
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Web Workers

Ido Green

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.allitebooks.com

http://www.allitebooks.org

Web Workers
by Ido Green

Copyright © 2012 Ido Green. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Simon St. Laurent
Production Editor: Dan Fauxsmith
Proofreader: O’Reilly Media Publishing Services

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Revision History for the First Edition:
2012-05-22 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449322137 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Web Workers and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-32213-7

[LSI]

1337631845

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449322137
http://www.allitebooks.org

To Ema

Who always multi threaded

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Preface . vii

1. Overview . 1
What Can Web Workers Do? 2
Creating a Worker 3
What Web Workers Can and Can’t Do 3
Worker Execution 4
Web Workers API Browser Availability 4

2. How and Where Can We Use Web Workers? . 7
Loading External Scripts 9

3. Dedicated Workers . 13
Control Your Web Workers 17
Parsing Data with Workers 21
Transferable Objects 21

4. Inline Workers . 23

5. Shared Workers . 29

6. Debug Your Workers . 39
Debugging in Chrome Dev Tools 40

7. Web Workers Beyond the Browser: Node . 43
Processes 43
Communications 44
Message Format 45
Code 45
API 45
Additional Resources 46

v

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Preface

Web Workers is a powerful feature of HTML5 that hasn’t received very much attention.
It provides an API that allows you to run JavaScript in a separate thread that doesn’t
interfere with the user interface of your web application. This JavaScript runs in parallel
with the main renderer and any of your user interface scripts on it. This allows long
and “processing-heavy” tasks to be executed without making the page unresponsive.

Like threads in other technologies, Web Workers are relatively heavyweight. You don’t
want to use them in large numbers, as each one consumes significant system resources.
Web Workers are expected to handle long tasks that rely on constrained resources (e.g.,
CPU, network bandwidth, etc.). They have a high startup cost and a high instance of
memory cost.

Because it is a new, evolving standard, different browsers implement the Web Workers
specification in different ways. Although some aspects of the implementation are sta-
bilizing, I suspect that features like access to IndexedDB will be available soon in most
modern browsers. I hope that with this book and the adoption of modern browsers we
will see more usage of this powerful API.

All the examples in this book were tested on Chrome (15+) and Firefox
(7+). Web Workers also work in mobile Safari 5+, and will be especially
useful because the new iPhone 4GS has a multi-core processor.

How This Book Is Organized
Before you can do much with Web Workers, it helps to know what they are and what
they can do well. Next, you’ll learn how to confirm that your browser supports this
feature with a simple “Web Worker Hello World” example. The next three chapters
cover the different kinds of Web Workers (dedicated, shared, and inline), showing how
to use each one of them and when it will be best to choose one over the other. After
that, you’ll explore best practices for debugging your Web Workers. Finally, because
Web Workers are also used outside of a browser, you’ll see how to apply them within
the server-side Node environment.

vii

www.allitebooks.com

http://www.allitebooks.org

Who This Book Is For
You should have a solid intermediate to advanced understanding of JavaScript before
tackling the tools used in this book. In particular, you need to understand event han-
dling and callbacks.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

viii | Preface

www.allitebooks.com

http://www.allitebooks.org

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Web Workers by Ido Green (O’Reilly).
Copyright 2012 Ido Green, 9781449322137.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand digital
library that delivers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and cre-
ative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable da-
tabase from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech-
nology, and dozens more. For more information about Safari Books Online, please visit
us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreil.ly/webworkers-1e

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

Preface | ix

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/webworkers-1e
mailto:bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
I would like to thank Eric Bidelman for doing great review job. Without him, most of
the examples would have crashed after 10 seconds.

x | Preface

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Overview

Modern web applications would often run better if there was a way to perform heavy
calculations in the background instead of making the user interface wait for them to
complete. The Web Workers specification1 defines an API for running computationally
intensive code in a thread other than the web application user interface. Long tasks can
run without affecting your interface’s memory and CPU footprint because the Worker
will live in its own thread.

Multi-threaded programing is a complicated subject well stocked with complex algo-
rithms and theoretical discussion. You can find other languages (e.g., Java) that give
their developers a library to mask some of the complexity2. The good news is that Web
Workers provides a nice and simple API that lets you be very productive without wor-
rying too much about deadlocks and similar problems.

Web Workers promises to end the unfriendly “unresponsive script” dialogs like the
ones shown in Figure 1-1 and Figure 1-2.

Figure 1-1. The warning dialog for “unresponsive script” in Windows

1. http://www.whatwg.org/specs/web-apps/current-work/multipage/workers.html

2. http://gee.cs.oswego.edu/dl/concurrency-interest/index.html - and for more about multi-threading http://en
.wikipedia.org/wiki/Multithreading_(computer_architecture) is a good place to start your exploration.

1

http://www.whatwg.org/specs/web-apps/current-work/multipage/workers.html
http://gee.cs.oswego.edu/dl/concurrency-interest/index.html
http://en.wikipedia.org/wiki/Multithreading_(computer_architecture)
http://en.wikipedia.org/wiki/Multithreading_(computer_architecture)

Figure 1-2. The warning dialog for “unresponsive script” in MacOS

What Can Web Workers Do?
If your web application needs to complete a task that takes more than 150 milliseconds,
you should consider using a Web Worker. If your app needs to feel like a native one,
you should even consider setting the bar at around 80 milliseconds. Timing, of course,
depends on your browser and hardware. If you are building a mobile web application
you should make this time even shorter, as the CPU is not as powerful as on your
desktop.3 Before you get into timing your specific application, though, you may want
to contemplate tasks like the following:

• Encoding/decoding a large string

• Complex mathematical calculations (e.g., prime numbers, encryption, simulated
annealing, etc.)

• Sorting a large array

• Network requests and resulting data processing

• Calculations and data manipulation on local storage

• Prefetching and/or caching data

• Code syntax highlighting or other real-time text analysis (e.g., spell checking)

• Image manipulation

• Analyzing or processing video or audio data (including face and voice recognition)

• Background I/O

• Polling web services

• Processing large arrays or huge JSON responses

3. Web Workers in mobile browsers - http://greenido.wordpress.com/2012/02/07/google-chrome-for-android
-is-out-there/

2 | Chapter 1: Overview

http://greenido.wordpress.com/2012/02/07/google-chrome-for-android-is-out-there/
http://greenido.wordpress.com/2012/02/07/google-chrome-for-android-is-out-there/

Creating a Worker
To create a new Worker using the Web Worker API, you just need to call its script. For
example:

var worker = new Worker("worker.js");

The above line will load the script located at “worker.js” and execute it in the back-
ground. You need to call the Worker() constructor with the URI of a script to execute
in the Worker thread. If you want to get data from the Worker (e.g., output of processed
information, notifications, etc.), you should set the Worker’s onmessage property to an
appropriate event handler function. For example:

var worker = new Worker('routes.js');
worker.onmessage = function(event) {
 console.log("Called back by the routes-worker with the best route to the pub");
}

You can also keep in touch with your Workers using addEventListener:

var worker = new Worker('routes.js');
worker.addEventListener('message', function(event) {
 console.log("Called back by the routes-worker... with the best route to the pub")
}, false);
worker.postMessage(); // start the worker.

