.

6.8 Collegial Influences
As of this writing, Lamport’s “My Writings” web page [Lamport 2019] lists 184
works.41 Fewer than a third of them (59) have coauthors, a fraction that would
be unusual for any computer scientist. Some people attribute this to prickliness,
claiming Lamport is hard to work with. Obviously, those who have succeeded view
the matter differently, painting instead a picture of a serious and uncompromis-
ing yet supportive collaborator. Their experiences in working with Lamport, related
below with minor editing for readability, also provide additional insight into Lam-
port’s modus operandi and its impact on his colleagues.

Lidong Zhou [Zhou 2018]
Working with Leslie serves as a constant reminder of what scientific research is
all about. Leslie has always been a role model who demonstrates how a scientist
is driven by curiosity, stays insulated and focused in the pursuit of truth and
perfection, and sticks to the core principles of research, which are often forgotten
as too many of us constantly rush to get papers published in top conferences or
journals as a means to gain personal fame.

Mani Chandy [Chandy 2018]
Leslie is a master at identifying and specifying core problems that abstract the
essence of a myriad of practical situations that appear to be different.

You can see the nuggets, and their impact across a spectrum of applications,
throughout Leslie’s career. Leslie specified the key idea formally, using mathe-
matics; however, the path to get to the key idea used anthropomorphisms and
analogies. A lesson from Leslie’s career for future generations of computer scien-
tists is the importance of identifying core problems and specifying them clearly.
Identifying the nugget is as important as finding the solution.

41. Nearly all these publications pertain to computing, but two show another side of Lamport as
a scientist: “On Hair Color in France” [Gilkerson and Lamport 2004] and “Measuring Celebrity”
[Lamport 2006]. Both appear in the Annals of Improbable Research.

166 Chapter 6 Biography

Yuan Yu [Yu 2018]
All of Leslie’s work is derived from practical systems. His ability to gain insight into
the system problems and be able to abstract them out—I haven’t seen anyone else
who can do this.

My ten months of work with him on tlc was like an intensive training camp.
Unfortunately, not everyone can have this kind of experience! He was not treating
the EV6 specification as tutoring—we were partners, working on a project.

I don’t think I mastered the ability to abstract problems. Leslie is still the master,
but I got part of it, and that’s very valuable to me. Later on, in all the systems
I was involved in building, I was thinking about them in terms of state and the
inductive invariants. I’m not sure that this is the only way, but this is clearly one
very productive way of thinking about systems.

Some people say Leslie is hard to work with, but obviously I didn’t have that
experience. He tolerated my inexperience; I’m very grateful. He does have a very
low tolerance of nonsense. . . . If you talk about something that he thinks is clearly
nonsense and you have an argument with him, that’s when he’s going to show his
anger.

Fred Schneider [Schneider 2018]
Lamport and I first met in person at the December 1979 SOSP conference at Asilo-
mar. We got along, which is not something you can ever explain—simply a matter
of personal chemistry. I would observe that we both grew up in New York City in
working-class Jewish families (though neither of us was religious). Not only did we
both have interest in fault tolerance, but we both were interested in reasoning about
concurrent programs, which is quite a separate subject with a disjoint community
of researchers. Most importantly, though, I think we both were less interested in
building artifacts than in identifying principles.

Writing our first joint paper (“The Hoare Logic of CSP, and All That”) was quite
the education for me. He sat at a terminal; I sat next to him. He’d type a sentence,
I’d read it, and we fought about wording. And notation. And formatting. I learned
a good deal about writing technical papers from this experience, though at times
it did get tiresome. Lamport had a strong idea about where the paper was headed,
and he had developed the precursor to the programming logic we were developing
as we wrote. I understood neither very deeply. But this meant that Lamport, sitting
there, got to see “in real time” how a naive reader might misunderstand the points
he wanted to make and the exact wording, especially since I was viewing things
through the lens of the Owicki-Gries method, which was the defining characteristic
of our target audience. . . . I don’t recall how many visits I made to the West Coast,

6.8 Collegial Influences 167

but the paper was written in these five-day sessions of sitting side by side. (Two of)
our subsequent . . . papers were written in this way too. Needless to say, finishing
a paper took quite some time, but the prose was well exercised.

Butler Lampson [Lampson 2018]
When Howard Sturgis and I wrote our paper on crash recovery in a distributed
storage system [Lampson and Sturgis 1979], we never published it because we
couldn’t figure out how to prove the correctness of the algorithm, so it became
known only in samizdat.

Like almost everyone else who does it seriously, I learned how to do proofs of
concurrent systems from Leslie.

Stephan Merz [Merz 2018]
Leslie tends to be initially skeptical of ideas he hasn’t come up with, but he is quick
to realize a good idea, adopt it, and develop it further. Several years ago, I had a
student who worked on a variant of the PlusCal language and suggested some
extensions that would allow more elaborate algorithms to be modeled in it. Among
the extensions was what we considered to be a minor suggestion for adding fairness
annotations to processes and to labels within processes. When Leslie heard about
this work, he was furious because we had dubbed the language “PlusCal 2” for
lack of a better name. When we explained that this was just an internal moniker,
he agreed to discuss the proposed extensions during a visit to Paris. He considered
that most of our proposed additions were irrelevant or contrary to the spirit of
PlusCal. However, he told us that he would steal the fairness annotations—except
that prefixing a label by “fair” or “strong fair” (as we had done) was too heavy a
notation, and he would rather affix a single character to the label. This is now part
of PlusCal. Of course, our extended language is long forgotten. Incidentally, this
anecdote shows Leslie’s strong ideas about notation that permeate his work.

Tom Rodeheffer [Rodeheffer 2018]
I had a couple of trips to Paris (to theorem-proving conferences). I was there once
visiting the INRIA lab and Leslie was there at the same time. He had me over for
lunch at his apartment there and that was pretty cool because we just walked to
his apartment and had a simple lunch of bread and cheese. The cheese was the
best I had ever had so I asked about it. Leslie described the cheese and then told
me all about the French cheese stores that I had never known to exist! He’s a very
personable guy, and here I am—this random person that’s just using his tools, and
he was very friendly.

168 Chapter 6 Biography

Dahlia Malkhi [Malkhi 2018]
I am awed when I look back at the ten years at Microsoft Research Silicon Valley
(MSR SVC) during which I had the pleasure of working with and alongside Leslie.

For me—despite him having strong opinions and strong wills, and the fact that
when you work with him you always feel inferior because he’s so good—I love
working with him. Whenever he had the availability to work with me, he was my top
choice, no question. I don’t say this vacuously: There are people who are difficult
to work with, and you don’t care how smart or good they are, you just don’t want
to work with them—it’s not worth it. That’s not Leslie. Everything he argues about
comes from a completely technical point of view—there’s nothing personal.

I believe that his personal influence on people in the MSR SVC lab and beyond
is priceless. Many of the SVC researchers whom I talked to received life advice and
wisdom from him beyond whatever technical matters they discussed with him.
They really appreciated him as a role model and got advice from him on how to
think about a problem, what to look for in the problems that you work on, and
how to think about your career as an industrial researcher. He used to tell us: “Go
to engineers and see what problems they are tackling—this is the best source of
questions.” His confidence is something that I think rubbed off on all of us, that
sticking to our inner (scientific) truth and was more important than getting papers
published. Beyond the lab, his personal web page and all the stories about rejected
papers are an inspiration and an encouragement to every graduate student.

I was at Lamport’s Turing Award lecture at PODC in France. He came on stage,
was introduced, and got, as you would expect, a standing ovation. Unexpectedly,
the ovation did not last 10 seconds—it lasted a solid few minutes. The audience
just didn’t stop—completely spontaneously. He was stunned and really humbled
that people loved him that much.

Roy Levin
I never collaborated with Lamport on a technical matter, though during my years
as a researcher I did once seek his guidance on a formal specification for a complex
system. However, as the director of SRC and subsequently as director of Microsoft
Research Silicon Valley, I frequently sought his wisdom on hiring researchers.
Everyone in the lab participated in hiring decisions, and we shared a view of what
qualities were essential in our researchers. Lamport regularly reminded us of the
importance of focusing on those qualities when considering a candidate. In our lab-
wide hiring discussions, Lamport often did not feel the need to speak up, but when
he did (as in the old E. F. Hutton ads), people listened. Lamport interviewed many
candidates whose expertise didn’t overlap with his own; nevertheless, he accurately

6.8 Collegial Influences 169

assessed their overall technical strength, and when the lab found itself uncertain
about the correct decision, he could bring the question into sharp focus. Years later,
I can clearly remember several cases in which he made the key characterization of
a candidate that cleared away the clouds obscuring the correct hiring decision. We
considered that choosing our colleagues was the most important thing the lab did,
and Lamport’s incisive contributions to that process were therefore invaluable.

It is appropriate in a biography to let the subject have the last words. Here are
Lamport’s [Lamport and Levin 2016b, page 31]:

One effect that winning the [Turing] award had on me is that it got me to look
back at my career in ways that I hadn’t, and I think it made me realize the debt that
I owed to other computer scientists that I hadn’t realized before. For example,
when I look back at Dijkstra’s mutual exclusion paper now—I’ve recognized for
decades what an amazing paper that was in terms of the insight that he showed,
both in recognizing the problem and in stating it so precisely and so accurately—
one thing that I didn’t realize, I think, until fairly recently, is how much of the
whole way of looking at the idea of proving something about an algorithm was
new in that paper. He was assuming an underlying model of computation that
I somehow accepted as being quite natural. I don’t think I understood until
recently how much he created that, and I think there are some other instances
like that where I absorbed things from other people without realizing it. One of
the reasons for that may be that I never had a computer science mentor. . . .
I never got that in school really—I never had a one-on-one relationship with
any professor. So, the whole concept of mentoring is somewhat alien to me. I
hope that, in the couple of occasions where I’ve been in a position to mentor
others, I didn’t do too bad a job, but I have no idea whether I did or not. But my
mentors have been my colleagues and I learned a lot from them by osmosis that,
in retrospect, I’m very grateful for, but I was unaware at the time.

170 Chapter 6 Biography

Leslie Lamport and wife Ellen Gilkerson near
Monteray, CA, January 24, 2003.

Leslie Lamport and friends at a winery in Napa or Sonoma
in 2001. Left to right: Lamport, Ellen Gilkerson, Mimi
Bussan, Fred Schneider, Susan Armstrong. (Photo by
Keith Marzullo)

IIP A R T

SELECTED PAPERS

Richard Palais and Leslie Lamport at a lunch in celebration of Palais’s
80th birthday in 2011.

Leslie says: “Its significance is that he was my de jure thesis adviser and
was the most influential post-high school teacher I had. (It’s impossible
for me to compare his influence with that of earlier teachers who taught
me at a more impressionable age.) He showed me that real math could
be made completely rigorous.”

Leslie Lamport receives his first honorary doctorate in Rennes,
France, in 2003.

Leslie Lamport receives an honorary degree in Nancy. He is stand-
ing next to Dominque Mery.

A New Solution of Dijkstra’s
Concurrent Programming Problem
Leslie Lamport (Massachusetts Computer Associates, Inc.)

A simple solution to the mutual exclusion problem is presented which allows the
system to continue to operate despite the failure of any individual component.

Key Words and Phrases: critical section, concurrent programming, multiprocess-
ing, semaphores

CR Categories: 4.32

Introduction
Knuth [1], deBruijn [2], and Eisenberg and McGuire [3] have given solutions to
a concurrent programming problem originally proposed and solved by Dijkstra
[4]. A simpler solution using semaphores has also been implemented [5]. These
solutions have one drawback for use in a true multicomputer system (rather than
a time-shared multiprocessor system): the failure of a single unit will halt the
entire system. We present a simple solution which allows the system to continue
to operate despite the failure of any individual component.

Copyright © 1974, Association for Computing Machinery, Inc. General permission to republish,
but not for profit, all or part of this material is granted provided that ACM’s copyright notice
is given and that reference is made to the publication, to its date of issue, and to the fact that
reprinting privileges were granted by permission of the Association for Computing Machinery.
This research was supported by the Advanced Research Projects Agency of the Department of
Defense and was monitored by U.S. Army Research Office–Durham, under Contract No. DAHC04-
70-C-0023. Author’s address: Massachusetts Computer Associates, Inc., Lakeside Office Park,
Wakefield, MA 01880.
Paper originally published in Communications of the ACM 17(8), August 1974.

174 A New Solution of Dijkstra’s Concurrent Programming Problem

The Algorithm
Consider N asynchronous computers communicating with each other only via
shared memory. Each computer runs a cyclic program with two parts—a critical
section and a noncritical section. Dijkstra’s problem, as extended by Knuth, is to
write the programs so that the following conditions are satisfied:

1. At any time, at most one computer may be in its critical section.

2. Each computer must eventually be able to enter its critical section (unless it
halts).

3. Any computer may halt in its noncritical section.

Moreover, no assumptions can be made about the running speeds of the comput-
ers.

The solutions of [1–4] had all N processors set and test the value of a single
variable k. Failure of the memory unit containing k would halt the system. The use
of semaphores also implies reliance upon a single hardware component.

Our solution assumes N processors, each containing its own memory unit. A
processor may read from any other processor’s memory, but it need only write into
its own memory. The algorithm has the remarkable property that if a read and a
write operation to a single memory location occur simultaneously, then only the
write operation must be performed correctly. The read may return any arbitrary
value!

A processor may fail at any time. We assume that when it fails, it immediately
goes to its noncritical section and halts. There may then be a period when reading
from its memory gives arbitrary values. Eventually, any read from its memory must
give a value of zero. (In practice, a failed computer might be detected by its failure
to respond to a read request within a specified length of time.)

Unlike the solutions of [1–4], ours is a first-come-first-served method in the
following sense. When a processor wants to enter its critical section, it first executes
a loop-free block of code—i.e. one with a fixed number of execution steps. It is
then guaranteed to enter its critical section before any other processor which later
requests service.

The algorithm is quite simple. It is based upon one commonly used in bakeries,
in which a customer receives a number upon entering the store. The holder of the
lowest number is the next one served. In our algorithm, each processor chooses
its own number. The processors are named 1, . . . , N . If two processors choose the
same number, then the one with the lowest name goes first.

Proof of Correctness 175

The common store consists of

integer array choosing[1 :N], number[1 :N]

Words choosing(i) and number[i] are in the memory of processor i, and are initially
zero. The range of value of number[i] is unbounded. This will be discussed below.

The following is the program for processor i. Execution must begin inside the
noncritical section. The arguments of the maximum function can be read in any
order. The relation “less than” on ordered pairs of integers is defined by (a , b) <
(c.d) if a < c, or if a = c and b < d.

begin integer j ;
L1: choosing[i] := 1;

number[i] := 1+maximum(number[1], . . . , number[N]);
choosing[i] := 0;
for j = 1 step 1 until N do

begin
L2: if choosing[j] �= 0 then goto L2;
L3: if number[j] �= 0 and (number[j], j) < (number[i], i)

then goto L3;
end;

critical section;
number[i] := 0;
noncritical section;
goto L1;

end

We allow process i to fail at any time, and then to be restarted in its noncritical
sections (with choosing[i]= number[i]= 0). However, if a processor keeps failing
and restarting, then it can deadlock the system.

Proof of Correctness
To prove the correctness of the algorithm, we first make the following definitions.
Processor i is said to be in the doorway while choosing[i]= 1. It is said to be in the
bakery from the time it resets choosing(i) to zero until it either fails or leaves its
critical section. The correctness of the algorithm is deduced from the following
assertions. Note that the proofs make no assumptions about the value read during
an overlapping read and write to the same memory location.

176 A New Solution of Dijkstra’s Concurrent Programming Problem

Assertion 1 If processor i and k are in the bakery and i entered the bakery before k entered the
doorway, then number[i]< number[k].

Proof By hypothesis, number[i] had its current value while k was choosing the current
value of number[k]. Hence, k must have chosen number ≥ 1+ number[i].

Assertion 2 If processor i is in its critical section, processor k is in the bakery, and k �= i, then
(number[i], i) < (number[k], k).

Proof Since choosing[k] has essentially just two values—zero and nonzero—we can
assume that from processor i’s point of view, reading or writing it is done in-
stantaneously, and a simultaneous read and write does not occur. For example,
if choosing[k] is being changed from zero to one while it is also being read by pro-
cessor i, then the read is considered to happen first if it obtains a value of zero;
otherwise the write is said to happen first. All times defined in the proof are from
processor i’s viewpoint.

Let tL2 be the time at which processor i read choosing[k] during its last execution
of L2 for j = k, and let tL3 be the time at which i began its last execution of L3 for
j = k, so tL2 < tL3. When processor k was choosing its current value of number[k],
let te be the time at which it entered the doorway, tw the time at which it finished
writing the value of number[k], and tc the time at which it left the doorway. Then
te < tw < tc.

Since choosing[k] was equal to zero at time tL2, we have either (a) tL2 < te or (b)
tc < tL2. In case (a), Assertion 1 implies that number[i]< number[k], so the assertion
holds.

In case (b), we have tw < tc < tL2 < tL3, so tw < tL3. Hence, during the execution
of statement L3 begun at time tL3, processor i read the current value of number[k].
Since i did not execute L3 again for j = k, it must have found (number[i], i) <
(number[k], k). Hence, the assertion holds in this case, too.

Assertion 3 Assume that only a bounded number of processor failures may occur. If no proces-
sor is in its critical section and there is a processor in the bakery which does not
fail, then some processor must eventually enter its critical section.

Proof Assume that no processor ever enters its critical section. Then there will be some
time after which no more processors enter or leave the bakery. At this time, assume
that processor i has the minimum value of (number[i], i) among all processors in
the bakery. Then processor i must eventually complete the for loop and enter its
critical section. This is the required contradiction.

Conclusion 177

Assertion 2 implies that at most one processor can be in its critical section at
any time. Assertions 1 and 2 prove that processors enter their critical sections on
a first-come-first-served basis. Hence, an individual processor cannot be blocked
unless the entire system is deadlocked. Assertion 3 implies that the system can only
be deadlocked by a processor halting in its critical section, or by an unbounded
sequence of processor failures and re-entries. The latter can tie up the system as
follows. If processor j continually fails and restarts, then with bad luck processor
i could always find choosing[j]= 1, and loop forever at L2.

Further Remarks
If there is always at least one processor in the bakery, then the value of number[i]
can become arbitrarily large. This problem cannot be solved by any simple scheme
of cycling through a finite set of integers. For example, given any numbers r and s, if
N ≥ 4, then it is possible to have simultaneously number(i)= r and number(j)= s
for some i and j .

Fortunately, practical considerations will place an upper bound on the value
of number[i] in any real application. For example, if processors enter the doorway
at the rate of at most one per msec, then after a year of operation we will have
number[i]< 235—assuming that a read of number[i] can never obtain a value larger
than one which has been written there.

The unboundedness of number[i] does raise an interesting theoretical question:
can one find an algorithm for finite processors such that processors enter their
critical sections on a first-come-first-served basis, and no processor may write into
another processor’s memory? The answer is not known.1

The algorithm can be generalized in two ways: (i) under certain circumstances,
to allow two processors simultaneously to be in their critical sections; and (ii) to
modify the first-come-first-served property so that higher priority processors are
served first. This will be described in a future paper.

Conclusion
Our algorithm provides a new, simple solution ot the mutual exclusion problem.
Since it does not depend upon any form of central control, it is less sensitive to
component failure than previous solutions.

Received September 1973; revised January 1974

1. We have recently found such an algorithm, but it is quite complicated.

178 A New Solution of Dijkstra’s Concurrent Programming Problem

References
[1] Knuth, D.E. Additional comments on a problem in concurrent programming control.

Comm. ACM 9, 5 (May 1966), 321–322.

[2] deBruijn, N.G. Additional comments on a problem in concurrent programming
control. Comm. ACM 10, 3 (Mar. 1967), 137–138.

[3] Eisenberg, M.A., and McGuire, M.R. Further comments on Dijkstra’s concurrent
programming control problem. Comm. ACM 15, 11 (Nov. 1972), 999.

[4] Dijkstra, E.W. Solution of a problem in concurrent programming control. Comm. ACM
8, 9 (Sept. 1965), 569.

[5] Dijstra, E.W. The structure of THE multiprogramming system. Comm. ACM 11, 5 (May
1968), 341–346.

Time, Clocks, and the Ordering of
Events in a Distributed System
Leslie Lamport (Massachusetts Computer Associates, Inc.)

The concept of one event happening before another in a distributed system is exam-
ined, and is shown to define a partial ordering of the events. A distributed algorithm
is given for synchronizing a system of logical clocks which can be used to totally
order the events. The use of the total ordering is illustrated with a method for solv-
ing synchronization problems. The algorithm is then specialized for synchronizing
physical clocks, and a bound is derived on how far out of synchrony the clocks can
become.

Key Words and Phrases: distributed systems, computer networks, clock synchro-
nization, multiprocess systems

CR Categories: 4.32, 5.29

General permission to make fair use in teaching or research of all or part of this material is granted
to individual readers and to nonprofit libraries acting for them provided that ACM’s copyright
notice is given and that reference is made to the publication, to its date of issue, and to the fact that
reprinting privileges were granted by permission of the Association for Computing Machinery. To
otherwise reprint a figure, table, other substantial excerpt, or the entire work requires specific
permission as does republication, or systematic or multiple reproduction.
This work was supported by the Advanced Research Projects Agency of the Department of Defense
and Rome Air Development Center. It was monitored by Rome Air Development Center under
contract number F 30602-76-C-0094.
Author’s address: Computer Science Laboratory, SRI International, 333 Ravenswood Ave., Menlo
Park CA 94025.
© 1978 ACM 000l-0782/78/0700-0558 $00.75
Paper originally published in Communications of the ACM 21(7), July 1978.

180 Time, Clocks, and the Ordering of Events in a Distributed System

Introduction
The concept of time is fundamental to our way of thinking. It is derived from the
more basic concept of the order in which events occur. We say that something hap-
pened at 3:15 if it occurred after our clock read 3:15 and before it read 3:16. The
concept of the temporal ordering of events pervades our thinking about systems.
For example, in an airline reservation system we specify that a request for a reser-
vation should be granted if it is made before the flight is filled. However, we will
see that this concept must be carefully reexamined when considering events in a
distributed system.

A distributed system consists of a collection of distinct processes which are
spatially separated, and which communicate with one another by exchanging mes-
sages. A network of interconnected computers, such as the ARPA net, is a dis-
tributed system. A single computer can also be viewed as a distributed system in
which the central control unit, the memory units, and the input-output channels
are separate processes. A system is distributed if the message transmission delay
is not negligible compared to the time between events in a single process.

We will concern ourselves primarily with systems of spatially separated com-
puters. However, many of our remarks will apply more generally. In particular, a
multiprocessing system on a single computer involves problems similar to those
of a distributed system because of the unpredictable order in which certain events
can occur.

In a distributed system, it is sometimes impossible to say that one of two events
occurred first. The relation “happened before” is therefore only a partial ordering of
the events in the system. We have found that problems often arise because people
are not fully aware of this fact and its implications.

In this paper, we discuss the partial ordering defined by the “happened before”
relation, and give a distributed algorithm for extending it to a consistent total
ordering of all the events. This algorithm can provide a useful mechanism for
implementing a distributed system. We illustrate its use with a simple method for
solving synchronization problems. Unexpected, anomalous behavior can occur if
the ordering obtained by this algorithm differs from that perceived by the user.
This can be avoided by introducing real, physical clocks. We describe a simple
method for synchronizing these clocks, and derive an upper bound on how far out
of synchrony they can drift.

The Partial Ordering
Most people would probably say that an event a happened before an event b if a
happened at an earlier time than b. They might justify this definition in terms of

The Partial Ordering 181

physical theories of time. However, if a system is to meet a specification correctly,
then that specification must be given in terms of events observable within the
system. If the specification is in terms of physical time, then the system must
contain real clocks. Even if it does contain real clocks, there is still the problem that
such clocks are not perfectly accurate and do not keep precise physical time. We
will therefore define the “happened before” relation without using physical clocks.

We begin by defining our system more precisely. We assume that the system
is composed of a collection of processes. Each process consists of a sequence
of events. Depending upon the application, the execution of a subprogram on a
computer could be one event, or the execution of a single machine instruction could
be one event. We are assuming that the events of a process form a sequence, where
a occurs before b in this sequence if a happens before b. In other words, a single
process is defined to be a set of events with an a priori total ordering. This seems to
be what is generally meant by a process.1 It would be trivial to extend our definition
to allow a process to split into distinct subprocesses, but we will not bother to do so.

We assume that sending or receiving a message is an event in a process. We can
then define the “happened before” relation, denoted by “→”, as follows.

Definition The relation “→” on the set of events of a system is the smallest relation satisfying
the following three conditions: (1) If a and b are events in the same process, and a
comes before b, then a→ b. (2) If a is the sending of a message by one process and
b is the receipt of the same message by another process, then a→ b. (3) If a→ b

and b→ c then a→ c. Two distinct events a and b are said to be concurrent if a �→ b

and b �→ a.

We assume that a �→ a for any event a. (Systems in which an event can happen
before itself do not seem to be physically meaningful.) This implies that→ is an
irreflexive partial ordering on the set of all events in the system.

It is helpful to view this definition in terms of a “space-time diagram” such as
Figure 1. The horizontal direction represents space, and the vertical direction rep-
resents time—later times being higher than earlier ones. The dots denote events,
the vertical lines denote processes, and the wavy lines denote messages.2 It is easy

1. The choice of what constitutes an event affects the ordering of events in a process. For example,
the receipt of a message might denote the setting of an interrupt bit in a computer, or the execution
of a subprogram to handle that interrupt. Since interrupts need not be handled in the order that
they occur, this choice will affect the ordering of a process’ message-receiving events.

2. Observe that messages may be received out of order. We allow the sending of several messages
to be a single event, but for convenience we will assume that the receipt of a single message does
not coincide with the sending or receipt of any other message.

182 Time, Clocks, and the Ordering of Events in a Distributed System

Figure 1

to see that a→ b means that one can go from a to b in the diagram by moving for-
ward in time along process and message lines. For example, we have p1→ r4 in
Figure 1.

Another way of viewing the definition is to say thata→ bmeans that it is possible
for event a to causally affect event b. Two events are concurrent if neither can
causally affect the other. For example, events p3 and q3 of Figure l are concurrent.
Even though we have drawn the diagram to imply thatq3 occurs at an earlier physical
time than p3, process P cannot know what process Q did at q3 until it receives the
message at p4. (Before event p4, P could at most know what Q was planning to do
at q3.)

This definition will appear quite natural to the reader familiar with the invariant
space-time formulation of special relativity, as described for example in [1] or
the first chapter of [2]. In relativity, the ordering of events is defined in terms of
messages that could be sent. However, we have taken the more pragmatic approach
of only considering messages that actually are sent. We should be able to determine
if a system performed correctly by knowing only those events which did occur,
without knowing which events could have occurred.

Logical Clocks
We now introduce clocks into the system. We begin with an abstract point of view
in which a clock is just a way of assigning a number to an event, where the number
is thought of as the time at which the event occurred. More precisely, we define a

Logical Clocks 183

clock Ci for each process Pi to be a function which assigns a number Ci〈a〉 to any
event a in that process. The entire system of clocks is represented by the function
C which assigns to any event b the number C〈b〉, where C〈b〉 = Cj〈b〉 if b is an event
in process Pj . For now, we make no assumption about the relation of the numbers
Ci〈a〉 to physical time, so we can think of the clocks Ci as logical rather than physical
clocks. They may be implemented by counters with no actual timing mechanism.

We now consider what it means for such a system of clocks to be correct. We
cannot base our definition of correctness on physical time, since that would require
introducing clocks which keep physical time. Our definition must be based on the
order in which events occur. The strongest reasonable condition is that if an event
a occurs before another event b, then a should happen at an earlier time than b.
We state this condition more formally as follows.

Clock Condition For any events a , b: if a→ b then C〈a〉< C〈b〉.

Note that we cannot expect the converse condition to hold as well, since that
would imply that any two concurrent events must occur at the same time. In Fig-
ure 1, p2 and p3 are both concurrent with q3, so this would mean that they both
must occur at the same time as q3, which would contradict the Clock Condition
because p2→ p3.

It is easy to see from our definition of the relation “→” that the Clock Condition
is satisfied if the following two conditions hold.

C1 If a and b are events in process Pi, and a comes before b, then Ci〈a〉< Ci〈b〉.

C2 If a is the sending of a message by process Pi and b is the receipt of that message
by process Pj , then Ci〈a〉< Cj〈b〉.

Let us consider the clocks in terms of a space-time diagram. We imagine that
a process’ clock “ticks” through every number, with the ticks occurring between
the process’ events. For example, if a and b are consecutive events in process Pi
with Ci〈a〉 = 4 and Ci〈b〉 = 7, then clock ticks 5, 6, and 7 occur between the two
events. We draw a dashed “tick line” through all the like-numbered ticks of the
different processes. The space-time diagram of Figure 1 might then yield the picture
in Figure 2. Condition C1 means that there must be a tick line between any two
events on a process line, and condition C2 means that every message line must
cross a tick line. From the pictorial meaning of→, it is easy to see why these two
conditions imply the Clock Condition.

We can consider the tick lines to be the time coordinate lines of some Carte-
sian coordinate system on space-time. We can redraw Figure 2 to straighten these

184 Time, Clocks, and the Ordering of Events in a Distributed System

Figure 2

Figure 3

coordinate lines, thus obtaining Figure 3. Figure 3 is a valid alternate way of repre-
senting the same system of events as Figure 2. Without introducing the concept of
physical time into the system (which requires introducing physical clocks), there is
no way to decide which of these pictures is a better representation.

Ordering the Events Totally 185

The reader may find it helpful to visualize a two-dimensional spatial network of
processes, which yields a three-dimensional space-time diagram. Processes and
messages are still represented by lines, but tick lines become two-dimensional
surfaces.

Let us now assume that the processes are algorithms, and the events represent
certain actions during their execution. We will show how to introduce clocks into
the processes which satisfy the Clock Condition. Process Pi’s clock is represented
by a register Ci, so that Ci〈a〉 is the value contained by Ci during the event a. The
value of Ci will change between events, so changing Ci does not itself constitute an
event.

To guarantee that the system of clocks satisfies the Clock Condition, we will
insure that it satisfies conditions C1 and C2. Condition C1 is simple; the processes
need only obey the following implementation rule:

IR1 Each process Pi increments Ci between any two successive events.

To meet condition C2, we require that each message m contain a timestamp Tm
which equals the time at which the message was sent. Upon receiving a message
timestamped Tm, a process must advance its clock to be later than Tm. More pre-
cisely, we have the following rule.

IR2 (a) If event a is the sending of a message m by process Pi, then the message m
contains a timestamp Tm = Ci〈a〉. (b) Upon receiving a message m, process Pj sets
Cj greater than or equal to its present value and greater than Tm.

In IR2(b) we consider the event which represents the receipt of the message m
to occur after the setting of Cj . (This is just a notational nuisance, and is irrelevant
in any actual implementation.) Obviously, IR2 insures that C2 is satisfied. Hence,
the simple implementation rules IR1 and IR2 imply that the Clock Condition is
satisfied, so they guarantee a correct system of logical clocks.

Ordering the Events Totally
We can use a system of clocks satisfying the Clock Condition to place a total
ordering on the set of all system events. We simply order the events by the times
at which they occur. To break ties, we use any arbitrary total ordering ≺ of the
processes. More precisely, we define a relation ⇒ as follows: if a is an event in
process Pi and b is an event in process Pj , then a⇒ b if and only if either (i)
Ci〈a〉< Cj〈b〉 or (ii) Ci〈a〉 = Cj〈b〉 and Pi ≺ Pj . It is easy to see that this defines a
total ordering, and that the Clock Condition implies that if a→ b then a⇒ b. In

186 Time, Clocks, and the Ordering of Events in a Distributed System

other words, the relation⇒ is a way of completing the “happened before” partial
ordering to a total ordering.3

The ordering ⇒depends upon the system of clocks Ci, and is not unique. Differ-
ent choices of clocks which satisfy the Clock Condition yield different relations⇒.
Given any total ordering relation⇒which extends→, there is a system of clocks sat-
isfying the Clock Condition which yields that relation. It is only the partial ordering
→ which is uniquely determined by the system of events.

Being able to totally order the events can be very useful in implementing a
distributed system. In fact, the reason for implementing a correct system of logical
clocks is to obtain such a total ordering. We will illustrate the use of this total
ordering of events by solving the following version of the mutual exclusion problem.
Consider a system composed of a fixed collection of processes which share a single
resource. Only one process can use the resource at a time, so the processes must
synchronize themselves to avoid conflict. We wish to find an algorithm for granting
the resource to a process which satisfies the following three conditions: (I) A process
which has been granted the resource must release it before it can be granted to
another process. (II) Different requests for the resource must be granted in the
order in which they are made. (III) If every process which is granted the resource
eventually releases it, then every request is eventually granted.

We assume that the resource is initially granted to exactly one process.
These are perfectly natural requirements. They precisely specify what it means

for a solution to be correct.4 Observe how the conditions involve the ordering of
events. Condition II says nothing about which of two concurrently issued requests
should be granted first.

It is important to realize that this is a nontrivial problem. Using a central sched-
uling process which grants requests in the order they are received will not work,
unless additional assumptions are made. To see this, let P0 be the scheduling pro-
cess. Suppose P1 sends a request to P0 and then sends a message to P2. Upon
receiving the latter message, P2 sends a request to P0. It is possible for P2’s request
to reach P0 before P1’s request does. Condition II is then violated if P2’s request is
granted first.

To solve the problem, we implement a system of clocks with rules IR1 and
IR2, and use them to define a total ordering⇒ of all events. This provides a total

3. The ordering≺ establishes a priority among the processes. If a “fairer” method is desired, then
≺ can be made a function of the clock value. For example, if Ci〈a〉 = Cj 〈b〉 and j < i, then we can

let a⇒ b if j < Ci〈a〉modN ≤ i, and b⇒ a otherwise; where N is the total number of processes.

4. The term “eventually” should be made precise, but that would require too long a diversion from
our main topic.

Ordering the Events Totally 187

ordering of all request and release operations. With this ordering, finding a solution
becomes a straightforward exercise. It just involves making sure that each process
learns about all other processes’ operations.

To simplify the problem, we make some assumptions. They are not essential,
but they are introduced to avoid distracting implementation details. We assume
first of all that for any two processes Pi and Pj , the messages sent from Pi to Pj
are received in the same order as they are sent. Moreover, we assume that every
message is eventually received. (These assumptions can be avoided by introducing
message numbers and message acknowledgment protocols.) We also assume that
a process can send messages directly to every other process.

Each process maintains its own request queue which is never seen by any other
process. We assume that the request queues initially contain the single message
T0: P0 requests resource, where P0 is the process initially granted the resource and
T0 is less than the initial value of any clock.

The algorithm is then defined by the following five rules. For convenience, the
actions defined by each rule are assumed to form a single event.

1. To request the resource, process Pi sends the message Tm: Pi requests resource
to every other process, and puts that message on its request queue, where Tm
is the timestamp of the message.

2. When process Pj receives the message Tm: Pi requests resource, it places it
on its request queue and sends a (timestamped) acknowledgment message
to Pi.

5

3. To release the resource, process Pi removes any Tm: Pi requests resource mes-
sage from its request queue and sends a (timestamped) Pi releases resource
message to every other process.

4. When process Pj receives a Pi releases resource message, it removes any Tm: Pi
requests resource message from its request queue.

5. Process Pi is granted the resource when the following two conditions are
satisfied: (i) There is a Tm: Pi requests resource message in its request queue
which is ordered before any other request in its queue by the relation ⇒.
(To define the relation “⇒” for messages, we identify a message with the
event of sending it.) (ii) Pi has received a message from every other process
timestamped later than Tm.6

5. This acknowledgment message need not be sent if Pj has already sent a message to Pi time-

stamped later than Tm.

6. If Pi ≺ Pj , then Pi need only have received a message timestamped ≥ Tm from Pj .

188 Time, Clocks, and the Ordering of Events in a Distributed System

Note that conditions (i) and (ii) of rule 5 are tested locally by Pi.
It is easy to verify that the algorithm defined by these rules satisfies conditions I–

III. First of all, observe that condition (ii) of rule 5, together with the assumption that
messages are received in order, guarantees that Pi has learned about all requests
which preceded its current request. Since rules 3 and 4 are the only ones which
delete messages from the request queue, it is then easy to see that condition I holds.
Condition II follows from the fact that the total ordering ⇒ extends the partial
ordering→. Rule 2 guarantees that after Pi requests the resource, condition (ii) of
rule 5 will eventually hold. Rules 3 and 4 imply that if each process which is granted
the resource eventually releases it, then condition (i) of rule 5 will eventually hold,
thus proving condition III.

This is a distributed algorithm. Each process independently follows these rules,
and there is no central synchronizing process or central storage. This approach can
be generalized to implement any desired synchronization for such a distributed
multiprocess system. The synchronization is specified in terms of a State Machine,
consisting of a set C of possible commands, a set S of possible states, and a function
e: C× S→ S. The relation e(C , S)= S′ means that executing the command C with
the machine in state S causes the machine state to change to S′. In our example,
the set C consists of all the commands Pi requests resource and Pi releases resource,
and the state consists of a queue of waiting request commands, where the request
at the head of the queue is the currently granted one. Executing a request command
adds the request to the tail of the queue, and executing a release command removes
a command from the queue.7

Each process independently simulates the execution of the State Machine, using
the commands issued by all the processes. Synchronization is achieved because all
processes order the commands according to their timestamps (using the relation
⇒), so each process uses the same sequence of commands. A process can execute
a command timestamped T when it has learned of all commands issued by all
other processes with timestamps less than or equal to T. The precise algorithm
is straightforward, and we will not bother to describe it.

This method allows one to implement any desired form of multiprocess syn-
chronization in a distributed system. However, the resulting algorithm requires
the active participation of all the processes. A process must know all the commands
issued by other processes, so that the failure of a single process will make it impos-

7. lf each process does not strictly alternate request and release commands, then executing a
release command could delete zero, one, or more than one request from the queue.

Anomalous Behavior 189

sible for any other process to execute State Machine commands, thereby halting
the system.

The problem of failure is a difficult one, and it is beyond the scope of this paper
to discuss it in any detail. We will just observe that the entire concept of failure is
only meaningful in the context of physical time. Without physical time, there is no
way to distinguish a failed process from one which is just pausing between events. A
user can tell that a system has “crashed” only because he has been waiting too long
for a response. A method which works despite the failure of individual processes
or communication lines is described in [3].

Anomalous Behavior
Our resource scheduling algorithm ordered the requests according to the total
ordering⇒. This permits the following type of “anomalous behavior.” Consider a
nationwide system of interconnected computers. Suppose a person issues a request
a on a computer A, and then telephones a friend in another city to have him issue
a request b on a different computer B. It is quite possible for request b to receive
a lower timestamp and be ordered before request a. This can happen because the
system has no way of knowing that a actually preceded b, since that precedence
information is based on messages external to the system.

Let us examine the source of the problem more closely. Let S be the set of
all system events. Let us introduce a set of events which contains the events in
S together with all other relevant external events, such as the phone calls in our
example. Let→→→→→→→→→ denote the “happened before” relation for S. In our example, we
had a→→→→→→→→→ b, but a �→ b. It is obvious that no algorithm based entirely upon events
in S, and which does not relate those events in any way with the other events in S,
can guarantee that request a is ordered before request b.

There are two possible ways to avoid such anomalous behavior. The first way is
to explicitly introduce into the system the necessary information about the order-
ing→→→→→→→→→. In our example, the person issuing request a could receive the timestamp
Ta of that request from the system. When issuing request b, his friend could specify
that b be given a timestamp later than Ta. This gives the user the responsibility for
avoiding anomalous behavior.

The second approach is to construct a system of clocks which satisfies the
following condition.

Strong Clock Condition For any events a , b in S: if a→→→→→→→→→ b then C〈a〉< C〈b〉.

190 Time, Clocks, and the Ordering of Events in a Distributed System

This is stronger than the ordinary Clock Condition because→→→→→→→→→ is a stronger relation
than→. It is not in general satisfied by our logical clocks.

Let us identify S with some set of “real” events in physical space-time, and
let →→→→→→→→→ be the partial ordering of events defined by special relativity. One of the
mysteries of the universe is that it is possible to construct a system of physical clocks
which, running quite independently of one another, will satisfy the Strong Clock
Condition. We can therefore use physical clocks to eliminate anomalous behavior.
We now tum our attention to such clocks.

Physical Clocks
Let us introduce a physical time coordinate into our space-time picture, and let
Ci(t) denote the reading of the clock Ci at physical time t .8 For mathematical
convenience, we assume that the clocks run continuously rather than in discrete
“ticks.” (A discrete clock can be thought of as a continuous one in which there is
an error of up to 1/2 “tick” in reading it.) More precisely, we assume that Ci(t) is
a continuous, differentiable function of t except for isolated jump discontinuities
where the clock is reset. Then dCi(t)/dt represents the rate at which the clock is
running at time t .

In order for the clock Ci to be a true physical clock, it must run at approximately
the correct rate. That is, we must have dCi(t)/dt ≈ 1 for all t . More precisely, we will
assume that the following condition is satisfied:

PC1 There exists a constant κ � 1 such that for all i: |dCi(t)/dt − 1|< κ .

For typical crystal controlled clocks, κ ≤ 10−6.
It is not enough for the clocks individually to run at approximately the correct

rate. They must be synchronized so that Ci(t)≈ Cj (t) for all i, j , and t . More pre-
cisely, there must be a sufficiently small constant ε so that the following condition
holds:

PC2 For all i , j : |Ci(t)− Cj (t)|< ε.

If we consider vertical distance in Figure 2 to represent physical time, then PC2
states that the variation in height of a single tick line is less than ε.

Since two different clocks will never run at exactly the same rate, they will tend
to drift further and further apart. We must therefore devise an algorithm to insure

8. We will assume a Newtonian space-time. lf the relative motion of the clocks or gravitational ef-
fects are not negligible, then Ci(t)must be deduced from the actual clock reading by transforming
from proper time to the arbitrarily chosen time coordinate.

Physical Clocks 191

that PC2 always holds. First, however, let us examine how small κ and ε must be to
prevent anomalous behavior. We must insure that the system S of relevant physical
events satisfies the Strong Clock Condition. We assume that our clocks satisfy the
ordinary Clock Condition, so we need only require that the Strong Clock Condition
holds when a and b are events in S with a �→ b. Hence, we need only consider events
occurring in different processes.

Let μ be a number such that if event a occurs at physical time t and event b
in another process satisfies a→→→→→→→→→ b, then b occurs later than physical time t + μ.
In other words, μ is less than the shortest transmission time for interprocess
messages. We can always chooseμ equal to the shortest distance between processes
divided by the speed of light. However, depending upon how messages in S are
transmitted, μ could be significantly larger.

To avoid anomalous behavior, we must make sure that for any i, j , and t : Ci(t +
μ) − Cj (t) > 0. Combining this with PC1 and 2 allows us to relate the required
smallness of κ and ε to the value of μ as follows. We assume that when a clock
is reset, it is always set forward and never back. (Setting it back could cause C1 to
be violated.) PC1 then implies that Ci(t + μ)− Ci(t) > (1− κ)μ. Using PC2, it is
then easy to deduce that Ci(t + μ)− Cj (t) > 0 if the following inequality holds:

ε/(1− κ)≤ μ.

This inequality together with PC1 and PC2 implies that anomalous behavior is
impossible.

We now describe our algorithm for insuring that PC2 holds. Letm be a message
which is sent at physical time t and received at time t ′. We define νm= t ′ − t to be the
total delay of the messagem. This delay will, of course, not be known to the process
which receives m. However, we assume that the receiving process knows some
minimum delay μm ≥ 0 such that μm ≤ νm. We call ξm = νm − μm the unpredictable
delay of the message.

We now specialize rules IR1 and 2 for our physical clocks as follows:

IR1′ For each i, if Pi does not receive a message at physical time t , then C1 is differen-
tiable at t and dCi(t)/dt > 0.

IR2′ (a) If Pi sends a message m at physical time t , then m contains a timestamp Tm =
Ci(t). (b) Upon receiving a message m at time t ′, process Pj sets Cj (t

′) equal to
maximum(Cj (t

′ − 0), Tm + μm).9

9. Cj (t
′ − 0)= limδ→0 Cj (t

′ − |δ|).

192 Time, Clocks, and the Ordering of Events in a Distributed System

Although the rules are formally specified in terms of the physical time param-
eter, a process only needs to know its own clock reading and the timestamps of
messages it receives. For mathematical convenience, we are assuming that each
event occurs at a precise instant of physical time, and different events in the same
process occur at different times. These rules are then specializations of rules IR1
and IR2, so our system of clocks satisfies the Clock Condition. The fact that real
events have a finite duration causes no difficulty in implementing the algorithm.
The only real concern in the implementation is making sure that the discrete clock
ticks are frequent enough so C1 is maintained.

We now show that this clock synchronizing algorithm can be used to satisfy
condition PC2. We assume that the system of processes is described by a directed
graph in which an arc from process Pi to process Pj represents a communication
line over which messages are sent directly from PI to Pj . We say that a message
is sent over this arc every τ seconds if for any t , Pi sends at least one message to
Pj between physical times t and t + τ . The diameter of the directed graph is the
smallest number d such that for any pair of distinct processes Pj , Pk, there is a
path from Pj to Pk having at most d arcs.

In addition to establishing PC2, the following theorem bounds the length of
time it can take the clocks to become synchronized when the system is first started.

