
Defending IoT
Infrastructures
with the Raspberry Pi

Monitoring and Detecting Nefarious
Behavior in Real Time
—
Chet Hosmer

www.allitebooks.com

http://www.allitebooks.org

Defending IoT
Infrastructures with

the Raspberry Pi
Monitoring and Detecting

Nefarious Behavior in
Real Time

Chet Hosmer

www.allitebooks.com

http://www.allitebooks.org

Defending IoT Infrastructures with the Raspberry Pi: Monitoring and
Detecting Nefarious Behavior in Real Time

ISBN-13 (pbk): 978-1-4842-3699-4 ISBN-13 (electronic): 978-1-4842-3700-7
https://doi.org/10.1007/978-1-4842-3700-7

Library of Congress Control Number: 2018949207

Copyright © 2018 by Chet Hosmer

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Susan McDermott
Development Editor: Laura Berendson
Coordinating Editor: Rita Fernando

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484236994. For
more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Chet Hosmer
Longs, South Carolina, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3700-7
http://www.allitebooks.org

To my wife Janet; your love and guidance make
the journey complete.

www.allitebooks.com

http://www.allitebooks.org

v

Table of Contents

Chapter 1: IoT Vulnerabilities ���1

Why Is IoT Vulnerable? ��2

Device-to-Device Communication ���4

Device-to-Cloud Communications ���4

Device-to-Gateway Sensor Network Communications ������������������������������������5

Moving Beyond the Basics ��9

What Unique Vulnerabilities Lurk Within IoT Devices? ����������������������������������10

What Are the Common IoT Attack Vectors? ���11

How Do the Raspberry Pi and Python Fit In? ��12

Raspberry Pi Brief Introduction ���12

Summary���15

Chapter 2: Classifying and Modeling IoT Behavior ����������������������������17

What Should We Collect? ��19

Ethernet Packet Format ���21

ARP ��23

IP Packets ��24

TCP Packets ���25

About the Author ���ix

About the Technical Reviewer ���xi

Acknowledgments ���xiii

Introduction ��xv

www.allitebooks.com

http://www.allitebooks.org

vi

UDP Packet ��26

ICMP Packet ��27

Passively Monitoring IoT Behavior ��27

Modeling Normal Behavior ��27

How Can This Be Accomplished on a Raspberry Pi with Python? �����������������30

Summary���46

Chapter 3: Raspberry Pi Configuration and PacketRecorder�py
Enhancements ��47

Basic Configuration (as of This Writing) ��48

Get Information About the Pi CPU ��49

Get Information Regarding Pi Memory ��51

Get Information Regarding the Current Free Memory Only ���������������������������52

Get Information Regarding Pi Filesystem ��53

Get Information Regarding USB Devices and Interfaces �������������������������������53

Get Information About the Version of Linux ���54

Upgrading Your Pi ��55

Advancing PacketRecorder�py ���56

Step 1: Creating the Lookups ��58

Ports Dictionary Creating Example ��59

Utilizing the Pickle Files in PacketRecorder�py ��63

Executing the Updated PacketRecorder�py ��69

Summary���71

Chapter 4: Raspberry Pi as a Sensor ��73

Turning the Packet Recorder into a Sensor ���73

Raspberry Pi Sensor/Recorder Design ��74

Design Overview ��75

Summary���127

Table of ConTenTsTable of ConTenTs

vii

Chapter 5: Operating the Raspberry Pi Sensor ���������������������������������129

Raspberry Pi Setup ���129

Connecting the Raspberry Pi ���131

Switch Configuration for Packet Capture ��131

Running the Python Application ���134

Creating a Baseline ���136

Summary���149

Chapter 6: Adding Finishing Touches ���151

Raspberry Pi Latest Version ��151

Sensor Software Updates ��153

Summary���159

Chapter 7: Future Work���161

Expansion of Lookup Tables ��161

Port Lookups ��161

Manufacturer Lookup ��162

Country Lookup ���162

Implementation of User Searches and Filtering of Scan Result ������������������������163

Headless Communication with Remotely Deployed Pi Sensors ������������������������163

Correlation of Results from a Swarm of Pi Sensors ��166

Raspberry Pi Sensor: Executing the Sensor on Your Raspberry Pi ��������������������167

Summary���167

 Appendix A: Obtaining the Python Source Code �������������������������������169

 Obtaining the Source Code ���169

 Source Code Copyright and Licensing ��170

 Glossary ��171

Index ���175

Table of ConTenTsTable of ConTenTs

ix

About the Author

Chet Hosmer is the Founder of Python

Forensics, Inc., a nonprofit organization

focused on the collaborative development of

open source investigative technologies using

the Python programming language. Chet has

been researching and developing technology

and training surrounding forensics, digital

investigation, and steganography for over two

decades. He has made numerous appearances

to discuss emerging cyberthreats, including National Public Radio’s

Kojo Nnamdi Show, ABC’s Primetime Thursday, NHK Japan, TechTV’s

CyberCrime and ABC News Australia. He has also been a frequent

contributor to technical and news stories relating to cybersecurity and

forensics and has been interviewed and quoted by IEEE, The New York

Times, The Washington Post, Government Computer News, Salon.com, and

Wired Magazine.

Chet has authored five books within the cybersecurity domain, ranging

from data hiding to forensics.

Chet serves as a visiting professor at Utica College in the Cybersecurity

Graduate Program. He is also an adjunct faculty member at Champlain

College in the Digital Forensic Science Program Masters Program.

Chet delivers keynote and plenary talks on various cybersecurity-

related topics around the world each year.

xi

About the Technical Reviewer

Michael T. Raggo

Chief Security Officer, 802 Secure (CISSP,

NSA-IAM, ACE, CSI) has over 20 years of

security research experience. His current

focus is wireless IoT threats impacting the

enterprise. Michael is the author of Mobile

Data Loss: Threats and Countermeasures and

Data Hiding: Exposing Concealed Data in

Multimedia, Operating Systems, Mobile Devices

and Network Protocols for Syngress Books,

and contributing author for Information Security: The Complete Reference

(2nd edition). A former security trainer, Michael has briefed international

defense agencies including the FBI and Pentagon, is a participating

member of FSISAC/BITS and PCI, and is a frequent presenter at security

conferences, including Black Hat, DEF CON, Gartner, RSA, DoD Cyber

Crime, OWASP, HackCon, and SANS.

xiii

Acknowledgments

A special thanks to Mike Raggo for his insight and encouragement

throughout this process. Thank you for championing this project from the

beginning and testing every version of the Pi sensor along the way. Your

guidance, your friendship, and your quest to improve security and safety

are inspiring.

Thanks to Carlton Jeffcoat and Cameron Covington at WetStone for

deploying the sensor in live environments to passively map potential

vulnerabilities and for providing insights to make the sensor even better.

Thanks to the Utica College cybersecurity graduate students who have

experimented with the earliest to the final versions of PiSensor and have

provided excellent feedback.

Thanks to Rita Fernando, Laura Berendson, Susan McDermott, and the

whole team at Apress for your incredible patience throughout this process

and for your constant encouragement.

xv

Introduction

The Internet of Things (IoT) and industrial control systems (ICS) require

special attention from a cybersecurity point of view. This is based on the

well-known and -documented fact that the protocols and implementations

have vulnerabilities that when exploited can produce considerable

damage and provide an avenue for the exfiltration of data.

In addition, when examining these environments due to the dynamic

nature and/or critical infrastructure implications, active scanning or

probing of these environments is either discouraged or ineffective. Thus,

passive monitoring of these environments offers insights into the behavior

of these devices and the networks in which they operate. One of the core

issues is the placement of the monitoring devices to provide visibility and

coverage from both the wired and wireless points of view. There are vendor

solutions that are offered today that rely on expensive hardware and

software solutions that may lack flexibility.

Using a Raspberry Pi and open source Python software to passively

monitor, detect, baseline, and provide insight into these behaviors has

been called “crazy” by some. However, as you will see, the Raspberry

Pi itself, with its multicore processor and integrated wired and wireless

network components, provides the basic underpinnings necessary for a

lightweight IoT/ICS sensor for less than $50.00. Couple that with an open

source extensible Python software solution that dynamically reduces and

records the most pertinent observations, and you have a low-cost, flexible,

and nimble PiSensor for IoT and ICS environments.

1© Chet Hosmer 2018
C. Hosmer, Defending IoT Infrastructures with the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-3700-7_1

CHAPTER 1

IoT Vulnerabilities
The Internet of Things (IoT) is a network of processing devices with unique

identities that can connect to and transfer data over a network without

requiring direct human interaction (see Figure 1-1). In many cases this

makes the devices themselves autonomous or semiautonomous. They

can be controlled, managed, and programmed to follow specific rules of

engagement.

Figure 1-1. IoT interconnected

The breadth of devices that currently exist as of this writing include the

following:

• Health and Fitness Monitoring

• Manufacturing Systems

• Energy Metering

2

• Hospital and Patient Care

• Smart Appliances and Lighting

• Enhanced Surveillance Systems

• Entertainment

• Home Automation and Security

• Multifunction Wearable Technologies

• Automotive

• Tracking Systems

• Personal Communications

• Along with new categories emerging every day

Note The focus of this book and the accompanying source code is
to observe, learn, model, and detect aberrant behavior of IoT devices
using the Raspberry Pi as a sensor.

 Why Is IoT Vulnerable?
When considering vulnerabilities of IoT devices and networks, we must first

define the overall attack surface. If you believe Gartner’s prediction (Gartner

Research, 2017) that 25.1 billion IoT endpoints will exist by the year 20211,

then this would certainly define a large attack surface. Many of these devices

are also interconnected and operating across boundaries of consumers,

business, industry, and government, without geographic restrictions.

1 Gartner: Forecast: Internet of Things – Endpoints and Associated
Services, Worldwide 2017. www.gartner.com/doc/3840665/
forecast-internet-things--endpoints.

ChaPTeR 1 IoT VulneRabIlITIes

http://www.gartner.com/doc/3840665/forecast-internet-thingsDOUBLEHYPHENendpoints
http://www.gartner.com/doc/3840665/forecast-internet-thingsDOUBLEHYPHENendpoints

3

Deployment options for IoT differ widely depending upon their

application, industry, and defined use. However, we can generally classify

IoT deployments in one of three ways: device to device, device to cloud, or

device to gateway, as shown in Figures 1-2, 1-3, and 1-4.

Figure 1-2. Device-to-device communication model

ChaPTeR 1 IoT VulneRabIlITIes

4

 Device-to-Device Communication
This simple model depicts devices that directly discover, connect, and

communicate using the locally available networks. The communication

can be through traditional TCP (Transaction Control Protocol)/UDP (User

Datagram Protocol)/IP (Internet Protocol) networks; however, in many

cases, they communicate over low-power or wireless networks such as

Bluetooth, Z-Wave, ZigBee, and Universal Plug and Play (uPnP).

Figure 1-3. Device-to-cloud communication

 Device-to-Cloud Communications
IoT devices using this method connect directly to an Internet-based cloud

service to exchange data and control messages. This method typically

utilizes traditional protocols such as TCP, UDP, HTTP(S), and TLS

(Transport Layer Security) for security-based exchanges.

ChaPTeR 1 IoT VulneRabIlITIes

5

Figure 1-4. Device-to-gateway framework

 Device-to-Gateway Sensor Network
Communications
Utilizing this method, sensors discover and communicate with other

sensors and coordinate information through gateways. The gateway, in

turn, communicates information with other sensor networks and typically

with the cloud.

At first glance, these connection and communications models

don’t look that different from more traditional distributed computing

environments. However, many of the underlying protocols and methods

of deployment are dissimilar from traditional environments and require

closer examination. From a cybersecurity point of view, we still must

consider and examine these environments using proven principles. At the

heart, of course, is the CIA triad as shown in Figure 1-5.

ChaPTeR 1 IoT VulneRabIlITIes

6

The IoT Security Foundation published the IoT Security Compliance

Framework in 2016 to help promote contemporary best practices in IoT

security. As part of the framework, they applied the CIA triad to different

classes of IoT devices as shown in Figure 1-6. They defined five specific

classes of IoT devices along with the security requirements of each.

• Class 0: Compromise of data would cause little or no

impact.

• Class 1: Compromise of data would cause limited

impact.

Figure 1-5. CIA triad

ChaPTeR 1 IoT VulneRabIlITIes

7

Figure 1-6. Compliance classification security objectives

• Class 2: Devices must be resilient to attack on

availability that would have significant impact.

• Class 3: Devices must both be resilient to attack and

protect sensitive data.

• Class 4: Devices must be resilient to attack, preserve

integrity of operation, and protect sensitive data. Any

resulting breach would cause serious impact and

potentially cause injury.

ChaPTeR 1 IoT VulneRabIlITIes

8

Table 1-1. Interpreting the Security Levels

Category Level Requirements

Integrity basic IoT devices resist low-level threat sources that have

very little capability

Medium IoT devices resist medium-level threat sources that

have minimal focused capability

high IoT devices must resist substantial-level threat sources

Confidentiality basic IoT devices processing public information

Medium IoT devices protect against disclosure of low-value

personally identifiable information

high IoT devices process very sensitive information and must

protect against any disclosure

availability basic IoT device lack of availability would cause only minor

disruption

Medium IoT devices should possess some availability defenses

against the most common attacks

high IoT devices must anticipate determined availability

attacks and take significant measures to overcome them

Interpreting the security objectives at each level are defined here in

Table 1-1.

ChaPTeR 1 IoT VulneRabIlITIes

9

 Moving Beyond the Basics
Now that we have set the stage of what we are up against, let’s take a

deeper look at what is different about IoT devices and their potential

security challenges. What makes IoT devices and their accompanying

protocols unique?

Low-Power Sensors - These devices may have limited processing

and memory capabilities that limit the amount of traditional defensive

technologies that can be integrated into them. In addition, they may only

be able to communicate using low-power protocols such as Bluetooth,

ZigBee, or Z-Wave, thus obscuring their behavior on either the local area

network (LAN) or WIFI network.

Single Board Computers and Embedded Operating Systems -

To reduce cost and power requirements, many IoT devices use small

inexpensive hardware platforms such as Raspberry Pi, WeMO, Arduino,

Intel Edison, and Quark. These devices are capable of running embedded

operating systems such as Raspbian, Snappy Ubuntu, FreeBSD, Kali Linux,

and Windows 10 IoT Core along with other lesser-known open source

and proprietary systems such as RTOS IoT, Nano-RK, TinyOS, Mantis,

and Mbed. As you might have already guessed, some of these operating

systems have NOT been thoroughly vetted for security vulnerabilities.

Furthermore, since some of the most popular are open source, the ability

for adversaries to identify and then exploit design and/or coding flaws is a

potential threat.

Zero Configuration Devices - All configuration of these devices is done

automatically (without manual intervention) simply by applying power.

This generates a network ready state that typically requires three steps:

• Address allocation without the need of a DHCP

(Dynamic Host Configuration Protocol) server

• Name translation without access to a predefined

Domain Name Service

ChaPTeR 1 IoT VulneRabIlITIes

10

• Ability to discover other devices that are nearby or

located on the same subnet, WIFI network, or other

low-power wireless network

Dynamic Discovery Protocols - Protocols such as uPnP, Simple

Service Discovery Protocol (SSDP), and Network Basic Input/Output

System (NETBIOS) with Server Message Block are just a few of the

examples that are commonly used. Typically, IoT devices need to discover

services available to them. NETBIOS with Server Message Block allows

devices to advertise services and then determine their status.

Use of Multicast Communication - Protocols such as Web Services

Dynamic Discovery can identify services available on the LAN. Web

Services Dynamic Discovery can communicate on top of SOAP (Simple

Object Access Protocol), which in turn can run on top of HTTP, SMTP, TCP,

UDP, and even the Java Message Service (JMS).

All of these communication and discovery protocols make it difficult

to track behavior, control access, ensure security, and even continuously

monitor these dynamic behaviors.

 What Unique Vulnerabilities Lurk Within IoT
Devices?
Our research shows that a plethora of vulnerabilities exists within the IoT

domain. This list represents several key high-level concerns.

• Hardware platforms and embedded operating systems

built for low cost and low power potentially contain

a wide variety of untapped vulnerabilities versus

traditional desktop and mobile devices.

• Direct discovery and connection between local IoT

devices has the potential of enabling self-replicating

malware threats once a single device or manufacturer

has been compromised.

ChaPTeR 1 IoT VulneRabIlITIes

11

• Direct connection of IoT devices to the Internet and

cloud-based services can circumvent traditional proven

security mechanisms and frameworks.

• Lightweight protocols with limited built-in strong

authentication, data privacy, or denial of service

defenses capabilities are targets for those wishing to

obtain access, leak information, or disrupt operation of

target IoT devices and sensor networks.

 What Are the Common IoT Attack Vectors?
Several recent successful attacks against IoT devices have helped to reveal

common attack vectors. During DEF CON 23 and 24 (2015–2016) the IoT

Village was launched to focus attention on the vulnerabilities found in IoT

devices. The combined result produced 66 new zero day vulnerabilities

from 18 different manufacturers and over 20 unique devices. The

vulnerabilities included the following:

• Device Backdoors

• Lack of Encryption

• Poor Key Management and Key Protection

• Plain Text Passwords

• Buffer Overflows

• Command Injection Exploits

• SQL (Structured Query Language) Injections

ChaPTeR 1 IoT VulneRabIlITIes

12

In addition, other devices such as SmartTVs, home assistants, and the

devices that they control are being targeted:

• SmartTV Data Leaks (Samsung and LG)

• Alexa and Google Home can be hacked to monitoring

everything you watch and say. These systems control

lights, fans, switches, thermostats, garage doors,

sprinklers, door locks provided from numerous vendors

such as: WeMo, Philips Hue, Samsung SmartThings,

Nest, and ecobee

This represents just a glimpse at the attack surface related to IoT

devices to give you a flavor of the threats and risks associated with IoT

devices, protocols, and platforms.

 How Do the Raspberry Pi and Python Fit In?
As the book title Defending IoT Infrastructures with the Raspberry Pi

implies, we will be developing a Raspberry Pi sensor written in Python.

The Pi will be used to model, monitor, analyze, and report aberrant

behavior emanating from IoT devices along with targeted attacks

perpetrated against those devices.

 Raspberry Pi Brief Introduction
There are literally hundreds of books, videos, tutorials, and online

resources that provide a thorough background on the Raspberry Pi. Thus,

this quick introduction assumes that the reader have familiarity with the

Raspberry Pi. However, I want to provide a focused definition of how I plan

to use the Pi as an IoT sensor. It turns out that many IoT devices based on

the Raspberry Pi already exist. In addition, the Windows IoT core now runs

on a Raspberry Pi offering developers both Linux (Raspbian and other

flavors) along with Windows as a choice for development.

ChaPTeR 1 IoT VulneRabIlITIes

13

 Raspberry Pi Hardware

Figure 1-7 is a snapshot of the Raspberry Pi 3 Model B that we will be using

for this project.

Figure 1-7. Raspberry Pi 3 Model B

The key features of this single board device that are important for our

work that are built into the standard product include the following:

• CPU: 1.2 GHZ quad-core ARM Cortex A53 (ARMv8

Instruction Set): Leveraging each core for specific

functions will be critical in capturing and identifying

IoT device behaviors.

• Memory: 1 GB LPDDR2-900 SDRAM: Utilizing the

expanded memory of Pi 3, will help to reduce I/O to the

slower SD device.

ChaPTeR 1 IoT VulneRabIlITIes

14

• Network: 10/100 MBPS Ethernet, 802.11n Wireless

LAN, Bluetooth 4.0: The built-in networking option

allows for the use of core functions of the Pi for the

main network monitoring interfaces whether they be

wired ethernet, WIFI, or Bluetooth devices.

• USB ports: 4: Provides the needed expansion

opportunities to support other wireless technologies

such as ZigBee.

All of this comes in a package that costs under $40.00 for the single

board device. Adding in the cost of a fast 32-GB SD Card and a computer

kit keeps the cost under $100.

 Raspbian OS

In addition to the Pi itself, we will be using the Raspbian Operating System

on the Pi. Specifically, I will be using Raspbian GNU/Linux 8 (Jessie). As we

move into later chapters I will provide details of the OS configuration and

security measures.

 Python

Python is the language of choice for all the software components being

developed. We will be using Python 2.7.9, which is the latest 2.7.x version

available for the Pi as of this writing. With minor modification, the code

will run on Python 3.x as well. With a couple of exceptions, I will be

only be using the Python Standard Library modules, thus eliminating

the need to install or most importantly understand the underpinning,

performance, and risks associated with third-party libraries. This is mainly

a performance and security decision that will keep the Pi as minimal and

safe as possible. The book is not designed to teach you Python, as there

are many resources that can help you with that. However, all my Python

code is extensively documented and the rationale for the methods and

ChaPTeR 1 IoT VulneRabIlITIes

15

approaches chosen are detailed throughout the book to hopefully extend

your knowledge.

Note There are many outstanding third-party Python libraries and
modules out there for you to experiment with as well.

 Summary
This chapter provided a very brief introduction to the IoT landscape

present and future. In addition, it examined some of the basic differences

between IoT devices and more traditional computing devices. We

examined several classes of vulnerabilities and exploits of IoT devices to

get a flavor for the diversity we face today and in the future. Finally, we

provide a brief introduction to the Raspberry Pi, the Raspbian operating

system, and the Python programming language that will be utilized

throughout this book.