What Web Workers Can and Can’t Do
Workers don’t have access to the DOM of the “parent” page. They can’t access any of
the following:

• The window object

• The document object

• The parent object

• And, last but not least, they can’t use JavaScript libraries that depend on these
objects to work, like jQuery.

Web Workers can access only a limited set of JavaScript’s features because of their
multi-threaded nature. Here is the set of features they can use:

• The navigator object

• The location object (read-only)

• The XMLHttpRequest function

• The atob() and btoa() functions for converting Base 64 ASCII to and from binary
data

• setTimeout() / clearTimeout() and setInterval() / clearInterval()

• dump()

What Web Workers Can and Can’t Do | 3

• The application cache

• External scripts using the importScripts() method

• Spawning other Web Workers4

Worker Execution
Web Workers threads run their code synchronously from top to bottom, and then enter
an asynchronous phase in which they respond to events and timers. This allows roughly
two types of Web Workers:

• Web Workers that register an onmessage event handler, for long-running tasks that
need to run in the background. This Web Worker won’t exit, as it keeps listening
for new messages.

• Web Workers that never register for onmessage events, handling single tasks that
need to be offset from the main web app thread, like fetching and parsing a massive
JSON object. This Web Worker will exit once the operation is over. (In some cases,
where you have registered callbacks, it will wait until all of the callbacks are done.)

Web Workers API Browser Availability
Table 1-1 shows that most modern browsers implement basic Web Workers. Even the
mobile browsers offer Web Workers. However, Table 1-2 shows less support for the
shared Web Workers, which are covered in Chapter 5.

Table 1-1. Web Worker support in various browsers

Browser Version

IE 10.0

Chrome 12+

Firefox 5+

Safari 4+

Opera 11+

iOS Safari 5+

Opera Mobile 11+

Android 2.1

Chrome for Android Beta

4. http://www.html5rocks.com/en/tutorials/workers/basics/#toc-enviornment-subworkers

4 | Chapter 1: Overview

http://www.html5rocks.com/en/tutorials/workers/basics/#toc-enviornment-subworkers

Table 1-2. Shared Web Worker support in various browsers

Browser Version

IE Support unknown for 10.0

Chrome 12+

Firefox Support unknown for 9+

Safari 5+

Opera 11+

iOS Safari 5+

Opera Mobile 11+

Web Workers API Browser Availability | 5

CHAPTER 2

How and Where Can We Use Web
Workers?

When we wish to use a feature that is not supported in all browsers, we need to check
for support. In our case, for Web Workers we need to check whether there is a
Worker property on the global window object. If the browser does not support the Web
Worker API, the Worker property will be undefined, and you will need to find another
approach. (Hopefully you designed your application on a progressive enhancement
model, and this won’t be fatal.) We can use this simple helper function to sniff for Web
Workers support:

isWorkersAvailable() {
 return !!window.Worker;
}

Instead of using the function above, you could use the Modernizr library (http://mod
ernizr.com) to detect whether the client’s browser supports Web Workers. This would
let you test to see whether the client browser supports Web Workers and do something
else if it doesn’t:

if (Modernizr.webworkers) {
 // window.Worker is available!
} else {
 // no native support for Web Workers
}

Now that we know that our browser can leverage Web Workers, let’s have a look at a
simple example that calculates prime numbers, a popular “Hello World” of the Web
Workers world, shown in Example 2-1 and Example 2-2. Figure 2-1 shows the results.

Example 2-1. highPrime.js, a brute force prime number calculator that can be used as a Web Worker

//
// A simple way to find prime numbers
//
var n = 1;
search: while (true) {

7

http://modernizr.com
http://modernizr.com

 n += 1;
 for (var i = 2; i <= Math.sqrt(n); i += 1) {
 if (n % i == 0) {
 continue search;
 }
 }
 // found a prime!
 postMessage(n);
}

Example 2-2. An HTML host for the highPrime.js Web Worker

<!DOCTYPE HTML>
<html>
<head>
 <title>Web Worker: The highest prime number</title>
</head>
<style>
 #result {
 background-color: yellow;
 padding: 20px;
 font-size: 140%;
 }
 footer {
 font-size: 70%;
 color: red;
 position: fixed;
 bottom: 1em;
 text-align: center;
 }
</style>
<body>

 <h1>Web Worker: The highest prime number</h1>
 <article>The highest prime number discovered so far is:
 <output id="result"></output>
 </article>
 <script>
 var worker = new Worker('highPrime.js');
 worker.onmessage = function (event) {
 document.getElementById('result').textContent = event.data;
 };
 </script>
</body>
</html>

Due to Chrome’s security restrictions, Web Workers will not run locally
(e.g., from file://) in the latest versions of the browser (16+). Instead,
they fail silently! To run your app using local files and the file:// scheme,
run Chrome with the --allow-file-access-from-files flag set. It is not
recommended to run your regular browser with this flag set. It should
only be used for testing or development purposes.

8 | Chapter 2: How and Where Can We Use Web Workers?

www.allitebooks.com

http://www.allitebooks.org

In Chrome 17+ you will get “Uncaught Error: SECURITY_ERR: DOM
Exception 18”, which will be a reminder that you need to run from a
local server while developing. You can see how it looks in Figure 2-1.

Figure 2-1. Reporting on the prime number–generating Web Worker

Messages sent between our web app page and the Web Worker using postMessage()
will be copied (not shared). Our main web app page and the Web Worker don’t point
to the same object instance, so we have a duplicate memory footprint on each end. In
modern browsers, this capability is enabled by JSON encoding/decoding the object
value on each side (web app page and the worker). This means that you may pass JSON
or any other serialized data. For example:

postMessage ({'cmd': 'start', 'time': Date.now() });

Loading External Scripts
To load external script files or libraries into a Web Worker, use the importScripts()
global function. This function takes strings as arguments for the resources to import.
If you give it zero URLs nothing will be invoked. However, if you give it one or more
URLs (and file names as well), then it will load and execute this JavaScript (regardless
of the MIME type) in the Web Worker.

This code loads script1.js and script2.js into a Worker:

importScripts('script1.js');
importScripts('script2.js');

This can also be written as a single line:

importScripts('script1.js', 'script2.js');

Loading External Scripts | 9

The browser may fetch the scripts in any order, and in case of failure will return a
NetworkError exception. After all of the fetching is done, the scripts will be run in the
order in which you wrote them as arguments in importScripts(). These commands will
be processed synchronously. The importScripts() function itself does not return until
all the scripts have been fetched and executed.

Web Worker scripts must be resources (URLs of external files) with the
same scheme as their calling page. In other words, you won’t be able to
load a script from a JavaScript URL. Moreover, if your web app is work-
ing on a secure HTTP (https) you will need to call the Web Worker on
https:// as well.

There is currently (a tiny) disagreement among browser vendors on
whether or not data URIs are of the same origin; Chrome (15+) and
Gecko 10.0+ permit data URIs as a valid source for Web Workers.

