
Beginning
Git and GitHub

A Comprehensive Guide to Version Control,
Project Management, and Teamwork
for the New Developer
—
Mariot Tsitoara

www.allitebooks.com

http://www.allitebooks.org

Beginning Git and GitHub
A Comprehensive Guide to Version
Control, Project Management, and
Teamwork for the New Developer

Mariot Tsitoara

www.allitebooks.com

http://www.allitebooks.org

Beginning Git and GitHub

ISBN-13 (pbk): 978-1-4842-5312-0 ISBN-13 (electronic): 978-1-4842-5313-7
https://doi.org/10.1007/978-1-4842-5313-7

Copyright © 2020 by Mariot Tsitoara

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484253120. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Mariot Tsitoara
Antananarivo, Madagascar

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-5313-7
http://www.allitebooks.org

This book is dedicated to the generous people that made
the Git community such an awesome environment to work within.

You have helped create one of the most useful tools in the tech world.
Thank you!

www.allitebooks.com

http://www.allitebooks.org

v

Part I: Version Control with Git �� 1

Chapter 1: Version Control Systems ��� 3

What is Version Control? ��� 3

Why do you need one? �� 4

What are the choices? �� 7

Local Version Control Systems �� 7

Centralized Version Control Systems ��� 8

Distributed Version Control Systems ��� 9

What is Git? ��� 11

What can Git do? ��� 11

How does Git work? �� 12

What is the typical Git workflow? �� 13

Summary��� 17

Chapter 2: Installation and Setup ��� 19

Installation �� 19

Windows �� 21

Mac �� 29

Linux �� 30

Setting up Git �� 33

Summary��� 34

Table of Contents

About the Author ��� xiii

About the Technical Reviewer ���xv

Acknowledgments ���xvii

Introduction ��xix

www.allitebooks.com

http://www.allitebooks.org

vi

Chapter 3: Getting Started �� 35

Repositories �� 35

Working Directory ��� 38

Staging Area �� 40

Commits �� 41

Quick start with Git ��� 46

Summary��� 48

Chapter 4: Diving into Git �� 49

Ignoring files ��� 49

Checking logs and history ��� 55

Viewing previous versions �� 58

Reviewing the current changes �� 60

Summary��� 61

Chapter 5: Commits �� 63

The three states of Git ��� 63

Navigating between versions �� 64

Undo a commit �� 67

Modifying a commit �� 71

Amending a commit �� 77

Summary��� 78

Chapter 6: Git Best Practices �� 79

Commit messages �� 79

Git commit best practices�� 80

What to do ��� 82

What not to do ��� 82

How Git works (again) ��� 84

Summary��� 86

Table of ConTenTs

vii

Chapter 7: Remote Git ��� 87

Why work on remote ��� 87

How does it work �� 88

The easy way �� 90

Summary��� 92

Part II: Project Management with GitHub �� 93

Chapter 8: GitHub Primer �� 95

GitHub overview �� 95

GitHub and Open Source ��� 96

Personal use ��� 101

GitHub for businesses ��� 104

Summary��� 104

Chapter 9: Quick Start with GitHub ��� 105

Project management ��� 105

How remote repositories work �� 109

Linking repositories ��� 110

Pushing to remote repositories ��� 113

Summary��� 118

Chapter 10: Beginning Project Management: Issues �� 119

Overview on issues ��� 119

Creating an Issue �� 120

Interacting with an issue �� 125

Labels �� 127

Assignees �� 131

Linking issues with commits �� 132

Working on the commit ��� 133

Referencing an issue ��� 134

Closing an issue using keywords �� 138

Summary��� 140

Table of ConTenTs

viii

Chapter 11: Diving into Project Management: Branches �������������������������������������� 141

GitHub workflow ��� 142

Branches ��� 144

Creating a branch �� 146

Switching to another branch ��� 147

Deleting a branch �� 149

Merging branches�� 151

Pushing a branch to remote �� 156

Summary��� 158

Chapter 12: Better Project Management: Pull Requests �������������������������������������� 159

Why use Pull Requests? �� 159

Overview on Pull Requests ��� 160

Pull��� 160

What does a PR do �� 161

Create a Pull Request �� 162

Code Reviews ��� 173

Give a Code Review ��� 173

Leave a review comment �� 174

Update a Pull Request ��� 178

Summary��� 182

Part III: Teamwork with Git �� 183

Chapter 13: Conflicts �� 185

How a merge works �� 185

Pulling �� 186

Fast-forward merge��� 189

Merge conflicts ��� 193

Pulling commits from origin �� 198

Resolving merge conflicts ��� 204

Summary��� 210

Table of ConTenTs

ix

Chapter 14: More About Conflicts ��� 211

Pushing after a conflict resolution �� 211

Review changes before merge ��� 212

Check branch location ��� 213

Review branch diff �� 213

Understand Merging ��� 214

Reducing conflicts �� 215

Having a good workflow �� 215

Aborting a merge ��� 216

Using a visual Git tool �� 217

Summary��� 217

Chapter 15: Git GUI Tools �� 219

Default tools �� 219

Committing: git-gui �� 219

Browsing: gitk �� 231

IDE tools �� 232

Visual Studio Code ��� 232

Atom �� 234

Specialized tools ��� 235

GitHub Desktop �� 236

GitKraken ��� 236

Summary��� 237

Chapter 16: Advanced Git ��� 239

Reverting ��� 239

Stashing �� 241

Resetting ��� 246

Summary��� 249

Table of ConTenTs

x

Part IV: Additional Resources �� 251

Chapter 17: More with GitHub �� 253

Wikis ��� 253

GitHub Pages ��� 256

Releases�� 260

Project Boards ��� 263

Summary��� 267

Chapter 18: Common Git Problems ��� 269

Repository ��� 269

Starting over �� 269

Change origin �� 270

Working Directory ��� 271

Git diff is empty ��� 271

Undo changes to a file ��� 272

Commits �� 272

Error in commit �� 272

Undo commits ��� 273

Branches ��� 274

Detached HEAD �� 274

Worked on wrong branch �� 275

Catch up with parent branch ��� 275

Branches have diverged �� 277

Summary��� 279

Chapter 19: Git and GitHub Workflow ��� 281

How to use this workflow ��� 281

GitHub workflow ��� 281

Every project starts with a project �� 282

Every action starts with an Issue �� 282

No direct push to master ��� 282

Table of ConTenTs

xi

Any merge into master needs a PR ��� 283

Use the wiki to document your code ��� 283

Git workflow �� 283

Always know where you are�� 283

Pull remote changes before any action ��� 283

Take care of your commit message��� 284

Don’t rewrite history �� 284

Summary��� 284

Index ��� 285

Table of ConTenTs

xiii

About the Author

Mariot Tsitoara is a Python and JavaScript developer

with a passion for the Open Web and Data. He has been

involved with Mozilla as a rep and a tech speaker since 2015

and has spoken extensively about Open Source and new

technologies, including Rust, WebVR, and WebAssembly.

Currently based in Bordeaux, he is constantly coding small,

specialized tools for education. You can find him on Twitter

@mariot_tsitoara.

xv

About the Technical Reviewer

Alexander Chinedu Nnakwue has a background in

Mechanical Engineering from the University of Ibadan,

Nigeria, and has been a frontend developer for over 3 years

working on both web and mobile technologies. He also has

experience as a technical author, writer, and reviewer. He

enjoys programming for the Web, and occasionally, you can

also find him playing soccer. He was born in Benin City and

is currently based in Lagos, Nigeria.

xvii

Acknowledgments

I’d like to thank my parents, Marie Jeanne and Tsitoara, for the amazing opportunities

that they have given to me. Without their help and sacrifices, I would not be where I am

today.

Thanks a lot also to my brothers and sisters, Alice, Elson, Thierry, Eliane, Annick, and

Mamitiana, for being such amazing role models and for their constant support. To all my

friends, Christino, Laza, Miandry, Mihaja, Miora, and Rindra, with whom I grew up and

who taught me so much, I dedicate this book to you.

Almost everything I know about Git was taught to me by my coworkers. Thank you

for being so helpful and a joy to work with.

This book wouldn’t have seen the light of day if not for the amazing guidance of

Nancy, Alexander, Louise, and Jim. Thank you so much!

xix

Introduction

This book was written with a clear goal in mind: to be the book that I needed to read

when I started my career in tech. Each chapter was crafted so that you will only be taught

what you need to know as a beginner. It isn’t a full reference book, but it can get you far

enough to have a big impact on your career.

After reading this book, you will have the best tools for Version Control and Project

Management.

 Who is this book for
The targeted audience of this book is the absolute beginner with Git and GitHub and the

people who have used them a little but want to know more. If you are searching for the

best way to quick-start in the right direction, this book is for you.

 How to use this book
Git is a very easy tool to learn, but you need to work with it to get the hang of it. The best

way to learn is to directly use it on one of your real projects. Just reading the book and

not doing any of the exercises will lengthen your learning curve.

PART I

Version Control with Git

3
© Mariot Tsitoara 2020
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/978-1-4842-5313-7_1

CHAPTER 1

Version Control Systems
This is our first jump into Version Control Systems (VCSs). By the end of this chapter, you

should know about Version Control, Git, and its history. The main objective is to know in

which situations is Version Control needed and why Git is a safe choice.

 What is Version Control?
As the name implies, Version Control is about the management of multiple versions of a

project. To manage a version, each change (addition, edition, or removal) to the files in a

project must be tracked. Version Control records each change made to a file (or a group

of files) and offers a way to undo or roll back each change.

For an effective Version Control, you have to use tools called Version Control

Systems. They help you navigate between changes and quickly let you go back to a

previous version when something isn’t right.

One of the most important advantages of using Version Control is teamwork.

When more than one person is contributing to a project, tracking changes becomes

a nightmare, and it greatly increases the probability of overwriting another person’s

changes. With Version Control, multiple people can work on their copy of the project

(called branches) and only merge those changes to the main project when they (or the

other team members) are satisfied with the work.

Note This book was written from a developer point of view, but everything in
it applies to any text files, not just code. Version Control Systems can even track
changes to many non-text files like images or Photoshop files.

4

 Why do you need one?
Have you ever worked on a text project or on a code that requires you to recall the

specific changes made to each file? If yes, how did you manage and control each version?

Maybe you tried to duplicate and rename the files with suffixes like “review,” “fixed,” or

“final”? Figure 1-1 shows that kind of Version Control.

Figure 1-1. Gimp files with suffixes like “final,” “final (copy),” and “reviewed”

The figure shows what many people do to deal with file changes. As you can see,

this has the potential to go out of hands very quickly. It is very easy to forget which file is

which and what has changed between them.

To track versions, one idea is to compress the files and append timestamps to the

names so that the versions are arranged by date of creation. Figure 1-2 shows that kind to

version tracking.

Figure 1-2. Compressed version files sorted by dates

The solution shown in Figure 1-2 appears to be the perfect system until you realize

that even though the versions are tracked, there is no way to know what are the contents

and descriptions of each version.

ChaPTer 1 VerSion ConTrol SySTemS

5

Figure 1-3. A separate file where each version is tracked

To remediate that situation, some developers use a solution like the one showed in

Figure 1-3, which is to put the change summary of each version in a separate file.

As Figure 1-3 shows, a separate file accompanies the project folder with a short

description of the change made. Also note the many compressed files which contain the

previous versions of the project.

That should do it, right? Not quite, you would still need a way to compare each version

and every file change. There is no way to do this in that system; you just need to memorize

everything you did. And if the project gets big, the folder just gets bigger with each version.

What happens when another developer or writer joins your team? Would you email

each other the files or versions you edited? Or work on the same remote folder? In the

last case, how would you know who is working on which file and what changed?

And lastly, have you ever felt the need to undo a change you made years ago without

breaking everything in the process? An unlimited and all-powerful ctrl-z?

All those problems are solved by using a Version Control System or VCS. A VCS

tracks each change you made to every file of your project and provides a simple way to

ChaPTer 1 VerSion ConTrol SySTemS

6

compare and roll back those changes. Each version of the project is also accompanied

by the description of the changes made along with a list of the new or edited files. When

more people join the project, a VCS can show exactly who edited a particular file on

a specific time. All of that makes you gain precious time for your project because you

can focus on writing instead of spending time tracking each change. Figure 1-4 shows a

versioned project managed by Git.

As shown in Figure 1-4, a versioned project combines all the solutions we tried in

this chapter. There are the change descriptions, the teamwork, and the edit dates.

Figure 1-4. A project versioned by Git

Let’s find out more about Version Control Systems.

ChaPTer 1 VerSion ConTrol SySTemS

7

 What are the choices?
There are many flavors of Version Control Systems, each with their own advantages and

shortcomings. A VCS can be local, centralized, or distributed.

 Local Version Control Systems
These are the first VCSs created to manage source code. They worked by tracking the

changes made to files in a single database that was stored locally. This means that all the

changes were kept in a single computer and if there were problems, all the work were

lost. This also means that working with a team was out of the question.

One of the most popular local VCSs was Source Code Control System or SCCS, which

was free but closed source. Developed by AT&T, it was wildly used in the 1970s until

Revision Control System or RCS was released. RCS became more popular than SCCS

because it was Open Source, cross-platform, and much more effective. Released in 1982,

RCS is currently maintained by the GNU Project. One of the drawbacks of these two local

VCSs was that they only worked on a file at a time; there was no way to track an entire

project with them.

To help you visualize how it works, here’s Figure 1-5 which shows an illustration of a

simple local VCS.

Figure 1-5. How a local VCS works

As you can see in Figure 1-5, everything is on the user’s computer, and only one file is

tracked. The versioning is stored in a database managed by the local VCS.

ChaPTer 1 VerSion ConTrol SySTemS

8

 Centralized Version Control Systems
Centralized VCS (CVCS) works by storing the change history on a single server that the

clients (authors) can connect to. This offers a way to work with a team and also a way to

monitor the general pace of a project. They are still popular because the concept is so

simple and it’s very easy to set up.

The main problem was that, like local VCS, a server error can cost the team all their

work. A network connection was also required since the main project was stored in a

remote server.

You can see in Figure 1-6 how it works.

Figure 1-6. How a centralized VCS works

Figure 1-6 shows that a centralized VCS works similarly to a local VCS, but the

database is stored in a remote server.

The main problem faced by team using a centralized VCS is that once a file is being

used by someone, that file is locked and the other team members can’t work on it. Thus,

they had to coordinate between themselves just to modify a single file. This creates a lot

of delays in development and is generally source to a lot of frustration for contributors.

And the more members are on the team, the more problems arise.

In an effort to counter the problems of local VCS, Concurrent Version System or

CVS was developed. It was Open Source and could track multiple sets of files instead

of a single file. Many users could also work on the same file at the same time, hence the

“concurrent” in the name. All the history was stored in a remote repository, and the

users would keep up with the changes by checking out the server, meaning copying the

contents of the remote database to their local computers.

ChaPTer 1 VerSion ConTrol SySTemS

9

Apache Subversion or SVN was developed in 2000 and could be everything that CVS

could, with a bonus: it could track non-text files. One of the main advantages of SVN was

that instead of tracking a group of files like the previous VCS, it tracks the entire project.

So, it is essentially tracking the directory instead of files. That means that the renaming,

adding and removing are also tracked. This made SVN, along with it being Open Source,

a very popular VCS; and it is still wildly used today.

 Distributed Version Control Systems
Distributed VCS works nearly the same as centralized VCS but with a big difference:

there is no main server that holds all the history. Each client has a copy of the repository

(along with the change history) instead of checking out a single server.

This greatly lowers the chance of losing everything as each client has a clone of

the project. With a distributed VCS, the concept of having a “main server” gets blurred

because each client essentially has all the power within their own repository. This greatly

encouraged the concept of “forking” within the Open Source community. Forking is

the act of cloning a repository to make your own changes and have a different take on

the project. The main benefit of forking is that you could also pull changes from other

repositories if you see fit (and others can do the same with your changes).

A distributed Version Control System is generally faster than the other types of VCS

because it doesn’t need a network access to a remote server. Nearly everything is done

locally. There is also a slight difference with how it works: instead of tracking the changes

between versions, it tracks all changes as “patches.” This means that those patches can be

freely exchanged between repositories, so there is no “main” repository to keep up with.

Figure 1-7 shows how a distributed VCS works.

ChaPTer 1 VerSion ConTrol SySTemS

10

Note By looking at Figure 1-7, it is tempting to conclude that there is a main
server that the users are keeping up with. But it isn’t the case with a distributed
VCS, it is only a convention that many developers follow to have a better workflow.

BitKeeper SCM was a proprietary distributed VCS released in 2000 which, like SCCS

in the 1970s, was closed source. It had a free “Community Version” that lacked many of

the big features of BitKeeper SCM, but since it was one of the first distributed VCSs, it

was pretty popular even in the Open Source community. This popularity of BitKeeper

plays a big role in the creation of Git. It is now an Open Source software, after having

its source code released under the Apache License in 2016. You can find the current

BitKeeper project on www.bitkeeper.org/; the development has slowed down, but there

is still a community contributing to it.

Figure 1-7. How a distributed VCS works

ChaPTer 1 VerSion ConTrol SySTemS

http://www.bitkeeper.org/

11

 What is Git?
Remember the proprietary distributed Version Control System BitKeeper SCM from

the last section? Well, the Linux kernel developers used it for their development. The

decision to use it was wildly regarded as a bad move and made many people unhappy.

Their fears were confirmed in 2005 when BitKeeper SCM stopped being free. Since it was

closed source, the developers lost their favorite Version Control System. The community

(led by Linus Torvalds) had to find another VCS, and since an alternative was not

available, they decided to create their own. Thus, Git was born.

Since Git was made to replace BitKeeper SCM, it worked generally the same with

a few tweaks. Like BitKeeper SCM, Git is a distributed Version Control System, but it is

faster and works better with large projects. The Git community is very active, and there

are many contributors involved in its development; you can find more about Git on

https://git-scm.com/. The features of Git and how it works are explained later in

this section.

 What can Git do?
Remember all those problems we tried to solve at the beginning of this chapter? Well, Git

can solve them all. It can even solve problems you didn’t know you had!

First, it works great with tracking changes. You can

• Go back and forth between versions

• Review the differences between those versions

• Check the change history of a file

• Tag a specific version for quick referencing

Git is also a great tool for teamwork. You can

• Exchange “changesets” between repositories

• Review the changes made by others

One of the main features of Git is its Branching system. A branch is a copy of a project

which you can work on without messing with the repository. This concept has been

around for some time, but with Git, it is way faster and more efficient. Branching also

comes along with Merging, which is the act of copying the changesets done in a branch

ChaPTer 1 VerSion ConTrol SySTemS

https://git-scm.com/

12

back to the source. Generally, you create a branch to create or test a new feature and

merge that branch back when you are satisfied with the work.

There is also a simple concept that you might use a lot: Stashing. Stashing is the act

of safely putting away your current edits so that you have clean environment to work on

something completely different. You might want to use stashing when you are playing

around or testing a feature but need to work on a new feature in priority. So, you stash

your changes away and begin to write that feature. After you are done, you can get your

changes back and apply them to your current working environment.

As a little appetizer, here are some of the Git commands you will learn in this book:

$ git init # Initialize a new git database

$ git clone # Copy an existing database

$ git status # Check the status of the local project

$ git diff # Review the changes done to the project

$ git add # Tell Git to track a changed file

$ git commit # Save the current state of the project to database

$ git push # Copy the local database to a remote server

$ git pull # Copy a remote database to a local machine

$ git log # Check the history of the project

$ git branch # List, create or delete branches

$ git merge # Merge the history of two branches together

$ git stash # Keep the current changes stashed away to be used later

As you can see, the commands are pretty self-explanatory. Don’t worry about

knowing all of them by heart; you will retain them one by one when we will properly

begin the learning. And you will not also use them all the time, you will mostly use

git add and git commit. You will learn about each command, but we will focus on the

commands that you will likely use in a professional setting. But before that, let’s see the

inner working of Git.

 How does Git work?
Unlike many Version Control Systems, Git works with Snapshots, not Differences. This

means that it does not track the difference between two versions of a file, but takes a

picture of the current state of the project.

ChaPTer 1 VerSion ConTrol SySTemS

13

This is why Git is very fast compared to other distributed VCSs; it is also why

switching between versions and branches is so fast and easy.

Remember how a centralized Version Control System works? Well, Git is the

complete opposite. You don’t need to communicate with a central server get work done.

Since Git is a distributed VCS, every user has their own fully fledged repository with

their own history and changesets. Thus, everything is done locally except the sharing

of patches or changesets. Like previously said, a central server is not needed; but many

developers use one as convention as it is easier to work that way.

Speaking of patch sharing, how does Git know which changesets are whose? When

Git takes a snapshot, it performs a checksum on it; so, it knows which files were changed

by comparing the checksums. This is why Git can track changes between files and

directories easily, and it also checks for any file corruption.

The main feature of Git is its “Three States” system. The states are the working

directory, the staging area, and the git directory:

• The working directory is just the current snapshot that you are

working on.

• The staging area is where modified files are marked in their current

version, ready to be stored in the database.

• The git directory is the database where the history is stored.

So, basically Git works as follows: you modify the files, add each file you want to

include in the snapshot to the staging area (git add), then take the snapshot and add

them to the database (git commit). For the terminology, we call a modified file added

to the staging area “staged” and a file added to the database “committed.” So, a file goes

from “modified” to “staged” to “committed.”

 What is the typical Git workflow?
To help you visualize all that we talked about in this section, here is a little demo of what

a typical workflow using Git is like. Don’t worry if you don’t understand everything right

now; the next chapters will get you set up.

This is your first day of work. You are tasked to add your name to an existing project

description file. Since this is your first day, a senior developer is there to review your code.

The first thing you should do is get the project’s source code. Ask your manager for

the server where the code is stored. For this demo, the server is GitHub, meaning that the

ChaPTer 1 VerSion ConTrol SySTemS

14

Git database is stored on a remote server hosted by GitHub and you can access it by URL

or directly on the GitHub web site. Here, we are going to use the clone command to get

the database, but you could also just download the project from the GitHub web site. You

will get a zip file containing and the project files with all its history.

So, you clone the repository to get the source code by using the “clone” command.

git clone https://github.com/mariot/thebestwebsite.git

Git then downloads a copy of the repository in the current directory you are working

from. After that, you can enter the new directory and check its contents as shown in

Figure 1-8.

If you want to check the recent changes made to the project, you can use the “log”

command to show the history. Figure 1-9 shows an example of that.

Figure 1-8. The contents of the repository is shown

ChaPTer 1 VerSion ConTrol SySTemS

15

Nice! Now you should create a new branch to work on so that you don’t mess up with

the project. You can create a new branch by using the “branch” command and checking

it out with the “checkout” command.

git branch add-new-dev-name-to-readme

git checkout add-new-dev-name-to-readme

Now that the new branch is created, you can begin to modify the files. You can use

whatever editor you want; Git will track all the changes via checksums. Now that you made

the necessary changes, it is time to put them on the staging area. As a reminder, the staging

area is where you put modified codes that are ready to be snapshotted. If we modified the

“README.md” file, we can add it to the staging area by using the “add” command.

git add README.md

Figure 1-9. A typical Git history log

ChaPTer 1 VerSion ConTrol SySTemS

16

You don’t have to add every file you modified to the staging area, only those which

you want to be accounted in the snapshot. Now that the file is staged, it is time to

“commit” it or putting its change in the database. We do this by using the command

“commit” and attaching a little description with it.

git commit -m "Add Mariot to the list of developers"

And that’s it! The changes you made are now in the database and safely stored. But

only on your computer! The others can’t see your work because you worked on your

own repository and on a different branch. To show your work to others, you have to push

your commits to the remote server. But you have to show the code to the senior dev first

before making a push. If they are okay with it, you can merge your branch with the main

snapshot of the project (called the master branch). So first you must navigate back to the

master branch by using the “checkout” command.

git checkout master

You are now on the master branch, where all the team’s work is stored. But the time

you worked on your fix, the project may have changed, meaning that a team member

may have changed some files. You should retrieve those changes before committing your

own changes to master. This will limit the risk of “conflicts” which can happen when

two or more contributors change the same file. To get the changes, you have to pull the

project from the remote server (also called origin).

git pull origin master

Even if another coworker changed the same file as you, the risk of conflicts is low

because you only modified a line. Conflicts only arise when the same line has been

modified by multiple people. If you and your coworkers changed different parts of the

file, everything is okay.

Now that we kept up with the current state of the project, it’s time to commit our

version to master. You can merge your branch with the “merge” command.

git merge add-new-dev-name-to-readme

Now that the commit has been merged back to master, it is time to push the changes

to the main server. We do that by using to “push” command.

git push

ChaPTer 1 VerSion ConTrol SySTemS

17

Figure 1-10 shows the commands we used and the results.

It’s that simple! And again, don’t worry if you don’t understand everything yet. This is

just a little demo of how Git is usually used. It is also not very realistic: no manager would

give a new recruit an all-access pass to their main repository like that.

 Summary
This was only a sneak peek at Git; it has many more powerful features that you will

learn along the way. But before anything else, here are some things that you should ask

yourself before moving to the next step: “How will Git help me in my projects?”, “which

features are the most important?”, and “will Git improve my workflow?”

The main takeaway for this chapter is the difference between distributed and

centralized VCSs. The workflow of teams using CVCS is less organized and leaves too

many developers unfulfilled. Thus, you need to learn more about distributed VCS to

keep up with the times.

Figure 1-10. A simple Git workflow

ChaPTer 1 VerSion ConTrol SySTemS

18

We’ve seen the typical workflow of a team using Git in this chapter; it’s the workflow

that most teams use in a professional environment and even in the Open Source

community. Even if you plan to work alone, using the workflow will increase your

productivity.

Don’t worry about understanding all of Git right now; just focus on what it can do

for you. You will get familiar with it after a couple chapters. But right now, let’s task

ourselves with how to install Git on your system.

ChaPTer 1 VerSion ConTrol SySTemS

19
© Mariot Tsitoara 2020
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/978-1-4842-5313-7_2

CHAPTER 2

Installation and Setup
Now that you how what is Version Control and how Git works, we are going to learn how

to install and set it up. This chapter is shorter compared to the others because it is so

easy to set Git up.

 Installation
The files necessary to install Git are on https://git-scm.com/downloads for all systems.

Just follow the link and choose your Operating System.

You can also see in Figure 2-1 that there are GUI clients for Git also available there.

Don’t head out there before you complete this book’s third part, Teamwork with Git. You

need to familiarize yourself with Git commands before using GUI clients; if not, you will

lose a lot of time trying to resolve a simple issue that would take seconds with simple Git

commands.

https://git-scm.com/downloads

20

After you have familiarized yourself with Git commands, you can check out a GUI

client and see for yourself. There is a chapter about GUI clients at the last part of this

book. But please don’t use any GUI client before that time; it will greatly lengthen your

learning time.

Note Git is bundled with two GUI tools: gitk to review history and git-gui for basic
commands. You will learn to use them in the last part of this book, so the preceding
advice still applies.

Figure 2-1. The download section of git-scm.com as of May 2019

Chapter 2 InstallatIon and setUp

21

 Windows
Installing Git on Windows systems is very easy. After opening the link (https://git-

scm.com/download/win), the download should automatically begin, and you will arrive

at the confirmation page shown in Figure 2-2. If not, just download the build that

corresponds to your Windows flavor.

Execute the download exe file to begin the installation. The first screen is the license

declaration outlining the terms and conditions; you should read it until the end (yeah,

right). Click next, and you will get to a component selection screen similar to the one

shown in Figure 2-3. Here, you are prompted to select which components to install.

I recommend to leave the default options on.

Figure 2-2. The Git download screen for Windows

Chapter 2 InstallatIon and setUp

https://git-scm.com/download/win
https://git-scm.com/download/win

22

You can see in Figure 2-3 that you just have to check the components to install them.

It is a good idea to leave the Windows Explorer integration checked; that way you would

just have to right-click a folder to find the options to start Git in the default GUI or the

Bash (command window) in the context menu. All the other components are pretty self-

explanatory so the decision is up to you.

Tip If you didn’t install the Windows explorer integration and want to open the
command window in a folder, you have to open the extended context menu with
shift + right-click.

Click next after you made your choices, and you will see the default editor selection,

shown in Figure 2-4. Git needs you to define a default editor because you need an editor

to write out commit descriptions and comments.

Figure 2-3. Select the components to install

Chapter 2 InstallatIon and setUp

23

As you can see in Figure 2-4, Vim is the default editor for Git for historical reason.

Just pick your favorite text editor from the dropdown list. The first two, Nano and Vim,

work in the console or command window, so you don’t have to open another program.

In the list, you can find many popular editors like Notepad++, Sublime Text, Atom and

Visual Studio (VS) Code. If your editor isn’t listed, you can choose the last option, and

a new input will appear (shown in Figure 2-5) so you can provide a link to the editor’s

main executable file.

Figure 2-4. Default editor selection

Chapter 2 InstallatIon and setUp

24

In Figure 2-5, you can see the screen where you can set up your custom editor if it

isn’t listed on the dropdown.

For this book, I decided to leave the default option and use Vim. It doesn’t change

anything in this book if you decide to use any other editor. But if you want to learn Vim

(takes a bit of time), you can check out “vimtutor,” which is a tutor program shipped with

Vim, or learn through a fun video game on https://vim-adventures.com/. There is also

www.vi-improved.org/vimusermanual.pdf which is more complete but is more than

300 pages!

And don’t worry, this choice is not definitive, you can still change anytime you want.

You will learn how at the last section of this chapter.

Caution While online, never ever start or participate in an editor War. Just choose
your preferred text editor and never talk about it to anyone. I still bear scars from
my old days in the “emacs vs. Vim” war.

Figure 2-5. Setting up a custom editor

Chapter 2 InstallatIon and setUp

https://vim-adventures.com/
http://www.vi-improved.org/vimusermanual.pdf

25

Once you chose your favorite editor, you can go to the next screen, which is the PATH

environment adjustment, shown in Figure 2-6. The PATH environment is a variable

that holds a list of directories where executable programs are located in their value. It’s

needed so you don’t have to type in the full path to an executable when you want to

execute it in the console; you just have to type its name. For example, to launch Visual

Studio Code from the console, I should type C:\Program Files (x86)\Microsoft VS Code\

bin\code. But since I have C:\Program Files (x86)\Microsoft VS Code\bin in my PATH, I

just have to type “code” to launch it.

The same could apply to Git if you want. If you don’t want this and only want to use

Git with its own isolated console “Git Bash,” select the first option. So, to use Git, you

would have to launch it from the Apps list or from the context menu of a folder (if you

chose to install the Windows Explorer integration).

If you want to be able to use Git everywhere, leave the default option to add it to your

PATH environment. That way, other tools can also use Git and you can work from any

command window. I highly suggest this option.

Figure 2-6. Choosing to add Git to PATH or not

Chapter 2 InstallatIon and setUp

26

The last option is a bit invasive. It will add many Git commands to your PATH and

will overwrite some of Windows’ default tools. Only choose this if you have a valid reason

too; generally, you don’t have such a reason.