In Chapter 2, we will examine possible methods to model IoT

environments for passively monitoring their behavior and ultimately

discover aberrant behaviors.

ChaPTeR 1 IoT VulneRabIlITIes

17© Chet Hosmer 2018
C. Hosmer, Defending IoT Infrastructures with the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-3700-7_2

CHAPTER 2

Classifying and
Modeling IoT Behavior
In Chapter 1 we took a high-level look at the differences between IoT

environments and traditional computing environments. In addition, we

examined some of the unique risks and vulnerabilities associated with

IoT environments along with the unique discovery and communication

protocols that are in use. These characteristics led me to focus on passive

mapping and monitoring of IoT behavior. The rationale for this decision

includes the following:

• Many unique devices exist.

• These devices can be temporal, meaning that they may

appear and disappear from networks.

• They can operate on different wireless and wired

networks.

• They can communicate directly with each other,

in many cases without supervision or use of an

intermediary such as a switch or wireless access point.

• New devices can be added by simply applying power to

them as with zero configuration devices.

18

• They can utilize one of several dynamic discover

protocols.

• Finally, if devices are compromised they may impact

other local devices, leak information, or disrupt

activities of other devices and networks.

Thus, the remainder of this book will focus on the collection, mapping,

monitoring, and ultimately the detection of rogue devices or abnormal

behavior of IoT devices. To accomplish this, we must ask a few critical

questions.

 1. What passive observations data should we collect?

 2. How should we categorize collected observations as

meaningful, redundant, or plain noise?

 3. How might we organize and store the observations?

 4. What do we plan to do with the collected

observations?

 a. How will we define “normal” versus “abnormal”

behavior?

 b. Can the collected observations be used to train

machine learning elements?

 c. Can the observations be a viable source of

forensic evidence?

 5. What networks should we passively monitor?

 6. What observations will be recorded based on this

passive monitoring?

 7. Are we really going to use a Raspberry Pi to do this?

Chapter 2 Classifying and Modeling iot Behavior

19

Clearly, we are not going to address these all of these questions at the

same time. Rather, let’s develop a model for the basics and then we can

build upon that model in a spiral fashion.

We will do this by starting with what we already know well, Ethernet-

based IP wired networks. To monitor and collect data we can use a variety

of off-the-shelf tools or we can roll our own. Because we are planning to

deploy this technology on a Raspberry Pi, using Python (I know, sounds

crazy, right?), we need to keep this as simple and as close to the metal as

possible. Thus, for this first experiment, I will be only using the Python

standard socket library to perform this collection, and I will be using the

built-in Python dictionary type to store, categorize, and at the same time,

reduce the observations.

 What Should We Collect?
Let’s take a very simplistic view of a traditional wired network. Devices

would be attached to a physical switch, with a SPAN or monitoring port.

A packet capture device would be connected to the monitoring port and

record all observed packets in and out of the switch (see Figure 2-1).

Chapter 2 Classifying and Modeling iot Behavior

20

Starting with the basics, we will examine the packets that could be

monitored using this approach. To break this down, for the first example

we plan to collect, record, and observe the following:

 1. Ethernet Packets

 2. ARP (Address Resolution Protocol) Packets

 3. IP Packets

 4. TCP Packets

 5. UDP Packets

 6. ICMP (Internet Control Message Protocol) Packets

Figure 2-1. Simplified LAN diagram

Chapter 2 Classifying and Modeling iot Behavior

21

 Ethernet Packet Format
Examining the Ethernet header (see Figure 2-2), we narrow in on the

destination and source media access control address, (commonly referred

to as MAC address), along with the type/length field. These provide

important mapping information, protocol data, and also the ability to look

up the manufacturer associated with the source and destination of the

packet.

Note network device MaC addresses can be modified in many
cases. thus, it is possible to modify such devices to report an
inaccurate or spoofed organizationally unique identifier (oUi).

Figure 2-2. Ethernet packet overview

Chapter 2 Classifying and Modeling iot Behavior

22

Breaking down the first octet (byte), we see that bit 0 and bit 1 have

special meaning (see Figure 2-3).

 1. Bit 0 defines whether the packet is set to all nodes

individually (unicast) or if only one packet is sent

(multicast) and individual NICs can decide to

accept or reject the packet.

 2. Bit 1 defines whether the MAC address is defined

globally through OUI registration or whether the

MAC address set by the manufacturer is overridden

by the local administrator.

Figure 2-3. OUI breakdown

Our objective in extracting the MAC address is to map the packet to

a specific device. If the MAC address is not locally defined, then extract

information about the device defined by the manufacturer.

Chapter 2 Classifying and Modeling iot Behavior

23

 ARP
The ARP is used to dynamically discover the mapping of devices operating

on a network. This maps the MAC address (layer 2) with the IP address

(layer 3).

For example, Device A needs to communicate with Device B, but

requires the MAC address to do so as Device A’s ARP table is incomplete

(see Figure 2-4). Device B responds to the request allowing device A to

map the layer 2 MAC address with the layer 3 IP address to allow Device A

to properly address Device B at the Ethernet and IP layers.

Figure 2-4. Simplified ARP request/replay process

Chapter 2 Classifying and Modeling iot Behavior

24

Mapping ARP behavior (request, replies, frequency, and time frame)

can identify devices that are behaving normally, or devices that could be

rogue, are new to the network, or are operating erratically or maliciously.

Mapping such behaviors under “normal conditions” will help to identify

aberrant conditions.

ARP Tables in ethernet, lan, a table, also referred to as the arp
cache, is used to maintain a correlation between each MaC address
and its corresponding ip address.

 IP Packets
Moving to IP packets and their contents, IP packets provide additional

details that can be used to map and analyze the behavior on traditional

networks. Figure 2-5 depicts a typical IP packet with fields that are

highlighted to define key components that will be used during mapping

and analysis. Mapping the “normal” connections (source and destination

IP addresses) along with the protocols utilized, day of week and time of

day, will be vital in establishing a baseline of operations.

Figure 2-5. IP packets

Chapter 2 Classifying and Modeling iot Behavior

25

Next, we will examine the specific data contained in the associated

data (for example TCP, UDP, and ICMP) contents delivered using IP

 packets.

 TCP Packets
Extracting specific source and destination ports from TCP packets, as

shown in Figure 2-6, again provides a model for determining “normal”

behavior on the network. TCP packets provide reliable link capabilities by

using sequence and acknowledgement numbers to ensure orderly delivery

and acknowledgment of packets. If packets are lost or delayed, the protocol

will retry and request retransmission. At this point we will be ignoring the

payload of the packet and just focus on the source and destination ports,

as they contain the most meaningful information that can be reasonably

and quickly acquired. Port values range from 1 to 65535 and are generally

defined here:

 1. Ports 1–1023 are considered well-known ports.

 2. Ports 1024–49151 are considered “registered ports”

that are assigned by the Internet Assigned Numbers

Authority (IANA).

 3. Ports 49152–65535 are considered dynamic, private,

or more commonly ephemeral (i.e., lasting for a

brief time or transient). For example, ports in this

range are commonly used by clients making a

connection to a server. It should be noted that some

of the ports in this range have been mapped to

known malware usage.

Chapter 2 Classifying and Modeling iot Behavior

26

 UDP Packet
UDP packets, unlike TCP packets, ensure orderly packet sequencing.

UDP packets are connectionless and less reliable (see Figure 2-7). The

protocol is used for streaming data where packets that are lost or are out

of sequence will not impact the communication. Again, we are interested

here in mapping the normal behavior by capturing the source and

destination port numbers as discussed in the TCP section.

Figure 2-7. UDP packet details

Figure 2-6. TCP packet details

Chapter 2 Classifying and Modeling iot Behavior

27

 ICMP Packet
ICMP defines a protocol that provides troubleshooting, control, and error

message services. ICMP is most frequently used to diagnose and test

connections on an IP network. The only information we will be concerned

with is the fact that an ICMP packet was sent over the network from a

source IP address to a destination IP address (see Figure 2-8). Note that

there is not a port number associated with ICMP.

Figure 2-8. ICMP packet details

 Passively Monitoring IoT Behavior
Compared to active probing, passive monitoring provides greater insight

into the activities of the network being monitored. The difference can be

likened to a movie versus a still photograph. Using tools like NMAP to

identify devices operating on your network provides an instantaneous

view of those devices that properly respond. In many cases IoT devices are

transient and thus could and will be missed by active or probing-based

methods. Mapping the behavior of these devices over an extended period

of time is critical to understanding the potential threats that they pose,

along with connections to other devices.

 Modeling Normal Behavior
Now that we have defined several key elements from the Ethernet layer,

IP layer, and transport layers, let’s take inventory of the key elements that

we could observe and determine how we can store and categorize these

observed values.

Chapter 2 Classifying and Modeling iot Behavior

28

Ethernet Layer
Source MAC address

Destination MAC address

Frame Type (IPv4, IPv6, ARP)

IP Layer
Source IP

Destination IP

Protocol

Transport Layer
Source Port

Destination Port

Because it is likely that we will encounter many packets with the same

MAC, source IP, destination IP, protocol, and nonephemeral port values,

we need to reduce the data that we store regarding these observations. We

will also be choosing a data type that is built in. We could choose a Python

list or set, but both have limitations that make them not the best choice.

However, the built-in dictionary data type in Python provides the ideal

solution for storing these observations.

Python dictionaries, much like traditional Webster-style dictionaries,

have a key and a value, which is typically referred to as a key/value pair. In

Python both the key and the value can be complex, the only rule being that

the key must be a hashable type such as an integer, long, string, or tuple.

The value part of the key/value pair can be a list or other nonhashable data

type.

The question is how would we structure the key to help us reduce the

observations that we need to store and begin to build and hold a model of

normal behavior. To simplify the question: what combination of fields from

the collected observations would be considered unique?

I’m going to use the following tuple as the key:

Chapter 2 Classifying and Modeling iot Behavior

29

(SRC-MAC, DST-MAC, SRC-IP, DST-IP, Protocol, Port)

Notice I didn’t include SRC and DST port. The reason is that when a

client makes a connection to a server, the port that is chosen is dynamic

and normally comes from the ephemeral set of ports. Thus, the port that

will be included in the key will be the nonephemeral port. If both ports are

nonephemeral then two entries will be made in the dictionary, one using

the SRC port and one using the DST port. If both ports are ephemeral,

again both entries will be made.

So that takes care of the key. Now the question is what does the value

portion of the key/value pair contain?

For this we are interested in keeping track of the number of

occurrences of each unique combination. Furthermore, we would like to

keep track of when and how often that combination occurred. Therefore,

I will use a list to keep track of the number of occurrences of each unique

key. Note, keeping track of the number of occurrences can be very fine-

grained (down to the hour, day, day of week, etc.). To keep this simple,

and use this data later for machine learning, I have decided to break the

occurrences count down in the following way.

Early Morning: 12:00 AM–5:59 AM

Morning: 6:00 AM–11:59 AM

Afternoon: 12:00 PM–5:59 PM

Evening: 6:00 PM–11:59 PM

Weekend: 12:00 AM Saturday–11:59 PM Sunday

Therefore, the value list will be initialized with just five occurrence

count values:

[0,0,0,0,0]

Chapter 2 Classifying and Modeling iot Behavior

30

Each time a new observation is made with the same key, the number

associated with that time will be incremented by one in the value

argument associated with that key.

 How Can This Be Accomplished on a Raspberry
Pi with Python?
I promise to only say this once: It’s as easy as Pie.

 Part I: Passively Capture Packets in Python
on a Raspberry Pi

 1. As depicted in Figure 2-1 we need to attach the Pi

to a monitoring or SPAN port of an Ethernet switch

along with the WIFI 802.11 air waves.

 2. Next, we need to place the Pi Ethernet Port into

promiscuous mode.

 3. Finally, we need to capture packets using the Python

standard socket library.

Examine a Simple Code Snippet to Perform These Operations

The code snippet written in Python performs three basic operations (see

Listing 2-1).

 1. The code places the standard Ethernet port of the

Pi into promiscuous mode. This allows us to view

any traffic flowing over the network even if it is not

destined or originating from the Pi itself.

Chapter 2 Classifying and Modeling iot Behavior

31

 2. The code opens a socket associated with the

Ethernet port to listen to traffic passing over the

network.

 3. The code captures a single packet and displays the

results in hexadecimal.

Listing 2-1. sniff.py Capture One Packet with Python

'''

Capture a single packet in promiscuous mode

Note: you must run this script as super user

i.e. sudo python sniff.py

'''

import os # Python operating system standard library

import socket # Python low level socket standard library

import sys # Python system standard library

from binascii import hexlify # Python binary ascii conversions

standard library

configure Raspberry Pi eth0 in promiscuous mode

using a system command

try:

 ret = os.system("ifconfig eth0 promisc")

except Exception as err:

 print "System Command Failed: ", str(err)

 sys.exit(0)

if ret == 0:

 # If the command was successful

 print 'Promiscuous Mode Set Correctly'

 # create a new socket using the python socket module

 # PF_PACKET : Specifies Protocol Family Packet Level

Chapter 2 Classifying and Modeling iot Behavior

32

 # SOCK_RAW : Specifies A raw protocol at the network

layer

 # htons(0x0800) : Specifies all headers and packets

 # : Ethernet and IP, including TCP/UDP etc

 try:

 # attempt to open the socket for capturing raw packets

 rawSocket=socket.socket(socket.PF_PACKET,socket.

SOCK_RAW,

 socket.htons(0x0800))

 except Exception as err:

 # catch any exceptions and report the error

 print "Socket Error", str(err)

 sys.exit(0)

 # If socket is established and we have established

promiscuous mode

 print "Network : Promiscuous Mode"

 print "Sniffer : Ready: \n"

 # attempt to receive a packet

 # Note: this function call is synchronous, thus it will wait)

 try:

 recvPacket=rawSocket.recv(65535)

 print "Packet Received:"

 print hexlify(recvPacket)

 print "\nEnd"

 except Exception as err:

 # Catch any exceptions and report the error

 print "Receive Socket Error: ", str(err)

 sys.exit(0)

else:

 print "System Command Failed to set promiscuous mode"

Chapter 2 Classifying and Modeling iot Behavior

33

Sample Execution of the Script

When executing this script we need to have privilege. In other words, we

need to be operating as superuser (sudo) in order to place the network

interface card (NIC) into promiscuous mode. Next, since the script is

written in Python we need to invoke the Python interpreter (python).

Finally, we need to identify the script (sniff.py) we are executing. The

script then performs as expected, setting the NIC into promiscuous

mode, capturing a single packet and displaying the packet details in hex

(see Listing 2-2).

Listing 2-2. Sample Hex Dump of a Received Packet

pi@raspberrypi:~/Desktop $ sudo python sniff.py

Promiscuous Mode Set Correctly

Network : Promiscuous Mode

Sniffer : Ready:

Packet Received:

0000ca11223314b31f07219e0800450000282731400080064d8bc0a8006da2

7d2281e70c01bba0c0a5de4e0b8d0b501101001e420000000000000000

End

 Part II: Identify and Extract the Key Packet
Components

The next step in the process is to capture and then parse the packet

contents. This includes extracting the Ethernet, IP, ARP, TCP, ICMP, IGMP,

and UDP components in our first example.

You may notice a new entry in the list IGMP. The IGMP protocol is

used to establish multicast group memberships. Multicast protocols are

commonly used by IoT devices in order to discover nearby devices along

with the services that they offer.

Chapter 2 Classifying and Modeling iot Behavior

34

To handle this, I have created a new Python script called

“PacketRecorder.py” which continually captures packets, extracts the key

information, and records the occurrences of each unique combination in a

Python dictionary.

Let’s take a deeper look at some of the key components of the script

(see Listing 2-3). At the end of the chapter I will provide the complete

source code for the script.

Listing 2-3. PacketRecorder.py Script Overview

Overview and Copyright

'''

PacketRecorder.py

version .50

July 2017

Author: C. Hosmer, Python Forensics

Requirements:

Python 2.7.9 or greater

Raspbian or Ubuntu Linux

Copyright (c) 2017 Python Forensics and Chet Hosmer

Permission is hereby granted, free of charge, to any person

obtaining a copy of this software and associated documentation

files (the "Software"), to deal in the Software without

restriction,including without limitation the rights to use, copy,

modify, merge, publish, distribute, sublicense, and/or sell copies

of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

'''

Chapter 2 Classifying and Modeling iot Behavior

35

Required Python Standard and Third-Party Libraries

For this script, I will be using almost exclusively standard Python libraries

to perform the operations. I have imported one third-party library,

PrettyTable, to provide tabular results of the recording (see Listing 2-4).

Listing 2-4. Required Libraries

''' Import Python Standard Library Modules '''

import datetime

import calendar

import pickle

import struct

import os

import socket

import sys

import signal

from binascii import hexlify

3rd Party Libraries

from prettytable import PrettyTable

The Script Main Loop

Taking a top-down look at the script, let’s first examine the main script

entry point in Listing 2-5. Note that this script is completely contained in

a single file (not including the importing of the standard and third-party

libraries).

The script performs the following operations:

 1. Creates a PacketProcessor object that will be used to

extract and record key information from each packet.

 2. Configures Ethernet port 0 on the Raspberry Pi in

promiscuous mode.

Chapter 2 Classifying and Modeling iot Behavior

36

 3. Creates a raw socket using this promiscuous port.

 4. Sets a signal timer to capture packets for 1 hour

(3600 seconds).

 5. Creates a loop to receive packets.

 6. Each received packet is then passed to the

PacketExtractor method of the PacketProcessing

object.

 7. Finally, once the timer expires the PrintMap method

of the PacketProcessing object is called to print out

the results.

Listing 2-5. PacketRecorder Main Loop

Main Script Starts Here

#===================================

if __name__ == '__main__':

 "Python Packet Recorder v.50"

 "Python Forensics, Inc. July 2017 \n"

 # create a packet processing object

 packetObj = PacketProcessor()

 # Python Packet Capture

 # configure the eth0 in promiscuous mode

 try:

 ret = os.system("ifconfig eth0 promisc")

 except Exception as err:

 print "System Command Failed: ", str(err)

 sys.exit(0)

Chapter 2 Classifying and Modeling iot Behavior

37

 if ret == 0:

 print 'Promiscuous Mode Enabled for eth0'

 # create a new socket using the python socket module

 # PF_PACKET : Specifies Protocol Family Packet Level

 # SOCK_RAW : Specifies A raw protocol at the

network layer

 # htons(0x0800) : Specifies all headers and packets

 # : Ethernet and IP, including TCP/UDP etc

 # attempt to open the socket for capturing raw packets

 try:

 rawSocket=socket.socket(socket.PF_PACKET,socket.

SOCK_RAW,

 socket.htons(0x0800))

 except Exception as err:

 print "Socket Error", str(err)

 sys.exit(0)

 print "Packet Processor : Ready: \n"

 # Set signal to 1 hour

 signal.signal(signal.SIGALRM, handler)

 signal.alarm(3600)

 try:

 while True:

 # attempt to receive (synchronous call)

 try:

 recvPacket=rawSocket.recv(65535)

 packetObj.PacketExtractor(recvPacket)

 except Exception as err:

 packetObj.printMap()

Chapter 2 Classifying and Modeling iot Behavior

38

 print "Receive Socket Error: ", str(err)

 sys.exit(0)

 except myTimeout:

 packetObj.printMap()

 packetObj.SaveOb("observations.pickle")

 print "\nEnd Packet Processor"

 sys.exit(0)

 else:

 print "System Command Failed to set promiscuous mode"

PacketProcessor Class

The PacketProcessor class contains four basic methods (see Listing 2-6):

 1. __Init__ or the constructor: This function is called

when an object is instantiated from the class. It

creates two lookup objects for converting Ethernet

frame types and transport protocol numbers to

readable values. It also creates an empty dictionary

to hold the key/value pairs observed.

 2. PacketExtractor: This function processes the

observed packet data. It extracts key information

from the Ethernet frame, IP header, and transport

protocols. Once the required information is

collected, the key will be equal to SRC-MAC,

DST-MAC, SRC-IP, DST-IP, protocol, and port, and

the value will be equal to the observed occurrence

times. A dictionary entry is created or updated

based on the observed data from the packet.

Chapter 2 Classifying and Modeling iot Behavior

39

 3. PrintMap: This function iterates through each of the

entries in the dictionary of recorded observations

and prints them in a table format (see Figure 2-9).

 4. SaveObservations: This function uses the Python

pickle library to save the dictionary as a pickle file.

We will be recalling this dictionary in later chapters

to perform additional operations and analysis

and to use as a key input to the machine learning

process.