One way to use importScripts() is by passing the script a callback function that will
be handling the results from the work that the Web Worker crunches. Example 2-3
demonstrates using a callback function by setting a call to the Twitter API and setting
a handling function processTweets that will handle the data Twitter returns.

importScripts('http://twitter.com/statuses/user_timeline/' +
 user + '.json?count=10&callback=processTweets');
.
.
function processTweets(data) {
 // parse the json object that holds the tweets and build a html block from
 // their content.
 .
 .
}

Example 2-3. Code that runs from index.html for creating a Web Worker

function startWorker(settings) {
 var myWorker = new Worker('scripts/worker.js');
 myWorker.addEventListener("message", workerListener, false);
 myWorker.postMessage(settings);
}

Example 2-4. The worker.js file

self.addEventListener('message', function(e) {
 doSomeWork();
};

function doSomeWork() {
 importScripts('http://example.com?callBack=handleWorkerResults');
}

function handleWorkerResults() {
 postMessage(result);
}

10 | Chapter 2: How and Where Can We Use Web Workers?

This can be a useful way to fetch JSON from REST APIs and then work on it. The
“Fetch Tweet” example in the next chapter demonstrates this technique.

Loading External Scripts | 11

CHAPTER 3

Dedicated Workers

Dedicated Web Workers let you run scripts in background threads. Once the Web
Worker is running, it can communicate with its web app by posting messages to an
event handler registered with the web app that spawned it. Dedicated Web Workers
are good for tasks that consume a lot of CPU (e.g., calculating routes, 3D positions,
prime numbers, etc.) and are also good for masking the latency in server connections.
Having a Worker handle the connections keeps the main user interface thread freer to
handle the users’ actions.

A dedicated Web Worker supports two events:

onmessage

Triggered when a message is received. An event object with a data member will be
provided with the message.

onerror

Triggered when an error occurs in the Worker thread. The event provides a data
member with the error information.

In this example, our web application main page starts a Web Worker to pull data from
the server. Once it receives the data, the Web Worker sends it to the parent page so it
can save it in the client-side database (or in our example, the localStorage). In the real
world we can take this methodology one step further and let our Web Worker handle
all of the communication with the server.

Example 3-1 does several things:

1. Starts the Web Worker code (which is in Example 3-2) by calling its constructor:
var worker = new Worker("Example-3-2-tweet.js");.

2. Sets itself up to listen for messages (the tweet information) the Web Worker will
send, using worker.addEventListener.

3. When tweets arrive from the Web Worker, create a new DOM element (list)
and add the list items () with the text from the tweets. After the loop completes,
use one command to update the DOM. This is the better way to make changes to

13

your web app. Try to avoid refresh/repaint of the DOM in side loops. It’s very
inefficient, and the browser’s life will be easier with fewer DOM changes that con-
tain more data in them.

4. Save the tweets inside the loop using the time stamp of the tweet as our key for the
localStorage.

In real life web app scenarios, you should avoid updating the localStor
age (just like the DOM) inside loops.

Example 3-1. Index.html for fetching tweets and putting them in localStorage

<!DOCTYPE HTML>
<html>
 <head>
 <meta charset="utf-8" />
 <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
 <title>Web Workers: Pull Tweets and save them in local storage</title>
 <meta name="author" content="Ido Green">
 <script src="http://ajax.googleapis.com/ajax/libs/jquery/1/jquery.min.js"></script>
 <style>
 #result {
 background: lightblue;
 padding: 20px;
 border-radius: 18px;
 }
 #tweets {
 background: yellow;
 border-radius: 28px;
 padding: 20px;
 }
 </style>
 </head>
 <body>

 <h1>Web Workers: Pull Tweets and save them in local storage</h1>
 <article>In this example we used a Web Worker to read tweets and save them using
localStorage.

 Let's have a look at how it's working internally by opening Chrome Dev Tool on the
'Resources' tab.

 Then, click on Local Storage and you will see the data of the tweets saved by tweet-
id.

 For more info: www.w3.org/TR/workers

 <div id="result"></div>
 <div id="tweets"></div>
 </article>

 <script>
 console.log("WebWorker: Starting");
 var worker = new Worker("Example-3-2-tweet.js");
 worker.addEventListener("message", function(e) {

14 | Chapter 3: Dedicated Workers

 var curTime = new Date();
 // here we will show the messages between our page and the Worker
 $('#result').append(curTime + ") " + e.data + "
");
 var source = e.data[0].source;
 // in case we have some data from Twitter - let's show it to the user
 if (typeof source != 'undefined') {
 var tweets = document.createElement("ul");
 for (var i=0; i < 10; i++) {
 if (typeof e.data[i] != 'undefined' &&
 e.data[i].text != 'undefined') {
 var tweetTextItem = document.createElement("li");
 var tweetText = document.createTextNode(e.data[i].text + " | " +
 e.data[i].source + " (" +
 e.data[i].created_at + ")") ;
 tweetTextItem.appendChild(tweetText);
 tweets.appendChild(tweetTextItem);
 saveTweet(e.data[i]);
 }
 }
 // update the DOM outside our loop so it will be efficient
 console.log("WebWorker: Updated the DOM with Tweets");
 $("#tweets").append(tweets);
 }
 }, false);

 worker.onerror = function(e){
 throw new Error(e.message + " (" + e.filename + ":" + e.lineno + ")");
 };

 // Key - tweet ID
 // Val - Time tweet created and the text of the tweet.
 function saveTweet(tweet) {
 localStorage.setItem(tweet.id_str, "{"+
 "'created': '" + tweet.created_at + "'," +
 "'tweet-text': '" + tweet.text + "'}");
 }

 // Get a tweet from our localStorage. We could use sessionStorage if we
 // wish to have this data just for our session
 function getTweet(tweetID) {
 return localStorage.getItem(tweetID);
 }

 </script>
 </body>
</html>

The Web Worker itself (Example 3-2) has only two steps. First, it reads tweets from
Twitter API inside readTweets(). The callback function executes processT

weets(data), which takes the payload JSON and sends it to the parent (e.g., in-
dex.html). It also sends some “administrative” messages like “Worker Status:” so it
will be easy to debug the code and see progress. The last phase is a loop that makes
sure to call the Twitter API every 3 seconds.

Dedicated Workers | 15

In addition, we can use app cache and offline capabilities to handle cases in which we
have a weak network connection or no connection at all.

Example 3-2. The Web Worker that collects the tweets

// Example-3-2-tweet.js
// Pull Tweets and send them so the parent page could save them in the localStorage
var connections = 0; // count active connections
var updateDelay = 30000; // = 30sec delay
var user = "greenido";

function getURL(user) {
 return 'http://twitter.com/statuses/user_timeline/' + user
 + '.json?count=' + 12 + '&callback=processTweets';
}

function readTweets() {
 try {
 var url = getURL(user);
 postMessage("Worker Status: Attempting To Read Tweets for user - " + user +
 " from: "+ url);
 importScripts(url);
 }
 catch (e) {
 postMessage("Worker Status: Error - " + e.message);
 setTimeout(readTweets, updateDelay);
 }
}

function processTweets(data) {
 var numTweets = data.length;
 if (numTweets > 0) {
 postMessage("Worker Status: New Tweets - " + numTweets);
 postMessage(data);
 } else {
 postMessage("Worker Status: New Tweets - 0");
 }
 setTimeout(readTweets, updateDelay);
}

//
// start the party in the Worker
//
readTweets();

Figure 3-1 shows how the simple web app looks with the Chrome Dev Tool open:

16 | Chapter 3: Dedicated Workers

Figure 3-1. Putting tweets in local storage with a Web Worker

There are cases in which you wish to gain more control on the operation of the Web
Worker. In the next example we will see how to manage a Web Worker with a simple
protocol created using a JSON object that contains a command and payload:

{'cmd': 'start/stop', 'upto': max number for our prime calculation}

Control Your Web Workers
Example 3-3 and Example 3-4 demonstrate managing our prime number–calculating
Web Worker with a simple protocol of two commands: start and stop. You can, of
course, have many more commands that suit the specific case you are trying to solve.
It’s important to remember that in our main switch you should always keep a
default and report it as an error (or warning depending on your app). The results are
shown in Figure 3-2.

