
ptg

www.allitebooks.com

http://www.allitebooks.org

ptg

Praise for Eloquent Ruby
“Reading Eloquent Ruby is like programming in Ruby itself: fun, surprisingly deep,
and you’ll find yourself wishing it was always done this way. Wherever you are in your
Ruby experience from novice to Rails developer, this book is a must read.”

—Ethan Roberts
Owner, Monkey Mind LLC

“Eloquent Ruby lives up to its name. It’s a smooth introduction to Ruby that’s both
well organized and enjoyable to read, as it covers all the essential topics in the right
order. This is the book I wish I’d learned Ruby from.”

—James Kebinger
Senior Software Engineer, PatientsLikeMe
www.monkeyatlarge.com

“Ruby’s syntactic and logical aesthetics represent the pinnacle for elegance and beauty
in the ALGOL family of programming languages. Eloquent Ruby is the perfect book
to highlight this masterful language and Russ’s blend of wit and wisdom is certain to
entertain and inform.”

—Michael Fogus
Contributor to the Clojure programming
language and author of The Joy of Clojure

From <www.wowebook.com>www.allitebooks.com

www.monkeyatlarge.com
http://www.allitebooks.org

ptg

This page intentionally left blank

From <www.wowebook.com>www.allitebooks.com

http://www.allitebooks.org

ptg

ELOQUENT RUBY

From <www.wowebook.com>www.allitebooks.com

http://www.allitebooks.org

ptg

ELOQUENT RUBY

Russ Olsen

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

From <www.wowebook.com>www.allitebooks.com

http://www.allitebooks.org

ptg

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: www.informit.com/aw

Library of Congress Cataloging-in-Publication Data

Olsen, Russ.
Eloquent Ruby / Russ Olsen.

p. cm.
Includes index.
ISBN-13: 978-0-321-58410-6 (pbk. : alk. paper)
ISBN-10: 0-321-58410-4 (pbk. : alk. paper)

1. Ruby (Computer program language) I. Title.
QA76.73.R83O47 2011
005.13'3—dc22

2010048388

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-58410-6
ISBN-10: 0-321-58410-4

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, February 2011

From <www.wowebook.com>www.allitebooks.com

www.informit.com/aw
http://www.allitebooks.org

ptg

To My Dad
Charles J. Olsen

Who never had a chance to write a book of his own,
which is a shame because it would have been

hilarious

From <www.wowebook.com>www.allitebooks.com

http://www.allitebooks.org

ptg

This page intentionally left blank

From <www.wowebook.com>www.allitebooks.com

http://www.allitebooks.org

ptg

Contents

Foreword xix

Preface xxi

Acknowledgments xxv

About the Author xxvii

PART I: The Basics 1

Chapter 1: Write Code That Looks Like Ruby 3
The Very Basic Basics 4
Go Easy on the Comments 6
Camels for Classes, Snakes Everywhere Else 8
Parentheses Are Optional but Are Occasionally Forbidden 9
Folding Up Those Lines 10
Folding Up Those Code Blocks 11
Staying Out of Trouble 12
In the Wild 13
Wrapping Up 15

Chapter 2: Choose the Right Control Structure 17
If, Unless, While, and Until 17
Use the Modifier Forms Where Appropriate 19
Use each, Not for 20
A Case of Programming Logic 21

ix

From <www.wowebook.com>www.allitebooks.com

http://www.allitebooks.org

ptg

Staying Out of Trouble 23
In the Wild 25
Wrapping Up 27

Chapter 3: Take Advantage of Ruby’s Smart Collections 29
Literal Shortcuts 29
Instant Arrays and Hashes from Method Calls 30
Running Through Your Collection 33
Beware the Bang! 36
Rely on the Order of Your Hashes 38
In the Wild 38
Staying Out of Trouble 40
Wrapping Up 42

Chapter 4: Take Advantage of Ruby’s Smart Strings 43
Coming Up with a String 44
Another API to Master 47
The String: A Place for Your Lines, Characters, and Bytes 49
In the Wild 50
Staying Out of Trouble 51
Wrapping Up 52

Chapter 5: Find the Right String with Regular Expressions 53
Matching One Character at a Time 54
Sets, Ranges, and Alternatives 55
The Regular Expression Star 57
Regular Expressions in Ruby 58
Beginnings and Endings 60
In the Wild 62
Staying Out of Trouble 63
Wrapping Up 64

Chapter 6: Use Symbols to Stand for Something 65
The Two Faces of Strings 65
Not Quite a String 66
Optimized to Stand for Something 67

x Contents

From <www.wowebook.com>www.allitebooks.com

http://www.allitebooks.org

ptg

In the Wild 69
Staying Out of Trouble 70
Wrapping Up 71

Chapter 7: Treat Everything Like an Object—Because Everything Is 73
A Quick Review of Classes, Instances, and Methods 74
Objects All the Way Down 76
The Importance of Being an Object 77
Public, Private, and Protected 79
In the Wild 81
Staying Out of Trouble 82
Wrapping Up 84

Chapter 8: Embrace Dynamic Typing 85
Shorter Programs, But Not the Way You Think 85
Extreme Decoupling 89
Required Ceremony Versus Programmer-Driven Clarity 92
Staying Out of Trouble 93
In the Wild 94
Wrapping Up 96

Chapter 9: Write Specs! 97
Test::Unit: When Your Documents Just Have to Work 98
A Plethora of Assertions 101
Don’t Test It, Spec It! 101
A Tidy Spec Is a Readable Spec 104
Easy Stubs 105
. . . And Easy Mocks 107
In the Wild 108
Staying Out of Trouble 110
Wrapping Up 113

PART II: Classes, Modules, and Blocks 115

Chapter 10: Construct Your Classes from Short, Focused Methods 117
Compressing Specifications 117
Composing Methods for Humans 121

Contents xi

From <www.wowebook.com>

ptg

Composing Ruby Methods 122
One Way Out? 123
Staying Out of Trouble 126
In the Wild 127
Wrapping Up 128

Chapter 11: Define Operators Respectfully 129
Defining Operators in Ruby 129
A Sampling of Operators 131
Operating Across Classes 134
Staying Out of Trouble 135
In the Wild 137
Wrapping Up 139

Chapter 12: Create Classes That Understand Equality 141
An Identifier for Your Documents 141
An Embarrassment of Equality 142
Double Equals for Everyday Use 143
Broadening the Appeal of the == Method 145
Well-Behaved Equality 146
Triple Equals for Case Statements 149
Hash Tables and the eql? Method 150
Building a Well-Behaved Hash Key 152
Staying Out of Trouble 153
In the Wild 154
Wrapping Up 156

Chapter 13: Get the Behavior You Need with Singleton and
Class Methods 157

A Stubby Puzzle 158
A Hidden, but Real Class 160
Class Methods: Singletons in Plain Sight 162
In the Wild 164
Staying Out of Trouble 165
Wrapping Up 167

xii Contents

From <www.wowebook.com>

ptg

Chapter 14: Use Class Instance Variables 169
A Quick Review of Class Variables 169
Wandering Variables 171
Getting Control of the Data in Your Class 174
Class Instance Variables and Subclasses 175
Adding Some Convenience to Your Class Instance Variables 176
In the Wild 177
Staying Out of Trouble 179
Wrapping Up 179

Chapter 15: Use Modules as Name Spaces 181
A Place for Your Stuff, with a Name 181
A Home for Those Utility Methods 184
Building Modules a Little at a Time 185
Treat Modules Like the Objects That They Are 186
Staying Out of Trouble 189
In the Wild 190
Wrapping Up 191

Chapter 16: Use Modules as Mixins 193
Better Books with Modules 193
Mixin Modules to the Rescue 195
Extending a Module 197
Staying Out of Trouble 198
In the Wild 202
Wrapping Up 205

Chapter 17: Use Blocks to Iterate 207
A Quick Review of Code Blocks 207
One Word after Another 209
As Many Iterators as You Like 210
Iterating over the Ethereal 211
Enumerable: Your Iterator on Steroids 213
Staying Out of Trouble 215
In the Wild 217
Wrapping Up 218

Contents xiii

From <www.wowebook.com>

ptg

Chapter 18: Execute Around with a Block 219
Add a Little Logging 219
When It Absolutely Must Happen 224
Setting Up Objects with an Initialization Block 225
Dragging Your Scope along with the Block 225
Carrying the Answers Back 227
Staying Out of Trouble 228
In the Wild 229
Wrapping Up 231

Chapter 19: Save Blocks to Execute Later 233
Explicit Blocks 233
The Call Back Problem 234
Banking Blocks 236
Saving Code Blocks for Lazy Initialization 237
Instant Block Objects 239
Staying Out of Trouble 240
In the Wild 243
Wrapping Up 244

PART III: Metaprogramming 247

Chapter 20: Use Hooks to Keep Your Program Informed 249
Waking Up to a New Subclass 250
Modules Want To Be Heard Too 253
Knowing When Your Time Is Up 255
. . . And a Cast of Thousands 256
Staying Out of Trouble 257
In the Wild 259
Wrapping Up 261

Chapter 21: Use method_missing for Flexible Error Handling 263
Meeting Those Missing Methods 264
Handling Document Errors 266
Coping with Constants 267
In the Wild 268

xiv Contents

From <www.wowebook.com>

ptg

Staying Out of Trouble 270
Wrapping Up 271

Chapter 22: Use method_missing for Delegation 273
The Promise and Pain of Delegation 274
The Trouble with Old-Fashioned Delegation 275
The method_missing Method to the Rescue 277
More Discriminating Delegation 278
Staying Out of Trouble 279
In the Wild 281
Wrapping Up 283

Chapter 23: Use method_missing to Build Flexible APIs 285
Building Form Letters One Word at a Time 286
Magic Methods from method_missing 287
It’s the Users That Count—All of Them 289
Staying Out of Trouble 289
In the Wild 290
Wrapping Up 292

Chapter 24: Update Existing Classes with Monkey Patching 293
Wide-Open Classes 294
Fixing a Broken Class 295
Improving Existing Classes 296
Renaming Methods with alias_method 297
Do Anything to Any Class, Anytime 299
In the Wild 299
Staying Out of Trouble 303
Wrapping Up 303

Chapter 25: Create Self-Modifying Classes 305
Open Classes, Again 305
Put Programming Logic in Your Classes 308
Class Methods That Change Their Class 309
In the Wild 310

Contents xv

From <www.wowebook.com>

ptg

Staying Out of Trouble 314
Wrapping Up 315

Chapter 26: Create Classes That Modify Their Subclasses 317
A Document of Paragraphs 317
Subclassing Is (Sometimes) Hard to Do 319
Class Methods That Build Instance Methods 321
Better Method Creation with define_method 324
The Modification Sky Is the Limit 324
In the Wild 327
Staying Out of Trouble 330
Wrapping Up 332

PART IV: Pulling It All Together 333

Chapter 27: Invent Internal DSLs 335
Little Languages for Big Problems 335
Dealing with XML 336
Stepping Over the DSL Line 341
Pulling Out All the Stops 344
In the Wild 345
Staying Out of Trouble 347
Wrapping Up 349

Chapter 28: Build External DSLs for Flexible Syntax 351
The Trouble with the Ripper 352
Internal Is Not the Only DSL 353
Regular Expressions for Heavier Parsing 356
Treetop for Really Big Jobs 358
Staying Out of Trouble 360
In the Wild 362
Wrapping Up 364

Chapter 29: Package Your Programs as Gems 367
Consuming Gems 367
Gem Versions 368

xvi Contents

From <www.wowebook.com>

ptg

The Nuts and Bolts of Gems 369
Building a Gem 370
Uploading Your Gem to a Repository 374
Automating Gem Creation 375
In the Wild 376
Staying Out of Trouble 377
Wrapping Up 380

Chapter 30: Know Your Ruby Implementation 381
A Fistful of Rubies 381
MRI: An Enlightening Experience for the C Programmer 382
YARV: MRI with a Byte Code Turbocharger 385
JRuby: Bending the “J” in the JVM 387
Rubinius 388
In the Wild 389
Staying Out of Trouble 389
Wrapping Up 390

Chapter 31: Keep an Open Mind to Go with Those Open Classes 391

Appendix: Going Further 393

Index 397

Contents xvii

From <www.wowebook.com>

ptg

This page intentionally left blank

From <www.wowebook.com>

ptg

Foreword

Do you know why experienced Ruby programmers tend to reach for basic collections
and hashes while programmers from other languages go for more specialized classes?
Do you know the difference between strip, chop, and chomp, and why there are three
such similar methods when apparently one might suffice? (Not to mention lstrip and
rstrip!) Do you know the downsides of dynamic typing? Do you know why the dif-
ferences between strings and symbols get so blurry, even to experienced Ruby devel-
opers? How about metaprogramming? What the heck is an eigenclass? How about
protected methods? Do you know what they’re really about? Really? Are you sure?

Russ knows all that stuff and more. And if books are like babies, then Russ is that
experienced mom who pops out her second child after a couple of hours of labor and
is back at work a week later in her pre-pregnancy clothes as if nothing out of the ordi-
nary happened. You know: the one all the other moms talk about in hushed tones of
disbelief and reverence. That’s the way my series authors discuss Russ.

Not that there’s anything small or insignificant about Russ’ bouncing new baby . . .
eh, I mean book. On the contrary, weighing in at just over 400 pages, this tome is
slightly larger than its older sibling Design Patterns in Ruby. The family resemblance is
crystal clear: Russ is first and foremost your friend. His approachable writing style
makes even the driest Ruby language topics engaging and funny. Like the way that
symbols remind Russ “of the eyes peering out from the tilted head of a confused but
friendly dog.”

Truth is, we need this kind of book now more than ever. Ruby has hit the main-
stream with the force of a Hulk Smash, and the masses are paddling along well-known
routes without full (heck, sometimes any) understanding of what makes their favorite

xix

From <www.wowebook.com>

ptg

frameworks and library APIs so vibrant and navigable. So for those not content with
the basics, those who want to go beyond shallow understanding, this book goes deep.
It helps readers achieve true mastery of Ruby, a programming language with some of
the deepest, darkest pools of nuance and texture of all the major languages of modern
times.

I know you’re going to enjoy this book, just like I did. And if you do, please join
me in encouraging Russ to get knocked up again soon.

—Obie Fernandez, Professional Ruby Series Editor

xx Foreword

From <www.wowebook.com>www.allitebooks.com

http://www.allitebooks.org

ptg

Preface

I’ve taught a fair number of Ruby classes over the years, but one particular class stands
out in my mind. Class was over, and as I was going out the door one of my students,
an experienced Java programmer, stopped me and voiced a complaint that I have
heard many times since. He said that the hardest part of learning Ruby wasn’t the syn-
tax or the dynamic typing. Oh, he could write perfectly correct Ruby, sans semicolons
and variable declarations. The problem was that something was missing. He con-
stantly found himself falling back into his same old Java habits. Somehow his Ruby
code always ended up looking much like what he would have written in Java. My
answer to him was not to worry, you haven’t missed anything—you just aren’t done
learning Ruby.

What does it mean to learn a new programming language? Clearly, like my frus-
trated student, you need to understand the basic rules of the grammar. To learn Ruby
you need to be aware that a new line usually starts a new statement, that a class defi-
nition starts with the word class, and that variable names start with a lowercase let-
ter—unless they start with an @. But you can’t really stop there. Again, like my
erstwhile student you will also need to know what all of that code does. You’ll need to
know that those statements are really expressions (since they all return a value) and
that all of those classes starting with the class keyword can change over time. And you’ll
need to know why those @variables are different from the plain vanilla variables.

But the punch line is that even after you master all of this, you are still not quite
there. It turns out that computer languages share something fundamental with our
everyday order-a-pizza human tongues: Both kinds of languages are embedded in a
culture, a way of thinking about the world, an approach to solving problems. A formal

xxi

From <www.wowebook.com>

ptg

understanding of the mechanics of Ruby isn’t the same as really looking at the pro-
gramming world through Ruby-colored glasses. You need to absorb the cultural part
of Ruby, to see how real Rubyists use the language to solve problems.

This is a book about making that final leap, about absorbing the Ruby program-
ming culture, about becoming truly fluent in Ruby. The good news is that for most
people the final step is the best part of learning Ruby—a series of “Ah ha!” moments—
as it suddenly becomes clear why those funny symbol things exist, why classes are never
final, and how this wonderful language works so hard to just stay out of your way.

Who Is This Book For?
This book is for you if you have a basic understanding of Ruby but feel that you
haven’t quite gotten your arms around the language. If you find yourself wondering
what anyone could possibly do with all those odd language features that seem so
important to Ruby, keep reading.

This book is also for you if you are a programmer with experience in other object
oriented languages, perhaps Java or C# or Python, and you want to see what this Ruby
thing is all about. While I’m not going to explain the basic details of Ruby in this
book, the basics of Ruby are really very basic indeed. So, if your learning style involves
simply jumping into the deep end, welcome to the pool.

How Is This Book Organized?
Mostly, this book works from small to large. We will start with the most tactical ques-
tions and work our way up to the grand strategy behind pulling whole Ruby projects
together. Thus the first few chapters will concentrate on one statement, one method,
one test, and one bug-sized issue:

• How do you write code that actually looks like Ruby?

• Why does Ruby have such an outsized collection of control structures?

• Why do Ruby programmers use so many hashes and arrays in their code?

• How do I get the most out of Ruby’s very powerful strings and regular
 expressions?

• What are those symbol things, and what do you do with them?

xxii Preface

From <www.wowebook.com>

ptg

• Is everything in Ruby really an object?

• How do I take advantage of dynamic typing?

• How can I make sure that my code actually works?

From there we will move on to the bigger questions of building methods and
classes:

• Why are Ruby classes so full of tiny little methods?

• Why would you overload an operator? And, more importantly, why would you
not?

• Do I really need to care about object equality?

• What good is a module?

• Can I really assign a method to an individual object? And what does that have to
do with class methods?

• How do I hang some data on a class?

• How do you use blocks to good effect?

• Why would you ever call a method that doesn’t actually exist?

• Can I really get notified when a class gets created? Why would I do that?

• Can I really modify classes on the fly? Why would I do that?

• Can I really write code that writes code? Why would I do that?

Finally, we will look at some of the techniques you can use to pull your program-
ming project together into a unified whole:

• Would you really build a whole language simply to solve an ordinary program-
ming problem?

• How do I make it easy for others to use my work?

• How does my Ruby implementation work?

• Where do I go from here?

Preface xxiii

From <www.wowebook.com>

ptg

About the Code Examples
The trouble with writing books about programming is that all the interesting stuff is
in a constant state of flux. This is, after all, what makes it interesting. Certainly Ruby
is something of a moving target these days: Although the great bulk of the Ruby code
base was written for Ruby 1.8.X, version 1.9 has been out for some time and is clearly
the future. In the pages that follow I have tried to split the coding difference by writ-
ing all of the examples in the 1.9 dialect,1 taking care to note where Ruby 1.8 would
be different. The good news is that there aren’t all that many differences.

I have also consistently used the traditional pp command to print out more com-
plex objects. However, to keep from driving everyone2 crazy, I’m not going to end-
lessly repeat the require 'pp' call needed to make pp work. Just assume it is there at
the top of each example.

xxiv Preface

1. Specifically, the examples all use Ruby-1.9.1-p430.

2. Especially me!

From <www.wowebook.com>

ptg

Acknowledgments

Sometimes I love to write and other times it’s like squeezing out that last bit of tooth-
paste—from the point of view of the tube. At those times the constant support of my
friends and family made the difference between a finished book and a smashed com-
puter. In return I would like to say thanks, starting with my lovely wife Karen and my
noble son Jackson for their constant support, and for putting up with me when that
last sentence would just not settle down. Thanks especially to Karen for sneaking into
my office in the middle of the night to remove the extraneous of ’s and the’s from the
manuscript.

Thanks to my good friend Bob Kiel for his constant encouragement. Couldn’t
have done it without you, Bob.

Thanks, too, to Eileen Cross for simply being there for me for all these years.
Thanks to the fine folks at FGM, especially Scott Gessay, Mike Fortier, Mike

Morehouse, and Kirk Maskalenko. It really is a great place to work. Also thanks to
George Croghan for continuing to speak to me even after I had used the parental voice
of death on him.

Thanks to Chris Bailey for keeping me from taking a match to the whole project.
I also owe some serious gratitude to Gene, Laura, and Derek Stokes for their com-

pany and cheer as well as occasionally providing me with a quiet place to think and
write: I’ve spent many a happy hour toiling away at the kitchen table of their beach
house. I’d especially like to thank Gene for his rocket fuel martinis. I have only myself
to blame if Gene’s concoctions occasionally enhanced the happiness of the hour at the
expense of the toiling. And thanks to Laura for injecting just the right level of zani-
ness into my life.

xxv

From <www.wowebook.com>

ptg

Special thanks to Scott Downie (the brightest intern who ever fetched coffee) for
introducing me to the TV series Firefly and thereby getting me through the dark days
of Chapters 15 and 16.1

Thanks to everyone behind the Northern Virginia Ruby Users’ Group, RubyNation,
and the National Capital Area Clojure User Group for their encouragement. Through
their efforts hundreds of gallons of beer have found a decent home.

Thanks to everyone who reviewed the early versions of this book, including Rob
Sanheim, James Kebinger, and Ethan Roberts.

Special thanks for Beth Gutierrez for providing her unique perspective on the
manuscript.

Thanks to Carl Fyffe for helping me find a way out of the dark days of Chapters
15 and 16.

Thanks to Mike Abner and the aforementioned Carl for helping me to settle on
a title.

Thanks also to Steve Ingram for starting the e-mail discussion that eventually gave
birth to Chapter 5.

Thanks to my friend Diana Greenberg for her constant support, and for not buy-
ing a copy of this book before I can give her one.

Special thanks to Diane Freed. If you can imagine trying to correct a manuscript
full of technical terms, tortured syntax, and typos (I can’t), you have an idea of the job
of a copy editor, a job that Diane performed with real finesse.

Thanks also to Rob and Denise Cross for putting up with me over a long
Thanksgiving weekend as I went through my end of the copyediting of this book.

Thanks to Raina Chrobak of Addison-Wesley for her help and patience.
Finally special thanks to my editor Chris Guzikowski for putting up with the

delays caused by the dark days of Chapters 15 and 16.

xxvi Acknowledgments

1. Well, originally they were Chapters 11, 12, and 13, and then they became Chapter 10 before set-
tling down as 15 and 16. Now you know why those days were so dark.

From <www.wowebook.com>

ptg

About the Author

Russ Olsen’s career spans three decades, during which he has written everything from
graphics device drivers to document management applications. These days, Russ dili-
gently codes away at GIS systems, network security, and process automation solutions.
Otherwise, Russ spends a lot of his free time writing and talking about programming,
especially Ruby and Clojure.

Russ’ first book is the highly regarded Design Patterns in Ruby (Addison-Wesley,
2008). Russ is also the lurking presence behind the Technology As If People Mattered
blog (www.russolsen.com). Russ’ technical pontifications have been translated into six
languages, and Russ is a frequent speaker at technical conferences.

Russ lives in the Washington, D.C., area with his lovely wife, Karen, and noble
son, Jackson, both of whom are smarter than he is.

xxvii

From <www.wowebook.com>

www.russolsen.com

ptg

This page intentionally left blank

From <www.wowebook.com>

ptg

PART I
The Basics

From <www.wowebook.com>

ptg

This page intentionally left blank

From <www.wowebook.com>www.allitebooks.com

http://www.allitebooks.org

ptg

CHAPTER 1
Write Code That Looks
Like Ruby

Some years ago I did a long stint working on a huge document management system.
The interesting thing about this job was that it was a joint development project: Part
of the system was developed by my group here in the United States and part was built
by a team of engineers in Tokyo. I started out doing straight programming, but slowly
my job changed—I found myself doing less and less programming and more and
more translating. Whenever a Japanese–American meeting collided with the language
barrier my phone would ring, and I would spend the rest of the afternoon explaining
to Mr. Smith just exactly what Hosokawa-San was trying to say, and vice versa. What
is remarkable is that my command of Japanese is practically nil and my Japanese col-
leagues actually spoke English fairly well. My special ability1 was that I could under-
stand the very correct, but very unidiomatic classroom English spoken by our Japanese
friends as well as the slangy, no-holds-barred Americanisms of my U.S. coworkers.

You see the same kind of thing in programming languages. The parser for any
given programming language will accept any valid program—that’s what makes it a
valid program—but every programming community quickly converges on a style, an
accepted set of idioms. Knowing those idioms is as much a part of learning the lan-
guage as knowing what the parser will accept. After all, programming is as much about
communicating with your coworkers as writing code that will run.

3

1. I had developed this talent over numerous lunches, happy hours, and late-night bull sessions. Oh,
how I do devote myself to the cause.

From <www.wowebook.com>

ptg

In this chapter we’ll kick off our adventures in writing good Ruby with the very
smallest idioms of the language. How do you format Ruby code? What are the rules
that the Ruby community (not the parser) have adopted for the names of variables and
methods and classes? As we tour the little things that make a Ruby program stylisti-
cally correct, we will glimpse at the thinking behind the Ruby programming style,
thinking that goes to the heart of what makes Ruby such a lovely, eloquent program-
ming language. Let’s get started.

The Very Basic Basics
At its core, the Ruby style of programming is built on a couple of very simple ideas:
The first is that code should be crystal clear—good code tells the reader exactly what
it is trying to do. Great code shouts its intent. The second idea is related to the first:
Since there is a limit to how much information you can keep in your head at any given
moment, good code is not just clear, it is also concise. It’s much easier to understand
what a method or a class is doing if you can take it all in at a glance.

To see this in practice, take a look at this code:

class Document

attr_accessor :title, :author, :content

def initialize(title, author, content)

@title = title

@author = author

@content = content

end

def words

@content.split

end

def word_count

words.size

end

end

4 Chapter 1. Write Code That Looks Like Ruby

From <www.wowebook.com>

ptg

The Document class is nothing special technically—just a field for an author, one
for a title, and one for the document content along with a few simple methods.2 The
thing to note about the code above is that it follows the Ruby indentation convention:
In Ruby you indent your code with two spaces per level. This means that the first level
of indentation gets two spaces, followed by four, then six, and then eight. The two
space rule may sound a little arbitrary, but it is actually rooted in very mundane prac-
ticality: A couple of spaces is about the smallest amount of indentation that you can
easily see, so using two spaces leaves you with the maximum amount of space to the
right of the indentation for important stuff like actual code.

Note that the rule is to use two spaces per indent: The Ruby convention is to never
use tabs to indent. Ever. Like the two space rule, the ban on tabs also has a very prosaic
motivation: The trouble with tabs is that the exchange rate between tabs and spaces is
about as stable as the price of pork belly futures. Depending on who and when you ask,
a tab is worth either eight spaces, four spaces, two spaces, or, in the case of one of my
more eccentric former colleagues, three. Mixing tabs and spaces without any agreement
on the exchange rate between the two can result in code that is less than readable:

class Document

attr_accessor :title, :author, :content

def initialize(title, author, content)

@title = title

@author = author

@content = content

end

def words

@content.split

end

def word_count

words.size

end

end

The Very Basic Basics 5

2. But do take a good long look at the Document class because it’s going to be with us for much of
the book.

From <www.wowebook.com>

ptg

Life, not to mention the schedule, is too short to deal with problems like this,3 so
idiomatic Ruby should be serenely tab free.

Go Easy on the Comments
The mechanics of Ruby comments are simple enough: Anything following a # in the
code is a comment.4 The real questions regarding comments are when and how much?
When is it a good idea to insert a comment into your code? And how much com-
menting is enough?

Good Ruby code should speak for itself, and most of the time you should let it
do its own talking. If it’s obvious how someone would use your method—if the class
or program needs no explanation—then don’t explain it. Above all, avoid boilerplate
comments: Never put in a comment simply because you always put a comment there.

There are good reasons for adding comments to your code, the best being to
explain how to use your software masterpiece. These kinds of “how to” comments
should focus on exactly that: how to use the thing. Don’t explain why you wrote it,
the algorithm that it uses, or how you got it to run faster than fast. Just tell me how
to use the thing and remember that examples are always welcome:

Class that models a plain text document, complete with title

and author:

#

doc = Document.new('Hamlet', 'Shakespeare', 'To be or...')

puts doc.title

puts doc.author

puts doc.content

#

Document instances know how to parse their content into words:

#

puts doc.words

puts doc.word_count

#

6 Chapter 1. Write Code That Looks Like Ruby

3. The “problem like this” in the example is that it was written with randomly mixed tabs and
spaces, with each tab worth two spaces. Now expand the tabs to four spaces each and you have
the formatting chaos that we see.

4. Ruby also supports multiline comments delimited by =begin and =end, but Ruby programmers
tend to stick with the # style of comments most of the time.

From <www.wowebook.com>

ptg

class Document

class omitted...

end

This is not to say that you shouldn’t have comments that explain some of the back-
ground of the code. Just keep the background separate from the instructions:

Author: Russ Olsen

Copyright 2010 Russ Olsen

#

Document: An example Ruby class

Sometimes it’s also wise to include a “how it works” explanation of particularly
complicated bits of code. Again, keep this kind of explanation separate from the “how to”:

Using ngram analysis, compute the probability

that this document and the one passed in were

written by the same person. This algorithm is

known to be valid for American English and will

probably work for British and Canadian English.

#

def same_author_probability(other_document)

Implementation left as an exercise for the reader...

end

The occasional in-line comment can also help:

return 0 if divisor == 0 # Avoid division by zero

Whatever you do, don’t fall into the trap of sprinkling those “pesky younger sib-
ling” comments throughout your code, comments that follow on the heels of each
line, repeating everything it says:

count += 1 # Add one to count

The danger in comments that explain how the code works is that they can easily
slide off into the worst reason for adding comments: to make a badly written program

Go Easy on the Comments 7

From <www.wowebook.com>

ptg

somewhat comprehensible. That voice you hear in your head, the one whispering that
you need to add some comments, may just be your program crying out to be rewrit-
ten. Can you improve the class, method, and variable names so that the code itself tells
you what it is doing? Can you rearrange things, perhaps by breaking up a long method
or collapsing two classes together? Can you rethink the algorithm? Is there anything
you can do to let the code speak for itself instead of needing subtitles?

Remember, good code is like a good joke: It needs no explanation.

Camels for Classes, Snakes Everywhere Else
Once we get past the relatively easy issues of indentation and comments, we come face
to face with the question of names. Although this isn’t the place to talk about the exact
words you would use to describe your variables, classes and methods, this is the place
to talk about how those words go together. It’s really very simple: With a few notable
exceptions, you should use lowercase_words_separated_by_underscores.5 Almost
everything in this context means methods, arguments, and variables, including
instance variables:

def count_words_in(the_string)

the_words = the_string.split

the_words.size

end

Class names are an exception to the rule: Class names are camel case, so Document
and LegalDocument are good but Movie_script is not. If all of this seems a bit doc-
trinaire for you, there is a place where you can exercise some creativity: constants.
Ruby programmers seem divided about whether constants should be rendered in
camel case like classes:

FurlongsPerFortnight = 0.0001663

Or all uppercase, punctuated by underscores:

ANTLERS_PER_MALE_MOOSE = 2

8 Chapter 1. Write Code That Looks Like Ruby

5. Because of its low, streamlined look, this naming style is known as “snake case.”

From <www.wowebook.com>

ptg

My own preference—and the one you will see throughout this book—is the
ALL_UPPERCASE flavor of constant.

Parentheses Are Optional but Are Occasionally
Forbidden
Ruby tries hard not to require any syntax it can do without and a great example of this
is its treatment of parentheses. When you define or call a method, you are free to add
or omit the parentheses around the arguments. So if we were going to write a method
to find a document, we might write it with the parentheses:

def find_document(title, author)

Body omitted...

end

...

find_document('Frankenstein', 'Shelley')

Or leave them out:

def find_document title, author

Body omitted...

end

...

find_document 'Frankenstein', 'Shelley'

So, do you put them in or leave them out? With some notable exceptions, Ruby
programmers generally vote for the parentheses: Although this isn’t a hard and fast
rule, most Ruby programmers surround the things that get passed into a method with
parentheses, both in method definitions and calls. Somehow, having those parenthe-
ses there makes the code seem just a bit clearer.

As I say, this is not a rigid law, so Ruby programmers do tend to dispense with the
parentheses when calling a method that is familiar, stands alone on its own line, and

Parentheses Are Optional but Are Occasionally Forbidden 9

From <www.wowebook.com>

ptg

whose arguments are few in number. Our old friend puts fits this description to a tee,
and so we tend to leave the parentheses off of calls to puts:

puts 'Look Ma, no parentheses!'

The other main exception to the “vote yes for parentheses” rule is that we don’t
do empty argument lists. If you are defining—or calling—a method with no param-
eters, leave the parentheses off, so that it is:

def words

@content.split

end

And not:

def words()

@content.split()

end

Finally, keep in mind that the conditions in control statements don’t require
parentheses—and we generally leave them off. So don’t say this:

if (words.size < 100)

puts 'The document is not very long.'

end

When you can say this:

if words.size < 100

puts 'The document is not very long.'

end

Folding Up Those Lines
Although most Ruby code sticks to the “one statement per line” format, it is possible
to cram several Ruby statements onto a single line: All you need to do is to insert a
semicolon between the statements:

10 Chapter 1. Write Code That Looks Like Ruby

From <www.wowebook.com>

ptg

puts doc.title; puts doc.author

As I say, mostly we don’t. There are a few exceptions to this rule. For example, if
you are defining an empty, or perhaps a very, very simple class, you might fold the def-
inition onto a single line:

class DocumentException < Exception; end

You might also do the same thing with a trivial method:

def method_to_be_overriden; end

Keep in mind that a little bit of this kind of thing goes a long way. The goal is
code that is clear as well as concise. Nothing ruins readability like simply jamming a
bunch of statements together because you can.

Folding Up Those Code Blocks
Ruby programs are full of code blocks, chunks of code delimited by either a pair of
braces, like this:

10.times { |n| puts "The number is #{n}" }

Or, by the do and end keywords:

10.times do |n|

puts "The number is #{n}"

puts "Twice the number is #{n*2}"

end

The two forms of code block are essentially identical: Ruby doesn’t really care
which you use. Ruby programmers have, however, a simple rule for formatting of code
blocks: If your block consists of a single statement, fold the whole statement into a
single line and delimit the block with braces. Alternatively, if you have a multi-
statement block, spread the block out over a number of lines, and use the do/end
form.

Folding Up Those Code Blocks 11

From <www.wowebook.com>

ptg

Staying Out of Trouble
More than anything else, code that looks like Ruby looks readable. This means that
although Ruby programmers generally follow the coding conventions that we have
covered in this chapter, sometimes circumstances—and readability—call for the uncon-
ventional. Take the rule about folding up a one line code block, so that instead of this:

doc.words.each do |word|

puts word

end

You would write this:

doc.words.each { |word| puts word }

The time to break this convention is when it would make your single line of code too
long:

doc.words.each { |word| some_really_really_long_expression(... with

lots of args ...) }

Although coders differ about how long is too long,6 at some point you’re going to con-
front a block that might live on a single line, but shouldn’t.

This kind of thinking should also go into the question of parentheses. There are
times when, according to the “rules,” you might omit the parentheses, but readability
says that you should leave them in. For example, we have seen that puts generally goes
sans parentheses:

puts doc.author

Another method that is frequently without parentheses is instance_of?, which
tells you whether an object is an instance of some class:

doc.instance_of? Document

12 Chapter 1. Write Code That Looks Like Ruby

6. In fact, given the formatting limitations of this book, a good number of the blocks you’ll see in
this book will be multiline rather than single line, simply because the longer line will not fit on
the page.

From <www.wowebook.com>www.allitebooks.com

http://www.allitebooks.org

ptg

If, however, you assemble these two methods into a more complex expression, like
this:

puts doc.instance_of? self.class.superclass.class

Then perhaps it is time for some parentheses:

puts doc.instance_of?(self.class.superclass.class)

Thus, the final code formatting rule is to always mix in a pinch of pragmatism.

In the Wild
Absolutely the best way to learn to write idiomatic Ruby code is to read idiomatic
Ruby code. The Ruby standard library, the lump of Ruby code that came with your
Ruby interpreter, is a great place to start. Just pick a class that interests you; perhaps
you have always been fascinated by the Set class.7 Find set.rb in your Ruby install
and settle in for some interesting reading.

If you do go looking at set.rb, you will find, along with two-space indentation
and well-formed variable names, that the file starts with some comments8 explaining
the background of the class:

Copyright (c) 2002-2008 Akinori MUSHA <knu@iDaemons.org>

#

Documentation by Akinori MUSHA and Gavin Sinclair.

#

All rights reserved. You can redistribute and/or modify it

under the same terms as Ruby.

This is followed by a quick explanation of what the class does:

This library provides the Set class, which deals with a

collection of unordered values with no duplicates. It

is a hybrid of Array's intuitive inter-operation facilities

In the Wild 13

7. Perhaps you should get out more often.

8. If you do look you will discover that I reformatted the comments a bit to make them fit on the page.

From <www.wowebook.com>

ptg

and Hash's fast lookup. If you need to keep values ordered,

use the SortedSet class.

And then a few examples:

require 'set'

s1 = Set.new [1, 2] # -> #<Set: {1, 2}>

s2 = [1, 2].to_set # -> #<Set: {1, 2}>

s1 == s2 # -> true

If you want to add useful comments to your own code, you could do worse than fol-
low the model of set.rb.

If you look closely at the Set class you will see a couple of additional method
name conventions at work. The first is that Ruby programmers will usually end the
name of a method that answers a yes/no or true/false question with a question mark.
So if you do peek into Set you will find the include? method as well as superset?
and empty?. Don’t be fooled by that exotic-looking question mark: It’s just an ordi-
nary part of the method name, not some special Ruby syntax. The same thing is true
of exclamation points at the end of a method name: The Ruby rules say that ! is a fine
character with which to end a method name. In practice, Ruby programmers reserve
! to adorn the names of methods that do something unexpected, or perhaps a bit dan-
gerous. So the Set class has flatten! and map!, both of which change the class in
place instead of returning a modified copy.

Although set.rb is a model of Ruby decorum, there are also notable spots where
the code that comes built into Ruby breaks some of the Ruby conventions. Exhibit
one: the Float method. Shock! Imagine a method name that begins with an upper-
case letter. [Cue ominous music.]

Actually, there is some excuse for this momentous breach of manners: The Float
method turns its argument—usually a string—into a floating point number.9 Thus
you can use Float as a kind of stand-in for the class name:

pi = Float('3.14159')

14 Chapter 1. Write Code That Looks Like Ruby

9. Note that the Float('3.14159') is not quite the same as '3.14159'.to_f. The Float method
will throw an exception if you pass it bad input, while to_f will quietly return 0.

From <www.wowebook.com>

ptg

The best part of having rules is that they inevitably create rule breakers—and it’s
even better when the rule breakers are the authorities.

Wrapping Up
So there we have the very basics of the Ruby programming style. Shallow, space-based
indentation. A definite set of rules for formatting names. Optional parentheses,
mostly supplied. Comments that tell you how to use it, or how it works, or who wrote
it, but in stingy moderation. Above all else, pragmatism: You cannot make readable
code by blindly following some rules.

This is, however, just the beginning: In a very real sense, this whole book is
devoted to Ruby conventions of one kind or other. In particular, in Chapters 10 and
18 we will return to the subject of method names, while the last chapter is all about
breaking the rules.

For the moment, however, we’re going to stick to the basics, so in the next chap-
ter we’ll look at the Ruby control structures and how they contribute to clear and con-
cise code.

Wrapping Up 15

From <www.wowebook.com>

ptg

This page intentionally left blank

From <www.wowebook.com>

ptg

CHAPTER 2
Choose the Right Control
Structure

If indentation, comments, and the form of your variable names are the things that give
your program its look, then it’s the control structures—the ifs and elses and whiles—
that bring it to life: It’s no accident that the generic name for a program is “logic.”
Ruby includes a fairly familiar set of control structures, not much different than those
available in more traditional languages. Look at any Ruby program and you will see
the ifs, elses, and whiles of your programming youth. But if you look a little closer,
you will also come across some odd-looking logical constructs, things with much less
familiar names like unless and until.

In this chapter we will look at creating Ruby programs full of idiomatic control
structures, at why sometimes you want to say if this then do that and at other times do
this unless that. Along the way we will also explore Ruby’s take on what is true and
what is false, and learn how you can avoid having your program logic take a wrong
turn.

If, Unless, While, and Until
Good news always bears repeating, so let me say it again: Ruby’s most basic control
structure, the if statement, contains no surprises. For example, if we wanted to add
the idea of unmodifiable read-only documents to our Document class, we might end
up with this very boring example of an if statement:

17

From <www.wowebook.com>

ptg

class Document

attr_accessor :writable

attr_reader :title, :author, :content

Much of the class omitted...

def title=(new_title)

if @writable

@title = new_title

end

end

Similar author= and content= methods omitted...

end

Now the if statement in the title= method above is completely generic: Plus or
minus some parentheses around the condition, it could have come out of a program
written in any one of a dozen programming languages. Consider, however, what
would happen if we turned the logic around: What if, instead of an @writable attri -
bute, we had coded @read_only instead? The natural tendency would be to simply
throw in a ! or a not:

def title=(new_title)

if not @read_only

@title = new_title

end

end

The trouble with this if statement is that it is just slightly more verbose than it needs
to be. A more concise—and idiomatic—way to say the same thing is:

def title=(new_title)

unless @read_only

@title = new_title

end

end

18 Chapter 2. Choose the Right Control Structure

From <www.wowebook.com>

ptg

With unless, the body of the statement is executed only if the condition is false.
The unless-based version of title= has two advantages: First, it is exactly one token
(the not) shorter than the if not rendition. Second—and much more important—
is that once you get used to it, the unless-based decision takes less mental energy to
read and understand. The difference between if not and unless may seem trivial,
but it is the difference between saying that “It is not true that Ruby is like Java” and
saying “Ruby is different than Java”: It’s just a little clearer. Of course, the operative
phrase is “once you get used to it.” If you aren’t familiar with unless, using it can feel
a bit like wearing your shoes on the wrong feet. But do be persistent: For most pro-
grammers, the unless statement very rapidly loses its weirdness and becomes the way
you do a backward if statement. And yes, getting rid of that one token is worth it.

In exactly the same way that if has unless, while has a negative doppelganger
in until: An until loop keeps going until its conditional part becomes true. In the
same way that Ruby coders avoid negated conditions in ifs, we also shy away from
negated conditions in while loops. Thus, it’s not:

while ! document.is_printed?

document.print_next_page

end

It’s:

until document.printed?

document.print_next_page

end

Writing clear code is a battle of inches, and you need to contest every extraneous
character, every bit of reversed logic.

Use the Modifier Forms Where Appropriate
Actually, our code is still not as clutter free as it might be. Take a look at the last ver-
sion of our “can we modify this document?” logic:

unless @read_only

@title = new_title

end

Use the Modifier Forms Where Appropriate 19

From <www.wowebook.com>

ptg

Since the body of this unless is only one statement long, we can—and probably
should—collapse the whole thing into a single line with the unless at the end:

@title = new_title unless @read_only

You can also pull the same trick with an if:

@title = new_title if @writable

You can also do similar things with both while:

document.print_next_page while document.pages_available?

And until:

document.print_next_page until document.printed?

These last examples show off the two advantages of the modifier form: Not only
do they enable you to fit a lot of programming logic into a small package, but they
also read very smoothly: Do this if that.

Use each, Not for
In contrast to the somewhat strange-looking unless and until, Ruby sports a very
familiar for loop. You can, for example, use for to run through all the elements of an array:

fonts = ['courier', 'times roman', 'helvetica']

for font in fonts

puts font

end

The unfortunate thing about the for loop is that we tend not to use it! In place of the
for loop, idiomatic Ruby says that you should use the each method:

fonts = ['courier', 'times roman', 'helvetica']

fonts.each do |font|

20 Chapter 2. Choose the Right Control Structure

From <www.wowebook.com>

ptg

puts font

end

Since the two versions of the “print my fonts” code are essentially equivalent,1

why prefer one over the other? Mainly it is a question of eliminating one level of indi-
rection. Ruby actually defines the for loop in terms of the each method: When you
say for font in fonts, Ruby will actually conjure up a call to fonts.each. Given
that the for statement is really a call to each in disguise, why not just pull the mask
off and write what you mean?

A Case of Programming Logic
Along with the garden variety if, Ruby also sports a case statement, a multi-way deci-
sion statement similar to the switch statement that you find in many programming
languages. Ruby’s case statement has a surprising number of variants. Most com-
monly it is used to select one of a number of bits of code to execute:

case title

when 'War And Peace'

puts 'Tolstoy'

when 'Romeo And Juliet'

puts 'Shakespeare'

else

puts "Don't know"

end

Alternatively, you can use a case statement for the value it computes:

author = case title

when 'War And Peace'

'Tolstoy'

when 'Romeo And Juliet'

'Shakespeare'

A Case of Programming Logic 21

1. Almost. The code block in the each version actually introduces a new scope. Any variables intro-
duced into a code block are local to that block and go away at the end of the block. The more
traditional for version of the loop does not introduce a new scope, so that variables introduced
inside a for are also visible outside the loop.

From <www.wowebook.com>

ptg

else

"Don't know"

end

Or the equivalent, and somewhat more compact:

author = case title

when 'War And Peace' then 'Tolstoy'

when 'Romeo And Juliet' then 'Shakespeare'

else "Don't know"

end

These last two examples rely on the fact that virtually everything in Ruby returns
a value. Logically enough, a case statement returns the values of the selected when or
else clause—or nil if no when clause matches and there is no else. Thus the fol-
lowing just might evaluate to nil:

author = case title

when 'War And Peace' then 'Tolstoy'

when 'Romeo And Juliet' then 'Shakespeare'

end

What all this means is that you can use the case statement for exactly what it is: a
giant, value-returning expression.

A key thing to keep in mind about all of these case statements is that they use
the ===2 operator to do the comparisons. We will leave the details of === to Chapter
12, but the practical effect of the case statement’s use of === is that it can make your
life easier. For example, since classes use === to identify instances of themselves, you
can use a case statement to switch on the class of an object:

case doc

when Document

puts "It's a document!"

when String

puts "It's a string!"

22 Chapter 2. Choose the Right Control Structure

2. That’s three equals signs!

From <www.wowebook.com>www.allitebooks.com

http://www.allitebooks.org

ptg

else

puts "Don't know what it is!"

end

In the same spirit, you can use a case statement to detect a regular expression match:

case title

when /War And .*/

puts 'Maybe Tolstoy?'

when /Romeo And .*/

puts 'Maybe Shakespeare?'

else

puts 'Absolutely no idea...'

end

Finally, there is a sort of degenerate version of the case statement that lets you
supply your own conditions:

case

when title == 'War And Peace'

puts 'Tolstoy'

when title == 'Romeo And Juliet'

puts 'Shakespeare'

else

puts 'Absolutely no idea...'

end

This last example is really not much more than an if/elsif statement dressed up
like a case statement, and, in fact, most Ruby programmers seem to prefer the if.

Staying Out of Trouble
One of the best ways to lose control of your programming logic is to forget the fun-
damentals of Ruby’s boolean logic. Remember, when you are making decisions in
Ruby, only false and nil are treated as false. Ruby treats everything else—and I do
mean everything—as true. Former C programmers should keep in mind that the
number 0, being neither false nor nil, is true in Ruby. So, this:

Staying Out of Trouble 23

From <www.wowebook.com>

ptg

puts 'Sorry Dennis Ritchie, but 0 is true!' if 0

Will print an apology to the inventor of C. In the same spirit, the string "false" is
also not the same as the boolean value false and thus, this:

puts 'Sorry but "false" is not false' if 'false'

Will also print something.
Ruby’s treatment of booleans means that there are two things that are false and an

infinite number of things that are true. Thus you should avoid testing for truth by
testing for specific values. In Ruby, this:

if flag == true

do something

end

Is not just overly wordy, it is an invitation to disaster. After all, the value of flag may
have been the result of a call to defined?. The idea behind defined? is that it will tell
you whether some Ruby expression is defined or not:

doc = Document.new('A Question', 'Shakespeare', 'To be...')

flag = defined?(doc)

The rub is that although defined? does indeed return a boolean, it never, ever
returns true or false. Instead, defined? returns either a string that describes the thing
passed in—in the example above, defined?(doc) will return "local-variable".
On the other hand, if the thing passed to defined? is not defined, then defined? will
return nil. So defined?—like many Ruby methods—works in a boolean context, as
long as you don’t explicitly ask if it returns true or false.

It’s also possible to go wrong by taking nil for granted. Imagine you have some
method, get_next_object that gives you one object after another, returning nil
when there are no more objects:

Broken in a subtle way...

while next_object = get_next_object

Do something with the object

end

24 Chapter 2. Choose the Right Control Structure

From <www.wowebook.com>

ptg

This code is relying on the fact that nil is false and almost everything else is true to
propel the loop round and round. The trouble with this example can be summed up
in a question: What happens if the next object happens to be the object false? The
answer is that the loop will terminate early. Much better is:

until (next_object = get_next_object) == nil

Do something with the object

end

Or:

until (next_object = get_next_object).nil?

Do something with the object

end

If you are looking for nil and there is any possibility of false turning up, then look
for nil explicitly.

In the Wild
As we have seen, you can take advantage of the expression-oriented nature of Ruby to
pull values back from a case statement. Although relatively rare, you will sometimes
come across code that captures the values of a while or if statement. Here, for
instance, is a fragment of code from the RubyGems system, which uses an if state-
ment as a big expression to check on the validity of an X509 certificate:

ret = if @not_before && @not_before > time

[false, :expired, "not valid before '#@not_before'"]

elsif @not_after && @not_after < time

[false, :expired, "not valid after '#@not_after'"]

elsif issuer_cert && !verify(issuer_cert.public_key)

[false, :issuer, "#{issuer_cert.subject} is not issuer"]

else

[true, :ok, 'Valid certificate']

end

In the Wild 25

From <www.wowebook.com>

ptg

Another expression-based way to make a decision, one that you will see quite a
bit, is the ternary operator or ?: operator. Here’s an example, again from RubyGems:

file = all ? 'specs' : 'latest_specs'

The ?: operator acts like a very compact if statement with the condition part com-
ing right before the question mark. If the condition (in the example, the value of all)
is true, then the value of the whole expression is the thing between the question mark
and the colon—'specs' in the example. If the condition is false, then the expression
evaluates to the last part, the bit after the colon, 'latest_specs' in the example. The
?: operator has been around since at least the C programming language, but many
programming communities tend to ignore it. Ruby coders, always looking for a suc-
cinct way getting the point across, do use ?: quite a bit.

Another common expression-based idiom helps with a familiar initialization
problem: Sometimes you are just not sure if you need to initialize a variable. For exam-
ple, you might want to ensure that an instance variable is not nil. If the variable has
a value you want to leave it alone, but if it is nil you want to set it to some default:

@first_name = '' unless @first_name

Although this code does work, an experienced Ruby programmer is much more
likely to write it this way:

@first_name ||= ''

This construct may look a little odd, but there is (literally) logic behind it. Recall that:

count += 1

Is equivalent to:

count = count + 1

Do the same expansion on the first ||= expression and you get:

@first_name = @first_name || ''

26 Chapter 2. Choose the Right Control Structure

From <www.wowebook.com>

ptg

Translated into English, the expansion says “Set the new value of @first_name to
the old value of @first_name, unless that is nil, in which case set it to the empty
string.” So why do Ruby programmers tend to favor ||= over the alternatives? It’s the
same old answer: The ||= is a little bit less code, and (more importantly) you don’t
have to repeat the name of the variable you are initializing.

Finally, be aware that this use of ||= suffers from exactly the kind of nil/false
confusion that I warned you about earlier. If @first_name happened to start out as
false, the code would cheerfully go ahead and reset it to the empty string. Moral of
the story: Don’t try to use ||= to initialize things to booleans.

Wrapping Up
In this chapter we looked over the control structures available to the Ruby program-
mer. We’ve seen that when it comes to control structures, Ruby has our old friends if
and while along with less familiar choices like unless and until. Spend the time and
you will rapidly discover that having an extensive menu of control structures lets you
say what needs to be said with as little fuss—and clutter—as possible.

So much for the control structures. Programs do not, however, live by code alone:
There is always that pesky data clamoring to be read, sorted, massaged, displayed, and
saved. So in the next chapter we’ll see how you can make effective use of the twin Swiss
Army knives of Ruby data structures, the array and the hash.

Wrapping Up 27

From <www.wowebook.com>

ptg

This page intentionally left blank

From <www.wowebook.com>

ptg

CHAPTER 3
Take Advantage of Ruby’s
Smart Collections

Here’s something to do the next time you have a rainy afternoon to kill: Download
two or three significant Ruby programs, maybe utilities that you use every day or
applications you have heard of or perhaps projects whose names you just happen to
like. Once you have the code, settle in and start reading it; figure out how it works
and why it’s put together the way it is. One of the things you are likely to find is arrays,
lots and lots of arrays. You will probably also come across a good number of hashes
mixed in with those arrays.

In the pages that follow we are going to look at the Ruby versions of these two
venerable data structures and discover that they have some surprising talents. Along
the way we will also see how you can create arrays in a surprising number of ways, how
you can run through the elements of an array without a hint of an index, and how
orderly the Ruby hash class is. We will also take a tour of some of the rougher parts of
the Ruby collection landscape and, finally, we will visit a bit with one of the lesser
known of the Ruby collection classes.

Literal Shortcuts
Before you can do anything with a collection you need to have one. A common way
to conjure up a collection is with a literal, but the trouble with collection literals is that
they have parts—the things in the collection—and spelling out all of those individual

29

From <www.wowebook.com>

ptg

elements can make for very inelegant code. Thus a simple literal array of words can
turn into a thicket of quotes and commas:

poem_words = ['twinkle', 'little', 'star', 'how', 'I', 'wonder']

Fortunately, Ruby gives us some convenient syntactical shortcuts for exactly this
situation. If you need to initialize an array of strings, where none of the strings have
embedded spaces, you can simply say:

poem_words = %w{ twinkle little star how I wonder }

Hash literals also present you with a couple of choices. The traditional hash lit-
eral has you associating your keys with your values with the so-called hash rocket, =>,
like this:

freq = { "I" => 1, "don't" => 1, "like" => 1, "spam" => 963 }

This last form is perfectly general purpose in that it doesn’t care about the types of the
hash keys. If you happen to be using symbols as your keys—a very common prac-
tice—then you can cut this:

book_info = { :first_name => 'Russ', :last_name => 'Olsen' }

Down to this:

book_info = { first_name: 'Russ', last_name: 'Olsen' }

Either way you get exactly the same hash.1

Instant Arrays and Hashes from Method Calls
Another way to get hold of a collection is to have Ruby manufacture one for you dur-
ing the method-calling process. Although Ruby methods typically take a fixed num-
ber of arguments, it is possible to build methods that take a variable number of

30 Chapter 3. Take Advantage of Ruby’s Smart Collections

1. Well, you get the same hash if you are using Ruby 1.9, which is where this shorter hash literal
syntax made its appearance.

From <www.wowebook.com>

ptg

arguments. If you have a basic set of arguments and simply want to allow your callers
to be able to omit one here or there, you can simply specify defaults. This method, for
instance, will take one or two arguments:

def load_font(name, size = 12)

Go font hunting...

end

Sometimes, however, what you need is a method that will take a completely arbi-
trary set of arguments. Ruby has a special syntax for this: If, in your method defini-
tion, you stick an asterisk before one of your parameter names, that parameter will
soak up any extra arguments passed to the method. The value of the starred parame-
ter will be an array containing all the extra arguments. Thus this method:

def echo_all(*args)

args.each { |arg| puts arg }

end

Will take any number of arguments and print them out. You can only have one starred
parameter, but it can be pretty much anywhere in your parameter list:2

def echo_at_least_two(first_arg, *middle_args, last_arg)

puts "The first argument is #{first_arg}"

middle_args.each { |arg|puts "A middle argument is #{arg}" }

puts "The last argument is #{last_arg}"

end

In practice this means that you can sometimes rely on Ruby to manufacture an
array for you. Take the add_authors method for example:

class Document

Most of the class omitted...

Instant Arrays and Hashes from Method Calls 31

2. In Ruby 1.9 it can be anywhere. In 1.8 the starred argument needed to be at the end of the argu-
ment list.

From <www.wowebook.com>

ptg

def add_authors(names)

@author += " #{names.join(' ')}"

end

end

The add_authors method lets the caller specify a number of different names as the
author of a document. As it is written above, you pass the add_authors method an
array of names:

doc.add_authors(['Strunk', 'White'])

Once it has the array of author’s names, add_authors uses the array method join to
combine the elements into a single space-delimited string, which it then appends onto
@author.

This initial stab at add_authors does work, but it is not as smooth as it might be:
By adding a star to the names argument you can turn your method into one that takes
any number of arguments—all delivered in an array.3 Adding the star, like so:

class Document

Most of the class omitted...

def add_authors(*names)

@author += " #{names.join(' ')}"

end

end

Means that you can relieve your users of the need to wrap the names in an array:

doc.add_authors('Strunk', 'White')

The jargon for a star used in this context is splat, as in “splat names.” Think of an
exploding array, with elements flying every which way.

32 Chapter 3. Take Advantage of Ruby’s Smart Collections

3. The star actually works the other way too: If you happen to find yourself holding a three-element
array and want to pass that trio of objects to a method that takes three arguments, you can sim-
ply say some_method(*my_array). Ah, symmetry.

From <www.wowebook.com>www.allitebooks.com

http://www.allitebooks.org

ptg

Hashes also have a bonus method-passing feature. Any method can, of course,
take a literal hash as an argument. Thus, we might have a method that will locate a
font by name and size, and pass the values in as a hash:

def load_font(specification_hash)

Load a font according to specification_hash[:name] etc.

end

So that we can load a font like this:

load_font({ :name => 'times roman', :size => 12 })

The bonus comes if the hash is at the end4 of the argument list—as it is in the
load_font example. In that case we can leave the braces off when we call the method.
Given this, we can shorten our call to load_font down to:

load_font(:name => 'times roman', :size => 12)

Written without the braces, this method call has a nice, named parameter feel to it.
You can even go one step further and leave the parentheses off, resulting in something
that looks more like a command and less like a method call:

load_font :name => 'times roman', :size => 12

Running Through Your Collection
Once you have a collection, you will probably want to do something with it. Frequently
that something will involve iterating through the collection one element at a time.
Depending on your programming background, you might be tempted to do the iter-
ating with an index-based loop, perhaps like this:

words = %w{ Mary had a little lamb }

for i in 0..words.size

puts words[i]

end

Running Through Your Collection 33

4. That is, the end of the argument list not counting any explicit block argument. More about this
in Chapter 19.

From <www.wowebook.com>

ptg

I said it in the last chapter, but it bears repeating here: Don’t do that. The way to run
through a Ruby collection is with the each method:

words.each { |word| puts word }

Hashes also sport an each method, though the Hash version comes with a twist:
If the block you supply to the Hash rendition of each takes a single argument, like this:

movie = { title: '2001', genre: 'sci fi', rating: 10 }

movie.each { |entry| pp entry }

Then each will call the block with a series of two element arrays, where the first ele-
ment is a key and the second the corresponding value, so that the code above will
print:

[:title, "2001"]

[:genre, "sci fi"]

[:rating, 10]

Alternatively, you can supply a block that takes two arguments, like this:

movie.each { |name, value| puts "#{name} => #{value}"}

Both hashes and arrays have many talents beyond the each method: Both of these
classes come equipped with very extensive APIs. To take a simple example, imagine
that we want to add a method to the Document class, a method that will return the
index of a particular word. Without thinking we might just grab for each:

def index_for(word)

i = 0

words.each do |this_word|

return i if word == this_word

i += 1

end

nil

end

34 Chapter 3. Take Advantage of Ruby’s Smart Collections

From <www.wowebook.com>

ptg

A much better way is to look at the Array API and come up with the find_index
method:

def index_for(word)

words.find_index { |this_word| word == this_word }

end

Two other collection methods you want to be sure to include in your mental
toolkit are map and inject. Like each and find_index, map takes a block and runs
through the collection calling the block for each element. The difference is that
instead of making some kind of decision based on the return from the block the way
find_index does, map cooks up a new array containing everything the block returned,
in order. The map method is incredibly useful for transforming the contents of a col-
lection en mass. For example, if you wanted an array of all the word lengths, you
might turn to map:

pp doc.words.map { |word| word.size }

Which would print:

[3, 5, 2, 3, 4]

Alternatively, you might want an all-lowercase version of the words in your document.
That’s easy, too:

lower_case_words = doc.words.map { |word| word.downcase }

The inject method is a bit harder to get your arms around but well worth the
trouble. To see what inject can do for you, imagine that you need to write a method
that will compute the average length of the words in a document. To compute the
average, we need two things: the total number of words—which we can easily get by
calling word_count—and the total length of all the words (not counting white space),
which is going to take some work. To do that work, we might use each, something
like this:

class Document

Most of the class omitted...

Running Through Your Collection 35

From <www.wowebook.com>

ptg

def average_word_length

total = 0.0

words.each { |word| total += word.size }

total / word_count

end

end

Can we improve on this? You bet: This is the kind of problem that the inject
method is tailor-made to solve. Like each, inject takes a block and calls the block
with each element of the collection. Unlike each, inject passes in two arguments to
the block: Along with each element, you get the current result—the current sum if
you are adding up all of the word lengths. Each time inject calls the block, it replaces
the current result with the return value of the previous call to the block. When inject
runs out of elements, it returns the result as its return value.

Here, for example, is our average_word_length method, reworked to use
inject:

def average_word_length

total = words.inject(0.0){ |result, word| word.size + result}

total / word_count

end

The argument passed into inject—0.0 in the example—is the initial value of the
result. If you don’t supply an initial value, inject will skip calling the block for the
first element of the array and simply use that element as the initial result.

Altogether, array instances carry around an even one hundred public methods
while hashes include more than eighty. A key part of knowing how to program in
Ruby is getting to know this extensive toolkit.

Beware the Bang!
One thing you really want to know is which methods will actually change your col-
lection and which will leave it be. This is not as obvious as you might expect. For
example, arrays come with a reverse method, which, unsurprisingly, switches the
order of the elements. You would think that reversing any nontrivial array is surely
going to change it:

36 Chapter 3. Take Advantage of Ruby’s Smart Collections

From <www.wowebook.com>

ptg

a = [1, 2, 3]

a.reverse

Unfortunately, you would think wrong: The reverse method does not change
anything. Print out the array from the previous example and you would see its order
undisturbed. The reverse method actually returns a reversed copy of the array, so that
this:

pp a.reverse

pp a

Will print:

[3, 2, 1]

[1, 2, 3]

If you really want to reverse the array in place, you need reverse!, with an exclama-
tion point at the end:

a.reverse!

pp a

Run this code and you will see:

[3, 2, 1]

In the same way, the array sort method returns a sorted copy, while sort! sorts the
array in place.

Don’t, however, get the idea that only methods with names ending in ! will
change your collection. Remember, the Ruby convention is that an exclamation point
at the end of a method name indicates that the method is the dangerous or surprising
version of a pair of methods. Since making a modified copy of a collection seems very
safe while changing a collection in place can be a bit dicey, we have sort and sort!.
The punch line is that there are many !-less methods in Ruby’s collection classes,
methods that will cheerfully change your collection in place as an intrinsic part of
what they do. Thus, push, pop, delete, and shift are as capable of changing your

Beware the Bang! 37

From <www.wowebook.com>

ptg

array as sort!. Be sure you know what a method is going to do to your collection
before you call it.

Rely on the Order of Your Hashes
Ruby arrays and hashes have one thing in common that takes many programmers by
surprise: They are both ordered. Order and arrays go together like coders and coffee—
it’s hard to imagine one without the other. But hashes have, in many programming
languages and in earlier versions of Ruby, usually been any unruly bunch. The hashes
available in many other languages and in the bad old days of Ruby would mix up the
entries in a more or less random order. With the advent of Ruby 1.9, however, hashes
have become firmly ordered. Create a new hash, perhaps with a literal:

hey_its_ordered = { first: 'mama', second: 'papa', third: 'baby' }

And iterate through it:

hey_its_ordered.each { |entry| pp entry }

And the items will stay firmly ordered:

[:first, "mama"]

[:second, "papa"]

[:third, "baby"]

If you add items to an existing hash, they get sent to the end of the line. Thus if
we add a fourth entry to our hash:

hey_its_ordered[:fourth] = 'grandma'

Then granny will take up residence at the far end of the hash. Changing the value of
an existing entry, however, does not disturb its place in line, so if we set
hey_its_ordered[:first] to 'mom', it would stay right there at the front.

In the Wild
One reason that the basic collections are so pervasive in the Ruby code base is that
Ruby programmers tend to reach for them at times when programmers from other

38 Chapter 3. Take Advantage of Ruby’s Smart Collections

From <www.wowebook.com>

ptg

language traditions might go for a more specialized class. Thus, if you call File
.readlines('/etc/passwd') you don’t get back an instance of some specific line
holding class: What you do get is a simple array full of strings. In the same spirit, ask
an object for its public methods by calling object.public_methods or a class for its
forebearers by calling my_class.ancestors and in each case you will get back a plain
old array of method names or super classes.5 And it’s not just arrays: Ruby program-
mers frequently use hashes to specify all sorts of things. Thus Rails applications tend
to have lots of code that looks like this:

link_to "Font", :controller =>"fonts", :action =>"show", :id =>@font

Perhaps the ultimate expression of this “use the simple collections” philosophy can
be found in the XmlSimple gem. This wonderful bit of software allows you to turn any
XML file, like this:

<characters>

<super-hero>

<name>Spiderman</name>

<origin>Radioactive Spider</origin>

</super-hero>

<super-hero>

<name>Hulk</name>

<origin>Gamma Rays</origin>

</super-hero>

<super-hero>

<name>Reed Richards</name>

<origin>Cosmic Rays</origin>

</super-hero>

</characters>

Into a convenient set of nested hashes and array:

{"super-hero"=>

[{"name"=>["Spiderman"], "origin"=>["Radioactive Spider"]},

{"name"=>["Hulk"], "origin"=>["Gamma Rays"]},

{"name"=>["Reed Richards"], "origin"=>["Cosmic Rays"]}]}

In the Wild 39

5. Well, superclasses and mixed-in modules.

From <www.wowebook.com>

ptg

With just a couple of lines of code:

require 'xmlsimple'

data = XmlSimple.xml_in('dc.xml')

There are two reasons for this preference for the bare collections over more spe-
cialized classes. First, the Ruby collection classes are so powerful that often there is no
practical reason to create a custom-tailored collection simply to get some specialized
feature. Frequently, a call to each or map is all you really need. And second, all things
being equal, Ruby programmers actually prefer to work with generic collections. To
the Ruby way of thinking, one less class is one less thing to go wrong. In addition, I
know exactly how an array is going to react to a call to each or map, which isn’t nec-
essarily true of the SpecializedCollectionOfStuff. When the problem is complex-
ity, the cure might just be simplicity.