Choose an option as shown in Figure 2-6 and proceed to the next step. You will arrive

at a screen concerning HTTPS connections, shown in Figure 2-7. You will have to choose

which library to use when sending data over HTTPS. Later in this book, you will have

to connect to a remote server (since Git is a distributed VCS) to share your commits to

other people, so all those connections must be encrypted to further secure your data and

ensure they are not being stolen.

Figure 2-7. Choosing the HTTPS transport

Just use the default option unless you have a reason to (company policy or your own

little security setup).

After this, go to the next step which is about line endings. Once again, it’s a selection

screen, so yours should look like the one shown in Figure 2-8. Different Operating

Systems operate text files differently, especially when dealing with line endings. And

Chapter 2 InstallatIon and setUp

27

odds are that the team you will be working with will be using different OS. So, Git needs

to convert line endings to and from each ending style before sharing commits.

As you will be using Windows, you should check the default option. The other two

options will do a lot of damage to your commits if you are not careful with line endings.

You can go to next step after choosing the default option.

Caution this step is important because Windows and Macos use \r\n to end
lines instead of linux’s \n. If you don’t convert, your file will become very hard to
read and Git will detect a lot of changes even if didn’t make that many.

The next step is to choose a default terminal (or console) emulator. It’s a simple

selection screen like before, shown in Figure 2-9. Git Bash needs a console emulator

to work, so you need to choose one. The default emulator is MinTTY, the other option

being Windows’ default console.

Figure 2-8. Line ending conversions

Chapter 2 InstallatIon and setUp

28

I suggest keeping the default option because MinTTY can do everything that the

Windows console window can, but better in every way. Click next to proceed to the

last step.

We are now in the endgame! This installation is nearly over. Just a few things to tweak

in the extra options screen. This screen (shown in Figure 2-10) permits you to enable

some extra features that will go great with your Git installation. For example, the Git

Credential Manager will help you connect to remote servers securely and plays nicely

with other Git tools.

Figure 2-9. Choosing a terminal emulator

Chapter 2 InstallatIon and setUp

29

Just leave the default options unless you have a reason not to. After that, just launch

the installation and let it finish. And that’s it! Git is installed on your Windows system.

But before using it, jump to the next section to properly set it up!

 Mac
If you’ve already done some software development with Mac OS X, you probably already

have Git because it’s installed with XCode (https://developer.apple.com/xcode/). You

can check if you have Git by running the command from your console:

$ git --version

It should give you the version of Git currently installed or if it’s not installed prompt

you to install XCode’s Command Line Tools. If you choose install on that prompt, Git will

be installed and you can skip the rest of this section.

Figure 2-10. Configuring extra options

Chapter 2 InstallatIon and setUp

https://developer.apple.com/xcode/

30

To install Git on your Mac, you just have to go to the download link https://git-

scm.com/download/mac, and the download should begin automatically, as shown in

Figure 2-11. Execute the downloaded file and the installation will start; it’s pretty easy.

You can also use Homebrew (https://brew.sh/) to install it. Just run the command:

$ brew install git

This will install about half the universe, but it will eventually stop, and Git will be

installed.

And that’s it! For Mac OS X, installing Git is way easier and you probably already have it.

 Linux
If you use Linux regularly, you probably know much about your distribution than me. So,

installing Git with your package manager might be a piece of cake for you.

For Ubuntu- and Debian-flavored distributions, you use APT to install Git.

$ sudo apt-get install git

or

$ sudo apt install git (for newer systems)

Figure 2-11. Download screen for Mac

Chapter 2 InstallatIon and setUp

https://git-scm.com/download/mac
https://git-scm.com/download/mac
https://brew.sh/

31

For Fedora, you can use YUM or DNF.

$ sudo yum install git

or

$ sudo dnf install git (for newer systems)

If you have a different distribution, you can check https://git-scm.com/download/

linux to have a list of commands on how to install Git for each popular distro. This list

should be similar to the one shown in Figure 2-12, with more and more Linux flavors

to come.

Chapter 2 InstallatIon and setUp

https://git-scm.com/download/linux
https://git-scm.com/download/linux

32

Figure 2-12. How to install Git on Linux

Chapter 2 InstallatIon and setUp

33

After you use the command corresponding to your distribution listed in Figure 2-12,

Git is installed!

Caution Just like editor War, distribution War is a big no-no online.

 Setting up Git
Before beginning to use Git, you need a little bit of setup first. You will probably only do

this once since all the setup is stored on an external global file, meaning that all your

projects will share the same configs. There is also a way to configure projects one by one

but we will see this later.

Since Git is a distributed Version Control System, you will one day need to connect to

other remote repositories. To avoid making any identity mistake, it is necessary to tell Git

a bit about yourself. Don’t worry; it won’t ask about a fun fact about you!

To set up Git, open Git Bash (for Windows systems) or the default console window

(for Linux/MacOS or Windows systems that modified their PATH environment). In the

command prompt, just tell Git your name and email address:

$ git config --global user.name "Mariot Tsitoara"

$ git config --global user.email "mariot.tsitoara@gmail.com"

Notice the “global” argument; it means that the setup is for all future Git repositories,

so you don’t have to set this up again in the future.

With the config command, you can also change your default editor. If you ever want

to change your editor because you found a new one or uninstalled yours, the config

command is there to help you. For example, to change the default editor to Nano, you

would type

$ git config --global core.editor="nano"

You can find the file recording your Git configuration on your home folder. For

Windows, you can find it in C:\Users\YourName\.gitconfig. For Linux and Mac OS, you

can find it in /home/yourname/.gitconfig as shown in Figure 2-13.

Chapter 2 InstallatIon and setUp

34

Next to the .gitconfig file, you might find another file called .bash_history that

records all the commands you type on the console. You can check this document if you

want to check back on a command you forgot.

 Summary
Let’s review what we’ve learned so far! First, you should have had Git installed on your

system by now. The installation process is very easy on Windows and easier on Mac

and Linux. I suggest you keep all the default options (even if they aren’t shown in the

preceding screenshots) if you are not sure of what you need.

Next, there is the setup. You will only have to do this once in every system you install

Git into. Git will use your name and email to sign every action you make so it’s necessary

to set them up before you using it.

And that’s it! You are now ready to use Git with all its glory. Head to the next chapter

to jump start with Git.

Figure 2-13. My .gitconfig file

Chapter 2 InstallatIon and setUp

35
© Mariot Tsitoara 2020
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/978-1-4842-5313-7_3

CHAPTER 3

Getting Started
You’re finally ready to get started with Git! In this chapter, you’ll be learning a few Git

terminologies and concepts necessary for any project. Then, you’ll be tasked to set up a

project, make changes to it, review the changes, and finally navigate between versions.

Let’s go!

 Repositories
A repository is a storage where all your project and all the changes made to it are kept.

You can think of it as a “change database.” But don’t worry; it is only a normal folder on

your system, so it is very easy to manipulate.

For each project you want to manage with Git, you have to set up a repository for it.

Setting up a repository is very easy. Just navigate to the folder you want to track and tell

Git to initiate a repository there.

So for each project you want to start, you should

• Create the directory containing your project

• Navigate into the directory

• Initialize a Git repository

See? It’s very easy. Let’s convert those statements into commands. But first, let’s

open a console to type our commands in. For Linux users, you just have to launch your

favorite terminal (Ctrl-Alt-T for Debian like distros). For MacOS, you just have to use

Cmd-Space to bring up Spotlight where you can search for the Terminal app. Windows

users can open two consoles: cmd and powershell. Powershell is more modern and has

UNIX-like commands. To open one of them, use Windows-R and type in the name (cmd

or powershell). Note that you need to restart all these consoles on your first installation

of Git if you had them open. Git for Windows also comes with a console emulator called

Git Bash that provides a similar environment to Linux and Mac consoles. If you use

36

Windows, I highly suggest to use Git Bash so you can have the same experience as other

people who use different OSs.

Open Git Bash (from the Apps list or the contextual menu), and type in those

commands:

$ mkdir mynewproject

$ cd mynewproject/

$ git init

mkdir is a command used to create a directory; it is short for “make directory.” cd

is the command used to navigate between directories; it is short for “change directory.”

Finally, git init is short for “Git initialize.”

After you initialize the repository, Git will tell you where the database was created

like in Figure 3-1.

Figure 3-1. Initialization of a new repository

Note mkdir and cd are system commands; they are managed by the OS,
whereas init is a Git command. Every Git command begins with “git.”

Git will create a directory called “.git” that will contain all your changesets and

snapshots. If you want to check it out, you will have to show hidden files from your file

explorer’s settings. The repository looks like the directory shown in Figure 3-2.

ChaptEr 3 GEttinG StartEd

37

And if you open the .git directory, you will find many more items that are part of the

Git database. Check Figure 3-3 for an example.

Figure 3-2. An empty repository

Figure 3-3. Inside the .git directory

Remember Chapter 1 that said that instead of tracking changes between versions,

Git takes snapshots? Well, all those snapshots are stored in the “.git” directory. Each

snapshot is called “commit,” and we’ll look into that shortly after this section.

The HEAD file in this “.git” directory points to the current “branch” or subversion of

the project that you are working on. The default branch is called “master,” but it is just

like any other branch; the name is just an old convention.

You should also know that initializing is the only way to get a repository. You can

copy an entire repository with all its history and snapshots. It is called “cloning,” and we

will see that in another chapter.

ChaptEr 3 GEttinG StartEd

38

EXERCISE: CREATE AN EMPTY REPOSITORY

Our first exercise isn’t exactly rocket surgery. Just create an empty repository somewhere in

your system. You can use the default console or Git Bash.

 Working Directory
What about the empty area outside the “.git” directory? It is called the Working Directory,

and the files you will be working on will be stored there. Generally, your most recent

version will be on the Working Directory.

Each file you work on is on the Working Directory. There is nothing particular about

this place except the fact that you will only manipulate the files here directly. Never

modify the files inside the “.git” directory!

Git will detect any new file you will place in the Working Directory. And you check

the status of the directory by using the Git command “status.”

$ git status

For example, if we create a new file called README.md in the Working Directory, we

will see that Git will know that the project has changed. Make sure that you place your

new file alongside the .git directory like in Figure 3-4, not into it!

Figure 3-4. Creation of a new file in the Working Directory

If we check the status of the Working Directory, we will get a result like the one

shown in Figure 3-5.

As you can see in Figure 3-5, we don’t have any commits yet; that’s because we are

still on the Working Directory and we haven’t taken any snapshots yet. It also says that

we are on the “master” branch; it is the default name for the only branch created on the

ChaptEr 3 GEttinG StartEd

39

repository initialization. Then we get the untracked files. Those are the files we modified

(in this instance, created).

Essentially, that is the Working Directory: the area where you directly interact with

your project files.

EXERCISE: CREATE SOME FILES FOR THE PROJECT

this exercise is again very easy. Just create some files within your project directory

(repository) and check the Working directory status.

Figure 3-5. The status of the Working Directory

ChaptEr 3 GEttinG StartEd

40

 Staging Area
The Staging Area is where your files go before the snapshots are taken. Not every file

you modified on the Working Directory should be taken into account when taking a

snapshot of the current state of the project. Only the files placed in the Staging Area will

be snapshotted.

So, before taking a snapshot of the project, you select which changed files to take

account of. A change in a file can be creating, deleting, or editing.

Think of it as designating which files get to be in the family photo. To add a file to the

Staging Area, we use the Git command “add.”

$ git add nameofthefile

It’s that simple. If we wanted to stage the README.md that we created earlier, we

would use “git add README.md.” Or if you created multiple files, you can add them one

after another or together like “git add file1 file2 file3.”

Let’s stage our new file by using the command:

$ git add README.md

Then let’s check the status with git status command.

$ git status

Adding a file to the staging area won’t produce any visible result, but checking the

status will get you a result similar to Figure 3-6.

Figure 3-6. Staging a file

ChaptEr 3 GEttinG StartEd

41

If you check out Figure 3-6, you will notice that after staging the file, the Working

Directory is clean again. That’s because “git status” only keeps track on “unstaged” files

(edited files that have not been marked for a snapshot).

As you can see in Figure 3-6 too, you can unstage a file using the Git command “git

rm” with the option “--cached.”

$ git rm --cached README.md

Caution don’t forget the option “--cached” when unstaging a file. if you forget it,
you could lose your file!

After you stage all the files that you want the changes to be taken into account, you

are now ready to take your first snapshot!

EXERCISE: STAGE AND UNSTAGE YOUR FILES

take the files you created on the previous exercise and stage them. Unstage one file and

re- stage it. Check the Working directory status after each stage/unstage.

 Commits
Like we talked about in the section before this one, a commit is just a snapshot of the

entire project at a certain time. Git doesn’t record the individual changes done to the

files; it takes a picture of the entire project.

In addition to the snapshot, a commit also contains information about the “author”

of the content and the “commiter” or who put the changeset into the repository.

Note “author” and “commiter” are usually the same person, unless the commiter
took the changeset from another team member. remember that Git commits are
exchangeable since it is a distributed VCS.

ChaptEr 3 GEttinG StartEd

42

Since a commit is a snapshot from the state of the project, the previous state of the

project is another commit called “parent.” The very first commit is created by Git when

the repository is created, and it’s the one commit that has no parents. All future commits

are then linked to each other via parentage. The ensemble of those commits that are

parents to each other is called “branch.”

Note if a commit has two parents, that means that it was created by merging
two branches.

A commit is identified by its name, a 40-character string that is obtained by hashing

the commit. It is a simple SHA1 hash so multiple commits with the same information

will have the same name.

A reference to a specific commit is called “head,” and it also has a name. And the

head you are currently working on is called “HEAD” (see the previous section).

We can now commit the files we staged earlier. Before each commit, you should

check the status of the Working Directory and the Staging Area. If all the files you want to

commit are in the Staging Area (under the phrase “Changes to be committed”), you can

commit. If not, you have to stage them with “git add.”

To commit all the changes we made, we use “git commit.” This will take a snapshot of

our current state of the project.

$ git commit

If we execute this command, it will open our default editor (check Chapter 2 if you

want to modify yours) and ask us for a commit message. A commit message is a short

description of what has changed in the commit compared to the previous one.

My default editor is Vim, so if I execute the commit command, I will see a screen as

shown in Figure 3-7.

ChaptEr 3 GEttinG StartEd

43

You can see in Figure 3-7 that the first line of the file is empty; that’s where you have

to write the commit message. The commit message should be written on one line, but

you can always add more lines of comments. Comments start with “#” and are ignored

by Git; they are only used to complete the commit message, to make it clearer. Also note

that Git puts automatically the list of changed files in the commit comments (the same

files you saw with “git status”).

You will learn the proper way to write commit messages the right way in the later

chapters. But for now, just enter a simple message like “Add README.md to the project”

on the first blank line like in Figure 3-8.

Figure 3-7. Git opens the default editor so you can edit the commit message

ChaptEr 3 GEttinG StartEd

44

After you wrote your commit message like in Figure 3-8, you can close the editor

(after saving!). You will then get a summary of the commit like in Figure 3-9.

Figure 3-8. The commit message written on top of the file

ChaptEr 3 GEttinG StartEd

45

The summary of the commit will contain a lot of information:

• The current branch: master

• The name of the previous commit: root-commit because this is our

first commit

• The name of the commit: the first seven letters of the commit hash

• The commit message

• The number of files changed: one file

• The operation done to each file: creation

We took our first snapshot! If you check the status of the repository, you can see that

it is clean again, unless you left some files unstaged.

Figure 3-9. Summary of the commit

ChaptEr 3 GEttinG StartEd

46

EXERCISE: COMMIT YOUR CHANGES

take your staged files from the previous exercise and commit them. then modify one of your

tracked files, stage it again, and make a new commit. Compare the summary of each commit.

What is different? in what way are those commits linked?

 Quick start with Git
So, now that you are familiar with the basic concept of Git, we are going to apply them in

a real project. Let’s imagine you want to create a folder to hold your TODO list and want

it to be versioned so you can check when each item was completed.

To get you more familiar with Git, you will be doing the next exercise without any

help. If you get stuck, just check the previous sections for directions.

Just remember the basic principles of Git:

• You modify the files on the Working Directory.

• You put the files you want to record the current state on the Staging

Area.

• You take a snapshot of the project with a commit.

Don’t forget to put the files you modified on the Staging Area before committing or

they won’t be part of the snapshot. The modified files you didn’t put on the Staging Area

will just stay on the Working Directory until you decide to discard them or include them

in a future commit.

Let’s get started on the exercise! Please complete it until the end and don’t move on

to the next chapter until you understand clearly how Git works.

ChaptEr 3 GEttinG StartEd

47

EXERCISE: A VERSIONED TODO APP

• Create a new repository.

• Create a file named tOdO.txt in the directory and put in some text.

• Stage tOdO.txt.

• Commit the project and put in a short commit message.

• Create two new files named dOnE.txt and WOrKinG.txt.

• Stage and commit those files.

• rename WOrKinG.txt to in prOGrESS.txt.

• add some text to dOnE.txt.

• Check the directory status.

• Stage in prOGrESS.txt and dOnE.txt.

• Unstage dOnE.txt.

• Commit the project.

• Check the directory status.

After you complete this exercise, close the book and try to explain those things to

yourself in your own words:

• Working Directory

• Staging Area

• Commit

If you don’t have too many problems understanding those concepts, you are ready

for more Git commands and concepts.

ChaptEr 3 GEttinG StartEd

48

 Summary
This chapter is very important for your understanding of Git. The main takeaways are the

three states that a file can be:

• Modified: You modified a file on the Working Directory.

• Staged: You added the file to the Staging Area so it could be

snapshotted.

• Committed: You took a snapshot of the entire project (all the

unmodified and staged files).

If a file was part of the previous commit and you didn’t modify them, they will

automatically be part of the next commit. A modified but unstaged file is considered as

unmodified. You have to ask Git to track them by staging those files.

We also learned a little bit about committing and commit messages. Opening an

external editor to write commit messages might be a little awkward at first, but you will

eventually get the hang of it after some time.

In the next chapter, we will learn how to check the project history and navigate

between versions. We will also learn about ignoring certain files and show the current

changes done to the project since the last commit.

ChaptEr 3 GEttinG StartEd

49
© Mariot Tsitoara 2020
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/978-1-4842-5313-7_4

CHAPTER 4

Diving into Git
Now that you are familiar with the basic commands of Git, we are diving deeper into the

other features it has. You will discover in this chapter the features that I promised you in

Chapter 1.

 Ignoring files
Not everything in the working directory should be tracked by Git. There are certain files

(configs, passwords, bad code) that are generally left untracked by authors or developers.

Those files (or directories) are listed in a simple file called “.gitignore.” Notice the

period before “gitignore”; it’s important. To ignore files, create a file named .gitignore

and list the files or folders to ignore in it.

Let’s get back to our repository from the previous chapter, the TODO list. Let’s

imagine that you want to include a private, untracked file named PRIVATE.txt. You first

have to create the .gitignore file using your favorite text editor and then write PRIVATE.

txt in it like in Figure 4-1.

50

If you then create and modify the PRIVATE.txt file (like in Figure 4-2), it won’t be

taken into account by Git if you check the status.

Figure 4-1. The .gitignore file with PRIVATE.txt in it

Figure 4-2. Adding PRIVATE.txt

Let’s try to check the status.

$ git status

Chapter 4 Diving into git

51

You will get a similar result as shown in Figure 4-3.

Figure 4-3. Status of the working directory

As you can see on the status shown in Figure 4-3, PRIVATE.txt is not tracked. You can

also see that the .gitignore file IS tracked; so, you will have to add and commit it after you

modify it.

$ git add .gitignore

$ git commit

As always, staging a file and then committing the project will result in a confirmation

message summarizing the changes done (shown in Figure 4-4).

Chapter 4 Diving into git

52

Remember that the .gitignore global file should be placed at the root of your

repository. If you put it in a directory, only the matching files in that directory will be

ignored. Generally, having multiple .gitignore files in multiple directories is considered

as a bad move unless your project is enormous. Prefer listing them into a single .gitignore

file placed at the root of your repository.

You may ask yourself what kind of files to ignore when using Git. Well, the rule of

thumb is to ignore all files generated by the project. For example, if your project is a

software source code, you should ignore the compiled outputs (executable or translated

files). Temporary files and logs should also be left out, along with big libraries (node_

modules). And don’t forget to exclude all your personal configs and your text editor’s

temp files.

The .gitignore file doesn’t only ignore files listed by name; you can also ignore

directories and files matching a description. You will find in Table 4-1 a handy reminder

of all the templates you can use.

Figure 4-4. Committing .gitignore

Chapter 4 Diving into git

53

Table 4-1. .gitignore lines and what they do

.gitignore line What is ignored Example

config.txt config.txt in any directory config.txt

local/config.txt

build/ any build directory and all files in it.

But not a file named build

build/target.bin

build/output.exe

not output/build

build any build directory, all files in it, and any

file named build

build/target.bin

output/build

∗.exe all files with the extension .exe target.exe

output/res.exe

bin/∗.exe all files with the extension .exe in the

bin/ directory

bin/output.exe

temp∗ all files with name beginning by temp temp

temp.bin

temp_output.exe

∗∗/configs any directory named configs configs/prod.py

local/configs/preprod.py

∗∗/configs/local.py any file named local.py in any directory

named configs

configs/local.py

server/configs/local.py

not configs/fr/local.py

output/∗∗/result.exe any file named result.exe in any

directory inside output

output/result.exe

output/latest/result.exe

output/1991/12/16/result.exe

Those are the most common lines used with .gitignore. There are others but they

are only used in very specific situations and almost never used in common projects. If

you are using a computer language or framework, you can go to https://github.com/

github/gitignore to get a template of the .gitignore file you should use.

But what if you want to ignore all files matching a description except one? Well, you

can tell Git to ignore all the files and then immediately make an exception. To exclude a

file from the ignored list, you use “!.” Per example, if you want to ignore all exe files except

output.exe, you will write your .gitignore like in Figure 4-5.

Chapter 4 Diving into git

https://github.com/github/gitignore
https://github.com/github/gitignore

54

Note the order of the lines. The exception comes AFTER the rule!

This exception marking only works for lines describing file names, though. You can’t

use it with lines ignoring directories. A .gitignore file as shown in Figure 4-6 won’t work.

Figure 4-5. How to make an exception

Figure 4-6. Exception won’t work with files ignored by directory matching

EXERCISE: IGNORE FILES AND DIRECTORIES

take your repository from the previous exercise and create multiple files and directories.

Check table 4-1 and try to ignore the files that you created using each line. Create as many

files as you need and don’t stop until you understand each pattern. no need to remember

everything, but you should at least have an idea of when they should be used.

Chapter 4 Diving into git

55

EXERCISE: WHAT DO THESE LINES IGNORE

Check out Figure 4-7. Without looking at the previous section, what do each line ignore?

Figure 4-7. Guess what each line ignores

And that’s how you ignore files! It’s almost as easy as ignoring your responsibilities!

But remember: the .gitignore file is tracked and versioned, so don’t forget to stage it

before committing!

 Checking logs and history
If you followed the exercises (as you should) or began to use Git for your own projects,

you now have a little problem that I promised would be solved easily with Git: how to

consult the history log.

This is one of the most used features of Git and also one of the easiest Git commands:

git log

$ git log

Try it! Open your repository and run the command. You should see a view like the

one shown in Figure 4-8.

Chapter 4 Diving into git

56

The commit log will list (from the most recent to the oldest) all the snapshots you or

other people committed. It also includes, for each commit

• The name (unique, obtained by hash)

• The author

• The date

• The description

Since the commit names are too long, we will only use the first five letters as the

name. This will be important for the next section.

If your commit history is very long, you can use the keyboard and go

• Forward or backward one line: key up and down OR j and k

• Forward or backward one window: f and b

• At the end of the log: G

Figure 4-8. The commit log

Chapter 4 Diving into git

57

• At the beginning of the log: g

• Get help: h

• Quit the log: q

There are many parameters you can use with git log; Table 4-2 is presenting them

to you.

Table 4-2. The most common git log parameters

Command Use Example

git log --reverse reverse the order of commits

git log -n <number> Limit the number of commits

shown

git log -n 10

git log --since=<date>

git log –after=<date>

only show commits after a

certain date

git log

--since=2018/11/11

git log --until=<date>

git log --before=<date>

only show commits before a

certain date

git log --author=<name> Show all commits from a

specific author

git log

--author=Mariot

git log --stat Show change statistics

git log --graph Show commits in a simple

graph

EXERCISE: DISPLAYING HISTORY

this exercise is very simple. Just reopen your repository from the last exercise and check the

history log:

• in reverse order

• From yesterday

• For the last two commits

Chapter 4 Diving into git

58

 Viewing previous versions
Now that you know how to check history and commit logs, it is time to check the files to

see first what files were changed.

Remember those long names that are created with each commit? We are going to

use those to navigate between commits or snapshots. To check how were your files on

a specific snapshot, you just have to know its name. The best way to know the name of

each commit is to check the history log like in Figure 4-9.

To show and learn what changes have been done to your project, you just use the “git

show” command followed by the name of the commit. You don’t even need to write the

full name, just the first seven letters.

$ git show <name>

Figure 4-9. History log of our TODO list

Chapter 4 Diving into git

59

Try with your repository! You should get a result as shown in Figure 4-10.

As you can see, the commit is shown in a very detailed way. You will see the

difference between the selected commit and the previous one. Additions are shown in

green and deletions in red. You can show the details of any commit with the “git show”

command.

Figure 4-10. Result of git show

Chapter 4 Diving into git

60

EXERCISE: CHECK THE CHANGES YOU MADE TO YOUR PROJECT

List the commits you made to your project and check the changes for each one.

 Reviewing the current changes
Checking previous versions is nice, but what if you only want to check the changes you

just made? Checking differences between the last commit and the current working

directory is an essential feature of Git. You will use it a lot! The command to check

differences is simple: git diff.

$ git diff

Modify one or multiple files in your directory and then execute the command. You

will get a result as shown in Figure 4-11, which is very similar to the result of the git

show command from the previous section. They are actually the same view because the

information shown is the same.

Figure 4-11. Checking all the changes done in the working directory

Chapter 4 Diving into git

61

Most of the time, you will only need to check the changes made to a single file,

not to the entire project. You can pass the name of the file as a parameter to review its

differences compared to the last commit.

$ git diff TODO.txt

The main thing to remember is that git diff checks the changes made to the files in

the working directory; it doesn’t check staged files! To check changes made to staged

files, you have to use the parameter “--staged.”

$ git diff --staged

You should always check the diff in the staged files before committing a project,

so you can do a final review. I know you will forget to do so one day, so go to the next

chapter to learn how to undo or modify your commits.

This is the end of this chapter and we have learned a lot of things. Before going to the

next chapter, please make sure you are comfortable with these features:

• Ignoring files

• Checking history logs

• Reviewing local and staged changes

If you are and you completed the exercises, congratulations! But we aren’t finished

with commits yet!

 Summary
This chapter was all about the project history. We learned about checking logs with git

log and git show but also learned to review the current changes with git diff. Git log and

git diff will be particularly useful in the future, so make sure you understand them well.

Git diff is about comparing the current modified files to the files in the last commit, while

git log is just a list of all previous commits.

The ability to ignore files with .gitignore is also a nice skill to have so your git status isn’t

saturated with modified files that you aren’t interested in committing. It’s also a good way to

ensure that a particular file (probably containing secret keys) isn’t committed by accident.

We still have a lot to learn about commits in the next chapter. We will first review the

three states of Git files, and then we will see how to bring back the previous versions into the

working directory. And you will at least learn how to undo and modify commits. Hang tight!

Chapter 4 Diving into git

63
© Mariot Tsitoara 2020
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/978-1-4842-5313-7_5

CHAPTER 5

Commits
The previous chapter taught you a little bit about the essential features of Git. You should

know how to check the history log and see the changes made to the current version. But

Git commits are a tough bone to bite, so we are going to talk about them more in this

chapter. First, we will explore (again) the inner working of Git and its terminology. Then,

we’ll learn how to view and check previous versions. Let’s go!

 The three states of Git
Before talking about commits in detail, we have to go back to the basics and relearn

about how Git works. You surely remember the three states that a file can find itself. If

you don’t, don’t skip this chapter; it is essential for everything you will do with Git. If you

remember, don’t skip it either, because I spent a lot of time writing it.

As you saw on the last chapter, not all files are tracked by Git; some files are ignored

(by the .gitignore file). And then there are also files that aren’t ignored but not yet tracked

by Git. They are the newly created files that have never been part of a snapshot (commit).

Tracked files can be in three states:

• Modified: You changed the file.

• Staged: You changed the file and prepared it to be snapshotted.

• Committed: You took a snapshot of the entire project and the file was

in it.

Untracked files will stay as such until you decide to stage and commit them or

explicitly ignore them.

Remember: Git doesn’t track changes, it tracks snapshots. Each time you commit,

the state of the entire project is saved, not just the little changes that were made.

Nerd fact: Git is fast because you always work on the last state of the project. When

you want to see a previous commit, it just shows you the state of the project at that

64

specific time. Many VCSs stored each change done to a file, and when you wanted to go

back at a previous state, they replayed the changes in reverse. When the project gets big,

this causes many problems or speed and memory. Doesn’t Git’s way of thinking create

super big databases? No, because when you take a snapshot and a file doesn’t change, it

is not stored again; instead, a reference to the file is used.

Let’s go back to the three states again and see the relationship between them:

• You work on the working directory. It is just the directory that you

created before initializing the repository. That’s where you will read

and edit your files.

• The staging area is where you put your changed files before taking a

snapshot of the entire project. You can’t take a snapshot if you don’t

stage your changed files. Only staged files (and unchanged files) will

be taken into account in the snapshot. Unstaged files (tracked or

untracked) and ignored files will just stay in the same state.

• The database or .git directory stores every snapshot you took. Those

snapshots are called commits.

Remember: staging concerns only changed files you choose, while committing

concerns the entire project. You stage a file; then commit the project.

 Navigating between versions
Many times, you will want not only to know what has changed in your project but also to

see in what state it was, to see the snapshot you took. It’s easy with Git.

When you want to bring the previous state of the project to the working directory,

we have to check out the commit with “git checkout.” Since this changes the files on

the working directory, you have to make sure not to have any unstaged files on there.

Untracked files are fine since Git doesn’t track their states yet.

To check a snapshot of the project, we use the “git checkout” command and pass the

commit name as a parameter.

$ git checkout <name>

Let’s try! Open your current project in a text editor and take a note of its contents.

Now check out a previous commit like in Figure 5-1.

Chapter 5 Commits

65

Figure 5-1. Checking out older commits

Chapter 5 Commits

66

Caution You can’t check out any other commit if your Working Directory isn’t
clean! make sure to commit your changes before switching snapshots.

Be careful not to change anything when checking out previous commits. Just like
in the movies, changing the past is a very bad idea!

If you check your text editor, you will notice that the project is now just like it was

when you took the snapshot. That is what’s best with Git. Nothing you took a snapshot of

is ever lost!

Now let’s learn some Git terminology. First is “head.” “head” is just a reference to a

commit. Instead of saying “name,” when talking about commits, we say “head.”