Listing 2-6. PacketProcessor Class

class PacketProcessor:

 """

 Packet Processor Class Methods

 __init__ Constructor

 PacketProcessor(self, packet) : processes a single packet

 PrintMap(self) : prints out the content of the map

 """

 def __init__(self):

 """Constructor"""

 '''

 Create Lookup Objects

 These Object provide lookups for:

 Ethernet Frame Types

 Transport Protocol Types

 '''

 self.traOBJ = TRANSPORT()

 self.ethOBJ = ETH()

 # Packet Dictionary

 self.d = {}

Chapter 2 Classifying and Modeling iot Behavior

40

 def PacketExtractor(self, packet):

 ''' Extract Packet Data input: string packet, dictionary d

 result is to update dictionary d

 '''

 ETH_LEN = 14 # ETHERNET HDR LENGTH

 IP_LEN = 20 # IP HEADER LENGTH

 UDP_LEN = 8 # UDP HEADER LENGTH

 ''' Elements of the key '''

 self.srcMac = ''

 self.dstMac = ''

 self.srcIP = ''

 self.dstIP = ''

 self.proto = ''

 self.port = ''

 EthernetHeader=packet[0:ETH_LEN]

 ethFields =struct.unpack("!6s6sH",EthernetHeader)

 self.dstMac = hexlify(ethFields[0])

 self.srcMac = hexlify(ethFields[1])

 self.fType = ethFields[2]

 frameType = self.ethOBJ.lookup(self.fType)

 if frameType == "IPv4":

 # Process as IPv4 Packet

 ipHeader = packet[ETH_LEN:ETH_LEN+IP_LEN]

 # unpack the ip header fields

 ipHeaderTuple = struct.unpack('!BBHHHBBH4s4s' ,

ipHeader)

Chapter 2 Classifying and Modeling iot Behavior

41

 # extract the key ip header fields of interest

 # Field

Contents

 verLen = ipHeaderTuple[0] # Field 0:

Ver and

Length

 protocol = ipHeaderTuple[6] # Field 6:

Protocol

Number

 sourceIP = ipHeaderTuple[8] # Field 8:

Source IP

 destIP = ipHeaderTuple[9] # Field 9:

Destination

IP

 # Calculate / Convert extracted values

 version = verLen >> 4 # Upper Nibble is

the version Number

 length = verLen & 0x0F # Lower Nibble

represents the size

 ipHdrLength = length * 4 # Calculate the

header in bytes

 # convert the src/dst IP address to typical dotted

notation strings

 self.srcIP = socket.inet_ntoa(sourceIP);

 self.dstIP = socket.inet_ntoa(destIP);

 translate = self.traOBJ.lookup(str(protocol))

 transProtocol = translate[0]

 if transProtocol == 'TCP':

Chapter 2 Classifying and Modeling iot Behavior

42

 self.proto = "TCP"

 stripTCPHeader =

 packet[ETH_LEN+ipHdrLength:ipHdr

Length+ETH_LEN+IP_LEN]

 # unpack the TCP Header to obtain the

 # source and destination port

 tcpHeaderBuffer = struct.unpack('!HHLLBBHHH',

stripTCPHeader)

 self.srcPort = tcpHeaderBuffer[0]

 self.dstPort = tcpHeaderBuffer[1]

 elif transProtocol == 'UDP':

 self.proto = "UDP"

 stripUDPHeader =

 packet[ETH_LEN+ipHdrLength:ETH_

LEN+ipHdrLength+UDP_LEN]

 # unpack the UDP packet and obtain the

 # source and destination port

 udpHeaderBuffer = struct.unpack('!HHHH',

stripUDPHeader)

 self.srcPort = udpHeaderBuffer[0]

 self.dstPort = udpHeaderBuffer[1]

 elif transProtocol == 'ICMP':

 self.proto = "ICMP"

 self.srcPort = ""

Chapter 2 Classifying and Modeling iot Behavior

43

 self.dstPort = ""

 elif transProtocol == 'IGMP':

 self.proto = "IGMP"

 self.srcPort = ""

 self.dstPort = ""

 else:

 self.proto = transProtocol

 self.srcPort = ""

 self.dstPort = ""

 elif frameType == 'ARP':

 self.proto = "ARP"

 self.srcPort = ""

 self.dstPort = ""

 else:

 self.proto = frameType

 self.srcPort = ""

 self.dstPort = ""

 valueNdx = getOccurrenceValue()

 # get the most unique port to use

 portA, portB = getUniquePort(self.srcPort, self.

dstPort)

 # create the key for this packet

 key = (self.srcMac, self.dstMac, self.srcIP, self.

dstIP,

 self.proto, portA)

 try:

 value = self.d[key]

Chapter 2 Classifying and Modeling iot Behavior

44

 # Increment the appropriate occurrence value

 value[valueNdx] = value[valueNdx] + 1

 self.d[key] = value

 except:

 # New Key initialize the value

 value = [0,0,0,0,0]

 value[valueNdx] = value[valueNdx] + 1

 self.d[key] = value

 if portB != None:

 # create a 2nd key for this packet

 key = (self.srcMac, self.dstMac, self.srcIP,

 self.dstIP, self.proto, portB)

 try:

 value = seld.d[key]

 # Increment the appropriate occurrence value

 value[valueNdx] = value[valueNdx] + 1

 self.d[key] = value

 except:

 # New Key initialize the value

 value = [0,0,0,0,0]

 value[valueNdx] = value[valueNdx] + 1

 self.d[key] = value

 def printMap(self):

 ''' Print the contents of the packet map'''

 ''' Table Heading'''

 t = PrettyTable(['srcMac', 'DstMac', 'SrcIP', 'DstIP',

'Protocol',

 'Port', '-->', "12AM>", "06AM>",

 "12PM>", "06PM>", "SAT-SUN"])

Chapter 2 Classifying and Modeling iot Behavior

45

 for eachKey in self.d:

 value = self.d[eachKey]

 t.add_row([eachKey[0], eachKey[1], eachKey[2],

eachKey[3],

 eachKey[4], eachKey[5]," ", str(value[0]),

 str(value[1]), str(value[2]), str(value[3]),

 str(value[4])])

 t.align = "l"

 print t.get_string(sortby="SrcIP")

 def SaveOb(self, fileName):

 ''' Save the current observation dictionary to a file '''

 with open(fileName, 'wb') as fp:

 pickle.dump(self.d, fp)

pi@raspberrypi:~/Desktop $ sudo python packetrecorder.py

Python Packet Recorder v.50

Python Forensics, Inc. July 2017

Chapter 2 Classifying and Modeling iot Behavior

46

 Summary
This chapter provides a deep look at the collection, reduction, and mapping

of network traffic. The basic methods of capturing and recording observations

will be used in future chapters to create a baseline of “normal” operations

within an IoT environment. These observations will be used to monitor and

detect aberrant behavior and to train machine learning methods.

Figure 2-9. Sample output from the PacketRecorder.py script

Chapter 2 Classifying and Modeling iot Behavior

47© Chet Hosmer 2018
C. Hosmer, Defending IoT Infrastructures with the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-3700-7_3

CHAPTER 3

Raspberry Pi
Configuration and
PacketRecorder.py
Enhancements
When examining a platform for deploying a sensor, there are several

key considerations. These considerations typically fall into four broad

categories.

 1. We must consider the placement of the sensor and

the connection to the network that we which wish to

sense, such as wired direct connection, traditional

802.11 WIFI, Bluetooth, or other lightweight

protocols.

 2. We must examine the visibility that can be obtained

from the selected network connection and/or the

physical location of the sensor. In other words, what

network traffic will be visible from a specific vantage

point?

48

 3. Will multiple sensors be required to derive a

complete picture of the network that we wish to

monitor?

 4. Certainly, the cost and long-term viability of the

platform we intend to deploy need to be considered.

Since this book is focused on using the Raspberry Pi as the sensor, we

also need to consider the advantages and limitations of the Pi. We have

chosen this platform and the Python programming language based on

cost, simplicity, and versatility. Certainly, depending upon the amount

of network traffic, along with the speed of the networks that will be

monitored, the Pi might not have the performance required. However,

since all of the software is written in Python, as more powerful Raspberry

Pi or other Linux platforms (small and lightweight or large and high

performance) become available, the solution can be scaled to meet

the needs.

 Basic Configuration (as of This Writing)
We will be using a Raspberry Pi 3 Model B version 1.2 as described back in

Chapter 1 and pictured in Figure 1-6 for the examples in the book. We do

this to provide a bit more detail on the configuration and to introduce you

to the Raspberry Pi and the Raspbian OS commands, which allow us to do

a bit of probing.

Note All the commands executed from the Pi were done from the
/home/pi directory. In the default state the default user is pi.

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements

49

The following line is what the default prompt should look like.

Depending on the installation and configuration of your Pi, this might vary

slightly.

pi@raspberrypi:~ $

Note the ~ (tilde) character is shorthand for the /home/pi directory.
thus, commands are entered directly after the $, allowing you to get
some basic but valuable information about your Pi.

 Get Information About the Pi CPU
The command retrieves the basic information regarding the Raspberry Pi CPU.

pi@raspberrypi:~ $ cat /proc/cpuinfo

Note the Pi 3 Model B has four cores. This will become important

in later chapters when we utilize the Python multiprocessing library to

enhance performance.

processor : 0

model name : ARMv7 Processor rev 4 (v7l)

BogoMIPS : 38.40

Features : half thumb fastmult vfp edsp neon vfpv3 tls

vfpv4 idiva idivt vfpd32 lpae evtstrm crc32

CPU implementer : 0x41

CPU architecture: 7

CPU variant : 0x0

CPU part : 0xd03

CPU revision : 4

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements

50

processor : 1

model name : ARMv7 Processor rev 4 (v7l)

BogoMIPS : 38.40

Features : half thumb fastmult vfp edsp neon vfpv3 tls

vfpv4 idiva idivt vfpd32 lpae evtstrm crc32

CPU implementer : 0x41

CPU architecture: 7

CPU variant : 0x0

CPU part : 0xd03

CPU revision : 4

processor : 2

model name : ARMv7 Processor rev 4 (v7l)

BogoMIPS : 38.40

Features : half thumb fastmult vfp edsp neon vfpv3 tls

vfpv4 idiva idivt vfpd32 lpae evtstrm crc32

CPU implementer : 0x41

CPU architecture: 7

CPU variant : 0x0

CPU part : 0xd03

CPU revision : 4

processor : 3

model name : ARMv7 Processor rev 4 (v7l)

BogoMIPS : 38.40

Features : half thumb fastmult vfp edsp neon vfpv3 tls

vfpv4 idiva idivt vfpd32 lpae evtstrm crc32

CPU implementer : 0x41

CPU architecture: 7

CPU variant : 0x0

CPU part : 0xd03

CPU revision : 4

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements

51

 Get Information Regarding Pi Memory
Another crucial factor regarding the capabilities of the Raspberry Pi is the

amount of RAM memory onboard, and more importantly the memory

available for use by our application. You can obtain this information using

the following command.

pi@raspberrypi:~ $ get_mem arm

Notice, unlike the static information regarding the CPU, this is a live

report regarding memory usage. As you can see we have a little over

700 MB of fee memory available along with just under 100 MB of free swap

memory.

Hardware : BCM2709

Revision : a02082

Serial : 0000000093c183ae

MemTotal: 947732 kB

MemFree: 700856 kB

MemAvailable: 796304 kB

Buffers: 20404 kB

Cached: 126088 kB

SwapCached: 0 kB

Active: 129024 kB

Inactive: 84444 kB

Active(anon): 67364 kB

Inactive(anon): 13852 kB

Active(file): 61660 kB

Inactive(file): 70592 kB

Unevictable: 0 kB

Mlocked: 0 kB

SwapTotal: 102396 kB

SwapFree: 102396 kB

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements

52

Dirty: 92 kB

Writeback: 0 kB

AnonPages: 66816 kB

Mapped: 63560 kB

Shmem: 14240 kB

Slab: 16964 kB

SReclaimable: 8312 kB

SUnreclaim: 8652 kB

KernelStack: 1576 kB

PageTables: 2316 kB

NFS_Unstable: 0 kB

Bounce: 0 kB

WritebackTmp: 0 kB

CommitLimit: 576260 kB

Committed_AS: 721200 kB

VmallocTotal: 1114112 kB

VmallocUsed: 0 kB

VmallocChunk: 0 kB

CmaTotal: 8192 kB

CmaFree: 3724 kB

 Get Information Regarding the Current
Free Memory Only
Digging a bit deeper, this command provides a more targeted result

providing us data regarding free memory and the used and free swap space.

pi@raspberrypi:~ $ free -o -h

 total used free shared buffers cached

Mem: 925M 241M 683M 13M 20M 123M

Swap: 99M 0B 99M

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements

53

 Get Information Regarding Pi Filesystem
Obtaining information regarding the current active Pi filesystem will help

to define the onboard storage we have available.

pi@raspberrypi:~ $ df

This command provides the information on how the Pi is configured

and most importantly how much free space we have available. Performing

simple arithmetic (1024 × 8792304; the available blocks × 1K), we see that

we have a little over 9 GB available. This make sense as I’m using a 16GB

SD Card on this Pi. If you need more space, then you can choose a larger

SD Card for your application. Note, the official maximum size is 32GB.

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/root 13606320 4099804 8792304 32% /

devtmpfs 469532 0 469532 0% /dev

tmpfs 473864 0 473864 0% /dev/shm

tmpfs 473864 6460 467404 2% /run

tmpfs 5120 4 5116 1% /run/lock

tmpfs 473864 0 473864 0% /sys/fs/cgroup

/dev/mmcblk0p6 66528 20762 45767 32% /boot

tmpfs 94776 0 94776 0% /run/user/1000

/dev/mmcblk0p5 30701 456 27952 2% /media/pi/

SETTINGS

 Get Information Regarding USB Devices
and Interfaces
We can of course add more storage to the Pi using the available USB

expansion slots as well.

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements

54

I ran this command twice for you. The first is with no external USB

devices inserted, and the second is with one added.

pi@raspberrypi:~ $ lsusb

Bus 001 Device 004: ID 045e:0745 Microsoft Corp. Nano

Transceiver v1.0 for Bluetooth

Bus 001 Device 003: ID 0424:ec00 Standard Microsystems Corp.

SMSC9512/9514 Fast Ethernet Adapter

Bus 001 Device 002: ID 0424:9514 Standard Microsystems Corp.

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Now, to execute the same command after inserting the external USB

SanDisk Cruzer:

pi@raspberrypi:~ $ lsusb

Bus 001 Device 004: ID 045e:0745 Microsoft Corp. Nano

Transceiver v1.0 for Bluetooth

Bus 001 Device 005: ID 0781:5406 SanDisk Corp. Cruzer Micro U3

Bus 001 Device 003: ID 0424:ec00 Standard Microsystems Corp.

SMSC9512/9514 Fast Ethernet Adapter

Bus 001 Device 002: ID 0424:9514 Standard Microsystems Corp.

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

 Get Information About the Version of Linux
This command provides us information about the core version of Linux

we are using, but also provides information regarding the current c++

compiler and crosstool that are installed. It is important to keep your Pi

updated, including the operating system and development platform.

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements

55

pi@raspberrypi:~ $ cat /proc/version

Linux version 4.4.50-v7+ (dc4@dc4-XPS13-9333)

(gcc version 4.9.3 (crosstool-NG crosstool-ng-1.22.0- 88- g8460611))

#970 SMP Mon Feb 20 19:18:29 GMT 2017

 Upgrading Your Pi
Like other more traditional computing platforms, keeping your Pi up to

date is an important process. This will ensure that you are running the

latest version of software and that security updates are current. In addition,

I also update the pip environment for the same reasons (pip is the tool that

we use for installing and managing Python packages, such as those found

in the Python Package Index.) Here are examples for both:

pi@raspberrypi:~ $ sudo apt-get update

This will download and install updates to any packages that have

updates available (based on the information obtained from the apt-get

update command).

Get:1 http://mirrordirector.raspbian.org jessie InRelease [14.9 kB]

Get:2 http://archive.raspberrypi.org jessie InRelease [22.9 kB]

Get:3 http://mirrordirector.raspbian.org jessie/main armhf

Packages [9,536 kB]

Get:4 http://archive.raspberrypi.org jessie/main armhf Packages

[170 kB]

Get:5 http://archive.raspberrypi.org jessie/ui armhf Packages

[58.9 kB]

Get:6 http://mirrordirector.raspbian.org jessie/contrib armhf

Packages [43.3 kB]

---- Truncated for brevity ----

pi@raspberrypi:~ $ sudo apt-get dist-upgrade

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements

56

Using the dist-upgrade will update Pi kernel and firmware.

Finally, as mentioned in the preceding, we need to keep the Python

package installer up to date as well, in order to update any third-party

Python packages we may use.

pi@raspberrypi:~ $ sudo pip install --upgrade pip

Important one final note after executing these updates! you need
to reboot the Pi. the command to do that is

pi@raspberrypi:~ $ sudo reboot

 Advancing PacketRecorder.py
Now that we have the Pi configuration in hand, we can begin to advance

the baseline of the PacketRecorder.py script we created in Chapter 2.

To obtain more interesting information from the packets we see, we

need to perform some secondary processing and advanced dictionary

of observations. This will allow us to detect and observe packets of

interest. Therefore, we are going to make the following enhancements to

PacketRecorder.py.

 1. Convert port numbers to common port names

including known malicious ports

 2. Convert MAC addresses to known manufacturers

including known suspicious MAC addresses

 3. Look up country code based on IP addresses

 4. Record the average packet size for each unique

connection

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements

57

 5. Update the interface to the PacketRecorder by

using the built-in argparse library. This will allow

us to create a command-line interface to the

PacketRecorder and supply our desired options.

You can always find the latest command-line execution and

parameters by typing the following:

pi@raspberrypi:~/Desktop/RP-10-12-2017 $ sudo python pr.py -h

Notice that I moved to the current working directory containing the

PacketRecorder.py source code along with the needed additional support

files. The installation of the full project is available from the source code

for this book. Go to www.apress.com/9781484236994 and click the Source

Code button.

pi@raspberrypi:~/Desktop/RP-10-12-2017 $ sudo python pr.py -h

Python Packet Recorder v.85 - Raspberry Pi

Python Forensics, Inc. October 2017

Copyright Python Forensics - All Rights Reserved

usage: Raspberry Pi Packet Recorder V.85 . October 2017 [-h] -m

DURATION

 [-E] [-C]

optional arguments:

 -h, --help show this help message and exit

 -m DURATION, --duration DURATION

 specify duration of the recording in minutes

 -E, --ephemeral if specified ephemeral ports are

considered unique

 -C, --countryReport if specified a special country report

is generated

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements

http://www.apress.com/9781484236994

58

 Step 1: Creating the Lookups
During the examination of observed packets, it is important not to

overwhelm that process with significant code, databases, and so on.

Remember, the purpose of the PacketRecorder.py application is to create

a baseline of a “normal operating” network. This will in fact generate a

detailed network device-level asset map for the environment that we are

monitoring. This map should be compared to other available device maps

(such as those generated by NMAP, administration documentation, etc.).

Thus, our approach is to preprocess lists of known good/bad ports,

country codes, and manufacturer indices, and create a fast lookup of those

values that can be easily added to the observations dictionary. We can of

course generate anomalies identified during the baselining process as well.

Each of the lookups is processed in a comparable manner that starts

with the conversion of online data into dictionary objects. We perform

this operation as a preprocessing step. Depending upon the complexity of

the online data source, the parsing and preparation of these dictionaries

can be either simple or quite complex. However, we only perform this

preprocessing operation periodically to keep our dictionary lookups up

to date.

Once the preprocessing step is complete, we convert the resulting

dictionary objects into serialized data (Python pickle files) that are loaded

on to the Pi. In this manner the Pi does not require access to the Internet

during baselining or operational sensing phases.

To perform this effectively, we extract information from reliable sources:

 1. Manufacturer IEEE (Institute of

Electrical and Electronics Engineers) OUI lists:

http://standards-oui.ieee.org/oui.txt

 2. IANA for the known port number/name translations

www.iana.org/assignments/service-names-port-

numbers/service-names-port- numbers.xhtml

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements

http://standards-oui.ieee.org/oui.txt
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

59

 3. Maxmind’s Country Location Database http://

dev.maxmind.com/geoip/legacy/geolite/

 Ports Dictionary Creating Example
The following script demonstrates the processing of the IANA text ports list

and conversion into a Python dictionary. Once the dictionary is created,

the serialization of the dictionary is recorded in the file “ports.pickle”.

'' Port Dictionary Creation Process '''

'''

Copyright (c) 2017 Python-Forensics and Chet Hosmer, cdh@

python-forensics.org

Permission is hereby granted, free of charge, to any person

obtaining a copy of this software and associated documentation

files (the "Software"), to deal in the Software without

restriction, including without limitation the rights to use,

copy, modify, merge, publish, distribute, sublicense, and/

or sell copies of the Software, and to permit persons to whom

the Software is furnished to do so, subject to the following

 conditions:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

'''

''' excerpt from the online ports list

TCP 0 Reserved

TCP 1 Port Service Multiplexer

TCP 2 Management Utility

TCP 3 Compression Process

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements

http://dev.maxmind.com/geoip/legacy/geolite/
http://dev.maxmind.com/geoip/legacy/geolite/

60

TCP 4 Unassigned

TCP 5 Remote Job Entry

'''

import pickle

Create an Empty Dictionary

portDictionary = {}

records = 0

print "PortList Dictionary Creation Script"

print "Python Forensics, Inc. ver 1.1 2017"

print "Processing PortList.txt"

Open the PortList Text File

with open("PortList.txt", 'r') as theFile:

 # Process EachLine

 for eachLine in theFile:

 # Create a list of each component of the line

 # Split the line into parts

 lineList = eachLine.split()

 # We need at least three elements to be valid

 # PortType PortNumber Description

 # The descriptions may be broken up into multiple parts

of course

 if len(lineList) >= 3:

 # Make the key in the key/value pair

 key = (lineList[1], lineList[0])

 # Determine how many parts we have after type and port

 # We will use this list as the value in the key/value

pair

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements

61

 value = " ".join(lineList[2:])

 # Now create a dictionary entry

 # key = Port,Type

 # Value = Description

 portDictionary[key] = value

 records += 1

 else:

 # if the line does not have the correct number

 # of values skip this line and continue processing

 # the next line

 continue

 # All lines have been processed

 print "Lookup Records Create: ", records

''' Finally we serialize the portDictionary

 for use by PacketRecorder and PacketDetection

 scripts, by creating the file ports.pickle

'''

with open('portTest.pickle', 'wb') as pickleFile:

 pickle.dump(portDictionary, pickleFile)

 Execution of the Script

To demonstrate the execution of the script, I have copied the source code

and PortList.txt file to my local windows system.