Staying Out of Trouble
If you look back over the pages of this chapter you will see that it is just full of calls
to methods like each and map, methods that run through some collection, calling a
block for each element. There is a lot of coding goodness in these methods, but
beware: They will turn on you if you abuse them. The easiest way to screw up one of
these iterating methods is to change the collection out from underneath the method.
Here, for example, is a seriously misguided attempt to remove all of the negative num-
bers from an array:

array = [0, -10, -9, 5, 9]

array.each_index {|i| array.delete_at(i) if array[i] < 0}

pp array

The trouble with this code is that it will tend to leave some negative numbers
behind: Removing the first one (the -10) from the array messes up the internal index-
ing of the each method, so much that it will miss the second negative number, leav-
ing us with a result of:

[0, -9, 5, 9]

40 Chapter 3. Take Advantage of Ruby’s Smart Collections

From <www.wowebook.com>

ptg

Although the problem in this example is reasonably easy to spot,6 this is sadly not
always the case: In particular, if your collection is being shared by several different
threads, you run the real risk of one thread modifying a collection that the other
thread is iterating over.

You will also want to take care when adding new elements well past the existing
end of your array. Although there is not much danger of tacking on elements one by
one with push or <<, you can also plug new values anywhere you want:

array = []

array[24601] = "Jean Valjean"

Since arrays are continuous, the second line above instantly created 24,602 new ele-
ments of array, most of them set to nil.

Another problem with arrays and hashes is that because they are so tremendously
useful we sometimes reach for them when we should really be using something else.
Imagine, for instance, that we are interested in knowing whether a specific word
appears in a document. We could do this with a hash, using the words for keys and
anything—perhaps true—as the values:

word_is_there = {}

words.each { |word| word_is_there[word] = true }

Alternatively, we might create an array that will keep track of each unique word:

unique = []

words.each { |word| unique << word unless unique.include?(word) }

The trouble with both of these approaches is that they are roundabout: The whole
point of a hash is to map keys to values, but in our hash-based implementation we are
really just interested in the keys—the words. The array-based version is not much bet-
ter. Since arrays don’t really mind duplicate values, every time we put a new word in

Staying Out of Trouble 41

6. . . . and fix: A much cleaner way to get rid of those pesky negative numbers—a way that actually
works—is to simply say array.delete_if {|x| x < 0}.

From <www.wowebook.com>

ptg

42 Chapter 3. Take Advantage of Ruby’s Smart Collections

the array we need to search the whole thing (via the include? method) to see if the
word is already there.

What we really need is a collection that doesn’t allow duplicates but does feature
very fast and easy answers to the “is this object in there?” question. The punch line is
that we need a set. Fortunately, Ruby comes with a perfectly serviceable, if sometimes
forgotten, Set class:

require 'set'

word_set = Set.new(words)

In coding, as in carpentry, you need the right tool for the job.

Wrapping Up
Making effective use of the collection classes is every bit as much a part of writing
clear, idiomatic Ruby as getting the indentation and variable names right. The reason
for this is very simple: The Ruby collection classes are like giant levers—if you know
how to use them you can move a lot of computing weight with very little effort. Part
of being a good Ruby programmer is knowing the Array and Hash classes, knowing
what they can do, and knowing when to use them and when to reach for something
else.

Of course, once you have your collections you are going to need to put something
in them. Frequently that something will be a string.

From <www.wowebook.com>www.allitebooks.com

http://www.allitebooks.org

ptg

CHAPTER 4
Take Advantage of Ruby’s
Smart Strings

Ask a nonprogrammer what we software types do all day and their answer will prob-
ably involve numbers. It’s true: Programs are often knee deep in numerical values,
everything from account balances to the number of milliseconds it takes to store a bal-
ance in a database. It ain’t called computing for nothing. The thing that non-coders
don’t realize is just how much text processing goes on alongside all the number-
crunching. Real-world programs tend to overflow with text, everything from the name
of the account owner, to the name of the table that stores the balance, to the name of
the program doing the storing. Because text processing is so central to just about every
programming problem, every modern programming language comes equipped with
some kind of string facility, typically a container that will not just store your text but
also help you to fold, bend, and mutilate it.

The place for text in a Ruby program is in instances of the String class. In this
chapter we will take a quick tour of Ruby’s strings, starting with the surprising num-
ber of ways that you create a string and progressing to a fast look at the String API.
We will also explore some of the ways that newcomers to Ruby can come to grief with
strings and look at a few of the powerful things that Ruby applications do with just a
pinch of string processing.

43

From <www.wowebook.com>

ptg

Coming Up with a String
What strikes many new Ruby coders about the language’s strings is not the strings
themselves but the number of ways that you can write a string literal. For example,
just about every programming language features quoted strings. Some languages use
single quotes as delimiters; others rely on double quotes. Ruby uses both kinds: There
is the single-quoted string literal that is very literal indeed, doing almost no interpre-
tation on the text between the quotes. In fact, the only fancy things you can do in a
single-quoted string are to embed a literal quote in it, escaped by a backslash:

a_string_with_a_quote = 'Say it ain\'t so!'

And embed a literal backslash, also escaped by a backslash:1

a_string_with_a_backslash = 'This is a backslash: \\'

Double-quoted strings do quite a bit more interpretation: You can put characters
like tabs and newlines in a double-quoted string with the appropriate character after
a backslash:

double_quoted = "I have a tab: \t and a newline: \n"

You can also embed arbitrary expressions in a double-quoted string by enclosing
the expression between #{ and }, so that this:

author = "Ben Bova"

title = "Mars"

puts "#{title} is written by #{author}"

Will print:

Mars is written by Ben Bova

44 Chapter 4. Take Advantage of Ruby’s Smart Strings

1. Do be aware that Ruby will print backslashes embedded in strings in different ways, depending
on how you output the string. If you use puts to print out a string with a backslash, Ruby will
just print the backslash. If you use pp, however, Ruby will print the same double backslash you
would use to embed the backslash character in the string. Either way, it’s the same string with the
same (single) backslash.

From <www.wowebook.com>

ptg

Keep in mind that since a single quote is not special in a doubled-quoted string and
vice versa, you can sometimes avoid a lot of quote escaping by surrounding your string
with a different quote flavor, so that instead of this:

str = "\"Stop\", she said, \"I cannot deal with the backslashes.\""

You can simply say:

str = '"Stop", she said, "I cannot deal with the backslashes."'

Although simple single- and double-quoted strings will suffice for about 98% of
your string literal needs, occasionally you do need something a little more exotic.
What if, for example, you had a string full of both types of quotation marks:

str = '"Stop", she said, "I can\'t live without \'s and "s."'

Ruby offers a couple of ways out of this kind of backslash Hell. In this case, the
best choice is probably the arbitrary quote mechanism, which looks like this:

str = %q{"Stop", she said, "I can't live without 's and "s."}

Arbitrarily quoted strings always start with a percent sign (%) followed by the letter q.
The character after the q is the actual string delimiter—we used a brace ({) in the
example above. If your delimiter has a natural partner, the way } goes with {, then
that’s the character you use to close the string. In the example above we could have
used (and) instead of { and }:

str = %q("Stop", she said, "I can't live without 's and "s.")

Or < and >:

str = %q<"Stop", she said, "I can't live without 's and "s.">

The [and] characters also work this way. Alternatively, you can use any of the
other special characters as your delimiter, ending the string with the same character.
Here we use a dollar sign:

str = %q$"Stop", she said, "I can't live without 's and "s."$

Coming Up with a String 45

From <www.wowebook.com>

ptg

The case of the letter q that leads off your string also matters: If it is lowercase, as
it has been in all of our examples so far, the string gets the limited interpretation, single-
quote style treatment. A string with an uppercase Q gets the more liberal doubled-
quoted interpretation:

str = %Q<The time in now #{Time.now}>

One nice feature of all Ruby strings is that they can span lines:

a_multiline_string = "a multi-line

string"

another_one = %q{another multi-line

string}

Keep in mind that if you don’t do anything about it, you will end up with embedded
newlines in those multiline strings. You can cancel out the newlines in double-quoted
strings (and the equivalent %Q form) with a trailing backslash:

yet_another = %Q{another multi-line string with \

no newline}

Finally, if you happen to have a very long multiline string, consider using a here
document. A here document allows you to create a (usually long) string by sticking it
right in your code:

heres_one = <<EOF

This is the beginning of my here document.

And this is the end.

EOF

Literal strings are frequently necessary and sometimes very messy. You can reduce
the messiness by picking the best form for the situation.

46 Chapter 4. Take Advantage of Ruby’s Smart Strings

From <www.wowebook.com>

ptg

Another API to Master
The real utility in strings lies in the things you can do with—and to—them. Like col-
lections, Ruby strings support a very extensive API, an API that every Ruby program-
mer needs to master. For example, once you have your string you can call the lstrip
method, which will return a copy of the string with all of the leading whitespace
clipped off, so that ' hello'.lstrip will return 'hello'.

Similarly, there is rstrip, which will peel the white space off of the end of your
string as well as plain old strip, which will take the white space off of both ends.
Similar to the trio of strip methods are chomp and chop. The chomp method is useful
for those times when you are reading lines from a text file, something that tends to
produce strings with unwanted line-terminating characters at the end. The chomp
method will return a copy of the string with at most one newline character2 lopped
from the end. Thus,

"It was a dark and stormy night\n".chomp

Will give you the dark and stormy night without the newline. Note that chomp only
does one newline at a time, so that "hello\n\n\n".chomp will return a string ending
with two newlines. Be careful not to confuse chomp with the chop method. The chop
method will simply knock off the last character of the string, no matter what it is, so
that "hello".chop is just "hell".

If the case of your characters concerns you, then you can use the upcase method
to get a copy of your string with all of the lowercase letters made uppercase or the
downcase method to go the opposite direction, or you can use swapcase to go from
'Hello' to 'hELLO'.

If you need to make more extensive changes to your string you might reach for
the sub method. The name of this method is short for substitute, and the method will
enable you to search for some substring and replace it with another. Thus, this:

'It is warm outside'.sub('warm', 'cold')

Another API to Master 47

2. Strictly speaking, chomp removes at most one record separator character from your string. Since
the record separator is by default your system’s newline character, most of the time this is a dis-
tinction without a difference.

From <www.wowebook.com>

ptg

Will evaluate to 'It is cold outside'. If you need to be more enthusiastic about
your substitutions, you might turn to gsub. While sub does at most one substitution,
gsub will replace as many substrings as it possibly can. Thus, this:

puts 'yes yes'.sub('yes', 'no')

puts 'yes yes'.gsub('yes', 'no')

Will print out:

no yes

no no

Sometimes it’s handy to be able to break your strings into smaller strings, and for
that we have split. Call split with no arguments and it will return an array con-
taining all the bits of your string that were separated by white space. Thus:

'It was a dark and stormy night'.split

Will return the following array:

["It", "was", "a", "dark", "and", "stormy", "night"]

Pass a string argument to split and it will break things up using that string as a delim-
iter, so that:

'Bill:Shakespeare:Playwright:Globe'.split(':')

Will evaluate to:

["Bill", "Shakespeare", "Playwright", "Globe"]

Like the collection classes, many of the string methods have counterparts whose
names end with a !, which modify the original string instead of returning a modified
copy. Thus, along with sub, we have sub!. So if you run this:

48 Chapter 4. Take Advantage of Ruby’s Smart Strings

From <www.wowebook.com>

ptg

title = 'It was a dark and stormy night'

title.sub!('dark', 'bright')

title.sub!('stormy', 'clear')

Then title will end up as 'It was a bright and clear night'.
If your interest runs more towards searching for things than changing them, you

can locate a string within a bigger string with the index method:

"It was a dark and stormy night".index("dark") # Returns 9

The String: A Place for Your Lines, Characters,
and Bytes
Along with being things themselves, strings are also collections of other things. One
odd aspect of strings is that they can’t quite make up their minds as to the kinds of
things they collect. Most commonly we think of strings as being collections of char-
acters—after all, if you say @author[3] you are trying to get at the fourth character of
the @author string. If you do think of your strings as collections of characters, you can
use the each_char method to iterate. Thus, if @author is 'Clarke', this:

@author.each_char {|c| puts c}

Will produce:

C

l

a

r

k

e

You can also look at a string as a collection of bytes—after all, behind all those
pretty characters are some utilitarian bytes. If you want to look at the bytes behind
your string, you can loop through them with the aptly named each_byte method:

@author.each_byte { |b| puts b }

The String: A Place for Your Lines, Characters, and Bytes 49

From <www.wowebook.com>

ptg

This code will print out a series of numbers, one for each byte:3

67

108

97

114

107

101

Strings can also hold more than one line, and if you find yourself with such a
string, then you can look at it as a collection of lines:

@content.each_line { |line| puts line }

Interestingly, since the “collection of what?” question is not one that can really be
answered for strings, Ruby’s string class omits the plain old each method.4

In the Wild
As I said at the beginning of this chapter, most real-world programs spend their lives
swimming through a sea of strings. For example, five minutes of poking around in the
Ruby standard library uncovered this:

def html_escape(s)

s.to_s.gsub(/&/, "&").gsub(/\"/, """).

gsub(/>/, ">").gsub(/</, "<")

end

This code,5 which decontaminates a string so that it is suitable for use in HTML
and XML, is from the RSS library. The slashes around the first arguments to gsub
mark those arguments as regular expressions, which we will look at in the next chapter.

50 Chapter 4. Take Advantage of Ruby’s Smart Strings

3. The difference between bytes and characters isn’t just the difference between a single number and
an associated character. If you happen to be dealing with the multi-byte characters—common in
many Asian languages—then your strings can have many more bytes than characters.

4. This was not always the case. In pre-1.9 versions of Ruby, strings did have an each method that
iterated over—wait for it—lines! This somewhat less than intuitive method disappeared in 1.9.

5. The code is slightly edited to fit on the page.

From <www.wowebook.com>

ptg

If making text safe for XML seems a bit pedestrian, consider the inflection code
in Rails. Rails uses the inflection facility to figure out that the class contained within
current_employee.rb should be CurrentEmployee and the database table associated
with CurrentEmployee is current_employees. Although this sounds sophisticated in
a very AI way, it’s all done with simple string processing.

The key data structure behind the Rails inflections is a set of rules, where each
rule consists of a pattern and a replacement. The easiest inflection rules to understand
are ones that handle the irregular cases, like pluralizing 'person' into 'people'.
Here’s the code that creates a bunch of special pluralizing cases:

inflect.irregular('person', 'people')

inflect.irregular('man', 'men')

inflect.irregular('child', 'children')

inflect.irregular('sex', 'sexes')

And how does Rails actually apply those rules? With a call to gsub6:

inflections.plurals.each do |(rule, replacement)|

break if result.gsub!(rule, replacement)

end

The inflections code is one of the things that gives Rails its wonderful human-
centered feeling, and it’s all built around gsub.

Staying Out of Trouble
Ruby strings are mutable. Since this aspect of the language takes many newcomers by
surprise, let me say it again: Ruby strings are mutable. Like the collections, it is per-
fectly possible to change a Ruby string out from under code that is expecting the string
to remain stable. Keep in mind that if you have these two strings:

first_name = 'Karen'

given_name = first_name

Staying Out of Trouble 51

6. Again, the code is edited to fit on the page.

From <www.wowebook.com>

ptg

In fact you only have one string: Modify first_name:

first_name[0] = 'D'

And you have also changed given_name. You should treat Ruby strings like any other
mutable data structure. Get in the habit of saying this:

first_name = first_name.upcase

Instead of this:

first_name.upcase!

Finally, you can sometimes make your string code more comprehensible by tak-
ing advantage of the flexibility that Ruby gives you between those string indexing
brackets. You can, for example, use negative numbers to index from the end of the
string, with -1 being the last character in the string, so that you can turn this:

first_name[first_name.size - 1]

Into

first_name[-1]

You can also use ranges to index into your strings so that "abcde"[3..4] will evalu-
ate to "de".

Wrapping Up
As with the collection classes, Ruby strings are a good news/bad news proposition. The
good news is that strings are very powerful objects that allow you to do all sorts of
interesting things. You have a range of string literal forms to choose from, everything
from 'simple quoted strings' to %Q{much more exotic forms}. The bad news is
that strings are very powerful objects that you have to learn how to use. The program-
ming power that flows out of really mastering the string API is well worth the effort—
 especially when you couple your strings to regular expressions, which is where we turn
next.

52 Chapter 4. Take Advantage of Ruby’s Smart Strings

From <www.wowebook.com>

ptg

CHAPTER 5
Find the Right String with
Regular Expressions

I’d like to pose a problem for you: Imagine that you have some text stored in a string,
and somewhere in that text hides a time, something like 09:24 AM. You need to write
a program that will locate the time. How do you do it? You might, using the methods
we talked about in the last chapter, scan the string for a digit and then check to see
whether it is followed by another digit and then see whether that is followed by a
colon, then two more digits . . . well, you get the picture. Doing all this with the
String methods is certainly possible. Tedious, but possible.

Sometimes a problem speaks to you. This time-finding problem is trying to tell
you that you are using the wrong tool. The tool this problem is crying out for is the
regular expression. The idea behind the regular expression—that you construct a pat-
tern that either will or will not match some string—is as simple as regular expressions
are powerful. Unfortunately, regular expressions have a reputation for being complex
and obscure, and many engineers shy away from them. But shying away from regular
expressions is not really an option: As we saw in the last chapter, Ruby programs do a
lot of string processing, and where you find strings you will find regular expressions.
To help with the shyness, we’ll spend the first half of this chapter going over the reg-
ular expression basics before turning to their use in Ruby code. As usual, we will fin-
ish with a look at some real-world uses for regular expressions as well as some of the
sharp edges that you would do well to avoid.

53

From <www.wowebook.com>

ptg

Matching One Character at a Time
Although whole books1 have been written about regular expressions, the basics of this
very useful tool are not very complex. For example, in a regular expression, letters and
numbers match themselves. Thus:

• The regular expression x will match x.

• The regular expression aaa will match three a’s all in a row.

• The regular expression 123 will match the first three numbers.

• The regular expression R2D2 will match the name of a certain sci-fi robot.

By default, case is important in regular expressions, so the last expression will not
match r2d2 nor will it match R2d2.2

Unlike letters and numbers, most of the punctuation characters—things like
. and *—have special meanings in regular expressions. For example, the period or dot
character matches any single character.3 Thus:

• The regular expression . will match any single-character string including r and %
and ~.

• In the same way, two periods (..) will match any two characters, perhaps xx or
4F or even [!, but won’t match Q since it’s one, not two, characters long.

You use a backslash to turn off the special meanings of the punctuation charac-
ters. Thus:

• The regular expression \. will match a literal dot.

• 3\.14 will match the string version of PI to two decimal places, complete with
the decimal point: 3.14

• Mr\. Olsen will match exactly one thing: Mr. Olsen

54 Chapter 5. Find the Right String with Regular Expressions

1. See the Appendix for the names of a couple of books on regular expressions.

2. As we will see in a bit, you can turn off regular expression case sensitivity.

3. Well, any single character except a newline character, but keep reading.

From <www.wowebook.com>

ptg

One of the beauties of regular expressions is that you can combine the different
kinds of expressions to build up more complex patterns. For example:

• The regular expression A. will match any two-character string that starts with a
capital A, including AM, An, At, and even A=.

• Similarly, ...X will match any four-character string that ends with an X, includ-
ing UVWX and XOOX.

• The regular expression .r\. Smith will match both Dr. Smith as well as Mr. Smith
but not Mrs. Smith.

It’s easy to see how the dot, with its talent for matching any single character,
extends the reach of regular expressions. But what if you want to match something less
than any? What if you want to write an expression that would match only the letters,
or only the vowels, or maybe just the numbers?

Sets, Ranges, and Alternatives
Enter the set. Sets match any one of a bunch of characters. To create a regular expres-
sion set, you wrap the characters in square brackets: Thus the regular expression
[aeiou] will match any single lowercase vowel. The key word there is single: Although
[aeiou] will match the single character a or the single character i, it will not match
ai, since ai is two characters long. Similarly:

• The regular expression [0123456789] will match any single digit.

• [0123456789abdef] will match any single hexadecimal digit,4 like 7 or f.

Once you understand how sets work, you can start to build up some fairly com-
plex regular expressions. For example:

• The regular expression [Rr]uss [Oo]lsen will match my name, with or without
leading capitals.

• More practically, you could use [0123456789abcdef][0123456789abcdef] to
pick out a two-digit hexadecimal number like 3e or ff.

Sets, Ranges, and Alternatives 55

4. As long as the letter, if there is one, is lowercase.

From <www.wowebook.com>

ptg

• You can also use [aApP][mM] to match am or PM and anything in between, like aM
or Pm.

There is one problem with simple sets: They don’t scale well at the keyboard. No
one wants to type [0123456789abcdef], let alone [abcdefghijklmnopqrstuvwxyz]
or [abcdefghijklmnopqrstuvwxyz0123456789]. Fortunately, there is a special regu-
lar expression syntax for building just this sort of large set of continuous characters:
the range.

As the name suggests, you define a range by specifying the beginning and end of
a sequence of characters, separated by a dash. So the range [0–9] will match exactly
what you expect: any decimal digit. Similarly, [a-z] will match any lowercase letter.
You can also combine several ranges together and mix them with the regular set nota-
tion, so that:

• [0-9abcdef] will match a single hexadecimal digit.

• [0-9a-f] will also match a single hexadecimal digit.

• [0-9a-zA-Z_] will match any letter, number, or the underscore character.

If even [0-9] seems like too much work, there are some shorter shortcuts for
common sets:

• \d will match any digit, so that \d\d will match any two digit number from 00
to 99.

• \w, where the w stands for “word character,” will match any letter, number or the
underscore.

• \s will match any white space character including the vanilla space, the tab, and
the newline.

Another way to extend the power of your regular expressions is by using alterna-
tives. If you separate the different parts of your expression with the vertical bar char-
acter |, the expression will match either the thing before the bar or the thing after it:

• A|B will match either A or B.

• AM|PM will match either AM or PM.

• Batman|Spiderman will match the name of one of the two superheros.

56 Chapter 5. Find the Right String with Regular Expressions

From <www.wowebook.com>

ptg

The sky is the limit with alternatives: You can specify as many choices as you like.
Thus A\.M\.|AM|P\.M\.|PM will match A.M. or AM, or P.M. or PM. You can also sur-
round your alternatives in parentheses to set them off from the rest of the pattern, so
that:

The (car|boat) is red

Will match both The car is red as well as The boat is red.
Pull all of this together and you have enough regular-expression moxie to solve the

time-finding problems that we opened this chapter with:

\d\d:\d\d (AM|PM)

Translated into English, the expression above says “Any string that starts with two
digits, followed by a colon, followed by two more digits, followed by a space, followed
by either AM or PM.”

The Regular Expression Star
Now that we have the basics of regular expressions down it’s time to move on to the
interesting part: the asterisk. In regular expressions, an asterisk (*) matches zero or
more of the thing that came just before it. Pause and think that through for a minute
. . . zero or more of the thing that came just before the asterisk. What this means is
that A* will match zero or more A’s. The A is the thing that came before the star, so the
pattern will match zero or more A’s. Similarly:

• AB* will match AB—that’s an A followed by one B.

• AB* will also match ABB as well as ABBBBBBBB—remember, it’s an A followed by
any number of B’s.

• Don’t forget that AB* will also match plain old A—any number of B’s includes no
B’s at all.

Although our examples so far have the star at the end of the expression, you can
put it anywhere: It can be up at the front, so that R*uby means any number of R’s fol-
lowed by uby. So uby, Ruby, RRuby, and RRRRRRRuby all match. The star can also be
in the middle of your expression, so that you can use Rub*y to match Ruy, Ruby, as
well as Rubbbbbbbbby. There’s also no limit to the number of stars that you can use in

The Regular Expression Star 57

From <www.wowebook.com>

ptg

a regular expression so that R*u*by will match any number of R’s followed by any
number of u’s followed by by.

You can also use the star in combination with sets, so that:

• The expression [aeiou]* will match any number of vowels: The whole [aeiou]
set is the thing that came before the star.

• Likewise, the expression [0–9]* will match any number of digits.

• And [0-9a-f]* will match any number of hexadecimal digits.

Finally, we can combine the idea of a dot matching any single character and the
* matching zero or more of the thing that came before into one of the most widely
used of all regular expressions:

.*

This little gem—just a dot followed by an asterisk—will match any number of any
characters, or to put it another way, anything. This works because the star matches any
number of what came before, so that .* is the same as . and .. and ... and so on.
But . matches any single character, while .. matches any two characters, and so on.
So .* will match anything.

Frequently you combine .* with other regular expression bits to make extremely
elastic patterns. For example:

• The regular expression George.* will match the full name of anyone whose first
name is George.

• In contrast, .*George will match the name of anyone whose last name is George.

• Finally .*George.* will match the name of anyone who has George in his name
somewhere.

Regular Expressions in Ruby
In Ruby, the regular expression, or Regexp for short,5 is one of the built-in data types,
with its own special literal syntax. To make a Ruby regular expression you encase your
pattern between forward slashes. So in Ruby our time regular expression would be:

58 Chapter 5. Find the Right String with Regular Expressions

5. Regexp is the name of the Ruby regular expression class.

From <www.wowebook.com>

ptg

/\d\d:\d\d (AM|PM)/

You use the =~ operator to test whether a regular expression matches a string.
Thus, if we wanted to match the regular expression above with an actual time we
would run:

puts /\d\d:\d\d (AM|PM)/ =~ '10:24 PM'

Which would print out:

0

That zero is trying to tell us a couple of things. First, it is saying that the regular
expression matched, starting at index zero. Second, the zero is telling us is that when
you match a regular expression, Ruby scans along the string, searching for a match
anywhere in the string. We can see the scanning in action with this next example:

puts /PM/ =~ '10:24 PM'

Run the code shown here and it will print:

6

That six is an indication that the Regexp did match, but only after Ruby scanned
well into the string. If there is no match, then you will get a nil back for your trou-
ble, so that this:

/May/ =~ 'Sometime in June'

Will return a nil. Since =~ returns a number when it finds a match and nil if it
doesn’t, you can use regular expression matches as booleans:

the_time = '10:24 AM'

puts "It's morning!" if /AM/ =~ the_time

The =~ operator is also ambidextrous: It doesn’t matter whether the string or the
regular expression comes first, so we could rephrase the last example as:

puts "It's morning!" if '10:24 AM' =~ /AM/

Regular Expressions in Ruby 59

From <www.wowebook.com>

ptg

As I mentioned earlier, regular expressions are by default case sensitive: /AM/ will
not match 'am'. Fortunately, you can turn that case sensitivity off my sticking an i on
the end of your expression, so that this:

puts "It matches!" if /AM/i =~ 'am'

Will print something.
Aside from their more or less stand-alone use with the =~ operator, regular expres-

sions also come into play in the string methods that involve searching. Thus, you can
pass a regular expression into the string gsub method, perhaps to blot out all of the
times in the content of a document:

class Document

Most of the class omitted...

def obscure_times!

@content.gsub!(/\d\d:\d\d (AM|PM)/, '**:** **')

end

end

Taken together, strings and regular expressions make for a very powerful text-
 processing toolkit.

Beginnings and Endings
The fact that the =~ operator scans for a match anywhere in the string raises an inter-
esting question: What if you only want your regular expression to match at the begin-
ning of the string? For example, what if you were looking for the words Once upon a
time? No problem: Simply cook up a straightforward regular expression:

/Once upon a time/

But what if you were looking specifically for fairy tales, which typically start with those
immortal words? Again, there’s a special regular expression for that, \A. Thus:

/\AOnce upon a time/

60 Chapter 5. Find the Right String with Regular Expressions

From <www.wowebook.com>

ptg

Will match a string only if it begins like a fairy tale. Note that the \A doesn’t match
the first character. Instead, it matches the unseen leading edge of the string. Similarly,
\z (note the lower case) matches the end of the string, so that:

/and they all lived happily ever after\z/

Will only match a string that ends like a classic fairy tale.
Multiline strings, the ones full of embedded newlines, present some interesting

challenges when you are doing this sort of work. Imagine that our alleged fairy tale is
stored in a multiline string like this:

content = 'The Princess And The Monkey

Once upon a time there was a princess...

...and they all lived happily ever after.

The End'

Now you know, and I know, this is a fairy tale, but how do we write a regular expres-
sion that will know it? Our previous try, /\AOnce upon a time/ isn’t going to work
because the string above doesn’t start with the right words. Instead, inside of the string
is a line that starts with the magic words. Fortunately, there a Regexp for that too: the
circumflex ^. The circumflex character matches two things: the beginning of the string
or the beginning of any line within the string. Just the thing to ferret out a fairy tale:

puts "Found it" if content =~ /^Once upon a time/

Similarly, the dollar sign $ matches the end of the string or the end of any line
within the string, so that we could also say:

puts "Found it" if content =~ /happily ever after\.$/

Multiline strings pose one more challenge to regular expressions, specifically to
the dot: By default, the dot will match any character except the newline character. So
if we were trying to match the whole text of fairy tale, less the title and The End, we
might try:

/^Once upon a time.*happily ever after\.$/

Beginnings and Endings 61

From <www.wowebook.com>

ptg

But this attempt is doomed because the .* won’t match across the lines . . . unless we
simply turn off this behavior by adding an m to our expression:

/^Once upon a time.*happily ever after\.$/m

And then they did live happily ever after.

In the Wild
You can find a great example of the practical use of regular expressions in the time.rb
file, which comes with your Ruby installation. The code in time.rb knows how to
parse a string containing a date and time in any of a number of standard formats6 and
turn it into an instance of the Time class. Unlike the simple example that kicked off
this chapter, time.rb needs to deal with all of the glorious complexities of real dates
and times. Early on in the file you will find the zone_offset method, which attempts
to parse the time zone section of a date and time string, figuring out if this string is
supposed to represent 12:01 AM in Greenwich or Green Bay or Greenland. Among
other things, the method needs to be able to understand time zones expressed as
names like 'UTC', or in numeric offsets like '-07:00'.

The zone_offset method starts out by switching the whole zone string to upper-
case, mixing in a pinch of simplicity right there at the start:

def zone_offset(zone, year=self.now.year)

...

zone = zone.upcase

...

Next the code tests the zone against a number of regular expressions, trying to fig-
ure out if the zone is one of the numeric forms:

if /\A([+-])(\d\d):?(\d\d)\z/ =~ zone

This expression makes use of a regular expression feature that we haven’t seen yet:
Similar to the asterisk, the question mark matches zero or one of the things that came

62 Chapter 5. Find the Right String with Regular Expressions

6. It can also go the other way, from the Time object to a string.

From <www.wowebook.com>

ptg

before. Thus :? allows the regular expression to match zone offsets with or without a
colon.

If the regular expression doesn’t match, the zone_offset method goes on to do
some plain old string comparison-based processing, looking for things like 'GMT' or
'EST', all of which are stored in the ZoneOffset collection:

elsif ZoneOffset.include?(zone)

The zone_offset method takes a wonderfully pragmatic approach to an annoyingly
complex problem: It uses regular expressions where they work best and the simple string
methods where they work best.

Staying Out of Trouble
There are a couple of easy-to-make but also easy-to-avoid mistakes that you can perpe-
trate when working with regular expressions. The first is to write something like this:

puts /abc*/ == "abccccc"

The problem with this code is that I’ve let my fingers do the thinking as well as
the typing. The regular expression /abc*/ will never, ever be equal to "abcccccc", at
least according to the == operator. Remember that the regular expression match oper-
ator is =~ and not ==. The correct way to say it is:

puts /abc*/ =~ "abccccc"

The second boneheaded thing that you can do, particularly if your background
includes C or C++,7 is to look at the output of the last example:

0

And decide that there was no match. Zero always seems so negative to C++ program-
mers. What the result is trying to tell you is that the regular expression matched the
string starting at the beginning, or the zero-th index of the string. As we saw earlier,
regular expression matches return nil when there is no match.

Staying Out of Trouble 63

7. As does mine, so I know the bonehead of which I speak.

From <www.wowebook.com>

ptg

64 Chapter 5. Find the Right String with Regular Expressions

Wrapping Up
When it comes to serious string processing, there is only one word for regular expres-
sions, and that word is gift. Regular expressions, with their stars, dollar signs, and lit-
tle hat characters, can be intimidating, but the fundamental ideas are well within the
reach of any coder.

From <www.wowebook.com>

ptg

CHAPTER 6
Use Symbols to Stand for
Something

I have to admit that I tend to be a bit anthropomorphic about the technologies I work
with. I just can’t help but think of all those complex piles of software as somehow alive,
each with its own personality—sometimes friendly, sometimes not. Early in my career
I imagined FORTRAN as a grouchy old camel—capable of carrying a huge load, but
fairly ugly and not a creature you would want to turn your back on. Later on I had
this mental image of the -> operator in the C programming language (it dereferences
pointers) as an arrow in flight: also very powerful, also nothing to mess with. These
days, the colon that precedes every Ruby symbol always makes me think of the eyes
peering out from the tilted head of a confused but friendly dog. The key word here is
confused—symbols probably have the dubious distinction of being the one bit of syn-
tax that perplexes the greatest number of new Ruby programmers.

In this chapter I am going to try to stamp out all of that confusion and show sym-
bols for what they really are: very simple, useful programming language constructs
that are a key part of the Ruby programming style. So let’s get started and see why
symbols are such handy little mutts to have around.

The Two Faces of Strings
Sometimes a good way to explain a troublesome topic is to engage in a little creative
fiction. You start out with an oversimplified explanation and, once that has sunk in a

65

From <www.wowebook.com>

ptg

bit, you work your way from there back to the real world. In this spirit, let’s start our
exploration of symbols with a slight simplification: Symbols are really just strings. This
is not as far fetched as it sounds: Think about the string "dog" and its closest symbolic
cousin, :dog. The thing that hits you in the face about these two objects is that they
both are essentially three characters: a “d”, an “o”, and a “g”.

Strings and symbols are also reasonably interchangeable in real life code: Take this
familiar example of some ActiveRecord code, which finds all of the records in the
books table:1

book = Book.find(:all)

The argument to the find method is simply a flag, there to tell find that we want
all of the records in the books table—not just the first record, not just the last record,
but all of them. The actual value that we pass into Book.find doesn’t really matter
very much. We might imagine that if we had the time and motivation, we could go
into the guts of ActiveRecord and rewrite the code so that we could use a string to sig-
nal that we wanted all the books:

book = Book.find('all')

So there is my simplified explanation of symbols: Other than the fact that typing
:all requires one less keystroke than typing 'all', there is not really a lot to distin-
guish a symbol from a string. So why does Ruby give us both?

Not Quite a String
The answer is that we tend to use strings of characters in our code for two rather dif-
ferent purposes: The first, and most obvious, use for strings is to hold some data that
we are processing. Read in those Book objects from the database and you will very
likely have your hands full of string data, things like the title of the book, the author’s
name, and the actual text.

The second way that we use strings of characters is to represent things in our pro-
grams, things like wanting to find all of the records in a table. The key thing about

66 Chapter 6. Use Symbols to Stand for Something

1. If you are not familiar with ActiveRecord, don’t worry. In ActiveRecord there is a class for each
database table. In our example we have the (unseen) Book class that knows about the books table.
Every ActiveRecord table class has a class method called find, which takes various arguments
telling the method for what it should search.

From <www.wowebook.com>

ptg

:all in our Book ActiveRecord example is that ActiveRecord can recognize it when it
sees it—the code needs to know which records to return, and :all is the flag that says
it should return every one. The nice thing about using something like :all for this
kind of “stands for” duty is that it also makes sense to the humans: You are a lot more
likely to recognize what :all means when you come across it than 0, or -1, or even
(heaven forbid!) 0x29ef.

These two uses for strings of characters—for regular data processing tasks on the
one hand and for internal, symbolic, marker-type jobs on the other—make very dif-
ferent demands on the objects. If you are processing data, you will want to have the
whole range of string manipulation tools at your fingertips: You might want the first
ten characters of the title, or you might want to get its length or see whether it matches
some regular expression. On the other hand, if you are using some characters to stand
for something in your code, you probably are not very interested in messing with the
actual characters. Instead, in this second case you just need to know whether this thing
is the flag that tells you to find all the records or just the first record. Mainly, when
you want some characters to stand for something, you simply need to know if this is
the same as that, quickly and reliably.

Optimized to Stand for Something
By now you have probably guessed that the Ruby String class is optimized for the
data processing side of strings while symbols are meant to take over the “stands for”
role—hence the name. Since we don’t use symbols for data processing tasks, they lack
most of the classic string manipulation methods that we talked about in Chapter 4.
Symbols do have some special talents that make them great for being symbols. For
example, there can only ever be one instance of any given symbol: If I mention :all
twice in my code, it is always exactly the same :all. So if I have:

a = :all

b = a

c = :all

I know that a, b, and c all refer to exactly the same object. It turns out that Ruby
has a number of different ways to check whether one object is equal to another,2 but

Optimized to Stand for Something 67

2. For more on object equality, see Chapter 12.

From <www.wowebook.com>

ptg

with symbols it doesn’t matter: Since there can only be one instance of any given sym-
bol, :all is always equal to itself no matter how you ask:

True! All true!

a == c

a === c

a.eql?(c)

a.equal?(c)

In contrast, every time you say "all", you are making a brand new string. So if
you say this:

x = "all"

y = "all"

Then you have manufactured two different strings. Since both the strings happen to
contain the same three characters, the two strings are equal in some sense of the word,
but they are emphatically not identically the same object. The fact that there can only
be one instance of any given symbol means that figuring out whether this symbol is
the same as that symbol is not only foolproof, it also happens at lightning speeds.

Another aspect of symbols that makes them so well suited to their chosen career
is that symbols are immutable—once you create that :all symbol, it will be :all
until the end of time.3 You cannot, for example, make it uppercase or lob off the sec-
ond 'l'. This means that you can use a symbol with confidence that it will not change
out from under you.

You can see all these issues at play in hashes. Since symbol comparison runs at
NASCAR speeds and symbols never change, they make ideal hash keys. Sometimes,
however, engineers want to use regular strings as hash keys:

author = 'jules verne'

title = 'from earth to the moon'

hash = { author => title }

68 Chapter 6. Use Symbols to Stand for Something

3. Or at least until your Ruby interpreter exits.

From <www.wowebook.com>

ptg

So what would happen to the hash if you changed the key out from underneath it?

author.upcase!

The answer is that nothing will happen to the hash, because the Hash class has special
defenses built in to guard against just this kind of thing. Inside of Hash there is spe-
cial case code that makes a copy of any keys passed in if the keys happen to be strings.
The fact that the Hash class needs to go through this ugly bit of special pleading pre-
cisely to keep you from coming to grief with string keys is the perfect illustration of
the utility of symbols.

In the Wild
In practice, the line between symbols and regular strings is sometimes a bit blurry. It
is, for example, trivially easy to turn a symbol into a string: You just use the ubiqui-
tous to_s method:

the_string = :all.to_s

To go in the reverse direction, you can use the to_sym method that you find on your
strings:

the_symbol = 'all'.to_sym

The blurriness between symbols and strings sometimes also extends into the
minds of Ruby programmers. For example, every object in Ruby has a method called
public_methods, which returns an array containing the names of all of the public
methods on that object. Now, you might argue that method names are the poster chil-
dren for objects that stand for something (in this case a bit of code), and therefore the
public_methods method should return an array of symbols. But call public_methods
in a pre-1.9 version of Ruby, like this:

x = Object.new

pp x.public_methods

In the Wild 69

From <www.wowebook.com>

ptg

And you will get an array of strings, not symbols:

["inspect",

"pretty_print_cycle",

"pretty_print_inspect",

"clone",

...

]

Is there something wrong with our reasoning? Apparently not, because in Ruby
1.9 public_methods does indeed return an array of symbols:

[:pretty_print,

:pretty_print_cycle,

:pretty_print_instance_variables,

:pretty_print_inspect,

:nil?,

...

]

The lesson here is that if you find symbols a bit confusing, you seem to be in very good
company.

Staying Out of Trouble
Given the curious relationship between symbols and strings, it probably will come as
no surprise that the best way to screw up with a symbol is to use it when you wanted
a string, and vice versa. As we have seen, you want to use strings for data, for things
that you might want to truncate, turn to uppercase, or concatenate. Use symbols when
you simply want an intelligible thing that stands for something in your code.

The other way to go wrong is to forget which you need at any given time. This
seems to happen a lot when using symbols as the keys in hashes. For example, take a
look at this code fragment:

Some broken code

person = {}

person[:name] = 'russ'

70 Chapter 6. Use Symbols to Stand for Something

From <www.wowebook.com>

ptg

person[:eyes] = 'misty blue'

A little later...

puts "Name: #{person['name']} Eyes: #{person['eyes']}"

The code here is broken, but you might have to look at it a couple of times to see that
the keys of the person hash are symbols, but the puts statement tries to use strings.
What you really want to say here is:

puts "Name: #{person[:name]} Eyes: #{person[:eyes]}"

This kind of mistake is common enough that Rails actually provides a Band-Aid
for it in the form of the HashWithIndifferentAccess class. This convenient, but
somewhat dubious bit of code is a subclass of Hash that allows you to mix and match
strings and symbols with cheerful abandon.

Wrapping Up
In this chapter we have looked at symbols and saw that they exist purely to stand for
something in your code. Symbols and garden variety strings have a lot in common—
both are mostly just a stretch of characters. Unlike strings, symbols are specially tuned
to their “stands for” purpose: Symbols are both unique—there can only ever be one
:all symbol in your Ruby interpreter—and immutable, so that :all will never
change. The good news is that once you understand that symbols and strings are like
two siblings—related, but with different talents—you will be able to take advantage
of the things that each does best.

Wrapping Up 71

From <www.wowebook.com>

ptg

This page intentionally left blank

From <www.wowebook.com>

ptg

CHAPTER 7
Treat Everything Like
an Object—Because
Everything Is

Early in my career I worked with a mainframe operating system that had a variety of
file types. That old OS supported text files for your documentation, source files for
your code, executable files for your programs, and data files for your output. Actually,
“supported” is not really the right word. “Imposed with an iron fist” would be more
accurate. Creating new files involved specifying the file type using a complex and
arcane syntax. You needed to use one command for copying data files and a similar,
but subtlety different, command for copying source files. Converting from one file
type to another was a task worthy of a Ph.D. I’m sure that the designers of that ancient
system had originally set out to make life easier for their users by imposing some order
on the everyday complexities of computing. Along the way, however, they lost sight of
something important: Sometimes—like when you are trying to make a copy—a file is
just a file.

Ruby is an object oriented programming language, which means that the world
of Ruby is a world of objects, instances of Date and String and Document and a thou-
sand other classes. As different as all these objects are bound to be, at some level they
are all just objects. In the pages that follow we will focus on the things that all Ruby
objects have in common. We will start by doing a quick tour of the Ruby object sys-
tem and then look at how pervasive objects are in Ruby. Next we will look at the

73

From <www.wowebook.com>

ptg

methods common to all Ruby objects, the basic toolkit that every object inherits, and
at how you can control access to methods. We will round out the chapter by looking
at how classes and methods play a key role in the infrastructure of Ruby itself and at
some avoidable potholes lurking in the land of the object.

A Quick Review of Classes, Instances, and Methods
On the surface, Ruby is a very conventional, almost boring, object oriented language.
Every Ruby object is an instance of some class. Classes mainly earn their keep by pro-
viding two key things: First, classes act as containers for methods:

class Document

Most of the class omitted...

A method

def words

@content.split

end

And another one

def word_count

words.size

end

end

Second, classes are also factories, factories for making instances:

doc = Document.new('Ethics', 'Spinoza', 'By that which is...')

Once you have an instance, you can call methods on it using the more or less uni-
versal object oriented syntax of instance.method_name:

doc.word_count

During a method call, Ruby sets self to the instance that you called the method on,
so that if you added this to Document:

74 Chapter 7. Treat Everything Like an Object—Because Everything Is

From <www.wowebook.com>

ptg

class Document

Most of the class on holiday...

def about_me

puts "I am #{self}"

puts "My title is #{self.title}"

puts "I have #{self.word_count} words"

end

end

And then ran doc.about_me, you would see something like:

I am #<Document:0x8766ed4>

My title is Ethics

I have 4 words

Ruby treats self as a sort of default object: When you call a method without an
explicit object reference, Ruby assumes that you meant to call the method on self, so
that a call to plain old word_count gets translated to self.word_count. You should
rely on this assumption in your code: Don’t write self.word_count when a plain
word_count will do.1

Every class—except one—has a superclass, someplace that the class can turn to
when someone calls a method that the class doesn’t recognize. If you don’t specify a
superclass when you are defining a new class, the new class automatically becomes a
direct subclass of Object. Our Document class, for example, is a direct subclass of
Object. Alternatively, you can specify a different superclass:

RomanceNovel is a subclass of Document,

which is a subclass of Object

class RomanceNovel < Document

Lot's of steamy stuff omitted...

end

A Quick Review of Classes, Instances, and Methods 75

1. You Python programmers know who I’m talking to!

From <www.wowebook.com>

ptg

The Ruby technique for resolving methods is straight out of the object oriented
handbook: Look for the method in the class of the object. If it is there, call it and you
are done. If not, move on to the superclass and try there. Repeat until you either find
the method or run out of superclasses.2

Objects All the Way Down
While Ruby’s basic object system is not the most original bit of technology, it does
have something very powerful going for it: consistency. You can see just how consistent
Ruby’s object oriented philosophy is by computing the absolute value of a number:

-3.abs # Returns 3

Nothing very exciting there … except for the syntax. Why is it -3.abs and not
abs(-3)? The answer is both simple and profound: In Ruby the number -3 is an
object. When you say -3.abs, you are calling the abs method on an object, an object
that goes by the name -3. It’s not just the numbers either. In Ruby, strings and sym-
bols and regular expressions are all objects, objects that come equipped with their very
own methods:

Call some methods on some objects

"abc".upcase

:abc.length

/abc/.class

In fact, virtually everything you come across in Ruby is an object. You might, for
example, think that true and false are a couple of special Ruby language constructs.
Not so—they’re just objects:

Call some methods on a couple of familiar objects

true.class # Returns Trueclass

false.nil? # False is close, but not nil

76 Chapter 7. Treat Everything Like an Object—Because Everything Is

2. Ruby does add some cool twists to its fairly vanilla object model, twists that we are going to
explore in Chapters 13, 16, and 24.

From <www.wowebook.com>

ptg

So are the classes:

true.class.class # Returns Class

Even our old buddy—and sometimes nemesis—nil is an object:

nil.class # Returns NilClass

nil.nil? # Yes, finally true!

In Ruby, if you can reference it with a variable, it’s an object.

The Importance of Being an Object
Actually, if you can reference it with a variable it’s probably not just an object, but an
Object, an instance of the Object class.3 Since virtually all Ruby objects can trace their
ancestry back to Object, virtually all Ruby objects have a set of methods in common:
the ones they inherit from Object. So the next time you call class or instance_of?
to see just what sort of object you have, thank the Object class for supplying those
methods. The Object class is also the source of the well-worn to_s method, which
returns a string representation of your object. It’s the to_s method that puts relies on
to turn its arguments into printable strings.4 Like a lot of Object methods, you can
rely on the default implementation of to_s. So if you ran this:

doc = Document.new('Emma', 'Austin', 'Emma Woodhouse, ...')

puts doc

You would see something like:

#<Document:0x8767120>

The Importance of Being an Object 77

3. The reason I hedge is that Ruby 1.9 added the BasicObject class, as the new superclass of
Object. BasicObject instances are, however, few and far between and tend to be used in a way
that masks their true identity. All these mysteries will be explained in Chapter 22.

4. This is a bit of a simplification, but not much. Many of the Object methods actually live in the
Kernel module, which is mixed into the Object class, a process that we will explore in Chapter
16. For most practical purposes this is a distinction without a difference.

From <www.wowebook.com>

ptg

Alternatively, you can override to_s for your own purposes:

class Document

Mostly omitted...

def to_s

"Document: #{title} by #{author}"

end

end

With the class above, our documents would print out something like:

Document: Emma by Austin

Instances of Object also inherit some more esoteric talents. For example, the eval
method, defined by Object, takes a string and executes the string as if it were Ruby
code. The possibilities with eval are literally limitless: Having eval around means that
every Ruby programmer has the entire Ruby language available at a moment’s notice.
You can, to take an easy example, create a quick riff on irb with nothing more than
eval and a handful of other Object supplied methods:5

while true

print "Cmd> "

cmd = gets

puts(eval(cmd))

end

Run the code above and you will find yourself in a very irb-like loop:

Cmd> 2 + 2

4

Cmd> puts "hello world"

hello world

78 Chapter 7. Treat Everything Like an Object—Because Everything Is

5. The print method prints what you tell it to, without mixing in any additional newline charac-
ters the way that puts does. The gets method is the inverse of puts: It reads a string.

From <www.wowebook.com>

ptg

The Object class also supplies a set of reflection-oriented methods, methods that
let you dig into the internals of an object. We met one of these in the last chapter: the
public_methods method, which returns an array of all the method names available on
the object. There is also instance_variables, which will pull out the names of any
instance variables buried in the object. So, if you run this:

pp doc.instance_variables

You will see:

[:@title, :@author, :@content]

In all, Object bestows about fifty methods on its children.

Public, Private, and Protected
Like a lot of object oriented programming languages, Ruby lets you control the visi-
bility of your methods. Methods can either be public—callable by any code anywhere,
or private, or protected. Ruby methods are public by default, so up to now all of our
Document methods have been public.

You can make your methods private by adding private before the method
 definition:

class Document

Most of the class omitted

private # Methods are private starting here

def word_count

return words.size

end

end

Or by making them private after the fact:

class Document

Most of the class omitted

Public, Private, and Protected 79

From <www.wowebook.com>

ptg

def word_count

return words.size

end

private :word_count

end

Ruby’s treatment of private methods is a bit idiosyncratic. The rule is that you
cannot call a private method with an explicit object reference. So if word_count was
indeed private, then this:

n = doc.word_count

Will throw an exception, since we tried to use an explicit object reference (doc)
in the call. By restricting the way that private methods can be called, Ruby ensures that
private methods can only be called from inside the class that defined them. Thus the
call to word_count in the print_word_count method that follows will work:

class Document

Most of the class omitted...

def word_count

return words.size

end

private :word_count

This method works because self is the right thing,

the document instance, when you call it.

def print_word_count

n = word_count

puts "The number of words is #{word_count}"

end

end

Note that in Ruby, private methods are callable from subclasses. Think about it:
You don’t need an explicit object reference to call a superclass method from a subclass.
Thus, this is a perfectly functional bit of code:

80 Chapter 7. Treat Everything Like an Object—Because Everything Is

From <www.wowebook.com>

ptg

RomanceNovel is a subclass of Document,

which is a subclass of Object

class RomanceNovel < Document

def number_of_steamy_words

word_count / 4 # Works: self is a Document instance!

end

end

The rules for protected methods are looser and a bit more complex: Any instance
of a class can call a protected method on any other instance of the class. Thus, if we
made word_count protected, any instance of Document could call word_count on any
other instance of Document, including instances of subclasses like RomanceNovel.

There are a couple of things to keep in mind about private and protected meth-
ods in Ruby. The first is that while Ruby’s system of controlling method visibility is
perfectly respectable, it doesn’t get a lot of use. For example, if you look at the Ruby
standard library you will find nearly 200,000 lines of code. In that huge pile of soft-
ware, private appears just over 1000 times and protected only about fifty times.
Second, remember that just because the rules say that you can’t call some private or
protected method, well, you can still call it. Among the methods that every object
inherits from Object is send. If you supply send with the name of a method and any
arguments the method might need, send will call the method, visibility be damned:

n = doc.send(:word_count)

The Ruby philosophy is that the programmer is in charge. If you want to declare some
method private, fine. Later, if someone, perhaps you, wants to violate that privacy, fine
again. You are in charge and presumably you know what you are doing.

In the Wild
One thing that takes a while to sink in when learning Ruby is just how central the idea
of methods and method calls are to the fundamental infrastructure of the language.
Certainly there are lots of of things that go on in Ruby that are not method calls.
Assigning a value to a local variable is not a method call. An if statement is not a
method call. Neither is a while loop. Once, however, you get beyond the lowest layer
of basic infrastructure, a surprising number of things you might consider to be part of

In the Wild 81

From <www.wowebook.com>

ptg

the language are, in fact, just calls to methods. For example, you can’t get much more
fundamental than method visibility. Nevertheless, private, the magic word that
makes Ruby methods private, is not really magic at all: It’s just a method, albeit one
that is implemented inside the Ruby interpreter. The same is true of private’s bud-
dies, public and protected.

The Ruby interpreter also defines another method, one that takes the name of a
file, reads the contents of the file, and executes those contents as Ruby code. This
method maintains a list of the files it has already processed and won’t re-execute a file
that it has already seen. We call that method require:6

require 'date' # A Call to a method

Another set of methods that play the part of language keywords are the
attr_accessor family:

class Person

attr_accessor :salary # A method call

attr_reader :name # Another method call

attr_writer :password # And another

end

Not only are attr_accessor and friends just methods, but they are within the
reach of mortal programmers. In Chapter 26 we are going to build our own versions
of attr_reader and attr_writer. Stay tuned!

Staying Out of Trouble
The good news is that virtually all Ruby objects7 inherit about fifty methods from the
Object class, methods that allow you to do all sorts of useful things. The bad news is
that those inherited methods also represent about fifty opportunities to have a name
collision. Take this innocent-looking addition to the Document class:

class Document

Most of the class omitted...

82 Chapter 7. Treat Everything Like an Object—Because Everything Is

6. The require method can also handle loading native libraries.

7. Except for those BasicObject oddballs.

From <www.wowebook.com>

ptg

Send this document to off via email

def send(recipient)

Do some interesting SMTP stuff...

end

end

Innocent, except that we have just overridden the Object supplied send method.
Know your Object class, if for no other reason than to stay out of its way.

Another way to go wrong is to intentionally override a method from Object—
and to get it wrong. Recall that earlier in the chapter we overrode the to_s method so
that it would produce a better description of our document. Make a mistake in the
to_s method, perhaps like this:

class Document

Mostly omitted...

def to_s

"#{title} by #{aothor}" # oops!

end

end

And you will no longer be able to print Document instances via puts.
Finally, programmers new to the language will sometimes forget how uniform the

Ruby object model is and invent special cases where none actually exist, perhaps like
this:

if the_object.nil?

puts 'The object is nil'

elsif the_object.instance_of?(Numeric)

puts 'The object is a number'

else

puts "The object is an instance of #{the_object.class}"

end

When they could get away with the much simpler:

puts "The object is an instance of #{the_object.class}"

Staying Out of Trouble 83

From <www.wowebook.com>

ptg

The single line of code here will work with virtually any object in your Ruby
interpreter: Feed it a string and it will tell you that you have a String. Feed it a num-
ber and you might see that you have an instance of Fixnum or Float. Feed it nil and
it will tell you that you have an instance8 of NilClass. This example illustrates a more
general and very pleasant side effect of Ruby’s uniform object system: Since Ruby’s nil
is a real object, it is generally much less toxic than the equivalent constructs in other
programming languages. When I’m coding in Ruby I don’t have to be quite as para-
noid that this object I have might just be nil. Remember, a great way to avoid bro-
ken code is to have less of it. The code that you never write will work forever.

Wrapping Up
If you remember anything from this chapter, remember this: Virtually everything in
Ruby is an object, and virtually all of those objects inherit a basic set of methods from
the Object class. In a very real way, the Object class is the glue that binds Ruby
together and lends the language its simple elegance. Given how fundamental the
Object class is to Ruby, it shouldn’t come as much of a surprise that we aren’t done
with it. In chapters to come, we will look at how you can use the framework provided
by the Object class to define your own operators, to create objects with their own
ideas of equality, to rewire your inheritance tree, and to handle calls to methods that
you haven’t written.

For the moment, however, we will turn our attention to a different question. In
this chapter we have focused on the things that all Ruby objects have in common: At
their core, the dates and strings and documents floating around in our programs are
all the same. But they are also all different: Outside of its Object core, a Date instance
is very different from a String instance. The question for the next chapter is simple:
How do you keep all of these different objects straight?

84 Chapter 7. Treat Everything Like an Object—Because Everything Is

8. The only instance!

From <www.wowebook.com>

ptg

CHAPTER 8
Embrace Dynamic Typing

How? Why? These are the two questions that every new Ruby coder—or at least those
emigrating from the more traditional programming languages—eventually gets
around to asking. How can you possibly write reliable programs without some kind
of static type checking? And why? Why would you even want to try? Figure out the
answer to those two questions and you’re on your way to becoming a seasoned Ruby
programmer. In this chapter we will look at how dynamic typing allows you to build
programs that are simultaneously compact, flexible, and readable. Unfortunately, noth-
ing comes for free, so we will also look at the downsides of dynamic typing and at how
the wise Ruby programmer works hard to make sure the good outweighs the bad.

This is a lot for one chapter, so let’s get started.

Shorter Programs, But Not the Way You Think
One of the oft-repeated advantages of dynamic typing is that it allows you to write
more compact code. For example, our Document class would certainly be longer if we
needed to state—and possibly repeat here and there—that @author, @title, and
@content are all strings and that the words method returns an array. What is not quite
so obvious is that the simple “every declaration you leave out is one bit less code” is just
the down payment on the code you save with dynamic typing. Much more significant
savings comes from the classes, modules, and methods that you never write at all.

To see what I mean, let’s imagine that one of your users has a large number of doc-
uments stored in files. This user would like to have a class that looks just like a

85

From <www.wowebook.com>

ptg

Document,1 but that will delay reading the contents of the file until the last possible
moment: In short, the user wants a lazy document. You think about this new require-
ment for a bit and come up with the following: First you build an abstract class that
will serve as the superclass for both the regular and lazy flavors of documents:

class BaseDocument

def title

raise "Not Implemented"

end

def title=

raise "Not Implemented"

end

def author

raise "Not Implemented"

end

def author=

raise "Not Implemented"

end

def content

raise "Not Implemented"

end

And so on for the content=

words and word_count methods...

end

Then you recast Document as a subclass of BaseDocument:

class Document < BaseDocument

attr_accessor :title, :author, :content

86 Chapter 8. Embrace Dynamic Typing

1. Again, to keep things simple we are going to start over here with the very minimal functionality
of the original Document class of Chapter 1.

From <www.wowebook.com>

ptg

def initialize(title, author, content)

@title = title

@author = author

@content = content

end

def words

@content.split

end

def word_count

words.size

end

end

Finally, you write the LazyDocument class, which is also a subclass of BaseDocument:

class LazyDocument < BaseDocument

attr_writer :title, :author, :content

def initialize(path)

@path = path

@document_read = false

end

def read_document

return if @document_read

File.open(@path) do | f |

@title = f.readline.chomp

@author = f.readline.chomp

@content = f.read

end

@document_read = true

end

def title

read_document

@title

end

Shorter Programs, But Not the Way You Think 87

From <www.wowebook.com>

ptg

def title=(new_title)

read_document

@title = new_title

end

And so on...

end

The LazyDocument class is a typical example of the “leave it to the last minute”
technique: It looks like a regular document but doesn’t really read anything from the
file until it absolutely has to. To keep things simple, LazyDocument just assumes that
its file will contain the title and author of the document on the first couple of lines,
followed by the actual text of the document.

With the classes above, you can now do nice, polymorphic things with instances
of Document and LazyDocument. For example, if you have a reference to one or the
other kind of document and are not sure which:

doc = get_some_kind_of_document

You can still call all of the usual document methods:

puts "Title: #{doc.title}"

puts "Author: #{doc.author}"

puts "Content: #{doc.content}"

In a technical sense, this combination of BaseDocument, Document, and Lazy -
Document do work. They fail, however, as good Ruby coding. The problem isn’t with
the LazyDocument class or the Document class. The problem lies with BaseDocument:
It does nothing. Even worse, BaseDocument takes more than 30 lines to do nothing.
BaseDocument only exists as a misguided effort to provide a common interface for the
various flavors of documents. The effort is misguided because Ruby does not judge an
object by its class hierarchy.

Take another look at the last code example: Nowhere do we say that the variable
doc needs to be of any particular class. Instead of looking at an object’s type to decide
whether it is the correct object, Ruby simply assumes that if an object has the right
methods, then it is the right kind of object. This philosophy, sometimes called duck

88 Chapter 8. Embrace Dynamic Typing

From <www.wowebook.com>

ptg

typing,2 means that you can completely dispense with the BaseDocument class and
redo the two document classes as a couple of completely independent propositions:

class Document

Body of the class unchanged...

end

class LazyDocument

Body of the class unchanged...

end

Any code that used the old related versions of Document and LazyDocument will
still work with the new unrelated classes. After all, both classes support the same set
of methods and that’s what counts.

There are two lessons you can take away from our BaseDocument excursion. The
first is that the real compactness payoff of dynamic typing comes not from leaving out
a few int and string declarations; it comes instead from all of the BaseDocument
style abstract classes that you never write, from the interfaces that you never create,
from the casts and derived types that are simply irrelevant. The second lesson is that
the payoff is not automatic. If you continue to write static type style base classes, your
code will continue to be much bulkier than it might be.

Extreme Decoupling
Compact code is a great thing, but compact code is by no means the only advantage
of dynamic typing. There is also the free and easy flexibility that flows from writing
code sans type declarations. For example, let’s imagine that the editorial department
of your company also has an enhancement request. It seems that the folks over at edi-
torial are putting in a more formal system to keep track of authors and publications.
In particular, they have invented a couple of new classes:

class Title

attr_reader :long_name, :short_name

attr_reader :isbn

Extreme Decoupling 89

2. As in, “If it walks like a duck and quacks like a duck, then it must be a duck.”

From <www.wowebook.com>

ptg

def initialize(long_name, short_name, isbn)

@long_name = long_name

@short_name = short_name

@isbn = isbn

end

end

class Author

attr_reader :first_name, :last_name

def initialize(first_name, last_name)

@first_name = first_name

@last_name = last_name

end

end

The editorial department would like you to change the Document class so that
they can use Title and Author instances instead of strings as the @title and @author
values in Document instances, like this:

two_cities = Title.new('A Tale Of Two Cities',

'2 Cities', '0-999-99999-9')

dickens = Author.new('Charles', 'Dickens')

doc = Document.new(two_cities, dickens, 'It was the best...')

Being a nice person and a consummate professional you immediately agree to
undertake this task. And then you do nothing. Absolutely nothing. You do nothing
because the Document class already works with Title and Author instances. There are
no interfaces to extract, no declarations to change, no class hierarchies to adjust, noth-
ing. It just works.

It works because Ruby’s dynamic typing means that you don’t declare the classes
of variables and parameters. That means that your classes are not frozen together in a
rigid network of type relationships. In Ruby, any two classes that can work together
will work together. Flexibility is a huge advantage when it comes to constructing pro-
grams. In our example, the Document class does not really do anything with @title
and @author other than carry them around; the Document class therefore has
absolutely no opinion as to what the class of these objects should be.

90 Chapter 8. Embrace Dynamic Typing

From <www.wowebook.com>

ptg

Even if Document did make some demands on @title and @author, perhaps like
this:

class Document

Most of the class omitted...

def description

"#{@title.long_name} by #{@author.last_name}"

end

end

Then we will have increased the coupling between Document and the @author and
@title objects just a bit. With the addition of the description method, Document
now expects that @title will have a method called long_name and @author will have
a last_name method. But the bump in coupling is as small as it can be. Document will,
for example, accept any object that has a long_name method for @title.

Taking advantage of the loose coupling offered by dynamic typing is easy: As you
can see from this last example, it is right there for you—unless you go out of your way
to mess it up. Programmers new to Ruby will sometimes try to cope with the loss of
static typing by adding type-checking code to their methods:

def initialize(title, author, content)

raise "title isn't a String" unless title.kind_of? String

raise "author isn't a String" unless author.kind_of? String

raise "content isn't a String" unless content.kind_of? String

@title = title

@author = author

@content = content

end

This kind of pseudo-static type checking combines all the disadvantages of the two
camps: It destroys the wonderful loose coupling of dynamic typing. It also bloats the
code while doing little to improve reliability. Don’t do this.

This last example illustrates another, more subtle advantage to dynamic typing.
Programming is a complex business. Writing a tricky bit of code is like that old circus
act where the performer keeps an improbably large number of plates spinning atop
vertical sticks, except that here it’s the details of your problem that are spinning and

Extreme Decoupling 91

From <www.wowebook.com>

ptg

it’s all happening in your head. When you are coding, anything that reduces the num-
ber of revolving mental plates is a win. From this perspective, a typing system that you
can sum up in a short phrase, “The method is either there or it is not,” has some def-
inite appeal. If the problem is complexity, the solution might just be simplicity.