Control Your Web Workers | 17

Example 3-3. HTML file for a more controllable prime number calculator.

<!DOCTYPE HTML>
<html>
 <head>
 <title>Web Worker: The highest prime number</title>
 <!-- Get the latest jQuery code -->
 <script src="http://ajax.googleapis.com/ajax/libs/jquery/1/jquery.min.js"></script>
 <meta charset=utf-8 />
 </head>
 <style>
 #actions {
 position: fixed;
 top: 10px;
 background: lightBlue;
 padding:8px;
 }
 h1 {
 position: relative;
 bottom: 10px;
 left: 280px;
 }
 #status {
 position: relative;
 font-size: 120%;
 background: darkslategrey;
 padding: 20px;
 border-radius: 20px;
 }
 article {
 position: relative;
 color:yellow;
 background: darkgray;
 padding: 25px;
 }
 input {
 width: 80px;
 height: 35px;
 font-size: 120%;
 }
 </style>
 <body>

 <h1>Web Worker: The highest prime number</h1>
 <article>The prime numbers:
 <output id="result"></output>
 <div id="status"></div>
 </article>
 <div id="actions">
 <input type="text" name="upto" id="upto"/>
 <button onclick="start()" title="Start the work">Start</button>
 <button onclick="stop()" title="Stop the work and go have a drink">Stop</button>
 </div>
 <script>
 var myWorker;

18 | Chapter 3: Dedicated Workers

www.allitebooks.com

http://www.allitebooks.org

 function start() {
 console.log("WebWorker: Starting");
 myWorker = new Worker("highPrime2.js");
 myWorker.addEventListener("message", primeHandler, false);
 var maxNum = $('#upto').val();
 myWorker.postMessage({'cmd': 'start', 'upto': maxNum});
 }

 function stop() {
 if (myWorker) {
 var msg = "
WebWorker: Terminating " + new Date();
 console.log(msg);
 $('#status').append(msg);
 myWorker.terminate();
 myWorker = null;
 }
 }
 function primeHandler(event) {
 console.log ('got e:'+event.data);
 if (is_numeric(event.data)) {
 $('#result').append(event.data);
 }
 else {
 $('#status').append(JSON.stringify(event.data));
 }
 }

 function is_numeric(input){
 return typeof(input)=='number';
 }
 </script>

 </body>
</html>

Example 3-4. highPrime2.js, the more controllable Web Worker

<script>
 //
 // A simple way to find prime numbers
 // Please note the self refers to the Worker context inside the Worker.
 self.addEventListener('message', function(e) {
 var data = e.data;
 var shouldRun = true;

 switch (data.cmd) {
 case 'stop':
 postMessage('Worker stopped the prime calculation (Al Gore is happy now) ' +
 data.msg);
 shouldRun = false;
 self.close(); // Terminates the Worker.
 break;
 case 'start':
 postMessage("Worker start working upto: " + data.upto + " (" + new Date()+ ")
");
 var numbers = isPrime(data.upto);
 postMessage("Got back these numbers: "+ numbers + "
");

Control Your Web Workers | 19

 break;
 default:
 postMessage('Dude, unknown cmd: ' + data.msg);
 };
 }, false);

 // simple calculation of primes (not the most efficient - but works)
 function isPrime(number) {
 var numArray = "";
 var thisNumber;
 var divisor;
 var notPrime;
 var thisNumber = 3;
 while(thisNumber < number) {
 var divisor = parseInt(thisNumber / 2);
 var notPrime = 0;
 while(divisor > 1) {
 if(thisNumber % divisor == 0) {
 notPrime = 1;
 divisor = 0;
 }
 else {
 divisor = divisor - 1;
 }
 }
 if(notPrime == 0) {
 numArray += (thisNumber + " ");
 }
 thisNumber = thisNumber + 1;
 }
 return numArray;
 }
</script>

Figure 3-2. Prime number calculation in progress

20 | Chapter 3: Dedicated Workers

Parsing Data with Workers
Web Workers are great for handling long-running tasks. In modern web applications,
there are many cases in which we need to handle large amounts of data. If you have a
large JSON string you wish to parse and it will take ~250 milliseconds (or more), you
should use Web Workers. This way, your users will love you and won’t hate the fact
that the web app doesn’t feel responsive.

The following example shows how you can use a simple Web Worker to parse this
string and get a nice JSON object you can work with in return.

Example 3-5. Code in Main-web-app-page.html that works with a returned JSON object

var worker = new Worker("worker-parser.js");

//when the data is fetched (e.g. in our xhr) -> this event handler
//is called to action
worker.onmessage = function(event){
 //let's get our JSON structure back
 var jsonObj = event.data;

 //work with the JSON object
 showData(jsonObj);
};

//send the 'huge' JSON string to parse
worker.postMessage(jsonText);

Example 3-6. worker-parser.js, a Web Worker that handles the actual JSON processing

self.onmessage = function(event){

 //the JSON string comes in as event.data
 var jsonText = event.data;

 //parse the structure
 var jsonObj = JSON.parse(jsonText);

 //send back to the JSON obj.
 self.postMessage(jsonObj);
};

Transferable Objects
In Firefox and Chrome (since version 13), we have the option to send ArrayBuffers to
and from a Web Worker using an algorithm called structured cloning1. The option to
use postMessage() not just for strings, but complex types like File, Blob, ArrayBuffer,
and JSON objects, makes this an important enhancement. Structured cloning is a

1. https://developer.mozilla.org/en/DOM/The_structured_clone_algorithm

Transferable Objects | 21

https://developer.mozilla.org/en/DOM/The_structured_clone_algorithm

powerful algorithm for any web developer, but it’s still a copy operation that can take
hundreds of milliseconds.

Chrome 17+ offers another performance boost through a new message-passing ap-
proach called Transferable Objects. This implementation makes sure that the data is
transferred and not copied from one context to another. It is a “move” operation and
not a copy, which vastly improves the performance of sending data to a Worker. It’s
similar to a pass-by-reference operation that we have in other languages. In a “normal”
pass-by-reference we will have the same pointer to the data; however, here the “version”
from the calling context is no longer available once the object is transferred to the new
context. In other words, when we transfer an ArrayBuffer from our main web app page
to the Web Worker, the original ArrayBuffer is cleared and we can no longer access it.
Instead, its contents are transferred to the Worker context and are accessible only in
the Web Worker’s scope.

There is a new (prefixed) version of postMessage() in Chrome 17+ that supports trans-
ferable objects. It takes two arguments, the ArrayBuffer message and a list of items that
should be transferred:

worker.webkitPostMessage(arrayBuffer, [arrayBuffer]);

You can also send messages through the window object. This approach requires adding
the targetOrigin because we can post this message to different workers.

window.webkitPostMessage(arrayBuffer, targetOrigin, [arrayBuffer]);

These approaches allow massive data manipulation, image processing, WebGL tex-
tures, etc., to be passed between the Web Worker and the main app with less impact
on memory footprint and speed.