Note the creation of the lookups does not need to be done on the
raspberry Pi; this process can be created on Windows, Linux, or mac.

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements

62

When you download the Raspberry Pi installation files from GIT-HUB

it will include the required pickle files. Therefore, you will not need to

perform this operation. The sample is provided here to explain how the

dictionaries are serialized into pickle files (see Listing 3-1).

Listing 3-1. Directory for Execution of the CreatePortPickle.py script

c:\ports>dir

 Volume in drive C is OS

 Volume Serial Number is ECD2-7A54

 Directory of c:\ports

10/13/2017 11:22 AM <DIR> .

10/13/2017 11:22 AM <DIR> ..

10/13/2017 11:17 AM 2,696 CreatePortPickle.py

05/23/2017 08:15 AM 174,165 PortList.txt

 2 File(s) 176,861 bytes

 2 Dir(s) 496,912,228,352 bytes free

At this point the script is executed and listing of the resulting directory,

which includes the portTest.pickle file.

c:\ports>python CreatePortPickle.py

PortList Dictionary Creation Script

Python Forensics, Inc. ver 1.1 2017

Processing PortList.txt

Lookup Records Created: 6367

c:\ports>dir

 Volume in drive C is OS

 Volume Serial Number is ECD2-7A54

 Directory of c:\ports

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements

63

10/13/2017 11:27 AM <DIR> .

10/13/2017 11:27 AM <DIR> ..

10/13/2017 11:17 AM 2,696 CreatePortPickle.py

05/23/2017 08:15 AM 174,165 PortList.txt

10/13/2017 11:27 AM 398,507 portTest.pickle

 3 File(s) 575,368 bytes

 2 Dir(s) 496,910,360,576 bytes free

You might notice that the .pickle file is larger than the original PortList.

txt file. This is normal, as the keys and internal structure of the dictionary

may be larger. However, the efficiency gained through their use in the

actual packetRecorder.py script is significant.

 Utilizing the Pickle Files in PacketRecorder.py
Integrating the pickle files for is accomplished by creating a class for

each lookup type. The initialization (or constructor of the class) loads

the associated .pickle file into a dictionary associated with the object.

Then a lookup method is included that allows fast lookup of the desired

conversion.

• Ethernet Packet Type

• MAC Address to Manufacturer Lookup

• Transport Protocol Lookup

• Port Name Lookup

• Country IP Address Lookup

The following code snippets provide the code for each of the

lookup- related classes.

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements

64

class ETH:

 def __init__(self):

 ''' FrameTypes Supported'''

 self.ethTypes = {}

 with open("ethTypes.pickle2",'rb') as fp:

 self.ethTypes = pickle.load(fp)

 def lookup(self, ethType):

 ''' Returns the FrameType associated with the lookup or

not=supported'''

 try:

 result = self.ethTypes[ethType]

 except:

 result = "not-supported"

 return result.strip()

MAC Address Lookup Class

class MAC:

 def __init__(self):

 ''' constructor'''

 # Open the MAC Address OUI Dictionary

 try:

 with open('oui.pickle', 'rb') as pickleFile:

 self.macDict = pickle.load(pickleFile)

 except Exception as err:

 print str(err)

 def lookup(self, macAddress):

 try:

 result = self.macDict[macAddress]

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements

65

 if len(result) >= 2:

 result = ": ".join(result[0:2])

 else:

 result = result[0]

 return result

 except:

 return "unknown"

Transport Lookup Class

class TRANSPORT:

 def __init__(self):

 # Open the Transport protocol Dictionary

 with open('protocol.pickle', 'rb') as pickleFile:

 self.proDict = pickle.load(pickleFile)

 def lookup(self, protocol):

 try:

 result = self.proDict[protocol]

 return result

 except:

 return ["unknown", "unknown", "unknown"]

#PORTS Lookup Class

class PORTS:

 def __init__(self):

 # Open the Transport protocol Dictionary

 with open('ports.pickle', 'rb') as pickleFile:

 self.portsDict = pickle.load(pickleFile)

 def lookup(self, port, portType):

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements

66

 try:

 lookupValue = (str(port).strip(),portType)

 result = self.portsDict[lookupValue]

 return result

 except:

 return "unknown"

#

Country Lookup

#

class COUNTRY:

 def __init__(self):

 # download from http://dev.maxmind.com/geoip/legacy/

geolite/

 self.giv4 = pygeoip.GeoIP('geoIPv4.dat')

 self.giv6 = pygeoip.GeoIP('geoIPv6.dat')

 def lookup(self, ipAddr, kind):

 try:

 if kind == 'IPv4':

 return self.giv4.country_name_by_addr(ipAddr)

 elif kind == 'IPv6':

 return self.giv6.country_name_by_addr(ipAddr)

 else:

 return ''

 except:

 return ''

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements

67

 Instantiating and Accessing the Lookup Methods

The next step is to instantiate each of the classes into locally useable objects and

then use the associated lookup functions when processing the observed packet.

Note We perform this instantiation as part of the packetProcessor
Class constructor, so the lookup methods are available during packet
processing.

Code Snippet to Instantiate the Classes into Objects

class PacketProcessor:

 """

 Packet Processor Class Methods

 __init__ Constructor

 PacketProcessor(self, packet) : processes a single packet

 PrintMap(self) : prints out the content of the map

 """

 def __init__(self):

 """Constructor"""

 '''

 Create Lookup Objects

 These Object provide lookups for:

 Ethernet Frame Types

 MAC Addresses

 Transport Protocol Types

 TCP/UDP Port Names

 Country

 '''

 self.traOBJ = TRANSPORT()

 self.ethOBJ = ETH()

 self.portOBJ = PORTS()

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements

68

 self.ouiOBJ = MAC()

 self.cc = COUNTRY()

 Using the Lookups During Packet Processing

Now that the objects self.traOBJ, self.ethOB, self.portOBJ, self.ouiOBJ, and

self.cc have been created, we can put them to use during normal packet

processing. I have chosen to depict a couple of these here to give an

example of how they are utilized.

Sample IPv4 Processing Conversion (Excerpt)

This excerpt depicts the conversion of the source and destination IP

addresses into country location and converts the protocol number of the

IPv4 packet into the associated country name.

 # covert the source and destination address to typical dotted

notation strings

 self.packetSize = packetLength

 self.srcIP = socket.inet_ntoa(sourceIP);

 self.dstIP = socket.inet_ntoa(destIP);

 self.srcCC = self.cc.lookup(self.srcIP, 'IPv4')

 self.dstCC = self.cc.lookup(self.dstIP, 'IPv4')

 translate = self.traOBJ.lookup(str(protocol))

 transProtocol = translate[0]

Convert the Port Numbers into Port Names (Excerpt)

unpack the TCP Header to obtain the

source and destination port

 tcpHeaderBuffer = struct.unpack('!HHLLBBHHH' ,

stripTCPHeader)

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements

69

 self.srcPort = tcpHeaderBuffer[0]

 self.dstPort = tcpHeaderBuffer[1]

 self.srcPortName = self.portOBJ.lookup(self.

srcPort, 'TCP')

 self.dstPortName = self.portOBJ.lookup(self.

dstPort, 'TCP')

 Executing the Updated PacketRecorder.py
In each chapter, as we advance and integrate new capabilities into

PacketRecorder.py baselining capability, and into the ultimate sensor, I will

be providing sample output from the latest version.

Note that the name of the Packetrecorder.py was changed to pr.py
for simplicity.

pi@raspberrypi:~/Desktop/RP-10-12-2017 $ sudo python

pr.py -m 1 -C

The command line requests that pr.py execute for 1 minute using

the -m option. The -C option requests that a separate country report be

generated.

 Script Execution

In this run you can see new columns in the report that include

 1. Port Name

 2. Manufacturer

 3. Average Packet Size

In addition, near the bottom you can see that IPv6 packet captures are

now included (Figure 3-1).

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements

70

Fi
gu

re
 3

-1
.

P
ac

ke
r

re
co

rd
er

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements

71

 Summary
This chapter provided an examination of the Raspberry Pi using several

special Raspbian Pi command-line tools. We also considered both the

advantages and some potential limitations of the Pi based on available

memory and filesystem space.

We added some finishing touches to the baselining script

PacketRecorder.py, including the following:

• Ethernet packet type

• MAC address to manufacturer lookup

• Transport protocol lookup

• Port name lookup

• Country IP address lookup

• Recording of IPv6 packets

• Recording of ARP packets

• Recording of average packet size observed for each

unique connection

• Finally, a command-line execution that directs the

execution of the script

Figure 3-2. Foreign country report

 Foreign Country Hits (Outside the United States)

An additional report is also generated that extracts any foreign countries

that were detected based on the IP address translation (Figure 3-2).

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements

72

We also added a second report option for generating a report relating

to country IP addresses outside the United States. In the next version, we

will add an allowed/blacklisted country list to generate even more data

regarding the external connections made.

In Chapter 4, we will develop the sensor script, which will utilize

a prerecorded baseline (generated by PacketRecorder) and report on

anomalies between the baseline and the live environment. We will also

generate a specific report that isolates IoT-based protocol observations

versus other network traffic.

ChAPter 3 rAsPberry PI ConfIgurAtIon And PACketreCorder.Py enhAnCements

73© Chet Hosmer 2018
C. Hosmer, Defending IoT Infrastructures with the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-3700-7_4

CHAPTER 4

Raspberry Pi
as a Sensor
Moving from a packet recorder to a packet sensor requires us to examine

the differences between the activity that was observed during the

recording period versus the active monitoring for aberrant behavior.

 Turning the Packet Recorder into a Sensor
As we advance the PacketRecorder into a complete sensor platform

that can monitor a live network and report anomalies, several major

enhancements need to be made. These enhancements will make it easier to

 1. Operate the recorder and sensor using the same

interface.

 2. Generate HTML reports that cover the following:

 a. Overall master report

 b. Observed MAC addresses/manufacturers

 c. Observed country connections

 d. Observed port usage

 e. Observed possible IoT connections

74

 f. Observed possible industrial control system

(ICS) connections

 g. Alerts generated during sensor mode

 3. Provide basic status information directly on the

Raspberry Pi.

 4. Finally, produce the recorder/sensor as a single

executable file.

 Raspberry Pi Sensor/Recorder Design
As you can see in Figure 4-1, the major operational elements of the design

include an event-driven GUI (Graphical User Interface), completely

developed in native Python, using the TKinter standard library. This

adheres to our goal of keeping the code base small and portable. This

ensures compatibility with new Raspberry Pi devices as they progress.

In addition, a real-time ePaper display was added (as an optional

element) to the Raspberry Pi itself (Figure 4-2). This provides feedback

directly from the Raspberry Pi in both recording and monitoring modes.

More information regarding the PaPirus ePaper display is available from

the manufacturer at www.pi-supply.com/product/papirus-epaper-eink-

screen-hat-for-raspberry-pi/.

Figure 4-1. Snapshot of the Raspberry Pi sensor/recorder GUI

Chapter 4 raspberry pi as a sensor

http://www.pi-supply.com/product/papirus-epaper-eink-screen-hat-for-raspberry-pi/
http://www.pi-supply.com/product/papirus-epaper-eink-screen-hat-for-raspberry-pi/

75

 Design Overview
Figure 4-3 depicts the overall operational design of the Pi sensor/recorder.

The Pi sensor/recorder is set up to execute within an event-driven

application loop supported by Python and TKinter.

Figure 4-3. Raspberry Pi sensor/recorder

Figure 4-2. Raspberry Pi configured with a PaPirus real-time display

Chapter 4 raspberry pi as a sensor

76

The main code section is established as follows:

Script Constants

M1

NAME = "Raspberry Pi - IoT/ICS Packet Sensor / Recorder"

VERSION = " Version .99-4 Experimental "

TITLE = NAME+'\t'+VERSION

Initialize the root TK Window

M2from Tkinter import *

root = Tk()

def main():

 # Set the Title for the Main Window

 # M3

 root.title(TITLE)

 # Instantiate the GUI Application Object

 app = Application(root)

 # Start App MainLoop

 app.mainloop()

Main Script Starts Here

M3

if __name__ == '__main__':

 main()

A quick overview of the initialization is defined here:

M1: Creates the TITLE constant to be displayed in the application

window title bar.

Chapter 4 raspberry pi as a sensor

77

M2: Imports the TKinter Python library and instantiates a new TK

object. This will be used as the main window object and event handler in

the application.

M3: The main takeaway here is the highlighted call that initializes the

application by passing in the root object instantiated from TK.

Next, we’ll look at this application handler and the list of methods that

have been created to control the distinct aspects of the application.

class Application(Frame):

 ''' APPLICATION CLASS GUI FRAME USING Tkinter '''

 def __init__(self, master=None):

 # Define the instance variables to be

 # collected from the GUI

 # A1

 self.folderSelection = ''

 self.baselineSelection = ''

 self.baselineGood = False

 self.reportFolderGood = False

 self.abortFlag = False

 self.baselineCC = {}

 self.baselineMAC = {}

 # Create the basic frame

 # A2

 Frame.__init__(self, master)

 self.parent = master

 # Initialize the GUI

 self.initUI()

 # Initialize PaPirus if available

 # A3

 if PA_ON:

 self.paObj = PA()

Chapter 4 raspberry pi as a sensor

78

Examining the main sections of the application class, we find three

main sections:

A1: Establishes object attributes that will be associated with each

instantiation of the application class. For example, variables that hold state

information regarding the baseline and report selections are initialized

here, along with dictionaries that will be used by the sensor during

monitoring activities. For example, the baselineCC dictionary will hold

countries that were observed during the recording phase. Then any new

country observations that are observed during the sensor stage can be

reported as anomalous.

A2: Creates the parent window frame that will be used by the

application. Most importantly, the initUI() method is called; this

establishes all the GUI widgets on the window, such as labels, buttons, text

boxes, drop-down lists, progress bars, status displays, and menu options.

In the next section we will take a look at the list of methods that have

been created and examine a couple of those in detail.

A3: Finally, if a PaPirus display was attached and detected, an object is

instantiated to handle the interface with the display. We will see how this is

done later in this chapter.

Now let’s take a 30,000-foot view of the methods that have been created

to handle the user interface and perform the defined functions. At this

point we are just looking at the methods that have been defined as shown

in Figure 4-4 and Table 4-1.

Chapter 4 raspberry pi as a sensor

79

Brief descriptions of the application object methods are given in

Table 4-1.

Figure 4-4. Application object methods

Chapter 4 raspberry pi as a sensor

80

Table 4-1. GUI method definitions

Method Description

initUi Creates and initializes all the display widgets found on the

application frame. once all the widgets are created, the

lookup tables used by the application are loaded and the

status bar is updated.

btnselectFolder handles the button click to the right of the report Folder

selection and provides a folder browser for the user. the

user must select an existing folder, or create a new folder

to store the results of the record baseline or activate

sensor selections.

btnselectbaseline handles the selection of an existing baseline that will

be used in sensor mode to detect anomalies from the

recorded baseline, for example, new connections, devices,

port usage and countries contacted.

btnperformCapture begins the record baseline process. based on the selected

duration, this method will run to completion unless

interrupted by the stop button. note: this button will not be

active until a report folder has been selected.

btnactivatesensor Utilizes the selected baseline and begins the process of

monitoring network activity and comparing those results

to the baseline. Like the btnperformCapture method,

it will run for the selected duration unless interrupted

by the stop button. note: this button will not be active

until a report folder has been selected along with a valid

baseline.

(continued)

Chapter 4 raspberry pi as a sensor

81

Table 4-1. (continued)

Method Description

btnstopCapture activated upon pressing the stop button during a baseline

recording or sensor execution. it will interrupt the

recording or sensor, but will store the intermediate results.

note: this button will only be activated during baseline

recording or sensor monitoring activity.

btnViewselectedreport Displays the report currently selected by the user in the

select report drop-down menu. possible reports include

the following:

Master report

Manufacturer report (oUi device name)

Country report

port usage report

iot report

iCs report

btnViewalerts activated by the user pressing the view alerts button.

this button is only active after a sensor execution has

been completed. the method will display the current alert

report generated by the last sensor operation.

the next set of methods perform operations upon completing the recording of

a baseline. the method uses the unique dictionary created during the baseline

recording process.

saveob saves the baseline as a serialized python pickle object.

the baseline is saved in the baseline directory that is

created under the selected report folder.

(continued)

Chapter 4 raspberry pi as a sensor

82

 Method Details

Next, we will take a deeper look at some of the key methods defined here.

Note a complete listing of the completed python solutions is
available in the appedix a, provides instructions on accessing the
source code.

Table 4-1. (continued)

Method Description

GenCsV Generates a comma-separated value (CsV) file in

the reports folder. the CsV contains all the unique

observations during the record baseline process.

GenhtML Generates the master htML report

GenCountry Generates the country htML report

GeniCs Generates the possible iCs observed activity htML report

Geniot Generates the possible iot observed activity htML report

GenMFG Generates the observed manufacturers htML report

GenportUsage Generates the portUsage htML report

translatealertCodes Converts alert codes generated by the pi sensor into

meaningful messages

Genalerts Generates the alerts htML report generated by the sensor

operation

btnstopCapture allows the user to stop the recording or sensor, but still

generate the reports

Menuabout Displays the application about box

Menutoolsexit handles the exiting of the Menutools

Chapter 4 raspberry pi as a sensor

83

Initializing the GUI (initUI)

def initUI(self):

 # Create Menu Bar

 # U1

 menuBar = Menu(self.parent) # menu begin

 toolsMenu = Menu(menuBar, tearoff=0)

 toolsMenu.add_command(label='About', accelerator='Ctrl+A',

 command=self.menuAbout, underline=0)

 toolsMenu.add_separator()

 toolsMenu.add_command(label='Exit', accelerator='Ctrl+X',

 command=self.menuToolsExit)

 menuBar.add_cascade(label='Help', menu=toolsMenu,

underline=0)

 self.parent.config(menu=menuBar) # menu ends

 self.bind_all("<Control-x>", self.menuToolsExit)

 self.bind_all("<Control-a>", self.menuAbout)

 # Folder Selection

 # U2

 self.lblReport = Label(self.parent, anchor='w',

text="Report Folder")

 self.lblReport.grid(row=1, column=0, padx=5, pady=10,

sticky='w')

 self.ReportFolder = Label(self.parent, anchor='w', bd=3, bg

= 'white', fg='black',width=80, relief=SUNKEN)

 self.ReportFolder.grid(row=1, column=1, padx=5, pady=0,

sticky='w')

Chapter 4 raspberry pi as a sensor

84

self.buttonReportFolder = Button(self.parent, text=' ... ',

 command=self.btnSelectFolder, width=5, bg ='gray',

fg='black',

 activebackground='black', activeforeground='green')

 self.buttonReportFolder.grid(row=1, column=1, padx=585,

pady=0, sticky='w')

 self.lblBaseline = Label(self.parent, anchor='w',

text="Select Baseline")

 self.lblBaseline.grid(row=2, column=0, padx=5, pady=10,

sticky='w')

 self.fileBaseline = Label(self.parent, anchor='w', bd=3,

bg = 'white', fg='black',width=80, relief=SUNKEN)

 self.fileBaseline.grid(row=2, column=1, padx=5, pady=0,

sticky='w')

 self.buttonSelectBaseline = Button(self.parent,

text=' ... ',

 command=self.btnSelectBaseLine, width=5, bg ='gray',

fg='black',

 activebackground='black', activeforeground='green')

 self.buttonSelectBaseline.grid(row=2, column=1, padx=585,

pady=0,

 sticky='w')

 # Specify the Duration of the Scan

 # U3

 self.lblDuration = Label(self.parent, anchor='w',

text="Select Duration")

 self.lblDuration.grid(row=3, column=0, padx=5, pady=10,

sticky='w')

 self.durationValue = StringVar()

 self.duration = ttk.Combobox(self.parent,

 textvariable=self.durationValue)

Chapter 4 raspberry pi as a sensor

85

 self.duration['values'] = ('1-Min', '10-Min', '30-Min',

'1-Hr', '4-Hr', '8-Hr', '12-Hr', '18-Hr', '1-Day', '2-Day',

'4- Day', '7-Day','2-Week', '4-Week')

 self.duration.current(0)

 self.duration.grid(row=3, column=1, padx=5, pady=10,

sticky='w')

 # Capture Packet Button

 # U4 Action Buttons

 self.ActivateSensor = Button(self.parent, text='Activate

Sensor',

 command=self.btnActivateSensor, bg ='gray',

fg='black',

 activebackground='black', activeforeground='green')

 self.ActivateSensor.grid(row=8, column=1, padx=5, pady=5,

sticky=W)

 self.ActivateSensor['state']=DISABLED

 self.CapturePackets = Button(self.parent, text='Record

Baseline',

 command=self.btnPerformCapture, bg ='gray',

fg='black',

 activebackground='black', activeforeground='green')

 self.CapturePackets.grid(row=8, column=1, padx=120, pady=5,

sticky=W)

 self.CapturePackets['state']=DISABLED

 self.StopCapture = Button(self.parent, text='STOP',

 command=self.btnSTOPCapture, bg ='gray',

fg='black',

Chapter 4 raspberry pi as a sensor

86

 activebackground='black', activeforeground='green')

 self.StopCapture.grid(row=8, column=1, padx=240, pady=5,

sticky=W)

 self.StopCapture['state']=DISABLED

 self.ViewAlerts = Button(self.parent, text='View Alerts',

 command=self.btnViewAlerts, bg ='gray', fg='black',

 activebackground='black', activeforeground='green')

 self.ViewAlerts.grid(row=8, column=1, padx=320, pady=5,

sticky=W)

 self.ViewAlerts['state']=DISABLED

 # SETUP a Progress Bar

 # U5 Progress Bar Setup

 self.progressLabel = Label(self.parent, anchor='w',

text="Progress")

 self.progressLabel.grid(row=9, column=0, padx=0, pady=10,

sticky='w')

 self.progressBar = ttk.Progressbar(self.parent,

orient='horizontal',

 mode='determinate')

 self.progressBar.grid(row=9, column=1, padx=5, pady=10,

sticky='w')

 # Special Code to align the width of the progress bar

 colWidth = self.ReportFolder.winfo_width()

 self.progressBar['length'] = colWidth

 self.update()

Chapter 4 raspberry pi as a sensor

87

 # Report Setup

 # U6 Reporting

 self.lblReport = Label(self.parent, anchor='w', text="

Select Report")

 self.lblReport.grid(row=3, column=1, padx=175, pady=10,

sticky='w')

 self.ReportSelection = StringVar()

 self.report = ttk.Combobox(self.parent, textvariable=self.