Theorem Assume a strongly connected graph of processes with diameter d which always
obeys rules IR1′ and IR2′. Assume that for any messagem,μm≤μ for some constant
μ, and that for all t ≥ t0: (a) PC1 holds. (b) There are constants τ and ξ such that
every τ seconds a message with an unpredictable delay less than ξ is sent over
every arc. Then PC2 is satisfied with ε ≈ d(2κτ + ξ) for all t >∼ t0 + τd, where the
approximations assume μ+ ξ � τ .

The proof of this theorem is surprisingly difficult, and is given in the Appen-
dix. There has been a great deal of work done on the problem of synchronizing
physical clocks. We refer the reader to [4] for an introduction to the subject. The
methods described in the literature are useful for estimating the message delaysμm
and for adjusting the clock frequencies dCi/dt (for clocks which permit such an ad-
justment). However, the requirement that clocks are never set backwards seems to
distinguish our situation from ones previously studied, and we believe this theorem
to be a new result.

Conclusion
We have seen that the concept of “happening before” defines an invariant partial
ordering of the events in a distributed multiprocess system. We described an al-

Appendix 193

gorithm for extending that partial ordering to a somewhat arbitrary total ordering,
and showed how this total ordering can be used to solve a simple synchronization
problem. A future paper will show how this approach can be extended to solve any
synchronization problem.

The total ordering defined by the algorithm is somewhat arbitrary. It can pro-
duce anomalous behavior if it disagrees with the ordering perceived by the system’s
users. This can be prevented by the use of properly synchronized physical clocks.
Our theorem showed how closely the clocks can be synchronized.

In a distributed system, it is important to realize that the order in which events
occur is only a partial ordering. We believe that this idea is useful in understanding
any multiprocess system. It should help one to understand the basic problems of
multiprocessing independently of the mechanisms used to solve them.

Appendix
Proof of the Theorem For any i and t , let us define Cti to be a clock which is set equal to Ci at time t and

runs at the same rate as Ci, but is never reset. In other words,

Ct
i
(t ′)= Ci(t)+

∫ t ′

t

[dCi(t)/dt]dt (1)

for all t ′ ≥ t . Note that

Ci(t
′)≥ Ct

i
(t ′) for all t ′ ≥ t . (2)

Suppose process P1 at time t1 sends a message to process P2 which is received
at time t2 with an unpredictable delay ≤ ξ , where t0 ≤ t1≤ t2. Then for all t ≥ t2 we
have:

Ct22 (t)≥ Ct22 (t2)+ (1− κ)(t − t2) [by (1) and PC1]

≥ C1(t1)+ μm + (1− κ)(t − t2) [by IR2′(b)]

= C1(t1)+ (1− κ)(t − t1)− [(t2 − t1)− μm]+ κ(t2 − t1)
≥ C1(t1)+ (1− κ)(t − t1)− ξ .

Hence, with these assumptions, for all t ≥ t2 we have:

Ct22 (t)≥ C1(t1)+ (1− κ)(t − t1)− ξ . (3)

Now suppose that for i = 1, . . . , n we have ti ≤ t ′i < ti+1, t0 ≤ t1, and that at time
t ′
i

process Pi sends a message to process Pi+1 which is received at time ti+1 with
an unpredictable delay less than ξ . Then repeated application of the inequality (3)

194 Time, Clocks, and the Ordering of Events in a Distributed System

yields the following result for t ≥ tn+1.

C
tn+1
n+1(t)≥ C1(t

′
1)+ (1− κ)(t − t ′1)− nξ . (4)

From PC1, IRl′ and 2′ we deduce that

C1(t
′
1)≥ C1(t1)+ (1− κ)(t ′1− t1).

Combining this with (4) and using (2), we get

Cn+1(t)≥ C1(t1)+ (1− κ)(t − t1)− nξ (5)

for t ≥ tn+1.
For any two processes P and P′, we can find a sequence of processes P =

P0, P1, . . . , Pn+1= P′, n≤ d, with communication arcs from each Pi to Pi+1. By hy-
pothesis (b) we can find times ti , t

′
i

with t ′
i
− ti ≤ τ and ti+1− t ′i ≤ ν, where ν = μ+ ξ .

Hence, an inequality of the form (5) holds with n ≤ d whenever t ≥ t1+ d(τ + ν).
For any i , j and any t , t1 with t1≥ t0 and t ≥ t1+ d(τ + ν) we therefore have:

Ci(t)≥ Cj (t1)+ (1− κ)(t − t1)− dξ . (6)

Now letm be any message timestamped Tm, and suppose it is sent at time t and
received at time t ′. We pretend thatm has a clock Cm which runs at a constant rate
such that Cm(t)= tm and Cm(t

′)= tm+μm. Thenμm≤ t ′ − t implies that dCm/dt ≤ 1.
Rule IR2′(b) simply sets Cj (t

′) to maximum(Cj (t
′ − 0), Cm(t

′)). Hence, clocks are
reset only by setting them equal to other clocks.

For any time tx ≥ t0 + μ/(1− κ), let Cx be the clock having the largest value at
time tx . Since all clocks run at a rate less than 1+ κ , we have for all i and all t ≥ tx:

Ci(t)≤ Cx(tx)+ (1+ κ)(t − tx). (7)

We now consider the following two cases: (i) Cx is the clock Cq of process Pq. (ii)
Cx is the clock Cm of a message sent at time t1 by process Pq. In case (i), (7) simply
becomes

Ci(t)≤ Cq(tx)+ (1+ κ)(t − tx). (8i)

In case (ii), since Cm(t1)= Cq(t1) and dCm/dt ≤ 1, we have

Cx(tx)≤ Cq(t1)+ (tx − t1).
Hence, (7) yields

Ci(t)≤ Cq(t1)+ (1+ κ)(t − t1). (8ii)

Appendix 195

Since tx ≥ t0 + μ/(1− κ), we get

Cq(tx − μ/(1− κ))≤ Cq(tx)− μ [by PC1]

≤ Cm(tx)− μ [by choice of m]

≤ Cm(tx)− (tx − t1)μm/νm [μm ≤ μ, tx − t1≤ νm]

= Tm [by definition of Cm]

= Cq(t1) [by IR2′(a)]

Hence, Cq(tx − μ/(1− κ))≤ Cq(t1), so tx − t1≤ μ/(1− κ) and thus t1≥ t0.
Letting t1= tx in case (i), we can combine (8i) and (8ii) to deduce that for any t , tx,

with t ≥ tx ≥ t0+ μ/(1− κ) there is a process Pq and a time t1 with tx − μ/(1− κ)≤
t1≤ tx such that for all i:

Ci(t)≤ Cq(t1)+ (1+ κ)(t − t1). (9)

Choosing t and tx with t ≥ tx + d(τ + ν), we can combine (6) and (9) to conclude
that there exists a t1 and a process Pq such that for all i:

Cq(t1)+ (1− κ)(t − t1)− dξ ≤ Ci(t)

≤ Cq(t1)+ (1+ κ)(t − t1)
(10)

Letting t = tx + d(τ + ν), we get

d(τ + ν)≤ t − t1≤ d(τ + ν)+ μ/(1− κ).

Combining this with (10), we get

Cq(t1)+ (t − t1)− κd(τ + ν)− dξ ≤ Ci(t)Cq(t1)

+ (t − t1)+ κ[d(τ + ν)+ μ/(1− κ)]
(11)

Using the hypothesis that κ� 1 andμ≤ ν� τ , we can rewrite (11) as the following
approximate inequality.

Cq(t1)+ (t − t1)− d(κτ + ξ) <∼ Ci(t)

<∼ Cq(t1)+ (t − t1)+ dκτ .
(12)

Since this holds for all i, we get

|Ci(t)− Cj (t)|<∼ d(2κτ + ξ),

and this holds for all t >∼ t0 + dt .

196 Time, Clocks, and the Ordering of Events in a Distributed System

Note that relation (11) of the proof yields an exact upper bound for |Ci(t)− Cj (t)|
in case the assumption μ+ ξ � τ is invalid. An examination of the proof suggests
a simple method for rapidly initializing the clocks, or resynchronizing them if they
should go out of synchrony for any reason. Each process sends a message which is
relayed to every other process. The procedure can be initiated by any process, and
requires less than 2d(μ+ ξ) seconds to effect the synchronization, assuming each
of the messages has an unpredictable delay less than ξ .

Acknowledgment. The use of timestamps to order operations, and the concept of
anomalous behavior are due to Paul Johnson and Robert Thomas.

Received March 1976; revised October 1977

References
[1] Schwartz, J.T. Relativity in Illustrations. New York U. Press, New York, 1962.

[2] Taylor, E.F., and Wheeler, J.A. Space-Time Physics, W.H. Freeman, San Francisco, 1966.

[3] Lamport, L. The implementation of reliable distributed multiprocess systems. To
appear in Computer Networks.

[4] Ellingson, C., and Kulpinski, R.J. Dissemination of system-time. IEEE Trans. Comm.
Com-23, 5 (May 1973), 605–624.

How to Make a Multiprocessor
Computer That Correctly Executes
Multiprocess Programs
Leslie Lamport

Abstract—Many large sequential computers execute operations in a different or-
der than is specified by the program. A correct execution is achieved if the results
produced are the same as would be produced by executing the program steps in
order. For a multiprocessor computer, such a correct execution by each processor
does not guarantee the correct execution of the entire program. Additional condi-
tions are given which do guarantee that a computer correctly executes multiprocess
programs.

Index Terms—Computer design, concurrent computing, hardware correctness,
multiprocessing, parallel processing.

A high-speed processor may execute operations in a different order than is specified
by the program. The correctness of the execution is guaranteed if the processor
satisfies the following condition: the result of an execution is the same as if the
operations had been executed in the order specified by the program. A processor
satisfying this condition will be called sequential. Consider a computer composed
of several such processors accessing a common memory. The customary approach
to designing and proving the correctness of multiprocess algorithms [1]–[3] for

Manuscript received September 28, 1977; revised May 8, 1979.
The author is with the Computer Science Laboratory, SRI International, Menlo Park, CA 94025.
Paper originally published in IEEE Transactions on Computers C-28(9), September 1979, pp. 690–
691.

198 How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs

such a computer assumes that the following condition is satisfied: the result of
any execution is the same as if the operations of all the processors were executed in
some sequential order, and the operations of each individual processor appear in
this sequence in the order specified by its program. A multiprocessor satisfying this
condition will be called sequentially consistent. The sequentiality of each individual
processor does not guarantee that the multiprocessor computer is sequentially
consistent. In this brief note, we describe a method of interconnecting sequential
processors with memory modules that insures the sequential consistency of the
resulting multiprocessor.

We assume that the computer consists of a collection of processors and memory
modules, and that the processors communicate with one another only through
the memory modules. (Any special communication registers may be regarded as
separate memory modules.) The only processor operations that concern us are the
operations of sending fetch and store requests to memory modules. We assume
that each processor issues a sequence of such requests. (It must sometimes wait
for requests to be executed, but that does not concern us.)

We illustrate the problem by considering a simple two-process mutual exclusion
protocol. Each process contains a critical section, and the purpose of the protocol
is to insure that only one process may be executing its critical section at any time.
The protocol is as follows.

process 1
a := 1;
if b = 0 then critical section;

a := 0
else . . . fi

process 2
b := 1;
if a = 0 then critical section;

b := 0
else . . . fi

The else clauses contain some mechanism for guaranteeing eventual access to the
critical section, but that is irrelevant to the discussion. It is easy to prove that this
protocol guarantees mutually exclusive access to the critical sections. (Devising a
proof provides a nice exercise in using the assertional techniques of [2] and [3],
and is left to the reader.) Hence, when this two-process program is executed by a
sequentially consistent multiprocessor computer, the two processors cannot both
be executing their critical sections at the same time.

How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs 199

We first observe that a sequential processor could execute the “b := 1” and
“fetch b” operations of process 1 in either order. (When process 1’s program is
considered by itself, it does not matter in which order these two operations are
performed.) However, it is easy to see that executing the “fetch b” operation first
can lead to an error—both processes could then execue their critical sections at the
same time. This immediately suggests our first requirement for a multiprocessor
computer.

Requirement R1 Each processor issues memory requests in the order specified by its program.

Satisfying Requirement R1 is complicated by the fact that storing a value is
possible only after the value has been computed. A processor will often be ready to
issue a memory fetch request before it knows the value to be stored by a preceding
store request. To minimize waiting, the processor can issue the store request to
the memory module without specifying the value to be stored. Of course, the store
request cannot actually be executed by the memory module until it receives the
value to be stored.

Requirement R1 is not sufficient to guarantee correct execution. To see this,
suppose that each memory module has several ports, and each port services one
processor (or I/O channel). Let the values of “a” and “b” be stored in separate
memory modules, and consider the following sequence of events.

1. Processor 1 sends the “a := 1” request to its port in memory module 1. The
module is currently busy executing an operation for some other processor
(or I/O channel).

2. Processor 1 sends the “fetch b” request to its port in memory module 2. The
module is free, and execution is begun.

3. Processor 2 sends its “b := 1” request to memory module 2. This request will
be executed after processor 1’s “fetch b” request is completed.

4. Processor 2 sends its “fetch a” request to its port in memory module 1. The
module is still busy.

There are now two operations waiting to be performed by memory module 1. If
processor 2’s “fetch a” operation is performed first, then both processes can enter
their critical sections at the same time, and the protocol fails. This could happen if
the memory module uses a round robin scheduling discipline in servicing its ports.

In this situation, an error occurs only if the two requests to memory module 1
are not executed in the same order in which they were received. This suggests the
following requirement.

200 How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs

Requirement R2 Memory requests from all processors issued to an individual memory module are
serviced from a single FIFO queue. Issuing a memory request consists of entering
the request on this queue.

Condition R1 implies that a processor may not issue any further memory re-
quests until after its current request has been entered on the queue. Hence, it must
wait if the queue is full. If two or more processors are trying to enter requests in the
queue at the same time, then it does not matter in which order they are serviced.

Note If a fetch requests the contents of a memory location for which there is already a
write request on the queue, then the fetch need not be entered on the queue. It may
simply return the value from the last such write request on the queue.

Requirements R1 and R2 insure that if the individual processors are sequential,
then the entire multiprocessor computer is sequentially consistent. To demon-
strate this, one first introduces a relation→ on memory requests as follows. Define
A→ B if and only if 1) A and B are issued by the same processor and A is issued be-
fore B, or 2) A and B are issued to the same memory module, and A is entered in the
queue before B (and is thus executed before B). It is easy to see that R1 and R2 imply
that→ is a partial ordering on the set of memory requests. Using the sequentiality
of each processor, one can then prove the following result: each fetch and store
operation fetches or stores the same value as if all the operations were executed
sequentially in any order such that A→ B implies that A is executed before B. This
in turn proves the sequential consistency of the multiprocessor computer.

Requirement R2 states that a memory module’s request queue must be serviced
in a FIFO order. This implies that the memory module must remain idle if the
request at the head of its queue is a store request for which the value to be stored has
not yet been received. Condition R2 can be weakened to allow the memory module
to service other requests in this situation. We need only require that all requests to
the same memory cell be serviced in the order that they appear in the queue. Requests
to different memory cells may be serviced out of order. Sequential consistency is
preserved because such a service policy is logically equivalent to considering each
memory cell to be a separate memory module with its own request queue. (The fact
that these modules may share some hardware affects the rate at which they service
requests and the capacity of their queues, but it does not affect the logical property
of sequential consistency.)

The requirements needed to guarantee consistency rule out some techniques
which can be used to speed up individual sequential processors. For some appli-
cations, achieving sequential consistency may not be worth the price of slowing

References 201

down the processors. In this case, one must be aware that conventional methods
for designing multiprocess algorithms cannot be relied upon to produce correctly
executing programs. Protocols for synchronizing the processors must be designed
at the lowest level of the machine instruction code, and verifying their correctness
becomes a monumental task.

References
[1] E. W. Dijkstra, “Hierarchical ordering of sequential processes,” Acta Informatica, vol. 1,

pp. 115–138, 1971.

[2] L. Lamport, “Proving the correctness of multiprocess programs,” IEEE Trans. Software
Eng., vol. SE-3, pp. 125–143, Mar. 1977.

[3] S. Owicki and D. Gries, “Verifying properties of parallel programs: an axiomatic
approach,” Commun. Assoc. Comput. Mach., vol. 19, pp. 279–285, May 1976.

The Byzantine Generals Problem
Leslie Lamport (SRI International),
Robert Shostak (SRI International),
Marshall Pease (SRI International)

Reliable computer systems must handle malfunctioning components that give
conflicting information to different parts of the system. This situation can be
expressed abstractly in terms of a group of generals of the Byzantine army camped
with their troops around an enemy city. Communicating only by messenger, the
generals must agree upon a common battle plan. However, one or more of them
may be traitors who will try to confuse the others. The problem is to find an
algorithm to ensure that the loyal generals will reach agreement. It is shown that,
using only oral messages, this problem is solvable if and only if more than two-
thirds of the generals are loyal; so a single traitor can confound two loyal generals.
With unforgeable written messages, the problem is solvable for any number of

This research was supported in part by the National Aeronautics and Space Administration under
contract NAS1-15428 Mod. 3, the Ballistic Missile Defense Systems Command under contract
DASG60-78-C-0046, and the Army Research Office under contract DAAG29-79-C-0102.
Authors’ address: Computer Science Laboratory, SRI International, 333 Ravenswood Avenue,
Menlo Park, CA 94025.
Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.
© 1982 ACM 0164-0925/82/0700-0382 $00.75
Paper originally published in Transactions on Programming Languages and Systems, 4(3), July 1982,
pp. 382–401.

204 The Byzantine Generals Problem

generals and possible traitors. Applications of the solutions to reliable computer
systems are then discussed.

Categories and Subject Descriptors: C.2.4. [Computer-Communication Networks]:
Distributed Systems—network operating systems; D.4.4 [Operating Systems]: Com-
munications Management—network communication; D.4.5 [Operating Systems]:
Reliability—fault tolerance

General Terms: Algorithms, Reliability

Additional Key Words and Phrases: Interactive consistency

1 Introduction
A reliable computer system must be able to cope with the failure of one or more
of its components. A failed component may exhibit a type of behavior that is
often overlooked—namely, sending conflicting information to different parts of
the system. The problem of coping with this type of failure is expressed abstractly
as the Byzantine Generals Problem. We devote the major part of the paper to a
discussion of this abstract problem and conclude by indicating how our solutions
can be used in implementing a reliable computer system.

We imagine that several divisions of the Byzantine army are camped outside
an enemy city, each division commanded by its own general. The generals can
communicate with one another only by messenger. After observing the enemy, they
must decide upon a common plan of action. However, some of the generals may be
traitors, trying to prevent the loyal generals from reaching agreement. The generals
must have an algorithm to guarantee that

A All loyal generals decide upon the same plan of action.

The loyal generals will all do what the algorithm says they should, but the traitors
may do anything they wish. The algorithm must guarantee condition A regardless
of what the traitors do.

The loyal generals should not only reach agreement, but should agree upon a
reasonable plan. We therefore also want to insure that

B A small number of traitors cannot cause the loyal generals to adopt a bad plan.

Condition B is hard to formalize, since it requires saying precisely what a bad
plan is, and we do not attempt to do so. Instead, we consider how the generals reach
a decision. Each general observes the enemy and communicates his observations
to the others. Let v(i) be the information communicated by the ith general. Each

1 Introduction 205

general uses some method for combining the values v(1), . . . , v(n) into a single
plan of action, where n is the number of generals. Condition A is achieved by having
all generals use the same method for combining the information, and Condition
B is achieved by using a robust method. For example, if the only decision to be
made is whether to attack or retreat, then v(i) can be General i’s opinion of which
option is best, and the final decision can be based upon a majority vote among
them. A small number of traitors can affect the decision only if the loyal generals
were almost equally divided between the two possibilities, in which case neither
decision could be called bad.

While this approach may not be the only way to satisfy conditions A and B, it
is the only one we know of. It assumes a method by which the generals commu-
nicate their values v(i) to one another. The obvious method is for the ith general
to send v(i) by messenger to each other general. However, this does not work, be-
cause satisfying condition A requires that every loyal general obtain the same values
v(1), . . . , v(n), and a traitorous general may send different values to different gen-
erals. For condition A to be satisfied, the following must be true:

1 Every loyal general must obtain the same information v(1), . . . , v(n).

Condition 1 implies that a general cannot necessarily use a value of v(i)obtained
directly from the ith general, since a traitorous ith general may send different values
to different generals. This means that unless we are careful, in meeting condition
1 we might introduce the possibility that the generals use a value of v(i) different
from the one sent by the ith general—even though the ith general is loyal. We must
not allow this to happen if condition B is to be met. For example, we cannot permit
a few traitors to cause the loyal generals to base their decision upon the values
“retreat”, . . . , “retreat” if every loyal general sent the value “attack”. We therefore
have the following requirement for each i:

2 If the ith general is loyal, then the value that he sends must be used by every loyal
general as the value of v(i).

We can rewrite condition 1 as the condition that for every i (whether or not the
ith general is loyal),

1′ Any two loyal generals use the same value of v(i).

Conditions 1′ and 2 are both conditions on the single value sent by the ith
general. We can therefore restrict our consideration to the problem of how a single
general sends his value to the others. We phrase this in terms of a commanding
general sending an order to his lieutenants, obtaining the following problem.

206 The Byzantine Generals Problem

Byzantine Generals A commanding general must send an order to his n− 1 lieutenant generals such
that

IC1 All loyal lieutenants obey the same order.

IC2 If the commanding general is loyal, then every loyal lieutenant obeys the order he
sends.

Conditions IC1 and IC2 are called the interactive consistency conditions. Note
that if the commander is loyal, then IC1 follows from IC2. However, the commander
need not be loyal.

To solve our original problem, the ith general sends his value of v(i) by using a
solution to the Byzantine Generals Problem to send the order “use v(i) as my value,”
with the other generals acting as the lieutenants.

2 Impossibility Results
The Byzantine Generals Problem seems deceptively simple. Its difficulty is indi-
cated by the surprising fact that if the generals can send only oral messages, then
no solution will work unless more than two-thirds of the generals are loyal. In par-
ticular, with only three generals, no solution can work in the presence of a single
traitor. An oral message is one whose contents are completely under the control
of the sender, so a traitorous sender can transmit any possible message. Such a
message corresponds to the type of message that computers normally send to one
another. In Section 4 we consider signed, written messages, for which this is not
true.

We now show that with oral messages no solution for three generals can handle
a single traitor. For simplicity, we consider the case in which the only possible deci-
sions are “attack” or “retreat”. Let us first examine the scenario pictured in Figure 1
in which the commander is loyal and sends an “attack” order, but Lieutenant 2 is
a traitor and reports to Lieutenant 1 that he received a “retreat” order. For IC2 to
be satisfied, Lieutenant 1 must obey the order to attack.

Now consider another scenario, shown in Figure 2, in which the commander
is a traitor and sends an “attack” order to Lieutenant 1 and a “retreat” order to
Lieutenant 2. Lieutenant 1 does not know who the traitor is, and he cannot tell
what message the commander actually sent to Lieutenant 2. Hence, the scenarios
in these two pictures appear exactly the same to Lieutenant 1. If the traitor lies
consistently, then there is no way for Lieutenant 1 to distinguish between these two
situations, so he must obey the “attack” order in both of them. Hence, whenever
Lieutenant 1 receives an “attack” order from the commander, he must obey it.

2 Impossibility Results 207

Figure 1 Lieutentant 2 a traitor.

Figure 2 The commander a traitor.

However, a similar argument shows that if Lieutenant 2 receives a “retreat”
order from the commander then he must obey it even if Lieutenant 1 tells him that
the commander said “attack”. Therefore, in the scenario of Figure 2, Lieutenant 2
must obey the “retreat” order while Lieutenant 1 obeys the “attack” order, thereby
violating condition IC1. Hence, no solution exists for three generals that works in
the presence of a single traitor.

This argument may appear convincing, but we strongly advise the reader to
be very suspicious of such nonrigorous reasoning. Although this result is indeed
correct, we have seen equally plausible “proofs” of invalid results. We know of no
area in computer science or mathematics in which informal reasoning is more
likely to lead to errors than in the study of this type of algorithm. For a rigorous proof
of the impossibility of a three-general solution that can handle a single traitor, we
refer the reader to [3].

208 The Byzantine Generals Problem

Using this result, we can show that no solution with fewer than 3m+ 1 generals
can cope with m traitors.1 The proof is by contradiction—we assume such a solu-
tion for a group of 3m or fewer and use it to construct a three-general solution to
the Byzantine Generals Problem that works with one traitor, which we know to be
impossible. To avoid confusion between the two algorithms, we call the generals
of the assumed solution Albanian generals, and those of the constructed solution
Byzantine generals. Thus, starting from an algorithm that allows 3m or fewer Al-
banian generals to cope with m traitors, we construct a solution that allows three
Byzantine generals to handle a single traitor.

The three-general solution is obtained by having each of the Byzantine generals
simulate approximately one-third of the Albanian generals, so that each Byzan-
tine general is simulating at mostm Albanian generals. The Byzantine commander
simulates the Albanian commander plus at most m− 1 Albanian lieutenants, and
each of the two Byzantine lieutenants simulates at most m Albanian lieutenants.
Since only one Byzantine general can be a traitor, and he simulates at most m
Albanians, at most m of the Albanian generals are traitors. Hence, the assumed
solution guarantees that IC1 and IC2 hold for the Albanian generals. By IC1, all
the Albanian lieutenants being simulated by a loyal Byzantine lieutenant obey the
same order, which is the order he is to obey. It is easy to check that conditions
IC1 and IC2 of the Albanian generals solution imply the corresponding condi-
tions for the Byzantine generals, so we have constructed the required impossible
solution.

One might think that the difficulty in solving the Byzantine Generals Problem
stems from the requirement of reaching exact agreement. We now demonstrate
that this is not the case by showing that reaching approximate agreement is just
as hard as reaching exact agreement. Let us assume that instead of trying to agree
on a precise battle plan, the generals must agree only upon an approximate time
of attack. More precisely, we assume that the commander orders the time of the
attack, and we require the following two conditions to hold:

IC1′ All loyal lieutenants attack within 10 minutes of one another.

IC2′ If the commanding general is loyal, then every loyal lieutenant attacks within 10
minutes of the time given in the commander’s order.

1. More precisely, no such solution exists for three or more generals, since the problem is trivial
for two generals.

2 Impossibility Results 209

(We assume that the orders are given and processed the day before the attack and
that the time at which an order is received is irrelevant—only the attack time given
in the order matters.)

Like the Byzantine Generals Problem, this problem is unsolvable unless more
than two-thirds of the generals are loyal. We prove this by first showing that if
there were a solution for three generals that coped with one traitor, then we could
construct a three-general solution to the Byzantine Generals Problem that also
worked in the presence of one traitor. Suppose the commander wishes to send an
“attack” or “retreat” order. He orders an attack by sending an attack time of 1:00
and orders a retreat by sending an attack time of 2:00, using the assumed algorithm.
Each lieutenant uses the following procedure to obtain his order.

1. After receiving the attack time from the commander, a lieutenant does one
of the following:

(a) If the time is 1:10 or earlier, then attack.

(b) If the time is 1:50 or later, then retreat.

(c) Otherwise, continue to step (2).

2. Ask the other lieutenant what decision he reached in step (1).

(a) If the other lieutenant reached a decision, then make the same de-
cision he did.

(b) Otherwise, retreat.

It follows from IC2′ that if the commander is loyal, then a loyal lieutenant will
obtain the correct order in step (1), so IC2 is satisfied. If the commander is loyal,
then IC1 follows from IC2, so we need only prove IC1 under the assumption that
the commander is a traitor. Since there is at most one traitor, this means that both
lieutenants are loyal. It follows from ICI′ that if one lieutenant decides to attack in
step (1), then the other cannot decide to retreat in step (1). Hence, either they will
both come to the same decision in step (1) or at least one of them will defer his
decision until step (2). In this case, it is easy to see that they both arrive at the same
decision, so IC1 is satisfied. We have therefore constructed a three-general solution
to the Byzantine Generals Problem that handles one traitor, which is impossible.
Hence, we cannot have a three-general algorithm that maintains ICI′ and IC2′ in
the presence of a traitor.

The method of having one general simulate m others can now be used to prove
that no solution with fewer than 3m+ 1 generals can cope withm traitors. The proof
is similar to the one for the original Byzantine Generals Problem and is left to the
reader.

210 The Byzantine Generals Problem

3 A Solution with Oral Messages
We showed above that for a solution to the Byzantine Generals Problem using oral
messages to cope with m traitors, there must be at least 3m+ 1 generals. We now
give a solution that works for 3m+ 1 or more generals. However, we first specify
exactly what we mean by “oral messages”. Each general is supposed to execute some
algorithm that involves sending messages to the other generals, and we assume that
a loyal general correctly executes his algorithm. The definition of an oral message is
embodied in the following assumptions which we make for the generals’ message
system:

A1 Every message that is sent is delivered correctly.

A2 The receiver of a message knows who sent it.

A3 The absence of a message can be detected.

Assumptions A1 and A2 prevent a traitor from interfering with the communica-
tion between two other generals, since by A1 he cannot interfere with the messages
they do send, and by A2 he cannot confuse their intercourse by introducing spuri-
ous messages. Assumption A3 will foil a traitor who tries to prevent a decision by
simply not sending messages. The practical implementation of these assumptions
is discussed in Section 6.

The algorithms in this section and in the following one require that each general
be able to send messages directly to every other general. In Section 5, we describe
algorithms which do not have this requirement.

A traitorous commander may decide not to send any order. Since the lieutenants
must obey some order, they need some default order to obey in this case. We let
RETREAT be this default order.

We inductively define the Oral Message algorithms OM(m), for all nonnegative
integers m, by which a commander sends an order to n− 1 lieutenants. We show
that OM(m) solves the Byzantine Generals Problem for 3m+ 1 or more generals
in the presence of at most m traitors. We find it more convenient to describe this
algorithm in terms of the lieutenants “obtaining a value” rather than “obeying an
order”.

The algorithm assumes a function majority with the property that if a majority
of the values vi equal v, then majority(v1, . . . , vn−1) equals v. (Actually, it assumes
a sequence of such functions—one for each n.) There are two natural choices for
the value of majority(v1, . . . , vn−1):

1. The majority value among the vi if it exists, otherwise the value RETREAT;

3 A Solution with Oral Messages 211

2. The median of the vi, assuming that they come from an ordered set.

The following algorithm requires only the aforementioned property of majority.

Algorithm OM(0) 1. The commander sends his value to every lieutenant.

2. Each lieutenant uses the value he receives from the commander, or uses the
value RETREAT if he receives no value.

Alg. OM(m), m> 0 1. The commander sends his value to every lieutenant.

2. For each i, let vi be the value Lieutenant i receives from the commander, or
else be RETREAT if he receives no value. Lieutenant i acts as the commander
in Algorithm OM(m − 1) to send the value vi to each of the n − 2 other
lieutenants.

3. For each i, and each j �= i, let vj be the value Lieutenant i received from
Lieutenant j in step (2) (using Algorithm OM(m− 1)), or else RETREAT if he
received no such value. Lieutenant i uses the value majority(vl , . . . , vn−1).

To understand how this algorithm works, we consider the case m = 1, n = 4.
Figure 3 illustrates the messages received by Lieutenant 2 when the commander
sends the value v and Lieutenant 3 is a traitor. In the first step of OM(1), the
commander sends v to all three lieutenants. In the second step, Lieutenant 1
sends the value v to Lieutenant 2, using the trivial algorithm OM(0). Also in the
second step, the traitorous Lieutenant 3 sends Lieutenant 2 some other value x. In
step 3, Lieutenant 2 then has v1= v2= v and v3= x, so he obtains the correct value
v =majority(v , v , x).

Next, we see what happens if the commander is a traitor. Figure 4 shows the
values received by the lieutenants if a traitorous commander sends three arbitrary

Figure 3 Algorithm OM(1); Lieutenant 3 a traitor.

212 The Byzantine Generals Problem

Figure 4 Algorithm OM(1); the commander a traitor.

values x, y, and z to the three lieutenants. Each lieutenant obtains v1= x, v2 = y,
and v3= z, so they all obtain the same value majority(x , y , z) in step (3), regardless
of whether or not any of the three values x, y, and z are equal.

The recursive algorithm OM(m) invokes n − 1 separate executions of the al-
gorithm OM(m − 1), each of which invokes n − 2 executions of OM(m − 2), etc.
This means that, for m> 1, a lieutenant sends many separate messages to each
other lieutenant. There must be some way to distinguish among these different
messages. The reader can verify that all ambiguity is removed if each lieutenant
i prefixes the number i to the value vi that he sends in step (2). As the recursion
“unfolds,” the algorithm OM(m− k) will be called (n− 1) . . . (n− k) times to send
a value prefixed by a sequence of k lieutenants’ numbers.

To prove the correctness of the algorithm OM(m) for arbitrary m, we first prove
the following lemma.

Lemma 1 For any m and k, Algorithm OM(m) satisfies IC2 if there are more than 2k + m
generals and at most k traitors.

Proof The proof is by induction on m. IC2 only specifies what must happen if the com-
mander is loyal. Using A1, it is easy to see that the trivial algorithm OM(0) works if
the commander is loyal, so the lemma is true for m= 0. We now assume it is true
for m− 1, m> 0, and prove it for m.

In step (1), the loyal commander sends a value v to all n − 1 lieutenants. In
step (2), each loyal lieutenant applies OM(m − 1) with n − 1 generals. Since by
hypothesis n > 2k +m, we have n− 1> 2k + (m− 1), so we can apply the induc-

4 A Solution with Signed Messages 213

tion hypothesis to conclude that every loyal lieutenant gets vj = v for each loyal
Lieutenant j . Since there are at most k traitors, and n− 1> 2k + (m− 1)≥ 2k, a ma-
jority of the n− 1 lieutenants are loyal. Hence, each loyal lieutenant has vi = v for
a majority of the n− 1 values i, so he obtains majority(v1, . . . , vn−1)= v in step (3),
proving IC2.

The following theorem asserts that Algorithm OM(m) solves the Byzantine Gen-
erals Problem.

Theorem 1 For anym, Algorithm OM(m) satisfies conditions IC1 and IC2 if there are more than
3m generals and at most m traitors.

Proof The proof is by induction on m. If there are no traitors, then it is easy to see that
OM(0) satisfies IC1 and IC2. We therefore assume that the theorem is true for
OM(m− 1) and prove it for OM(m), m> 0.

We first consider the case in which the commander is loyal. By taking k equal
to m in Lemma 1, we see that OM(m) satisfies IC2. IC1 follows from IC2 if the
commander is loyal, so we need only verify IC1 in the case that the commander
is a traitor.

There are at most m traitors, and the commander is one of them, so at most
m− 1 of the lieutenants are traitors. Since there are more than 3m generals, there
are more than 3m− 1 lieutenants, and 3m− 1> 3(m− 1). We may therefore apply
the induction hypothesis to conclude that OM(m− 1) satisfies conditions IC1 and
IC2. Hence, for each j , any two loyal lieutenants get the same value for vj in
step (3). (This follows from IC2 if one of the two lieutenants is Lieutenant j , and
from IC1 otherwise.) Hence, any two loyal lieutenants get the same vector of values
v1, . . . , vn−1, and therefore obtain the same value majority(v1, . . . , vn−1) in step (3),
proving IC1.

4 A Solution with Signed Messages
As we saw from the scenario of Figures 1 and 2, it is the traitors’ ability to lie that
makes the Byzantine Generals Problem so difficult. The problem becomes easier
to solve if we can restrict that ability. One way to do this is to allow the generals to
send unforgeable signed messages. More precisely, we add to A1–A3 the following
assumption:

A4 (a) A loyal general’s signature cannot be forged, and any alteration of the con-
tents of his signed messages can be detected.

(b) Anyone can verify the authenticity of a general’s signature.

214 The Byzantine Generals Problem

Note that we make no assumptions about a traitorous general’s signature. In
particular, we allow his signature to be forged by another traitor, thereby permitting
collusion among the traitors.

Now that we have introduced signed messages, our previous argument that four
generals are required to cope with one traitor no longer holds. In fact, a three-
general solution does exist. We now give an algorithm that copes with m traitors
for any number of generals. (The problem is vacuous if there are fewer than m+ 2
generals.)

In our algorithm, the commander sends a signed order to each of his lieu-
tenants. Each lieutenant then adds his signature to that order and sends it to the
other lieutenants, who add their signatures and send it to others, and so on. This
means that a lieutenant must effectively receive one signed message, make several
copies of it, and sign and send those copies. It does not matter how these copies are
obtained; a single message might be photocopied, or else each message might con-
sist of a stack of identical messages which are signed and distributed as required.

Our algorithm assumes a function choice which is applied to a set of orders to
obtain a single one. The only requirements we make for this function are

1. If the set V consists of the single element v, then choice(V)= v.

2. choice(∅)= RETREAT, where ∅ is the empty set.

Note that one possible definition is to let choice(V) be the median element of V—
assuming that there is an ordering of the elements.

In the following algorithm, we let x : i denote the value x signed by General i.
Thus, v : j : i denotes the value v signed by j , and then that value v : j signed by i.
We let General 0 be the commander. In this algorithm, each lieutenant i maintains
a set Vi, containng the set of properly signed orders he has received so far. (If the
commander is loyal, then this set should never contain more than a single element.)
Do not confuse Vi, the set of orders he has received, with the set of messages that
he has received. There may be many different messages with the same order.

Algorithm SM(m) Initially Vi = ∅.

1. The commander signs and sends his value to every lieutenant.

2. For each i:

(A) If Lieutenant i receives a message of the form v : 0 from the comman-
der and he has not yet received any order, then

(i) he lets Vi equal {v};
(ii) he sends the message v : 0 : i to every other lieutenant.

4 A Solution with Signed Messages 215

(B) If Lieutenant i receives a message of the form v : 0 : ji : . . . : jk and v
is not in the set Vi, then

(i) he adds v to Vi;
(ii) if k <m, then he sends the message v : 0 : ji : . . . : jk : i to every

lieutenant other than j1, . . . , jk.

3. For each i: When Lieutenant i will receive no more messages, he obeys the
order choice(Vi).

Note that in step (2), Lieutenant i ignores any message containing an order v that
is already in the set Vi.

We have not specified how a lieutenant determines in step (3) that he will receive
no more messages. By induction on k, one easily shows that for each sequence of
lieutenants j1, . . . , jk with k ≤m, a lieutenant can receive at most one message of
the form v : 0 : j1 : . . . : jk in step (2). If we require that Lieutenant jk either send such
a message or else send a message reporting that he will not send such a message,
then it is easy to decide when all messages have been received. (By assumption
A3, a lieutenant can determine if a traitorous lieutenant jk sends neither of those
two messages.) Alternatively, time-out can be used to determine when no more
messages will arrive. The use of time-out is discussed in Section 6.

Note that in step (2), Lieutenant i ignores any messages that do not have the
proper form of a value followed by a string of signatures. If packets of identical
messages are used to avoid having to copy messages, this means that he throws
away any packet that does not consist of a sufficient number of identical, properly
signed messages. (There should be (n− k − 2)(n− k − 3) . . . (n−m− 2) copies of
the message if it has been signed by k lieutenants.)

Figure 5 illustrates Algorithm SM(1) for the case of three generals when the
commander is a traitor. The commander sends an “attack” order to one lieutenant
and a “retreat” order to the other. Both lieutenants receive the two orders in step
(2), so after step (2) V1= V2 = {“attack”, “retreat”}, and they both obey the order
choice({“attack”, “retreat”}). Observe that here, unlike the situation in Figure 2, the
lieutenants know the commander is a traitor because his signature appears on two
different orders, and A4 states that only he could have generated those signatures.

In Algorithm SM(m), a lieutenant signs his name to acknowledge his receipt of
an order. If he is the mth lieutenant to add his signature to the order, then that
signature is not relayed to anyone else by its recipient, so it is superfluous. (More
precisely, assumption A2 makes it unnecessary.) In particular, the lieutenants need
not sign their messages in SM(1).

We now prove the correctness of our algorithm.

216 The Byzantine Generals Problem

Figure 5 Algorithm SM(1); the commander a traitor.

Theorem 2 For any m, Algorithm SM(m) solves the Byzantine Generals Problem if there are at
most m traitors.

Proof We first prove IC2. If the commander is loyal, then he sends his signed order v : 0 to
every lieutenant in step (1). Every loyal lieutenant will therefore receive the order v
in step (2)(A). Moreover, since no traitorous lieutenant can forge any other message
of the form v′ : 0, a loyal lieutenant can receive no additional order in step (2)(B).
Hence, for each loyal Lieutenant i, the set Vi obtained in step (2) consists of the
single order v, which he will obey in step (3) by property 1 of the choice function.
This proves IC2.

Since IC1 follows from IC2 if the commander is loyal, to prove IC1 we need only
consider the case in which the commander is a traitor. Two loyal lieutenants i and
j obey the same order in step (3) if the sets of orders Vi and Vj that they receive in
step (2) are the same. Therefore, to prove IC1 it suffices to prove that, if i puts an
order v into Vi in step (2), then j must put the same order v into Vj in step (2). To
do this, we must show that j receives a properly signed message containing that
order. If i receives the order v in step (2)(A), then he sends it to j in step (2)(A)(ii);
so j receives it (by A1). If i adds the order to Vi in step (2)(B), then he must receive
a first message of the form v : 0 : j1 : . . . : jk. If j is one of the jr , then by A4 he must
already have received the order v. If not, we consider two cases:

1. k < m. In this case, i sends the message v : 0 : j1 : . . . : jk : i to j ; so j must
receive the order v.

2. k =m. Since the commander is a traitor, at mostm− 1 of the lieutenants are
traitors. Hence, at least one of the lieutenants j1, . . . , jm is loyal. This loyal
lieutenant must have sent j the value v when he first received it, so j must
therefore receive that value.

This completes the proof.

5 Missing Communication Paths 217

5 Missing Communication Paths
Thus far, we have assumed that a general can send messages directly to every
other general. We now remove this assumption. Instead, we suppose that physical
barriers place some restrictions on who can send messages to whom. We consider
the generals to form the nodes of a simple,2 finite undirected graphG, where an arc
between two nodes indicates that those two generals can send messages directly to
one another. We now extend Algorithms OM(m) and SM(m), which assumed G to
be completely connected, to more general graphs.

To extend our oral message algorithm OM(m), we need the following definition,
where two generals are said to be neighbors if they are joined by an arc.

Definition 1 (a) A set of nodes {ii , . . . , ip} is said to be a regular set of neighbors of a node i if

(i) each ij is a neighbor of i, and

(ii) for any general k different from i, there exist paths γj ,k from ij to k
not passing through i such that any two different paths γj ,k have no
node in common other than k.

(b) The graphG is said to be p-regular if every node has a regular set of neighbors
consisting of p distinct nodes.

Figure 6 shows an example of a simple 3-regular graph. Figure 7 shows an
example of a graph that is not 3-regular because the central node has no regular set
of neighbors containing three nodes.

We extend OM(m) to an algorithm that solves the Byzantine Generals Problem
in the presence of m traitors if the graph G of generals is 3m-regular. (Note that a
3m-regular graph must contain at least 3m+ 1 nodes.) For all positive integers m
and p, we define the algorithm OM(m, p) as follows when the graphG of generals

2. A simple graph is one in which there is at most one arc joining any two nodes, and every arc
connects two distinct nodes.

Figure 6 A 3-regular graph.

218 The Byzantine Generals Problem

Figure 7 A graph that is not 3-regular.

is p-regular. (OM(m, p) is not defined if G is not p-regular.) The definition uses
induction on m.

Alg. OM(m, p) 0. Choose a regular set N of neighbors of the commander consisting of p
lieutenants.

1. The commander sends his value to every lieutenant in N .

2. For each i inN , let vi be the value Lieutenant i receives from the commander,
or else RETREAT if he receives no value. Lieutenant i sends vi to every other
lieutenant k as follows:

(A) If m= 1, then by sending the value along the path γi ,k whose exis-
tence is guaranteed by part (a)(ii) of Definition 1.

(B) Ifm> 1, then by acting as the commander in the algorithm OM(m−
1, p − 1), with the graph of generals obtained by removing the orig-
inal commander fromG.

3. For each k, and each i inN with i �= k, let vi be the value Lieutenant k received
from Lieutenant i in step (2), or RETREAT if he received no value. Lieutenant
k uses the value majority(vi1, . . . , Vip), where N = {i1, . . . , ip}.

Note that removing a single node from ap-regular graph leaves a (p − 1)-regular
graph. Hence, one can apply the algorithm OM(m− 1, p − 1) in step (2)(B).

We now prove that OM(m, 3m) solves the Byzantine Generals Problem if there
are at most m traitors. The proof is similar to the proof for the algorithm OM(m)
and will just be sketched. It begins with the following extension of Lemma 1.

Lemma 2 For anym> 0 and any p ≥ 2k +m, Algorithm OM(m, p) satisfies IC2 if there are at
most k traitors.

5 Missing Communication Paths 219

Proof For m= 1, observe that a lieutenant obtains the value majority(v1, . . . , vp), where
each vi is a value sent to him by the commander along a path disjoint from the
path used to send the other values to him. Since there are at most k traitors and
p ≥ 2k + 1, more than half of those paths are composed entirely of loyal lieutenants.
Hence, if the commander is loyal, then a majority of the values vi will equal the value
he sent, which implies that IC2 is satisfied.

Now assume the lemma for m− 1, m> 1. If the commander is loyal, then each
of the p lieutenants in N gets the correct value. Since p > 2k, a majority of them
are loyal, and by the induction hypothesis each of them sends the correct value to
every loyal lieutenant. Hence, each loyal lieutenant gets a majority of correct values,
thereby obtaining the correct value in step (3).

The correctness of Algorithm OM(m, 3m) is an immediate consequence of the
following result.