Required Ceremony Versus Programmer-Driven
Clarity
One thing that variable declarations do add to code is a modicum of documentation.
Take the initialize method of our Document class:

def initialize(title, author, content)

Considerations of code flexibility and compactness aside, there is simply no arguing
with the fact that a few type declarations:

Pseudo-Ruby! Don't try this at home!

def initialize(String title, String author, String content)

Would make it easier to figure out how to create a Document instance. The flip side of
this argument is that not all methods benefit—in a documentation sense—from type
declarations. Take this hypothetical Document method:

def is_longer_than?(n)

@content.length > n

end

Even without type declarations, most coders would have no trouble deducing that
is_longer_than? takes a number and returns a boolean. Unfortunately, when type
declarations are required, you need put them in your code whether they make your
code more readable or not—that’s why they call it required. Required type declarations
inevitably become a ceremonial part of your code, motions you need to go through
just to get your program to work. In contrast, making up for the lost documentation
value of declarations in Ruby is easy: You write code that is painfully, blazingly obvi-
ous. Start by using nice, full words for class, variable, and method names:

92 Chapter 8. Embrace Dynamic Typing

From <www.wowebook.com>

ptg

def is_longer_than?(number_of_characters)

@content.length > number_of_characters

end

If that doesn’t help, you can go all the way and throw in some comments:

Given a number, which needs to be an instance of Numeric,

return true if the number of characters in the document

exceeds the number.

def is_longer_than?(number_of_characters)

@content.length > number_of_characters

end

With dynamic typing, it’s the programmer who gets to pick the right level of doc-
umentation, not the rules of the language. If you are writing simple, obvious code, you
can be very minimalistic. Alternatively, if you are building something complex, you
can be more elaborate. Dynamic typing allows you to document your code to exactly
the level you think is best. It’s your job to do the thinking.

Staying Out of Trouble
Engineering is all about trade-offs. Just about every engineering decision involves get-
ting something, but at a price, and there is a price to be paid for dynamic typing.
Undeniably, dynamic typing opens us up to dangers that don’t exist in statically typed
languages. What if we missed the memo saying that the Document class now expects
the @title to have a long_name method? We might just end up here:

NoMethodError: undefined method `long_name' for "TwoCities":String

This is the nightmare scenario that virtually everyone who comes to Ruby from a stat-
ically typed language background worries about. You think you have one thing, per-
haps an instance of Author, when in fact you actually have a reference to a String or
a Time or an Employee and you don’t even know it. There is just no getting around
the fact that this kind of thing can happen in Ruby code.

What’s a Ruby programmer to do? My first bit of advice is to simply relax. The
experience that has accumulated over the past half century of dynamic language use is
that horrible typing disasters are just not all that common. They are, in fact, downright
rare in any carefully written program. The best way to avoid mixing your types, like

Staying Out of Trouble 93

From <www.wowebook.com>

ptg

metaphors, is to write the clearest, most concise code you can, which explains why
Ruby programmers place such a high premium on (wait for it!) clear and concise code.
If it’s easy to see what’s going on, you will make fewer mistakes.

Fewer mistakes, but not zero mistakes. Inevitably you are going to experience a
type-related bug now and then. Unsurprisingly, you are also going to have non-type-
related bugs as well. The Ruby answer to both kinds of bugs is to write automated
tests, lots and lots of automated tests. In fact, automated tests are such a core part of
writing good Ruby code that the next chapter is devoted to them.

You should also keep in mind that there is a difference between concise and cryp-
tic. Ruby allows you to write wonderfully expressive code, code that gets things done
with a minimum of noise. Ruby also allows you to write stuff like this:

class Doc

attr_accessor :ttl, :au, :c

def initialize(ttl, au, c)

@ttl = ttl; @au = au; @c = c

end

def wds; @c.split; end

end

In any language, this kind of “damn the reader” terseness, with its cryptic variable
and method names, is bad. In Ruby it’s a complete disaster. Since bad Ruby code does
not have the last resort crutch of type declarations to lean on, bad Ruby code can be
very bad indeed. The only solution is to not write bad Ruby code. Try to make your
code speak to the human reader as much as it speaks to the Ruby interpreter. It comes
down to this: Ruby is a language for grown-ups; it gives you the tools for writing clear
and concise code. It’s up to you to use them.

In the Wild
A good example of the Ruby typing philosophy of “if the method is there, it is the
right object” is as close as your nearest file and string. Every Ruby programmer knows
that if you want to open a Ruby file, you do something like this:3

94 Chapter 8. Embrace Dynamic Typing

3. Actually, most Ruby programmers would call File.open with a block, but that is beside the
point here.

From <www.wowebook.com>

ptg

open_file = File.open('/etc/passwd')

Sometimes, however, you would like to be able to read from a string in the same
way that you read from a file, so we have StringIO:

require 'stringio'

open_string = StringIO.new("So say we all!\nSo say we all!\n")

The idea is that you can use open_file and open_string interchangeably: Call readchar
on either and you will get the next character, either from the file or the string. Call
readline and you will get the next line. Calling open_file.seek(0) will put you
back at the beginning of the file while open_string.seek(0) will put you at the
beginning of the string.

Surprisingly, the File and StringIO classes are completely unrelated. The earliest
common ancestor of these two classes is Object! Apparently reading and writing files
and strings is different enough that the authors of StringIO (which was presumably
written after File) decided that there was nothing to gain—in terms of implementa-
tion—from inheriting from File, so they simply went their own way. This is fairly
typical of Ruby code, where subclassing is driven more from practical considera-
tions—“Do I get any free implementation from inheriting from this class?”—than a
requirement to make the types match up.

You can find another interesting example of the “don’t artificially couple your
classes together” thinking in the source code for the Set class, which we looked at
briefly in Chapter 3. It turns out that you can initialize a Set instance with an array,
like this:

five_even = [2, 4, 6, 8, 10]

five_even_set = Set.new(five_even)

In older versions of Set, the code that inserted the initial values into the new Set
instance looked like this:4

enum.is_a?(Enumerable) or raise ArgumentError, "not enumerable"

enum.each { |o| add(o) }

In the Wild 95

4. I did take some liberties with this code to make it fit within the formatting restrictions of this book.

From <www.wowebook.com>

ptg

96 Chapter 8. Embrace Dynamic Typing

These early versions of Set first checked to see if the variable enum, which held
the initial members of the set, was an instance of Enumerable—arrays and many other
Ruby collections are instances of Enumerable—and raised an exception if it wasn’t.
The trouble with this approach is that the requirement that enum be Enumerable is
completely artificial. In the spirit of dynamic typing, all that Set should really care
about is that enum has an each method that will iterate through all of the elements.
Apparently the maintainers of the Set class agree, because the Enumerable check has
disappeared from the current version of set.rb.

Wrapping Up
So how do you take advantage of dynamic typing? First, don’t create more infrastruc-
ture than you really need. Keep in mind that Ruby classes don’t need to be related by
inheritance to share a common interface; they only need to support the same meth-
ods. Don’t obscure your code with pointless checks to see whether this really is an
instance of that. Do take advantage of the terseness provided by dynamic typing to
write code that simply gets the job done with as little fuss as possible—but also keep
in mind that someone (possibly you!) will need to read and understand the code in
the future.

Above all, write tests. . . .

From <www.wowebook.com>

ptg

CHAPTER 9
Write Specs!

The past few decades have seen the software world argue endlessly about the best way
to develop reliable programs: Should our languages be procedural or object oriented
or functional? Should we build things top down or bottom up or inside out? When
we code, should we be rational, agile, or simply pragmatic? Out of all this discussion,
one simple idea has emerged: If you want to know that your code works, you need to
test it. You need to test it early, you need to test it often, and you certainly need to test
it whenever you change it. It turns out that with programs, seeing is believing.

Unless you want to spend all your waking hours running tests manually, you need
a test framework, a framework that will let the computer exercise the code for you.
Although the whole programming world has awakened to the need for automated
tests, few language communities have embraced the concept with the passion of the
Ruby community. A key part of the Ruby style of programming is that no class, and
certainly no program, is ever done if it lacks automated tests.

In this chapter we are going to take a look at two different Ruby testing frame-
works, starting with the very traditional Test::Unit and moving on to the very popu-
lar—and very nontraditional—RSpec. We’ll also look at some of the do’s and don’ts
for writing tests, no matter what framework you use. Finally, we will also look at how
the RubySpec project is using an RSpec-like approach to specifying the Ruby pro-
gramming language itself.

97

From <www.wowebook.com>

ptg

Test::Unit: When Your Documents Just Have to Work
We are going to open our look at Ruby testing frameworks by starting with the famil-
iar: Test::Unit. Test::Unit comes packaged with Ruby itself and is a member of the so-
called XUnit family of testing frameworks, so called because there is a similar one for
virtually every programming language out there.

The very simple idea behind Test::Unit is to exercise your code in a series of indi-
vidual tests, where each test tries out one aspect of the program. In Test::Unit, each
test is packaged in a method whose name needs to begin with test_. Here, for
instance, is a little test that checks to make sure that the Document class can do the
very basic thing that documents need to do, namely, to hold onto text:

def test_document_holds_onto_contents

text = 'A bunch of words'

doc = Document.new('test', 'nobody', text)

assert_equal text, doc.content

end

There is not really a lot going on in this test: We make a document with some
text, and then we check, using assert_equal, that the document does indeed still
have the text. If the two arguments to assert_equal are not, in fact, equal, the test
fails. One stylistic thing that his test does well is to have a nice descriptive name. If we
do this testing thing right we are going to have a lot of test methods, and the last thing
we want is to have to dig through the test code to see just what test_that_
it_works or test_number_four is all about. In the same spirit, we could improve our
use of assert_equal by adding the third, optional description parameter:

assert_equal text, doc.content, 'Contents are still there'

Along with assert_equal, Test::Unit also allows you to assert that some arbitrary
condition is true with the assert method. Thus we might check that our words
method is returning what it should with:

assert doc.words.include?('bunch')

To really use Test::Unit you need to roll your tests up in a class, a subclass of
Test::Unit::TestCase. Inside the class you can have any number of test methods:

98 Chapter 9. Write Specs!

From <www.wowebook.com>

ptg

require 'test/unit'

require 'document.rb'

class DocumentTest < Test::Unit::TestCase

def test_document_holds_onto_contents

text = 'A bunch of words'

doc = Document.new('test', 'nobody', text)

assert_equal text, doc.content, 'Contents are still there'

end

def test_that_doc_can_return_words_in_array

text = 'A bunch of words'

doc = Document.new('test', 'nobody', text)

assert doc.words.include?('A')

assert doc.words.include?('bunch')

assert doc.words.include?('of')

assert doc.words.include?('words')

end

def test_that_word_count_is_correct

text = 'A bunch of words'

doc = Document.new('test', 'nobody', text)

assert_equal 4, doc.word_count, 'Word count is correct'

end

end

Kicking off a Test::Unit test is about as easy as it comes: Just run the file contain-
ing the test class with Ruby:1

ruby document_test.rb

Loaded suite document_test

Started

...

Finished in 0.000261 seconds.

3 tests, 3 assertions, 0 failures, 0 errors

Test::Unit: When Your Documents Just Have to Work 99

1. I’d like to invite you to stop for a minute and think about how this could possibly work. How do
those tests get run when you just feed your test class declaration into the Ruby interpreter with
no main program? I’m afraid you will have to wait until Chapter 20 for the answer.

From <www.wowebook.com>

ptg

Note that if one of the test methods does happen to fail, Test::Unit will keep sol-
diering along, running all the other tests. This is generally a good thing, since if there
are multiple broken tests it allows you to survey all the wreckage after a single test run.

One problem with the document test is that it contains a fair bit of redundant
code: We keep creating that Document instance over and over. To deal with this kind
of thing, Test::Unit provides the setup method along with its friend, the teardown
method. The setup method gets called before each test method is run; it’s your oppor-
tunity to do what needs to be done to get ready for your tests. In our example we
would probably just create the document:

class DocumentTest < Test::Unit::TestCase

def setup

@text = 'A bunch of words'

@doc = Document.new('test', 'nobody', @text)

end

def test_that_document_holds_onto_contents

assert_equal @text, @doc.content, 'Contents are still there'

end

def test_that_doc_can_return_words_in_array

assert @doc.words.include?('A')

assert @doc.words.include?('bunch')

assert @doc.words.include?('of')

assert @doc.words.include?('words')

end

def test_that_word_count_is_correct

assert_equal 4, @doc.word_count, 'Word count is correct'

end

end

In the same way, the teardown method gets called after each test method gets run.
The teardown method is great for closing database connections, deleting temporary
files, or any other general post-test tidying up. Note that setup and teardown get
called around each test method, not before, and after all of the tests in the class get
run.

100 Chapter 9. Write Specs!

From <www.wowebook.com>

ptg

A Plethora of Assertions
So far our tests have only needed to check that something is true with assert or that
one thing is equal to something else with assert_equal. These two methods are cer-
tainly not the only assertions in the Test::Unit toolkit. To go with assert and assert_
equal we have assert_not_equal as well as assert_nil and assert_not_nil, each
of which does about what you would expect.

If you are dealing with a lot of strings, Test::Unit has a handy assert_match,
which will fail if a string does not match a given regular expression:

assert_match /times.*/, 'times new roman'

You can also check that an object is an instance of some class:

assert_instance_of String, 'hello'

And you can assert that some code raises an exception:

assert_raise ZeroDivisionError do

x = 1/0

end

Or doesn’t raise (or throw, as the name of the assertion would have it) an exception:

assert_nothing_thrown do

x = 1/2

end

In all, Test::Unit tests can call on about twenty different assertions.

Don’t Test It, Spec It!
Clearly Test::Unit is a workmanlike chunk of testing support, and if you are only
going to write an occasional bit of test code it would probably do. The trouble is that
if you are doing the Ruby thing right, you are not just writing the occasional test. A
good Ruby application comes with lots of tests, tests that try out everything that can
be tried out.

Don’t Test It, Spec It! 101

From <www.wowebook.com>

ptg

Unfortunately, much of the code of a Test::Unit test is about the test and not
about the code that you are testing. Take another look at DocumentTest: You will see
that we have methods that do this and assert that result, but if you are reading the
DocumentTest code, you need to infer what Document behavior is being tested from
the test code.

In a more perfect world, the test would focus on the behavior itself, so that the
test would read something like this:

About the Document class: When you have a document instance, it should hang
onto the text that you give it. It should also return an array containing each word
in the document when you call the words method. And it should return the num-
ber of words in the document when you call the word_count method.

Rspec, possibly the Ruby world’s favorite testing framework, tries to get us to that
more perfect world. Here is the same set of Document tests expressed in RSpec:

describe Document do

it 'should hold on to the contents' do

text = 'A bunch of words'

doc = Document.new('test', 'nobody', text)

doc.content.should == text

end

it 'should return all of the words in the document' do

text = 'A bunch of words'

doc = Document.new('test', 'nobody', text)

doc.words.include?('A').should == true

doc.words.include?('bunch').should == true

doc.words.include?('of').should == true

doc.words.include?('words').should == true

end

it 'should know how many words it contains' do

text = 'A bunch of words'

doc = Document.new('test', 'nobody', text)

doc.word_count.should == 4

end

end

102 Chapter 9. Write Specs!

From <www.wowebook.com>

ptg

RSpec tries to weave a sort of pseudo-English out of Ruby: The code above isn’t
a test, it’s a description. The description says that the Document class should hold on
to the contents. We don’t assert things; we say that they should happen. Thus, we don’t
assert that word_count returns 4; instead, we say that word_count should equal 4.
Like Test::Unit assertions, RSpec shoulds come in a wide variety of forms. We could,
for example, simplify the code above by using should include, turning this:

doc.words.include?('bunch').should == true

Into:

doc.words.should include('bunch')

Similarly, there is should match for those times when a plain == will not do:

doc.content.should match(/A bunch.*/)

If you are feeling negative you can resort to should_not.2

doc.words.should_not include('Excelsior')

By convention, your RSpec code—generally just called a spec—goes in a file
called <<class name>>_spec.rb, so the previous example would be best stored away
in document_spec.rb. You can run the spec by using the spec command:3

spec document_spec.rb

Do that and you should see something like this:

...

Finished in 0.016846047 seconds

3 examples, 0 failures

Don’t Test It, Spec It! 103

2. You can find out all about RSpec—including all the ways that you can say what should hap-
pen—at www.rspec.info.

3. Note that spec is an operating system command, along the lines of ls or dir, not something you
would say in Ruby.

From <www.wowebook.com>

www.rspec.info

ptg

A very handy feature of the spec command is its ability to hunt down all of the
spec files in a whole directory tree, assuming that you follow the <<class name>>_
spec.rb convention. All you need to do is supply the path to a directory instead of a
file to the spec command. So if you run:

spec .

RSpec will run all of the specs that live in the current directory and any of its subdi-
rectories.

A Tidy Spec Is a Readable Spec
As it stands right now, our new document spec has the same problem as the original
Test::Unit based DocumentTest: It has a lot of redundant code in it. Like the original test,
each little chunk of the specification—called an example in RSpec parlance—creates
the same document with the same text. RSpec deals with this problem the same way
that Test::Unit does, by allowing you to supply code that is executed before each exam-
ple. Here is a somewhat shorter-winded version of our spec:

require 'document'

describe Document do

before :each do

@text = 'A bunch of words'

@doc = Document.new('test', 'nobody', @text)

end

it 'should hold on to the contents' do

@doc.content.should == @text

end

it 'should know which words it has' do

@doc.words.should include('A')

@doc.words.should include('bunch')

@doc.words.should include('of')

@doc.words.should include('words')

end

104 Chapter 9. Write Specs!

From <www.wowebook.com>

ptg

it 'should know how many words it contains' do

@doc.word_count.should == 4

end

end

There is also an after, which is the RSpec cousin of teardown and allows you to
get code executed after each example. The :each parameter means to run the code
supplied before (or after) each example. Alternatively, you can use before(:all) and
after(:all) to have some code run before or after any of the examples are run.

Easy Stubs
One of the banes of unit testing flows from the fact that an ideal test exercises exactly
one class at a time. Doing this means that when the test fails we know there is some-
thing wrong with the class we are testing and not some other class that just happened
to get dragged along. The trouble is that most classes will not function without other
classes to help them: Programs tend to be complicated ecosystems, with the majority
of classes relying on the kindness of other classes. It’s this supporting software that is
a problem for tests: How do you test just the one class when that class needs an
entourage of other classes to work?

What you need are stubs and mocks. A stub is an object that implements the same
interface as one of the supporting cast members, but returns canned answers when its
methods are called. For a concrete example, imagine that we’ve created a subclass of
our Document class, a subclass that supports printing. Further, suppose that the real
work of printing is done by a printer class, which supports two methods. Method one
is called available?, and it returns true if the printer is actually up and running.
Method two is render, which actually causes paper to come spewing out of a real
printer. With the printer class in hand, getting our document onto paper is pretty
easy:

class PrintableDocument < Document

def print(printer)

return 'Printer unavailable' unless printer.available?

printer.render("#{title}\n")

printer.render("By #{author}\n")

printer.render(content)

Easy Stubs 105

From <www.wowebook.com>

ptg

'Done'

end

end

The idea of the print method is that we pass it a printer object and it will print the
document—but only if the printer is actually running.

The question here is, how do we test the print method without having to get
involved with a real printer? Conceptually this is easy: You just create a stub printer
class, a sort of stand-in class that has the same available? and render methods of the
real printer class but doesn’t actually do any printing. In practice, coding stubs by
hand can be tedious and, if you are testing a complex class with a lot of dependencies,
tedious and error prone.

The RSpec stub method is there to reduce the pain of creating stubs. To use the
stub method, you pass in a hash of method names (as symbols) and the correspond -
ing values that you want those methods to return. The stub method will give you back
an object equipped exactly with those methods, methods that will return the appro-
priate values. Thus, if you called stub like this:

stub_printer = stub :available? => true, :render => nil

You would end up with stub_printer pointing at an object with two methods,
available? and render, methods that return true and nil respectively. With stub
there are no classes to create, no methods to code; stub does it all for you. Here’s an
RSpec example that makes use of stub_printer:

describe PrintableDocument do

before :each do

@text = 'A bunch of words'

@doc = PrintableDocument.new('test', 'nobody', @text)

end

it 'should know how to print itself' do

stub_printer = stub :available? => true, :render => nil

@doc.print(stub_printer).should == 'Done'

end

it 'should return the proper string if printer is offline' do

stub_printer = stub :available? => false, :render => nil

106 Chapter 9. Write Specs!

From <www.wowebook.com>

ptg

@doc.print(stub_printer).should == 'Printer unavailable'

end

end

Along with stub, RSpec also provides the stub! method, which will let you stub
out individual methods on any regular object you might have lying around. Thus, if
we need a string that claimed to be a million characters long, we could say:

apparently_long_string = 'actually short'

apparently_long_string.stub!(:length).and_return(1000000)

What all of this means is that with RSpec you will never have to write another
class full of stubbed-out methods again.

. . . And Easy Mocks
Stubs, with their ability to quietly return canned answers, are great for producing the
boring infrastructure that you need to make a test work. Sometimes, however, you
need a stublike object that takes more of an active role in the test. Look back at our
last printing test (the one with the stub) and you will see that the test doesn’t verify
that the print method ever called render. It’s a sad printing test that doesn’t check to
see that something got printed.

What we need here is a mock. A mock is a stub with an attitude. Along with
knowing what canned responses to return, a mock also knows which methods should
be called and with what arguments. Critically, a disappointed mock will fail the test.
Thus, while a stub is there purely to get the test to work, a mock is an active participant
in the test, watching how it is treated and failing the test if it doesn’t like what it sees.

In a boring bit of consistency, RSpec provides a mock method to go with stub.
Here again is our PrintableDocument spec, this time enhanced with a mock:

it 'should know how to print itself' do

mock_printer = mock('Printer')

mock_printer.should_receive(:available?).and_return(true)

mock_printer.should_receive(:render).exactly(3).times

@doc.print(mock_printer).should == 'Done'

end

. . . And Easy Mocks 107

From <www.wowebook.com>

ptg

In the code shown here we create a mock printer object and then set it up to
expect that, during the course of the test, available? will be called at least once and
render will be called exactly three times. As you can see, RSpec defines a little expec-
tation language that you can use to express exactly what should happen. In addition
to declaring that some method will or will not be called, you can also specify what
arguments the method should see, RSpec will check these expectations at the end of
each example, and if they aren’t met the spec will fail.

These examples really just scratch the surface of what you can do with RSpec.
Take a look at http://rspec.info for the full documentation.

In the Wild
Given the intense interest of the Ruby community in testing, it’s not surprising that
there are a lot of Ruby testing frameworks and utilities around. For example, if you
decide to use Test::Unit, you might want to look into shoulda.4 The shoulda gem
defines all sorts of useful utilities for your Test::Unit tests, including the ability to
replace those traditional test methods with RSpec-like examples:

require 'test/unit'

require 'shoulda'

require 'document.rb'

class DocumentTest < Test::Unit::TestCase

context 'A basic document class' do

def setup

@text = 'A bunch of words'

@doc = Document.new('a test', 'russ', @text)

end

should 'hold on to the contents' do

assert_equal @text, @doc.content, 'Contents still there'

end

Rest of the test omitted...

end

end

108 Chapter 9. Write Specs!

4. http://github.com/thoughtbot/shoulda

From <www.wowebook.com>

http://rspec.info
http://github.com/thoughtbot/shoulda

ptg

Test::Unit users should also look into mocha,5 which provides mocking facilities along
the same lines as RSpec.

If you have settled on RSpec, a great place to look for examples of specs is the
RubySpec6 project. The fine folks behind RubySpec are trying to build a complete
Ruby language specification in RSpec format. The beauty of this approach is that
when they are done we will not only have a full specification of the Ruby language
that people can read, but we will also have an executable specification, one that you
can run against any Ruby implementation.

For our purposes, RubySpec is a great place to find real world, but nevertheless
easy to understand specs. For example, here is a spec which makes sure that if state-
ments work as advertised:

describe "The if expression" do

it "evaluates body if expression is true" do

a = []

if true

a << 123

end

a.should == [123]

end

it "does not evaluate body if expression is false" do

a = []

if false

a << 123

end

a.should == []

end

Lots and lots of stuff omitted

end

And here is a spec for the Array.each method:

describe "Array#each" do

it "yields each element to the block" do

In the Wild 109

5. http://mocha.rubyforge.org

6. http://rubyspec.org

From <www.wowebook.com>

http://mocha.rubyforge.org
http://rubyspec.org

ptg

a = []

x = [1, 2, 3]

x.each { |item| a << item }.should equal(x)

a.should == [1, 2, 3]

end

Lots of stuff omitted

end

There’s a bit of irony in looking at the RubySpec project for tips on how to use
RSpec given that RubySpec does not actually use RSpec. Instead, the RubySpec proj-
ect uses a mostly compatible RSpec offshoot called MSpec. Although MSpec is close
enough to RSpec for our “find me an example” purposes, it differs from RSpec in ways
that are important if you are trying to test the whole Ruby language.

Finally, if you would like to do RSpec style examples but don’t want to go to the
trouble of installing the RSpec gem, you might consider Minitest, which is included
in Ruby 1.9. MiniTest is a complete rewrite of Test::Unit, and it also sports MiniSpec,
an RSpec like framework. Did I mention that Ruby people like testing?

Staying Out of Trouble
Simply having a set of automated tests is as close to a magical elixir for software qual-
ity as you are likely to find in this life. There are, however, a number of things you can
do to ensure that you are getting the maximum testing magic for your effort. For
example, unit tests, the ones that developers run as they develop, should be quick.
Ideally the tests for your whole system should run in at most a few minutes. Think
about it: Unit tests that take an hour to run will be run at most once per hour. Who
am I kidding? Given the level of patience displayed by the average developer, unit tests
that take an hour to run will get run once or twice a week if you are lucky. If you want
developers to run your unit tests as often as they should, they gotta go quick.

Don’t get me wrong—longer running tests are fine; in fact, they are great. Longer-
running tests that pound away at the database, that require all the servers to be run-
ning, that stress the heck out of the system are great. They are just not unit tests. Unit
tests should run quick with the setup that every developer has. They are your first line
of defense, and in order to be any good they must be run often.

110 Chapter 9. Write Specs!

From <www.wowebook.com>

ptg

Another thing that your tests should be is silent. When you run a test you want a
simple answer to a simple question: Does it work or does it not work? You don’t want
to know how many elements are in the list, that you are now entering this method or
leaving that method, and you certainly don’t need help with today’s date. If the test
fails, and it tells you clearly that it failed, then you can pull out your tools and start
looking at the problem. Until then, quiet please.

Tests also need to be independent of one another: You want to carefully avoid hav-
ing one test rely on the output of a previous test. Don’t create a file in one test (or
RSpec example) and then expect it to be there in another. In particular, use RSpec’s
before(:any) in preference to before(:all).

Do make sure that your tests will actually fail. It is all too easy to create a test that
looks right but doesn’t actually test anything worthwhile. For example, imagine that
we implemented the clone method on Document. The clone method is another
method that every object gets from the Object class: Call clone and you get a copy
of your object. The default clone implementation makes a shallow copy; you get a
second object from clone, but the instance variables of both the original and the clone
will point at identically the same objects. We don’t, however, have to live with the
default: Here's a Document clone method that does a deep copy, duplicating @title,
@author, and @content along with the Document instance:

class Document

...

def clone

Document.new(title.clone, author.clone, content.clone)

end

end

Having taken the advice of this chapter to heart, we make sure that we have a spec
for our new clone. Here it is:

describe Document do

it 'should have a functional clone method' do

doc1 = Document.new('title', 'author', 'some stuff')

doc2 = doc1.clone

Staying Out of Trouble 111

From <www.wowebook.com>

ptg

7. Or at least it acts like a class.

doc1.title.should == 'title'

doc1.author.should == 'author'

doc1.content.should == 'some stuff'

end

end

The trouble with this last spec is that it is an impostor: It does indeed make a cloned
copy of the document, but then it goes on to test the original (doc1) instead of the
copy (doc2). The bottom line is that an important part of writing a test is making sure
that it actually tests what you think it tests.

Let me also add a personal bit of testing heresy. Although the ideal set of unit tests
will cover all of the significant features of your code, sometimes you just can’t get to
the ideal. Sometimes you can’t get anywhere near it: The bug fix needs to go out, or
the release is late, or your coworkers are just not into the whole testing thing. What
to do? Well, write whatever unit tests you can. As an absolute minimum, just write a
unit test that exercises the code a little, with no asserts at all. For example, look at this
seemingly worthless spec:

require 'document'

describe Document do

it 'should not catch fire when you create an instance' do

Document.new('title', 'author', 'stuff').should_not == nil

end

end

While far, far from ideal, this spec actually does more than you might think. If it
runs successfully you will know:

• Document is a class.7

• The Document class is indeed found in the document.rb file.

• The document.rb file doesn’t contain any really egregious Ruby syntax errors.

• Document.new will take three arguments.

112 Chapter 9. Write Specs!

From <www.wowebook.com>

ptg

• Document.new actually returns something.

• Document.new doesn’t throw an exception.

Not bad for a few lines of code. At the risk of repeating myself, let me say it again:
Write really, really good tests if you can. Write OK ones if that is all you can do. If you
can’t do anything else, at least write some tests that exercise your code, even just a lit-
tle bit.

Given that you are going to have tests, or specs, there is also the question of when
to write your tests. A large segment, perhaps a majority, of Ruby programmers adhere
to the test-first philosophy of programming: Never, ever, add a feature to your code
without first adding a test. Start out by writing a test that fails, the test-firsters say, and
then write the code that makes the test pass. Repeat until you have the Great American
Program, complete with a full suite of tests. The test-firsters make the very valid point
that if you never write any code without first having a test for whatever that code is
supposed to do, you will automatically write testable programs.

I have to say that I like the idea of test-first development, and I frequently prac-
tice it. But not—and here is the rub—always. There are times when I can be more
productive by simply writing the code and then going back and adding the tests.
When I hit those times I leave the tests for the end. Test-first development is a great
idea, but we in the software industry have a habit of messing up really good ideas by
deciding they are not just good but absolutely universal. And required. The take-away
here is that you are not finished until you have both the software and the tests or specs
to go with it. Write the tests first, or second, or third. But write the darned tests.

Wrapping Up
Let me say it again: Write the tests. Although I’ve tried to make the case in this chap-
ter that Test::Unit is a fine, traditional testing framework and that RSpec, with its
readable examples and easy mocking, is a great testing framework, the real message is
that you need to write the tests. You will never know whether your code works unless
you write the tests. Write thoroughly comprehensible tests if you can, write sketchy
tests if you must, but write the tests.

Wrapping Up 113

From <www.wowebook.com>

ptg

This page intentionally left blank

From <www.wowebook.com>

ptg

PART II
Classes,
Modules, and
Blocks

From <www.wowebook.com>

ptg

This page intentionally left blank

From <www.wowebook.com>

ptg

CHAPTER 10
Construct Your Classes
from Short, Focused
Methods

Let’s face it: Despite shelves full of books on software architecture, enough UML dia-
grams to fill an art museum, and design meetings that seem to last longer than the
pyramids, building software mostly comes down to writing one method after another.

An important, but frequently ignored question is, how exactly should we break
our classes up into those methods? Although the question of “How should I write my
methods?” is not really one that a programming language can answer, programming
languages do tend to encourage one style over another. In this chapter we are going to
look at how Ruby programmers tend to write methods. We will see that most Ruby
programmers favor very short methods, methods that stick to doing one thing and
doing it well. We will see that breaking your code up into many short, single-purpose
methods not only plays to the strengths of the Ruby programming language but also
makes your whole application more testable.

Compressing Specifications
Imagine that you just landed a job working for the Universal Software Specification
Repository. You and your colleagues are tasked with archiving every software spec that
has ever been written. Since the industry has spewed out a lot of specs over the years,
the plan is to compress the documents before they are stored. Your job is to implement

117

From <www.wowebook.com>

ptg

the heart of the compression algorithm, which will take in a text string and produce
two arrays, which will then be stored in the archive. The first array will contain all the
unique words in the original text. Thus, if you start with this text:

This specification is the specification for a specification

Then the first array would contain all the words found in the text, with no repeats,
like this:

["This", "specification", "is", "the", "for", "a"]

The second array will contain integer indexes. There will be one index in this second
array for each word in the original document. In our example, the second array would
contain this:

[0, 1, 2, 3, 1, 4, 5, 1]

We can use these two data structures to reproduce the original sequence of words
by running through the index array, looking up each word in the unique words array
as we go. Thus we can tell that the fourth word of our text is "the", since the fourth
index is 3 and "the" is the word at index 3 in the unique words array. This technique
is the sort of thing you might do when you want to compress some text that contains
a lot of long, repeated words—which is more or less the definition of a software
 specification.

Doing a passable job of taking some text apart and compressing it into the two
arrays is not difficult. Here’s our first stab:

class TextCompressor

attr_reader :unique, :index

def initialize(text)

@unique = []

@index = []

words = text.split

words.each do |word|

i = @unique.index(word)

if i

@index << i

118 Chapter 10. Construct Your Classes from Short, Focused Methods

From <www.wowebook.com>

ptg

else

@unique << word

@index << unique.size - 1

end

end

end

end

Using the TextCompressor class is simplicity itself: You just supply some text to
the constructor:

text = "This specification is the spec for a specification"

compressor = TextCompressor.new(text)

And then you can get at the arrays of unique words and the word indexes, presumably
for storage elsewhere:

unique_word_array = compressor.unique

word_index = compressor.index

From many points of view, the code here is just fine: It does work,1 and it is fairly
simple. The trouble with this first attempt is that the code itself doesn’t do a very good
job of speaking to the humans who need to maintain it. The next programmer who
tries to understand TextCompressor will need to spend some time looking hard at the
initialize method. It would be nice if the code, along with working, would also do
a better job of explaining itself to the next engineer.

Let’s see if we can’t make the code a little more articulate:

class TextCompressor

attr_reader :unique, :index

def initialize(text)

@unique = []

@index = []

Compressing Specifications 119

1. Well, it does lose all the white space in the text and won’t react well to punctuation. Close
enough for an example.

From <www.wowebook.com>

ptg

words = text.split

words.each do |word|

i = unique_index_of(word)

if i

@index << i

else

@index << add_unique_word(word)

end

end

end

def unique_index_of(word)

@unique.index(word)

end

def add_unique_word(word)

@unique << word

unique.size - 1

end

end

What we have done in this second pass is to pull out the code that looks up a word in
the unique array into the unique_index_of method. We have also pulled out the code
that adds a new word to the @unique array into the add_unique_word method.

This second version is definitely an improvement: At least the names of the new
methods give us a clue as to what’s going on in the initialize method. But we are
not done yet: Our new initialize method is still fairly obtuse and, worse, it seems
a bit unbalanced. On the one hand initialize is acting like a “don’t bother me with
the details” boss by delegating work to unique_index_of and add_unique_word, but
then it turns around and gets involved in the dirty details of managing the @index
array.

Let’s take one more shot at it:

class TextCompressor

attr_reader :unique, :index

def initialize(text)

@unique = []

@index = []

120 Chapter 10. Construct Your Classes from Short, Focused Methods

From <www.wowebook.com>

ptg

add_text(text)

end

def add_text(text)

words = text.split

words.each { |word| add_word(word) }

end

def add_word(word)

i = unique_index_of(word) || add_unique_word(word)

@index << i

end

def unique_index_of(word)

@unique.index(word)

end

def add_unique_word(word)

@unique << word

unique.size - 1

end

end

We’ve done a number of things with this latest version: The initialize method
now foists the task of doing the compression onto the add_text method, which itself
mostly delegates to add_word. In addition, by cutting down on the clutter, it became
apparent that we could collapse the original “is the word there or not?” if statement
into an or2 expression, which ends up in the add_word method.

Composing Methods for Humans
What we have just done to our TextCompressor class is to apply the composed
method technique to it. The composed method technique advocates dividing your
class up into methods that have three characteristics. First, each method should do a
single thing—focus on solving a single aspect of the problem. By concentrating on one
thing, your methods are not only easier to write, they are also easier to understand.

Composing Methods for Humans 121

2. That’s or as in ||.

From <www.wowebook.com>

ptg

Second, each method needs to operate at a single conceptual level: Simply put,
don’t mix high-level logic with the nitty-gritty details. A method that implements the
business logic around, say, currency conversions, should not suddenly veer off into the
details of how the various accounts are stored in a database.

Finally, each method needs to have a name that reflects its purpose. Nothing new
here; we have all heard endless lectures about picking good method names. The time
to listen to all of that haranguing is when you are creating lots of little methods that
you are trying to pull together into a functional whole. Done right, the method names
guide you through the logic of the code.

Take another look at the final version of the compression code and you will see
that it follows all three maxims. There’s a method to add some text, one to add a sin-
gle word, and one to find the index of a word that’s already there. A little more sub-
tly, the code in each of the new methods is at a single conceptual level: Some methods,
add_unique_word for example, are down in the weeds dealing with the messy details
of array indexes, while other methods, particularly add_text, operate at a higher con-
ceptual level. Aside from being compact and focused, each of our methods also has a
carefully chosen name, a name that tells the reader exactly what the method does.

Why is building small, well-named methods that do one thing such a good idea?
It’s not about writing better code for the computer, because the computer doesn’t care.
You can code the same algorithm in a handful of large methods or in a myriad of lit-
tle methods and, as long as you’ve gotten the details right, the computer will give you
exactly the same answer. The reason you should lean toward smaller methods is that
all those compact, easy-to-comprehend methods will help you get the details right.

Composing Ruby Methods
People have been writing short, coherent methods in a whole range of programming
languages for years. The reason we are talking about it here is that, like testing, the
Ruby community has taken to composing their methods with a vengeance. Look at a
class, and if it contains a lot of short, pointed methods it just feels like Ruby.

Nor is this simply a cultural phenomenon: The composed method way of build-
ing classes is particularly effective in Ruby because Ruby is such a “low ceremony” lan-
guage. In Ruby, the cost of defining a new method is very low: just an additional def
and an extra end. Since defining a new Ruby method adds very little noise to your
code, in Ruby you can get the full composed method bang for a very modest code
overhead buck.

122 Chapter 10. Construct Your Classes from Short, Focused Methods

From <www.wowebook.com>

ptg

Having many fine-grained methods also tends to make your classes easier to test.
Consider that with the original version of TextCompressor, the only thing you could
test was, well, everything. You fed some text into the class and that monolithic
initialize method took over. Contrast that with our latest version that allows us to
test all sorts of things:

describe TextCompressor do

it "should be able to add some text" do

c = TextCompressor.new('')

c.add_text('first second')

c.unique.should == ['first', 'second']

c.index.should == [0, 1]

end

it "should be able to add a word" do

c = TextCompressor.new('')

c.add_word('first')

c.unique.should == ['first']

c.index.should == [0]

end

it "should be able to find the index of a word" do

c = TextCompressor.new('hello world')

c.unique_index_of('hello').should == 0

c.unique_index_of('world').should == 1

end

...

end

By decomposing your class into a lot of small methods, you provide a much larger
number of sockets into which you can plug your tests.

One Way Out?
Short, easily comprehended methods also have some secondary advantages as well.
Take the old bit of coding advice that every method should have exactly one way out,
so that all of the logic converges at the bottom for a single return. Suppose, for example,

One Way Out? 123

From <www.wowebook.com>

ptg

we needed a method to rate the text in a document, based on the number of preten-
tious or slangy words in the document. If we construct a single, longish method and
sprinkle returns here and there, we end up with code that is definitely hard to follow:

class Document

Most of class omitted...

def prose_rating

if pretentious_density > 0.3

if informal_density < 0.2

return :really_pretentious

else

return :somewhat_pretentious

end

elsif pretentious_density < 0.1

if informal_density > 0.3

return :really_informal

end

return :somewhat_informal

else

return :about_right

end

end

def pretentious_density

Somehow compute density of pretentious words

end

def informal_density

Somehow compute density of informal words

end

end

The code above is not horrible, but I suspect you would have to stare at it awhile
to really get a feeling for the flow. Now take a look at a single-return rewrite of the
same method:

def prose_rating

rating = :about_right

124 Chapter 10. Construct Your Classes from Short, Focused Methods

From <www.wowebook.com>

ptg

if pretentious_density > 0.3

if informal_density < 0.2

rating = :really_pretentious

else

rating = :somewhat_pretentious

end

elsif pretentious_density < 0.1

if informal_density > 0.3

rating = :really_informal

else

rating = :somewhat_informal

end

end

rating

end

It’s not that dramatic, but the single-exit version does seem more comprehensible—
you don’t find yourself scanning every line trying to figure out if the method is sud-
denly going to exit right there on you. So, problem solved, right?

Not really. The real problem is that the first version of the prose_rating method
goes on and on for way too long. The second version is marginally better, but only
just. A better fix is to attack the “hard to understand” problem head-on with some
composed methods:

def prose_rating

return :really_pretentious if really_pretentious?

return :somewhat_pretentious if somewhat_pretentious?

return :really_informal if really_informal?

return :somewhat_informal if somewhat_informal?

return :about_right

end

def really_pretentious?

pretentious_density > 0.3 && informal_density < 0.2

end

def somewhat_pretentious?

pretentious_density > 0.3 && informal_density >= 0.2

end

One Way Out? 125

From <www.wowebook.com>

ptg

def really_informal?

pretentious_density < 0.1 && informal_density > 0.3

end

def somewhat_informal?

pretentious_density < 0.1 && informal_density <= 0.3

end

def pretentious_density

Somehow compute density of pretentious words

end

def informal_density

Somehow compute density of informal words

end

Now that we have broken prose_rating into something more digestible, it really
doesn’t matter whether it has one return or whether—as in this last version—it is
made up entirely of returns. Once you can take in the whole method in single glance,
then the motivation for the single-return rule goes away.

Staying Out of Trouble
The key to preventing your composed methods from turning on you is to remember
that every method should have two things going for it. First, it should be short. And
second, it should be coherent. In plain English, your method should be compact but
it should also do something. Unfortunately, since short is so much easier to remember
than coherent, programmers will sometimes go too far in breaking up their methods.
For example, we might set out to decompose the add_unique_word method even fur-
ther and end up with this:

class TextCompressor

...

def add_unique_word(word)

add_word_to_unique_array(word)

last_index_of_unique_array

end

def add_word_to_unique_array(word)

126 Chapter 10. Construct Your Classes from Short, Focused Methods

From <www.wowebook.com>

ptg

@unique << word

end

def last_index_of_unique_array

unique.size - 1

end

end

The two new methods do add something to the class. Unfortunately, the word for this
addition is clutter. Taken to the dysfunctional extreme, it’s possible to compose
method yourself into a diffuse cloud of programming dust. Don’t do that.

In the Wild
Getting into the habit of writing the short, pointy methods technique takes time and
effort. As you go through the process, it’s easy to get frustrated and decide that it’s just
impossible to get anything done with such tiny chunks of logic. But like a lot of con-
clusions born of frustration, this one is just not correct. If you need a good role model
to motivate your forays into composed method land, consider ActiveRecord::Base.

If you are a Rails programmer, then you know that it is ActiveRecord::Base that
turns this:

class Employee < ActiveRecord::Base

end

Into a functionally rich interface to a database table. Yet a quick look at base.rb,
which defines the core of the ActiveRecord::Base class, turns up about 1800 non-
comment lines that define about 200 methods. Do the math and you have an average
of about nine lines of code per method. Here, for example is the key find method, all
11 non-blank lines of it:

def find(*args)

options = args.extract_options!

validate_find_options(options)

set_readonly_option!(options)

case args.first

when :first then find_initial(options)

In the Wild 127

From <www.wowebook.com>

ptg

when :last then find_last(options)

when :all then find_every(options)

else find_from_ids(args, options)

end

end

Not only are the ActiveRecord::Base methods generally short, but they also fol-
low the other composed method recommendation: They sport very descriptive names.
Care to venture a guess as to what the find_last or find_every methods in the code
above do? ActiveRecord::Base is the existence proof for the postulate that you can
get something done—in this case, quite a lot done—with short, focused methods.

Wrapping Up
In this chapter we have looked at the composed method technique, which advocates
building short, focused methods. While the composed method technique is not tech-
nically part of the Ruby programming language, it is a key tool that Ruby program-
mers use to construct code. Building your methods this way really comes down to
writing short, focused methods, each with a name that tells the reader exactly what it
does. Not only will these short methods be easier to understand, they will also be eas-
ier to test.

128 Chapter 10. Construct Your Classes from Short, Focused Methods

From <www.wowebook.com>

ptg

CHAPTER 11
Define Operators
Respectfully

In the history of programming languages, operator overloading—the ability to put
your own code behind built-in operators like + and *—has had a somewhat checkered
career: The very minimalistic C programming language had no room for programmer-
defined operators. By contrast, the very expansive C++ embraced operator overloading
and included some fairly elaborate facilities to support it. Programmer-defined opera-
tors vanished again when Java entered the scene, only to rematerialize again with Ruby.

All of this to-ing and fro-ing betrays a certain ambivalence about programmer-
defined operators on the part of language designers. In this chapter we will look at
how you define operators for your Ruby classes and how they might be useful. Along
the way we will look into some of the deep pits that wait for you on the road to build-
ing your own operators and perhaps gain a little insight into why this is one of those
features that falls in and out of vogue. Most importantly, we will talk at some length
about how you can dodge those black pits by knowing when not to define an operator.

Defining Operators in Ruby
One of the nice things about Ruby is that the language keeps very few secrets from its
programmers. Many of the tools used to construct the basic workings of the Ruby pro-
gramming language are available to the ordinary Joe Programmer. Operators are a
good example of this: If you were so inclined, you could implement your own Float

129

From <www.wowebook.com>

ptg

class and—at least as far as operators like +, -, *, and / are concerned—your hand-
crafted Float would be indistinguishable from the Float class that comes with Ruby.

The Ruby mechanism for defining your own operators is straightforward and based
on the fact that Ruby translates every expression involving programmer-definable
operators into an equivalent expression where the operators are replaced with method
calls. So when you say this:

sum = first + second

What you are really saying is:

sum = first.+(second)

The second expression sets the variable sum to the result of calling the + method
on first, passing in second as an argument. Other than + being a strange-looking
method name (it is, however, a perfectly good Ruby method name), the second expres-
sion is a simple assignment involving a method call. It is also exactly equivalent to the
first expression. The Ruby interpreter is clever about the operator-to-method transla-
tion process and will make sure that the translated expression respects operator prece-
dence and parentheses, so that this:

result = first + second * (third - fourth)

Will smoothly translate into:

result = first.+(second.*(third.-(fourth)))

What this means is that creating a class that supports operators boils down to defin-
ing a bunch of instance methods, methods with names like +, -, and *.

To make all of this a little more concrete, let’s add an operator to our Document
class. Documents aren’t the most operator friendly of objects, but we might think of
adding two documents together to produce a bigger document:

class Document

Most of the class omitted...

def +(other)

Document.new(title, author, "#{content} #{other.content}")

130 Chapter 11. Define Operators Respectfully

From <www.wowebook.com>

ptg

end

end

With this code we can now sum up our documents, so that if we run:

doc1 = Document.new('Tag Line1', 'Kirk', "These are the voyages")

doc2 = Document.new('Tag Line2', 'Kirk', "of the star ship ...")

total_document = doc1 + doc2

puts total_document.content

We will see the famous tag line:

These are the voyages of the star ship ...

A Sampling of Operators
Of course, + is not the only operator you can overload. Ruby allows you to define
more than twenty operators for your classes. Among these are the other familiar arith-
metic operators of subtraction (-), division (/), and multiplication (*), along with the
modulo operator (%). You can also define your own version of the bit-oriented and (&)
or (|), as well as the exclusive or (^) operator.

Another widely defined operator is the bitwise left shift operator, <<. This operator
is not popular because Ruby programmers do a lot of bit fiddling; it’s popular because
it has taken on a second meaning as the concatenation, or “add another one,” operator:

names = []

names << 'Rob' # names.size is now 1

names << 'Denise' # names.size is now 2

Along with binary operators like << and *—which do their thing on a pair of
objects—Ruby also lets you define single object, or unary, operators. One such unary
operator is the ! operator. Here’s a somewhat silly unary operator definition for the
! operator:1

A Sampling of Operators 131

1. This will not work in versions earlier than Ruby 1.9, which greatly expanded the number of
operators you can define.

From <www.wowebook.com>

ptg

class Document

Stuff omitted...

def !

Document.new(title, author, "It is not true: #{content}")

end

end

This code enables us to have a tongue-in-cheek argument with ourselves. Start with
this:

favorite = Document.new('Favorite', 'Russ', 'Chocolate is best')

And !favorite will have a content of:

It is not true: Chocolate is best

One interesting aspect of the ! operator is that it sits right on the cusp between
the operator-defining facilities available to the Ruby programmer and what is built
into the language. Although you can override ! and make it do anything you want,
you can’t override the nearly synonymous not. The not operator, along with and, or,
||, and &&, are built in to Ruby, and their behavior is fixed.

The + and – operators are interesting in a different way: They can be both binary
and unary. It’s easy to see the dual role of + and - with numeric expressions. In the
expression -(2+6), the minus sign is a unary operator that simply changes the sign of
the final result while the plus sign is a binary operator that adds the numbers together.
But rewrite the expression as +(2-6) and the operator roles are reversed. We saw ear-
lier that defining the + method on your class defines the binary addition operator. To
create the unary operator, you need to define a method with the special (and rather
arbitrary) name +@. The same pattern applies to -: The plain old - method defines the
binary operator while -@ defines the unary one. Here, for example, are some silly
unary operator definitions for our Document class:

class Document

Most of the class taking a break...

def +@

Document.new(title, author, "I am sure that #{@content}")

end

132 Chapter 11. Define Operators Respectfully

From <www.wowebook.com>

ptg

def -@

Document.new(title, author, "I doubt that #{@content}")

end

end

Which lets us do this:

favorite = Document.new('Favorite', 'Russ', 'Chocolate is best')

unsure = -(+favorite)

So we end up with a document containing this wonderful statement of dietary angst:

I doubt that I am sure that Chocolate is best

Ruby programmers can also define a couple of methods that will make their
objects look like arrays or hashes: [] and []=. Although technically these bracketed
methods are not operators, the Ruby parser sprinkles some very operator-like syntac-
tic sugar on them: When you say foo[4] you are really calling the [] method on foo,
passing in four as an argument. Similarly, when you say foo[4] = 99, you are actu-
ally calling the []= method on foo, passing in four and ninety-nine.

You might, for example, define a [] method on the Document class, a method that
will make Document instances look like an arrays of words:

class Document

Most of the class omitted...

def [](index)

words[index]

end

end

If you do add the bracket methods to your object, you will probably also want to
put in a size method too, otherwise your users won’t be able to tell when they are
running off the end of the pseudo-array.

A Sampling of Operators 133

From <www.wowebook.com>

ptg

Operating Across Classes
One nice thing about the unary operators is that you only need to deal with one
object—and one class—at a time. Coping with two objects doesn’t present much of a
challenge if you are dealing with two objects of the same class, but binary operators
that work across classes can be one of those “seems simple until you try it” kind of
jobs. Take our Document addition method:

def +(other)

Document.new(title, author, "#{content} #{other.content}")

end

Methods don’t get much simpler than this: It just does the Ruby thing and
assumes that the other operand is a Document—or at least an object with a content
method that returns some text—and lets it go at that.2 It would be nice, however, if
we could add a string to a document, so that if we did this:

doc = Document.new('hi', 'russ', 'hello')

new_doc = doc + 'out there!'

We would end up with a document containing 'hello out there!' There’s not
much to making this happen:

def +(other)

if other.kind_of?(String)

return Document.new(title, author, "#{content} #{other}")

end

Document.new(title, author, "#{content} #{other.content}")

end

Great! Now we can add a document and a string together to get ever larger doc-
uments. Unfortunately, we missed something. If we reverse the expression and add a
document to a string:

134 Chapter 11. Define Operators Respectfully

2. You could argue that this method is a bit too simple. After all, we just throw away the author and
title of the second document. This is fine for an example, but it is perhaps an issue in real life.

From <www.wowebook.com>

ptg

'I say to you, ' + doc

We end up with a very unpleasant error:

#<TypeError: can't convert Document into String>

The trouble is that this expression calls the + method on the String class, which blows
up in our face because String doesn’t know about the Document class. The bottom
line is that if you want to define binary operators that work across classes, you need to
either make sure that both classes understand their responsibilities—as String does
not in this example—or accept that your expressions will be sensitive to the order in
which you write them.3

Staying Out of Trouble
So when should you define operators for your classes and when should you just stick
to ordinary methods? Like most software engineering questions, the answer to this one
is a resounding “It depends.” Mainly it depends on the kind of object you are defin-
ing and the specific operations it supports.

The easiest case is where you find yourself building a class that has some natural,
intuitive operator definitions. Envy the authors of the Ruby Matrix and Vector
classes: The answer to the question of whether to have a + operator—and what that
operator should do—is as close as the nearest linear algebra textbook. Similarly, the
built-in Set class very logically maps the boolean | and & operators to the union and
intersection operations. If you find yourself in a similar situation—you are building a
class that has a natural, well-understood meaning for the operators—then count your-
self lucky and start coding.

Another easy case is where you are building a class that, although it doesn’t come
with a whole set of universally understood operators, does have a few operator targets
of opportunity. If you are writing some kind of collection class, it’s an easy decision to
add an << operator. In the same vein, if your class has some natural indexing tenden-
cies, then defining [] and perhaps []= may not be a bad idea.

Staying Out of Trouble 135

3. Don’t get the idea that all is lost with making String cooperate with our Document class. As we
will see in Chapter 24, we can teach an old String some new tricks.

From <www.wowebook.com>

ptg

Finally, there’s the case where, even though there are no widely accepted operators
in the domain you are modeling, you realize that many of the methods on your class
behave in a way that parallels the ordinary arithmetic operators. Perhaps you are mod-
eling organizational structures and you realize that when you put two employees
together you can get a department:

department = employee_1 + employee_2

And combining two departments will give you a division:

division = department_1 + department_2

What you can do is invent your very own operator-based object calculus, with a hier-
archy of increasingly complex organizational types and a rich set of operators . . .

Actually, what you can do is pull back from the brink. Assigning arbitrary, far-
fetched meanings to the common operators is one thing that gives programmer-
defined operators a bad name. Remember, the goal is clear and concise code. Code
that requires me to recall that I get a department when I add two employees together,
but that a department minus an employee is still a (smaller) department, is going to
be anything but clear. If you find that your operators are starting to take on a life of
their own, then perhaps you have gone a little too far. In any event, it is always a good
idea to provide ordinary method names as aliases for your fancy operators as a sort of
escape valve, just in case other programmers fail to appreciate the elegance of adding
two departments together.

You also need to have proper respect for the generally accepted meanings of the
common operators. Operators are nice because they are an easy way of firing off a
complicated set of ideas in the head of anyone reading your program. Write this very
simple code:

a + b

And you have, with a single character, conjured up a whole cloud of ideas in your
readers’ heads, a cloud that goes by the name addition. Very convenient, but also a bit
dangerous. The danger lies in knowing just how big the cloud is and exactly where its
boundaries are. For example, if the users of your class are thinking about plain old ele-
mentary school addition, then they will be sure that the + operator is commutative,
that adding a to b will produce the same result as adding b to a. On the other hand,

136 Chapter 11. Define Operators Respectfully

From <www.wowebook.com>

ptg

if they are thinking about higher math—or strings—they might not be so certain. In
the same vein, we saw earlier that people do tend to assume that if a + b is defined,
then b + a will also be defined. If you define an operator that doesn’t quite live up to
its symbol—if b + a throws an exception or you define a multiplication operator that
isn’t commutative or a subtraction that is—then you owe it to the next engineer to at
least document the fact.

Sometimes even documentation isn’t enough: There are some assumptions that
are absolutely core. Show me this expression:

c = a + b

And then tell me that this code changes the value b, and I will be inclined to throw
you out of a window. The mental cloud of ideas around every operator holds some
absolutely unshakable assumptions—and woe to you if you violate them.

In the Wild
A good example of an operator that might be commutative—but isn’t—is the + operator
for instances of the Time class. Get yourself an instance of Time, perhaps like this:

now = Time.now

And you can roll the clock forward by simply adding some seconds:

one_minute_from_now = now + 60

Unfortunately, since Fixnum does’t know about Time, you can’t write the expression
the other way around:

one_minute_from_now = 60 + now # Bang!

Your Ruby installation also has some more exotic operator specimens. Exhibit A
is the string formatting operator, %. The formatting operator is great when you need
to construct a string and you need more control than the usual Ruby "string
#{interpolation}" gives you. A very simple formatting example would look some-
thing like this:

"The value of n is %d" % 42

In the Wild 137

From <www.wowebook.com>

ptg

This will result in "The value of n is 42"—the %d in the string signals that
this is the place where the value on the right side of the % operator should be inserted.
If that were all there was, you would probably be better off with plain old string inter-
polation. The beauty of the format operator is that it gives you very fine control over
how the values get inserted into the string. For example, imagine you have the com-
ponents of a date in three separate variables:

day = 4

month = 7

year = 1776

Now imagine that you need to format these three date components into a string suit-
able for use as a filename. You could get there very easily with:

file_name = 'file_%02d%02d%d' % [day, month, year]

Run the code shown here and you will end up with a convenient zero-filled string:
file_04071776. A nice thing about the formatting operator is that if % does not shout
“Format!” to you, you can use the equivalent sprintf method,4 which is defined on
all Ruby objects.

If you do find the % formatting operator a little odd, then you will need to fasten
your seat belt for our final example. Think back to Chapter 9 where we discussed spec-
ifying program behavior with RSpec. Recall that with RSpec, instead of writing an
assertion that some condition is true, you write code that looks like this:

x.should == 42

Let’s pass over the details of what the should method does and focus on the ==
operator. RSpec has turned the meaning of the == operator completely inside out. The
garden variety == method is there to answer a question—“Are these two things equal?”
But the RSpec version of == is more like an enforcer: If the two values are equal, noth-
ing much happens; but if they are not equal, the test fails. The cool thing about RSpec
is that its authors managed to find an alternative meaning for == that not only works
in Ruby but also in the squishy computer between your ears. Quite a trick, but not
one that is easy to repeat.

138 Chapter 11. Define Operators Respectfully

4. As all the former C programmers sit up and take notice.

From <www.wowebook.com>

ptg

Wrapping Up
In this chapter we have looked at the ups and downs of defining your own Ruby oper-
ators. The up part is that the actual mechanics of defining Ruby operators is very
easy—you define a method with the right name. The down part is actually getting that
operator to work the way your users might expect it to work. This turns out to be
harder for operators than with garden-variety methods because people have some
strong built-in expectations of what a given operator should do. The wise coder tries
to respect those expectations.

So much for the Ruby operators. Almost. I have deliberately ignored one set of
operators in this chapter: those having to do with equality. The reason I have ignored
the familiar == and the somewhat less commonplace === operators is that equality is
an entire topic in itself, one that we’ll tackle in the next chapter.

Wrapping Up 139

From <www.wowebook.com>

ptg

This page intentionally left blank

From <www.wowebook.com>

ptg

CHAPTER 12
Create Classes That
Understand Equality

Have you ever noticed that it’s smallest words that have the longest entries in the dic-
tionary? My copy of Webster’s dismisses a ten-dollar word like cryptozoology with a sin-
gle three-line definition.1 In contrast, although we all would like to think that we
know right from wrong, the word right consumes almost two pages and sports no less
than 58 separate definitions. Fortunately, software engineers don’t usually have to
wrestle with the finer points of moral philosophy while coding. We do, however, have
something almost as difficult: We have object equality. Like right and wrong, object
equality is a much tougher question than it appears on first blush.

Since understanding object equality is one of the keys to creating well-behaved
Ruby objects, we are going to spend this chapter looking at the various Ruby defini-
tions of equality. We will see that there are a lot of different ways that Ruby objects
can be equal, and that all these definitions of equality are rooted firmly in helping you
make your objects behave the way you want them to behave.

An Identifier for Your Documents
To see just how slippery object equality can be, let’s return again to our documents
and imagine that everyone likes your Document class so much that they’ve been creating

141

1. It’s the study of animals like the Loch Ness Monster and Yeti, animals that may or may not exist.
Probably not.

From <www.wowebook.com>

ptg

more and more of them at a furious pace. There are now so many documents that
managing them has become a problem, so your company has started a second project,
a project aimed at building a system to store and manage all of those documents. To
this end, you decide that you will need some kind of identifier object for your docu-
ments, a key that will allow you to pick a given document out of a crowd. And thus
is born the DocumentIdentifier class:

class DocumentIdentifier

attr_reader :folder, :name

def initialize(folder, name)

@folder = folder

@name = name

end

end

The idea behind DocumentIdentifier is very simple: The management system
assigns each document a (presumably unique) name and groups the documents into
folders. To locate any given document you need both the document name and its
folder, which is exactly the information that DocumentIdentifier instances carry
around. You release the DocumentIdentifier class to the group that is building the
document management system and then lean back and put your feet up on the desk.

Sadly, your “not much to that job” feeling does not survive the afternoon. Your
colleagues are back, and they have a complaint: As it stands, there is no easy way to
compare two instances of DocumentIdentifier to see whether they actually point at
the same document. They want you to enhance your class so that they can tell whether
one document identifier is equal to another.

An Embarrassment of Equality
The question is, equal in what sense? It turns out that Ruby’s Object class defines no
less than four equality methods. There is eql? and equal? as well as == (that’s two
equal signs), not to mention === (that’s three equal signs). For a language that prides
itself on simplicity and conciseness, that’s an awful lot of ways of saying nearly the
same thing. Nearly, but not exactly the same.

142 Chapter 12. Create Classes That Understand Equality

From <www.wowebook.com>

ptg

The good news is that we can dismiss one of these equality methods, equal?,
right up front. Ruby uses the equal? method to test for object identity. In other
words, the only way that this:

x.equal?(y)

Should ever return true is if x and y are both references to identically same objects. If
x and y are different objects, then equal? should always return false, no matter how
similar x and y might be. This brings us to the reason why equal? is unlikely to cause
you any problems: Ruby is really good at figuring out when two objects are the same
object. In fact, Ruby—in the form of the implementation of equal? found in Object
class—is so good at this that there is no need for you to override equal?. Ever.

Double Equals for Everyday Use
Which brings us to the next version of Ruby equality, the == or double-equals opera-
tor. Since the == operator is the one that Ruby programmers habitually reach for when
they are coding, this is probably the one we need to fix in our DocumentIdentifier
class. Our problem is that the default implementation of ==, the one that
DocumentIdentifier inherits from Object, does the same thing as equal?—it tests
for object identity. For example, if you do this:

first_id = DocumentIdentifier.new('secret/plans', 'raygun.txt')

second_id = DocumentIdentifier.new('secret/plans', 'raygun.txt')

puts "They are equal!" if first_id == second_id

You will see, well, nothing. Left to its own devices, the == method will behave just
like equal? and will only return true if the objects being compared are identically the
same object. Unlike the equal? method, testing for object identity is just the default
behavior for the == method: You are free to implement any kind of “same value” com-
parison that makes sense for your object. The way to do this is to implement your own
== method:

class DocumentIdentifier

attr_reader :folder, :name

Double Equals for Everyday Use 143

From <www.wowebook.com>

ptg

def initialize(folder, name)

@folder = folder

@name = name

end

def ==(other)

return false unless other.instance_of?(self.class)

folder == other.folder && name == other.name

end

end

The logic behind the == method shown here is pretty mundane: First, it makes
sure that the other object is in fact an instance of DocumentIdentifier. If it is, the
method goes on to check that the other object has the same folder and name. Notice
that there is no need for a special check for nil: Ruby’s nil is just another object, in
this case an object that will fail the instance_of? test.

One addition we might make is to check whether the other object is in fact iden-
tically the same as this object:

class DocumentIdentifier

...

def ==(other)

return true if other.equal?(self)

return false unless other.instance_of?(self.class)

folder == other.folder && name == other.name

end

end

This kind of check can speed up your equality comparisons quite a bit and might be
worth doing if you think you are going to being using the == method a lot.

With our newly enhanced code, the most common of the Ruby equality methods
now works for our document identifiers so that this:

puts "They are equal!" if first_id == second_id

will indeed print something.

144 Chapter 12. Create Classes That Understand Equality

From <www.wowebook.com>

ptg

Broadening the Appeal of the == Method
One problem with our current == implementation is that it takes a very narrow view
of what it means to be equal. That instance_of? test at the beginning means that the
other object must be an instance of a DocumentIdentifier—no subclasses allowed.
We can loosen the rules a bit by using kind_of?, which will return true if the object
is an instance of DocumentIdentifier or a subclass of DocumentIdentifier:

class DocumentIdentifier

...

def ==(other)

return true if other.equal?(self)

return false unless other.kind_of?(self.class)

folder == other.folder && name == other.name

end

end

class ContractIdentifier < DocumentIdentifier

end

Now, if we make an instance of each:

doc_id = DocumentIdentifier.new('contracts', 'Book Deal')

con_id = ContractIdentifier.new('contracts', 'Book Deal')

And then compare the two, we will find that doc_id == con_id is indeed true, since
the two objects are carrying around the same data and ContractIdentifier is a sub-
class of DocumentIdentifier.

You may be feeling that all this worry about classes and subclasses has a distinctly
un-Ruby feel to it. Didn’t we say that Ruby programmers frown on attaching too
much importance to the class of an object? Can’t we do something a little more in the
spirit of Ruby’s dynamic typing?

We can indeed. The following code defines DocumentPointer, a class completely
unrelated to DocumentIdentifier:

Broadening the Appeal of the == Method 145

From <www.wowebook.com>

ptg

class DocumentPointer

attr_reader :folder, :name

def initialize(folder, name)

@folder = folder

@name = name

end

def ==(other)

return false unless other.respond_to?(:folder)

return false unless other.respond_to?(:name)

folder == other.folder && name == other.name

end

end

The DocumentPointer class dispenses with the class check and instead pays atten-
tion to whether the other object has the right methods: Using the respond_to?
method, the DocumentPointer class asks if this other object has a name method and a
folder method. If so, then it might be an equal. Using this approach, instances of
DocumentPointer will accept an instance of a completely unrelated class—Document -

Identifier for example—as an equal:

doc_id = DocumentIdentifier.new('secret/area51', 'phone list')

pointer = DocumentPointer .new('secret/area51', 'phone list')

pointer == doc_id # True!!