ReportSelection)

 self.report['values'] = ('Master Report', 'MFG Report',

'Country Report', 'Port Usage Report', 'ICS Report', 'IoT

Report')

 self.report.current(0)

 self.report.grid(row=3, column=1, padx=275, pady=10,

sticky='w')

 # View Report

 self.viewReport = Button(self.parent, text='View

Selected Report', command=self.btnViewSelectedReport,

bg ='gray', fg='black', activebackground='black',

activeforeground='green')

 self.viewReport.grid(row=3, column=1, padx=425, pady=5,

sticky=W)

 self.viewReport['state']=DISABLED

 # Status Message

 # U7 Status Bar

 self.statusText = Label(self.parent, anchor='w', width=80,

bd=3, bg ='white', fg='black', relief=SUNKEN)

Chapter 4 raspberry pi as a sensor

88

 self.statusText.grid(row=10, column=0, columnspan=2,

padx=5, pady=5, sticky='w')

 self.update()

Defining a GUI in Python can be accomplished with many different

third-party libraries. However, here we have chosen to utilize the built- in

Python TKinter Library, TK for short. Tk/Tcl is an integral component of

standard Python. It provides a robust and platform independent windowing

toolkit that is readily available to Python programmers using the TKinter

module, and its extensions. The extensions include the Tix and ttk modules.

Additional details regarding TKinter can be found in the Python Standard

Library at https://docs.python.org/2/library/tk.html.

The TKinter module is a thin object-oriented layer on top of Tcl/Tk,

which provides a set of wrappers that implement the Tk widgets as Python

classes. In addition, the internal module _TKinter provides a threadsafe

mechanism which allows Python and Tcl to interact.

Using TKinter requires us to make specific declarations and

configurations for each of the onscreen widgets along with any event

handlers (for example button clicks) for each widget.

Configuring TK can be done using one of two geometry-based

methods, commonly referred to as Grid and Pack. We have chosen to use

the Grid method. Using the Grid method organizes widgets in a table-like

structure, where each widget (buttons, labels, combo boxes, progress bars,

etc.) are then placed at a specific row and column location.

In addition to visual widgets, other objects such as menu-based

objects like those declared in the U1 highlighted section are placed on the

frames menu bar.

In order to better explain how this is done, we will walk through each

code section U1 through U7.

Chapter 4 raspberry pi as a sensor

https://docs.python.org/2/library/tkinter.html#module-Tkinter
https://docs.python.org/2/library/tix.html#module-Tix
https://docs.python.org/2/library/ttk.html#module-ttk
https://docs.python.org/2/library/tk.html
https://docs.python.org/2/library/tkinter.html#module-Tkinter

89

U1-Menu Bar

This section declares the simple menu item “Help” that contains just three

items:

 1. About

 2. A horizontal separator line

 3. Exit

In addition, the keyboard shortcut bindings for Ctrl-X and Ctrl-A are

defined to allow keystroke menu selections.

Finally, specific command executions are associated with the About

and Exit menu options. For example:

command=self.menuAbout

command=self.menuToolsExit

If you examine Table 4-1 you will see the declarations for these two

methods as part of the application object. We will examine those methods

later in this chapter.

This produces the menu as shown in Figure 4-5.

Figure 4-5. Menu bar illustration

Chapter 4 raspberry pi as a sensor

90

U2-Folder and File Selection

The folder selection code section defines two selections, and each

selection contains three widgets:

 1. A label widget that indicates the name of the field

 2. A sunken label that will hold the resulting user

selection

 3. A button to launch the requisite folder and file

selection dialogs

Taking a close look at the first folder selection, we first define the label

widget with the text Report Folder and place that label at row 1, column 0

on the parent frame and we anchor the frame to the westmost position in

the column.

 self.lblReport = Label(self.parent, anchor='w',

text="Report Folder")

 self.lblReport.grid(row=1, column=0, padx=5, pady=10, sticky='w')

Next, we specify another label widget at row 1, column 1 and specify

the label to be sunken to represent data that is specified.

 self.ReportFolder = Label(self.parent, anchor='w', bd=3,

bg = 'white',

 fg='black',width=80, relief=SUNKEN)

 self.ReportFolder.grid(row=1, column=1, padx=5, pady=0, sticky='w')

Finally, we add a button widget at row 1, column 2 that will launch

a dialog box for the user to select the folder where reports, baseline, and

alerts will be stored. Notice this widget has a command associated with

self.btnSelectFolder. This method is also defined in Table 4-1, and again,

we will examine the details of this method. The method source code is

shown here.

Chapter 4 raspberry pi as a sensor

91

 self.buttonReportFolder = Button(self.parent, text=' ... ',

 command=self.btnSelectFolder, width=5, bg ='gray',

fg='black',

 activebackground='black', activeforeground='green')

 self.buttonReportFolder.grid(row=1, column=1, padx=585, pady=0,

 sticky='w')

U3-Duration Selection

Duration selection specifies two widgets. The first is a label to display

“Select Duration”, and the second is a combo box to list the possible

duration options available. The label is placed at row 3, column 0, while

the combo box is placed at row 3, column 1. When the user clicks the

combo box, the list of possible options is displayed as shown in Figure 4-6.

The current selection is maintained by the widget and we can retrieve that

selection at any time. Of course, the string value will have to have been

converted into a useable time value.

Figure 4-6. Duration selection

Chapter 4 raspberry pi as a sensor

92

U4-Action Buttons

The action buttons, activate sensor, record baseline, stop and view Alerts

are defined here. They are all defined to be placed in row 8, column 1.

However, each contains a different padx value (padding from the westmost

position of the row) allowing the buttons to be separated. Without the

padding, they would be displayed on top of each other.

In addition, each button has a defined command associated with it

that will be executed when pressed.

Also, notice that each of the buttons is set to DISABLED. The rationale

is that the buttons cannot activate the specific operations until the report

folder and/or the baseline have been correctly selected.

In addition, the stop button will be enabled once either the activate

sensor or record baseline operations are underway, allowing the user to

interrupt the operations. Once the selections have been made the buttons

become activated, as shown in Figure 4-7.

The source code for each button selection are covered in the GUI Source

Code Selection.

Figure 4-7. Report and baseline selections enable activate sensor and
record baseline buttons

Chapter 4 raspberry pi as a sensor

93

U5-Progress Bar

When the activate sensor or record baseline process is underway, a

progress bar will be displayed to depict the time remaining in the scan. For

this widget we are using a label and a ttk progress bar widget.

U6-Report Selection

As with the duration selection widgets, we are using a combo box to

provide a list of possible reports that can be selected, a label to display the

text “Select Report”, and a button to display the selected report. Note that

the view selected report button is also disabled during initialization and

only enabled when reports are available for display, as shown in Figure 4-8.

U7-Status Bar

The last section defines the status bar at the bottom of the frame. This is

used to report status as the application executes. Once again, we use a

simple sunken label widget for the status bar (Figure 4-9). The widget is

placed at row 10, column 0.

Figure 4-8. Select report section

Figure 4-9. Application status bar

Chapter 4 raspberry pi as a sensor

94

Exploring Other Application Methods

Now that we have initialized the application interface, let’s look at

the underlying functions that perform operations based on the user

interactions described in Figure 4-3. We will start with selection of the

report folder and baseline. The application will write newly generated

reports to the selected report folder. In addition, the subfolders Baselines

and Alerts will be created to hold any recorded baselines and alerts

generated during active sensor operation.

Selecting the Report Folder (btnSelectFolder)

Start with the btnSelectFolder method (depicted in code segment F1),

which is activated upon the button click action defined in “U2 Folder and

File Selection.” This section is straightforward; we are using the built-in

tkFileDialog.askdirectory function, which displays a directory selection

dialog as shown in Figure 4-10. As you can see, the baselines and alerts

folders have also been created.

If the selection result is a valid directory (we use the os.path.isdir()

method to verify this) then we can enable the record baseline button. In

addition, if the baseline has previously been established, then the activate

sensor button could also be enabled.

Chapter 4 raspberry pi as a sensor

95

Source Code Methods for GUI Elements

 # F1 Report Folder Selection

 def btnSelectFolder(self):

 try:

 self.folderSelection = tkFileDialog.

askdirectory(initialdir="./",

 title='Select Report Folder')

 self.ReportFolder['text'] = self.folderSelection

 if os.path.isdir(self.folderSelection) and

 os.access(self.folderSelection, os.W_OK):

Figure 4-10. Selection of the report folder

Chapter 4 raspberry pi as a sensor

96

 self.reportFolderGood = True

 self.statusText['text'] = "Report Folder

Selected"

 self.update()

 ''' Ok to enable Record Baseline Button '''

 self.CapturePackets['state']=NORMAL

 if self.baselineGood:

 self.ActivateSensor['state']=NORMAL

 else:

 self.reportFolderGood = False

 self.statusText['text'] = "Invalid Folder

Selection ... Folder

 must exist and be writable"

 self.update()

 except Exception as err:

 self.reportFolderGood = False

 self.update()

 # Baseline Selection

 def btnSelectBaseLine(self):

 self.fileSelection = tkFileDialog.askopenfilename(initi

aldir="./",

 self.fileSelection =

 tkFileDialog.askopenfilename(initiald

ir="./",

 filetypes=[("Sensor Baseline

Files","*.baseline")],

 title='Select Baseline

File') title='Select Baseline

 File')

 self.fileBaseline['text'] = self.fileSelection

Chapter 4 raspberry pi as a sensor

97

 if self.fileBaseline:

 try:

 with open(self.fileSelection, 'rb') as base:

 try:

 ''' Make sure we loaded a dictionary '''

 self.baselineDictionary = pickle.

load(base)

 ''' Make sure the elements match our

structure'''

 if type(self.baselineDictionary) is dict:

 value = self.baselineDictionary.

values()[0]

 if value[POV] == 'S' or value[POV]

== 'D':

 self.baselineGood = True

 else:

 self.baselineGood = False

 self.statusText['text'] =

"Baseline Load Failed"

 if self.baselineGood:

 ''' Create Quick Lookups for

Country, MFG'''

 self.statusText['text'] =

"Loading Baseline

 Contents"

 self.update()

 for key, value in

 self.

baselineDictionary.

iteritems():

Chapter 4 raspberry pi as a sensor

98

 try:

 srcCC = value[SRCCC]

 dstCC = value[DSTCC]

 srcMAC = value[SRCMAC]

 dstMAC = value[DSTMAC]

 if srcCC != '' and

srcCC.lower() !=

 'unknown':

 self.

baselineCC[srcCC]

= 1

 if dstCC != '' and

dstCC.lower() !=

 'unknown':

 self.

baselineCC[dstCC]

= 1

 if srcMAC != '' and

srcMAC.lower() !=

 'unknown':

 self.

baselineMAC[srcMAC]

= 1

 if dstMAC != '' and

dstMAC.lower() !=

 'unknown':

 self.

baselineMAC[dstMAC]

= 1

 except:

Chapter 4 raspberry pi as a sensor

99

 ''' ignore errors in

baseline

 loading'''

 continue

 self.statusText['text'] =

"Loading Baseline

 Completed"

 ''' Ok to enable Activate

Sensor Button '''

 if self.reportFolderGood:

 self.ActivateSensor['state'

]=NORMAL

 except Exception as err:

 self.statusText['text'] = "Baseline

Load Failed"

 except Exception as err:

 self.statusText['text'] = "Baseline Load

Failed: "+str(err)

 self.update()

When we examine the btnSelectBaseLine method depicted in F2, we

see that this function is a bit more complicated. First, this method uses the

built-in tkFileDialog.askopenfilename to select the baseline. Since the user

can select any file with the .baseline extension, we need to verify that this

is a valid baseline generated by the record baseline method. Once this is

verified, we create a set of local dictionaries to hold extracted values from

the baseline, including previously observed countries and MAC addresses;

these will be used during the monitoring process to generate alerts from

unknown countries and new observed MAC addresses.

Chapter 4 raspberry pi as a sensor

100

Once a verified baseline and report folder have been selected, both the

activate sensor and record baseline selections are available, as shown in

Figure 4-11.

Record Baseline Method (btnPerformCapture)

Now we move to one of the critical methods of the application, the

record baseline or btnPerformCapture method. This method utilizes two

selections by the user:

• Duration (determine how long to run the recording)

• Report folder (where to record the results)

The method first performs some setup tasks (section R1) to disable

the other action buttons and to enable the Stop button, allowing the

user to interrupt the recording. In addition, a packet processor object is

instantiated, which in turn loads the necessary lookups for manufacturer

OUI identification, port and protocol translations, and country lookups. If

the PaPirus display is detected and available, it will be initialized to display

details of the ongoing recording.

Finally, the network adapter is set to promiscuous mode to collect all

traffic presented at Eth0.

Figure 4-11. Properly selected and verified report folder and baseline

Chapter 4 raspberry pi as a sensor

101

Moving to section R2, the main loop is established and processes each

packet observed over the network. The loop continues until either the

duration time expires or the user presses the stop button. Every 2 seconds,

the packet count is updated in the status bar and the progress bar is

updated marking the progress toward the time expiration.

Once R2 completes (either by the user interrupting the process or

through time expiration), a new baseline is created and stored in the

baseline directory, and all the HTML and CSV reports are generated and

stored in the selected report folder. The code in the R3 section calls each

report generation function. Let’s take a deeper look at one of the report

generation functions to examine how the resulting HTML reports are

generated in the next section.

R1 Perform Capture

def btnPerformCapture(self):

 self.CapturePackets['state']=DISABLED

 saveActivateSensor = self.ActivateSensor['state']

 self.ActivateSensor['state']=DISABLED

 self.StopCapture['state']=NORMAL

 self.update()

 # create a packet processing object

 self.statusText['text'] = "Loading Lookups ..."

 self.update()

 self.packetObj = PacketProcessor(self.lookupList)

 if PA_ON:

 self.statusText['text'] = "Resetting PaPirus Display

... Please

 Wait"

 self.update()

 self.paObj.ResetDisplay()

Chapter 4 raspberry pi as a sensor

102

 self.paObj.UpdateMode("Record ")

 self.paObj.UpdateStatus("Operation Started ")

 self.statusText['text'] = "Capturing Packets ..."

 self.update()

 durationValue = self.duration.get()

 durSec = CONVERT[durationValue]

 startTime = time.time()

 curProgress = 0

 self.progressBar['value'] = curProgress

 # Python Packet Capture

 # configure the eth0 in promiscuous mode

 try:

 if platform.system() == "Linux":

 self.PLATFORM = "LINUX"

 ret = os.system("ifconfig eth0 promisc")

 if ret == 0:

 LogEvent(LOG_INFO, 'Promiscuous Mode Enabled

for eth0')

 # create a new socket using the python socket

module

 # PF_PACKET : Specifies Protocol Family

Packet Level

 # SOCK_RAW : Specifies A raw network

packet layer

 # htons(0x0003) : Specifies all headers and

packets

 # : Ethernet and IP, including

TCP/UDP etc

Chapter 4 raspberry pi as a sensor

103

 # attempt to open the socket for capturing raw

packets

 rawSocket=socket.socket(socket.PF_PACKET,

 socket.SOCK_RAW,

 socket.htons(0x0003))

 else:

 self.statusText['text'] = "Capture Failed ...

Cannot Open

 Socket"

 self.progressBar['value'] = 0

 self.update()

 self.CapturePackets['state']=NORMAL

 self.StopCapture['state']=DISABLED

 self.update()

 return

 except Exception as err:

 self.statusText['text'] = "Network Connection Failed:

"+ str(err)

 self.update()

 return

 pkCnt = 0

 upTime = time.time()

 paTime = time.time()

R2 Main Loop

while True:

 curTime = time.time()

 elapsedTime = curTime - startTime

 if elapsedTime > durSec:

Chapter 4 raspberry pi as a sensor

104

 break

 if self.abortFlag:

 ''' User Aborted '''

 ''' Reset the Flag for next use '''

 self.abortFlag = False

 break

 ''' Update the Progress Bar on Change vs Total Time'''

 newProgress = int(round((elapsedTime/durSec * 100)))

 if newProgress > curProgress:

 self.progressBar['value'] = newProgress

 curProgress = newProgress

 self.update()

 ''' Update the Status Window every two seconds'''

 newTime = time.time()

 if (newTime - upTime) >= 2:

 upTime = newTime

 cntStr = '{:,}'.format(pkCnt)

 self.statusText['text'] = "Connections Processed: "

+ cntStr

 self.update()

 ''' Update the PA Display if available '''

 if PA_ON:

 newPATime = time.time()

 if (newPATime - paTime) >= 20:

 paTime = newPATime

 cntStr = '{:,}'.format(pkCnt)

 self.paObj.UpdatePacketCnt(cntStr)

Chapter 4 raspberry pi as a sensor

105

 # attempt to receive (this call is synchronous, thus it

will wait)

 try:

 recvPacket=rawSocket.recv(65535)

 self.packetObj.PacketExtractor(recvPacket)

 pkCnt += 1

 except Exception as err:

 LogEvent(LOG_INFO,'Recv Packet Failed: '+str(err))

 continue

 self.statusText['text'] = "Generating Capture Reports and

Saving

 Baseline ..."

 self.update()

 # Generate Reports and Save the Baseline

 # R3 Report Generation

 self.SaveOb(self.packetObj.d)

 self.GenCSV(self.packetObj.d)

 self.GenHTML(self.packetObj.d)

 self.GenCOUNTRY(self.packetObj.d)

 self.GenMFG(self.packetObj.d)

 self.GenICS(self.packetObj.d)

 self.GenIOT(self.packetObj.d)

 self.GenPortUsage(self.packetObj.d)

 ''' Enable Report Button '''

 self.viewReport['state']=NORMAL

 ''' Reset Progress Bar and Post Completed status'''

 self.progressBar['value'] = 0

 cntStr = '{:,}'.format(pkCnt)

Chapter 4 raspberry pi as a sensor

106

unique = '{:,}'.format(len(self.packetObj.d))

 self.statusText['text'] = "Done: Total Connections

Processed:

 "+cntStr+" Unique Observations Recorded: "+unique

 self.CapturePackets['state']=NORMAL

 # reset the ActivateSensor State

 self.ActivateSensor['state']=saveActivateSensor

 self.StopCapture['state']=DISABLED

 self.update()

 if PA_ON:

 self.paObj.UpdatePacketCnt(unique)

 self.paObj.UpdateStatus("Operation Completed")

 self.paObj.UpdateMode(" ")

Master Report Generation (GenHTML)

The report generators all work basically the same, but they filter and sort

data based on the specific reports being created. The method is a unique

method of autogenerating an HTML file. One could use XML (eXtensible

Markup Language) and style sheets as an alternative.