22 | Chapter 3: Dedicated Workers

CHAPTER 4

Inline Workers

There are cases in which you will want to create your Worker script “on the fly” in
response to some event that your web app has fired. In other cases, you might want to
have a self-contained page without having to create separate Worker files. Sometimes,
you might wish to have your entire web app encapsulated in one page: you want to be
able to fetch the app with one Ajax call, or bundle it as a Chrome extension. Inline
Workers support these use cases.

The example below shows how we can use the new BlobBuilder1 interface to inline
your Worker code in the same HTML file.

Example 4-1. Creating an inline Worker with a javascript/worker type

<script id="worker1" type="javascript/worker">
// This script won't be parsed by JS engines because its type is JavaScript/worker.
// Simple code to calculate prime number and send it back to the parent page.
 self.onmessage = function(e) {
 self.postMessage("<h3>Worker: Started the calculation</h3>");
 var n = 1;
 search: while (n < 500) {
 n += 1;
 for (var i = 2; i <= Math.sqrt(n); i += 1)
 if (n % i == 0)
 continue search;
 // found a prime!
 postMessage("Worker: Found another prime: " + n + "");
 }
 postMessage("<h3>Worker: Done</h3>");
 }
</script>

You can see that we are using javascript/worker in the type so the JavaScript engine
won’t parse this code (yet). Next, we calculate the prime numbers up to 500 and send
messages to the parent page after each prime is found.

1. http://dev.w3.org/2009/dap/file-system/file-writer.html#the-blobbuilder-interface

23

http://dev.w3.org/2009/dap/file-system/file-writer.html#the-blobbuilder-interface

In the main page, we will create a BlobBuilder with the code we have under the script
Id “worker1.” Then, by using window.URL.createObjectURL we will create a new File (or
Blob) that represents our data. Firefox and Chrome both have the ability to use win
dow.URL; however, in Chrome/Safari/other WebKit browsers, we will use window.web
kitURL.

Example 4-2. Creating a Worker using BlobBuilder

<script>
 // Creating the BlobBuilder and adding our Web Worker code to it.
 var bb = new (window.BlobBuilder || window.WebKitBlobBuilder ||
 window.MozBlobBuilder)();
 bb.append(document.querySelector('#worker1').textContent);

 // Creates a simple URL string which can be used to reference
 // data stored in a DOM File / Blob object.
 // In Chrome, there's a nice page to view all of the created
 // blob URLs: chrome://blob-internals/

 // OurUrl enable our code to run in Chrome and Firefox.
 var ourUrl = window.webkitURL || window.URL;
 var worker = new Worker(ourUrl.createObjectURL(bb.getBlob()));

 worker.onmessage = function(e) {
 status(e.data);
 }
 worker.postMessage();
</script>

Example 4-3 includes the HTML page with some elements that show what goes on
while the Web Worker is finding prime numbers. The main disadvantage to this tech-
nique is that it will be harder to debug your Web Worker JavaScript code. One way to
be more productive would be to test your Web Worker as an external file. Then, only
after you are happy with the results, put it back in the page as an inline Web Worker.

24 | Chapter 4: Inline Workers

Figure 4-1. Results of the inline Worker hunting for prime numbers

Example 4-3. Inline Web Worker

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8" />
 <title>Web Worker: Inline Worker example</title>
 <meta name="author" content="Ido Green">
 <script src="http://ajax.googleapis.com/ajax/libs/jquery/1/jquery.min.js"></script>
 </head>

 <style>
 #status {
 background: lightGreen;
 border-radius: 15px;
 padding: 15px;
 overflow: auto;

Inline Workers | 25

 height:450px;
 }
 article {
 background: lightsalmon;
 border-radius: 15px;
 padding: 15px;
 margin-bottom: 15px;
 }
 </style>

 <body>
 <h1>Web Worker: Inline Worker example</h1>

 <article>
 This is an example for inline Worker that we created "on the fly" without the need
to fetch our JavaScript code of the Worker from another file.

 It is a useful method to create a self-contained page without having to create a
separate Worker file.

 With the new BlobBuilder interface, you can "inline" your Worker in the same HTML
file as your main logic by creating a BlobBuilder and appending the Worker code as a string.
 </article>

 <div id="status"></div>

 <script id="worker1" type="JavaScript/worker">
 // This script won't be parsed by JS engines because its type is JavaScript/worker.
 // We have here some simple code to calculate prime numbers and send them back to the
parent page.
 self.onmessage = function(e) {
 self.postMessage("<h3>Worker: Started the calculation</h3>");
 var n = 1;
 search: while (n < 500) {
 n += 1;
 for (var i = 2; i <= Math.sqrt(n); i += 1)
 if (n % i == 0)
 continue search;
 // found a prime!
 postMessage("Worker: Found another prime: " + n + "");
 }
 postMessage("<h3>Worker: Done</h3>");
 }
 </script>

 <script>
 function status(msg) {
 $("#status").append(msg);
 }

 // Creating the BlobBuilder and adding our Web Worker code to it.
 //new BlobBuilder();
 var bb = new (window.BlobBuilder || window.WebKitBlobBuilder)();
 bb.append(document.querySelector('#worker1').textContent);

 // creates a simple URL string that can be used to reference
 // data stored in a DOM File / Blob object.

26 | Chapter 4: Inline Workers

 // In Chrome, there's a nice page to view all of the
 // created blob URLs: chrome://blob-internals/
 var worker = new Worker(window.webkitURL.createObjectURL(bb.getBlob()));
 worker.onmessage = function(e) {
 // pass the information we received from the worker and print it
 status(e.data);
 }
 worker.postMessage(); // Start the worker.
 </script>
 </body>
</html>

Inline Workers | 27

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 5

Shared Workers

Shared Web Workers allow multiple web application instances to communicate with
a single instance of a shared Worker. Shared Web Workers will be identified by the
name or the URL that you provide in their constructor. You instantiate them by creating
a new SharedWorker.

One way to leverage shared workers in your web application is by using a single shared
Worker as a central point of communication with a server. Multiple Workers can be
opened and all view the same picture through the shared Worker. Instead of directly
communicating with your servers, the web app will communicate with a shared Worker
that buffers changes locally and communicates with the server when online.

The shared worker can also use HTML5 offline capabilities1 to persist the state of the
data and communicate it to the server, based on your web application logic. It’s a long-
lived task that gives your application the option of persisting data between all open
windows and tabs. It also allows your Model (as in the Model-View-Controller design
pattern2) to be elegantly encapsulated in one central place.

Other good uses for shared Workers include the following:

• Providing a single source of truth for any type of logic that your app needs in more
then one place (e.g., user identification, connection status, etc.).

• Ensuring data consistency between windows of the same web app.

• Reducing the memory consumption of multiple web app tabs/windows, by allow-
ing some code (e.g., server communications) to be centralized in one place.

The main event that the shared Web Worker will execute when a client thread connects
to it is connect. Each client connection has a port assigned to uniquely identify that

1. Currently only FileAPI and WebSQL are supported from Web Workers. However, because IndexedDB
is going to replace WebSQL I hope we will see support for it soon.