Well-Behaved Equality
Unfortunately we still have some problems. Both the kind_of? as well as the
respond_to? based implementations of == suffer from the “different classes may have
different points of view” problem that we came across in the last chapter. For exam-
ple, in the last section we were happy because by relying on kind_of?, we had man-
aged to make the DocumentIdentifier recognize the equality of subclasses, so that we
got some output from:

146 Chapter 12. Create Classes That Understand Equality

From <www.wowebook.com>

ptg

doc_id = DocumentIdentifier.new('contracts', 'Book Deal')

con_id = ContractIdentifier.new('contracts', 'Book Deal')

puts "They are equal!" if doc_id == con_id

The trouble starts when we try to reverse the order of the expression. This:

puts "They are equal!" if con_id == doc_id

Will print nothing. The problem is that although ContractIdentifier is a subclass
of DocumentIdentifier, the reverse is not true, and when you say con_id == doc_id,
you are really calling the == method on the ContractIdentifier instance.

We have a similar disconnect between DocumentIdentifier and the Document -
Pointer classes. In the last section we put the respond_to? logic into DocumentPointer
so that pointer == identifier comes out true. Unfortunately, since we didn’t put
the same smarts into the DocumentIdentifier class, identifier != pointer.

As I say, this sad situation is an example of exactly the kind of muddled operator
definition that we talked about back in Chapter 11. The problem is that we have
defined equality relationships that violate the principal of symmetry: People tend to
expect that if a == b then b == a.

There really is no magic elixir that will fix an asymmetrical equality relationship:
You can either change the == methods on both classes so that they agree, or you can
simply live with (and perhaps document) a less-than-intuitive, asymmetrical equality.

Asymmetry is also not the extent of our woes. Another built-in assumption we
have about equality is that if a == b and b == c, then surely a == c. This transitive
property is another expectation that is all too easy to violate. To see how, imagine that
our document management system starts storing multiple of versions of each docu-
ment. We might then build a subclass of DocumentIdentifier that knows about the
versions and tries to be smart doing equality comparisons:

class VersionedIdentifier < DocumentIdentifier

attr_reader :version

def initialize(folder, name, version)

super(folder, name)

Well-Behaved Equality 147

From <www.wowebook.com>

ptg

@version = version

end

def ==(other)

if other.instance_of? VersionedIdentifier

other.folder == folder &&

other.name == name &&

other.version == version

elsif other.instance_of? DocumentIdentifier

other.folder == folder && other.name == name

else

false

end

end

end

This == method does something that seems very sensible: If the other object is a
VersionedIdentifier, then it does a full comparison including the version. Alter -
natively, if the other object is a plain old DocumentIdentifier, then the method looks
only at the folder and name fields. The trouble is that this == method is not transitive.
To see why, think about these objects:

versioned1 = VersionedIdentifier.new('specs', 'bfg9k', "V1")

versioned2 = VersionedIdentifier.new('specs', 'bfg9k', "V2")

unversioned = DocumentIdentifier .new('specs', 'bfg9k')

All three point to the same basic document, but the two versioned identifiers
point at different versions of the document. Since the plain DocumentIdentifier
class doesn’t know about the versions, and the VersionedIdentifier class deliber-
ately ignores the version when dealing with a plain identifier, both of these expressions
are true:

versioned1 == unversioned # True!

unversioned == versioned2 # True!

Unfortunately, this expression is very definitely not true:

versioned1 == versioned2 # Not true!

148 Chapter 12. Create Classes That Understand Equality

From <www.wowebook.com>

ptg

In our efforts to do something sensible we have managed to create a situation
where (a == b) and (b == c) but (a != c).

There are a couple of ways around this conundrum. One is to dispense with trying
to deal with both VersionedIdentifier instances and regular DocumentIdentifier
instances in the VersionedIdentifier == method. Instead, add a method to
VersionedIdentifier that returns the plain old document identifier:

def as_document_identifier

DocumentIdentifier.new(folder, name)

end

You can then compare the resulting document identifier, serene in the knowledge that
you know exactly what is going on.

The other way out is to ask yourself whether you really need to use the == opera-
tor for everything. It is easy enough to add your own specialized comparison method
to VersionedIdentifier:

def is_same_document?(other)

other.folder == folder && other.name == name

end

The is_same_document? method here simply ignores the versions and will return true
if the two identifiers point at the same document.

Triple Equals for Case Statements
The next contestant in our equality sweepstakes is the triple equals operator ===. The
main use for === is in case statements.

So why do we need yet another operator just for case systems? Why not just use
== in case statements? It turns out that this is another example of Ruby pragmatism
in pursuit of 2 clean and concise code. Take strings and regular expressions for exam-
ple. Strings are not regular expressions and regular expressions are not strings, so we
certainly would not want a string to be equal to a regular expression according to ==
even if they do match:

Triple Equals for Case Statements 149

2. Wait for it!

From <www.wowebook.com>

ptg

/Roswell.*/ =~ 'Roswell' # Yes!

/Roswell.*/ == 'Roswell' # No!

However, pattern matching regular expressions against strings in case statements
does make for tidy-looking code:

location = 'area 51'

case location

when /area.*/

...

when /roswell.*/

...

else

...

end

To this end, the Regexp class has a === method that does pattern matching when con-
fronted with a string.

By default, === calls the double equals method, so unless you specifically override
===, wherever you send ==, === is sure to follow. It’s probably a good idea to leave ===
alone unless doing so results in really ugly case statements.

Hash Tables and the eql? Method
Finally, we have the eql? method. Since you don’t typically call eql? directly, you
might never know you need it—until you try to use your object as a key in a hash. To
see where the trouble lies, imagine that you store a document in a hash table with a
DocumentIdentifier as the key:

hash = {}

document = Document.new('cia', 'Roswell', 'story')

first_id = DocumentIdentifier.new('public', 'CoverStory')

hash[first_id] = document

Initially, things seem to work. You have no trouble getting your document out of
the hash with the identifier, so hash[first_id] will indeed return your document.

150 Chapter 12. Create Classes That Understand Equality

From <www.wowebook.com>

ptg

The problem is that if you try fetching your document out of the hash with a sec-
ond instance of DocumentIdentifier, like this:

second_id = DocumentIdentifier.new('public', 'CoverStory')

the_doc_again = hash[second_id]

You will end up with the_doc_again set to nil. To see what the problem is, we need
to dive into the workings of the Hash class.

The idea behind a hash is to build a thing that works a lot like an array, but an
array on performance-enhancing drugs. The feature that makes hashes special is that
they can take things other than just numbers as indexes. Now there is a spectacularly
simple way to get this behavior: You build a class that stores all the keys and values in
a simple list. When you need to find a value by its key, you simply do a linear search
down that list, looking at each key until you find the one you want. The trouble with
this simple implementation is that performance falls off in direct proportion to the
number of entries in the table. If you have ten entries in your simple table, then on
average you’ll have to look at five entries3 before you hit the key that you want, which
isn’t too bad. Unfortunately, if you have 1,000 entries you’ll probably have to look at
500 entries before you get lucky, and if you have 10,000 entries . . . Well, you get the
picture.

Real hash tables improve the performance of this simple model with a divide-and-
conquer strategy. Instead of maintaining a single key/value list, a typical hash table
implementation maintains a number of lists, or buckets. By spreading out the stuff
that’s stored in the table across a number of buckets, a hash table can do things dra-
matically faster. Take that 10,000 entry table: If you spread the 10,000 entries over
100 different buckets, instead of having to look at 5,000 entries to find the one you
want, you only need to search through about 50.4

The challenging thing with this scheme is picking the right bucket: If you are sav-
ing a new key/value pair, which bucket do you use? Later, when you go looking for
that same key, how do you know which bucket you picked originally? Answering the

Hash Tables and the eql? Method 151

3. Remember, on average you are only going to have to search down half the list before you find
what you are looking for.

4. Starting in version 1.9, Ruby hashes have a list superimposed atop the whole bucket structure, a
list that keeps track of the order of the hash keys, because the natural workings of a hash will ran-
domize the keys very thoroughly.

From <www.wowebook.com>

ptg

“which bucket” question is where the hash part of a hash table comes in. The idea goes
like this: You define a method on all of your objects, a method which returns a hash
value. The hash value is a more or less random number somehow generated from the
value of the object. When you need to store a key/value pair in your hash table, you
pull the hash value from the key. You then use that number to pick a bucket—typi-
cally by using the modulo operator (hash_code % number_of_buckets)—and you
store your key/value pair in that bucket. Later on when you are looking to retrieve the
value associated with some key, you get the hash code for the key again and use it to
pick the right bucket to search.

Hash codes need to have a couple of properties to make this all work. First, they
need to be stable over time: If a key generates one hash code now and a different one
later, we are inevitably going to end up looking in the wrong bucket. Hash codes also
need to be consistent with the value of the key: If two keys are equal—if they should
return the same value out of the hash table—then, when asked, they must return the
same hash code.

Building a Well-Behaved Hash Key
All of this theory translates pretty directly into Ruby: The Hash class calls the aptly
named hash method (another one of those methods that you inherit from Object) to
get the hash code from its keys. The Hash class uses the eql? method to decide if two
keys are in fact the same key. The default implementations of hash and eql? from the
Object class, like the default implementations of == and ===, are based on object
identity: The default eql? returns true only if the other object is identically the same
as this object. The default hash method returns the object_id of the object, which is
guaranteed to be unique. This is why, in the example, our second DocumentIdentifier
instance failed to find anything in the hash.

There is, however, no rule saying that your class needs to accept the default imple-
mentation. As long as you follow the hash Prime Directive—that if a.eql?(b) then
a.hash == b.hash—you are free to override these two methods. Devising an imple-
mentation of eql? and hash that will work together is really not that difficult. You just
need to make sure that any field that has a vote in the hash code also has a vote in
equality.

Going back to the DocumentIdentifier example, our eql? should obviously take
both the folder and the name fields into account. Given this, we want to make sure
that both fields have a say in the hash code. So here is what we do:

152 Chapter 12. Create Classes That Understand Equality

From <www.wowebook.com>

ptg

class DocumentIdentifier

Code omitted...

def hash

folder.hash ^ name.hash

end

def eql?(other)

return false unless other.instance_of?(self.class)

folder == other.folder && name == other.name

end

end

In the code above, the hash method combines the hash codes from the two fields
using the exclusive or operator ^: Doing this is a simple way of creating a very thor-
ough mishmash of the two numbers, which is exactly what we are looking for in a
hash. The other thing to notice in this code is that the eql? method takes a very restric-
tive view of equality. According to the eql?, only other instances of DocumentIdentifier
can be equal: Getting your objects to work as hash table keys is no time to be imagi-
native about cross-class equality.

Staying Out of Trouble
Making equality work can be painful. There are, however, things that you can do to
minimize the pain. The best thing is to avoid the suffering all together. Given how
easy it is to screw up when you start messing with object equality, your first rule
should be: If it ain’t broke—or used—don’t fix it. Many objects will never find them-
selves in the middle of an equality expression or be called upon to be a hash key. If
you have an object like this, then just leave its equality methods alone.

Even if you do need to implement some or all of the equality methods, you might
be able to lean on someone else’s work.5 If you’re defining a class that is mostly a wrap-
per for some other object, consider borrowing the equality methods from that other
object. For example, if you are building a class that wraps an array, you just might be
able to delegate to the array’s equality methods:

Staying Out of Trouble 153

5. According to the American screenwriter Aaron Sorkin, good writers borrow from other writers.
Great writers steal from them outright. Apparently Sorkin stole this line from Oscar Wilde.

From <www.wowebook.com>

ptg

class DisArray

attr_reader :my_array

def initialize

@my_array = []

end

def ==(other)

return false unless other.kind_of?(DisArray)

@my_array == other.my_array

end

def eql?(other)

return false unless other.kind_of?(DisArray)

@my_array.eql?(other.my_array)

end

def hash

@my_array.hash

end

Rest of the class omitted...

end

Finally, if you do need to write your own equality methods, do the simplest thing
that will work. If you don’t have to support equality across different classes, then don’t.
A limited, but working implementation is better than an elaborate and subtly broken
one.

In the Wild
Ruby’s built-in numeric classes do a bit of equality slight of hand right under your
nose. A little exploration will show that integers (that is, instances of Fixnum or
Bignum) will accept instances of Float as equals, at least according to the == method.
Thus, if you run:

puts 1 == 1.0 # A Fixnum and a Float

154 Chapter 12. Create Classes That Understand Equality

From <www.wowebook.com>

ptg

You will see that 1 is in fact == to 1.0. Ruby does this by converting the Fixnum to a
Float before doing the comparison.

Classes like Float and Fixnum, classes whose instances have a natural ordering,
can add one additional twist to the equality saga in the form of the <=> operator. The
expression:

a <=> b

Should evaluate to -1 if a is less than b, 0 if they are equal, and 1 if a is greater than
b. The <=> is a boon when you are trying to sort a collection of objects. If you find
yourself needing to implement <=>, keep in mind that <=> should be consistent with
==. That is, if a <=> b evaluates to zero, then a == b should be true. The good news
is that Ruby actually supplies a mixin module (see Chapter 16 for more on mixin
modules) to help you keep all of this straight. If you define a <=> operator for your
class, and include Comparable, like this:

class RomanNumerals

include Comparable

Actual guts of the class omitted...

def <=>(other)

Return -1, 0, or 1...

end

end

Then Comparable will not only add a == method to your class, but also <, <=, >=, and
>, all of which will rely on your <=> method to come up with the right answer.

Ruby classes—those objects that are instances of Class—have their own twist on
the triple equality method: Classes treat the === method as an alias for kind_of?. This
is so that you can pick out the class of an object with a case statement, like so:

the_object = 3.14159

case the_object

when String

puts "it's a string"

In the Wild 155

From <www.wowebook.com>

ptg

when Float

puts "It's a float"

when Fixnum

puts "It's a fixnum"

else

puts "Dunno!"

end

This is yet another asymmetric relationship: Although Float === 1.0 is true, 1.0 ===
Float is not.

Wrapping Up
I sometimes think that you can divide software engineers into two classes: the opti-
mists and those who have tangled with object equality. In my more optimistic
moments I realize that while getting object equality right can be trying, it is certainly
doable. The key to getting it right is to keep in mind that Ruby has a fairly fine-
grained model of equality—we have the equal? method, strictly for object identity.
We have the everyday equality method, ==, and we also have the === method, which
comes out mostly for case statements. We also have eql?, and its friend hash, to cope
with hash tables. Getting object equality right is all about understanding the differ-
ences between all those methods and overriding the right ones.

156 Chapter 12. Create Classes That Understand Equality

From <www.wowebook.com>

ptg

CHAPTER 13
Get the Behavior You
Need with Singleton and
Class Methods

Much of programming is about building models of the world. Social networking sys-
tems model the relationships between people. Accounting systems model the flow of
money. Flight simulations model airplanes in flight (or slamming into the ground if
I’m at the controls). You can, in fact, look at all of object oriented programming as a
support system for this kind of modeling. We build classes to describe groups of sim-
ilar things, and we have instances to represent the things themselves.

Usually, the class/instance approximation works fine: You define a class called
American, and you define methods that indicate instances of this class like hamburg-
ers and baseball. The problem is that the class/instance approximation is exactly that,
an approximation. I am, for example, an American who does indeed like the occa-
sional burger, but I can’t tell you the last time I willingly sat through a baseball game.

What do you do when the central approximation of object oriented programming
breaks down, when your instance does not want to follow the rules laid down by its
class? In this chapter we will look at Ruby’s answer to this question: the singleton
method. We will see how singleton methods allow you to produce objects with an
independent streak, objects whose behavior is not completely controlled by their class.
We will also see how class methods are actually just singleton methods by another
name.

157

From <www.wowebook.com>

ptg

A Stubby Puzzle
Let’s start with a question. Recall that back in Chapter 9 we saw how RSpec made it
easy to create stub objects, those stand-ins for real objects that make writing tests less
of a pain. We saw that if, inside of a spec, you did something like this:

stub_printer = stub :available? => true, :render => nil

You would end up, in the form of stub_printer, with an object having two methods,
available? and render:

stub_printer.available? # Always returns true

stub_printer.render # Always returns nil

We also saw in Chapter 9 that RSpec doesn’t limit you to one stub object at a time, so
you could easily conjure up a second stub, perhaps for a font:

stub_font = stub :size => 14, :name => 'Courier'

Now for the question: If you look at the classes of these two stub objects:

puts stub_printer.class

puts stub_font.class

You will discover that they are one and the same:

Spec::Mocks::Mock

Spec::Mocks::Mock

How is this possible? After all, the printer object supports different methods than
the font object. How could they both be of the same class?

The answer is that the available? and render methods on the printer instance,
as well as the size and name methods on the font instance, are singleton methods. In
Ruby, a singleton method is a method that is defined for exactly one object instance.1

158 Chapter 13. Get the Behavior You Need with Singleton and Class Methods

1. Let me also hasten to add that the term “singleton” as it is used here has nothing to do with the
Singleton Pattern of design patterns fame. It’s just an unfortunate collision of terminology. If you
feel a bit put out by this, consider the plight of the guy who wrote the Ruby design patterns book.

From <www.wowebook.com>

ptg

It’s as though Ruby objects can declare independence from their class and say, “Yeah,
I know that no other Spec::Mocks::Mock instance has an available? method, but
I’m special.”

You can hang a singleton method on just about any object at any time.2 The
mechanics of defining singleton methods are really pretty simple: Instead of saying
def method_name as you would to define a regular garden-variety method, you define
a singleton method with def instance.method_name. If, for example, you wanted to
create your own stub printer by hand, you could say this:

hand_built_stub_printer = Object.new

def hand_built_stub_printer.available?

true

end

def hand_built_stub_printer.render(content)

nil

end

You could then call hand_built_stub_printer.available? and render. Singleton
methods are in all respects ordinary methods: They can accept arguments, return val-
ues, and do anything else that a regular method can do. The only difference is that sin-
gleton methods are stuck to a single object instance.

Singleton methods override any regular, class-defined methods. For example, if
you run the (admittedly more fun than useful) code shown here:

uncooperative = "Don't ask my class"

def uncooperative.class

"I'm not telling"

end

puts uncooperative.class

A Stubby Puzzle 159

2. Well, any object except for instances of the numeric classes and symbols, neither of which sup-
ports singleton methods.

From <www.wowebook.com>

ptg

You will see:

I'm not telling

There is also an alternative syntax for defining singleton methods, one that can be
less bulky if you are creating a lot of methods:

hand_built_stub_printer = Object.new

class << hand_built_stub_printer

def available? # A singleton method

true

end

def render # Another one

nil

end

end

Either way you say it, you end up with the same singleton methods.

A Hidden, but Real Class
So how does Ruby pull off the singleton method trick? The key is that every Ruby
object carries around an additional, somewhat shadowy class of its own. As you can
see in Figure 13-1, this more or less secret class—the singleton class—sits between
every object and its regular class.3 The singleton class starts out as just a methodless
shell and is therefore pretty invisible.4 It’s only when you add something to it that the
singleton class steps out of the shadows and makes its existence felt.

Since it sits directly above the instance, the singleton class has the first say on how
the object is going to behave, which is why methods defined in the singleton class will
win out over methods defined in the object’s regular class, and in the superclasses.

160 Chapter 13. Get the Behavior You Need with Singleton and Class Methods

3. Singleton classes are also known as metaclasses or eigenclasses. Although terminology is mostly in
the ear of the beholder, I like the more descriptive and less pretentious “'singleton.”

4. In fact, since the average Ruby object never uses its singleton class, Ruby implementations will
typically delay creating the singleton classes until they are actually needed. This is, however, just
an implementation issue. If you do look, the singleton class will always be there for you.

From <www.wowebook.com>

ptg

Don’t think that the singleton class is just a convenient fiction, either. There really
is an actual Ruby class hidden in there. You can even get hold of the singleton class,
like this:

singleton_class = class << hand_built_stub_printer

self

end

The code shown here may look bizarre, but it is straightforward: When you do the
class << hand_built_stub_printer, you change context so that self is the single-
ton class. Since class definitions, like most Ruby expressions, return the last thing they
evaluate, simply sticking self inside the class definition causes the whole class state-
ment to return the singleton class.

A Hidden, but Real Class 161

Figure 13-1 The singleton class

stub_printer

(instance)

Object

<Singleton Class>

From <www.wowebook.com>

ptg

Class Methods: Singletons in Plain Sight
A common programmer reaction when bumping into singleton methods for the first
time is to dismiss them as an interesting but mostly useless feature. After all, outside
of a few specialized cases such as stubs and mocks, why bother building classes of con-
sistent behavior only to override that behavior with a singleton method? In fact, this
sensible, pragmatic assessment turns out to be completely mistaken. There is one par-
ticular application of singleton methods that is so pervasive that it is practically impos-
sible to build a Ruby program without it. We even have a special name for these
ubiquitous singleton methods, class methods.

To see how class methods are actually singleton methods in disguise, let’s build
another singleton method, this time one that prints out some interesting information
about its host object:

my_object = Document.new('War and Peace', 'Tolstoy',

'All happy families...')

def my_object.explain

puts "self is #{self}"

puts "and its class is #{self.class}"

end

my_object.explain

Run the code above and you will get output that looks something like this:

self is #<Document:0xb7bc2ca0>

and its class is Document

No surprise here, we are just traveling over ground that we covered earlier. Next, how-
ever, comes the twist: What if, instead of an instance of Document, we defined the
explain method on the Document class itself?

my_object = Document

def my_object.explain

puts "self is #{self}"

162 Chapter 13. Get the Behavior You Need with Singleton and Class Methods

From <www.wowebook.com>

ptg

puts "and its class is #{self.class}"

end

my_object.explain

Do that and you will get the following output:

self is Document

and its class is Class

Since my_object is just a reference to Document, we can also call the explain method
like this:

Document.explain

We can also define the explain method on Document explicitly:

def Document.explain

puts "self is #{self}"

puts "and its class is #{self.class}"

end

If the code above looks familiar, it should, since it is a typical Ruby class method
definition. It is also a singleton method definition! If you think about it, this all makes
sense: Any given class, say, Document, is an instance of Class. This means that it inher-
its all kinds of methods from Class, methods like name and superclass. When we
want to add a class method, we want that new method to exist only on the one class
(Document in the example), not on all classes. Since the object that goes by the name
of Document is an instance of Class, we need to create a method that exists only on
the one object (Document) and not on any of the other instances of the same class.
What we need is a singleton method.

Once you get used to the idea that a class method is just a singleton method on
an instance of Class, a lot of things that you learned in Ruby 101 start to make sense.
For example, you will sometimes see the following syntax used to define class methods:

class Document

class << self

def find_by_name(name)

Class Methods: Singletons in Plain Sight 163

From <www.wowebook.com>

ptg

Find a document by name...

end

def find_by_id(doc_id)

Find a document by id

end

end

end

This code only makes sense in light of the class method = singleton method equation: It
is simply the class << some_object syntax applied to the Document class.

In the Wild
Class methods abound in real Ruby programs. Class methods are the perfect home for
the code that is related to a class but independent of any given instance of the class.
For example, we’ve seen that each ActiveRecord model class is associated with a par-
ticular table in the database. So that if you had this:

class Author < ActiveRecord::Base

end

You would have a class that is associated with a database table. Which table? For that,
you need to ask the class, not an instance:

my_table_name = Author.table_name

A common use for class methods is to provide alternative methods for construct-
ing new instances. The Ruby library Date class, for example, comes with a whole raft
of class methods that create new instances. You can, for example, get a date from the
year, the month, and the day:

require 'date'

xmas = Date.civil(2010, 12, 25)

Or by the year and the day of that year:

xmas = Date.ordinal(2010, 359)

164 Chapter 13. Get the Behavior You Need with Singleton and Class Methods

From <www.wowebook.com>

ptg

Or by the day, the week number, and the day of the week:

xmas = Date.commercial(2010, 51, 6)

If you have many different ways that you might create an object, a set of well-
named class methods is generally clearer than making the user supply all sorts of clever
arguments to the new method.

Plain, nonclass singleton methods are as rare as class methods are common. In
fact, their main use in real code is the one we explored earlier in this chapter, build-
ing mocks and stubs for testing frameworks. Both RSpec and the Mocha framework
that we looked at briefly in Chapter 9 use singleton methods to do their mocking
magic. But don’t take my word for it, look for yourself:

describe "Singleton methods in stubs" do

it "is just a demonstration of stubs as singleton methods" do

stub_printer = stub :available? => true, :render => nil

pp stub_printer.singleton_methods

end

end

This RSpec example creates our familiar stubbed-out printer and then uses sin-
gleton_methods—part of the arsenal of every Ruby object—to print out a list of the
names of all of the singleton methods. Run this spec and you will see:

[:available?, :render]

If you do the same kind of thing with the mocks and stubs created by the Mocha gem,
you will discover that they too rely on singleton methods.

Staying Out of Trouble
Most of the problems you are likely to encounter with singleton methods, particularly
in their role as class methods, will likely stem from simple confusion. Easiest to deal
with is confusion over scope. Remember, when you define a class method, it is a
method attached to a class. The instances of the class will not know anything about
that method. Thus, if you define a class method on Document:

Staying Out of Trouble 165

From <www.wowebook.com>

ptg

class Document

def self.create_test_document(length)

Document.new('test', 'test', 'test ' * length)

end

...

end

Then you can call that method via the class:

book = Document.create_test_document(10000)

But Document instances are completely ignorant of the Document class methods, so
that this:

longer_doc = book.create_test_document(20000)

Will give you this:

NoMethodError: undefined method `create_test_document'

for #<Document:0xb7cd7c6c>

Well, perhaps not completely ignorant, since instances do know all about their classes:

longer_doc = book.class.create_test_document(20000)

A bit more subtle is the confusion over the value of self during the execution of
a class method when you mix classes, subclasses, and class methods. To see what I
mean, consider this simple pair of classes:

class Parent

def self.who_am_i

puts "The value of self is #{self}"

end

end

class Child < Parent

end

166 Chapter 13. Get the Behavior You Need with Singleton and Class Methods

From <www.wowebook.com>

ptg

Now, clearly, if you run Parent.who_am_i you would expect the following
 output:

The value of self is Parent

But what happens if you run Child.who_am_i? The answer is that self is always the
thing before the period when you called the class method:

The value of self is Child

While this behavior can be a bit unsettling, it is actually the secret behind some very
powerful Ruby metaprogramming techniques, techniques that we will take up in
Chapter 26.

Wrapping Up
In this chapter we took a tour of singleton methods and learned how they work. We
saw that singleton methods are great for those times when you need an object with
some unique behavior. We saw that singleton methods are hidden inside the more or
less secret singleton class that is part of most Ruby objects. We saw that the singleton
class is a real class, one that you can actually get hold of. We saw how singleton meth-
ods can really shine in testing, where they make it easy to construct stub and mock
objects. But we also saw that the most common use of singleton methods is for class
methods, which are just singleton methods defined on the instances of Class.

Wrapping Up 167

From <www.wowebook.com>

ptg

This page intentionally left blank

From <www.wowebook.com>

ptg

CHAPTER 14
Use Class Instance
Variables

In the last chapter we saw how you can add methods to your classes, methods that
concern themselves with the issues that affect a class as a whole. But wherever you have
code, you’re going to want to have data, which raises the question of where to store
your class-level data. In this chapter we will look at the two alternatives that Ruby
gives us for storing class-level data, the class variable, and the class instance variable.

We are going to start by looking at class variables, those Ruby things that start
with @@ and seem to be the easy answer to storing your class-related information.
Sadly, we will discover that class variables behave in some unfortunate ways, making
them less of a solution and more of a problem. For a real solution to the problem of
class-level data we will turn to a class instance variable, a slightly less obvious but much
more practical solution.

A Quick Review of Class Variables
Imagine that we decide that our Document class needs some defaults.1 We want to be
able to set a default paper size, either the U.S. letter-size paper that is popular in the
United States or the similar A4 size that is in vogue almost everywhere else. Since any
given user will consistently use either U.S. letter or A4, we want to be able to set the

169

1. Also imagine that, as usual, we have reset the Document class back to its primordial, Chapter 1
form.

From <www.wowebook.com>

ptg

paper size at the Document class level and have any document created from then on
default to using that paper size. So how do you store information associated with a
Ruby class?

The obvious answer is to use a class variable. Class variables start with two @’s
instead of one and are associated with a class instead of an ordinary instance. So here
is Document enhanced to use class variables to track its default paper size:

class Document

@@default_paper_size = :a4

def self.default_paper_size

@@default_paper_size

end

def self.default_paper_size=(new_size)

@@default_paper_size = new_size

end

attr_accessor :title, :author, :content

attr_accessor :paper_size

def initialize(title, author, content)

@title = title

@author = author

@content = content

@paper_size = @@default_paper_size

end

Rest of the class omitted...

end

Our new document class starts out by setting the class variable @@default_
paper_size to :a4. Since class variables are not visible to the outside world, we also
supply a pair of accessor methods. A nice thing about class variables is that they are
visible to instances of the class, so inside the initialize method we can pick up the
value of @@default_paper_size as the paper size for the new document. On the sur-
face, the class variable seems like an ideal solution to our problem. But all is definitely
not well.

170 Chapter 14. Use Class Instance Variables

From <www.wowebook.com>

ptg

Wandering Variables
To understand the problem with class variables, we need to look at how they are
resolved. As the name suggests, a class variable is one that is associated with a class.
But which class? Therein lies a tale: When you say @@default_paper_size = :a4,
Ruby needs to figure out which class will provide the home for the @@default_
paper_size variable. Ruby starts by looking at the current class. Does the current class
already have an @@default_paper_size class variable? If it does, then the search is
over and the @@default_paper_size on the current class becomes :a4.

Here’s where the story gets interesting: If the class variable is not defined in the
current class, Ruby will go looking up the inheritance tree for it. So if there is no
@@default_paper_size in the current class, Ruby will look for one in the superclass
and then the super superclass, until it either finds a @@default_paper_size defined on
one of those classes or runs out of classes. If Ruby does find @@default_paper_size
somewhere in the inheritance tree, that’s the one that gets set. If Ruby runs out of
classes without finding @@default_paper_size, then it will create a new class variable
in the current class. Looking up the value of a class variable works pretty much the
same way. Ruby starts with the current class and looks up the inheritance tree; it either
finds the variable or runs out of classes and throws a NameError exception.

Superficially, this sounds very object oriented and reasonable. The problem is that
this method for resolving class variables means they have a tendency to wander from
class to class. To see what I mean, let’s play out a scenario very similar to our earlier
paper size example, but with a very different—and unpleasant—outcome. Imagine
your Document class has become so popular that a number of groups are building sys-
tems that use it. In particular, one group is building an application that helps people
write resumes.

Since resumes are a very specific kind of Document, the resume group decides they
need their own Document subclass:

class Resume < Document

@@default_font = :arial

def self.default_font=(font)

@@default_font = font

end

Wandering Variables 171

From <www.wowebook.com>

ptg

def self.default_font

@@default_font

end

attr_accessor :font

def initialize

@font = @@default_font

end

Rest of the class omitted...

end

The key feature of the resume class is that it defines a default font as a class vari-
able, along with class methods to set and get the default font. Thinking about how
class variables work, we know that when @@default_font = :arial gets run, Ruby
will look at the Resume class, and then at Document, and right on up the inheritance
tree. Finding no @@default_font defined anywhere, Ruby will set @@default_font
on the Resume class. All very reasonable.

Now imagine that there is a second group out there, one that is intent on inflict-
ing yet another PowerPoint or KeyNote clone on the world. They too build a subclass
of Document, and, since even mundane minds frequently think alike, they also have a
default font class variable, although they pick a different font:

class Presentation < Document

@@default_font = :nimbus

def self.default_font=(font)

@@default_font = font

end

def self.default_font

@@default_font

end

attr_accessor :font

172 Chapter 14. Use Class Instance Variables

From <www.wowebook.com>

ptg

def initialize

@font = @@default_font

end

Rest of the class omitted...

end

Again, no problem. When Ruby is confronted with @@default_font = :nimbus,
it will look at the Presentation class (nope), and then at Resume (no again), and so
on, and eventually decide to attach @@default_font to the Presentation class. Since
there are two @@default_fonts, one on the Document class and one on the Presentation
class, the two classes can live side by side in the same application with no problem.

Now for the punch line: Ignorant of the goings on in Resume and Presentation,
you decide to add a @@default_font class variable to your Document class:

class Document

@@default_font = :times

Rest of the class omitted...

end

The result of this simple change is that all Hell breaks loose. Here’s how: The
Document class needs to be loaded before Resume and Presentation—it’s the super-
class after all. This means the Document class @@default_font will get set first, which
means that whenever either of the subclasses goes looking for @@default_font, it will
find the one in Document. Remember, Ruby looks up the inheritance tree first. So your
seemingly low-impact change to the Document class has changed the behavior of both
subclasses. Instead of two separate default font variables, one attached to Presentation
and the other to Resume, there is now only one variable, one that lives up in the
Document class.

To see how nasty that is, consider that this:

require 'document'

require 'resume' # Load Resume first

require 'presentation' # then Presentation

Wandering Variables 173

From <www.wowebook.com>

ptg

Sets the default font for all documents to the Presentation class’s favorite font,
:nimbus. But if you change the order of the require statements:

require 'document'

require 'presentation' # Load Presentation first

require 'resume' # then Resume

Then the default font for all documents gets set to :arial.
If this “It’s my variable!” versus “No! It’s mine!” argument sounds familiar, it should.

This is exactly the kind of situation we run into with global variables—and is also the
reason why coders got out of the global variable business a long time ago. The real
problem with class variables is that they are not so much variables attached to a specific
class as they are global variables with a slightly restricted realm. In fact, Rubyist David
Black calls class variables “vertical global variables,” vertical in that they are restricted
to a single inheritance tree and global in that they are very visible within that tree.

Getting Control of the Data in Your Class
Clearly, we need an alternative way of associating some data with a class, a technique
that is more controllable than class variables. The more controllable alternative to the
class variable is the class instance variable. The good news is that class instance vari-
ables are not really a new thing. They are in fact garden-variety, single @ instance variables
that happen to find themselves attached to a class object.

To see how this might work, recall from the last chapter that inside a class
method, self is always the class. Now ask yourself this: What would happen if you
set an ordinary instance variable inside a class method? Perhaps like this:

class Document

@default_font = :times

def self.default_font=(font)

@default_font = font

end

def self.default_font

@default_font

end

174 Chapter 14. Use Class Instance Variables

From <www.wowebook.com>

ptg

Rest of the class omitted...

end

The answer is that since @default_font = font always sets an instance variable
on self, the default_font= method above will set the @default_font instance vari-
able on the Document object. This means that armed with the code above we can now
set our document-wide default font:

Document.default_font = :arial

To get at the Document default font, all you need to do is call the right class
method, which is exactly what the Document initialize method does:

def initialize(title, author)

@title = title

@author = author

@font = Document.default_font

end

Class instance variables are a very Ruby solution to the problem holding onto
classwide values. There is no extra syntax and no elaborate special case rules:
@default_font is simply an instance variable on an object. The only remotely inter-
esting thing here is that the object happens to be a class.

Class Instance Variables and Subclasses
To paraphrase my mother, it’s all fun and games until someone starts writing sub-
classes. Recall that we didn’t have any problems with the @@ class variables until we
started messing with subclasses. That was when the class variables started wandering
from class to class. Do class instance variables fare any better when the subclasses start
flying?

The short answer is that class instance variables do just fine with subclasses. To see
how, imagine that we have our Presentation subclass and, Presentation has its own
idea of a default font:

class Presentation < Document

@default_font = :nimbus

Class Instance Variables and Subclasses 175

From <www.wowebook.com>

ptg

class << self

attr_accessor :default_font

end

def initialize(title, author)

@title = title

@author = author

@font = Presentation.default_font

end

most of the class omitted...

end

What this code does is create a second class instance variable, this time attached
to the Presentation class. The Presentation @default_font is completely separate
from the Document @default_font, and as long as you are careful with which one
you are talking about, Presentation.default_font or Document.default_font,
life will be good.

Adding Some Convenience to Your Class Instance
Variables
Since class instance variables are just plain old instance variables that happen to be
hanging off a class object, we can use all our Ruby trickery to make living with them
more pleasant. For example, there is no reason for us to be writing those boring
default_font getter and setter methods given that Ruby supplies us with the nice
attr_accessor for just such occasions. So how do you use attr_accessor to get at
a class instance variable? After all, if you just do this:

class Document

attr_accessor :default_font

end

You end up being able to get and set an instance variable called default_font.
Fortunately, we already have the answer. Remember that class methods are just sin-
gleton methods on a class object. The trick to defining class-level attributes is to make
self be the Document singleton class first:

176 Chapter 14. Use Class Instance Variables

From <www.wowebook.com>

ptg

class Document

@default_font = :times

class << self

attr_accessor :default_font

end

Rest of the class omitted...

end

Run this code and you will end up with a Document class that has a couple of class
methods, one to get the default font and the other to set it.

In the Wild
Examples of class instance variables are easy to find in the Ruby code base. For exam-
ple, most Rails programmers know how to set up callbacks, methods that get called at
particular moments in the life of their ActiveRecord objects. Here, for example, is a
class that has arranged for the handle_after_save method to get called just after a
Person instance is saved into the database:

class Person < ActiveRecord::Base

after_save :handle_after_save

def handle_after_save

Do something after the record is saved...

end

end

Clearly, the fact that we do want handle_after_save called after each record save
is an attribute of the Person class, and that is where ActiveRecord saves this informa-
tion. Poke around in ActiveRecord and you will find a class instance variable called
@after_save_callbacks. Nor is @after_save_callbacks lonely. Dig into
ActiveRecord a bit more and you will find a number of similar class instance variables
with names like @after_update_callbacks and @after_validation_callbacks.

Despite the amount of space I’ve used in this chapter to cast aspersions on class
variables, people do use them successfully. For example, the URI class that comes with

In the Wild 177

From <www.wowebook.com>

ptg

your Ruby install and enables you to make sense of things like “http://russolsen.com”
and “sendto:russ@russolsen.com” uses an @@ variable quite happily. When you say
something like this:

my_uri = URI.parse('http://www.russolsen.com')

The parse method will consult @@schemes, which is a hash that maps each URI
scheme—'http' in this case—to the class that knows how to parse URIs with that
scheme. The interesting part of @@schemes is the way it gets filled in. Initially, the
basic URI code simply sets @@schemes to an empty hash:

@@schemes = {}

Then the classes that know how to parse the different flavors of URIs get loaded. The
last thing each of these classes does is add itself to the master list of schemes, so that
in uri/http.rb you will find:

class HTTP

Lots of code omitted...

end

@@schemes['HTTP'] = HTTP

While in uri/sendto.rb you will see:

class MailTo

Lots of code omitted...

end

@@schemes['MAILTO'] = MailTo

One other interesting thing about URI is that @@schemes is not actually a class
variable—it is in fact a module variable. Ruby modules are a bit like stunted classes,
but in the same way that you can hang class variables on classes, you can stick mod-
ule variables on modules. So if we pull back the camera on the URI code, we see:

module URI

...

178 Chapter 14. Use Class Instance Variables

From <www.wowebook.com>

http://russolsen.com

ptg

2. Yes, that’s the word.

@@schemes = {}

end

module URI

class HTTP

Lots of code omitted...

end

@@schemes['HTTP'] = HTTP

end

We will be seeing a lot more of modules in Chapters 15 and 16.

Staying Out of Trouble
The URI code avoids ending up in class variable Hell by setting @@schemes variable
very early on, before any of the individual scheme-parsing code gets loaded. This
ensures that there is a single @@schemes variable and that it is properly attached to the
URI module where it belongs. If you must use class variables, then this is a good strat-
egy. A better strategy is to reread the title of this chapter and stick to class instance
variables.

Wrapping Up
One of the joys of using Ruby is how well the language adheres to the principal of least
surprise: If you are wondering how to do something, there’s a good chance that your
first guess will be correct. Still no language is perfect, and Ruby does harbor a few
unfortunate2 design decisions. The class variable would get my vote as the most unfor-
tunate Ruby feature of all: Class variables seem designed to trip up newcomers to
Ruby and even manage to surprise experienced Ruby developers on occasion. The
good news is that class instance variables are just waiting there to fill in.

Wrapping Up 179

From <www.wowebook.com>

ptg

This page intentionally left blank

From <www.wowebook.com>

ptg

CHAPTER 15
Use Modules as Name
Spaces

There comes a time when every successful software project outgrows its shoes: You
start with a simple utility, something that fits in one source file and that you can
explain in a single elevator ride. Sprinkle in some success in the form of eager—and
demanding—users, and before you know it you end up with a mass of code that you
couldn’t describe on a Washington to Tokyo flight, complete with the stopover in
Chicago.

This is why big programs usually look a bit different from little programs. That
original, elevator-sized utility needs very minimal defenses against complexity, perhaps
a few comments and some well-named methods. It’s the massive, trans-Pacific systems
that need to pull out every complexity-reducing trick in the book1 to give the engi-
neers that work on it a fighting chance.

In this chapter we will look at one of those tricks, using modules to organize your
classes and constants (and modules) into a nice, human brain-friendly hierarchy.

A Place for Your Stuff, with a Name
Sometimes even the most complicated things can start to seem simple if we hang
around them long enough. Take the idea of a class. We generally think of the class as
a simple, more or less indivisible thing. Step back a bit and you realize that classes are

181

1. This book, of course.

From <www.wowebook.com>

ptg

actually a conglomeration of several different ideas. They are the factories that produce
our objects—you say Date.new and the Date class manufactures a new instance for
you. But classes are also containers. Most of the effort that goes into creating a new
class actually goes into putting things like methods and constants into the class.

A Ruby module is the container part of a class without the factory. You can’t
instantiate a module, but you can put things inside of a module. Modules can hold
methods, constants, classes, and even other modules.

Here, for example, is a module that groups together a couple of related classes:

module Rendering

class Font

attr_accessor :name, :weight, :size

def initialize(name, weight=:normal, size=10)

@name = name

@weight = weight

@size = size

end

Rest of the class omitted...

end

class PaperSize

attr_accessor :name, :width, :height

def initialize(name='US Let', width=8.5, height=11.0)

@name = name

@width = width

@height = height

end

Rest of the class omitted...

end

end

Getting at the classes in a module is as simple as pasting the module name on the
front of the class name with a couple of colons. To get at that font class above you just
say Rendering::Font. Wrapping a module around your classes in this way gives you
a couple of advantages. It allows you to group together related classes. Looking at the
last example leaves you with no doubt that the Font and PaperSize classes have some-

182 Chapter 15. Use Modules as Name Spaces

From <www.wowebook.com>

ptg

thing to do with Rendering. Second, when you put the Font class inside of a module,
you are dramatically reducing the probability that your Font class and someone else’s
Font class will be injured in a name collision.

Modules can also hold constants, so we might add a default font and paper size
to our Rendering module:

module Rendering

Font and PaperSize classes omitted...

DEFAULT_FONT = Font.new('default')

DEFAULT_PAPER_SIZE = PaperSize.new

end

You can access your constants in the same way that you access the classes,2 so that
the default paper size becomes Rendering::DEFAULT_PAPER_SIZE. If you get tired of
all this Render:: typing, you can include the module:3

include Rendering

puts "The default paper height is #{DEFAULT_PAPER_SIZE.height}"

Finally, modules can be nested, so that if your rendering module was, say, part of
some larger word-processing package, you might have:

module WordProcessor

module Rendering

class Font

Guts of class omitted...

end

and so on...

end

end

A Place for Your Stuff, with a Name 183

2. In fact, since class names are constants, it’s a very close match.

3. But see the next chapter for the full implications of including a module.

From <www.wowebook.com>

ptg

Naturally, if you do nest your modules you will need to dig deeper to find the
stuff inside: Nest the Font class two modules deep and you will either have to include
the WordProcessor::Rendering module or utter WordProcessor::Rendering::Font
in one breath.

A Home for Those Utility Methods
Along with classes and constants and other modules, you can use modules to enclose
individual methods. Modules make great homes for those pesky methods that just
don’t seem to fit anywhere else. For example, the printing business has traditionally
used a unit of length called the point, where 72 points will fit into an inch.4 We can
certainly imagine that our document code might need a couple of unit conversion
methods to deal with points, and a convenient place to put these might be the
WordProcessor module:

module WordProcessor

def self.points_to_inches(points)

points / 72.0

end

def self.inches_to_points(inches)

inches * 72.0

end

Rest of the module omitted

end

Notice that we wrote the two conversion methods as module-level methods.
Defining them this way—analogous to class-level methods—allows us to call them
directly from the module:

an_inch_full_of_points = WordProcessor.inches_to_points(1.0)

184 Chapter 15. Use Modules as Name Spaces

4. Well, about 72. The actual size of the point has varied with time and geography, but the modern
value has settled on 1/72 of an inch or about 0.353 mm.

From <www.wowebook.com>

ptg

We can also get at module-level methods with the double-colon syntax (that is
WordProcessor::inches_to_points), but generally Ruby programmers tend to stick
to the period.

Building Modules a Little at a Time
Don’t let the end at the bottom of a module fool you. As we will see in Chapter 24,
nothing is Ruby is ever really done. One of the most visible aspects of this “always
open” policy is that you can define your modules in several pieces, spread over a num-
ber of source files. The first file defines the module and the rest of the files simply add
to it. So, returning to our first, single-level Rendering module example, we might
have the Font class in font.rb:

module Rendering

class Font

Bulk of class omitted...

end

DEFAULT_FONT = Font.new('default')

end

And the PaperSize class in paper_size.rb:

module Rendering

class PaperSize

Bulk of class omitted...

end

DEFAULT_PAPER_SIZE = PaperSize.new

end

If we then pull both files into our Ruby interpreter with suitable require statements:

require 'font'

require 'paper_size'

We will have a single Rendering module, complete with fonts and paper sizes.

Building Modules a Little at a Time 185

From <www.wowebook.com>

ptg

Treat Modules Like the Objects That They Are
So far we have treated modules as relatively static containers. In our earlier example
we created a Rendering module and stuck the Font class in it. If we wanted to get at
Font we either spelled out Rendering::Font longhand or we explicitly included the
Rendering module. One key idea in Ruby is that just about everything is an object,
and everything includes modules. Since modules are just objects, we can treat them like
any other object. In particular, we can point a variable at a module and then use that
variable in place of the module. For example:

the_module = Rendering

times_new_roman_font = the_module::Font.new('times-new-roman')

You can take advantage of the object-ness of modules to swap out whole groups
of related classes and constants—and even sub-modules!—at runtime. To see how this
might work, imagine that we are trying to cope with two different types of printer, an
ink jet printer and a laser printer. Further, let’s pretend that we have two classes for
each printer type: one class to submit and cancel jobs, and another class that does
administrative things such as turning the power off or running diagnostic tests:

class TonsOTonerPrintQueue

def submit(print_job)

Send the job off for printing to this laser printer...

end

def cancel(print_job)

Stop the print job on this laser printer...

end

end

class TonsOTonerAdministration

def power_off

Turn this laser printer off...

end

def start_self_test

Test this laser printer...

end

end

186 Chapter 15. Use Modules as Name Spaces

From <www.wowebook.com>

ptg

class OceansOfInkPrintQueue

def submit(print_job)

Send the job off for printing to this ink jet printer...

end

def cancel(print_job)

Stop the print job on this ink jet printer...

end

end

Class OceansOfInkAdministration

def power_off

Turn this ink jet printer off...

end

def start_self_test

Test this ink jet printer...

end

end

The trouble with this code is that we need to manage four classes, two per printer
type. We could simplify that by merging the print queue management and adminis-
trative methods into a single, massive class for each printer type. This will reduce the
number of things we need to manage, but simply jamming things together seems like
a bad idea.

A better solution is to package the bits we need for each type of printer into a sin-
gle module. We can then have a module for the laser printer:

module TonsOToner

class PrintQueue

def submit(print_job)

Send the job off for printing to this laser printer

end

def cancel(print_job)

Stop!

end

end

class Administration

def power_off

Treat Modules Like the Objects That They Are 187

From <www.wowebook.com>

ptg

Turn this laser printer off...

end

def start_self_test

Everything ok?

end

end

end

And a second module for the ink jet printer:

module OceansOfInk

class PrintQueue

def submit(print_job)

Send the job off for printing to this ink jet printer

end

Rest omitted...

end

class Administration

Ink jet administration code omitted...

end

end

Now for the pay-off: We can set a variable to the correct printer-type module and
from then on forget about which kind of printer we are dealing with:

if use_laser_printer

print_module = TonsOToner

else

print_module = OceansOfInk

end

Later...

admin = print_module::Administration.new

188 Chapter 15. Use Modules as Name Spaces

From <www.wowebook.com>

ptg

Staying Out of Trouble
So when should you create a name space module and when should you let your
classes go naked? An easy rule of thumb is that if you find yourself creating a lot of
names that all start with the same word, perhaps TonsOTonerPrintQueue and
TonsOTonerAdministration, then you just may need a TonsOToner module.

Most of the dangers involved in actually creating name-space modules are easily
avoidable. For example, if you want to enclose stand-alone utility methods in a mod-
ule, make sure that you define those methods as module-level methods. Do this:

module WordProcessor

def self.points_to_inches(points)

points / 72.0

end

etc...

end

Not this:

module WordProcessor

def points_to_inches(points)

points / 72.0

end

etc...

end

The first version of WordProcessor creates a module-level method that any code can
use. The second version creates a method that might be great when mixed into a class
but is useless as a widely available utility method.5

Another, more alluring, danger lies in going hog wild with your modules. Think
about our original module example:

Staying Out of Trouble 189

5. We’ll be talking about mixing modules into classes in the next chapter.

From <www.wowebook.com>

ptg

module Rendering

class Font

#...

This two-level organization is fine, but if you think about it, it is not really complete.
After all, a font is a set of glyphs:

module Rendering

module GlyphSet

class Font

#...

And rendering is just one part of creating output, and creating output is a major sub-
system:

module Subsystem

module Output

module Rendering

module GlyphSet

class Font

#...

This is all very logical, but now your users will have to type this monstrosity simply
to get to the Font class:

Subsystem::Output::Rendering::GlyphSet::Font

And they will (justifiably) hate you for it. Remember, the goal is clear and concise
code.

In the Wild
To underscore the idea that a little bit of module goes a long way, consider DataMapper.
DataMapper is a database interface library similar to ActiveRecord. In about 7,500
lines of pretty heavy-duty code, the core of DataMapper uses primarily a three- and
occasionally four-level module hierarchy. If DataMapper can limit itself to a very shal-
low, manageable module structure and still talk to MYSQL, Postgres, and SQLite,

190 Chapter 15. Use Modules as Name Spaces

From <www.wowebook.com>

ptg

chances are pretty good that a modest handful of modules will work for your project
too.

In fact, of the larger Ruby projects that do encase themselves in modules, most
manage to fit everything very comfortably into a very small number of modules. The
code that reads YAML, everyone’s favorite XML alternative, consists of exactly four
modules, with the vast bulk of the code living right in the YAML module. The URI
code that comes with Ruby weighs in at about 2,500 lines of code and consists of a
grand total of five modules, again with most of the code concentrated in a single mod-
ule. Finally, we have RubyGems, all of 14,000 lines and just over a dozen modules.

Wrapping Up
In this chapter we have seen how you can use modules to divide your code into man-
ageable bits and avoid the dreaded name collisions. We saw how you can put classes
and constants, individual methods, and even other modules inside of modules, as well
as how to access the things inside of a module. We also saw how you can treat a mod-
ule just like any other object, which can be a boon when you are trying to manage a
group of related classes.

We aren’t done with modules either. Modules have one other talent that we only
touched on in this chapter, a talent that allows Ruby programmers to share code
between unrelated classes. But for that, you are going to have to turn the page.

Wrapping Up 191

From <www.wowebook.com>

ptg

This page intentionally left blank

From <www.wowebook.com>

ptg

CHAPTER 16
Use Modules as Mixins

I started off the last chapter by pointing out that a class is a combination of two things,
a container and a factory. We build classes full of code (that’s the container part) and
then we use them to manufacture instances. One thing that I glossed over in the last
chapter is that along with being containers and factories, Ruby classes can also be
super: Like classes in most other object oriented programming languages, Ruby classes
are arranged in an inheritance tree, so that a key part of constructing a new class is
picking its parent, or superclass.

In this chapter we are going to discover that you can also insert, or “mix in,” mod-
ules into the inheritance tree of your classes. If you haven’t come across the idea of a
mixin before, let me whet your appetite. Mixins allow you to easily share common
code among otherwise unrelated classes. Mixins are custom-designed for those situa-
tions where you have a method or six that need to be included in a number of differ-
ent classes that have nothing else in common. During our tour of mixin modules we’ll
have a good look at how they work and at how real some real Ruby applications like
Rails use mixins.

Better Books with Modules
Let’s begin our look at mixins by continuing our quest to improve—or at least mea -
sure—the quality of prose entrusted to our Document class. Recall that we’ve already
written a method to measure the average length of the words in our documents. There
is, however, more to good writing than modestly sized words. Editors also tend to

193

From <www.wowebook.com>

ptg

frown on clichés, those phrases that have been so overused that they’ve lost all their
rhetorical pizzazz. We decide that an array of regular expressions along with a new
Document method1 will do the trick. So we are off and running:

class Document

CLICHES = [/play fast and loose/,

/make no mistake/,

/does the trick/,

/off and running/,

/my way or the highway/]

def number_of_cliches

CLICHES.inject(0) do |count, phrase|

count += 1 if phrase =~ content

count

end

end

Rest of the class omitted...

end

This number_of_cliches method is like much of the code we write—not terri-
bly exciting, but useful nevertheless. So, you release your new Document class and
everyone is happy. Unfortunately—at least for you—your employers decide that there
might be a world beyond traditional paper books and begin to move into the digital
market. To this end, they buy an eBook publishing system, which features its own class
hierarchy for representing books:

class ElectronicBook < ElectronicText

Lots of complicated stuff omitted...

end

This is a problem because everyone loves the number_of_cliches method so
much that they would like to get it into the new ElectronicBook class. So how do
you insert a method into these two, very separate class hierarchies?

194 Chapter 16. Use Modules as Mixins

1. Again, we are starting over with our original Document class.

From <www.wowebook.com>

ptg

Your gut reaction—at least if your gut went to the same object oriented pro-
gramming school as mine—might be to create some sort of common superclass for
both ElectronicBook and Document, maybe Tome. This superclass would contain the
number_of_cliches method, which would then be neatly inherited by both
ElectronicBook and Document. Sensible, but not always doable. Sometimes, espe-
cially in cases where you have inherited large bodies of code, it’s just not practical to
rewire the basic structure of your classes in order to share a few tens of lines of code.2

Mixin Modules to the Rescue
The way to solve the problem of sharing code among otherwise unrelated classes is by
creating a mixin module. Let’s take this step by step: First, you move the number_of_
cliches method into a module:

module WritingQuality

CLICHES = [/play fast and loose/,

/make no mistake/,

/does the trick/,

/off and running/,

/my way or the highway/]

def number_of_cliches

CLICHES.inject(0) do |count, phrase|

count += 1 if phrase =~ content

count

end

end

end

Note that the number_of_cliches method is an ordinary instance method in the
module, not a module-level method. Next, you include the module into the classes
that need the method:

Mixin Modules to the Rescue 195

2. The astute reader will notice that I have passed silently over the possibility of simply copying the
code into both classes. We shall speak no more of such an unpleasant alternative.

From <www.wowebook.com>

ptg

class Document

include WritingQuality

Lots of stuff omitted...

end

class ElectronicBook < ElectronicText

include WritingQuality

Lots of stuff omitted...

end

And you are done. When you include a module into a class, the module’s methods
magically become available to the including class, which means that you can now say
this:

text = "my way or the highway does the trick"

my_tome = Document.new('Hackneyed', 'Russ', text)

puts my_tome.number_of_cliches

As well as this:

my_ebook = ElectronicBook.new('EHackneyed', 'Russ', text)

puts my_ebook.number_of_cliches

The Ruby jargon is that by including a module in a class you have mixed it in to
the class. We say that the module itself, WritingQuality in this case, is a mixin mod-
ule. A very useful aspect of mixins is that they are not limited by the “one superclass
is all you get” rule. You can mix as many modules into a class as you like. For exam-
ple, if you created ProjectManagement and AuthorAccountTracking modules for
your publishing employer, you could include them both in the ElectronicBook class,
along with WritingQuality:

module ProjectManagement

Lots of boring stuff omitted

end

196 Chapter 16. Use Modules as Mixins

From <www.wowebook.com>

ptg

module AuthorAccountTracking

Lots of even more boring stuff omitted

end

class ElectronicBook < ElectronicText

include WritingQuality

include ProjectManagement

include AuthorAccountTracking

Lots of stuff omitted...

end

In practice, this means that if you have several unrelated classes that need to share
some code, you don’t have to resort to restructuring your whole inheritance tree to get
at that code. All you need to do is wrap the common stuff in a module and include
that module in the classes that need it.

Extending a Module
Sometimes it’s the class itself—as opposed to the instances of the class—that needs
help from a module. Sometimes you want to pull in a module so that all the methods
in the module become class methods. You might, for instance, have a module full of
methods that know how to locate documents:

module Finders

def find_by_name(name)

Find a document by name...

end

def find_by_id(doc_id)

Find a document by id

end

end

You would like to get the Finders methods into your Document class as class
methods. One way to get this done is to do this:

class Document

Most of the class omitted...

Extending a Module 197

From <www.wowebook.com>

ptg

class << self

include Finders

end

end

This code includes the module into the singleton class of Document, effectively
making the methods of Finders singleton—and therefore class—methods of
Document:

war_and_peace = Document.find_by_name('War And Peace')

Including modules into the singleton class is a common enough task that Ruby has a
special shortcut for it in the form of extend:

class Document

extend Finders

Most of the class omitted...

end

Run this code and you will end up with class-level Document.find_by_name and
find_by_id methods.

Staying Out of Trouble
Clearly there is something magical going on when you include a module in a class.
The key bit of legerdemain is this: When you mix a module into a class, Ruby rewires
the class hierarchy a bit, inserting the module as a sort of pseudo superclass of the
class. As shown in Figure 16-1, the module gets interposed between the class and its
original superclass.

This explains how the module methods appear in the including classes—they
effectively become methods just up the inheritance chain from the class.

Although including a module inserts it into the class hierarchy, Ruby is a bit cir-
cumspect about this fact: No matter how many modules a class includes, instances of
the class will still claim to be, well, instances of the class. So, if my_tome is an instance
of ElectronicBook, then my_tome.class will return ElectronicBook no matter how
many modules the ElectronicBook class includes. Module inclusion is not a complete

198 Chapter 16. Use Modules as Mixins

From <www.wowebook.com>

ptg

secret, however. You can discover whether the class of an instance includes a given mod-
ule with the kind_of? method. So if Document includes the WritingQuality module,
then my_tome.kind_of?(WritingQuality) will return true. You can also use the
ancestors method to see the complete inheritance ancestry—modules included—of
a class, so that Document.ancestors might return the following array:

[Document, WritingQuality, Object, Kernel, BasicObject]

This “insert the module in before the superclass” mechanism is not just some
implementation detail that’s liable to change at any moment. The way modules work
is an integral part of the way that Ruby works. Nor is all of this purely academic—the
module inclusion mechanism has some real, practical implications. For example,
imagine that your company gets into the business of publishing political tracts such as

Staying Out of Trouble 199

Figure 16-1 A module becomes a pseudo superclass to the class that includes it.

Object

Document

WritingQuality

From <www.wowebook.com>

ptg

congressional speeches and the Governor’s state of the state statement. Now, where
politics are involved the rules of good writing change: Politics is where the clichés go
when they die. Given this, you decide that there really is no point in reporting back
on the number of clichés in political writing:

class Document

include WritingQuality

Rest of the class omitted...

end

class PoliticalBook < Document

def number_of_cliches

0

end

Rest of the class omitted...

end

This seems like a sensible way to ensure that the number_of_cliches method
always returns zero, but will it actually work? To put it another way, can you override
a method in a module by defining that method in the class that includes the module?

Once you know that a mixin module effectively becomes a superclass when it is
included, the answer is easy to come by: Yes. Since we know that the methods in a
superclass cannot override the methods in subclasses, we can deduce that no module
method can ever override a method in its host class. Call the method and Ruby will
look first in the class, find it there, and never go looking in any included modules. So
our PoliticalBook class above is indeed correct, and we can happily ignore political
clichés.

A similar “who wins?” question arises if we have the same method in two mod-
ules and include them both in the same class. To see this in action, imagine that we
decide to create a slightly tongue-in-cheek writing-quality module especially for polit-
ical writing:

module PoliticalWritingQuality

No phrase is too worn out to be a cliché

in political writing

200 Chapter 16. Use Modules as Mixins

From <www.wowebook.com>

ptg

def number_of_cliches

0

end

end

Now what happens if we include both the original writing-quality module as well as
the political version above in our PoliticalBook class?

class PoliticalBook < Document

include WritingQuality

include PoliticalWritingQuality

Lots of stuff omitted...

end

Which version of the number_of_cliches method will win? Again, the answer
flows from the way modules get hooked into the class hierarchy of PoliticalBook:
Include a module and it becomes the nearest parent “class” of the including class.
Include a second module and it becomes the nearest parent of the including class,
bumping the other module into second place. Have a look at Figure 16-2 to see this
graphically. It’s the methods in the most recently included module that always win. In
our example, the number_of_cliches from PoliticalWritingQuality would be the
one that PoliticalBook would end up with.

If you find yourself writing your own mixin module, there is one question that
should be uppermost in your mind: What is the interface between my module and its
including class? Since mixing in a module sets up an inheritance relationship between
the including class and the module, you need to let your users know what that rela-
tionship is going to be before they start mixing. You should always add a few concise
comments to your creation stating exactly what it expects from its including class:

Methods to measure writing quality.

Uses the content method of the including class.

module WritingQuality

Lots of stuff omitted...

end

Staying Out of Trouble 201

From <www.wowebook.com>

ptg

A little guidance goes a long way to making your module useful.

In the Wild
Although the examples in this chapter have focused on modules containing a handful
of methods, there really is no limit to what you can do with a module. DataMapper3 is

202 Chapter 16. Use Modules as Mixins

Figure 16-2 Modules get inserted sequentially into the inheritance tree.

Document

PoliticalBook

WritingQuality

PoliticalWritingQuality

3. DataMapper, which is maintained by a cast of, well, tens, can be found at www.datamapper.org.

From <www.wowebook.com>

www.datamapper.org

ptg

a great example of just how far you can take a mixin module. DataMapper is an object
relational mapper along the lines of ActiveRecord. Like ActiveRecord, DataMapper’s
purpose is to make objects persistable in a database. But unlike ActiveRecord, DataMapper
does not require that your persistable objects extend any particular class. Instead, it’s
all done with a module. Here’s what our Document class might look like as a
DataMapper object:

class Document

include DataMapper::Resource

property :id, Integer, :serial => true

property :title, String

property :content, String

property :author, String

end

By including one module—DataMapper::Resource—your class gains all the equip-
ment it needs to persist itself in a database, and does so without using up the single
superclass that Ruby allows for each class.

Rails also makes heavy use of mixin modules, most notably in the form of helpers.
The Rails helper methods do exactly what their name suggests: They help you. For
example, Rails includes a large number of helper methods that ease the pain of creat-
ing HTML, methods like label and radio_button, all delivered to your classes cour-
tesy of mixin modules:

module ActionView

Huge amounts of code and helpful documentation omitted...

module Helpers

module FormHelper

def label(object_name, method, text = nil, options = {})

...

end

def radio_button(object_name, method, tag_value,options={})

...

end

end

In the Wild 203

From <www.wowebook.com>

ptg

end

end

Nor are methods all you can get from a mixin module. Mixin modules are also
very convenient places to stash constants. Since including a module in a class inserts
the module into the class hierarchy, the including class not only gains access to the
module’s methods but also to its constants. You can see this at work in the sqlite3 gem,
which defines a series of modules full of nothing but constants. For example, there is
a module that contains the list of error codes that might come back from sqlite3:4

module ErrorCode

OK = 0 # Successful result

ERROR = 1 # SQL error or missing database

INTERNAL = 2 # An internal logic error in SQLite

PERM = 3 # Access permission denied

ABORT = 4 # Callback routine requested an abort

BUSY = 5 # The database file is locked

LOCKED = 6 # A table in the database is locked

Seemingly endless list of remaining error codes omitted...

end

Now, as we saw in the last chapter, you can access all of these constants using their
fully qualified names by saying things like ErrorCode::OK or ErrorCode::Busy. This
can get tedious if you are doing it a lot; if so, you can drop the qualifying module
name by simply including the ErrorCode module:

class SomeSQLiteApplication

include ErrorCode

def print_status_message(status)

if status == ERROR

puts "It failed!"

elsif status == OK

puts "It worked!"

204 Chapter 16. Use Modules as Mixins

4. In real life, the sqlite3 ErrorCode module is buried inside several other modules, which I have
omitted here for the sake of brevity.

From <www.wowebook.com>

ptg

else

puts "Status was #{status}"

end

end

end

Nothing like being able to insert modules into your class hierarchy to make the work-
day go faster!

Wrapping Up
In this chapter we have seen how mixin modules solve the problem of code that needs
to be shared among classes without using up the one alloted superclass. We have also
seen how mixin modules work, how they get drafted into service as a kind of phan-
tom superclass when they are included into a host class. We have also seen that the key
issue with mixins is the interface between the host class and the mixin module—what
methods does the module provide and what does it expect the class to supply?

For many new Ruby programmers, mixin modules can act as a sort of skeleton
key to the whole philosophy behind the language, the elegant way that Ruby tries to
help programmers get code to execute where it is needed. Because of this, mixin mod-
ules pop up somewhere in most real-world Ruby applications. Nor are we done with
them. Mixins will make an encore appearance in Chapter 20 when we look at a slick
way to add both instance and class methods to a class with a single include. For now,
however, we will turn to the code block, another way of getting code to where you
need it.

Wrapping Up 205

From <www.wowebook.com>

ptg

This page intentionally left blank

From <www.wowebook.com>

ptg

CHAPTER 17
Use Blocks to Iterate

For programmers new to Ruby, code blocks are generally the first sign that they have
definitely departed Kansas. Part syntax, part method, and part object, the code block
is one of the key features that gives the Ruby programming language its unique feel.
In fact, code blocks are kind of the Swiss Army Knife of Ruby programming; we use
them for everything from initializing objects to building DSLs. In the next few chap-
ters we will take a hard look at code blocks and the things you can do with them. The
idea is to get beyond simply passing blocks to other people’s methods and move on to
squeezing the last bit of utility out of the code blocks that get passed into your own
methods.