Theorem 3 For any m> 0 and any p ≥ 3m, Algorithm OM(m, p) solves the Byzantine Generals
Problem if there are at most m traitors.

Proof By Lemma 2, letting k =m, we see that OM(m, p) satisfies IC2. If the commander is
loyal, then IC1 follows from IC2, so we need only prove IC1 under the assumption
that the commander is a traitor. To do this, we prove that every loyal lieutenant
gets the same set of values vi in step (3). If m= 1, then this follows because all the
lieutenants, including those in N , are loyal and the paths γi ,k do not pass through
the commander. For m > 1, a simple induction argument can be applied, since
p ≥ 3m implies that p − 1≥ 3(m− 1).

Our extension of Algorithm OM(m) requires that the graph G be 3m-regular,
which is a rather strong connectivity hypothesis.3 In fact, if there are only 3m+ 1
generals (the minimum number required), then 3m-regularity means complete
connectivity, and Algorithm OM(m, 3m) reduces to Algorithm OM(m). In contrast,
Algorithm SM(m) is easily extended to allow the weakest possible connectivity
hypothesis. Let us first consider how much connectivity is needed for the Byzantine
Generals Problem to be solvable. IC2 requires that a loyal lieutenant obey a loyal
commander. This is clearly impossible if the commander cannot communicate
with the lieutenant. In particular, if every message from the commander to the
lieutenant must be relayed by traitors, then there is no way to guarantee that the
lieutenant gets the commander’s order. Similarly, IC1 cannot be guaranteed if there

3. A recent algorithm of Dolev [2] requires less connectivity.

220 The Byzantine Generals Problem

are two lieutenants who can only communicate with one another via traitorous
intermediaries.

The weakest connectivity hypothesis for which the Byzantine Generals Problem
is solvable is that the subgraph formed by the loyal generals be connected. We
show that under this hypothesis, the algorithm SM(n− 2) is a solution, where n is
the number of generals—regardless of the number of traitors. Of course, we must
modify the algorithm so that generals only send messages to where they can be
sent. More precisely, in step (1), the commander sends his signed order only to his
neighboring lieutenants; and in step (2)(B), Lieutenant i only sends the message to
every neighboring lieutenant not among the jr .

We prove the following more general result, where the diameter of a graph is
the smallest number d such that any two nodes are connected by a path containing
at most d arcs.

Theorem 4 For any m and d, if there are at most m traitors and the subgraph of loyal generals
has diameter d, then Algorithm SM(m+ d − 1) (with the above modification) solves
the Byzantine Generals Problem.

Proof The proof is quite similar to that of Theorem 2 and is just sketched here. To prove
IC2, observe that by hypothesis there is a path from the loyal commander to a
lieutenant i going through d − 1 or fewer loyal lieutenants. Those lieutenants will
correctly relay the order until it reaches i. As before, assumption A4 prevents a
traitor from forging a different order.

To prove IC1, we assume the commander is a traitor and must show that any
order received by a loyal lieutenant i is also received by a loyal lieutenant j . Suppose
i receives an order v : 0 : j1 : . . . : jk not signed by j . If k < m, then i will send it to
every neighbor who has not already received that order, and it will be relayed to
j within d − 1 more steps. If k ≥m, then one of the first m signers must be loyal
and must have sent it to all of his neighbors, whereupon it will be relayed by loyal
generals and will reach j within d − 1 steps.

Corollary If the graph of loyal generals is connected, then SM(n − 2) (as modified above)
solves the Byzantine Generals Problem for n generals.

Proof Let d be the diameter of the graph of loyal generals. Since the diameter of a con-
nected graph is less than the number of nodes, there must be more than d loyal
generals and fewer than n− d traitors. The result follows from the theorem by let-
ting m= n− d − 1.

6 Reliable Systems 221

Theorem 4 assumes that the subgraph of loyal generals is connected. Its proof
is easily extended to show that even if this is not the case, if there are at most m
traitors, then the algorithm SM(m+ d − 1) has the following two properties:

1. Any two loyal generals connected by a path of length at most d passing
through only loyal generals will obey the same order.

2. If the commander is loyal, then any loyal lieutenant connected to him by a
path of length at most m+ d passing only through loyal generals will obey
his order.

6 Reliable Systems
Other than using intrinsically reliable circuit components, the only way we know
to implement a reliable computer system is to use several different “processors” to
compute the same result, and then to perform a majority vote on their outputs to
obtain a single value. (The voting may be performed within the system, or externally
by the users of the output.) This is true whether one is implementing a reliable
computer using redundant circuitry to protect against the failure of individual
chips, or a ballistic missile defense system using redundant computing sites to
protect against the destruction of individual sites by a nuclear attack. The only
difference is in the size of the replicated “processor”.

The use of majority voting to achieve reliability is based upon the assumption
that all the nonfaulty processors will produce the same output. This is true so long
as they all use the same input. However, any single input datum comes from a single
physical component—for example, from some other circuit in the reliable com-
puter, or from some radar site in the missile defense system—and a malfunctioning
component can give different values to different processors. Moreover, different
processors can get different values even from a nonfaulty input unit if they read
the value while it is changing. For example, if two processors read a clock while it
is advancing, then one may get the old time and the other the new time. This can
only be prevented by synchronizing the reads with the advancing of the clock.

In order for majority voting to yield a reliable system, the following two condi-
tions should be satisfied:

1. All nonfaulty processors must use the same input value (so they produce the
same output).

2. If the input unit is nonfaulty, then all nonfaulty processes use the value it
provides as input (so they produce the correct output).

222 The Byzantine Generals Problem

These are just our interactive consistency conditions IC1 and IC2, where the “com-
mander” is the unit generating the input, the “lieutenants” are the processors, and
“loyal” means nonfaulty.

It is tempting to try to circumvent the problem with a “hardware” solution. For
example, one might try to insure that all processors obtain the same input value
by having them all read it from the same wire. However, a faulty input unit could
send a marginal signal along the wire—a signal that can be interpreted by some
processors as a 0 and by others as a 1. There is no way to guarantee that differ-
ent processors will get the same value from a possibly faulty input device except
by having the processors communicate among themselves to solve the Byzantine
Generals Problem.

Of course, a faulty input device may provide meaningless input values. All that
a Byzantine Generals solution can do is guarantee that all processors use the same
input value. If the input is an important one, then there should be several separate
input devices providing redundant values. For example, there should be redundant
radars as well as redundant processing sites in a missile defense system. However,
redundant inputs cannot achieve reliability; it is still necessary to insure that the
nonfaulty processors use the redundant data to produce the same output.

In case the input device is nonfaulty but gives different values because it is
read while its value is changing, we still want the nonfaulty processors to obtain
a reasonable input value. It can be shown that, if the functions majority and choice
are taken to be the median functions, then our algorithms have the property that the
value obtained by the nonfaulty processors lies within the range of values provided
by the input unit. Thus, the nonfaulty processors will obtain a reasonable value so
long as the input unit produces a reasonable range of values.

We have given several solutions, but they have been stated in terms of Byzantine
generals rather than in terms of computing systems. We now examine how these
solutions can be applied to reliable computing systems. Of course, there is no
problem implementing a “general’s” algorithm with a processor. The problems
lie in implementing a message passing system that meets assumptions A1–A3
(assumptions A1–A4 for Algorithm SM(m)). We now consider these assumptions
in order.

A1. Assumption A1 states that every message sent by a nonfaulty processor is
delivered correctly. In real systems, communication lines can fail. For the oral
message algorithms OM(m) and OM(m, p), the failure of the communication line
joining two processors is indistinguishable from the failure of one of the proces-
sors. Hence, we can only guarantee that these algorithms will work in the presence
of up to m failures, be they processor or communication line failures. (Of course,

6 Reliable Systems 223

the failure of several communication lines attached to the same processor is equiv-
alent to a single processor failure.) If we assume that a failed communication line
cannot result in the forgery of a signed message—an assumption which we will see
below is quite reasonable, then our signed message algorithm SM(m) is insensi-
tive to communication line failure. More precisely, Theorem 4 remains valid even
with communication line failure. A failed communication line has the same ef-
fect as simply removing the communication line—it lowers the connectivity of the
processor graph.

A2. Assumption A2 states that a processor can determine the originator of any
message that it received. What is actually necessary is that a faulty processor not
be able to impersonate a nonfaulty one. In practice, this means that interprocess
communication be over fixed lines rather than through some message switching
network. (If a switching network is used, then faulty network nodes must be con-
sidered, and the Byzantine Generals Problem appears again.) Note that assumption
A2 is not needed if A4 is assumed and all messages are signed, since impersonation
of another processor would imply forging its messages.

A3. Assumption A3 requires that the absence of a message can be detected. The
absence of a message can only be detected by its failure to arrive within some fixed
length of time—in other words, by the use of some time-out convention. The use
of time-out to satisfy A3 requires two assumptions:

1. There is a fixed maximum time needed for the generation and transmission
of a message.

2. The sender and receiver have clocks that are synchronized to within some
fixed maximum error.

The need for the first assumption is fairly obvious, since the receiver must know
how long he needs to wait for the message to arrive. (The generation time is how
long it takes the processor to send the message after receiving all the input neces-
sary to generate it.) The need for the second assumption is less obvious. However, it
can be shown that either this assumption or an equivalent one is necessary to solve
the Byzantine Generals Problem. More precisely, suppose that we allow algorithms
in which the generals take action only in the following circumstances:

1. At some fixed initial time (the same for all generals).

2. Upon the receipt of a message.

3. When a randomly chosen length of time has elapsed. (I.e., a general can set
a timer to a random value and act when the timer goes off.)

224 The Byzantine Generals Problem

(This yields the most general class of algorithms we can envision which does not
allow the construction of synchronized clocks.) It can be shown that no such algo-
rithm can solve the Byzantine Generals Problem if messages can be transmitted
arbitrarily quickly, even if there is an upper bound on message transmission delay.
Moreover, no solution is possible even if we restrict the traitors so that the only
incorrect behavior they are permitted is the failure to send a message. The proof
of this result is beyond the scope of this paper. Note that placing a lower as well as
an upper bound on transmission delay ahows processors to implement clocks by
sending messages back and forth.

The above two assumptions make it easy to detect unsent messages. Letμbe the
maximum message generation and transmission delay, and assume the nonfaulty
processors have clocks that differ from one another by at most τ at any time. Then
any message that a nonfaulty process should begin to generate by time T on its
clock will arrive at its destination by time T + μ+ τ on the receiver’s clock. Hence,
if the receiver has not received the message by that time, then it may assume that it
was not sent. (If it arrives later, then the sender must be faulty, so the correctness
of our algorithms does not depend upon the message being sent.) By fixing the
time at which the input processor sends its value, one can calculate until what
time on its own clock a processor must wait for each message. For example, in
Algorithm SM(m) a processor must wait until time T0 + k(μ+ τ) for any message
having k signatures, where T0 is the time (on his clock) at which the commander
starts executing the algorithm.

No two clocks run at precisely the same rate, so no matter how accurately the
processors’ clocks are synchronized initially, they will eventually drift arbitrarily far
apart unless they are periodically resynchronlzed. We therefore have the problem
of keeping the processors’ clocks all synchronized to within some fixed amount,
even if some of the processors are faulty. This is as difficult a problem as the
Byzantine Generals Problem itself. Solutions to the clock synchronization problem
exist which are closely related to our Byzantine Generals solutions. They will be
described in a future paper.

A4. Assumption A4 requires that processors be able to sign their messages in
such a way that a nonfaulty processor’s signature cannot be forged. A signature is a
piece of redundant information Si(M) generated by process i from a data item M .
A message signed by i consists of a pair (M , Si(M)). To meet parts (a) and (b) of A4,
the function Si must have the following two properties:

(a) If processor i is nonfaulty, then no faulty processor can generate Si(M).

(b) GivenM and X, any process can determine if X equals Si(M).

7 Conclusion 225

Property (a) can never be guaranteed, since Si(M) is just a data item, and a faulty
processor could generate any data item. However, we can make the probability of
its violation as small as we wish, thereby making the system as reliable as we wish.
How this is done depends upon the type of faults we expect to encounter. There are
two cases of interest:

1. Random Malfunction. By making Si a suitably “randomizing” function, we can
make the probability that a random malfunction in a processor generates a
correct signature essentially equal to the probability of its doing so through
a random choice procedure—that is, the reciprocal of the number of pos-
sible signatures. The following is one method for doing this. Assume that
messages are encoded as positive integers less than P , where P is a power
of two. Let Si(M) equal M ∗Ki mod P , where Ki is a randomly chosen odd
number less than P . Letting K−1

i be the unique number less than P such
thatKi ∗K−1

i ≡ 1 mod P , a process can check thatX = Si(M) by testing that
M ≡X ∗K−1

i mod P . If another processor does not have Ki in its memory,
then the probability of its generating the correct signatureM ∗Ki for a single
(nonzero) message M should be 1/P : its probability of doing so by random
choice. (Note that if the processor could obtain Ki by some simple proce-
dure, then there might be a larger probability of a faulty processor j forging
i’s signature by substituting Ki for Kj when trying to compute Sj(M).)

2. Malicious Intelligence. If the faulty processor is being guided by a malicious
intelligence—for example, if it is a perfectly good processor being operated
by a human who is trying to disrupt the system—then the construction of the
signature function Si becomes a cryptography problem. We refer the reader
to [1] and [4] for a discussion of how this problem can be solved.

Note that it is easy to generate the signature Si(M) if the process has already
seen that signature. Hence, it is important that the same message never have
to be signed twice. This means that, when using SM(m) repeatedly to distribute
a sequence of values, sequence numbers should be appended to the values to
guarantee uniqueness.

7 Conclusion
We have presented several solutions to the Byzantine Generals Problem, under
various hypotheses, and shown how they can be used in implementing reliable
computer systems. These solutions are expensive in both the amount of time and
the number of messages required. Algorithms OM(m) and SM(m) both require

226 The Byzantine Generals Problem

message paths of length up to m+ 1. In other words, each lieutenant may have
to wait for messages that originated at the commander and were then relayed via
m other lieutenants. Fischer and Lynch have shown that this must be true for any
solution that can cope withm traitors, so our solutions are optimal in that respect.
Our algorithms for a graph that is not completely connected require message paths
of length up tom+ d, where d is the diameter of the subgraph of loyal generals. We
suspect that this is also optimal.

Algorithms OM(m) and SM(m) involve sending up to (n − 1)(n − 2) . . .

(n − m − 1) messages. The number of separate messages required can certainly
be reduced by combining messages. It may also be possible to reduce the amount
of information transferred, but this has not been studied in detail. However, we
expect that a large number of messages will still be required.

Achieving reliability in the face of arbitrary malfunctioning is a difficult prob-
lem, and its solution seems to be inherently expensive. The only way to reduce the
cost is to make assumptions about the type of failure that may occur. For example,
it is often assumed that a computer may fail to respond but will never respond in-
correctly. However, when extremely high reliability is required, such assumptions
cannot be made, and the full expense of a Byzantine Generals solution is required.

References
[1] Diffie, W., and Hellman, M.E. New directions in cryptography. IEEE Trans. Inf.

Theory IT-22 (Nov. 1976), 644–654.

[2] Dolev, D. The Byzantine generals strike again. J. Algorithms 3, 1 (Jan. 1982).

[3] Pease, M., Shostak, R., and Lamport, L. Reaching agreement in the presence of
faults. J. ACM 27, 2 (Apr. 1980), 228–234.

[4] Rivest, R.L., Shamir, A., and Adleman, L. A method for obtaining digital signatures
and public-key cryptosystems. Commun.. ACM 21, 2 (Feb. 1978), 120–126.

Received April 1980; revised November 1981; accepted November 1981

The Mutual Exclusion Problem:
Part I—A Theory of Interprocess
Communication
Leslie Lamport (Digital Equipment Corporation)

Abstract
A novel formal theory of concurrent systems that does not assume any atomic op-
erations is introduced. The execution of a concurrent program is modeled as an
abstract set of operation executions with two temporal ordering relations: “prece-
dence” and “can causally affect”. A primitive interprocess communication mecha-
nism is then defined. In Part II, the mutual exclusion is expressed precisely in terms
of this model, and solutions using the communication mechanism are given.

Categories and Subject Descriptors: B.3.m [Memory Structures]: Miscellaneous;
B.4.m [Input/Output and Data Communications]: Miscellaneous; D.4.1 [Operating
Systems]: Process Management—concurrency; mutual exclusion; F.3.m [Logics and
Meanings of Programs]: Miscellaneous

Most of this work was performed while the author was at SRI International, where it was supported
in part by the National Science Foundation under grant number MCS 78-16783.
Author’s address: Digital Equipment Corporation, Systems Research Center, 130 Lytton Avenue,
Palo Alto, CA 94301.
Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.
©1986 ACM 0004-541l/86/0400-0313 $00.75
Paper originally published in Journal of the Association for Computing Machinery, 33(2), April 1986,
pp. 313–326.

228 The Mutual Exclusion Problem: Part I—A Theory of Interprocess Communication

General Terms: Theory

Additional Key Words and Phrases: Nonatomic operations, readers/writers, shared
variables

1 Introduction
The mutual exclusion problem was first described and solved by Dijkstra in [3]. In
this problem, there is a collection of asynchronous processes, each alternately exe-
cuting a critical and a noncritical section, that must be synchronized so that no two
processes ever execute their critical sections concurrently. Mutual exclusion lies at
the heart of most concurrent process synchronization and, apart from its practical
motivation, the mutual exclusion problem is of great theoretical significance.

The concept of mutual exclusion is deeply ingrained in the way computer scien-
tists think about concurrency. Almost all formal models of concurrent processing
are based upon an underlying assumption of mutually exclusive atomic operations,
and almost all interprocess communication mechanisms that have been proposed
require some underlying mutual exclusion in their implementation. Hence, these
models and mechanisms are not satisfactory for a fundamental study of the mutual
exclusion problem. We have therefore been forced to develop a new formalism for
talking about concurrent systems, and a new way of viewing interprocess commu-
nication. Part I is entirely devoted to this formalism, which we believe provides a
basis for discussing other fundamental problems in concurrent processing as well;
the mutual exclusion problem itself is discussed in Part II [9].

The formal model we have developed is radically different from commonly used
ones, and will appear strange to computer scientists accustomed to thinking in
terms of atomic operations. (It is a slight extension to the one we introduced in
[6].) When diverging from the beaten path in this way, one is in great danger of
becoming lost in a morass of irrelevance. To guard against this, we have continually
used physical reality as our guidepost. (Perhaps this is why hardware designers
seem to understand our ideas more easily than computer scientists.) We therefore
give a very careful physical justification for all the definitions and axioms in our
formalism. Although this is quite unusual in theoretical computer science, we feel
that it is necessary in explaining and justifying our departure from the traditional
approach.

2 The Model
We begin by describing a formal model in which to state the problem and the so-
lution. Except for the one introduced by us in [6], all formal models of concurrent

2 The Model 229

processes that we know of are based upon the concept of an indivisible atomic
operation. The concurrent execution of any two atomic operations is assumed to
have the same effect as executing them in some order. However, if two operations
can affect one another—e.g., if they perform interprocess communication—then
implementing them to be atomic is equivalent to making the two operations mu-
tually exclusive. Hence, assuming atomic operations is tantamount to assuming a
lower-level solution to the mutual exclusion problem. Any algorithm based upon
atomic operations cannot be considered a fundamental solution to the mutual ex-
clusion problem. We therefore need a formalism that is not based upon atomic
operations. The one we use is a slight extension to the formalism of [6].

2.1 Physical Considerations
For our results to be meaningful, our formalism must accurately reflect the physical
reality of concurrent processes. We therefore feel that it is important to justify the
formalism on physical grounds. We do this in terms of the geometry of space-time,
which lies at the foundation of all modern physics. We begin with a brief exposition
of this geometry. A more thorough exposition can be found in [15] and [16], but for
the more sophisticated reader we recommend the original works [4,11].

The reader may find the introduction of special relativity a bit far-fetched, since
one is rarely, if ever, concerned with systems of processes moving at relativistic
velocities relative to one another. However, the relativistic view of time is relevant
whenever signal propagation time is not negligibly small compared to the execution
time of individual operations, and this is certainly the case in most multiprocess
systems.

Because it is difficult to draw pictures of four-dimensional space-time, we will
discuss a three-dimensional space-time for a two-dimensional spatial universe. Ev-
erything generalizes easily to four-dimensional space-time.1 We picture space-time
as a three-dimensional Cartesian space whose points are called events, where the
point (x , y , t) is the event occurring at time t at the point with spatial coordinates
(x , y). Dimensional units are chosen so the speed of light equals 1.

The world line of a point object is the locus of all events (x , y , t) such that the
object is at location (x , y) at time t . Since photons travel in a straight line with
speed 1, the world line of a photon is a straight line inclined at 45◦ to the x-y
plane. The forward light cone emanating from an event e is the surface formed
by all possible world lines of photons created at that event. This is illustrated in

1. While it is even easier to draw pictures of a two-dimensional space-time with a single space
dimension, a one-dimensional space has some special properties (such as the ability to send a
light beam in only two directions) that can make such pictures misleading.

230 The Mutual Exclusion Problem: Part I—A Theory of Interprocess Communication

Figure 1 Space-time.

Figure 1. The future of event e consists of all events other than e itself that lie on
or inside the future light cone emanating from e. It is a fundamental principle of
special relativity that an event e can only influence the events in its future.

We say that an event e precedes an event f , written e−→ f , if f lies in the future
of e. It is easy to see that −→ is an irreflexive partial ordering—i.e., that (i) e �−→ e

and (ii) e−→ f −→ g implies e−→ g. Two events are said to be concurrent if neither
precedes the other. Since objects cannot travel faster than light, two different events
lying on the world-line of an object cannot be concurrent.

We can think of the vertical line through the origin as the world line of some
standard clock, where the event (0, 0, t) on this world line represents the clock
“striking” time t . A horizontal plane, consisting of all events having the same t -
coordinate, represents the universe at time t—as viewed by us. However, another
observer may have a different view of which events occur at time t . We define a
space-like plane to be a plane making an angle of less than 45◦ with the x-y plane.
For an inertial observer, the set of events occurring at time t forms a space-like plane
through (0, 0, t). (An inertial observer is one traveling in a straight line at constant
speed.) For different values of t , these planes are parallel (for the same observer).
Any space-like plane represents a set of events that some inertial observer regards
as all occurring at the same time. Such a plane defines an obvious partitioning of
space-time into three sets: the future, the past, and the present (the plane itself).

It follows from these observations that an event e precedes an event f if and
only if every inertial observer regards e as happening before f , and events e and f

2 The Model 231

are concurrent if and only if there is some observer who views them as happening
at the same time.

2.2 System Executions
According to classical physics, the universe consists of a continuum of space-
time events, each having no spatial or temporal extent. In computer science, one
imposes a discrete structure upon this continuous universe, considering a system
to consist of distinct operation executions such as reading a flip-flop or sending a
message.2 An infinite (usually bounded) set of space-time events is considered to
be a single operation execution. For example, the operation execution of reading a
flip-flop consists of events spatially located at the flip-flop and perhaps at some of
the wires connected to it.

The boundary between the events of one operation execution and of other
operation executions in the same processor is rather arbitrary; events occurring
along the wire leading from the flip-flop can be included as part of the reading of
the flip-flop or as part of a subsequent operation execution that uses the value that
was read. The fine details of where the boundary is drawn do not matter; extending
the region of space-time comprising the operation execution by a nanosecond
here or a micron there makes no difference. However, the choice of which events
belong to which operation executions can influence the properties we ascribe to
the operations; the formalism used to describe a system can depend upon whether
the events in the propagation of a value along a wire belong to the send or to the
receive operation.

An execution of a system therefore consists of a set of operation executions,
where each operation execution consists of a nonempty set of space-time events.
We define the relations −→ and > on the set of operation executions as follows:

A−→ B def= ∀a ∈ A : ∀b ∈ B : a −→ b,

A > B def= ∃a ∈ A : ∃b ∈ B : a −→ b or a = b.

Thus, A−→ B means that every event of A precedes every event of B, and A > B

means that some event ofA either precedes or is the same as some event of B. (If a
read of a flip-flop occurs while the flip-flop is also being set, some space-time events
located at the flip-flop may belong to both operation executions.)

2. Since the term “operation” often denotes a type of action that can be performed repeatedly, as
in “the operation of addition”, we write “operation execution” to emphasize that we are referring
to a single instance of such an action.

232 The Mutual Exclusion Problem: Part I—A Theory of Interprocess Communication

Remembering the meaning of the precedence relation for events, we readA−→
B as “A precedes B”, and A > B as “A can causally affect B”. However, we think
of “can causally affect” as a purely temporal relation, independent of what the
operations are doing. Thus, A > B can hold even if A and B are read operations
that cannot actually influence one another. We say that A and B are concurrent if
A �−→ B and B �−→ A. In other words, two operation executions are concurrent
unless one precedes the other.

The following properties of the relations −→ and > on operation executions
follow directly from the fact that the relation −→ on events is an irreflexive partial
ordering:

A1. The relation −→ is an irreflexive partial ordering.

A2. If A−→ B, then A > B and B � > A.

A3. If A−→ B > C or A > B −→ C, then A > C.

A4. If A−→ B > C −→D, then A−→D.

There are two kinds of operation executions—terminating ones, whose events
all occur before some time (they are in the past of some space-like surface), and
nonterminating ones that go on forever (their events do not lie in the past of any
space-like surface). We make the following assumptions about these two classes of
operation executions.

A5. For any terminating A, the set of B such that A �−→ B is finite.

A6. For any nonterminating A:

(a) The set of B such that B −→ A is finite.

(b) For all B: A �−→ B.

Properties A5 and A6 can be derived from the following assumptions.

. At any time, there are only a finite number of operation executions that have
begun by that time—i.e., for any space-like surface, there are only a finite
number of operation executions containing events in the past of that surface.

. There are only a finite number of operation executions concurrent with any
terminating operation execution.

The second assumption means that the speed with which the system is “spreading
out” in space is bounded by some value less than the speed of light.

We have described operation executions in terms of events in order to justify A1–
A6. In computer science, one ignores the space-time events that comprise operation

2 The Model 233

executions. A programmer does not care that machine instructions are composed
of more primitive events. In our formalism, operation executions are considered
primitives elements, and A1–A6 are taken as axioms. We define a system execution
to consist of a set of operation executions, partitioned into terminating and non-
terminating ones, together with relations −→ and > that satisfy Axioms A1–A6.

2.3 Higher-Level Views
A system can be viewed at many different levels; the programmer may consider
the execution of a load accumulator from memory instruction to be a single op-
eration, while the hardware designer considers it to be a sequence of lower-level
register-transfer operations. The fundamental task in computing is to implement
higher-level operations with lower-level ones. A hardware designer implements
machine-language operations with register-transfer operations; a compiler writer
implements Pascal operations with machine-language operations; and an appli-
cations programmer implements funds-transfering operations with Pascal opera-
tions. One assumes that the lower-level, primitive operations are given and uses
them to construct the higher-level ones.

A higher-level operation execution consists of a set of lower-level ones. If we
view operation executions as sets of space-time events, a higher-level operation
execution is the union of the events of the (lower-level) operation executions it is
composed of. It is nonterminating if and only if it consists of a finite number of
nonterminating operation executions. It is not hard to show that the relations−→
and > between higher-level operation executions can be computed from those
relations between the lower-level operation executions as follows:

R −→ S = ∀A ∈ R : ∀B ∈ S :A−→ B ,

R > S = ∃A ∈ R : ∃B ∈ S :A > B or A= B .
(2.1)

Since events do not appear in our formalism, we cannot proceed in this way.
Instead, we take (2.1) to be the definition of the relations −→ and > between
any two sets of operation executions. By identifying an operation execution A with
the set {A}, this definition also applies when R or S is a single operation execution
rather than a set of them. A set of operation executions is defined to be terminating
if and only if it consists of a finite number of terminating operation executions.

Given a system execution, a higher-level view of that execution consists of a parti-
tioning of its operation executions into sets, which represent higher-level operation
executions. The machine-language view of a system is obtained by partitioning
the register-transfer operations into executions of machine-language instructions.
This need not be a true partition; a single register-transfer operation could be part

234 The Mutual Exclusion Problem: Part I—A Theory of Interprocess Communication

of the execution of two separate machine-language instructions. We therefore de-
fine a higher-level view of a system execution to be a collection H of nonempty sets
of operation executions such that each operation execution belongs to a finite num-
ber, greater than zero, of sets in H. The elements of H (which are sets of operation
executions) are called the operation executions of the higher-level view, or simply
the higher-level operation executions.

Given a higher-level view of a system execution, we have defined the relations
−→ and > (by (2.1)) and the concept of termination on its high-level operation
executions. Using these definitions and Axioms A1–A6 for the (lower-level) opera-
tion executions, it is easy to show that A1–A6 hold for the higher-level operation
executions. Hence, the higher-level view of a system execution is itself a system
execution.

In any study of computer systems, there is a lowest-level view that is of in-
terest. The operation executions in that view will be called elementary operation
executions. A set of elementary operation executions will be called an operation
execution. (It is an operation execution in some higher-level view.)

3 Interprocess Communication
To achieve mutual exclusion, processes must be able to communicate with one an-
other. We must therefore assume some interprocess communication mechanism.
However, almost every communication primitive that has been proposed implic-
itly assumes mutual exclusion. For example, the first mutual exclusion algorithms
assumed a central memory that can be accessed by all the processes, in which any
two operations to a single memory cell occur in some definite order. In other words,
they assumed mutually exclusive access to a memory cell. We will define an inter-
process communication mechanism that does not assume any lower-level mutual
exclusion. In order to explain our choice of a mechanism, we begin by examining
the nature of interprocess communication.

The simplest form of interprocess communication is for a process i to send
one bit of information to a process j . This can be done in two ways: by sending a
message or by setting a bit. For example, if the physical communication medium
is a wire, then “sending a message” might mean sending a pulse and “setting a
bit” might mean setting a level. However, a message is a transient phenomenon,
and j must be waiting for i’s message in order to be sure of receiving it. We now
show that with only this kind of transient communication, the mutual exclusion
problem does not admit a solution in which the following two conditions hold:

3 Interprocess Communication 235

. A process need communicate only when trying to enter or leave its critical
section, not in its critical or noncritical sections.

. A process may remain forever in its noncritical section.

These conditions rule out algorithms in which processes take turns entering, or
declining to enter, their critical section; such algorithms are really solutions to the
producer/consumer problem [1].

Assume that a process i wants to enter its critical section first, while another
process j is in its noncritical section. Since j could remain in its noncritical section
forever, i must be able to enter its critical section without communicating with j .
Assume that this has happened and i is in its critical section when j decides it
wants to enter its critical section. Since i is not required to communicate while in
its critical section, j cannot find out if i is in its critical section until i leaves the
critical section. However, j cannot wait for a communication because i might be
in, and remain forever in, its noncritical section. Hence, no solution is possible.

This conclusion is based upon the assumption that communication by tran-
sient messages can only be achieved if the receiving process is waiting for the
message. This assumption may seem paradoxical since distributed systems often
provide a message-passing facility with which a process can receive messages while
engaged in other activity. A closer examination of such systems reveals that the
receiving process actually consists of two concurrently executing subprocesses: a
main subprocess that performs the process’s major activity, and a communication
subprocess that receives messages and stores them in a buffer to be read by the
main subprocess, where one or more bits in the buffer may signal the main sub-
process that it should interrupt its activity to process a message. The activity of
the communication subprocess can be regarded as part of the sending operation,
which effects the communication by setting bits in the buffer that can be read by
the receiving process. Thus, this kind of message passing really involves the setting
of bits at the remote site by the sender.

Hence, we assume that a process i communicates one bit of information to a
process j by setting a communication bit that j can read. A bit that can be set but
not reset can be used only once. Since there is no bound on the number of times
a process may need to communicate, interprocess synchronization is impossible
with a finite number of such “once only” communication bits. Therefore, we require
that it be possible to reset the bit. This gives us three possibilities:

1. Only the reader can reset the communication bit.

236 The Mutual Exclusion Problem: Part I—A Theory of Interprocess Communication

2. Only the writer can reset the communication bit.

3. Both can reset the communication bit.

In case 1, with a finite number of bits, a process i can send only a bounded amount
of information to another process j before j resets the bits. However, in the mutual
exclusion problem, a process may spend arbitrarily long in its noncritical section,
so process i can enter its critical section arbitrarily many times while process j
is in its noncritical section. An argument similar to the one demonstrating that
transient communication cannot be used shows that process i must communicate
with process j every time it executes its critical section, so i may have to send an
unbounded amount of information to j while j is in its noncritical section. Since a
process need not communicate while in its noncritical section, the problem cannot
be solved using the first kind of communication bit.3

Of the remaining two possibilities, we choose number 2 because it is more
primitive than number 3. We are therefore led to the use of a communication bit
that can be set to either of two values by one process and read by another—i.e.,
a boolean-valued communication variable with one writer and one reader. We let
true and false denote the two values. We say that such a variable “belongs to” the
process that can write it.

We now define the semantics of the operations of reading and writing a com-
munication variable. A write operation execution for a communication variable has
the form write v := v′, where v is the name of the variable, and v′ denotes the value
being written—either true or false. A read operation execution has the form read
v = v′, where v′ is the value obtained as the result of performing the read.

The first assumptions we make are:

C0. Reads and writes are terminating operation executions.

C1. A read of a communication variable obtains either the value true or the value
false.

Physically, C1 means that no matter what state the variable is in when it is being
read, the reader will interpret that state as one of the two possible values.

We require that all writes to a single communication variable be totally ordered
by the−→ relation. Since all of these writes are executed by the same process—the
one that owns the variable—this is a reasonable requirement. We will see below that

3. However, it is possible to solve producer/consumer problems with it. In fact, an interrupt bit
of an ordinary computer is precisely this kind of communication bit, and it is used to implement
producer/consumer synchronization with its peripheral devices.

3 Interprocess Communication 237

it is automatically enforced by the programming language in which the algorithms
are described. This requirement allows us to introduce the following notation.

Definition 1 For any variable v we let V [1], V [2], . . . denote the write operation executions to v,
where

V [1]−→ V [2]−→

We let v[i] denote the value written by the operation execution V [i].

ThusV [i] is a write v := v[i] operation execution. We assume that the variable can
be initialized to either possible value. (The initial value of a variable can be specified
as part of the process’s program.)

If a read is not concurrent with any write, then we expect it to obtain the
value written by the most recent write—or the initial value if it precedes all writes.
However, it turns out that we need a somewhat stronger requirement. To justify
it, we return to our space-time view of operations. The value of a variable must be
stored in some collection of objects. Communication is effected by the reads and
writes acting on these objects—i.e., by each read and write operation execution
containing events that lie on the world lines of these objects. A read or write
operation may also contain “internal” events not on the world line of any of these
shared objects. For example, if the variable is implemented by a flip-flop accessed
by the reader and writer over separate wires, the flip-flop itself is the shared object
and the events occurring on the wires are internal events. The internal events of a
write do not directly affect a read. However, for a write to precede (−→) a read, all
events of the write, including internal events, must precede all events of the read.

For two operation executions A and B on the same variable, we say that A
“effectively precedes” B if every event in A that lies on the world line of one of the
shared objects precedes any events inB that lie on the same object’s world line. For
a read to obtain the value written by V [k], it suffices that (i) V [k] effectively precedes
the read, and (ii) the read effectively precedes V [k+1]. “Effectively precedes” is
weaker than “precedes”, since it does not specify any ordering on internal events,
so this condition is stronger than requiring that the read obtain the correct value
if it is not concurrent with any write.

This definition of “effectively precedes” involves events, which are not part of
our formalism, so we cannot define this exact concept. However, observe that if
events a and b lie on the same world line, then either a −→ b or b −→ a. Hence, if
A and B both have events occurring on the same world line, then A > B and/or
B > A. IfB � > A, then no event inB precedes any event inA. Hence,A > B and

238 The Mutual Exclusion Problem: Part I—A Theory of Interprocess Communication

B � > A imply that A effectively precedes B. We therefore are led to the following
definition:

Definition 1 We say that two operation executionsA and B are effectively nonconcurrent if either
A > B or B > A, but not both.

If two operation executions are effectively nonconcurrent according to this def-
inition, then one “effectively precedes” the other according to the above definition
in terms of events. We therefore expect a read that is effectively nonconcurrent with
every write to obtain the correct value. This leads us to the following requirement.

C2. A read R of v that is effectively nonconcurrent with every V [i] obtains the
value v[k] , where k is the largest number such that V [k] > R, or it obtains
the initial value if there is no such k.

It follows from A2 and A5 that the set of k such that V [k] > R is finite, so C2
specifies the value obtained by a read that is effectively nonconcurrent with every
write. The only assumption we make about a read that is “effectively concurrent”
with some write is that it obtain either the value true or the value false (by C1).

In the above space-time discussion of reading and writing, it is clear that for
communication to take place, every pair of reads and writes must have events on
the world line of the same object. The following requirement is therefore quite
reasonable (although it may not be obvious why we need it).

C3. If R is a read of the communication variable v, then for every write V [i] of v:
R > V [i] or V [i] > R (or both).

It has been argued that the kind of communication variable we are assuming
is equivalent to one in which reads and writes are atomic actions that cannot be
concurrent. The reasoning used is as follows.

If the value of the variable is not changed by a write, then there is no reason to do
the write. We may therefore assume that a process executes a write only if it will
change the value. By C1, a read that is concurrent with such a write must obtain
either the old or the new value, since those are the only possible values. If the read
obtains the old value, then we may consider it to have preceded the write, and if
it obtains the new value then we may consider the write to have preceded it.4

4. In fact, we made this unfortunate claim in our original correctness proof for the bakery algo-
rithm [5]. Happily, it was only the proof and not the algorithm that turned out to be incorrect.

4 Processes 239

This reasoning is fallacious under our assumptions because if two successive reads
are concurrent with the same write, then the first read can obtain the new value and
the second the old value. This is impossible if reads and writes are nonconcurrent
atomic actions.

Several people have devised mutual exclusion algorithms using communication
variables similar to ours, except with the stronger assumption that writing and
reading are atomic operations [13,14]. We believe that these algorithms do not work
with the more primitive type of communication variable that we are assuming.5

Other than the ones mentioned here, we know of no published mutual exclusion
algorithms that are correct using these communication variables.

4 Processes
An algorithm implements higher-level operations such as request service in terms
of lower-level ones like reading and writing a one-bit variable. A synchronization
problem is posed as a set of conditions on the higher-level system execution—
for example, that each request service operation execution is followed by a grant
service operation execution. A solution consists of a specification of a lower-level
system execution together with a higher-level view—for example, an algorithm for
generating reads and writes together with a specification of which sets of these
lower-level operation executions correspond to request service and grant service
executions. The system execution defined by this higher-level view must satisfy the
problem conditions.

We now consider how the lower-level system execution is specified. We assume
that the set of all elementary operation executions is partitioned intoN sets called
processes. A process is described by an ordinary program, each operation execution
of the process being generated by the execution of some statement in its program.
For example, suppose the program for a process contains the following program
statement:

begin
x := 1;
z := y + z

end

5. We have found counterexamples to the simpler algorithms, and have no reason to expect the
more complicated ones to work better.

240 The Mutual Exclusion Problem: Part I—A Theory of Interprocess Communication

Executing this statement might generate the following four elementary operation
executions, with the indicated −→ relations.

read y = y ′
↗ ↘

write x := 1 write z := y′ + z′
↘ ↗

read z= z′
Although we think of the program as generating the operation executions, for-

mally the set of operation executions is given and the processes’ programs provide
a set of conditions on it. For example, if this statement were the only place where
y is read, then it would provide the following formal condition:

For every read y = y ′ operation execution, there must exist three operation ex-
ecutions write x := 1, read z = z′, and write z := y′ + z′ such that the above −→
relations hold.

Each process will be described by a program written in an Algol-like language with
two kinds of program variables:

. Private variables read and written by that process only.

. Communication variables used for interprocess communication.

We can define a formal semantics for the programming language as follows. The
elementary operation executions of a process are of the form write v := v′ or read
v = v′, where v is a variable and v′ is an element in the range of values of that
variable. The variable vmust be one that the process can write or read, respectively.
For the critical section problem, there are also elementary operation executions of
the form critical section execution and noncritical section execution.

We assume that C0–C3 hold for reads and writes of communication variables.
We also assume that C0 and C2 hold for private variables. We will not need C1 or
C3 because a read of a private variable will never be concurrent with a write of that
variable. In fact, a read will not be concurrent with any write performed by the same
process.

We now indicate how a process’s program can be formally translated into a set
of conditions on possible system executions. Syntactically, a program is composed
of a hierarchy of program statements—more complicated statements being built
up from simpler ones.6 In any system execution, to each program statement cor-

6. If function calls are permitted, then we have to include expression evaluations as well as
statement executions in this hierarchy.

4 Processes 241

responds a (not necessarily elementary) operation execution—intuitively, it is the
set of elementary operation executions performed when executing that statement.
The execution of the entire program, which is a single statement, is a single opera-
tion execution consisting of all the process’s elementary operation executions. The
semantics of each type of statement in the language is defined by a collection of ax-
ioms on the (set of elementary operation executions in the) execution of a statement
of that type. For assignment statements, we have the following axiom:

An execution of the statement

v := F(v1, . . . , vm)

consists of the elementary operation executions read v1= v′1, . . ., read vm = v′m,
and write v := F(v′1, . . . , v′

m
), where each read precedes (−→) the write.

This axiom, together with conditions C0–C3 for communication variables and
C0 and C2 for private variables, defines the semantics of the simple assignment
statement.

The following axioms define the semantics of the concatenation construction
S; T . (Recall that a statement execution, being a set of elementary operation ex-
ecutions, is defined to terminate if and only if it consists of a finite number of
terminating operation executions.)

An execution of S; T is one of the following:

. A nonterminating execution of S.

. An operation execution of the form A ∪ B, where

A is a terminating execution of S.

B is an execution of T .

A−→ B.

In this way, one can give a complete formal semantics for our programming lan-
guage. However, we will not bother to do so, and will reason somewhat informally
about system executions. We merely note the following properties:

. A write is not concurrent with any other operation generated by the same
process. (However, it may be concurrent with operations generated by other
processes.)

. Any elementary operation execution is concurrent with only a bounded num-
ber of elementary operation executions in the same process.

242 The Mutual Exclusion Problem: Part I—A Theory of Interprocess Communication

5 Multiple-Reader Variables
Thus far, we have assumed that communication variables can be read by only
a single process. Using such variables, it is easy to construct a communication
variable satisfying C0–C3 that can be read by several processes, though only written
by one process. To implement a communication variable v that can be written by
process i and read by processes 1, . . . ,N , we use an array v[1], . . . , v[N] of variables,
where v[j] can be written by i and read by j . (All the v[j] are communication
variables except for v[i], which is a private variable of process i.) Any statement
v := . . . in process i’s program is implemented as an operation of assigning the
value of the right-hand expression to each element of the array, and any occurrence
of the variable v in an expression within the program of process j is interpreted
as an occurrence of v[j]. The fact that this construction works is implied by the
following result, whose proof is left to the reader.

Theorem 1 For each j �= i, let v[j] be a communication variable that is written by process i and
read by process j . Assume that for all j , j ′ and all k:

1. The initial values of v[j] and v[j ′] are equal;

2. v[j][k]= v[j ′][k];

3. V [j][k]−→ V [j ′][k+1].

Let the initial value of v be defined to equal the initial value of the v[j], let V [k] be
defined to be {V [1][k], . . . , V [N][k]}, and define a read of v by a process j �= i to be
a read of v[j]. Then C0–C3 are satisfied by the variable v (where −→ and > are
defined for the set of operation executions V [k] by (2.1)).

Formally, we are defining a higher-level view whose operation executions are the
same as those of the original system execution except that the reads and writes of
the v[j] are partitioned into reads and writes of v. This theorem shows that the re-
sulting higher-level system execution satisfies C0–C3. We take the reads and writes
of v to be elementary operation executions, ignoring the lower-level operation exe-
cutions that comprise them.

We will therefore assume that a communication variable can be written by its
owner and read by any process. However, we must remember that the “cost” of
implementing such a communication variable may depend upon the number of
processes that actually read it. If the physical communication mechanism involves
wires that join two processors, then the number of wires needed to implement
a communication variable equals the number of readers of that variable, so a
variable read by r processes may be almost r times as expensive as one read by a
single process. However, it is quite reasonable to suppose that the variable could be

6 Discussion of the Assumptions 243

implemented with a single wire to which each reader is connected. In this case, the
cost of an r-reader variable may not be much greater than the cost of a single-reader
variable.

6 Discussion of the Assumptions
In this section, we have made some tacit assumptions that may have passed unno-
ticed. The most obvious of these is the assumption that each process knows in ad-
vance who it might communicate with. This assumption seems to us to be reason-
able for an underlying physical model in which processors (the physical hardware
that executes processes) are connected in pairs by direct physical connections—
e.g., wires or optical fibers. In such a model, it is natural to assume that a processor
knows the existence of every physical connection. Indeed, it is only for such a model
that a communication variable owned by a single process is reasonable. Thus, our
work is not applicable to systems of anonymous processors connected along a com-
mon wire, as in an Ethernet [10].

Our first two assumptions, C0 and C1, appear quite innocent. However, the
fact that reading and writing are not synchronized means that the reader can
become suspended for arbitrarily long in a meta-stable state if it happens to read
at exactly the wrong time. This is the “arbiter problem” discussed in [2] and [12].
As explained in [2], one can construct a device in which the reader has probability
zero of remaining in such a meta-stable state forever. Hence, our assumptions can
be satisfied if we interpret truth to mean “true with probability one”.