Examining M1, we start by updating the status bar of our progress. The

current date and time are obtained in order to generate a unique file name

for the desired report. Each report name is prepended with the date-time

in order to provide easy sorting of the report results. For this example, the

report name would be in the following format:

2017-11-14-08-22-master.html

yyyy-mm-dd-hr-mm-master.html

Chapter 4 raspberry pi as a sensor

107

Next, the html file is built from a template stored in the rpt.py file.

Each report has a separate template that is used. Basically, the template

contains an HTML_START section, HTML_HEADER section, (multiple)

HTML_BODY sections, and HTML_END section.

Examining the code in section M2, the Python dictionary object d

contains all the unique observations collected during this recording. A

loop is created to iterate over each unique observation, and the values

extracted from the key/value pairs of the dictionary are stored in local

variable prefaced with fld (for example, fldAlert, fldSrcIP, etc.). Once they

are collected we use the format method available for strings, as shown

here, to replace the placeholders defined in the template HTML.

htmlSection = htmlSection.format(**locals())

The template HTML placeholders highlighted here are then replaced

by the corresponding local variables to generate the final HTML code.

<td style="width: 250px;"> {fldAlert} </td>

<td style="width: 250px;"> {fldAlertCnt} </td>

Once all the HTML code has been generated, the code in section M3

writes out the complete htmlContents to the report filename created in

section M1.

def GenHTML(self, d):

M1 Update Report Date / Time

 ''' Produce the Master Report using the master dictionary

provided '''

 path = self.ReportFolder['text']

 utc=datetime.datetime.utcnow()

 yr = str(utc.year)

 mt = '{:02d}'.format(utc.month)

 dy = '{:02d}'.format(utc.day)

Chapter 4 raspberry pi as a sensor

108

 hr = '{:02d}'.format(utc.hour)

 mn = '{:02d}'.format(utc.minute)

 ''' Produce Master HTML Report'''

 self.statusText['text'] = "Generating Master HTML Report

..."+yr+'-

 '+mt+'-'+dy+'-'+hr+'-'+mn+"

 -Master.html"

 self.update()

 filename = yr+'-'+mt+'-'+dy+'-'+hr+'-'+mn+"-Master.hmtl"

 self.MasterHTML = os.path.join(path, filename)

 htmlContents = ''

 htmlHeader = rpt.HTML_START

 fldDate = yr+'-'+mt+'-'+dy+'@'+hr+':'+mn+" UTC"

 htmlHeader = htmlHeader.format(**locals())

 htmlContents = htmlContents + htmlHeader

 for eachKey in d:

 # M2 Adding Observation Data to the Reports

 htmlSection = rpt.HTML_BODY

 value = d[eachKey]

 fldAlert = value[ALERT]

 fldSrcIP = eachKey[SRCIP]

 fldDstIP = eachKey[DSTIP]

 fldFrame = eachKey[FRAMETYPE]

 fldProtocol = eachKey[PROTOCOL]

 fldSrcPort = value[SRCPORT]

 fldSrcPortName= value[SRCPORTNAME]

 fldDstPort = value[DSTPORT]

Chapter 4 raspberry pi as a sensor

109

 fldDstPortName= value[DSTPORTNAME]

 fldSrcMAC = value[SRCMAC]

 fldDstMAC = value[DSTMAC]

 fldSrcMFG = value[SRCMFG]

 fldDstMFG = value[DSTMFG]

 fldSrcCC = value[SRCCC]

 fldDstCC = value[DSTCC]

 fldPktSize = value[AVGPCKSIZE]

 fldTwilight = value[AM12]

 fldMorning = value[AM6]

 fldAfternoon = value[PM12]

 fldEvening = value[PM6]

 fldWeekend = value[WKEND]

 fldTotal = value[AM12]+value[AM6]+

 value[PM12]+

 value[PM6]+value[WKEND]

 htmlSection = htmlSection.format(**locals())

 htmlContents = htmlContents + htmlSection

 htmlContents = htmlContents + rpt.HTML_END

 ''' Write the Report to the output file'''

 # M3 Write HTML Report to File

 output = open(self.MasterHTML,"w")

 output.write(htmlContents)

 output.close()

Saving the Baseline (SaveOb)

In addition to generating the various reports associated with the

record baseline process, the actual baseline is also created. This is a

straightforward process in Python, as we are serializing the Python

dictionary object d using the pickle standard library module.

Chapter 4 raspberry pi as a sensor

110

Note What is pickling? pickling “serializes” python objects prior
to writing them to a file. pickling converts python objects (list, dict,
etc.) into a character stream. the idea is that this character stream
contains all the information necessary to reconstruct the object in
another python script. this is done by using the pickle.load(filename)
method. this method was utilized in section F-2 when the baseline
file was selected by the user.

In Section S1, the SaveOb method uses the same naming convention

used when creating report files, but adds the file extension “.baseline” to

the file. Then with only two lines of code, the baseline file is created.

with open(outFile, 'wb') as fp:

 pickle.dump(d, fp)

def SaveOb(self, d):

S1 Serializing and Saving the Object Baseline

 ''' Save the current observation dictionary to a the

specified path '''

 try:

 path = self.ReportFolder['text']

 baseDir = os.path.join(path,'baselines')

 if not os.path.isdir(baseDir):

 os.mkdir(baseDir)

 self.statusText['text'] = "Generating Serialized

Baseline ..."

 self.update()

 utc=datetime.datetime.utcnow()

 yr = str(utc.year)

 mt = '{:02d}'.format(utc.month)

 dy = '{:02d}'.format(utc.day)

Chapter 4 raspberry pi as a sensor

111

 hr = '{:02d}'.format(utc.hour)

 mn = '{:02d}'.format(utc.minute)

 filename = yr+'-'+mt+'-'+dy+'--'+hr+'-'+mn+".baseline"

 outFile = os.path.join(baseDir, filename)

 with open(outFile, 'wb') as fp:

 pickle.dump(d, fp)

 except Exception as err:

 LogEvent(LOG_ERR, "Failed to Create Baseline

Output"+str(err))

Activate Sensor (btnActivateSensor, PacketMonitor)

The final method to examine in this chapter is the btnActivateSensor

method. The front end of this method mimics that of the packer

recorder. The difference is in the processing of each received packet. The

PacketMonitor method examines the received packet and determines

if “the same packet construction” exists in the current baseline. If not,

then an alert report item is generated to indicate a “New Observation”. In

addition, the key elements of the packet, such as IP country location, MAC

address, packet size, and time of the observation, are compared to known

or expected values. If anomalies are discovered, additional report items

are recorded. The following code snippet includes the btnActivateSensor,

PacketMonitor, and supporting methods.

def btnActivateSensor(self):

 # Handle Active Sensor Button Click

 self.ActivateSensor['state']=DISABLED

 saveCaptureState = self.CapturePackets['state']

 self.CapturePackets['state']=DISABLED

 self.StopCapture['state']=NORMAL

 self.update()

Chapter 4 raspberry pi as a sensor

112

 # create a packet processing object

 self.statusText['text'] = "Loading Lookups ..."

 self.update()

 self.packetObj = PacketProcessor(self.lookupList,

 self.baselineDictionary)

 self.statusText['text'] = "Monitoring Packets ..."

 if PA_ON:

 self.statusText['text'] = "Resetting PaPirus Display

... Please

 Wait"

 self.update()

 self.paObj.ResetDisplay()

 self.paObj.UpdateMode("Monitor")

 self.paObj.UpdateStatus("Operation Started ")

 self.statusText['text'] = "Monitoring Packets ..."

 self.update()

 durationValue = self.duration.get()

 durSec = CONVERT[durationValue]

 startTime = time.time()

 curProgress = 0

 self.progressBar['value'] = curProgress

 self.alertDict = {}

 # Python Packet Capture

 # configure the eth0 in promiscuous mode

 try:

 ret = os.system("ifconfig eth0 promisc")

 if ret == 0:

Chapter 4 raspberry pi as a sensor

113

 LogEvent(LOG_INFO, 'Promiscuous Mode Enabled for

eth0')

 # create a new socket using the python socket

module

 # PF_PACKET : Specifies Protocol Family Packet

Level

 # SOCK_RAW : Specifies A raw protocol at the

network layer

 # htons(0x0003) : Specifies all headers and packets

 # : Ethernet and IP, including TCP/

UDP etc

 # attempt to open the socket for capturing raw

packets

 rawSocket=socket.socket(socket.PF_PACKET,socket.

SOCK_RAW,

 socket.htons(0x0003))

 else:

 self.statusText['text'] = "Monitoring Failed ...

 Cannot Open Socket"

 self.progressBar['value'] = 0

 self.update()

 self.CapturePackets['state']=NORMAL

 self.StopCapture['state']=DISABLED

 self.update()

 return

 except Exception as err:

 self.statusText['text'] = "Socket Exception ...

"+str(err)

 self.progressBar['value'] = 0

Chapter 4 raspberry pi as a sensor

114

 self.CapturePackets['state']=NORMAL

 self.StopCapture['state']=DISABLED

 self.update()

 return

 pkCnt = 0

 upTime = time.time()

 paTime = time.time()

 while True:

 curTime = time.time()

 elapsedTime = curTime - startTime

 if elapsedTime > durSec:

 break

 if self.abortFlag:

 ''' User Aborted '''

 ''' Reset the Flag for next use '''

 self.abortFlag = False

 break

 ''' Update the Progress Bar on Change vs Total Time'''

 newProgress = int(round((elapsedTime/durSec * 100)))

 if newProgress > curProgress:

 self.progressBar['value'] = newProgress

 curProgress = newProgress

 self.update()

 ''' Update the Status Window every two seconds'''

 newTime = time.time()

 if (newTime - upTime) >= 2:

 upTime = newTime

Chapter 4 raspberry pi as a sensor

115

 cntStr = '{:,}'.format(pkCnt)

 self.statusText['text'] = "Pck Cnt: " + cntStr

 self.update()

 ''' Update the PA Display if available '''

 if PA_ON:

 newPATime = time.time()

 if (newPATime - paTime) >= 20:

 paTime = newPATime

 cntStr = '{:,}'.format(pkCnt)

 self.paObj.UpdatePacketCnt(cntStr)

 # attempt to receive (this call is synchronous, thus it

will wait)

 try:

 recvPacket=rawSocket.recv(65535)

 self.packetObj.PacketMonitor(recvPacket,

 self.alertDict, self.baselineCC,

 self.baselineMAC)

 pkCnt += 1

 except Exception as err:

 LogEvent(LOG_INFO,'Recv Packet Failed: '+str(err))

 continue

 # Generate Sensor Reports

 self.GenAlerts(self.alertDict)

 ''' Enable Report Button '''

 self.ViewAlerts['state']=NORMAL

 ''' Reset Progress Bar and Post Completed status'''

 self.progressBar['value'] = 0

 cntStr = '{:,}'.format(pkCnt)

Chapter 4 raspberry pi as a sensor

116

 alertsGenerated = '{:,}'.format(len(self.alertDict))

 self.statusText['text'] = "Done: Total Connections

Processed

 : "+cntStr+" Alerts: "+alertsGenerated

 self.CapturePackets['state'] = saveCaptureState

 self.ActivateSensor['state']=NORMAL

 self.StopCapture['state']=DISABLED

 self.update()

 if PA_ON:

 self.paObj.UpdateAlertCnt(alertsGenerated)

 self.paObj.UpdatePacketCnt(cntStr)

 self.paObj.UpdateStatus("Operation Completed")

 self.paObj.UpdateMode(" ")

def PacketMonitor (self, packet, alertDict, baseCC, baseMAC):

 ''' Extract Packet Data input: string packet, dictionary d

 result is to update dictionary d

'''

ETH_LEN = 14 # ETHERNET HDR LENGTH

IP_LEN = 20 # IP HEADER LENGTH

IPv6_LEN = 40 # IPv6 HEADER LENGTH

ARP_HDR = 8 # ARP HEADER

UDP_LEN = 8 # UPD HEADER LENGTH

TCP_LEN = 20 # TCP HEADER LENGTH

''' Elements of the key '''

self.srcMac = ''

self.dstMac = ''

self.frType = ''

self.srcIP = ''

Chapter 4 raspberry pi as a sensor

117

self.dstIP = ''

self.proto = ''

self.opcode = ''

self.port = ''

self.srcPort = ''

self.dstPort = ''

self.srcPortName = ''

self.dstPortName = ''

self.packetSize = 0

self.srcMFG = ''

self.dstMFG = ''

self.dstMacOui =''

self.srcMacOui = ''

self.srcCC = ''

self.dstCC = ''

self.alert = ''

self.lastObservationTime = time.ctime(time.time())

ethernetHeader=packet[0:ETH_LEN]

ethFields =struct.unpack("!6s6sH",ethernetHeader)

self.dstMac = hexlify(ethFields[0]).upper()

self.dstMacOui = self.dstMac[0:6]

self.dstMFG = self.ouiOBJ.lookup(self.dstMacOui)

self.alert = 'Normal'

self.srcMac = hexlify(ethFields[1]).upper()

self.srcMacOui = self.srcMac[0:6]

self.srcMFG = self.ouiOBJ.lookup(self.srcMacOui)

self.fType = ethFields[2]

frameType = self.ethOBJ.lookup(self.fType)

self.frType = frameType

Chapter 4 raspberry pi as a sensor

118

if frameType == "IPV4":

 # Process as IPv4 Packet

 ipHeader = packet[ETH_LEN:ETH_LEN+IP_LEN]

 # unpack the ip header fields

 ipHeaderTuple = struct.unpack('!BBHHHBBH4s4s' , ipHeader)

 # extract the key ip header fields of interest

 # Field Contents

 verLen = ipHeaderTuple[0] # Field 0: Version &

 Length

 TOS = ipHeaderTuple[1] # Field 1: Type of

Service

 packetLength = ipHeaderTuple[2] # Field 2: Packet

Length

 protocol = ipHeaderTuple[6] # Field 6: Protocol

Number

 sourceIP = ipHeaderTuple[8] # Field 8: Source IP

 destIP = ipHeaderTuple[9] # Field 9:

Destination IP

 timeToLive = ipHeaderTuple[5] # Field 5: Time to

Live

 # Calculate / Convert extracted values

 version = verLen >> 4 # Upper Nibble is the

version Number

 length = verLen & 0x0F # Lower Nibble represents

the size

 ipHdrLength = length * 4 # Calculate the header size

in bytes

 # covert the srcIP/dstIP to typical dotted notation strings

 self.packetSize = packetLength

Chapter 4 raspberry pi as a sensor

119

 self.srcIP = socket.inet_ntoa(sourceIP);

 self.dstIP = socket.inet_ntoa(destIP);

 self.srcCC = self.cc.lookup(self.srcIP, 'IPv4')

 self.dstCC = self.cc.lookup(self.dstIP, 'IPv4')

 translate = self.traOBJ.lookup(str(protocol))

 transProtocol = translate[0]

 if transProtocol == 'TCP':

 self.proto = "TCP"

 stripTCPHeader = packet[ETH_

LEN+ipHdrLength:ipHdrLength+

 ETH_LEN+TCP_LEN]

 # unpack the TCP Header to obtain the

 # source and destination port

 tcpHeaderBuffer = struct.unpack('!HHLLBBHHH' ,

stripTCPHeader)

 self.srcPort = tcpHeaderBuffer[0]

 self.dstPort = tcpHeaderBuffer[1]

 self.srcPortName = self.portOBJ.lookup(self.srcPort,

'TCP')

 self.dstPortName = self.portOBJ.lookup(self.dstPort,

'TCP')

 elif transProtocol == 'UDP':

 self.proto = "UDP"

 stripUDPHeader = packet[ETH_LEN+ipHdrLength:ETH_LEN+

 ipHdrLength+UDP_LEN]

Chapter 4 raspberry pi as a sensor

120

 # unpack the UDP packet and obtain the

 # source and destination port

 udpHeaderBuffer = struct.unpack('!HHHH' ,

stripUDPHeader)

 self.srcPort = udpHeaderBuffer[0]

 self.dstPort = udpHeaderBuffer[1]

 self.srcPortName = self.portOBJ.lookup(self.srcPort,

'UDP')

 self.dstPortName = self.portOBJ.lookup(self.dstPort,

'UDP')

 elif transProtocol == 'ICMP':

 self.proto = "ICMP"

 elif transProtocol == 'IGMP':

 self.proto = "IGMP"

 else:

 self.proto = transProtocol

elif frameType == 'ARP':

 # Process as IPv4 Packet

 arpHeader = packet[ETH_LEN:ETH_LEN+ARP_HDR]

 # unpack the ARP header fields

 arpHeaderTuple = struct.unpack('!HHBBH' , arpHeader)

 ht = arpHeaderTuple[0]

 pt = arpHeaderTuple[1]

 hal = arpHeaderTuple[2]

Chapter 4 raspberry pi as a sensor

121

 pal = arpHeaderTuple[3]

 op = arpHeaderTuple[4]

 # set packetSize for ARP to zero

 self.packetSize = 0

 base = ETH_LEN+ARP_HDR

 shAddr = hexlify(packet[base:base+hal])

 base = base+hal

 spAddr = hexlify(packet[base:base+pal])

 base = base+pal

 thAddr = hexlify(packet[base:base+hal])

 base = base+hal

 tpAddr = hexlify(packet[base:base+pal])

 self.srcIP = shAddr

 self.dstIP = thAddr

 self.proto = str(op)

elif frameType == "IPV6":

 # Process as IPv6 Packet

 ipHeader = packet[ETH_LEN:ETH_LEN+IPv6_LEN]

 # unpack the ip header fields

 ipv6HeaderTuple = struct.unpack('!IHBBQQQQ' , ipHeader)

 flush = ipv6HeaderTuple[0]

 pLength = ipv6HeaderTuple[1]

 nextHdr = ipv6HeaderTuple[2]

 hopLmt = ipv6HeaderTuple[3]

 srcIP = (ipv6HeaderTuple[4] << 64) | ipv6HeaderTuple[5]

 dstIP = (ipv6HeaderTuple[6] << 64) | ipv6HeaderTuple[7]

 self.packetSize = pLength

 self.srcIP = str(netaddr.IPAddress(srcIP))

Chapter 4 raspberry pi as a sensor

122

 self.dstIP = str(netaddr.IPAddress(dstIP))

 self.srcCC = self.cc.lookup(self.srcIP, 'IPv6')

 self.dstCC = self.cc.lookup(self.dstIP, 'IPv6')

 translate = self.traOBJ.lookup(str(nextHdr))

 transProtocol = translate[0]

 if transProtocol == 'TCP':

 self.proto = "TCP"

 stripTCPHeader = packet[ETH_LEN+IPv6_LEN:ETH_LEN+

 IPv6_LEN+TCP_LEN]

 # unpack the TCP Header to obtain the

 # source and destination port

 tcpHeaderBuffer = struct.unpack('!HHLLBBHHH' ,

stripTCPHeader)

 self.srcPort = tcpHeaderBuffer[0]

 self.dstPort = tcpHeaderBuffer[1]

 self.srcPortName = self.portOBJ.lookup(self.srcPort,

'TCP')

 self.dstPortName = self.portOBJ.lookup(self.dstPort,

'TCP')

 elif transProtocol == 'UDP':

 self.proto = "UDP"

 stripUDPHeader = packet[ETH_LEN+IPv6_LEN:ETH_LEN+

 IPv6_LEN+UDP_LEN]

 # unpack the UDP packet and obtain the

 # source and destination port

Chapter 4 raspberry pi as a sensor

123

 udpHeaderBuffer = struct.unpack('!HHHH' ,

stripUDPHeader)

 self.srcPort = udpHeaderBuffer[0]

 self.dstPort = udpHeaderBuffer[1]

 self.srcPortName = self.portOBJ.lookup(self.srcPort,

'UDP')

 self.dstPortName = self.portOBJ.lookup(self.dstPort,

'UDP')

 elif transProtocol == 'ICMP':

 self.proto = "ICMP"

 elif transProtocol == 'IGMP':

 self.proto = "IGMP"

 else:

 self.proto = transProtocol

else:

 self.proto = frameType

valueNdx = getOccurrenceValue()

if self.srcIP == '127.0.0.1' and self.dstIP == '127.0.0.1':

 ''' Ignore this packet '''

 return

if self.srcPort <= CORE_PORTS:

 ''' if srcPort is definately a service port'''

 key = (self.srcIP, self.dstIP, self.srcPort,

 self.frType, self.proto)

elif self.dstPort <= CORE_PORTS:

Chapter 4 raspberry pi as a sensor

124

 ''' if dstPort is definately a service port'''

 key = (self.srcIP, self.dstIP, self.dstPort,

 self.frType, self.proto)

elif self.srcPort < self.dstPort:

 ''' Guess that srcPort is server '''

 key = (self.srcIP, self.dstIP, self.srcPort,

 self.frType, self.proto)

else:

 ''' guess destination port is server'''

 key = (self.srcIP, self.dstIP, self.dstPort,

 self.frType, self.proto)

''' Check Baseline for previously observed key '''

try:

 ''' if match found, snag the time entries and avg packet

size'''

 value = self.b[key]

 avgPckSize = value[AVGPCKSIZE]

 timeList = [value[AM12], value[AM6], value[PM12],

 value[PM6], value[WKEND]]

 newEntry = False

except:

 ''' Then this is a new observation'''

 self.CreateAlertEntry(key, alertDict, "New Observation")

 newEntry = True

chk, value = self.ouiOBJ.chkHotlist(self.dstMacOui)

if chk:

 self.CreateAlertEntry(key, alertDict, "HotList: "+value)

if self.isNewMAC(self.srcMac, baseMAC):

 self.CreateAlertEntry(key, alertDict, "New MAC Address")

Chapter 4 raspberry pi as a sensor

125

if self.isNewMAC(self.dstMac, baseMAC):

 self.CreateAlertEntry(key, alertDict, "New MAC Address")

if self.isNewCC(self.srcCC, baseCC):

 self.CreateAlertEntry(key, alertDict, "New Country Code")

if self.isNewCC(self.dstCC, baseCC):

 self.CreateAlertEntry(key, alertDict, "New Country Code")

 ''' If this is not a new entry the safe to check pckSize and

Times'''

if not newEntry:

 if self.isUnusualPckSize(self.packetSize, avgPckSize):

 self.CreateAlertEntry(key, alertDict, "Unusual Packet

Size")

 if self.isUnusualTime(timeList):

 self.CreateAlertEntry(key, alertDict, "Unusual Packet

Time")

Packet Monitor Supporting Methods

def isUnusualPckSize(self, pSize, avgSize):

 if float(pSize) < float(avgSize*.70):

 return True

 if float(pSize) < float(avgSize*1.30):

 return True

 return False

 def isNewMAC(self, mac, b):

 if mac == 'Unknown' or mac == '':

 return False

 if not mac in b:

 return True

 else:

Chapter 4 raspberry pi as a sensor

126

 return False

 def isNewCC(self,cc, b):

 if cc == 'Unknown' or cc == '':

 return False

 if not cc in b:

 return True

 else:

 return False

 def isUnusualTime(self, occList):

 occ = getOccurrenceValue()

 if occList[occ] == 0:

 return True

 else:

 return False

 def CreateAlertEntry(self, key, alertDict, alertType):

 try:

 ''' See if the alert already exists '''

 value = alertDict[key]

 ''' if yes, then bump the occurrence count'''

 cnt = value[1] + 1

 alertDict[key] = [alertType, cnt,

 self.lastObservationTime,

 self.packetSize,

 self.srcCC, self.dstCC, self.

srcMac,

 self.dstMac, self.srcMFG, self.

dstMFG,

 self.srcPort, self.dstPort, self.

srcPortName,

Chapter 4 raspberry pi as a sensor

127

 self.dstPortName]

 except:

 ''' Othewise create a new alert entry'''

 alertDict[key] = [alertType, 1, self.

lastObservationTime,

 self.packetSize, self.srcCC,

self.dstCC,

 self.srcMac, self.dstMac, self.

srcMFG,

 self.dstMFG,self.srcPort, self.

dstPort,

 self.srcPortName, self.

dstPortName]

 Summary
This chapter provided both an overview of the Raspberry Pi sensor/

recorder along with a detailed examination of many of the code elements

that support the design. This included the following:

• Design overview

• Examination of the GUI approach

• Integration of the PaPirus ePaper display

• Details of the baseline recording method

• Details of the sensor methods

• Details of the report generation methods

• Finally, the use of the Python pickle method to store

and load the resulting recorded baselines

Chapter 4 raspberry pi as a sensor

128

In Chapter 5, the focus will be on applying the Pi recorder/sensor to

create baselines that are used to train and then activate the sensor. Finally,

both the recorder-generated reports and the reports generated by the

sensor will be examined to expose IoT-based operations within our test

network.

Chapter 4 raspberry pi as a sensor

129© Chet Hosmer 2018
C. Hosmer, Defending IoT Infrastructures with the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-3700-7_5

CHAPTER 5

Operating the
Raspberry Pi Sensor
Now that we have a functioning Raspberry Pi sensor that includes the

baseline recorder, sensor, and reports, let’s do an operational walk- through.

 Raspberry Pi Setup
The first step is to set up the Raspberry Pi sensor.

The following is required for the basic installation:

 1. Raspberry Pi Model 3

 2. Minimum of 16GB SD card

 3. Install the Raspbian OS (this is the current version

running)

PRETTY_NAME="Raspbian GNU/Linux 8 (jessie)"

NAME="Raspbian GNU/Linux"

VERSION_ID="8"

VERSION="8 (jessie)"

ID=raspbian

ID_LIKE=debian

130

 4. Once you have this installed, update the Python

2.7 version to the latest, which currently is 2.7.9 or

greater. Note this step is only necessary if you plan

to work with the Python source code. The executable

for piSensorV3 is also being provided with this book.

 5. Copy installation files available at python-forensics.

org/piSensor to a folder of your choice on the Pi.

For my test installation, I placed the files in a folder

named TEST right on the desktop of the Pi. Figure 5-1

depicts the contents of the folder TEST.

 a. RPT Folder: Reports and baselines are written to

this folder by the Raspberry Pi sensor

 b. piSensorV3 is the compiled Python sensor

application

 c. lookup.db contains the various lookup tables for

ports, protocols, MAC address manufacturers,

and Ethernet types

 d. The geoIPv6 and geoIPv4 files are used to map

IP addresses to country locations

 e. hotlist.txt contains a list of ports of interest

Figure 5-1. Operational folder

Chapter 5 Operating the raspberry pi sensOr

131

Optional Features:
As discussed in Chapter 4, you can add the PaPirus ePaper display to

your Pi, as shown in Figure 5-2. This will display real-time information

directly on the Pi. If the PaPirus is not installed, the sensor will perform

normally and all display will be provided via the GUI only.

 Connecting the Raspberry Pi
The next step is to connect the Raspberry Pi to the network you wish to

monitor.

 Switch Configuration for Packet Capture
Most modern networking infrastructures and switches support port

mirroring via a Switched Port ANalyzer (SPAN) or Remote Switched Port

ANalyzer (RSPAN). I’m using a TP-LINK eight-port Gigabit Easy Smart

Switch TL-SG108E as shown in Figure 5-3. I have experimented with many

switches and hubs for this purpose, and for a low-cost, reliable, and easy-

to- configure device, this meets all my objectives.

Figure 5-2. Raspberry Pi with PaPirus ePaper display

Chapter 5 Operating the raspberry pi sensOr

132

The simplicity of the switch is based on the software application “Easy

Smart Configuration Utility,” shown in Figure 5-4, that is included with

the switch. The configuration utility allows for the configuration of all the

features available on the TL-SG108E.

For the purposes of capturing all the network traffic that passes

through the switch, we will set up the monitoring selection. Figure 5-4

depicts the configuration screen for port monitoring. In this example, I

have set up Port 8 to be the monitoring port and ports 1–7 to be monitored.

This means that all traffic flowing in or out of ports 1–7 will be available for

monitoring on Port 8.

Figure 5-3. TP-LINK eight-port Gigabit Easy Smart Switch

Chapter 5 Operating the raspberry pi sensOr

133

Now simply connect the Ethernet port on the Raspberry Pi to Port 8 on

the switch as shown in Figure 5-5.

Figure 5-4. Easy Smart configuration utility

Figure 5-5. Connecting the Pi sensor to the TP-LINK monitoring port

Chapter 5 Operating the raspberry pi sensOr

134

 Running the Python Application
Now that your Raspberry Pi is configured and connected to a suitable

network switch with a monitor or SPAN port, we can begin to run the

sensor application. As shown in Figure 5-1, the piSensorV3 is the compiled

version of the Python-based sensor application. You might be asking two

questions.

 1. Why is this not just a Python file? You could of

course launch the Python interpreter and specify

the main Python script piSensorV3.py. You would

need to download the Python scripts as noted in the

Appendix A to do this. Note that piSensorV3.py is

a Python 2.7 script and will not work in Python 3.x

environments. However, the piSensorV3 application

does not rely on the underlying Python installation.

sudo python piSensorV3.py

 2. How did you make the Python script into an

executable? There are several methods to convert

Python scripts into more traditional executables.

I have found that the pyinstaller is an outstanding

product to convert Python scripts into executables.

You can find more information about pyinstaller at

the following website:

www.pyinstaller.org/

To execute the piSensorV3, open a terminal window on your Raspberry

Pi. The straightforward way to do this is to click the icon on the top toolbar

as shown in Figure 5-6.

Chapter 5 Operating the raspberry pi sensOr

135

This will launch the terminal application allowing you to type

command-line commands (see Figure 5-7). To launch piSensorV3, simply

 1. Navigate to the folder where you copied the required

files. On my Raspberry Pi, I navigated to the desktop,

then to the TEST folder. I then typed “ls” to verify

that the directory contained the required files.

 2. Launch the executable. Notice that I launched the

executable from the current working directory,

and I launched this as sudo. This is required since

piSensorV3 requires privilege to place the network

adapter in promiscuous mode.

Figure 5-6. Open a terminal window

Figure 5-7. Terminal window execution of piSensorV3

This will launch the piSensorV3 application with a GUI as shown in

Figure 5-8.

Chapter 5 Operating the raspberry pi sensOr

136

Note if you have a papirus display installed, the display will be
initialized and display the initial prompts.

 Creating a Baseline
The next step in the operation is to create a baseline of the network you

are monitoring. This will be used by the sensor later to monitor device

behaviors when in sensor mode. However, much can be gleaned about

your network by recording the baseline as well.

The first step in creating the baseline is to specify the folder where

the observed results will be recorded along with a setup of reports.

For this I have selected the folder RPT to store the results, as shown

in Figures 5- 9 and 5-10. I have also selected a duration of 1 day. The

duration for recording is dependent upon the behavior you wish to

monitor. In most cases, I like to set this for one full week to cover

operations of each day of the week.

Figure 5-8. piSensorV3 application launched

Chapter 5 Operating the raspberry pi sensOr

137

Figure 5-9. Report folder selection

Figure 5-10. Report and duration selected

You may notice that the record baseline button is now available, as I

have successfully specified the report folder and duration. Now that I’m

ready to record the baseline, I can do that by clicking the record baseline

button. Figure 5-11 shows the record baseline progress, while Figure 5-12

depicts the PaPirus display progress indications. Notice that the record

baseline button is no longer available, but the STOP button is. At any

time you can press STOP and you will be given the option to continue the

recording or cancel it. If you cancel, the results recorded will be saved in a

baseline and the resulting intermediate reports will be generated.

Chapter 5 Operating the raspberry pi sensOr

138

Figure 5-12. PaPirus recording progress display

Figure 5-11. Baseline recording progress

Once the recording has completed, the status message changes to

“Completed” and displays the total connections processed along with the

number of unique observations (see Figures 5-13 and 5-14). This is a key

of our data reduction methodology. Connections using the same source

IP, destination, and port are recorded. However, instead of keeping each

connection, the number of connections of this type that occur are recorded

for each day of the week and hour of the day. This information is used by

the sensor to identify unusual behavior. This allows us to also conserve

resources on the Pi by only recording unique behaviors.

Chapter 5 Operating the raspberry pi sensOr

139

There are a couple of other important results of the recording

operation. First, the view reports button is now activated as reports from

the observation period have been generated. Figure 5-15 depicts the

selection of reports that are available.

Figure 5-13. Baseline recording completed

Figure 5-14. Baseline completed PaPirus display

Chapter 5 Operating the raspberry pi sensOr

140

The reports available include the following:

 1. Master - This report includes all recorded

observations (in this example, 17,510 records) with

details of each recording as shown in Figure 5-15.

See the report excerpt in Figure 5-16 for an

abbreviated example of the master report contents.

Figure 5-15. Report selection

Chapter 5 Operating the raspberry pi sensOr

141

Figure 5-16. Master report excerpt

Chapter 5 Operating the raspberry pi sensOr

142

Figure 5-17. Master report excerpt continued

Chapter 5 Operating the raspberry pi sensOr

143

 2. Device manufacturer report – This report provides

observation of each device manufacturer along with

the associated MAC and IP address. This provides

detailed tracking of known and possibly unknown

devices located on your network. During the sensor

phase, any device that was not observed during

the recording period is reported as an alert. See the

report in Figure 5-18 for an abbreviated example.

Figure 5-18. Excerpt of the manufacturer report

Chapter 5 Operating the raspberry pi sensOr

144

 3. Country report - Much like the manufacturer report,

the data is organized by observed country. Included

in the report is the number of connections made to

systems within the targeted country. Again, during the

sensor phase, any country connections not observed

during the recording period generate an alert.

Figure 5-19 shows an example of the country report.

 4. Port usage report – This report organizes the data

by observed port connections. The report contains

each used port number and associated name,

along with the unique source and destination IP

Figure 5-19. Report observed country connections

Chapter 5 Operating the raspberry pi sensOr

145

addresses, frame type, and associated protocol that

was used. Figure 5-20 depicts an excerpt from the

port usage report.

 5. Known ICS port usage report and IoT port usage

report – These reports further filter the port usage

to the only ports that are typically utilized by ICS

or IoT devices. It is important to note that some

of the port reports can have non-ICS/IoT usage as

well. Thus, the reports are named Possible ICS and

Possible IoT Port Usage. Report Excerpts E and F

provide samples of these reports. During sensor

operation, any ICS or IoT observations that did not

exist during the recording period will generate an

alert. See Figures 5-21 and 5-22 for samples of the

ICS and IoT reports.

Figure 5-20. Port usage report

Chapter 5 Operating the raspberry pi sensOr

146

Now that we have a recorded baseline, we can use that baseline to

activate the sensor by selecting the specific baseline, as shown in

Figure 5- 23. The report folder is still required, and the activate sensor

button will not be available until both report folder and baseline have

been selected. The report folder is necessary, as any alerts generated by

the sensor will be stored one level below the report folder in a subfolder

named ALERTS. It should be noted that all the reports, alerts, and

baselines include the yyyy- mm- dd-hh-mm prefix.

Figure 5-21. ICS report sample

Figure 5-22. IoT report sample

Chapter 5 Operating the raspberry pi sensOr

147

Finally, we need to select the duration of the sensor operation and

click the activate sensor button; then, the process of monitoring for any

variance from the recorded baseline commences (see Figure 5-24).

Figure 5-23. Baseline selection

Figure 5-24. Activating the sensor

Chapter 5 Operating the raspberry pi sensOr

148

Once the sensor operation is complete, we see the number of packets

processed along with the number of alerts generated. In addition, the view

alerts button is now available, allowing us to review any alerts generated

by the sensor. During this short run of the sensor (30 minutes), the sensor

processed 22,295 connections and found 353 anomalies or variance from

the observed baseline (see Figure 5-25).

We can now examine the generated alerts to view the variance or

anomalies that were detected by the sensor. Report Figure 5-26 provides

an abbreviated output. As you can see in the excerpt, the report included

unusual packet time reports along with a new observation. Neither of these

is too serious, based on the review of the packets. A much longer recording

(a week) would have created observations that would have likely included

both of these.

Figure 5-25. Sensor completed

Chapter 5 Operating the raspberry pi sensOr

149

 Summary
This chapter provided a walk-through of a Raspberry Pi sensor. This

included the following:

• Overview of the sensor connection to an active

network.

• Recording a baseline.

• Generating and examining reports created during the

process of recording a baseline.

Figure 5-26. Alert report sample

Chapter 5 Operating the raspberry pi sensOr

150

• Selection of a recorded baseline once created for use

during the sensor phase.

• Activation of the sensor based on a specific recorded

baseline.

• Examination of alerts generated by the sensor.

In Chapter 6, we will take a detailed look at the recording of the

baseline process, and the method of reduction that is accomplished using

a Python dictionary. In addition, we will examine the details of the sensor

decision-making process and baseline comparison.

Chapter 5 Operating the raspberry pi sensOr

151© Chet Hosmer 2018
C. Hosmer, Defending IoT Infrastructures with the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-3700-7_6

CHAPTER 6

Adding Finishing
Touches
As with most hardware solutions, they are never finished until they are no

longer relevant. This chapter adds a couple of final touches to this version

of the Pi sensor. As this book proceeds to print, I’m sure more changes,

updates, and enhancements will continue. Not to worry, the updates and

source code for the latest changes will be available via git-hub. Go to

www.apress.com/9781484236994.

 Raspberry Pi Latest Version
On Pi Day 2018 (March 14, i.e., 3.14), the Raspberry Pi foundation

announced the release of the Raspberry Pi 3 Model B+. According to the

foundation, the new improvements allow the computer to sustain higher

performance for longer periods of time (see Figure 6-1).

http://www.apress.com/9781484236994

152

The 3B+ upgrade offers a faster processor (200MHz increase in CPU

clock frequency), better thermal management, three times the wired and

wireless network throughput, and Gigabit Ethernet. These improvements

add value to our sensor solution by delivering additional speed to process

packets faster without overheating the Pi.

Adding a new rugged case with a built-in fan (see Figure 6-2) adds

greater stability, sleekness, and cooling to the sensor.

Figure 6-1. Raspberry Pi 3 Model B+

Chapter 6 adding Finishing touChes

153

As of this writing, the multilayer Smraza case is available from Amazon,

among other places. The case includes an on/off switch cable, a fan, and

heat sinks.

 Sensor Software Updates
Along with the new Raspberry Pi 3 Model B+, several important software

updates were made to the sensor. They include NIC selection and MAC

address filtering, as shown in Figure 6-3 and labeled A and B respectively.

Figure 6-2. Raspberry Pi in ruggedized Smraza case

Chapter 6 adding Finishing touChes

154

(A) NIC Selection

Determining the available interfaces on the Raspberry Pi is quite

straightforward. The directory /sys/class/net holds the names of the

available interfaces. For our purposes, this allows us to provide a drop-

down list of possible interfaces and most importantly allows the selection

of the wireless interface in addition to the standard Ethernet port. As

mentioned in the preceding, both interfaces have been significantly

improved on the Raspberry Pi 3 Model B+.

To build a list and the GUI drop-down menu, see Listing 6-1.

Listing 6-1. Targeting Specific Devices to Monitor

try:

 nicList = os.listdir('/sys/class/net')

 nicList.sort()

 nicTuple = tuple(nicList)

except:

 nicTuple= tuple(['eth0'])

self.ethPort['values'] = nicTuple

self.ethPort.current(0)

 self.ethPort.grid(row=5, column=1, padx=5, pady=10, sticky='w')

Figure 6-3. Sensor updates: (A) NIC selection; (B) MAC address filtering

Chapter 6 adding Finishing touChes

155

Note, for example, if you select the wireless LAN (wlan0), you must first

connect to the desired wireless network to monitor. On the Raspberry Pi

you can select, connect, and log in to the desired wireless interface using

the icon in the upper right corner (see Figure 6-4).

(B) MAC Address Filtering

The second addition included in finishing touches is the ability to

monitor, record, and activate the sensor to target specific MAC addresses.

Within industrial control or compartmentalized IoT environments, it is

quite common to closely monitor critical assets. This selection uses a list of

MAC addresses supplied in a flat text file. Figures 6-5 and 6-6 demonstrate

the selection of the MAC filter file and the check box that enables MAC

filtering.

Figure 6-4. Raspberry Pi wireless selection

Chapter 6 adding Finishing touChes

156

The MAC-LIST text file contains a simple list of MAC addresses, one

per line, as shown in Figure 6-7.

Figure 6-5. Selection of the MAC filtering list

Figure 6-6. Enabling the MAC filter

Chapter 6 adding Finishing touChes

157

You might be questioning why we chose to use a MAC address for

filtering instead of the IP address. IP addresses for devices are dynamically

assigned by DHCP unless they are statically defined. Therefore, using MAC

addresses (which can be manipulated as well, but require targeted action

to do so) provides better filtering options. When the sensor is operated,

only packets with source or destination MAC addresses provided in the

list will be recorded. This allows for easier analysis of the reports such as

port usage and country, allowing you to verify the inbound and outbound

traffic from specific devices.

The MAC address filtering is handled in just a few lines of code. First,

we create a list of MACs to filter when a MAC filtering file is provided, and

MAC filtering is enabled (see Listing 6-2).

Figure 6-7. Sample MAC-LIST text file

Chapter 6 adding Finishing touChes

158

Listing 6-2. Honoring User Filter Selections

self.fileSelection = tkFileDialog.askopenfilename

(initialdir = "./",

 title = "Select Include MAC Address List File")

self.IncludeFile['text'] = self.fileSelection

 if self.fileSelection:

 self.macList = []

 self.macEnable = True

 with open(self.fileSelection) as ips:

 for eachLine in ips:

 self.macList.append(eachLine.strip())

 else:

 self.macEnable = False

This method provides easy filtering of MAC addresses during packet

extraction (see Listing 6-3).

Listing 6-3. Filtering Out Other Device Packets

ethernetHeader=packet[0:ETH_LEN]

ethFields =struct.unpack("!6s6sH",ethernetHeader)

Extract DST MAC, SRC MAC and Frame Type

self.dstMac = hexlify(ethFields[0]).upper()

self.srcMac = hexlify(ethFields[1]).upper()

Check if MAC Filtering is on

if self.macFilterEnable and self.macFilterSet:

 if not (self.dstMac in self.macFilter) and

 not (self.srcMac in self.macFilter):

 # Filter this packet

 return

Chapter 6 adding Finishing touChes

159

 Summary
This chapter added some finishing touches to the Raspberry Pi sensor,

specifically, the ability to monitor any network interface that is available on

the Pi. This provides a wider view of activity on the network in question.