We’re going to kick things off by looking at the most familiar use of code blocks—
as iterators. After a quick review of the mechanics of code blocks we will move on to
building simple iterators, iterators that can sequence through garden-variety collec-
tions. From there we will move on to iterators that run through collections that never
actually exist. Next, we will also explore how you can mess up a perfectly good itera-
tor and at how a misbehaving iterator can bring your code to a screeching halt. Finally,
we will close by taking a quick tour of the myriad iterating code blocks that you will
find in existing Ruby programs.

A Quick Review of Code Blocks
Since code blocks are one of the higher speed bumps on the road to real Ruby fluency,
let’s take a minute to review the basics. In Ruby you create code blocks by tacking
them on to the end of a method call, like this:

207

From <www.wowebook.com>

ptg

do_something do

puts "Hello from inside the block"

end

Or this:

do_something { puts "Hello from inside the block" }

When you tack a block onto the end of a method call, Ruby will package up the
block as sort of a secret argument and (behind the scenes) passes this secret argument
to the method. Inside the method you can detect whether your caller has actually
passed in a block with the block_given? method and fire off the block (if there is one)
with yield:

def do_something

yield if block_given?

end

Blocks can take arguments, which you supply as arguments to yield, so that if
you do this:

def do_something_with_an_arg

yield("Hello World") if block_given?

end

do_something_with_an_arg do |message|

puts "The message is #{message}"

end

You will get:

The message is Hello World

Finally, like most everything else in Ruby, code blocks always return a value—the
last expression that the block executes—which your yielding method can either use or
ignore as it sees fit. So if you run this:

208 Chapter 17. Use Blocks to Iterate

From <www.wowebook.com>

ptg

def print_the_value_returned_by_the_block

if block_given?

value = yield

puts "The block returned #{value}"

end

end

print_the_value_returned_by_the_block { 3.14159 / 4.0 }

You will see the value of π ⁄ 4:

The block returned 0.7853975

One Word after Another
The difference between the do_something and do_something_with_an_arg methods
and a real iterator method is simple: An iterator method calls its block once for each
element in some collection, passing the element into the block as a parameter. For
example, we could add an iterator to our Document class, one that runs through all the
words in the document:

class Document

Stuff omitted...

def each_word

word_array = words

index = 0

while index < words.size

yield(word_array[index])

index += 1

end

end

end

The Document class, now sports a very respectable-looking Ruby iterator method,
one that you can use like any other, so that running this:

One Word after Another 209

From <www.wowebook.com>

ptg

d = Document.new('Truth', 'Gump', 'Life is like a box of ...')

d.each_word {|word| puts word}

Will result in this:

Life

is

like

a

box

of

...

Although this each_word method is a good, simple illustration of how to build an
iterating method, it does go out of its way to work hard. A real implementation of
each_word would almost certainly take advantage of the existing each method in the
words array:

def each_word

words.each { |word| yield(word) }

end

There’s nothing like using the wheel that’s already there.

As Many Iterators as You Like
Although so far we have focused on adding an iterator to the Document class, a class
can have as many iterator methods as make sense. So along with each_word, the
Document class might also sport an each_character method:1

class Document

def each_character

210 Chapter 17. Use Blocks to Iterate

1. If you are using a pre-1.9 version of Ruby, the each_character method is misnamed since before
1.9 Ruby strings were just collections of bytes (really just integers), not actual characters. So if
you are using 1.8.X, the Document each_character method will yield a series of numbers, each
number the ordinal number of a character in the string. With Ruby 1.9, strings really are strings
of characters, and the each_character method will yield a series of one-character strings.

From <www.wowebook.com>

ptg

index = 0

while index < @content.size

yield(@content[index])

index += 1

end

end

end

You are also free to name your iterator method anything you like, but it does
make good sense to follow the Ruby convention and name your most obvious or com-
monly used iterator each and give any other iterators a name like each_something_
else. We might, therefore, decide that words are the key elements of our documents
and re-jigger our code to look something like:

class Document

Stuff omitted

def each

iterate over the words as in our first example

end

def each_character

iterate over the characters

end

end

Since it’s the words that count, we have made the each method run through the doc-
ument one word at a time while consigning the method that runs through each char-
acter a lesser name.

Iterating over the Ethereal
An aspect of iterators that beginners often overlook is that you can write iterators that run
through collections that don’t actually exist, at least not all at the same time. The simplest
example of this sort of thing is the times method that you find on Ruby integers:

12.times { |x| puts "The number is #{x}" }

Iterating over the Ethereal 211

From <www.wowebook.com>

ptg

This code will print out the first dozen integers, but it will print them without
ever assembling a twelve-element collection. Instead, the times method produces each
number one at a time and feeds it to the block. So far, so obvious. What’s not so obvi-
ous is that you can use this same trick to build your own iterators. For example, peo-
ple who are interested in determining the authorship of documents will sometimes
gather statistics on which words are likely to appear together in a given document. If
you had a document where the word “Mmmm” was frequently followed by the word
“donuts,” you might guess that the author was Homer Simpson. We can help these
authorship-seeking scholars by providing an each_word_pair method in the Document
class:

class Document

Most of the class omitted...

def each_word_pair

word_array = words

index = 0

while index < (word_array.size-1)

yield word_array[index], word_array[index+1]

index += 1

end

end

end

Armed with each_word_pair, we can write some code to print out every pair of adja-
cent words in one of the world’s great bits of literature:

doc = Document.new('Donuts', '?', 'I love donuts mmmm donuts')

doc.each_word_pair{ |first, second| puts "#{first} #{second}" }

Which will produce:

I love

love donuts

donuts mmmm

mmmm donuts

212 Chapter 17. Use Blocks to Iterate

From <www.wowebook.com>

ptg

Notice that we never actually build a four-element array of all the word pairs: We sim-
ply generate the pairs on the fly.

Enumerable: Your Iterator on Steroids
As I say, the Ruby convention is to name the main iterator of your class each, and one
of the themes of this book is that you should try to stick to the conventions. There is,
however, another reason to follow the crowd and name that key iterating method
each: Doing so enables you to use the Enumerable module. The Enumerable module
is a mixin that endows classes with all sorts of interesting collection-related methods.
Here’s how Enumerable works: First, you make sure that your class has an each
method, and then you include the Enumerable module in your class, like this:

class Document

include Enumerable

Most of the class omitted...

def each

words.each { |word| yield(word) }

end

end

The simple act of including Enumerable adds a plethora of collection-related
methods to your class, methods that all rely on your each method. So, if you create
an instance of the Enumerable-enhanced Document:

doc = Document.new('Advice', 'Harry', 'Go ahead make my day')

Then you can find out whether your document includes a given word with
doc.include?, so that doc.include?("make") will return true, but doc.include?(
"Punk") will return false. Enumerable also enhances your class with a to_a method
that returns an array of all of the items, in our case words, in your collection. The
Enumerable module also adds methods that help you find things in your collection,
methods with names like find and find_all.

Enumerable also contributes the each_cons method to your class. The each_cons
method takes an integer and a block, and will repeatedly call the block, each time

Enumerable: Your Iterator on Steroids 213

From <www.wowebook.com>

ptg

passing in an array of consecutive elements from the collection. So by including
Enumerable in the Document class, the each_word_pair method would reduce down to:

def each_word_pair

words.each_cons(2) {|array| yield array[0], array[1] }

end

Along the same lines as each_cons, Enumerable also supplies each_slice, which
simply breaks up the collection in chunks of a given size and passes those into the
block. Finally, if the elements in your collection define the <=> operator, you can use
the Enumerable-supplied sort method, which will return a sorted array of all the ele-
ments in your collection. Since strings do indeed define <=>, we can get a sorted list
of the words in our document with doc.sort.2 In all, Enumerable adds nearly 40
methods to your class—not a bad return on the effort of implementing one or two
methods and mixing in a single module.

Nor are you simply stuck if, as with the latest Document class with its each and
each_character and each_word_pair, you have more than one iterating method.
Along with Enumerable, Ruby also comes with the Enumerator class. If you create an
Enumerator instance, passing in your collection and the name of the iterating method,
what you will get is an object that knows how to sequence through your collection
using that method. For example, if you make a new Enumerator based on a Document
instance and the each_character method:

doc = Document.new('example', 'russ', "We are all characters")

enum = Enumerator.new(doc, :each_character)

Then you will end up with an object with all of the nice Enumerable methods based
on the each_character method. Thus you can discover the number of characters in
your document text:

puts enum.count

214 Chapter 17. Use Blocks to Iterate

2. Mysteriously, arrays also implement all of these methods. This might lead you to suspect that the
Array class includes the Enumerable module. You would be right.

From <www.wowebook.com>

ptg

Or sort the characters:

pp enum.sort

To produce:

[" ", " ", " ", "W", "a", "a", "a", "a", "c", ...]

Although the names are tricky, getting the hang of Enumerable and Enumerator is
well worth the effort.

Staying Out of Trouble
The primary way that an iterator method can come to grief is by trusting the block
too much. Remember, the code block you get handed in your iterator method is
someone else’s code. You need to regard the block as something akin to a hand
grenade, ready to go off at any second. We saw one aspect of this when we talked
about Ruby’s collection classes: What happens if the code block changes the underly-
ing collection? As we saw in Chapter 3, the Ruby collection classes generally throw up
their arms and say “Don’t do that!” Our Document class is, however, made of stronger
stuff. Since the Document each_word method actually creates a new array before it
starts, the document can change any which way while the iteration is going on. The
each_word method will continue to sequence through the words that were there when
the iteration started.

Blocks can also blow up in your face with an exception:

doc.each_word do |word|

raise 'boom' if word == 'now'

end

A stray exception will not make much difference to the each_word method, but what
if your iterator needs to acquire—and get rid of—some expensive resource? What if
you have something like:

def each_name

name_server = open_name_server # Get some expensive resource

while name_server.has_more?

Staying Out of Trouble 215

From <www.wowebook.com>

ptg

yield name_server.read_name

end

name_server.close # Close the expensive resource

end

Now you have a problem. If the code block decides to raise an exception in mid-yield,
then you’ll never get a chance to clean up that expensive resource. The answer to this
problem is easy:

def each_name

name_server = open_name_server # Get some expensive resource

begin

while name_server.has_more?

yield name_server.read_name

end

ensure

name_server.close # Close the expensive resource

end

end

Even an exception-free block is no guarantee that your iterating method will run
to completion. Ruby allows applications to call break in mid-block. The idea is to give
the code using an iterating method a way to escape early:

def count_till_tuesday(doc)

count = 0

doc.each_word do |word|

count += 1

break if word == 'Tuesday'

end

count

When called from inside of a block, break will trigger a return out of the method
that called the block. An explicit return from inside the block triggers an even bigger
jump: It causes the method that defined (not called) the block to return. This is gen-
erally what you want to simulate breaking out of or returning from a built-in loop.
Fortunately, like exceptions, both break and return will trigger any surrounding
ensure clauses.

216 Chapter 17. Use Blocks to Iterate

From <www.wowebook.com>

ptg

In the Wild
The fact is, you can’t swing a dead cat in the Ruby world without hitting some block-
based iterators. Iterators in Ruby range from the very mundane to the fairly exotic. At
the boring end of the spectrum we have the each method on the Array and Hash
classes that we looked at in Chapter 3. Equally unexciting, but still very useful, is each
method on the built-in Dir class. The Dir each method will iterate over all the files
in a given directory:

puts "Contents of /etc directory:"

etc_dir = Dir.new("/etc")

etc_dir.each {|entry| puts entry}

Slightly more interesting is the each_address method on the Resolv3 class, which
is part of the Ruby standard library. The Resolv class looks things up in DNS for you.
Thus, with the each_address method you can discover all of the IP addresses associ-
ated with a given domain name. Run this:

require 'resolv'

Resolv.each_address("www.google.com") {|x| puts x}

And you will see something like:

72.14.204.104

72.14.204.147

72.14.204.99

72.14.204.103

At the more esoteric end of the spectrum, we have the each_object method on
the standard class ObjectSpace. Called without any parameters, ObjectSpace.each_
object will run through all the objects in your Ruby interpreter4 (yes, all of them!).

In the Wild 217

3. Yes, without the “e”.

4. Do be aware that for performance reasons, JRuby disables ObjectSpace by default. This is one of
the few incompatibilities between JRuby and the other Ruby implementations. You can un-dis-
able it, but it is an incompatibility nevertheless.

From <www.wowebook.com>

ptg

Call ObjectSpace.each_object with a class and it will iterate through all of the
instances of that class. For example, to see all of the strings that your Ruby interpreter
knows about, run:

ObjectSpace.each_object(String) { |the_string| puts the_string }

Finally, if your taste in esoteric iterators runs more towards the mathematical,
consider the each method on the Prime class. This method will call your block once
for each and every prime number:

require 'mathn'

Warning: According to Euclid, this never stops...

Prime.each {|x| puts "The next prime is #{x}" }

Of course, if you want to see all of the prime numbers, you’ll need to be patient.

Wrapping Up
In this chapter we looked at the iconic application of code blocks, as iterators. We saw
how you can build as many iterator methods as you like for your classes, methods that
take a block and call it for each item in some collection. We also saw how you can
build iterators that sequence through collections that don’t actually exist. As long as
you can come up with one element after another, you can build an iterator. We saw
how Enumerable and Enumerator can enhance the iterating chops of your classes by
providing most of the methods any collection class could imagine. We also saw how
you need to treat the code blocks that get passed to your methods with a certain level
of wary respect.

So much for iterators. In the next chapter we will look at a very different use for
code blocks, one that turns the idea of an iterator on its head. Iterators are concerned
with delivering item after item to a code block. We will see how you can reverse the
polarity of code blocks and use them to deliver code to the right spot in your program.

218 Chapter 17. Use Blocks to Iterate

From <www.wowebook.com>

ptg

CHAPTER 18
Execute Around with a
Block

In the last chapter we looked at using code blocks as iterators. Code blocks do make
great iterators, but simply running through a collection one element at a time in no
way exhausts what you can do with a code block. In this chapter we will take the next
step with code blocks by seeing how we can use them as a science fiction transporter
device of sorts, capable of delivering code where it is needed in a shimmering flash of
light.1 Along the way we will examine how you can get data into and out of your code
blocks. Finally, we will stumble across yet another reason why carefully chosen method
names are worth their weight in gold.

Add a Little Logging
If I had to list my five favorite debugging aids, I’d probably have to ponder the bot-
tom four, but number one would be easy: decent logging. Unglamorous and utilitar-
ian, logging is one of those techniques that we don’t talk about a lot, but that is vital
in real-world applications. If, for example, we store our documents, keyed by name,
in a database, we might write something like this:

219

1. OK, I made up the shimmering flash part.

From <www.wowebook.com>

ptg

class SomeApplication

...

def do_something

doc = Document.load('resume.txt')

Do something interesting with the document.

doc.save

end

end

We might, except that database interactions are not always successful, so we
would probably want to sprinkle in some logging:

class SomeApplication

def initialize(logger)

@logger = logger

end

def do_something

@logger.debug('Starting Document load')

doc = Document.load('resume.txt')

@logger.debug('Completed Document load')

Do something interesting with the document.

@logger.debug('Starting Document save')

doc.save

@logger.debug('Completed Document save')

end

end

Even better is an explicit log message informing us of disaster:

class SomeApplication

Rest of the class omitted...

220 Chapter 18. Execute Around with a Block

From <www.wowebook.com>

ptg

def do_something

begin

@logger.debug('Starting Document load')

@doc = Document.load('resume.txt')

@logger.debug('Completed Document load')

rescue

@logger.error('Load failed!!')

raise

end

Do something with the document...

begin

@logger.debug('Starting Document save')

@doc.save

@logger.debug('Completed Document save')

rescue

@logger.error('Save failed!!')

raise

end

end

end

This last bit of code is great. It gives us a full account of the document’s adven-
tures as it gets loaded and saved, and even shouts for help if something goes wrong.
The only problem with this code is that it’s horrible! We have managed to take a cou-
ple of simple operations—one lonely line of code to load a document and a similar
line to save it—and turned them into a nightmare that goes on for half a page. And it
only gets worse from there. Between the load and the save we will probably do some-
thing with the document, something that will likely rate its own logging. We might
even (gasp!) need to deal with more than one document at a time.

Not only is all this logging code tedious to write, it is also hard to read, which
means that we have managed to violate both ends of our “clear and concise code” goal.
How can we do better? Perhaps we could write special load and save methods, meth-
ods that do the logging for us:

class SomeApplication

Rest of the class omitted...

Add a Little Logging 221

From <www.wowebook.com>

ptg

def do_something

@doc = load_with_logging('resume.txt')

Do something with the document...

save_with_logging(@doc)

end

def load_with_logging(doc)

begin

@logger.debug('Starting Document load')

doc = Document.load(doc)

@logger.debug('Completed Document load')

rescue

@logger.error('Load failed!!')

raise

end

doc

end

def save_with_logging(doc)

begin

@logger.debug('Starting Document save')

doc.save

@logger.debug('Completed Document save')

rescue

@logger.error('Save failed!!')

raise

end

end

end

The trouble with this approach is that we will need one of these special “with_logging”
methods for everything we do. On top of that, each one of our “with_logging” meth-
ods will keep endlessly repeating the same logging code.

Fortunately, there is a way out. Delivering code where it is needed is exactly what
code blocks do so well. We can hide all of the logging nonsense—complete with its
associated exception handling—in a method that takes a code block:

222 Chapter 18. Execute Around with a Block

From <www.wowebook.com>

ptg

class SomeApplication

def do_something

with_logging('load') { @doc = Document.load('resume.txt') }

Do something with the document...

with_logging('save') { @doc.save }

end

Rest of the class omitted...

def with_logging(description)

begin

@logger.debug("Starting #{description}")

yield

@logger.debug("Completed #{description}")

rescue

@logger.error("#{description} failed!!")

raise

end

end

end

Take a look at the do_something method in this last example—it’s almost back to
its original brevity, but with logging. Even better, it’s obvious what is going on: We are
loading and saving the document, with logging. Best of all, since we can pass an arbi-
trary block into with_logging, with_logging is completely general; we can do any-
thing with logging:

class SomeApplication

def do_something_silly

with_logging('Compute miles in a light year') do

186000 * 60 * 60 * 24 * 365

end

end

end

Add a Little Logging 223

From <www.wowebook.com>

ptg

When It Absolutely Must Happen
This simple “bury the details in a method that takes a block” technique goes by the
name of execute around. Use execute around when you have something—like the log-
ging in the previous example—that needs to happen before or after some operation,
or when the operation fails with a exception. Instead of laboriously sprinkling inten-
tion-obscuring code far and wide, you build a method that takes a code block. Inside
the method you do whatever preparation needs doing; in our example it was logging
the initial message. Then you call the block, followed by any clean-up work, which in
the example was the second log message. You can (and probably should) also catch any
exceptions that come roaring out of the block2 and do the right thing with them.

Now, although the name “execute around” comes from the full-blown idea of a
method that does something before and after the block gets executed, there is no rule
saying you can’t build a slightly degenerate execute around method that omits the after
bit:

def log_before(description)

@logger.debug("Starting #{description}")

yield

end

Or the before part:

def log_after(description)

yield

@logger.debug("Done #{description}")

end

Even if you do leave one or the other parts out, the idea is the same: Execute
around uses a code block to interleave some standard bit of processing with whatever
it is that the block does.

224 Chapter 18. Execute Around with a Block

2. Of course, unexpected exceptions never appear in any of my code, but I understand other people
do occasionally experience them.

From <www.wowebook.com>

ptg

Setting Up Objects with an Initialization Block
Execute around can also help you get your objects initialized. You can, for example,
change the Document initialize method to take a block, one that it calls with the
new Document instance:

class Document

attr_accessor :title, :author, :content

def initialize(title, author, content = '')

@title = title

@author = author

@content = content

yield(self) if block_given?

end

Rest of the class omitted...

end

Doing this allows an application that creates a new document to isolate the code
that initializes the new document in the block:

new_doc = Document.new('US Constitution', 'Madison', '') do |d|

d.content << 'We the people'

d.content << 'In order to form a more perfect union'

d.content << 'provide for the common defense'

end

Using execute around for initialization is generally less about making sure that things
happen in a certain sequence and more about making the code readable: Here, it says,
is the code that sets up the new object.

Dragging Your Scope along with the Block
A key part of doing a successful execute around method is paying attention to what
goes into and what comes out of the code block. Let’s start with the input side of the
equation. Programmers who are still getting used to code blocks will sometimes have

Dragging Your Scope along with the Block 225

From <www.wowebook.com>

ptg

the urge to pass lots of arguments from their application code, through the execute
around method and down into the code block. For example, you might see something
like this:

class SomeApplication

Rest of the class omitted...

def do_something

with_logging('load', nil) { @doc = Document.load('book') }

Do something with the document...

with_logging('save', @doc) { |the_object| the_object.save }

end

def with_logging(description, the_object)

begin

@logger.debug("Starting #{description}")

yield(the_object)

@logger.debug("Completed #{description}")

rescue

@logger.error("#{description} failed!!")

raise

end

end

end

This code is more complex than it needs to be because it misses a key point about
code blocks: All of the variables that are visible just before the opening do or { are still
visible inside the code block. Code blocks drag along the scope in which they were cre-
ated wherever they go. In the last example, this means that @doc object is automati-
cally visible inside the code block—no need to pass it down as an argument.3

This doesn’t mean that respectable execute around methods don’t take any argu-
ments. A good rule of thumb is that the only arguments you should pass from the

226 Chapter 18. Execute Around with a Block

3. The technical term for objects with this scope dragging property is closure, and some Ruby pro-
grammers will use the terms closure and block interchangeably.

From <www.wowebook.com>

ptg

application into an execute around method are those that the execute around method
itself, not the block, will use. We can see this in our with_logging method. We passed
in strings like 'Document load' and 'Document save' to the with_logging method,
strings used by the method itself.

Similarly, there is nothing wrong with the execute around method passing argu-
ments that originate in the method itself into the block; in fact, many execute around
methods do exactly that. For example, imagine that you need a method that opens a
database connection, does something with it, and then ensures that the connection
gets closed. You might come up with something like this:

def with_database_connection(connection_info)

connection = Database.new(connection_info)

begin

yield(connection)

ensure

connection.close

end

end

Note that the with_database_connection method creates the new database connec-
tion and then passes it into the block.

Carrying the Answers Back
Another thing you need to consider with execute around methods is that the applica-
tion might want to return something from the block. It would be reasonable, for
example, to expect that our light-year computing method would actually return a very
large number:

def do_something_silly

with_logging('Compute miles in a light year') do

186000 * 60 * 60 * 24 * 365

end

end

It might be reasonable, but right now it won’t happen. The rub is that, up to now,
all of our with_logging methods have simply tossed out the return value from the
block. To make the example above work, we need to do something like:

Carrying the Answers Back 227

From <www.wowebook.com>

ptg

def with_logging(description)

begin

@logger.debug("Starting #{description}")

return_value = yield

@logger.debug("Completed #{description}")

return_value

rescue

@logger.error("#{description} failed!!")

raise

end

end

This new and improved with_logging method captures the return value from the
block and returns it as its own return value.

Staying Out of Trouble
Aside from making sure you know what arguments are going into your execute around
method and making sure you deliver any return value out of it, the main way to go
wrong with execute around is to forget about exceptions. In fact, exception handling
is even more important with execute around than it is with iterators, because execute
around is all about guarantees. The whole idea of execute around is that the caller is
guaranteed that this will happen before the code block fires and that will happen after.
Don’t let some stray exception sully the reputation of your method for absolutely, pos-
itively getting the job done.

With execute around you also need to consider the human factor: A critical dif-
ference between just using execute around and really applying it elegantly lies in the
name you pick for your method. A good name should make sense in the context of the
application code, the code that is calling the method. Don’t think of it so much as nam-
ing a new method as naming a new feature that you are adding to the Ruby language.

To see what I mean, imagine that we had been a little less careful in naming our
logging execute around method:

execute_between_logging_statements("update") do

employee.load

employee.status = :retired

employee.save

end

228 Chapter 18. Execute Around with a Block

From <www.wowebook.com>

ptg

Somehow the code above just doesn’t sing to you the way this does:

with_logging("update") do

employee.load

employee.status = :retired

employee.save

end

Sure, we all know that no matter what the name is, it is just a method call. But if
you blur your vision a little you can imagine that with_logging is an actual bit of
Ruby syntax, like while or if. In fact, your imagination would not be that far off:
After defining the with_logging method, you now have a language that not only will
let you conditionally execute code with an if statement and repeatedly execute some
code in a while loop, but also will let you execute some code wrapped in logging with
with_logging.

In the Wild
If the open_database example of a few pages ago seems strangely familiar, it should—
I modeled it on the very familiar File.open method that comes with Ruby:

No open file here.

File.open('/etc/passwd') do |f|

File open here!

Begin cracking the passwords on Russ' computer...

end

The password file is guaranteed to be closed here.

It’s also easy to find execute around used to initialize objects. Part of building a
Ruby gem, for example, is creating a Gem::Specification instance, which describes
your new gem in excruciating detail. Here’s Rake in the process of filling in its
 specification:

SPEC = Gem::Specification.new do |s|

Basic information.

In the Wild 229

From <www.wowebook.com>

ptg

s.name = 'rake'

s.version = $package_version

s.summary = "Ruby based make-like utility."

s.description = <<-EOF

Rake is a Make-like program implemented in Ruby. Tasks

and dependencies are specified in standard Ruby syntax.

EOF

Lots and lots omitted!

end

By letting you put all the initialization code in the block, the Gem::Specification
initialize method is helping you make your code a bit easier to read. This is code
block as a literary device!

You can find another real-world example of execute around in the ActiveRecord
say_with_time method. Here is say_with_time along with its buddy, say:

class Migration

Most of the class omitted...

def say(message, subitem=false)

write "#{subitem ? " ->" : "--"} #{message}"

end

def say_with_time(message)

say(message)

result = nil

time = Benchmark.measure { result = yield }

say "%.4fs" % time.real, :subitem

say("#{result} rows", :subitem) if result.is_a?(Integer)

result

end

end

As you can see, the say_with_time method takes a string argument as well as a block.
When you call say_with_time it executes the block and then prints your message
along with the amount of time that it took to execute the block.

Finally, since we have spent so much time in this chapter talking about using exe-
cute around to add logging to your code, we should probably also give equal time to

230 Chapter 18. Execute Around with a Block

From <www.wowebook.com>

ptg

the ActiveRecord silence method, which turns logging off 4 for the duration of a
code block.

Wrapping Up
In this chapter we have looked at the execute around technique. Execute around can
help you cope with those times when you have code that frequently needs to come
before or after some other code, or both. Execute around suggests that you build a
method that takes a block; inside of that method you execute whatever code needs exe-
cuting before and after you call the block. Creating an execute around method is sim-
ple, but, like any method that you build, you do need to pay attention to get the
maximum mileage. Name your execute around method carefully—keeping in mind
how the method will be used—and pay particular attention to the arguments, both
those that go into the method and those that pass between the method and the block.

Wrapping Up 231

4. Technically, silence turns the logging level up (or is it down?) to ERROR.

From <www.wowebook.com>

ptg

This page intentionally left blank

From <www.wowebook.com>

ptg

CHAPTER 19
Save Blocks to Execute
Later

It’s hard to believe, but we are not done with code blocks yet. There is still one more
bit of software goodness that we can squeeze out of the programming construct that
keeps on giving. Two chapters ago we called on code blocks as iterators to sequence
through collections. In the last chapter we looked to the block as a mechanism for
delivering the right code to the right context. The topic of this chapter is similar to
the last: using blocks as a device for delivering your code where it is needed. The dif-
ference is that, while the execute around technique was all about getting your code to
the right place, this chapter will focus on using blocks to transport your code through
time. In the pages that follow, we are going to learn how you can grab hold of the code
block that is passed into your method and simply hang on to it until you need it.

Explicit Blocks
So far in our adventures with code blocks we have used block_supplied? to deter-
mine whether someone has passed in a code block to a method and yield to fire off
the block. As we have seen, block_supplied? and yield rely on the fact that Ruby
treats a code block appended to the end of a method call as a sort of implicit param-
eter to the call, a parameter that only yield and block_supplied? know how to get at.

233

From <www.wowebook.com>

ptg

However, implicitly is not the only way to pass blocks to your methods. If you
add a parameter prefixed with an ampersand to the end of your parameter list,1 Ruby
will turn any block passed into the method into a garden-variety parameter. After you
have captured a block with an explicit parameter, you can run it by calling its call
method. Here, for example, is a very simple method with an explicit code block
parameter:

def run_that_block(&that_block)

puts "About to run the block"

that_block.call

puts "Done running the block"

end

It’s also trivially easy to figure out whether the caller actually did pass in a block:
Just check to see if the value of the block parameter is nil:

that_block.call if that_block

Explicit code blocks are easy and clear enough that some Ruby programmers
(including me!) habitually use them rather than the implicit variety. Explicit block
parameters make it easy to determine at a glance which methods expect a code block.
Methods with an explicit code block parameter can also treat the block as an ordinary
object instead of some freakish special case. Stylistic considerations aside, explicit code
block parameters allow you to do something that is impossible with the implicit vari-
ety: When you use explicit block parameters, you can hold onto the block and store a
reference to it like any other object. And that means you can execute the block later,
perhaps much later, possibly long after the method that caught the block has returned.

The Call Back Problem
To see the utility of being able to hold on to code blocks, let’s imagine that some of
your colleagues are writing CopyEdit, a word-processing program built around your
Document object. The CopyEdit folks are thrilled with the Zenlike simplicity of your
Document class, but they have requested an enhancement. They need a call back to go

234 Chapter 19. Save Blocks to Execute Later

1. The phrase “end of your parameter list” really does mean the end. The &block parameter goes
after all the other stuff in your parameter list, including those starred catch-all parameters.

From <www.wowebook.com>

ptg

off when the document is read from a file, and another that will fire when the docu-
ment is saved.

The traditional way to solve this problem is to build separate listener objects,
something like this:

class DocumentSaveListener

def on_save(doc, path)

puts "Hey, I've been saved!"

end

end

class DocumentLoadListener

def on_load(doc, path)

puts "Hey I've been loaded!"

end

end

You then give your documents references to the listeners and call the methods at the
right time:

class Document

attr_accessor :load_listener

attr_accessor :save_listener

Most of the class omitted...

def load(path)

@content = File.read(path)

load_listener.on_load(self, path) if load_listener

end

def save(path)

File.open(path, 'w') { |f| f.print(@contents) }

save_listener.on_save(self, path) if save_listener

end

end

The Call Back Problem 235

From <www.wowebook.com>

ptg

Armed with all this, you can hook up your listener to a document and find out
when the document gets loaded and saved:

doc = Document.new('Example', 'Russ', 'It was a dark...')

doc.load_listener = DocumentLoadListener.new

doc.save_listener = DocumentSaveListener.new

doc.load('example.txt')

doc.save('example.txt')

Run the code above and you will see:

Hey I've been loaded!

Hey, I've been saved!

This listener class approach has some real advantages. The listening code is sepa-
rate from the inner workings of the Document class, and you can swap different lis-
teners in and out whenever you like. The trouble with separate listener classes is that,
well, they are a lot of trouble. To make the traditional listener object approach work
you need to create those listener classes, instantiate them, and manage their relation-
ships with your documents.

Banking Blocks
A different, and really elegant, way to solve the call back problem is to use explicit
code block parameters. Think about it: When you capture a code block in an explicit
parameter, you end up with an object that has a single method (the call method)
containing some code. Isn’t this exactly what we laboriously built when we created the
DocumentSaveListener and DocumentLoadListener classes?

Here’s our Document class rewritten to use code blocks as call backs:

class Document

Most of the class omitted...

def on_save(&block)

@save_listener = block

end

236 Chapter 19. Save Blocks to Execute Later

From <www.wowebook.com>

ptg

def on_load(&block)

@load_listener = block

end

def load(path)

@content = File.read(path)

@load_listener.call(self, path) if @load_listener

end

def save(path)

File.open(path, 'w') { |f| f.print(@contents) }

@save_listener.call(self, path) if @save_listener

end

end

Listening for the comings and goings of documents is now much simpler; no need
for those extra listener objects:

my_doc = Document.new('Block Based Example', 'russ', '')

my_doc.on_load do |doc|

puts "Hey, I've been loaded!"

end

my_doc.on_save do |doc|

puts "Hey, I've been saved!"

end

Not only is the block-based version shorter, using the on_load and on_save methods
has a nice declarative feel to it—concise and clear.

Saving Code Blocks for Lazy Initialization
Being able to capture a code block for later use opens ups other possibilities: For exam-
ple, you can use saved code blocks for lazy initialization. To see how this works, let’s
return to the problem of creating lazy documents. This time, imagine that we need to
deal with a large number of archival documents. Mostly we just need the title and
author of the document so that we can display them to the user, but occasionally we

Saving Code Blocks for Lazy Initialization 237

From <www.wowebook.com>

ptg

need the actual content. It would be nice if we could avoid reading the content until
we absolutely need it. To this end, we might do something like this:

class ArchivalDocument

attr_reader :title, :author

def initialize(title, author, path)

@title = title

@author = author

@path = path

end

def content

@content ||= File.read(@path)

end

end

At first glance the solution shown here seems fine, but it does have one real draw-
back. The problem is that the ArchivalDocument class knows all about where the doc-
ument content comes from: a file. Contrast this with the original Document class, which
neither knew nor cared where its contents originated. With ArchivalDocument, if you
suddenly decide you want to get your document text via HTTP or FTP, well, you are
kind of stuck.

Fortunately, we can fix this problem with a simple wave of our saved-code-block
wand. Instead of passing in a path when we make a new ArchivalDocument instance,
we pass in a block, one that returns the document contents when it is called:

class BlockBasedArchivalDocument

attr_reader :title, :author

def initialize(title, author, &block)

@title = title

@author = author

@initializer_block = block

end

def content

if @initializer_block

@content = @initializer_block.call

@initializer_block = nil

238 Chapter 19. Save Blocks to Execute Later

From <www.wowebook.com>

ptg

end

@content

end

end

This latest implementation means we can still get our document contents from a file,
like this:

file_doc = BlockBasedArchivalDocument.new('file', 'russ') do

File.read('some_text.txt')

end

But we can also get them via HTTP:

google_doc = BlockBasedArchivalDocument.new('http', 'russ') do

Net::HTTP.get_response('www.google.com', '/index.html').body

end

Or just make something up:

boring_doc = BlockBasedArchivalDocument.new('silly', 'russ') do

'Ya' * 100

end

The examples above look a lot like the initialization block examples we saw in the
last chapter, but there is a critical difference. In those earlier examples, the initialize
method called the code block immediately as the object was being constructed. In
contrast, the BlockBasedArchivalDocument class waits until someone actually calls
the content method before firing off the block. In fact, if you never call content, then
the block will never get called. By using a code block, we get the best of both worlds.
We can conjure up the document contents in any way we want, and the conjuring is
delayed until we actually need it.

Instant Block Objects
Sometimes it’s handy to produce a code block object right here, right now. You want
to get hold of the object version of a block, which is actually an instance of the Proc

Instant Block Objects 239

From <www.wowebook.com>

ptg

class, without creating a method to catch it. You might, for example, want to create a
block object that you can use as the default value for your document listeners.
Fortunately, Ruby supplies you with a method for just such an occasion: lambda. Here
is our earlier document example, the one with the listeners, rewritten to use lambda
to create a default Proc object.

class Document

DEFAULT_LOAD_LISTENER = lambda do |doc, path|

puts "Loaded: #{path}"

end

DEFAULT_SAVE_LISTENER = lambda do |doc, path|

puts "Saved: #{path}"

end

attr_accessor :title, :author, :content

def initialize(title, author, content='')

@title = title

@author = author

@content = content

@save_listener = DEFAULT_SAVE_LISTENER

@load_listener = DEFAULT_LOAD_LISTENER

end

Rest of the class omitted...

end

The idea behind the lambda method is that you pass it a code block and the method
will pass the corresponding Proc object right back at you.

Staying Out of Trouble
When it comes to creating Proc objects, beware of false friends. Although calling
Proc.new is nearly synonymous with lambda:

from_proc_new = Proc.new { puts "hello from a block" }

It’s not quite synonymous enough. The object you get back from Proc.new differs
from what you would get back from lambda in two key ways. One relatively innocu-

240 Chapter 19. Save Blocks to Execute Later

From <www.wowebook.com>

ptg

ous difference is that a Proc.new object is very forgiving of the number of arguments
passed to its call method. Pass too few and it will set the excess block parameters to
nil; pass too many and it will quietly ignore the extra arguments. In contrast, the
call method on an object returned by lambda acts more like a regular method and
will throw an exception if you mess up the argument count.

The second difference is much more critical. Objects from Proc.new feature all of
the interesting return, break, and next behavior that we touched on in the last cou-
ple of chapters. For example, if a Proc.new block executes an explicit return, Ruby
will try to return not just from the block but from the method that created the block.
This behavior is great for iterators, but it can be a disaster for applications that hang
onto code blocks long after the method that created them has returned. In contrast,
the Proc object returned from lambda acts more like a portable method—a return
from a lambda wrapped block will simply return from the block and no further.

Although the issues are deep, the lessons are simple. Lesson one is that if you are
calling a method that takes a block, pause for a second before you put a return, next,
or break in that block. Does it make sense here? Lesson two is that if you want a block
object that behaves like the ones that Ruby generates when you pass a couple of braces
into a method, use Proc.new. If you want something that will behave more like a reg-
ular object with a single method, use lambda.2

You can also get into trouble with the closure nature of code blocks. The fact that
code blocks drag along the variables from the code that defines them is mostly a con-
venience, but it can also have unexpected and unpleasant consequences. Mostly this
has to do with variables staying in scope, and therefore in existence, for longer than you
might expect. For example, suppose you write a method that needs to create a large
array, one that it will use for a short while. No problem: Just keep the array in a local
variable in the method and the array will go out of scope when the method returns:

def some_method(doc)

big_array = Array.new(10000000)

Do something with big_array...

end

Staying Out of Trouble 241

2. Just to make things even more exciting, Ruby supports a third way to create Proc instances, the
proc method. The interesting bit is that in 1.8, proc was synonymous with lambda. In 1.9 it is
more like Proc.new. Some days I wonder why I get of bed.

From <www.wowebook.com>

ptg

So far, so good. But what if you happen to create one of those long-lasting blocks
while that large array is still in scope?

def some_method(doc)

big_array = Array.new(10000000)

Do something with big_array...

doc.on_load do |d|

puts "Hey, I've been loaded!"

end

end

What happens is this: Because the big array was in scope when you created the
block and the block drags along the local environment with it, the block holds onto a
reference to the array—even if it never uses it. This means that the array, with all ten
million elements, is going to stay around for as long as the block does, in this case as
long as the document is around. Once you are aware of what is going on, a very sim-
ple solution offers itself:

def some_method(doc)

big_array = Array.new(10000000)

Do something with big_array...

And now get rid of it!

big_array = nil

doc.on_load do |d|

puts "Hey, I've been loaded!"

end

end

The lesson here is not that holding onto block references is dangerous, but that you
should keep in mind the stuff that you might be unconsciously dragging along with
your blocks.

242 Chapter 19. Save Blocks to Execute Later

From <www.wowebook.com>

ptg

In the Wild
We caught a glimpse of saved code blocks way back in Chapter 9 when we looked at
RSpec. If you look at a spec:

it "should know how many words it contains" do

doc = Document.new('example', 'russ', 'hello world')

doc.word_count.should == 2

end

You will see an example of a code block that gets saved for use later. In this case, later
comes when RSpec runs all the tests.

You can also find lots of saved code blocks in Rails. There are, for example, the
filters you can set up in your controller:

class DocumentController < ActionController::Base

before_filter do | controller |

Do something before each action...

end

Rest of the controller...

end

As well as the life-cycle hooks in ActiveRecord:

class DocumentVersion < ActiveRecord::Base

after_destroy do | doc_version |

My Document is gone!

end

end

Both Rails methods say, “Here’s a code block, hang onto it and run it when the time
is right.”

Both Rake and Capistrano also make extensive use of saved code blocks. Both
tools are built around the idea of a task—some defined bit of work that occasionally
needs doing, the difference being that while Rake focuses on doing things here on
your local machine, Capistrano seeks to rule, or at least configure, machines scattered
across the network.

In the Wild 243

From <www.wowebook.com>

ptg

Rake and Capistrano capture what needs to be done in blocks, which they salt
away until the time is right. Here is a very simple Capistrano task that knows how to
list the /home directory on the production machines:

desc "List the home directories"

task :list_home, :role => 'production' do

run "ls -l /home"

end

If you pull the covers off of Capistrano, you will find some familiar-looking code.
Here, for example, is the Capistrano task method:3

def task(name, options={}, &block)

name = name.to_sym

raise ArgumentError, "expected a block" unless block_given?

Some code deleted...

tasks[name] = TaskDefinition.new(name, self,

{:desc => next_description(:reset)}.merge(options), &block)

Some more code deleted...

end

For our purposes the key bit of the task method is right there at the end. Notice how
the code passes &block into the TaskDefinition constructor. The TaskDefinition
class holds onto the block, ready to fire it off should Capistrano decide that this is the
task that needs to be done.

Wrapping Up
In this chapter we finished our look at code blocks by seeing them as long-lived con-
tainers for Ruby code. We saw how, by using explicit block parameters, you can delay
running the code inside of a block until you need it. We looked at a couple of practi-
cal applications of this including using code blocks as call backs, whereby your object

244 Chapter 19. Save Blocks to Execute Later

3. Edited, as they say on television, to fit your screen.

From <www.wowebook.com>

ptg

grabs a code block and executes it when some event occurs. We also saw how you can
use code blocks to effect lazy initialization. Since there are rarely silver linings without
dark clouds, we also looked at how the code block habit of vacuuming up all the vari-
ables in scope when you create the block can turn on you if you are not careful.

Although this chapter completes our hard look at code blocks, we’re not really
done with them. Code blocks are such an important part of Ruby programming that
they will continue to pop right up until the end of this book. For now we are going
to turn our attention to Ruby’s system of programming hooks, a mechanism devoted
to keeping you informed about what’s happening as your application runs. It turns out
that one way of doing this is to let you supply a code block and Well, perhaps
we should leave that for the next chapter.

Wrapping Up 245

From <www.wowebook.com>

ptg

This page intentionally left blank

From <www.wowebook.com>

ptg

PART III
Metaprogramming

From <www.wowebook.com>

ptg

This page intentionally left blank

From <www.wowebook.com>

ptg

CHAPTER 20
Use Hooks to Keep Your
Program Informed

Metaprogramming is one of those words that seems to exist purely to scare people. Are
we talking about programming beyond programming? Programming turned up to 11?
Programming in the next dimension? In fact, metaprogramming—at least as it is prac-
ticed in the Ruby world—is a very workman set of coding techniques that allow you
to get the results you need with less code. Ruby support for metaprogramming starts
by allowing your code to stay amazingly well informed about what’s going on around
it. With a tiny bit of effort, you can write Ruby programs that know when a new class
is created, when a method gets called, and even when the application is about to exit.
Of course, all this knowledge would be so much trivia if your program couldn’t do
anything about it. Fortunately, Ruby programs can do all sorts of things: They can
decide that there are still just a few details to take care of before the application exits.
They can decide that this error is not really an error but a reasonable request. And they
can even reprogram themselves.

In this chapter we will begin our exploration of metaprogramming with the “stay-
ing informed” side of the equation by looking at hooks. A Ruby hook is some way—
sometimes by supplying a block and sometimes by just overriding a method—to
specify the code to be executed when something specific happens. We are going to see
how you can use hooks to find out that a class has gained a new subclass, or that a
module has been included, or that your program is getting ready to terminate. As
usual, we will spend time talking about how you would use these features, and also
about how you might stay away from the pointy end of the hook.

249

From <www.wowebook.com>

ptg

Waking Up to a New Subclass
As I say, a hook is code that gets called to tell you that something is about to happen
or has already happened. A great example of a hook is the one that tells you when a
class gains a subclass. To stay informed of the appearance of new subclasses, you define
a class-level method called inherited. To see how this might work, let’s define a very
simple base class that does indeed define inherited:

class SimpleBaseClass

def self.inherited(new_subclass)

puts "Hey #{new_subclass} is now a subclass of #{self}!"

end

end

To see the inherited method in action, we just need to create a subclass:

class ChildClassOne < SimpleBaseClass

end

Define the ChildClassOne class and the SimpleBaseClass inherited hook will fire
and print this:

Hey ChildClassOne is now a subclass of SimpleBaseClass!

The inherited hook is not a very complicated feature, but one question does
immediately spring to mind: What the heck would we ever do with it? Well, you
might manage a list of subclasses. To see how you could do that—and why it might
be useful—imagine that you have documents stored in many different file formats.
Some are stored in plain text files, some are in YAML files,1 and some, sadly, might
actually be stuck in XML files.

Since you do have a fair number of formats, it seems wise to separate the file-read-
ing code from the Document class itself. That way you won’t have a lot of file format
conversion machinery cluttering up the Document class. Instead, you’ll write a series of
reader classes, where each reader class understands a single format and knows how to

250 Chapter 20. Use Hooks to Keep Your Program Informed

1. YAML is a structured file format similar to, but more human friendly than, XML. If you have
ever created a Rails database.yml file, you know what YAML looks like.

From <www.wowebook.com>

ptg

turn a file in that format into a Document instance. The simplest of the bunch is the
one that reads plain text files:

class PlainTextReader < DocumentReader

def self.can_read?(path)

/.*\.txt/ =~ path

end

def initialize(path)

@path = path

end

def read(path)

File.open(path) do |f|

title = f.readline.chomp

author = f.readline.chomp

content = f.read.chomp

Document.new(title, author, content)

end

end

end

Ignoring the DocumentReader superclass, which we will come to in a minute, the
PlainTextReader class is about as straightforward as they come. It has an initialize
method that picks up the path to the plain text file and a read method that actually
turns the contents of that file into a Document instance. The one little twist is the
can_read? method: This class method returns true if the PlainTextReader is able to
read the file whose path is passed in as an argument. In real life, can_read? would
probably peek at the first few bytes of the file to see whether it is in a recognizable for-
mat. But to keep the example simple, PlainTextReader actually just looks at the file
extension: If the name of the file ends in .txt, then PlainTextReader assumes it is
up to reading the file.

We can also define similar readers for YAML and XML:

class YAMLReader < DocumentReader

def self.can_read?(path)

/.*\.yaml/ =~ path

end

Waking Up to a New Subclass 251

From <www.wowebook.com>

ptg

def initialize(path)

@path = path

end

def read(path)

Lots of simple YAML stuff omitted

end

end

class XMLReader < DocumentReader

def self.can_read?(path)

/.*\.xml/ =~ path

end

def initialize(path)

@path = path

end

def read(path)

Lots of complicated XML stuff omitted

end

end

You now have all the parts needed to read the different file formats, but the ques-
tion is, how do you pull them together? Ideally you would have a list of all of the
reader classes, a list that the code could search looking for a class that is able to read a
given file. This is where the DocumentReader superclass comes in:

class DocumentReader

class << self

attr_reader :reader_classes

end

@reader_classes = []

def self.read(path)

reader = reader_for(path)

return nil unless reader

reader.read(path)

end

252 Chapter 20. Use Hooks to Keep Your Program Informed

From <www.wowebook.com>

ptg

def self.reader_for(path)

reader_class = DocumentReader.reader_classes.find do |klass|

klass.can_read?(path)

end

return reader_class.new(path) if reader_class

nil

end

One critical bit omitted, but stay tuned...

end

DocumentReader sports the ultimate read method, a class method that takes a path,
calls the reader_for method to find a reader for the path, and then uses that reader
to read the file. The reader_for method looks through the @reader_classes array
trying to find a volunteer to read the file.

So here is the 64-gigabyte question: How do you populate the @reader_classes
array? Why, with the inherited hook:

... the vital missing piece

def self.inherited(subclass)

DocumentReader.reader_classes << subclass

end

Every time you define a new DocumentReader subclass—in other words, a new
file reader—the DocumentReader inherited hook will go off and add the new class
to the running list of readers. That list of reader classes is exactly what the code needs
when it is time to find the correct reader for a file. The beauty of doing it this way is
that the programmer does not need to maintain the list by hand. You simply make
sure that all of the reader classes are subclasses of DocumentReader and things take care
of themselves.

Modules Want To Be Heard Too
The module analog of inherited is included. As the name suggests, included gets
called when a module gets included in a class. So, if we were interested in knowing
when our writing-quality module was included in a class, we might add an included
hook:

Modules Want To Be Heard Too 253

From <www.wowebook.com>

ptg

module WritingQuality

def self.included(klass)

puts "Hey, I've been included in #{klass}"

end

def number_of_cliches

Body of method omitted...

end

end

A common use for the included hook is to add some class methods to the includ-
ing class as your module gets included. Recall from Chapter 16 that when you include
a module in your class, all of the module’s instance methods suddenly show up as
instance methods in the class. So, if you include the WritingQuality module in a
class, instances of that class will suddenly start sporting the WritingQuality method
number_of_cliches. We’ve also seen that if you pull a module into a class with
extend, the module’s methods become class methods of the class.

A sticky question is this: What should you do if you have a combination of class
and instance methods that you want to mix into a class as a unit? You could simply
create two modules, one for the instance methods and one for the class methods, and
have your host classes do both an include and an extend, like this:

module UsefulInstanceMethods

def an_instance_method

end

end

module UsefulClassMethods

def a_class_method

end

end

class Host

include UsefulInstanceMethods

extend UsefulClassMethods

end

254 Chapter 20. Use Hooks to Keep Your Program Informed

From <www.wowebook.com>

ptg

Making the class go through both an include and an extend isn’t horrible, but
it’s not elegant either. It would be better if you could get all of the goodness of your
modules mixed in, in one go. Fortunately you can. Remember that a module can find
out when it is included in a class via the included hook. From there we just need a
little bit of ingenuity to get the class methods mixed in:

module UsefulMethods

module ClassMethods

def a_class_method

end

end

def self.included(host_class)

host_class.extend(ClassMethods)

end

def an_instance_method

end

Rest of the module deleted...

end

class Host

include UsefulMethods

end

Knocking off the extra step required to mix in the class methods may seem like a
little thing, and it is. Good code is, however, built from just these tiny bits of cour-
tesy.

Knowing When Your Time Is Up
The at_exit hook is the Ruby’s equivalent of the Grim Reaper: It only drops in when
you—or rather, your Ruby application—is on its way out. The at_exit hook gets
called just before the Ruby interpreter exits, and this is your last chance to get a word
in before it’s all over. Using at_exit is a bit different from the other hooks we have
seen. Instead of overriding something, with at_exit you just call at_exit with a
block:

Knowing When Your Time Is Up 255

From <www.wowebook.com>

ptg

at_exit do

puts "Have a nice day."

end

The Ruby interpreter will fire off the block just before it expires. An advantage of
this code-block approach is that you can call at_exit several times, passing in differ-
ent blocks each time. So along with the at_exit above, we might also do:

at_exit do

puts "Goodbye"

end

If you do call at_exit more than once, then when your application is ready to exit
each block will get called in “last in/first out” order. Thus, if we did the two at_exit
calls in the order shown above, the final words of our program would be:

Goodbye

Have a nice day.

Such a polite program.

. . . And a Cast of Thousands
While inherited, included, and at_exit are among the most useful—and widely
used—hooks that Ruby offers, they are by no means the only ones. The most notable
of these remaining hooks is method_missing, which we will save for the next three
chapters. A less famous, but occasionally useful hook is method_added that allows you
to listen for new methods being added to a class. You can also listen for changes to
global variables with trace_var.

The ultimate Ruby hook, however, has got to be set_trace_func. With this
handy little method you can supply a block that will get called whenever a method
gets called or returns, whenever a class definition is opened with the class keyword
or closed with an end, whenever an exception get raised, and whenever—and here’s
the kicker—a line of code gets executed. This, for example, is one way to find out just
how complicated date processing can be:

256 Chapter 20. Use Hooks to Keep Your Program Informed

From <www.wowebook.com>

ptg

proc_object = proc do |event, file, line, id, binding, klass|

puts "#{event} in #{file}/#{line} #{id} #{klass}"

end

set_trace_func(proc_object)

require 'date'

This code sets up a block to do tracing duty and then requires in date.rb from
the Ruby standard library. Run the code and you will see something like this:

c-return in trace_func_demo.rb/5 set_trace_func Kernel

line in trace_func_demo.rb/7

c-call in trace_func_demo.rb/7 require Kernel

c-call in trace_func_demo.rb/7 set_encoding IO

c-return in trace_func_demo.rb/7 set_encoding IO

c-call in trace_func_demo.rb/7 set_encoding IO

c-return in trace_func_demo.rb/7 set_encoding IO

line in /home/russ/ruby1.9/lib/ruby/1.9.1/date.rb/196

...

In full, this output goes on for more than 2,000 lines—and that’s just to read in
date.rb. This loquaciousness underlines the main issue with set_trace_func: It’s a
little too much of a good thing. Turn on set_trace_func and prepare to be over-
whelmed with data. Still, it’s nice to know it’s there if you need it.

Staying Out of Trouble
It may seem obvious, but the key to using Ruby hooks is knowing exactly when they
will or will not get called. This can be more complicated than it seems. Take, for exam-
ple, our DocumentReader that depends on the inherited hook. If all of our reader
subclasses are in the same file with the DocumentReader file, then it is pretty obvious
when the inherited method will go off—shortly after the Ruby interpreter reads the
end statement of each subclass:

class DocumentReader

Stuff omitted...

end

Staying Out of Trouble 257

From <www.wowebook.com>

ptg

class PlainTextReader < DocumentReader

Stuff omitted...

end

inherited method for PlainTextReader goes off about now...

class YAMLReader < DocumentReader

Stuff omitted...

end

inherited method for YAMLReader goes off about now...

Now consider what would happen if we break this code up into several files, with
one reader class per file and we require them in:

require 'document_reader'

require 'plaintext_reader' # inherited fires for PlainTextReader

require 'xml_reader' # inherited fires for XMLReader

require 'yaml_reader' # inherited fires for YAMLReader

The principal remains the same: The inherited method will get called just after each
subclass is defined, but now it is obscured by the separate files and the require state-
ments.

An even bigger surprise is in store if you happen to have a more complex docu-
ment reader class hierarchy. What if you had some readers that were similar enough
that it made sense to build a common subclass:

class AsianDocumentReader < DocumentReader

Lots of code for dealing with Asian languages...

end

class JapaneseDocumentReader < AsianDocumentReader

Lots of stuff omitted...

end

class ChineseDocumentReader < AsianDocumentReader

Lots of stuff omitted...

end

258 Chapter 20. Use Hooks to Keep Your Program Informed

From <www.wowebook.com>

ptg

The problem is that this code is going to trigger a DocumentReader.inherited
call three times, once each for the Japanese and Chinese readers and—perhaps unex-
pectedly—once for the AsianDocumentReader. After all, AsianDocumentReader is
very much a subclass of DocumentReader. There are a number of ways to cope with
this kind of situation, but in this case it’s easiest to just make sure that the
AsianDocumentReader class never volunteers to read anything:

class AsianDocumentReader < DocumentReader

def self.can_read?(path)

false

end

Lots of code for dealing with Asian languages...

end

The lesson here is that the inherited method fires for all of the subclasses, not just
the ones you happened to be interested in.

Sometimes the problem is not with hooks getting called too often. Sometimes it’s
that they don’t get called at all. For example, your helpful Ruby interpreter will try to
ensure that the at_exit blocks do get called right before things shut down.
Sometimes, such as during a program or system crash, your Ruby interpreter isn’t able
to make good on the at_exit promise. The bottom line is that to use hooks effec-
tively you need to know exactly when they will be called.

In the Wild
Now let’s clear up a mystery that has been with us since way back in Chapter 9. Recall
that when we were talking about the Test::Unit framework we wondered how, if you
had a test in a file, say simple_test.rb:

require 'test/unit'

class SimpleTest < Test::Unit::TestCase

def test_addition

assert_equal 2, 1 + 1

end

end

In the Wild 259

From <www.wowebook.com>

ptg

And you executed that file:

$ ruby simple_test.rb

The test would run:

Loaded suite simple_test

Started

.

Finished in 0.000247 seconds.

1 tests, 1 assertions, 0 failures, 0 errors

The question is, how did the test get run? After all, we didn’t write a main pro-
gram into simple_test.rb; we just wrote the test class and it seems to run itself.
You’ve probably already guessed the answer: Look inside Test::Unit and you will see
that it uses at_exit to trigger the test just before the Ruby interpreter exits. Here is
the actual code:

at_exit do

unless $! || Test::Unit.run?

exit Test::Unit::AutoRunner.run

end

end

This actually is a fairly sophisticated bit of Ruby: The unless statement in the
at_exit block first looks at the $! variable2 to see whether there has been an error and
does nothing if there has been. This check prevents Test::Unit from trying to run
the tests in the face of gross problems like syntax errors in the test code itself. If $! is
nil, the unless statement next checks to see whether the tests have already been run.
It is possible, using the Test::Unit API, to run the tests manually, and if that is the
case Test::Unit doesn’t want to run them a second time. If neither of these condi-
tions apply, then Test::Unit will happily—and automatically—run your tests for
you.

260 Chapter 20. Use Hooks to Keep Your Program Informed

2. $! is a global variable that Ruby sets to the last exception raised.

From <www.wowebook.com>

ptg

Wrapping Up
In this chapter we looked at several of the Ruby hooks that allow you to get some code
executed at key moments in the life of your Ruby application. We examined in some
detail three of the most common hooks, starting with the inherited method that
keeps you in the know when a subclass is added to some class. We also looked at mod-
ule included method that lets you know when a module is included in some class,
and finally at the at_exit hook that lets you get in a word before the Ruby interpreter
exits. We saw how the inherited hook can be used to allow a class to keep track of
its subclasses, how included can be used to modify a class as it includes a module, and
how at_exit is used by Test::Unit to run tests automatically. We also saw that our
list of three is by no means exhaustive. There are lots of other Ruby hooks, all of them
dedicated to letting your code know what is going on.

Wrapping Up 261

From <www.wowebook.com>

ptg

This page intentionally left blank

From <www.wowebook.com>

ptg

CHAPTER 21
Use method_missing for
Flexible Error Handling

My car worries too much. Well it’s not the whole car, it’s just the little embedded com-
puter that lurks behind the door locks. That little processor seems to live in dread that
I might someday accidentally leave my car unlocked. Thus, it devotes its whole being
to making sure that no door stays unlocked for too long. I’m usually OK if I unlock
the car and jump right in. But woe to me if I unlock the car and get a phone call. The
time it takes to look at my cell phone to see who’s calling is apparently too long by the
exacting standards of Toyota, and the doors relock. They’ll also lock in the time it takes
to throw some groceries into the trunk. Or to kiss my wife goodbye. There have even
been one or two occasions when the doors have locked on me a second time, in the
interval it took for the initial rage to dissipate.

This kind of problem is not confined to cars. Whenever someone builds a system
to handle an error condition there is always the chance that they will get it just a lit-
tle wrong. You certainly see it in all kinds of software systems. People make mistakes
often enough that it’s useful to build software that helps deal with those mistakes. The
problem is that sometimes the mitigating behavior is not quite right and you can’t
change it. Ideally, a good error-handing system will have some default behavior, but
will also let you vary that behavior if you need to.

It’s in that spirit that we’re going to spend this chapter looking at method_missing,
a feature of Ruby that allows you to handle a particular error condition: Someone has
called a method that does not in fact exist. We will see how you can use method_missing

263

From <www.wowebook.com>

ptg

to customize the way your code deals with this class of errors. We will also spend some
time looking at method_missing’s close cousin, const_missing, and see how we can
use it to increase the flexibility of our programs in some surprising ways.

Meeting Those Missing Methods
Imagine that the higher-ups in your company have decided to make the Document
class the standard for manipulating text documents. Suddenly your little coding work
of art goes from being used by a few departments to being the bytes behind the whole
enterprise. For the most part the transition goes well, but you do get a series of bug
reports from less-experienced engineers stating that the Document class “doesn’t work”
or that it is “utterly broken.” Some of the reports say things like “I tried to get the text
out of a Document instance and just got an exception.” You think that the code does
work,1 so it seems likely that the cause of the trouble is pilot error, probably by doing
something like this:

Error: the method is content, not text!

doc = Document.new('Titanic', 'Cameron', 'Sail, crash, sink')

puts "The text is #{doc.text}"

You think this is what’s going on, but how can you be sure?
One way to find out lies in the details of how Ruby calls a method, and, in par-

ticular, what it does when the method it is trying to call is not actually there. Take the
previous example where the code tries to call a nonexistent text method on a
Document instance. Initially, Ruby will look for the text method in the Document class
and, failing to find it there, it will look in the superclass for text, and on up the line.
If Ruby finds the method anywhere in the inheritance tree, then that’s the method that
gets called.

The real question is, what happens if, as with the phantom text, there just is no
such method? The quick answer is that you get an exception. The not-so-quick answer
is more interesting: When Ruby fails to find a method, it turns around and calls a sec-
ond method. This second call, to a method with the somewhat odd name of
method_missing, is what eventually generates the exception: It’s the default imple-

264 Chapter 21. Use method_missing for Flexible Error Handling

1. Actually, given that you have tests, you know it works.

From <www.wowebook.com>

ptg

mentation of method_missing, found in the Object class2 that raises the NameError
exception.

The upshot of all of this is that you don’t have to accept this default error-handing
behavior. You are free to override method_missing in any of your classes and handle
the case of the missing method yourself:

class RepeatBackToMe

def method_missing(method_name, *args)

puts "Hey, you just called the #{method_name} method"

puts "With these arguments: #{args.join(' ')}"

puts "But there ain't no such method"

end

end

As you can see from this code, method_missing gets passed the name of the original
method that was called along with the augments it was called with. If you make an
instance of RepeatBackToMe and call some nonexistent methods on the instance, like
this:

repeat = RepeatBackToMe.new

repeat.hello(1, 2, 3)

repeat.good_bye("for", "now")

Then method_missing will eventually fire and give you its cheerful summary of what
just happened:

Hey, you just called the hello method

With these arguments: 1 2 3

But there ain't no such method

Hey, you just called the good_bye method

With these arguments: for now

But there ain't no such method

Meeting Those Missing Methods 265

2. More specifically, the default method_missing actually lives in the Kernel module, which is
included by Object.

From <www.wowebook.com>

ptg

Handling Document Errors
The method_missing method is tailor-made to help with the kind of problems you
are having with your new Document users. At the very least, you can give them a cus-
tomized message if they call a bad method:

class Document

Most of the class omitted...

def method_missing(method_name, *args)

msg = %Q{

You tried to call the method #{method_name}

on an instance of Document. There is no such method.

}

raise msg

end

end

Alternatively, you could return the same old error message, but quietly log the
details of the mishap for later analysis:

class Document

Most of the class omitted...

def method_missing(method_name, *args)

File.open('document.error', 'a') do |f|

f.puts("Bad method called: #{method_name}")

f.puts("with #{args.size} arguments")

end

super

end

end

You might even apply a little of that Ruby style programming customer service
and try to help your user figure out which method he or she really meant:

require 'text' # From the text gem

class Document

include Text

266 Chapter 21. Use method_missing for Flexible Error Handling

From <www.wowebook.com>

ptg

Most of the class omitted...

def method_missing(missing, *args)

candidates = methods_that_sound_like(missing.to_s)

message = "You called an undefined method: #{missing}."

unless candidates.empty?

message += "\nDid you mean #{candidates.join(' or ')}?"

end

raise raise NoMethodError.new(message)

end

def methods_that_sound_like(name)

missing_soundex = Soundex.soundex(name.to_s)

public_methods.sort.find_all do |existing|

existing_soundex = Soundex.soundex(existing.to_s)

missing_soundex == existing_soundex

end

end

end

This last method_missing implementation tries to figure out which method the user
actually intended, based on the theory that the name of the method the user called is
similar to the name of the method that the user meant to call. The code tries to guess
the correct method by using the Soundex module (from the text gem) to compute
a soundex code. The idea behind soundex is that similar-sounding words tend to
generate the same soundex code. Thus, if you mistakenly call document.contnt you
will get:

You called an undefined method: contnt.

Did you mean content or content=?

Coping with Constants
Methods are not, of course, the only things that can go missing in a Ruby program.
Sometimes coders also misplace constants. In the same way that Ruby provides
method_missing to cope with calls to nonexistent methods, it also gives you
const_missing to deal with AWOL constants.

Coping with Constants 267

From <www.wowebook.com>

ptg

As you might guess, const_missing works a lot like method_missing: It gets
called whenever Ruby detects a reference to an undefined constant. There are a cou-
ple of differences between the two _missing methods, one obvious and one more sub-
tle. The obvious difference is that const_missing takes only a single argument, a
symbol containing the name of the missing constant. References to constants, unlike
method calls, do not have arguments.

The less obvious difference is that const_missing needs to be a class method:

class Document

Most of the class omitted...

def self.const_missing(const_name)

msg = %Q{

You tried to reference the constant #{const_name}

There is no such constant in the Document class.

}

raise msg

end

end

Like our method_missing examples, this example presses const_missing into service
to help somewhat shaky Document users.

In the Wild
The best example of applying method_missing to improve error handling is probably
the Rails whiny nil facility. The idea behind whiny nils is to help journeyman Rails
developers cope with the inevitable situation where they think they have an instance
of some object, perhaps an array or an ActiveRecord model, but what they actually
have is nil. For example, your Rails application might go looking for a certain Author
record in the database:

book_author = Author.find(:first,

:conditions => { :name => 'Bilbo Baggins' })

Unfortunately, Bilbo is a fictional character, not a real author, so book_author
ends up being nil. Sadly, your code might not notice the nil and try to save the non-
existent author:

268 Chapter 21. Use method_missing for Flexible Error Handling

From <www.wowebook.com>

ptg

book_author.save

This, inevitably, is going to lead to something painful. The Rails whiny nil feature
takes some of the sting out by catching the bad call with a method_missing imple-
mentation.3 Like our Document method_missing, the Rails version of method_miss-
ing raises a NoMethodError with a customized message:

#<NoMethodError: You have a nil object when you didn't expect it!