There is an additional subtle assumption hidden in the combination of C2 with
the ordering of operation executions within a process that we have been assuming.
Suppose v := true; . . . is part of the program for process i. We are assuming that the
write v := true generated by an execution of the first statement precedes any opera-
tion executionA generated by the subsequent execution of the next statement. Now
suppose that this is the last write v generated by process i, and that there is a read v
execution by another process that is preceded byA. By A1, the read v is preceded by
the write v := true, and since this is the last write v operation execution, C2 implies
that the read v must obtain the value true.

Let us consider what this implies for an implementation. To guarantee that the
read v obtains the value true, after executing the write v := true the writer must be
sure that v has settled into a stable state before beginning the next operation. For
example, if the value of v is represented by the voltage level on the wire joining two
processors, then the writer cannot proceed until the new voltage has propagated to
the end of the wire. If a bound cannot be placed upon the propagation time, then

244 The Mutual Exclusion Problem: Part I—A Theory of Interprocess Communication

such a simple representation cannot be used. Instead, the value must be stored in
a flip-flop local to the writer, and the reader must interrogate its value by sending
a signal along the wire and waiting for a response. Since the flip-flop is located
at the writing process, and is set only by that process, it is reasonable to assume a
bound upon its settling time. The wire, with its unknown delay, becomes part of the
reading process. Thus, although satisfying our assumption in a distributed process
poses difficulties, they do not seem to be insurmountable. In any case, we know of
no way to achieve interprocess synchronization without such an assumption.

7 Conclusion
In Section 2, we developed a formalism for reasoning about concurrent systems
that does not assume the existence of atomic operations. This formalism has been
further developed in [7], which addresses the question of what it means for a lower-
level system to implement a higher-level one.

Section 3 considered the nature of interprocess communication, and argued
that the simplest, most primitive form of communication that can be used to solve
the mutual exclusion problem consists of a very weak form of shared register that
can be written and read concurrently. Interprocess communication is considered
in more detail in [8], where the form of shared register we have defined is called
a safe register. Algorithms for constructing stronger registers from safe ones are
given in [8].

Acknowledgments
Many of these ideas have been maturing for quite a few years before appearing
on paper for the first time here. They have been influenced by a number of people
during that time, most notably Carel Scholten, Edsger Dijkstra, Chuck Seitz, Robert
Keller, and Irene Greif.

References
[1] Brinch Hansen, P. Concurrent programming concepts. Comput. Surv. 5 (1973)

223–245, 1973.

[2] Chaney, T. J. and Molnar, C. E. Anomalous behavior of synchronizer and arbiter
circuits. IEEE Trans. Comput. C-22 (Apr. 1973), 421–422.

[3] Dijkstra, E. W. Solution of a problem in concurrent programming control. Commun.
ACM 8, 9 (Sept. 1965), 569.

References 245

[4] Einstein, A. Zur electrodynamik bewegter korper. Ann. Physik, 17 (1905). Translated
as: On the electrodynamics of moving bodies. In The Principle of Relativity, Dover, New
York, pp. 35–65.

[5] Lamport, L. A new solution of Dijkstra’s concurrent programming problem. Commun.
ACM 17, 8 (Aug. 1974), 453–455.

[6] Lamport, L. A new approach to proving the correctness of multiprocess programs.
Prog. Lang. Syst. 1, 1 (July 1979), 84–97.

[7] Lamport, L. On interprocess communication—Part I: Basic formalism. Dist. Comput.
(to appear).

[8] Lamport, L. On interprocess communication—Part II: Algorithms. Dist. Comput. (to
appear).

[9] Lamport, L. The mutual exclusion problem: Part II—Statement and solutions. J. ACM
33, 2 (Apr. 1986), 327–348.

[10] Metcalfe, R. and Boggs, D. R. Ethernet: distributed packet switching for local
computer networks. Commun. ACM 19, 7 (July 1976), 395–404.

[11] Minkowski, H. Space and Time. In The Principle of Relativity. Dover, New York,
pp. 73–91.

[12] Palais, R. and Lamport, L. On the glitch phenomenon. Tech. Rep. CA-7611-0811,
Massachusetts Computer Associates, Wakefield, Mass., Nov. 1976.

[13] Peterson, G. and Fischer, M. J. Economical solutions for the critical section problem
in a distributed system. In Proceedings of the 9th ACM Symposium on Theory of Computing
(Boulder, Colo., May 2–4). ACM, New York, 1977, pp. 91–97.

[14] Rivest, R. L. and Pratt, V. R. The mutual exclusion problem for unreliable processes:
Preliminary report. In Proceedings of the IEEE Symposium on Foundations of Computer
Science. IEEE, New York, 1976, pp. 1–80.

[15] Schwartz, J. T. Relativity in Illustrations. New York University Press, New York, 1962.

[16] Taylor, E. F. and Wheeler, J. A.. Space-Time Physics. W. H. Freeman, San Francisco,
1966.

The Mutual Exclusion Problem:
Part II—Statement and Solutions
Leslie Lamport (Digital Equipment Corporation, Palo Alto, California)

Abstract
The theory developed in Part I is used to state the mutual exclusion problem and
several additional fairness and failure-tolerance requirements. Four “distributed”
N -process solutions are given, ranging from a solution requiring only one com-
munication bit per process that permits individual starvation, to one requiring
about N ! communication bits per process that satisfies every reasonable fairness
and failure-tolerance requirement that we can conceive of.

Categories and Subject Descriptors: D.4.1 [Operating Systems]: Process Manage-
ment—concurrency; multiprocessing/multiprogramming; mutual exclusion; synchro-
nization; D.4.5 [Operating Systems]: Reliability—fault-tolerance

General Terms: Algorithms, Reliability, Theory

Additional Key Words and Phrases: Critical section, shared variables

Most of this work was performed while the author was at SRI International, where it was supported
in part by the National Science Foundation under grant number MCS-78-16783.
Author’s address: Digital Equipment Corporation, Systems Research Center, 130 Lytton Avenue,
Palo Alto, CA 94301.
Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.
©1986 ACM 0004-541 1/86/0400-0327 $00.75
Paper originally published in Journal of the Association for Computing Machinery, 33(2), April 1986,
pp. 327–348.

248 The Mutual Exclusion Problem: Part II—Statement and Solutions

1 Introduction
This is the second part of a two-part paper on the mutual exclusion problem. In
Part I [15], we described a formal model of concurrent systems and used it to define
a primitive interprocess communication mechanism (communication variables)
that assumes no underlying mutual exclusion. In this part, we consider the mutual
exclusion problem itself.

The mutual exclusion problem was first described and solved by Dijkstra in [2].
In this problem, there is a collection of asynchronous processes, each alternately
executing a critical and a noncritical section, that must be synchronized so that no
two processes ever execute their critical sections concurrently. Dijkstra’s original
solution was followed by a succession of others, starting with [6].

These solutions were motivated by practical concerns—namely, the need to
synchronize multiprocess systems using the primitive operations provided by the
hardware. More recent computers usually provide sophisticated synchronization
primitives that make it easy to achieve mutual exclusion, so these solutions are of
less practical interest today. However, mutual exclusion lies at the heart of most
concurrent process synchronization, and the mutual exclusion problem is still
of great theoretical significance. This paper carefully examines the problem and
presents new solutions of theoretical interest. Although some of them may be
of practical value as well—especially in distributed systems—we do not concern
ourselves here with practicality.

All of the early solutions assumed a central memory, accessible by all processes,
which was typical of the hardware in use at the time. Implementing such a central
memory requires some mechanism for guaranteeing mutually exclusive access to
the individual memory cells by the different processes. Hence, these solutions
assume a lower-level “hardware” solution to the very problem they are solving.
From a theoretical standpoint, they are thus quite unsatisfactory as solutions to the
mutual exclusion problem. The first solution that did not assume any underlying
mutual exclusion was given in [7]. However, it required an unbounded amount of
storage, so it too was not theoretically satisfying. The only other published solution
we are aware of that does not assume mutually exclusive access to a shared resource
is by Peterson [17].

Here, in Part II, we present four solutions that do not assume any underlying
mutual exclusion, using the concurrently accessible registers defined in Part I [15].
They are increasingly stronger, in that they satisfy stronger conditions, and more
expensive, in that they require more storage. The precise formulation of the mutual
exclusion problem and of the various fairness and failure-tolerance assumptions,
is based upon the formalism of Part I.

2 The Problem 249

2 The Problem
We now formally state the mutual exclusion problem, including a number of dif-
ferent requirements that one might place upon a solution. We exclude from con-
sideration only the following types of requirements:

—efficiency requirements involving space and time complexity;

—probabilistic requirements, stating that the algorithm need only work with
probability one (solutions with this kind of requirement have recently been
studied by Rabin [19]);

—generalizations of the mutual exclusion problem, such as allowing more than
one process in the critical section at once under certain conditions [4, 8], or
giving the processes different priorities [8].

Except for these exclusions and one other omission (r-bounded waiting) men-
tioned below, we have included every requirement we could think of that one might
reasonably want to place upon a solution.

2.1 Basic Requirements
We assume that each process’s program contains a noncritical section statement
and a critical section statement, which are executed alternately. These statements
generate the following sequence of elementary operation executions in process i:

NCS[1]
i −→ CS[1]

i −→ NCS[2]
i −→ CS[2]

i −→ . . .

where NCS[k]
i denotes the kth execution of process i’s noncritical section, CS[k]

i

denotes the kth execution of its critical section, and−→ is the precedence relation
introduced in Part I. Taking NCS[k]

i and CS[k]
i to be elementary operation executions

simply means that we do not assume any knowledge of their internal structure, and
does not imply that they are of short duration.

We assume that the CS[k]
i are terminating operation executions, which means

that process i never “halts” in its critical section. However, NCS[k]
i may be nonter-

minating for some k, meaning that process i may halt in its noncritical section.
The most basic requirement for a solution is that it satisfy the following:

Mutual Exclusion Property. For any pair of distinct processes i and j , no pair of
operation executions CS[k]

i and CS[k′]
j are concurrent.

In order to implement mutual exclusion, we must add some synchronization
operations to each process’s program. We make the following requirement on these
additional operations.

250 The Mutual Exclusion Problem: Part II—Statement and Solutions

No other operation execution of a process can be concurrent with that process’s
critical or noncritical section operation executions.

This requirement was implicit in Dijkstra’s original statement of the problem, but
has apparently never been stated explicitly before.

The above requirement implies that each process’s program may be written as
follows:

initial declaration;
repeat forever

noncritical section;
trying;
critical section;
exit;

end repeat

The trying statement is what generates all the operation executions between a
noncritical section execution and the subsequent critical section execution, and
the exit statement generates all the operation executions between a critical section
execution and the subsequent noncritical section execution. The initial declaration
describes the initial values of the variables. A solution consists of a specification of
the initial declaration, trying and exit statements.

A process i therefore generates the following sequence of operation executions:

NCS[1]
i −→ trying [1]

i −→ CS[1]
i −→ exit[1]

i −→ NCS[2]
i −→ . . .

where trying [1]
i denotes the operation execution generated by the first execution of

the trying statement, etc.
The second basic property that we require of a solution is that there be no dead-

lock. Deadlock occurs when one or more processes are “trying to enter” their critical
sections, but no process ever does. To say that a process tries forever to enter its
critical section means that it is performing a nonterminating execution of its try-
ing statement. Since every critical section execution terminates, the absence of
deadlock should mean that if some process’s trying statement doesn’t terminate,
then other processes must be continually executing their critical sections. How-
ever, there is also the possibility that a deadlock occurs because all the processes
are stuck in their exit statements. The possibility of a nonterminating exit execu-
tion complicates the statement of the properties and is of no interest here, since the
exit statements in all our algorithms consist of a fixed number of terminating op-

2 The Problem 251

erations. We will therefore simply require of an algorithm that every exit execution
terminates.

The absence of deadlock can now be expressed formally as follows:

Deadlock Freedom Property. If there exists a nonterminating trying operation
execution, then there exist an infinite number of critical section operation exe-
cutions.

These two properties, mutual exclusion and deadlock freedom, were the require-
ments for a mutual exclusion solution originally stated by Dijkstra in [2]. (Of course,
he allowed mutually exclusive access to a shared variable in the solution.) They are
the minimal requirements one might place on a solution.

2.2 Fairness Requirements
Deadlock freedom means that the entire system of processes can always continue to
make progress. However, it does not preclude the possibility that some individual
process may wait forever in its trying statement. The requirement that this cannot
happen is expressed by:

Lockout Freedom Property. Every trying operation execution must terminate.

This requirement was first stated and satisfied by Knuth in [6].
Lockout freedom means that any process i trying to enter its critical section

will eventually do so, but it does not guarantee when. In particular, it allows other
processes to execute their critical sections arbitrarily many times before process
i executes its critical section. We can strengthen the lockout freedom property by
placing some kind of fairness condition on the order in which trying processes are
allowed to execute their critical sections.

The strongest imaginable fairness condition is that if process i starts to execute
its trying statement before process j does, then imust execute its critical section be-
fore j does. Such a condition is not expressible in our formalism because “starting
to execute” is an instantaneous event, and such events are not part of the formalism.
However, even if we were to allow atomic operations—including atomic reads and
writes of communication variables—so our operations were actually instantaneous
events, one can show that this condition cannot be satisfied by any algorithm. The
reason is that with a single operation, a process can either tell the other processes
that it is in its trying statement (by performing a write) or else check if other pro-
cesses are in their trying statements (by performing a read), but not both. Hence, if
two processes enter their trying statements at very nearly the same time, then there

252 The Mutual Exclusion Problem: Part II—Statement and Solutions

will be no way for them to decide which one entered first. This result can be proved
formally, but we will not bother to do so.

The strongest fairness condition that can be satisfied is the following first-
come-first-served (FCFS) condition. We assume that the trying statement consists of
two substatements—a doorway whose execution requires only a bounded number
of elementary operation executions (and hence always terminates), followed by a
waiting statement. We can require that, if process i finishes executing its doorway
statement before process j begins executing its doorway statement, then i must
execute its critical section before j does. Letting doorway[k]

i and waiting [k]
i denote

the kth execution of the doorway and waiting statements by process i, this condition
can be expressed formally as follows:

First-Come, First-Served Property. For any pair of processes i and j and any
execution CS[m]

j : if doorway[k]
i −→ doorway[m]

j , then CS[k]
i −→ CS[m]

j .

(The conclusion means that CS[k]
i is actually executed.)

The FCFS property states that processes will not execute their critical sections
“out of turn”. However, it does not imply that any process ever actually executes
its critical section. In particular, FCFS does not imply deadlock freedom. However,
FCFS and deadlock freedom imply lockout freedom, as we now show.

Theorem 1 FCFS and deadlock freedom imply lockout freedom.

Proof Suppose trying [k]
i is nonterminating. Since there are a finite number of processes,

the deadlock freedom property implies that some process j performs an infinite
number of CS[m]

j executions, and therefore an infinite number of doorway[m]
j exe-

cutions. It then follows from Axiom A5 of Part I that doorway[k]
i −→ doorway[m]

j for
some m. The FCFS property then implies the required contradiction.

The requirement that executing the doorway take only a bounded number of
elementary operation executions means that a process does not have to wait in-
side its doorway statement. Formally, the requirement is that there be some a
priori bound—the same bound for any possible execution of the algorithm—on
the number of elementary operation executions in each doorway[k]

i . Had we only
assumed that the doorway executions always terminate, then any lockout-free solu-
tion is always FCFS, where the doorway is defined to be essentially the entire trying
statement. This requirement seems to capture the intuitive meaning of “first-come,
first-served”. A weaker notion of FCFS was introduced in [18], where it was only re-
quired that a process in its doorway should not have to wait for a process in its
critical or noncritical section. However, we find that definition rather arbitrary.

2 The Problem 253

Michael Fischer has also observed that a FCFS algorithm should not force a
process to wait in its exit statement. Once a process has finished executing its
critical section, it may execute a very short noncritical section and immediately
enter its trying statement. In this case, the exit statement is effectively part of
the next execution of the doorway, so it should involve no waiting. Hence, any
exit[k]

i execution should consist of only a bounded number of elementary operation
executions for a FCFS solution. As we mentioned above, this is true of all the
solutions described here.

An additional fairness property intermediate between lockout freedom and
FCFS, called r-bounded waiting, has also been proposed [20]. It states that after
process i has executed its doorway , any other process can enter its critical section at
most r times before i does. Its formal statement is the same as the above statement
of the FCFS property, except with CS[m]

j replaced by CS[m+r]
j .

2.3 Premature Termination
Thus far, all our properties have been constraints upon what the processes may do.
We now state some properties that give processes the freedom to behave in certain
ways not explicitly indicated by their programs. We have already required one
such property by allowing nonterminating executions of the noncritical section—
i.e., we give the process the freedom to halt in its noncritical section. It is this
requirement that distinguishes the mutual exclusion problem from a large class
of synchronization problems known as “producer/consumer” problems [1]. For
example, it prohibits solutions in which processes must take turns entering their
critical section.

We now consider two kinds of behavior in which a process can return to its non-
critical section from any arbitrary point in its program. In the first, a process stops
the execution of its algorithm by setting its communication variables to certain
default values and halting. Formally, this means that anywhere in its algorithm, a
process may execute the following operation:

begin
set all communication variables to their default values;
halt

end

For convenience, we consider the final halting operation execution to be a non-
terminating noncritical section execution. The default values are specified as part
of the algorithm. For all our algorithms, the default value of every communication
variable is the same as its initial value.

254 The Mutual Exclusion Problem: Part II—Statement and Solutions

This type of behavior has been called “failure” in previous papers on the mutual
exclusion problem. However, we reserve the term “failure” for a more insidious
kind of behavior, and call the above behavior shutdown. If the algorithm satisfies
a property under this type of behavior, then it is said to be shutdown safe for that
property.

Shutdown could represent the physical situation of “unplugging” a processor.
Whenever a processor discovers that another processor is unplugged, it does not try
to actually read that processor’s variables, but instead uses their default values. We
require that the processor never be “plugged back in” after it has been unplugged.
We show below that this is really equivalent to requiring that the processor remain
unplugged for a sufficiently long time.

The second kind of behavior is one in which a process deliberately aborts the
execution of its algorithm. Abortion is the same as shutdown except for three
things:

—The process returns to its noncritical section instead of halting.

—Some of its communication variables are left unchanged. (Which ones are
specified as part of the algorithm.)

—A communication variable is not set to its default value if it already has that
value.1

Formally, an abortion is an operation execution consisting of a collection of
writes that set certain of the process’s communication variables to their default
values, followed by (−→) a noncritical section execution. (The noncritical section
execution may then be followed by a trying statement execution—or by another
abortion.) For our algorithms, the value of a communication variable is set by an
abortion if there is an explicitly declared initial value for the variable, otherwise it
is left unchanged by the abortion. If an algorithm satisfies a property with this type
of behavior, then it is said to be abortion safe for that property.

2.4 Failure
Shutdown and abortion describe fairly reasonable kinds of behavior. We now con-
sider unreasonable kinds of behavior, such as might occur in the event of process
failure. There are two kinds of faulty behavior that a failed process could exhibit.

1. Remember that setting a variable to its old value is not a “no-op”, since a read that is concurrent
with that operation may get the wrong value. If communication variables were set every time
the process aborted, repeated abortions would be indistinguishable from the “malfunctioning”
behavior considered below.

2 The Problem 255

—unannounced death, in which it halts undetectably;

—malfunctioning, in which it keeps setting its state, including the values of its
communication variables, to arbitrary values.

An algorithm that can handle the first type of faulty behavior must use real-time
clocks, otherwise there is no way to distinguish between a process that has died and
one that is simply pausing for a long time between execution steps. An example of
an algorithm (not a solution to our mutual exclusion problem) that works in the
presence of such faulty behavior can be found in [10]. Consideration of this kind
of behavior is beyond the scope of this paper.

A malfunctioning process obviously cannot be prevented from executing its
critical section while another process’s critical section execution is in progress.
However, we may still want to guarantee mutual exclusion among the nonfaulty
processes. We therefore assume that a malfunctioning process does not execute its
critical section. (A malfunctioning process that executes its critical section code is
simply defined not to be executing its critical section.)

A malfunctioning process can also disrupt things by preventing nonfaulty pro-
cesses from entering their critical sections. This is unavoidable, since a process that
malfunctions after entering its critical section could leave its communication vari-
ables in a state indicating that it is still in the critical section. What we can hope
to guarantee is that if the process stops malfunctioning, then the algorithm will
resume its normal operation. This leaves two types of behavior to be considered,
which differ in how a process stops malfunctioning.

The first type of failure allows a failed process to execute the following sequence
of actions.

—It malfunctions for a while, arbitrarily changing the values of its communica-
tion variables.

—It then aborts—setting all its communication variables to some default values.

—It then resumes normal behavior, never again malfunctioning.

This behavior represents a situation in which a process fails, its failure is eventually
detected and it is shut down, and the process is repaired and restored to service.
The assumption that it never again malfunctions is discussed below.

Formally, this means that each process may perform at most one operation
execution composed of the following sequence of executions (ordered by the −→
relation):

256 The Mutual Exclusion Problem: Part II—Statement and Solutions

—a malfunction execution, consisting of a finite collection of writes to its com-
munication variables.

—a collection of writes that sets each communication variable to its default
value.

—a noncritical section execution.

The above operation execution will be called a failure. If a property of a solution
remains satisfied under this kind of behavior, then the solution is said to be fail-safe
for that property. Note that we do not assume failure to be detectable; one process
cannot tell that another has failed (unless it can infer from the values of the other
process’s variables that a failure must have occurred).

The second type of failure we consider is one in which a process malfunctions,
but eventually stops malfunctioning and resumes forever its normal behavior,
starting in any arbitrary state. This behavior represents a transient fault.

If such a failure occurs, we cannot expect the system immediately to resume
its normal operation. For example, the malfunctioning process might resume its
normal operation just at the point where it is about to enter its critical section—
while another process is executing its critical section. The most we can require
is that after the process stops malfunctioning, the system eventually resumes its
correct operation.

Since we are interested in the eventual operation, we need only consider what
happens after every process has stopped malfunctioning. The state of the system
at that time can be duplicated by starting all processes at arbitrary points in their
program, with their variables having arbitrary values. In other words, we need only
consider the behavior obtained by having each process do the following:

—execute a malfunction operation;

—then begin normal execution at any point in its program.

This kind of behavior will be called a transient malfunction. Any operation execution
that is not part of the malfunction execution will be called a normal operation
execution.

Unfortunately, deadlock freedom and lockout freedom cannot be achieved un-
der this kind of transient malfunction behavior without a further assumption. To
see why, suppose a malfunctioning process sets its communication variables to the
values they should have while executing its critical section, and then begins normal
execution with a nonterminating noncritical section execution. The process will al-

2 The Problem 257

ways appear to the rest of the system as if it is executing its critical section, so no
other process can ever execute its critical section.

To handle this kind of behavior, we must assume that a process executing its
noncritical section will eventually set its communication variables to their default
values. Therefore, we assume that instead of being elementary, the noncritical
section executions are generated by the following program:

while ?
do abort ;

noncritical operation od

where the “?” denotes some unknown condition, which could cause the while to be
executed forever, and every execution of the noncritical operation terminates. Recall
that an abort execution sets certain communication variables to their default values
if they are not already set to those values.

We now consider what it means for a property to hold “eventually”. Intuitively,
by “eventually” we mean “after some bounded period of time” following all the
malfunctions. However, we have not introduced any concept of physical time.
The only unit of time implicit in our formalism is the time needed to perform
an operation execution. Therefore, we must define “after some bounded period
of time” to mean “after some bounded number of operation executions”. The
definition we need is the following.

Definition 1 A system step is an operation execution consisting of one normal elementary opera-
tion execution from every process. An operation executionA is said to occur after t
system steps if there exist system steps S1, . . . , St such that S1−→ . . .−→ St −→A.

It is interesting to note that we could introduce a notion of time by defining the
“time” at which an operation occurs to be the maximum t such that the operation
occurs after t system steps (or 0 if there is no such t). Axioms A5 and A6 of Part I
imply that this maximum always exists. Axiom A5 and the assumption that there are
no nonterminating elementary operation executions imply that “time” increases
without bound—i.e., there are operations occurring at arbitrarily large “times”.
Since we only need the concept of eventuality, we will not consider this way of
defining “time”.

We can now define what it means for a property to hold “eventually”. Deadlock
freedom and lockout freedom state that something eventually happens—for exam-
ple, deadlock freedom states that so long as some process is executing its trying
operation, then some process eventually executes its critical section. Since “even-
tually X eventually happens” is equivalent to “X eventually happens”, requiring

258 The Mutual Exclusion Problem: Part II—Statement and Solutions

that these two properties eventually hold is the same as simply requiring that they
hold.

We say that the mutual exclusion and FCFS properties eventually hold if they
can be violated only for a bounded “length of time”. Thus, the mutual exclusion
property eventually holds if there is some t such that any two critical section ex-
ecutions CS[k]

i and CS[m]
j that both occur after t system steps are not concurrent.

Similarly, the FCFS property holds eventually if it holds whenever both the doorway
executions occur after t system steps. The value of t must be independent of the
particular execution of the algorithm, but it may depend upon the number N of
processes.

If a property eventually holds under the above type of transient malfunction
behavior, then we say that the algorithm is self-stabilizing for that property. The
concept of self-stabilization is due to Dijkstra [3].

Remarks on “Forever”. In our definition of failure, we could not allow a mal-
functioning process to fail again after it had resumed its normal behavior, since
repeated malfunctioning and recovery can be indistinguishable from continuous
malfunctioning. However, if an algorithm satisfies any of our properties under the
assumption that a process may malfunction only once, then it will also satisfy the
property under repeated malfunctioning and recovery—so long as the process waits
long enough before malfunctioning again.

The reason for this is that all our properties require that something either be true
at all times (mutual exclusion, FCFS) or that something happen in the future (dead-
lock freedom, lockout freedom). If something remains true during a malfunction,
then it will also remain true under repeated malfunctioning. If something must
happen eventually, then because there is no “crystal ball” operation that can tell if
a process will abort in the future,2 another malfunction can occur after the required
action has taken place. Therefore, an algorithm that is fail-safe for such a property
must also satisfy the property under repeated failure, if a failed process waits long
enough before executing its trying statement again. Similar remarks apply to shut-
down and transient malfunction.

3 The Solutions
We now present four solutions to the mutual exclusion problem. Each one is
stronger than the preceding one in the sense that it satisfies more properties, and
is more expensive in that it requires more communication variables.

2. Such operations lead to logical contradictions—for example, if one process executes “set x true
if process i will abort”, and process i executes “abort if x is never set true”.

3 The Solutions 259

3.1 The Mutual Exclusion Protocol
We first describe the fundamental method for achieving mutual exclusion upon
which all the solutions are based. Each process has a communication variable that
acts as a synchronizing “flag”. Mutual exclusion is guaranteed by the following
protocol: in order to enter its critical section, a process must first set its flag true and
then find every other process’s flag to be false. The following result shows that this
protocol does indeed ensure mutual exclusion, where v andw are communication
variables, as defined in Part I, that represent the flags of two processes, and A and
B represent executions of those processes’ critical sections.

Theorem 2 Let v and w be communication variables, and suppose that for some operation
executions A and B and some k and m:

—V [k]−→ read w = false−→ A.

—W [m]−→ read v = false−→ B.

—v[k]= w[m]= true.

—If V [k+1] exists then A−→ V [k+1].

—IfW [m+1] exists then B −→W [m+1].

Then A and B are not concurrent.

We first prove the following result, which will be used in the proof of the theo-
rem. Its statement and proof use the formalism developed in Part I.

Lemma 1 Let v be a communication variable and R a read v = false operation such that:

1. v[k]= true

2. V [k] > R

3. R � > V [k]

Then V [k+1] must exist and V [k+1] > R.

Proof Intuitively, the assumptions mean that V [k] “effectively precedes” R, so R cannot
see any value written by a write that precedes V [k]. SinceR does not obtain the value
written byV [k], it must be causally affected by a later write operationV [k+1]. We now
formalize this reasoning.

By A3 and the assumption that the writes of v are totally ordered, hypothesis 2
implies that V [i] > R for all i ≤ k. If R > V [i] for some i < k, then A3 would
imply R > V [k], contrary to hypothesis 3. Hence, we conclude that R is effectively
nonconcurrent with V [i] for all i ≤ k. If V [k] were the last write to v, hypothesis 2
and C2 would imply that R has to obtain the value true , contrary to hypothesis 1.
Therefore, the operation V [k+1] must exist.

260 The Mutual Exclusion Problem: Part II—Statement and Solutions

We now prove by contradiction that V [k+1] > R. Suppose to the contrary that
V [k+1] � > R. C3 then implies that R > V [k+1], which by A3 implies R > V [i] for
all i ≥ k + 1. A3 and the assumption that V [k+1] � > R, implies that V [i] � > R for
all i ≥ k + 1. Since we have already concluded that V [i] > R for all i ≤ k, C2 implies
that R must obtain the value true, which contradicts hypothesis 1. This completes
the proof that V [k+1] > R.

Proof of Theorem By C3, we have the following two possibilities:

1. read w = false > W [m].

2. W [m] > read w = false.

(These are not disjoint possibilities.) We consider case (1) first. Combining (1) with
the first two hypotheses of the theorem, we have

V [k]−→ read w = false > W [m]−→ read v = false

By A4, this implies V [k]−→ read v = false. A2 and the lemma then imply that V [k+1]

exists and V [k+1] > read v = false. Combining this with the fourth and second
hypotheses gives

A−→ V [k+1]
> read v = false−→ B

By A4, this implies A−→ B, completing the proof in case (1).
We now consider case (2). Having already proved the theorem in case (1), we can

make the additional assumption that case (1) does not hold, so read w = false � >
W [m]. We can then apply the lemma (substituting w for v and m for k) to conclude
thatW [m+1] exists andW [m+1] > read w = false. Combining this with the first and
last hypotheses gives

B −→W [m+1]
> read w = false−→ A

A4 now implies B −→ A, proving the theorem for this case.

We have written the proof of this theorem in full detail to show how A1–A4 and
C0–C3 are used. In the remaining proofs, we will be more terse, leaving many of
the details to the reader.

3.2 The One-Bit Solution
We now use the above protocol to obtain a mutual exclusion solution that requires
only the single (one-bit) communication variable xi for each process i. Obviously,
no solution can work with fewer communication variables. This solution was also

3 The Solutions 261

private variable: j with range 1 . . .N ;
communication variable: xi initially false;
repeat forever

noncritical section;
l: xi := true;

for j := 1 until i − 1
do if xj then xi := false;

while xj do od;
goto l

fi
od;

for j := i + 1 until N
do while xj do od od;

critical section;
xi := false

end repeat

Figure 1 The one-bit algorithm: Process i.

discovered independently by Burns [1a]. The algorithm for process i is shown in
Figure 1, and its correctness properties are given by the following result.

Theorem 3 The One-Bit Algorithm satisfies the mutual exclusion and deadlock freedom prop-
erties, and is shutdown safe and fail-safe for these properties.

Proof To prove the mutual exclusion property, we observe that the above protocol is
followed by the processes. More precisely, the mutual exclusion property is proved
using Theorem 2, substituting xi for v, xj for w, CS[k]

i for A and CS[k′]
j for B. This

protocol is followed even under shutdown and failure behavior, so the algorithm is
shutdown safe and fail-safe for mutual exclusion. To prove deadlock freedom, we
first prove the following lemma.

Lemma 2 Any execution of the second for loop must terminate, even under shutdown and
failure behavior.

Proof The proof is by contradiction. Let i be any process that executes a nonterminating
second for loop. Then before entering the loop, i performs a finite number of write
xi executions, with the final one setting xi true. We now prove by contradiction
that every other process can also execute only a finite number of writes to its
communication variable. Let k be the lowest-numbered process that performs an

262 The Mutual Exclusion Problem: Part II—Statement and Solutions

infinite number of write xk executions. Process k executes statement l infinitely
many times. Since every lower-numbered process j executes only a finite number
of writes to xj , A5, A2 and C2 imply that all but a finite number of reads of xj by k
must obtain its final value. For k to execute statement l infinitely many times (and
not get trapped during an execution of the first for loop’s while statement), this
final value must be false for every j < k. This implies that k can execute its first for
loop only finitely many times before it enters its second for loop. But since the final
value of xi is true, this means that k < i, and that k can execute its second for loop
only finitely many times before being trapped forever in the “while xi” statement
in its second for loop. This contradicts the assumption that k performs an infinite
number of write xk executions.

We have thus proved that if the execution of the second for loop of any process
is nonterminating, then every process can execute only a finite number of writes to
its communication variable. The final value of a process’s communication variable
can be true only if the process executes its second for loop forever. Letting i be the
highest-numbered process executing a nonterminating second for loop, so the final
value of xj is false for every j > i, we easily see that i must eventually exit this for
loop, providing the required contradiction. Hence, every execution of the second
for loop must eventually terminate.

Proof of Theorem (continued). We now complete the proof of the theorem by showing that the One-Bit
Algorithm is deadlock free. Assume that some process performs a nonterminating
trying execution. Let i be the lowest numbered process that does not execute a
nonterminating noncritical section. (There is at least one such process—the one
performing the nonterminating trying execution.) Each lower numbered process
j performs a nonterminating noncritical section execution after setting its com-
munication variable false. (This is true for shutdown and failure behavior too.) It
follows from A5, A2, and C2 that if i performs an infinite number of reads of the
variable xj , then all but a finite number of them must return the value false. This
implies that every execution of the first for loop of process i must terminate. But, by
the above lemma, every execution of its second for loop must also terminate. Since
we have assumed that every execution of its noncritical section terminates, this
implies that process i performs an infinite number of critical section executions,
completing the proof of the theorem.

The One-Bit Algorithm as written in Figure 1 is not self-stabilizing for mutual
exclusion or deadlock freedom. It is easy to see that it is not self-stabilizing for
deadlock freedom, since we could start all the processes in the while statement of
the first for loop with their communication variables all true. It is not self-stabilizing

3 The Solutions 263

for mutual exclusion because a process could be started in its second for loop with
its communication variable false, remain there arbitrarily long, waiting as higher
numbered processes repeatedly execute their critical sections, and then execute its
critical section while another process is also executing its critical section.

The One-Bit Algorithm is made self-stabilizing for both mutual exclusion and
deadlock freedom by modifying each of the while loops so they read the value of xi
and correct its value if necessary. In other words, we place

if xi then xi := false

in the body of the first for loop’s while statement, and likewise for the second for
loop (except setting xi true there). We now prove that this modification makes the
One-Bit Algorithm self-stabilizing for mutual exclusion and deadlock freedom.

Theorem 4 With the above modification, the One-Bit Algorithm is self-stabilizing for mutual
exclusion and deadlock freedom.

Proof It is easy to check that the proof of the deadlock freedom property in Theorem .3 is
valid under the behavior assumed for self-stabilization, so the algorithm is self-
stabilizing for deadlock freedom. To prove that it is self-stabilizing for mutual
exclusion, we have to show that the mutual exclusion protocol is followed after
a bounded number of system steps. It is easy to verify that this is true so long as
every process that is in its second for loop (or past the point where it has decided to
enter its second for loop) exits from that loop within a bounded number of system
steps.3 We prove this by “backwards induction” on the process number.

To start the induction, we observe that since its second for loop is empty, process
N must exit that for loop within some bounded number t (N) of system steps. To
complete the induction step, we assume that if j > i, then process j must exit its
second for loop within t (j) system steps of when it entered, and we prove that if
process i is in its second for loop (after the malfunction), then it must eventually
exit. We define the following sets:

S1: The set of processes waiting in their second for loop for a process numbered
less than or equal to i.

S2: The set of processes waiting in their first for loop for a process in S1.

S3: The set of processes in their trying statement.

3. In this proof, we talk about where a process is in its program immediately before and after a
system step. This makes sense because a system step contains an elementary operation from every
process.

264 The Mutual Exclusion Problem: Part II—Statement and Solutions

If process i is in its second for loop, then within a bounded number of steps it
either leaves that loop or else sets xi true. In the latter case, no process that then
enters its trying section can leave it before process i does. Each higher-numbered
process that is in its second for loop must leave it in a bounded number of system
steps, whereupon any other process that is in its second for loop past the test of
xi must exit that loop within a bounded number of system steps. It follows that
within a bounded number of steps, if process i is still in its second for loop, then
the system execution reaches a point at which each of the three sets Sm cannot get
smaller until i sets xi false. It is then easy to see that once this has happened, within
a bounded number of steps, one of the following must occur:

—Process i exits its second for loop.

—Another process joins the set S3.

—A process in S3 joins S1 or S2.

Since there are onlyN processes, there is a bound on how many times the second
two can occur. Therefore, the first possibility must occur within a bounded number
of system steps, completing the proof that process i must exit its second for loop
within a bounded number of system steps. This in turn completes the proof of the
theorem.

3.3 A Digression
Suppose N processes are arranged in a circle, with process 1 followed by process 2
followed by . . . followed by processN , which is followed by process 1. Each process
communicates only with its two neighbors using an array v of boolean variables,
each v(i) being owned by process i and read by the following process. We want the
processes to continue forever taking turns performing some action—first process 1,
then process 2, and so on. Each process must be able to tell whether it is its turn
by reading just its own variable v(i) and that of the preceding process, and must
pass the turn on to the next process by complementing the value of v(i) (which is
the only change it can make).

The basic idea is to let it be process i’s turn if the circle of variablesv(1), . . . , v(N)
changes value at i—that is, if v(i)= ¬v(i − 1). This doesn’t quite work because a
ring of values cannot change at only one point. However, we let process 1 be excep-
tional, letting it be 1’s turn when v(1)= v(N). The reader should convince himself
that this works if all the v(i) are initially equal.

It is obvious how this algorithm, which works for the cycle of all N processes
arranged in order, is generalized to handle an arbitrary cycle of processes with
one process singled out as the “first”. To describe the general algorithm more

3 The Solutions 265

formally, we need to introduce some notation. Recall that a cycle is an object of
the form 〈i1, . . . , im〉, where the ij are distinct integers between 1 andN . The ij are
called the elements of the cycle. Two cycles are the same if they are identical except
for a cyclic permutation of their elements—e.g., 〈1, 3, 5, 7〉 and 〈5, 7, 1, 3〉 are two
representations of the same cycle, which is not the same cycle as 〈1, 5, 3, 7〉. We
define the first element of a cycle to be its smallest element ij .

By a Boolean function on a cycle we mean a Boolean function on its set of
elements. The following functions are used in the remaining algorithms. Note
that CG(v , γ , i) is the Boolean function that has the value true if and only if it
is process i’s turn to go next in the general algorithm applied to the cycle γ of
processes.

Definition 2 Let v be a Boolean function on the cycle γ = 〈i1, . . . , im〉, and let i1 be the first
element of γ . For each element ij of the cycle we define:

CGV (v , γ , ij) def≡ ¬v(ij−1) if j > 1;

v(im) if j = 1.

CG(v , γ , ij) def≡ v(ij)≡ CGV (v , γ , ij)

If CG(v , γ , ij) is true, then we say that v changes value at ij .

The turn-taking algorithm, in which process i takes its turn when CG(v , γ , i)
equals true, works right when it is started with all the v(i) having the same value. If
it is started with arbitrary initial values for the v(i), then several processes may be
able to go at the same time. However, deadlock is impossible; it is always at least
one process’s turn. This is expressed formally by the following result, whose proof
is simple and is left to the reader.

Lemma 3 Every Boolean function on a cycle changes value at some element—that is, for any
Boolean function v on a cycle γ , there is some element i of γ such that CG(v , γ , i)
= true.

We shall also need the following definitions. A cycle 〈i1, . . . , im〉 is said to be
ordered if, after a cyclic permutation of the ij , i1< . . .< im. For example, 〈5, 7, 2, 3〉
is an ordered cycle while 〈2, 5, 3, 7〉 is not. Any nonempty set of integers in the range
1 to N defines a unique ordered cycle. If S is such a set, then we let ORD S denote
this ordered cycle.

266 The Mutual Exclusion Problem: Part II—Statement and Solutions

3.4 The Three-Bit Algorithm
The One-Bit algorithm has the property that the lowest-numbered process that is
trying to enter its critical section must eventually enter it—unless a still lower-
numbered process enters the trying region before it can do so. However, a higher-
numbered process can be locked out forever by lower-numbered processes repeat-
edly entering their critical sections. The basic idea of the Three-Bit Algorithm is
for the processes’ numbers to change in such a way that a waiting process must
eventually become the lowest-numbered process.

Of course, we don’t actually change a process’s number. Rather, we modify the
algorithm so that instead of process i’s two for loops running from 1 up to (but
excluding) i and i + 1 toN , they run cyclically from f up to but excluding i and from
i ⊕ 1 up to but excluding f , where f is a function of the communication variables,
and⊕denotes addition moduloN . As processes pass through their critical sections,
they change the value of their communication variables in such a way as to make
sure that f eventually equals the number of every waiting process.

The first problem that we face in doing this is that if we simply replaced the
for loops as indicated above, a process could be waiting inside its first for loop
without ever discovering that f should have been changed. Therefore, we modify
the algorithm so that when it finds xj true, instead of waiting for it to become
false, process i recomputes f and restarts its cycle of examining all the processes’
communication variables.

We add two new communication variables to each process i. The variable yi is
set true by process i immediately upon entering its trying section, and is not set
false until after process i has left its critical section and set xi false. The variable zi
is complemented when process i leaves its critical section.

Finally, it is necessary to guarantee that while process i is in its trying region, a
“lower-numbered” process that enters after i cannot enter its critical section before
i does. This is accomplished by having the “lower-numbered” process wait for yi to
become false instead of xi. This will still insure mutual exclusion, since xi is false
whenever yi is.

Putting these changes all together, we get the algorithm of Figure 2. The “for
j := . . . cyclically to . . .” denotes an iteration starting with j equal to the lower
bound, and incrementing j by 1 modulo N up to but excluding the upper bound.
We let ∗:=∗ denote an assignment operation that performs a write only if it will
change the value of the variable—i.e., the right-hand side is evaluated, compared
with the current value of the variable on the left-hand side, and an assignment
performed only if they are unequal. The ∗:=∗ operation is introduced because we
have assumed nothing about the value obtained by a read that is concurrent with a
write, even if the write does not change the value. For example, executing v := true

3 The Solutions 267

private variables: j , f with range 1 . . .N ,
γ with range cycles on 1 . . .N ;

communication variables: xi, yi initially false, zi;
repeat forever

noncritical section;
yi := true;

l1: xi := true;
l2: γ := ORD{i : yi = true}
f := minimum {j ∈ γ :CG(z, γ , j)= true};
for j := f cyclically to i

do if yj then xi ∗:=∗ false;
goto l2

fi
od;

if ¬xi then goto l1 fi;
for j := i ⊕ 1 cyclically to f

do if xj then goto l2 fi od;
critical section;
zi := ¬zi;
xi := false;
yi := false

end repeat

Figure 2 The three-bit algorithm: Process i

when v has the value true can cause a concurrent read of v to obtain the value false.
However, executing v ∗:=∗ true has absolutely no effect if v has the value true.

We let z denote the function that assigns the value zj to j—so evaluating it at
j requires a read of the variable zj . Thus, CG(z, 〈1, 3, 5〉, 3)= true if and only if
z1 �= z3. Note that i is always an element of the cycle γ computed by process i, so
the cycle is nonempty and the argument of the minimum function is a nonempty
set (by Lemma 3).

We now prove that this algorithm satisfies the desired properties. In this and
subsequent proofs, we will reason informally about processes looping and things
happening eventually. The reader can refer to the proof of Theorem 3 to see how
these arguments can be made more formal.

Theorem 5 The Three-Bit Algorithm satisfies the mutual exclusion, deadlock freedom and
lockout freedom properties, and is shutdown safe and fail-safe for them.

268 The Mutual Exclusion Problem: Part II—Statement and Solutions

Proof To verify the mutual exclusion property, we need only check that the basic mutual
exclusion protocol is observed. This is not immediately obvious, since process i
tests either xj or yj before entering its critical section, depending upon the value
of f . However, a little thought will show that processes i and j do indeed follow
the protocol before entering their critical sections, process i reading either xj or
yj , and process j reading either xi or yi. This is true for the behavior allowed under
shutdown and failure safety, so the algorithm is shutdown safe and fail-safe for
mutual exclusion.

To prove deadlock freedom, assume for the sake of contradiction that some
process executes a nonterminating trying statement, and that no process performs
an infinite number of critical section executions. Then eventually there must be
some set of processes looping forever in their trying statements, and all other
processes forever executing their noncritical sections with their x and y variables
false. Moreover, all the “trying” processes will eventually obtain the same value
for f . Ordering the process numbers cyclically starting with f , let i be the lowest-
numbered trying process. It is easy to see that all trying processes other than i will
eventually set their x variables false, and i will eventually enter its critical section,
providing the necessary contradiction.

We now show that the algorithm is lockout free. There must be a time at which
one of the following three conditions is true for every process:

—It will execute its critical section infinitely many times.

—It is and will remain forever in its trying statement.

—It is and will remain forever in its noncritical section.

Suppose that this time has been reached, and let β = 〈j1, . . . , jp〉 be the ordered
cycle formed from the set of processes for which one of the first two conditions
holds. Note that we are not assuming j1 to be the first element (smallest ji) of β.
We prove by contradiction that no process can remain forever in its trying section.

Suppose j1 remains forever in its trying section. If j2 were to execute its critical
section infinitely many times, then it would eventually enter its trying section with
zj2

equal to ¬CGV (z, β , j2). When process j2 then executes its statement l2, the
cycle γ it computes will include the element j1, and it will compute CG(z, γ , j2) to
equal false. It is easy to see that the value of f that j2 then computes will cause j1

to lie in the index range of its first for loop, so it must wait forever for process j1 to
set yj1

false.
We therefore see that if j1 remains forever in its trying section, then j2 must

also remain forever in its trying section. Since this is true for any element j1 in the
cycle β (we did not assume j1 to be the first element), a simple induction argument

3 The Solutions 269

shows that if any process remains forever in its trying section, then all the processes
j1, . . . , jp must remain forever in their trying sections. But this means that the
system is deadlocked, which we have shown to be impossible, giving the required
contradiction.