When switching between different commits, we need a way to know which “head”

are we on. The current head (the one being checked out) is just called “HEAD.”

And that’s it! A head is a reference to a commit (there can be multiple heads in a

repository), and the head pointing to the currently checked-out commit is called HEAD.

EXERCISE: MOVE AROUND IN YOUR HISTORY

move from one commit to another using “git checkout.” make sure not to change anything.

But how to return to the normal, current Working Directory? Since we didn’t make

any big change to our repository, returning to the Working Directory is just checking out

the only branch that we have. By convention, that branch is called “master.”

$ git checkout master

Try it out! And remember the two golden laws of time travel:

• Only travel back in time when the present is clean (nothing unstaged

in the working directory).

• Don’t change the past (until you have more experience).

Don’t forget to check out the current branch (master) after navigating between

versions.

Chapter 5 Commits

67

 Undo a commit
The time will come when you will stage and commit files but change your mind later.

It happens to everyone. But with traditional methods (without versioning), it is very

difficult to roll back changes especially if the changes were ages ago. With Git, it is just a

single command: git revert.

Why not just delete the commit? Because of the time traveling rule from the

previous section: never change the past. Whatever changes committed must stay so,

for the sake of history; changing what has happened in the past is very dangerous and

counterintuitive. Instead, you will use git revert to create a new commit that contains the

exact opposite of the commit you are trying to undo.

So, undoing a commit is just committing its exact opposite. It’s that simple! To use it,

you have to pass the name of the commit to be undone as a parameter.

$ git revert <commit name>

You can revert any commit; just make sure to work on a clean working directory. So,

don’t forget to stage and commit your files before reverting a commit. Let’s try it!

First, make sure that the working directory is clean like in Figure 5-2.

Figure 5-2. Using git status to check the working directory

Chapter 5 Commits

68

Perfect. Now that we know that the working directory is clean, it’s time to check the

history to know which commit to undo. We should get a result like the one shown in

Figure 5-3.

Note if you don’t like the way the commit history is shown, you can pass the
“--oneline” parameter to reduce the information shown. Check Figure 5-4 for an
example.

Figure 5-3. Checking commit history with git log

Chapter 5 Commits

69

Let’s revert the third commit! We just use git revert followed by the commit name.

$ git revert 5f57824

Since git revert only creates a new commit containing opposite changes, the rest of

the procedure is the same as any new commit. As shown in Figure 5-5, you will be asked

to describe your new commit. I suggest always keeping the default commit description

as it makes it easy to identify.

Figure 5-4. A prettier git log output

Chapter 5 Commits

70

After you save the commit description (like on all commits), you are presented with a

summary of the snapshot content. Figure 5-6 shows the result you will get after running

the commands and saving the commit description.

Figure 5-5. The new commit description

Chapter 5 Commits

71

As you can see, undoing changes is very easy with Git. The thing to remember is git

revert only creates a new commit containing opposite changes. That means you can

revert a revert! Reverting a revert will just reapply your original commit, and the two

“reverts” will cancel each other. The commits will, however, stay on your history log as

you can’t change the past.

Note actually, you can change the past. But never ever do it. it’s a very bad idea,
and it will only bring more problems your way.

 Modifying a commit
As I promised you in the last chapter, you will learn how to modify a commit in this

chapter. This is to be used when you forgot to stage a file or you want to change

the commit message. This should not be used to modify a lot of files as this is

counterintuitive. The next chapter will discuss in detail when and where to use this. And

I’ll say it again: don’t ever try to change the past.

Figure 5-6. Summary of the revert

Chapter 5 Commits

72

To modify a commit, you have to use the git commit command but with “--amend”

as a parameter. It will open your default text editor like a normal commit but with the

staged files and commit message already there.

$ git commit --amend

You then just save and close the text editor like for every commit. The “modify” word

that I used is a bit misleading because you are not modifying a commit; you are creating

a new commit and replacing the current one. So, from now on, I will use the word

“amend.”

Amending a commit takes everything in the staged area and makes a new commit

with it. So, if you want to add a new file to the commit or remove a file from it, you can

stage and unstage them at will. Reminder: to unstage a file, you have to use git reset

HEAD <file>. Here’s a little example.

Let’s use our TODO app again. Edit an existing file; then create two new files named

filenottocommit.txt and fileforgotten.txt like in Figure 5-7.

Figure 5-7. All the files in our Working Directory

You can check the current state of the project by executing the git status command:

$ git status

Depending on how many files you added to the project before, you might have a

slightly different result but still similar to Figure 5-8.

Chapter 5 Commits

73

The next thing we have to do is to stage the files to be part of the commit. Add the

changed files and filenottocommit.txt.

$ git add TODO.txt DONE.txt filenottocommit.txt

You know from the last chapter that you should always check what you staged with

“git diff --staged” before committing. But let’s pretend you forgot to check and commit

immediately.

$ git commit

Even then, you will arrive at the commit message screen that outlines the changes to

be committed like in Figure 5-9.

Figure 5-8. The modified and untracked files are highlighted

Chapter 5 Commits

74

As you can see, the changes to be committed and the untracked files are outlined

and highlighted. It’s pretty difficult to miss them, but let’s pretend to and write a simple

commit message, save, and then close the editor. You will get the usual summary shown

in Figure 5-10.

Figure 5-9. The commit message screen is the last failsafe

Chapter 5 Commits

75

Now that you read the commit summary, you notice that you committed the wrong

file and forgot to commit another.

First, you should remove the last commit from your project with git reset. We will

use the “--soft” option so that the edits we made stay on the working directory. HEAD~1

means the previous commit as HEAD is a reference to the current one.

$ git reset --soft HEAD~1

After this, you can unstage the file with git reset again:

$ git reset HEAD filenottocommit.txt

Check if the commands worked as intended by reviewing the current status of the

project.

$ git status

Figure 5-10. The commit summary. We messed up

Chapter 5 Commits

76

You will get a result like the one shown in Figure 5-11.

As you can see, filenottocommit.txt is untracked now, because we removed it from

the staging area. Naturally, fileforgotten.txt is also untracked because we didn’t stage

it. Only DONE.txt remains on the staging area because we haven’t touched it after the

commit.

Caution Be careful when you use the reset command. it’s very dangerous. make
sure to double check what you write.

Then stage the correct one.

$ git add fileforgotten.txt

Now that you staged the correct files, you can commit the project.

$ git commit

Put a grammatical error in the commit message so you can see another feature of Git.

Figure 5-11. Status of the project after resetting

Chapter 5 Commits

77

 Amending a commit
For simple mistakes like an error in the commit message, there is no need to modify the

entire commit. You just need to amend it. Let’s try with our project!

$ git commit --amend

The amend process looks just like a normal commit, but instead the commit

message is already written, as you can see in Figure 5-12.

You can change the commit message at will and then save and close the editor

like always.

It’s that simple! Take a look at the new commit’s name and compare it to the old one.

You’ll notice that they are different. That’s because the commit name is a hash of the

information in the snapshot. So different states of the project result in different names.

A parting note about modifying commits: don’t abuse it! Yes, making errors is not

ideal when writing code, and most of the time we want to correct them immediately. But

errors also help us be better; and keeping tracks of our mistakes is a great way to learn.

Figure 5-12. Editing a commit message

Chapter 5 Commits

78

EXERCISE: CLEANLY AMEND A COMMIT

Get back to your toDo project. the goal of this exercise is to cleanly amend a commit.

• edit some files and stage them.

• Commit them and make a grammatical error in your commit message.

• Unstage a file.

• stage another.

• amend the commit with the correct message.

 Summary
This chapter mainly dealt with navigating, undoing, and amending versions of your

project. You should have no problem now with small corrections in your commits. Make

sure to reread the first section of this chapter as it’s essential for everything you do in Git.

You should know the differences between the three states of Git by heart.

The next chapter is a small one as we will only talk about theory. You will learn how

to write a nice commit message, what to include and ignore in commits, and what are

the common errors beginners do. Be sure to read the next chapter carefully because it

will help you and your team greatly. Let’s go!

Chapter 5 Commits

79
© Mariot Tsitoara 2020
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/978-1-4842-5313-7_6

CHAPTER 6

Git Best Practices
The previous chapter was one of the most important ones in this book. Make sure to

come back to it every time you have doubts about commits. After reading it, you should

be able to make, review, and amend project snapshots without any problems. Now that

you know the basic features of Git, it’s time for you to learn the best practices to make

your life (and your teammates’) easier. These are the stuff that I wish I knew when I first

used Git. We’ll cover commit messages, the dos and don’ts of Git, and a list of the most

common mistakes beginners do. Then we’ll finish with a little reminder of how Git works.

 Commit messages
Commit messages are one of the most important aspects of Version Control and one

of the most overlooked. Those messages are there to help you (and others) understand

what changes were made in the commit and, most importantly, why were those changes

made. Clean and readable commit messages are essential for a better Git experience.

Let’s begin by identifying the problem.

The most common problem faced with Git is that commit messages are often void of

sense and don’t convey any meaningful information. And most of the time, the messages

get less and less clear with each commit. This is because of a misunderstanding of Git

concepts: each commit must stand by itself; if a commit needs other commits to make

sense, it shouldn’t exist. You should never commit a project that is half-done. If a task

is getting too big, split it in several logical chunks, where each part makes sense by

itself. A good way to know if you are in the wrong path when splitting tasks is to check

the possible commit message: if you think about using a very similar commit message,

you probably made an error when splitting the task. For example, if your task is to make

many small corrections in a big web site, it would make sense to divide it into smaller

tasks like a commit for each page or a commit for each page category. So remember:

your commits must be independent, atomic and complete.

80

One problem many beginners also have is passing too much information in the

commit message, thus clogging most screens with unnecessary details. A commit

message must be concise and straight to the point. You don’t need to tell everything

that has changed, you just need to explain why those changes were made. If someone

wanted to see what has changed, they would use the git show command, which shows a

complete recap of the changed files in the commit.

Remember that you are not the only one who will read your code or text. You have

to invest a little bit of time to explain the context of the changes and why were they

done. Saying to yourself “I’ll remember it” is a lie and should never be practiced. For

every commit, you should ask yourself: “If another person looks at my project, will

they understand the timeline of changes in the project just by looking at my commit

messages?” And also remember that that other person might be you in a few months;

codes are easily forgotten.

The bottom line is that your Git message should tell WHY the changes were made. If

someone wants to see WHAT has changed, they would look into the Git diff.

 Git commit best practices
For a better commit message and to avoid the problems listed earlier, here are some

tips that you should follow from now on. Those tips will help your coworkers, and most

likely, in the future, you have a clear view of why a commit was made. As the project

goes, we tend to forget our previous steps, so having a good history log is imperative in a

fast-paced development.

• Commit messages should be easy on the eye.

When you use git log, there are no newlines formed when the messages are too long;

so the user would have to scroll to view everything. This is not ideal because you should

be able to search and retrieve commits easily.

• You should not write messages longer than 50 characters.

• Begin the message by a capital letter.

• Don’t end the message with a period.

• Use the present time and ditch unnecessary articles.

• Commit messages should be consistent.

Chapter 6 Git Best praCtiCes

81

Since Git messages are fundamental in any project, they should be consistent and

should not be subject to brutal changes. You should always use the same language for

every commit and follow its internal logics. Changing writing styles mid-project will

make it very difficult to search commits.

• The messages must be clear and contextualized.

Context is key in big projects when many writers work on different parts. For

example, many developers begin their commit messages by the context or area of the

project touched by the changes; but this only concerns very big projects.

Unclear or vague messages such as “change CSS,” “fix tests,” “hot fix,” “little fixes,”

and “updates” should be avoided at all cost. They are often misleading and force the

user to look at diffs. Always make sure to include why the changes were made. And never

force users to look at your code changes to understand the commit.

• Don’t go crazy on the details.

You can expand your commit message in the body, but don’t make the error of giving

too much information. The only thing you have to explain is WHY the changes were

made, not WHAT.

Remember: your commit message should say what will happen to the project if it is

applied. So you should always use a clear, present-time, and imperative language. The

best commit messages are usually short, straight to the point, and clear.

There’s no better way than examples to make it clearer so let’s do so. Table 6-1 is a

handy tool to point you in the right direction.

Table 6-1. Some examples of the best and worst commit messages

Best Bad Worst

[login] Fix typo in DB call Fixed typo in DB call Fix typo

refactor login function for reuse Changing login function by moving

declarations to parameters

Code refactoring

add new api for user program check adding a new api for user program check New user api

The examples presented in Table 6-1 should indicate if you are in the good direction

when writing a commit message.

Note that those are recommended actions and are not written in stone. If you

REALLY have to, you can ignore some of them if that makes the message clearer.

Chapter 6 Git Best praCtiCes

82

 What to do
Let’s begin by enumerating the good practices that you should always remember

when using Git. It is essential to your success as it will save you some serious time down

the line.

The most important thing to remember is that a commit is a change in the

project that should stand on its own. You should always keep the commits small and

independent. A commit’s role is (most of the time) to introduce a feature or fix a bug;

it is not for keeping track of every change you made. If a feature or bugfix requires big

independent steps, separate them in multiple commits. For example, a feature needs an

API endpoint and a frontend call. There is no need to make all those changes in a single

commit because they are independent and are not linked in any logic. If you make an

error in the backend code, you can revert the changes without disturbing the frontend

code. Separating them by multiple commits will also make the history log more readable

and the commit message clearer.

We’ve already talked about this earlier, but since it is very important, let’s go back

at it. Each commit message must answer the question “why?” Why was the commit

created? What problem does it solve? Remember that in Git, the commits can be

exchanged between many users. So, the commit message must answer the question: if

I pick and apply this commit, what will it do? That’s why the commit tense should be in

the present form. It is difficult to shake the need to write it in past tense, but after a few

weeks, you should be comfortable with it.

And that’s it! The list of things to do is very small with Git. Just make sure to write

clear messages for your small, independent commits. The list of things not to do, on the

other hand, are as follows.

 What not to do
This list is a bit longer than the previous one. That is because Git is a very powerful

tool that doesn’t limit the things that you can do. So, it’s very easy to make mistakes,

especially when you think that it will save you time. It won’t. Bad practices will always

serve you more problems along the way. It is best to avoid doing those things altogether.

One common error most beginners tend to make is to solve multiple problems in

one commit. For example, they are in the process of fixing a bug when they spot another

one. They solve both problems and then commit the project. This seems fine until it is

Chapter 6 Git Best praCtiCes

83

discovered that the commit introduced many problems in the codebase. Since there’s

only one commit, they don’t know which changes introduced the problems. That is only

one facet of the problem with clogged commits. Another one is that it makes it difficult

to write coherent and clear commit messages. If you find yourself committing many

changes from different contexts, consider splitting the commits into smaller ones.

Another mistake akin to the previous one is to combine commits that don’t have

anything in common. For example, code refactoring shouldn’t be in the same commit

as bugfixes or new features but in a commit of its own. This, again, is to facilitate bug

chasing and to make the history log cleaner.

The next mistake comes from a fundamental misuse of Git and the demands of

some companies. It is the error of using Git as a backup system. Since Git is a distributed

Version Control System, the repository can be stored in a remote server. This prompts

some developers to commit their changes each end of the day, whether it makes sense

or not. This is also caused by the need to show your daily progression because some

companies look at the number of lines of code produced to measure productivity. This is

a very counterintuitive way to work as it creates many commits that are trying to resolve

the same problem. It will also lead to confusing commit messages that are less and less

clear as the time goes by. Avoid this at all cost. You should commit when the work is

ready, not because you have to. If you need to commit because you are tasked to work

on something else, you will have the occasion to do so with the help of concepts like

branching or stashing. You will learn those after a few chapters.

Another abused feature of Git is the amend command. Avoid amending commits

to introduce big changes to it. Amending should only be used to correct typos and add

forgotten files or very small changes. If the changes are so big that you feel the need to

update the commit message, just do another commit. But doesn’t that leave my mistakes

in the codebase? Yes, but Git is there to track the versions and show what has changed.

You will need to keep track of your errors too, as they’re easy to forget. Don’t be ashamed

of your mistakes. Trying to erase them will help no one, and it will save you lots of time

when confronted with the same problem again.

This last common mistake has already been talked about in this book and in

countless movies: never try to change history. It is very tempting to go back in the

previous versions and change things. This is a very bad idea and one of the most

dangerous things you can do. Your coworkers will hate you if you do this and you will

probably mess up the entire repository. The correct way to change something is to make

a new commit. The past is the past. Let it go.

Chapter 6 Git Best praCtiCes

84

Note Later in this book, you will be taught how to go back in time and change
history. i trust you to never do this.

 How Git works (again)
I know, I know. We’ve been through this already. But I want to make sure that you are

completely comfortable with this before we move on to the second part of this book.

Remember the three states of Git? They are also referred at as the Three Trees (in

fact it is the official appellation in the docs). Let’s review them once again. Figure 6-1 will

help you quickly identify the trees.

Figure 6-1. The relationship between the three states of Git

As you can see in Figure 6-1, there’s nothing new here, just a reminder. To track

changes in a project, you need to take a snapshot of the entirety of it. Git doesn’t track

changes; it tracks versions.

You will only interact with the Working Directory because that’s where your files can

be freely edited. There is nothing in particular to say about it: it’s just the current state of

your files.

The Staging Area is where you put your files when you are ready to take a snapshot

of your project. Any changed files that haven’t been put on the Staging Area (or Staging

Index) will not be part of the snapshot. The changes will still be available on the Working

Chapter 6 Git Best praCtiCes

85

Directory, though. So, it’s necessary to check the state of the Working Directory before

and after adding files to the Staging Index to make sure everything is okay.

The Repository is the database of the Git architecture. You will find there all your

commits and history log. You can find it in the “.git” folder (which you should never

touch, unless to adjust configs). The act of committing takes everything in the Staging

Area and takes a snapshot of it. That’s why we say “commit a project,” not “commit a file”

or “commit changes.” Unchanged files that have been committed in the past are already

in the Staging Area. That’s why you don’t have to stage everything, just the edited files.

Remember to stage new or deleted files too!

Lastly, checking out brings back the state of a project to a previous one. The Working

Directory will change to reflect the changes, so make sure to not have any uncommitted

files lying around.

So the basic steps when using Git are

• Make changes (in the Working Directory)

• Stage every changed file (in the Staging Index)

• Commit the project (in the Repository)

It’s that simple but please make sure to understand the relationship between those

states before proceeding to the next chapter. Every section after this one assumes that

you are familiar with those.

But how do the commits look inside the Repository? It’s simple: they look like linked

lists. A commit contains many information: the contents and the metadata. The contents

are just the project files (changed files and references to unchanged files). The metadata

contains other data that are also very important: date of commit, committer identity,

and Git messages. Another metadata present in the commit is the parent pointer or

reference. It is just the name of the previous commit; and if it’s empty, it means that

the commit is the first one. So, each commit is linked to the next with a parent-child

relationship.

Caution since the name of a commit is obtained by hashing its contents and
metadata, changing one of them will result in a change of name. and if the name
changes, the next commit will point to nothing as a parent as it has the parent
reference in its metadata. that’s why it’s very dangerous to change history. Never
do it.

Chapter 6 Git Best praCtiCes

86

 Summary
This has been a chapter full of concepts and terminologies. It’s not as technical as the

others but it’s essential to your success with Git. You should now know when is the

correct time to commit and how to write a useful commit message. Remember: your

goal is to make it easier to follow the project changes. The commit message should be

clear enough to answer the question: what does the commit bring? Don’t forget that the

history log may also be read by a non-developer team member.

The main thing to remember is that commits are the brick and mortar of your

project, so, each one must be stable and independent. Your commit message should

always explain the reason why a commit exist and not what was done.

This chapter also has many tips on the dos and don’ts of Git. Try to remember those

as it will save you countless hours of debugging.

This also concludes the first part of this book. We are going to learn about a very

useful tool: GitHub. We can at least share and track our project. You might wonder about

the Git features that I promised you earlier. Don’t worry; they will come later after this

part. I know you are excited to get started so let’s go!

Chapter 6 Git Best praCtiCes

87
© Mariot Tsitoara 2020
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/978-1-4842-5313-7_7

CHAPTER 7

Remote Git
Congratulations on completing the first part of this book! Now, the fun begins. The first

part taught you the basic features of Git. You should be comfortable at making change

and tracking them with Git. Writing meaningful commit messages is a little bit hard,

but you will get better with each commit if you follow the last chapter’s advices. You

should also be able to peek at a previous version and view the history logs; those are very

important features needed for all further chapters.

You are now ready to tackle a brand-new challenge: leave your local repository and

play with remote repositories. In this chapter, you will learn why it is important to work

on remote and, most importantly, how does it work. You will also be introduced to

typical teamworking workflow and how to correctly use remote repositories. Since the

concept of remote Git is a little bit challenging, you will be presented to an easy tool that

will help you greatly along the way (hint: it’s in the name of this book). Let’s go online!

 Why work on remote
Since the beginning of this book, we’ve only worked alone on our local repository. But Git

is a great teamworking tool; it would be a shame to use it only on a local repository. We

are going to see in this section what is remote Git and why would anyone want to use it.

In the beginning of this book, I said that Git was a distributed Version Control

System. That means that the repositories are not stored in a single server, but in many

local repositories. Each client has its own local repository with their own commits and

history. Those commits can be freely exchanged, and all files are always ready to be

edited at any time. That’s how Git manages to support teamworking.

Since teamworking is based on commit exchange, a way to ensure that all commits

must be available at all time must be found. It will be very inconvenient to wait for your

coworkers to arrive at work and start up their computers before having access to their

commits. The obvious solution is to have a server host the repository and everyone just

push and pull the commits from it. But isn’t that dangerously close to a central VCS

88

workflow? Not at all (well, a little bit). As we previously discussed, distributed VCSs were

created to avoid the problems caused by having a central repository. Each client has

their own repository and they can work on it at any desired time; almost all Git actions

are done locally. A remote server is just designated as a client that has a repository where

everyone pushes their commits. That way, all the changes are available to everyone at

any time. This way of working is just used to facilitate the commit exchange; it is not built

into Git. For Git, all repositories are created equal. Developers just decided that some

repositories are more equal than others.

Note It is possible to share commits without the need of an intermediate server.
But it is such a bad idea that we won’t even teach it in this book.

Even if you work alone, it is still a good idea to have remote repository in addition

to your local one. That way, you have a backup of your project with all its history in a

safe location. You can also access your project anytime, provided that you have network

access to the server holding the repository.

Caution As we said in the last chapter, just because Git can be used as a backup
system doesn’t make it one. Using it for this sole purpose is not a good idea.

So, are you interested in that remote repository yet? Of course you are, it’s amazing!

Let’s see how it all works.

 How does it work
Using a remote server is just having a computer holding a copy of your project and its

history. You don’t have to push all your commits into it, you just push the commits you

want to share. Your coworkers then pull the commits that interest them and apply them

to their own repositories. And that’s basically it! You work with a remote server to copy

repositories and to push and pull changes. Let’s see in detail how it all works.

To set up a remote repository, you will first need a server capable of running the

Git software. Any computer worth its salt can run Git as it is a very small software. You

won’t also need a lot of firepower to run it properly. Even a very small computer like the

Raspberry Pi is more than enough for Git.

ChApter 7 remote GIt

89

Now that you have the server, you have to find a way to communicate with it. A

network access to the server is necessary so that multiple clients can push and pull

to and from the same repository. This communication with the server should be very

secured. It would be extremely disappointing if anyone with an access to the server

could read and edit the repository. To be able to interact with the repository, the users

must authenticate themselves with each Git operation. A login/password HTTPS type of

authentication can be used, but since the authentication must precede each operation, it

would get tiring very fast. A solution to this is to use SSH authentication. The principle of

SSH authentication is simple: only the clients that have been predetermined can access

the repository.

And that’s basically it! Setting up a remote Git server is a very easy task. Maintaining

and securing it, on the other hand…

Note Just like earlier, Git doesn’t make any difference between “server” and
“client.” they are just social constructs enforced by the developers.

Using your own server to host your Git projects is a good idea if you work alone or

want to keep them private. However, it becomes a pain when you work with a team. Each

team member must have access to the Git server via a network, so you need to set up a

local network if your team is the same working space. The server should also run 24/7 so

that there is no delay in Git operations.

What happens if some of your coworkers are in remote or in a different working

space? Well, you need to hook your server up to the Internet. Thus, you will also need to

ramp up your security game. The more coworker you will have, the more authentication

exception you will have to manage.

Another problem of using your own Git server is that you will need to deal with

permissions. As seen in Chapter 1, not all developers should have writing access to

the repository. Junior members, for example, need their commits reviewed by senior

members before pushing to the repository. Given them direct access to the project is a

bad idea (due to their insatiable need to change history).

Those are the problems that come with maintaining your own Git server. If only there

was a tool that we could use that takes care of those for us…

ChApter 7 remote GIt

90

 The easy way
Guess what? There is a tool that takes care of all those things for us! And its name is

GitHub! GitHub is the tool of choice when dealing with remote repositories; you can

think of GitHub as a code hosting server for projects using Git. It works just like your own

Git server but with less headaches.

It was created in 2008 to host Git projects and is now a subsidiary of Microsoft, which

has been investing a lot in Open Source Communities. Figure 7-1 shows their homepage

at github.com.

Now let’s talk about the numbers. GitHub houses more than 100 million repositories

built by more than 36 million users. As you can see in Figure 7-2, they are very proud of

those numbers.

Figure 7-1. GitHub homepage

ChApter 7 remote GIt

91

GitHub covers nearly every need of developers, be it Open Source developers that

want to share their software or professional teams that want to work in private without

the hassle of using their own server.

Almost like a social media, GitHub also provides a space for developers to build,

share, and document their projects. No need for external tools or web site anymore.

GitHub is also a very important tool for Open Source projects, because it is designed to

facilitate developer relations and code release. User can review and propose change to

each other’s projects. You can even follow and contribute to your favorite repositories!

And it’s not limited to Open Source projects! Companies and developers can also

create private repositories, which are only accessible by them. They benefit from the

usual features of Git, but also so much more. That’s why GitHub is so popular: there is

something for everyone!

There are also many software companies that offer services very similar to GitHub,

and the most popular are GitLab and BitBucket.

GitLab is very similar to GitHub in most of its features and comes in two editions:

Community and Enterprise. GitLab Community Edition is Open Source and so similar to

GitHub that you can follow almost the entirety of this book without any problem. GitLab

Figure 7-2. The users of GitHub

ChApter 7 remote GIt

92

is also highly regarded in DevOps circles, so if you are interested in that career path, you

should definitely check it out.

Originally created to host Mercurial projects, BitBucket has since 2011 added a

support for Git projects. Developed by Atlassian, its business model is very similar to Git

and it offers the same enterprise benefits.

Using a local server has its pros and cons; but the number of cons is so much higher

that we are going to choose the easy way in this book. However, you are expected to at

least know how a remote repository works and why is it needed. If you still want to use

your own server, there is a guide on how to do that in one of the annexes of this book.

Have fun ☺

 Summary
This chapter was just a very simple presentation of remote repositories. Working locally

is fun but teamwork requires sharing your carefully crafted commits. You can host your

Git repositories on remote servers of your choice, but the easiest way is to use a service

like GitHub that specializes in code hosting.

But GitHub does so much more than all that! In the next chapter, we will discuss

in details what are its big features and how can we take advantage of them. We are going

to learn about bug tracking, access control, feature requests, and so much more. Let’s

move on!

ChApter 7 remote GIt

PART II

Project Management
with GitHub

95
© Mariot Tsitoara 2020
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/978-1-4842-5313-7_8

CHAPTER 8

GitHub Primer
In the last chapter, we did an initial discovery of remote repositories and why they are

important. You should have a basic understanding of how they work too and, most

importantly, what are the benefits of using one. Now, we are going to talk about the most

famous of code hosting platforms: GitHub.

First, we are going to present a short history of GitHub, just to know it better. Then,

we will talk about the kind of people who use GitHub and what they are using it for.

 GitHub overview
Slapping a definition of GitHub is really difficult, because it does so many things at the

same time. So, I’ll use its own words: “GitHub is a development platform inspired by the

way you work. From Open Source to business, you can host and review code, manage

projects, and build software alongside 36 million developers.”

GitHub is thus not only a code hosting platform but a development platform. What

does that mean? It means that you don’t just use GitHub to store your code; you use it

to plan and track its evolution. We’ll see all its features on the next section, but the main

thing to remember is that GitHub is there to help you build and release your project.

If you only need one reason to use GitHub, it’s the development workflow it offers.

Long gone are the days when the project manager wrote all the pending tasks on a

whiteboard and team members sent emails to each other to keep track of whom were

doing what. No need for long chains of back and forth emails to check a task’s progress

either. All of that is managed by GitHub.

96

 GitHub and Open Source
GitHub has always been a close ally of Open Source projects; in fact, GitHub is home to

the largest Open Source community in the world. Since developers need a convenient

place to build and share their projects, GitHub is an obvious choice. That way, all of

the decisions and discussions concerning the projects can be consulted and joined by

anyone; and that is the beauty of Open Source.

With GitHub, the best thing you can do to an Open Source project is now easier

than ever: contributing. When you spot a project that you like, you can follow it like on

social media and see its progress. If you want to work on a new feature or fix a bug, you

just have to make a clone of the project and work on it. That process is called “Forking,”

and it’s the backbone of Open Source projects. When you’ve made all the changes to

your copy of the project, you can submit a Pull Request (PR) to the maintainer of the

project. That means that you are requesting that the changes that you made be pulled

and merged into the project. Other contributors will then review your changes and

may request some additional changes. Instead of communicating by email or instant

messaging, all of this is done on GitHub. After all the parties are in agreement about the

changes, the Pull Request is accepted and your changes are now part of the project!

Of course, Open Source projects are more than code; they need docs, translators,

community managers, maintainers, and so much more. You can contribute to projects

by writing documentations and providing translations or even reviewing the changes

that other contributors made. Projects also need testers and people that can provide

insights about the final products. They are projects that have millions of contributors,

so community managers are needed. They are responsible for the wellbeing of the

community and are expected to enforce the internal code of conduct of the community.

Some contributors are tasked with welcoming and tutoring beginners, which is difficult

but very necessary for any project.

GitHub was chosen by millions of Open Source projects because the workflow from

idea to release is so easy and accessible. The concept of forking a project to contribute to

it is the main driving force of any Open Source project. And if you like a project but don’t

like the direction it’s going; you can fork it and start your own flavor of the project. You

will then be the maintainer of the new project, and others can submit Pull Requests to

you if they want to contribute. Thus, anyone is happy!

As previously established, Open Source projects need documentation and tutorials

for beginners. For small projects, a text file (called README by convention) is enough.

The README file should present the project and convey which problems does it solve.

Chapter 8 Github primer

97

It should also tell users how to install and use it and also how to contribute to it. You can

check Figure 8-1 for an example of a README file (that you can also check on https://

github.com/git/git).

Figure 8-1. The README file of Git

Chapter 8 Github primer

https://github.com/git/git
https://github.com/git/git

98

As you can see in Figure 8-1, README files can have basic text formatting and links.