2. MVC - http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

29

http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

connection. The post-message method and message events get pushed to the port so
that the messaging is performed at the connection level.

Shared Web Workers can also load additional scripts using import
Scripts(), attach error handlers, and end further communication on a
port with port.close().

The Shared Web Worker in Example 5-1 and Example 5-2 counts the number of con-
nections and sends this data back to our web app rendering thread. You can test it by
opening several tabs in your browsers from the same domain.

Example 5-1. SharedWorker1.html

<!DOCTYPE HTML>
<html>
 <head>
 <meta charset="utf-8" />
 <title>Shared Web Workers: Basic Example</title>
 </head>
 <body>
 <h1>Shared Web Workers: Basic Example</h1>
 <article>
 To create a shared Web Worker, you pass a JavaScript file name to a new instance of
the SharedWorker object:

var worker = new SharedWorker("jsworker.js");

 Our web shared Web Worker will count the connection and return the data back to our
listener in this page. You might want to open the Chrome DevTools to see the process.
 <output id="result"></output>
 </article>
 <script>
 var worker = new SharedWorker('sharedWorker1.js');

 worker.port.addEventListener("message", function(e) {
 document.getElementById('result').textContent += " | " + e.data;
 }, false);

 worker.port.start();

 // post a message to the shared Web Worker
 console.log("Calling the worker from script section 1");
 worker.port.postMessage("script-1");
 </script>

 <script>
 // This new script block might be found on a separate tab/window
 // of our web app. Here it's just for the example on the same page.
 console.log("Calling the worker from script section 2");
 worker.port.postMessage("script-2");
 </script>
 </body>
</html>

30 | Chapter 5: Shared Workers

Example 5-2. sharedWorker1.js

// This is the code for: 'sharedWorker1.js' file
// Shared workers that handle the connections and Welcome each new script

var connections = 0; // count active connections
self.addEventListener("connect", function(e) {
 var port = e.ports[0];
 connections++;
 port.addEventListener("message", function(e) {
 port.postMessage("Welcome to " + e.data +
 " (On port #" + connections + ")");
 }, false);
 //
 port.start();
}, false);

Figure 5-1. Results from calling a shared worker through a common port

In Figure 5-1 you can see the process of calling our shared Web Worker from one
<script> and then calling it again from another <script> (which could be in a different
browser window/tab). The first step is creating the shared Web Worker using its con-
structor:

var worker = new SharedWorker('Example-5-2-sharedWorker.js');

Shared Workers | 31

Then we add a listener so we could act on the messages that the shared worker sends
back:

worker.port.addEventListener("message", function(e) {
 document.getElementById('result').textContent += " | " + e.data;
 }, false);

And now we start the shared Worker:

worker.port.start();

From now on we can call it using postMessage:

worker.port.postMessage("our message data");

Example 5-3 and Example 5-5 show a more detailed example that shows how to handle
connections (in our case, from Twitter) using a shared Worker as the main connector
to the Twitter API. It is more efficient in cases in which we think a user might open a
few instances of our web app (e.g., a mail client).

Example 5-3. SharedWorkers2.html

<!DOCTYPE HTML>
<html>
 <head>
 <meta charset="utf-8" />
 <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
 <title>Shared Web Workers: Twitter Example</title>
 <meta name="author" content="Ido Green">
 <script src="http://ajax.googleapis.com/ajax/libs/jquery/1/jquery.min.js"></script>
 <style>
 #result {
 background: lightblue;
 padding: 20px;
 border-radius: 18px;
 }
 #tweets {
 background: yellow;
 border-radius: 28px;
 padding: 20px;
 }
 </style>
 </head>
 <body>

 <h1>Shared Web Workers: Twitter Example</h1>
 <nav>
 <button id="start-button">Start The Shared Worker</button>
 <button id="stop-button">Stop The Shared Worker</button>
 </nav>
 <article>In this example we use a Shared Worker to read tweets and then send them to
the main UI thread.
You will see the messages that we gett from the SharedWorker and
then the tweets for @greenido (yep, that's my username on Twitter)

 Let's have a look how it's working internally by opening Chrome DevTool on the Console
tab.

32 | Chapter 5: Shared Workers

 <div id="result"></div>
 <div id="tweets"></div>
 </article>

 <iframe style="width:90%; height: 600px; background: lightgray;"
 src="Example-5-3-b-sharedWorkerTweet.html"></iframe>>

 <script>
 var worker;

 function startWorker() {
 console.log("WebWorker: Starting");
 worker = new SharedWorker("sharedWorker2.js");
 worker.port.addEventListener("message", function(e) {
 var curTime = new Date();
 // here we will show the messages between our page and the shared Worker
 $('#result').append(curTime + ") " + e.data + "
");
 var source = e.data[0].source;
 // in case we have some data from Twitter - let's show it to the user
 if (typeof source != 'undefined') {
 var tweets = document.createElement("ul");
 for (var i=0; i < 10; i++) {
 if (typeof e.data[i] != 'undefined' &&
 e.data[i].text != 'undefined') {
 var tweetTextItem = document.createElement("li");
 var tweetText = document.createTextNode(e.data[i].text + " | " +
 e.data[i].source + " (" +
 e.data[i].created_at + ")") ;
 tweetTextItem.appendChild(tweetText);
 tweets.appendChild(tweetTextItem);
 }
 // update the DOM outside our loop so it will be efficient action
 console.log("WebWorker: Updated the DOM with Tweets");
 $("#tweets").append(tweets);
 }

 // just to help us analyze what we got as data form the shared Worker
 console.log ("msg we got back: "+ JSON.stringify(e));
 }, false);
 worker.onerror = function(e){
 throw new Error(e.message + " (" + e.filename + ":" + e.lineno + ")");
 };

 worker.port.start();
 // post a message to the shared Web Worker
 console.log("Calling the worker with @greenido as user");
 worker.port.postMessage({
 cmd: "start",
 user: "greenido"});
 }

 function stopWorker() {
 if (worker != undefined) {
 worker.port.postMessage({ cmd: "stop" });
 console.log("WebWorker: Stop the party");

Shared Workers | 33

 // You might use worker = null if you wish not to use the Worker from now
 }
 }

 // when the DOM is ready - attached our 2 actions to the buttons
 $(function() {
 $('#start-button').click(function() {
 startWorker();
 });
 $('#stop-button').click(function() {
 stopWorker();
 });
 });

 </script>
 </body>
</html>

Example 5-4. inner iframe we use in SharedWorkers2.html

<!DOCTYPE HTML>
<html>
 <head>
 <meta charset="utf-8" />
 <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
 <title>Shared Web Workers: Twitter Example</title>
 <meta name="author" content="Ido Green">
 <script src="http://ajax.googleapis.com/ajax/libs/jquery/1/jquery.min.js"></script>
 <style>
 #result {
 background: orange;
 padding: 20px;
 border-radius: 18px;
 }
 #tweets {
 background: grey;
 border-radius: 28px;
 padding: 20px;
 }
 </style>
 </head>
 <body>

 <h1>Shared Web Workers: inner iframe</h1>
 <nav>
 <button id="start-button">Start The Shared Worker</button>
 <button id="stop-button">Stop The Shared Worker</button>
 </nav>
 <article>
 Inner iframe that in the real world could be another tab/window of our web app.
 <div id="result"></div>
 <div id="tweets"></div>
 </article>
 <script>
 var worker;