The above argument remains valid under shutdown and failure behavior, so the
algorithm is shutdown safe and fail-safe for lockout freedom.

As with the One-Bit Algorithm, we must modify the Three-Bit Algorithm in order
to make it self-stabilizing. It is necessary to make sure that process i does not wait
in its trying section with yi false. We therefore need to add the statement yi ∗:=∗
true somewhere between the label l2 and the beginning of the for statement. It is
not necessary to correct the value of xi because that happens automatically, and
the initial value of zi does not matter. We then have the following result.

Theorem 6 The Three-Bit Algorithm, with the above modification, is self-stabilizing for the
mutual exclusion, deadlock freedom and lockout freedom properties.

Proof Within a bounded number of system steps, each process will either have passed
through point l2 of its program twice, or entered its noncritical section and reset
its x and y variables. (Remember that for self-stabilization, we must assume that
these variables are reset in the noncritical section if they have the value true.) After
that has happened, the system will be in a state it could have reached starting at
the beginning from a normal initial state.

3.5 FCFS Solutions
We now describe two FCFS solutions. Both of them combine a mutual exclusion
algorithm ME that is deadlock free but not FCFS with an algorithm FC that does not
provide a mutual exclusion but does guarantee FCFS entry to its “critical section”.
The mutual exclusion algorithm is embedded within the FCFS algorithm as follows.

repeat forever
noncritical section;
FC trying;
FC critical section: begin

ME trying;
ME critical section;
ME exit

end;
FC exit

end repeat

270 The Mutual Exclusion Problem: Part II—Statement and Solutions

communication variables:
yi initially false,
array zi indexed by {1 . . .N} − {i};

private variables:
array after indexed by {1 . . .N} − {i} of boolean,
j with range 1 . . . N ;

repeat forever
noncritical section;
doorway: for all j �= i

do zi[j] ∗:=∗ ¬CGV (zij , ORD{i , j}, i) od;
for all j �= i

do after[j] := yj od;
yi := true ;

waiting: for all j �= i
do while after[j]

do if CG(zij , ORD{i , j}, i) ∨ ¬yj
then after[j] := false fi od

od;
critical section;
yi := false

end repeat

Figure 3 The N -Bit FCFS algorithm: Process i.

It is obvious that the entire algorithm satisfies the FCFS and mutual exclusion
properties, where its doorway is the FC algorithm’s doorway. Moreover, if both FC
and ME are deadlock free, then the entire algorithm is also deadlock free. This is
also true under shutdown and failure. Hence, if FC is shutdown safe (or fail-safe)
for FCFS and deadlock freedom, and ME is shutdown safe (fail-safe) for mutual
exclusion and deadlock freedom, then the entire algorithm is shutdown safe (fail-
safe) for FCFS, mutual exclusion and deadlock freedom.

We can let ME be the One-Bit Algorithm, so we need only look for algorithms
that are FCFS and deadlock free. The first one is the N -Bit Algorithm of Figure 3,
which is a modification of an algorithm due to Katseff [5]. It usesN communication
variables for each process. However, each of the N − 1 variables zi[j] of process i
is read only by process j . Hence, the complete mutual exclusion algorithm using
it and the One-Bit Algorithm requires the same number of single-reader variables
as the Three-Bit Algorithm. The “for all j” statement executes its body once for

3 The Solutions 271

each of the indicated values of j , with the separate executions done in any order
(or interleaved). The function zij on the cycle ORD {i , j} is defined by:

zij (i)
def= zi[j],

zij (j)
def= zj [i].

We now prove the following properties of this algorithm.

Lemma 4 The N -Bit Algorithm satisfies the FCFS and Deadlock Freedom properties, and is
shutdown safe, abortion safe and fail-safe for them.

Proof Informally, the FCFS property is satisfied because if process i finishes its doorway
before process j enters its doorway, but i has not yet exited, then j must see yi true
and wait for i to reset yi or change zi[j]. This argument is formalized as follows.

Assume that doorway[k]
i −→ doorway[m]

j . Let Y [k′]
i denote the write operation of yi

performed during doorway[k]
i , letZi[j][k′′] be the last write of zi[j] performed before

Y
[k′]
i .

We suppose that CS[m]
j exists, but that CS[k]

i �−→ CS[m]
j , and derive a contradiction.

LetR be any read of yi performed by process j during trying [m]
j . Since doorway[k]

i −→
doorway[m]

j , we have Y [k′]
i −→ R. Since CS[k]

i �−→ CS[m]
j , A4 implies that Y [k′+1]

i � > R.

It then follows from C2 that the read R must obtain the value y[k′]
i , which equals

true. A similar argument shows that every read of zi[j] during trying [m]
j obtains the

value zi[j][k′′]. It is then easy to see that process j sets after[i] true in its doorway and
can never set it false because it always reads the same value of zi[j] in its waiting
statement as it did in its doorway. Hence, j can never exit from its waiting section,
which is the required contradiction.

We next prove deadlock freedom. The only way deadlock could occur is for there
to be a cycle 〈i1, . . . , im〉 of processes, each one waiting for the preceding one—i.e.,
with each process ij⊕1 having after[ij] true. We assume that this is the case and
obtain a contradiction. LetRyj denote the read of yij#1

and letWyj denote the write
of yij by process ij in the last execution of its doorway. Since Ryj −→Wyj and the
relation−→ is acyclic, by A2 and A4 there must be some j such thatWyj � > Ryj⊕1.
By C3, this implies that Ryj⊕1 > Wyj .

LetWy′ be the write of yij that immediately precedesWyj , and thus sets its value
false. IfWy′ did not exist (becauseWyj was the first write of yij) or Ryj⊕1 � > Wy′,
it would follow from C2 and C3 that Ryj⊕1 obtains the value false. But this is
impossible because process ij⊕1 has set after[ij] true. Hence, there is such a Wy′

and Ryj⊕1 > Wy′.

272 The Mutual Exclusion Problem: Part II—Statement and Solutions

Using this result and A4, it is easy to check that the last write of zij⊕1
[ij] (during

the last execution of the doorway of process ij⊕1) must have preceded the reading
of it by process ij during the last execution of its doorway. It follows from this that
in the deadlock state, CG(zij⊕1

[ij], ORD{ij , ij⊕1}, ij⊕1)must be true, contradicting
the assumption that ij⊕1 is waiting forever with after[ij] true. This completes the
proof of deadlock freedom.

We leave it to the reader to verify that the above proofs remain valid under
shutdown, abortion and failure behavior. The only nontrivial part of the proof is
showing that the algorithm is abortion safe for deadlock freedom. This property
follows from the observation that if no process enters its critical section, then
eventually all the values of zi[j] will stabilize and no more writes to those variables
will occur—even if there are infinitely many abortions.

Using this lemma and the preceding remarks about embedding a mutual exclu-
sion algorithm inside a FCFS algorithm, we can prove the following result.

Theorem 7 Embedding the One-Bit Algorithm inside the N -Bit Algorithm yields an algorithm
that satisfies the mutual exclusion, FCFS, deadlock freedom and lockout freedom
properties, and is shutdown safe, abortion safe and fail-safe for these properties.

Proof As we remarked above, the proof of the mutual exclusion, FCFS and deadlock
freedom properties is trivial. Lockout freedom follows from these by Theorem 1.
The fact that it is shutdown safe and fail-safe for these properties follows from the
fact that the One-Bit and N -Bit algorithms are. The only thing left to show is that
the entire algorithm is abortion safe for these properties even though the One-Bit
algorithm is not. The FCFS property for the outerN -Bit algorithm implies that once
a process has aborted, it cannot enter the One-Bit algorithm’s trying statement until
all the processes that were waiting there have either exited from the critical section
or aborted. Hence, so far as the inner One-Bit algorithm is concerned, abortion is
the same as shutdown until there are no more waiting processes. The shutdown
safety of the One-Bit Algorithm therefore implies the abortion safety for the entire
algorithm.

The above algorithm satisfies all of our conditions except for self-stabiliza-
tion. It is not self-stabilizing for deadlock freedom because it is possible to start
the algorithm in a state with a cycle of processes each waiting for the next. (The
fact that this cannot happen in normal operation is due to the precise order in
which variables are read and written.) In our final algorithm, we modify the N -Bit
Algorithm to eliminate this possibility.

4 Conclusion 273

In the N -Bit Algorithm, process i waits for process j so long as the function zij
on the cycle ORD {i , j} does not change value at i. Since a function must change
value at some element of a cycle, this prevents i and j from waiting for each other.
However, it does not prevent a cycle of waiting processes containing more than two
elements. We therefore introduce a function zγ for every cycle γ , and we require
that i wait for j only if for every cycle γ in which j precedes i: zγ does not change
value at i. It is easy to see that for any state, there can be no cycle γ in which each
process waits for the preceding one, since zγ must change value at some element
of γ .

This leads us to the N ! -Bit Algorithm of Figure 4. We use the notation that
CYC(i) denotes the set of all cycles containing i and at least one other element,
and CYC(j , i) denotes the set of all those cycles in which j precedes i. We let zγ
denote the function on the cycle γ that assigns the value zi[γ] to the element i.

Using theN !-Bit FCFS Algorithm, we can construct the “ultimate” algorithm that
satisfies every property we have ever wanted from a mutual exclusion solution, as
stated by the following theorem. Unfortunately, as the reader has no doubt noticed,
this solution requires approximatelyN ! communication variables for each process,
making it of little practical interest except for very small values of N .

Theorem 8 Embedding the One-Bit Algorithm inside the N !-Bit Algorithm yields an algorithm
that satisfies the mutual exclusion, FCFS, deadlock freedom and lockout freedom
properties, and is shutdown safe, abortion safe, fail-safe and self-stabilizing for
these properties.

Proof The proof of all but the self-stabilizing condition is the same as for the previous
solution using the N -Bit Algorithm. It is easy to see that since the One-Bit Al-
gorithm is self-stabilizing for mutual exclusion and deadlock freedom, to prove
self-stabilization for the entire algorithm it suffices to prove that the N !-Bit Algo-
rithm is self-stabilizing for deadlock freedom. The proof of that is easily done using
the above argument that there cannot be a cycle of processes each waiting endlessly
for the preceding one.

4 Conclusion
Using the formalism of Part I, we stated the mutual exclusion problem, as well as
several additional properties we might want a solution to satisfy. We then gave four
algorithms, ranging from the inexpensive One-Bit Algorithm that satisfies only the
most basic requirements to the ridiculously costly N !-Bit Algorithm that satisfies
every property we have ever wanted of a solution.

274 The Mutual Exclusion Problem: Part II—Statement and Solutions

communication variables:
yi initially false,
array zi, indexed by CYC(i);

private variables:
j with range 1 . . .N ;
γ with range CYC(i),
array after indexed by 1 . . .N of booleans;

repeat forever
noncritical section;
doorway: for all γ ∈ CYC(i) do

zi[γ] ∗:=∗ ¬CGV(zγ , γ , j) od;
for all j �= i

do after[j] := yj od;
waiting: for all j �= i

do while after[j]
do after[j] := yj ;

for all γ ∈ CYC(j , i)
do if ¬CG(zγ , γ , i)

then after[j] := false fi od
od

od;
critical section;
yi := false

end repeat

Figure 4 The N !-Bit FCFS Algorithm: Process i.

Our proofs have been done in the style of standard “journal mathematics”, us-
ing informal reasoning that in principle can be reduced to very formal logic, but in
practice never is. Our experience in years of devising synchronization algorithms
has been that this style of proof is quite unreliable. We have on several occasions
“proved” the correctness of synchronization algorithms only to discover later that
they were incorrect. (Everyone working in this field seems to have the same expe-
rience.) This is especially true of algorithms using our nonatomic communication
primitives.

This experience led us to develop a reliable method for proving properties of
concurrent programs [9, 11, 16]. Instead of reasoning about a program’s behavior,
one reasons in terms of its state. When the first version of the present paper

References 275

was written, it was not possible to apply this method to these mutual exclusion
algorithms for the following reasons:

—The proof method required that the program be described in terms of atomic
operations; we did not know how to reason about the nonatomic reads and
writes used by the algorithms.

—Most of the correctness properties to be proved, as well as the properties
assumed of the communication variables, were stated in terms of the pro-
gram’s behavior; we did not know how to apply our state-based reasoning to
such behavioral properties.

Recent progress in reasoning about nonatomic operations [12] and in temporal
logic specifications [13, 14] should make it possible to recast our definitions and
proofs in this formalism. However, doing so would be a major undertaking, com-
pletely beyond the scope of this paper. We are therefore forced to leave these proofs
in their current form as traditional, informal proofs. The behavioral reasoning used
in our correctness proofs, and in most other published correctness proofs of con-
current algorithms, is inherently unreliable; we advise the reader to be skeptical of
such proofs.

Acknowledgments. Many of these ideas have been maturing for quite a few years
before appearing on paper for the first time here. They have been influenced by a
number of people during that time, most notably Carel Scholten, Edsger Dijkstra,
Chuck Seitz, Robert Keller, Irene Greif, and Michael Fischer. The impetus finally to
write down the results came from discussions with Michael Rabin in 1980 that led
to the discovery of the Three-Bit Algorithm.

References
[1] Brinch Hansen, P. Concurrent programming concepts. ACM Comput. Surv. 5 (1973),

223–245.

[1a] Burns, J. Mutual exclusion with linear waiting using binary shared variables. ACM
SIGACT News (Summer 1978), 42–47.

[2] Dijkstra, E. W. Solution of a problem in concurrent programming control. Commun.
ACM 8, 9 (Sept. 1965), 569.

[3] Dijkstra, E. W. Self-stabilizing systems in spite of distributed control. Commun. ACM
17, 11 (Nov. 1974), 643–644.

[4] Fischer, M. J., Lynch, N., Burns, J. E., and Borodin, A. Resource allocation with
immunity to limited process failure. In Proceedings of the 20th IEEE Symposium on the
Foundations of Computer Science (Oct.). IEEE, New York, 1979, pp. 234–254.

276 The Mutual Exclusion Problem: Part II—Statement and Solutions

[5] Katseff, H. P. A new solution to the critical section problem. In Conference Record of the
10th Annual ACM Symposium on the Theory of Computing (San Diego, Calif., May 1–3).
ACM, New York, 1978, pp. 86-88.

[6] Knuth, D. E. Additional commments on a problem in concurrent program control.
Commun. ACM 9, 5 (May 1966), 321–322.

[7] Lamport, L. A new solution of Dijkstra’s concurrent programming problem. Commun.
ACM 17, 8 (Aug. 1974), 453–455.

[8] Lamport, L. The synchronization of independent processes. Acta Inf. 7, 1 (1976), 15–34.

[9] Lamport, L. Proving the correctness of multiprocess programs. IEEE Trans. Softw. Eng.
SE-3, 2 (Mar. 1977), 125–143.

[10] Lamport, L. The implementation of reliable distributed multiprocess systems. Comput.
Netw. 2 (1978), 95–114.

[11] Lamport, L. The ‘Hoare logic’ of concurrent programs. Acta Inf. 14, 1 (1980), 21–37.

[12] Lamport, L. Reasoning about nonatomic operations. In Proceedings of the Tenth Annual
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (Austin,
Tex., Jan. 24–26). ACM, New York, 1983, pp. 28–37.

[13] Lamport, L. Specifying concurrent program modules. ACM Trans. Program. Lang. Syst.
5, 2 (Apr. 1983), 190–222.

[14] Lamport, L. What good is temporal logic? In Information Processing 83: Proceedings of
the IFIP 9th World Congress (Paris, Sept. 19–23). R. E. A. Mason, Ed. North Holland,
Amsterdam, 1983.

[15] Lamport, L. The mutual exclusion problem: Part I—A theory of interprocess
communication. J. ACM 33, 2 (Apr. 1986), 313–326.

[16] Owicki, S. and Lamport, L. Proving liveness properties of concurrent programs. ACM
Trans. Program. Lang. Syst. 4, 3 (July 1982), 455–495.

[17] Peterson, G. L. A new solution to Lamport’s concurrent programming problem. ACM
Trans. Program. Lang. Syst. 5, 1 (Jan. 1983), 56–65.

[18] Peterson, G. and Fischer, M. Economical solutions for the critical section problem
in a distributed system. In Proceedings of the 9th Annual ACM Symposium on the Theory
Computing (Boulder, Colo., May 2–4). ACM New York, 1977, pp. 91–97.

[19] Rabin, M. The choice coordination problem. Acta Inf. 17 (1982), 121–134.

[20] Rivest, R. L. and Pratt, V. R. The mutual exclusion problem for unreliable processes:
Preliminary report. Proceedings of the IEEE Symposium on the Foundation of Computer
Science. IEEE, New York, 1976, pp. 1–8.

received december 1980; revised september 1985; accepted september 1985

The Part-Time Parliament
Leslie Lamport (Digital Equipment Corporation)

Recent archaeological discoveries on the island of Paxos reveal that the parliament
functioned despite the peripatetic propensity of its part-time legislators. The leg-
islators maintained consistent copies of the parliamentary record, despite their
frequent forays from the chamber and the forgetfulness of their messengers. The
Paxon parliament’s protocol provides a new way of implementing the state machine
approach to the design of distributed systems.

Categories and Subject Descriptors: C.2.4 [Computer-Communications Networks]:
Distributed Systems—Network operating systems; D.4.5 [Operating Systems]:
Reliability—Fault-tolerance; J.1 [Computer Applications]: Administrative Data
Processing—Government

General Terms: Design, Reliability

Additional Key Words and Phrases: State machines, three-phase commit, voting

Author’s address: Systems Research, Digital Equipment Corporation, 130 Lytton Avenue, Palo
Alto, CA 94301.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is
given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
©1998 ACM 0734-2071/98/0500-0133 $5.00
Paper originally published in ACM Transactions on Computer Systems, 16(2), May 1998, pp. 133–169.

278 The Part-Time Parliament

1 The Problem

1.1 The Island of Paxos
Early in this millennium, the Aegean island of Paxos was a thriving mercantile cen-
ter.1 Wealth led to political sophistication, and the Paxons replaced their ancient
theocracy with a parliamentary form of government. But trade came before civic
duty, and no one in Paxos was willing to devote his life to Parliament. The Paxon
Parliament had to function even though legislators continually wandered in and
out of the parliamentary Chamber.

The problem of governing with a part-time parliament bears a remarkable cor-
respondence to the problem faced by today’s fault-tolerant distributed systems,
where legislators correspond to processes and leaving the Chamber corresponds
to failing. The Paxons’ solution may therefore be of some interest to computer sci-
entists. I present here a short history of the Paxos Parliament’s protocol, followed
by an even shorter discussion of its relevance for distributed systems.

Paxon civilization was destroyed by a foreign invasion, and archeologists have
just recently begun to unearth its history. Our knowledge of the Paxon Parliament is
therefore fragmentary. Although the basic protocols are known, we are ignorant of
many details. Where such details are of interest, I will take the liberty of speculating
on what the Paxons might have done.

1.2 Requirements
Parliament’s primary task was to determine the law of the land, which was defined
by the sequence of decrees it passed. A modern parliament will employ a secretary
to record its actions, but no one in Paxos was willing to remain in the Chamber
throughout the session to act as secretary. Instead, each Paxon legislator main-
tained a ledger in which he recorded the numbered sequence of decrees that were
passed. For example, legislator �ῐνχ∂ ’s ledger had the entry

155: The olive tax is 3 drachmas per ton

if she believed that the 155th decree passed by Parliament set the tax on olives to 3
drachmas per ton. Ledgers were written with indelible ink, and their entries could
not be changed.

1. It should not be confused with the Ionian island of Paxoi, whose name is sometimes corrupted
to Paxos.

1 The Problem 279

Sidebar 1

This submission was recently discovered behind a filing cabinet in the TOCS editorial
office. Despite its age, the editor-in-chief felt that it was worth publishing. Because the
author is currently doing field work in the Greek isles and cannot be reached, I was
asked to prepare it for publication.

The author appears to be an archeologist with only a passing interest in computer
science. This is unfortunate; even though the obscure ancient Paxon civilization
he describes is of little interest to most computer scientists, its legislative system
is an excellent model for how to implement a distributed computer system in an
asynchronous environment. Indeed, some of the refinements the Paxons made to their
protocol appear to be unknown in the systems literature.

The author does give a brief discussion of the Paxon Parliament’s relevance to
distributed computing in Section 4. Computer scientists will probably want to read
that section first. Even before that, they might want to read the explanation of the
algorithm for computer scientists by Lampson [1996]. The algorithm is also described
more formally by De Prisco et al. [1997]. I have added further comments on the relation
between the ancient protocols and more recent work at the end of Section 4.

Keith Marzullo
University of California, San Diego

The first requirement of the parliamentary protocol was the consistency of
ledgers, meaning that no two ledgers could contain contradictory information. If
legislator
ισ∂ερ had the entry

132: Lamps must use only olive oil

in his ledger, then no other legislator’s ledger could have a different entry for decree
132. However, another legislator might have no entry in his ledger for decree 132 if
he hadn’t yet learned that the decree had been passed.

Consistency of ledgers was not sufficient, since it could be trivially fulfilled by
leaving all ledgers blank. Some requirement was needed to guarantee that decrees
were eventually passed and recorded in ledgers. In modern parliaments, the pass-
ing of decrees is hindered by disagreement among legislators. This was not the case
in Paxos, where an atmosphere of mutual trust prevailed. Paxon legislators were
willing to pass any decree that was proposed. However, their peripatetic propensity
posed a problem. Consistency would be lost if one group of legislators passed the
decree

37: Painting on temple walls is forbidden

280 The Part-Time Parliament

and then left for a banquet, whereupon a different group of legislators entered
the Chamber and, knowing nothing about what had just happened, passed the
conflicting decree

37: Freedom of artistic expression is guaranteed

Progress could not be guaranteed unless enough legislators stayed in the Cham-
ber for a long enough time. Because Paxon legislators were unwilling to curtail
their outside activities, it was impossible to ensure that any decree would ever be
passed. However, legislators were willing to guarantee that, while in the Chamber,
they and their aides would act promptly on all parliamentary matters. This guaran-
tee allowed the Paxons to devise a parliamentary protocol satisfying the following
progress condition.

If a majority of the legislators2 were in the Chamber, and no one entered or left
the Chamber for a sufficiently long period of time, then any decree proposed by
a legislator in the Chamber would be passed, and every decree that had been
passed would appear in the ledger of every legislator in the Chamber.

1.3 Assumptions
The requirements of the parliamentary protocol could be achieved only by provid-
ing the legislators with the necessary resources. Each legislator received a sturdy
ledger in which to record the decrees, a pen, and a supply of indelible ink. Legisla-
tors might forget what they had been doing if they left the Chamber,3 so they would
write notes in the back of the ledgers to remind themselves of important parlia-
mentary tasks. An entry in the list of decrees was never changed, but notes could
be crossed out. Achieving the progress condition required that legislators be able
to measure the passage of time, so they were given simple hourglass timers.

Legislators carried their ledgers at all times, and could always read the list of
decrees and any note that had not been crossed out. The ledgers were made of the
finest parchment and were used for only the most important notes. A legislator
would write other notes on a slip of paper, which he might (or might not) lose if he
left the Chamber.

2. In translating the progress condition, I have rendered the Paxon word μαδζ∂ωριτ ῐσ ετ as ma-
jority of the legislators. Alternative translations of this word have been proposed and are discussed
in Section 2.2.

3. In one tragic incident, legislator T ωυεγ developed irreversible amnesia after being hit on the
head by a falling statue just outside the Chamber.

2 The Single-Decree Synod 281

The acoustics of the Chamber were poor, making oratory impossible. Legislators
could communicate only by messenger, and were provided with funds to hire as
many messengers as they needed. A messenger could be counted on not to garble
messages, but he might forget that he had already delivered a message, and deliver
it again. Like the legislators they served, messengers devoted only part of their time
to parliamentary duties. A messenger might leave the Chamber to conduct some
business—perhaps taking a six-month voyage—before delivering a message. He
might even leave forever, in which case the message would never be delivered.

Although legislators and messengers could enter and leave at any time, when
inside the Chamber they devoted themselves to the business of Parliament. While
they remained in the Chamber, messengers delivered messages in a timely fashion,
and legislators reacted promptly to any messages they received.

The official records of Paxos claim that legislators and messengers were scrupu-
lously honest and strictly obeyed parliamentary protocol. Most scholars discount
this as propaganda, intended to portray Paxos as morally superior to its eastern
neighbors. Dishonesty, although rare, undoubtedly did occur. However, because it
was never mentioned in official documents, we have little knowledge of how Par-
liament coped with dishonest legislators or messengers. What evidence has been
uncovered is discussed in Section 3.3.5.

2 The Single-Decree Synod
The Paxon Parliament evolved from an earlier ceremonial Synod of priests that was
convened every 19 years to choose a single, symbolic decree. For centuries, the
Synod had chosen the decree by a conventional procedure that required all priests
to be present. But as commerce flourished, priests began wandering in and out of
the Chamber while the Synod was in progress. Finally, the old protocol failed, and
a Synod ended with no decree chosen. To prevent a repetition of this theological
disaster, Paxon religious leaders asked mathematicians to formulate a protocol
for choosing the Synod’s decree. The protocol’s requirements and assumptions
were essentially the same as those of the later Parliament except that instead of
containing a sequence of decrees, a ledger would have at most one decree. The
resulting Synod protocol is described here; the parliamentary protocol is described
in Section 3.

Mathematicians derived the Synod protocol in a series of steps. First, they proved
results showing that a protocol satisfying certain constraints would guarantee con-
sistency and allow progress. A preliminary protocol was then derived directly from

282 The Part-Time Parliament

these constraints. A restricted version of the preliminary protocol provided the ba-
sic protocol that guaranteed consistency, but not progress. The complete Synod
protocol, satisfying the consistency and progress requirements, was obtained by
restricting the basic protocol.4

The mathematical results are described in Section 2.1, and the protocols are de-
scribed informally in Sections 2.2–2.4. A more formal description and correctness
proof of the basic protocol appears in the appendix.

2.1 Mathematical Results
The Synod’s decree was chosen through a series of numbered ballots, where a ballot
was a referendum on a single decree. In each ballot, a priest had the choice only
of voting for the decree or not voting.5 Associated with a ballot was a set of priests
called a quorum. A ballot succeeded if and only if every priest in the quorum voted
for the decree. Formally, a ballot B consisted of the following four components.
(Unless otherwise qualified, set is taken to mean finite set.6)

Bdec A decree (the one being voted on).

Bpot A nonempty set of priests (the ballot’s quorum).

Bvot A set of priests (the ones who cast votes for the decree).7

Bbal A ballot number.

A ballot B was said to be successful iff (if and only if) Bqrm ⊆ Bvot , so a successful
ballot was one in which every quorum member voted.

Ballot numbers were chosen from an unbounded ordered set of numbers. If
B ′
bal
> Bbal, then ballotB ′was said to be later than ballotB. However, this indicated

4. The complete history of the Synod protocol’s discovery is not known. Like modern computer
scientists, Paxon mathematicians would describe elegant, logical derivations that bore no resem-
blance to how the algorithms were actually derived. However, it is known that the mathematical
results (Theorems 1 and 2 of Section 2.1) really did precede the protocol. They were discovered
when mathematicians, in response to the request for a protocol, were attempting to prove that a
satisfactory protocol was impossible.

5. Like some modern nations, Paxos had not fully grasped the nature of Athenian democracy.

6. Although Paxon mathematicians were remarkably advanced for their time, they obviously had
no knowledge of set theory. I have taken the liberty of translating the Paxons’ more primitive
notation into the language of modern set theory.

7. Only priests in the quorum actually voted, but Paxon mathematicians found it easier to convince
people that the protocol was correct if, in their proof, they allowed any priest to vote in any ballot.

2 The Single-Decree Synod 283

nothing about the order in which ballots were conducted; a later ballot could
actually have taken place before an earlier one.

Paxon mathematicians defined three conditions on a set B of ballots, and then
showed that consistency was guaranteed and progress was possible if the set of
ballots that had taken place satisfied those conditions. The first two conditions
were simple; they can be stated informally as follows.

B1(B) Each ballot in B has a unique ballot number.

B2(B) The quorums of any two ballots in B have at least one
priest in common.

The third condition was more complicated. One Paxon manuscript contained the
following, rather confusing, statement of it.

B3(B) For every ballot B in B, if any priest in B’s quorum
voted in an earlier ballot in B, then the decree of B
equals the decree of the latest of those earlier ballots.

Interpretation of this cryptic text was aided by the manuscript pictured in Figure 1,
which illustrates condition B3(B) with a set B of five ballots for a Synod consisting
of the five priests A, B, �, 	, and E. This set B contains five ballots, where for each
ballot the set of voters is the subset of the priests in the quorum whose names
are enclosed in boxes. For example, ballot number 14 has decree α, a quorum
containing three priests, and a set of two voters. Condition B3(B) has the form

Figure 1 Paxon manuscript showing a set B, consisting of five ballots, that satisfies conditions
B1(B)–B3(B). (Explanatory column headings have been added.)

284 The Part-Time Parliament

“for every B in B : . . .:”, where “. . .” is a condition on ballot B. The conditions for
the five ballots B of Figure 1 are as follows.

2. Ballot number 2 is the earliest ballot, so the condition on that ballot is trivially
true.

5. None of ballot 5’s four quorum members voted in an earlier ballot, so the
condition on ballot 5 is also trivially true.

14. The only member of ballot 14’s quorum to vote in an earlier ballot is	, who
voted in ballot number 2, so the condition requires that ballot 14’s decree
must equal ballot 2’s decree.

27. (This is a successful ballot.) The members of ballot 27’s quorum are A,�, and
	. Priest A did not vote in an earlier ballot, the only earlier ballot � voted in
was ballot 5, and the only earlier ballot	 voted in was ballot 2. The latest of
these two earlier ballots is ballot 5, so the condition requires that ballot 27’s
decree must equal ballot 5’s decree.

29. The members of ballot 29’s quorum are B, �, and 	. The only earlier ballot
that B voted in was number 14, priest� voted in ballots 5 and 27, and	 voted
in ballots 2 and 27. The latest of these four earlier ballots is number 27, so
the condition requires that ballot 29’s decree must equal ballot 27’s decree.

To state B1(B)–B3(B) formally requires some more notation. A vote v was de-
fined to be a quantity consisting of three components: a priest υpst , a ballot number
υbal, and a decree υdec. It represents a vote cast by priest υpst for decree υdec in bal-
lot number υbal. The Paxons also defined null votes to be votes v with υbal =−∞
and υdec =BLANK, where−∞< b <∞ for any ballot number b, and BLANK is not a
decree. For any priestp, they defined nullp to be the unique null vote vwithυpst = p.

Paxon mathematicians defined a total ordering on the set of all votes, but part
of the manuscript containing the definition has been lost. The remaining fragment
indicates that, for any votes v and v′, if vbal < v

′
bal

then v < v′. It is not known how
the relative order of v and v′ was defined if vbal = v′bal.

For any set B of ballots, the set Votes(B) of votes in B was defined to consist
of all votes v such that vpst ∈ Bvot , vbal, and vdec = Bdec for some B ∈ B. If p is a
priest and b is either a ballot number or±∞, then MaxVote(b, p, B) was defined to
be the largest vote v in Votes(B) cast by p with vbal < b, or to be nullp if there was
no such vote. Since nullp is smaller than any real vote cast by p, this means that
MaxVote(b, p, B) is the largest vote in the set

{v ∈ Votes(B) : (vpst = p) ∧ (vbal < b)} ∪ {nullp}.

2 The Single-Decree Synod 285

For any nonempty set Q of priests, MaxVote(b, Q, B) was defined to equal the
maximum of all votes MaxVote(b, p, B) with p inQ.

Conditions B1(B)–B3(B) are stated formally as follows.8

B1(B) 	= ∀B , B ′ ∈ B : (B �= B ′)⇒ (Bbal �= B ′bal)
B2(B) 	= ∀B , B ′ ∈ B :Bqrm ∩ B ′qrm �= ∅

B3(B) 	= ∀B ∈ B : (MaxVote(Bbal , Bqrm, Bbal) �= −∞) ⇒
Bdec =MaxVote(Bbal , Bqrm, Bdec)

Although the definition of MaxVote depends upon the ordering of votes, B1(B)
implies that MaxVote(b, Q, B)dec is independent of how votes with equal ballot
numbers were ordered.

To show that these conditions imply consistency, the Paxons first showed that
B1(B)–B3(B) imply that, if a ballot B in B is successful, then any later ballot in B
is for the same decree as B.

Lemma If B1(B), B2(B), and B3(B) hold, then

((Bqrm ⊆ Bvot) ∧ (B ′bal > Bbal)) ⇒ (B ′
dec
= Bdec)

for any B, B ′ in B.

Proof of Lemma For any ballot B in B, let�(B , B) be the set of ballots in B later than B for a decree
different from B’s:

�(B , β) 	= {B ′ ∈ B : (B ′
bal
> Bbal) ∧ (B ′dec �= Bdec)}

To prove the lemma, it suffices to show that if Bqrm ⊆ Bvot then �(B , B) is empty.
The Paxons gave a proof by contradiction. They assumed the existence of a B with
Bqrm ⊆ Bvot and �(B , B) �= ∅, and obtained a contradiction as follows.9

1. Choose C ∈�(B , B) such that Cbal =min{B ′
bal

:B ′ ∈�(B , B)}.
PROOF: C exists because �(B , B) is nonempty and finite.

2. Cbal > Bbal
PROOF: By (1) and the definition of �(B , B).

3. Bvot ∩ Cqrm �= ∅
PROOF: By B2(B) and the hypothesis that Bqrm ⊆ Bvot .

8. I use the Paxon mathematical symbol 	=, which meant equals by definition.

9. Paxon mathematicians always provided careful, structured proofs of important theorems. They
were not as sophisticated as modern mathematicians, who can omit many details and write
paragraph-style proofs without ever making a mistake.

286 The Part-Time Parliament

4. MaxVote(Cbal , Cqrm, B)bal ≥ Bbal
PROOF: By (2), (3), and the definition of MaxVote(Cbal , Cqrm, B).

5. MaxVote(Cbal , Cqrm, B) ∈ V otes(B)
PROOF: By (4) (which implies that MaxVote(Cbal , Cqrm, B) is not a null vote)
and the definition of MaxVote(Cbal , Cqrm, B).

6. MaxVote(Cbal , Cqrm, B)dec = Cdec
PROOF: By (5) and B3(B).

7. MaxVote(Cbal , Cqrm, B)dec �= Bdec
PROOF: By (6), (1), and the definition of �(B , B).

8. MaxVote(Cbal , Cqrm, B)bal > Bbal
PROOF: By (4), since (7) and B1(B) imply that MaxVote(Cbal , Cqrm, B)bal �=
Bbal.

9. MaxVote(Cbal , Cqrm, B) ∈ Votes(�(B , B))
PROOF: By (7), (8), and the definition of �(B , B).

10. (10) MaxVote(Cbal , Cqrm, B)bal < Cbal
PROOF: By definition of MaxVote(Cbal , Cqrm, B).

11. Contradiction
PROOF: By (9), (10), and (1).

With this lemma, it was easy to show that, ifB1–B3 hold, then any two successful
ballots are for the same decree.

Theorem 1 If B1(B), B2(B), and B3(B) hold, then

((Bqrm ⊆ Bvot) ∧ (B ′qrm ⊆ B ′vot)) ⇒ (B ′
dec
= Bdec)

for any B, B ′ in B.

Proof of Theorem If B ′
bal
= Bbal, then B1(B) implies B ′ = B. If B ′

bal
�= Bbal, then the theorem follows

immediately from the lemma.

The Paxons then proved a theorem asserting that if there are enough priests
in the Chamber, then it is possible to conduct a successful ballot while preserving
B1–B3. Although this does not guarantee progress, it at least shows that a balloting
protocol based on B1–B3 will not deadlock.

Theorem 2 Let b be a ballot number, and let Q be a set of priests such that b > Bbal and
Q ∩ Bqrm �= ∅ for all B ∈ B. If B1(B), B2(B), and B3(B) hold, then there is a ballot

2 The Single-Decree Synod 287

B ′ with B ′
bal
= b and B ′

qrm
= B ′

vot
=Q such that B1(B ∪ {B ′}), B2(B ∪ {B ′}), and

B3(B ∪ {B ′}) hold.

Proof of Theorem ConditionB1(B ∪ {B ′}) follows fromB1(B), the choice ofB ′
bal

, and the assumption
about b. Condition B2(B ∪ {B ′}) follows from B2(B), the choice of B ′

qrm
, and the

assumption aboutQ. If MaxVote(b,Q, B)bal =−∞ then letB ′
dec

be any decree. Else
let it equal MaxVote(b,Q, B)dec. Condition B3(B ∪ {B ′}) then follows from B3(B).

2.2 The Preliminary Protocol
The Paxons derived the preliminary protocol from the requirement that conditions
B1(B)–B3(B) remain true, where B was the set of all ballots that had been or were
being conducted. The definition of the protocol specified how the set B changed,
but the set was never explicitly calculated. The Paxons referred to B as a quantity
observed only by the gods, since it might never be known to any mortal.

Each ballot was initiated by a priest, who chose its number, decree, and quorum.
Each priest in the quorum then decided whether or not to vote in the ballot. The
rules determining how the initiator chose a ballot’s number, decree, and quorum,
and how a priest decided whether or not to vote in a ballot were derived directly
from the need to maintain B1(B)–B3(B).

To maintain B1, each ballot had to receive a unique number. By remembering
(with notes in his ledger) what ballots he had previously initiated, a priest could eas-
ily avoid initiating two different ballots with the same number. To keep different
priests from initiating ballots with the same number, the set of possible ballot num-
bers was partitioned among the priests. While it is not known how this was done,
an obvious method would have been to let a ballot number be a pair consisting of
an integer and a priest, using a lexicographical ordering, where

(13, �ραῐ) < (13, �ινσεῐ) < (15, �ραῐ)

since � came before � in the Paxon alphabet. In any case, it is known that every
priest had an unbounded set of ballot numbers reserved for his use.

To maintain B2, a ballot’s quorum was chosen to contain a μαδζ∂ωριτ ῐσ ετ
of priests. Initially, μαδζ∂ωριτ ῐσ ετ just meant a simple majority. Later, it was
observed that fat priests were less mobile and spent more time in the Chamber
than thin ones, so a μαδζ∂ωριτ ῐσ ετ was taken to mean any set of priests whose
total weight was more than half the total weight of all priests, rather than a simple
majority of the priests. When a group of thin priests complained that this was
unfair, actual weights were replaced with symbolic weights based on a priest’s

288 The Part-Time Parliament

attendance record. The primary requirement for a μαδζ∂ωριτ ῐσ ετ was that any
two sets containing aμαδζ∂ωριτ ῐσ ετ of priests had at least one priest in common.
To maintain B2, the priest initiating a ballot B chose Bqrm to be a majority set.

Condition B3 requires that if MaxVote(b,Q, B)dec is not equal to BLANK, then
a ballot with number b and quorum Q must have decree MaxVote(b, Q, B)dec.
If MaxVote(b, Q, B)dec equals BLANK, then the ballot can have any decree. To
maintainB3(B), before initiating a new ballot with ballot number b and quorumQ,
a priestp had to find MaxVote(b,Q, B)dec. To do this,p had to find MaxVote(b,Q, B)
for each priest q inQ.

Recall that MaxVote(b,Q, B) is the vote with the largest ballot number less than
b among all the votes cast by q, or nullq if q did not vote in any ballot numbered
less than b. Priest p obtains MaxVote(b, q , B) from q by an exchange of messages.
Therefore, the first two steps in the protocol for conducting a single ballot initiated
by p are:10

1. Priest p chooses a new ballot number b and sends a NextBallot(b) message
to some set of priests.

2. A priest q responds to the receipt of a NextBallot(b) message by sending
a LastVote(b, v) message to p, where v is the vote with the largest ballot
number less than b that q has cast, or his null vote nullq if q did not vote
in any ballot numbered less than b.

Priest q must use notes in the back of his ledger to remember what votes he had
previously cast.

When q sends the LastVote(b, v) message, v equals MaxVote(b, q , B). But the
set B of ballots changes as new ballots are initiated and votes are cast. Since priest
p is going to use v as the value of MaxVote(b, q , B) when choosing a decree, to
keep B3(B) true it is necessary that MaxVote(b, q , B) not change after q has sent
the LastVote(b, v) message. To keep MaxVote(b, q , B) from changing, q must cast
no new votes with ballot numbers between vbal and b. By sending the LastVote(b, v)
message, q is promising not to cast any such vote. (To keep this promise, q must
record the necessary information in his ledger.)

The next two steps in the balloting protocol (begun in step (1) by priest p) are:

10. Priests p and q could be the same. For simplicity, the protocol is described with p sending
messages to himself in this case. In reality, a priest could talk to himself without the use of
messengers.

2 The Single-Decree Synod 289

3. After receiving a LastVote(b, v) message from every priest in some majority
set Q, priest p initiates a new ballot with number b, quorum Q, and decree
d, where d is chosen to satisfy B3. He then records the ballot in the back of
his ledger and sends a BeginBallot(b, d)message to every priest inQ.

4. Upon receipt of the BeginBallot(b, d) message, priest q decides whether or
not to cast his vote in ballot number b. (He may not cast the vote if doing so
would violate a promise implied by a LastVote(b′, v′)message he has sent for
some other ballot.) If q decides to vote for ballot number b, then he sends a
Voted(b, q)message to p and records the vote in the back of his ledger.

The execution of step (3) is considered to add a ballot B to B, where Bbal = b,
Bqrm =Q, Bvot = ∅ (no one has yet voted in this ballot), and Bdec = d. In step (4),
if priest q decides to vote in the ballot, then executing that step is considered to
change the set B of ballots by adding q to the set Bvot of voters in the ballot B ∈ B.

A priest has the option not to vote in step (4), even if casting a vote would not
violate any previous promise. In fact, all the steps in this protocol are optional.
For example, a priest q can ignore a NextBallot(b) message instead of executing
step (2). Failure to take an action can prevent progress, but it cannot cause any
inconsistency because it cannot make B1(B)–B3(B) false. Since the only effect not
receiving a message can have is to prevent an action from happening, message loss
also cannot cause inconsistency. Thus, the protocol guarantees consistency even if
priests leave the chamber or messages are lost.

Receiving multiple copies of a message can cause an action to be repeated.
Except in step (3), performing the action a second time has no effect. For example,
sending several Voted(b, q)messages in step (4) has the same effect as sending just
one. The repetition of step (3) is prevented by using the entry made in the back of
the ledger when it is executed. Thus, the consistency condition is maintained even
if a messenger delivers the same message several times.

Steps (1)–(4) describe the complete protocol for initiating a ballot and voting on
it. All that remains is to determine the results of the balloting and announce when
a decree has been selected. Recall that a ballot is successful iff every priest in the
quorum has voted. The decree of a successful ballot is the one chosen by the Synod.
The rest of the protocol is:

5. If p has received a Voted(b, q)message from every priest q inQ (the quorum
for ballot number b), then he writes d (the decree of that ballot) in his ledger
and sends a Success(d)message to every priest.

6. Upon receiving a Success(d)message, a priest enters decree d in his ledger.

290 The Part-Time Parliament

Steps (1)–(6) describe how an individual ballot is conducted. The preliminary pro-
tocol allows any priest to initiate a new ballot at any time. Each step maintains
B1(B)–B3(B), so the entire protocol also maintains these conditions. Since a priest
enters a decree in his ledger only if it is the decree of a successful ballot, Theorem 1
implies that the priests’ ledgers are consistent. The protocol does not address the
question of progress.

In step (3), if the decree d is determined by conditionB3, then it is possible that
this decree is already written in the ledger of some priest. That priest need not be
in the quorumQ; he could have left the Chamber. Thus, consistency would not be
guaranteed if step (3) allowed any greater freedom in choosing d.

2.3 The Basic Protocol
In the preliminary protocol, a priest must record (1) the number of every ballot
he has initiated, (2) every vote he has cast, and (3) every LastVote message he has
sent. Keeping track of all this information would have been difficult for the busy
priests. The Paxons therefore restricted the preliminary protocol to obtain the more
practical basic protocol in which each priest p had to maintain only the following
information in the back of his ledger:

lastTried[p] The number of the last ballot that p tried to initiate, or −∞ if there
was none.

prevVote[p] The vote cast by p in the highest-numbered ballot in which he voted,
or −∞ if he never voted.

nextBal[p] The largest value of b for which p has sent a LastVote(b, v) message,
or −∞ if he has never sent such a message.

Steps (1)–(6) of the preliminary protocol describe how a single ballot is conducted
by its initiator, priest p. The preliminary protocol allows p to conduct any number
of ballots concurrently. In the basic protocol, he conducts only one ballot at a
time—ballot number lastTried[p]. After p initiates this ballot, he ignores messages
that pertain to any other ballot that he had previously initiated. Priest p keeps all
information about the progress of ballot number lastTried[p] on a slip of paper. If
he loses that slip of paper, then he stops conducting the ballot.

In the preliminary protocol, each LastVote(b, v) message sent by a priest q
represents a promise not to vote in any ballot numbered between vbal and b. In
the basic protocol, it represents the stronger promise not to cast a new vote in
any ballot numbered less than b. This stronger promise might prevent him from
casting a vote in step 4 of the basic protocol that he would have been allowed to cast
in the preliminary protocol. However, since the preliminary protocol always gives

2 The Single-Decree Synod 291

q the option of not casting his vote, the basic protocol does not require him to do
anything not allowed by the preliminary protocol.