They can also include images and code examples.

Big projects need more than README files because they need to be properly

presented and documented. GitHub projects have a section called “wiki” specifically

tailored for those needs. Just like all wikis (it was modeled from Wikipedia), GitHub

wikis are there to help newcomers understand how the project works. Many wikis also

have a section called Frequently Asked Questions where the most common user queries

are answered. Generally, wikis are used by projects where the documentation and the

tutorials are too lengthy to fit in a README file. You can see in Figure 8-2 an example of

a wiki page that you can also find at https://github.com/Dash-Industry-Forum/dash.

js/wiki; notice the sidebar where all the links are presented.

Figure 8-2. A wiki providing documentation

Chapter 8 Github primer

https://github.com/Dash-Industry-Forum/dash.js/wiki
https://github.com/Dash-Industry-Forum/dash.js/wiki

99

Since documentations are very important in Open Source projects, it is many

contributors’ job to write and keep it updated. Remember that wikis are also Git

repositories, so the changes made to it are also tracked just like any repository. This is

done to separate the development workflow from the documentation workflow.

And as a cherry on the top, README files and wikis are written in a Markup language

called Markdown. It’s a very simple language that can render simple formatting and

linking. You can see an example of it in Figure 8-3. But you can also choose to write

everything in HTML than convert it to Markdown. And you will also find a Markdown

cheat sheet in the Appendix of this book!

Figure 8-3. Markdown example

Chapter 8 Github primer

100

One little thing that Open Source projects also need to prosper: marketing. Yes,

README files and wikis are great resources for developers, but end users might not find

them too helpful. That’s why many projects have a web site that is dedicated to attract

users to their product. Web sites are also a good way to make a name for themselves and

put themselves out there. If a project doesn’t have a web presence or is not referenced

by search engines, it will have little chance of being discovered by end users. All of

that being said, maintaining and hosting a web site is not an easy task; it can even be

expensive money-wise. And many Open Source projects don’t have the kind of resources

that are necessary for a good marketing campaign; they mostly rely on search engine

hits and word-of-mouths. That’s why GitHub Pages exists. GitHub Pages is just a web

site hosted directly on your repository; you can use it to present your product, provide

tutorials, or anything you want, really. It gets rid of the hassle of creating a web site

and getting it hosted. But doesn’t that interfere with code? Not at all, like wikis, GitHub

pages live in other parts of the repository; so they can have different contributors. You

can check Figure 8-4 for an example of a GitHub page hosted on https://scd-aix-

marseille-universite.github.io/latexamu/. As you can see, it is just a simple web

site but hosted directly on GitHub. And it’s not limited to simple presentation web sites;

you can build blogs and similar web sites too. You will see in the Appendix how to build a

GitHub page. ☺

Chapter 8 Github primer

https://scd-aix-marseille-universite.github.io/latexamu/
https://scd-aix-marseille-universite.github.io/latexamu/

101

As you can see, GitHub has a lot to offer to the Open Source community. And all of

that is free of charge! But now, let’s see what GitHub has to offer you, personally.

 Personal use
Yes, Open Source is great, but what is it’s not you jam? Or when you have a project that

you want to keep to yourself? GitHub has you covered as well!

You don’t have to make all your GitHub repositories public; there is also an option

to make them private. That way, only you and a few collaborators (that you choose) can

have access to it. You can create an unlimited number of public and private repositories

on GitHub; the only limit is your creativity and time. There is, however, a limit of the

number of contributors you can have on private repositories: 3. If you want to work with

more contributors, you can sign up for GitHub Pro, which is a paid plan. But for almost

everybody, a Free plan is more than enough.

Figure 8-4. A GitHub page example

Chapter 8 Github primer

102

Having a personal GitHub account to showcase your work is also a good way to

market yourself. That way, people can check the Open Source or personal projects you

contribute to and even check your code. Many developers also use GitHub Pages to

render their resumé or showcase their portfolio. You can check Figure 8-5 for an example

of that.

And since there are 36 million developers on GitHub, you might want to connect

with some of them. One way to connect is to follow a particular project. When the

project moves along, you will receive updates and can check out the changes. Note that

you will automatically follow a repository you contribute to. Another way to show your

appreciation for a project is also to “star” it. It’s akin to liking a content on social media.

Figure 8-5. A random person’s GitHub page

Chapter 8 Github primer

103

Hence, the more stars a repository has, the more users are happy with it. GitHub also

offers a News Feed that are news and notifications from specific projects. Those projects

are chosen because you contribute to them or “starred” them. They are also tailored by

analyzing your most used language or tools. You can check Figure 8-6 for an example of

it. It’s a good way to have a clear vision of what happen around you.

Figure 8-6. GitHub Explore

Figure 8-7. My contribution history in 2018

Before we go to the next section, there is a cool thing that you can check out with

GitHub: your contribution activity. Every commit you push on GitHub is registered as

a contribution, even to your personal or private repositories if you enable the option.

Those activities are rendered in a nice illustration like the one shown in Figure 8-7. They

show your contributions throughout the year and indicate your achievements to your

profile’s visitors.

Chapter 8 Github primer

104

 GitHub for businesses
GitHub is not just for personal projects or Open Source communities; businesses have

their place there too. Many businesses now invest in Open Source for some of their

products, and which better place to find quality developers than GitHub?

There is an Enterprise plan in GitHub that incorporates all the benefits of a paid

plan, but with many additional features. Those features range from the choice of hosting,

to security, to online support. All of those features may be very attractive to businesses,

but for us, a simple Free plan is enough for now.

 Summary
This chapter presented the users of GitHub and some small features. You should now

have some ideas about what are you going to use it with. In the next chapter, GitHub’s

main features will be presented along with some tips on how to use it to work with

teammates. We’ll talk about Project Management, Code Reviews, and so much more.

And to finish in beauty, we will quick start with GitHub with our first repositories! You’ll

be back in action in the next chapter, so make sure to review the previous exercises to

stay sharp. Let’s begin!

Chapter 8 Github primer

105
© Mariot Tsitoara 2020
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/978-1-4842-5313-7_9

CHAPTER 9

Quick Start with GitHub
So far, we only talked about what is GitHub and who needs it. Now, we are going to

see what it can do exactly and what its main features are. The most important features

of GitHub are its Project Management tools; combined with the right development

workflow, it is a sure way to get a project moving.

For this section of the book, nothing better than good old-fashioned exercises! I

could tell you all the advantages of GitHub, but you’ll understand better if you are doing

the exploration yourself. Let’s begin by creating a GitHub account and starting a project.

 Project management
The ability to manage a project while following a well-established path is one of the most

admired features of GitHub. You are going to follow along with me in this section. It’s

very important that you do so because you’ll have a better understanding of the features.

Since we are going to manage our project with Git and GitHub, our very first step is

to create an account. It’s very straightforward, and you don’t need any more information

more than your name and email just like in Figure 9-1.

106

After signing up, you’ll receive a confirmation link in your email client and following

the provided link will conclude the inscription. You will then arrive at the main GitHub

page which should look like in Figure 9-2.

Figure 9-1. GitHub signup page

Figure 9-2. GitHub homepage

Chapter 9 QuiCk Start with Github

107

You GitHub homepage is pretty empty but we’re working on filling it with cool

projects. At the right side of the page, you’ll see some trending repositories or news story;

but we won’t go there yet.

As you can see in Figure 9-2, there are three links that you can follow to create a new

repository: one on the left side, one in the middle, and the last one in the navigation bar.

Click one of them so we can create our repository.

The repository creation form is also very simple, as you can see in Figure 9-3. You

only need to fill out the form with a name and a short description of the project. That

description is optional, but you should try to make it as simple as possible so that users

who visit your repository know what’s up.

Figure 9-3. Creation of a new repository

Chapter 9 QuiCk Start with Github

108

You can choose to make the repository private, if you like; nobody but you will have

access to it. A public repository doesn’t mean that anyone can edit it; it just means that

anyone can read it and logged in users can propose changes to it. You will still be the

maintainer of the project and the owner of the repository.

Then, you have the choice to initialize the repository with a README file. Ignore

this for now because we are aiming to create a repository from scratch; and we will add

README, .gitignore, and license files later.

After all is done, click the Submit button to create your first GitHub repository! It’s

that simple! You will then be redirected to your project page, which is a unique link to

your repository. The link looks like this: https://github.com/your_username/your_

repository; for example, the new repository I created is accessible through the following

link: https://github.com/mtsitoara/todo-list. Thus, you can’t create two repositories

with the same name. Your project page should be similar to the one shown in Figure 9-4.

Figure 9-4. Your brand-new repository

Chapter 9 QuiCk Start with Github

https://github.com/your_username/your_repository
https://github.com/your_username/your_repository
https://github.com/mtsitoara/todo-list

109

As you can see in Figure 9-4, there are some instructions on how to get started

whether you want to create a new repository or push an existing one. Since we are

building our repository from scratch, we will go with the first option. The second option

would have worked for us too because we already have a local repository, but we are

going to ignore that from now.

So, we created our first repository and are ready to push our project on it. But let’s

look into the magic box and see what exactly has just happened.

 How remote repositories work
Remember Chapter 7 about remote Git and how we decided to use GitHub as a remote

repository store? This section is a logical extension of that chapter because we are going

to learn how remote repositories managed with GitHub works.

When we created our repository using the GitHub web site, we were giving

instructions to GitHub servers and asked them to initialize an empty repository. And if

you remember Chapter 2, initializing a repository is very simple: go to any directory and

execute git init. That’s exactly what happened here, except not on your computer but to a

server hosted by GitHub.

So, it’s as if we executed the following commands on a faraway server which has git

installed

$ mkdir todo-list

$ cd todo-list

$ git init

It’s the same commands that we will use to create our local repository. So now, there

is a remote repository in GitHub’s servers that we will use to share our project.

Remote repositories are used so you don’t have to use your own computer to share

your project. In the case of GitHub, the remote repositories are accessible by anyone but

only the owner can edit them. We will discuss teamwork in a later section.

The main takeaway is that a remote repository is where you can publish your project

to make it available to everyone. And anyone can clone your repository, so they can

follow your advancements to get the latest changes.

Publishing your local repository to a remote one is called “pushing,” and getting the

latest commits from a remote repository to a local one is called “pulling.” Push and pull

are maybe the most used commands you’ll use in Git.

Chapter 9 QuiCk Start with Github

110

But how can I tell GitHub which remote repository I want to be linked with my local

one? That’s where the unique link to your repository is needed. You’ll use the link to

push your local changes or pull the commits you don’t already have.

In conclusion, GitHub created an empty remote repository which can only be

modified by you but can be seen by everyone. What we need to do now is create a local

repository and link it to the remote one.

 Linking repositories
Now that GitHub has created the remote repository for us, it’s time to create our own

local repository and link it to the remote one.

As we’ve done in the previous chapters, we’re going to create a repository with the

git init command. The repository names can differ between local and remote, but it

would be a good idea to use a unique name so you don’t get confused. For this particular

project, the commands will be

$ mkdir todo-list

$ cd todo-list

$ git init

Note if you prefer to work with the repository that you created earlier in this
chapter instead of a new one, you can just skip the initialization part and go
straight to linking.

Nothing new here; and you should get the same result as shown in Figure 9-5.

Chapter 9 QuiCk Start with Github

111

Now that we have our local repository, it’s time to link it to the remote! To list, add, or

remove remotes, we will use the git remote command. For example, let’s link our current

remotes using this command:

$ git remote

You shouldn’t get any result because it’s a brand-new repository and we haven’t

linked any remote to it. Let’s add one now.

Note if you see remotes in your results, you can remove them by using git
remote rm [remote_name]. anyway, you shouldn’t see any remote if it’s a new
repository.

You will need the unique link to your repository to be able to link a local repository

to it; so, grab yours from the previous section. Mine is https://github.com/mtsitoara/

todo- list.git. Don’t forget the .git at the end!

You will also need to create a name for your remote repository. That way, you can

have multiple remotes within a single project. It may be necessary in the case where the

Figure 9-5. Initialization of a Git repository

Chapter 9 QuiCk Start with Github

https://github.com/mtsitoara/todo-list.git
https://github.com/mtsitoara/todo-list.git

112

test and production remotes are different for each other. The default name is “origin” per

convention. Although you can choose any name, it is recommended to use origin as the

name of the remote where teammates share their work.

The command to add a link to a remote is simple. It’s

git remote add [name] [link]

So, to add a link to the newly created repository, you’ll have to execute this

command:

$ git remote add origin https://github.com/mtsitoara/todo-list.git

That’s it! You can check if the remote has been added by executing git remote or git

remote -v to get more information. You should get a result similar to the screen shown in

Figure 9-6.

Figure 9-6. Adding a new remote

And that’s it! Adding a new remote is a simple, straightforward task. Now that we got

that cleared, let’s push the project to GitHub!

Chapter 9 QuiCk Start with Github

113

 Pushing to remote repositories
We finally got our local and remote repositories linked. It’s time to push our project to

GitHub so we can share our work.

Pushing commits to a remote repository is very simple; but first, let’s create some

commits to push. In your working directory, create a file called README.md and put in

the description of your project in Markdown. For example, here is my README.md file:

TODO list

A simple app to manage your daily tasks

Features

* List of daily tasks

Now, let’s add the newly created file to the staging area by using git add.

$ git add README.md

Now is the time to commit our project with git commit. As commit message, many

developers choose “Initial commit” when it’s the first. It’s not a rule and you can change

it if you want to.

$ git commit

Since we’ve done these many times already, you should be comfortable with staging

and committing by now. After the commit, you should have a result similar to Figure 9-7.

Chapter 9 QuiCk Start with Github

114

So, we have our first commit! Now, we can push those changes to the remote

repository. The command to push changes to remote is simple; you just need the name

of the remote repository and the branch to be pushed. Since we haven’t created any

branch yet (we’ll learn about branches in a later section), our only branch is called

“master.” The git push command is

git push <remote_name> <branch_name>

So, in our case, the command will be

$ git push origin master

With a little bit of luck, everything goes well; but it’s not always the case. If you use

a password manager or used different configs (name and email) from the ones you

provided to GitHub, you’ll get an authentication problem. For example, I am denied

access to my repository because I used a password manager and it tried to log me in with

my old credentials. You can check an example of authentication error in Figure 9-8.

Figure 9-7. Creating, staging of a new file

Chapter 9 QuiCk Start with Github

115

To resolve these kinds of problems, we have to configure Git again, with the correct

information. You can see in Figure 9-9 that I changed my email in the global configs, that

is, on every repository on my computer.

Figure 9-8. Authentication error

Figure 9-9. Reconfiguration of Git

Chapter 9 QuiCk Start with Github

116

Now, we have to make sure to remove any link to a password manager in this

repository. For my case, I use credential helpers (password managers) in other

repositories on this computer; so I will not set a global config but a local one.

$ git config --local credential.helper ""

This should resolve our problem and we can resume our push. After you execute the

git push command, you will be asked for your username and password. Then, you’ll get a

result similar to Figure 9-10.

Tip Since we are using httpS to push and pull changes, we will need to provide
our username and password each time. it gets tiring real fast, so if you want to use
a password manager or stop using passwords altogether, check the lessons in the
appendix of this book.

Now, our project is visible on GitHub by everyone! Let’s check it out on its project page.

If we refresh the project page, we should get a page like the one shown in Figure 9- 11.

Figure 9-10. Successful git push

Chapter 9 QuiCk Start with Github

117

As you can see in Figure 9-11, the repository page now displays many intel:

• The number of commits

• The last commit name and its committer

• A list of all project files

• A preview of README.md

What we just did is the basis of code sharing: pushing changes. You will be using this

command over and over again when working with remote repositories. It is a very simple

feature, but it is imperative that you understand completely what it does. Pushing just

means to copy all your current commits (in a specific branch) to a remote branch in a

remote repository. All history logs are also copied.

Before you go to the next chapter, ask yourself these questions: where are the remote

repositories stored? Who has a read-only access to them? Who can edit them? Also

make sure to understand the basis of remote and local repositories linking and why is it

necessary.

Figure 9-11. The updated project page

Chapter 9 QuiCk Start with Github

118

 Summary
In this chapter, we had our very first interaction with remote Git repositories. As we’ve

already established, they are just normal repositories that are stored in a remote

server instead of your local machine. We saw how to create and link local and remote

repositories, a feature that we will use a lot of times. And the main command we learned

was git push, which copies the state of your local repository to a distant one.

In the next chapter, we are going to dive deep into Project Management and see what

other features GitHub has to offer. We will also learn to pull changes from the remote

repository as well as resolve push and pull issues. Let’s go!

Chapter 9 QuiCk Start with Github

119
© Mariot Tsitoara 2020
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/978-1-4842-5313-7_10

CHAPTER 10

Beginning Project
Management: Issues
Last chapter, we did a quick peek at using GitHub to host and share our code. But that

doesn’t even begin to describe what GitHub can do for you; there are so many features

that can help your project mature. In this chapter, we are going to begin to learn about

how to manage projects with GitHub. Thus, we are going to begin with the basic form of

GitHub project management: Issues.

 Overview on issues
To successfully manage a project, any project, you have to plan in advance; just reacting

to new inputs and generally do whatever you feel like doing is a perfect recipe for disaster.

A GitHub project is no different; you have to keep track of your actions before even

thinking about doing them. That’s why GitHub has an awesome feature called Issues. We

are going to discuss them in this section and learn how to manage them properly.

During all the chapters in this book, you are both the developer and the project

manager; but in a big project, you might not be included in the planning phases. But for

now, you are temporarily promoted to project manager and lead developer (in addition

to being the only developer), congratulations! One of the duties of the project manager

is to plan in advance all the tasks that need to be done. The plans don’t need to be very

precise yet (in the real world they never are), but it is necessary to have a list of all the

tasks that need to be done. Those tasks can be either new features, bugfixing, or just a

team discussion. In GitHub, those tasks are called Issues.

An issue is used to track new feature development, bugfixing, or new ideas that a

team member suggested. They are the brick and mortar of GitHub project management;

in theory, no action should be done with an issue being attached to it. The aim of each

action you take should be the resolving of an issue.

120

Long gone are the days where planning the next steps was done by boring team

meetings; now you know exactly what will be your next steps and most importantly what

is everybody else doing. Suggesting new ideas to your coworkers is easier than ever; just

open an issue to discuss it with your team without using another app of email client. The

biggest plus for using issues is that the history is kept forever—each feature, each bug,

and each discussion.

 Creating an Issue
The best way to learn about issues is to directly interact with them; so, let’s go back to our

GitHub project page and deal with them.

When you open your GitHub project page, you directly arrive on the “Code” part of

the project. It is the part where your project files are shown. For now, your project page

should look like mine, shown in Figure 10-1.

Figure 10-1. Project page open on the “code” section

Chapter 10 Beginning projeCt ManageMent: issues

121

Just below the project name, there are many tabs that show all the sections of your

project. You will mostly work on “Code,” “Issues,” “Pull Requests,” and “Projects.” But for

now, let’s focus on Issues. Go ahead and click it to begin. You should arrive at an empty

section like the one shown in Figure 10-2 because your project has no issues yet.

There are many calls to action there about creating a new issue. Click one of them,

and you will see a form similar to mine as shown in Figure 10-3.

Figure 10-2. The Issues section

Chapter 10 Beginning projeCt ManageMent: issues

122

The form is pretty simple; and only the title is mandatory. There is also a comment

section below the title if you need more room to explain. Let’s go ahead and fill our first

issue with the basic stuff; don’t change the values on the right side just yet.

For our first issue, we are starting a discussion about the technology we will use for

our product. Issues aren’t needed for features and bug tracking only; they are also used

to start a discussion and share ideas. Go ahead and fill your first issue like mine as shown

in Figure 10-4; I titled mine “Choose the technologies to be used for the app” because it’s

the first step for any project.

Figure 10-3. New issue form

Chapter 10 Beginning projeCt ManageMent: issues

123

Now that we filled out the basic info about the issue, submit it. You will then be redirected

to the detailed view of your new issue. It should be similar to my issue shown in Figure 10-5.

Figure 10-4. Our first issue

Figure 10-5. Details of an issue

Chapter 10 Beginning projeCt ManageMent: issues

124

The first thing to notice is that your issue has been given a number. Each issue has a

unique number, and those numbers are not recycled, meaning that even if you delete an

issue, its number will never be reused. This number is important, as you will see in this

section.

The details page also includes a comment section where team members can discuss

the idea. It even includes a limited number of emojis that you can use as a substitute to

commenting. For example, if you agree with someone, giving them a thumbs-up is better

than commenting or writing “me too”! It would clog the communication and stall the

conversation.

In the bottom right side of the page, you can see a subscribe button. If you choose to

subscribe to an issue, you will receive notifications about the changes done to it. You will

also receive new comments and news about milestones reached.

Since you are the only member of the team, you won’t do much discussion. Just

add a comment or a reaction image and close the issue. Closing the issue won’t delete

it; it will just mark it as completed. Deleting issues is not advised because keeping a

history of the project is needed, and issues are the best way to keep track of changes. And

remember: if your repository is public, anyone can read your comments; so please be

kind and rewind any unpleasantries that might arise.

After commenting and closing the issue, you will go back to the issue details page,

and it will look similar to mine as shown in Figure 10-6.

Chapter 10 Beginning projeCt ManageMent: issues

125

You can continue to comment on a closed issue, but it is discouraged as everyone

has considered the issue complete and moved on. An issue can also be locked and

nobody can comment on it anymore; this is considered as a last effort way to keep the

peace. We all have our opinions, and discussing them on the Internet is never easy,

especially on an open forum. But try to be professional at all times because everything

you say will be visible to anyone.

 Interacting with an issue
We’ve successfully created and closed an issue, but we haven’t been involved in them

too much. What good is an issue if it doesn’t have any impact on the project? In this

section, we will directly interact with issues on GitHub and in our code.

For the first part of this section, you will keep your Project Manager hat because we

are going to need to plan our project. Up until this moment, our TODO list app was just

multiple text files next to each other. Then we decided to use HTML5 to present them

in a better way. To code this, we need a plan of action; and it is your job as a Project

Manager to dress up this plan.

Figure 10-6. A closed issue

Chapter 10 Beginning projeCt ManageMent: issues

126

Since it’s a simple HTML5 app, we aren’t going to need a very big plan, just some

necessary bullet points. So, to create this app, we will need to

• Write the skeleton of the app with HTML5

• Add some styles to make it prettier with CSS3

• Describe the app in README.md

• Document the code

• Create a web page for the app

Those are some basic steps that we will need to do to accomplish our goal: ship a

TODO app.

Since you already know how to create issues, I will let you create an issue for each of

these bullet points. After you are done, your Issues page should look like mine as shown

in Figure 10-7.

As you can see, the tasks are shown in the order they were introduced. There’s also

no way to distinguish them except for their numbers, and it’s very easy to get lost if there

are too many issues. So, to have a clearer look at all our tasks, we are going to use Labels.

Figure 10-7. All open tasks

Chapter 10 Beginning projeCt ManageMent: issues

127

 Labels
Labels are exactly what you expect them to be: texts to help you quickly filter through

your issues. Let’s use them directly so you can get familiar with the concept.

As you can see in Figure 10-7, there is a search bar in the Issues page, and you can

use it to filter through the issues. But since we don’t have any labels yet, we can’t do

any filtering; just basic search. Click the Labels button next to the search bar to show all

the labels available. You will then see a list of the default labels that you can use; check

Figure 10-8 for an example of this.

Figure 10-8. List of the default labels

Those are the most commonly used labels in the developers’ community. But that

doesn’t mean than they are mandatory or immutable; you can change them at your

pleasure and need. Only when you are working on an Open Source project is it ill

advised to change them because most developers are so used to them.

But since it’s your personal project and you are the project manager, you can add,

edit, or remove any label you want. For example, the label “help wanted” will be useless

if you work alone in a private setting. You can also use labels to tag the severity of the

issue; many projects use labels like “urgent” or “breaking” if the issue is severe. Labels

Chapter 10 Beginning projeCt ManageMent: issues

128

can also be used to differentiate the origin of the issue if the project is big enough. A big

project can use the labels “frontend,” “backend,” or “database” to separate issues into

groups.

After you made your changes to the labels (although I recommend to only add the

new that you need and leave the default ones), get back to your issues and open the

details page. Then, apply one or more labels on each one of them by clicking the Labels

button. You can check Figure 10-9 for an example.

After you add the labels, a notification will appear on the comment section of the

Issues page; you can check Figure 10-10 for an example.

Figure 10-9. Adding a label to an issue

Chapter 10 Beginning projeCt ManageMent: issues

129

Now, go through each one of your issues and apply some labels on them. Then,

when you have finished, go back to the Issues page. It should look like mine as shown in

Figure 10-11.

Perfect! Now that we put labels on the issues, we can filter through them. For example,

to see every issue labeled “enhancement,” just click Filter (shown in Figure 10- 12), and

you will get a result similar to mine as shown in Figure 10-13.

Figure 10-10. Notification about the newly added labels

Figure 10-11. Labeled issues

Chapter 10 Beginning projeCt ManageMent: issues

130

Isn’t filtering fun?! But you know what is even more fun? Assign issue to others!

Let’s do it.

Figure 10-12. Filtering by label

Figure 10-13. Filtered issues

Chapter 10 Beginning projeCt ManageMent: issues

131

 Assignees
Now that our issues are correctly labeled, it is time to assign them to a developer. It’s

fairly an easy task and it’s not so different from labels.

You can assign an issue to up to ten members of your team. But since you’re the

only one right now, you can only assign yourself. Let’s do it! Navigate to the issues titled

“Write the skeleton of the app with HTML5” and “Add some styles to make it prettier

with CSS3” and assign them to yourself. Assigning an issue to a team member works

exactly like adding labels. You can check Figure 10-14 for an example.

Figure 10-14. Assigning an issue

After you assigned those two issues to yourself, you will get a result like mine as

shown in Figure 10-15 on your Issues page. You can now filter through your issues by

labels and assignees.

Chapter 10 Beginning projeCt ManageMent: issues

132

Now that the issues are assigned to you, take off your manager hat and put on your

developer one. It’s time to get our hands dirty!

 Linking issues with commits
As we said in the beginning of this chapter, each action you take with Git should have

the resolving of an issue as its goal. Most of the time, when using Git, you will work with

commits; so, each of these commits should be tied to an issue. In this section, we are

going to learn how to link our commits to issues.

First, let’s decide which issues we will be working on. As we saw in Figure 10-15,

there are two issues assigned to us: “Write the skeleton of the app with HTML5” and

“Add some styles to make it prettier with CSS3.” We are going to work on writing the

skeleton first because it makes so much sense to begin by that. So open up the details

page of this issue and take note of its number. As you can see in Figure 10-16, mine is

issue number 2.

Figure 10-15. A complete issues list

Chapter 10 Beginning projeCt ManageMent: issues

133

 Working on the commit
Now that we have an issue to resolve and its number, it’s time to prepare the commit.

Since we decided to use simple HTML5 for this app, we only need a single file for the

skeleton. So, create a file named index.html in your working directory and paste in this

code:

<!doctype html>

<html>

 <head>

 <meta charset="utf-8">

 <title>TODO list</title>

 </head>

 <body>

 <h1>TODO list</h1>

 <h3>Todo</h3>

Figure 10-16. Issue number 2 details page

Chapter 10 Beginning projeCt ManageMent: issues

134

 Buy a hat for the bat

 Clear the fogs for the frogs

 Bring a box to the fox

 <h3>Done</h3>

 Put the mittens on the kittens

 </body>

</html>

Now, I’ll let you stage the newly created file, but don’t commit it yet; we have to talk

about the commit message.

 Referencing an issue
We are ready to commit the project in its current state, but we have to tweak the commit

message so that the commit can be linked to an issue. The most common way to link a

commit to an issue is to mention the issue number in the commit message.

Until the point, we only used very short commit messages as we tried to keep

them under one line. But since we need room for a more elaborate way to describe our

commits, we are going to structure our commit messages this way from now on: a title,

a body, and a footer separated by a blank line. To help you understand, you can find an

illustration of it in Figure 10-17.

Chapter 10 Beginning projeCt ManageMent: issues

135

Caution Don’t forget the blank line between each part of the commit message.
they are really important.

The body and the footer are optional; only use them when necessary, especially the

body. People are lazy; they will probably only read the title and move on, so make it extra

clear even without the body.

The footer is what interests us right now; it’s the section reserved for issue trackers

like GitHub. We use the footer to make references to issues using their numbers. For

example, to make a reference to the issue we’re working on, we’re just going to put its

number in the footer preceded by “#.” When GitHub sees this, it immediately links the

commit with the issue referenced.

Note We can put the references to the issues anywhere in the commit message,
even in the title. But this practice is very ugly and should be discouraged.

Combining all of that, let’s make our commit with a proper commit message. Take

for example my commit shown in Figure 10-18.

Figure 10-17. The commit message structure

Chapter 10 Beginning projeCt ManageMent: issues

136

In my commit message, I skipped the body part because it was unnecessary. I only

needed to link this commit to issue #2 so I put that number in the footer.

Now, push it! Take a look at the previous chapter if you forgot how (hint: git push

origin master).

Now let’s go back to the details page of our issue. First thing you will notice is that a

new comment has been added to it: that’s the reference to our commit. It should look

like mine depicted in Figure 10-19.

Figure 10-18. Commit message linked to issue #2

Figure 10-19. A reference to our last commit

Chapter 10 Beginning projeCt ManageMent: issues

137

This is a very useful feature of GitHub that you will certainly use a lot: show all the

commits linked to a particular issue. That’s why no commit should be pushed without

being tied to an issue; it’s better for the management of the project.

If you click the title of the commit shown on the reference (see Figure 10-19), you

will see a familiar screen. I’ll let you discover by yourself which screen is depicted in

Figure 10-20.

That’s right! It’s the “git show” view. No need to get lost in Git commands to see what

a commit does, you can directly see it in GitHub!

Now that we successfully resolved the issue, get back to its details page and close it.

Let’s resolve the next one!

Figure 10-20. A detailed view of a commit

Chapter 10 Beginning projeCt ManageMent: issues

138

 Closing an issue using keywords
It was nice to work on an issue and close it, right? Well, there is still something even more

fun: closing an issue by using keywords in commit message!

First, we have to decide which issue to resolve. Our next issue is “Add some styles to

make it prettier with CSS3” which has the number 3. Let’s resolve it! Open index.html

and change the contents to this:

<!doctype html>

<html>

 <head>

 <meta charset="utf-8">

 <title>TODO list</title>

 <style>

 h1 {

 text-align:center;

 }

 h3 {

 text-transform: uppercase;

 }

 li {

 overflow: hidden;

 padding: 20px 0;

 border-bottom: 1px solid #eee;

 }

 </style>

 </head>

 <body>

 <h1>TODO list</h1>

 <h3>Todo</h3>

 Buy a hat for the bat

 Clear the fogs for the frogs

 Bring a box to the fox

 <h3>Done</h3>

Chapter 10 Beginning projeCt ManageMent: issues

139

 Put the mittens on the kittens

 </body>

</html>

Stage the file but don’t commit yet. The keywords to close an issue are

• close

• closes

• closed

• fix

• fixes

• fixed

• resolve

• resolves

• resolved

Using one of these words followed by an issue number will mark it as resolved and

close it. Our commit will resolve issue #3 so we will put that in the commit message

footer. Your commit message should then look like mine as shown in Figure 10-21.