Rails puts a cool spin on all of this by comparing the missing method name with the
names of the methods supported by arrays and ActiveRecord model classes. If it finds
a match, Rails will add a helpful suggestion to the exception it throws:

You might have expected an instance of ActiveRecord::Base.

The error occurred while evaluating nil.save.

Similarly, Rake uses const_missing to provide helpful warnings about depre-
cated names. It seems that earlier versions of Rake defined the core Rake classes at the
top level, without any encapsulating modules. In those bygone days the class of a Rake
task was simply Task, with no module. Somewhere along the way, however, the Rake
classes were all enclosed in the Rake module, so Task morphed into Rake::Task. But
what to do about all of those Rakefiles out there that still referred to plain old Task?
You pull out const_missing, that’s what:

def const_missing(const_name)

case const_name

when :Task

Rake.application.const_warning(const_name)

Rake::Task

when :FileTask

Rake.application.const_warning(const_name)

Rake::FileTask

when :FileCreationTask

Rake.application.const_warning(const_name)

Rake::FileCreationTask

In the Wild 269

3. We will deal with the question of how you add a new method to the existing NilClass in
Chapter 24.

From <www.wowebook.com>

ptg

4. As an alternative, built into Ruby is the autoload method, which allows you to specify which file
any given class is to be found. While the autoload method can be useful, it is nowhere near as
flexible as the const_missing-based technique.

when :RakeApp

Rake.application.const_warning(const_name)

Rake::Application

else

rake_original_const_missing(const_name)

end

end

This clever bit of code catches the references to those old, naked class names and
returns the correct class, printing out a helpful warning along the way.

Perhaps the most spectacular use of const_missing lies in the way that Rails uses
it to load Ruby code as needed. Your ActiveRecord model classes are, for example, all
loaded on an as-needed basis, driven by const_missing. The basic idea is to include
a const_missing method that figures out what file to require from the name of the
missing class, loads that file, and then returns the newly loaded class, something like
this:

def self.const_missing(name)

file_name = "#{name.to_s.downcase}"

require file_name

raise "Undefined: #{name}" unless const_defined?(name)

const_get(name)

end

Once you have this const_missing method defined in your class (or some super-
class of your class), any reference to the missing constant Wizard will trigger a require
'wizard'.4

Staying Out of Trouble
There are a few things to remember about method_missing- and const_missing-
based error handling. First, you don’t want to use it unless you really need it. The gar-
den-variety Ruby error handling will suffice for about 99.9% of all of your misspelled

270 Chapter 21. Use method_missing for Flexible Error Handling

From <www.wowebook.com>

ptg

or misplaced methods, and there really is no reason to pepper your classes with
method_missing implementations unless, as in our little tale of “the Document class is
broken” woe, you really need to. Save the fancy method_missing for those cases where
you really do need to do something fancy with the error.

Second, keep in mind that the penalty for screwing up in method_missing and
const_missing can be pretty high. Think about it: Ruby executes method_missing
any time there is a method call that it can’t locate. Be very, very careful that you don’t
inadvertently call a nonexistent method inside your method_missing method. If you
do, Ruby will repeat the whole method_missing kerfuffle, eventually arriving back at
the method_missing method—which is likely to reach out again for the same nonex-
istent method, and off you are onto an all-expenses-paid trip to infinite recursion land.
If you value your programs, treat your method_missing and const_missing code like
anything else that you write. It ain’t done until you’ve written the tests. Only more so.

Wrapping Up
In this chapter we looked at how Ruby deals with references to things that don’t actu-
ally exist. We’ve seen that Ruby will call method_missing if you try to call a method
that doesn’t actually exist and const_missing if you reference a constant that exists
only in your imagination. We saw how you can use method_missing and const_
missing to improve the error handling in your code and even how you can use
const_missing as a mechanism for auto-loading code.

Although error handling is the most obvious use for method_missing, it is cer-
tainly not the only use. In fact, error handling accounts for only a very small fraction
of method_missing use in the Ruby code base. The other, more common uses of
method_missing are where we now turn our attention.

Wrapping Up 271

From <www.wowebook.com>

ptg

This page intentionally left blank

From <www.wowebook.com>

ptg

CHAPTER 22
Use method_missing for
Delegation

About ten years ago, for reasons that are still inexplicable to me, I gave up software
development. I put down my keyboard and donned the coat if not the actual tie of a
software development manager. I prepared schedules. I ran meetings. I did perform-
ance reviews. And I was miserable. The more time I spent with people, the more I
loved my computer. I look back on those two or three years as the most difficult
period of my professional life. Instead of rolling into work every morning, eager to do
battle with the essential complexity of the universe, I dragged myself to the office to
fight the pervasive stupidity of a Byzantine organization.

Still, my years in organizational purgatory were not completely wasted. During
my stint as a manager I did learn some things, mainly things about people. The most
important thing that I learned was that you just have to trust the folks who work for
you. Make sure they know what they’re doing. Make sure they know what you want
them to do. Then get out of the way and let them do it. In short, I learned to delegate.

Delegation is important in object oriented programming too. In the program-
ming world delegation is the idea that an object might secretly use another object to
get part of the job done. Since getting out of the way is as important in the world of
programs as it is in the real word, in this chapter we will look at doing delegation via
method_missing. We will see that method_missing provides an almost painless mech-
anism for delegating calls from one object to another. We will also look at some of the
dangers of delegating with method_missing and see whether we can find out how to
balance those dangers with all the power that method_missing gives us.

273

From <www.wowebook.com>

ptg

The Promise and Pain of Delegation
Delegation—the coding edition—is a pretty basic concept: Sometimes you find your-
self building an object that wants to do something and you happen to have another
object that does exactly that something. You could copy all of the code from one class
to the other, but that is probably a bad idea.1 Instead, what you do is delegate: You
supply the first object with a reference to the second, and every time you need to do
that something you call the right method on the other object. Delegation is just
another word for foisting the work on another object.

To make this more real, imagine that some secret spy agency has started using our
Document class to store sensitive material. In fact, the material is so sensitive that The
Agency would like to be able to create a special read-only version of any document, but
a read-only version with a twist: Any program that gains access to one of these special
documents is only allowed to see the document for five seconds. Any longer and the
document should become unavailable. Oh, and the documents are liable to change
anytime, so you can’t just copy the original document. What’s a coder to do?

Clearly, some sort of document wrapper is called for:

class SuperSecretDocument

def initialize(original_document, time_limit_seconds)

@original_document = original_document

@time_limit_seconds = time_limit_seconds

@create_time = Time.now

end

def time_expired?

Time.now - @create_time >= @time_limit_seconds

end

def check_for_expiration

raise 'Document no longer available' if time_expired?

end

def content

check_for_expiration

return @original_document.content

end

274 Chapter 22. Use method_missing for Delegation

1. “Bad” in this context means abysmally horrible.

From <www.wowebook.com>

ptg

def title

check_for_expiration

return @original_document.title

end

def author

check_for_expiration

return @original_document.author

end

and so on...

end

The SuperSecretDocument class holds onto a reference to the original Document
instance and a time limit. As long as the time has not expired, the SuperSecretDocument
will delegate any method calls off to the original document. Once the time is up,
SuperSecretDocument stops cooperating and will only return an exception. Armed
with the code above, we can now create some satisfyingly perishable documents:

original_instructions = get_instructions

instructions = SuperSecretDocument.new(original_instructions, 5)

Execute the preceding code and your instructions will self destruct in five
 seconds.2

The Trouble with Old-Fashioned Delegation
The trouble with this traditional style of delegation is that it is the programming
equivalent of the manager who gives someone a job to do and then insists on super-
vising every detail.

To see the problem, imagine that our Document class was less of a toy and sup-
ported more of the features that you would find on a real document, features like page
layout (landscape or portrait?), size (A4 or U.S. letter?), and so on. The trouble is that
our SuperSecretDocument class needs to grow right along with the regular Document
class:

The Trouble with Old-Fashioned Delegation 275

2. With apologies to Mission Impossible—the old TV series, you understand, not those dreadful
movies.

From <www.wowebook.com>

ptg

class SuperSecretDocument

def initialize(original_document, time_limit_seconds)

@original_document = original_document

@time_limit_seconds = time_limit_seconds

@create_time = Time.now

end

def time_expired?

Time.now - @create_time >= @time_limit_seconds

end

def check_for_expiration

raise 'Document no longer available' if time_expired?

end

content, title and author methods omitted

to keep from kill even more trees...

And some new methods....

def page_layout

check_for_expiration

return @original_document.page_layout

end

def page_size

check_for_expiration

return @original_document.page_size

end

And so on and so on and so on...

end

The problem with this lengthy stretch of delegating code is that your program
isn’t really getting all of the benefits of delegation. Yes, it’s the Document instance that’s
really doing the work of getting the revision dates and paper sizes, but the
SuperSecretDocument object is always there, looking over the document’s shoulder
with all of that dull, delegating code. In programming as in management, the key to
delegation is getting out of the way.

276 Chapter 22. Use method_missing for Delegation

From <www.wowebook.com>

ptg

The method_missing Method to the Rescue
The secret to getting out of the way lies in method_missing. Think about what would hap-
pen if we took all of those repetitious delegating methods out of the SuperSecretDocument
class. Without the delegating methods, every time someone called a Document method
on a SuperSecretDocument instance, they would be calling a method that wasn’t
there. Since the method is missing, Ruby would eventually call method_missing.
Herein lies an opportunity: Instead of simply logging a message or raising an excep-
tion in method_missing, we can use a call to method_missing as an chance to dele-
gate to the real Document:

class SuperSecretDocument

def initialize(original_document, time_limit_seconds)

@original_document = original_document

@time_limit_seconds = time_limit_seconds

@create_time = Time.now

end

def time_expired?

Time.now - @create_time >= @time_limit_seconds

end

def check_for_expiration

raise 'Document no longer available' if time_expired?

end

def method_missing(name, *args)

check_for_expiration

@original_document.send(name, *args)

end

end

This new, and much briefer, version of SuperSecretDocument uses method_
missing to catch all of the calls that need to be delegated to the original document.
When the SuperSecretDocument method_missing catches a method call it uses the
send method to forward the call onto the original document:

@original_document.send(name, *args)

The method_missing Method to the Rescue 277

From <www.wowebook.com>

ptg

Recall that we saw the send method back in Chapter 7, where we used it to get
around the restrictions of private and protected methods. In the code above we are
using send in its full glory as sort of the inverse of method_missing: While
method_missing lets you catch arbitrary method calls from inside of a class, send lets
you make arbitrary method calls on some other object. Best of all, the arguments for
send, the name of the method (as a symbol) followed by the arguments to the method,
line up exactly with the arguments to method_missing.

One obvious question with using this technique is, what happens when
(inevitably) there is a real screwup, when someone accidentally calls instructions
.continent instead of instruction.content? A little reflection will show that this is
not really a problem. Since there is no continent method on the SuperSecretDocument
instance, the call will get forwarded to the real Document instance. And since there is
no continent there either, it will obligingly raise an exception.

The huge advantage of our new SuperSecretDocument implementation is that it
is small—the whole class is under 20 lines—and doesn’t need to grow as we add new
methods to the Document class. The method_missing method will catch whatever
methods you throw at SuperSecretDocument and will forward them, whatever they
are, to the Document instance.

In fact, SuperSecretDocument is so generic that it isn’t really Document specific at
all. We could, for example, use SuperSecretDocument to wrap a String:

string = 'Good morning, Mr. Phelps'

secret_string = SuperSecretDocument.new(string, 5)

puts secret_string.length # Works fine

sleep 6

puts secret_string.length # Raises an exception

The SuperSecretDocument class is effectively a perishable container for any object
you might come up with.

More Discriminating Delegation
Although SuperSecretDocument will indiscriminately forward any method that
comes its way, there is nothing to prevent us from doing a more selective job of dele-

278 Chapter 22. Use method_missing for Delegation

From <www.wowebook.com>

ptg

gation. We might, for instance, decide that we want SuperSecretDocument to deal
only with a narrowly defined set of methods:

class SuperSecretDocument

Lots of code omitted...

DELEGATED_METHODS = [:content, :words]

def method_missing(name, *args)

check_for_expiration

if DELEGATED_METHODS.include?(name)

@original_document.send(name, *args)

else

super

end

end

end

This rendition of SuperSecretDocument has a list of the names of the methods it
wants to delegate to @original_document. If a method call comes in for some other
method, we just call super, which forwards the original method call (arguments and
all!) up the class hierarchy where it will eventually meet its fate with a NameError
exception.

Staying Out of Trouble
There is one nasty blemish on the otherwise smooth finish that is method_missing-
based delegation: What if the method is not actually missing? To see what I mean, ask
yourself what would happen if we had an instance of the original SuperSecretDocument
class—the one that just delegates everything—and we called to_s on it:

original_instructions = get_instructions

instructions = SuperSecretDocument.new(original_instructions, 5)

puts instructions.to_s

You might expect that this code would do one of two things: either call the to_s
method on the Document instance or, if the time has expired, simply blow up. What

Staying Out of Trouble 279

From <www.wowebook.com>

ptg

actually happens instead is that you end up calling the SuperSecretDocument version
of the to_s method, so that the output would be something like:

#<SuperSecretDocument:0x87273ac>

The trouble is that there actually is a to_s method on instances of SuperSecret -
Document: They inherit it from the Object class. The same goes for all of the other
methods your delegating object might have. If a delegating object actually has a
method, the way our SuperSecretDocument instances all have a to_s method, then
the method is not actually missing and method_missing is not going to go off for that
method.

There is an easy way out of this conundrum, BasicObject. Recall from Chapter
7 that BasicObject was introduced in Ruby 1.9 and is the superclass of Object. As
the name suggests, BasicObject is very stripped down: Instances of BasicObject
inherit only a handful of methods. This means that BasicObject is an ideal candidate
to start with when you are doing the kind of mass delegation we are looking for with
SuperSecretDocument. Thus, if we redefined SuperSecretDocument to be a subclass
of BasicObject:

class SuperSecretDocument < BasicObject

Most of the class omitted...

def initialize(original_document, time_limit_seconds)

@original_document = original_document

@time_limit_seconds = time_limit_seconds

@create_time = ::Time.now

end

def time_expired?

::Time.now - @create_time >= @time_limit_seconds

end

def check_for_expiration

raise 'Document no longer available' if time_expired?

end

def method_missing(name, *args)

check_for_expiration

280 Chapter 22. Use method_missing for Delegation

From <www.wowebook.com>

ptg

@original_document.send(name, *args)

end

end

Then the to_s method will time out just like title and content.3

In the Wild
The Ruby standard library comes with a very handy method_missing-based delega-
tion utility in the delegate.rb file. This file contains a number of classes that take
what little sting there is in delegating with method_missing. The simplest one of the
bunch is probably the aptly named SimpleDelegator that you can use as a superclass
for your delegating class. All you need to do is call the SimpleDelegator constructor
with the object you are delegating to, and it will take care of the rest. Here, for exam-
ple, is a SimpleDelegator based do-nothing wrapper for our Document class:

require 'delegate'

class DocumentWrapper < SimpleDelegator

def initialize(real_doc)

super(real_doc)

end

end

That’s pretty much it. With just seven lines of code, we have a fully functional
wrapper for any document:

text = 'The Hare was once boasting of his speed...'

real_doc = Document.new('Hare & Tortoise', 'Aesop', text)

wrapper_doc = DocumentWrapper.new(real_doc)

In the Wild 281

3. Sadly, it seems that in software engineering there is always at least a little catch. If you look care-
fully at the BasicObject version of SuperSecretDocument, you will see that we needed to
explicitly specify the scope of the Time class with ::. We need to do this because of the discon-
nected role of BasicObject as the sort of noble gas of Ruby classes.

From <www.wowebook.com>

ptg

Then any call to wrapper_doc will behave just like a call to the real_doc, so that run-
ning this:

puts wrapper_doc.title

puts wrapper_doc.author

puts wrapper_doc.content

Will print:

Hare & Tortoise

Aesop

The Hare was once boasting of his speed...

Aside from delegate.rb, the quintessential example of delegation by method_
missing is probably the one you will find in ActiveRecord. Early versions of Active -
Record used method_missing-based delegation to return the values of fields from a
row in a table. For example, if you used ActiveRecord to find a row in a table, some-
thing like this:

the_employee = Employee.find(:first)

Then hidden inside of that record would be a hash containing the field values from
the database, perhaps { :first_name => 'Bob', :last_name => 'Kiel' }. You could
then get at the fields as though they were ordinary methods:

puts the_employee.first_name

puts the_employee.last_name

This is slick enough, but more recent versions of ActiveRecord do something
slicker still. In late-model ActiveRecord versions, the first time you access the_
employee.first_name, the method_missing method will go off just like it did in the
olden days. But instead of simply looking up the field value, the newer method_missing
will also define the first_name and (for good measure) last_name methods on the
class. It’s these newly defined methods that get used on subsequent calls. Apparently,
skipping the method_missing rigmarole improves performance enough to make the
whole thing worthwhile. It is also impressive to watch.

282 Chapter 22. Use method_missing for Delegation

From <www.wowebook.com>

ptg

Finally, if you happen to still be using a 1.8.X version of Ruby and need some-
thing like BasicObject for your delegating needs, don’t despair. The blankslate gem
provides, via the magic of Ruby metaprogramming, a more than adequate simulation
of BasicObject.

Wrapping Up
In this chapter we explored the wonders of delegation via method_missing. We saw
how you can put method_missing to work for something other than error handling.
We also saw how easy it is to use method_missing to build a very painless delegation
mechanism. Far from being a simple error-handling facility, method_missing provides
the Ruby programmer with a very general-purpose way of catching and interpreting
method calls. In the next chapter we will build on this idea to see how we can put
method_missing to an even more exotic use: answering calls to methods that you may
have never dreamed of.

Wrapping Up 283

From <www.wowebook.com>

ptg

This page intentionally left blank

From <www.wowebook.com>

ptg

CHAPTER 23
Use method_missing to
Build Flexible APIs

Programmers in the business of producing systems for end users spend a lot of time
thinking about interfaces. Should you do a plain Google-style search page or spiff
things up with all kinds of AJAXy doo-dads? Should you let them pick the car model
with a menu or a pull-down or a bunch of radio buttons? Should you support both
drag and drop? When end users are involved it is critical that you think very carefully
about interface issues. I’d like to think that much of this is simple professionalism: We
work hard to build the best possible system because that’s what we do. There is, how-
ever, the uncomfortable fact that end users tend to make their opinions pretty clear.
Screw up an end user interface and you won’t have to wait long or listen hard to expe-
rience their dissatisfaction, be it actual shouting or the ominous sound of feet going
elsewhere.

The interfaces that programmers deal with—the APIs—have a lot more to do
with method names and argument lists than they do with menus and radio buttons.
But quality matters there too. Build a better API and you make the job of the coder
trying to use that API easier. In this chapter we will explore how you can use
method_missing to create extremely intuitive APIs, APIs where your users can, with
some constraints, make up method names and just have them work. Who knows, you
might save your users so much time that they will be able to build a better interface
for their users.

285

From <www.wowebook.com>

ptg

Building Form Letters One Word at a Time
Imagine that your Document class is now being used in many different departments in
your company, with whole teams of programmers building ever more interesting
applications around it. One of these groups is involved in creating form letters, the
kind we are all too familiar with, letters that proclaim YOU MAY ALREADY BE A
WINNER or that Whiter Teeth Are Just a Phone Call Away!!

Since junk mail is a volume business, the programmers behind it are looking to
you to create specialized code to make it easier to generate large numbers of letters. To
that end, you come up with a Document subclass:

class FormLetter < Document

def replace_word(old_word, new_word)

@content.gsub!(old_word, "#{new_word}")

end

end

The only new feature of the FormLetter class is the replace_word method,
which will run through the text of the letter, replacing one string with another. The
idea is that you can start with a very generic template document containing place-
holders like FIRSTNAME and LASTNAME and then swap in real first and last names with
some simple code:

offer_letter = FormLetter.new("Special Offer", "Acme Inc",

%q{

Dear Mr. LASTNAME

Are you troubled by the heartache of hangnails?

...

FIRSTNAME, we look forward to hearing from you.

})

offer_letter.replace_word('FIRSTNAME', 'Russ')

offer_letter.replace_word('LASTNAME', 'Olsen')

Looking at the code, you realize that virtually all of the form letters will need to
replace FIRSTNAME and LASTNAME. To make this common case easier, you add a cou-
ple of convenience methods:

286 Chapter 23. Use method_missing to Build Flexible APIs

From <www.wowebook.com>

ptg

class FormLetter < Document

def replace_word(old_word, new_word)

@content.gsub!(old_word, "#{new_word}")

end

def replace_firstname(new_first_name)

replace_word('FIRSTNAME', new_first_name)

end

def replace_lastname(new_last_name)

replace_word('LASTNAME', new_last_name)

end

end

You send your handiwork off to the form letter people and go back to your ordi-
nary work. The next day the junk mail folks are back to tell you that (a) they love the
FormLetter class, and (b) could you please just tweak it a bit?

It seems that the programmers using the FormLetter class would like a few more
convenience methods along the lines of replace_firstname and replace_lastname.
Specifically, they would like replace_gender, a method that would swap out GENDER
for “sir” or “madam.” Oh, and also replace_streetnumber, replace_streetname,
replace_city, replace_state, replace_country, replace_zipcode, replace_
occupation, replace_age, and so on. For a simple little class, FormLetter seems like
it’s turning into a full-time job spent writing an inconveniently large number of con-
venience methods.

Magic Methods from method_missing
But do you actually have to write all of those methods? Not really: All you need is
method_missing. Think about what method_missing does: It lets you know that
someone is trying to call a method on your object, a method that does not actually
exist. In the last couple of chapters we’ve seen how you can use method_missing to
deal with programming errors and to help with delegation. Another thing you can do
with method_missing is try to figure out what the user is asking you to do and actu-
ally do it. What if, whenever someone called a nonexistent method on one of your
FormLetter objects, you looked at the method name to see whether you could make
sense out of it? If you can, you do the right thing. If not, there is always
NameException to raise.

Magic Methods from method_missing 287

From <www.wowebook.com>

ptg

Here is that idea in code:

class FormLetter < Document

def replace_word(old_word, new_word)

@content.gsub!(old_word, "#{new_word}")

end

def method_missing(name, *args)

string_name = name.to_s

return super unless string_name =~ /^replace_\w+/

old_word = extract_old_word(string_name)

replace_word(old_word, args.first)

end

def extract_old_word(name)

name_parts = name.split('_')

name_parts[1].upcase

end

end

This method_missing implementation deduces what it should do from the name
of the method being called, If the method looks like replace_<<some word>>, then
the method_missing above will extract the word from the name of the method, con-
vert it to all uppercase, and call replace_word. So if you call replace_gender(
'Dude'), then the method_missing in the code above will end up calling replace_
word('GENDER', 'Dude').

If, on the other hand, the method being called doesn’t look anything like
replace_<<some word>>, then you have a legitimate screwup. In that case, method_
missing bails out by calling super, which will probably result in a NameException.

The best part of the new FormLetter class is no longer having to write any of the
thousand or so convenience methods that the junk mail folks requested. In the same
way that delegating method_missing in the last chapter enabled us to put a wrapper
around any object—with any number of methods—the handful of method_missing lines
in this latest version of FormLetter lets you create an infinite number of convenience
methods, everything from replace_firstname to replace_lastcarmodelbought.

This variation on method_missing is sometimes called magic methods, since
users of the class can make up method names and, as long as the names comply with
the rules coded into method_missing, the methods will just magically work.

288 Chapter 23. Use method_missing to Build Flexible APIs

From <www.wowebook.com>

ptg

It’s the Users That Count—All of Them
Now, a skeptic might observe that neither replace_firstname nor replace_
lastcarmodelbought have added any particularly new capability to the FormLetter
class.1 These two methods, however they are implemented, simply expose an existing
feature of the FormLetter class in a slightly different package. So why should we
bother?

We bother because our users asked us to bother. If you reread my tale of intrigue
and junk mail, you’ll see that it was the coders who were using the FormLetter class
that asked for the convenience methods. Those methods make the code generating the
form letters cleaner and easier for the people who count—the programmers who need
to deal with it. One of the key values of the Ruby programming culture is that the
look of the code matters. It matters because the people who use the code, read the
code, and maintain the code matter. Good software engineering is all about making
everyone’s job easier, not just because we want to go home on time but because we all
want to turn out the best possible end product. So we add convenience methods, build
method_missing methods, and go to enormous lengths to make our APIs easy to use
because programmers with easy-to-use APIs tend to have the time to craft easy-to-
use—and working—systems.

Staying Out of Trouble
One nice thing about using method_missing to build a flexible API, as opposed to
using it for delegation, is that there is much less danger of a made-up method name
colliding with a real method on the object. After all, you are making up the naming
convention, so you can avoid any obvious name conflicts. You do have to be on your
guard, however, because unfortunate naming collisions can still slip in. For example,
in our method_missing powered FormLetter class, we cannot replace the word WORD
in our document. If we try:

letter = FormLetter.new('Example', 'Acme', 'The word is WORD')

letter.replace_word('Abracadabra')

Staying Out of Trouble 289

1. A real skeptic might observe that the whole FormLetter project is simply furthering the cause of
junk mail and is therefore the work of the devil, but that’s another issue.

From <www.wowebook.com>

ptg

We get a strange error:

#<ArgumentError: wrong number of arguments (1 for 2)>

The problem is that there is an actual replace_word method in the FormLetter
class; it’s the method that does the real work of changing the text. Since there is a real
method there, it and not method_missing gets called and blows up. The real
replace_word method takes two arguments, not one. The solution here is pretty easy:
Simply rename the real method or devise a different naming convention for the magic
methods. The deeper lesson is that you need to watch out for this sort of thing.

You also need to be aware of the likelihood that using method_missing will muck up
the respond_to? method. Every Object instance includes a method called respond_to?
which should return true if the object in question has a particular method. For exam-
ple, if doc is an instance of Document, then doc.respond_to?(:words) will return
true, while doc.respond_to?(:abuse) will return false, since there Document has a
words method but no abuse method. The problem is that the default implementation
of respond_to? only knows about the real methods; it has no way of knowing that
you have slapped a method_missing on your class that will allow instances to cheerfully
handle doc.replace_gender. Depending on how elaborate your method_missing
implementation is, you may be able to fix respond_to?:

def respond_to?(name)

string_name = name.to_s

return true if string_name =~ /^replace_\w+/

super

end

As always, you need to balance the extra work involved with the likelihood that
anyone is ever going to call respond_to? on this particular object.

In the Wild
You can find a very basic example of the magic method technique in the Ruby stan-
dard class OpenStruct. An OpenStruct instance is a cross between a simple data con-
tainer object and a hash. Like a hash, you can use an OpenStruct to store whatever
data you want, by whatever name you choose; the trick is that with OpenStruct you
access your data with the object.value dot notation:

290 Chapter 23. Use method_missing to Build Flexible APIs

From <www.wowebook.com>

ptg

require 'ostruct'

author = OpenStruct.new

author.first_name = 'Stephen'

author.last_name = 'Hawking'

puts author.first_name

puts author.last_name

If you peek inside of the OpenStruct class you will find that it is built around a
regular hash called @table and powered by method_missing. Here’s the OpenStruct
method_missing:

def method_missing(mid, *args) # :nodoc:

mname = mid.id2name

len = args.length

if mname =~ /=$/

Some error handling deleted...

mname.chop!

self.new_ostruct_member(mname)

@table[mname.intern] = args[0]

elsif len == 0

@table[mid]

else

raise NoMethodError,

"undefined method `#{mname}' for #{self}", caller(1)

end

end

The magic part of the OpenStruct method_missing is figuring out if the caller is
trying to get an existing value from the hash or set a new value. To figure out which,
the code looks at the name of the missing method: If the method name ends with an
=, then the caller is trying to set a new value on the OpenStruct instance. If the
method name doesn’t end with an =, then this must be an attempt to access a value
that has already been set. As magic goes, this is more of a card trick than making the
Grand Canyon disappear, but it does illustrate the technique very nicely. ActiveRecord

In the Wild 291

From <www.wowebook.com>

ptg

uses a much more serious bit of magic method conjuring: The ActiveRecord objects
that represent database tables let you make up arbitrary finder methods. Imagine, for
example, that you have an authors table in your database, a table that contains fname
and lname fields. You also have an ActiveRecord class to go with your authors table:

class Author < ActiveRecord::Base

end

Given all this, ActiveRecord allows you to make up methods to find your records:

authors_named_henry = Author.find_by_fname('Henry')

james_family_authors = Author.find_by_lname('James')

You can even combine the fields:

henry_james = Author.find_by_fname_and_lname('Henry', 'James')

All of this courtesy of method_missing.

Wrapping Up
In this chapter we looked at using method_missing to create an infinite number of
virtual methods, methods that don’t actually exist as distinct blocks of source code but
are there when you call them. To create these “there but not actually there” methods,
we let method_missing catch the method call, parse the method name, and figure out
what to do from there.

The method_missing-based technique of this and the last couple of chapters illus-
trates one of the basic ideas behind Ruby, that one of the main jobs of a programming
language is to help the programmer get code executed when and where the program-
mer decides that code needs to be executed. This is what code blocks and modules do;
they both allow you to package up code in one place and use it somewhere else. In this
light, method_missing is just more of the same. It enables you to wedge some code in
just where you need it.

292 Chapter 23. Use method_missing to Build Flexible APIs

From <www.wowebook.com>

ptg

CHAPTER 24
Update Existing Classes
with Monkey Patching

I can remember the day I sat down and really understood object oriented program-
ming. It was early in my career. At that point I had probably spent two or three years
programming straight procedural code in languages ranging from assembly to the only
slightly less primitive FORTRAN. I had heard about this new language called
SMALLTALK, which featured things called objects that were somehow grouped
together by other things called classes. I spent the better part of a weekend reading all
about this new programming paradigm, and on Sunday afternoon I finally got it. I’d
like to tell you that it changed my professional life. I’d like to tell you that, but I’m
just not that big of a liar. If memory serves, and it usually does when it comes to
remembering yourself being stupid, my conclusion was that all this object and class
talk was a complete waste of time. It was only much later, after I had lived with object
oriented programming for awhile, that I began to see its value.

I mention this because with this chapter we will begin an extended look at one of
the most startling aspects of Ruby: open classes. Ruby’s open classes means that you
can change the behavior of any class at any time. You can add new methods. You can
replace the code behind an existing method. You can even delete methods altogether.
Of all the features in Ruby, open classes is the one most likely to provoke that “what
a stupid idea!” reaction. So if you are already shaking your head, just stay with me. It
turns out that open classes—and the monkey patching technique that goes with
them—is actually a very practical solution to a number of programming problems.

293

From <www.wowebook.com>

ptg

Not only that, but looking into the mechanisms behind open classes will give us some
deep insight into how the whole Ruby class model works.

This is a pretty big bill for one chapter, so let’s jump right in.

Wide-Open Classes
The best way to think about Ruby’s changeable classes is to start with variables. If we
say this:

name = 'Issac'

We are doing one of two things: If name has not already been defined, then the code
snippet above will define it and set it to the string 'Issac'. Alternatively, if name is
already defined, the line of code will set it to a new value, perhaps like this:

name = 'Asimov'

Ruby classes work in exactly the same way. The first time you define a new class,
you are, well, defining a new class. You might start with a very minimal version of the
Document class, one that consists of just the attributes and the initialize method:

class Document

attr_accessor :title, :author, :content

def initialize(title, author, content)

@title = title

@author = author

@content = content

end

end

There’s nothing surprising there, but now for the interesting part. If you write
another class statement for Document:

class Document

def words

@content.split

end

294 Chapter 24. Update Existing Classes with Monkey Patching

From <www.wowebook.com>

ptg

def word_count

words.size

end

end

Then you are not defining a new class. Rather, you are modifying the existing
Document class, the same one you defined in the first bit of code. The effect of this sec-
ond chunk of code is to add the words and word_count methods to Document.

Even better, the changes you make to your classes will be felt instantly by all of
the instances of the class. Thus, if we made a Document instance:

cover_letter = Document.new('Letter', 'Russ', "Here's my resume")

And then enhance our Document class with yet another method:

class Document

def average_word_length

len = words.inject(0.0){ |total, word| word.size + total }

len / words.size

end

end

Then the change will show up instantly in the existing instance:

cover_letter.average_word_length

Fixing a Broken Class
Nor are you limited to simply adding new methods to an existing class. It is possible,
and not that unusual, to redefine existing methods on Ruby classes. This works on the
“last def wins” principal: If you reopen a class and define a method that already exists,
the new definition overwrites the old. This sort of thing is handy when you need to fix
a broken class. Consider that our average_word_length method features a really ugly
bug, one that bites when you try to get the average word length of an empty document:

empty_doc = Document.new('Empty!', 'Russ', '')

puts empty_doc.average_word_length

Fixing a Broken Class 295

From <www.wowebook.com>

ptg

Run this code and you will see:

NaN

If you haven’t had the pleasure, let me introduce you to NaN, which is short for
“Not a Number.” NaN is Ruby’s way of telling you that you produced an invalid floating-
point number. We managed it here by dividing 0.0 by 0.0.1 Ideally, you would fix the
average_word_length method right in the original Document code and re-release the
whole thing. But what if you weren’t the author of Document? What if you need a fix
right now to make your application work? If you absolutely, positively must get it
working, you can reopen the document class and fix the method directly:

require 'document' # Pull in original, broken class

And now fix the method.

class Document

def average_word_length

return 0.0 if word_count == 0

total = words.inject(0.0){ |result, word| word.size + result}

total / word_count

end

end

This technique of modifying existing classes on the fly goes by the name of monkey
patching.2

Improving Existing Classes
Once you become comfortable with monkey patching, many possibilities open up.
This is especially true since there is no rule against monkey patching Ruby’s built-in

296 Chapter 24. Update Existing Classes with Monkey Patching

1. In the world of integer arithmetic, division by zero will result in an exception. Things are not
quite so clear cut in the fuzzier realm of floating-point numbers, where dividing by zero will
either result in NaN or Infinity, depending on exactly what you divide.

2. Programming lore has it that the original name was guerrilla patching, which then morphed into
gorilla patching (perhaps programmers simply can’t spell?), which somehow evolved into monkey
patching.

From <www.wowebook.com>

ptg

classes. If you are programming in Ruby and that thing is a class, you can change it.
For example, we can finally fix a problem that has been nagging us since Chapter 11.3

Recall that back then we tried to make the addition operator work between docu-
ments and strings. We had no trouble making document + string work, since doing
the addition in that order called the + method from the Document class, and we had
added the necessary smarts to the Document class. The trouble started when we tried
to add in the reverse order: string + document. This expression resulted in a call to
the + method on the string, and then we hit a brick wall. How could we possibly
change the String class? Like this:

class String

def +(other)

if other.kind_of? Document

new_content = self + other.content

return Document.new(other.title, other.author, new_content)

end

result = self.dup

result << other.to_str

result

end

end

Let’s run through this code step by step. The first thing we do is to say class
String. This reopens the String class for our homegrown improvements. Next we
define a new + method, one that becomes the String + method. In the new method
we handle the new String + Document case along with the more mundane String
+ String case.

Renaming Methods with alias_method
One downside to our String modification is that we ended up reproducing the guts
of the original String + method—the boring non-Document bit that creates a bigger
string from the two smaller strings—when all we really wanted was to get the method to
do the right thing with Document instances. We can avoid this with alias_method.
Although the name suggests otherwise, alias_method actually copies a method

Renaming Methods with alias_method 297

3. Well, it has been nagging me.

From <www.wowebook.com>

ptg

implementation, giving it a new name along the way. For example, our original
Document class had a method called word_count. With alias_method, we can create
a couple more methods that do exactly the same thing as word_count:

class Document

Stuff omitted...

def word_count

words.size

end

alias_method :number_of_words, :word_count

alias_method :size_in_words, :word_count

Stuff omitted...

end

Run this code and you’ll end up with a trio of methods on your Document instances
that will all return the number of words in the document.

Aside from letting you easily give a method several different names, alias_
method comes in handy when you are messing with the innards of an existing class.
Here’s a version of our String monkey patch that uses alias_method to avoid repro-
ducing the logic of the original + method:

class String

alias_method :old_addition, :+

def +(other)

if other.kind_of? Document

new_content = self + other.content

return Document.new(other.title, other.author, new_content)

end

old_addition(other)

end

end

Something quite subtle is going on in this code: The call to alias_method copies
the implementation of the original + method, giving the fresh copy the name

298 Chapter 24. Update Existing Classes with Monkey Patching

From <www.wowebook.com>

ptg

old_addition. Having done that, we proceed to override the + method, but—and
here’s the important part— old_addition continues to refer to the original unmodi-
fied implementation. When the new + method calls old_addition, we are actually
invoking the original + method, which does all of the boring string addition work.

Do Anything to Any Class, Anytime
Our use of alias_method in the last section underscores another important aspect of
open classes: When you reopen a class, you can do anything you could have done the
first time. In the same way that we aliased an existing method, we can make a public
method private:

class Document

private :word_count

end

Or a private method public again:

class Document

public :word_count

end

We can even get rid of it all together:

class Document

remove_method :word_count

end

As I said earlier in this chapter, the Ruby classes are like variables. You can set them
and leave them alone, or you can fiddle with them as much as you need.

In the Wild
Although this chapter has concentrated on the showier aspects of monkey patching,
you can also use it to solve a very mundane problem. To see how, consider the Pathname
class, which comes with your Ruby installation. Pathname tries to be the go-to class

In the Wild 299

From <www.wowebook.com>

ptg

for all your file system programming needs. Because it does try to be all things to all
paths, the Pathname class is long—it sports almost one hundred instance methods.

Since it is such a large class, the authors of Pathname have divided the class into
chunks of related methods. There is, for example, an initial piece that defines the
basics, things like the initialize method and various operators:

class Pathname

Bits deleted...

def initialize(path)

Set up Pathname instance...

end

==, <=>, etc. methods deleted...

end

Then, there is a chunk containing code that will help you read and write the files your
Pathname instance points at:

class Pathname # * IO *

def each_line(*args, &block) # :yield: line

Iterate through each line in the file...

end

def read(*args)

Read the contents of the file...

end

...

end

All told, Pathname is broken into nine separate bits and then put back together cour-
tesy of monkey patching.

Another common motivation for monkey patching is to scratch an itch. Have you
ever wished that there was just one extra method on the String class, a method that
you seem to need all the time but is inexplicably missing? Apparently a lot of Ruby
programmers have wished for exactly the same thing given that adding methods to the

300 Chapter 24. Update Existing Classes with Monkey Patching

From <www.wowebook.com>

ptg

String class is somewhat of a cottage industry. For example, the ActiveSupport gem,
which provides miscellaneous helpful code to Rails, adds a number of methods to the
String class. Among these is blank?, which returns true if the string is all white space:4

class String #:nodoc:

def blank?

self !~ /\S/

end

end

Another ActiveSupport contribution to String has one of the best names in all
of coding: squish!. The squish! method compresses all of the stretches of white space
in a string down to a single space each. Thus, if you have ActiveSupport loaded, this:

s = ' Ruby Rocks '

s.squish!

Will leave s equal to 'Ruby Rocks'. Here is squish! in all of its evocative joy:

module ActiveSupport #:nodoc:

module CoreExtensions #:nodoc:

module String #:nodoc:

module Filters

Some code deleted...

def squish!

strip!

gsub!(/\s+/, ' ')

self

end

end

end

end

end

In the Wild 301

4. Come to think of it, that’s one I need a lot!

From <www.wowebook.com>

ptg

As you can see, squish! is not directly defined on the String class—it actually lives
inside the ActiveSupport::CoreExtensions::String::Filters5 module. The squish!
method makes its way into String when its module is mixed into the String class,
with another bit of monkey patching:

class String

Lots of stuff deleted...

include ActiveSupport::CoreExtensions::String::Filters

end

Monkey patching the built-in classes is by no means limited to String. ActiveRecord
adds a number of methods of the Array class, so that not only can you get the first
item in an array by calling first, you can also get the second, third, fourth, and fifth
items:

require 'active-support'

title = 'Hitch Hikers Guild To The Galaxy By Douglas Adams'

array = title.split(//) # Make an array, one letter per entry

array.first # 'H'

array.second # 'i'

array.third # 't'

array.fourth # 'c'

array.fifth # 'h'

The sequence stops at the fifth item, with one exception: You can ask for the forty-
second element of the array:

array.forty_two # 'a'

Ah, geek humor.

302 Chapter 24. Update Existing Classes with Monkey Patching

5. When you are tired of contemplating the metaphysics of monkey patching, you might consider
whether this is an example of module nesting gone wild.

From <www.wowebook.com>

ptg

Staying Out of Trouble
The dangers of monkey patching really depend on what you are doing with it. For
example, it’s hard to see any real danger in the step-by-step assembly of a long class
like Pathname.

A bit riskier is adding a brand new method to a class, along the lines of adding a
blank? or squish! method on String. This is still a reasonably safe thing to do. After
all, how much damage can a single additional method do? None, unless the class (or
its superclass) already had a blank? or a squish! method, in which case you have just
overwritten that original method. There is, of course, the chance that someone else
might be patching in their own squish! method, overwriting your masterpiece in the
process. Not much of a chance, but something to consider.

Next in our lineup of escalating danger is patching some application class, the way
we did when we fixed the average_word_length method on Document. Here we’re
getting involved in the central mechanism of the class, although monkey patching a
class isn’t all that different from making a change to it the traditional way. What it
comes down to is that safety lies in knowing what you are doing and in writing
tests.

The biggest danger in monkey patching arises when you start messing with the
primary mechanism of some critical class. We did exactly this kind of thing when we
modified the String + method earlier in the chapter. It’s hard to think of a class more
critical than String, and by changing the + method we ran the risk of breaking a fun-
damental part of Ruby. The bad news is that there is a very high penalty for screwing
up a basic class like String: All kinds of things are going to break. The good news is
that even the most basic of tests are likely to uncover this kind of error very rapidly.
You are writing tests, right?

Wrapping Up
In this chapter we took a very basic look at monkey patching classes. A monkey patch
is an on-the-fly modification of an existing class. We saw how you can use monkey
patching to add new methods to an existing class, to change methods that are already
there, and even do things like aliasing or deleting a method. We saw how monkey
patching enables you to fix a broken class, enhance a working one, and assemble large
classes bit by bit.

Wrapping Up 303

From <www.wowebook.com>

ptg

Ironically, although simple monkey patching is the most visible aspect of open
classes, it is by no means the only—or even the most important—programming tech-
nique to take advantage of this Ruby feature. In the next couple of chapters we will
explore two other things we can do with classes that never make us say we’re sorry.

304 Chapter 24. Update Existing Classes with Monkey Patching

From <www.wowebook.com>

ptg

CHAPTER 25
Create Self-Modifying
Classes

In the last chapter we looked at how you can take advantage of Ruby’s open classes to
do monkey patching, to add to, modify, or even subtract from an existing class. We
saw how you can get a lot of programming mileage out of this technique in the form
of enhanced or repaired classes.

In this chapter we’re going to continue our look at the dynamic nature of Ruby
classes, and we’ll start by asking a very fundamental question: How do Ruby classes
get defined in the first place? Not only will the answer to this question illuminate how
monkey patching works, but it will also enable us to build classes that can program-
matically modify themselves. We will also learn how to cope with some of the com-
mon mistakes you can make when doing this kind of programming, and then we’ll
check out some examples from the Ruby code base.

Open Classes, Again
So far we’ve seen how you can change a Ruby class definition by simply repeating the
class definition. If the Widget class is already defined and you come back a second
time to say class Widget, then your widgets are going to change. Something we
rather took for granted in that discussion was the question of how classes get defined
in the first place. To see what I mean, take a look at this rather strange-looking class
definition:

305

From <www.wowebook.com>

ptg

class MostlyEmpty

puts "hello from inside the class"

end

Instead of methods and attributes and constants, the MostlyEmpty class lives up to its
name by consisting of a single puts statement. Run the three lines above and you will
see this output:

hello from inside the class

Along with the output—and the new, mostly empty class—we can pull something
very important from this little demonstration—that Ruby class definitions are exe-
cutable. That puts statement went off because when the Ruby interpreter hits a class
declaration, it executes the code between the class and the end.1

We can use this little discovery to prove something you’ve been told but perhaps
have never really seen before your eyes: the value of self inside a class definition is the
class that you are defining. Run this:

class MostlyEmpty

puts "The value of self is #{self}"

end

And there is your confirmation:

The value of self is #<Class:0x873698c>::MostlyEmpty

We can also use this trick to see when methods get defined. All we need is a class
with an actual method along and some additional instrumentation:

class LessEmpty

pp instance_methods(false)

def do_something

puts "I'm doing something!"

end

306 Chapter 25. Create Self-Modifying Classes

1. Well, technically the interpreter reads in the whole class first and then executes the class body.

From <www.wowebook.com>

ptg

pp instance_methods(false)

end

Again, we have a class with some ordinary code to execute, this time two pp state-
ments. Using the instance_methods method, those pp statements print the names of
all the instance methods defined on the LessEmpty class.2 Sandwiched between the
pps is a method definition. The idea is to find out when the do_something method
gets defined. When you run this code you will see the following:

[]

[:do_something]

This output is trying to tell us that the do_something method is not defined at
the top of the class—before the def do_something—but it is defined at the bottom,
after the method definition. We have just discovered that Ruby classes are defined piece-
meal, one step—or method—at a time. When Ruby sees that initial class LessEmpty,
it creates a new and completely empty class. It then executes the class body, the code
between the class statement and the final end. Whatever is inside the class defini-
tion—be it an if or a puts or a method defining def—simply gets executed in turn.

Knowing all this gives us some interesting insight into how Ruby classes really
operate. For example, given what we’ve learned so far, it’s now no surprise that if you
define the same method twice, like this:

class TheSameMethodTwice

def do_something

puts "first version"

end

In between method definitions

def do_something

puts "second version"

end

end

Open Classes, Again 307

2. Passing false to instance_methods says that we don’t want to see any inherited methods, only the
methods defined directly by LessEmpty.

From <www.wowebook.com>

ptg

twice = TheSameMethodTwice.new

twice.do_something

The first version of the method actually springs into existence, briefly, in the space
between the two definitions, only to be snubbed out by the second definition. The
second one wins, as you can see from the output:

second version

Now, given that you can reopen Ruby classes, the code above is only a shade dif-
ferent from:

class TheSameMethodTwice

def do_something

puts "first version"

end

end

class TheSameMethodTwice

def do_something

puts "second version"

end

end

This latest version is also a classic example of monkey patching. We started with the
TheSameMethodTwice class with the first version of the method, and then we reopened
the class and replaced it with the second rendition of the method.

Put Programming Logic in Your Classes
Beyond helping us understand how monkey patching works, all of this theory has
some real, and useful, consequences. Being able to embed code in your classes means
that your classes can make run-time decisions about what methods to define and the
code that those methods will contain. For example, we might imagine that all the
applications using the Document class want to be able to save their documents to a file,
but only some of those applications need to encrypt the documents as they are saved.
If there was a constant that turned the encryption off and on, then it’s fairly easy to
build a class that configures itself accordingly:

308 Chapter 25. Create Self-Modifying Classes

From <www.wowebook.com>

ptg

class Document

Lots of code omitted...

def save(path)

File.open(path, 'w') do |f|

f.puts(encrypt(@title))

f.puts(encrypt(@author))

f.puts(encrypt(@content))

end

end

if ENCRYPTION_ENABLED

def encrypt(string)

string.tr('a-zA-Z', 'm-za-lM-ZA-L')

end

else

def encrypt(string)

string

end

end

end

This code starts out with a mundane save method, which writes the data in the
document out to a file, after running it through the encrypt method. The question
is, which encrypt method? It’s the class-level logic that makes the decision. If the
ENCRYPTION_ENABLED constant is true, we end up with an encrypt method that does
indeed shuffle the contents of the string. On the other hand, if ENCRYPTION_ENABLED
isn’t true, we get an encrypt method that does nothing. Critically, the ENCRYPTION_
ENABLED logic runs exactly once, when the class is loaded.

Class Methods That Change Their Class
The code that executes inside a class definition has something in common with a class
method: They both execute with self set to the class. This suggests that we can use
class methods to make the same kind of structural changes that we have done so far
with class-level logic, and so we can. Here is our encryption example again, this time
wrapped in a class method:

Class Methods That Change Their Class 309

From <www.wowebook.com>

ptg

ENCRYPTION_ENABLED = true

class Document

Most of the class left behind...

def self.enable_encryption(enabled)

if enabled

def encrypt_string(string)

string.tr('a-zA-Z', 'm-za-lM-ZA-L')

end

else

def encrypt_string(string)

string

end

end

end

enable_encryption(ENCRYPTION_ENABLED)

end

This code does the very recursive trick of defining a class method, enable_
encryption, which itself defines an instance method. Actually, it defines one of two
versions of the encrypt_string method, depending on whether the enabled param-
eter is passed in as true or false. The last line of the class definition calls enable_
encryption, passing in true, thereby starting us off with encrypting turned on. A
handy side effect of this latest implementation is that we can toggle encryption off and
on by calling the class method from outside. Thus, if we wanted to be sure that we
were going to write encryption-free documents we could run:

Document.enable_encryption(false)

And we would have the “do nothing” version of the encrypt_string method.

In the Wild
Executable class definitions are wonderfully useful when you need to write code that
will work in different environments. Take the transition that the Ruby world is going

310 Chapter 25. Create Self-Modifying Classes

From <www.wowebook.com>

ptg

through right now, from Ruby version 1.8.X to version 1.9. Progress is a great thing,
but it can also be a pain in the neck. It’s great that version 1.9 adds all sorts of new
methods to the built-in classes, but what if you need to write code that will run in
both Ruby versions?

For example, one of the differences between 1.8 and 1.9 lies in the String class.
Take this string:

name = 'Robert Jordon'

In Ruby 1.9, name[2] will evaluate to a string containing one character, in this case
'b'. In Ruby 1.8, name[2] will give you 98, the number that lurks behind the letter
b. Now think about the problems this will cause if we wanted to have a char_at
method on our Document class, a method that always returns a one-character string.
It’s trivial in Ruby 1.9:

class Document

Ruby 1.9 version

def char_at(index)

@content[index]

end

end

But in Ruby 1.8 we need to convert the integer back into a string with a call to the
chr method:

class Document

Ruby 1.8 version

def char_at(index)

@content[index].chr

end

end

The problem is, which version of char_at should we use at any given moment?
One easy way to deal with this kind of problem is to simply put an if statement right
at the class level, an if statement that will pick the right method:

In the Wild 311

From <www.wowebook.com>

ptg

class Document

Lots of stuff omitted...

if RUBY_VERSION >= '1.9'

def char_at(index)

@content[index]

end

else

def char_at(index)

@content[index].chr

end

end

end

This code uses the built in RUBY_VERSION constant to figure out which Ruby version
it’s running on and works from there. The key thing to understand about the if state-
ment in the code here is that it executes exactly once as the class is being defined.

You can find a spectacular example of on-the-fly class modification in the delight-
ful habit that Rails has of picking up your code changes on the fly. One thing that
makes using Rails such a delight is that once you have a basic project set up, you sim-
ply crank up the Rails server and start hacking. With a few exceptions, Rails will mag-
ically pick up your changes and incorporate them into the running application,
without so much as a hiccup let alone a server restart. Clearly there is something inter-
esting going on inside of Rails; the question is what?

To see whether we can glean the answer, let’s modify Document to make it reloadable.
What we need is a Document class method that will sync the code stored in the file
with the code that is actually running. A naive approach is to have the reload method
simply reread the Document source code in a recursive act of monkey patching:

class Document

def self.reload

load(__FILE__)

end

Rest of the class omitted...

end

There is a surprising amount happening in the one-line reload class method
shown here. First, it uses the Ruby-supplied load method to reread its own source.

312 Chapter 25. Create Self-Modifying Classes

From <www.wowebook.com>

ptg

The load method is similar to the more familiar require. The difference between
load and require is that require keeps track of which files are already loaded so that
it doesn’t load the same file twice. The load method just loads the file, no questions
asked. Since loading the same file twice is exactly what we’re after here, we’ll use the
dumber load. The reload method also uses __FILE__. __FILE__ is also supplied via
the magic of Ruby and is always set to the path of the source file of the current class,
which is just what we need here.

The reload method above takes us a long way toward our goal of a Rails-like
reloadable class. Calling reload in the example above will ensure that any new methods
added to the source file will show up in the running system. It will also catch any changes
to existing methods. This first version of reload falls short because it can’t get rid of
deleted methods. If you edit document.rb and remove a method and then reload the
source file, the original method will stubbornly stay in place in the running Ruby
interpreter. The solution is to remove all the methods from the class before reloading it:

class Document

def self.reload

remove_instance_methods

load(__FILE__)

end

def self.remove_instance_methods

instance_methods(false).each do |method|

remove_method(method)

end

end

Rest of the class omitted...

end

The additional remove_instance_methods method in this last example prepares
the Document class for reloading by systematically removing all of the instance meth-
ods from it, leaving behind an empty shell that is repopulated when the source file is
reloaded.3

In the Wild 313

3. Not quite as empty a shell as we might like. It doesn’t clear out any class methods, class variables,
and class instance variables. One of the best things about writing books is that I get to leave
something like that as an exercise for the reader.

From <www.wowebook.com>

ptg

Staying Out of Trouble
Let’s face it: Where there is code, there will be bugs. Write enough of the kind of class-
level logic discussed in this chapter and eventually you’ll make all of the traditional
bone-headed mistakes that have plagued engineers since the first hello_world. The
difference is that the same old mistakes can have some interesting consequences when
they occur in the middle of making structural changes to your classes. For example,
take a look at this broken version of our encrypting document class:

ENCRYPTION_ENABLED = true

Broken!!

class Document

Most of the class left behind...

def self.enable_encryption(enabled)

if enabled

def encrypt_string(string)

string.tr('a-zA-Z', 'm-za-lM-ZA-L')

end

else

def encrypt_string(string)

string

end

end

end

end

See the problem? We left out the call to enable_encryption at the bottom of the
class, so this version of Document will start out with no encrypt_string method at
all. This will give us an unpleasant shock when we try to save a document.

In the same vein, if you make a mistake in one branch of the class-level logic, it
will not show up until you actually use the branch. Take a look at this unfortunate bit
of code:

def self.enable_encryption(enabled)

if enabled

314 Chapter 25. Create Self-Modifying Classes

From <www.wowebook.com>

ptg

def encrypt_string(string)

string.tr('a-zA-Z', 'm-za-lM-ZA-L')

end

else

def incrypt_string(string)

string

end

end

end

With this code, trying to turn encryption off will only succeed in defining a sec-
ond method with the very odd name of incrypt_string. The moral here is simple
and is spelled R-S-P-E-C:

describe Document do

before :each do

@doc = Document.new("test", "tester", "this is a test")

end

it "should encrypt if encryption is enabled" do

Document.enable_encryption(true)

@doc.encrypt_string('abc').should_not == 'abc'

end

it "should not encrypt if encryption is disabled" do

Document.enable_encryption(false)

@doc.encrypt_string('abc').should == 'abc'

end

end

While regular code needs unit tests, metaprogramming code absolutely cries out for
them!

Wrapping Up
If this chapter did its job, you are walking away with two big ideas: The first is that
Ruby classes are executable. During the process of defining a class, Ruby executes the
code between the class and the end, modifying the class as it goes. The second is that

Wrapping Up 315

From <www.wowebook.com>

ptg

since class definitions are executable, you can insert logic in your class definitions,
logic that will determine exactly what the class will look like. And actually there is a
third big idea, not a new idea but one that bears repeating: Programs—especially
metaprograms—that lack automated tests are probably not going to work.

316 Chapter 25. Create Self-Modifying Classes

From <www.wowebook.com>

ptg

CHAPTER 26
Create Classes That
Modify Their Subclasses

One of the fundamental principles of programming goes something like this: Never
leave to a human that which can be done by a program. Or, to put it another way,
some of the greatest leaps in software engineering have happened because some lazy
sod simply got tired of repeating steps two through six over and over. So far in our
adventures with Ruby’s open classes we have seen how we can change classes with
monkey patching, a more or less manual process of slapping some new code over the
existing code. From there we moved to building classes that could change themselves,
classes that say “Gee, I’m running in Ruby 1.8, so I had better define this method.”
In this chapter we’ll make the final leap: We’ll move that class-modifying code out of
the class being modified and up into a superclass. We’ll see that by doing this we can
dramatically increase the amount of metaprogramming leverage that we can apply.
With a bit of luck, this technique will allow you to finish your programs that much
quicker and go back to your favorite pastime, being a lazy sod.

A Document of Paragraphs
Thus far we have kept our Document class conveniently, but unrealistically, simple.
The sad fact is that you can’t model the content of real-world documents with a sim-
ple string. Real documents have paragraphs and fonts, fonts that come in flavors like
normal and bold and italics. A more realistic document class might actually start with
a class for paragraphs:

317

From <www.wowebook.com>

ptg

class Paragraph

attr_accessor :font_name, :font_size, :font_emphasis

attr_accessor :text

def initialize(font_name, font_size, font_emphasis, text='')

@font_name = font_name

@font_size = font_size

@font_emphasis = font_emphasis

@text = text

end

def to_s

@text

end

Rest of the class omitted...

end

And only then turn to the document itself:

class StructuredDocument

attr_accessor :title, :author, :paragraphs

def initialize(title, author)

@title = title

@author = author

@paragraphs = []

yield(self) if block_given?

end

def <<(paragraph)

@paragraphs << paragraph

end

def content

@paragraphs.inject('') { |text, para| "#{text}\n#{para}" }

end

...

end

318 Chapter 26. Create Classes That Modify Their Subclasses

From <www.wowebook.com>

ptg

The new StructuredDocument class is mostly just a collection of paragraphs,
where each paragraph consists of some text, a font name (i.e., :arial), a font size (per-
haps 12 point), and an emphasis, something like :bold or :italic. Thus we might
create a resume like this:1

russ_cv = StructuredDocument.new('Resume', 'RO') do |cv|

cv << Paragraph.new(:nimbus, 14, :bold, 'Russ Olsen')

cv << Paragraph.new(:nimbus, 12, :italic, '1313 Mocking Bird Lane')

cv << Paragraph.new(:nimbus, 12, :none, 'russ@russolsen.com')

.. and so on

end

Armed with the newfound power of the StructuredDocument class, we can build all
sorts of specialized documents, everything from resumes to instructions for installing
an LCD TV.

Subclassing Is (Sometimes) Hard to Do
The trouble is, all that building is going to be real work and, because most resumes
and instruction manuals look more or less alike, fairly repetitious work at that. If our
users are creating a lot of documents, we might want to help them along. Easy enough.
We simply cook up a number of subclasses, each with some helpful methods. We
might, for instance, create a subclass for resumes:

class Resume < StructuredDocument

def name(text)

paragraph = Paragraph.new(:nimbus, 14, :bold, text)

self << paragraph

end

def address(text)

paragraph = Paragraph.new(:nimbus, 12, :italic, text)

self << paragraph

end

Subclassing Is (Sometimes) Hard to Do 319

1. Note the clever use of the initialize block!

From <www.wowebook.com>

ptg

def email(text)

paragraph = Paragraph.new(:nimbus, 12, :none, text)

self << paragraph

end

and so on

end

Using these methods, you can programmically build a resume with a minimum of
fuss:

russ_cv = Resume.new('russ', 'resume') do |cv|

cv.name('Russ Olsen')

cv.address('1313 Mocking Bird Lane')

cv.email('russ@russolsen.com')

Etc...

end

You might also do something similar with installation instructions:

class Instructions < StructuredDocument

def introduction(text)

paragraph = Paragraph.new(:mono, 14, :none, text)

self << paragraph

end

def warning(text)

paragraph = Paragraph.new(:arial, 22, :bold, text)

self << paragraph

end

def step(text)

paragraph = Paragraph.new(:nimbus, 14, :none, text)

self << paragraph

end

and so on

end

320 Chapter 26. Create Classes That Modify Their Subclasses

From <www.wowebook.com>

ptg

If we step back and look at our handiwork so far, we can see that it’s a bit of a mixed
bag. On the plus side, we have built a couple of friendly, user-oriented classes. If you
need to build a resume or a set of instructions, we have a handy class that will help you
out. The problem is that we still have a lot of repetitive code. Every one of our helper
methods looks almost exactly like every other helper method. The method that adds an
e-mail address to a resume is, plus or minus a font name and size, identical to the one
that adds a warning to a set of instructions. Sadly, there seems to be no cure for this: If we
want all those nice helper methods, we simply need to sit down and build them, right?

Class Methods That Build Instance Methods
Perhaps not. Armed with the knowledge that (a) you can change any Ruby class at any
time, and (b) Ruby classes definitions are executed, we might just be able to avoid all
of this redundant code. The effect we’re looking for is to be able to say, “The
Instruction class needs to have a method called introduction that will add a new
paragraph rendered in the italic version of Arial at a glorious 18 points” and have Ruby
create the method for you. Something like this:

class Instructions < StructuredDocument

paragraph_type(:introduction,

:font_name => :arial,

:font_size => 18,

:font_emphasis => :italic)

And so on...

end

Let’s try to make paragraph_type a reality, one step at a time. First, since we are
calling it right inside the class definition, it’s clear that paragraph_type needs to be a
class method:

class StructuredDocument

def self.paragraph_type(paragraph_name, options)

What do we do in here?

end

...

end

Class Methods That Build Instance Methods 321

From <www.wowebook.com>

ptg

The paragraph_type class method takes two arguments: the name of the new
paragraph type (which is also going to be the name of the method we’re going to add
to the class) and a hash of options, one that will contain things like the font name and
size. The real question is, what do we do inside of the paragraph_type class method?
The answer is that we need to define a new instance method on the subclass of
StructuredDocument that is calling the paragraph_type method. Your natural impulse
is to write something like this:

class StructuredDocument

def self.paragraph_type(paragraph_name, options)

def <<the new method>>

Add a new paragraph

end

end

...

end

Unfortunately that is not going to work. The trouble with the familiar def statement
is that we have the name of the method we’re trying to create in the name parameter
but def requires an explicit “you type it right here” name for the method. In other
words, we have the name of the new method as data, but def wants it as code.

The way around this roadblock is to make use of class_eval. Built into all Ruby
classes, the class_eval method takes a string and evaluates it as if it were code that
appeared in the class body. This is exactly what we need: We’ll just build a string that
contains the code for the new method definition and then class_eval the new
method into reality:

class StructuredDocument

def self.paragraph_type(paragraph_name, options)

name = options[:font_name] || :arial

size = options[:font_size] || 12

emphasis = options[:font_emphasis] || :normal

code = %Q{

def #{paragraph_name}(text)

322 Chapter 26. Create Classes That Modify Their Subclasses

From <www.wowebook.com>

ptg

p = Paragraph.new(:#{name}, #{size}, :#{emphasis}, text)

self << p

end

}

class_eval(code)

end

...

end

To step through the code shown, imagine that we have this call to paragraph_type:

class Instructions < StructuredDocument

paragraph_type(:introduction,

:font_name => :arial,

:font_size => 18,

:font_emphasis => :italic)

And so on...

end

The paragraph_type method starts by pulling the font name, size, and emphasis
out of the options hash, filling in defaults as needed. Now for the interesting part:
The paragraph_type method creates a string that contains the code for the new
introduction instance method, a string that will look something like this:

def introduction(text)

p = Paragraph.new(:arial, 18, :italics, text)

self << p

end

Finally, paragraph_type uses class_eval to execute the string, which creates the
introduction method. Note that the new method ends up on the StructuredDocument
subclass (i.e., Instructions) and not on the StructuredDocument class itself because
the whole process started with a call from inside the Instructions class, which set
self to Instructions.

Class Methods That Build Instance Methods 323

From <www.wowebook.com>

ptg

Better Method Creation with define_method
Although creating new methods by class_eval’ing a string has a certain clarity to
it—if nothing else, you can print out the string and actually see the method that you’re
defining—it is really not ideal. We generally like to avoid “evaluate some code on the
fly”-type methods if there is a more normal API alternative. In the case of defining a
new method, there definitely is an alternative, one with the very obvious name of
define_method. To use define_method, you call it with the name of the new method
and a block. You end up with a new method with the given name that will execute the
block when called. Conveniently, the parameters of the block become the parameters
of the new method. Thus, we can reformulate paragraph_type using define_method
very easily:

class StructuredDocument

def self.paragraph_type(paragraph_name, options)

name = options[:font_name] || :arial

size = options[:font_size] || 12

emphasis = options[:font_emphasis] || :none

define_method(paragraph_name) do |text|

paragraph = Paragraph.new(name, size, emphasis, text)

self << paragraph

end

end

...

end

Either way you do it, you end up with a method in the superclass that can add
methods to its subclasses. You also have a very powerful technique for creating custom
subclasses with very little effort.

The Modification Sky Is the Limit
So far we have only been talking about writing classes that can hang new methods on
their subclasses. Once you have the basic idea down, however, there is no limit to what
you can do to a subclass from a superclass method. You might, for example, add a
method that changes the visibility of the document methods in a subclass:

324 Chapter 26. Create Classes That Modify Their Subclasses

From <www.wowebook.com>

ptg

class StructuredDocument

Rest of the class omitted...

def self.privatize

private :content

end

end

The thing to note about this code is that it doesn’t change the accessibility of the con-
tent method on all StructuredDocument instances. But it does give its subclasses an
easy way of declaring the content method private:

class BankStatement < StructuredDocument

paragraph_type(:bad_news,

:font_name => :arial,

:font_size => 60,

:font_emphasis => :bold)

privatize

end

Now if you try to get at the contents of a BankStatement:

statement = BankStatement.new('Bank Statement', 'Russ')

statement.bad_news("You're broke!")

puts statement.content

You are in for a shock:

private method `content' called for #<BankStatement:0x8b8f544>

Nor are you limited to just messing with instance methods. You might, for exam-
ple, want to mark any document that you privatize with a class method to announce
that the document is confidential:

class StructuredDocument

Rest of the class omitted...