Steps (1)–(6) of the preliminary protocol become the following six steps for
conducting a ballot in the basic protocol. (All information used by p to conduct
the ballot, other than lastTried[p], prevVote[p], and nextBal[p], is kept on a slip of
paper.)

1. Priest p chooses a new ballot number b greater than lastTried[p], sets
lastTried[p] to b, and sends a NextBallot(b)message to some set of priests.

2. Upon receipt of a NextBallot(b)message from p with b > nextBal[q], priest q
sets nextBal[q] to b and sends a LastVote(b, v)message to p, where v equals
prevVote[q]. (A NextBallot(b)message is ignored if b ≤ nextBal[q].)

3. After receiving a LastVote(b, v) message from every priest in some majority
set Q, where b = lastTried[p], priest p initiates a new ballot with number b,
quorum Q, and decree d, where d is chosen to satisfy B3. He then sends a
BeginBallot(b, d)message to every priest inQ.

4. Upon receipt of a BeginBallot(b, d) message with b = nextBal[q], priest q
casts his vote in ballot number b, sets prevVote[q] to this vote, and sends
a Voted(b, q) message to p. (A BeginBallot(b, d) message is ignored if b �=
nextBal[q].)

5. If p has received a Voted(b, q)message from every priest q inQ (the quorum
for ballot number b), where b = lastTried[p], then he writes d (the decree of
that ballot) in his ledger and sends a Success(d)message to every priest.

6. Upon receiving a Success(d)message, a priest enters decree d in his ledger.

The basic protocol is a restricted version of the preliminary protocol, meaning
that every action allowed by the basic protocol is also allowed by the preliminary
protocol. Since the preliminary protocol satisfies the consistency condition, the
basic protocol also satisfies that condition. Like the preliminary protocol, the basic
protocol does not require that any action ever be taken, so it does not address the
question of progress.

The derivation of the basic protocol fromB1–B3 made it obvious that the consis-
tency condition was satisfied. However, some similarly “obvious” ancient wisdom
had turned out to be false, and skeptical citizens demanded a more rigorous proof.
Their Paxon mathematicians’ proof that the protocol satisfies the consistency con-
dition is reproduced in the appendix.

292 The Part-Time Parliament

2.4 The Complete Synod Protocol
The basic protocol maintains consistency, but it cannot ensure any progress be-
cause it states only what a priest may do; it does not require him to do anything. The
complete protocol consists of the same six steps for conducting a ballot as the basic
protocol. To help achieve progress, it includes the obvious additional requirement
that priests perform steps (2)–(6) of the protocol as soon as possible. However, to
meet the progress condition, it is necessary that some priest be required to perform
step (1), which initiates a ballot. The key to the complete protocol lay in determining
when a priest should initiate a ballot.

Never initiating a ballot will certainly prevent progress. However, initiating too
may ballots can also prevent progress. If b is larger than any other ballot number,
then the receipt of a NextBallot(b) message by priest q in step (2) may elicit a
promise that prevents him from voting in step 4 for any previously initiated ballot.
Thus, the initiation of a new ballot can prevent any previously initiated ballot from
succeeding. If new ballots are continually initiated with increasing ballot numbers
before the previous ballots have a chance to succeed, then no progress might be
made.

Achieving the progress condition requires that new ballots be initiated until one
succeeds, but that they not be initiated too frequently. To develop the complete
protocol, the Paxons first had to know how long it took messengers to deliver
messages and priests to respond. They determined that a messenger who did not
leave the Chamber would always deliver a message within 4 minutes, and a priest
who remained in the Chamber would always perform an action within 7 minutes of
the event that caused the action.11 Thus, ifp and q were in the Chamber when some
event caused p to send a message to q, and q responded with a reply to p, then p
would receive that reply within 22 minutes if neither messenger left the Chamber.
(Priest p would send the message within 7 minutes of the event, q would receive
the message within 4 more minutes, he would respond within 7 minutes, and the
reply would reach p within 4 more minutes.)

Suppose that only a single priest p was initiating ballots, and that he did so by
sending a message to every priest in step (1) of the protocol. If p initiated a ballot
when a majority set of priests was in the chamber, then he could expect to execute
step (3) within 22 minutes of initiating the ballot, and to execute step (5) within

11. I am assuming a value of 30 seconds for the δζ∂ιφῐ, the Paxon unit of time. This value is within
the range determined from studies of hourglass shards. The reaction time of priests was so long
because they had to respond to every message within 7 minutes (14 δζ∂ιφῐ), even if a number of
messages arrived simultaneously.

2 The Single-Decree Synod 293

another 22 minutes. If he was unable to execute the steps by those times, then
either some priest or messenger left the Chamber after p initiated the ballot, or a
larger-numbered ballot had previously been initiated by another priest (before p
became the only priest to initiate ballots). To handle the latter possibility, p had
to learn about any ballot numbers greater than lastTried[p] used by other priests.
This could be done by extending the protocol to require that if a priest q received
a NextBallot(b) or a BeginBallot(b, d)message from p with b < nextBal[q], then he
would send p a message containing nextBal[q]. Priest p would then initiate a new
ballot with a larger ballot number.

Still assuming that p was the only priest initiating ballots, suppose that he were
required to initiate a new ballot iff (1) he had not executed step (3) or step (5) within
the previous 22 minutes, or (2) he learned that another priest had initiated a higher-
numbered ballot. If the Chamber doors were locked with p and a majority set of
priests inside, then a decree would be passed and recorded in the ledgers of all
priests in the Chamber within 99 minutes. (It could take 22 minutes for p to start
the next ballot, 22 more minutes to learn that another priest had initiated a larger-
numbered ballot, then 55 minutes to complete steps (1)–(6) for a successful ballot.)
Thus, the progress condition would be met if only a single priest, who did not leave
the chamber, were initiating ballots.

The complete protocol therefore included a procedure for choosing a single
priest, called the president, to initiate ballots. In most forms of government, choos-
ing a president can be a difficult problem. However, the difficultly arises only be-
cause most governments require that there be exactly one president at any time. In
the United States, for example, chaos would result after the 1988 election if some
people thought Bush had been elected president while others thought that Dukakis
had, since one of them might decide to sign a bill into law while the other decided to
veto it. However, in the Paxon Synod, having multiple presidents could only impede
progress; it could not cause inconsistency. For the complete protocol to satisfy the
progress condition, the method for choosing the president needed only to satisfy
the following presidential selection requirement:

If no one entered or left the Chamber, then after T minutes exactly one priest in
the Chamber would consider himself to be the president.

If the presidential selection requirement were met, then the complete protocol
would have the property that if a majority set of priests were in the chamber and no
one entered or left the Chamber for T + 99 minutes, then at the end of that period
every priest in the Chamber would have a decree written in his ledger.

294 The Part-Time Parliament

The Paxons chose as president the priest whose name was last in alphabetical
order among the names of all priests in the Chamber, though we don’t know
exactly how this was done. The presidential selection requirement would have been
satisfied if a priest in the Chamber sent a message containing his name to every
other priest at least once everyT − 11 minutes, and a priest considered himself to be
president iff he received no message from a “higher-named” priest for T minutes.

The complete Synod protocol was obtained from the basic protocol by requiring
priests to perform steps (2)–(6) promptly, adding a method for choosing a pres-
ident who initiated ballots, and requiring the president to initiate ballots at the
appropriate times. Many details of the protocol are not known. I have described
simple methods for selecting a president and for deciding when the president
should initiate a new ballot, but they are undoubtedly not the ones used in Paxos.
The rules I have given require the president to keep initiating ballots even after a
decree has been chosen, thereby ensuring that priests who have just entered the
Chamber learn about the chosen decree. There were obviously better ways to make
sure priests learned about the decree after it had been chosen. Also, in the course
of selecting a president, each priest probably sent his value of lastTried[p] to the
other priests, allowing the president to choose a large enough ballot number on
his first try.

The Paxons realized that any protocol to achieve the progress condition must
involve measuring the passage of time.12 The protocols given above for selecting
a president and initiating ballots are easily formulated as precise algorithms that
set timers and perform actions when time-outs occur—assuming perfectly accurate
timers. A closer analysis reveals that such protocols can be made to work with timers
having a known bound on their accuracy. The skilled glass blowers of Paxos had no
difficulty constructing suitable hourglass timers.

Given the sophistication of Paxon mathematicians, it is widely believed that
they must have found an optimal algorithm to satisfy the presidential selection
requirement. We can only hope that this algorithm will be discovered in future
excavations on Paxos.

3 The Multidecree Parliament
When Parliament was established, a protocol to satisfy its consistency and progress
requirements was derived from the Synod protocol. The derivation and properties

12. However, many centuries were to pass before a rigorous proof of this result was given [Fischer
et al. 1985].

3 The Multidecree Parliament 295

of the original parliamentary protocol are described in Sections 3.1 and 3.2. Sec-
tion 3.3 discusses the further evolution of the protocol.

3.1 The Protocol
Instead of passing just one decree, the Paxon Parliament had to pass a series
of numbered decrees. As in the Synod protocol, a president was elected. Anyone
who wanted a decree passed would inform the president, who would assign a
number to the decree and attempt to pass it. Logically, the parliamentary protocol
used a separate instance of the complete Synod protocol for each decree number.
However, a single president was selected for all these instances, and he performed
the first two steps of the protocol just once.

The key to deriving the parliamentary protocol is the observation that, in the
Synod protocol, the president does not choose the decree or the quorum until
step 3. A newly elected president p can send to some set of legislators a single
message that serves as the NextBallot(b) message for all instances of the Synod
protocol. (There are an infinite number of instances—one for each decree number.)
A legislator q can reply with a single message that serves as the LastVote messages
for step (2) of all instances of the Synod protocol. This message contains only a
finite amount of information, since q can have voted in only a finite number of
instances.

When the new president has received a reply from every member of a majority
set, he is ready to perform step (3) for every instance of the Synod protocol. For some
finite number of instances (decree numbers), the choice of decree in step (3) will
be determined by B3. The president immediately performs step 3 for each of those
instances to try passing these decrees. Then, whenever he receives a request to pass
a decree, he chooses the lowest-numbered decree that he is still free to choose, and
he performs step (3) for that decree number (instance of the Synod protocol) to try
to pass the decree.

The following modifications to this simple protocol lead to the actual Paxon
Parliament’s protocol.

— There is no reason to go through the Synod protocol for a decree number
whose outcome is already known. Therefore, if a newly elected president p
has all decrees with numbers less than or equal tonwritten in his ledger, then
he sends a NextBallot(b, n) message that serves as a NextBallot(b) message
in all instances of the Synod protocol for decree numbers larger than n. In
his response to this message, legislator q informs p of all decrees numbered
greater than n that already appear in q’s ledger (in addition to sending the

296 The Part-Time Parliament

usual LastVote information for decrees not in his ledger), and he asks p to
send him any decrees numbered n or less that are not in his ledger.

— Suppose decrees 125 and 126 are introduced late Friday afternoon, decree
126 is passed and is written in one or two ledgers, but before anything else
happens, the legislators all go home for the weekend. Suppose also that the
following Monday, 	φωρκ is elected the new president and learns about
decree 126, but she has no knowledge of decree 125 because the previous
president and all legislators who had voted for it are still out of the Chamber.
She will hold a ballot that passes decree 126, which leaves a gap in the ledgers.
Assigning number 125 to a new decree would cause it to appear earlier in the
ledger than decree 126, which had been passed the previous week. Passing
decrees out of order in this way might cause confusion—for example, if the
citizen who proposed the new decree did so because he knew decree 126 had
already passed. Instead,	φωρκ would attempt to pass

125: The ides of February is national olive day

a traditional decree that made absolutely no difference to anyone in Paxos.
In general, a new president would fill any gaps in his ledger by passing the
“olive-day” decree.

The consistency and progress properties of the parliamentary protocol follow
immediately from the corresponding properties of the Synod protocol from which
it was derived. To our knowledge, the Paxons never bothered writing a precise
description of the parliamentary protocol because it was so easily derived from the
Synod protocol.

3.2 Properties of the Protocol
3.2.1 The Ordering of Decrees

Balloting could take place concurrently for many different decree numbers, with
ballots initiated by different legislators—each thinking he was president when he
initiated the ballot. We cannot say precisely in what order decrees would be passed,
especially without knowing how a president was selected. However, there is one
important property about the ordering of decrees that can be deduced.

A decree was said to to be proposed when it was chosen by the president in step (3)
of the corresponding instance of the Synod protocol. The decree was said to be
passed when it was written for the first time in a ledger. Before a president could
propose any new decrees, he had to learn from all the members of a majority set
what decrees they had voted for. Any decree that had already been passed must

3 The Multidecree Parliament 297

have been voted for by at least one legislator in the majority set. Therefore, the
president must have learned about all previously passed decrees before initiating
any new decree. The president would not fill a gap in the ledgers with an important
decree—that is, with any decree other than the “olive-day” decree. He would also
not propose decrees out of order. Therefore, the protocol satisfied the following
decree-ordering property.

If decrees A and B are important and decree A was passed before decree B was
proposed, then A has a lower decree number than B.

3.2.2 Behind Closed Doors
Although we don’t know the details involved in choosing a new president, we do
know exactly how Parliament functioned when the president had been chosen and
no one was entering or leaving the Chamber. Upon receiving a request to pass
a decree—either directly from a citizen or relayed from another legislator—the
president assigned the decree a number and passed it with the following exchange
of messages. (The numbers refer to the corresponding steps in the Synod protocol.)

3. The president sent a BeginBallot message to each legislator in a quorum.

4. Each legislator in the quorum sent a Voted message to the president.

5. The president sent a Success message to every legislator.

This is a total of three message delays and about 3N messages, assuming a
parliament of N legislators and a quorum of about N/2. Moreover, if Parliament
was busy, the president would combine the BeginBallot message for one decree with
the Success message for a previous one, for a total of only 2N messages per decree.

3.3 Further Developments
Governing the island turned out to be a more complex task than the Paxons realized.
A number of problems arose whose solutions required changes to the protocol. The
most important of these changes are described below.

3.3.1 Picking a President
The president of parliament was originally chosen by the method that had been
used in the Synod, which was based purely on the alphabetical ordering of names.
Thus, when legislator�κι returned from a six-month vacation, he was immediately
made president—even though he had no idea what had happened in his absence.
Parliamentary activity came to a halt while �κι, who was a slow writer, laboriously
copied six months worth of decrees to bring his ledger up to date.

298 The Part-Time Parliament

This incident led to a debate about the best way to choose a president. Some
Paxons urged that once a legislator became president, he should remain president
until he left the Chamber. An influential group of citizens wanted the richest
legislator in the Chamber to be president, since he could afford to hire more scribes
and other servants to help him with the presidential duties. They argued that once a
rich legislator had brought his ledger up to date, there was no reason for him not to
assume the presidency. Others, however, argued that the most upstanding citizen
should be made president, regardless of wealth. Upstanding probably meant less
likely to be dishonest, although no Paxon would publicly admit the possibility of
official malfeasance. Unfortunately, the outcome of this debate is not known; no
record exists of the presidential selection protocol that was ultimately used.

3.3.2 Long Ledgers
As the years progressed and Parliament passed more and more decrees, Paxons had
to pore over an ever longer list of decrees to find the current olive tax or what color
goat could be sold. A legislator who returned to the Chamber after an extended
voyage had to do quite a bit of copying to bring his ledger up to date. Eventually,
the legislators were forced to convert their ledgers from lists of decrees into law
books that contained only the current state of the law and the number of the last
decree whose passage was reflected in that state.

To learn the current olive tax, one looked in the law book under “taxes;” to learn
what color goat could be sold, one looked under “mercantile law.” If a legislator’s
ledger contained the law through decree 1298 and he learned that decree 1299 set
the olive tax to 6 drachmas per ton, he just changed the entry for the olive-tax law
and noted that his ledger was complete through decree 1299. If he then learned
about decree 1302, he would write it down in the back of the ledger and wait until
he learned about decrees 1300 and 1301 before incorporating decree 1302 into the
law book.

To enable a legislator who had been gone for a short time to catch up without
copying the entire law book, legislators kept a list of the past week’s decrees in
the back of the book. They could have kept this list on a slip of paper, but it was
convenient for a legislator to enter decrees in the back of the ledger as they were
passed and update the law book only two or three times a week.

3.3.3 Bureaucrats
As Paxos prospered, legislators became very busy. Parliament could no longer han-
dle all details of government, so a bureaucracy was established. Instead of passing

3 The Multidecree Parliament 299

a decree to declare whether each lot of cheese was fit for sale, Parliament passed a
decree appointing a cheese inspector to make those decisions.

It soon became evident that selecting bureaucrats was not as simple as it first
seemed. Parliament passed a decree making 	ῐκστρα the first cheese inspector.
After some months, merchants complained that 	ῐκστρα was too strict and was
rejecting perfectly good cheese. Parliament then replaced him by passing the decree

1375: �ωυδα is the new cheese inspector

But	ῐκστρα did not pay close attention to what Parliament did, so he did not learn
of this decree right away. There was a period of confusion in the cheese market
when both 	ῐκστρα and �ωυδα were inspecting cheese and making conflicting
decisions.

To prevent such confusion, the Paxons had to guarantee that a position could be
held by at most one bureaucrat at any time. To do this, a president included as part
of each decree the time and date when it was proposed. A decree making	ῐκστρα
the cheese inspector might read

2716: 8:30 15 Jan 72—	ῐκστρα is cheese inspector for 3 months

This declares his term to begin either at 8:30 on 15 January or when the previous
inspector’s term ended—whichever was later. His term would end at 8:30 on 15
March, unless he explicitly resigned by asking the president to pass a decree like

2834 9:15 3 Mar 72—	ῐκστρα resigns as cheese inspector

A bureaucrat was appointed for a short term, so he could be replaced quickly—
for example, if he left the island. Parliament would pass a decree to extend the
bureaucrat’s term if he was doing a satisfactory job.

A bureaucrat needed to tell time to determine if he currently held a post. Me-
chanical clocks were unknown on Paxos, but Paxons could tell time accurately to
within 15 minutes by the position of the sun or the stars.13 If 	ῐκστρα’s term be-
gan at 8:30, he would not start inspecting cheese until his celestial observations
indicated that it was 8:45.

It is easy to make this method of appointing bureaucrats work if higher-num-
bered decrees always have later proposal times. But what if Parliament passed the
decrees

2854: 9:45 9 Apr 78—
ρανσεζ is wine taster for 2 months
2855: 9:20 9 Apr 78—�νυελῐ is wine taster for 1 month

13. Cloudy days are rare in Paxos’s balmy climate.

300 The Part-Time Parliament

that were proposed between 9:30 and 9:35 by different legislators who both thought
they were president? Such out-of-order proposal times are easily prevented because
the parliamentary protocol satisfies the following property.

If two decrees are passed by different presidents, then one of the presidents
proposed his decree after learning that the other decree had been proposed.

To see that this property is satisfied, suppose that ballot number b was successful
for decreeD, ballot number b′was successful for decreeD′, and b < b′. Let q be a leg-
islator who voted in both ballots. The balloting forD′ began with a NextBallot(b′, n)
message. If the sender of that message did not already know aboutD, then n is less
than the decree number of D, and q’s reply to the NextBallot message must state
that he voted forD.

3.3.4 Learning the Law
In addition to requesting the passage of decrees, ordinary citizens needed to inquire
about the current law of the land. The Paxons at first thought that a citizen could
simply examine the ledger of any legislator, but the following incident demon-
strated that a more sophisticated approach was needed. For centuries, it had been
legal to sell only white goats. A farmer named 	ωλεφ got Parliament to pass the
decree

77: The sale of black goats is permitted

	ωλεφ then instructed his goatherd to sell some black goats to a merchant named
 κεεν. As a law-abiding citizen, κεεν asked legislator τωκμεῐρ if such a sale
would be legal. But τωκμεῐρ had been out of the Chamber and had no entry in
his ledger past decree 76. He advised κεεν that the sale would be illegal under the
current law, so κεεν refused to buy the goats.

This incident led to the formulation of the following monotonicity condition on
inquiries about the law.

If one inquiry precedes a second inquiry, then the second inquiry cannot reveal
an earlier state of the law than the first.

If a citizen learns that a particular decree has been passed, then the process of
acquiring that knowledge is considered to be an implicit inquiry to which this
condition applies. As we will see, the interpretation of the monotonicity condition
changed over the years.

3 The Multidecree Parliament 301

Initially, the monotonicity condition was achieved by passing a decree for each
inquiry. If ∂νῐδερ wanted to know the current tax on olives, he would get Parlia-
ment to pass a decree such as

87: Citizen ∂νῐδερ is reading the law

He would then read any ledger complete at least through decree 86 to learn the olive
tax as of that decree. If citizen �ρεες then inquired about the olive tax, the decree
for his inquiry was proposed after decree 87 was passed, so the decree-ordering
property (Section 3.2.1) implies that it received a decree number greater than 87.
Therefore, �ρεες could not obtain an earlier value of the olive tax than ∂νῐδερ.
This method of reading the law satisfied the monotonicity condition when precedes
was interpreted to mean that inquiryAprecedes inquiryB iffAfinished at an earlier
time than B began.

Passing a decree for every inquiry soon proved too cumbersome. The Paxons
realized that a simpler method was possible if they weakened the monotonicity
condition by changing the interpretation of precedes. They decided that for one
event to precede another, the first event not only had to happen at an earlier time,
but it had to be able to causally affect the second event. The weaker monotonicity
condition prevents the problem first encountered by farmer	ωλεφ and merchant
 κεεν because there is a causal chain of events between the end of the implicit
inquiry by	ωλεφ and the beginning of the inquiry by κεεν.

The weaker monotonicity condition was met by using decree numbers in all
business transactions and inquiries. For example, farmer 	ωλεφ, whose flock
included many nonwhite goats, got Parliament to pass the decree

277: The sale of brown goats is permitted

When selling his brown goats to κεεν, he informed the merchant that the sale was
legal as of decree number 277. κεεν then asked legislator τωκμεῐρ if the sale
were legal under the law through at least decree 277. If τωκμεῐρ’s ledger was not
complete through decree 277, he would either wait until it was or else tell κεεν to
ask someone else. If τωκμεῐρ’s ledger went through decree 298, then he would
tell κεεν that the sale was legal as of decree number 298. Merchant κεεν would
remember the number 298 for use in his next business transaction or inquiry about
the law.

The Paxons had satisfied the monotonicity condition, but ordinary citizens dis-
liked having to remember decree numbers. Again, the Paxons solved the problem
by reinterpreting the monotonicity condition—this time, by changing the mean-
ing of state of the law. They divided the law into separate areas, and a legislator was

302 The Part-Time Parliament

chosen as specialist for each area. The current state of each area of the law was de-
termined by that specialist’s ledger. For example, suppose decree 1517 changed the
tariff law and decree 1518 changed the tax law. The tax law would change first if the
tax-law specialist learned of both decrees before the tariff-law specialist learned of
either, yielding a state of the law that could not be obtained by enacting the decrees
in numerical order.

To avoid conflicting definitions of the current state, the Paxons required that
there be at most one specialist at a time for any area. This requirement was satisfied
by using the same method to choose specialists that was used to choose bureaucrats
(see Section 3.3.3). If each inquiry involved only a single area of the law, monotonic-
ity was then achieved by directing the inquiry to that area’s specialist, who answered
it from his ledger. Since learning that a law had passed constituted the result of an
implicit inquiry, the Paxons required that a decree change at most one area of the
law, and that notification of the decree’s passage could come only from the area’s
specialist.

Inquiries involving multiple areas were not hard to handle. When merchant
�ισκωφ asked if the tariff on an imported golden fleece was higher than the sales
tax on one purchased locally, the tax-law and tariff-law specialists had to cooperate
to provide an answer. For example, the tax specialist could answer�ισκωφ by first
asking the tariff specialist for the tariff on golden fleeces, so long as he made no
changes to his ledger before receiving a reply.

This method proved satisfactory until it became necessary to make a sweeping
change to several areas of the law at one time. The Paxons then realized that the
necessary requirement for maintaining monotonicity was not that a decree affect
only a single area, but that every area it affects have the same specialist. Parliament
could change several areas of the law with a single decree by first appointing a single
legislator to be the specialist for all those areas. Moreover, the same area could have
multiple specialists, so long as that area of the law was not allowed to change. Just
before income taxes were due, Parliament would appoint several tax-law specialists
to handle the seasonal flood of inquiries about the tax law.

3.3.5 Dishonest Legislators and Honest Mistakes
Despite official assertions to the contrary, there must have been a few dishonest
legislators in the history of Paxos. When caught, they were probably exiled. By send-
ing contradictory messages, a malicious legislator could cause different legislators’
ledgers to be inconsistent. Inconsistency could also result from a lapse of memory
by an honest legislator or messenger.

3 The Multidecree Parliament 303

When inconsistencies were recognized, they could easily be corrected by passing
decrees. For example, disagreement about the current olive tax could be eliminated
by passing a new decree declaring the tax to have a certain value. The difficult
problem lay in correcting inconsistent ledgers even if no one was aware of the
inconsistency.

The existence of dishonesty or mistakes by legislators can be inferred from the
redundant decrees that began appearing in ledgers several years after the founding
of Parliament. For example, the decree

2605: The olive tax is 9 drachmas per ton

was passed even though decree 2155 had already set the olive tax to 9 drachmas
per ton, and no intervening decree had changed it. Parliament apparently cycled
through its laws every six months so that even if legislators’ ledgers were initially
inconsistent, all legislators would agree on the current law of the land within six
months. It is believed that by the use of these redundant decrees, the Paxons made
their Parliament self-stabilizing. (Self-stabilizing is a modern term due to Dijkstra
[1974].)

It is not clear precisely what self-stabilization meant in a Parliament with leg-
islators coming and going at will. The Paxons would not have been satisfied with
a definition that required all legislators to be in the Chamber at one time before
consistency could be guaranteed. However, achieving consistency required that if
one legislator had an entry in his ledger for a certain decree number and another
did not, then the second legislator would eventually fill in that entry.

Unfortunately, we don’t know exactly what sort of self-stabilization property
the Paxon Parliament possessed or how it was achieved. Paxon mathematicians
undoubtedly addressed the problem, but their work has not yet been found. I hope
that future archaeological expeditions to Paxos will give high priority to the search
for manuscripts on self-stabilization.

3.3.6 Choosing New Legislators
At first, membership in Parliament was hereditary, passing from parent to child.
When the elder statesman �αρνας retired, he gave his ledger to his son, who
carried on without interruption. It made no difference to other legislators which
�αρνας they communicated with.

As old families emigrated and new ones immigrated, this system had to change.
The Paxons decided to add and remove members of Parliament by decree. This
posed a circularity problem: membership in Parliament was determined by which
decrees were passed, but passing a decree required knowing what constituted a

304 The Part-Time Parliament

majority set, which in turn depended upon who was a member of Parliament. The
circularity was broken by letting the membership of Parliament used in passing
decree n be specified by the law as of decree n− 3. A president could not try to
pass decree 3255 until he knew all decrees through decree 3252. In practice, after
passing the decree

3252: τρωνγ is now a legislator

the president would immediately pass the “olive-day” decree as decrees 3253 and
3254.

Changing the composition of Parliament in this way was dangerous and had
to be done with care. The consistency and progress conditions would always hold.
However, the progress condition guaranteed progress only if a majority set was in
the Chamber; it did not guarantee that a majority set would ever be there. In fact, the
mechanism for choosing legislators led to the downfall of the Parliamentary system
in Paxos. Because of a scribe’s error, a decree that was supposed to honor sailors
who had drowned in a shipwreck instead declared them to be the only members of
Parliament. Its passage prevented any new decrees from being passed—including
the decrees proposed to correct the mistake. Government in Paxos came to a halt.
A general named �αμπσων took advantage of the confusion to stage a coup, es-
tablishing a military dictatorship that ended centuries of progressive government.
Paxos grew weak under a series of corrupt dictators, and was unable to repel an
invasion from the east that led to the destruction of its civilization.

4 Relevance to Computer Science

4.1 The State Machine Approach
Although Paxos’ Parliament was destroyed many centuries ago, its protocol is still
useful. For example, consider a simple distributed database system that might be
used as a name server. A state of the database consists of an assignment of values to
names. Copies of the database are maintained by multiple servers. A client program
can issue, to any server, a request to read or change the value assigned to a name.
There are two kinds of read request: a slow read, which returns the value currently
assigned to a name, and a fast read, which is faster but might not reflect a recent
change to the database.

Table 1 shows the obvious correspondence between this database system and
the Paxon Parliament: A client’s request to change a value is performed by passing
a decree. A slow read involves passing a decree, as described in Section 3.3.4. A

4 Relevance to Computer Science 305

Table 1

Parliament Distributed Database

legislator ↔ server

citizen ↔ client program

current law ↔ database state

command: read(name, client) update(name, val, client)

response: (client, value of name) (client, “ok”)

new state: Same as current state Same as current state except value
of name changed to val

Figure 2 State machine for simple database.

fast read is performed by reading the server’s current version of the database. The
Paxon Parliament protocol provides a distributed, fault-tolerant implementation
of the database system,

This method of implementing a distributed database is an instance of the state
machine approach, first proposed in Lamport [1978]. In this approach, one first
defines a state machine, which consists of a set of states, a set of commands, a set
of responses, and a function that assigns a response/state pair (a pair consisting
of a response and a state) to each command/state pair. Intuitively, a state machine
executes a command by producing a response and changing its state; the command
and the machine’s current state determine its response and its new state. For
the distributed database, a state-machine state is just a database state. The state-
machine commands and the function specifying the response and new state are
described in Figure 2.

In the state machine approach, a system is implemented with a network of server
processes. The servers transform client requests into state machine commands,
execute the commands, and transform the state-machine responses into replies
to clients. A general algorithm ensures that all servers obtain the same sequence
of commands, thereby ensuring that they all produce the same sequence of re-
sponses and state changes—assuming they all start from the same initial state. In
the database example, a client request to perform a slow read or to change a value
is transformed into a state-machine read or update command. That command is
executed, and the state-machine response is transformed into a reply to the client,

306 The Part-Time Parliament

which is sent to him by the server who received his request. Since all servers per-
form the same sequence of state-machine commands, they all maintain consistent
versions of the database. However, at any time, some servers may have earlier ver-
sions than others because a state-machine command need not be executed at the
same time by all servers. A server uses his current version of the state to reply to a
fast read request, without executing a state-machine command.

The functionality of the system is expressed by the state machine, which is
just a function from command/state pairs to response/state pairs. Problems of
synchronization and fault-tolerance are handled by the general algorithm with
which servers obtain the sequence of commands. When designing a new system,
only the state machine is new. The servers obtain the state-machine commands by
a standard distributed algorithm that has already been proved correct. Functions
are much easier to design, and to get right, than distributed algorithms.

The first algorithm for implementing an arbitrary state machine appeared in
Lamport [1978]. Later, algorithms were devised to tolerate up to any fixed number
f of arbitrary failures [Lamport 1984]. These algorithms guarantee that, if fewer
than f processes fail, then state machine commands are executed within a fixed
length of time. The algorithms are thus suitable for applications requiring real-
time response.14 But if more than f failures occur, then different servers may have
inconsistent copies of the state machine. Moreover, the inability of two servers to
communicate with each other is equivalent to the failure of one of them. For a
system to have a low probability of losing consistency, it must use an algorithm
with a large value of f , which in turn implies a large cost in redundant hardware,
communication bandwidth, and response time.

The Paxon Parliament’s protocol provides another way to implement an arbi-
trary state machine. The legislators’ law book corresponds to the machine state,
and passing a decree corresponds to executing a state-machine command. The re-
sulting algorithm is less robust and less expensive than the earlier algorithms. It
does not tolerate arbitrary, malicious failures, nor does it guarantee bounded-time
response. However, consistency is maintained despite the (benign) failure of any
number of processes and communication paths. The Paxon algorithm is suitable
for systems with modest reliability requirements that do not justify the expense of
an extremely fault-tolerant, real-time implementation.

If the state machine is executed with an algorithm that guarantees bounded-
time response, then time can be made part of the state, and machine actions can

14. These algorithms were derived from the military protocols of another Mediterranean state.

Appendix: Proof of Consistency of the Synodic Protocol 307

be triggered by the passage of time. For example, consider a system for granting
ownership of resources. The state can include the time at which a client was granted
a resource, and the state machine can automatically execute a command to revoke
ownership if the client has held the resource too long.

With the Paxon algorithm, time cannot be made part of the state in such a
natural way. If failures occur, it can take arbitrarily long to execute a command
(pass a decree), and one command can be executed before (appear earlier in the
sequence of decrees than) another command that was issued earlier. However, a
state machine can still use real time the same way the Paxon Parliament did. For
example, the method described in Section 3.3.3 for deciding who was the current
cheese inspector can be used to decide who is the current owner of a resource.

4.2 Commit Protocols
The Paxon Synod protocol is similar to standard three-phase commit protocols
[Bernstein 1987; Skeen 1982]. A Paxon ballot and a three-phase commit protocol
both involve the exchange of five messages between a coordinator (the president)
and the other quorum members (legislators). A commit protocol chooses one of two
values—commit or abort—while the Synod protocol chooses an arbitrary decree. To
convert a commit protocol to a Synod protocol, one sends the decree in the initial
round of messages. A commit decision means that this decree was passed, and an
abort decision means that the “olive-day” decree was passed.

The Synod protocol differs from a converted commit protocol because the de-
cree is not sent until the second phase. This allows the corresponding parliamen-
tary protocol to execute the first phase just once for all decrees, so the exchange of
only three messages is needed to pass each individual decree.

The theorems on which the Synod protocol is based are similar to results ob-
tained by Dwork, Lynch, and Stockmeyer [Dwork et al. 1988]. However, their al-
gorithms execute ballots sequentially in separate rounds, and they seem to be
unrelated to the Synod protocol.

Appendix: Proof of Consistency of the Synodic Protocol

A.1 The Basic Protocol
The Synod’s basic protocol, described informally in Section 2.3, is stated here
using modern algorithmic notation. We begin with the variables that a priest p
must maintain. First come the variables that represent information kept in his

308 The Part-Time Parliament

Sidebar 2

Much research has been done in the field since this article was written. The state-
machine approach has been surveyed by Schneider [1990]. The recovery protocol by
Keidar and Dolev [1996] and the totally-ordered broadcast algorithm of Fekete et al.
[1997] are quite similar to the Paxon protocol described here. The author was also
apparently unaware that the view management protocol by Oki and Liskov [1988] seems
to be equivalent to the Paxon protocol.

Many of the refinements presented in this submission have also appeared in
contemporary or subsequent articles. The method of delegation described in Section
3.3.3 is very similar to the leases mechanism of Gray and Cheriton [1989]. The technique
of Section 3.3.4 in which the Paxons satisfy the monotonicity condition by using decree
numbers is described by Ladin et al. [1992]. The technique of Section 3.3.6 for adding
new legislators was also given by Schneider [1990].

K. M.

ledger. (For convenience, the vote prevVote[p] used in Section 2.3 is replaced by
its components prevBal[p] and prevDec[p].)

outcome[p] The decree written in p’s ledger, or BLANK if there is nothing written
there yet.

lastTried[p] The number of the last ballot that p tried to begin, or −∞ if there
was none.

prevBal[p] The number of the last ballot in which p voted, or −∞ if he never
voted.

prevDec[p] The decree for which p last voted, or BLANK if p never voted.

nextBal[p] The number of the last ballot in which p agreed to participate, or
−∞ if he has never agreed to participate in a ballot.

Next come variables representing information that priest p could keep on a slip of
paper:

status[p] One of the following values:

idle Not conducting or trying to begin a ballot

trying Trying to begin ballot number lastTried[p]

polling Now conducting ballot number lastTried[p]

If p has lost his slip of paper, then status[p] is assumed to equal idle
and the values of the following four variables are irrelevant.

Appendix: Proof of Consistency of the Synodic Protocol 309

prevVotes[p] The set of votes received in LastVote messages for the current ballot
(the one with ballot number lastTried[p]).

quorum[p] If status[p]= polling, then the set of priests forming the quorum of
the current ballot; otherwise, meaningless.

voters[p] If status[p]= polling, then the set of quorum members from whom
p has received Voted messages in the current ballot; otherwise,
meaningless.

decree[p] If status[p]= polling, then the decree of the current ballot; otherwise,
meaningless.

There is also the history variable B, which is the set of ballots that have been started
and their progress—namely, which priests have cast votes. (A history variable is one
used in the development and proof of an algorithm, but not actually implemented.)

Next come the actions that priest p may take. These actions are assumed to be
atomic, meaning that once an action is begun, it must be completed before priest
p begins any other action. An action is described by an enabling condition and a
list of effects. The enabling condition describes when the action can be performed;
actions that receive a message are enabled whenever a messenger has arrived with
the appropriate message. The list of effects describes how the action changes the
algorithm’s variables and what message, if any, it sends. (Each individual action
sends at most one message.)

Recall that ballot numbers were partitioned among the priests. For any ballot
number b, the Paxons defined owner(b) to be the priest who was allowed to use that
ballot number.

The actions in the basic protocol are allowed actions; the protocol does not
require that a priest ever do anything. No attempt at efficiency has been made;
the actions allow p to do silly things, such as sending another BeginBallot message
to a priest from whom he has already received a LastVote message.

Try New Ballot
Always enabled.

Set lastTried[p] to any ballot number b, greater than its previous
value, such that owner[b]= p.

Set status[p] to trying.

Set prevVotes[p] to ∅.

Send NextBallot Message
Enabled whenever status[p] = trying.

Send a NextBallot(lastTried[p]) message to any priest.

310 The Part-Time Parliament

Receive NextBallot(b) Message
If b ≥ nextBal[p] then

Set nextBal[p] to b.

Send LastVote Message
Enabled whenever nextBal[p]> prevBal[p].

Send a LastVote(nextBal[p], v) message to priest owner(nextBal[p]),
where vpst = p, vbal = prevBal[p], and vdec = prevDec[p].

Receive LastVote(b, v)Message
If b = lastTried[p] and status[p]= trying, then

Set prevVotes[p] to the union of its original value and {v}.
Start Polling Majority SetQ
Enabled when status[p]= trying and Q⊆ {vpst : v ∈ prevVotes[p]}, where Q is a

majority set.

Set status[p] to polling.

Set quorum[p] toQ.

Set voters[p] to ∅.

Set decree[p] to a decree d chosen as follows: Let v be the maximum
element of prevVotes[p]. If vbal �= −∞ then d = vdec, else d can equal
any decree.

Set B to the union of its former value and {B}, whereBdec = d,Bqrm=
Q, Bvot = ∅, and Bbal = lastTried[p].

Send BeginBallot Message
Enabled when status[p]= polling.

Send a BeginBallot(lastTried[p], decree[p]) message to any priest in
quorum[p].

Receive BeginBallot(b, d)Message
If b = nextBal[p]> prevBal[p] then

Set prevBal[p] to b.

Set prevDec[p] to d.

If there is a ballotB in B withBbal = b [there will be], then choose any
suchB [there will be only one] and let the new value of B be obtained
from its old value by setting Bvot equal to the union of its old value
and {p}.

Appendix: Proof of Consistency of the Synodic Protocol 311

Send Voted Message
Enabled whenever prevBal[p] �= −∞.

Send a Voted(prevBal[p], p)message to ownerprevBal[p].

Receive Voted(b, q)Message
b = lastTried[p] and status[p]= polling, then

Set voters[p] to the union of its old value and {q}.
Succeed
Enabled whenever status[p]= polling, participants[p]⊆ voters[p],

and outcome[p]= BLANK.

Set outcome[p] to decree[p].

Send Success Message
Enabled whenever outcome[p] �= BLANK.

Send a Success(outcome[p])message to any priest.

Receive Success(d)Message
If outcome[p]= BLANL, then

Set outcome[p] to d.

This algorithm is an abstract description of the real protocol performed by
Paxon priests. Do the algorithm’s actions accurately model the actions of the real
priests? There were three kinds of actions that a priest could perform “atomically”:
receiving a message, writing a note or ledger entry, and sending a message. Each of
these is represented by a single action of the algorithm, except that Receive actions
both receive a message and set a variable. We can pretend that the receipt of a
message occurred when a priest acted upon the message; if he left the Chamber
before acting upon it, then we can pretend that the message was never received.
Since this pretense does not affect the consistency condition, we can infer the
consistency of the basic Synod protocol from the consistency of the algorithm.

A.2 Proof of Consistency
To prove the consistency condition, it is necessary to show that whenever out-
come[p] and outcome[q] are both different from BLANK, they are equal. A rigorous
correctness proof requires a complete description of the algorithm. The descrip-
tion given above is almost complete. Missing is a variable M whose value is the

312 The Part-Time Parliament

multiset of all messages in transit.15 Each Send action adds a message to this mul-
tiset and each Receive action removes one. Also needed are actions to represent the
loss and duplication of messages, as well as a Forget action that represents a priest
losing his slip of paper.

With these additions, we get an algorithm that defines a set of possible behav-
iors, in which each change of state corresponds to one of the allowed actions. The
Paxons proved correctness by finding a predicate I such that

1. I is true initially.

2. I implies the desired correctness condition.

3. Each allowed action leaves I true.

The predicate I was written as a conjunction I1∧ . . . ∧ I7, where I1–I5 were
in turn the conjunction of predicates I1(p)–I5(p) for all priests p. Although most
variables are mentioned in several of the conjuncts, each variable except status(p)
is naturally associated with one conjunct, and each conjunct can be thought of as
a constraint on its associated variables. The definitions of the individual conjuncts
of I are given below, where a list of items marked by ∧ symbols denotes the
conjunction of those items. The variables associated with a conjunct are listed in
bracketed comments.

The Paxons had to prove that I satisfies the three conditions given above. The
first condition, that I holds initially, requires checking that each conjunct is true for
the initial values of all the variables. While not stated explicitly, these initial values
can be inferred from the variables’ descriptions, and checking the first condition
is straightforward. The second condition, that I implies consistency, follows from
I1, the first conjunct of I6, and Theorem 1. The hard part was proving the third
condition, the invariance of I , which meant proving that I is left true by every
action. This condition is proved by showing that, for each conjunct of I , executing
any action when I is true leaves that conjunct true. The proofs are sketched below.

Proof Sketch for I1(p) B is changed only by adding a new ballot or adding a new priest to Bvot for some
B ∈ B, neither of which can falsify I1(p). The value of outcome[p] is changed only
by the Succeed and Receive Success Message actions. The enabling condition and
I5(p) imply that I1(p) is left true by the Succeed action. The enabling condition,
I1(p), and the last conjunct of I7 imply that I1(p) is left true by the Receive Success
Message action.

15. A multiset is a set that may contain multiple copies of the same element.

Appendix: Proof of Consistency of the Synodic Protocol 313

I1(p) 	= [Associated variable: outcome[p]]

(outcome[p] �= BLANK)⇒∃B ∈ B: (Bqrm ⊆ Bvot) ∧ (Bdec = outcome[p])

I2(p) 	= [Associated variable: lastTried[p]]

∧ owner(lastTried[p])= p
∧ ∀B ∈ B : (owner(Bbal)= p)⇒

∧ Bbal ≤ lastTried[p]

∧ (status[p]= trying)⇒ (Bbal < lastTried[p])

I3(p) 	= [Associated variables: prevBal[p], prevDec[p], nextBal[p]]

∧ prevBal[p]=MaxVote(∞, p, B)bal

∧ prevDec[p]=MaxVote(∞, p, B)dec

∧ nextBal[p]≥ prevBal[p]

I4(p) 	= [Associated variable: prevVotes[p]]

(status[p] �= idle)⇒
∀v ∈ prevVotes[p] :∧v =MaxVote(lastTried[p], vpst , B)

∧ nextBal[vpst]≥ lastTried[p]

I5(p) 	= [Associated variables: quorum[p], voters[p], decree[p]]

(status[p]= polling)⇒
∧ quorum[p]⊆ {vpst : v ∈ prevVotes[p]}
∧ ∃B ∈ B :∧quorum[p]= Bqrm

∧ decree[p]= Bdec

∧ voters[p]⊆ Bvot

∧ lastTried[p]= Bbal

I6 	= [Associated variable: B]

∧ B1(B) ∧ B2(B) ∧ B3(B)
∧ ∀B ∈ B :Bqrm is a majority set

I7 	= [Associated variable: M]

∧ ∀NextBallot(b) ∈M : (b ≤ lastTried[owner(b)])

∧ ∀LastVote(b, v) ∈M :∧v =MaxVote(b, vpst , B)
∧ nextBal[vpst]≥ b

∧ ∀BeginBallot(b, d) ∈M : ∃B ∈ B : (Bbal = b) ∧ (Bdec = d)
∧ ∀Voted(b, p) ∈M : ∃B ∈ B : (Bbal = b) ∧ (p ∈ Bvot)

∧ ∀Success(d) ∈M : ∃p : outcome[p]= d �= BLANK
Figure 3 Individual conjuncts of predicate I .

314 The Part-Time Parliament

Proof Sketch for I2(p) This conjunct depends only on lastTried[p], status[p], and B. Only the Try New
Ballot action changes lastTried[p], and only that action can set status[p] to trying.
Since the action increases lastTried[p] to a value bwith owner(b)= p, it leaves I2(p)
true. A completely new element is added to B only by a Start Polling action; the
first conjunct of I2(p) and the specification of the action imply that adding this
new element does not falsify the second conjunct of I2(p). The only other way B
is changed is by adding a new priest to Bvot for some B ∈ B, which does not affect
I2(p).