Figure 10-21. Resolving an issue by commit message

Just like commit messages, the issue references should use the imperative tone; so it

is preferred to use “resolve” instead of “resolved.” Now, it’s time to push our commit and

see for ourselves!

Chapter 10 Beginning projeCt ManageMent: issues

140

Navigate to the issue you worked on (you won’t find it in the open issues, use the

filter to see the closed issues) and open the details page. You should see a new comment

on it just like mine as shown in Figure 10-22.

If you click the commit name, you will again see the “git show” view of the commit.

The little feature of GitHub is useful but be very careful when using it. Only close

an issue when you are perfectly sure that it was resolved. Closing and reopening issues

confuse people and generate a lot of notifications. And don’t close a different issue

by mistake! 83% of all workplace violence is due to Issues closing mistakes. And just

because I just invented this statistic doesn’t mean that you should take it seriously!

 Summary
Oof! That chapter was a little bit long, wasn’t it? We learned a lot about issues but, most

importantly, how to link them to commits. Always remember to put all your actions into

issues before acting on them. And don’t forget to triage them with labels and assignees.

That concludes our chapter on basic project management. You should know how to

plan your next moves in GitHub by now. But project management isn’t only planning

tasks beforehand; you should also have a clear view of what happened in the past and

which milestones were reached. Thus, we will jump into “proper” project management

with Projects; this section also includes a very short summary of most form of GitHub

workflow. Let’s go!

Figure 10-22. Issue closed by keywords

Chapter 10 Beginning projeCt ManageMent: issues

141
© Mariot Tsitoara 2020
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/978-1-4842-5313-7_11

CHAPTER 11

Diving into Project
Management: Branches
Last chapter, we discovered Issues and used them to plan our project. We also learned

how to link our commits to issues, so that we can follow each change in our project. Our

way of work was simple: choose an issue, make a commit that can resolve it, and push to

GitHub. The issue was then resolved and closed. But this way of work is not very adapted

in most real-world projects; the potential of screw-ups is too high.

What if you need more than one commit to resolve an issue? What if other team

members pushed a commit that contained changes to the same files you were working

on? How to make sure that the pushed commits really resolve the issue? All of these are

part of the reasons why making direct changes to the project is not advised, even if you

work alone.

As we said in the last chapter, closing an issue by keywords in the commit message is

cool, but you should be very careful with it. Only you have seen your work, and it might

not resolve the issue. or it might introduce new bugs in the project. That’s why it is better

for someone else to review your code before accepting the changes.

It’s that part that we are going to talk about in this chapter. First, you will be

introduced to the most common GitHub workflow (how most teams work on GitHub),

and then we are going to learn about the concept of Branches.

But before we begin this chapter, here’s a little thing that you should always

remember: “You will make mistakes. A lot of the time. So you must make sure to use as

many safeguards as possible.” Let’s go!

142

 GitHub workflow
In this section, we will talk about the most common way that developers use GitHub.

Keep in mind that each team has its own way of doing things, but each of these ways of

working is inspired by the basic workflow that we are going to present.

Remember the little fact about making mistakes? This omnipresent possibility

of mistakes is why you need to follow this GitHub workflow, so even if mistakes

happen, you isolate its repercussion in a controlled manner. Our way of work from the

previous chapter was to commit everything directly to the main project, and this is

very dangerous. The main project is most of the time the “production” line, the version

that the clients see and use. So, this version must be very clean and should be always

exploitable. If any error makes its way to the main version, the clients will experience

bugs and it will disrupt every team member.

One way to resolve this issue is to create a copy of the main project and work on this

clone. Each change you make to this copy will not affect the main project, so none of

your mistakes can impact clients. And when you (and other people) are perfectly sure

that the changes to made resolve the issue, you can reproduce those changes in the main

version.

Those copies of the main project are called Branches, and the concept of

reproducing changes into another branch is called Merging. You can make as many

branches as you like, and you can trade commits between them. When you first create

a repository, Git creates a new branch for you; it’s called “master.” Most developers put

their main or production version in master and only recreate changes there when they

are absolutely sure that it’s okay to do so.

Just like tree branches, Git branch can have many ramifications, meaning that you

can even create new branches from branches other than master, even it’s difficult to

maintain such architecture. Most of the time, you will create a branch when working on

an issue and delete it after the issue was resolved.

To put all this into perspective, we are going to learn about the default or common

GitHub workflow. As you know, everything should begin by an issue. We already covered

this last chapter so you are already familiar with this. So, we are going to talk about each

of the next steps of the workflow.

When you are going to resolve an issue by making code changes, you should first

make a copy of the current working version of the project: create a new branch.

Chapter 11 Diving into projeCt ManageMent: BranChes

143

Then, as usual, you make your changes and commit the state of the project. You can

make any number of commits as you need; it won’t affect the main branch. You can also

push your commits to GitHub so your code can be seen.

Then, you link your branch to the master one, so others can compare the changes

and review your code. This link is called a Pull Request: you are requesting that your

commits be applied to the master branch.

Other team members can then review your code and make comments about it on

GitHub. You then push more commits addressing those comments until all problems are

solved.

If every party (developers, managers, testers, or clients) agrees that your changes are

okay and resolve the issue at hand, the pull request is accepted. This means that every

commit you made on your branch will be applied to the master branch. You can then

delete the branch you created.

And that’s it! You might wonder how is it different from directly pushing in master.

It’s very different because mistakes and omissions are caught before applying the

changes to the production version; this means that the number of production bugs is

reduced to a minimum. It also makes it possible for various members of your team to

review to changes before they are applied, which is the standard way of work in most

tech companies. Bundling the changes into one pull request also solve the problem

about multiple people pushing commits solving different issues at the same time. It

keeps the history log clean.

You might be tempted to open pull requests only when you feel that you are done

with your work. Unless the work you did was very small and straightforward, don’t wait

long before opening a PR. By working a PR early in your development, you can receive

feedback before making too many changes. It is very useful for beginners especially

because following the wrong path from the start will take a long time to correct and you

would wish that you were told the correct way earlier. Opening a pull request doesn’t

mean that the work is done; it just means that you are thinking about applying commits

from a branch to another.

Note as previously established, you can create branches from any branch and
open pull requests to it. it’s not only reserved for the master.

To summarize all these steps, you can find a little illustration in Figure 11-1.

Chapter 11 Diving into projeCt ManageMent: BranChes

144

As you can see, we can create branch from any branch in our project. Git created

a branch called master for us at the initialization of the repository. We then can create

more branches (e.g. a bugfix branch or a feature branch) to introduce changes in the

master branch.

 Branches
As we said earlier, branches are the main feature behind code reviews. You have to work

on your own branch before publishing your work, so that it won’t be bothered by other

people’s changes. Put simply, a branch is just your own independent copy of the project

at a certain time. Let’s see how they work and let’s create and delete some.

The logic behind branches is simple: take the current state of the project and make a

copy of it. In this copy, you can make your changes without impacting other people. You

can use branches to have distinct channels of distributions or just to try new things with

the project.

When creating a repository, you get a branch by default: master. When working on

very small projects, this branch is enough; but most projects need more branches to

get the best results. First, they need a production branch, where clients can get the last

stable version of the software; this is the master branch. The production branch is only

updated when the project is sure to be stable as this is the release branch. Then, there is

the development branch, where all the progress is recorded and all the commits tested.

You will mostly work on the development branch as it is where most of the fun is. Finally,

Figure 11-1. Basic Git workflow

Chapter 11 Diving into projeCt ManageMent: BranChes

145

there is the short-lived patching branches which you will create to hold your commits

before merging them to the development branch. Those patching branches live and die

with a pull request; you create one when you are solving an issue and delete it afterward.

To summarize a little bit, you will (most of the time) have three sorts of branches:

• Production branch, where you will release stable versions of your

project

• Development branch, where you will test your latest version

• Patching branch, where you will work on your issues

Unless there is a VERY urgent major problem that needs solving immediately, you

will never commit directly to the production or the development branch. To update

those branches, you will use pull requests so that the changes will be reviewed and

tested. There are some companies where every developer just commits directly to the

development branch, but this is very counterintuitive because if a bug is discovered, they

won’t know which commit introduced it. Also, it forces the developer to push “one-do-it-

all” commits, which is an anti-pattern. Do-it-all commits are commits that try to resolve

many issues at the same time, for example, a commit that fixes a bug and introduces a

new feature at the same time. This practice is often caused by the laziness of developers

as they don’t want to create a new branch for another issue. This creates very bad pull

requests and makes it difficult to track the progress of the project. It also creates a big

challenge for the testers as they don’t know which version is the stable one. It’s an all-

around bad idea; don’t do it even with your small projects. It may seem tiring to create

and delete branches all the time, but it is the best workflow when working with Git.

The one thing to remember about Git branches is that they just are simple references

to commits; that’s why creating and deleting them is so fast. Remember when we talked

about how Git stores its commits in chained links? Well, a branch is just a reference to

one of those commits. A commit contains information about the author, the date, the

snapshot, and, most importantly, the name of the previous commit. The name of the

previous commit is called parent and every commit except the first one has at least a

parent. Thus, each commit is linked to the previous one so that we can recreate the

change history of the project.

For now, you only have the default branch called master and it references the last

commit of your project. To create a new commit, Git checks where is the reference and

uses the info in that commit to build the link between the new commit and the previous

referenced one. So, each time you commit, the reference moves to the new commit and

Chapter 11 Diving into projeCt ManageMent: BranChes

146

the cycle continues. Thus, a branch is just a reference to a commit that is designed to be

the parent of the next one.

But how does Git know on which branch are we one? Well, it uses another reference

called HEAD that references the current commit. If you are on a branch, HEAD

references the last commit of that branch. But if you are checking out a previous version

(like we did when we used “git checkout <commit_name>”), the HEAD references that

commit, and you are in a state called “detached HEAD.”

Caution just like human bodies, never be in a state of “detached heaD” if you
can avoid it. it is a very dangerous situation to find oneself in.

For most situation, you can think of HEAD as the reference to the current branch,

and every commit you create will use the last commit in that branch as a parent.

When you merge a branch into another, a new commit is created that has two

parents: one parent from each branch. So you can recognize the commit type by its

number of parents:

• No parents: The very first commit

• One parent: Normal commit in a branch

• Multiple parents: A commit created by the merge of branches

 Creating a branch
Now that you know a lot about branches, let’s create one! It’s very easy; you just need

to use the “git branch” command followed by the branch name. Keep in mind that the

branch name should only contain alphanumeric values and dashes or underscores; no

spaces allowed.

$ git branch <name>

For example, let’s create a development branch for our project. Let’s name it

“develop.” Here’s how to do it:

$ git branch develop

Chapter 11 Diving into projeCt ManageMent: BranChes

147

After you execute that command, you will notice that nothing has changed in your

project. That’s because creating a branch is just about creating a reference to the last

commit of the current branch and nothing else. To begin working with a branch, you

have to switch to it.

 Switching to another branch
We created our development branch and now it’s time to switch to it. But here’s the

problem: I’ve forgot the name I gave to the branch. Now, someone might suggest that

we could turn back and look at the previous section to look at the name. But I have a

better idea: list all our current branches. To do so, just execute the git branch command

without any parameters.

$ git branch

This command will give you the list branches you currently have and will put a

little star next to the one you’re currently on (the HEAD). Check out Figure 11-2 for an

example of branches list.

Figure 11-2. List of branches in our project

Chapter 11 Diving into projeCt ManageMent: BranChes

148

You will notice that we still are on the master branch because we haven’t made

anything other than creating a branch. Now let’s switch to it.

You already know the command to switch between versions. Well, we will use the

same command to navigate between branches. Simply use “git checkout” with the name

of the branch as parameter.

$ git checkout <name>

So, if we want to switch to the develop branch, we will have to execute:

$ git checkout develop

Note Like when we navigated between versions, you can’t switch branches if
you have uncommitted changed files. Commit before you move. or use a technique
called “stashing” that we will see in later chapters.

After checking out the new branch, you will get a confirmation message from Git and

you can also check the result of git status to make sure. Figure 11-3 shows the result of

those commands.

Figure 11-3. Switching branches

Chapter 11 Diving into projeCt ManageMent: BranChes

149

EXERCISE: CREATE A TESTING BRANCH

a simple exercise before we move out to the next battle. it’s very straightforward as all the

answers are in this section. the exercise is to create a branch named “testing” where we will

test our project before merging all the commits to the master branch. You have to

• go back to the master branch

• Create a new branch named “testing”

• switch to the new branch

Tip to immediately switch to a new branch after creating it, use the option “-b”
with the git checkout command. For example, “git checkout -b testing” is the same
as “git branch testing” and then “git checkout testing.”

 Deleting a branch
You had fun creating the testing branch? Good. It’s time to delete it because we already

have a testing branch: develop. That’s where we will merge our patching branches and

all the testing will be done there.

You can delete a pushed branch, meaning a branch that is present on the remote

repository, by checking “delete branch after PR merged” when creating a Pull Request.

This will delete the remote branch but your local branches will be unchanged. You will

have to delete your local branches manually.

To delete a branch, simply use the same command as to create one but with the

option “-d.”

$ git branch -d <name>

So, to delete our testing branch, we will use

$ git branch -d testing

Just like a real tree branch, you don’t cut the Git branch you are currently standing

on. Check out another branch before deleting the branch; and for this reason, you can’t

have less than one branch in a project. If you try anyway, you will get an error like the

one shown in Figure 11-4.

Chapter 11 Diving into projeCt ManageMent: BranChes

150

Thus, you have to check out the master or develop branch before deleting the testing

branch. If you did it correctly, you should get a result like mine as shown in Figure 11-5.

Figure 11-4. Deleting current branch

Figure 11-5. Deleting of a branch (we hardly knew ye)

Chapter 11 Diving into projeCt ManageMent: BranChes

151

Take note of the confirmation message, it gives you the SHA-1 name of the branch

you just deleted. Since the branch we created and deleted contained no commits, it just

referenced the last commit of the current branch. Let’s check the history log to confirm this.

Execute the git log command to get the list of the latest commits, just like in Figure 11-6.

You will see that the last commit name and the branch name is the same; this is

because we haven’t made any commit in our branch. You will also see on the history log

where the branches are originating from. In this example, the develop branch originates

from the 80f145c commit; it’s the branch’s parent.

 Merging branches
We talked a lot about merging branches in this chapter but we haven’t made a single

merge. Let’s change that.

Let’s imagine that you want to improve the README file of the project by adding a

few information. This task is already listed in our GitHub issues so no problem about that.

The next step is to create a new branch from the development branch so we can merge

them later. You have to create a new branch from the develop branch instead of the master

because we won’t touch the master branch until everything is properly tested. If everything

is clear and clean, we will merge the development branch into the master branch.

Figure 11-6. Commit name check

Chapter 11 Diving into projeCt ManageMent: BranChes

152

It’s clear then, let’s create the new branch where we will work on. Let’s name it

“improve-readme-description.” Don’t forget to checkout out the develop branch before

creating a new branch from it. We will thus have to execute

$ git checkout develop

$ git branch improve-readme-description

Now that the branch has been created, switch to it so we can begin to work. To switch

to the new branch, just use the checkout command.

$ git checkout improve-readme-description

Perfect! Now we have a branch named “improve-readme-description” that originates

from the develop branch. We like branches so much that we created a branch from a

branch!

Now let’s get to work. Open the README.md file and change its content to

TODO list

A simple app to manage your daily tasks.

It uses HTML5 and CSS3.

Features

* List of daily tasks

Now, stage the file and get ready to commit. I’ll let you choose the commit message,

but don’t forget to put a reference to the issue you are trying to resolve! The next steps

are thus

$ git add README.md

$ git commit

Nothing new here as every command is the same of any branch. The only slight

change is that the branch name is different on the commit description. You can see it on

my result shown in Figure 11-7.

Chapter 11 Diving into projeCt ManageMent: BranChes

153

After you made the commit, check the Git history to put all of we did in perspective.

Execute the git log command to see our project history.

$ git log

Tip Use the option “--oneline” when using git log to get a prettier result.

Your project history log should look like mine as shown in Figure 11-8 after you

committed.

Figure 11-7. Committing on another branch

Chapter 11 Diving into projeCt ManageMent: BranChes

154

As you can see in the figure, HEAD now points to the last commit of our new branch;

it means that every commit we will create will have that as a parent. You will also notice

that the master and develop branch didn’t change; that’s because we only worked on our

newly created branch.

Now that we are satisfied with our fix, let’s merge the branch to the develop branch

so we can test it. To merge our branch into develop, we first have to check it out. So,

navigate there by using the git checkout command.

$ git checkout develop

Now let’s try to merge the branch into the develop one. Merging just means

reproducing all the commits on one branch on another. To do so, we will use the git

merge command followed by the name of the branch be merged.

$ git merge <name>

Since we are looking to merge “improve-readme-description” into “develop,” our

command to execute on the develop branch is

$ git merge improve-readme-description

This command will recreate your commits from “improve-readme-description” into

“develop.” So, you will get a similar result as a commit confirmation. Check Figure 11-9

for an example.

Figure 11-8. History log after committing on a branch

Chapter 11 Diving into projeCt ManageMent: BranChes

155

Let’s recheck the git log to have a clearer idea of what happened. You will get a

similar result to mine after executing “git log --oneline” that is shown in Figure 11-10.

As you can see, HEAD now points to develop because it’s the checked-out branch.

You can also notice that develop and improve-readme-description now point to the

same commit; that’s because of the merge.

Congratulations on your first merge! It won’t be so easy next time (hint: merge

conflicts, they appear when the same line of code has been modified in different

commits)

Figure 11-9. Merge result

Figure 11-10. History log after merge

Chapter 11 Diving into projeCt ManageMent: BranChes

156

 Pushing a branch to remote
Branches are not only made for working locally, you can also publish them to the world

by pushing them to the remote repository. For example, let’s push our development

branch to GitHub so everyone can see our progress.

The command to pushing a branch to remote is (you guessed it!) git push, just like

what we learned in a previous chapter. The command is

$ git push <remote_name> <branch_name>

The remote name hasn’t changed; it’s still “origin.” It’s the branch name that is

different this time. Instead of master, we are going to push the develop branch. So, the

command will be

$ git push origin develop

Since you’ve already pushed to remote before, the result shown in Figure 11-11 is

familiar to you.

As you can see, there is a little difference in the result: it gave us a link to create a pull

request, that is, ask for permission to reproduce the commits on develop to master. Take

note of the link because we are going to learn about Pull Requests in the next chapter. ☺

Figure 11-11. Pushing to a remote branch

Chapter 11 Diving into projeCt ManageMent: BranChes

157

If you return to GitHub to check your project page, you will also have the call-to-

action button about creating pull requests. Ignore them for now and instead navigate

between your master branch and the develop one. You can check Figure 11-12 for an

example of a project page after a new branch has been pushed.

It is all about branches for now. You now know how to create, merge, and delete

them. And most importantly, you have a basic knowledge of the GitHub workflow: create

a branch, work on that branch, and create a pull request.

Now, you may ask yourself: “But didn’t you promise us code reviews and pull

requests? Did we even use the workflow?” You are absolutely right. We didn’t use the

workflow because we used the direct approach: directly messing with the branches.

In a real-world project, you won’t commit and push directly to the master or the

development branch like we did earlier. Instead, you will use Pull Request to merge

branches together. That way, your work can be reviewed by your coworkers before you

can merge them to the development or master branch.

Figure 11-12. Our new project page

Chapter 11 Diving into projeCt ManageMent: BranChes

158

 Summary
This chapter dealt with what makes Git a powerful tool for project management:

branches. Branches are necessary in a fast-paced development as you will probably

work on many issues at the same time. Keeping all those changes in the same place is a

recipe for disaster. For example, you need to start in a clean environment to fix a bug or

introduce a feature; trying to do both at the same time will seriously increase the risk of

introducing more bugs.

The main takeaway of this chapter is the importance of using a workflow when

developing with Git. And those workflows all use branches to separate the different types

of work necessary for a clean issue resolution.

We’ve seen how to create, check out, and delete a branch. Now, let’s learn more

about Pull Requests and Code Review, so we can propose changes in our master branch!

Chapter 11 Diving into projeCt ManageMent: BranChes

159
© Mariot Tsitoara 2020
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/978-1-4842-5313-7_12

CHAPTER 12

Better Project Management:
Pull Requests
In the last chapter, we learn about the typical GitHub workflow; the majority of

companies use a variation of this workflow for their day-to-day work. We also learned a

lot about branches and how to use them. But there is one thing we didn’t get a chance

to review: how to combine those two concepts. The answer is simple: Pull Requests and

Code Reviews.

The previous chapter provided a lot of reasons why using a traditional approach to

code management (everybody commits to the same branch) is a bad idea. But since we

work alone in our current project, we don’t see the inconveniences yet. But they are here,

and they take a lot of time to resolve; so, trust me, it’s better to follow the workflow.

This chapter will show you how to implement the workflow that was presented to us

in the earlier chapter. We will use our newly created branches to introduce changes to

older branches. We will also learn about code review and how to manage them.

 Why use Pull Requests?
Many developers who don’t follow a particular workflow say that it’s a waste of time

because it takes away precious development time. There is a truth in that statement

because following the workflow means waiting for other people to review your code. But

you have to keep in mind that you don’t have to wait around doing nothing while waiting

for a review, you can directly go on and solve another issue! That’s why branches are so

powerful in Version Control Systems; you can work on multiple issues at the same time.

With the workflow, you can begin to work on an issue, ask for some ideas or directive from

your peers, and then work on another issue when waiting for responses. After you receive

the necessary feedbacks, you can continue to work on the first issue and repeat this

160

process until all the issues are resolved. Using the workflow will also let you begin working

on an issue even if the information about what to do is not complete yet; you can work on

an issue and stop for more info midway into it. And one last thing: having someone else

reread your code is the best way to reduce bugs; the time you gain by not chasing bugs

everywhere is greater than the time you gain by directly committing to master.

The GitHub workflow is also the preferred way of work of Open Source contributors.

It would be very ugly if anyone could push commits directly to a branch without any

review. Instead, each contributor has a working clone of the project and can propose

changes that other contributors will review and discuss.

So, in conclusion, working using the GitHub workflow is the best way of working

and using it will greatly reduce your bugs. And as we’ve seen in the last chapter, using

branches is only the first step, so you have to use Pull Requests to complete the workflow.

Let’s learn more about them!

 Overview on Pull Requests
Pull Requests, as useful as they are, are a fairly easy-to-understand concept. Submitting

a Pull Request, or PR, is just asking for permission to apply all the commits in a branch to

another branch. But we’re moving too fast. Before learning about Pull Requests, we have

to learn what a “pull” is.

 Pull
In Git terminology, a pull is just the opposite of push (give yourself a high five if you

guessed that!). Push takes your branch and copies all its commits to a remote branch and

creates the branch if it doesn’t exist on the server yet. Pull is just that, but backward: it

looks at a remote branch and copies the commits on it to your local repository. It’s just an

exchange of commits: push if it’s from local to remote and pull if it’s from remote to local.

The syntax is very similar too:

$ git pull <remote_name> <branch_name>

So, for example, if you wanted to get the commits from the master branch on GitHub,

you would have to execute the command while checking out the master branch:

$ git pull origin master

Chapter 12 Better projeCt ManageMent: pull requests

161

Make sure to always be on the branch corresponding on the one you are pulling

before running any command. So, in this case, you have to check out master before

running git pull. After executing the command, you will get a result like mine as shown

in Figure 12-1.

Since you have the same commits on your local repository and on GitHub, nothing

happened. But once you start working with other people, you will have to pull their

branches on your local machine to review their changes or simply review the changes on

GitHub.

It’s basically it! Pulling is just copying commits from a remote branch to a local one.

And don’t worry, you will have more occasions to play with git pull soon.

 What does a PR do
Now that we know more about pulling, we have a clearer idea of what a Pull Request is.

A PR is just asking for permission to execute a pull action on a remote repository. But

pulling a branch is not enough for the action to be complete: you also have to merge the

branches together.

Figure 12-1. Pulling master from origin

Chapter 12 Better projeCt ManageMent: pull requests

162

Remember when we merged a patch branch into the development branch? A PR

is just asking for permission to do that. You can do everything you want with your

local branches, but when you deal with upstream branches (branches in the remote

repository), you have to use a little bit of civility and ask for permission first. This assures

that every fix committed in the main branches is properly tested and reviewed.

So, to put it together, a Pull Request is a request you make to get GitHub to perform

those actions: pull your patching branch and merge it with another branch. For example,

in our project, we have currently three local branches (master, develop, and improve-

readme- description) and two remote branches (master and develop). If we made any

new commits to improve-readme-description and we wanted to merge it with develop,

we would open a PR. After the PR is accepted, GitHub will perform the following actions:

pull the improve-readme-description branch and then merge it with the develop branch.

You might ask yourself: “If the endgame of a Pull Request is to merge branch, why

not call it Merge Request?” Well, many people (including other Git hosting services like

GitLab) call it Merge Request. It means the same thing. In this book, we will use the two

terms interchangeably.

 Create a Pull Request
Let’s get down to business! Creating a new PR is very easy; you just need two branches:

one to work on and another to merge into. Let’s do it!

First, let’s create an issue to work on. So go to GitHub and create an issue called

“Improve the app style.” Yes, we’ve had a similar issue previously, but since we’ve already

solved that issue, we are going to open a new one. It’s not a good idea to recycle issues

because it will make it harder to follow your progress.

After you’ve created the issue, it’s time to go back to your Terminal because each PR

begins with a branch. We are going to create a branch named “improve-app-style” from

the latest development branch, which is develop. As we saw in the last chapter, the way

to create a new branch from another is to check out the source branch and execute the

branch creation command. So, we have to execute those commands one after another:

$ git checkout develop

$ git branch improve-app-style

$ git checkout improve-app-style

Chapter 12 Better projeCt ManageMent: pull requests

163

After executing those three commands, you will find yourself with the new branch

checked out, just like in Figure 12-2.

Within our newly created branch, let’s work on the issue. Open index.html and

replace its contents to

<!doctype html>

<html>

 <head>

 <meta charset="utf-8">

 <title>TODO list</title>

 <style>

 h1 {

 text-align:center;

 }

 h3 {

 text-transform: uppercase;

 }

Figure 12-2. Creation of a new branch

Chapter 12 Better projeCt ManageMent: pull requests

164

 ul {

 margin: 0;

 padding: 0;

 }

 ul li {

 cursor: pointer;

 position: relative;

 padding: 12px 8px 12px 40px;

 background: #eee;

 font-size: 18px;

 transition: 0.2s;

 }

 ul li:nth-child(odd) {

 background: #f9f9f9;

 }

 ul li:hover {

 background: #ddd;

 }

 </style>

 </head>

 <body>

 <h1>TODO list</h1>

 <h3>Todo</h3>

 Buy a hat for the bat

 Clear the fogs for the frogs

 Bring a box to the fox

 <h3>Done</h3>

 Put the mittens on the kittens

 </body>

</html>

Chapter 12 Better projeCt ManageMent: pull requests

165

Then, stage the file and prepare to commit. Put something very simple as a commit

message, no need to reference the issue; we’ll do this later. As a commit message,

you can simply put: “Add basic color changes on item rows.” As usual, you will get a

confirmation message as shown in Figure 12-3 after the commit.

Now it’s time to push it to GitHub. As we’ve previously seen, we will have to use

the git push command, followed by the remote name and the branch name. So the

command will be

$ git push origin improve-app-style

After you’ve pushed your branch to GitHub, you will get another familiar

confirmation message. You can check Figure 12-4 for an example of this.

Figure 12-3. Commit confirmation

Chapter 12 Better projeCt ManageMent: pull requests

166

As you can see on the confirmation message, Git directly shows you a link to follow

so you can create a Pull Request. But let’s create a PR with another way: directly on

GitHub.

Figure 12-4. Pushing the branch to GitHub

Chapter 12 Better projeCt ManageMent: pull requests

167

Go to your project page and look for something different in the presentation. After a

recent push to a new branch, your project page should like the one shown in Figure 12-5.

Figure 12-5. Project page after a recent push

Chapter 12 Better projeCt ManageMent: pull requests

168

As you can see, there is a new call to action on the page, right above the list of

branches. It shows the name of the branch that you just created and a big button for

creating a PR. Click the button to continue; you should get to the Pull Request creation

form, just like in Figure 12-6.

Figure 12-6. Pull request creation form

Chapter 12 Better projeCt ManageMent: pull requests

169

You can note that the PR creation form is very similar to the issue creation form.

On the right, you can find the same information about assignees and labels; they work

exactly the same. On the bottom of the page, you can see the commits to be applied by

the Pull Request; and if you scroll down, you’ll find the differences between the versions.

Check Figure 12-7 for an example of this.

Figure 12-7. Differences between versions

Chapter 12 Better projeCt ManageMent: pull requests

170

But you might ask yourself why there are two commits to be applied. It’s because of

the target branch. If you examine Figure 12-6 closely, you’ll find that the base branch for

the PR is master. This is not what we want, as we are targeting the develop branch. Go

ahead and change the base branch to develop. After you change it, the page will reload,

and you’ll get a different result, shown in Figure 12-8.

As you change it, notice that the PR name has also changed; that’s because the PR

name takes the last commit message as a default name. But you can change it if you

want, especially if you have multiple commits in one PR. Remember one thing about PR

name: it should be as clear and straight to the point as commit messages. Your PR name

should respond to this question: “What will this PR do if I merge it?” So take a good care

of your PR name and description so that the reviewers can know which problem you are

trying to solve without reading your code.

Figure 12-8. Pull Request on develop

Chapter 12 Better projeCt ManageMent: pull requests

171

You can expand your PR explanation on the description textbox, and don’t hesitate

to provide more information about the changes. You should put the keywords to closing

issues there. Check Figure 12-9 for an example of this.

Figure 12-9. A completed Pull Request

Chapter 12 Better projeCt ManageMent: pull requests

172

Once you are ready, click “Create pull request” to get it done; you will arrive at a page

similar to the one shown in Figure 12-10.

Again, this view is very similar to its Issues counterpart, even the PR number follow

the Issues number. The only difference is the button to merge the pull request. If you

click this button, the PR will be accepted, and the branches will be merged. But don’t do

that yet! Let’s play around with our PR before merging it.

Figure 12-10. Your new Pull Request

Chapter 12 Better projeCt ManageMent: pull requests

173

Now that our PR is submitted, it’s time to review it! Put down your developer hat for a

second and put on your tech lead hat, it’s time to do a Code Review!

 Code Reviews
Code Reviews are one of the best features of GitHub. Long gone where the days where

you had to schedule a one-on-one meeting with your Tech Lead so they could check

your code. No need to send each other long chains of emails (with a long list of annoyed

people on the Cc list) for each change request in the code. Now, everything is done in

GitHub. Let’s see!