34 | Chapter 5: Shared Workers

 function startWorker() {
 console.log("WebWorker: Starting");
 worker = new SharedWorker("Example-5-4-sharedWorkerTweet.js");
 worker.port.addEventListener("message", function(e) {
 var curTime = new Date();
 // here we will show the messages between our page and the shared Worker
 $('#result').append(curTime + ") " + e.data + "
");
 var source = e.data[0].source;
 // in case we have some data from Twitter - let's show it to the user
 if (typeof source != 'undefined') {
 var tweets = document.createElement("ul");
 for (var i=0; i < 10; i++) {
 if (typeof e.data[i] != 'undefined' &&
 e.data[i].text != 'undefined') {
 var tweetTextItem = document.createElement("li");
 var tweetText = document.createTextNode(e.data[i].text + " | " +
 e.data[i].source + " (" +
 e.data[i].created_at + ")") ;
 tweetTextItem.appendChild(tweetText);
 tweets.appendChild(tweetTextItem);
 }
 }
 // update the DOM outside our loop so it will be efficient action
 console.log("WebWorker: Updated the DOM with Tweets");
 $("#tweets").append(tweets);

 }
 }, false);
 worker.onerror = function(e){
 throw new Error(e.message + " (" + e.filename + ":" + e.lineno + ")");
 };

 worker.port.start();
 // post a message to the shared Web Worker
 console.log("Calling the worker with @greenido as user");
 worker.port.postMessage({
 cmd: "start",
 user: "greenido"});
 }

 function stopWorker() {
 if (worker != undefined) {
 worker.port.postMessage({ cmd: "stop" });
 console.log("WebWorker: Stop the party");
 // You might use worker = null if you wish not to use the Worker from now
 }
 }

 // when the DOM is ready - attached our 2 actions to the buttons
 $(function() {
 $('#start-button').click(function() {
 startWorker();
 });
 $('#stop-button').click(function() {
 stopWorker();

Shared Workers | 35

 });
 });

 </script>
 </body>
</html>

Example 5-5. sharedWorker2.js

//
// Shared workers that handle the connections and Welcome each new script
// @author Ido Green
// @date 11/11/2011
var connections = 0; // count active connections
var updateDelay = 60000; // = 1min delay
var port;
var user;

function getURL(user) {
 return 'http://twitter.com/statuses/user_timeline/' + user
 + '.json?count=' + 12 + '&callback=processTweets';
}

function readTweets() {
 try {
 var url = getURL(user);
 port.postMessage("Worker: Attempting To Read Tweets for user - " + user +
 " from: "+ url);
 importScripts(url);
 }
 catch (e) {
 port.postMessage("Worker: Error - " + e.message);
 setTimeout(readTweets, updateDelay); // lets do it every 2min
 }
}

function processTweets(data) {
 if (data.length > 0) {
 port.postMessage("Worker: New Tweets - " + data.length);
 port.postMessage(data);
 } else {
 port.postMessage("Worker: New Tweets - 0");
 }
 setTimeout(readTweets, updateDelay);
}

//
// The controller that manage the actions/commands/connections
//
self.addEventListener("connect", function (e) {
 port = e.ports[0];
 connections++;
 port.addEventListener("message", function (e) {
 var data = e.data;

36 | Chapter 5: Shared Workers

 switch (data.cmd) {
 case 'start':
 port.postMessage("Worker: Starting You are connection number:"+ connections);
 user = data.user;
 readTweets();
 break;
 case 'stop':
 port.postMessage("Worker: Stopping");
 self.close();
 break;
 default:
 port.postMessage("Worker: Error - Unknown Command");
 };

 }, false);
 port.start();
}, false);

Figure 5-2 shows how the Shared Web Worker example will look. The connection to
the shared Worker is done first from the main window and then from the iframe (that
mimics the case of another instance of the web app in another window or tab).

Shared Workers | 37

Figure 5-2. Shared workers running across iframes

38 | Chapter 5: Shared Workers

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 6

Debug Your Workers

Because Web Workers JavaScript files aren’t part of the files you will find in Firefox’s
firebug or in Safari’s web inspector, it will be difficult to debug them. These script files
aren’t part of the current page scope, and the browser won’t show them to us. Luckily,
in Chrome (15+) we have a great option to debug Web Workers in the Chrome Dev
Tools. We will see how to use this tool later in this chapter.

If you aren’t using Chrome, there is an option to gain information when an error occurs.
The Web Workers specification1 shows us that an error event (onerror handler) should
be fired when a runtime script error occurs in a Worker. The main properties in the
onerror handler are the following:

message

The error message itself.

lineno

The number of the line inside our Web Worker that caused the error.

filename

The name of the file inside the Worker in which the error occurred.

That should be all the information you need to be able to fix your “errors,” right?

You can override the onerror function with a version that will throw an error with
enough information to help us see what’s happening inside the Worker. You may also
add some other parameters that are specific to your case. For example, if your Worker
is handling connections, you can add their data (e.g., number of open connections,
number of ideal connections, etc.) to this error message. This is a simple way to un-
derstand where your code is broken.

var worker = new Worker("worker.js");
worker.onerror = function(e){
 throw new Error(e.message + " (" + e.filename + ":" + e.lineno + ")");
};

1. http://www.w3.org/TR/workers/

39

http://www.w3.org/TR/workers/

Debugging in Chrome Dev Tools
Chrome (15+) facilitates debugging of Web Workers by injecting fake Workers im-
plementations. These injections simulate Web Workers using an iframe within a
Worker’s client page. This is a powerful tool that lets us debug workers in a much more
productive way. To get the new Chrome Dev Tool console, you will need to navigate
to the scripts pane in Dev Tools. Check the Debug checkbox to the right of Worker
inspectors, and then reload the page. The Web Worker script will show up under
Worker inspectors, as shown in Figure 6-1.

Figure 6-1. Worker inspectors in Chrome Dev Tools

In Chrome 17+ you will see the new UI shown in Figure 6-2.

Figure 6-2. Workers in Chrome 17+

40 | Chapter 6: Debug Your Workers

Figure 6-3. Worker Dev Tool window in Chrome 17+

Chrome 17+ offers the ability to debug your shared Workers, as shown in Figure 6-3.
Open the task manager, and between all the tasks (=open tabs and other process) you
will see one for the shared Worker. Click on it and you will get the option to “investi-
gate.” This will open a new window with the Chrome Dev Tool.

Debugging in Chrome Dev Tools | 41

CHAPTER 7

Web Workers Beyond the Browser:
Node

The main motivation to implement Web Workers for NodeJS is to have a set of standard
platform-independent concurrency APIs outside the browser. One powerful example
is Peter Griess’ node-webworker module1, and you can find others on GitHub2.

These implementations let front-end web developers carry their knowledge of Web
Workers technology beyond the browser. They also let developers avoid the NodeJS
primitives for managing processes. The child_process3 provides a great deal of func-
tionality, but is easily misinterpreted by developers who have not developed for a UNIX
platform. The error reporting APIs in the Web Workers are also more full-featured and
verbose than the one provided natively by child_process.