Proof Sketch for I3(p) Since votes are never removed from B, the only action that can change MaxVote(∞,
p, B) is one that adds to B a vote cast byp. Only a Receive BeginBallot Message action
can do that, and only that action changes prevBal[p] and prevDec[p]. The BeginBallot
conjunct of I7 implies that this action actually does add a vote to B, andB1(B) (the
first conjunct of I6) implies that there is only one ballot to which the vote can be
added. The enabling condition, the assumption that I3(p) holds before executing
the action, and the definition of MaxVote then imply that the action leaves the first
two conjuncts of I3(p) true. The third conjunct is left true because prevBal[p] is
changed only by setting it to nextBal[p], and nextBal[p] is never decreased.

Proof Sketch for I4(p) This conjunct depends only upon the values of status[p], prevVotes[p], lastTried[p],
nextBal[q] for some priests q, and B. The value of status[p] is changed from idle
to not idle only by a Try New Ballot action, which sets prevVotes[p] to ∅, making
I4(p) vacuously true. The only other actions that change prevVotes[p] are the Forget
action, which leaves I4(p) true because it sets status[p] to idle, and the Receive
LastVote Message action. It follows from the enabling condition and the LastVote
conjunct of I7 that the Receive LastVote Message action preserves I4(p). The value
of lastTried[p] is changed only by the Try New Ballot action, which leaves I4(p) true
because it sets status[p] to trying. The value of nextBal[q] can only increase, which
cannot make I4(p) false. Finally, MaxVotelastTried[p]vpstB can be changed only if
vpst is added to Bvot for some B ∈ B with Bbal < lastTried[p]. But vpst is added to
Bvot (by a Receive BeginBallot Message action) only if nextBalvpst = Bbal, in which
case I4(p) implies that Bbal ≥ lastTried[p].

Proof Sketch for I5(p) The value of status[p] is set to polling only by the Start Polling action. This action’s
enabling condition guarantees that the first conjunct becomes true, and it adds
the ballot to B that makes the second conjunct true. No other action changes
quorum[p], decree[p], or lastTried[p] while leaving status[p] equal to polling. The
value of prevVotes[p] cannot be changed while status[p]= polling, and B is changed
only by adding new elements or by adding a new priest to Bvot . The only remaining
possibility for falsifying I5(p) is the addition of a new element to voters[p] by the

Appendix: Proof of Consistency of the Synodic Protocol 315

Receive Voted Message action. The Voted conjunct of I7,B1(B) (the first conjunct of
I6), and the action’s enabling condition imply that the element added to voters[p]
is in Bvot , where B is the ballot whose existence is asserted in I5(p).

Proof Sketch for I6 Since Bbal and Bqrm are never changed for any B ∈ B, the only way B1(B), B2(B),
and the second conjunct of I6 can be falsified is by adding a new ballot to B, which
is done only by the Start Polling Majority SetQ action when status[p] equals trying.
It follows from the second conjunct of I2(p) that this action leavesB1(B) true; and
the assertion, in the enabling condition, that Q is a majority set implies that the
action leaves B2(B) and the second conjunct of I6 true. There are two possible
ways of falsifying B3(B): changing MaxVote(Bbal , Bqrm, B) by adding a new vote to
B, and adding a new ballot to B. A new vote is added only by the Receive BeginBallot
Message action, and I3(p) implies that the action adds a vote later than any other
vote cast by p in B, so it cannot change MaxVote(Bbal , Bqrm, B) for any B in B.
Conjunct I4(p) implies that the new ballot added by the Start Polling action does
not falsify B3(B).

Proof Sketch for I7 I7 can be falsified either by adding a new message to M or by changing the value of
another variable on which I7 depends. Since lastTried[p] and nextBal[p] are never
decreased, changing them cannot make I7 false. Since outcome[p] is never changed
if its value is not BLANK, changing it cannot falsify I7. Since B is changed only
by adding ballots and adding votes, the only change to it that can make I7 false
is the addition of a vote by vpst that makes the LastVote(b, v) conjunct false by
changing MaxVote(b, vpst , B). This can happen only if vpst votes in a ballot B with
Bbal < b. But vpst can vote only in ballot number nextBal[vpst], and the assumption
that this conjunct holds initially implies that nextBal[vpst]≥ b. Therefore, we need
check only that every message that is sent satisfies the condition in the appropriate
conjunct of I7.

NextBallot: Follows from the definition of the Send NextBallot Message action
and the first conjunct of I2(p).

LastVote: The enabling condition of the Send LastVote Message action and I3(p)
imply that MaxVote(nextBal[p], p, B)=MaxVote(∞, p, B), from which it fol-
lows that the LastVote message sent by the action satisfies the condition in I7.

BeginBallot: Follows from I5(p) and the definition of the Send BeginBallot Mes-
sage action.

Voted: Follows from I3(p), the definition of MaxVote, and the definition of the
Send Voted Message action.

Success: Follows from the definition of Send Success Message.

316 The Part-Time Parliament

Acknowledgments
Daniel Duchamp pointed out to me the need for a new state-machine implemen-
tation. Discussions with Mart́ın Abadi, Andy Hisgen, Tim Mann, and Garret Swart
led me to Paxos.�εωνίδας �κίμπας provided invaluable assistance with the Paxon
dialect.

References
Bernstein, P. A., Hadzilacos, V., and Goodman, N. 1987. Concurrency Control and Recovery in

Database Systems. Addison-Wesley Longman Publ. Co., Inc., Reading, MA.

De Prisco, R., Lampson, B., and Lynch, N. 1997. Revisiting the Paxos algorithm. In Proceedings
of the 11th International Workshop on Distributed Algorithms, M. Mavronicolas and P.
Tsigas, Eds., Lecture Notes in Computer Science, vol. 1320. Springer-Verlag, Berlin,
Germany, 111–125.

Dijkstra, E. W. 1974. Self-stabilizing systems in spite of distributed control. Commun. ACM
17, 11, 643–644.

Dwork, C., Lynch, N., and Stockmeyer, L. 1988. Consensus in the presence of partial
synchrony. J. ACM 35, 2 (Apr.), 288–323.

Fekete, A., Lynch, N., and Shvartsman, A. 1997. Specifying and using a partitionable
group communication service. In Proceedings of the 16th Annual ACM Symposium on
Principles of Distributed Computing. ACM Press, New York, NY, 53–62.

Fischer, M. J., Lynch, N. A., and Paterson, M. S. 1985. Impossibility of distributed consensus
with one faulty process. J. ACM 32, 1 (Jan.), 374–382.

Gray, C. and Cheriton, D. 1989. Leases: An efficient fault-tolerant mechanism for distributed
file cache consistency. SIGOPS Oper. Syst. Rev. 23, 5 (Dec. 3–6), 202–210.

Keidar, I. and Dolev, D. 1996. Efficient message ordering in dynamic networks. In Proceedings
of the 15th Annual ACM Symposium on Principles of Distributed Computing. ACM Press,
New York, NY.

Ladin, R., Liskov, B., Shrira, L., and Ghemawat, S. 1992. Providing high availability using
lazy replication. ACM Trans. Comput. Syst. 10, 4 (Nov.), 360–391.

Lamport, L. 1978. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM 21, 7, 558–565.

Lamport, L. 1984. Using time instead of timeout for fault-tolerant distributed systems. ACM
Trans. Program. Lang. Syst. 6, 2 (Apr.), 254–280.

Lampson, B. W. 1996. How to build a highly available system using consensus. In Distributed
Algorithms, O. Babaoglu and K. Marzullo, Eds. Springer Lecture Notes in Computer
Science, vol. 1151. Springer-Verlag, Berlin, Germany, 1–17.

Oki, B. M. and Liskov, B. H. 1988. Viewstamped replication: A general primary copy. In
Proceedings of the 7th Annual ACM Symposium on Principles of Distributed Computing
(Toronto, Ontario, August 15–17, 1988). ACM Press, New York, NY, 8–17.

References 317

Schneider, F. B. 1990. Implementing fault-tolerant services using the state machine
approach: A tutorial. ACM Comput. Surv. 22, 4 (Dec.), 299–319.

Skeen, M. D. 1982. Crash recovery in a distributed database system. Ph.D. thesis. University
of California at Berkeley, Berkeley, CA.

References

M. Abadi and L. Lamport. 1991. The existence of refinement mappings. Theor. Comput. Sci.,
82(2):253–284. DOI: 10.1016/0304-3975(91)90224-P. 10, 113, 163

M. Abadi and L. Lamport. 1993. Composing specifications. ACM Trans. Program. Lang. Syst.,
15(1): 73–132. DOI: 10.1145/151646.151649. 114

M. Abadi and L. Lamport. 1994. Open systems in TLA. In J. H. Anderson, D. Peleg, and
E. Borowsky (eds.), Proceedings of the Thirteenth Annual ACM Symposium on Principles
of Distributed Computing, pp. 81–90. ACM. DOI: 10.1145/197917.197960. 114

M. Abadi and L. Lamport. 1995. Conjoining specifications. ACM Trans. Program. Lang. Syst.,
17(3): 507–534. DOI: 10.1145/203095.201069. 114

J.-R. Abrial. 1996. The B-Book: Assigning Programs to Meanings. Cambridge University Press.
115

J.-R. Abrial. 2010. Modeling in Event-B. Cambridge University Press. 115, 127

S. V. Adve and M. D. Hill. 1990. Weak ordering - A new definition. In Proceedings of the
17th Annual International Symposium on Computer Architecture. pp. 2–14, 1990. DOI:
10.1145/325096.325100. 46

Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. 1993. Atomic snapshots of
shared memory. J. ACM, 40(4): 873–890. DOI: 10.1145/153724.153741. 64

M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. W. Hutto. 1995. Causal memory:
Definitions, implementation, and programming. Distributed Computing, 9: 37–49.
DOI: 10.1007/BF01784241. 53

B. Alpern and F. B. Schneider. 1985. Defining liveness. Inf. Process. Lett., 21(4): 181–185. DOI:
10.1016/0020-0190(85)90056-0. 104

P. A. Alsberg and J. D. Day. 1976. A principle for resilient sharing of distributed resources.
In Proceedings of the 2nd International Conference on Software Engineering, ICSE ’76,
pp. 562–570. IEEE Computer Society Press. 83, 85

American Mathematical Society. 2019a. AMS-LaTeX. http://www.ams.org/publications/
authors/tex/amslatex; last retrieved 10 February 2019. 2, 145

American Mathematical Society. 2019b. AMS-TeX. http://www.ams.org/publications/
authors/tex/amstex; last retrieved 10 February 2019. 145

http://dx.doi.org/10.1016/0304-3975(91)90224-P
http://dx.doi.org/10.1145/151646.151649
http://dx.doi.org/10.1145/197917.197960
http://dx.doi.org/10.1145/203095.201069
http://dx.doi.org/10.1145/325096.325100
http://dx.doi.org/10.1145/153724.153741
http://dx.doi.org/10.1007/BF01784241
http://dx.doi.org/10.1016/0020-0190(85)90056-0
http://www.ams.org/publications/authors/tex/amslatex
http://www.ams.org/publications/authors/tex/amslatex
http://www.ams.org/publications/authors/tex/amstex
http://www.ams.org/publications/authors/tex/amstex

320 References

K. R. Apt. 1981. Ten years of Hoare’s logic: A survey—part 1. ACM Trans. Prog. Lang. Syst.,
3(4): 431–483, 1981. DOI: 10.1145/357146.357150. 109

P. C. Attie, N. Francez, and O. Grumberg. 1993. Fairness and hyperfairness in multi-party
interactions. Distributed Computing, 6(4): 245–254, 1993. DOI: 10.1007/BF02242712.
104

H. Attiya, F. Ellen, and A. Morrison. 2015. Limitations of highly-available eventually-
consistent data stores. In Proceedings of the 2015 ACM Symposium on Principles of
Distributed Computing, PODC ’15, pp. 385–394, New York. ACM. 53

H. Attiya and J. Welch. 1998. Distributed Computing: Fundamentals, Simulations, and Advanced
Topics. McGraw-Hill International (UK), London, 1998. 37, 40

H. Attiya and J. Welch. 2004. Distributed Computing: Fundamentals, Simulations, and Advanced
Topics, Second Edition. John Wiley & Sons, Hoboken, NJ, 2004. 37

H. Attiya and J. L. Welch. 1994. Sequential consistency versus linearizability. ACM Trans.
Comput. Syst., 12(2): 91–122. DOI: 10.1145/176575.176576. 46

N. Azmy, S. Merz, and C. Weidenbach. 2018. A machine-checked correctness proof for pastry.
Sci. Comput. Program., 158: 64–80. DOI: 10.1016/j.scico.2017.08.003. 127

R.-J. Back. 1981. On correct refinement of programs. J. Comput. Syst. Sci., 23(1): 49–68, 1981.
DOI: 10.1016/0022-0000(81)90005-2. 111

J. W. Backus, R. J. Beeber, S. Best, R. Goldberg, L. M. Haibt, H. L. Herrick, R. A. Nelson,
D. Sayre, P. B. Sheridan, H. Stern. 1957 The Fortran automatic coding system. In
Papers presented at the February 26–28, 1957, Western Joint Computer Conference:
Techniques for Reliability, pp. 188–198. ACM. DOI: 10.1145/1455567.1455599. 133

C. Barrett and C. Tinelli. 2018. Satisfiability modulo theories. In E. M. Clarke, T. A. Henzinger,
H. Veith, and R. Bloem (eds.), Handbook of Model Checking, pp. 305–343. Springer.
126

M. Ben-Or. 1983. Another advantage of free choice: Completely asynchronous agreement
protocols (extended abstract). In Proceedings of the Second Annual ACM Symposium on
Principles of Distributed Computing, PODC ’83, pp. 27–30. ACM. DOI: 10.1145/800221
.806707. 90

M. Ben-Or and R. El-Yaniv. 2003. Resilient-optimal interactive consistency in constant time.
Distributed Computing, 16: 249–262. DOI: 10.1007/s00446-002-0083-3. 71

D. J. Bernstein, D. Hopwood, A. Hülsing, T. Lange, R. Niederhagen, L. Papachristodoulou,
M. Schneider, P. Schwabe, and Z. Wilcox-O’Hearn. 2015. SPHINCS: Practical stateless
hash-based signatures. In Proceedings EUROCRYPT 2015, pp. 368–397. DOI: 10.1007/
978-3-662-46800-5_15. 81

I. Beschastnikh, P. Wang, Y. Brun, and M. D. Ernst. 2016. Debugging distributed systems.
Queue, 14(2): 50. 53

K. Birman, A. Schiper, and P. Stephenson. August 1991. Lightweight causal and atomic group
multicast. ACM Trans. Comput. Syst., 9(3): 272–314. DOI: 10.1145/128738.128742. 53,
102

http://dx.doi.org/10.1145/357146.357150
http://dx.doi.org/10.1007/BF02242712
http://dx.doi.org/10.1145/176575.176576
http://dx.doi.org/10.1016/j.scico.2017.08.003
http://dx.doi.org/10.1016/0022-0000(81)90005-2
http://dx.doi.org/10.1145/1455567.1455599
http://dx.doi.org/10.1145/800221.806707
http://dx.doi.org/10.1145/800221.806707
http://dx.doi.org/10.1007/s00446-002-0083-3
http://dx.doi.org/10.1007/978-3-662-46800-5_15
http://dx.doi.org/10.1007/978-3-662-46800-5_15
http://dx.doi.org/10.1145/128738.128742

References 321

K. Birman. 1986. Isis: A system for fault-tolerant distributed computing. Technical report,
Cornell University. 53

A. D. Birrell, A. Hisgen, C. Jerian, T. Mann, and G. Swart. September 1993. The Echo
distributed file system. Digital Systems Research Center Research Report 111, 10. DOI:
10.1.1.43.1306. 148

R. L. Bocchino, Jr., V. S. Adve, S. V. Adve, and M. Snir. 2009. Parallel programming must be
deterministic by default. In Proceedings of the First USENIX Conference on Hot Topics
in Parallelism, HotPar’09, pp. 4–10, Berkeley, CA. USENIX Association. 86

W. J. Bolosky, J. R. Douceur, and J. Howell. 2007. The Farsite project: A retrospective.
Operating Systems Review, 41(2): 17–26. DOI: 10.1145/1243418.1243422. 128

R. Bonichon, D. Delahaye, and D. Doligez. 2007. Zenon: An extensible automated theorem
prover producing checkable proofs. In N. Dershowitz and A. Voronkov (eds.), 14th
International Conference Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR), volume 4790 of Lecture Notes in Computer Science, pp. 151–165. Springer. DOI:
10.1007/978-
3-540-75560-9_13. 126

F. V. Brasileiro, F. Greve, A. Mostéfaoui, and M. Raynal. 2001. Consensus in one
communication step. In Proceedings of the 6th International Conference on Parallel
Computing Technologies, PaCT ’01, pp. 42–50. Springer-Verlag. DOI: 10.1007/3-540-
44743-1_4.pdf. 93

E. A. Brewer. July 2000. Towards robust distributed systems (abstract). In Proceedings of the
Nineteenth Annual ACM Symposium on Principles of Distributed Computing, p. 7. DOI:
10.1145/343477.343502. 50

J. A. Buchmann, E. Dahmen, and A. Hülsing. 2011. XMSS - A practical forward secure
signature scheme based on minimal security assumptions. In Proceedings Workshop
on Post-Quantum Cryptography (PQC), volume 7071 of Lecture Notes in Computer
Science, pp. 117–129. Springer. DOI: 10.1007/978-3-642-25405-5_8. 81

M. Burrows. January 2019. Personal communication. 150

M. Burrows. 2006. The Chubby lock service for loosely-coupled distributed systems. In
Proceedings of the 7th Symposium on Operating Systems Design and Implementation,
OSDI ’06, pp. 335–350. USENIX Association. 9, 100

R. M. Burstall. 1974. Program proving as hand simulation with a little induction. In
Information Processing, pp. 308–312. North-Holland Pub. Co. 105

V. Bush. 1945. As we may think. The Atlantic Monthly, 176(1): pp. 101–108. 131

C. Cachin, R. Guerraoui, and L. Rodrigues. 2011. Introduction to Reliable and Secure
Distributed Programming (Second Edition). Springer, 2011. 54, 69

C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. August 2001. Secure and efficient
asynchronous broadcast protocols. In Advances in Cryptology - CRYPTO 2001, 21st
Annual International Cryptology Conference, pp. 524–541. 71

S. Chand, Y. A. Liu, and S. D. Stoller. 2016. Formal verification of multi-Paxos for distributed
consensus. In J. S. Fitzgerald, C. L. Heitmeyer, S. Gnesi, and A. Philippou (eds.), 21st

http://dx.doi.org/10.1.1.43.1306
http://dx.doi.org/10.1145/1243418.1243422
http://dx.doi.org/10.1007/978-3-540-75560-9_13
http://dx.doi.org/10.1007/978-3-540-75560-9_13
http://dx.doi.org/10.1007/3-540-44743-1_4.pdf
http://dx.doi.org/10.1007/3-540-44743-1_4.pdf
http://dx.doi.org/10.1145/343477.343502
http://dx.doi.org/10.1007/978-3-642-25405-5_8

322 References

International Symposium Formal Methods (FM 2016), volume 9995 of Lecture Notes in
Computer Science, pp. 119–136. DOI: 10.1007/978-3-319-48989-6_8. 127

T. D. Chandra, R. Griesemer, and J. Redstone. 2007. Paxos made live: An engineering
perspective. In Proceedings of the 26th ACM Symposium on Principles of Distributed
Computing (PODC ’07), pp. 398–407. ACM. DOI: 10.1145/1281100.1281103. 9, 99

T. D. Chandra and S. Toueg. 1996. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2): 225–267. DOI: 10.1145/226643.226647. 71

K. M. Chandy and L. Lamport. 1985. Distributed snapshots: Determining global states of
distributed systems. ACM Trans. Comput. Syst., 3(1): 63–75. DOI: 10.1145/214451
.214456. 7, 48, 59, 64, 143, 164

M. Chandy. July 2018. Personal communications (email), 16 and 30. 165

A. Condon and A. J. Hu. 2003. Automatable verification of sequential consistency. Theory
Comput. Syst., 36(5): 431–460. DOI: 10.1007/s00224-003-1082-x. 46

D. Cousineau, D. Doligez, L. Lamport, S. Merz, D. Ricketts, and H. Vanzetto. August 2012.
TLA+ proofs. In D. Giannakopoulou and D. Méry (eds.), FM 2012: Formal Methods -
18th International Symposium, volume 7436 of Lecture Notes in Computer Science, pp.
147–154. Springer. 125

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels. 2007. Dynamo: Amazon’s highly
available key-value store. In SOSP. DOI: 10.1145/1323293.1294281. 53

D. Didona, R. Guerraoui, J. Wang, and W. Zwaenepoel. 2018. Causal consistency and
latency optimality: Friend or foe? PVLDB, 11(11): 1618–1632. DOI: 10.14778/3236187
.3236210. 53

W. Diffie and M. E. Hellman. 1976. New directions in cryptography. IEEE Transactions on
Information Theory, 22(6): 644–654. DOI: 10.1109/TIT.1976.1055638. 78, 140

E. W. Dijkstra. 1971. On the reliability of programs. https://www.cs.utexas.edu/users/EWD/
transcriptions/EWD03xx/EWD303.html. 159

E. W. Dijkstra. 1965. Solution of a problem in concurrent programming control. CACM, 8(9):
569. 4

E. W. Dijkstra. 1971. Hierarchical ordering of sequential processes. Acta Inf., 1: 115–138.
DOI: 10.1007/BF00289519. 30, 44

E. W. Dijkstra. 1976. A Discipline of Programming. Prentice Hall. 111

D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. 1992. Protocol verification as a hardware
design aid. In IEEE International Conference Computer Design: VLSI in Computers and
Processors, pp. 522–525. IEEE Computer Society. 123

D. Dolev and N. Shavit. 1997. Bounded concurrent time-stamping. SIAM J. Comput., 26(2):
418–455. DOI: 10.1137/S0097539790192647. 37, 40

D. Dolev and H. R. Strong. 1982 Polynomial algorithms for multiple processor agreement.
In Proceedings Symposium on Theory of Computing (STOC), pp. 401–407. DOI: 10.1145/
800070.802215. 76

http://dx.doi.org/10.1007/978-3-319-48989-6_8
http://dx.doi.org/10.1145/1281100.1281103
http://dx.doi.org/10.1145/226643.226647
http://dx.doi.org/10.1145/214451.214456
http://dx.doi.org/10.1145/214451.214456
http://dx.doi.org/10.1007/s00224-003-1082-x
http://dx.doi.org/10.1145/1323293.1294281
http://dx.doi.org/10.14778/3236187.3236210
http://dx.doi.org/10.14778/3236187.3236210
http://dx.doi.org/10.1109/TIT.1976.1055638
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD303.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD303.html
http://dx.doi.org/10.1007/BF00289519
http://dx.doi.org/10.1137/S0097539790192647
http://dx.doi.org/10.1145/800070.802215
http://dx.doi.org/10.1145/800070.802215

References 323

D. Dolev and H. R. Strong. 1983. Authenticated algorithms for Byzantine agreement. SIAM J.
Comput. 12(4): 656–666. DOI: 10.1137/0212045. 76

D. Dolev and A. C. Yao. 1983. On the security of public key protocols. IEEE Transactions on
Information Theory, 29(2): 198–207. DOI: 10.1109/TIT.1983.1056650. 78

D. Doligez, J. Kriener, L. Lamport, T. Libal, and S. Merz. 2014. Coalescing: Syntactic
abstraction for reasoning in first-order modal logics. In C. Benzmüller and J. Otten
(eds.), Automated Reasoning in Quantified Non-Classical Logics, volume 33 of EPiC
Series in Computing, pp. 1–16. 126

J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel. 2014. Gentlerain: Cheap and scalable
causal consistency with physical clocks. In Proceedings of the ACM Symposium on
Cloud Computing, SOCC ’14, pp. 4: 1–4: 13. ACM. DOI: 10.1145/2670979.2670983. 53

C. Dwork, N. Lynch, and L. Stockmeyer. April 1988. Consensus in the presence of partial
synchrony. J. ACM, 35(2): 288–323. DOI: 10.1145/42282.42283. 94

C. Dwork and O. Waarts. 1992. Simple and efficient bounded concurrent timestamping or
bounded concurrent timestamp systems are comprehensible! In Proceedings of the
24th Annual ACM Symposium on Theory of Computing, pp. 655–666. DOI: 10.1145/
129712.129776. 37, 40

C. A. Ellis. 1977. Consistency and correctness of duplicate database systems. In Proceedings
of the Sixth ACM Symposium on Operating Systems Principles, SOSP ’77, pp. 67–84.
ACM. DOI: 10.1145/1067625.806548. 84

U. Engberg. 1996. Reasoning in the Temporal Logic of Actions. BRICS Dissertation Series. 151

U. Engberg, P. Grønning, and L. Lamport. 1992 Mechanical verification of concurrent
systems with TLA. In G. von Bochmann and D. K. Probst (eds.), Computer Aided
Verification, Fourth International Workshop, CAV ’92, volume 663 of Lecture Notes in
Computer Science, pp. 44–55. Springer. DOI: 10.1007/3-540-56496-9_5. 115

C. J. Fidge. 1988. Timestamps in message-passing systems that preserve the partial ordering.
Dissertation, Australian National University. 53

M. J. Fischer, N. A. Lynch, and M. S. Paterson. April 1985. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2): 374–382. DOI: 10.1145/3149.214121.
89, 148

M. Fitzi and J. A. Garay. 2003. Efficient player-optimal protocols for strong and differential
consensus. In Proceedings 22nd ACM Symposium on Principles of Distributed Computing
(PODC), pp. 211–220. DOI: 10.1145/872035.872066. 70

R. W. Floyd. 1967. Assigning meanings to programs. In Proceedings Symposium on Applied
Mathematics, volume 19, pp. 19–32. American Mathematical Society. 105

R. Friedman, A. Mostéfaoui, S. Rajsbaum, and M. Raynal. 2007. Asynchronous agreement
and its relation with error-correcting codes. IEEE Trans. Computers, 56(7): 865–875.
DOI: 10.1109/TC.2007.1043. 72

E. Gafni and L. Lamport. 2003. Disk Paxos. Distributed Computing, 16(1): 1–20. DOI: 10.1007/
s00446-002-0070-8. 9, 100, 161

http://dx.doi.org/10.1137/0212045
http://dx.doi.org/10.1109/TIT.1983.1056650
http://dx.doi.org/10.1145/2670979.2670983
http://dx.doi.org/10.1145/42282.42283
http://dx.doi.org/10.1145/129712.129776
http://dx.doi.org/10.1145/129712.129776
http://dx.doi.org/10.1145/1067625.806548
http://dx.doi.org/10.1007/3-540-56496-9_5
http://dx.doi.org/10.1145/3149.214121
http://dx.doi.org/10.1145/872035.872066
http://dx.doi.org/10.1109/TC.2007.1043
http://dx.doi.org/10.1007/s00446-002-0070-8
http://dx.doi.org/10.1007/s00446-002-0070-8

324 References

J. A. Garay and Y. Moses. 1998. Fully polynomial Byzantine agreement for n > 3t processors
in t + 1 rounds. 27(1): 247–290. DOI: 10.1137/S0097539794265232. 76

S. J. Garland and J. V. Guttag. 1988. LP: The Larch prover. In International Conference on
Automated Deduction, pp. 748–749. Springer. DOI: 10.1007/BFb0012879. 151

S. Ghemawat, H. Gobioff, and S.-T. Leung. 2003. The Google file system. In Proceedings of
the Nineteenth ACM Symposium on Operating Systems Principles, SOSP ’03, pp. 29–43.
ACM. DOI: 10.1145/1165389.945450. 101

P. B. Gibbons and E. Korach. 1997. Testing shared memories. SIAM J. Comput., 26(4):
1208–1244. DOI: 10.1.1.107.3013. 46

P. B. Gibbons, M. Merritt, and K. Gharachorloo. 1991. Proving sequential consistency of
high-performance shared memories (extended abstract). In SPAA, pp. 292–303. DOI:
10.1145/113379.113406. 46

S. Gilbert and N. Lynch. 2002. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News, 33(2): 51–59. DOI: 10.1145/
564585.564601. 50

E. Gilkerson and L. Lamport. 2004. On hair color in France. Annals of Improbable Research,
pp. 18–19. 165

P. Godefroid and P. Wolper. 1994. A partial approach to model checking. Inf. Comput., 110(2):
305–326. DOI: 10.1006/inco.1994.1035. 127

C. Gray and D. Cheriton. 1989. Leases: An efficient fault-tolerant mechanism for distributed
file cache consistency. In Proceedings of the Twelfth ACM Symposium on Operating
Systems Principles, SOSP ’89, pp. 202–210. ACM. DOI: 10.1145/74851.74870. 99

J. Gray and L. Lamport. 2006. Consensus on transaction commit. ACM Trans. Database Syst.,
31(1): 133–160, 2006. DOI: 10.1145/1132863.1132867. 162

D. Gries and F. B. Schneider. 1995. Avoiding the undefined by underspecification. In J. van
Leeuwen, editor, Computer Science Today, volume 1000 of Lecture Notes in Computer
Science, pp. 366–373. Springer. 116

Y. Gurevich. 1995. Evolving algebras 1993: Lipari guide. In E. Börger, editor, Specification
and validation methods, pp. 9–36. Oxford University Press. 127

C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno, M. L. Roberts, S. T. V. Setty, and
B. Zill. 2015. Ironfleet: Proving practical distributed systems correct. In E. L. Miller
and S. Hand (eds.), Proceedings 25th Symposium Operating Systems Principles, SOSP
2015, pp. 1–17. ACM. DOI: 10.1145/2815400.2815428. 128

C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno, M. L. Roberts, S. T. V. Setty, and
B. Zill. 2017. Ironfleet: Proving safety and liveness of practical distributed systems.
Commun. ACM, 60(7): 83–92. DOI: 10.1145/3068608. 128

M. Herlihy. January 1991. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):
124–149. DOI: 10.1145/114005.102808. 4

M. Herlihy and J. M. Wing. July 1990. Linearizability: A correctness condition for
concurrent objects. ACM Trans. Prog. Lang. Syst., 12(3): 463–492. DOI: 10.1145/
78969.78972. 5, 71

http://dx.doi.org/10.1137/S0097539794265232
http://dx.doi.org/10.1007/BFb0012879
http://dx.doi.org/10.1145/1165389.945450
http://dx.doi.org/10.1.1.107.3013
http://dx.doi.org/10.1145/113379.113406
http://dx.doi.org/10.1145/564585.564601
http://dx.doi.org/10.1145/564585.564601
http://dx.doi.org/10.1006/inco.1994.1035
http://dx.doi.org/10.1145/74851.74870
http://dx.doi.org/10.1145/1132863.1132867
http://dx.doi.org/10.1145/2815400.2815428
http://dx.doi.org/10.1145/3068608
http://dx.doi.org/10.1145/114005.102808
http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1145/78969.78972

References 325

A. Hisgen, A. Birrell, T. Mann, M. Schroeder, and G. Swart. September 1989. Availability and
consistency tradeoffs in the Echo distributed file system. In Proceedings of the Second
Workshop on Workstation Operating Systems, pp. 49–54. IEEE Computer Society. DOI:
10.1109/WWOS.1989.109267. 96

G. J. Holzmann. 2003. The SPIN Model Checker. Addison-Wesley. 123

H. Howard, D. Malkhi, and A. Spiegelman. 2016. Flexible Paxos: Quorum intersection
revisited. arXiv preprint arXiv:1608.06696. 162

P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. 2010. Zookeeper: Wait-free coordination for
internet-scale systems. In USENIX ATC. 9, 100

IBM. 1955. IBM 705 EDPM Electronic Data Processing Machine. Internation Business Machines
Corp. 133

A. Israeli and M. Li. 1993. Bounded time-stamps. Distributed Computing, 6(4): 205–209. DOI:
10.1007/BF02242708. 37

A. Israeli and A. Shaham. 2005. Time and space optimal implementations of atomic multi-
writer register. Inf. Comput., 200(1): 62–106. 40

K. E. Iverson. 1962. A programming language. In Proceedings of the Spring Joint Computer
Conference, pp. 345–351. ACM. 135

P. Jayanti. 2005. An optimal multi-writer snapshot algorithm. In Proceedings of the Thirty-
seventh Annual ACM Symposium on Theory of Computing, pp. 723–732. ACM. DOI:
10.1145/1060590.1060697. 64

J. E. Johnson, D. E. Langworthy, L. Lamport, and F. H. Vogt. 2007. Formal specification of a
web services protocol. J. Log. Algebr. Program., 70(1): 34–52. DOI: 10.1016/j.jlap.2006
.05.004. 128

P. R. Johnson and R. H. Thomas. 1975. The maintenance of duplicate databases. Network
Working Group RFC 677. 6, 50, 53, 83, 137

R. Joshi, L. Lamport, J. Matthews, S. Tasiran, M. R. Tuttle, and Y. Yu. 2003. Checking cache-
coherence protocols with TLA+. Formal Methods in System Design, 22(2): 125–131.
DOI: 10.1023/A:1022969405325. 123, 127

R. Koo and S. Toueg. 1987. Checkpointing and rollback-recovery for distributed systems.
IEEE Transactions on software Engineering, (1): 23–31. DOI: 10.1109/TSE.1987.232562.
64

F. Kröger. 1977. LAR: A logic of algorithmic reasoning. Acta Informatica, 8: 243–266. DOI:
10.1007/BF00264469. 105

DEC WRL. October 2018. MultiTitan: Four architecture papers. http://www.hpl.hp.com/
techreports/Compaq-DEC/WRL-87-8.pdf. 147

P. B. Ladkin, L. Lamport, B. Olivier, and D. Roegel. 1999. Lazy caching in TLA. Distributed
Computing, 12(2–3): 151–174. DOI: 10.1007/s004460050063. 155

A. Lakshman and P. Malik. 2009. Cassandra: A decentralized structured storage system. In
SOSP Workshop on Large Scale Distributed Systems and Middleware (LADIS 2009). ACM.
100

http://dx.doi.org/10.1109/WWOS.1989.109267
http://dx.doi.org/10.1007/BF02242708
http://dx.doi.org/10.1145/1060590.1060697
http://dx.doi.org/10.1016/j.jlap.2006.05.004
http://dx.doi.org/10.1016/j.jlap.2006.05.004
http://dx.doi.org/10.1023/A:1022969405325
http://dx.doi.org/10.1109/TSE.1987.232562
http://dx.doi.org/10.1007/BF00264469
http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-87-8.pdf
http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-87-8.pdf
http://dx.doi.org/10.1007/s004460050063

326 References

L. Lamport. 1957 Braid theory. Mathematics Bulletin of the Bronx High School of Science (1957),
pp. 6,7,9. 132

L. Lamport. 1987. Distribution. Email message sent to a DEC SRC bulletin board at 12:23:29
PDT on 28 May 87. 163

L. Lamport. 2019. My writings. 3, 29, 67, 103, 132, 134, 135, 141, 142, 148, 150, 151, 158, 165

L. Lamport. 2018. Personal communication (recorded conversation). 144, 145

L. Lamport. 1970. Comment on Bell’s quadratic quotient method for hash coded searching.
Commun. ACM, 13(9): 573–574. DOI: 10.1145/362736.362765. 135

L. Lamport. 1973. The coordinate method for the parallel execution of DO loops. In
Proceedings 1973 Sagamore Comput. Conf .

L. Lamport. 1974. A new solution of Dijkstra’s concurrent programming problem. Commun.
ACM, 17(8): 453–455. DOI: 10.1145/361082.361093. 3, 29, 30, 35, 136

L. Lamport. 1974. The parallel execution of DO loops. Commun. ACM, 17(2): 83–93. DOI:
10.1145/360827.360844. 135

L. Lamport. 1977. Concurrent reading and writing. Commun. ACM, 20(11): 806–811. DOI:
10.1145/359863.359878. 30, 36, 44

L. Lamport. 1977. Proving the correctness of multiprocess programs. IEEE Trans. Software
Eng., 3(2): 125–143. DOI: 10.1109/TSE.1977.229904. 30, 103, 104, 105, 106, 150

L. Lamport. 1978. The implementation of reliable distributed multiprocess systems.
Computer Networks, 2: 95–114. DOI: 10.1016/0376-5075(78)90045-4. 84

L. Lamport. 1978. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7): 558–565. DOI: 10.1145/359545.359563. 6, 48, 58, 103, 137, 163, 164

L. Lamport. 1979a. Constructing digital signatures from a one way function. Technical Report
CSL—98, Computer Science Laboratory, SRI International. 68, 78

L. Lamport. 1979b. How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Trans. Computers, 28(9): 690–691. DOI: 10.1109/TC
.1979.1675439. 5, 30, 44, 143, 150

L. Lamport. 1979c. A new approach to proving the correctness of multiprocess programs.
ACM Trans. Program. Lang. Syst., 1(1): 84–97. DOI: 10.1145/357062.357068. 103

L. Lamport. 1980. “Sometime” is sometimes “not never”—on the temporal logic of programs.
In P. W. Abrahams, R. J. Lipton, and S. R. Bourne (eds.), Conference Record of the
Seventh Annual ACM Symposium on Principles of Programming Languages, pp. 174–185.
ACM Press. DOI: 10.1145/567446.567463. 106

L. Lamport. 1981. Password authentication with insecure communication. Commun. ACM,
24(11): 770–772. DOI: 10.1145/358790.358797. 68

L. Lamport. 1983. What good is temporal logic? In IFIP Congress, pp. 657–668. 111

L. Lamport. 1986a. The mutual exclusion problem: Part I: a theory of interprocess
communication. J. ACM, 33(2): 313–326. DOI: 10.1145/5383.5384. 150

L. Lamport. 1986b. The mutual exclusion problem: Part II: statement and solutions. J. ACM,
33(2): 327–348. DOI: 10.1145/5383.5385. 150

http://dx.doi.org/10.1145/362736.362765
http://dx.doi.org/10.1145/361082.361093
http://dx.doi.org/10.1145/360827.360844
http://dx.doi.org/10.1145/359863.359878
http://dx.doi.org/10.1109/TSE.1977.229904
http://dx.doi.org/10.1016/0376-5075(78)90045-4
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1145/357062.357068
http://dx.doi.org/10.1145/567446.567463
http://dx.doi.org/10.1145/358790.358797
http://dx.doi.org/10.1145/5383.5384
http://dx.doi.org/10.1145/5383.5385

References 327

L. Lamport. 1986c. On interprocess communication. Part I: basic formalism. Distributed
Computing, 1(2): 77–85. DOI: 10.1007/BF01786227. 4, 29, 41, 42, 150

L. Lamport. 1986d. On interprocess communication. Part II: algorithms. Distributed
Computing, 1(2): 86–101. DOI: 10.1007/BF01786228. 4, 29, 36, 37, 38, 39, 40, 42,
150

L. Lamport. 1987. A fast mutual exclusion algorithm. ACM Trans. Comput. Syst., 5(1): 1–11.
DOI: 10.1145/7351.7352. 147

L. Lamport. 1990. win and sin: Predicate transformers for concurrency. ACM Trans. Program.
Lang. Syst., 12(3): 396–428. DOI: 10.1145/78969.78970. 104

L. Lamport. 1991. The temporal logic of actions. Research Report 79, DEC Systems Research
Center. 107

L. Lamport. 1992. Hybrid systems in TLA+. In R. L. Grossman, A. Nerode, A. P. Ravn, and
H. Rischel (eds.), Hybrid Systems, volume 736 of Lecture Notes in Computer Science,
pp. 77–102. Springer. DOI: 10.1007/3-540-57318-6_25. 115

L. Lamport. June 1993. Verification and specification of concurrent programs. In J. W.
de Bakker, W. P. de Roever, and G. Rozenberg (eds.), A Decade of Concurrency,
Reflections and Perspectives, volume 803 of Lecture Notes in Computer Science, pp.
347–374. Springer. 151

L. Lamport. 1994. LaTEX—A Document Preparation System: User’s Guide and Reference Manual,
Second Edition. Pearson/Prentice Hall. 11, 145

L. Lamport. 1994. The temporal logic of actions. ACM Trans. Program. Lang. Syst., 16(3):
872–923. DOI: 10.1145/177492.177726. 107, 109, 151

L. Lamport. 1995. How to write a proof. American Mathematical Monthly, 102(7): 600–608.
125, 152, 154

L. Lamport. 1998. The part-time parliament. ACM Trans. Comput. Syst., 16(2): 133–169. DOI:
10.1145/279227.279229. 9, 54, 96, 163

L. Lamport. 1999. Specifying concurrent systems with TLA+. Calculational System Design.
DOI: 10.1007%2F3-540-48153-2_6.pdf. 152, 156

L. Lamport. 2000. Fairness and hyperfairness. Distributed Computing, 13(4): 239–245. DOI:
10.1007/PL00008921. 104

L. Lamport. 2000. How (La)TEX changed the face of mathematics. E-interview in DMV-
Mitteilungen.

L. Lamport. 2001. Paxos made simple. SIGACT News, 32(4): 51–58. 98, 150

L. Lamport. 2002. Specifying Systems: The TLA+ Language and Tools for Hardware and Software
Engineers. Addison-Wesley. 10, 115, 152, 156, 163

L. Lamport. 2002. A discussion with Leslie Lamport. IEEE Distributed Systems Online 3, 8.

L. Lamport. 2006c. Checking a multithreaded algorithm with +CAL. In S. Dolev, editor,
Distributed Computing, 20th International Symposium, volume 4167 of Lecture Notes in
Computer Science, pp. 151–163. Springer. DOI: 10.1007/11864219_11. 159

http://dx.doi.org/10.1007/BF01786227
http://dx.doi.org/10.1007/BF01786228
http://dx.doi.org/10.1145/7351.7352
http://dx.doi.org/10.1145/78969.78970
http://dx.doi.org/10.1007/3-540-57318-6_25
http://dx.doi.org/10.1145/177492.177726
http://dx.doi.org/10.1145/279227.279229
http://dx.doi.org/10.1007%2F3-540-48153-2_6.pdf
http://dx.doi.org/10.1007/PL00008921
http://dx.doi.org/10.1007/11864219_11

328 References

L. Lamport. 2006b. Fast Paxos. Distributed Computing, 19(2): 79–103. DOI: 10.1007/s00446-
006-0005-x. 161

L. Lamport. 2006. Measuring celebrity. Annals of Improbable Research, pp. 14–15. 165

L. Lamport. 2009. The PlusCal algorithm language. In M. Leucker and C. Morgan (eds.),
Theoretical Aspects of Computing, volume 5684 of Lecture Notes in Computer Science,
pp. 36–60. Springer. DOI: 10.1007/978-3-642-03466-4_2. 10, 120, 159

L. Lamport. 2011. Byzantizing Paxos by refinement. In D. Peleg, editor, Distributed Computing
- 25th International Symposium, volume 6950 of Lecture Notes in Computer Science, pp.
211–224. Springer. 127, 162

L. Lamport. 2012. Buridan’s principle. Foundations of Physics, 42(8): 1056–1066. DOI:
10.1007/s10701-012-9647-7. 142

L. Lamport. 2012. How to write a 21st century proof. Journal of Fixed Point Theory and
Applications, March 6, 2012. DOI: 10.1007/s11784-012-0071-6. 163

L. Lamport. 2014. TLA+2: A preliminary guide.

L. Lamport. 2015. The TLA+ hyperbook. 115

L. Lamport. 2015a. Turing lecture: The computer science of concurrency: the early years.
Commun. ACM, 58(6): 71–76. DOI: 10.1145/2771951.