 Give a Code Review
In Figure 12-9, you had a glimpse of the Code Review process. You saw all the changes

done to the files compared to the current version but you couldn’t interact with them yet.

In this section, you will learn how to review your co-contributors’ code.

You can see in Figure 12-10 that the PR page has many sections, just like the Issues

page. You have to click “Files changed” to begin the Code Review. You will then arrive at

a page similar to the one shown in Figure 12-11.

Chapter 12 Better projeCt ManageMent: pull requests

174

This view should remind you of the git diff results, because it’s essentially the same

thing. It shows you the differences between the versions in detail, which means that you

will see what has been added, removed, or replaced.

 Leave a review comment
Now, let’s pretend to review this code. During code reviews, you can comment on the

whole changes or a specific piece of code. For example, let’s put a comment on the “ul li”

CSS definition on line 17. As you move around your cursor on the code review change,

a little “plus” icon follows it. It means that you can comment there. Let’s do that. Place

Figure 12-11. The Code Review section

Chapter 12 Better projeCt ManageMent: pull requests

175

your cursor on line 17, and when the “plus” icon shows, click it. It will open a small

comment section like in Figure 12-12.

As always, you can make all kinds of comments on this section with the help of

Markdown syntax. For this example, we are going to put this comment: “Make the list

items unselectable for a cleaner UX. Use `user-select: none`.” You should check the

preview before you leave the comment, just like in Figure 12-13.

Figure 12-12. A code review on a line

Figure 12-13. Comment preview

Chapter 12 Better projeCt ManageMent: pull requests

176

If you are satisfied with your comment, click “Start a review” to go to the next step.

The comment will show on the Review page, and there will also be a reply button on the

comment, just like the result shown in Figure 12-14.

Using this button, the developer can discuss the comment with the reviewer before

beginning to rework on the PR. You can make more comments if you want, because

comments are essentially what constitute a Code Review. If you are satisfied, click the

“Finish your review” button on the top of the page. You will again be greeted with a small

section, just like the one shown in Figure 12-15.

Figure 12-14. The posted comment

Chapter 12 Better projeCt ManageMent: pull requests

177

Upon finishing the review, you will get three choices: Comment, Approve, or Request

changes. Since it’s our own Pull Request, we cannot approve or request change on it, so

we’ll just choose the default option, which is a general feedback on the changes. Let’s

put: “Don't forget to take account different browsers” as a comment and submit the

review. You will once again go back to the PR details page as shown in Figure 12-16.

Figure 12-15. Finishing the review

Chapter 12 Better projeCt ManageMent: pull requests

178

The PR details page will show you the different comments left by the reviewer and

also the general comments for the whole PR. Let’s resolve these comments.

 Update a Pull Request
The comment left by the reviewer suggested that we should change some code before

our PR is accepted. So, let’s do that! Let’s update our PR by pushing new commits to the

patching branch.

Note the patching branch is also called topic branch, because each branch
should have its own topic to resolve.

Figure 12-16. Your completed Code Review

Chapter 12 Better projeCt ManageMent: pull requests

179

Open index.html once again and change its contents to this:

<!doctype html>

<html>

 <head>

 <meta charset="utf-8">

 <title>TODO list</title>

 <style>

 h1 {

 text-align:center;

 }

 h3 {

 text-transform: uppercase;

 }

 ul {

 margin: 0;

 padding: 0;

 }

 ul li {

 cursor: pointer;

 position: relative;

 padding: 12px 8px 12px 40px;

 background: #eee;

 font-size: 18px;

 transition: 0.2s;

 -webkit-user-select: none;

 -moz-user-select: none;

 -ms-user-select: none;

 user-select: none;

 }

 ul li:nth-child(odd) {

 background: #f9f9f9;

 }

 ul li:hover {

 background: #ddd;

 }

Chapter 12 Better projeCt ManageMent: pull requests

180

 </style>

 </head>

 <body>

 <h1>TODO list</h1>

 <h3>Todo</h3>

 Buy a hat for the bat

 Clear the fogs for the frogs

 Bring a box to the fox

 <h3>Done</h3>

 Put the mittens on the kittens

 </body>

</html>

Stage the file once again and commit the project with the message: “Make the list

items unselectable.” Then, push the branch to GitHub again. Check the previous section

if you are lost in this exercise. Hint: git push origin improve-app-style.

After you pushed the branch, go back to the PR page again. You will notice a new

comment on the details page. Check Figure 12-17 for an example of this.

Figure 12-17. New changes detected by GitHub

After each commit you push, GitHub will update the PR to reflect the changes

applied to the branch; click “View changes” to review the new changes. You will once

again arrive on the Code Review page but with a little twist: you will only notice the new

changes, meaning the changes that you haven’t seen yet. This makes it easier for the

reviewer to follow the progression of the PR.

Chapter 12 Better projeCt ManageMent: pull requests

181

Since we don’t have any additional comments, go ahead and click “Finish review”

and then give a general comment. In a work environment, you won’t review your own

code so the Approve choice would be available. But since we’re working alone, just give

a general comment like “Good job!” since the developer worked really hard. The general

comment will appear on the PR details page just like in Figure 12-18.

Now, we can safely merge our branch to the base branch because our code is

properly reviewed. Click the big green button to accept and merge the PR. You will be

asked for a confirmation before the branch is merged. After you confirm it, the branches

will be merged and the PR closed. You can even delete the source branch if you want,

just as Figure 12-19 shows.

Figure 12-19. Pull Request accepted

Figure12-18. A final comment has been made

Chapter 12 Better projeCt ManageMent: pull requests

182

Whether or not you want to delete the branch is up to you. Sometimes, teams don’t

delete the branches until a tester has confirmed that all is well.

“But why isn’t my issue automatically closed?” you ask. That’s because the fix in the

develop branch, which is not the default branch. Only fixes merged in the default branch

(master) will close issues automatically. But since you are worried about that issue, let’s

do a little exercise before we go to the next chapter.

EXERCISE: MERGE DEVELOP INTO MASTER

let’s pretend a tester tested our new feature and said that it was okay to release. so, we have

to merge develop into master. the exercise is

• go back to the project page

• open a pr to merge develop

• accept the pr and merge

 Summary
Congratulations on getting your first PRs accepted! (but it would be more impressive

if you didn’t accept them yourself). This chapter has been quite long, but you need to

understand it completely to benefit from the awesome features of GitHub. For your

next issues, open a PR instead of committing directly to master. And remember that in

most professional settings, committing on master is not only discouraged but denied by

default by GitHub. Each change must come from a Pull Request.

You should be comfortable using PR by now; if not, reread the first sections of this

chapter. The one thing to remember is a pull request is just a fancy way of asking for

permission to apply commits on a branch.

You may have some questions now: “What if somebody else pushed some changes

in the base branch before I complete my PR?”, “What if someone else modified the

same file as me?”, or “What if I’m tasked to resolve another issue while I’m working on a

PR?” Those questions are very pertinent indeed; that’s why we’ll cover them in the next

chapter. We will deal with Merge Conflicts and how to solve them. But before learning

how to solve them, we will learn how to avoid them altogether! Let’s go!

Chapter 12 Better projeCt ManageMent: pull requests

PART III

Teamwork with Git

185
© Mariot Tsitoara 2020
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/978-1-4842-5313-7_13

CHAPTER 13

Conflicts
The last chapter introduced us to the wonderful world of Merge Requests. You should

know what their use is and why it is a good idea to use them. Even if they are a fairly

simple concept to grasp, they also come with some shortcomings that are hard to ignore.

You are mostly done with your journey; you’ve come a long way. But there are still

things that you need to learn before continuing your path all by yourself. You need to

learn what problems you’re going to have along the way. We are going to talk about those

problems in this chapter. First, we will re-review how branch merging works, and then

we will present the problems you’ll most likely run into in your career. Finally, we’ll see

the common solutions for those problems. Don’t be afraid of Conflicts because they’re

easy to resolve; they’re just annoying.

 How a merge works
Let’s rewind a little and go back to the basics: what does a merge do? A merge takes each

commit in a branch and applies them on another. Simple, right? Well, a well-planned

merge goes smoothly most of the time. But even if you plan every last detail, there is

something you can’t control: what other people do.

Don’t forget that Git is a distributed Version Control System, meaning that every

contributor has their own copy of the project and can do anything to their local

repository. Everyone can change every file as there is no “file lock” like on some VCSs.

This means that there are instances where multiple people have made changes to the

same file. Bringing all those changes together necessitate a merge.

Before going to the next section, you have to remember one thing: only merge a

branch when you are sure that the commits in that branch are final. Merging a branch

that contains unfinished work defeats the purpose of branching—having a clear history.

Opening a Pull Request even if you aren’t planning to actually merge the branches is

okay; but actually merging them uncompleted is not.

186

As we said earlier, a merge begins with a branch. Most of the time, it’s a branch that

you don’t have on your local repository yet. So, you have to pull it from origin (the default

name for a remote repository).

 Pulling
Let’s revise the pulling command the second time. Pulling means copying a remote

branch to the local repository. For example, we have merged a branch into develop and

master but have not done anything to our local branches. It means that we are “behind”

in the history timeline as there are commits in the remote repository that we don’t have.

In fact, the word “behind” is a little misnomer because, as we established, every

repository is independent and there are no central repositories in Git. We chose to have

a master remote repository because it makes it easier to work in teams. But, concretely,

you can exchange commits as you like; the concept of being “behind” was invented just

to make developers’ lives easier.

Let’s try to pull master into our local repository. Remember that you need to have

finished the exercise from the last chapter (merging develop into master) before doing

the next steps on this chapter. First, check out your local master branch and make sure

it’s clean.

$ git checkout master

$ git status

If you didn’t do anything funny on your working directory, you should get the same

result as shown in Figure 13-1: a clean directory.

Chapter 13 ConfliCts

187

Now, let’s check the history log before we make any change.

$ git log --online

This will result in the output of the master branch history. It will not have the recent

changes we made because those changes are only in the remote repository right now.

The master history log should look like the one shown in Figure 13-2.

Figure 13-1. A clean directory is needed before a pull

Chapter 13 ConfliCts

188

As you can see in Figure 13-2, the HEAD is pointed at the last commit of the branch

right now (and most of the time, it will be that way). According to this result, our local

master branch and the remote master branch are on the same level, meaning that they

contain the same commits. We know that this isn’t true because we’ve made changes

on the remote master. Our local Git repository doesn’t know that because we haven’t

fetched any commits from the server yet. Let’s do that.

As we’ve seen last chapter, pull and push command work the same way: you just

have to pass the remote repository name and remote branch name as parameters. So the

command will be

$ git pull origin master

After executing this code on a clean working directory, you will get the result shown

in Figure 13-3.

Figure 13-2. The history log before the pull

Chapter 13 ConfliCts

189

 Fast-forward merge
After you’ve pulled master from origin, you will get a summary of the operation. You

will see the number of files changed and the type of merging that has been done. Here,

the type is “fast-forward,” and it’s the easiest type of merge. Fast-forward means that the

commits on the remote branch were on the same timeline as the local branch, so Git

only had to move HEAD to the last commit of the origin branch. Remember when we

talked about commits being linked to another by parent-child relationships? If Git sees

a link between the commits on the first branch and the branch to be merged, a fast-

forward merge is done, meaning that only a move of pointer is necessary, which makes

Git very fast. You should always strive to use fast-forward as a method of merging as it’s

the easier and, most importantly, cleanest for the history log.

Talking about the history log, let’s check it out to see the changes we’ve fetched from

the server. Once again, use the “--oneline” option to get a prettier result.

$ git log --oneline

Figure 13-3. Pulling master from origin

Chapter 13 ConfliCts

190

This will give you the result shown in Figure 13-4.

You got extra commits! Commits from the remote branch were merged into your

local branch. Now, your local master branch points to the same commit as the origin

branch.

Let’s unpack all of this. First, let’s talk about the branch colors. Green branches are

your local branches, whereas red branches are remote. Remote also have two names as

their names are combined with the remote repository name.

You can see that improve-readme-description, develop, and origin/develop are on

the same level. We know this isn’t correct because we changed develop from GitHub. Git

won’t know that changes were until you pull the develop branch from origin.

You will notice that there are commits you didn’t make on this history, namely,

“Merge pull request #8 from mtsitoara/improve-app-style” and “Merge pull request #9

from mtsitoara/develop.” They are called merge commits and they are created by Git

when you merge two or more commits. In our project, we merged improve-app-style

into develop and then develop into master. Each of these merges produces a merge

commit.

Just like normal commits, you can show more information about it by using the git

show command. Let’s show the first merge commit.

$ git show 33753ec

Figure 13-4. History log after pulling from origin

Chapter 13 ConfliCts

191

This will result in a familiar view for us: the commit intel view. You should get the

same result as shown in Figure 13-5.

This view isn’t particularly interesting because it only shows the commit parents

and the user that did the merge. One thing to remember, though, is the committers and

the merger can be different people. And you should put your keywords resolving issues

in the merge commit message rather than the commit messages. Most of the time, a

commit won’t be enough to solve a problem; so, put those keywords into the pull request

message so the issue is only closed when the branch has been merged.

The history log shown in Figure 13-4 is pretty, but it doesn’t really show the concept

of branches and merges. A graph would be more appropriate, and there’s a parameter

for that in the git log command. The parameter is “--graph” and you should use it with

“--oneline” to get the best results.

$ git log --oneline --graph

Figure 13-5. The detailed view of a merge commit

Chapter 13 ConfliCts

192

This command will produce simple graphs like the one shown in Figure 13-6.

As you can see, the log graph provides a more detailed history of our project. Each

asterisk represents a commit, as always. But there’s a new type of element shown on this

graph: branches. You can see that we diverged from the master branch and created the

develop branch, which in turn diverged into the improve-app-style branch. We pushed

two commits on that branch and then merged it back to develop. After that, we merged

develop into master.

When you work on a project that uses a lot of branches and merge often (as you

should), it is best to use the graph view as it’s clearer than a traditional view. Also, the

colors are pretty.

For a much cleaner history log, I suggest you delete the local improve-readme-

description branch.

$ git branch -D improve-readme-description

Deleting an already merged branch presents little risk; but many developers don’t do

it often in case they need to rework on it later. Most of the time, this doesn’t happen. A

good rule of thumb is to only delete branches when you are sure that you won’t need to

check it out again to test something.

Figure 13-6. The history graph of our project

Chapter 13 ConfliCts

193

What we’ve done here is the simplest form of merging: a fast-forward. But remember

that after you diverged from a branch (like we’ve done on master and develop), you are

in a completely separate zone. You won’t get any update from the other branches unless

you ask for them. This also means that the other branches will evaluate independently

from your branch. By the time you make a pull request on a branch, it may have changed

already. For example, multiple contributors can make new branches from develop

and work on their own issues. They won’t be done at the same time so each PR will

be accepted one after another. That’s where the trouble begins: your target branch

will change outside your influence while you work on your issue. The reality that you

are working with may change by the time you are finished with your changes. Maybe

multiple people changed the same files in their respective branches. This will happen

a lot in your career, and many times, a PR won’t go as well as ours did in this chapter.

Those problems are called “conflicts,” and resolving is essential to your Git journey. Let’s

do it!

 Merge conflicts
The best way to understand merge conflicts is to create one. So, let’s mess up our project!

First, check out our local develop branch. Since we haven’t touched this branch, it

should still be clean right now.

$ git checkout develop

The first thing we are going to do is to check the history log.

$ git log --oneline --graph

You will get the same result as previously because we haven’t pulled from origin yet.

This result is shown in Figure 13-7.

Chapter 13 ConfliCts

194

Nothing spectacular here, just a good old log without any problem. Since we deleted

the improve-readme-description branch, there isn’t any branch left in the develop

history log.

The log says that develop and origin/develop is on the same state; but this isn’t true

because we changed it from GitHub. But instead of pulling from origin, we are going to

make changes in our branch first, changes that will cause conflicts with the changes from

origin.

Open index.html and replace its contents with the following code:

<!doctype html>

<html>

 <head>

 <meta charset="utf-8">

 <title>TODO list</title>

 <style>

 h1 {

 text-align: left;

 }

Figure 13-7. Develop history log before pull

Chapter 13 ConfliCts

195

 h3 {

 text-transform: capitalize;

 }

 li {

 overflow: hidden;

 padding: 22px 0;

 border-bottom: 2px solid #eee;

 }

 </style>

 </head>

 <body>

 <h1>TODO list</h1>

 <h3>Todo</h3>

 Buy a hat for the bat

 Clear the fogs for the frogs

 Bring a box to the fox

 <h3>Done</h3>

 Put the mittens on the kittens

 </body>

</html>

Run git diff to review your changes. We only made small changes so it shouldn’t be a

big deal, right?

$ git diff

The result is very familiar to us because we see it all the time on GitHub and on git

show. Your result should be the same as mine as shown in Figure 13-8.

Chapter 13 ConfliCts

196

Nothing new here. Let’s add the changed file to the staging area and then commit the

current project.

$ git add index.html

Figure 13-8. Difference between develop and the working directory

Chapter 13 ConfliCts

197

Tip is opening your text editor for each commit tiresome? Well, you can skip it
if you are on a hurry. to commit the project while skipping the commit message
edition phase, you can pass the commit message as a parameter:

$ git commit -m "<commit_message>"

Don't forget the `-m`!

$ git commit -m "Change CSS to introduce conflicts"

Caution Using the shorthand form of the git commit command can maybe save
you a few seconds, but it makes it easier to make mistakes because you won’t
have the chance to review your changes before committing. i highly suggest only
using it when you only have one changed file. plus, you can’t use it to write a
multiline commit message.

This won’t produce any result that we haven’t seen before. As you can see in

Figure 13-9, we get a standard result because there is no conflict yet.

To produce the conflict, we need to get the commits that we pushed on develop

when we merged a branch into it.

Figure 13-9. The commit that will introduce conflicts

Chapter 13 ConfliCts

198

 Pulling commits from origin
We’ve already seen the pull command in action, but, in this scenario, we will get a little

problem from it: we changed the same file across different commits. This will produce

conflicts and we have to resolve those before you can complete the pull. Remember, pull

just means to copy remote commits into your local repository.

Let’s start by directly pulling develop from origin. Again, the command is very similar

to the push command. You just need the remote repository and branch name.

$ git pull origin develop

The result we get is very different from everything we’ve seen earlier. Instead of a

result of a completed action, we got a conflict and we are stuck between two states. You

can check Figure 13-10 for an example of this.

Let’s unpack this result one by one. First, we have the URL that is being used for the

pull so, nothing spectacular here.

Figure 13-10. Merge conflict during the pull command

Chapter 13 ConfliCts

199

Next, we have the first action being performed by Git. That action is called “fetch,”

and its role is to copy the chosen branch from remote to the local repository. This

branch is then stored into a temporary storage called FETCH_HEAD. Just like HEAD is

a reference to the last commit we are working on, FETCH_HEAD references to the tip of

the branch that we just fetched from origin.

The next action is a basic merge, just like we’ve seen before. We fetched the remote

branch and it’s time to merge it with the current branch. The action details the merge to

be performed: the branches develop and origin/develop. It even specifies the commits

that would be used. Your commit names will be different, but to verify the first commit,

you just have to check the commit log:

$ git log --oneline

You will find the commit name on the second to the last commit as shown in

Figure 13-11.

Note that the merge will not use the last commit because it’s the commit that we are

working on, the one that introduced the changes.

Figure 13-11. The second to the last commit will be used for the merge

Chapter 13 ConfliCts

200

Figure 13-10 also references another commit for the merge, and you can find that

commit on origin/develop. Go to your project page on GitHub and select the develop

branch to see the history log of the remote branch. You can also directly access it with

your GitHub link like https://github.com/mtsitoara/todo-list/commits/develop,

for example. You will get a view of the last commits just like in Figure 13-12.

As you can see, the second commit referenced in Figure 13-10 is the last commit

of the remote branch, the one that has been created by our previous merge on GitHub.

To get even more information, you can click it and get the details of the commit. Check

Figure 13-13 for an example of this.

Figure 13-12. The commits on origin/develop

Figure 13-13. More info on the merge commit

You can see in Figure 13-13 that this commit has two parents; that’s because it’s a

commit created by the merge of two branches. You can also see that one of the parents is

also referenced in Figure 13-10 because it was the last commit pushed before we merged

the branches on GitHub.

Chapter 13 ConfliCts

https://github.com/mtsitoara/todo-list/commits/develop

201

Let’s go back to Figure 13-10. In the next section of the result, Git tries to “auto

merge” the branches, meaning that it tried to merge the branches automatically. This

goes smoothly when different files or different parts of the files have been changed by the

branches to merge. But since it found conflicts, the merge has failed. And it’s up to us to

resolve this.

Git tried to merge our local develop branch with FETCH_HEAD, but since both

branches contain changes to the same parts of index.html, you have to decide which

changes to keep. We’ll see how to do that in the next section.

The last information that should be noted from Figure 13-10 is the state in which

our local repository is. If you look at the left part of the console, you will find that the

repository in the “develop|merging” state instead of the standard “develop” branch.

This means that there are still unresolved conflicts in the project and the merge (and, by

extension, the pull) is not done yet. You can check the status for more information about

the current state of the repository.

$ git status

This will get you a new result that we haven’t seen before, shown in Figure 13-14.

Figure 13-14. Status of the merge

Chapter 13 ConfliCts

202

This result is very easy to read and provides great advices for the next steps. First, it

tells us the things we should do next: fix conflicts and commit the project. Then, it tells

us the way to abort the current merge if we decide to chicken out of the conflict. In many

occasions, this is a good idea as we can work on the local branch to resolve the conflicts

that we know will arise. For example, we can abort this merge, revert the commit that

introduced the conflicts, and then pull again. We will then have an automatic merge

without any conflict. But that is too easy and reasonable for us, so, let’s do this the

hard way!

Next, we have a list of the files concerned by the merge. Here, only index.html is

concerned and it has been modified in both branches. Let’s open it to see the conflicts.

You will see big changes in it as shown in Figure 13-15 and Figure 13-16.

Figure 13-15. index.html in Visual Studio Code

Chapter 13 ConfliCts

203

Figure 13-16. index.html in Vim

Chapter 13 ConfliCts

204

You will notice the three big lines dividing your code in the file. Those lines are

always the same in every code conflict but different text editors might render them

differently. For example, an IDE like Visual Studio Code will render the code with

different colors and even add some button to interact with the code (shown in

Figure 13- 15). In contrast, a very simple text editor will show the lines as usual lines of

code and might mess up with your color schemes. In Figure 13-16, I used Vim without

any additional tools, so the rendering is a little bit bland; but many plugins can be used

to fix this.

 Resolving merge conflicts
Let’s begin by explaining what those three lines mean. The “<<<<<<<” and the

“>>>>>>>” lines delimit the region where there is a conflict. Keep in mind that a file can

have multiple conflicting regions.

Those regions are separated by the “=======” line, which shows the code from the

two branches. The first part is the code that you have on your current branch; the second

part is the code on the branch that you are trying to merge.

So, we have two conflicting codes in our file. First is the code on develop, and second

is the code on origin/develop. To resolve the merge conflict, we have to edit the file as

to only have one changeset. It doesn’t mean that you have to choose between the two

changesets, it just means that there can be only one left at the end; you can merge them

if need be.

In our case, it would be best to keep most of the second part because we’ve already

vetted and accepted those changes. But there are also some things we can keep from the

first part. So, the best course of action is to copy the code we need from the first part and

copy it into the second part. The code will then become

<!doctype html>

<html>

 <head>

 <meta charset="utf-8">

 <title>TODO list</title>

 <style>

 h1 {

 text-align: left;

 }

Chapter 13 ConfliCts

205

 h3 {

 text-transform: capitalize;

 }

<<<<<<< HEAD

 li {

 overflow: hidden;

 padding: 22px 0;

 border-bottom: 2px solid #eee;

=======

 ul {

 margin: 0;

 padding: 0;

 }

 ul li {

 cursor: pointer;

 position: relative;

 padding: 12px 8px 12px 40px;

 background: #eee;

 font-size: 18px;

 transition: 0.2s;

 -webkit-user-select: none;

 -moz-user-select: none;

 -ms-user-select: none;

 user-select: none;

 overflow: hidden;

 }

 ul li:nth-child(odd) {

 background: #f9f9f9;

 }

 ul li:hover {

 background: #ddd;

>>>>>>> 33753ecaebae2ba1c3ffdc1e543d372385884c78

 }

 </style>

 </head>

Chapter 13 ConfliCts

206

 <body>

 <h1>TODO list</h1>

 <h3>Todo</h3>

 Buy a hat for the bat

 Clear the fogs for the frogs

 Bring a box to the fox

 <h3>Done</h3>

 Put the mittens on the kittens

 </body>

</html>

As you can see, we’ve only copied one line from the first part, because the second

part was already almost completed. Now is the time to clean the file of the unnecessary

part. First, we can remove the first part of the code conflict (between <<<<<<< and

=======) because we don’t need them anymore. Then we can just remove the

remaining line (>>>>>>>) because it doesn’t make sense to have it anymore. The file will

then become

<!doctype html>

<html>

 <head>

 <meta charset="utf-8">

 <title>TODO list</title>

 <style>

 h1 {

 text-align: left;

 }

 h3 {

 text-transform: capitalize;

 }

 ul {

Chapter 13 ConfliCts

207

 margin: 0;

 padding: 0;

 }

 ul li {

 cursor: pointer;

 position: relative;

 padding: 12px 8px 12px 40px;

 background: #eee;

 font-size: 18px;

 transition: 0.2s;

 -webkit-user-select: none;

 -moz-user-select: none;

 -ms-user-select: none;

 user-select: none;

 overflow: hidden;

 }

 ul li:nth-child(odd) {

 background: #f9f9f9;

 }

 ul li:hover {

 background: #ddd;

 }

 </style>

 </head>

 <body>

 <h1>TODO list</h1>

 <h3>Todo</h3>

 Buy a hat for the bat

 Clear the fogs for the frogs

 Bring a box to the fox

Chapter 13 ConfliCts

208

 <h3>Done</h3>

 Put the mittens on the kittens

 </body>

</html>

The file is back to normal! With a merge of the conflicting codes and no more of

those three big lines. Now, you can continue the merge process. If you forgot the next

step, you could run git status again (or check Figure 13-14).

So, now that the file is ready, we have to stage it.

$ git add index.html

After that, you have to commit the project as usual.

$ git commit

You will be greeted by the familiar commit message view but with a little twist: the

commit message will already be written. Check Figure 13-17 for an example of this.

Figure 13-17. The default commit message

Chapter 13 ConfliCts

209

Of course, you can always modify the commit message, but I suggest leaving the

default one unless you are following a personal or company guideline. You can save the

commit message and move on.

If you look at the command result (shown in Figure 13-18), you will see that you are

back on the develop branch and you are no longer in “merging” state.

You can also check if the merge has been completed by checking the history log.

Make sure to add a graph option for a beautiful result.

$ git log --oneline --graph

This will produce the stunning visual shown in Figure 13-19.

Figure 13-19. The recent history of our project

Figure 13-18. Back to normal state

Chapter 13 ConfliCts

210

You can see on that graph that when we merged the origin/develop branch, we

imported all its history. So, it seems like we have a branch from a branch. In big Git

projects, it happens all the time.

 Summary
This is the biggest chapter of the book. Congratulations on getting there! We saw how to

pull code from a remote server and how to solve conflicts when the same code region

has been modified by two different branches.

The main takeaway concerning pulling is that it’s actually two commands executed

one after another:

• Fetching, which copies the remote branch into a temporary branch

• Merging, which merges the temporary branch into the current one

But merging sometimes throws conflicts when the two branches contain edits of the

same code. To resolve those conflicts, you have to reopen the concerned file and decide

which code to keep. Then, the rest is basic: staging and committing.

Merge conflicts are one of those things that are annoying but will sadly happen a lot

in your career, so it’s important to learn a lot about them. And since they are annoying,

we are going to learn about how to reduce their appearances in the next chapter.

Hang in there!

Chapter 13 ConfliCts

211
© Mariot Tsitoara 2020
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/978-1-4842-5313-7_14

CHAPTER 14

More About Conflicts
Last chapter was intense, wasn’t it? We talked about what are merge conflicts and when

would they happen. We also saw how to resolve them manually. Don’t worry, this

chapter will be much easier to digest. We are going to talk about how to get push your

branch to remote after a merge conflict. Also, we are going to see some strategies to

adopt to reduce the number of conflicts that might happen. Let’s go!

 Pushing after a conflict resolution
As we saw in the earlier chapters, pushing means copying our local commits to a remote

branch. This means that every commit we have on local will be applied on the remote

repository.

We saw in the last section that a pull action is just two actions executed one after

the other: a fetch action that copies the remote branch into a temporary location and

a merge action that merges the temporary branch to the local one. And since the pull

and push actions are just the same but in different directions, it works the same way for

pushing your local branch to origin.

So a push action is divided into two parts too: copy of your local branch to remote

and the merge of the branches. The only difference between push and pull actions is just

a matter of which actor performs the action: you or the server.

Under normal circumstances, the push goes smoothly as the merge is performed

automatically using “fast-forward.” Fast-forward is possible when the commits on your

local branches can be linked directly with the commits present on the remote branch.

For example, simply adding commits one after another on our master branch (like we’ve

done until now) and then pushing them results in a fast-forward merge, no need to

create a merge commit.

212

In our situation, this will happen as well as we only added new commits on our

develop branch. And we won’t have any problem unless we or someone else went in the

past and changed history. Never attempt to do this.

That said, let’s push our develop branch using the usual command.

$ git push origin develop

As expected, we will have the usual result shown in Figure 14-1.

In conclusion, pushing a branch back to origin after pulling and merging the changes

shouldn’t result in an unexpected behavior. Unless someone changed history.

 Review changes before merge
Before attempting any merge, the most important thing for you to do is to review all the

changes that your branch will introduce. It’s a crucial step that shouldn’t be ignored

because it will save your countless hours of battle against Git.

Figure 14-1. Pushing our develop branch

Chapter 14 More about ConfliCts

213

 Check branch location
The first thing you need to make sure is your location. To merge two branches together,

you must have the target branch checked out. For example, if you intend to merge

develop into master, you would need to check the latter out first. So, the code would be

(don’t actually execute the second command now):

$ git checkout master

$ git merge develop

 Review branch diff
Reviewing diff is not reserved for commits only! You can also use it to check differences

between two branches, which is very handy in delicate situations like merging. The

command is fairly simple:

$ git diff branch1..branch2

Note the two dots between the two branch names. This will show the differences

between the two branches in a familiar diff view. Let’s compare develop to master:

$ git diff master..develop

The result is very similar to our diff result when comparing commits. Check

Figure 14-2 for such an example.

Chapter 14 More about ConfliCts

214

If you made a lot of changes and don’t want to scroll too far, you can also view those

changes on GitHub. Just push the branch and open a Pull Request!

 Understand Merging
We’ve already seen many concepts about Git Merges, but let’s review them to get a

clearer view of this feature. As we saw earlier, merging is the act of combining two

branches or, more correctly, pouring a branch into another.