In addition, the capability to target specific MAC addresses detected

during recording or sensor activation further refines the applications of the

Pi sensor.

In Chapter 7, we will discuss future capabilities that are planned for the

Pi sensor, and how you can participate in the project.

Chapter 6 adding Finishing touChes

161© Chet Hosmer 2018
C. Hosmer, Defending IoT Infrastructures with the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-3700-7_7

CHAPTER 7

Future Work
Continued advancement of the Pi sensor is actively underway. Key areas of

development include the following:

 1. Expansion of key lookup tables

 2. Implementation of user searching and filtering of

scan results

 3. Headless communication with remotely deployed

Pi sensors

 4. Correlation of results from a swarm of Pi sensors

 Expansion of Lookup Tables
The Pi Sensor utilizes several key lookup tables that have been compiled

for open source websites. They include port, manufacturer, and country

lookups.

 Port Lookups
The port lookup table is gathered from the IANA at www.iana.org. IANA

provides registration services for port numbers designed for a specific

purpose. However, many of the port usage descriptions provide only

general information regarding port usage. Additional details are necessary

http://www.iana.org/

162

to better map port usage to specific IoT and ICS applications. This would

allow for more accurate reporting, tracking, and usage of ports by IoT and

ICS applications.

 Manufacturer Lookup
Looking up manufactures by the OUI suffers from some of the same

limitations of the port lookup. The OUI represents the first 24 bits of the

MAC address emitted by devices. The OUI is managed by the IEEE. The

specific OUI values are purchased from the IEEE and added to the

registry. The issue is that the OUI represents the manufacturer but does

not define the use or application of the value. For example, identification

of which OUI numbers are associated with drones, entertainment

devices, computers, home automation, industrial control, cybersecurity

devices, and so on is not readily available. If more details and cross-

referencing of OUI and a specific category were available, then the ability

to track behaviors of IoT devices would be significantly improved. This

categorization coupled with a more refined port usage would allow the

detection of normal and aberrant communication between IoT devices

and between IoT devices and local/remote communicating/controlling

entities.

 Country Lookup
The expansion, accuracy, and refinement of country lookup would help

to identify potential hostile or inappropriate communications between

devices. IP addresses are managed by IANA along with five regional

Internet registries. Tracking and associating IP addresses to a finer-

grained location (i.e., street address or lat/lon location) would provide

more detailed location information of potential attackers, botnets, and

command and control servers.

Chapter 7 Future Work

163

 Implementation of User Searches and
Filtering of Scan Result
One of the immediate next steps to PiSensor is the development of an

interface that would allow mining of scan and alert results. This feature

needs to engage the user in actively reviewing the results of recording

and/or alert results. This interface needs to be interactive and would help

pinpoint activities of interest. This information would be used for early

indication and warning, alert refinement and digital forensics, incident

response (DFIR) activities.

 Headless Communication with Remotely
Deployed Pi Sensors
The current GUI for direct interaction with the Pi sensor provides a good

local method of configuration, activation, control, and review of Pi sensor

results. However, the ability to place Pi sensors in remote locations and

then control and retrieve results and alerts is the logical next step. This

would allow the deployment in either wired or wireless settings with only a

power source and connection to the network to be monitored. This would

eliminate the need for a monitor, keyboard, and mouse, and would reduce

the cost of deployment to under $50.00 per sensor. This would of course

require the Pi sensor to support a secure interface with those controlling

its operation. Examining possible security devices for this purpose (note

that software-only devices have been discounted due to the potential

security risks), I have begun to experiment with the ZYMKEY 4i, shown in

Figures 7-1 and 7-2.

Chapter 7 Future Work

164

Figure 7-1. ZYMKEY from zymbit

Chapter 7 Future Work

165

The ZYMKEY provides a hardware key that connects to the Raspberry

Pi I2C bus. The ZYMKEY comes with a Python application interface

allowing us to integrate the key into the Pi sensor application. The device

includes a cryptographic processing and authentication engine, a secure

key store, and tamper detection and response circuits. In addition, when

placed in production mode the ZYMKEY binds itself to the specific

Raspberry Pi it is connected to and will not operate on a different Pi. This

combined with the tamper detection and response and secure key store

allows us to perform secure authentication and encryption with a control

center.

The general operating concept is to develop a secure console that can

activate, control, and receive alerts from remotely deployed Pi sensors as

shown in Figure 7-3.

Figure 7-2. ZYMKEY install on a Raspberry Pi

Chapter 7 Future Work

166

 Correlation of Results from a Swarm of
Pi Sensors
The concept of swarm deployment of sensors is certainly not new.

However, doing so with a group of Raspberry Pi’s acting as a swarm of IoT

devices is. This final area of future work is still being researched at this

point.

The need for this is straightforward. Organizations now need to deploy

sensors at numerous locations within a single facility, facilities across

town, or across the world, and this need will continue to grow. Consider a

hotel with thousands of rooms and hundreds of floors. The ability to detect

behaviors and instrument the Pi sensor with various wireless and physical

sensing capabilities would provide early indications of nefarious activities

or even aid hotel guests in distress. My building a swarm or Pi’s provides

not only discrete communication from Pi to a command and control

center, but also Pi-to-Pi sharing of information.

Figure 7-3. Secure command and control of a remote Pi sensor

Chapter 7 Future Work

167

 Raspberry Pi Sensor: Executing the Sensor
on Your Raspberry Pi
The easiest method is to simply download the prebuilt executable for the

Pi sensor. The executable is delivered as a Debian package. Download the

package file piSensor.deb and then install it.

sudo dpkg -i piSensor.deb

The second method is to download the source code and execute the

PiSensor directly from the Python source: follow the README instructions

in the source download.

The piSensor.deb and piSensor.zip are both available as part of the

source code for this book. Go to www.apress.com/us/book/9781484236994

and click the source code button.

 Summary
This chapter provided a look at the next steps for the PiSensor. If you

would like to contribute ideas, write some code, or test future work, please

contact the author directly.

Coming up next is the appendix. The appendix provides the complete

source code for PiSensor along with samples of hotlist and MAC-LIST

text files.

Chapter 7 Future Work

http://www.apress.com/us/book/9781484236994

169© Chet Hosmer 2018
C. Hosmer, Defending IoT Infrastructures with the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-3700-7

 APPENDIX A

Obtaining the Python
Source Code
As noted in the Chapter 7 summary, the source code is continually

evolving, and new versions are continually updated. As my wife Janet

(also an outstanding computer scientist) remarks, “software is never done

until it is obsolete.”

 Obtaining the Source Code
Readers can obtain a copy of the current Python source code, additional

files, and an executable version for the Raspberry Pi on GitHub via the

book’s product page, located at

www.apress.com/978-1-4842-3699-4

In addition, for those wishing to participate in the advancement of the

code for the Raspberry Pi or porting the code to other platforms, please

contact the author:

Chet Hosmer, cdh@python-forensics.org

or

visit the web page www.python-forensics.org.

https://doi.org/10.1007/978-1-4842-3700-7
http://www.apress.com/978-1-4842-3699-4
http://www.python-forensics.org/

170

 Source Code Copyright and Licensing
The following copyright message is included in each of the source files for

the Raspberry Pi sensor/recorder to clearly state the use and distribution

of the source code.

'''

Packet Sensor/Recorder GUI Version

Version 1.0 May 5, 2018 Cinco-de-Mayo Version

Copyright (c) 2018 Python Forensics and Chet Hosmer

Permission is hereby granted, free of charge, to any person

obtaining a copy of this software and associated documentation

files (the "Software"), to deal in the Software without

restriction, including without limitation the rights to use, copy,

modify, merge, publish, distribute, sublicense, and/or sell copies

of the Software, and to permit persons to whom the software is

furnished to do so, subject to the following condition:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

'''

APPENDIX A ObtAININg thE PythON SOurcE cODE

171© Chet Hosmer 2018
C. Hosmer, Defending IoT Infrastructures with the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-3700-7

 Glossary

Active Discovery – The act of directly probing devices attached to a

network to discover them along with the services they have open and even

to determine the type of operating system or device (e.g., Windows, Linux,

Mac, Printer).

Arduino – An open source electronics platform based on available and

simple-to-use hardware and software components.

ARP – Address Resolution Protocol. This protocol is used to map IP

addresses to a unique physical MAC address.

HTTP – Hypertext Transfer Protocol. An application-layer protocol for

communicating using hypermedia.

ICMP – Internet Control Message Protocol. ICMPv4 is used for IPv4

environments, and ICMPv6 is used for IPv6 environments. The protocol

is used to identify and troubleshoot network and host connection issues.

It should be noted that in many modern environments ICMP packets are

blocked.

IGMP – Protocol used to establish multicast group memberships.

IIoT – Industrial Internet of Things. It should be noted that this

acronym is frowned upon in many circles, because the “I” in “IoT” stands

for Internet, and most industrial users would never attach their control

systems to the Internet.

IoT – Internet of Things.

IP – Internet Protocol. Utilized by networked devices to connect and

communicate.

JMS – Java Message Service. Developed by Sun Microsystems to

provide a standard method for Java programs to communicate using

asynchronous messaging at the enterprise level.

https://doi.org/10.1007/978-1-4842-3700-7

172

MAC – Media Access Control address of a network interface.

Computers and other network devices may have one or more network

interfaces, and each would have a unique MAC address. The MAC address

is defined by the manufacturer of devices.

NETBIOS – Network Basic Input/Output System. NETBIOS is an

application interface and not a networking protocol.

NIC – Network Interface Card.

OUI – Organizationally Unique Identifier. The first 24 bits of the device

MAC address (in most cases) represents the manufacturer of the device.

These are purchased from the IEEE (Institute of Electrical and Electronics

Engineers).

Passive Monitoring – The act of monitoring (sniffing) network traffic to

record behaviors over a period. The concept allows for a deeper look at the

activities of network devices even when those devices might be transient or

devices that may not respond to normal probing.

PaPirus Display –An ePaper display technology that mimics the

appearance of ink on paper. ePaper displays reflected light, much like

ordinary paper. These displays are capable of holding text and images

indefinitely, even in the absence of power.

Pickle – A Python Standard Library that allows serialization of Python

objects (e.g., strings, lists, sets, dictionaries). The serialization allows for

the fast storage and retrieval of these objects.

Python – A general-purpose, open source, high-level programming

language.

Raspberry Pi – A credit card–sized (and smaller) single-board

computer developed in the United Kingdom by the Raspberry Pi

Foundation.

Raspbian – One of the many flavors of operating systems available for

the Raspberry Pi.

SMB –Server Message Block. A communication protocol that allows for

the sharing of files, printers, and other I/O devices between computers.

Glossary

173

SOAP – Simple Object Access Protocol. Provides messaging services

allowing programs that execute on different operating systems to

communicate using HTTP and XML.

SPAN Port – Sometimes referred to as a monitoring port available on

modern switches and routers. All traffic that passes through the switch or

router can also be directed to this port. This allows monitoring devices to

observe all traffic flowing the switch.

SQL – Structured Query Language. A standard language used for

interfacing with relational databases.

TCP – Transaction Control Protocol. It operates at the transport layer,

as its primary role is to establish and maintain connections between host

computers and devices.

Tcl/Tk – A scripting language developed by Sun Microsystems for

creating graphical user interfaces.

TKinter – Python library that provides an object-oriented layer on top

of Tcl/Tk to provide graphical user interface capabilities to Python.

TLS – Transport Layer Security. As the name implies, it ensures privacy

and tamper protection between server and client or even between peer-to-

peer entities.

UDP – User Datagram Protocol. The protocol does not verify receipt

of transmitted packets and requires no response. Therefore, the protocol

is referred to as an unreliable link protocol, whereas TCP is commonly

referred to as a reliable link protocol. Both operate at the transport layer.

uPnP – Universal Plug and Play. A networking protocol that allows

devices such as IoT, computers, phones, printers, and so on to discover

their presences on a network.

WeMo – A series of products, developed by Belkin International, that

enable users to access, monitor, and control devices over the Internet from

anywhere.

XML –eXtensible Markup Language. Defines encoding rules for

documents that can be utilized across the Internet.

Glossary

174

Zero Configuration – Many IoT devices can configure themselves and

join a network without manual intervention. All configuration of these

devices is done automatically simply by applying power. This generates a

network ready state, allowing the device to discover and be discovered.

Z-Wave – A wireless communication protocol typically used for home

IoT devices such as lighting, entertainment, and appliances.

ZigBee – A specification for a communication protocol used in

personal area networks typically built from small, low-power devices.

ZigBee is based on the 802.15.4 specification.

Glossary

175© Chet Hosmer 2018
C. Hosmer, Defending IoT Infrastructures with the Raspberry Pi,
https://doi.org/10.1007/978-1-4842-3700-7

Index

A
Address Resolution Protocol (ARP)

packets, 23–24

B, C
Baseline

activating sensor, 147
alert report sample, 148
IoT report sample, 145
manufacturer report

excerpt, 142
master report excerpt, 140–141
PaPirus recording progress

display, 138–139
port usage report, 144
recording progress, 137
report folder and duration, 137
report folder selection, 136
report selection, 139
selection, 146

D
Device-to-cloud communications, 4
Device-to-device

communication, 3–4

Device-to-gateway framework, 5
Dynamic Discovery

Protocols, 10

E, F, G
Ethernet packet, 21–22

H
Headless communication, remote

Pi sensor, 163–166

I, J, K
Internet Control Message Protocol

(ICMP) packets, 27
Internet Protocol (IP)

packets, 24
IoT Security Compliance

Framework, 6
IoT vulnerabilities

attack vectors, 11
compliance classification

security objectives, 7
deployment options, 3
devices, autonomous/

semiautonomous, 1

https://doi.org/10.1007/978-1-4842-3700-7

176

device-to-cloud
communications, 4

device-to-device
communication, 3–4

device-to-gateway
framework, 5

Dynamic Discovery
Protocols, 10

Gartner’s prediction, 2
high-level concerns, 10
interconnected, 1
interpreting, security levels, 8
low-power sensors, 9
multicast communication, 10
Python, 14
Raspberry Pi, 12, 14
Raspbian OS, 14
security requirements, 6
single board computers and

embedded operating
systems, 9

SmartTVs and home
assistants, 12

zero configuration devices, 9

L, M
LAN diagram, 20
Lookup tables

country, 162
manufacturer, 162
port, 161–162

Low-power sensors, 9

N, O
Network Basic Input/Output

System (NETBIOS), 10

P, Q
PacketRecorder.py enhancements

command-line execution and
parameters, 57

execution of, 61–63
foreign country report, 71
Internet, 58
IPv4 processing conversion, 68
IPv6 packet, 69
“normal operating” network, 58
online data source, 58
packetProcessor Class, 67
packets, 56
pickle files, 63–66
Port Dictionary Creation

Process, 59–61
port numbers to port names, 68
script execution, 69
source code, 57

Packets
ARP, 23
Ethernet, 21–22
ICMP, 27
IP, 24
monitoring port, 19
TCP, 25–26
UDP, 26

Passive monitoring, IoT behavior
active probing, 27

IoT vulnerabilities (cont.)

Index

177

modeling normal
behavior, 27–30

Raspberry Pi with Python
basic operations, 30
capture packets, 30
execution of script, 33
PacketProcessor class, 38–46
PacketRecorder Main

Loop, 36–38
PacketRecorder.py script

overview, 34
required libraries, 35
script main loop, 35
sniff.py capture one

packet, 31–32
Python, 14

piSensorV3, 134–136
source code, 169–170

R
Raspberry Pi 3 Model B

CUP, 13
memory, 13
network, 14
USB ports, 14

Raspberry Pi 3 Model B+, 151, 152
multilayer Smraza case, 153

Raspberry Pi configuration
advantages and limitations, 48
filesystem, 53
free memory, 52
Pi CPU, 49–50
Pi memory, 51–52

Raspbian OS commands, 48
upgrading, 55–56
USB devices and interfaces,

53–54
version of Linux, 54

Raspberry Pi sensor, 74, 167
application object methods,

79–82
connecting, 131
design overview, 75–78
method details

action buttons, 92
btnActivateSensor

method, 111––125
btnPerformCapture

method, 100–106
btnSelectFolder

method, 94–99
duration selection, 91
exploring application

methods, 94
folder and file selection, 90
GenHTML method, 106–109
GUI (initUI),

initializing, 83–88
menu bar, 89
PacketMonitor, 125–127
progress bar, 93
report selection, 93
saving baseline (SaveOb),

109–110
status bar, 93

PacketRecorder, 73–74
real-time ePaper display, 74–75

Index

178

setup, 129–131
snapsot, 74

Raspbian OS, 14
Remote Switched Port ANalyzer

(RSPAN), 131

S
Simple Object Access Protocol

(SOAP), 10
Simple Service Discovery Protocol

(SSDP), 10
Software sensor, 153

MAC address filtering, 155–158
NIC selection, 154
targeting devices to

monitor, 154
Swarm deployment of sensors, 166
Switch configuration

Ethernet port, 133
purposes, 132

TP-LINK eight-port Gigabit Easy
Smart Switch, 131, 132

utility, 132–133
Switched Port ANalyzer (SPAN), 131

T
Traditional computing

environments, 17
Transaction Control Protocol

(TCP) packets, 25–26

U, V
User Datagram Protocol (UDP)

packets, 26
User searches, 163

W, X, Y, Z
Web Services Dynamic

Discovery, 10

Raspberry Pi sensor (cont.)

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: IoT Vulnerabilities
	Why Is IoT Vulnerable?
	Device-to-Device Communication
	Device-to-Cloud Communications
	Device-to-Gateway Sensor Network Communications
	Moving Beyond the Basics
	What Unique Vulnerabilities Lurk Within IoT Devices?
	What Are the Common IoT Attack Vectors?

	How Do the Raspberry Pi and Python Fit In?
	Raspberry Pi Brief Introduction
	Raspberry Pi Hardware
	Raspbian OS
	Python

	Summary

	Chapter 2: Classifying and Modeling IoT Behavior
	What Should We Collect?
	Ethernet Packet Format
	ARP
	IP Packets
	TCP Packets
	UDP Packet
	ICMP Packet

	Passively Monitoring IoT Behavior
	Modeling Normal Behavior
	How Can This Be Accomplished on a Raspberry Pi with Python?
	Part I: Passively Capture Packets in Python on a Raspberry Pi
	Examine a Simple Code Snippet to Perform These Operations
	Sample Execution of the Script

	Part II: Identify and Extract the Key Packet Components
	Required Python Standard and Third-Party Libraries
	The Script Main Loop
	PacketProcessor Class

	Summary

	Chapter 3: Raspberry Pi Configuration and PacketRecorder.py Enhancements
	Basic Configuration (as of This Writing)
	Get Information About the Pi CPU
	Get Information Regarding Pi Memory
	Get Information Regarding the Current Free Memory Only
	Get Information Regarding Pi Filesystem
	Get Information Regarding USB Devices and Interfaces
	Get Information About the Version of Linux
	Upgrading Your Pi

	Advancing PacketRecorder.py
	Step 1: Creating the Lookups
	Ports Dictionary Creating Example
	Execution of the Script

	Utilizing the Pickle Files in PacketRecorder.py
	Instantiating and Accessing the Lookup Methods
	Code Snippet to Instantiate the Classes into Objects

	Using the Lookups During Packet Processing
	Sample IPv4 Processing Conversion (Excerpt)
	Convert the Port Numbers into Port Names (Excerpt)

	Executing the Updated PacketRecorder.py
	Script Execution
	Foreign Country Hits (Outside the United States)

	Summary

	Chapter 4: Raspberry Pi as a Sensor
	Turning the Packet Recorder into a Sensor
	Raspberry Pi Sensor/Recorder Design
	Design Overview
	Method Details
	Initializing the GUI (initUI)
	U1-Menu Bar
	U2-Folder and File Selection
	U3-Duration Selection
	U4-Action Buttons
	U5-Progress Bar
	U6-Report Selection
	U7-Status Bar
	Exploring Other Application Methods
	Selecting the Report Folder (btnSelectFolder)
	Source Code Methods for GUI Elements
	Record Baseline Method (btnPerformCapture)
	Master Report Generation (GenHTML)
	Saving the Baseline (SaveOb)
	Activate Sensor (btnActivateSensor, PacketMonitor)
	Packet Monitor Supporting Methods

	Summary

	Chapter 5: Operating the Raspberry Pi Sensor
	Raspberry Pi Setup
	Connecting the Raspberry Pi
	Switch Configuration for Packet Capture
	Running the Python Application
	Creating a Baseline

	Summary

	Chapter 6: Adding Finishing Touches
	Raspberry Pi Latest Version
	Sensor Software Updates

	Summary

	Chapter 7: Future Work
	Expansion of Lookup Tables
	Port Lookups
	Manufacturer Lookup
	Country Lookup

	Implementation of User Searches and Filtering of Scan Result
	Headless Communication with Remotely Deployed Pi Sensors
	Correlation of Results from a Swarm of Pi Sensors
	Raspberry Pi Sensor: Executing the Sensor on Your Raspberry Pi
	Summary

	Appendix A: Obtaining the Python Source Code
	Obtaining the Source Code
	Source Code Copyright and Licensing

	Glossary
	Index