The Modification Sky Is the Limit 325

From <www.wowebook.com>

ptg

def self.disclaimer

"This document is here for all to see"

end

def self.privatize

private :content

def self.disclaimer

"This document is a deep, dark secret"

end

end

end

This code starts by defining a default disclaimer method on the Structured -
Document class, a method that proclaims the availability of the document. If you cre-
ate a StructuredDocument subclass and don’t call privatize, this is the method you
will get. If, on the other hand, you do call privatize from your subclass:

class BankStatement < StructuredDocument

paragraph_type(:bad_news,

:font_name => :arial,

:font_size => 60,

:font_emphasis => :bold)

privatize

end

Then BankStatement will end up with its own version of the disclaimer method, so
that running:

puts BankStatement.disclaimer

Will give you this:

This document is a deep, dark secret

Remember, if you can do it to a class, you can do it from the superclass!

326 Chapter 26. Create Classes That Modify Their Subclasses

From <www.wowebook.com>

ptg

In the Wild
Once you know what to look for, it’s hard to miss Ruby subclass-changing methods
in real-world code. In fact, some are built into every Ruby class that you’ve ever writ-
ten. These ubiquitous methods go by the name attr_accessor, attr_reader, and
attr_writer. Think about what attr_accessor and friends do: They let you
describe some methods that you want, so that if you say this:

class Printer

attr_accessor :name

end

You really end up with a class that looks something like this:

class Printer

def name

@name

end

def name=(value)

@name = value

end

end

If you have read this far into this chapter, figuring out how attr_accessor and
friends works is not hard. Here’s a simple version of attr_reader2 that uses
class_eval:

class Object

def self.simple_attr_reader(name)

code = "def #{name}; @#{name}; end"

class_eval(code)

end

end

In the Wild 327

2. The real attr_reader method, along with its siblings, is defined in the Ruby C code (or Java if
you are using JRuby). If you think that this makes the implementations of those methods inac-
cessible, then you need to read Chapter 30.

From <www.wowebook.com>

ptg

Similarly, here’s a stripped-down version of attr_writer, this time using
define_method:

class Object

def self.simple_attr_writer(name)

method_name = "#{name}="

define_method(method_name) do |value|

variable_name = "@#{name}"

instance_variable_set(variable_name, value)

end

end

end

Aside from attr_accessor et al., the most well-known subclass changing meth-
ods are probably those that come with ActiveRecord. As every Rails programmer
knows, doing this:

class Automobile > ActiveRecord::Base

has_one :manufacturer

end

my_car = Automobile.find(:first)

Means that you can say my_car.manufacturer to get to the object that represents the
company that made the car.

Finally, if you look in forwardable.rb, which is part of the Ruby standard
library, you will find still more examples of class-modifying methods. The idea behind
forwardable.rb is similar to delegate.rb, which we met when we were talking
about using method_missing to delegate. Both of these library classes try to make del-
egation easy. The difference is that where delegate.rb takes the method_missing
approach to delegation, catching calls to nonexistent methods and sending them off
to the other object, Forwardable actually generates the delegating methods on the fly.

The interesting thing about Forwardable is that it’s not a class at all. It’s a mod-
ule that you mix in at the class level with extend. Other than its slightly surprising
packaging, Forwardable works exactly like the examples in this chapter. Here, for
instance, is a simple class that looks like a document, but that actually just bounces all
the method calls to title, author, and content off to a real Document instance:

328 Chapter 26. Create Classes That Modify Their Subclasses

From <www.wowebook.com>

ptg

class DocumentWrapper

extend Forwardable

def_delegators :@real_doc, :title, :author, :content

def initialize(real_doc)

@real_doc = real_doc

end

end

Like our earlier delegate.rb-based DocumentWrapper, this one lets you treat the
wrapper just like the original:

real_doc = Document.new('Two Cities', 'Dickens', 'It was...')

wrapped_doc = DocumentWrapper.new(real_doc)

puts wrapped_doc.title

puts wrapped_doc.author

puts wrapped_doc.content

Here is an edited version of the key method in Forwardable:

module Forwardable

Lots of code deleted...

def def_instance_delegator(accessor, method, ali = method)

str = %{

def #{ali}(*args, &block)

#{accessor}.__send__(:#{method}, *args, &block)

end

}

module_eval(str, __FILE__, line_no)

end

end

Aside from the fact that this code uses module_eval—which is synonymous with
class_eval—this is exactly the string-based technique that we've been discussing.

In the Wild 329

From <www.wowebook.com>

ptg

Staying Out of Trouble
It’s easy to get lost when you first try to do the sort of metaprogramming we looked
at in this chapter. The problem is not that this is an extremely complex process; it’s
just that most programmers new to Ruby are not used to thinking in terms of modi-
fying classes at all, let alone writing methods to do the modification for them, let alone
moving those methods up to a superclass. If you feel like this technique has left you
in a confusing maze of twisty passages,3 here are some signposts that can help.

First, keep your goal firmly in mind. In our example, we wanted to make it easy
to add paragraph-generating methods to StructuredDocument subclasses.

Second, know when things happen. For example, when you load the Structured -
Document code, perhaps with this:

require 'structured_document'

You end up with the generic StructuredDocument class, which has the paragraph_
type class method on it. A bit later (perhaps even on the very next line of code) you
load the Instructions class:

require 'instructions'

As the Instructions class definition is getting executed, it will fire off calls to the
paragraph_type method up in the StructuredDocument class. This will add meth-
ods with names like introduction, warning, and step to the Instructions class.
Only when all of this defining is over do you make an instance of Instructions and
call the generated methods.

The third thing to know is that the value of self is at every stage of this process.
This starts out relatively straightforward but gets a little hairy as you go along. The
straightforward bit is in the superclass:

class StructuredDocument

Self is StructuredDocument here

def self.paragraph_type(paragraph_name, options)

...

330 Chapter 26. Create Classes That Modify Their Subclasses

3. All of them alike.

From <www.wowebook.com>

ptg

end

end

When you say def self.paragraph_type, you are defining a new class method
on the StructuredDocument class. But—and this is a key “but”—when you call the
paragraph_type method from the subclass, self will be whatever class called the
method. Thus, self inside paragraph_type will be Resume or Instructions (the
subclass), not StructuredDocument. This is why the introduction method ends up
on Instructions and not on StructuredDocument.

Finally, when you actually call the generated method on an instance of your sub-
class, maybe like this:

omlette_howto = Instructions.new('Russ', 'Omlettes') do |i|

i.warning("Careful of those sharp egg shells!")

end

The value of self inside the generated method will be the Instructions instance. As
the philosophers say, “Know thyself ”!

There is one other thing to beware of with the metaprogramming techniques
we’ve covered in the past few chapters—the inclination of programmers to either
avoid them completely or use them for everything in sight. So the question is: When
should you pull out the metaprogramming and when should you stick to garden-
 variety code?

As usual, the extreme cases are the easiest. If you can solve your problem in a rea-
sonable way with your traditional programming chops, do that. Do you need to share
the same method between several different classes? You could add that method on the
fly to both classes, but probably you are better off putting the method in a superclass
or a mixin module. In the quest for software that is actually useful, simple solutions
to straightforward problems have a plain eloquence all their own.

At the other extreme are the things you just cannot do without metaprogram-
ming. If you need to build a generic method-agnostic proxy or a reloadable Document
class, metaprogramming is the only solution.

The intermediate cases, problems like our “to encrypt or not to encrypt?” ques-
tion and the Ruby 1.8/1.9 incompatibility handler are harder. If you can solve a prob-
lem with some traditional code or a touch of metaprogramming, how do you decide?

Staying Out of Trouble 331

From <www.wowebook.com>

ptg

332 Chapter 26. Create Classes That Modify Their Subclasses

Again, it’s all about striking a balance. Metaprogramming can dramatically reduce the
volume and the complexity of your code. Hooks let you define code that will run at
helpful times. Method missing and the techniques that rely on open classes can save
you an enormous amount of coding toil. All of this, however, comes at a price. Those
hooks might go off at unexpected times. Using method missing and open classes
means that your application will be running code that has no obvious counterpart in
your source tree.

The trick is to simply get back more programming goodness than you pay in
meta-complexity. Take the Ruby 1.8/1.9 string example that we looked at in the last
chapter. In real life, would I actually use class-level logic to deal with that one prob-
lem? Probably not. In real life I would probably code some ordinary run-time logic
that asked itself about the Ruby version and did the right thing. If, however, I was
doing this with scores of methods, or if the this or that logic was complex, I might well
turn to metaprogramming. The bottom line is simple: Make that metaprogramming
pay for itself.

Wrapping Up
The trouble with traditional programming languages is that they treat classes as if they
were petrified. You make a class and there it is, eternal and unchanging. As we have
seen in the last few chapters, the Ruby way of looking at things is that classes are
objects just like any other. If you are somehow unhappy with the contents of your
class, you can change them. Two chapters ago we saw how you can change Ruby
classes manually, via monkey patching. In the last chapter we saw how you can write
classes that reconfigure themselves. Finally, in this chapter we saw how you can share
all of that class-changing logic by moving it into a superclass or a module.

One of the advantages of metaprogramming is the way you can use it to give your
Ruby a customized “made just for this problem” feel. Page back and look at the exam-
ples in this chapter. One thing that stands out is how the paragraph_type and
privatize methods feel less like methods and more like key words, specialized parts
of a new Ruby-like language. Now there’s an idea worth pursuing.

From <www.wowebook.com>

ptg

PART IV
Pulling It All
Together

From <www.wowebook.com>

ptg

This page intentionally left blank

From <www.wowebook.com>

ptg

CHAPTER 27
Invent Internal DSLs

Rake. RSpec. ActiveRecord models. A build tool, a testing utility, and a database inter-
face library. It seems unlikely that these three chunks of code could have anything in
common, but they do. All three are examples of a particular style of programming, the
internal Domain Specific Language, or DSL. More than any other technique, the inter-
nal DSL has come to represent the easy eloquence of Ruby; each is an illustration of
how the language allows you to create tools that can solve whole classes of problems.

In this chapter we will look at building DSLs in Ruby. Actually, build is probably
the wrong word: What we will really see is how you can grow a DSL, how you can
start with an ordinary API and slowly transform it into something more, so that step
by step it becomes its own little language. Along the way we will see how to pull
together a number of the Ruby programming techniques covered in previous chapters
into a really powerful combination. Finally, we will look at when an internal DSL is a
good solution and when it is better to turn to something else.

Little Languages for Big Problems
Software engineering is all about trade-offs. There rarely is a “best” or “correct” solu-
tion to programming problems. We keep all the data in memory and the program runs
faster—at the cost of all that memory. Or, we strike a different bargain and save the
memory at the price of speed. We build plain-looking GUIs that work now or we cre-
ate fancy ones that take a little longer. We drink the free but dubious coffee in the
office or we go out and spend a few dollars for the real thing.

335

From <www.wowebook.com>

ptg

You see this kind of trade-off in the design of programming languages. The typi-
cal general-purpose programming language is good at solving a huge range of prob-
lems. C# is about as good at writing accounting systems as it is at building software
that will predict earthquakes. You can use Java to build huge enterprise applications
or tiny cell phone GUIs. Unfortunately, there is a price to be paid for being general
purpose. A language that tries to do everything can’t afford to be great at any one
thing.

Domain specific languages, or DSLs for short, strike a different sort of bargain.
Instead of being pretty good at a lot of things, a DSL tries to be really great at one nar-
rowly defined class of problems. Imagine creating a programming language that pulls
out all of the stops to make it easy to build earthquake prediction systems. But spe-
cialization has its own cost. The price is that a language that’s great at earthquakes is
probably going to be lousy at doing accounting. Still, if your problem is earthquakes,
then a bit of inflexibility may be worth it.

If you do decide to go the DSL route, you have a choice to make. The traditional
way to build a DSL is to get out your copy of “Parsers and Compilers for Beginners”
and start coding a whole new language. Martin Fowler calls this traditional approach
the external DSL, external in the sense that the new language is separate or external
from the implementation language. The downside of the external DSL approach is
right out in the open: You need to build a whole new programming language. Will
you have if statements? Classes and methods? What will you use for a comment char-
acter? Building a brand-new programming language from scratch is not something to
be undertaken lightly.

The alternative is to build your DSL atop an existing language. You add so much
support for solving problems in your chosen domain into an existing language that it
starts to feel like a specialized tool. The beauty of this second approach is that you
don’t need to recreate all of the plumbing of a programming language—it’s already
there for you. Fowler’s term for this other kind of DSL is, logically enough, the internal
DSL. Internal DSLs are internal in that the DSL is built right into the implementa-
tion language. The good news is that Ruby, with its “the programmer is always right”
feature set and very flexible syntax, makes a great platform for building internal DSLs.

Dealing with XML
To turn all this theory into real code, let’s put down our familiar and somewhat con-
trived Document class and look at a very real-world problem: XML. These days, XML

336 Chapter 27. Invent Internal DSLs

From <www.wowebook.com>

ptg

is so common that it is a rare software engineer who manages to avoid it.1 Imagine
that we have a number of documents stored in XML files, files that look something
like this:

<?xml version="1.0" encoding="UTF-8"?>

<document>

<title>The Fellowship Of The Ring</title>

<author>J. R. R. Tolken</author>

<published>1954</published>

<chapter>

<title>A Long Expected Party</title>

<content>When Mr. Bilbo Bagins of Bag End...</content>

</chapter>

<chapter>

<title>A Shadow Of The Past</title>

<content>The talk did not die down...</content>

</chapter>

<!-- ect -->

</document>

Now, the whole idea of an XML file is that the data is easily accessible and easy
to manipulate. We go to the trouble of adding <title> and <chapter> tags to make
it painless to extract data from the file. The XML world has defined XSLT, a language
for doing this kind of thing, but XSLT is a complex technology in itself. For simple
jobs a Ruby programmer will be happier with a little Ruby script. Fortunately, XML
processing is also easy to do in Ruby. Here, for example, is a script that can read an
XML file like the one above and tell you who the author is:

#!/usr/bin/env ruby

require "rexml/document"

Dealing with XML 337

1. Try as we might.

From <www.wowebook.com>

ptg

File.open('fellowship.xml') do |f|

doc = REXML::Document.new(f)

author = REXML::XPath.first(doc, '/document/author')

puts author.text

end

This script relies on Ruby’s very easy-to-use REXML XML parsing library, espe-
cially its XPath facility, which allows you to navigate through the XML hierarchy with
convenient strings like '/document/author'. Given the author finding code above, it
is just a tiny step to a script that finds all of the chapter titles:

#!/usr/bin/env ruby

require "rexml/document"

File.open('fellowship.xml') do |f|

doc = REXML::Document.new(f)

REXML::XPath.each(doc, '/document/chapter/title') do |title|

puts title.text

end

end

It’s also easy to come up with a script to fix the misspelling of Tolkien’s name:

#!/usr/bin/env ruby

require "rexml/document"

File.open('fellowship.xml') do |f|

doc = REXML::Document.new(f)

REXML::XPath.each(doc, '/document/author') do |author|

author.text = 'J.R.R. Tolkien'

end

puts doc

end

338 Chapter 27. Invent Internal DSLs

From <www.wowebook.com>

ptg

This last example is a little more complex than the first two, but not much. It reads
the whole file, changes the text of the '/document/author' element, and then prints
out the entire modified XML document.

As easy as REXML is to use, there is a lot of redundant code in those three little
scripts. Each one needs to require in the REXML library, open the input file, and do
some XPath-based searching. If we were going to do a lot of this sort of thing, we
would want to factor out all of this repeated code into some kind of common utility,
one that will help us rip through XML:

require "rexml/document"

class XmlRipper

def initialize(&block)

@before_action = proc {}

@path_actions = {}

@after_action = proc {}

block.call(self) if block

end

def on_path(path, &block)

@path_actions[path] = block

end

def before(&block)

before_action = block

end

def after(&block)

@after_action = block

end

def run(xml_file_path)

File.open(xml_file_path) do |f|

document = REXML::Document.new(f)

@before_action.call(document)

run_path_actions(document)

@after_action.call(document)

end

end

Dealing with XML 339

From <www.wowebook.com>

ptg

def run_path_actions(document)

@path_actions.each do |path, block|

REXML::XPath.each(document, path) do |element|

block.call(element)

end

end

end

end

The XmlRipper class is built around the @path_actions hash, which maps strings
containing XPaths to Ruby code blocks. The idea is that you fill out @path_actions
hash by calling the on_path method repeatedly. When you are done you call the run
method, passing in the name of an XML file. The run method will open the XML file,
find the bits of XML that match the XPaths, and fire off the associated code block for
each match.

The XmlRipper class dramatically reduces the drudgery of writing those XML
processing scripts. Here’s our author and chapter title examples all rolled into one,
translated into XmlRipper:

ripper = XmlRipper.new do |r|

r.on_path('/document/author') { |a| puts a.text }

r.on_path('/document/chapter/title') { |t| puts t.text }

end

ripper.run('fellowship.xml')

We can also fix the author’s name with very little ceremony:

ripper = XmlRipper.new do |r|

r.on_path('/document/author') do |author|

author.text = 'J.R.R. Tolkien'

end

r.after { |doc| puts doc }

end

ripper.run('fellowship.xml')

340 Chapter 27. Invent Internal DSLs

From <www.wowebook.com>

ptg

This last example uses the XmlRipper after method to supply a block that gets run
after all the other XPath-based processing is completed. The after method provides
a convenient place to print out the whole XML document after we are done modify-
ing it.2

Stepping Over the DSL Line
Although we didn’t set out to create a new language, the XmlRipper scripts certainly
have a very declarative, specialized language feel to them. This is the way that many
Ruby internal DSLs are born: You set out to build a helpful class with a good API, and
gradually that API gets so good that it forgets that it’s just an API. This is also where
many Ruby APIs finish, which is fine since there is nothing wrong with a really good,
natural-feeling, almost DSL-style API. Sometimes, however, you want to go further.
You might want to take the next step if you need to write a lot of scripts, if there are
a lot of programmers who will need to use your utility, or if the folks using XmlRipper
are less technical. So how do you push XmlRipper along?

One way that you can make the XmlRipper scripts more DSL-like is to get rid of
the need to constantly refer to the new XmlRipper instance (the r parameter) inside
of the block. You can simplify the code inside of the block by turning to a method
common to every Ruby object, instance_eval. Pass instance_eval a block and, just
like call, it will execute the block. The difference is that instance_eval changes the
value of self as it executes the block: Say some_object.instance_eval(block)
and the value of self will be some_object as the block executes. Thus, if you rewrite
the XmlRipper initialize method to use instance_eval:

class XmlRipper

def initialize(&block)

@before_action = proc {}

@path_actions = {}

@after_action = proc {}

instance_eval(&block) if block

end

Stepping Over the DSL Line 341

2. If you look carefully at the XmlRipper class you will see that there is also a before method,
which operates as the mirror image of after. Although I’m generally against adding features that
aren’t used simply because they “make sense,” this one makes so much sense that I’ll make an
exception. For more on this kind of thing, see Chapter 31.

From <www.wowebook.com>

ptg

Rest of the class omitted...

end

Then self will be equal to the new XmlRipper instance as the block evaluates.3 Since
the on_path and before methods are defined on the XmlRipper instance, you can
drop the initialization block argument and simply call on_path and after directly:

ripper = XmlRipper.new do

on_path('/document/author') do |author|

author.text = 'J.R.R. Tolkien'

end

after { |doc| puts doc }

end

ripper.run('fellowship.xml')

Getting rid of all those pesky r parameters is a step forward in making the
XmlRipper scripts more language-like, but it’s not the only thing you can do. Notice
how each XmlRipper script always starts with the XmlRipper.new line and ends with
the ripper.run call. In an ideal world you would get rid of all that boilerplate code,
cutting down the code that the user has to write to the chewy center:

on_path('/document/author') do |author|

author.text = 'J.R.R. Tolkien'

end

after { |doc| puts doc }

Once again, instance_eval comes to your rescue. If, instead of passing a block
to instance_eval you feed it a string, instance_eval will evaluate the string as Ruby
code. Here’s a new, slightly rewritten version of the XmlRipper class that can read the
script from a file:

342 Chapter 27. Invent Internal DSLs

3. If this seems confusing, consider that instance_eval(&block) is equivalent to
self.instance_eval(&block) and self is the newly created XmlRipper instance.

From <www.wowebook.com>

ptg

class XmlRipper

def initialize_from_file(path)

instance_eval(File.read(path))

end

Rest of the class omitted...

end

Now you can write a short script that will read and execute a file full of befores,
on_paths, and afters:

ripper = XmlRipper.new

ripper.initialize_from_file('fix_author.ripper')

ripper.run('fellowship.xml')

More realistically, you would probably want to pass in command-line arguments
so that you could pass in the name of the file containing your XML-manipulating
script first, followed by the XML file itself:

r = XmlRipper.new

r.initialize_from_file(ARGV[0])

r.run(ARGV[1])

Congratulations! You have just witnessed the birth of a new Ruby internal DSL:
Ripper. Based very firmly in Ruby and yet with a declarative, XML-processing feel all
its own, Ripper tries to get the best of both worlds. By building atop Ruby, you man-
aged to avoid all the work of creating a complicated parser for a brand new language.
Since Ripper sits atop Ruby, you don’t have to worry about implementing if state-
ments and comments and the thousand other things that a useful programming lan-
guage has. Ruby supplies them all for free:

Correct a common mistake

on_path('/document/author') do |author|

author.text = 'J.R.R. Tolkien' if author.text =~ /Tolken/

end

Stepping Over the DSL Line 343

From <www.wowebook.com>

ptg

Print out the whole document when done

after { |doc| puts doc }

Free is always a good price.

Pulling Out All the Stops
Be aware that Ruby internal DSLs are more a state of mind than a single technology.
By building a DSL, you’re going all out to make it easy for your user to do whatever
the DSL does. Any programming technique that makes the job easier, that makes the
code clearer, is fair game. Think about the possibilities of the metaprogramming tech-
niques of the last few chapters: You might, for example decide that it would be help-
ful if Ripper users could specify very simple XPaths as part of the method name, like
this:

on_document_author { |author| puts author.text }

Definitely a job for method_missing:

class XmlRipper

Rest of the class omitted...

def method_missing(name, *args, &block)

return super unless name.to_s =~ /on_.*/

parts = name.to_s.split("_")

parts.shift

xpath = parts.join('/')

on_path(xpath, &block)

end

end

The method_missing implementation here catches any method call that starts
with on_, turns the rest of the method name into a simple XPath like 'document/
author', and works from there. This is exactly the magic method technique that we
explored in Chapter 23.

344 Chapter 27. Invent Internal DSLs

From <www.wowebook.com>

ptg

In the Wild
Once you get the hang of the internal DSL techniques, the inner workings of a lot of
seemingly magic Ruby utilities becomes obvious. Take a typical RSpec file:

describe "Array#each" do

it "yields each element to the block" do

a = []

x = [1, 2, 3]

x.each { |item| a << item }.should equal(x)

a.should == [1, 2, 3]

end

Lots of stuff omitted

end

This is either a structured description of the behavior of arrays or it is a call to a
method named describe, a call that passes in a string and a block. Inside the block
there is a call to a method called it, a method that also takes a string and a block. It’s
all very pedestrian when you know what is going on.

Another superb example of a Ruby DSL is Rake. Here’s a simple Rakefile:

task :default => [:install_program , :install_data]

task :install_data => :installation_dir do

cp 'fonts.dat', 'installation'

end

task :install_program => [:installation_dir] do

cp 'document.rb', 'installation'

end

task :installation_dir do

mkdir_p 'installation'

end

In the Wild 345

From <www.wowebook.com>

ptg

Again, we either have four task definitions or four calls to the task method. One very
elegant thing about Rakefiles is the use of the hash literal syntax to specify depend-
ency relationships. This:

task :default => [:install_program , :install_data]

Is just a brilliant way of saying that the :default task depends on both the :install_
program and :install_data tasks.

As slick as RSpec and Rake are in all their “push Ruby to the limit” glory, many
real-world Ruby programs are satisfied with less-ambitious DSL-like APIs. We’ve
already looked at the ActiveRecord model API with its superclass-generated table
 relationships:

class Book < ActiveRecord::Base

has_many :authors

belongs_to :publisher

end

Even more basic, but no less effective are ActiveRecord migrations.

class AddBooks < ActiveRecord::Migration

def self.up

create_table :books do |t|

t.string :title

t.integer :publisher_id

end

end

def self.down

drop_table :books

end

end

It’s just a class that defines a couple of class methods, up and down, but it’s also a
description of how to build—and tear down—a database table.

346 Chapter 27. Invent Internal DSLs

From <www.wowebook.com>

ptg

Staying Out of Trouble
As useful and easy as internal DSLs can be, they do have their downsides. The first is
that internal DSLs tend to produce really bad error messages. Think about what
would happen if we made a mistake in a Ripper script, perhaps like this:

Error: Note the missing do on the first line...

on_path('/document/author') |author|

author.text = 'Tolkien'

end

after { |doc| puts doc }

Clearly, we forgot the do in the call to on_path. Unfortunately, as Ripper stands right
now, this is the less-than-illuminating error message that our little screwup will produce:

ripper.rb:6:in `instance_eval': (eval):5:

syntax error, unexpected keyword_end,

expecting $end (SyntaxError)

from ripper.rb:6:in `initialize_from_file'

from ripper_main.rb:4:in `<main>'

The problem is that we messed up the Ripper program, but the error messages are
coming back to us in Ruby terms. We can improve on this by using yet another bit of
instance_eval magic. The instance_eval method has an optional second parame-
ter, one that will tell instance_eval where the code it is evaluating came from. Pass
in the name of the Ripper file as this second parameter:

class XmlRipper

def initialize_from_file(path)

instance_eval(File.read(path), path)

end

Rest of the class omitted...

end

Staying Out of Trouble 347

From <www.wowebook.com>

ptg

And at least the error will point the user to the right file:

ripper.rb:6:in `instance_eval': broken.ripper:5:

syntax error, unexpected keyword_end,

expecting $end (SyntaxError)

from ripper.rb:6:in `initialize_from_file'

from ripper_main.rb:4:in `<main>'

You should also keep in mind that however helpful your DSL, you may still want
to use your classes as an ordinary API. This is fairly easy if you keep the language-
oriented bits of your DSL separate from the business end of the code, the part that
actually does things. This way you can use your code via the DSL, or you can use it
as part of an ordinary Ruby program.

Finally, it’s worth noting that the biggest danger with internal DSLs is not really
a computing problem but a psychological one. It goes by the name programmer over
enthusiasm. Creating an internal DSL can help you squeeze a lot of power and flexi-
bility out of very little code. The trick is to keep squarely focused on solving your real
problem and avoid getting carried away with building a really cool syntax. Could we,
for example, take the whole “XPath as Ruby code” idea to its logical conclusion?
Perhaps, instead of the simple method_missing based on_chapter_title thing that
we did in our last XmlRipper example, we could map the entire XPath syntax onto
some Ruby code. So instead of saying this:

on_path('/document/author') { |author| puts author.text }

We could say something like:

on_path /document/author { |author| puts author.text }

We might do this with a clever combination of operator overloading (think about
the possibilities of the division operator!) and method_missing. Could it be done? I
doubt it. Consider that while the XPaths that we used in this chapter are extremely
simple, you can say some XPath things guaranteed to make Ruby gag. Any attempt to
map document/*/title or @* into some DSL-like Ruby expression is destined to end
in tears.

The real question is whether this kind of thing is even worth trying. Whatever good-
ness you bestow on your users by eliminating the quotes around '/document/author'

348 Chapter 27. Invent Internal DSLs

From <www.wowebook.com>

ptg

is going to be more than canceled out by the Rabbinical complexity of the internal
DSL code you’ll need to write to make it all work. You can only push the Ruby parser
so far; if you need to go beyond that point, roll up your sleeves and start thinking
about writing your own parser.

Wrapping Up
Internal DSLs are one of the hallmarks of Ruby done right. You take advantage of the
flexibility of the language to create support for solving a whole class of problems. You
can package that support as either a friendly API or you can keep pushing it to the
point where it really is a new, specialized little language.

As useful as internal DSLs are, they are not the whole story. Sometimes you need
a DSL but you simply cannot fit the syntax of your DSL into the strictures of Ruby.
In those circumstances you will need to build an external DSL, which is where this
book goes next.

Wrapping Up 349

From <www.wowebook.com>

ptg

This page intentionally left blank

From <www.wowebook.com>

ptg

CHAPTER 28
Build External DSLs for
Flexible Syntax

My older brother turned out to be a pretty great guy. He works hard. He’s dedicated
to his family. If you have a problem, he’s willing to help. Since he did turn out so well,
I guess I can forgive him for being really, really popular in high school. Back then my
days seemed to be filled with a continuous stream of pretty girls asking me if I was
really Charlie Olsen’s brother.1 The thing is, even in my teens I was witty, I was intel-
ligent, and I had the mesmerizing Olsen blue eyes. There’s no doubt that my high
school career would have been a bigger social success if only I could have stepped out
of my brother’s shadow for five minutes.2

Given this, I can sympathize with every external DSL ever written in Ruby. Ruby
is a really great language for building external DSLs, those DSLs that (unlike the inter-
nal flavor) use their own parser instead of the Ruby parser. The trouble is that as use-
ful as Ruby-based external DSLs are, they are overshadowed by the really stellar things
that people have done with internal DSLs. To remedy this injustice, and because they
are a real part of the Ruby style of programming, this chapter is going to explore build-
ing Ruby-based external DSLs. We will start by looking at why you might go to all
the trouble of building a parser instead of just using the one that comes with Ruby.
We will then examine some of the Ruby tools that you can use to create an external

351

1. My standard answer: “No.” Long pause. “He’s my brother.”

2. I’m over it now. Really.

From <www.wowebook.com>

ptg

DSL. Finally, we will look at some of the external DSLs that exist in the Ruby world
and some of the dangers inherent in building an external DSL.

The Trouble with the Ripper
To see why you might build an external DSL instead of taking advantage of all of the
wonders of the internal variety, consider what might happen if our Ripper DSL from
the last chapter found its way to a wider audience. Perhaps from its modest start as a
handy little utility used only by you, Ripper has been picked up by your immediate
and very technical colleagues. Then it spread to the equally capable system adminis-
trators, and finally to some decidedly nontechnical support staff. This last group,
although they like the features of Ripper, do have some complaints. For starters, they
don’t understand why the Ripper syntax is so complex. Take this typical Ripper
 example:

on_path('/document/author') { |author| puts author.text }

What’s the deal, they want to know, with all the quotes and braces and vertical pipe
characters? Could you please, your less-technical users ask, make some minor modifi-
cations to Ripper so that they could say this instead:

print /document/author

In the same way they would like simpler delete and replace commands:

delete /document/published

replace /document/author Tolkien

As we saw at the end of the last chapter, the quick answer is that no, it is not pos-
sible. This:

replace /document/author Tolkien

Is just not a valid Ruby expression. Since the whole idea of internal DSLs is that the
DSL code is Ruby, you cannot build an internal DSL able to cope with this input.

352 Chapter 28. Build External DSLs for Flexible Syntax

From <www.wowebook.com>

ptg

Internal Is Not the Only DSL
While an internal DSL is out, an external DSL is entirely possible. Recall that an
external DSL is the more traditional language-building approach: You think up a syn-
tax and you build a parser for it, a parser that sucks in the domain-specific program
and does the right thing with it. Since you build the parser, you are not encumbered
by the rules of Ruby grammar. Despite all the hoopla around Ruby internal DSLs, the
fact is that Ruby, with its powerful strings and built-in regular expressions, is a pretty
good language for building the external flavor of DSLs too.

Let’s see if we can’t put together a parser for our new, simplified XML processing
language:

class EzRipper

def initialize(program_path)

@ripper = XmlRipper.new

parse_program(program_path)

end

def run(xml_file)

@ripper.run(xml_file)

end

def parse_program(program_path)

File.open(program_path) do |f|

until f.eof?

parse_statement(f.readline)

end

end

end

def parse_statement(statement)

tokens = statement.strip.split

return if tokens.empty?

case tokens.first

when 'print'

@ripper.on_path(tokens[1]) do |el|

puts el.text

end

Internal Is Not the Only DSL 353

From <www.wowebook.com>

ptg

when 'delete'

@ripper.on_path(tokens[1]) { |el| el.remove }

when 'replace'

@ripper.on_path(tokens[1]) { |el| el.text = tokens[2] }

when 'print_document'

@ripper.after do |doc|

puts doc

end

else

raise "Unknown keyword: #{tokens.first}"

end

end

end

This class will parse the simplified XML processing commands that our users are
requesting. For example, if we wanted to change the author’s name and delete the pub-
lication date from an XML file, we might create a file called edit.ezr containing:

delete /document/published

replace /document/author Tolkien

print_document

The last command, print_document, will tell EzRipper to output the modified
XML. To run our little program we simply feed it and the name of the XML file into
EzRipper:

EzRipper.new('edit.ezr').run('fellowship.xml')

The EzRipper class really just provides a fancy front end for the original
XmlRipper class. All of the real XML processing work is still done by XmlRipper. The
parser reads in a line at a time—we are assuming that each statement fits on a single
line—and breaks up the statement into space-separated tokens using the handy
String split method. To keep things simple, we also assume there are no embedded
spaces in the arguments in a statement.3 Once it has broken the line up into tokens,

354 Chapter 28. Build External DSLs for Flexible Syntax

3. Keep reading though, because we will fix the “no space” limitation in a bit.

From <www.wowebook.com>

ptg

the EzRipper parser looks at the first token, which should be something like replace
or delete, and works from there.

Compared with an internal DSL, you have a lot of fine control over the behavior
of an external DSL. Given, for example, that EzRipper is aimed at less-technical users,
we might want to provide more extensive error messages:

def parse_statement(statement)

tokens = statement.strip.split

return if tokens.empty?

case tokens.first

when 'print'

raise "Expected print <xpath>" unless tokens.size == 2

@ripper.on_path(tokens[1]) do |el|

puts el.text

end

when 'delete'

raise "Expected delete <xpath>" unless tokens.size == 2

@ripper.on_path(tokens[1]) { |el| el.remove }

when 'replace'

unless tokens.size == 3

raise "Expected replace <xpath> <value>"

end

@ripper.on_path(tokens[1]) {|el| el.text = tokens[2]}

when 'print_document'

raise "Expected print_document" unless tokens.size == 1

@ripper.after do |doc|

puts doc

end

else

raise "Unknown keyword: #{tokens.first}"

end

end

Internal Is Not the Only DSL 355

From <www.wowebook.com>

ptg

Within limits, it is also fairly easy to add new features to EzRipper. We might, for
example, add an uppercase command that converts the text of an element to all
uppercase:

when 'uppercase'

raise "Expected uppercase <xpath>" unless tokens.size == 2

@ripper.on_path(tokens[1]) { |el| el.text = el.text.upcase }

We might also add comments, delimited by #:4

def parse_statement(statement)

statement = statement.sub(/#.*/, '')

tokens = statement.strip.split

return if tokens.empty?

This last version of parse_statement deals with comments by stripping them out
with a carefully aimed gsub call.

Regular Expressions for Heavier Parsing
As I say, our current implementation of EzRipper does have one potentially serious
limitation: It can’t handle spaces in the command arguments. By ignoring the possibil-
ity of embedded white space, we were able to devise a little language that we can parse very
easily. But what if we really needed to deal with embedded spaces? We could change
the syntax so that all of the command arguments are surrounded by quotes, which
would allow for spaces while enabling us to keep the individual arguments straight:5

replace '/document/author' 'Russ Olsen'

356 Chapter 28. Build External DSLs for Flexible Syntax

4. In the interest of keeping the example simple, the comment addition ignores the very real possi-
bility that the statement itself might contain a # character.

5. And no, the addition of the quotes does not make this valid Ruby susceptible to an internal DSL
solution. Think about it. Since there is no comma between the two strings, Ruby would concate-
nate the two strings together, leaving us with the impossible job of trying to figure out where the
XPath ends and the argument begins.

From <www.wowebook.com>

ptg

There is just no way we’ll be able to use a simple call to split to break up the com-
mand. This situation calls for some regular expressions. Here’s a new parse_statement
method, one that uses regular expressions to cope with the more complex syntax:

def parse_statement(statement)

statement = statement.sub(/#.*/, '')

case statement.strip

when ''

Skip blank lines

when /print\s+'(.*?)'/

@ripper.on_path($1) do |el|

puts el.text

end

when /delete\s+'(.*?)'/

@ripper.on_path($1) { |el| el.remove }

when /replace\s+'(.*?)'\s+'(.*?)'$/

@ripper.on_path($1) { |el| el.text = $2 }

when /uppercase\s+'(.*?)'/

@ripper.on_path($1) { |el| el.text = el.text.upcase }

when /print_document/

@ripper.after do |doc|

puts doc

end

else

raise "Don't know what to do with: #{statement}"

end

end

The key to this code is the gaggle of somewhat intimidating-looking regular
expressions. Although they may look formidable, these regular expressions are really
not that complex. Take the one that deals with the replace statement:

/replace\s+'(.*?)'\s+'(.*?)'$/

Regular Expressions for Heavier Parsing 357

From <www.wowebook.com>

ptg

This expression starts with the obvious: A replace command needs to start with the
word replace. Next we have the real key to the regular expression, a couple of
instances of this:

\s+'(.*?)'

This bit of regular expression magic is designed to match one quoted argument,
something like '/document/chapter/title' or 'Russ Olsen'. Again, the way to
understand it is to disassemble it into its constituent parts. The expression starts with
\s+, which will match one or more characters of white space. Next we have a quote,
followed by anything at all [that’s the (.*?) part] followed by another quote. We use
*? instead of a plain * because we want to match the smallest bit of text surrounded
by quotes: The addition of the question mark prevents the expression for the first
argument from matching the initial quote all the way to the quote at the end of the
whole statement. By putting parentheses around the “anything” part of the regular
expressions, we get Ruby to capture exactly what the anythings are and store them in
the $1, $2, and $3 variables, where the rest of the code can get at them.

There is no doubt that the regular expression-based parser is more complicated
than our original “just pull things apart with split” approach. It’s the price you pay for
a more complex syntax.

Treetop for Really Big Jobs
Sometimes the price of regular expressions can get too high. The problem is that reg-
ular expressions don’t really scale that well. While they are great for medium-sized jobs
like our last version of the EzRipper syntax, it is easy to invent a grammar that will
induce regular expression madness in most coders. Think, for example, about the reg-
ular expressions that you would need to handle escaped quotes within the arguments.
Or multiline statements. Or variables. Or all of the above in various combinations. As
your external DSL gets more and more complex, at some point it’s going to over-
whelm your ability to write and, more importantly, read, the regular expressions
required to handle the grammar. If you do get to that stage, the thing to do is to turn
to a real parser-building tool.

358 Chapter 28. Build External DSLs for Flexible Syntax

From <www.wowebook.com>

ptg

One of the more interesting of these tools is Treetop.6 Treetop describes itself as
“a language for describing languages.”7 Another way to say this is: Treetop is a DSL
for building parsers.

To use Treetop you need to build a treetop file that describes your grammar.
Here’s the Treetop file for our improved EzRipper grammar:

grammar EzRipperStatement

rule statement

comment/delete_statement/replace_statement/print_statement

end

rule comment

"#" .*

end

rule delete_statement

"delete" sp quoted_argument sp

end

rule replace_statement

"replace" sp quoted_argument sp quoted_argument sp

end

rule print_statement

"filter" sp quoted_argument sp

end

rule quoted_argument

"'" argument "'"

end

Treetop for Really Big Jobs 359

6. Treetop is by no means the only Ruby-based tool for building sophisticated parsers. There is, for
example, RACC, which is the Ruby rendition of the venerable Unix program YACC. Like
Treetop, RACC reads in a file that describes the syntax of your language and produces Ruby code
that can parse the language.

7. You can learn all about Treetop at www.treetop.rubyforge.org.

From <www.wowebook.com>

www.treetop.rubyforge.org

ptg

rule argument

(!"'" .)*

end

rule sp

[\t\n]*

end

end

As you can see from this example, Treetop allows you to build a reasonably clear
description of your grammar, one that is not completely obscured by the nuts and
bolts of parsing. To use Treetop, you store your language description in a file with a
name like ez_ripper_statement.tt and then run it through the treetop compiler:

tt ez_ripper_statement.tt

When you run this command, Treetop will create a file called ez_ripper_
statement.rb and fill it with a class called EzRipperStatementParser, which, logi-
cally enough, will know how to parse our EzRipper statements. From there it’s all just
ordinary Ruby:

require 'treetop'

require 'ez_ripper_statement'

statement = "replace '/document/author' 'Russ Olsen'"

parser = EzRipperStatementParser.new

parse_tree = parser.parse(statement)

Run this code and you will end up with your statement parsed out into a tree struc-
ture that you can programmatically descend and interpret.

Staying Out of Trouble
To no one’s great surprise, the advantages and disadvantages of external DSLs are a
mirror image of those of internal DSLs. With an internal DSL, you get all of Ruby,
complete with comments, loops, if statements, and variables more or less for free.
With an external DSL, you need to work for—or at least parse—every feature. You

360 Chapter 28. Build External DSLs for Flexible Syntax

From <www.wowebook.com>

ptg

can see this in the implementation of HAML. HAML is a very terse language for
doing HTML templating. HAML lets you write this:

%html

%body

#main

Today is

= Time.new

And get this:

<html>

<body>

<div id='main'>

Today is

2010-09-19 15:10:01 -0400

</div>

</body>

</html>

All of this convenient terseness does come at a price. Like our intermediate
EzRipper example, HAML relies on a combination of regular expressions and some
clever hand-built code for parsing. Here is a bit of the HAML parse_line method,
which corresponds to the parse_statement method in EzRipper:

def process_line(text, index)

@index = index + 1

case text[0]

when DIV_CLASS; render_div(text)

when DIV_ID

return push_plain(text) if text[1] == ?{

render_div(text)

when ELEMENT; render_tag(text)

when COMMENT; render_comment(text[1..-1].strip)

when SANITIZE

return push_plain(text[3..-1].strip,

:escape_html => true) if text[1..2] == "=="

Staying Out of Trouble 361

From <www.wowebook.com>

ptg

return push_script(text[2..-1].strip,

:escape_html => true) if text[1] == SCRIPT

return push_flat_script(text[2..-1].strip,

:escape_html => true) if text[1] == FLAT_SCRIPT

return push_plain(text[1..-1].strip,

:escape_html => true) if text[1] == ?\s

push_plain text

and on and on and on...

end

end

Wow. Clearly, writing the HAML parser took some real effort, which seems worth it
when the result is HAML. The key question you need to ask before embarking on an
external DSL is: Will my language be worth it?

Another thing we can glean from HAML is that the line between internal and
external DSLs is not really all that sharp. Right in the middle of the HAML example
above, we specified some plain old Ruby code (in the form of a call to Time.new) for
HAML to execute. We can do the same kind of thing with EzRipper, perhaps adding
a new command that lets us execute arbitrary Ruby code for each path, something like
this:

execute '/document/author' 'puts "the author is #{el.text}"'

Implementing execute involves adding just a couple of lines to the EzRipper
parse_statement method. Here’s the regular expression version:

when /execute\s+'(.*?)'\s+'(.*?)'$/

@ripper.on_path($1) { |el| eval($2) }

The execute statement gives us a magic portal from our external DSL back into the
world of internal Ruby-based code.

In the Wild
For a language known for its internal DSLs, there are a surprising number of Ruby-
based external DSLs around. For example, before HAML came along, almost all Rails
applications used ERB for templating. With ERB, you write something like this:

362 Chapter 28. Build External DSLs for Flexible Syntax

From <www.wowebook.com>

ptg

Today is <%= Time.new %>

And end up with something like this:8

Today is 2009-10-18 00:25:35 -0400

Where the text inside the <%= %> brackets gets evaluated as Ruby code. ERB actually
uses a variant of the String split technique that we used in our first version of
EzRipper. ERB takes advantage of the fact that the split method itself can take a reg-
ular expression as an argument. If you do feed a regular expression into it, split will
treat the text that matches the regular expression as delimiters, the cleavage points on
which the text gets split. Thus, ERB defines this regular expression:

SplitRegexp = /(<%%)|(%%>)|(<%=)|(<%#)|(<%)|(%>)|(\n)/

Which it then uses to break up its input.
Even more interesting is the testing tool Cucumber. Cucumber presents us with

the fascinating spectacle of an external DSL used in combination with an internal
DSL. The idea behind Cucumber is that you build acceptance tests in a sort of struc-
tured natural language, like this:

Feature: Count words in a document

In order to be sure that documents hold on to their content

Start with an empty document and add some text to it

and check to see that the text is actually there

Scenario:

Given that we have a document with 1000 words

When I count the words

Then the count should be 1000

You can take this friendly feature description to a nontechnical customer and talk it
over: Is this what we really need to be testing? Is there anything missing? Obviously,
the feature description syntax is not Ruby; this is a very external DSL requiring a sep-
arate parser.9 Cucumber is particularly useful because you can turn the more or less

In the Wild 363

8. Like mileage, your time and date will vary.

9. A parser that just happens to be built with Treetop.

From <www.wowebook.com>

ptg

natural language description into real executable tests. To do this you create “step
descriptions,” expressed in an internal DSL:

Given /^that we have a document with (\d+) words$/ do |n|

@document = Document.new('russ', 'a test')

@document.content = 'crypozoology ' * n.to_i

end

When /^I count the words$/ do

@count = @document.word_count

end

Then /^the count should be (\d+)$/ do |n|

@count.should == n.to_i

end

Cucumber weaves the step descriptions into the feature using the regular expres-
sions you supply with the step descriptions. In the end you get a test that reads like a
natural language specification but that’s also executable.

Finally, a very handy example of an external DSL with a really sophisticated parser
is Treetop itself. Obviously, Treetop comes with a parser that understands the Treetop
grammar files. And what, you might ask, is the parser for that grammar file written
in? Why, Treetop itself, of course!10 Here is the Treetop rule for Treetop rules:

rule parsing_rule

'rule' space nonterminal space ('do' space)?

parsing_expression space 'end' <ParsingRule>

end

You have to love this kind of recursion.

Wrapping Up
In this chapter we explored some of the possibilities of Ruby-based external DSLs. We
have seen that an external DSL can be anything from a program that uses a few string

364 Chapter 28. Build External DSLs for Flexible Syntax

10. We can deduce that at sometime in the past there must have been a non-Treetop parser for
Treetop grammar files to kick things off.

From <www.wowebook.com>

ptg

methods to break up its input to code that uses regular expressions, all the way to
using a parser-generating tool like Treetop. Simple or complex, external DSLs free you
from the constraints of Ruby syntax. But external DSLs also relieve you of that free
Ruby parser. If you need to build a DSL, the choice is up to you: Do you take the ease
and relative low cost of an internal DSL or go for the higher cost—and freedom—of
an external DSL?

Wrapping Up 365

From <www.wowebook.com>

ptg

This page intentionally left blank

From <www.wowebook.com>

ptg

CHAPTER 29
Package Your Programs as
Gems

Once you get past the occasional pet project or the odd bit of experimental program-
ming, there are really only two kinds of software projects: those that ship and those
that no one cares about. Shipping software, whether to paying customers or to a grate-
ful open source community, is the ultimate goal of virtually every programmer.

In this chapter we will look at Ruby gems, the Ruby solution to packaging up
your masterpiece so that it not only goes out the door, but also arrives on your user’s
system with all the fragile bits intact. We’ll start with a brief look at how gems work
from the point of view of a user. From there we will dive right into the details of build-
ing your own gem. We will also look at some of the things you can do to ensure that
your gem actually does arrive intact. Finally, we’ll look at some recursively useful gems
whose purpose in life is to help you package up your own code as a gem.

Consuming Gems
If you’ve been programming in Ruby for any length of time then chances are that you
are already familiar with being a gem consumer. Not that there is much to it; I am, for
example, a very happy user of the ruby-mp3info gem, a wonderful chunk of code that
lets you read and write the informational tags hidden inside MP3 files:

367

From <www.wowebook.com>

ptg

require 'mp3info'

Mp3Info.open('money.mp3') do |info|

puts "title: #{info.tag.title}"

puts "artist: #{info.tag.artist}"

puts "album: #{info.tag.album}"

end

As a gem, ruby-mp3info is fairly typical. To use it, first you need to install it:

gem install ruby-mp3info

Depending on your operating system and exactly how your Ruby is installed, you
may need special permissions to do the install. On various Unix and Linux systems as
well as on OS X, you can do this by running gem with sudo:

$sudo gem install ruby-mp3info

Once you get the gem installed, you can use the code it supplies just like any other bit
of Ruby.1

Gem Versions
A really useful feature of the gem system is its complete versioning support. Every gem
is tagged with a version number and, since coders are forever fixing bugs and adding
features, most gems exist in multiple versions. You can see what versions are available
for any given gem with the gem list command, so that if you run:2

gem list -a --remote ruby-mp3info

368 Chapter 29. Package Your Programs as Gems

1. Note that using gems in pre-1.9 versions of Ruby was a bit more complicated. Before 1.9, the
Ruby Gems infrastructure was not completely integrated into Ruby. Because of this, you needed
to be sure that you ran require 'rubygems' somewhere in your program or added the equiva-
lent -rubygems argument to your Ruby command line.

2. The -a parameter asks the gem command to print out all of the versions of the gem, instead of
just the latest. The --remote parameter means that the command should list the gems stored in
the default remote repository, not just on your local machine.

From <www.wowebook.com>

ptg

You will discover that there have been lots of versions of the ruby-mp3info gem:

ruby-mp3info (0.6.13, 0.6.12, 0.6.11, 0.6.10, 0.6.9,

0.6.8, 0.6.7, 0.6.6, 0.6.5, 0.6.4, 0.6.3, 0.6.2, 0.6.1,

0.6, 0.5.1, 0.5, 0.4)

When you install a gem, you will get the latest version unless you ask for some-
thing earlier. Thus, if for some reason you needed the very first version of ruby-
mp3info, you can ask for it with the --version option:

gem install --version 0.4 ruby-mp3info

Keep in mind that RubyGems is perfectly happy having multiple versions of the
same gem installed on your system. There is, for example, no problem with pulling
down several more versions of ruby-mp3info:

gem install --version 0.5 ruby-mp3info

gem install --version 0.5.1 ruby-mp3info

gem install --version 0.6 ruby-mp3info

If you do have more than one version of a gem installed, the default when you ask
for the gem in your code is the latest version. Thus, since 0.6.13 is the latest version
of ruby-mp3info I have on my machine, this is the version I’ll get with a simple
require 'mp3info'. If your code depends on a specific gem version, you can ask for
it with the gem method:

gem 'ruby-mp3info', '=0.5'

require 'mp3info'

The version number argument on the gem method even supports more general
expressions like '>0.4' or '<=0.5' so that you don’t have to be quite so explicit with
your version numbers.

The Nuts and Bolts of Gems
The technology behind RubyGems is pretty simple: The gem developer (the folks behind
ruby-mp3info, for example) package up their work into a single file, a standardized

The Nuts and Bolts of Gems 369

From <www.wowebook.com>

ptg

archive containing not only the code but also lots of useful metadata, like the gem ver-
sion number and the other gems on which this gem depends. Once the code is packed
tidily into its gem file, the developer uploads it to a well-known repository, which is
where gem install will find it.

Considering the immense amount of good it does by making code widely avail-
able and preventing most cases of VCIS,3 the gem file is actually a simple and famil-
iar thing. Well, familiar if you happen to be a Unix user. It turns out that the gem file
is just a TAR file.4 Open a gem file with your favorite archive tool—virtually all of
them can handle TAR files—and you will discover that inside each gem is two more
TAR files!5 Presumably this Russian doll, TARs within a TAR, organization makes it
easier for the gem software to do its thing.

Inside the first inner TAR file is where you will finally find the real contents of
the gem, including the README file, all of the Ruby source files, as well as any exe-
cutables—the stuff that really makes the gem go. Inside the second inner TAR file is
the metadata—all of that version, authorship, and dependency information that
makes a gem more than just a pile of random software.

When you install a gem, Ruby will unpack it to a well-known directory, and from
then on Ruby will ensure that the directory containing the code for that gem is
searched when you do a require or a load. Although there are endless details (What
if I have more than one version of the gem? What if the gem has more than one direc-
tory full of code?), that is the simple story behind gems.

Building a Gem
For any Ruby developer worthy of the name, knowing how to use gems is only half of
the story. You also need to be able to create them. Happily, there are only two key
things you need to do to create a gem. The first is to organize your project directories
to match the standard gem layout. So, if you wanted to release the Document class as
a gem,6 you would need to create a directory structure like that shown in Figure 29-1.

370 Chapter 29. Package Your Programs as Gems

3. That’s Version Conflict Induced Insanity. VCIS is also known as DLL Hell or JAR file Hell,
depending on your programming background.

4. TAR files are the Unix answer to ZIP files, a simple archive file format that allows a single file to
hold a whole tree full of files and directories.

5. Actually, the two inner TAR files are themselves compressed—and thus have an additional .gz
suffix.

6. And why not? We’ve worked on it long enough!

From <www.wowebook.com>

ptg

As you can see from the figure, convention calls for a top-level directory whose
name matches the name of the gem, in this case document. Under that you have a
README file, a directory for unit tests, and, most important of all, the lib directory
that will hold the Ruby code.7 Since the document gem is very simple, there is only a
single Ruby file in the lib directory, document.rb. It’s no accident that the name of
the Ruby file matches the name of the gem—this is yet another convention, one that
allows users of your gem to easily deduce that if they want to get at the good stuff in
the document gem, they only need to code:

require 'document'

Naming your main Ruby file after gem is polite, but not absolutely required. The
ruby-mp3info gem, for example, more or less honors the convention by calling its
main Ruby file mp3info.rb.

Building a Gem 371

Figure 29-1 Simple Gem Directory structure

document/

Rakefile

README

document.rb

document.gemspec

lib/

spec/

document_spec.rb

7. By default, this is the directory that gets included in the Ruby load path when your gem is
installed.

From <www.wowebook.com>

ptg

If your gem is more complicated and carries around multiple source files, don’t
simply drop them in the lib directory. Instead, create a directory under the lib direc-
tory, whose name matches the name of the gem, and put your code there. For exam-
ple, the text gem, which we used a few chapters back, carries around a fair number of
files. As you can see in Figure 29-2, most of those Ruby files do indeed live one direc-
tory down from the lib directory.

Notice there is still a text.rb file in the lib directory. The convention is that this
top-level Ruby file requires the files buried a directory down. So, if we peek into
text.rb, we see:

372 Chapter 29. Package Your Programs as Gems

Figure 29-2 Text Gem Directory structure

text/

Rakefile

README.rdoc

text.rb

lib/

test/

text/

metaphone.rb

soundex.rb

...

test_metaphone.rb

test_soundex.rb

...

From <www.wowebook.com>

ptg

require 'text/util'

require 'text/double_metaphone'

require 'text/levenshtein'

require 'text/metaphone'

require 'text/porter_stemming'

require 'text/soundex'

require 'text/version'

The nice effect of doing things this way is that the gem user doesn’t have to care how
complicated your gem is. Whether your gem is simple or Byzantine, your user simply
says require 'text' and they get what they need.

The second thing we need for our document gem is the metadata. We need to tell
RubyGems the name of our gem, its version and the like. We do this by creating a
gemspec file. A gemspec file is nothing more than a file full of Ruby code that creates
an instance of the Gem::Specification class.8 Here’s the gemspec for the document
gem:

Gem::Specification.new do |s|

s.name = "document"

s.version = "1.0.1"

s.authors = ["Russ Olsen"]

s.date = %q{2010-01-01}

s.description = 'Document - Simple document class'

s.summary = s.description

s.email = 'russ@russolsen.com'

s.files = ['README', 'lib/document.rb','spec/document_spec.rb']

s.homepage = 'http://www.russolsen.com'

s.has_rdoc = true

s.rubyforge_project = 'simple_document'

end

If your gem depends on having other gems installed in order to work, you can say
that in the gemspec file too. Perhaps the document gem depends on the text gem. If
so, you would add:

s.add_dependency('text')

Building a Gem 373

8. If the gemspec file seems like a simple internal DSL, that’s because it is.

From <www.wowebook.com>

ptg

You can even depend on a specific version or range of versions:

s.add_dependency('text', '= 0.1.13')

If your gem includes executable scripts—snippets of Ruby code that users can run
from the command line, like the rake command from the Rake gem or spec from
RSpec—you can specify that too. Here’s how we might specify that our document
gem has a spell-checking command:

s.bindir = "bin" # Specify the directory

s.executables = ["spellcheck"] # Then the file in the dir

Once you have all of your Ruby files in place under lib, your README file written,
and your gemspec file built, creating the actual gem file is easy: Just run the gem build
command and call out the gemspec file:

gem build document.gem

This command will create a file called document-1.0.1.gem, a tidy little package
of document goodness. You can install your new gem on your system by simply spec-
ifying the gem file:

gem install document-1.0.1.gem

Uploading Your Gem to a Repository
If you are creating gems for your own—or perhaps your company’s—private con-
sumption, then you are done. Your newly minted gem file rolls up your code into an
easily transportable unit that you can install into any Ruby environment. If, however,
you are working on an open source project, something that will be available to the
general public, then there is one more step. You need to put your gem where other
people can get at it. In fact, you will probably want to put it in the place where the
gem command will look by default when someone uses the gem install command.

Under the covers, the gem command turns to http://gems.rubyforge.org
when it goes looking for gems to install. Behind this URL is the open source project,

374 Chapter 29. Package Your Programs as Gems

From <www.wowebook.com>

http://gems.rubyforge.org

ptg

Gemcutter,9 which is devoted to being the place to get gems. Getting your gem into
the Gemcutter repository could not be easier. You only need to go to http://
gemcutter.org and set up a free account. You will also need to install the gemcutter
gem:

gem install gemcutter

Now you are ready to push your gem up to the Gemcutter repository:

gem push document-1.0.0.gem

The push command will ask for your Gemcutter account information and then
upload your gem to the repository. It really is that simple. A few minutes after run-
ning the push command your gem will be available to anyone who wants to use it.

Automating Gem Creation
The trouble with building and uploading your gem by hand is that someone, proba-
bly you, needs to supply the hand. It’s much better to automate the whole process, and
the best way is to build a Rakefile that takes care of all the details:

require 'spec/rake/spectask'

require 'rake/gempackagetask'

task :default => [:spec, :gem]

Spec::Rake::SpecTask.new do |t|

t.spec_files = FileList['spec/**/*_spec.rb']

end

gem_spec = Gem::Specification.new do |s|

s.name = "document"

s.version = "1.0.1"

Automating Gem Creation 375

9. Historically, most gems where hosted by RubyForge, the Ruby community's one-stop super store
for all your open source Ruby project needs. RubyForge provides a source repository, a bug-track-
ing system and a host of other nifty features for the Ruby community. As of early 2010, the main
gem repository duties have been taken up by the Gemcutter folks.

From <www.wowebook.com>

http://gemcutter.org
http://gemcutter.org

ptg

s.authors = ["Russ Olsen"]

s.date = %q{2010-05-23}

s.description = 'Document - Simple document class'

s.summary = s.description

s.email = 'russ@russolsen.com'

s.files = ['README','lib/document.rb', 'spec/document_spec.rb']

s.homepage = 'http://www.russolsen.com'

s.has_rdoc = true

s.rubyforge_project = 'simple_document'

end

Rake::GemPackageTask.new(gem_spec) do |t|

t.need_zip = true

end

This Rakefile takes advantage of the built-in tasks that will build a gem for you. All
you need to do is specify the gemspec information in the Rakefile.

Rake doesn’t have a built-in task to push the final gem file up to Gemcutter,10 but
it’s easy enough to create one ourselves:

task :push => :gem do |t|

sh "gem push pkg/#{gem_spec.name}-#{gem_spec.version}.gem"

end

Add this task to the bottom of your Rakefile and you are ready to release your mas-
terpiece with a simple rake push.

In the Wild
In the real world we automate everything that can be automated, including things like
making directories and writing Rakefiles. Fortunately there are a number of gems
available whose purpose is to make it easy for you to build your gem.

Among the most popular is hoe.11 Hoe tries to automate everything that could
possibly be automated when building a gem. For example, if you are starting from

376 Chapter 29. Package Your Programs as Gems

10. Yet.

11. Hoe was developed by Ryan Davis; the web site can be found at http://seattlerb.rubyforge.org/hoe.

From <www.wowebook.com>

http://seattlerb.rubyforge.org/hoe

ptg

scratch with a new gem, you can have hoe generate the whole gem directory structure
for you.12 To do this you run the sow command, which comes with hoe:

sow document

The sow command will generate the gem directory structure, including the lib
and test directories, a skeletal README.txt file and a Rakefile. It will even tell you
what to do next:

$ sow Document

...

... done, now go fix all occurrences of 'FIX':

document/README.txt:3:* FIX (url)

document/README.txt:7:FIX (describe your package)

document/README.txt:11:* FIX (list of features or problems)

document/README.txt:15: FIX (code sample of usage)

document/README.txt:19:* FIX (list of requirements)

document/README.txt:23:* FIX (sudo gem install, anything else)

document/README.txt:29:Copyright (c) 2010 FIX

document/Rakefile:9: # p.developer('FIX', 'FIX@example.com')

The only thing left for you to do is to fill in the appropriate blanks in README.text
and the Rakefile and supply the actual code for your gem.

When you are done you can build your gem:

rake gem

Hoe also supports plug-ins that will help you upload your gem to Gemcutter.

Staying Out of Trouble
A key danger in using gems is the possibility of name collisions which, unfortunately,
come in two nasty flavors. The first is the classic “my class has the same name as your
class” problem: If your application already includes a class called Document, you are

Staying Out of Trouble 377

12. Of course, you will have to install hoe with the usual gem install hoe first.

From <www.wowebook.com>

ptg

going to have a problem trying to use the Document class from the document gem. To
lessen the chance of this sort of thing, the wise gem builder will reread Chapter 15 and
wrap his or her work in a module:

module WordProcessor

class Font

end

class Printer

end

class Document

...

end

end

Using modules reduces, but doesn’t completely eliminate, the chance of a name colli-
sion; after all, there is always the chance of running into two WordProcessor
 modules.13

The second collision risk is the possibility of filename collisions. What happens if
I’m using the document gem, with its document.rb file, and I also happen to have
another document.rb file somewhere in my application? The short answer is nothing
good. The longer answer is that whenever your program tries to load document.rb, it
will end up loading the gem version of the file.

Fortunately, all is not lost. You can usually work your way around a filename col-
lision by specifying the full path for the local file. If you happen to have a local file
called document.rb and also want to load a local file called document.rb, you can load
it with the full path:

dir = File.expand_path(File.dirname(__FILE__))

require File.join(dir, 'document')

Unsurprisingly, there are also some ways to screw up gem creation. Fortunately,
the vast majority of gem construction errors are of the easily avoided variety. For exam-
ple, make sure that you include all the other gems on which your gem depends in the

378 Chapter 29. Package Your Programs as Gems

13. Or a WordProcessor class and a WordProcessor module, which comes down to the same thing.

From <www.wowebook.com>

ptg

dependency list. Missing a dependency is easier than it seems. Remember, if you hap-
pen to have that required but unlisted gem installed on your system, then everything
will work fine for you. It will be a different story when your masterpiece arrives on
some computer that happens to be missing that critical gem. It’s always a good idea to
test your newly minted or modified gem by trying it out on a clean install of Ruby.

The flip side of this is that your gem should avoid claiming that it uses some gem
that it does not. This kind of thing usually happens when you stop using a gem but
forget to remove it from the list of dependencies. The best defense against this kind of
thing is to do two things: (1) stop, and (2) think. Pause every now and then to con-
sider whether you still really need that ActsAsSnafu gem.

Finally, you need to keep your gems location independent. One of the best things
about the gem system is that once a gem is installed, any application that wants to use
the gem doesn’t have to worry about where the gem lives—the gem system simply
handles that part. So, if you install the widget gem, your application can say require
'widget' without having to know where the widget.rb file is to be found. Your job,
as the author of a gem, is to avoid screwing up this location independence.

Unfortunately, it is fairly easy to build a very location-dependent gem. To see how
easy, imagine that your gem depends on some supporting, non-Ruby files. The docu-
ment package, for example, might need a font file. You might naively march ahead
and read in the font:

class Document

Most of the class omitted...

def read_default_font_file

File.read('times_roman_12.font')

end

end

Sadly, this is one of those situations where the simple thing does not actually
work, or at least does not work very often. The problem with this code is that it is
looking for the font file in the current directory. That font file might well be in your
current directory when you are developing the document gem, but the users of your
gem, working out of their own directories, are not going to be so lucky. Once you
know there is a problem, the solution is not hard to find. As we have seen, you can
always get the full path to your Ruby file with __FILE__:

Staying Out of Trouble 379

From <www.wowebook.com>

ptg

def read_default_font_file

File.read("#{File.dirname(__FILE__)}/times_roman_12.font")

end

The message here is that you should always test your gems in as realistic a setting as
possible. Fixing this kind of location independence problem is cheap; knowing that
you have the problem in the first place is priceless.

Wrapping Up
There is an almost infinite number of ways that software can go wrong. It can simply
be broken, or just buggy. It can be too slow. It can be completely incomprehensible to
the people it is supposed to help. Any of these things is enough to bring a tear to the
coder’s eye. There is, however, something especially heartbreaking about code that
might be great, might run like the wind, might speak to its users like poetry—but will
not install. In this chapter we looked at the Ruby gem system, software that will help
you avoid having your code come to a dismal “I just couldn’t install it” end. We’ve seen
that the gem system lets you package up your code into a bundle, along with its doc-
umentation and a list of other gems on which it depends. We’ve also seen how, by
uploading your gem to a public repository like GemCutter, you can make it widely
available. Finally, we’ve looked at hoe, a gem that eases some of the pain of building
your own gem.

Now that we have seen how to package up your code, in the next chapter we will
turn to getting to know the Ruby implementation that will run your code.