L. Lamport. 2018. The TLA+ video course. 115

L. Lamport. August 2018b. Personal communication (email). 131, 132

L. Lamport. 2018c. Personal communication (email), 9 October 2018. 152

L. Lamport. 2019. TLA+ tools. http://lamport.azurewebsites.net/tla/tools.html; last retrieved
11 February 2019. 160

L. Lamport and R. Levin. 2016. Lamport, Leslie. Oral history, part 1. https://www
.computerhistory.org/collections/catalog/102717182. 2, 132, 133, 134, 135, 136,
137, 138, 139, 141, 142, 146, 148, 149, 159, 163

L. Lamport and R. Levin. 2016. Lamport, Leslie. Oral history, part 2. https://www
.computerhistory.org/collections/catalog/102717246. 169

L. Lamport, D. Malkhi, and L. Zhou. 2009a. Vertical Paxos and primary-backup replication.
In S. Tirthapura and L. Alvisi (eds.), Proceedings of the 28th Annual ACM Symposium
on Principles of Distributed Computing, pp. 312–313. ACM. DOI: 10.1145/1582716
.1582783. 9, 101, 162

L. Lamport, D. Malkhi, and L. Zhou. April 2009b. Stoppable Paxos. 162

L. Lamport, D. Malkhi, and L. Zhou. 2010. Reconfiguring a state machine. SIGACT News,
41(1): 63–73. DOI: 10.1145/1753171.1753191. 9, 102, 162

L. Lamport and M. Massa. 2004. Cheap Paxos. In 2004 International Conference on Dependable
Systems and Networks, pp. 307–314. IEEE Computer Society. 9, 101, 161

L. Lamport, J. Matthews, M. R. Tuttle, and Y. Yu. 2002. Specifying and verifying systems with
TLA+. In G. Muller and E. Jul (eds.), Proceedings of the 10th ACM SIGOPS European
Workshop, pp. 45–48. ACM. 153, 154, 157

http://dx.doi.org/10.1007/s00446-006-0005-x
http://dx.doi.org/10.1007/s00446-006-0005-x
http://dx.doi.org/10.1007/978-3-642-03466-4_2
http://dx.doi.org/10.1007/s10701-012-9647-7
http://dx.doi.org/10.1007/s11784-012-0071-6
http://dx.doi.org/10.1145/2771951
http://lamport.azurewebsites.net/tla/tools.html
https://www.computerhistory.org/collections/catalog/102717182
https://www.computerhistory.org/collections/catalog/102717182
https://www.computerhistory.org/collections/catalog/102717246
https://www.computerhistory.org/collections/catalog/102717246
http://dx.doi.org/10.1145/1582716.1582783
http://dx.doi.org/10.1145/1582716.1582783
http://dx.doi.org/10.1145/1753171.1753191

References 329

L. Lamport and P. M. Melliar-Smith. 1985. Synchronizing clocks in the presence of faults. J.
ACM, 32(1): 52–78. DOI: 10.1145/2455.2457. 8, 76

L. Lamport and S. Merz. 2017. Auxiliary variables in TLA+. CoRR, abs/1703.05121. 113

L. Lamport and L. C. Paulson. 1999. Should your specification language be typed? ACM
Trans. Program. Lang. Syst., 21(3): 502–526. DOI: 10.1145/319301.319317. 116

L. Lamport, R. E. Shostak, and M. C. Pease. 1982. The Byzantine generals problem. ACM
Trans. Program. Lang. Syst., 4(3): 382–401. DOI: 10.1145/357172.357176. 7, 8, 67, 68,
69, 70, 72, 73, 75, 76, 105, 141, 163

L. Lamport. 1972. The Analytic Cauchy Problem with Singular Data. Ph.D. thesis, Brandeis
University.

B. W. Lampson. 1996. How to build a highly available system using consensus. In Workshop
on Distributed Algorithms (WDAG), pp. 1–17. Springer. DOI: 10.1007/3-540-61769-8_1.
9

B. W. Lampson. 2018. Personal communication (email). 139, 140, 149, 150, 167

B. W. Lampson and H. E. Sturgis. 1979. Crash recovery in a distributed storage system.
Unpublished manuscript. 162, 167

D. Langworthy. 2005. Personal communication (email). 158

The LaTEX Project. 2019. https://www.latex-project.org/; last retrieved 6 May 2019. 145

E. K. Lee and C. A. Thekkath. 1996. Petal: Distributed virtual disks. In ACM SIGPLAN Notices,
volume 31, pp. 84–92. ACM. DOI: 10.1145/248209.237157. 100, 149

K. R. M. Leino. 2010. Dafny: An automatic program verifier for functional correctness.
In E. M. Clarke and A. Voronkov (eds.), 16th International Conference Logic for
Programming, Artificial Intelligence, and Reasoning, volume 6355 of Lecture Notes in
Computer Science, pp. 348–370. Springer. DOI: 10.1007/978-3-642-17511-4_20. 128

O. Lichtenstein and A. Pnueli. 1985. Checking that finite state concurrent programs satisfy
their linear specification. In M. S. V. Deusen, Z. Galil, and B. K. Reid (eds.), Proceedings
Twelfth Ann. ACM Symposium Princ. Prog. Lang. (POPL 1985), pp. 97–107. ACM. DOI:
10.1145/318593.318622. 124

R. Lipton and J. Sandberg. 1988. PRAM: A scalable shared memory. Technical Report
CS-TR-180-88, Computer Science Department, Princeton University. 46

B. Liskov and J. Cowling. 2012. Viewstamped replication revisited. 2012. 54

B. Liskov and R. Ladin. 1986. Highly available distributed services and fault-tolerant
distributed garbage collection. In Proceedings of the Fifth Annual ACM Symposium
on Principles of Distributed Computing, PODC ’86, pp. 29–39. ACM. DOI: 10.1145/
10590.10593. 53

W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. 2011. Don’t settle for eventual:
Scalable causal consistency for wide-area storage with COPS. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles, SOSP ’11, pp. 401–416,
New York, NY. ACM. DOI: 10.1145/2043556.2043593. 53

http://dx.doi.org/10.1145/2455.2457
http://dx.doi.org/10.1145/319301.319317
http://dx.doi.org/10.1145/357172.357176
http://dx.doi.org/10.1007/3-540-61769-8_1
https://www.latex-project.org/
http://dx.doi.org/10.1145/248209.237157
http://dx.doi.org/10.1007/978-3-642-17511-4_20
http://dx.doi.org/10.1145/318593.318622
http://dx.doi.org/10.1145/10590.10593
http://dx.doi.org/10.1145/10590.10593
http://dx.doi.org/10.1145/2043556.2043593

330 References

W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. 2013. Stronger semantics for
low-latency geo-replicated storage. In 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 13), pp. 313–328. USENIX. 53

N. A. Lynch. 1996. Distributed Algorithms. Morgan Kaufmann, San Francisco. 76

D. Malkhi. 2018. Personal communication (recorded conversatino). 168

F. Mattern. 1989. Virtual time and global states of distributed systems. In M. Cosnard et al.
(eds.), Proceedings of the International Workshop on Parallel Algorithms. Elsevier. 53,
64

K. McMillan. 1993. Symbolic Model Checking. Kluwer Academic Publishers. 123

R. C. Merkle. 1980. Protocols for public key cryptosystems. In Proceedings IEEE Symposium
on Security and Privacy, pp. 122–134. DOI: 10.1109/SP.1980.10006. 80

S. Merz. 1999. A more complete TLA. In J. Wing, J. Woodcock, and J. Davies (eds.), FM’99:
World Congress on Formal Methods, volume 1709 of Lecture Notes in Computer Science,
pp. 1226–1244. Springer. DOI: 10.1007/3-540-48118-4_15. 110

S. Merz. 2008. The specification language TLA+. In D. Bjørner and M. C. Henson (eds.),
Logics of Specification Languages, Monographs in Theoretical Computer Science, pp.
401–451. Springer, Berlin-Heidelberg. DOI: 10.1007/978-3-540-74107-7_8. 115, 160

S. Merz. July 2018. Personal communication (email). 167

Microsoft Research. 2019. TLA+ Proof System. https://tla.msr-inria.inria.fr/tlaps/content/
Home.html; last retrieved 11 February 2019. 159

D. Milojicic. 2002. A discussion with Leslie Lamport. IEEE Distributed Systems Online 3, 8.
https://www.microsoft.com/en-us/research/publication/discussion-leslie-lamport/;
last retrieved 6 May 2019. 161

H. Minkowski. 2017. Translation:space and time—wikisource. [Online; accessed 15 March
2019]. 138

C. Morgan. 1990 Programming from specifications. Prentice Hall. 111

A. Mullery. December 1971. The distributed control of multiple copies of data. Technical
Report RC 3642, IBM, Yorktown Heights, New York. 83

M. Naor and M. Yung. 1989. Universal one-way hash functions and their cryptographic
applications. In Proceedings Symposium on Theory of Computing (STOC), pp. 33–43.
DOI: 10.1145/73007.73011. 80

National Institute of Standards and Technology. 2018. Post-quantum cryptography. Available
at https://csrc.nist.gov/projects/post-quantum-cryptography/. 81

C. Newcombe. 2012. Post on TLA+ discussion group. https://groups.google.com/
forum/#!searchin/tlaplus/professional$20career/tlaplus/ZJCi-UF31fc/
Mawvwi6U1CYJ 160

C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and M. Deardeuff. 2015. How
Amazon web services uses formal methods. CACM, 58(4): 66–73. DOI: 10.1145/
2699417. 128, 161

http://dx.doi.org/10.1109/SP.1980.10006
http://dx.doi.org/10.1007/3-540-48118-4_15
http://dx.doi.org/10.1007/978-3-540-74107-7_8
https://tla.msr-inria.inria.fr/tlaps/content/Home.html
https://tla.msr-inria.inria.fr/tlaps/content/Home.html
https://www.microsoft.com/en-us/research/publication/discussion-leslie-lamport/
http://dx.doi.org/10.1145/73007.73011
https://csrc.nist.gov/projects/post-quantum-cryptography/
https://groups.google.com/forum/#!searchintlaplusprofessional$20careertlaplusZJCi-UF31fc	lMawv
https://groups.google.com/forum/#!searchintlaplusprofessional$20careertlaplusZJCi-UF31fc	lMawv
http://dx.doi.org/10.1145/2699417
http://dx.doi.org/10.1145/2699417

References 331

M. J. K. Nielsen. Titan system manual. http://www;hpl.hp.com/techreports/Compaq-DEC/
WRL-86-1.pdf, last retrieved 15 October 2018. 147

B. M. Oki and B. H. Liskov. 1988. Viewstamped replication: A new primary copy method
to support highly-available distributed systems. In Proceedings of the Seventh Annual
ACM Symposium on Principles of Distributed Computing, pp. 8–17, ACM. DOI: 10.1145/
62546.62549. 99, 149

D. Ongaro and J. Ousterhout. 2014. In search of an understandable consensus algorithm.
In Proceedings USENIX Annual Technical Conference ATC. 54, 100

S. S. Owicki and D. Gries. 1976 Verifying properties of parallel programs: An axiomatic
approach. Commun. ACM, 19(5): 279–285. DOI: 10.1145/360051.360224. 30, 44

S. S. Owicki and L. Lamport. Proving liveness properties of concurrent programs. ACM Trans.
Program. Lang. Syst., 4(3): 455–495, 1982. DOI: 10.1145/357172.357178. 106, 107, 108

D. S. Parker, G. J. Popek, G. Rudisin, A. Stoughton, B. J. Walker, E. Walton, J. M. Chow,
D. Edwards, S. Kiser, and C. Kline. 1983. Detection of mutual inconsistency in
distributed systems. IEEE Transactions on Software Engineering, (3): 240–247. DOI:
10.1109/TSE.1983.236733. 53

L. C. Paulson. 1994. Isabelle: A Generic Theorem Prover, volume 828 of Lecture Notes in
Computer Science. Springer Verlag, Berlin, Heidelberg. See also the Isabelle home
page at http://isabelle.in.tum.de/. 126

M. C. Pease, R. E. Shostak, and L. Lamport. 1980. Reaching agreement in the presence of
faults. J. ACM, 27(2): 228–234. DOI: 10.1145/322186.322188. 7, 8, 67, 68, 75, 141, 163

A. Pnueli. 1977. The temporal logic of programs. In Proceedings 18th Annual Symposium on
the Foundations of Computer Science, pp. 46–57. IEEE. DOI: 10.1109/SFCS.1977.32.
105

R. Prakash and M. Singhal. 1996. Low-cost checkpointing and failure recovery in mobile
computing systems. IEEE Transactions on Parallel and Distributed Systems, 7(10):1035–
1048. DOI: 10.1109/71.539735. 64

A. N. Prior. 1967. Past, Present and Future. Clarendon Press, Oxford, U.K. 105

Riak. Riak KV. http://basho.com/products/riak-kv. 53

R. L. Rivest, A. Shamir, and L. M. Adleman. 1978. A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM, 21(2): 120–126. DOI: 10.1145/359340
.359342. 80

T. R. Rodeheffer. 2018. Personal communication (recorded conversation and follow-up
email), 9 October 2018 and 11 February 2019. 167

J. Rompel. 1990. One-way functions are necessary and sufficient for secure signatures. In Pro-
ceedings Symposium on Theory of Computing (STOC), pp. 387–394. DOI: 10.1145/100216
.100269. 80

J. H. Saltzer, D. P. Reed, and D. D. Clark. November 1984. End-to-end arguments in system
design. ACM Trans. Comput. Syst., 2(4): 277–288. DOI: 10.1145/357401.357402. 86

http://www;hpl.hp.com/techreports/Compaq-DEC/WRL-86-1.pdf
http://www;hpl.hp.com/techreports/Compaq-DEC/WRL-86-1.pdf
http://dx.doi.org/10.1145/62546.62549
http://dx.doi.org/10.1145/62546.62549
http://dx.doi.org/10.1145/360051.360224
http://dx.doi.org/10.1145/357172.357178
http://dx.doi.org/10.1109/TSE.1983.236733
http://isabelle.in.tum.de/
http://dx.doi.org/10.1145/322186.322188
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1109/71.539735
http://basho.com/products/riak-kv
http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1145/100216.100269
http://dx.doi.org/10.1145/100216.100269
http://dx.doi.org/10.1145/357401.357402

332 References

M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H. Siegel, and D. C. Steere. 1990.
Coda: A highly available file system for a distributed workstation environment. IEEE
Transactions on Computers, 39(4): 447–459. DOI: 10.1109/12.54838. 53

F. B. Schmuck. 1988. The use of efficient broadcast protocols in asynchronous distributed
systems. Ph.D. thesis, Cornell University. 53

F. Schneider. August 2018. Personal communication (email). 166

F. B. Schneider. 1982. Synchronization in distributed programs. ACM Trans. Program. Lang.
Syst., 4(2): 125–148. DOI: 10.1145/357162.357163. 139

F. B. Schneider. December 1990. Implementing fault-tolerant services using the state
machine approach: A tutorial. ACM Comput. Surv., 22(4): 299–319. DOI: 10.1145/
98163.98167. 86, 139

R. L. Schwartz, P. M. Melliar-Smith, and F. H. Vogt. 1984. An interval-based temporal logic.
In E. M. Clarke and D. Kozen (eds.), In Proceedings Logics of Programs, volume 164 of
Lecture Notes in Computer Science, pp. 443–457. Springer. 106

R. Shostak. July 2018. Personal communication (email), 6–8. 140

A. K. Singh, J. H. Anderson, and M. G. Gouda. 1994. The elusive atomic register. J. ACM,
41(2): 311–339. 37

J. M. Spivey. 1992. The Z Notation: A Reference Manual. International Series in Computer
Science. Prentice Hall, 2nd edition. 115

M. Suda and C. Weidenbach. 2012. A PLTL-prover based on labelled superposition with
partial model guidance. In B. Gramlich, D. Miller, and U. Sattler (eds.), 6th
International Joint Conference Automated Reasoning (IJCAR 2012), volume 7364 of
LNCS, pp. 537–543. Springer. DOI: 10.1007/978-3-642-31365-3_42. 126

D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer, and C. Hauser. 1995. Managing
update conflicts in Bayou, a weakly connected replicated storage system. In In
Proceedings of the Fifteenth ACM Symposium on Operating Systems Principles, pp.
172–183. DOI: 10.1145/224057.224070. 53

A. Valmari. June 1990. A stubborn attack on state explosion. In 2nd International Wsh.
Computer Aided Verification, volume 531 of LNCS, pp. 156–165, Rutgers. Springer.
DOI: 10.1007/BF00709154. 127

R. van Renesse and F. B. Schneider. 2004. Chain replication for supporting high throughput
and availability. In Proceedings of the 6th Conference on Symposium on Operating
Systems Design & Implementation. USENIX Association. 84, 101

K. Vidyasankar. 1988. Converting Lamport’s regular register to atomic register. Inf. Process.
Lett., 28(6): 287–290. DOI: 10.1016/0020-0190(88)90175-5. 39

P. M. B. Vitányi and B. Awerbuch. 1986. Atomic shared register access by asynchronous
hardware (detailed abstract). In 27th Annual Symposium on Foundations of Computer
Science, pp. 233–243. 40

W. Vogels. 2009. Eventually consistent. Commun. ACM, 52(1): 40–44. DOI: 10.1145/1435417
.1435432. 83

http://dx.doi.org/10.1109/12.54838
http://dx.doi.org/10.1145/357162.357163
http://dx.doi.org/10.1145/98163.98167
http://dx.doi.org/10.1145/98163.98167
http://dx.doi.org/10.1007/978-3-642-31365-3_42
http://dx.doi.org/10.1145/224057.224070
http://dx.doi.org/10.1007/BF00709154
http://dx.doi.org/10.1016/0020-0190(88)90175-5
http://dx.doi.org/10.1145/1435417.1435432
http://dx.doi.org/10.1145/1435417.1435432

References 333

P. Voldemort. Voldemort. https://www.project-voldemort.com/voldemort. 53

S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn. 2006. Ceph: A scalable,
high-performance distributed file system. pp. 307–320. 100

J. H. Wensley, L. Lamport, J. Goldberg, M. W. Green, K. N. Levitt, P. M. Melliar-Smith, R. E.
Shostak, and C. B. Weinstock. 1978. Sift: Design and analysis of a fault-tolerant
computer for aircraft control. Proceedings of the IEEE, 66(10): 1240–1255. DOI:
10.1109/PROC.1978.11114. 140, 164

J. H. Wensley, L. Lamport, J. Goldberg, M. W. Green, K. N. Levitt, P. M. Melliar-Smith, R. E.
Shostak, and C. B. Weinstock. 1978. Synchronizing clocks in the presence of faults.
Proceedings of the IEEE, 66(10): 1240–1255. 67

Wikipedia contributors. 2018a. Bravo (software)—Wikipedia, the free encyclopedia. https://
en.wikipedia.org/w/index.php?title=Bravo_(software). [Online; accessed 25 February
2019]. 143

Wikipedia contributors. 2018b. Eckhard Pfeiffer—Wikipedia, the free encyclopedia. https://
en.wikipedia.org/w/index.php?title=Eckhard_Pfeiffer, 2018. [Online; accessed 26
February 2019]. 155

Wikipedia contributors. 2018c. Scribe (markup language)—Wikipedia, the free encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Scribe_(markup_language), 2018.
[Online; accessed 25 February 2019]. 143

Wikipedia contributors. 2018d. UNIVAC—Wikipedia, the free encyclopedia. https://en.
wikipedia.org/w/index.php?title=UNIVAC, 2018. [Online; accessed 24 February-
2019]. 132

Wikipedia contributors. 2019a 1973 oil crisis—Wikipedia, the free encyclopedia. https://
en.wikipedia.org/w/index.php?title=1973_oil_crisis. [Online; accessed 25 February
2019]. 140

Wikipedia contributors. 2019b. DEC Alpha—Wikipedia, the free encyclopedia. https://en
.wikipedia.org/w/index.php?title=DEC_Alpha. [Online; accessed 25 February 2019].
152

Wikipedia contributors. 2019c. Illiac—Wikipedia, the free encyclopedia. https://en
.wikipedia.org/w/index.php?title=ILLIAC. [Online; accessed 25 February 2019]. 135

Wikipedia contributors. 2019d TeX—Wikipedia, the free encyclopedia. https://en.wikipedia
.org/w/index.php?title=TeX. [Online; accessed 25 February 2019]. 144, 145

Y. Yu. August 2018. Personal communication (recorded conversation). 153, 166

M. Zawirski, N. Preguiça, S. Duarte, A. Bieniusa, V. Balegas, and M. Shapiro. 2015. Write fast,
read in the past: Causal consistency for client-side applications. In Proceedings of the
16th Annual Middleware Conference, pp. 75–87. ACM. DOI: 10.1145/2814576.2814733.
53

L. Zhou. 2 August 2018. Personal communication (email). 165

G. Ziegler. January 2000. How (La)TEX changed the face of mathematics: An e-interview with
Leslie Lamport, the author of LaTEX. Mitteilungen der Deutschen Mathematiker-
Vereinigung, pp. 49–51. Personal communication (email), 2 August 2018. 145

https://www.project-voldemort.com/voldemort
http://dx.doi.org/10.1109/PROC.1978.11114
https://en.wikipedia.org/w/index.php?title=Bravo_(software)
https://en.wikipedia.org/w/index.php?title=Bravo_(software)
https://en.wikipedia.org/w/index.php?title=Eckhard_Pfeiffer
https://en.wikipedia.org/w/index.php?title=Eckhard_Pfeiffer
https://en.wikipedia.org/w/index.php?title=Scribe_(markup_language)
https://en.wikipedia.org/w/index.php?title=UNIVAC
https://en.wikipedia.org/w/index.php?title=UNIVAC
https://en.wikipedia.org/w/index.php?title=1973_oil_crisis
https://en.wikipedia.org/w/index.php?title=1973_oil_crisis
https://en.wikipedia.org/w/index.php?title=DEC_Alpha
https://en.wikipedia.org/w/index.php?title=DEC_Alpha
https://en.wikipedia.org/w/index.php?title=ILLIAC
https://en.wikipedia.org/w/index.php?title=ILLIAC
https://en.wikipedia.org/w/index.php?title=TeX
https://en.wikipedia.org/w/index.php?title=TeX
http://dx.doi.org/10.1145/2814576.2814733

Index

Footnotes are indicated by an ‘n.’

Abadi, Martin, 10, 114
Abortion safe behavior, 254
Acceptors, 96
Active replication, 85
Admissible executions, 31–32, 34
Agreement. See also Consensus

problem, 7–8, 68–81
property, 75, 86
protocols, 161–162

Airplane flight control system, 7, 67, 140
Almost-Asynchrony benign system model,

87
Alpha architecture, 151–152
AmazonWeb Services, 128
Anomalous behavior, 189–191
Antoniadis, Karolos, 343
APL language, 135n
Arbiter problem, 142, 243
Arbiters, 20–22
Armstrong, Susan, 170
Array processing computer, 135
Assembly language programming, 133
Asynchronous consensus protocols, 89–96
Asynchronous systems, 54, 59, 69
Asynchrony benign system model, 87
Atomicity, 4–5, 29–30, 38, 120–121
Attiya, Hagit, 343–344
Auxiliary variables, 113

Averaging time values, 77
Avionics control system, 7, 67, 140

Bakery algorithm, 1–5, 15–17, 29–36,
136–137

Ballots, 96, 282–287
Basic protocol, 282, 290–291, 307–311
Batson, Brannon, 160
Behaviors, 107
Ben-Or consensus protocol, 90–93
Boolean function, 265
Branching-time temporal logics, 106
Brandeis University, 134
Bravo system, 143
Breadth-first searches, 124
Broadcast primitives, 69
Broadcasts, 55, 69–74, 88–89, 92, 308
Bronx High School of Science, 131
Bureaucrats, 298–300
Bush, Vannevar, 131
Bussan, Mimi, 170
Byzantine agreement, 7–8, 68–81
Byzantine consensus, 70
Byzantine generals problem, 67–74, 203

C-Agreement property, 89
C-Completion property, 88–89
C-Validity property, 89

336 Index

Cachin, Christian, 40, 344
CAP theorem, 50
Castro-Liskov algorithm, 162
Causality, 49–52
Chain replication, 84
Chandy, Mani, 6, 143, 164–165
Cheap Paxos protocol, 101, 161
CISC (Complex Instruction Set Computers),

151–152
Clocks, 5–6, 51, 76–77, 182–185, 189–192
Closed systems, 114
Coalescing transformations, 126
Coherent cache behavior, 5
Commanders, 69
Commit protocols, 307
Communication links and paths, 54–55,

217–221
Communication variables, 240
Compaq Computer Company, 155
COMPASS years (1970–1977), 134–139
Completion property, 86
Complex Instruction Set Computers (CISC),

151–152
Composition, 113–114
Computer-based document production

systems, 143–144
Computer-building project, 132
Computer Science Lab (CSL), 140
Concurrency, 13–25, 41–43, 134, 143, 150,

156, 230, 232
Consensus, 71. See also Agreement

protocols, 88–89
Consistency, 39–40, 149
Consistent cuts, 24
Consolidated Edison, 133
ConstantCheck procedure, 56–57
Constants, 107
Control flow, 120
Correct processes, 68–70, 86
Counters, 137
Crash failures, 87–88
Critical sections, 3, 14, 16, 20–21, 30–

36, 174–177, 198–199, 235, 240,
249–259

Cryptography, 77–79
CSL (Computer Science Lab), 140
Cycles, 265

Deadlock Freedom property, 251, 263, 271
Deadlocks, 30–32, 64, 250–251, 268
DEC/Compaq years (1985–2001), 146–155
Decree-ordering property, 297
Diffie, W., 77–78, 140–141
Digital signatures, 71–74, 77–81
Dijkstra, Edsger, 2–4, 14–15, 18, 24–25, 143,

159
Dining philosophers problem, 3
Dishonest legislators, 302–303
Disk Paxos protocol, 100, 161
Distributed algorithms, introduction, 23–24
Distributed global state, 58–64
Distributed snapshots, 58–63, 143
Distributed state machine abstraction,

53–58
Dwork, Cynthia, 94
Dwork, Lynch, and Stockmeyer consensus

protocols, 94–96
Dynamic reconfiguration, 100–102

Early employment years, 133–134
Echo Distributed File System, 148
Eclipse platform, 160
Edsger W. Dijkstra Prize in Distributed

Computing, 8, 141
Education, 133–134
Effectively nonconcurrent operations, 238
Effectively precedes operations, 237
Either primitive, 120
Election prediction by computer, 132
Elementary operation executions, 234
Elements of cycles, 265
Ellis, Clarence, 84
Engberg, Urban, 151
EV6 multiprocessor, 152
EV7 multiprocessor, 153–154
EV8 multiprocessor, 154
Events, 19–20, 23–24, 47–52, 229–231
Eventually consistent databases, 83

Index 337

Existential forgery, 78
Exit conditions, 32, 250–251, 253
Exponential information gathering, 76

Fail-safe property, 256
Fail-stop failures, 88
Failure detection oracles, 88
Failure operation, 256
Fair keywords, 18
Fairness requirements, 251–253
Farsite project, 128
Fast Paxos protocol, 161
Fast reads, 304–306
Fault tolerance, 24–25, 58, 67–68, 137, 140
FCFS (first-come-first-served) condition,

252–253, 258, 269–273
FIFO communication links, 54
FIFO queues, 17–22, 44, 117–119, 122, 125
Firefly project, 147
First-come-first-served (FCFS) condition,

252–253, 258, 269–273
Fischer, Michael, 253
Flexible Paxos protocol, 162n
Floyd-Hoare style of reasoning, 128
Floyd’s method, 105
FLP result, 148n
Forged digital signatures, 79
Forget actions, 312
Formal specification and verification, 9–10,

103–105
impact, 127–129
PlusCal language, 119–122
TLA, 105–114
TLA+ language, 115–119
TLAPS system, 125–127
TLC, 123–125

FORTRAN compilers, 134–136
Foxboro Computers, 136n
Frangipani system, 149
Franken consensus, 94–95

Gafni, Eli, 161
Garbage collection paper, 143
Gharachorloo, Kourosh, 152

Gilkerson, Ellen, 170
Glitch, The, 142
Global state, 47–49, 58–64
Goldberg, Jack, 141
Google File System, 101
Graduate education, 134
Grain of atomicity, 120
Grant service operations, 239
Gray, Jim, 141, 162
Guerraoui, Rachid, 344
Guibas, Leo, 148
Guindon, Dick, 162

Happened before relations, 5, 181
Hellman, M. E., 77–78, 140–141
Hexagon argument, 8
Hiding internal state, 111–113
Hierarchical decomposition, 154
Higher-level operation, 42
Higher-level views, 233–234
History variables, 10, 113
Honest mistakes, 302–303
Honors, 163–165

IBM 705 computer, 133
ILLIAC IV computer, 135–136
Impossibility results, 72, 206–209
Information hiding, 112
Initial declaration, 250
Initial states, 86
Instantiation, 118–119
Interactive consistency, 69–71, 73
Interprocess communication, 234–239
Interrupts, 136n
Invariant predicates, 19
IronFleet project, 128

Jean-Claude Laprie Award in Dependable
Computing, 8

Johnson, James, 158
Johnson, Paul R., 50, 53, 137–138
Johnson, Samuel, 13

Keidar, Idit, 344

338 Index

Key generation, 78–80
Knuth, Donald, 144
Kuppe, Markus, 160

Ladkin, Peter, 148
Lamport, Leslie, biography

collegial influences, 165–169
COMPASS years (1970–1977), 134–139
DEC/Compaq years (1985–2001), 146–155
early years, 131–132
education and early employment, 133–

134
honors, 163–165
Microsoft years (2001–), 155–163
photo, 170–172
SRI years (1977–1985), 139–146

Lamport signatures, 68, 79–81
Lamport timestamps, 5, 51–52
Lampson, Butler, 139n, 143, 149n, 162n,

167
Langworthy, David, 158
Latest update wins replication technique,

83
LaTEX system, 11, 143–145
Leaders, 56–57, 96–98
Learning the law process, 300–302
Lee, Ed, 149
Legislator selection, 303–304
Levin, Roy, 155, 344
LICS Test-of-Time Award, 10
Lieutenants, 69
Linear-time temporal logics, 106
Linearizability, 5
Livelock freedom, 14
Liveness properties, 14, 104–105, 124, 127
Lockout Freedom Property, 251, 256
Lockouts, 31–32, 268
Logic TLA, 107–110
Logical clocks, 5–6, 51, 182–185
Logical time, 48–58
Logical timestamps, 5
Long ledgers, 298
Lord, Alison, 132
Lynch, Nancy, 94

Majority decisions, 76
Malfunction execution, 256
Malfunctioning behavior, 255
Malicious intelligence, 225
Malkhi, Dahlia, 161, 168, 343
Mann, Tim, 149
Marked graphs, 21–22
Marker messages, 60–62
Marlboro College, 134
Marzullo, Keith, 149, 159, 279
Massa, Mike, 161
Massachusetts Computer Associates

(COMPASS), 134–139
Mathematical results, 282–287
Mathematics, graduate education in, 134
May affect relations, 103
Median time values, 77
Melliar-Smith, Michael, 8
Memory Barrier (MB) instructions, 16–17
Memory consistency models, 5. See also

Shared memory
Merkle signature scheme, 80–81
Merz, Stephan, 167, 344–345
Metaphors, 2
Microsoft years (2001–), 155–163
MicroVAX line, 147
Milner, R., 25
Minimum delay of messages, 191
Minkowski, H., 138
Missing communication paths, 217–221
MIT, 133
MITRE Corporation, 134
Model checkers, 123–127
Modules, 116–119
Molnar, Charles, 142
Monotonicity condition, 300–302
Moore, J, 152
Multi-Paxos protocol, 9, 99
Multidecree parliament, 294–297
Multiple-reader variables, 242–243
MultiTitan multiprocessor, 147
Murphi model checker, 123
Mutual exclusion

Bakery algorithm, 30–32

Index 339

MultiTitan multiprocessor, 147
problem, 14–15
vs. producer-consumer synchronization,

20–21
proof, 16–17
real solution, 15–16
shared memory, 29–30
simplification of, 136
work on, 150

Mutual Exclusion Problem: Statement and
Solutions

abstract, 247
basic requirements, 249–251
conclusion, 273–275
failure, 254–258
fairness requirements, 251–253, 256
FCFS solutions, 269–273
introduction, 248
One-Bit Algorithm, 260–264
premature termination, 253–254
problem, 249–258
solutions, 258–273
Three-Bit Algorithm, 266–269

Mutual Exclusion Problem: Theory of
Interprocess Communication

abstract, 227–228
assumptions, 243–244
conclusion, 244
higher-level views, 233–234
interprocess communication, 234–

239
introduction, 228
model, 228–234
multiple-reader variables, 242–243
physical considerations, 229–231
processes, 239–241
system executions, 231–233

Mutual exclusion property, 249, 268
Mutual exclusion protocol, 259–260

N -Bit Algorithm, 270–273
N -process systems, 21
National Academy of Engineering honor,

164

National Institute of Standards and
Technology (NIST), 81

Neighbors, 217
New-old inversion behavior, 37
Newcombe, Chris, 128, 160
Next-time operator, 108
NIST (National Institute of Standards and

Technology), 81
Nodes, 48
Nonconcurrent operations, 238
Noncritical sections, 174, 235, 240, 256–257
Normal operation execution, 256

Oki, Brian, 149
One-Bit Algorithm, 260–264
One-time signatures, 68, 80–81
One-way functions, 79
Open systems, 114
Operation executions, 16–17, 22–23, 41–42,

231–233
Operators, 116–118
Ordered cycles, 265
Ordering events totally, 185–189
Ordering of decrees, 296–297
Owicki, Susan S., 106

p-regular graphs, 217
Palais, Richard, 142, 171
Parables, 2
Parallel composition, 113
Parallel computing. See Concurrency
Parallelism, 135–136
Partial correctness property, 10
Partial event ordering, 180–182
Passed decrees, 296
Passive replication, 85
Password authentication, 68
Paxos algorithm, 9, 148–150, 161–162, 164
Paxos protocol, 96–100
PC algorithm, 18–19
Pease, Marshall, 7–8, 140–141
Perfect communication links, 54
Petal system, 149
Petri nets, 22

340 Index

Ph.D. dissertation, 134
Physical clocks, 190–192
Physical considerations, 229–231
PlusCal language, 18, 119–122, 124, 159
Pnueli’s temporal logic, 105–106
Post-quantum cryptosystems, 81
Practical problems, 2
Precedes relations, 103
Preceding events, 230
Premature termination, 253–254
Presidential selection requirement, 293–

294, 297–298
Principles of Distributed Computing

Influential Paper Award, 6
Private variables, 240
Process fairness, 14
Process templates, 120
Processes

distributed systems, 48–49
mutual exclusion problem, 239–241

Producer-consumer synchronization, 17–
23, 121–122

Progress condition, 280
Prophecy variables, 10, 113
Proposed decrees, 296
Public-key cryptography, 77–78

Quantum-safe cryptosystems, 81
Quorums, 282

r-bounded waiting, 253
Random malfunctions, 225
Rashid, Rick, 155
Read command, 305–306
Read executions, 232–233
Read-only commands, 99
Reads, 304–306
Real-world problems, 2
Receive actions, 312, 314–315
Reduced Instruction Set Computers (RISC),

151–152
Refinement concept, 104–105, 111–112
Registers, 4–5, 35–43
Regular registers, 35

Reid, Brian, 143
Relativity, 138, 229
Release commands, 188
Reliable systems, 69, 221–225
Replicated state machines, introduction, 86
Request queues, 187–188
Request resources, 187–188
Request service operations, 239
RFC 677 database, 83–84
RISC (Reduced Instruction Set Computers),

151–152
Rodeheffer, Tom, 158–159, 167
Rounds, 91–95, 97–98
RSA cryptosystem, 80–81

Safe registers, 35, 43
Safety properties, 10, 14, 104–105, 127
Saxe, Jim, 152
Schneider, Fred, 86, 139, 166–167, 170
Schroeder, Mike, 149, 155
Scribe document production systems,

143–145
Secure digital signatures, 79
Self-stabilizing algorithms, 258, 263
Self-stabilizing multidecree parliament, 303
Send actions, 312, 315
Sender processes, 69
Sequential consistency, 5, 30, 44–46, 143,

197–198
Shared memory, 5, 29–46, 147
Shared registers, 4–5
Shared variables, 35–36
Shopkeeper math, 131
Shostak, Robert, 7–8, 141
Shutdown behavior, 254
Shutdown safe algorithms, 254
SIFT (Software Implemented Fault

Tolerance) project, 67, 140
Sign operation, 78–80
Signed messages, 213–216
SIGOPS Hall of Fame Award, 162
Simonyi, Charles, 143
Single-decree Synod, 281–294, 307–311
Slow reads, 304–306

Index 341

SMR (state machine replication) algorithm,
6, 54–58

SMTsolvers, 126
SMV model checker, 123
Software Implemented Fault Tolerance

(SIFT) project, 67, 140
Software specification, 135
Space-like planes, 230
Space-time diagrams, 181–183
Special relativity, 229
SPHINCS scheme, 81
Spin model checker, 123
SRI years (1977–1985), 139–146
Stable property, 64
Standard model, 15
Starvation, 31–32
State machine replication (SMR) algorithm,

54–58
State machine replication (SMR) paradigm,

6
State machine replication with benign

failures, 8–9, 83–84
active vs. passive replication, 85
asynchronous consensus protocols,

90–96
benign system models, 87–88
dynamic reconfiguration, 100–102
Paxos protocol, 96–100
protocol basics, 88–90
review, 85–87

State machines, 48, 304–307
Stockmeyer, Larry, 94
Stoppable Paxos protocol, 102
Strong Clock Condition, 189–191
Strong fairness, 106
Sturgis, Howard, 162n
Stuttering invariance, 115, 127–129
Stuttering steps, 105
Synchronization, 17–23, 69, 76–77, 87,

120–122, 188, 190
Synchronous consensus protocols, 89
System executions, 41–42, 231–233
System steps, 257
Systems, concurrency, 42

Systems Research Center (SRC), 146

T-Agreement property, 88
T-Completion property, 88
T-Validity property, 88
Taylor, Bob, 146, 155
Temporal logic of actions (TLA), 10, 105–

114, 150–151
Terminating executions, 233
TEX system, 144
TEX82 system, 144
Thekkath, Chandu, 149
Thomas, Robert, 50, 53, 137–138
Three-Bit Algorithm, 266–269
Ticket numbers, 15–16, 32–35
Time in distributed systems, 47–49
Timestamps, 5, 50–52, 54–57, 61, 137–138
TLA (temporal logic of actions), 10, 105–114,

150–151
TLA+ language, 115–127, 160–161
TLA+ specification, 152–153, 156–158
TLA+ Toolbox, 127, 159–160
TLAPS system, 116, 125–127, 159
TLC model checker, 123–125, 153–154, 156,

159–160
TLP tool, 151
Total correctness property, 10
Total delay of messages, 191
Total order of events, 51
Total ordering protocols, 88
Transient malfunctions, 256
Transition functions, 107–108
Trying statement, 250–252, 254, 257,

268–269, 271
Turing Award, 164
Turing machines, 48
Two-arrow model, 16–17, 22–23
Two generals paradox, 141
Two-phase commit case, 162
Typed languages, 115–116

Unannounced death behavior, 255
University of Illinois array processing

computer, 135

342 Index

Unobstructed exit conditions, 32
Unpredictable delay of messages, 191
Update command, 305–306

van Renesse, Robbert, 345
Vector clocks, 52–53
Verify operation, 78, 80
Version vectors, 53
Vertical Paxos protocol, 101, 161
Viewstamped replication (VR) protocol,

99–100
Vogt, Friedrich “Fritz,” 158

Wait-freedom condition, 4, 36–37
Weak fairness, 106
Weakening shared variables, 35–36
Web 2.0, 157
Web Services Atomic Transaction protocol,

128

Welch, Jennifer L., 345
Western Research Lab, 147
Whorfian syndrome, 159n
Wildfire multiprocessor system,

152
World line of point objects, 229
Writers, 40–41

XBox 360 memory system, 128
Xerox PARC, 139–140
XMSS scheme, 81

Yu, Yuan, 152–153, 166

Zambrovski, Simon, 160
Zenon tableau prover, 126
Zermelo-Fraenkel set theory with choice

(ZFC), 115
Zhou, Lidong, 161, 165

Biographies

Dahlia Malkhi

Dahlia Malkhi received her Ph.D., an M.Sc. and
a B.Sc. in computer science from the Hebrew
University of Jerusalem. She is currently a lead re-
searcher at Calibra. She is an ACM fellow (2011),
serves on the Simons Institute Advisory Board, on
the MIT Cryptocurrency Journal Advisory Board,
and on the editorial boards of the Distributed
Computing Journal. Her research career spans
between industrial research and academia: 2014–
2019, founding member and principal researcher
at VMware Research; 2004–2014, principal re-
searcher at Microsoft Research, Silicon Valley;

1999–2007, associate professor at the Hebrew University of Jerusalem; 1995–1999,
senior researcher, AT&T Labs-Research, New Jersey. She has research interest in
applied and foundational aspects of reliability and security in distributed systems.

Authors
Karolos Antoniadis is a Ph.D. candidate at EPFL under the supervision of Prof.
Rachid Guerraoui. He holds an MSc in Computer Science from ETH Zurich.

Hagit Attiya received the B.Sc. degree in Mathematics and Computer Science from
the Hebrew University of Jerusalem, in 1981, the M.Sc. and Ph.D. degrees in Com-
puter Science from the Hebrew University of Jerusalem, in 1983 and 1987, respec-
tively. She is a professor at the department of Computer Science at the Technion,
Israel Institute of Technology, and holds the Harry W. Labov and Charlotte Ullman
Labov Academic Chair. Before joining the Technion, she has been a post-doctoral

344 Biographies

research associate at the Laboratory for Computer Science at MIT. Her research in-
terests are in distributed and concurrent computing. She is the editor-in-chief of
Springer’s journal Distributed Computing and a fellow of the ACM.

Christian Cachin is a professor of computer science at the University of Bern, where
he leads the cryptology and data security research group since 2019. Before that he
worked for IBM Research—Zurich during more than 20 years. With a background
in cryptography, he is interested in all aspects of security in distributed systems,
particularly in cryptographic protocols, consistency, consensus, blockchains, and
cloud-computing security. He contributed to several IBM products, formulated se-
curity standards, and helped to create the Hyperledger Fabric blockchain platform.

Rachid Guerraoui received his Ph.D. from University of Orsay, and M.Sc from
University of Sorbonne, both in Computer Science. He is currently professor in
Computer Science at EPFL, Switzerland. His research interests are in the area of
distributed computing.

Idit Keidar received her BSc (summa cum laude), MSc (summa cum laude), and
Ph.D. from the Hebrew University of Jerusalem in 1992, 1994, and 1998, respec-
tively. She was a Postdoctoral Fellow at MIT’s Laboratory for Computer Science. She
is currently a Professor at the Technion’s Viterbi Faculty of Electrical Engineering,
where she holds the Lord Leonard Wolfson Academic Chair. She serves as the Head
of the Technion Rothschild Scholars Program for Excellence, and also heads the
EE Faculty’s EMET Excellence Program. Her research interests are in fault-tolerant
distributed and concurrent algorithms and systems, theory and practice. Recently,
she is mostly interested in distributed storage and concurrent data structures and
transactions.

Roy Levin is a retired Distinguished Engineer, Managing Director, and founder of
Microsoft Research Silicon Valley (2001–2014). Previously (1984–2001) he was a se-
nior researcher and later Director of the Digital/Compaq Systems Research Center
in Palo Alto, California. Before joining Digital, Levin was a researcher at Xerox’s Palo
Alto Research Center (1977–1984). His research focus was distributed computing
systems. Levin holds a Ph.D. in Computer Science from Carnegie-Mellon University
and a B.S. in Mathematics from Yale University. He is a Fellow of the Association
for Computing Machinery (ACM) and a former chair of Special Interest Group on
Operating Systems (SIGOPS).

Stephan Merz received his Ph.D. and habilitation in computer science from the
University of Munich, Germany. He is currently a senior researcher and the head of
science at Inria Nancy–Grand Est, France. His research interests are in formal veri-

Biographies 345

fication of distributed algorithms and systems using model checking and theorem
proving.

Robbert van Renesse received his Ph.D. in computer science, and an M.Sc. and a
B.Sc. in mathematics from the Vrije Universiteit Amsterdam. He is currently a Re-
search Professor at the Department of Computer Science at Cornell University and
is Associate Editor of ACM Computing Surveys. He is an ACM fellow (since 2009).
He was a researcher at AT&T Bell Labs in Murray Hill (1990) and served as Chair of
ACM SIGOPS (2015–2019). His research interests include reliable distributed sys-
tems and operating systems.

Jennifer L. Welch received her S.M. and Ph.D. from the Massachusetts Institute of
Technology and her B.A. from the University of Texas at Austin. She is currently
holder of the Chevron II Professorship and Regents Professorship in the Depart-
ment of Computer Science and Engineering at Texas A&M University, and is an
ACM Distinguished Member. Her research interests are in the theory of distributed
computing, algorithm analysis, distributed systems, mobile ad hoc networks, and
distributed data structures.

ACM Books is a series of high-quality books
published by ACM for the computer science
community. ACM Books publications are widely
distributed in print and digital formats by major
booksellers and are available to libraries and

library consortia. Individual ACM members may access ACM
Books publications via separate annual subscription.
BOOKS.ACM.ORG • WWW.MORGANCLAYPOOLPUBLISHERS.COM

ABOUT ACM BOOKS

This book is a celebration of Leslie Lamport’s work on concurrency, interwoven
in four-and-a-half decades of an evolving industry: from the introduction of the
first personal computer to an era when parallel and distributed multiprocessors
are abundant. His works lay formal foundations for concurrent computations
executed by interconnected computers. Some of the algorithms have become
standard engineering practice for fault tolerant distributed computing –
distributed systems that continue to function correctly despite failures of
individual components. He also developed a substantial body of work on the
formal specification and verification of concurrent systems, and has contributed
to the development of automated tools applying these methods.
 	 Part I consists of technical chapters of the book and a biography. The
technical chapters of this book present a retrospective on Lamport’s original
ideas from experts in the field. Through this lens, it portrays their long-lasting
impact. The chapters cover timeless notions Lamport introduced: the Bakery
algorithm, atomic shared registers and sequential consistency; causality
and logical time; Byzantine Agreement; state machine replication and Paxos;
temporal logic of actions (TLA). The professional biography tells of Lamport’s
career, providing the context in which his work arose and broke new grounds,
and discusses LaTeX – perhaps Lamport’s most influential contribution outside
the field of concurrency. This chapter gives a voice to the people behind the
achievements, notably Lamport himself, and additionally the colleagues around
him, who inspired, collaborated, and helped him drive worldwide impact. Part
II consists of a selection of Leslie Lamport’s most influential papers.
	 This book touches on a lifetime of contributions by Leslie Lamport to the
field of concurrency and on the extensive influence he had on people working
in the field. It will be of value to historians of science, and to researchers and
students who work in the area of concurrency and who are interested to read
about the work of one of the most influential researchers in this field.

	Contents
	Preface
	Photo and Text Credits
	Introduction
	The Computer Science of Concurrency: The Early Years
	PART I. TECHNICAL PERSPECTIVES ON LAMPORT’SWORK
	1. Shared Memory and the Bakery Algorithm
	2. The Notions of Time and Global State in a Distributed System
	3. Byzantine Faults
	4. State Machine Replication with Benign Failures
	5. Formal Specification and Verification
	6. Biography
	PART II. SELECTED PAPERS
	A New Solution of Dijkstra’s Concurrent Programming Problem
	Clocks, and the Ordering of Events in a Distributed System
	How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs
	The Byzantine Generals Problem
	The Mutual Exclusion Problem: Part I—A Theory of Interprocess Communication
	The Mutual Exclusion Problem: Part II—Statement and Solutions
	The Part-Time Parliament
	References
	Index
	Biographies
	Blank Page
	Blank Page