Branches can be formed from any other branch, and when a branch has been

created, it becomes independent from its parent. Changes done to either branch won’t

affect the other, until it’s time to merge.

Let’s imagine a situation where you create a child branch and made commits on that

new branch. When the time to merge comes, several situations can arise.

If the parent branch didn’t change (no commits were made) and you attempt to

merge, a “fast-forward” merge will occur. A “fast-forward” merge is technically not

a merge but just a reference change in Git. Remember that Git commits behave like

Figure 14-2. Differences between branches

Chapter 14 More about ConfliCts

215

chained lists, meaning that a commit contains a reference to the previous one. In fact, if

the parent hasn’t changed, Git just moves the reference to the parent forward (following

the chained list), and the last commit in the child branch becomes the last commit of the

parent branch. To put it simply, Git just appends the commits in the child branch to the

parent branch. This is the easiest type of “merge” but also the most uncommon unless

you work alone.

In contrast, if the parent branch has been changed (received commits), a fast-

forward merge is not possible. What will occur is called a “true merge” or a “three-way

merge.” This is the type of merge that we’ve seen last chapter. This type of merge will

create a new commit that has all the changes in the child branch and append that

commit to the parent branch. This commit is called a “merge commit,” and it has two

parents: the parent and the child branches. If different commits from the parent and the

child branches modified the same line of code, a conflict arises, and the developer must

manually choose which changes to keep.

So, merges are just a fancy way to create commits containing all the changes in a

child branch and appending it to the parent branch. It’s very important to have a clear

idea of it so we can reduce the frequency of merge conflicts.

 Reducing conflicts
We saw last chapter that resolving conflicts can be painful and can also take a lot of time

depending in their sizes. So, it will be beneficial to us to reduce their appearance to a

minimum. We are going to see in this section the strategies to adopt to limit conflicts.

 Having a good workflow
Most of the problems you will encounter in Git and GitHub can be avoided if you use

a good workflow. We’ve already seen in the previous chapters the most common Git

workflow but let’s review it again.

The first thing to remember is don’t commit directly to your main branches. To put

it simply: every change you intend to introduce into your master or develop branches

should be done by merging. And each merge must be introduced by a Pull Request.

This way, you can receive feedback on your work as you work on it. It also gives testers a

better way to track project changes. You should always use PRs to introduce changes in

Chapter 14 More about ConfliCts

216

the main branches even if you work alone. This will provide a much clearer and cleaner

history log of the project than simple commit messages.

Each Pull Request should have the resolution of an issue as a goal. Thus, a PR should

do only one thing, be it a bugfix, a feature proposal, or documentation changes. Don’t

be tempted to fix several issues with a single PR. Do-it-all Pull Requests are the perfect

recipes for merge conflicts.

One thing often overlooked by developers is line endings and file formatting. As we

saw in Chapter 2, different OSs use different line endings. It is necessary for your team

to discuss which ones to use for each project; most teams use Unix-style line endings so

Windows users should configure their Git client accordingly. As for formatting, it is up to

your team, but the only rule is that you must all use the same format for indentations and

line returns.

Caution things might get heated when discussing tabs vs. spaces. prepare your
arguments in advance.

 Aborting a merge
Many of your merge conflicts won’t come from code clash; many will come from

formatting and whitespace differences. For example, a trailing return space or the

number of indentation spaces can introduce conflicts even though the code hasn’t

changed.

When confronted with these kinds of conflicts, the best move is just to abort the

merge, roll back your formatting differences, and then try to merge again. As you saw

earlier, the command to abort a merge is

$ git merge --abort

This won’t destroy any of your commits, it will just cancel the merge and you’ll stay

at your current state.

Chapter 14 More about ConfliCts

217

 Using a visual Git tool
When using a simple text editor, it might be difficult to resolve a conflict because most

of the time, it messes up the code color scheme. A simple solution to that it is using

specialized tools for Git. They can be IDE extensions or tools especially made for Git.

Let’s discover them in the next chapter!

 Summary
This chapter was a simple reminder of what are merges and how are they used. We

saw the various types of Git merge and the situations where they can appear. We also

reviewed how a merge works and what is the goal: pour commits from a branch to

another.

The main things to remember are the various ways to reduce merge conflicts. You

may never get rid of them, but following those advices will keep their appearances to a

minimum.

We’ve made a lot of progress in our Git journey, but we’ve done it using our plain

and boring consoles. It’s time to put more color in our Git projects so let’s learn about

Git GUIs!

Chapter 14 More about ConfliCts

219
© Mariot Tsitoara 2020
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/978-1-4842-5313-7_15

CHAPTER 15

Git GUI Tools
In the earlier chapters, we’ve seen a lot of the most important Git features and concepts.

We’ve learned about commits, branches, pull requests, and merging. Using those

concepts, you can already accomplish almost anything in Git. Only one small problem,

though: we’ve only used the Terminal or Console window. In this chapter, you won’t

learn any new concept or feature; you will just learn how to apply what you already know

with style ☺
First, we’re going to investigate the default tools that come with Git, then learn more

about IDEs that integrate Git, and lastly look at some specialized tools specially made for Git.

 Default tools
If you’ve followed the installation steps from the Chapter 2, you already have those tools

installed on your computer. If not, you can easily get them on our habitual software

store. These default tools are shipped with Git to provide users very simple GUIs to

browse their repositories and prepare their commits. They are available for almost any

Operating Systems, so don’t worry, they are available to you. They are presented in this

book for historical reasons and because they come built-in into Git.

 Committing: git-gui
The first tool we are going to see is called git-gui and it’s a graphical committing interface

for Git. You will use it to commit your project and review proposed changes. You can find

more information about it on https://git-scm.com/docs/git-gui.

You can open it like you would open Git Bash: by the command line, context menu,

or Start page. Choose whichever is the best option for you. On Windows and Debian-

based OSs, you can open a Git GUI by navigating to the directory of the repository and

right-clicking an empty space. Doing so will give you a result similar to Figure 15-1.

https://git-scm.com/docs/git-gui

220

As you can see, you can open Git GUI and Git Bash there. Go ahead and choose Git

GUI. You will get a little program window that details your current working directory

status. The window is presented in Figure 15-2.

Figure 15-1. Windows context menu

Chapter 15 Git GUi tools

221

And if you don’t want to use the context menu or can’t, you can open it by opening a

Terminal on the location of your Git repository and executing the following command:

$ git gui

The Git GUI interface is very lightweight and intuitive; and it’s the same for each OS

so everybody feels at home. It is divided in four parts:

• Top left is a list of edited files that have not been staged yet.

• Bottom left is a list of files that have been staged.

• Top right is a diff view.

• Bottom right is a commit message text area.

And since we haven’t changed anything in our project, everything is empty. So, let’s

mess up our project with additional commits.

First, let’s make sure that we are in master branch and then create a new branch from

it. Go to the “branch” menu and select “checkout…”; it will open the selection window

shown in Figure 15-3.

Figure 15-2. Git GUI interface

Chapter 15 Git GUi tools

222

You’ll notice that when your cursor hovers above a branch, information about its last

commit will appear. It will help you find the right branch, but shouldn’t be necessary

if you have good branch names. Check out master branch and then create a new one

by selecting “create…” on the “branch” menu. You will get the branch creation window

shown in Figure 15-4.

Figure 15-3. Choosing a branch to check out

Chapter 15 Git GUi tools

223

The first input area is the most important: the name of your new branch. Name the

branch “separate-code-and-styles.”

The second input is a choice input where you have to select where you are going to

create the branch from. In our situation, we are going to create a new branch from our

local master branch; so choose “local branch” and select “master.”

The third part are the options, which I recommend keeping the default options. With

the default options, Git will fetch the latest commits on the remote (tracking) branch and

then check out the new branch.

Figure 15-4. Creating of a new branch

Chapter 15 Git GUi tools

224

Now, you can click “Create” to see the result. You will see that the little message box

on the top left now lists “separate-code-and-styles” as the current branch. To give you

perspective, here is the command equivalents of what we just did:

$ git checkout master

$ git branch -b separate-code-and-styles

Now that we are in the correct branch, we can work on our commit. Remember our

golden rule when discussing Git workflow? Each commit must have the resolution of an

issue as goal. I’ll let you create that issue.

EXERCISE: CREATE AN ISSUE

Go to Github issues.

Create an issue called “separate code and styles.”

take note of the issue number.

Now we’re ready to commit! Create a new file called “style.css” in your repository and

paste in this code:

h1 {

 text-align:center;

}

h3 {

 text-transform: uppercase;

}

ul {

 margin: 0;

 padding: 0;

}

ul li {

 cursor: pointer;

 position: relative;

 padding: 12px 8px 12px 40px;

 background: #eee;

 font-size: 18px;

Chapter 15 Git GUi tools

225

 transition: 0.2s;

 -webkit-user-select: none;

 -moz-user-select: none;

 -ms-user-select: none;

 user-select: none;

}

ul li:nth-child(odd) {

 background: #f9f9f9;

}

ul li:hover {

 background: #ddd;

}

Then, open “index.html” and change its content to

<!doctype html>

<html>

 <head>

 <meta charset="utf-8">

 <title>TODO list</title>

 <link rel="stylesheet" href="style.css" />

 </head>

 <body>

 <h1>TODO list</h1>

 <h3>Todo</h3>

 Buy a hat for the bat

 Clear the fogs for the frogs

 Bring a box to the fox

 <h3>Done</h3>

 Put the mittens on the kittens

 </body>

</html>

Chapter 15 Git GUi tools

226

Save the two files and let’s hop to Git GUI to see the result. You will see… nothing

new! Because Git GUI isn’t aware of our changes yet. Click “Rescan” near the commit

message box to see the changes; you will get the result shown in Figure 15-5.

Now we have our changes! You can see the list of modified files on the top left part of

Git GUI, where the unstaged files are. You will notice that the files have different icons:

• An empty file icon for a new file (never been committed)

• A file icon for a modified file (has been part of a commit before)

• A “?” icon for a deleted file (has been part of a commit before)

Doesn’t that view remind you of something? Well, it’s the status view, of course!

Clicking “Rescan” is the same as executing this command on the terminal:

$ git status

Here, we modified “index.html” and created “style.css.” If you click the file names

(not icons; don’t click the icons yet), you will see the diff view change. Check Figure 15-6

for an example of the result that you would get after clicking style.css.

Figure 15-5. Changes shown in Git GUI

Chapter 15 Git GUi tools

227

It’s certainly quicker than executing “git diff”! Also, it’s easier on the eye if you have a

lot of changed files. So clicking the file name is equivalent to executing these commands:

$ git diff index.html

$ git diff style.css

Now is then time to stage our files in preparation for the commit. Staging and

unstaging a file is really easy: you just have to click its icon. Or you can also select the

files you want to stage (by clicking their names) and choose “Stage to Commit” in the

“commit” menu. Clicking the file icons is the same as executing these commands:

$ git add index.html style.css

$ git reset HEAD index.html

$ git reset HEAD style.css

See? Way quicker than typing commands!

We can finally commit our project! But first, make sure that all the files you created or

modified are staged, meaning that they are on the bottom left section. Then, you can write

your commit message on the bottom-right section of Git GUI, just like in Figure 15- 7.

Figure 15-6. Diff on the newly created style.css file

Chapter 15 Git GUi tools

228

Now with our files staged and our commit message written, we are ready to commit.

Just click the “Commit” button near the commit message box. After you do so, Git GUI

comes back to its normal, empty state. We’ve committed from the graphical tool!

Clicking the “Commit” button thus has the same result as this command:

$ git commit -m "Move style code to external file"

Since you are my best student (don’t tell the others), I’ll let you make another

commit in our branch.

EXERCISE: MAKE ANOTHER COMMIT

open reaDMe.md.

add this line at the end of the file: “license: Mit.”

Create a new file called liCeNse.

Copy the license text from https://choosealicense.com/licenses/mit/ into the

liCeNse file.

stage both files.

Commit with the message “add Mit license.”

Figure 15-7. Writing of a commit message

Chapter 15 Git GUi tools

https://choosealicense.com/licenses/mit/

229

Oof! Now you have two commits on your new branch and it’s time to push them

to the remote repository. You have certainly guessed which button to click; it’s “Push.”

Clicking it will give you the result in Figure 15-8.

It’s a straightforward interface; you just have to select the branch you want to push

and the location where you want to push it.

The current branch is selected by default, so we don’t have to change anything.

The second section is the destination selection dropdown; and again, we don’t have to

change anything because we only have one remote repository. Ignore the options for

now; we will see them in a later chapter.

Click push to push! If you are using an HTTPS authentication to connect with

GitHub, you will be asked for your GitHub username and password and then get the

result shown in Figure 15-9.

Figure 15-8. Pushing a branch

Chapter 15 Git GUi tools

230

Tip if you don’t want to write your password each time you push, you can cache
it or use an ssl authentication; all of this is explained in later chapters.

Nothing new here, we got the same result as this command:

$ git push origin separate-code-and-styles

EXERCISE: CREATE A PULL REQUEST

Follow the link you got after pushing.

Create a pull request with this description: “Fix #10” (replace the number with the issue

number you created earlier).

Merge the pr.

rejoice.

And that’s how you commit with Git GUI! Simple, right? And very quick too. It’s

a great tool that can save you a lot of time when reviewing commits. Talking about

commits, let’s see the other default tool!

Figure 15-9. Push result

Chapter 15 Git GUi tools

231

 Browsing: gitk
In the previous section, we talked a lot about creating and pushing commits. Now, we are

going to visualize those commits in their natural habitat: the repository. gitk is a simple

tool to have a simple visual of your project history. You can think of it as an overpowered

“git log” command. More documentation about gitk can be found on https://git-scm.

com/docs/gitk.

Since you already have git-gui open, let’s use it to open gitk. Simply choose “Visualize

all branch history” from the “Repository” menu. Doing so will open gitk, and you will see

the window shown in Figure 15-10.

At the top of the window, you will find a list of all your project’s commits, from all

branches. It is presented in a nice graph view that you can reproduce on console with the

command:

$ git log --oneline --graph

Figure 15-10. gitk interface

Chapter 15 Git GUi tools

https://git-scm.com/docs/gitk
https://git-scm.com/docs/gitk

232

You can click the commits to get more information about them. Selecting a commit

will update the views on the bottom of the window. The bottom left part is a diff view

again, but with a twist: you can also choose to view the old or the new version of the files.

The bottom right part is a list of all the files changed in the commit. You can click them

to see the changes on the diff view. Clicking a commit is the equivalent of executing the

following code:

$ git show <commit_name>

And that’s it for gitk, the default browsing tool of Git! Since you can commit and

browse with the default graphical tools now, it’s time to present you to other tools.

 IDE tools
As we saw in the previous section, committing with a graphical tool is very fast compared

to typing in the console. But there still is a problem: you must leave your Integrated

Development Environment to use them. Wouldn’t it be nice if you could use the

graphical tools directly from your editor?

It’s possible with a lot of modern editors. I will present you to two popular IDEs that

have Git integrated so you can use them for your future development. And if you don’t

want to use them or you are already in love with your current editor, chances are that

your IDE also have integrated Git tools or plugins if it’s modern enough. Each IDE has its

own interface and user experience, so I won’t go into detail in this section. I just want to

show to what features are available.

 Visual Studio Code
A very popular editor, Visual Studio Code, is a lightweight IDE supported by Microsoft;

you can find it on https://code.visualstudio.com/. It’s new so it has all the shiny new

toys integrated in it; and Git is at the center of those. You can see the look and feel of VS

Code in Figure 15-11.

Chapter 15 Git GUi tools

https://code.visualstudio.com/

233

It has the same interface as any other IDE but with a little bonus: you can see traces

of Git here and there. First, if you change a tracked file (README.md here), the edited

part is highlighted; no need to execute git diff anymore!

And at the bottom left of the window, you have the current branch name; if you click

it, you can select the branch you want to navigate to or create a new branch. If you have

unstaged files, there will be a little “∗” sign near your branch name and an “M” icon near

the concerned file names. If you have staged push uncommitted files, you have a “+” sign.

Figure 15-11. Visual Studio Code

Chapter 15 Git GUi tools

234

Click the Source Control icon to access the Git Tab, shown in Figure 15-12.

This view looks and works very much like git-gui, so I’ll let you discover it yourself!

 Atom
Atom is an IDE pushed by GitHub and it’s also a very popular choice among developers.

You can check it out on https://atom.io/. You can see its interface in Figure 15-13.

Figure 15-12. Source Control view

Chapter 15 Git GUi tools

https://atom.io/

235

It has the same Git features as Visual Studio Code but with a little twist: you can

link your GitHub account to it and create PR directly from the editor! Again, I’ll let you

discover.

 Specialized tools
We saw the default Git tools and some IDEs that have Git integrated. Now, let’s see some

tools specially developed for Git.

Figure 15-13. Atom interface

Chapter 15 Git GUi tools

236

 GitHub Desktop
GitHub Desktop is the perfect tool for you if you like the default gitk and git-gui tools

but hate their interface. Let’s face it, the default tools are great, but their look feels odd

in those modern times. GitHub Desktop (found on https://desktop.github.com/) has

been created to replace those tools; it has all their features combined in one software.

You can check Figure 15-14 for the interface of GitHub Desktop.

 GitKraken
GitKraken is a Git client created by Axolosoft that is becoming more and more popular.

You can get it on its web site at www.gitkraken.com/. It’s more advanced than all the

other tools as its goal is the augmentation of developer productivity. It even has an

integrated code editor! You can see its interface in Figure 15-15.

Figure 15-14. GitHub Desktop

Chapter 15 Git GUi tools

https://desktop.github.com/
http://www.gitkraken.com/

237

Again, the interface is the same as the others, but what distinguish GitKraken is its

beauty: it’s insanely gorgeous!

 Summary
This chapter was fun, wasn’t it? We learn a lot about how to use a graphical tool to make

commits and browse them. We also discovered a ton of new tools that are available to us,

be it integrated into an IDE or a specialized tool. And how can we forget about our good

old default tool?!

You may ask yourself why not use the graphical tool from the very beginning? It’s

because using a tool without knowing the concepts behind them is counterproductive

and a waste of time. Trust me, learning to use the Terminal was worth it! Talking about

terminals, let’s get back to it for some more advanced Git commands!

Figure 15-15. GitKraken overview

Chapter 15 Git GUi tools

239
© Mariot Tsitoara 2020
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/978-1-4842-5313-7_16

CHAPTER 16

Advanced Git
Last chapter, we learned how to do the basic Git features in a graphical context. Now,

let’s see some more Git commands that you won’t be using as much as the others,

but are powerful and necessary for a better productivity. Those are very easy-to-learn

commands that will be useful to you if you ever made a mistake using Git.

We’re going to see some common problems you will surely run into after a few times

using Git. Then we’ll see the easiest way to solve them. This is a pretty easy chapter but

we’re going to learn some powerful Git features.

 Reverting
We’ve already seen how to revert a commit on the previous chapters. But most of time,

all you want to do is reverting a single file to a previous state. This mostly happens when

you’ve been coding for some time only to realize that your entire strategy was wrong.

And instead of hitting Cmd-Z hundreds of time, it’s better to revert the file.

You probably already know how to do this because Git tells you how to do it after you

check git status. First, let’s open README.md and then add some text in it.

TODO list

A simple app to manage your daily tasks.

It uses HTML5 and CSS3.

Features

* List of daily tasks

* Pretty colors

License: MIT

240

Now, let’s see the status.

$ git status

As usual, you will see the status of your repository (shown in Figure 16-1).

Nothing new here, but direct your attention to the directives shown above the

modified file. As you can see, reverting a file to a previous state just means to check it out.

The command is thus

$ git checkout -- <file>

This command will discard any change you’ve done to a particular file. Be careful

when using it, as to not erase valuable code. It might be better to use the GUI so you can

quickly get a detailed view of the current changes before discarding them. Let’s try to

discard our changes on README.md with the following command.

$ git checkout –- README.md

You won’t get any response from this command, but if you check git status again, you

will see that README.md is back to its previous state.

Figure 16-1. Git status after a changed file

Chapter 16 advanCed Git

241

 Stashing
Many times, you will want to navigate between branches but can’t because your Working

Directory is dirty. In this context, dirty means that you have uncommitted changed files,

be they in modified or staged state. The only way to change branch is to first commit

them. But most of the time, you won’t be ready to commit yet because the issue at hand

is not resolved yet.

One solution to this is to make a temporary commit, change branch, work on it, and

then go back and amend the temporary commit. There are many problems attached to

this method: first, your Working Directory will be clean when you commit, meaning that

you won’t know anymore which files were being changed. Second, it’s a plain dirty and

ugly method. That’s not why the amend command was created.

The ideal solution is to use a technique called “stashing.” Stashing means taking any

modified tracked file in your Working Directory and put it away for later. That means that

you will have a clean directory and can navigate around your repository, without having

to commit your changes. Those changes are stored in a little database called “stash.”

You can think of the stash as a temporary repository for your unfinished commits. It’s

designed as a last-in first-out database, meaning that the last changes you stashed will

be presented to you first. The best way to understand it is to try. So, let’s change our

README.md file again.

TODO list

A simple app to manage your daily tasks.

It uses HTML5 and CSS3.

Features

* List of daily tasks

* Pretty colors

License: MIT

If you check the status, you will see that README.md has been modified but is

unstaged. You would get the same result as earlier (Figure 16-1).

Let’s now suppose that while you work on this issue, an urgent one needs your

attention. Obviously, you can’t check the master branch now because your working

directory is dirty and you can’t revert your current changes because you haven’t quite

finished yet. The solution is to stash your current changes somewhere so you can have a

Chapter 16 advanCed Git

242

clean directory to work with. To do this, you will have to use the stash command, which

is very easy:

$ git stash push

Note Just using the command “git stash” is the same as using “git stash push.”
it’s recommended to use the full command because it’s more intuitive and easier
to understand.

This command will take your modified files, stage them, and create a temporary

commit within the stash, leaving your working directory clean. Try it and you will get the

same result as shown in Figure 16-2.

Figure 16-2. Stashing current changes

As you can see, your stashed changes were given a name and a description like a

regular commit. It’s normal because the stash is just a temporary repository that only has

one branch. If you check the repository status, you will get a clean working directory as

intended (shown in Figure 16-3); and you can finally navigate to other branches.

Chapter 16 advanCed Git

243

Pushing changes into the stash can thus give you more freedom of movement

without losing your current work. It’s very useful in fast-paced development.

Caution even if this isn’t a book about productivity, here is a little tip: if you find
yourself jumping back and forth between issues, certainly your problem is your
priorities, and resolving two issues at the same time will cost you precious time.

Since the stash is just a mini repository, you can thus execute most Git features on it,

like checking the history log or getting a detailed view of the changes. Let’s explore the

stash to get a better understanding of it. First, let’s show to history log by using the stash

list command.

$ git stash list

This will get you a familiar, although a simplified, view of the history log, shown in

Figure 16-4.

Figure 16-3. A stash push produces a clean working directory

Chapter 16 advanCed Git

244

As we said earlier, this database works on last-in first-out, so if we made other

changes to our working directory and stashed them, they will appear on top of our

current stash.

You will notice in Figure 16-4 that each stash has a number. It’s easier that way to

interact with them, unlike commits where you must call them by their names. Let’s see

the detailed view of our stashed change by using the command stash show.

$ git stash show

This simple command will show you the files changed on the tip of the stash,

meaning the last changes pushed unto it. Check Figure 16-5 for an example of this.

Figure 16-4. List of stashed changes

Chapter 16 advanCed Git

245

The stash show command will just show you the description of the changes

contained in the stash, but not much else. To see the changes, you must apply the stash.

Applying the stash is very simple: just execute the following command.

$ git stash pop

This command will take the latest changes in the stash and apply it to the current

branch. And as the name implies, popping the changes will take them out of the stash.

So, if you only had one set of changes in your stash, it would be empty after you popped

the tip. If you execute the previous command, the result you get will be the same as if you

recreated the changes and then checked the status (shown in Figure 16-6).

Figure 16-5. Detailed view of the tip of the stash

Chapter 16 advanCed Git

246

We’re then back at the beginning! But if we wished, we could have changed

branches, made commits, or pushed to origin without losing our precious changes.

Stashing is particularly useful when you want to set aside your current changes to do

some quick change elsewhere. As a rule of thumb, if you need to use more than one set

of changes stashed, you are doing something wrong with your workflow.

 Resetting
I hope you won’t use this feature often because it’s very destructive! Sometimes, you

want to discard everything you’ve done and work on a clean plate, even if you’ve already

committed your project. To better understand it, let’s create a commit and then discard it.

Make some modifications on README.md, stage it, and then commit the project, as

shown in Figure 16-7.

Figure 16-6. Popping the last set of changes

Chapter 16 advanCed Git

247

To put this into perspective, let’s check the current history log after this commit by

using the git log command.

$ git log --oneline

This command will show you the latest commits on this branch, just like in Figure 16-8.

Figure 16-7. Add a bad commit to the project

Figure 16-8. History log of the current branch

Chapter 16 advanCed Git

248

As you can see, our latest commit sits on the top of our log. Notice that the HEAD

reference is pointed to it; it means that our next commit (or branch) will have that

commit as parent. You will notice also that the remote branch origin/separate-code-and-

styles hasn’t changed; that’s because we haven’t pushed our project yet.

But let’s imagine that you are utterly dissatisfied with that last commit and want to

do it over. Your only choice is then to reset the branch back to a previous state. To reset

the project, we use the git reset command followed by the state of the project to reset

to. You must use the option “--hard” to accomplish that, because it’s a very dangerous

command. For example, going back to the same state as the remote branch will require

the following command:

$ git reset --hard origin/separate-code-and-styles

This command will erase EVERYTHING so the project can be brought back to a

previous state. See in Figure 16-9 its result.

Your commits made after the target state, your current changes, and staged files

will all be deleted as the “--hard” option overwrites everything on its path. It’s the most

dangerous command in Git and you should think hard before using it.

Figure 16-9. Status of the project after a reset

Chapter 16 advanCed Git

249

Resetting should only be done in the last resort. Prefer reverting the commit if

possible or just straight-up continue to work on a new branch. When used carelessly,

reset can destroy your data.

 Summary
This chapter dealt with some advanced concepts of Git that will be useful to you when

confronted to certain situations. You will need to use reset to revert a file back to a

previous state without much effort; and of course, you can revert those changes using

the GUI too. Stashing will be very useful too in case you need of a quick change of

context. And finally, the hard reset is an all-powerful feature that is very destructive;

don’t unless you have no other choice.

This concludes our lesson about advance Git commands. Let’s return to GitHub now,

to discover some more features that can help us with our project management.

Chapter 16 advanCed Git

PART IV

Additional Resources

253
© Mariot Tsitoara 2020
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/978-1-4842-5313-7_17

CHAPTER 17

More with GitHub
We’ve seen almost every Git feature that you will use daily in the previous chapters. Now,

let’s turn our eyes to GitHub, which only served as a code hosting site until now. But

we’ve already established that GitHub is so much more than that. You can use it to host

documentation for your project and host software releases. You will also mainly use it as

project management tool and a way to connect to your collaborators. Let’s learn about

those features.

 Wikis
Your project can be the best in its category, but you would get nowhere if other people

don’t know how to use it or how it works. That’s why documentations are important,

especially in software development. GitHub provides a nice way to document your

project: wikis.

GitHub wikis work mainly the same way as the world’s most popular wiki: Wikipedia.

Its goal is to provide in-depth information about your project: what does it do, how does

it work, how can someone contribute…

Let’s create a wiki page for our project so we can better understand it. Just go to your

project main page and click “wiki”; you will arrive at the page shown in Figure 17-1.

254

You’ll see a big call-to-action button on the wiki homepage, so click it to create your

first wiki page. You’ll arrive at the page creation page, shown in Figure 17-2.

Figure 17-1. Wiki homepage

Figure 17-2. Creation of a page

Chapter 17 More with Github

255

As you can see, it’s a very simple view that is divided in three sections: the title, the

content, and the edit message. Think of the title as a web page title, so it must adhere

to the same standards: it must be clear and inviting. The content should be written in

Markdown, just like README.md. You can choose to write the wikis in other formats,

but Markdown is the recommended choice because so many editors already use it and

it’s so much easier to read. The edit message is just like commit messages, a simple

description of your proposed changes.

Change the content in your wiki; here is an example:

What is this

This is a simple app to track your daily goals

Why another TODO app

Because that is never enough TODO apps in the world

How does it work

Open `index.html` and update the goals as you wish

How can I contribute to the project

You can contribute by forking the project and proposing Pull Requests.

Check [Issues](https://github.com/mtsitoara/issues) to see the current

areas that need help

Save the changes, and you will be redirected to the wiki homepage, shown in

Figure 17-3.

Chapter 17 More with Github

256

As you can see, the wiki you just created is automatically visible on your project page,

and each page you create will appear on the sidebar on the right.

You can make as many wiki pages as you like, but make sure they are

comprehensible and useful; don’t forget to add images and relevant links!

 GitHub Pages
Put simply, GitHub Pages is a web site hosted for you on GitHub. You can use it to

showcase a project, host your portfolio, or just use it as an online version of your resumé.

A GitHub Page can be for your personal account (portfolio and resumé) or for your

projects (showcase). If you decide to use it for your account, you will only get to create a

Page; but if it’s for your projects showcase, you can create a Page for any of them. You can

check https://pages.github.com/ for a better explanation of this.

Figure 17-3. Wiki homepage showing the newly created wiki

Chapter 17 More with Github

https://pages.github.com/

257

Let’s assume you want to create a Page to showcase you todo-list project. First, you

need to head back to your project page and click “Settings”; you will access the page

shown in Figure 17-4.

Scroll down to the Pages settings, shown in Figure 17-5.

Figure 17-4. Settings page

Figure 17-5. GitHub Pages settings

Chapter 17 More with Github

258

The first option is a dropdown list containing the location of your Page source. You

must host your page on the master branch, but you have two locations for the source

files. One is directly on master; the other is on master under a directory called “docs.”

I recommend the second option as it’s clearer to any visitor. We must then create that

directory first.

Using GitHub or Git tools, create a file called index.html under a directory called

docs. In the file, just write some basic HTML:

<!doctype html>

<html>

 <head>

 <meta charset="utf-8">

 <title>Docs</title>

 </head>

 <body>

 <h1>Docs</h1>

 <p>Example of documentation</p>

 </body>

</html>

This will be your documentation. Your master branch must thus look like mine as

shown in Figure 17-6.

Figure 17-6. Docs folder and index.html

Chapter 17 More with Github

259

We can then go back to the settings page and select the source of the documentation.

Select the docs folder as source, and the page will reload and show you a link like in

Figure 17-7.

If you follow the link shown to you, you will get a glorious view of your GitHub

project page! The possibilities are then limitless as you can design your Page like any

other static web site page! If you want better style, check https://jekyllrb.com/; it can

help you generate GitHub Pages in no time!

Tip Since your project is a static htML page, you can point to it as the location of
your page; and you would get a real-time version of it!