380 Chapter 29. Package Your Programs as Gems

From <www.wowebook.com>

ptg

CHAPTER 30
Know Your Ruby
Implementation

Back in the days when I programmed in C, every development team seemed to con-
tain one engineer who knew something about assembly language. Since I did little or
no coding in assembly language, this appeared to me to be a fairly useless skill—except
that those assembly language-enabled engineers always seemed to have a unique per-
spective on how everything worked. Eventually I figured out that these two things
were related: Having a basic understanding of the lower levels of your programming
language helps you be a better programmer, even if you never actually work in those
lower levels.

So, in this chapter we are going to look at the gears and pulleys of the major Ruby
implementations. As we go along we will see there is something in this chapter for
Rubyists who know something about C and for those who are bilingual in Java. Even
if you are one of those people who think the word Java actually translates to “Run away!
Run away!” or that the C programming language looks like a unfortunate editor incident,
keep reading. You will be surprised at the insight you’ll gain from even a naive inspec-
tion of a Ruby implementation. After all, there is no substitute for knowing your tool.

A Fistful of Rubies
Of course, to really know your tool you need to know which tool you are talking
about. As I write this the Ruby community is going through a version transition:
While much of our code still runs on Ruby 1.8, version 1.9 is out and stable, and there

381

From <www.wowebook.com>

ptg

is a general upgrade movement in progress. To make things even more interesting,
there are also three widely used implementations of Ruby, and not all of them support
all versions of the language:

• First, there is the original Ruby implementation written by Yukihiro Matsumoto,
the beloved father of Ruby and widely known as Matz. Rubyists call this found-
ing implementation Matz’s Ruby Interpreter, or MRI. MRI is written in C and
supports Ruby 1.8.7.

• Next we have an implementation known as Yet Another Ruby VM, or YARV,
which runs version 1.9.X of the language. YARV is slated to take over as the Ruby
implementation once the 1.8 to 1.9 transition is complete. Like MRI, YARV is
written in C.

• Finally, there is JRuby, an implementation of Ruby for the Java VM. JRuby sup-
ports version 1.8 and is rapidly closing in on complete support for Ruby 1.9.

Along with the “big three” implementations, there are a number of less well-
known or less complete Ruby implementations. These include:

• Rubinius, which aspires to be a self-hosting implementation of Ruby. In simple
English, the folks behind Rubinius hope to produce an implementation of Ruby
that is completely written in Ruby.

• IronRuby, an implementation of Ruby for the .Net platform. IronRuby is to
Microsoft’s CLR what JRuby is to the Java virtual machine.

• Cardinal, a Ruby implementation that runs on Parrot, a VM that aspires to host
a number of dynamic languages.

In this chapter I will focus primarily on the more popular Ruby implementations,
MRI, YARV, and JRuby, although we will take one quick detour into the land of
Rubinius.

MRI: An Enlightening Experience for the
C Programmer
It all started with a man, a dream, and lots of C code. The man was, of course, Matz.
The dream was of a simple, flexible, powerful programming language. The code was

382 Chapter 30. Know Your Ruby Implementation

From <www.wowebook.com>

ptg

MRI, the original Ruby implementation. You can get the MRI source code from
www.ruby-lang.org. Unpack the archive into some suitable directory and you can see
how it all began.

What you will see is a top-level directory containing about 55 C source files and
headers, along with a bunch of subdirectories. Remarkably, the subdirectories are just
the supporting code, things like the SSL library and the TK GUI interface. Those 55
top-level source files are the heart of the Matz Ruby interpreter.

If you can speak any C at all, looking through the Ruby 1.8 implementation can
be an enlightening experience. As language interpreters go, MRI has a kind of plain-
spoken eloquence. Obviously, the main job of any Ruby implementation is to turn
your code into a living, breathing program. The first step of that process is to take the
program text, break it up into the individual words and numbers and other assorted bits,
and then reassemble those bits into a tree structure, the abstract syntax tree, or AST.

For example, if you fed MRI this trivial bit of Ruby code:

if denominator != 0

quotient = numerator / denominator

end

You would end up with an AST that looks something like Figure 30-1.1 The task of
turning your Ruby code into the AST falls mainly on the code in lex.c and parse.y.2

Once MRI has the AST it executes it, and therefore your program, using the sim-
plest technique imaginable. Starting at the root of the abstract syntax tree, MRI works
its way down, recursively doing what the tree tells it to do. So in the previous exam-
ple, MRI would start at the top of the tree, see that it had an if statement, know that
it needed to evaluate the condition, realize that it needed to evaluate the variable
denominator—and the constant 0—and . . . well, you get the picture. You can find
the bulk of the code to do the evaluation in the aptly named eval.c file.

All of this basic parsing and executing code only occupies a handful of the core
MRI source files.3 Most of the rest of the 50 or so top-level files follow a very consistent

MRI: An Enlightening Experience for the C Programmer
383

1. To keep things simple, Figure 30-1 is very schematic. For various practical reasons, an actual MRI
AST tree is a bit more complex than I’m showing here—a bit, but not much.

2. The funny .y name comes from the fact that parse.y is actually the half-code/half-grammar
input to a parser-generating tool called YACC.

3. To be fair, each of those files is pretty lengthy and full of some fairly sophisticated C.

From <www.wowebook.com>

www.ruby-lang.org

ptg

pattern: Each implements one or a few closely related Ruby classes. At the bottom of
each file is an initialization function, with a name like Init_Array or Init_Object
that defines each Ruby class and associates the class with its methods. So, if you ever
wondered how the Object class gets defined, you can satisfy your curiosity by peek-
ing into object.c. Toward the bottom of the file you will find Init_Object, and in
there you will find the following three lines:

rb_cObject = boot_defclass("Object", 0);

rb_cModule = boot_defclass("Module", rb_cObject);

rb_cClass = boot_defclass("Class", rb_cModule);

This is the ruby interpreter creating the Object, Module, and Class classes. The
second parameter of boot_defclass method is the superclass of the new class; thus,
we can see that the superclass of Class is Module and the superclass of Module is
Object, and that Object doesn’t have a superclass—at least not in version 1.8. We
already knew this, but it’s good to see it in black and white.

The object.c file is just full of other fascinating stuff. Here, for example, is the
default implementation of the == method:

static VALUE

rb_obj_equal(obj1, obj2)

VALUE obj1, obj2;

384 Chapter 30. Know Your Ruby Implementation

Figure 30-1 AST for a simple Ruby if statement

denominator

if

set!=

0 quotient

numerator denominator

/

From <www.wowebook.com>

ptg

{

if (obj1 == obj2) return Qtrue;

return Qfalse;

}

Read the code carefully and you will discover a whole range of interesting tidbits about
MRI. Notice how the two parameters of rb_obj_equal are both declared in the C
code to be of type VALUE: Inside of MRI, when you have a reference to an object, you
have a VALUE. It’s also easy to deduce that Qtrue and Qfalse are the C versions of the
Ruby true and false objects.

Looking a little further, you can find the code behind the Array map! method
(also known as collect!), code that replaces the contents of an array with the values
returned from invoking a block on each original array element:

static VALUE

rb_ary_collect_bang(ary)

VALUE ary;

{

long i;

rb_ary_modify(ary);

for (i = 0; i < RARRAY(ary)->len; i++) {

rb_ary_store(ary, i, rb_yield(RARRAY(ary)->ptr[i]));

}

return ary;

}

Again, even without being a C hacker it is easy enough to follow the flow: Run
through the array with a for loop, calling the code block (with rb_yield) with the
value of each element and replacing each element (via rb_ary_store) with the result
of the code block as you go.

YARV: MRI with a Byte Code Turbocharger
If you pull down and unpack YARV,4 you will discover that YARV is the next gener-
ation of MRI. If you did take the time to look at MRI, you will also have no problem

YARV: MRI with a Byte Code Turbocharger 385

4. Also to be found at www.ruby-lang.org.

From <www.wowebook.com>

www.ruby-lang.org

ptg

finding your way around the YARV source code. For example, here is the YARV
implementation of the map!/collect! method:

static VALUE

rb_ary_collect_bang(VALUE ary)

{

long i;

RETURN_ENUMERATOR(ary, 0, 0);

rb_ary_modify(ary);

for (i = 0; i < RARRAY_LEN(ary); i++) {

rb_ary_store(ary, i, rb_yield(RARRAY_PTR(ary)[i]));

}

return ary;

}

The family relationship between this code and the MRI version we saw earlier is very
striking.

Still, YARV is a real advance over MRI. One big difference is that MRI supports
Ruby 1.8 while YARV has moved on to version 1.9. So if you look at the YARV code
that creates the Object class, you find that it now has a Ruby 1.9-style BasicObject
as a superclass:

rb_cBasicObject = boot_defclass("BasicObject", 0);

rb_cObject = boot_defclass("Object", rb_cBasicObject);

rb_cModule = boot_defclass("Module", rb_cObject);

rb_cClass = boot_defclass("Class", rb_cModule);

A more subtle difference between the two Ruby implementations is that when
running Ruby code, YARV adds an extra step between the parse tree and execution.
After parsing the Ruby source, YARV turns the resulting tree into a more or less flat
list of byte codes. It is these byte codes that YARV actually executes. Thus, in YARV,
our little Ruby fragment:

if denominator != 0

quotient = numerator / denominator

end

386 Chapter 30. Know Your Ruby Implementation

From <www.wowebook.com>

ptg

Turns into a list of byte codes that looks something like this:

0014 trace 1 (4)

0016 getdynamic denominator, 0

0019 putobject 0

0021 opt_neq <ic>, <ic>

0024 branchunless 41

0026 trace 1 (5)

0028 getdynamic numerator, 0

0031 getdynamic denominator, 0

0034 opt_div

0035 dup

0036 setdynamic quotient, 0

0039 leave (4)

0040 pop

0041 putnil (5)

Although the difference between executing byte codes and the original tree may seem
esoteric, the effect is there for all the world to see: YARV and its byte codes are dra-
matically faster than MRI.

JRuby: Bending the “J” in the JVM
Unlike YARV, which comes with its own homegrown virtual machine, the challenge
that faced the authors of JRuby was to adopt Ruby to the existing Java virtual
machine, the JVM. Their answer was a Ruby that is completely implemented in, and
integrated with, Java. Since running in the Java world presents different challenges
from building a C application, the JRuby source code is something of a departure
from MRI and YARV—a departure, but still recognizable.

For example, if you download the JRuby source archive5 and unpack it, you will
find what looks like a very conventional Java development project. Under the top-level
directory, there is an ant build.xml6 file and bin and lib and src directories. Go look-
ing for the JRuby equivalent of array.c and you will find it in the most obvious (at least
to a Java programmer) place: src/org/jruby/RubyArray.java. And in RubyArray.java

JRuby: Bending the “J” in the JVM 387

5. You can find it at http://jruby.org. The code here is from Jruby 1.4 RC1.

6. Ant is the traditional Java build tool, along the lines of rake.

From <www.wowebook.com>

http://jruby.org

ptg

you will find the JRuby implementation of the map!/collect! method, complete
with a helpful comment pointing us back to the original C function:

/** rb_ary_collect_bang

*

*/

public RubyArray collectBang(

ThreadContext context, Block block) {

if (!block.isGiven())

throw context.getRuntime().

newLocalJumpErrorNoBlock();

modify();

for (int i = 0, len = realLength; i < len; i++) {

store(i, block.yield(context, values[begin + i]));

}

return this;

}

In C or Java,7 collect! is pretty much the same: Run through the array, replacing val-
ues as you go.

Rubinius
If your head is swimming from all of this C and Java in a Ruby book but you are still
interested in Ruby implementations, let me invite you to have a look at Rubinius.
Rubinius (http://rubini.us) is a Ruby implementation whose ambition is to be self-
hosting: The goal of Rubinius is to implement Ruby in Ruby. Although Rubinius is
not really finished, it is a very informative source of Ruby implementation knowledge.
Here, for example, is the Rubinius version of our favorite array rewriting method, this
time called map!:

Replaces each element in self with the return value

of passing that element to the supplied block.

def map!

Ruby.check_frozen

388 Chapter 30. Know Your Ruby Implementation

7. I did edit the code a bit to make it fit on the page.

From <www.wowebook.com>

http://rubini.us

ptg

return to_enum(:map!) unless block_given?

i = -1

each { |x| self[i+=1] = yield(x) }

self

end

Life is a bit easier if you get to use Ruby as your implementation language.

In the Wild
One of the best ways to gain some insight into how your Ruby implementation works
is to look into how to extend it. Every Ruby implementation allows you to add fea-
tures to the native implementation. Since you need some understanding of the imple-
mentation in order to extend it, the “how to extend Ruby” documentation is a great
source of insight into how that Ruby works. Both the MRI and YARV source code
come with a README.EXT file8 that does a good job of explaining the basics.

The JRuby project has an entire section of its website devoted to explaining how
JRuby works. As I write this the URL for this documentation is www.kenai.com/pro-
jects/jruby/pages/Internals. It is well worth a look.

Staying Out of Trouble
There is really only one danger with knowing your language implementation, and it’s
a very easily avoidable risk. The problem arises when you think too hard about what’s
going on under the covers: “Gee, an awful lot of C . . . or Java . . . or whatever gets
fired for every Ruby class I write and every method I call. That has got to be slow.
Maybe I should start writing fewer classes or longer methods or. . . .”

Don’t go there. A half century of software engineering says that you should write
the code first and worry about making it faster only if it is too slow. Donald Knuth is
right: Premature optimization is the root of all evil. Don’t let a little bit of insight into
your Ruby implementation blind you to this fundamental truth. Your Ruby was fast
enough yesterday, before you started poking around in its innards. It is still fast
enough.

Staying Out of Trouble 389

8. Yes, that suffix is .EXT, as in “extension,” not .TXT.

From <www.wowebook.com>

www.kenai.com/projects/jruby/pages/Internals
www.kenai.com/projects/jruby/pages/Internals

ptg

Wrapping Up
In this chapter we took a very rapid “If it’s Tuesday this must be YARV”-style tour of
Ruby implementations. We saw how MRI was the original, C-based implementation,
now being eclipsed by YARV. We also saw that JRuby is bringing Ruby to the JVM.
We even visited briefly with Rubinius. Mostly, though, we spent our time trying to get
a feel for how these implementations actually work, how MRI and YARV turn C into
Ruby while JRuby performs the same miracle for Java.

The ironic thing about this chapter is that many, perhaps most, of us got into
Ruby so we would never have to write C or Java ever again. And yet here we are, back
again. Ironic or not, the simple fact is that the better you understand Ruby, the less it
seems like magic, and the better Ruby programmer you will be.

390 Chapter 30. Know Your Ruby Implementation

From <www.wowebook.com>

ptg

CHAPTER 31
Keep an Open Mind to Go
with Those Open Classes

Throughout the writing of this book I have been haunted by a feeling of irony. On
page after page I have been talking up the technical flexibility of Ruby. I’ve gone on
and on about how wonderful it is to program without the straitjacket of static typing,
about how being able to change your classes on the fly makes for the magic of meta -
programming, and about how the flexible syntax enables us to build really nice DSLs.

But on these same pages I have also been laying down the law: Indent your code
this way, be careful with method_missing, and avoid those class variables. Do what I
tell you to do or you will put an eye out.

Stand back a little and the irony goes away: Ruby is a very, very sharp program-
ming tool, and it pays to know what you are doing before you pick it up. If you are a
relative newcomer to the language you will do well to build on the work of those who
have come before you. So we have books like this one, full of rules and guidelines. But
the rules and guidelines are only a means to an end. Really mastering a tool is not sim-
ply about knowing the rules and always following them. Real mastery comes when
you know the rules and follow them—except in those rare moments when it’s time to
throw the rule book away.

In that spirit, I’d like to leave you with one last bit of advice. It’s from George
Orwell, who closed an essay on writing good English prose with this:

Break any of these rules sooner than say anything outright barbarous.1

391

1. Orwell, G. A Collection of Essays. San Diego, CA: Mariner Books, 1970.

From <www.wowebook.com>

ptg

If you ever find yourself in a situation that makes you want to throw this rule
book away, visit www.eloquentruby.com or write to me at russ@russolsen.com. I’d
love to hear about it.

392 Chapter 31. Keep an Open Mind to Go with Those Open Classes

From <www.wowebook.com>

www.eloquentruby.com

ptg

APPENDIX

Going Further

Life was a lot easier a few years ago when I was writing Design Patterns in Ruby. Back
then there were only a handful of Ruby books available, so making suggestions about
where to go next was not much of a problem. These days there are so many good
books about Ruby around that it’s hard to know where to start. Still, some classics
never go out of style. So if your command of Ruby is not what it should be, try:

Thomas, D., Fowler, C., and Hunt, A. Programming Ruby 1.9: The Pragmatic
Programmers’ Guide. Raleigh, NC: Pragmatic Bookshelf, 2008.

Programming Ruby is a very thorough but free-flowing exploration of the Ruby
programming language. If you like your information more systematic and less stream-
of-consciousness, you might want to go back to the source:

Flanagan, D. and Matsumoto, Y. The Ruby Programming Language. Cambridge,
MA: O’Reilly, 2008.

Two other excellent references are:

Cooper, P. Beginning Ruby: From Novice to Professional, Second Edition. New York,
NY: Apress, 2009.

And

Black, D. The Well-Grounded Rubyist. Greenwich, CT: Manning Publications,
2009.

393

From <www.wowebook.com>

ptg

If you are interested in the larger issues around building software with Ruby, you
might also want to have a look at my own:

Olsen, R. Design Patterns in Ruby. Boston, MA: Addison-Wesley, 2008.

There are also a number of other how-to style books. Here again, there is a classic:

Foulton, H. The Ruby Way, Second Edition: Solutions and Techniques in Ruby
Programming, Second Edition. Boston, MA: Addison-Wesley, 2006.

And a relative newcomer:

Carlson, L. and Richardson, L. Ruby Cookbook. Cambridge, MA: O’Reilly, 2006.

Another excellent choice, very much in the spirit of this book is:

Brown, G. Ruby Best Practices. Cambridge, MA: O’Reilly, 2009.

Regular expressions are a key part of any Rubyist’s toolkit. Two excellent refer-
ences are:

Friedl, J. E. F. Mastering Regular Expressions. Cambridge, MA: O’Reilly, 2006.

And

Goyvaerts, J. and Levithan, S. Regular Expressions Cookbook. Cambridge, MA:
O’Reilly, 2009.

There are two other sources of invaluable design knowledge out there. One is the
source code for the various Ruby projects. Find an open source project that interests
you and dig into the code. Or dig into your Ruby implementation. A good workman
knows his tools.

A good workman also learns from the past. All too often when a new technology
comes along—Ruby, for example—we tend to toss out the hard-won lessons of expe-
rience along with the old code. Take the time to learn from the smart people who
came before you.

You might start with Paul Graham’s 1993 book, On LISP. The entire text of this
book is available at www.paulgraham.com/onlisp.html. It is worth reading even if you
never type a single parenthesis of LISP.

In many ways this book, especially the chapter on object equality, was inspired by:

Bloch, J. Effective Java, Second Edition. Boston, MA: Addison-Wesley, 2008.

394 Appendix. Going Further

From <www.wowebook.com>

www.paulgraham.com/onlisp.html

ptg

Other books of this sort that are well worth a look are:

Beck, K. Smalltalk Best Practice Patterns. Upper Saddle River, NJ: Prentice Hall,
1996.

Kernighan, B. and Plauger, P. J. The Elements of Programming Style. New York,
NY: McGraw-Hill, 1974.

Brodie, L. Thinking Forth. Los Angeles, CA: Punchy Publishing, 2004.

Thinking Forth is available as a free download at http://thinking-forth.sourceforge.net.
The George Orwell quote mentioned in Chapter 31 comes from an essay called

Politics and the English Language, which is widely available on the Internet and is also
included in:

Orwell, G. A Collection of Essays. San Diego, CA: Mariner Books, 1970.

Finally, there is the granddaddy of them all. I’m convinced that if Strunk had been
a software engineer and White a coder, my personal AI assistant would be typing the
last lines of this book:

Strunk, W. and White, E. B. The Elements of Style, Fourth Edition. White Plains,
NY: Longman, 1999.

Going Further 395

From <www.wowebook.com>

http://thinking-forth.sourceforge.net

ptg

This page intentionally left blank

From <www.wowebook.com>

ptg

Symbols
" (double quotes), use with string literals,

44–45
' (single quotes), use with string literals, 44–45
- (subtraction) operator

as binary or unary operator, 132
overloading, 131

. (period)
for matching any single character, 54
in module syntax, 185
using asterisk (*) in conjunction with, 58

/ (division) operator, 131
/ (forward slashes), in regular expression syntax,

58–59
: (colon), in symbol syntax, 66–67
:: (double-colon), in module syntax, 185
; (semicolon), for separating statements in Ruby

code, 10–11
\ (backslash)

escaping special meanings of punctuation
characters in regular expressions, 54

escaping strings, 44–45
| (or) operator, 131
| (vertical bar), in syntax of alternatives in

regular expressions, 56–57
||= operator, in expression-based initialization,

26–27
+ (addition) operator

as binary or unary operator, 132
non-commutative nature of, 137

overloading, 131
when to use, 136–137

=~ operator, testing if regular expression matches
a string, 59–60

== (double-equals) operator
broadening the scope of, 145–146
numeric classes accepting Float as equals,

154–156
overview of, 143–144
RSpec and, 138
symmetry principal and, 146–147
transitive property of, 147–149

=== (triple equals) operator, for case statements,
23, 149–150

=> (hash rocket), 30
! method names ending with, 48
! unary operator, 131–132
#, in comment syntax, 6
$, as string delimiter, 45
% (formatting operator), strings, 137–138
% (modulo) operator, 131, 152
%q, for arbitrarily quoted strings, 45–46
& (and) operator, 131
() (parentheses)

readability and, 12
Ruby conventions for calling defining/

methods, 9–10
* (asterisk)

in method definition with extra arguments,
31–32

in regular expressions, 57–58

397

Index

From <www.wowebook.com>

ptg

* (multiplication) operator, 131
? (question mark), using with regular

expressions, 62–63
?: (ternary operator), in expression-based

decision making, 26
@@, in class variable syntax, 169
[] (square brackets)

adding to indexing-related class, 135
operator-like syntax and, 133
as string delimiter, 45
using with regular expressions, 55

[]=
adding to indexing-related class, 135
operator-like syntax and, 133

^ (exclusive or) operator, 131
{} (braces), in code block syntax, 11
<< (left shift operator), 131, 135
<=> operator
Float and Fixnum classes and, 154–156
sort method and, 214

A
accessor methods, using with class variables, 170
ActiveRecord

callbacks and, 177
composed method approach and, 127–128
as database interface library, 335
DataMapper compared with. see DataMapper
example of delegation, 282–283
example of execute around, 230
example of saved code blocks, 243
examples of internal DSLs, 346
find method, 66–67
magic methods, 291–292
silence method, 231

add_unique_word method, 120
addition (+) operator. see + (addition) operator
alias_method, for renaming methods, 297–299
alternatives, in regular expressions, 55–57
ancestors method, for viewing inheritance

ancestry, 199
and (&) operator, 131
APIs

avoiding trouble when using method_missing
for, 289–290

building form letters one word at a time,
286–288

building with method_missing, 292
examples of use of method_missing for,

290–292
review of applying method_missing to, 292
supported by strings, 47–49
transition from API to DSL, 341–344
user focus in creating easy-to-use APIs, 289
when to use instead of internal DSLs, 348

archives, gems and, 370
arguments

code blocks taking, 208
execute around methods taking, 226–227
methods taking fixed or variable numbers of,

30–31
naming conventions, 8
singleton methods accepting, 159

arrays
APIs for, 35
caution when iterating over, 40–41
each method, 34, 217
improper use of, 41
method-passing with, 30–32
monkey patching for adding methods to, 302
order of, 38
overview of, 29
public methods for array instances, 36
reverse method, 36–37
shortcuts for accessing, 30
sort method, 37

assert method, Test::Unit, 98
assert_equal method, Test::Unit, 98
assert_match method, Test::Unit, 101
assert_nil method, Test::Unit, 101
assert_not_equal method, Test::Unit, 101
assert_not_nil method, Test::Unit, 101
assertions, in Test::Unit, 101
asterisk (*)

in method definition with extra arguments,
31–32

in regular expressions, 57–58
asymmetrical equality relationships, 147
at_exit hook

informing when time is up, 255–256
in Test::Unit, 259–260

398 Index

From <www.wowebook.com>

ptg

attr_accessor

accessing class instance variables, 176
in default set of methods in Object class, 82
as subclass-changing method, 327–328

attr_reader, as subclass-changing method, 327
attr_writer, as subclass-changing method,

327–328
attributes, at class level, 176–177
automating

gem creation, 375–377
testing gems, 94

B
backslash (\)

escaping special meanings of punctuation
characters, 54

escaping strings, 44–45
BasicObject, use in delegation with

method_missing, 280–281
Bignum class, 154–156
binary operators

operating across classes, 134–135
overview of, 131–132

bitwise operators, 131
blank? method, adding to String class, 301
block_supplied? passing code blocks in

methods, 233
blocks. see code blocks
boolean logic

false and true values in Ruby, 23–25
mapping boolean operators to union and

intersection operations, 135
braces ({}), in code block syntax, 11
break, in code blocks, 216
bugs, 94. see also tests
bytes, strings as collections of, 49–50

C
C language, 382
C# language, 336
call backs

ActiveRecord objects and, 177
creating listeners for, 234–236
using explicit code blocks for, 236–237

call method
calling code blocks explicitly, 234
Proc.new and, 241

camel case, class naming conventions, 8
Capistrano, 243–244
Cardinal, 382
case sensitivity, working with strings, 47
case statements

example of use of, 21–23
triple equals operator (===) for, 149–150

characters
matching any one of a bunch of characters, 55
matching one character at a time, 54–55
strings as collections of, 49

chomp method, working with strings, 47
chop method, working with strings, 47
clarity

of code, 94
qualities of good code, 4

class definitions, executable. see classes, self
modifying

class instance variables
avoiding trouble when using, 179
examples of use of, 177–179
for holding onto classwide values, 174–175
review of, 179
singleton class used to add convenience to,

176–177
subclasses and, 175–176

class methods. see also singleton methods
adding convenience to class instance variables,

176–177
avoiding trouble when using, 165–166
for building instance methods, 321–323
defining, 163–164
extending modules and, 197–198
handling missing constants. see const_missing
included hook used with, 254–255
making structural changes to classes, 309–310
overview of, 162
uses of, 164–165

class variables
avoiding trouble when using, 179
example of use of, 170
problems associated with global nature of,

171–174

Index 399

From <www.wowebook.com>

ptg

class variables (continued)
review of, 179
storing class level data with, 169
tendency to wander from class to class, 171
URI class and, 177–178

class_eval, for creating methods, 322–323,
329

classes
accessing in modules, 182–183
adding iterator methods to, 210–211
avoiding name collisions, 377–378
benefits of dynamic typing, 85, 89
binary operators used across, 134–135
as both factory and container, 182
changing class definition, 305–308
class/instance approximation in defining

methods, 157
composed method for building, 122–123
as container for methods, 74
defining, 294
do anything to any class, anytime, 297–299
as factory for creating instances, 74–75
fixing broken, 295–296
flexibility resulting from decoupling, 90–91
holding onto classwide values, 174–175
hook for informing when a class gains a

subclass, 250–253, 257–259
hook for informing when a module gets

included in a class, 253–255
mixins for sharing code between unrelated

classes, 195–197
modifying, 295–297
modules for grouping related, 182
modules for organizing into hierarchies, 181
modules for swapping groups of related classes

at runtime, 186–187
naming conventions, 8
open nature in Ruby. see open classes
preference for bare collections over specialized

classes, 38–40
renaming methods using alias_method,

297–299
storing class level data, 169
superclasses, 75–76
when to use modules vs. naked classes, 189
writing methods for. see methods, writing

classes, self modifying
adding programming logic to classes, 308–309
avoiding trouble when using, 314–315
class methods that change class, 309–310
defining classes and, 305–308
examples of use of, 310–313
overview of, 305
review of, 315–316

classes, that modify subclasses
avoiding trouble when using, 330–332
class methods that build instance methods,

321–323
define_method for creating methods, 324
difficulty of subclassing and, 319–321
example of paragraph subclass of document

class, 317–319
examples of use of, 327–329
no limits on modifying subclasses from

superclass methods, 324–326
overview of, 317
review of, 332

closure (scope)
avoiding trouble when using, 241–242
code blocks drag scope along to wherever they

are applied, 225–227
code

clarity and conciseness of, 94
concise vs. cryptic, 94
dynamic typing increasing compactness of,

85–89
embedding in classes, 308
format of. see code format
less code, less likelihood of error, 84
qualities of good code, 4
readability of, 12–13
sharing between unrelated classes, 195

code blocks
at_exit hook, 255–256
multiline vs. single line, 12
Ruby conventions, 11

code blocks, as iterators
adding multiple iterators, 210–211
adding single iterator, 209–210
avoiding trouble when using, 215–216
creating by tacking on to the end of method

calls, 207–208

400 Index

From <www.wowebook.com>

ptg

Enumerable module and, 213–215
overview of, 207
returning values, 208–209
review of, 218
spectrum of iterator types, 217–218
taking arguments, 208
writing iterators for collections that do not yet

exist, 211–213
code blocks, saving for later use

applying to call backs, 234–237
applying to lazy initialization, 237–239
avoiding trouble when using, 240–242
examples of use of, 243–244
explicit vs. implicit approaches to passing

blocks, 233–234
overview of, 233
producing instant block objects, 239–240
review of, 244–245

code blocks, using execute around
applying to logging, 222–224
applying to object initialization, 225, 229–230
avoiding trouble when using, 228–229
delivering code where needed, 219
dragging scope along to wherever they are

applied, 225–227, 241–242
for functions that must happen before or after

operations, 224
returning something from, 227–228
silence method for turning logging off, 231

code format
breaking rules and, 14–15
code blocks, 11
indentation, 5–6
naming conventions, 8–9
"one statement per line" convention, 10–11
parentheses in calling/defining methods, 9–10
qualities of good code, 4
readability and, 12–13
review of conventions, 15

collections
adding left shift operator to collection class, 135
caution when iterating over, 40–41
collection-related methods in Enumerable

class, 213
improper use of arrays and hashes, 41–42
iterating through, 33–36

knowing which methods change and which
leave as is, 36–38

method calls for accessing, 30–33
order of hashes, 38
overview of, 29
preference for bare collections over specialized

classes, 38–40
review of, 42
shortcuts for accessing, 29–30

colon (:), in symbol syntax, 66–67
comments

dynamic typing and, 93
example in set.rb class, 13–14
when and how often to use, 6–8

comparison operator, 23
complexity, simplicity as solution to, 92
composed method
ActiveRecord::Base class example, 127–128
applying to TextCompressor class, 121
for building classes, 122–123
characteristics of, 121–122

compression algorithm, 117–118
conciseness, of code, 4, 94
conditions, syntax in control statements, 10
consistency, of Ruby object system, 76–77
const_missing

avoiding trouble when using, 270–271
examples of use of, 269–270
handling missing constants, 267–268
review of, 271

constants
accessing in modules, 183
handling missing. see const_missing
modules for organizing into hierarchies,

181–182
modules for swapping groups of related

constants at runtime, 186–187
naming conventions, 8–9
stashing in mixins, 204–205

containers
modules as, 181–182
treating modules as object rather than static

containers, 186
control structures

||= in expression-based initialization, 26–27
boolean logic and, 23–25

Index 401

From <www.wowebook.com>

ptg

control structures (continued)
case statement, 21–23
code capturing values of while or if

statements, 25
each method preferred over for loops, 20–21
if, unless, while, and until statements,

17–19
modifier forms, 19–20
overview of, 17
review of, 27
syntax for conditions in, 10
ternary operator (?:) in decision making, 26

Cucumber testing tool, 363–364

D
data

storing class level, 169, 174
using strings for processing, 66–67

data types
built-in, 58–60
disadvantages of adding type checking code, 91
dynamic. see dynamic typing
static. see static typing
type documentation, 92

DataMapper
example of use of modules in, 190–191
mixins used by, 202–203

debugging, logging for, 219
decomposing classes

into small methods, 123
troubles arising from, 126–127

decoupling, with dynamic typing, 89–92
def

class methods that build instance methods, 322
last def principle, 295

define_method, for creating methods, 324, 328
defined? boolean logic and, 24
delegate.rb file, 281–282
delegation

avoiding trouble when using, 279–281
example of use by ActiveRecord, 282–283
method_missing applied to, 277–278
overview of, 273
problems with traditional style of, 275
pros/cons of, 274–275

review of, 283
selective approach to, 278–279
SimpleDelegator class, 281–282

delete method, for arrays, 37
Dir class, 217
directories

generating directory structure of gems, 377
organizing for gems packaging, 370–372

division (/) operator, 131
DLL Hell, 370
do keyword, in code block syntax, 11
documentation

compensating for lost documentation due to
required type declarations, 92–93

Ruby implementations, 389
DocumentIdentifier class, 142
documents

compressing specification documents, 117–118
creating identifier, 142
handling document errors, 266–267
lazy documents, 86–89
paragraph subclass of document class, 317–319
Ruby coding conventions illustrated in

Document class, 5
Domain Specific Languages, external. see DSLs

(Domain Specific Languages), external
Domain Specific Languages, internal. see DSLs

(Domain Specific Languages), internal
double quotes ("), use with string literals, 44–45
double-colon (::), in module syntax, 185
double-equals (==) operator. see == (double-

equals) operator
downcase method, working with strings, 47
DSLs (Domain Specific Languages), external

avoiding trouble when using, 360–362
building parser for XML processing language,

353–356
examples of use of, 362–364
overview of, 336, 351–352
regular expressions for parsing, 356–358
review of, 364–365
Treetop parsing tool, 358–360
when to use as alternative to internal DSL, 352

DSLs (Domain Specific Languages), internal
avoiding trouble when using, 347–349
based on Ruby code, 352

402 Index

From <www.wowebook.com>

ptg

dealing with XML, 336–341
examples of use of, 345–346
method_missing used with, 344
narrow focus of, 336
overview of, 335
review of, 349
transition from API to DSL, 341–344
when to use as alternative to external DSL, 352

duck typing, 88–89
dynamic typing

compactness of code and, 85–89
comparing File and StringIO classes, 94–95
compensating for lost documentation due to

required type declarations, 92–93
extreme decoupling with, 89–92
overview of, 85
Set class and, 95–96
trade offs in use of, 93–94

E
each method

adding iterator methods to classes, 210–212
avoiding trouble when iterating arrays, 40
iteration with, 34
preferred over for loops, 20–21
types of iterators and, 217

each_address method, Resolv class, 217
each_cons method, Enumerable module and,

213–214
each_object method, ObjectSpace class,

217–218
each_splice method, Enumerable module

and, 214
eigenclasses. see singleton classes
encryption

managing with class methods, 309–310
managing with programming logic in classes,

308–309
end keyword, in code block syntax, 11
Enumerable module, 213–215
Enumerator class, 214
eql? method
Hash class using, 152–153
overview of, 150–152
restrictive view of equality in, 153

equal? method, for testing object identity, 143
equality

avoiding trouble when using, 153–154
broadening the scope of double-equals

operator, 145–146
double-equals (==) operator, 143–144
eql? method, 150–153
equal? method, 143
Float and Fixnum classes and <=> operator,

154–156
identifiers and, 142
methods for, 142–143
overview of, 141
review of, 154–156
symbols and, 67–68
symmetry principal and, 146–147
transitive property and, 147–149
triple equals operator (===), 149–150

ERB, 362–363
eval method, Object class, 78
exception handling. see also method_missing,

error handling with
with execute around, 228
handling document errors, 266–267
internal DSLs and, 347
logging and, 222, 224

exclusive or (^) operator, 131
executable class definitions. see classes, self

modifying
execute around

avoiding trouble when using, 228–229
for functions that must happen before or after

operations, 224
initializing objects with, 225, 229–230
passing arguments and, 226–227
returning something from code blocks,

227–228
external DSLs. see DSLs (Domain Specific

Languages), external

F
false

in boolean logic, 23–24
false as an object, 76

File class, comparing with StringIO class, 94–95

Index 403

From <www.wowebook.com>

ptg

filenames, avoiding name collisions, 378
find method, ActiveRecord, 66–67
find_index, map method compared with, 35
Fixnum class, 154–156
Float class, 154–156
floating point numbers, 296
for loops, 20–21
formatting operator (%), for strings, 137–138
forward slashes (/), in regular expression syntax,

58–59
forwardable.rb, 328–329
Fowler, Martin, 336

G
gem files, 370
gem install command, 374
gem list command, 368–369
Gemcutter, adding gems to Gemcutter

repository, 375–376
gems

automating creation of, 375–376
avoiding trouble when using, 377–380
building, 370–374
creating, 378–379
examples of use of, 376–377
installing and consuming, 367–368
nuts and bolts of, 369–370
packaging programs as, 367
review of, 380
shoulda gem, 108
uploading to repository, 374–375
versioning support, 368–369

gemspec file, 373–374
GEM::Specification instances, 229–230
gets method, Object class, 78
global variables, class variables compared

with, 174
gsub

inflection rules based on, 50–51
passing regular expressions into, 60

H
HAML, 361
hash rocket (=>), 30

hashes
APIs for, 35
caution when iterating over, 40–41
each method, 34, 217
Hash class, 69
hash tables and eql? method, 150–153
hash values, 152
improper use of, 41–42
method-passing with, 33
order of, 38
overview of, 29
public methods, 36
shortcut for accessing, 30
symbols as hash keys, 68–71

HashWithIndifferenceAccess class, 71
helper methods, Rails, 203–204
hoe, for automating creation of gems, 376–377
hooks

avoiding trouble when using, 257–259
examples of use of, 259–260
informing when a class gains a subclass,

250–253
informing when a module gets included in a

class, 253–255
informing when time is up, 255–256
method_missing. see method_missing
overview of, 249
review of, 261
set_trace_func, 256–257
value of, 332

HTML
HAML for HTML templating, 361
Rails helper methods for creating, 203–204

I
identifiers

creating document identifier, 142
testing object identity, 143

if statements
case statement compared with, 23
code capturing values of, 25
example of use of, 17–18
modifier forms of, 20

included method, informing when a module
gets included in a class, 253–255

404 Index

From <www.wowebook.com>

ptg

indentation, Ruby conventions, 5–6
indexing strings, 52
inflection rules, for strings, 50–51
inheritance
ancestors method, 199
class variables searching for associated classes,

171, 173
mixin modules and, 201–202
superclasses in inheritance tree, 193

inherited method
avoiding trouble when using, 257–259
hook for informing when a class gains a

subclass, 250–253
initialization

defining classes, 294
of objects using execute around, 225
saved code blocks used for lazy initialization,

237–239
of variables, 26

initialize method, for defining classes, 294
inject method, collection methods, 35–36
instance _of?, 145
instance methods

class methods that build, 321–323
instance_methods method, 307
instance.method_name, 74

instance variables
attaching to class objects, 174
instance_variables method, 79
naming conventions, 8

instances
classes as factory for creating, 74–75
class/instance approximation in defining

methods, 157
inheriting methods of Object class, 78
singleton methods defined for single object

instance, 158–159
integers, 154–156
interfaces, 285. see also APIs
internal DSLs. see DSLs (Domain Specific

Languages), internal
intersection operations, mapping boolean

operators to, 135
IronRuby implementation, 382
iteration

adding an iterator, 209–210

adding multiple iterators, 210–211
avoiding trouble when using, 215–216
caution when iterating over arrays and hashes,

40–41
code blocks used as iterators, 207
Enumerable module and, 213–215
spectrum of iterator types, 217–218
through collections, 33–36
writing iterators for collections that do not yet

exist, 211–213

J
JAR file Hell, 370
Java

examples of general purpose languages, 336
JRuby and, 387

Java Virtual Machine (JVM), 387
JRuby

overview of, 382, 387–388
support and documentation, 389

JVM (Java Virtual Machine), 387

K
kind_of? method

double-equals (==) operator and, 146
locating modules in classes with, 199

L
lambda method, creating default Proc object

using, 239–241
lazy initialization, 237–239
"leave it to the last minute" technique, 88
left shift operator (<<), 131, 135
lib directory

organizing for gems packaging, 372
sow command generating, 377

lines, strings as collections of, 50
listeners, for call backs, 234–236
literals, shortcuts for accessing collections, 29–30
load methods, managing logging with, 221–222
logging

adding to database interactions, 220
capturing return values, 228

Index 405

From <www.wowebook.com>

ptg

logging (continued)
for debugging, 219
load and save methods for managing, 221–222
passing arguments and, 227
silence method for turning off, 231
using code blocks for, 222–223
using explicit log messages, 220–221

long running tests, 110
lstrip method, for strings, 47

M
magic methods. see also method_missing,

building APIs with
example in ActiveRecord, 291–292
example in OpenStruct class, 290–291
overview of, 288

map method, for collections, 35
Matsumoto, Yukihiro, 382
Matz's Ruby Interpreter. see MRI (Matz's Ruby

Interpreter)
metaclasses. see singleton classes
metadata, gems and, 370, 373
metaprogramming

hooks. see hooks
monkey patching. see monkey patching
need for testing in, 315–316
overview of, 249
self modifying classes. see classes, self modifying
superclasses as basis for class modifying code.

see classes, that modify subclasses
when to use, 331–332

method_added, 256
method_missing

types of hooks, 256
used in conjunction with internal DSL, 344
value of, 332

method_missing, building APIs with
avoiding trouble when using, 289–290
building form letters one word at a time,

286–288
examples of use of, 290–292
overview of, 285
review of, 292
user focus in creating easy-to-use APIs, 289

method_missing, delegation with
avoiding trouble when using, 279–281
example of use by ActiveRecord, 282–283
overview of, 273
problems with traditional style of delegation,

275
process of applying delegation, 277–278
pros/cons of delegation, 274–275
review of, 283
selective approach to delegation, 278–279
SimpleDelegator class, 281–282

method_missing, error handling with, 263–264
avoiding trouble when using, 270–271
handling document errors, 266–267
overriding, 265
review of, 271
what occurs when Ruby fails to find a method,

264–265
whiny nil facility in Rails as example of use of,

268–269
methods

array method-passing feature, 30–32
calling on object instances, 74–75
class methods that build instance methods,

321–323
classes as container for, 74
class/instance approximation in defining, 157
creating code blocks by tacking on to end of

method calls, 207–208
define_method for creating, 324
defining module-level, 189
defining operators vs. using methods, 135
determining when methods are defined, 307
dynamic typing and, 85
for equality, 142–143
fundamental nature of method calls in Ruby,

81–82
handling missing. see method_missing
hash method-passing feature, 33
“if the method is there, it is the right object,” 94
inheriting default set from Object class,

77–78
looking for in superclasses, 75–76
mixing instance methods with class methods,

254–255

406 Index

From <www.wowebook.com>

ptg

modifying classes and, 295
modifying subclasses from superclass methods,

324–326
modules as container for, 182, 184–185
naming conventions, 8
operator-to-method translation, 130
parentheses in calling/defining, 9–10
public, private, and protected, 79–81
public methods for arrays and hashes, 36
redefining on broken classes, 295–296
reflection-oriented, 79
renaming using alias_method, 297–299
singleton methods overriding class-defined

methods, 159–160
that take code blocks, 223–224

methods, writing
ActiveRecord::Base class example,

127–128
composed method way of building classes,

122–123
compressing specifications, 117–121
overview of, 117
qualities of good methods, 121–122
review of, 128
single-exit approach, 123–126
troubles arising from decomposing methods,

126–127
MiniSpec, 110
MiniTest, 110
mixin modules

as alternative to superclasses, 193–195
avoiding trouble when using, 198–202
constants stored in, 204–205
DataMapper example of use of, 202–203
for extending modules, 197–198
inheritance relationships and, 201–202
overview of, 193
Rails helper methods using, 203–204
review of, 205
as solution for sharing code between unrelated

classes, 195–197
mocha

singleton methods and, 165
utilities for Test::Unit, 109

mocks
RSpec, 107–108
singleton methods and, 165

models, object oriented programming as support
system for, 157

modifier forms, of control structures, 19–20
modifiers, strings, 48
module variables, 178–179
module_eval, for creating methods, 329
modules

accessing classes in, 182–183
accessing constants in, 183
adding module variables to, 178–179
avoiding name collisions, 377–378
avoiding trouble when using, 189–190
benefits of dynamic typing, 85
building incrementally, 185
class hierarchy and, 201
as containers, 181–182
economical use of, 190–191
extending, 197–198
grouping related classes in, 182
grouping utility methods in, 184–185
hook for informing when a module gets

included in a class, 253–255
including in classes, 195–196
mixing into class. see mixin modules
nesting, 183–184
review of, 191
treating as objects, 186–189

modulo (%) operator, 131, 152
monkey patching. see also open classes

do anything to any class, anytime, 297–299
examples of use of, 299–302
how it works, 307–308
modifying existing classes, 296–297
renaming methods using alias_method,

297–299
MRI (Matz's Ruby Interpreter)

overview of, 382–385
support and documentation, 389
YARV as next generation implementation of,

385
multiline strings, 46, 61–62

Index 407

From <www.wowebook.com>

ptg

multiplication (*) operator, 131
mutability, of strings, 51–52

N
names

accessing classes in modules by, 182–183
alias_method for renaming methods,

297–299
avoiding collisions, 377–378
example in set.rb class, 14
execute around and, 228–229
gems and, 371
method, 122
objects and name collisions, 82–83
Ruby conventions, 8–9
variable, 8

namespaces, creating name-space modules, 189
NaN (Not a Number), 296
nesting modules, 183–184
nil

boolean logic and, 23–25
initializing variables and, 26
as an object, 77, 84
whiny nil facility in Rails, 268–269

Not a Number (NaN), 296
not operator, 132
numeric classes

accepting Float as equals, 154–156
not supporting singleton methods, 159

O
object oriented programming

Ruby as OO programming language, 73
as support system, for models, 157

object relational mappers
ActiveRecord. see ActiveRecord
DataMapper. see DataMapper

objects
avoiding trouble when using, 82–84
BasicObject, 280–281
classes, instances, and methods, 74–76
consistency of Ruby object system, 76–77
dynamic typing. see dynamic typing
equality. see equality

fundamental nature of method calls in Ruby,
81–82

“if the method is there, it is the right object,” 94
initializing using execute around, 225,

229–230
methods, 77–79
modules as, 186–189
name collisions and, 82–83
Object class, 77
overview of, 73–74
public, private, and protected methods, 79–81
referencing with variables, 77
review of, 84
singleton methods, 158–159

ObjectSpace class, 217–218
open classes. see also monkey patching

avoiding trouble when using, 303
creating self-modifying classes, 305
defining classes, 294
examples of use of, 299–302
fixing broken classes, 295–296
improving existing classes, 296–297
modifying classes, 295
overview of, 293–294
renaming methods using alias_method,

297–299
review of, 303–304
value of, 332

OpenStruct class, 290–291
operators

cases/situations calling for, 135–137
commutative, 137
defining, 129–131
overview of, 129
review of, 139
string formatting, 137–138
types in Ruby, 131–133
using across classes, 134–135

or (|) operator, 131
order, of arrays and hashes, 38
overloading operators, 129
overriding methods

errors and, 83
method_missing, 265
methods in superclass unable to override

methods in subclasses, 200

408 Index

From <www.wowebook.com>

ptg

P
packaging programs, as gems. see gems
parentheses (())

readability and, 12
Ruby conventions for calling

defining/methods, 9–10
parse_statement method, 357
parsers

based on regular expressions, 356–358
building for XML processing language,

353–356
examples of external DSLs, 364
HAML and, 361–362
Treetop for building, 358–360

Pathname class, 299–300
pattern matching, 150
period (.)

for matching any single character, 54
in module syntax, 185
using asterisk (*) in conjunction with, 58

polymorphism, 88
pop method, for arrays, 37
print method, Object class, 78
private methods, 79–81
Proc class, 239–241
Proc.new, 240–241
programming

metaprogramming. see metaprogramming
object oriented, 73, 157
trade offs in programming languages, 336

programming logic, adding to classes, 308–309,
314

programs, packaging as gems, 367
protected methods, 81
public methods

overview of, 79
returning all public methods of an object, 69

public_methods, Object class, 79
push method, for arrays, 37
puts method, Object class, 78

Q
question mark (?), using with regular

expressions, 62–63

R
RACC, for building parsers, 359
Rails

example of const_missing hook, 270
example of on-the-fly class modification,

312–313
example of saved code blocks, 243
helper methods using mixins, 203–204
whiny nil facility, 268–269

Rake
as build tool, 335
example of const_missing hook,

269–270
example of saved code blocks, 243–244
examples of internal DSLs, 345–346
specifying executable scripts in gems, 374

rake command, 374
rake push command, 376
Rakefiles

automating creation of gems, 375–376
sow command generating, 377

ranges
of characters in regular expressions, 56
indexing strings and, 52

readability, of code, 12–13
reflection-oriented methods, 79
Regexp data type, 58
regular expressions

asterisk (*) symbol in, 57–58
case statement detecting match, 23
HAML and, 361
matching beginnings and endings of strings,

60–62
matching one character at a time, 54–55
mistakes to avoid, 63
as objects, 76
overview of, 53
parser based on, 356–358
pattern matching against strings, 150
resources for use of, 394
review of, 64
sets, ranges, and alternatives, 55–57
time.rb example, 62–63

repository, uploading gems to, 374–375
require method, Object class, 82

Index 409

From <www.wowebook.com>

ptg

required type declarations, compensating for lost
documentation due to, 92–93

Resolv class, 217
resources, for Ruby, 393–395
respond_to method, 146–147
return, in code blocks, 216
reverse method, for arrays, 36–37
REXML XML parsing library, 338–339
Ripper DSL, 352–353
RSpec

double-equals (==) operator, 138
examples, 104
independence of test, 111
internal DSLs and, 345–346
MiniSpec, 110
mocks, 107–109
overview of, 102–104
parameters, 105
saved code blocks and, 243
shoulda gem providing RSpec-like example, 108
singleton methods and, 165
specifying executable scripts in gems, 374
stubs, 106–107
as testing utility, 335
tidy and readable specs, 104–105

rstrip method, for strings, 47
Rubinius, 382, 388–389
Ruby implementations

avoiding trouble when using, 389
extending, 389
JRuby, 387–388
MRI, 382–385
overview of, 381
review of, 390
Rubinius, 388–389
versions and, 381–382
YARV, 385–387

Ruby versions
comparing Ruby versions, 381–382
managing transition between, 311–312
MRI supporting Ruby 1.8, 383
YARV supporting Ruby 1.9, 381–382

RubyForge, 375
RubyGems. see gems
ruby-mp3info, 368
RubySpec project, 109–110

run-time decisions, putting programming logic
in classes and, 308

S
save methods, 221–222
scope (closure)

avoiding trouble when using, 241–242
code blocks drag scope along to wherever they

are applied, 225–227
scope, of class methods, 165–166
scripts, specifying executable scripts in gems, 374
self

class methods and, 309
as default object in method calls, 75
knowing value of during class definition,

330–331
semicolon (;), for separating statements in Ruby

code, 10–11
set

regular expression for matching any one of a
bunch of characters, 55–56

using asterisk (*) in conjunction with, 58
Set class

dynamic typing and, 95–96
mapping boolean operators to union and

intersection operations, 135
set_trace_func hook, 256–257
setup method, Test::Unit, 100
shift method, for arrays, 37
shoulda gem, utilities for Test::Unit, 108
silence method, for turning logging off, 231
SimpleDelegator class, 281–282
simplicity, as solution to code complexity, 92
single quotes ('), use with string literals, 44–45
single-exit approach, to writing methods,

123–126
singleton classes

adding convenience to class instance variables,
176–177

class methods, 162–165
visibility of, 160–161

singleton methods
alternative syntax for, 160
avoiding trouble when using, 165–167
class methods, 162–165

410 Index

From <www.wowebook.com>

ptg

defining, 158, 163–164
extending modules and, 198
invisibility of singleton class, 160–161
overriding class-defined methods, 159–160
overview of, 157–158
review of, 167

software
resources for building software with Ruby, 394
trade offs in software engineering, 335

sort method
<=> operator and, 214
for arrays, 37

source code, for Ruby projects, 394
sow command, generating directory structure of

gems, 377
spec command

running specifications with, 103–104
specifying executable scripts in gems, 374

specs. see also tests
MiniSpec, 110
mocks and, 107–108
overview of, 103
RubySpec project, 109–110
running with spec command, 103–104
stubs and, 105–107
tidy and readable, 104–105
when to write, 113

splat, for star jargon, 32
split method, working with strings, 48
square brackets. see [] (square brackets)
squish! method, adding to String class, 301–302
static typing

adding type-checking code to methods and, 91
bulkier code with, 89
dangers of dynamic typing and, 93
overview of, 85

StringIO class, comparing with File class,
94–95

strings. see also regular expressions
adding methods to String class, 300–302
APIs supported, 47–49
converting symbols to/from, 69
formatting operator (%) for, 137–138
indexing, 52
inflection rules based on gsub, 50–51
mutability of, 51–52

as objects, 76
optimizing String class for data processing, 67
options for writing, 44–46
overview of, 43
pattern matching regular expressions against

strings, 150
review of, 52
String class, 43
symbols as, 65–66
types of thing collected in, 49–50
uses of, 66–67
when to use symbols vs. when to use strings,

70–71
strip method, 47
stubs

RSpec, 105–107
singleton methods and, 165

sub method, working with strings, 47–48
subclasses

calling private methods from, 80
class instance variables and, 175–176
difficulty of subclassing, 319–321
example of paragraph subclass, 317–319
examples of subclass-changing methods, 327
hook for informing when a class gains a

subclass, 250–253, 257–259
methods in superclass unable to override

methods in subclasses, 200
no limit to modifying from superclass method,

324–326
practical basis of, 95

subtraction (-) operator
as binary or unary operator, 132
overloading, 131

sudo, for running gems, 368
superclasses

in inheritance tree, 193
methods in superclass that can add methods to

subclasses, 324
methods in superclass unable to override

methods in subclasses, 200
mixins as alternative to, 193–195
modules and, 198
no limit to modifying subclasses from

superclass method, 324–326
overview of, 75–76

Index 411

From <www.wowebook.com>

ptg

swapcase method, working with strings, 47
switch statement, case statement compared

with, 21
symbols

compared with strings, 65–66
confusing nature of, 69–70
converting strings to/from, 69
as hash keys, 68–69
immutability of, 68
not supporting singleton methods, 159
as objects, 76
overview of, 65
review of, 71
single instance of, 67–68
using strings as symbolic markers, 66–67
when to use symbols vs. when to use strings,

70–71
symmetry principal, double-equals (==) operator

and, 146–147

T
tabs, Ruby indentation conventions and, 5–6
TAR files, 370
teardown method, Test::Unit, 100
ternary operator (?:), in expression-based

decision making, 26
test directory, sow command generating, 377
test-first development, 113
tests

applying to gems, 380
assertions in Test::Unit, 101
automated testing for resolving bugs, 94
limitations of Test::Unit, 101–102
MiniTest, 110
mocha utilities for Test::Unit, 109
mocks and, 107–108
overview of, 97
qualities of good tests, 110–113
review of, 113
RSpec testing framework, 102–104
RubySpec project, 109–110
shoulda gem utilities for Test::Unit, 108
stubs and, 105–107

tidy and readable specs, 104–105
when to write, 113

Test::Unit
at_exit hook used in, 259–260
assertions in, 101
limitations of, 101–102
mocha utilities for, 109
overview of, 98–100
shoulda gem utilities for, 108

text processing, strings and, 43
TextCompressor class, 119
time zones, regular expression for offsetting,

62–63
time.rb, regular expressions and, 62–63
times method, iterators, 211–212
to_s method

of Object class, 77–78
turning symbols into strings, 69

to_sym method, turning strings into symbols, 69
transitive property, of double-equals (==)

operator, 147–149
Treetop

for building parsers, 358–360
examples of external DSLs, 364

triple equals operator (===), for case
statements, 23, 149–150

true, as an object, 76
two space rule, Ruby indentation convention,

5–6
type declaration

documentation and, 92
dynamic typing. see dynamic typing
static typing. see static typing

type-checking code, disadvantages of adding, 91

U
unary operators, 131–132, 134
union operations, mapping boolean operators

to, 135
unique_index_of method, 120
unit tests. see also Test::Unit

minimum tests, 112–113
speed as factor in, 110

412 Index

From <www.wowebook.com>

ptg

Unix, 370
unless statements

example of use of, 18–19
modifier forms of, 20

until statements
comments, 6
example of use of, 19
modifier forms of, 20

upcase method, working with strings, 47
URIs

using class variables with, 177–178
using modules with, 191

user interfaces, 285. see also APIs

V
values
case statement returning, 22
code blocks returning, 208–209

variables
adding module variables to modules,

178–179
attaching instance variable to class objects

(class instance variables), 174–175
class variables. see class variables
documenting declaration of, 92
initializing, 26
modules and, 186
naming, 8
open classes and, 294
referencing objects with, 77

VCIS (Version Conflict Induced Insanity),
370

versions
Ruby implementations and, 381–382
versioning support in gems, 368–369

vertical bar (|), in syntax of alternatives in
regular expressions, 56–57

visibility, of methods, 79–81

W
while statements

code capturing values of, 25
example of use of, 19
modifier forms of, 20

whiny nil facility, Rails, 268–269
white space, managing in strings, 47
with_logging methods

capturing return values, 228
managing logging with, 222
passing arguments and, 227

X
XML

accessing/manipulating data in, 336–337
building parser for, 353–356
creating reader for, 251–252
processing in Ruby with REXML, 337–339
XmlRipper class for writing XML processing

scripts, 340–341
XmlRipper class

building parser for XML processing language,
354

transition from API to DSL and, 341–344
for writing XML processing scripts, 340

XPath, 338–339, 344
XSLT, 337
XUnit testing frameworks, 98

Y
YAML

compared with XML, 250
example of use of modules in, 191

YARV
overview of, 385–387
support and documentation, 389

yield, firing code blocks, 233

Index 413

From <www.wowebook.com>

ptg

This page intentionally left blank

From <www.wowebook.com>

	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	PART I: The Basics
	Chapter 1: Write Code That Looks Like Ruby
	The Very Basic Basics
	Go Easy on the Comments
	Camels for Classes, Snakes Everywhere Else
	Parentheses Are Optional but Are Occasionally Forbidden
	Folding Up Those Lines
	Folding Up Those Code Blocks
	Staying Out of Trouble
	In the Wild
	Wrapping Up

	Chapter 2: Choose the Right Control Structure
	If, Unless, While, and Until
	Use the Modifier Forms Where Appropriate
	Use each, Not for
	A Case of Programming Logic
	Staying Out of Trouble
	In the Wild
	Wrapping Up

	Chapter 3: Take Advantage of Ruby’s Smart Collections
	Literal Shortcuts
	Instant Arrays and Hashes from Method Calls
	Running Through Your Collection
	Beware the Bang!
	Rely on the Order of Your Hashes
	In the Wild
	Staying Out of Trouble
	Wrapping Up

	Chapter 4: Take Advantage of Ruby’s Smart Strings
	Coming Up with a String
	Another API to Master
	The String: A Place for Your Lines, Characters, and Bytes
	In the Wild
	Staying Out of Trouble
	Wrapping Up

	Chapter 5: Find the Right String with Regular Expressions
	Matching One Character at a Time
	Sets, Ranges, and Alternatives
	The Regular Expression Star
	Regular Expressions in Ruby
	Beginnings and Endings
	In the Wild
	Staying Out of Trouble
	Wrapping Up

	Chapter 6: Use Symbols to Stand for Something
	The Two Faces of Strings
	Not Quite a String
	Optimized to Stand for Something
	In the Wild
	Staying Out of Trouble
	Wrapping Up

	Chapter 7: Treat Everything Like an Object—Because Everything Is
	A Quick Review of Classes, Instances, and Methods
	Objects All the Way Down
	The Importance of Being an Object
	Public, Private, and Protected
	In the Wild
	Staying Out of Trouble
	Wrapping Up

	Chapter 8: Embrace Dynamic Typing
	Shorter Programs, But Not the Way You Think
	Extreme Decoupling
	Required Ceremony Versus Programmer-Driven Clarity
	Staying Out of Trouble
	In the Wild
	Wrapping Up

	Chapter 9: Write Specs!
	Test::Unit: When Your Documents Just Have to Work
	A Plethora of Assertions
	Don’t Test It, Spec It!
	A Tidy Spec Is a Readable Spec
	Easy Stubs
	. . . And Easy Mocks
	In the Wild
	Staying Out of Trouble
	Wrapping Up

	PART II: Classes, Modules, and Blocks
	Chapter 10: Construct Your Classes from Short, Focused Methods
	Compressing Specifications
	Composing Methods for Humans
	Composing Ruby Methods
	One Way Out?
	Staying Out of Trouble
	In the Wild
	Wrapping Up

	Chapter 11: Define Operators Respectfully
	Defining Operators in Ruby
	A Sampling of Operators
	Operating Across Classes
	Staying Out of Trouble
	In the Wild
	Wrapping Up

	Chapter 12: Create Classes That Understand Equality
	An Identifier for Your Documents
	An Embarrassment of Equality
	Double Equals for Everyday Use
	Broadening the Appeal of the == Method
	Well-Behaved Equality
	Triple Equals for Case Statements
	Hash Tables and the eql? Method
	Building a Well-Behaved Hash Key
	Staying Out of Trouble
	In the Wild
	Wrapping Up

	Chapter 13: Get the Behavior You Need with Singleton and Class Methods
	A Stubby Puzzle
	A Hidden, but Real Class
	Class Methods: Singletons in Plain Sight
	In the Wild
	Staying Out of Trouble
	Wrapping Up

	Chapter 14: Use Class Instance Variables
	A Quick Review of Class Variables
	Wandering Variables
	Getting Control of the Data in Your Class
	Class Instance Variables and Subclasses
	Adding Some Convenience to Your Class Instance Variables
	In the Wild
	Staying Out of Trouble
	Wrapping Up

	Chapter 15: Use Modules as Name Spaces
	A Place for Your Stuff, with a Name
	A Home for Those Utility Methods
	Building Modules a Little at a Time
	Treat Modules Like the Objects That They Are
	Staying Out of Trouble
	In the Wild
	Wrapping Up

	Chapter 16: Use Modules as Mixins
	Better Books with Modules
	Mixin Modules to the Rescue
	Extending a Module
	Staying Out of Trouble
	In the Wild
	Wrapping Up

	Chapter 17: Use Blocks to Iterate
	A Quick Review of Code Blocks
	One Word after Another
	As Many Iterators as You Like
	Iterating over the Ethereal
	Enumerable: Your Iterator on Steroids
	Staying Out of Trouble
	In the Wild
	Wrapping Up

	Chapter 18: Execute Around with a Block
	Add a Little Logging
	When It Absolutely Must Happen
	Setting Up Objects with an Initialization Block
	Dragging Your Scope along with the Block
	Carrying the Answers Back
	Staying Out of Trouble
	In the Wild
	Wrapping Up

	Chapter 19: Save Blocks to Execute Later
	Explicit Blocks
	The Call Back Problem
	Banking Blocks
	Saving Code Blocks for Lazy Initialization
	Instant Block Objects
	Staying Out of Trouble
	In the Wild
	Wrapping Up

	PART III: Metaprogramming
	Chapter 20: Use Hooks to Keep Your Program Informed
	Waking Up to a New Subclass
	Modules Want To Be Heard Too
	Knowing When Your Time Is Up
	. . . And a Cast of Thousands
	Staying Out of Trouble
	In the Wild
	Wrapping Up

	Chapter 21: Use method_missing for Flexible Error Handling
	Meeting Those Missing Methods
	Handling Document Errors
	Coping with Constants
	In the Wild
	Staying Out of Trouble
	Wrapping Up

	Chapter 22: Use method_missing for Delegation
	The Promise and Pain of Delegation
	The Trouble with Old-Fashioned Delegation
	The method_missing Method to the Rescue
	More Discriminating Delegation
	Staying Out of Trouble
	In the Wild
	Wrapping Up

	Chapter 23: Use method_missing to Build Flexible APIs
	Building Form Letters One Word at a Time
	Magic Methods from method_missing
	It’s the Users That Count—All of Them
	Staying Out of Trouble
	In the Wild
	Wrapping Up

	Chapter 24: Update Existing Classes with Monkey Patching
	Wide-Open Classes
	Fixing a Broken Class
	Improving Existing Classes
	Renaming Methods with alias_method
	Do Anything to Any Class, Anytime
	In the Wild
	Staying Out of Trouble
	Wrapping Up

	Chapter 25: Create Self-Modifying Classes
	Open Classes, Again
	Put Programming Logic in Your Classes
	Class Methods That Change Their Class
	In the Wild
	Staying Out of Trouble
	Wrapping Up

	Chapter 26: Create Classes That Modify Their Subclasses
	A Document of Paragraphs
	Subclassing Is (Sometimes) Hard to Do
	Class Methods That Build Instance Methods
	Better Method Creation with define_method
	The Modification Sky Is the Limit
	In the Wild
	Staying Out of Trouble
	Wrapping Up

	PART IV: Pulling It All Together
	Chapter 27: Invent Internal DSLs
	Little Languages for Big Problems
	Dealing with XML
	Stepping Over the DSL Line
	Pulling Out All the Stops
	In the Wild
	Staying Out of Trouble
	Wrapping Up

	Chapter 28: Build External DSLs for Flexible Syntax
	The Trouble with the Ripper
	Internal Is Not the Only DSL
	Regular Expressions for Heavier Parsing
	Treetop for Really Big Jobs
	Staying Out of Trouble
	In the Wild
	Wrapping Up

	Chapter 29: Package Your Programs as Gems
	Consuming Gems
	Gem Versions
	The Nuts and Bolts of Gems
	Building a Gem
	Uploading Your Gem to a Repository
	Automating Gem Creation
	In the Wild
	Staying Out of Trouble
	Wrapping Up

	Chapter 30: Know Your Ruby Implementation
	A Fistful of Rubies
	MRI: An Enlightening Experience for the C Programmer
	YARV: MRI with a Byte Code Turbocharger
	JRuby: Bending the “J” in the JVM
	Rubinius
	In the Wild
	Staying Out of Trouble
	Wrapping Up

	Chapter 31: Keep an Open Mind to Go with Those Open Classes

	Appendix: Going Further
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