Using this module effectively requires understanding that Web Worker instances are
relatively heavyweight and should be long-lived. Launching a Worker and maintaining
its state requires a high per-instance memory cost. Therefore, it’s more efficient to pass
messages to existing Workers to create tasks rather than creating a new Web Worker
for each work item.

Processes
In the node-webworker module each worker implements in its own node process. This
is done so we won’t need a separate thread (and V8 context) in the main node process.
Each node process will be self-contained.

The main advantage of this approach include the following:

1. Thanks to Peter Griess and his important work on GitHub (https://github.com/pgriess/node-webworker).
You can read more in his blog: http://blog.std.in/2010/07/08/nodejs-webworker-design/

2. https://github.com/cramforce/node-worker

3. http://www.linux-tutorial.info/modules.php?name=MContent&pageid=83

43

https://github.com/pgriess/node-webworker
http://blog.std.in/2010/07/08/nodejs-webworker-design/
https://github.com/cramforce/node-worker
http://www.linux-tutorial.info/modules.php?name=MContent&pageid=83

Performance
Modern operating systems are more likely to schedule different processes on dif-
ferent CPUs. This might not always happen for multiple threads within the same
process, and with today’s multicore processors it make sense to leverage them as
we can.

Fault isolation
If the Worker runs out of memory or triggers an error, it will not cause glitches to
other Workers.

Avoiding complexity
There is no need for a complicated managing layer that observes event loops in a
single process.

Each worker is launched by lib/webworker-child.js, which is passed to the UNIX socket
to be used as a message channel with the parent process. You then can use a web socket
in the parent process to pass messages on this channel:

new WebSocket('ws+unix://' + sockPath);

This script is passed to node as the entry point for the process and is responsible for
constructing a V8 script context populated with Web Workers API syntax (e.g., the
postMessage(), close() etc.). All of this action occurs in a context that is separate from
the one in which the Worker application will be executing. In this case, each Worker
gets a clean Node runtime with the Web Worker API. The Worker application doesn’t
need to initialize or require() any additional libraries or scripts.

Communications
The Web Workers spec describes a message passing API.4 The Node-based master
process will create a dedicated UNIX domain socket per worker. This has much less
overhead than TCP, and it allows us to enjoy some UNIX goodies like file descriptor
passing. This socket’s path will be composed from /tmp/node-webworker-<pid>/
<worker-id>.

<pid>
PID of the process doing the creating.

<worker-id>
ID of the worker being created.

4. http://www.whatwg.org/specs/web-apps/current-work/multipage/workers.html#communicating-with-a
-dedicated-worker

44 | Chapter 7: Web Workers Beyond the Browser: Node

http://www.whatwg.org/specs/web-apps/current-work/multipage/workers.html#communicating-with-a-dedicated-worker
http://www.whatwg.org/specs/web-apps/current-work/multipage/workers.html#communicating-with-a-dedicated-worker

Message Format
The messages themselves are in JSON. As with Web Workers in the browser, you
should use JSON.stringify() and JSON.parse() to encode and decode these objects. As
a good practice it’s suggested to use an object that will encapsulate a message from this
format: { <type>, <object> }. This simple protocol allows us to act in the Web Worker
on the data (which is passed inside our <object> base on the <type> we wish). For
example, a type could be start, stop, analyze, debug, etc.

Code
Example 7-1 starts a Worker that calculates routes (e.g., the famous problem of finding
the best route from L.A. to San Francisco). The code in main.js is a generic setup to
create the Worker and listen to its output, whereas in the Worker itself we calculate
the routes and post the results back.

Example 7-1. main.js

var sys = require('sys');
// fetching node-webworker
var Worker = require('webworker');

// create a new worker to calculate routes
var w = new Worker('routes-worker.js');

// listen to messages from the Worker and in our case kill it when we get the first message
(with or without the calculated route
w.onmessage = function(e) {
 sys.debug('* Got mesage: ' + sys.inspect(e));
 w.terminate();
};

// ask the Worker to run on a 'test' route from L.A. to San Francisco
w.postMessage({ route : 'lax-sfo' });

Example 7-2. routes-worker.js

onmessage = function(data) {
 // calculating the route here
 // ...
 postMessage({ route : 'json obj with the route details' });
};

onclose = function() {
 sys.debug('route-worker shutting down.');
};

API
The supported standard Web Worker API methods include the following:

API | 45

postMessage(e)

In both workers and the parent.

onmessage(e)

In both workers and the parent.

onerror(e)

In both workers and the parent.

terminate()

In the parent. You don’t need it in the Web Worker, as it will finish on its own.

Additional Resources
• All of this book’s example code can be found on GitHub: https://github.com/green

ido/Web-Workers-Examples-

• Specifications: http://www.whatwg.org/specs/web-workers/current-work/

• Mozilla Developer Network: https://developer.mozilla.org/en/Using_web_workers

• The basics of Web Workers: http://www.html5rocks.com/en/tutorials/workers/ba
sics/

• Live example of Web Workers that find routes on a map: http://slides.html5rocks
.com/#web-workers

• Live example I’ve written using Web Workers to calculate prime numbers while
you can control them (start/stop) using commands: http://ido-green.appspot.com/
examples/webWorkers/highPrime2.html

• Canvas & Web Workers demo: This app uses canvas to draw out a scene. You’ll
see that when you use Web Workers this scene is drawn in pieces; this is done by
telling the Web Worker to compute a slice of pixels. The Web Worker itself cannot
manipulate the canvas because of the restrictions it has. It will therefore pass the
computed information back to the main page and the drawing will be done from
this page: http://nerget.com/rayjs-mt/rayjs.html.

46 | Chapter 7: Web Workers Beyond the Browser: Node

https://github.com/greenido/Web-Workers-Examples-
https://github.com/greenido/Web-Workers-Examples-
http://www.whatwg.org/specs/web-workers/current-work/
https://developer.mozilla.org/en/Using_web_workers
http://www.html5rocks.com/en/tutorials/workers/basics/
http://www.html5rocks.com/en/tutorials/workers/basics/
http://slides.html5rocks.com/#web-workers
http://slides.html5rocks.com/#web-workers
http://ido-green.appspot.com/examples/webWorkers/highPrime2.html
http://ido-green.appspot.com/examples/webWorkers/highPrime2.html
http://nerget.com/rayjs-mt/rayjs.html

About the Author
Ido is a Developer Advocate for Google Chrome OS. He has been a developer and
building companies for more then 15 years. He still likes to develop web applications,
but only ones with amazing UX. He has a wide array of skills and experience, including
Java, php, perl, JavaScript--and all aspects of agile development and scaling systems.

www.allitebooks.com

http://www.allitebooks.org

	Table of Contents
	Preface
	How This Book Is Organized
	Who This Book Is For
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Overview
	What Can Web Workers Do?
	Creating a Worker
	What Web Workers Can and Can’t Do
	Worker Execution
	Web Workers API Browser Availability

	Chapter 2. How and Where Can We Use Web Workers?
	Loading External Scripts

	Chapter 3. Dedicated Workers
	Control Your Web Workers
	Parsing Data with Workers
	Transferable Objects

	Chapter 4. Inline Workers
	Chapter 5. Shared Workers
	Chapter 6. Debug Your Workers
	Debugging in Chrome Dev Tools

	Chapter 7. Web Workers Beyond the Browser: Node
	Processes
	Communications
	Message Format
	Code
	API
	Additional Resources