Figure 17-7. Page published

Chapter 17 More with Github

https://jekyllrb.com/

260

Figure 17-8. Releases page

 Releases
Your project won’t stay in development indefinitely; it must be released sooner or later.

And what better platform to release your app than GitHub? It’s very easy.

Go back to your project page again and click “Releases”; you will see the main page

shown in Figure 17-8.

Let’s create our very first release! Click the call-to-action button, and you will get the

release creation view, shown in Figure 17-9.

Chapter 17 More with Github

261

It’s a very easy form to fill as the sections are straightforward and clear. The main

thing to do is to upload the release binaries by dropping them on the preceding form.

Since our app is in HTML, let’s attach compressed versions of our master branch. For

installable apps, it will be a binary to be executed; for us, it will be zip and 7z files. Don’t

forget to change the target of the release if you need to. The default option is the master

branch but you can point to another branch or a specific commit! The form will then be

the same as the one shown in Figure 17-10.

Figure 17-9. Release creation form

Chapter 17 More with Github

262

Figure 17-10. Filled release form with binaries

Chapter 17 More with Github

263

Click publish to see the result. You will be redirected back to the Releases list and will

see your new release there! Check Figure 17-11 for an example.

As you can see, GitHub automatically bundles the source code with your release too!

Be careful when creating a release; be sure to properly test and retest everything!

 Project Boards
Project Boards are a very useful feature of GitHub because it provides a way to track and

organize your project. For example, you can create cards for any new idea you have, so

you can discuss them with your team later. But the main use of Project Boards is to track

the advancement of your project. It goes beyond Issues, because Issues only describe a

feature or a bug to be worked on; but Project Board can show you if someone is working

on it or it’s only a plan to be executed.

Figure 17-11. List of all the releases

Chapter 17 More with Github

264

The best way to understand Project Boards is to directly experiment with them. So go

back to your project page and select “Projects.” You will get the empty project shown in

Figure 17-12.

Figure 17-12. Projects main page

Chapter 17 More with Github

265

The project main page is still empty as we haven’t created any project. It also shows

you different situations where you would want to use Project Boards. Click “Create a

project” to continue; you will get the view shown in Figure 17-13.

Again, it’s a very simple form. But direct your attention to the template: it’s quite

important. As a beginner, you should use the Basic Kanban template as it’s a prefilled

one. You can choose to create the boards yourself, but for now, let’s stick to basics. Create

the project, and you will see the semi-empty board shown in Figure 17-14.

Figure 17-13. Creation of a project

Chapter 17 More with Github

266

As you can see, there are three Boards created: “To do,” “In progress,” and “Done.”

Just like our app! At the right side of the screen, you can see a list of our open issues. Drag

and drop those issues to their respective Boards. In the “To do” Board, you have a little

example of what you can do with your Boards; it’s not only for Issues but also for Pull

Requests or simple notes. After you placed your Issues in the desired Boards, you will get

a result like Figure 17-15.

Figure 17-14. New project created

Figure 17-15. Our first Project Boards

A little bonus: as you move the Issues around the Board, the colored bar near the

project name will change. It’s a good way to track your progress!

Chapter 17 More with Github

267

But Project Boards are more than a project progress tracker! You can create Project

Boards for many situations: release tracking, meeting notes, developer idea notes, user

feedbacks… You can find in Figure 17-16 the Project Board for this book that you can also

find on https://github.com/mariot/boky/projects/1.

I advise you to use Project Boards for your future projects because having a clear

view of your progress is a sure way to success. If you are feeling dauntless, you can also

check the Automated Kanban that automatically moves the cards for you! For example,

every new Issue will be filled under “To Do,” and every closed Issue will be moved to

“Done.”

 Summary
This chapter took us away from Git for a little moment and we focused on GitHub. We’ve

seen that GitHub is more than a store for your code, but a complete tool to manage and

release your project. After this chapter, you should be able to dress a mini web site and

have a little documentation of it. You should also have a first release of your app.

The most important feature shown earlier is the Project Boards. Use them to have a

clear view of what you’ve done and where are you going. They seem simple but they are

very useful in project management.

You’ve now mastered the basics of Git and GitHub. But there are still roadblocks in

your path: you are still unsure of what awaits you in a real-world environment. In the

next chapter, we will explore the problems you will surely face when working with others

and how to resolve them. Stay tuned!

Figure 17-16. Current Project Board of this book

Chapter 17 More with Github

https://github.com/mariot/boky/projects/1

269
© Mariot Tsitoara 2020
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/978-1-4842-5313-7_18

CHAPTER 18

Common Git Problems
We’ve come a long way since our first Git command! We’ve learned a lot about basic

and advanced Git features and when to use them. But since we are only humans, we’re

going to face a lot of problems during our Git journey. Most of these problems are the

result of inadvertences, so just being aware of their existence is a big step forward toward

avoiding them. But if you still run into them, here are the best solutions!

 Repository
The repository is the backbone of your Git experience; everything begins and ends there.

It’s very difficult to mess it up, but in the slight chance something bad happens, here are

some tips.

 Starting over
This is the most radical “solution” in the chapter, and I hope you won’t ever use it. This

solution is basically a way to delete everything and start over! This should only be an

option when you have a remote repository and you want to delete your local one for

some reason. Reasons to do this include

• Change of work computers

• Unreadable sectors in hard drive

• Unrecoverable errors in “.git” directory

To start over, you just need to clone the remote repository with the git clone

command:

$ git clone <repository_location>

270

The repository location is the HTTPS or SSH link to your remote repository; you can

find it on your GitHub project page.

Cloning has the same effect as initializing a repository but with a big bonus: all

history and commits will also be copied on your new local repository. And you won’t

need to precise the origin link anymore.

 Change origin
Under normal circumstances, you would want to keep the remote repository’s URL the

same throughout your development. But there are certain circumstances where it’s

necessary to change it:

• Switching between HTTPS and SSH links

• Transfer of the repository to another host

• Addition of dedicated repository for release or testing

First, let’s get some more information about our current remotes. To do so, use the git

remote command with the “-v” option.

$ git remote -v

This will give you a list of your current remotes, as shown in Figure 18-1.

Figure 18-1. List of current remotes

Chapter 18 Common Git problems

271

Here, we only have one remote “origin” that points to a GitHub HTTPS link. To

modify this link, you will need to use the set-url subcommand:

$ git remote set-url <remote_name> <remote_url>

For example, if I wanted to switch to SSH instead of HTTPS for my GitHub access, I

would execute

$ git remote set-url origin git@github.com:mtsitoara/todo-list.git

Doing this will allow me to push and pull to-and-from GitHub without providing

my username and password. The authentication will be done by two sets of keys: a

private key that I keep on my local computer and a public key that I must upload to

GitHub. If you are interested in using SSH for your authentication, please head over to

GitHub help for more information depending on your Operating System (https://help.

github.com/en/articles/which-remote-url-should-i-use). If you decide to keep

using HTTPS but what to cache for password so you don’t have to type it all the time,

you can use a credential helper. Again, there is more information about this on GitHub

help, depending on your Operating System (https://help.github.com/en/articles/

caching- your- github-password-in-git).

Caution if you change your remote name, don’t forget to use the new name for
every push and pull action.

 Working Directory
You will spend most for your time on the Working Directory, and here again, there’s not a

lot of thing you can break.

 Git diff is empty
This comes up a lot but it’s not dangerous. Sometimes, you made a lot of changes and

want to check the changes. But when you run git diff, the result is empty. Don’t panic!

Git diff only shows modified files, so if your file is staged, you won’t see it there. To see

changes done to staged files, you must run:

$ git diff --staged

Chapter 18 Common Git problems

https://help.github.com/en/articles/which-remote-url-should-i-use
https://help.github.com/en/articles/which-remote-url-should-i-use
https://help.github.com/en/articles/caching-your-github-password-in-git
https://help.github.com/en/articles/caching-your-github-password-in-git

272

Tip Using a GUi tool would help you greatly when reviewing changes.

 Undo changes to a file
This will come up a lot when you’ll use Git. Sometimes, you just want to revert a file back

to its previous state without having to check out an entire commit and then copy-paste

the code. We’ve already seen the command earlier:

$ git checkout <commit_name> -- <file_name>

This command will check out the file as it was on the commit and, thus, will change

your Working Directory. Careful not to lose any uncommitted changes!

 Commits
Most problems will arise when you’ll try to commit your current project. But don’t worry,

there is always a simple solution for these kinds of problems. The most important thing

to consider is: are the commands you are using destructive? Commands like reset or

check out change your Working Directory, so please make sure that you know what you

are doing before executing them.

 Error in commit
This is a basic error in Git. After you commit your hard work, you’ll sometimes notice

that a little grammatical error found its way into your commit message or that you forgot

to stage a file. The solution to these problems is to amend the commit, meaning that you

will cancel the immediate commit and make a new one. The command is simple:

$ git commit --amend

The commit name will change because you are basically changing its content. That’s

why you should not amend a commit that you’ve already pushed to a remote branch,

especially if somebody else works on that branch. This is rewriting history and you

should never do it.

Chapter 18 Common Git problems

273

That said, if you’ve pushed your commit and are alone on the branch, you can

amend a commit and try to push it again. But since the commit name changed, Git won’t

allow you to change history without a fight. You will have to erase all the history on the

remote branch and replace it with yours, meaning that you will overwrite everything on

the remote branch. That’s why you should never amend a commit if you aren’t alone on

a branch. To push a branch with amended commits, you have the force it.

$ git push <remote_name> <branch_name> -f

The “-f” option forces Git to overwrite everything on the remote branch and replace

it with your current branch history.

Caution rewriting history on a branch where somebody else is working is just
plain rude and selfish. Don’t do it.

Amending commits should only be used when you want to modify the commit

message or add/remove a file. Don’t amend a commit to change code.

 Undo commits
If you committed on a branch but then realized it’s the wrong one, you can undo it, but

only when you haven’t pushed to a remote branch.

The command is simple but dangerous: it’s the reset command. But contrary to the

“hard” reset where everything is cleared, a “soft” reset is necessary to undo the commit

but keep the changes.

$ git reset HEAD~ --soft

The commit will then disappear, leaving you with some option to stash the changes

and apply them to another branch.

Again, this is rewriting history and should not be used if you’ve already pushed to a

remote branch.

Chapter 18 Common Git problems

274

 Branches
You will need to work with branches a lot to have an optimized workflow. When working

on a new feature or bugfix, your first instinct should be the creation of a branch. But

the more you are getting comfortable with branches, the more you are likely to forget a

little detail that can lead to problems. Here are the most common problems that you will

encounter with Git.

 Detached HEAD
HEAD is a reference to the current checked-out commit, meaning the parent commit

of any future commit you will create. Usually, HEAD points to the last commit of the

current branch; and all future branches and commits will have it as parent.

When you check out branches, the HEAD will go back and forth between the last

commits of the branches. But when you check out a specific commit, you enter a state

called “detached HEAD” which means that you are in a state where nothing you will

create will be attached to anything. It’s useless then to try to commit during that state as

any change will be lost.

Git will tell you when you are in that state (like in Figure 18-2) so you won’t ever be in

that state unknowingly.

Figure 18-2. Checking out a commit

Chapter 18 Common Git problems

275

Checking out a commit is thus only needed to test something on your software. You

can, however, create a branch from that specific commit if you want to keep the commits

you intend to make. The command is the same as creating a branch from another

branch:

$ git checkout -b <branch_name>

 Worked on wrong branch
This happens a lot. The situation is usually like this: you receive a task and you are so

eager to complete it that you begin to code immediately. You are already an hour into the

task when you notice that you were working the master branch all along! Don’t worry, it’s

very simple to resolve this.

If you modified some files on the wrong branch, you can directly create a new branch

(and check it out) to take the current changes there. It’s the same command again:

$ git checkout -b <branch_name>

This will create a new branch with your current changes and check it out. You can

then stage your modified files and commit the project.

However, this won’t work if you’ve already pushed the branch to a remote repository;

history is history, don’t change it. The only way to fix that is to revert the commit you

push and live with that shame all your life.

 Catch up with parent branch
When you create a branch from another (usually master), their histories are not linked

anymore, so what happens in a branch doesn’t have any incidence on the other. This

means that while you are working on your branch, other people can commit on the base

branch; and those commits won’t be available to your branch.

If you are still working your branch but are interested in having those new commits

on the base branch, you must first have a clean plate, meaning that you must commit

your project (or stash your current changes).

Chapter 18 Common Git problems

276

You then have to check out the parent branch, pull the new commits, and then go

back to your branch.

$ git checkout master

$ git pull origin master

$ git checkout <branch_name>

Safely on your local branch, you can then catch up to the parent branch. The concept

is simple: Git will take out your current commits and create new branch from the tip of

the parent branch; your commits will then be applied on your new branch. It would be

like you create a branch from the latest commit of the master branch. The command is

called rebase.

$ git rebase master

The commits on master might introduce conflicts in your branch, so be prepared to

get your hands dirty. The resolving of those merge conflicts is the same as what we’ve

seen previously: open each conflicted file and choose which code you want to keep; then

you can stage them and commit.

You can find an example of rebase conflict in Figure 18-3, on which commits on

master and test_branch both modified README.md.

Figure 18-3. Merge conflict during rebase

Chapter 18 Common Git problems

277

As you can see, it’s almost exactly like any merge conflict; and the resolution is the same:

$ git add <conflicted_files>

$ git rebase --continue

Here also, if you are not feeling brave enough for conflicts, you can abort the rebase

and go back to the initial state.

$ git rebase --abort

If you work on a branch for a long time, it’s a good idea to rebase from time to

time, so you aren’t left too far behind the parent branch. Of course, you can face merge

conflicts, but those are more and more likely to appear the bigger your changes are.

And if you delay rebases for a fear of conflicts, you will only set yourself up for failures

because those conflicts will appear again when you’ll attempt to merge the branches

anyway. It’s better to deal with small conflicts with a rebase from time to time than have

to merge a lot of conflicted files at the same time on merge.

 Branches have diverged
This will happen to you if you are using a bad Git workflow. As we said earlier, you should

work on your own branch to resolve an issue, because multiple people committing on

the same branch is the perfect recipe for disaster.

We say that two branches are diverged when you can’t push to your remote branch

anymore due to a history change. This happens when you committed on your local

branch, but other people have pushed their commits on the remote branch before you.

Come the time to push, Git won’t let you because the last commit of the remote branch

isn’t part of your local history. You will get an error like the one shown in Figure 18-4.

Chapter 18 Common Git problems

278

Here is the most sensible solution: pull the commits for the remote branch and

merge your changes. You will then have their changes on your history (after resolving the

eventual merge conflicts) and can push afterward.

$ git pull origin <branch_name>

$ git push origin <branch_name>

This will give you an ugly history log, but at least all commits are saved. An example

of this is shown in Figure 18-5.

Figure 18-4. Rejected changes

Chapter 18 Common Git problems

279

The other solution is more brutal: overwrite everything on the remote branch and

replace its history by yours. To do so, you must push using the “force” option.

$ git push origin <branch_name> -f

This results in lost commits and fistfight; don’t ever do this.

Again, this shouldn’t happen if you use a good Git and GitHub workflow.

 Summary
This chapter is there to point you to the right solution when faced with common Git

problems. Surely, you’ll discover new, harder problems but it’s a good way to start.

The main thing to remember is always to check where you are before doing anything,

especially committing.

But these problems shouldn’t appear at all if you use the common Git and GitHub

workflow. So, let’s rediscover that in the next chapter. We’ve already talked about this in

the earlier chapters, but it’s time to review it after you’ve seen all the most used Git and

GitHub features.

Figure 18-5. Merge local and remote branch

Chapter 18 Common Git problems

281
© Mariot Tsitoara 2020
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/978-1-4842-5313-7_19

CHAPTER 19

Git and GitHub Workflow
We’ve learned a whole lot in the last chapters, especially on the technical aspects of

Git. You now know how to properly version your project and how to deal with eventual

problems. We also looked a lot into the basics of project management with GitHub.

Now is the time to put all of this into perspective and prepare the perfect game plan

for your project. In this chapter, you will be presented with a carefully crafted workflow

that you should follow for a successful project. You can think of it as a “best practices”

section or an “how-to” guide.

 How to use this workflow
The workflow presented in this chapter was designed for both beginners and

experienced users. It is also used a lot of time in Open Source projects so many

developers use it already. Keep in mind that this workflow is not set in stone, and it can

be tweaked to suit your demands, within reasons.

My suggestion is to follow the workflow religiously when you are still a beginner, so that

you can get how it all works and what are the rituals to go through. When you are feeling

a little bit experienced, you can modify the workflow a little bit if that make you more

efficient; but never forfeit security for time. Bypassing some rituals might gain you some

time, but if it leads to more bugs and merge conflicts, it would be counterproductive. After

you’ve used Git and GitHub for a few years, you will become a Master of It and can create

your own workflow, provided that what you will bring will make your team more efficient.

 GitHub workflow
The most basic error you can commit when working with GitHub is to only think of it as

a code hosting service, that is, using it just for sharing code between your collaborators

or just to release your product to users. GitHub is such a powerful tool that it would be a

colossal waste to not use it at its full potential.

282

Think of GitHub as your main project management tool. Every action you intend

to make in your project should be tracked within GitHub, so you can go back and

understand the history. You can’t just go ahead and make some changes without properly

documenting why you are making those changes. Here are then the golden rules of GitHub.

 Every project starts with a project
When you are starting a new project, you should create a GitHub project just after

creating the repository. You need to do this as soon as possible because using Project

Boards is the best way to track your evolution. You should at least have one Kanban

board to track the “to do” of your project. And you can use other boards to track user

feedback or to dress a list of your random ideas. The main takeaway is to always keep

what pass through your mind in writing, as you will most likely forget most of it.

 Every action starts with an Issue
Issues are a good way to make note of what needs to be done on your project. When you

notice a bug in your program, your first instinct shouldn’t be to open your IDE to fix it

but to create an Issue tracking it. The same thing goes with a feature idea, even if you’re

not sure if you will work on it in the future. Create an Issue to document your intent and

you can close it after if you decide not to implement it.

This ritual implies that everything you do on your local Git should have the resolving

of an Issue as goal. So, when you are working on something on your IDE, you should

always ask yourself: “What Issue does this resolve?” If the answer is “none,” you should

create an Issue for it, no matter how small the task is.

 No direct push to master
This is the main ritual that is very hard to follow but makes life so much easier for

everybody involved in a project. The idea is simple: nobody should directly push

commits to the master branch. The only way to introduce changes to master is by

merging other branches into it.

The direct implication of this is that every change you create should be contained on

its own branch before it can be merged into master. So, any new feature or bugfix should

start in a branch and then merged into master when ready. “Ready” means properly

reviewed and tested.

Chapter 19 Git and Github WorkfloW

283

 Any merge into master needs a PR
Since we can’t directly push into master, the only choice is to merge branches into it. But

you shouldn’t blindly merge any branch branches into master either. You must create

Pull Requests to propose the changes. That way, another team member can investigate

your code to verify if all is well.

You should put references to Issue numbers that the PR resolves in the PR

description, so the Issues are automatically closed when the PR is accepted.

 Use the wiki to document your code
This might seem like a drag but it’s the best way to document your code. The README

file isn’t enough (or adapted) for a full code documentation, so the wiki is needed. It may

seem like a huge task, but the best way is to write the documentation at the same time

as the code. So, you only need to write small changes from time to time. If you wait for a

long time to decide to write documentation, you will be overwhelmed, and you will likely

forget crucial information.

 Git workflow
Let’s now talk about Git. By now, you surely know all the most used features of Git; but

using them at the right moment is the best way to avoid errors (and conflicts).

 Always know where you are
This is very basic and, thus, very easy to forget. You should always know which branch

you are on before making any change or executing any command. If you are using a

modern IDE, your current branch should appear at the bottom of your screen. If not,

nothing beats the old reliable git status!

 Pull remote changes before any action
Pull the remote master branch before you create a branch from it. This will permit you to

stay up to date with your coworkers and you will avoid most merge conflicts.

Chapter 19 Git and Github WorkfloW

284

And when you are working on your local branch, you should also rebase from time

to time as to receive the latest updates and thus reduce the number of merge conflicts in

the future. As a bonus, your git log graph will be way prettier. ☺

 Take care of your commit message
Please refer to Chapter 5 on commits to review how to write a good commit message.

Don’t underestimate this process because it will be the backbone of your history log.

Writing a bad commit message might save you a few minutes at first, but come the time

of a bugfix (it will come, trust me), you will waste countless hours searching for a commit

that introduced bugs.

 Don’t rewrite history
Just don’t. This is one of the worst things you can do when using Git within a team. If

you change a commit and force push it to a remote branch, everything done to that

branch will be overwritten by your changes. That means that if somebody else worked

on that branch, they would have to discard everything that they’ve done and reset their

local branch. If you really have to do it, be sure that you are the only one working on that

branch.

 Summary
Such a short chapter! But it’s the best way to have a successful project. The main thing to

remember is that GitHub is so much more than a code hosting service. You should use

it to properly track your project evolution and to track any idea you or your clients might

have. By following this workflow, you set yourself for success as you will avoid most

problems with Git and GitHub.

You now have all the tools to succeed with Git and GitHub! All now depends on your

imagination and courage. Use those tools properly and you will pilot your project into

the best paths. Good luck!

Chapter 19 Git and Github WorkfloW

285
© Mariot Tsitoara 2020
M. Tsitoara, Beginning Git and GitHub, https://doi.org/10.1007/978-1-4842-5313-7

Index

A
Atom, 234, 235

B
Branches, 142

bugfix, 274
commit, 145
creation, 146–147
deletion, 149–151
diverged, 277, 279
force option, 279
HEAD, 146, 274, 275
logic, 144
parent branch, 146

merge conflict, 277
pull commits, 276
rebase command, 276

pull requests, 145
push, remote, 156, 157
switching, 147, 148
wrong branch, 275

C, D, E
Code review, 173, 174

comment
finishing the

review, 177
PR details page, 177, 178

preview, 175
reply button, 176

Commit, 41–42
amend process, 77, 78
description, 70
edit message, 43, 77
error, 272, 273
HEAD, 66
log parameters, 56, 57
message on top, 44
message screen, 74
modify, 72
older, 65
summary, 45, 75
undo, 67, 68, 273

Commit messages, 79
best and worst, 81
context, 81
error of using, 83
search and retrieve, 80
small and independent, 82
splitting tasks, 79, 80

Conflict resolution, pushing
develop branch, 212
fast-forward, 211
temporary location, 211

Conflicts, reduction
abort merge, 216
Git tool, 217
good workflow, 215, 216

https://doi.org/10.1007/978-1-4842-5313-7

286

F
Fast-forward merge, 214

G
Git

basic principles, 46
commands, 12
definition, 11
features, 61
history log, 15, 16
push, 116
reconfiguration, 115
setting up, 33, 34
states, 63, 64, 84
steps, 85
tool, 11
workflow, 13, 14, 17

git branch command, 146
git checkout command, 64, 148
git-gui tool

branch, checkout, 221–223
branch creation, 222, 223
commit message, 227, 228
Git Bash, 219
git diff, 227
Git repository, 221
HTTPS authentication, 229, 230
interface, 220, 221
push branch, 229
rescan, 226
Stage to Commit, 227
style.css, 224–227
Windows, 219, 220

GitHub, 90, 95
businesses, 104
error, 115

explore, 103
Git repositories, 111
home page, 90, 106, 107
linking repositories, 110
log command, 151, 153, 247
new file staging, 114
new remote, 112
new repository, 108
Open Source projects, 96
page, 101
personal account, 102
project page, 117
random person page, 102
remote repositories, 109, 113, 114
repository creation, 100, 107
signup page, 106
users, 91

GitHub Desktop, 236
GitHub pages

index.html, 258
published page, 259
settings page, 257
todo-list project, 257

GitHub project page
closed issue, 125
code section, 120
commits to issues

detailed view, 137
details page, 133
keywords, 139, 140
last commit, 136
message link, 136
message structure, 135
resolve, 139
working directory, 133, 134

first issue, 123
interact with issues

Index

287

assign, 131, 132
labels, 127–130
open tasks, 126

issue details, 123
issue section, 121
new section, 122

GitHub workflow, 142–144, 157
code hosting service, 281
issues, 282
merge, master, 283
project, 282
push, master, 282
wiki, 283

.gitignore file, 49
commit, 52
directory matching, 54
exception, 54
lines, 53, 55
PRIVATE.txt, 50

GitKraken, 236, 237
gitk tool, 231, 232
GitLab, 91

H
History log, 57, 58

I, J
Installation

Linux, 30, 32
Mac, 30
Windows systems

components, 22
custom editor, 24
download screen, 21
editor selection, 23
extra options, 29

HTTPS transport, 26
line ending conversions, 27
terminal emulator, 28
tools, 26

K
Kanban template, 265

L
Line ending conversions, 27

M, N
Merge commit, 215
Merge conflicts

commits, 197
directory, 196
history log, 193, 194
index.html, 194, 195
pulling commits

auto merge, 201
commit log, 199
details, 200
FETCH_HEAD, 199, 201
history log, 200
index.html, 202, 203
remote repository, 198
status, 201
Visual Studio Code, 204

resolving
changesets, 204
commit message, 208
git status, 208
history log, 209
unnecessary part, clean, 206, 208

result, 197

Index

288

Merging, 142
fast-forward

branch colors, 190, 192
conflicts, 193
history log, 189–192
merge commit, 190, 191
multiple contributors, 193

pulling
clean directory, 186, 187
history log, 188
local repository, 186
master from origin, 189

Merging branches
checkout command, 152
commit, another branch, 152, 153
git log command, 153, 155
git merge command, 154
history log, 153, 154
new branch creation, 152
result, 154, 155

O
Open Source contributors, 160

P, Q
PRIVATE.txt file, 50
Project Boards, 282

creation, 265
Kanban template, 265
main page, 264
new project, 266
pull requests, 266
To do Board, 266

Pull Requests (PR), 96, 149, 157, 159, 160
creation

branches, 162, 163

commands, 162
commit message, 165, 170
form, 168
git push command, 165
new request, 172
project page, 167
push, branch, 165, 166
versions, 169

merge branch, 162
permission, 162
Pull, 160, 161
updation

comments, 181
confirmation, 181
GitHub, 180
index.html, 179, 180
patching branch, 178

R
README files, 97, 98, 113
Releases

binaries, 261, 262
creation view, 260, 261
list, 263
project page, 260

Remote repositories, 109
Remote server, 88, 89
Repositories

change, origin, 270, 271
cloning, 270
empty, 37
git clone command, 269
new, 36
remote, 269

Resetting, 246–249
Reverting, 239, 240
Review, before merge

Index

289

branch different, 213, 214
branch location, 213

S
Staging area, 40, 41
Stashing

defined, 241
history log, 243, 244
popping changes, 246
README.md, 241
stash command, 242
stash show, 244, 245
working directory, 243

T, U
Teamworking, 87
TODO app, 47

V
Version Control Systems

(VCSs), 159, 185
advantages, 3
centralized, 8, 9

definition, 3
distributed, 9, 10
Gimp files, 4
Git, 6
local, 7
version tracking, 4, 5

Visual Studio Code, 232–234

W
Wikis

edit message, 255
goal, 253
home page, 253–256
Markdown, 255
page creation, 254

Working directory, 38
change, file, 60, 272
file creation, 38
git diff, 271
master, 66
status, 39, 51

X, Y, Z
XCode’s Command Line Tools, 29

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: Version Control with Git
	Chapter 1: Version Control Systems
	What is Version Control?
	Why do you need one?
	What are the choices?
	Local Version Control Systems
	Centralized Version Control Systems
	Distributed Version Control Systems

	What is Git?
	What can Git do?
	How does Git work?
	What is the typical Git workflow?

	Summary

	Chapter 2: Installation and Setup
	Installation
	Windows
	Mac
	Linux

	Setting up Git
	Summary

	Chapter 3: Getting Started
	Repositories
	Working Directory
	Staging Area
	Commits
	Quick start with Git
	Summary

	Chapter 4: Diving into Git
	Ignoring files
	Checking logs and history
	Viewing previous versions
	Reviewing the current changes
	Summary

	Chapter 5: Commits
	The three states of Git
	Navigating between versions
	Undo a commit
	Modifying a commit
	Amending a commit
	Summary

	Chapter 6: Git Best Practices
	Commit messages
	Git commit best practices

	What to do
	What not to do
	How Git works (again)
	Summary

	Chapter 7: Remote Git
	Why work on remote
	How does it work
	The easy way
	Summary

	Part II: Project Management with GitHub
	Chapter 8: GitHub Primer
	GitHub overview
	GitHub and Open Source
	Personal use
	GitHub for businesses
	Summary

	Chapter 9: Quick Start with GitHub
	Project management
	How remote repositories work
	Linking repositories
	Pushing to remote repositories

	Summary

	Chapter 10: Beginning Project Management: Issues
	Overview on issues
	Creating an Issue
	Interacting with an issue
	Labels
	Assignees

	Linking issues with commits
	Working on the commit
	Referencing an issue
	Closing an issue using keywords

	Summary

	Chapter 11: Diving into Project Management: Branches
	GitHub workflow
	Branches
	Creating a branch
	Switching to another branch
	Deleting a branch
	Merging branches
	Pushing a branch to remote

	Summary

	Chapter 12: Better Project Management: Pull Requests
	Why use Pull Requests?
	Overview on Pull Requests
	Pull
	What does a PR do
	Create a Pull Request

	Code Reviews
	Give a Code Review
	Leave a review comment

	Update a Pull Request
	Summary

	Part III: Teamwork with Git
	Chapter 13: Conflicts
	How a merge works
	Pulling
	Fast-forward merge

	Merge conflicts
	Pulling commits from origin
	Resolving merge conflicts

	Summary

	Chapter 14: More About Conflicts
	Pushing after a conflict resolution
	Review changes before merge
	Check branch location
	Review branch diff

	Understand Merging
	Reducing conflicts
	Having a good workflow
	Aborting a merge
	Using a visual Git tool

	Summary

	Chapter 15: Git GUI Tools
	Default tools
	Committing: git-gui
	Browsing: gitk

	IDE tools
	Visual Studio Code
	Atom

	Specialized tools
	GitHub Desktop
	GitKraken

	Summary

	Chapter 16: Advanced Git
	Reverting
	Stashing
	Resetting
	Summary

	Part IV: Additional Resources
	Chapter 17: More with GitHub
	Wikis
	GitHub Pages
	Releases
	Project Boards
	Summary

	Chapter 18: Common Git Problems
	Repository
	Starting over
	Change origin

	Working Directory
	Git diff is empty
	Undo changes to a file

	Commits
	Error in commit
	Undo commits

	Branches
	Detached HEAD
	Worked on wrong branch
	Catch up with parent branch
	Branches have diverged

	Summary

	Chapter 19: Git and GitHub Workflow
	How to use this workflow
	GitHub workflow
	Every project starts with a project
	Every action starts with an Issue
	No direct push to master
	Any merge into master needs a PR
	Use the wiki to document your code

	Git workflow
	Always know where you are
	Pull remote changes before any action
	Take care of your commit message
	Don’t rewrite history

	Summary

	Index

